
Rational Software Corporation
Installation Guide
RATIONAL ROSE® REALTIME

VERSION: 2002.05.00

PART NUMBER: 800-025111-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025111-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface . xiii
Audience. xiii

Other Resources . xiii

Contacting Rational Technical Publications . xiii

Contacting Rational Technical Support . xiv

Introduction .1
Contents . 1

Welcome to Rational Rose RealTime. 1
Release Notes . 2
Installation Guide Updates . 2

Overview of Rose RealTime Capabilities . 2

What’s New?. 3

How to Get Help . 4
Contacting Rational Technical Support Through the Help Menu 4
Contacting Rational Technical Support by Email or Telephone 4
License Support Contact Information . 6
Evaluation and Ordering Information . 7
Rational Web Site . 7

Directory Contents . 7

Accessing the Online Help System . 8

Referenced Configurations and Toolchain Requirements 11
Contents . 11

Referenced Configurations . 11
Requirements for Windows NT. 11
Requirements for Windows 2000 . 12
Requirements for Windows XP Pro . 12
Requirements for UNIX. 13
Contents v

Toolchain Requirements .13
Help Viewer (Windows Only) . 13
Compiler . 13
Real-time Operating System . 14

Referenced Host Configurations .14
Creating Executables for Hosts without Toolset Support 17

Generating an Executable Without a Common File System .17

Adding a Printer on UNIX. .18

Installing Rational Rose RealTime on Windows 21
Contents. .21

Before You Install .21
Client Installation Tasks. .22

Administering Licenses. 22
Preparing for a Rational Rose RealTime Installation . 23

Upgrade Information .23
Administrative Installation Tasks .24

Using the Rational Software Setup Program .24

Performing a Client Installation .24

Performing an Administrative Installation .28

Performing a Client Installation from the Network .30

After You Install .31
Updating Batch Files . 31
Configuring Your Environment . 31
Installing Professional Edition Software . 32

Testing your Environment. .32

Installing Rational Rose RealTime on UNIX. 35
Contents. .35

Before You Install .35
Installing in Secure Environments . 36
Installing Multiple OS Versions of Rational Suite DevelopmentStudio RealTime

(UNIX) . 36
Stopping and Restarting an Installation . 36
vi Contents

Upgrade Information .37
Upgrading to New Version Only (Uninstalling Earlier Version) 37
Upgrading to 6.4 While Maintaining an Earlier Version 38

Installation Instructions .38

After You Install .42
Source to Setup Script . 43
Set Connexis Variable . 43
Unmount the CD-ROM Drive . 43
Install the Professional Edition Software . 43
Starting Rational Rose RealTime (UNIX). 43

Understanding Rose RealTime Licenses . 45
Contents. .45

How Licenses Work .45

Types of Licenses. .46
Node-Locked Licenses. 46
Floating Licenses . 46
Permanent Licenses and Temporary License Keys . 46
Emergency and Evaluation Keys . 47
Suite Licenses and Point Product Licenses . 47
Returning License Keys . 47
Upgrading Licenses . 48

Requesting License Keys. .48
Receiving and Importing License Keys . 49
Requesting License Keys by Fax . 49
Receiving Permanent License Keys. 50

Converting a Temporary License to a Permanent License 50

Licenses for Windows .51

The License Manager .51
UNIX. 51

License Manager Commands .52
Additional Licensing Commands . 53

License Manager Daemon (lmgrd) . 53
Vendor Daemon. 53
License Key File. 54
Application Program. 54
Contents vii

Configuring a UNIX Workstation to Point to a FlEXlm Server 54
License Activation Process .55

Licensing on UNIX .55
Running the lmgrd from a Command Prompt . 55

Example .56
Administration Commands .56

The License File. .57
Format. .57

UNIX Licenses .59
Start-up or Emergency keys . 59
Node-Locked keys . 59
Floating keys. 59
TLA . 60

Frequently Asked Questions .60

Installing License Keys . 61
Contents. .61

Before You Begin .61

Installing a Startup or Permanent License on Windows 61
Installing a Permanent License on Windows . 63
Installing the License Key . 64
Installing a Floating License Key on a UNIX server . 65

Installing a Startup or Permanent License on UNIX 65
Installing a Startup License on UNIX . 65
Installing a Permanent License on UNIX . 66
Installing the License Key . 68

Integration With Rational Suites Licensing. .68

Troubleshooting .69
Windows . 69
UNIX server . 70
UNIX . 70

Migration . 73
Contents. .73

Migrating from Rational Rose. .73
User Interface Differences . 73
New Modeling Language Elements . 75
viii Contents

Code Generation, Building, and Running. 75
Opening Models from Rational Rose . 76
List of Importation Log Messages . 76
Limitations and Restrictions . 77
Importing Rational Rose Generated Code . 78

Limitations and Restrictions . 78

Migrating from ObjecTime Developer 5.2/5.2.1 .79
Terminology . 79
User Interface Differences . 80
Compilation . 81

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1 .82
File Format Changes . 82
Source Control Migration . 82

Migrating customized CM scripts . 83

Language Add-in Changes . 84
Running Two Different Releases of Rose RealTime . 84
Workspace Files. 84
RRTEI Changes . 85

C Language Migration .87
Converting a C++ Model to C. 87
ObjecTime Developer for C Migration . 88

Importing models . 88
Converting global signals to local signals . 89
Timing service . 90

C++ Language Migration .90
Backwards Compatibility Mode . 90

Migrating in two steps . 90
What does backwards compatibility do? . 91
Compiler will find all errors. 91
Building a model in backwards compatibility mode . 92
Full migration . 94

Changes. 94
C++ UML Services Library. 94
Code generation and compilation . 94
New classes for protocols, signals, and ports . 95
Type safety explained. 95
How has this been changed?. 95
API Changes Summary . 96
Asynchronous Sends . 97
Synchronous Sends. 97
Contents ix

Message Reply .98
Defer, Recall, and Purge .99
Port Indexes .100
Discriminating in Code the Signal of a Received Message.100
Forwarding .101
RTPortRef Operations. .103
RTTimespec Pameters .104
RTSignalNames .105
Macros .105
External Layer Service (ELS) .106

Code Generation . 106
Components .106
Directory structure. .107
Parameters available in transition code. .107
Port cardinality cannot be unspecified .108
Makefile overrides changes .108

Model Properties . 108
Advanced property editors .108

Integration Notes . 109
Contents. .109

Overview .109

Configuration Management (CM) Tools Integration110
ClearCase on a UNIX Server and Clients on both NT and UNIX 110
Migrating from Rational Rose and ObjecTime Developer. 110

Requirements Management Tools Integration .111
Rational SoDA for Word . 111
Rational RequisitePro . 111

Unit Testing Tools Integration .112
Rational Purify . 112

Adding options to Purify on UNIX .112

Microsoft Development Environment .113

Integration with Rational Robot .113

Naming Directories .113

Starting Rational Rose RealTime . 115
Contents. .115

Starting Rose RealTime on Windows .115
x Contents

Starting Rose RealTime on UNIX .115
Start-up options for UNIX. 116

Rose RealTime for UNIX and the X Window System.116
X clients . 117
X servers . 117
X window managers. 117
Input focus (active window) policy . 118
Window order policy. 118

Automating Rose RealTime .119

Command Line Options .119

Add-Ins. 121
Contents. .121

Web Publisher .121
Suggested Workflow . 121

Limitations . 122

Model Integrator .123
Suggested Workflow . 123

Rose C++ Analyzer .124
Suggested Workflow . 124

Limitations . 126

Uninstalling Rational Rose RealTime . 127
Contents. .127

Windows. .127

UNIX. .127

Index. 129
Contents xi

Preface
This manual provides the necessary information to install, uninstall, and configure
Rational Rose RealTime for your environment.

Audience

This guide is intended for all readers, including managers, project leaders, analysts,
developers, and testers.

Other Resources

� Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals on Windows, click Rose RealTime Online Documentation from the Start
menu.

� For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our Technical Documentation Department at techpubs@rational.com.
xiii

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support.

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name
� Your computer ’s make and model
� Your computer ’s operating system and version number
� Product release number and serial number
� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-202
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xiv Preface

1Introduction
Contents

This chapter is organized as follows:

� Welcome to Rational Rose RealTime on page 1
� Overview of Rose RealTime Capabilities on page 2
� What’s New? on page 3
� How to Get Help on page 4
� Directory Contents on page 7
� Accessing the Online Help System on page 8

Welcome to Rational Rose RealTime

Rational Rose RealTime is a comprehensive visual development environment that
delivers a powerful combination of notation, processes, and tools to meet the
challenges of real-time software development. Through the industry-standard
Unified Modeling Language (UML), real-time design constructs, code generation, and
model execution capabilities, Rational Rose RealTime addresses the complete lifecycle
of a project: from early use case analysis, through to design, implementation, and
testing.

Rational Rose RealTime is designed for simple insertion into your software
development environment, processes, and workflows. Rose RealTime includes
seamless integration with other Rational products and support for a variety of
commercial real-time operating systems.

This guide provides the necessary information to install and configure Rational Rose
RealTime in your environment.
1

Release Notes

See the Rational Rose RealTime Release Notes for information on system requirements,
known limitations, documentation updates, and troubleshooting information.

Installation Guide Updates

For the latest documentation updates, please refer to the Rational Rose RealTime web
site:

http://www.rational.com/support/

Navigate to the Documentation link.

Overview of Rose RealTime Capabilities

Modeling:

� Use Case Modeling

� Class Modeling

� Collaboration (role) Modeling

� Interaction Modeling (sequence diagrams)

� Component Modeling

� Deployment Modeling

Application Generation:

� C++ Language Support

� Java Language Support

� C Language Support

� Data Class Code Generation

Visual Execution:

� Host Execution

� Target Execution

� Model Visualization (Animation)

� Model Debugging (Tracing, Injection, Inspection)
2 Chapter 1 - Introduction

Tools Interworking:

� Rational ClearCase

� Microsoft Visual SourceSafe (Windows only)

� SCCS (UNIX only)

� RCS (UNIX only)

� PVSC (UNIX only)

� Rational SoDA (requires Rational Rose RealTime domain)

� Rational RequisitePro

� Rational Purify

Model Documentation:

� Report Generation (Windows only)

� Web Publisher

What’s New?

These are the new features included in this release of Rational Rose RealTime.

� Support for Additional hosts

❑ Windows XP

� Online Help Improvements

❑ A larger, more comprehensive index.

❑ Viewlets - animated demonstrations on a variety of How Do I... topics.

❑ Improved tutorials.

� Workflow enhancements

❑ Aggregation Tool - enables you to quickly create, modify, and manage aggregate and

composite associations.

❑ Attribute Tool - enables you to quickly create and set options for an attribute.

❑ Operation Tool - enables you to quickly create and set options for an operation.

❑ Ability to add class operations directly from a Sequence diagram.

❑ Ability to use the target build specification when building a model - see
rtsetup.pl.
What’s New? 3

� Debugging

❑ Source debugging integration with Microsoft Embedded Visual Tools (EMVT).

❑ Basic model debugging with Microsoft Windows CE.

� Test Models

❑ Used to validate your target configuration after you make a configuration
change.

� Installation Changes

❑ Rational Rose RealTime for UNIX is now included on the Rational Suite
DevelopmentStudio (UNIX) CD. This new rs_install process includes many
enhancements to quickly get you started with Rational Rose RealTime.

How to Get Help

This section describes procedures for interacting with Rational Software
Corporation's technical support services.

Contacting Rational Technical Support Through the Help Menu

With Rational Rose RealTime, you can email problem reports, feature requests, or
support requests to the Rational Software Technical Support department that services
your location, directly from the Rose RealTime application’s Help menu.

For details on how to use this feature, see the Technical Support chapter of the Rational
Rose RealTime Release Notes.

Contacting Rational Technical Support by Email or Telephone

When contacting Rational Technical Support by email or by telephone, please be
prepared to supply the following information:

� Name, telephone number, and company name

� Product name and version number

� Operating system and version number (for example, Windows NT 4.0, Windows
2000, Windows XP Pro, Solaris 2.6/2.7/2.8, or HP-UX 10.20)

� Computer make and model

� Your case id (if you're calling about a previously reported problem)

� A summary description of the problem, related errors, and how it was made to
occur
4 Chapter 1 - Introduction

If your organization has a designated, on-site support person, please try to contact
that person before contacting Rational Technical Support.

You can obtain technical assistance by sending electronic mail to the appropriate
email address. Electronic mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an email, place
"Rational Rose RealTime" in the subject line, and in the body of your message include
a detailed description of your problem.

When sending email concerning a previously-reported problem, please include in the
subject field: "CaseID: v0XXXXX", where XXXXX is the caseid number of the issue. For
example:

CaseID: v0176528 New data on rational rose realtime install issue

Sometimes Rational technical support engineers will ask you to fax information to
help them diagnose problems. You can also report a technical problem by fax if you
prefer. Please mark faxes "Attention: Technical Support" and add your fax number to
the information requested above.

Telephone and fax numbers for Rational Technical Support are contained in the
following table. If you have problems or questions regarding licensing, please see
License Support Contact Information on page 6.

Table 1 Support Telephone and Fax

Region Telephone Number Fax Number

Americas 800-433-5444 408-863-4300

Asia Pacific (includes support for
Japan, China, India, Korea,
Taiwan)

+61-2-9419-0111 +61 2 9419 0123

Europe, Middle East, and Africa
(includes support for Israel)

+31 (0)20 4546 200 + 31 (0) 20 4546 202

Other worldwide locations 408-863-5000
How to Get Help 5

Email addresses for Rational Technical Support are as follows:

Table 2 Support Email

License Support Contact Information

If you have a problem or questions regarding the licensing of your Rational Software
products, please contact the Licensing Support office nearest you.

Telephone numbers for license support are listed in the following table. Ask for, or
select, Licensing Support.

Table 3 License Support Telephone and Fax

Region Email Address

Americas and other worldwide locations support@rational.com

Asia Pacific (includes support for Japan, China,
India, Korea, Taiwan)

support@apac.rational.com

Europe, Middle East, Africa (includes support
for Israel), and Scandinavia

support@europe.rational.com

Region Telephone Number Fax Number

Americas 800-433-5444 781-676-2510

Europe, Israel, and Africa +31 (0)20 4546 200 + 31 (0) 20 4546 202

North Asia Pacific
(Mainland China,
Hong Kong, Taiwan)

+852 2143 6382 +852 2143 6018

Korea +82 2 556 9420 +82 2 556 9426

South Asia Pacific Australia, New
Zealand, Malaysia, Singapore,
Indonesia, Thailand, The
Philippines, Vietnam, Guam and
India

+612 9419 0111 +612 9419 0123

Japan +81 3 5423 3611 +81 3 5423 3622
6 Chapter 1 - Introduction

Email addresses for license support are as follows:

Table 4 License Support Email

Evaluation and Ordering Information

United States and Canada

Rosebud@rational.com

1-800-728-1212

Other Worldwide locations

Rosebud@rational.com

+1-408-863-9900

Rational Web Site

You can contact technical support and obtain the latest product information through
our web site at:

http://www.rational.com/support

Directory Contents

After installation of the main Rose RealTime files for Windows and Unix, ensure that
the installation directory is $ROSERT_HOME on UNIX (HP-UX and Solaris) and
%ROSERT_HOME% on Windows (NT, 2000, and XP Pro) and all its associated files
are readable, and not writable, by all users of Rose RealTime.

Note: For Unix, the $ROSERT_HOME/Help directory must be Read/Write for all.

Region Email Address

Americas lic_americas@rational.com

Europe, Israel, and Africa lic_europe@rational.com

North Asia PacificMainland China, Hong Kong,
Taiwan, and Korea

lic_apac@rational.com

South Asia Pacific Australia, New Zealand,
Malaysia, Singapore, Indonesia, Thailand, The
Philippines, Vietnam, Guam and India

lic_apac@rational.com

Japan lic_japan@rational.com
Directory Contents 7

The directory and its sub-directories contain all the individual files that comprise this
release of Rational Rose RealTime. Some of the files and directories are:

Note: For the latest integration information and referenced configurations, see the
Rational Rose RealTime Release Notes.

Accessing the Online Help System

Online Help and documentation for Rational Rose RealTime is provided in Microsoft
HTML Help format. You can load the online Help Viewer from the Rose RealTime
toolset.

Directory Description

ROSERT_HOME This is the top level directory.

AddIns Contains the configuration information required by Rose RealTime
Add-ins.

bin Contains the Rose RealTime executable and various scripts. The bin
directory also contains subdirectories for each of the supported
workstation platforms ROSERT_HOST.

C++ or C These directories contain the libraries, header files, scripts relating to
code generation, and source files for the Services Library. For more
information regarding the Services Library, see the Toolset Guide and the
C Reference and C++ Reference.

Examples Contains example model files.

Help Contains the online Help, PDFs, and Viewlets.

Tutorials Contains model files for different stages of the various tutorials. See the
Rational Rose RealTime Tutorial for tutorial additional information.

RTJava Contains the classes and scripts relating to code generation in Java, See
the Java Reference for more information.

Scripts Contains various Rose RealTime scripts.

WebPublisher Contains the Web Publisher files.
8 Chapter 1 - Introduction

Figure 1 Help menu and Welcome screen

The Help Viewer requires that Microsoft Internet Explorer (version 3.02 or later) be
configured on a user ’s computer. It is not required that Internet Explorer be used as
the system’s default browser, or that the Internet Explorer icon be visible on the user’s
desktop.

If you choose not to have Internet Explorer as the default browser, you will need to
run Hhupd.exe (in redist). This file is the distribution executable that installs the
run-time components needed for an HTML Help Project, such as Hh.exe, Hhctrl.ocx,
Itss.dll, and Itircl.dll. Hhupd.exe is in the Redist folder of the HTML Help Workshop
folder.

PDF versions of all the guides are available in the ROSERT_HOME/Help directory.
Accessing the Online Help System 9

2Referenced
Configurations and
Toolchain Requirements
Contents

This chapter is organized as follows:
� Referenced Configurations on page 11
� Toolchain Requirements on page 13
� Referenced Host Configurations on page 14
� Adding a Printer on UNIX on page 18

Note: Rational Rose RealTime is not supported on Windows 95 or Windows 98.

Referenced Configurations

Before you install on Windows or UNIX, verify that your host configuration meets the
minimum system requirements:

� Requirements for Windows NT on page 11
� Requirements for Windows 2000 on page 12
� Requirements for Windows XP Pro on page 12
� Requirements for UNIX on page 13

Requirements for Windows NT

The minimum supported configuration for running Rose RealTime on
Windows NT is:

� Windows NT 4.0, with service pack 6a

� Minimum Pentium II 150 MHz. We recommend 500 MHz or faster CPU

� Minimum 128 MB of RAM. We recommend 256 MB of RAM

� Minimum 325 MB of disk space for the Rose RealTime installation
11

� Minimum display 1024 X 768. We recommend 1280 X 1024 or better

� Postscript printer for printing

� Browser requirement - Internet Explorer 5.01 or 5.5 or Netscape Navigator 4.7 or
6.0. We recommend Internet Explorer 5.01 or 5.5

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for Windows 2000

The minimum supported configuration for running Rose RealTime on
Windows 2000 is:

� Windows 2000 Professional, with service pack 1

� Minimum Pentium II 150 MHz. We recommend 500 MHz or faster CPU

� Minimum 128 MB of RAM. We recommend 256 MB of RAM

� Minimum 325 MB of disk space for the Rose RealTime installation

� Minimum display 1024 X 768. We recommend 1280 X 1024 or better

� Postscript printer for printing

� Browser requirement - Internet Explorer 5.01 or 5.5 or Netscape Navigator 4.7 or
6.0. We recommend Internet Explorer 5.01 or 5.5

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for Windows XP Pro

The minimum supported configuration for running Rose RealTime on
Windows XP Pro is:

� Minimum Pentium II 300 MHz. We recommend 500 MHz or faster CPU

� Minimum 128 MB of RAM. We recommend 256 MB of RAM

� Minimum 325 MB of disk space for the Rose RealTime installation

� Minimum display 1024 X 768. We recommend 1280 X 1024 or better
12 Chapter 2 - Referenced Configurations and Toolchain Requirements

� Postscript printer for printing

� Browser requirement - Internet Explorer 5.01 or 5.5 or Netscape Navigator 4.7 or
6.0. We recommend Internet Explorer 5.01 or 5.5

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for UNIX

The minimum supported configuration for running Rose RealTime on UNIX is:

� Solaris 2.6, Solaris 2.7, Solaris 2.8, or HPUX 10.20

❑ For Solaris operation, the minimum workstation is an UltraSparc 10. We
recommend an UltraSparc 60 with 512 MB of RAM. We recommend the Solaris
2.8 operating system.

❑ For HPUX operation, we support installation of the HP 700 series architecture

❑ Please see the Rational Rose RealTime web site
(http://www.rational.com/support) for a list of the required UNIX patches
applicable to your operating system.

� The minimum is 256 MB of RAM. We recommend 512 MB of RAM with
approximate three times this amount of swap space.

� Minimum 370 MB of disk space for the Rose RealTime installation.

For additional information regarding requirements for installing Rational Suite
DevelopmentStudio, see the book Installing Rational Suite DevelopmentStudio.

Toolchain Requirements

Help Viewer (Windows Only)

The Help Viewer requires that Microsoft Internet Explorer (version 3.02 or later) be
configured on your computer. For details, see Accessing the Online Help System on
page 8.

Compiler

You must have a C++ compiler installed on your system to make use of the code
generation and execution capabilities for Rose RealTime. Different compilers are
required for host workstation and for embedded system targets. For a list of
supported compilers and targets, see Referenced Host Configurations on page 14.
Toolchain Requirements 13

http://www.rational.com/products/rosert

Real-time Operating System

If you are planning to deploy your model on a real-time operating system, your
operating system, hardware and tool line-up must be one of the supported lineups
listed in Referenced Host Configurations on page 14. If you do not have a supported
line-up, you may be able to get support for your line-up from a Rational RoseLink
partner, or by customizing the Rose RealTime Services Library for your target. For
instructions on customizing the Services Library and compiling for new target
platforms, see the C++ Reference, C Reference, or Java Reference.

Referenced Host Configurations

Table 5 shows the referenced host configurations for this release of Rational Rose
RealTime.

Table 5 Host configurations

Note: Java generation on HPUX is not supported.

Toolset Host Requirements

HPUX 10.20 See Requirements for UNIX on
page 13

Solaris 2.6 See Requirements for UNIX on
page 13

Solaris 2.7 See Requirements for UNIX on
page 13

Solaris 2.8 See Requirements for UNIX on
page 13

Windows NT 4.0 (Service Pack SP6a) See Requirements for Windows NT
on page 11

Windows 2000 (Service Packs SP1 and SP2) See Requirements for Windows 2000
on page 12

Windows XP Pro See Requirements for Windows XP
Pro on page 12
14 Chapter 2 - Referenced Configurations and Toolchain Requirements

A pre-defined set of the Rose RealTime UML Services Libraries are delivered as part
of the Rational Rose RealTime product. The UML Services Library is what allows the
execution of standalone executable models on target operating systems. These ports
are fully tested by Rational, and are covered by standard Rational support. A standard
port can be used to facilitate a port to your environment of choice.

Note: For a more detailed description of the Services Library, refer to the
programmer ’s guides, or online Help.

A port is based on the following specifications (often called the toolchain line-up):

� OS version
� Compiler version
� Processor type

If you use a configuration other than those tested by Rational and listed in this guide,
standard support will cover problems encountered by customers only to the extent
that the problem is reproducible for the configurations listed in this guide.

Table 6 shows the referenced configurations and targets.

Table 6 Referenced configurations and targets

Host
Configuration(s)

Target RTOS Compiler/Processor RTS
Library

Connexis
DCS
Library

Solaris Same Gnu 2.95.1, SPARC
Gnu 2.8.1, SPARC
Gnu 2.7.2.3, SPARC
Sun C++ 5.0, SPARC
Sun C 5.0, SPARC

C++
C & C++
C++
C++
C

C++
C++
-
C++
-

HPUX Same Gnu 2.8.1, HPPA
HP C++ 10.11, HPPA

C & C++
C++

C++
-

Windows Same Visual C++ 6.0, x86 C & C++ C++

Solaris
Windows

pSOS 2.5 Diab 4.2b, ppc C++ C++

Solaris, HPUX VRTX 4.AB Microtec 1.3C, ppc C++ n/a

Windows VRTX 4.Baa Microtec 1.4, ppc C++ -

Solaris, Windows OSE 4.1.1 Diab 4.3f, ppc
GreenHills 1.8.9, ppc
GreenHills 2.0, ppc

C & C++
C
C

C++
-
-

Solaris OSE 4.1.1
SoftKernel

Gnu 2.95.1, SPARC C & C++ -
Referenced Host Configurations 15

Although the following target RTS is not included in the Referenced Configurations
and Targets list, Rose RealTime will continue to include its build configuration.

Windows OSE 4.1.1
SoftKernel

Visual C++ 6.0, x86 C -

Solaris, Windows,
HPUX

Tornado 2.0
(VxWorks 5.4)

Cygnus 2.7.2.960126,
M68040
Cygnus 2.7.2.960126
Cygnus 2.7.2.960126, ppc
GreenHills 1.8.9, x86c
GreenHills 2.0, ppc

C & C++
C & C++
C & C++
C & C++
C & C++

-
C++
-
C++
C++

Solaris Tornado 2.0 Sim Cygnus 2.7.2.960126,
SPARC

C++ C++

Windows NT Tornado 2.0 Sim egcs 2.90.29, x86 C++ C++

Solaris, Windows LYNX 3.1.0a gnupro-2.9-98r2, ppc C++ C++

Solaris LYNX 3.0.1 Cygnus 2.7.97r1, x86
Cygnus 2.7.97r1, ppc

C++
C++

C++
C++

Solaris Chorus Classix
4.0

egcs-2.91.66, ppc C++ -

Windows Windows CE sh3 eMbedded Visual C++ 3.0,
sh3

C++ C++

N/C - native
compilation only

AIX 4.2.1 gnu 2.8.1 C++ -

N/C - native
compilation only

Nucleus 1.1 Diab 4.2b C++ -

N/C - native
compilation only

Red Hat Linux 6.1 Egcs 2.91.66 C++ C++

N/C - native
compilation only

QNX 4.2.2 Watcom C++ 10.6 C++ -

N/C - native
compilation only

UnixWare 7.0.1 SDK 3.0 C++ C++

Table 6 Referenced configurations and targets

Host
Configuration(s)

Target RTOS Compiler/Processor RTS
Library

Connexis
DCS
Library

N/C - native
compilation only

IRIX 6. gnu 2.8.1 C++ -
16 Chapter 2 - Referenced Configurations and Toolchain Requirements

Creating Executables for Hosts without Toolset Support

For hosts without toolset support, create an executable on the host target.

Note: The following steps assume that you use a common file system hierarchy and
that paths are equivalent on both machines.

To produce an executable for a host without toolset support:

1 Select Tools > Options and click the C++ Compilation tab. Click Select in the
TargetConfiguration area.

2 In the Target Configuration dialog, select the appropriate target configuration and
click OK.

3 On the C++ Generation tab, ensure that CodeGenMakeType and CodeGenMakeCommand
are appropriately set for the toolset host.

4 On the C++ Compilation tab, ensure that CompilationMakeCmd and CompilationMakeType
are appropriately set for the compilation host.

5 Build the component with a build level set to Generate.

This creates the source files and makefiles, required for compilation on the target
host.

Note: If the computer that you use to compile does not have a common file system
with the generated host, see Generating an Executable Without a Common File System
on page 17.

6 From the build directory on the target host, set the environment variables for the
compilation configuration (line-up).

7 Invoke the appropriate make command for the line-up.

Note: If you build the source files on Windows (NT, 2000, or XP) and compile on
UNIX, see the steps below about converting Windows files to UNIX type.

Generating an Executable Without a Common File System

If you build the source files on Windows (NT, 2000, or XP) and compile on UNIX, you
must convert your files to UNIX type before you compile and generate an executable.

To generate an executable without a common file system:

1 On the target host, a visible copy of the TargetRTS must be available.

2 Copy the component directory into the target host file system.

3 Edit the build/makefile so that RTS_HOME is set to location of the TargetRTS.
Referenced Host Configurations 17

4 If the source was generated on Windows, convert all files in the component
directory to UNIX type, using a utility such as dos2unix.

This is very important if the target host does not support CRLF (Carriage Return
Line Feed) line terminators.

Note: It may be necessary to convert files in the TargetRTS directory, particularly if
some files were edited on Windows.

5 From the build directory, set your environment variables appropriately for the
compilation line-up.

6 Invoke the appropriate make command for this line-up.

Note: You can access a ClearCase server on UNIX with Rose RealTime clients running
on both Windows and UNIX workstations.

Adding a Printer on UNIX

Rose RealTime on UNIX uses MainWin (a Mainsoft product that allows Windows
applications to run in a UNIX environment). Special printer specification is necessary
to support the PSCRIPT.

MainWin uses the PSCRIPT keyword in win.ini to specify PostScript support under
UNIX, using syntax similar to the way one would use the PSCRIPT driver in
Windows. Below is a typical printer-related section of a win.ini file. The win.ini file is
located in the following directory:

$ROSERT_HOME/bin/mw

The win.ini entries are more or less the same for MainWin as they are for Windows. An
explanation of each section follows the win.ini file lines.

[windows]

device=Apple LaserWriter II NT,PSCRIPT,LPT1

...

The device entry in this win.ini [windows] section defines the default printer. It takes the
following syntax:

device=outputdevicename,devicedriver,portconnection

The keyword PSCRIPT is used in place of devicedriver.
18 Chapter 2 - Referenced Configurations and Toolchain Requirements

[ports]

LPT1:=lp -c "%s"

LPT2:=lp -c -dps1700 "%s"

LPT3:=

...

The win.ini [ports] section lists available communication and printer ports. Under
MainWin, the Windows LPTn keywords are mapped to UNIX commands. In this
example, LPT1 and LPT2 are mapped to the print command lp. MainWin sends all
print job output to a file. The output file is then sent to the printer. The term %s tells
the system to substitute the name of the PostScript intermediate output file. The term
-dps1700 in the example refers to a UNIX printer named ps1700. The printer should be
defined in the UNIX printcap file.

[PrinterPorts]

Apple LaserWriter II NT=PSCRIPT,LPT1:,15,90

Postscript Printer QMS=PSCRIPT,LPT2:,15,90

The win.ini [PrinterPorts] section is included for compatibility with applications that
require this section. Entries are similar to those for the [Devices] block listed below. In
[PrinterPorts], PostScript timeout values are appended after the device name. The
timeout values are not used by MainWin.

[Devices]

Apple LaserWriter II NT=PSCRIPT,LPT1:

Postscript Printer QMS=PSCRIPT,LPT2:

The [Devices] block lists the active and inactive output devices accessed by device
drivers, and specifies the ports to which these devices are connected. In this example,
Apple LaserWriter II NT=PSCRIPT,LPT1: specifies that the printer is connected to the
PSCRIPT queue connected to LPT1.
Adding a Printer on UNIX 19

3Installing Rational Rose
RealTime on Windows
Contents

This chapter is organized as follows:

� Before You Install on page 21
� After You Install on page 31
� Using the Rational Software Setup Program on page 24
� Performing a Client Installation on page 24
� Performing an Administrative Installation on page 28
� Performing a Client Installation from the Network on page 30
� After You Install on page 31
� Testing your Environment on page 32

Before You Install

Before you install Rose RealTime, ensure that you have a supported system
configuration. The system requirements are in a table in the section Referenced
Configurations and Toolchain Requirements on page 11. A setup program is included to
facilitate the installation of Rational Rose RealTime on Windows NT, Windows 2000,
or Windows XP Pro. You must have administrator privileges to install this software.

To perform a network installation, you must have the Rational Suite for Windows
installed. For instructions on how to install Rational Suite, see the Installing Rational
Suite guide.

There are three types of installations that you can perform:

� Client Installation (a local client installation) - see Performing a Client Installation on
page 24

� Administrative Installation - see Performing an Administrative Installation on
page 28

� Client Installation from the Network - see Performing a Client Installation from the
Network on page 30
21

Client Installation Tasks

This topic outlines the general tasks you must perform before you install Rational
Suite on a client computer (a local installation). Table 6 directs you to information in
this manual that can help you perform client installation tasks.

Administering Licenses

You can request and install license keys before or after installing Rational products;
however, you must have a license key installed and configured to run Rational Rose
RealTime. In the Rational Software Setup program, a green check mark next to a
Rational product indicates you have a license key configured for that product. If you

Table 6 Administrative Installation Tasks

To See

License Rational software Administering Licenses on page 22

Ensure that the servers meet the
minimum or recommended system
and software requirements

� Requirements for Windows NT on page 11
� Requirements for Windows 2000 on page 12
� Requirements for Windows XP Pro on page 12

Upgrade from earlier versions of
Rational software

After You Install on page 31

Table 7 Client Installation Tasks

To See

License your Rational software Administering Licenses on page 22

Ensure that your system meets the
minimum or recommended system
and software requirements

� Requirements for Windows NT on page 11
� Requirements for Windows 2000 on page 12
� Requirements for Windows XP Pro on page 12

Prepare for installing Rational Rose,
RealTime

� Preparing for a Rational Rose RealTime Installation on
page 23

Install optional software (the Rational
Rose RealTime Companion Products
CD)

Installing Professional Edition Software on page 32

Upgrade from earlier versions of
Rational software

After You Install on page 31
22 Chapter 3 - Installing Rational Rose RealTime on Windows

do not see a green check mark next to the product you want to install, you may want
to install a license key before you install the product. To configure a license key, click
the Configure Licenses button to launch the Rational License Key Administrator
(LKAD) and the License Key Administrator Wizard. Both tools provide online Help.
If you do not install the license keys before you install the product, the LKAD will
appear at the end of the installation.

The Rational Suite License Management Guide describes the web-based license manager
Rational AccountLink, Rational licensing terms, and the Rational License Key
Administrator. The Setup program installs the LKAD automatically with each point
product within Rational Suite. The License Management Guide also provides
instructions for requesting, installing, upgrading, and configuring floating and
node-locked license keys.

Note: If you plan to upgrade the Rational license server, and this server has other
Rational products installed on its system, remove the Rational products from the
system or upgrade the Rational products to the current release. Older Rational
products may not work with an upgraded license server if they are on the same
system.

Preparing for a Rational Rose RealTime Installation

Here is an overview of tasks for installing Rational Rose RealTime as part of your
Rational Suite edition.

� To generate and execute code with Rose RealTime, C++ compilers must be
installed on your system. For a list of supported compilers and targets, see the
Referenced configurations and targets on page 15.

� To construct and execute UML models, test your Visual C++ environment. To help
you determine whether you have correctly installed and configured Visual C++ on
your system, see the Testing your Environment on page 32.

� To deploy your model in a real-time operating system, see Referenced Host
Configurations on page 14 for information on referenced configurations.

Upgrade Information

Ensure that past releases of Rational Rose RealTime are removed from your system
prior to installation. For details on your specific platform, see Uninstalling Rational
Rose RealTime on page 127 for your specific platform.
Upgrade Information 23

Models created in earlier versions of Rose RealTime can be loaded directly into
version 6.4. Rational Rose and ObjecTime Developer models should be converted as
described in Migrating from ObjecTime Developer 5.2/5.2.1 on page 79.

Note: Do not attempt to load workspaces created in earlier versions of Rose RealTime,
as they are not compatible with the new release.

Checking the Validity of Your License Keys

If you upgrade to Rational Rose RealTime 6.4 from Rose RealTime releases 6.0, 6.0.1,
or 6.0.2, your license keys are not valid. For information on requesting license keys,
see Requesting License Keys on page 48.

If you upgrade to Rational Rose RealTime 6.4 from Rose RealTime releases 6.1, 6.1.1,
6.2, or 6.3, your license keys are valid.

For more information on license keys, see Installing License Keys on page 61.

Administrative Installation Tasks

Table 6 directs you to information that can help you perform administrator
installation tasks.

Using the Rational Software Setup Program

From the Rational Software Setup program, you can install selected Rational Software
products, such as Rational Rose RealTime, or the Rational Suite. Your Rational
product shipment includes two Rational Solutions for Windows installation CD-ROMs.
Depending on the Rational products you select during the installation process, you
may have to insert more than one installation disc.

Performing a Client Installation

The following general requirements are necessary to run the Rational Software Setup
program on your system.

� You need to install Rational licenses to use Rational products. You can install the
Rational license keys before or after you install Rational software.

� Ensure that other programs are not running before you start the installation.

� Turn off all virus protection software. These programs often run in the
background and interfere with the installation and file decompression process.

� Ensure that your system meets the minimum requirements.
24 Chapter 3 - Installing Rational Rose RealTime on Windows

� Ensure that you have administrator privileges before installing Rational products.

� To use the Rational Software Setup program on a Windows NT, 2000, or XP Pro
system, you must have Windows administrator privileges on the local system. Log
in as one of the following users:

❑ Local administrator

❑ Member of the local administrator’s group

❑ Domain administrator who is a member of the local administrator ’s group

� The Rational Software Setup program uses C:\Program Files\Rational as the
default installation path. The program installs software system files in the
Windows directory or Windows systems directory.

� The Setup program installs Microsoft Core Components and some additional files
on the same drive as the operating system (often the C:\ drive), even if you
specified an alternate drive during the installation.

To perform a Client Installation of Rational Rose RealTime:

1 Insert the Rational Solutions for Windows Disc 1 into your system’s CD-ROM drive.

The Rational Software Setup program starts automatically.

If autorun is disabled on your system, click Start > Run and type the following:

drive: \Setup.exe

where drive is the letter of the CD-ROM drive.

2 The Choose Product screen appears. Choose Rational Rose RealTime as the product to
install.

Note: If you are planning on using floating licenses, the FLEXlm license manager
must be installed before you install. If you do not have FLEXlm installed, select
Install FlexLm and follow the instructions and prompts.

3 Click Next.

Note: If you have not configured a license for Rational Rose RealTime, a dialog box
appears. To install Rose RealTime without licensing configured, click OK. To
configure the licensing, click Cancel and then click Configure Licenses. You can
configure licenses after installing Rational Rose RealTime. For information on
installing your license keys, see Installing License Keys on page 61.

The Rational License Agreement appears.
Performing a Client Installation 25

4 Click Yes to accept the terms and conditions of the license agreement,

Note: You must accept the license agreement to proceed. If you do not agree with
the terms of the license agreement, the installation should be aborted. All software
and documentation should be returned to Rational Software.

5 Choose either Typical, Custom, or Compact.

Note: The Network configuration option is not offered with the Rational Rose
RealTime point product installation.

6 Click Next.

An Information Summary dialog shows the shared components.

Update Shared Components

The Update Shared Components dialog appears if the Setup program needs to update
shared files or components on your system. Click Next to have the Setup program
install these files for you or Cancel to install these files yourself.

Note: The Setup wizard does not recalculate the disk space required for your
updated selections.

Table 8 Installation Types

Type Description

Typical � Installs the most commonly used features for a product.

� Use this option for standard installations.

Custom � Allows you to add or remove product features for installation.

� Defaults to all features in a Typical installation.

Compact � Installs a subset of the standard configuration. May omit
optional files, including online documentation or online Help. To
find out which files will be installed, read the product’s release
notes.

� Use this option for installations on systems with limited disk
space.
26 Chapter 3 - Installing Rational Rose RealTime on Windows

Upgrade Compatibility

The Upgrade Compatibility dialog appears if you have older Rational products
installed on your system. For each of the older products listed, we strongly
recommend that you do one of the following:

❑ Upgrade it: Complete this installation, and then re-start the Setup program to
upgrade the listed products.

❑ Remove it: Complete this installation, and then remove the listed products
from the system.

7 Click Next.

A confirmation dialog appears, listing your selected settings and options.

8 Click Next.

The installation begins.

Note: If any errors occur during installation, such as insufficient disk space or
inadequate permissions, an error summary dialog is displayed.

9 When the installation is finished, the Setup Complete dialog box appears, prompting
you to restart your computer. We strongly recommend you click Yes, I want to restart
my computer now.

10 Click Restart.

11 The installation dialog appears, indicating that your computer restarted.

12 Click Finish.

If you have not configured your product license, the License Key Administrator
appears.

13 Install the License Key, if required. For information on how to install your license
key, see Installing License Keys on page 61.

Now, you will want to review the topic, After You Install on page 31 for additional
post-installation activities.
Performing a Client Installation 27

Performing an Administrative Installation

The following general requirements are necessary to run the Rational Software Setup
program on your system.

� You need to install Rational licenses to use Rational products. Install the Rational
license keys before or after you install Rational software.

� The Rational Software Setup program requires that you install all Rational
products in the same directory. If you already have Rational products installed on
your system, the Setup program installs additional Rational products in the same
directory.

� Ensure that you have administrator privileges before installing Rational products.

� To use the Rational Software Setup program on a Windows NT, 2000, or XP Pro
system, you must have Windows administrator privileges on the local system. Log
in as one of the following users:

❑ Local administrator

❑ Member of the local administrator’s group

❑ Domain administrator who is a member of the local administrator ’s group

� Ensure that you have a current backup of your Registry and system directories.

� Ensure that other programs are not running before you start the installation.

� Turn off all virus protection software. These programs often run in the background
and may interfere with the installation and file decompression process.

� Turn off any user interface managers or desktop environments that run on top of
Microsoft Windows.

� Ensure that your system meets the minimum requirements.

� The Rational Software Setup program uses C:\Program Files\Rational as the
default installation path. The program installs software system files in the
Windows directory or Windows systems directory.

� If your C:\ drive lacks sufficient free disk space, you may either specify another
drive during the installation procedure or make space available on the default
drive. The Software Setup program will report the amount of space required on all
drives for your installation.
28 Chapter 3 - Installing Rational Rose RealTime on Windows

� The Setup program installs Microsoft Core Components and some additional files
on the same drive as the operating system (often the C:\ drive), even if you have
specified an alternate drive for installation.

� Initially, the Setup program requires at least 2 GB of space to perform file transfers
to the server. After installation, only the required files remain on the server.

To perform an Administrative Installation of Rational Rose RealTime:

1 Create a shared folder on the server.

This shared folder must be visible and accessible by a client.

2 Map a network drive to the shared server location.

Note: Ensure that you select the Reconnect at Logon option in the Windows Map
Network Drive dialog box.

You do not have to use the local server to store files. You can map a network drive
to another location on another computer; however, the other computer must have
a shared folder that is mapped, and it must be visible and accessible.

3 Insert the Rational Solutions for Windows Disc 1 into your system’s CD-ROM drive.

Note: The Rational Software Setup program starts automatically, but you do not
want to start the Setup program this way.

4 Click Cancel.

5 Launch a Command Prompt (DOS window).

6 Change directory to the location of your CD-ROM drive.

7 Change to the setup directory.

8 To configure the server to accommodate Network installations, type the following
and press ENTER:

rssetup –admin:<drive_letter>:

where <drive_letter> is the name of the mapped drive created when you mapped
the shared drive in step 2.

Note: Ensure that you include the colon after you specify the drive letter. Also,
after you press ENTER, there is a time delay prior to the display of the Rational
Software Setup window.
Performing an Administrative Installation 29

9 Click Next to begin.

Note: Your Rational product shipment includes several Rational Solutions for
Windows installation CD-ROMs. You may have to insert more than one installation
disc into the drive during the Setup process.

10 Click Finish when installation is complete.

Now that installation process copied and decompressed the product files to a shared
network folder, you can perform a Client installation from a network. To perform
client installation over the network, see Performing a Client Installation from the Network
on page 30.

Note: You cannot perform upgrades with network installations.

Performing a Client Installation from the Network

A network installation installs the required files on your system to run Rational Rose
RealTime from a shared network folder. You need 240 MB disk space to accommodate
the shared system DLLs and local configuration settings the Setup program installs on
your system.

Use this option to run a program from a centrally managed location.

You can perform a client installation only after an Administrative Installation. An
Administrative installation is performed by a system administrator who copies and
decompresses product files to a shared network folder. To perform an Administrative
Installation, see Performing an Administrative Installation on page 28.

Note: You cannot perform upgrades with network installations.

To perform a client installation from the network:

1 Log in to the Client computer as Administrator.

The domain should be the name of the local machine.

2 Open Windows Explorer.

3 From the Tools menu, select Map Network Drive.

4 Map a new drive to the shared folder found on Server.

Note: Ensure that you select the Reconnect at Logon option in the Windows Map
Network Drive dialog box.

5 Using Windows Explorer, browse to this mapped drive and launch the Setup
program from that location.
30 Chapter 3 - Installing Rational Rose RealTime on Windows

6 Click Next.

7 In the Product box, select Rational Rose RealTime.

8 Click Next.

9 In the Select Configuration window, click Network.

10 Click Next.

A network installation of Rational Rose RealTime is installed on Client computer.

Now, you will want to review the topic, After You Install on page 31 for additional
post-installation activities.

After You Install

After you install Rational Rose RealTime, you may have to perform additional
activities, such as configuring environment variables or updating environment
variables in your batch files

Updating Batch Files

If you use a batch file to start Rational Rose RealTime, after you install, you must
modify the environment variables to use the new mapped drive. To successfully
launch Rational Rose RealTime, you must specify a fully qualified path, including the
drive letter. For example, you want to update the ROSERT_HOME variable, as well as
the launch command path:

set ROSERT_HOME=C:\Program Files\Rational\Rose RealTime
set ROSERT_HOST=win32
set ROSERT_LICENSE_FILE=%ROSERT_HOME%\license\license.dat
set path=%ROSERT_HOME%\bin\%ROSERT_HOST%;c:\Program Files\Microsoft
Visual Studio\Common\VSS\win32;c:\DevStudio\VSS\win32;%PATH%

"C:\Program Files\Rational\Rose RealTime\bin\win32\RoseRT"

Configuring Your Environment

After installation, you must ensure that your environment is properly configured for
your compiler.

Environment Variables

With Rational Rose RealTime, you need to specify environment variables. Set the
environment variable %ROSERT_HOME% to the new installation directory and add
%ROSERT_HOME%/bin to your path.
After You Install 31

Installing Professional Edition Software

If you have the Rational Rose RealTime Companion Product CD, you may want to
install the Professional Edition software. To install the software on this CD, see
Installation in the Release Notes and Installation Guide - Rational Rose RealTime
Professional Edition.

Testing your Environment

Note: If you only want to construct UML models and not execute them, you do not
need to read the remainder of this chapter.

You must have Microsoft Visual C++ 6.0 installed on your system and configured to
be run from the DOS prompt to make use of the code generation and execution
capabilities of Rose RealTime.

The following instructions help you to determine whether you have Visual C++
properly installed and configured on your system.

To perform testing on your environment:

1 From the Windows Start menu:

❑ In Windows NT, choose Start > Programs > Command Prompt

❑ In Windows 2000 and Windows XP, choose Start > Programs > Accessories >
Command Prompt

2 Type nmake and press ENTER.

3 Type cl and press ENTER.

If your environment is correct, then you should see the following report errors:

Command Prompt

Microsoft ® Windows NT ™
© Copyright 1985-1996 Microsoft Corp.

C:\>nmake

Microsoft ® Program Maintenance Utility Version 6.00.8168.0

Copyright © Microsoft Corp 1988-1998. All rights reserved.

NMAKE = fatal error B1864: MAKEFILE not found and no target specified

Stop.
32 Chapter 3 - Installing Rational Rose RealTime on Windows

C:\>cl

Microsoft ® 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for
80x86

Copyright © Microsoft Corp 1984-1998. All rights reserved.

Usage = cl { option... } filename... { /link linkoption... }

If your environment is NOT properly configured, then you will see an error similar to
this one:

Command Prompt

C:\> nmake

The name specified is not recognized as an internal or external
command, operable program or batch file.

Note: If you receive this error message, your compiler environment setup is not
configured properly. There is a vcvars32.bat file located in the installation directory for
Microsoft Visual Studio (for example, \\Program Files\Microsoft Visual
Studio\VC98\Bin\vcvars32.bat) that lists the environment variables that you must
configure.
Testing your Environment 33

4Installing Rational Rose
RealTime on UNIX
Contents

This chapter is organized as follows:

� Before You Install on page 35
� Upgrade Information on page 37
� Installation Instructions on page 38
� After You Install on page 42

Before You Install

Before you install Rational Rose RealTime on UNIX, refer to the items in Table 9 to
direct you to information in this manual that can help you perform pre-installation
tasks.

Table 9 UNIX Pre-Installation Tasks

License your Rational software Administering Licenses on page 22 and UNIX Licenses
on page 59

Ensure that your system meets the
minimum or recommended system
and software requirements

Requirements for UNIX on page 13

Install optional software (the Rational
Rose RealTime Companion Products
CD)

Install the Professional Edition Software on page 43

Upgrade from earlier versions of
Rational software

Upgrade Information on page 37
35

Installing in Secure Environments

Problems may occur when trying to perform a remote installation of Rational Suite
DevelopmentStudio RealTime (UNIX) in a secure environment (for example, remote
access to other machines is through ssh) if the environment does not have access to
rsh or remsh. To install Rational Suite DevelopmentStudio RealTime (UNIX) in this
situation, perform a local installation of the software rather than a remote installation.
If you experience further problems, contact Rational Technical Support.

Installing Multiple OS Versions of Rational Suite DevelopmentStudio
RealTime (UNIX)

If you wish to install different OS versions of Rational Suite DevelopmentStudio
RealTime (UNIX) (Solaris or HP-UX) on the same file server, we recommend that you
install them in different rational directories (referred to as <rational_dir>). If you install
them into the same Rational directory, you will not be able to uninstall a single OS
version later, if necessary. The uninstall script removes all OS versions that reside in
the same Rational directory.

Stopping and Restarting an Installation

You can stop an installation by entering q to quit the installation. If you choose q, most
of your input is saved to a user defaults file located in <rational_dir>/config/defaults.

The file name itself is in the following format:

rs_install.release_name.user_name

The user defaults file contains general purpose defaults that relate to you and the
license server that you configure. It also keeps track of the product-specific
information for the installation of this specific Suite and version.

Note: If you enter q!, your entries are not saved to the user defaults file.

You can restart the installation by running rs_install again. Many of your entries
appear as the default value. Press the ENTER key to continue with the installation.
36 Chapter 4 - Installing Rational Rose RealTime on UNIX

Upgrade Information

Upgrading to New Version Only (Uninstalling Earlier Version)

Ensure that you remove past releases of Rational Rose RealTime from your system
prior to installation. Please see Uninstalling Rational Rose RealTime on page 127 for
your specific platform.

You can load models created in earlier versions of Rose RealTime directly into 6.4 (also
referred to as 2002.05.00). To convert your existing Rational Rose and ObjecTime
Developer models, see Migrating from ObjecTime Developer 5.2/5.2.1 on page 79.

Note: Do not attempt to load workspaces created in earlier versions of Rose RealTime,
as they are not compatible with the new release.

If you are upgrading Rose RealTime on any of the UNIX platforms, you must do one
of the following:

� Manually delete your ~/.registry directory before you run the new version for the
first time

or

� Add the "-recreate_registry" command line option the first time you run the new
version.

Checking the Validity of Your License Keys

If you upgrade to Rational Rose RealTime 6.4 from Rose RealTime releases 6.0, 6.0.1,
or 6.0.2, your license keys are not valid. For information on obtaining new license
keys, see Requesting License Keys on page 48.

If you upgrade to Rational Rose RealTime 6.4 from Rose RealTime releases 6.1, 6.1.1,
6.2, or 6.3, your license keys are valid.

For more information on license keys, see Installing License Keys on page 61.
Upgrade Information 37

Upgrading to 6.4 While Maintaining an Earlier Version

Your Unix environment can continue to have a Rational Rose RealTime 6.4 installation
and an earlier release of Rational Rose RealTime that uses Unix environment
variables. Refer to the following pseudo code to set up your environment to use both
releases of Rational Rose RealTime (.csh or .sh setup):

if your current softlink is set to an old version

set up the following environment variables

ROSERT_HOME
ROSERT_HOST
ROSERT_LICENSE_FILE

else

source <rational_dir>/rosert_setup.xxx

(where .xxx represents .csh or .sh)

set up the following

CONNEXIS_HOME to $ROSERT_HOME/Connexis

Installation Instructions

Note: Unless specified otherwise, your system administrator will generally carry out
these steps.

For environments where there is more than one user of Rational Suite
DevelopmentStudio RealTime (UNIX), we strongly recommend that you install the
main Rational Rose RealTime files on a centralized file server.

Default values, where provided, are prefixed with the following notation:

- - >

To accept the default value, simply press ENTER.

Installation Overview

The following provides an overview of the installation process and show the installed
UNIX directories and files.

Note: Directory and file names are for example purposes only.
38 Chapter 4 - Installing Rational Rose RealTime on UNIX

Installation Instructions 39

To Install Rational Rose RealTime on UNIX:

1 Log on to the install client. This may be any UNIX computer that:

� Gives you access to a CD-ROM drive

� Mounts the file system into which you will load the Rational Suite
DevelopmentStudio RealTime (UNIX) release

� Runs the operating system specified on the Rational Suite DevelopmentStudio
RealTime (UNIX) CD (Solaris 2.6, 2.7, 2.8 or HP-UX 10.20)

Note: You should be root to install the product.

2 Place the Rational Suite DevelopmentStudio RealTime (UNIX) CD in the CD-ROM
drive.

If the CD-ROM drive is not mounted, mount the CD-ROM drive.

As the root, create a directory (if one does not already exist) to be the mount point
for the CD-ROM drive. The following examples for each platform use the directory
/cdrom. Ensure that you know the device name of the CD-ROM drive. If you do
not know the device name, consult your system administrator. Mounting
commands for different operating systems are as follows:

❑ Sparc/Solaris with Volume Management

Solaris 2.x with volume management mounts to the /cdrom directory. This
happens automatically when you load the CD-ROM drive. You have volume
management if the vold daemon is running on the system.

❑ Sparc/Solaris (Solaris 2.x) Without Volume Management

mkdir /cdrom
mount -r -F hsfs /dev/dsk/c0t6d0s0 /cdrom

❑ HP-UX 10.20

mkdir /cdrom
mount -r -F cdfs /dev/dsk/c0t2d0 /cdrom

3 From a shell window, change directory to the root level of the mounted CD-ROM
device. For example: cd /cdrom, and press ENTER.
40 Chapter 4 - Installing Rational Rose RealTime on UNIX

4 To run the setup script, type the following:

rs_install

The rs_install command is a complete installer that includes licensing setup,
license checking, product installation, and product setup. Rational recommends
that you follow the menus and prompts and allow rs_install to guide you through
the installation.

Note: You can invoke rs_install with a number of options. For example, you can
use the -no_log (-nl) option to stop rs_install from creating a log file. To see a listing
of all available options, run rs_install -help.

The Using RS Install script appears.

5 Press ENTER to continue.

In the Enter Install Location script, the installation process searches for Rational
directories.

6 Press ENTER to continue.

An arrow (- - >), opposite a number/directory, indicates the default location used
for this installation.

Next, you will specify the directory to install Rational Suite DevelopmentStudio
RealTime (UNIX).

7 Type 0 to specify a new directory, or type a value associated with a listed
directory, then press ENTER.

If you specify a new directory, rs_install copies the Rational files to this location.
The directory name must be specified as an absolute path name, and must be a
valid path (this means that the directory must exist). A RoseRT sub-directory is
appended in the directory that you specify. The directory needs to be visible on all
computers from which you want to run this product, and must be writable by the
installer ’s user name.

Next, the license agreement appears and you are prompted to accept or reject the
license agreement. You must accept the license agreement to proceed.

8 Type Y and press ENTER if you agree with the terms of the agreement.

If you do not agree with the terms of the license, the installation should be aborted.
All software and documentation should be returned to Rational Software.

9 Type Y or N to indicate if you want to Show this license agreement next time.

10 In the Product and License Configuration menu, type the number associated with
Rational Rose RealTime for UNIX, then press ENTER.
Installation Instructions 41

11 In the Rational Rose RealTime - Licensing Options Menu, select a licensing option.

Depending on the licensing option you select, answer the questions and follow the
directions.

12 After licensing, on the Rational Rose RealTime - Product Customization Menu, verify that
Rational Rose RealTime for Unix will be installed, and that you have enough space
to install it.

13 Press f (the default) to continue.

14 In the Install Documentation Menu, specify whether you want other documentation
installed

15 In Rational Rose RealTime - Enter Install Mode, indicate how you want rs_install to deal
with components that are already installed.

16 Press ENTER to continue.

rs_install installs Rational Rose RealTime.

17 After the installation completes, press ENTER to continue.

After You Install

After you install, you want to:

� Source to Setup Script on page 43
� Set Connexis Variable on page 43
� Unmount the CD-ROM Drive on page 43
� Install the Professional Edition Software on page 43

Option Description

1 Use an existing Rational license (FLEXlm) file or a server
that is already configured .

2 Set up permanent or counted license(s).

� Request Node-Locked or floating keys through
AccountLink.

� After you request Node-Locked key(s) from AccountLink,
you will receive an email from Rational that contains an
attachment (a .upd file). You must save this file.

3 Set up a temporary license file.
42 Chapter 4 - Installing Rational Rose RealTime on UNIX

Source to Setup Script

After you install Rational Rose RealTime, you should source to your <rational_dir> to
automatically set your environment variables.

� For Rational Suite DevelopmentStudio, type the following:

source <rational_dir>/rs_setup.xxx

� For the Rational Rose RealTime point product, type the following:

source <rational_dir>/ rosert_setup.xxx

where .xxx is .csh or .sh.

Set Connexis Variable

Set the following:

CONNEXIS_HOME to $ROSERT_HOME/Connexis

Unmount the CD-ROM Drive

For CD-ROM installs, unmount the CD-ROM drive with the following commands.

For Solaris with volume management (vold is running):

% eject cd

All others must unmount the CD as root.

% su

umount /cdrom

Note: You cannot eject the CD if you are at the directory /cdrom or /cdrom/cdrom0. If
you receive a "Device busy" error, change your directory location to a location other
than the CD-ROM and repeat the above commands.

Install the Professional Edition Software

If you have the Rational Rose RealTime Companion Product CD, you may want to
install the Professional Edition software. To install the software on this CD, see
Installation in the Release Notes and Installation Guide - Rational Rose RealTime
Professional Edition.

Starting Rational Rose RealTime (UNIX)

To start Rational Rose RealTime, run the command displayed at the end of the
rs_install process.

Note: The installation process creates a rosert_setup.csh or a rosert_setup.sh.
After You Install 43

5Understanding Rose
RealTime Licenses
Contents

This chapter is organized as follows:

� How Licenses Work on page 45
� Types of Licenses on page 46
� Requesting License Keys on page 48
� Converting a Temporary License to a Permanent License on page 50
� The License Manager on page 51
� License Manager Commands on page 52
� Licensing on UNIX on page 55
� The License File on page 57
� UNIX Licenses on page 59
� Frequently Asked Questions on page 60

When you buy Rational Rose RealTime, you purchase a number of node-locked
and/or floating licenses. A node-locked license allows you to use Rose RealTime on a
specific workstation. Floating licenses allow anyone on your network to use Rose
RealTime as long as a floating license is available. Thus, the number of licenses that
you purchase determines the maximum number of users who can use Rose RealTime
simultaneously.

For example, if you purchased five licenses and three users are currently using Rose
RealTime, then two more users can use Rose RealTime.

How Licenses Work

Licenses are managed by a license manager (FLEXlm™ software delivered as part of
Rational Suite DevelopmentStudio for UNIX) that runs on a license server. The license
manager monitors license access, simultaneous usage, idle time, and so on.

When you start Rational Rose RealTime from the Rational Suite DevelopmentStudio,
you are initially unlicensed. If a license is available, the license manager gives you a
license for the Suite, which allows you to run any of the products included in the
45

Suite. You retain the license as long as you keep using any of the products in the Suite.
When you exit the last program in the Suite, your license is returned to the license
manager and is made available for another user.

If no license is available, you are unable to use Rose RealTime until a license is
returned by another user. An "Unable to obtain a license" message is displayed.

Note: The inability to obtain a license may also be caused by a corrupted license file, a
change to the host id (network card, IP address) or a hard disk drive replacement
when a node-locked license is used on NT. Please ensure you are able to communicate
with the license server through a simple ping command. For example:

ping <IP address of license server>

Types of Licenses

Node-Locked Licenses

Node-locked licenses are created only for a specific system. A node-locked license can
be a permanent license, a temporary license, or it can be an evaluation license.

Note: Because node-locked licenses are uncounted licenses, there is no need to have a
license server process running to manage their use.

Floating Licenses

Floating licenses are licenses that can be shared by multiple users on multiple
systems. A Rational license server controls use of the floating licenses.

Floating licenses allow anyone on your network to use Rational Suite
DevelopmentStudio as long as a license is available. Thus, the number of licenses that
you purchase determines the maximum number of users who can use Rational Suite
DevelopmentStudio concurrently.

Permanent Licenses and Temporary License Keys

When you register Rational products to specific systems (license server or client) in
AccountLink, Rational generates license keys and sends you an e-mail message with
these permanent license keys in a license file. The permanent keys let you use the
Rational products have no expiration date. However, Rational assigns an expiration
date to the license keys if your company has negotiated a Term License Agreement
(TLA). TLA keys are not permanent, but the process of ordering and installing TLA
licenses is the same as a permanent license.
46 Chapter 5 - Understanding Rose RealTime Licenses

To use Rational products for an evaluation period or if you expect a delay in receiving
your permanent keys, you can install the temporary license key provided in your
Rational License Key Certificate. Because Rational has not generated the temporary
key for a specific system, you can use it on any system until the specified expiration
date.

Permanent and temporary license keys can be floating or node-locked. The difference
is that a temporary key is not generated for a specific system and a permanent key is
generated for a specific system.

Emergency and Evaluation Keys

Emergency and evaluation license keys are temporary license keys. They can be
floating or node-locked. They are short-term licenses that are not generated for a
specific system.

Suite Licenses and Point Product Licenses

A Rational license key indicates whether it is a Rational Suite license, such as Rational
Suite DevelopmentStudio, or a point-product license, such as Rational Purify. A
Rational license file can contain multiple floating or node-locked Suite and
point-product license keys.

Returning License Keys

You may need to replace an old system or decide another system should act as the
new Rational license server. Because permanent license keys are tied to a system’s
host ID, Rational products will not work on another system until you import new
license keys that are tied to the new system’s host ID.

To get your new license key, you need to "return" the existing license key back to your
Rational account and then "get" or order a license key for the other system. You could
also call this task moving the license key from one system to another or removing the
license key from the old system.

When you return a license key, you do not physically give the license key back to
Rational. Instead, the return transaction updates Rational’s records to indicate that
you are no longer using the software on that system. This adjusts the count of
registered products in your account and allows you to get the license key for the other
system.

In accordance with the Legal Agreement provided on AccountLink, you have 30 days
to shut down the license server that corresponds to the server identified in the
returned license file. If you have a license file that contains more than one license and
Types of Licenses 47

you are returning only one of those licenses, remove the entry for the license that you
are returning. When you have finished editing the file, use the lmreread command to
reread the license file and restart the vendor daemon. For more information about
licensing commands, see License Manager Commands on page 52.

Upgrading Licenses

If you are upgrading from an earlier version of a Rational Suite or point-product, you
can reuse your current Rational Suite and point-product license keys.

Requesting License Keys

AccountLink (http://www.rational.com/accountlink) is a Web tool that you can use to
manage your permanent (or Term License Agreement) license keys. To use
AccountLink, you need the License Key Certificate to order and install your license
keys. AccountLink’s interface offers three license transactions:

� Get License Key(s)
� Return License Key(s)
� Request a Copy of a License File

With these three transactions, you can order and return permanent license keys for
Windows and UNIX products from single or multiple Rational accounts.

Note: AccountLink does not support temporary license key transactions.

AccountLink requires you to register your Rational software to specific systems using
the system’s host ID or ethernet address. You can register:

� Rational Windows or UNIX products that will be served from a Rational license
server.

� Single or redundant Rational license servers on Windows or UNIX systems.

� Remote Windows or UNIX systems; you do not need to sit at the system for which
you are requesting license keys.

If you are not at the computer for which you are requesting license keys, you must
have the following information available: Hostname and Host ID. You can
download a tool from AccountLink that provides this information automatically
for you.

Alternatively, you can run rs_hostinfo directly from the CD to get the host
information. This applies to UNIX host information only. To obtain information
about a Windows host, you need to use the download tool.
48 Chapter 5 - Understanding Rose RealTime Licenses

The license key types for Rational Rose RealTime that are supported in Rational Suite
DevelopmentStudio are:

Receiving and Importing License Keys

After you register your Rational products to a specific system with AccountLink,
Rational generates a license key file that contains the license key. The file is sent in an
e-mail message to the contact e-mail address that you designate in AccountLink’s
License Contact page.

You need to save the file to a known directory location as you will need to provide this
information when you install the Rational software.

Note: If AccountLink is unavailable, see Requesting License Keys by Fax on page 49 or
call Rational Licensing Support. See Contacting Rational Technical Support by Email or
Telephone on page 4 for Support phone numbers.

Requesting License Keys by Fax

This section summarizes the steps for getting a node-locked or floating permanent
license key when you do not have an internet connection or when Rational
AccountLink is unavailable.

Although this section gives customers instructions for obtaining license keys by fax,
Rational recommends that you use Rational AccountLink
(www.rational.com/accountlink) to request permanent license keys.

1 Find your License Key Certificate in your Rational product shipment.

2 Print the license request form.

The documentation browser can be used directly from the CD-ROM and from the
installed product area. To view the form directly from the CD-ROM, run the
command rs_help from the CD-ROM root directory. The form is located in the
HTML Tool Documentation/Rational Suite DevelopmentStudio/FAX License
Request Form.

Component type License type

Rose RealTime for UNIX Node-locked and floating

Rose RealTime for Windows Node-locked and floating
Requesting License Keys 49

3 Use the License Key Certificate to fill out the form. Make sure that the contact,
Rational account number, product, licensing, and host information are correct.
Any errors will cause delays in receiving your license keys.

Note: If you are requesting a node-locked license, be sure to select NodeLocked
and not NodeLocked UNIX.

4 Fax the request to Rational. See Contacting Rational Technical Support by Email or
Telephone on page 4 for fax and phone numbers.

Call Rational Licensing Support if you cannot use Rational AccountLink or the fax
form to order your permanent license keys. See How to Get Help on page 4 for phone
numbers.

Receiving Permanent License Keys

If you request a new license using AccountLink, Rational will send you a license key
file through email. If you request a permanent license key by fax and you have
specified an email address in your contact information, you will receive a license key
file through email. You can copy the permanent license file from the email enabled
system and install it on the system that is not e-mail enabled.

If you cannot provide an email address, contact Rational Licensing Support. See How
to Get Help on page 4 for the phone numbers.

Converting a Temporary License to a Permanent License

If you initially used a temporary license (evaluation or startup) to install Rational
Suite DevelopmentStudio, you can convert your license to a permanent license by
using the license_setup command. The license_setup command allows you to run a
subset of the install script, rs_install. The license_setup command allows you to set up
license options and run the license check sequence.

You may also do this by running rs_install; however, using license_setup will save
you time as there is no need to run through a full product installation or any of the
post product installation setup.

You need to have a permanent or TLA license before you start. See Requesting License
Keys on page 48.
50 Chapter 5 - Understanding Rose RealTime Licenses

Licenses for Windows

You can request and install license keys before or after installing Rational products;
however, you must have a license key installed and configured to run Rational Rose
RealTime. In the Rational Software Setup program, a green check-mark next to a
Rational product indicates that you have a license key configured for that product. If
you do not see a green check-mark next to Rational Rose RealTime, you may want to
install a license key before installing. To configure a license key, click Configure
Licenses to launch the Rational License Key Administrator and License Key
Administrator Wizard. If you do not install the license keys before installing, the
License Key Administrator will appear and the end of the installation process.

The Rational Suite License Management Guide describes the licensing terms and the
Rational License Key Administrator.

The License Manager

UNIX

Rational Suite DevelopmentStudio for UNIX uses the Flexible License Manager,
FLEXlm™, from Globetrotter Software, Inc. The DevelopmentStudio requires FLEXlm
7.0f. The license manager includes the following components:

� A vendor daemon named rational that dispenses DevelopmentStudio licenses.

The rational daemon is used for all of Rational’s licensed products. If you have
other products from other vendors that also use FLEXlm, they will include their
own vendor daemons.

� A license daemon named lmgrd.

The same license daemon is used by all licensed products from all vendors that use
FLEXlm. The lmgrd daemon does not process requests on its own, but forwards
requests to the appropriate vendor daemon.

� A license file that you maintain.

It specifies your license servers, vendor daemons, and product licenses.

Note: Rational recommends that you use a single combined license file for all of our
products.
Licenses for Windows 51

After the license file is in place and the license daemons are running, the server
system needs to be set up to automatically restart the license server when it reboots.
You will be instructed by rs_install or license_setup how to do this. These commands
cannot do this because this step requires root permissions. The commands to do this
are as follows:

On HP-UX:

% su

cp <rational_dir>/config/start_lmgrd_on_server-name \

/sbin/init.d/S98Rational

ln -s /sbin/init.d/S98Rational /sbin/rc2.d/S98Rational

On Solaris:

$ su

cp <rational_dir>/config/start_lmgrd_on_server-name \

/etc/rc2.d/S98Rational

License Manager Commands

To verify that your license manager is operational, you can enter these commands on
your license server to see if its daemons are running:

% ps axw | grep -v grep | egrep “lmgrd|rational”

or

% ps -e | grep -v grep | egrep “lmgrd|rational”

Their output should include lines similar to the following (your path names may
vary):

538 ?? S 0:03.50 /rational/base/cots/flexlm.7.0f/platform/lmgrd
-c /rational/config/servername.dat
-l /rational/config/servername.log

539 ?? I 0:00.90 rational -T brazil 6.0 3 -c ...
52 Chapter 5 - Understanding Rose RealTime Licenses

The license manager supports several system-administration commands.

For more information on these commands, you can view the FLEXlm online
documentation in the rational_dir/docs/html/FLEXlm_End-User_Manual directory. This
documentation is in HTML format.

Additional Licensing Commands

license_check - This command allows you to run a subset of rs_install. In addition to
using the commands above, you can also use the license_check command to run the
FLEXlm lmstat command for counted licenses and the exinstal command for any
license file (not port@host). The lmstat command queries the license server for a list of
licenses that are in the license pool. The exinstal command checks the license file
format and license codes to see if everything is consistent.

License Manager Daemon (lmgrd)

The license manager daemon (lmgrd) handles the initial contact with the client
application programs, passing the connection on to the appropriate vendor daemon.
It also starts, stops, and restarts the vendor daemons.

Vendor Daemon

In FLEXlm, licenses are granted by running processes. There is one process for each
vendor who has a FLEXlm-licensed product on the network. This process is called the
vendor daemon. The vendor daemon keeps track of how many licenses are checked out,
and who has them. If the vendor daemon terminates for any reason, all users lose
their licenses. (This does not mean that the applications suddenly stop running. Users

Command Description

lmdiag Allows you to diagnose problems when you cannot checkout a license.

lmdown Shuts down license and vendor daemons

lmhostid Reports license manager host ID of workstation

lmreread Rereads license file, starts new vendor daemons

lmstat Reports status on daemons and feature usage

exinstal Reports on licenses in license file you specify on the command line.
License Manager Commands 53

can save their work and exit safely.) Users normally regain their license automatically
when lmgrd restarts the vendor daemon, although the applications may exit if the
vendor daemon remains unavailable.

Client programs communicate with the vendor daemon usually through TCP/IP
network communications. The client application and the daemon processes (the
license server) can run on separate nodes on your network across any size wide-area
network. Also, the format of the traffic between the client and the vendor daemon is
machine independent allowing for heterogeneous networks. This means that the
license server and the computer running an application can be on different hardware
platforms or even different operating systems (for example, Windows NT as a server
system and UNIX as a client or UNIX as a server and Windows NT as a client).

License Key File

Licensing data is stored in a text file called the license key file. The license key file is
created by the software vendor and is edited and installed by the License Key
Administrator. It contains information about the server nodes and vendor daemons,
and at least one line of data (called FEATURE or INCREMENT lines) for each licensed
product. Each FEATURE line contains a license key based on the data in that line, the
hostids specified in the SERVER lines, and other vendor specific data.

In some environments, you can combine the licensing information for several vendors
into a single license key file. The FLEXlm default location is:

/usr/local/flexlm/licenses/rational.dat (Unix)

We strongly recommend that you keep a copy of the license key file in a safe location.

Application Program

The application program using FLEXlm is linked with the program module (called
the FLEXlm client library) that provides communication with the license server. On
Windows, this module is called LMGRxxx.DLL, where xxx indicates the FLEXlm
version. During execution, the application program communicates with the vendor
daemon to request a license.

Configuring a UNIX Workstation to Point to a FlEXlm Server

To configure a UNIX workstation to point to a FLEXlm server, point to a copy of the
license file on the UNIX client computer. You can make a copy of the license file if you
cannot see it from the client computer.

Use the following command to help debug problems on the Unix client computer:

$ROSERT_HOME/bin/sun5/lmstat -c $ROSERT_LICENSE_FILE
54 Chapter 5 - Understanding Rose RealTime Licenses

License Activation Process

When you run a "counted" FLEXlm-licensed application, such as a Rational Suite
product that uses a floating license, the following occurs:

1 The license module in the client application finds the license key file, which
includes the host name of the license server node and port number of the license
manager daemon, lmgrd.

2 The client establishes a connection with the license manager daemon (lmgrd) and
specifies the appropriate vendor daemon.

3 lmgrd determines which machine and port correspond to the master vendor
daemon and returns that information to the client.

4 The client establishes a connection with the specified vendor daemon and sends its
license request.

5 The vendor daemon checks in its memory to see if any licenses are available and
sends a grant or denial back to the client.

6 The license module in the application grants or denies use of the feature, as
appropriate.

"Uncounted" features, where the number of licenses is ’0’ (zero), do not require a
server and the FLEXlm client library routines in the application grant or deny
usage based solely upon the license contents. Node-locked licenses, for example,
set the license number to 0 (zero).

Licensing on UNIX

Running the lmgrd from a Command Prompt

From a command prompt execute:

lmgrd -c <licenseFileList> -l <logfile>

Note: lmgrd can be found in $ROSERT_HOME/bin/<arch>, where <arch> is the host
that Rose RealTime is installed on (sun5 or hpux10).

� licenseFileList is the path to the license file or a list of license files. If the FLEXlm
daemon is only being used to provide Rose RealTime licenses, use -c
$ROSERT_LICENSE_FILE. Otherwise, include the $ROSERT_LICENSE_FILE
environment variable in a semicolon (“;”) separated list.

� logfile is the path to a log file. $ROSERT_HOME/license/log is recommended if
lmgrd is only providing Rose RealTime licenses.
Licensing on UNIX 55

For convenience, you will probably want to augment a system initialization script on
your license server to automatically start the license daemon each time the license
server boots.

The names, locations, organization, and contents of system initialization scripts varies
from UNIX system to UNIX system. You might begin by looking at the following files:

� HP-UX: /sbin/init.d/SlmRational.sh

� Solaris: /etc/rc2.d/SlmRational.sh

To verify that your license manager is operational, you can enter these commands on
your license server to see if its daemons are running:

% ps axw | grep -v grep | egrep "lmgrd|rational"

or

% ps -e | grep -v grep | egrep "lmgrd|rational"

Example
lmgrd -c $ROSERT_LICENSE_FILE -l /apps/logs/logRRT

or

lmgrd -c $ROSERT_LICENSE_FILE;$LM_LICENSE_FILE -l
/apps/logs/current_log

Administration Commands

The license manager supports several system-administration commands.

Note: These commands can be found in $ROSERT_HOME/bin/<arch>, where
<arch> is the host that Rose RealTime is installed on (sun5 or hpux10).

Command Description

lmdiag Allows you to diagnose problems when you cannot checkout a
license.

lmdown Shuts down license and vendor daemons.

lmhostid Reports license manager host ID of workstation

lmremove Returns specific licenses to license pool (for example, after a
workstation crashes).

lmreread Rereads license file, starts new vendor daemons.

lmstat Reports status on daemons and feature usage.

exinstal Reports on licenses in license file you specify on the command line.
56 Chapter 5 - Understanding Rose RealTime Licenses

The License File

The default Rational license file is either:

<rational_dir>/config/rational.dat

or

<rational_dir>/config/temporary.dat

The temporary.dat file is used for both startup and evaluation licenses while the
rational.dat file is used for permanent and TLA licenses.

FLEXlm uses this variable to locate the license file.

Format

The license file is a text file that you can edit with any text editor. Your license file will
contain lines similar to:

SERVER garcon 1874350 1706

DAEMON rational

FBE669014E142A4CF37 " "

In general, one or three server lines are followed by one or more vendor daemon lines,
which are followed by one or more feature lines. Rose RealTime requires only one of
each, but your license file may include data for other products.

Each server line contains:

� Keyword SERVER

� Host name of the license server, from hostname

� License manager host ID of the license server, from lmhostid

� TCP port number to use

Each vendor daemon line contains:

� Keyword DAEMON

� Name of the vendor daemon (always rational for Rose RealTime)

� Pathname to the directory that contains the executable code for this daemon

� Pathname to your options files for this daemon (optional)

Each feature line contains:

� Keyword FEATURE
The License File 57

� Name of the feature

� Name of the vendor daemon, previously defined on a DAEMON line, that serves
this feature (always rational for Rational products)

� Latest (that is, highest number) version of this feature that is supported (5.000) for
the current release of Rose RealTime

� Expiration date. This is specified as ‘dd-mmm-yy’ or as ‘dd-mmm-yyyy’, where
‘yy’ is the last 2 digits of the year and ‘yyyy’ is the unabbreviated year. You must
specify 4 digits for the year 2000 and beyond. You must specify '00' to indicate a
license which does not expire.

� Number of licenses

� Encryption code (obtained from Rational for Rose RealTime)

� Vendor string, enclosed in double quotes, contains node-locked information when
licensing Rose RealTime as node-locked

� License manager host ID, supplied only when this feature is bound to a specific
host (that is, node-locked)

Note: You cannot combine floating and node-locked licenses for the same product
in a single license file.

The tokens on each line can be separated by any amount of white space (spaces or
tabs). You can edit only four kinds of tokens in the license file:

� Host names on SERVER lines

� TCP port numbers on SERVER lines

� Pathnames to vendor daemons on DAEMON lines

� Pathnames to options files on DAEMON lines

All other tokens are included as input to the encryption algorithm that produces the
encryption codes on the FEATURE lines.

Note: A DEMO FEATURE Line (includes "DEMO" at the end of the FEATURE Line) is
a special temporary license which does not require running lmgrd or start_lm.
Licensing is activated when the DEMO FEATURE Line is placed in the license file.
58 Chapter 5 - Understanding Rose RealTime Licenses

UNIX Licenses

The type of licenses are:

� Start-up or Emergency keys
� Node-Locked keys
� Floating keys
� TLA (Temporary License Agreement)

Start-up or Emergency keys

Notes:

� Use -startuplicense to enter keys.

� When the UNIX LKAD displays, fill the fields with the information from Welcome
letter.

Node-Locked keys

Notes:

� Request Node-Locked keys through AccountLink.

� After you request Node-Locked key(s) from AccountLink, you will recieve an email
from Rational that contains an attachment (a .upd file). You must save this file.

� FLEXlm is not requried for Node-locked licenses.

Floating keys

Notes:

� Request Floating keys through AccountLink.

� After you request Node-Locked key(s) from AccountLink, you will receive an email
from Rational that contains an attachment (a .upd file). You must save this file to a
desired location on the server.

� We strongly recommend that you keep a copy of this license file in a safe location.

Note: We strongly recommend that you keep all of your Rational Floating licenses in a
single license file. Do not mix Floating and Node-Locked keys in the same file. Use
lmgrd -c <key_file1; key_file2; keyfile3> to point to several different license files.
UNIX Licenses 59

TLA

Notes:

� Temporary license keys that are valid for a specified period of time.

Frequently Asked Questions

1 Can I use the FLEXlm licensing software I already have installed?

Yes. Install our license code in the default location (in rational_dir/base/cots) and
use it to serve the Rational licenses.

2 I already have FLEXlm installed and managing non-Rational licenses, and now I
want to install Rational Suite DevelopmentStudio for UNIX. Can I do this?

Yes. You can have more than one lmgrd on a system, but they must use different
ports. You can only have one rational daemon on the system.

a What do I do if my existing FLEXlm installation uses port 27000?

27000 is the default port, so you need to specify a different port number for
DevelopmentStudio. Do this by editing the license import file (.upd file) and
modifying the SERVER line. Change the port number to something other than
27000 (for example, 2001). Note that the port number follows the host ID.

b What do I do if my existing FLEXlm installation uses a port other than 27000?

You don’t have to do anything since rs_install will default to port 27000. If you
are using the same server for other Rational products, you must specify the
port number you are using.
60 Chapter 5 - Understanding Rose RealTime Licenses

6Installing License Keys
Contents

This chapter is organized as follows:

� Before You Begin on page 61
� Installing a Startup or Permanent License on Windows on page 61
� Installing a Startup or Permanent License on UNIX on page 65
� Integration With Rational Suites Licensing on page 68
� Troubleshooting on page 69

Before You Begin

For specific information on license keys please refer to the Installation Instructions
and License Certificate that accompany the product shipment. If either of these two
documents is missing, please contact Rational License Support for replacement
information. See License Support Contact Information on page 6.

Before you begin, ensure that you know the name of your license server. You will be
prompted for the server name during the installation.

You can install Rational license keys before or after you install a Rational product. If
you want to install a license key before you install a Rational product, open the
Rational License Key Administrator by clicking the Configure Licenses button in the
Choose Product dialog box. Use the Rational License Key Administrator Help or see the
Administering Licenses for Rational Software manual for information about requesting
and installing license keys.

Installing a Startup or Permanent License on Windows

The License Key Administrator (LKAD) lets you install startup or permanent license
keys, as required. The startup license keys are time-limited and allow you to start
using Rational Rose RealTime immediately.

After the Rational Rose RealTime product installation is complete, the LKAD wizard
appears.
61

Figure 2 License Key Administrator (LKAD) Wizard

To obtain a license key:

1 Do one of the following:

❑ To install a temporary license key, select the Enter a Temporary or Evaluation
License Key option.

❑ To obtain a permanent license key, select one of the other options.

2 Follow the prompts in the wizard after you have chosen your option.

If you choose Request a license using Rational AccountLink on the World Wide Web, your
web browser opens and takes you to the AccountLink web site:

http://www.rational.com/accountlink

We recommend that you bookmark this site. You will need to access AccountLink
when you are ready to obtain a permanent license.
62 Chapter 6 - Installing License Keys

Installing a Permanent License on Windows

To install a permanent license key:

1 Open the Rational Rose RealTime AccountLink web site:

www.rational.com/accountlink

2 Click Get License Key(s).

AccountLink prompts you to enter your account information.

3 View your company’s License Key Certificate and enter your Rational account
number found on this certificate.

Note: If you are unable to find your Rational account number, contact Rational
License Support. See License Support Contact Information on page 6

4 Click Next.

AccountLink prompts you to specify the license type.

5 To Select a license type, do one of the following:

❑ Click NodeLocked to obtain a license for a client install.

❑ Click Floating to obtain a license for a server install.

6 Select the product line Rose RealTime.

7 Select the product name Rational Rose RealTime for Windows.

8 Enter the required quantity of licenses.

Note: For node-locked licenses, the quantity can only be "1".

9 Click Next.

AccountLink prompts you to enter your Host Name and Host ID.

10 Enter your Host Name and Host ID.
Installing a Startup or Permanent License on Windows 63

11 If you do not know the host name and host id, you can download an application
from AccountLink:

❑ Select Windows operating system from the scroll down list.

❑ Click Download.

The File Download dialog box appears, prompting you to open the file from its
current location or to save the file. We recommend that you open the file, to
import it to disk automatically.

❑ Click OK.

❑ A dialog box appears containing the Host Name and Host ID.

❑ Copy the Host Name and Host ID from the dialog box.

❑ Paste the contents into the Host Name and Host ID fields.

12 Select the platform on which the toolset will be running.

13 Click Next.

14 Enter the contact information.

15 Click Next.

16 Verify the information:

❑ If the information is correct, click Submit.

❑ If the information is NOT correct, click Modify email. Correct the information as
required, then click Submit.

Note: An email message will be sent to the inbox for the email address which you
submitted.

Installing the License Key

To install the license key:

1 Double-click the attached .upd file.

A dialog box appears prompting you to save the file to disk or open the file.

2 Click Open and then click OK.

The LKAD Confirm Import dialog box appears.

3 Click Import, then click OK.
64 Chapter 6 - Installing License Keys

Installing a Floating License Key on a UNIX server

To install a floating license key on a UNIX server:

1 Obtain the license key as outlined in Installing a Permanent License on Windows on
page 63.

2 Set the HOST NAME and HOST ID to be the UNIX LICENSE SERVER.

3 FLEXlm v7.0f or greater and the rational daemon are both required on the UNIX
machine. If either of these is not available, they can be downloaded from our ftp
site at:

ftp://ftp.rational.com/public/tools/flexlm

4 Activate the new licenses with the FLEXlm software. For information about the
FLEXlm license manager, see The License Manager on page 51, or refer to the
FLEXlm documentation.

5 Using the License Key Administrator, set your license server using the Settings -
Service Configuration menu.

Installing a Startup or Permanent License on UNIX

The startup license keys are time-limited and allow you to start using Rose RealTime
immediately.

Installing a Startup License on UNIX

To install a startup license on UNIX:

1 Go to the $ROSERT_HOME/bin directory.

2 Type RoseRT -startuplicense.
Installing a Startup or Permanent License on UNIX 65

The Startup License Key Administration form appears.

Locate the Startup License Key certificate that accompanied your product shipment.

3 Based on the license type and product name indicated on this certificate, copy the
appropriate information into the Startup License Key Administration form, and click
OK.

Note: A floating license requires you to start the license server. See Understanding Rose
RealTime Licenses on page 45.

Your startup license is created. Remember that your Startup license will expire on the
date listed on the certificate. You will have to request and install permanent license
keys before this expiry date.

Now you are ready to start Rose RealTime.

Installing a Permanent License on UNIX

Licenses are obtained from the Rational website, using AccountLink. After obtaining
the license(s), they need to be installed on Rational Rose RealTime.

To install a permanent license on UNIX:

1 Visit the Rational Rose RealTime AccountLink web site:

www.rational.com/support/accountlink

2 Click Get License Key(s).

AccountLink prompts you to enter your account information.
66 Chapter 6 - Installing License Keys

3 View your company’s License Key Certificate and enter your Rational account
number found on this certificate.

Note: If you are unable to find your Rational account number, contact Rational
License Support. See License Support Contact Information on page 6.

4 Click Next.

AccountLink prompts you to specify the license type.

5 To select a license type, do one of the following:

❑ Click NodeLocked to obtain a license for a client install

❑ Click Floating to obtain a license for a server install

6 Select the product line Rose RealTime.

7 Select the product name Rational Rose RealTime for UNIX.

8 Enter the required quantity of licenses.

Note: For node-locked licenses, the quantity can only be "1".

9 Click Next.

AccountLink prompts you to enter your Host Name and Host ID.

10 Enter your Host Name and Host ID.

11 If you do not know the host name and host id, you can download an application
from AccountLink:

❑ Select UNIX operating system from the scroll down list.

❑ Click Download.

The File Download dialog box appears, prompting you to open the file from its
current location or to save the file. We recommend that you open the file, to
import it to disk automatically.

❑ Click OK.

❑ A dialog box appears containing the Host Name and Host ID.

❑ Copy the Host Name and Host ID from the dialog box.

❑ Paste the contents into the Host Name and Host ID fields.

12 Select the platform on which the toolset will be running.

13 Click Next.

14 Enter the contact information.

15 Click Next.
Installing a Startup or Permanent License on UNIX 67

16 Verify the information:

❑ Click Submit if the information is correct.

❑ Click Modify email if the information is NOT correct, . Correct the information as
required and then click Submit.

Note: An email message will be sent to the inbox for the email address which you
submitted.

Installing the License Key

To install the License Key:

1 Save the attached .upd file as: $ROSERT_HOME/license/license.dat

2 Do one of the following:

❑ To integrate Rose RealTime with other Rational products, see Integration With
Rational Suites Licensing on page 68.

❑ To not integrate Rose RealTime with any other Rational products, see The
License Manager on page 51, to initially set up FLEXlm and activate your new
keys.

Integration With Rational Suites Licensing

If you are using other Rational products with Rose RealTime, the license.upd file that
you receive from Rational in response to a license request will contain the keys for all
the Rational products. If you are using floating licenses, you will already be using the
FlexLM lmgrd daemon and the rational vendor daemon.

Rose RealTime assumes that the ROSERT_LICENSE_FILE variable points to a valid
FlexLM license file that contains a valid Rose RealTime license. If you follow the
instructions provided, the existence of the additional license keys will not cause any
problems.

Note: Only one instance of the rational daemon can be executed at any given time for
floating licenses. Your project’s license administrator should ensure that only one
instance of the rational command exists and/or all paths are set correctly so that only
one instance of the rational command is used.

For additional information on integration with Rational Suites Licensing, see the
Installing Rational Suite Guide.
68 Chapter 6 - Installing License Keys

Troubleshooting

You may encounter some difficulties with the following configurations:

� Windows
� UNIX server
� UNIX

Windows

Problem 1

If a FLEXlm License Manager dialog appears indicating that "Your application was
unable to obtain a license because...", do the following:

1 Click Cancel.

You will get a Rose RealTime message stating "Unable to obtain a license".

2 Click OK.

3 Run the LMTools application, located in:

C:/Program Files/Rational/CommonLM

4 Verify that FlexLM is pointing to the correct license file.

Problem 2

If you receive an "Unable to obtain a license message" message after the splash screen
is displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a license, verify
that the license daemon is running. See Installing a Floating License Key on a UNIX
server on page 65.
Troubleshooting 69

UNIX server
Note: This section applies only if you are installing a floating license on a UNIX
server.

Problem 1

If a FLEXlm License Manager dialog appears indicating that "Your application was
unable to obtain a license because...":

1 Ensure that your Windows client environment variable for
ROSERT_LICENSE_FILE is set to the appropriate location.

2 Ensure that your UNIX server is set up correctly. For information on setting up
your UNIX server, see Understanding Rose RealTime Licenses on page 45, or refer to
the FLEXlm documentation.

Problem 2

If you receive an "Unable to obtain a license message" message after the splash screen
is displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a license, verify
that the license daemon is running. Installing a Floating License Key on a UNIX server on
page 65.

UNIX

Problem 1

If a FlexLM License Manager dialog appears indicating that "Your application was
unable to obtain a license because...", do the following:

1 Click Cancel.

You will get a Rose RealTime message stating "Unable to obtain a license".

2 Click OK.
70 Chapter 6 - Installing License Keys

3 Verify the location and naming of the license file:

❑ Verify that the variable set matches the actual location and file name, by typing
the following in a command prompt:

echo $ROSERT_LICENSE_FILE

❑ If you are incorporating this file into an existing FLEXlm license file, see
Understanding Rose RealTime Licenses on page 45, or refer to the FLEXlm
documentation, to ensure that the setup and key activation was done correctly.

4 If both the name and location are correct, verify that the install process set the
ROSERT_LICENSE_FILE environment variable to the location of the file.

If the environment variable is not set or set incorrectly, add or modify as
appropriate.

Problem 2

If you receive an "Unable to obtain a license" message after the splash screen is
displayed, check the expiration date of your license.

Problem 3

If you have received a floating license file and are unable to obtain a license, verify
that the license daemon is running. See the Installing a Floating License Key on a UNIX
server on page 65.
Troubleshooting 71

7Migration
Contents

This chapter is organized as follows:

� Migrating from Rational Rose on page 73
� Migrating from ObjecTime Developer 5.2/5.2.1 on page 79
� Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1 on page 82
� C Language Migration on page 87
� C++ Language Migration on page 90

This chapter provides help for users migrating models from Rational Rose, ObjecTime
Developer, or previous releases of Rational Rose RealTime.

Migrating from Rational Rose

The Rose RealTime interface is similar to Rose; however, there are some subtle
differences that Rose users should understand before using Rose RealTime.

User Interface Differences

If you are familiar with Rose, you should not have too much trouble understanding
the Rose RealTime user interface. Rose RealTime has maintained the same
architecture as Rose and has preserved the main toolset features: a model browser,
diagrams, model properties, add-ins, and an extensibility interface (RRTEI).

Note: Some of the icons have been modified but they have remained intuitive.

However, to support modeling real-time systems, to allow full code generation, and
to provide an executable interface, you will notice the following main changes to the
Rose RealTime interface. (For a complete description of the Rose RealTime user
interface please refer the Rational Rose RealTime Toolset Guide available from the online
Help.)
73

Multiple model browsers

The model browsers in Rose RealTime have three views: the Model View, the
Containment View, and the Inheritance View. Each view displays the elements in your
model from different perspectives.

In addition, you can create multiple model browser windows by selecting
View > Browsers > Create New Browser.

Output windows

In Rose, the log is in an undockable window that cannot be dragged onto another
section or window. In Rose RealTime, the output window is dockable, and contains a
set of windows that show different kinds of output from the toolset.

Code editors

In Rose, code is added to operations outside the toolset; in Rose RealTime, code is
added in the tool. Code is added to model elements through their specification
dialogs. For example, the Details tab of an Operation specification contains a Code
window in which you can write the body source code of the operation.

Code can also be added to capsule state diagrams.

Code browser

During the development of a model, you spend considerable time writing source
code. In Rose RealTime, you can edit the code for the currently selected element in the
code window, rather than having to open the element’s specification dialog.

Layout tools and line styles

Rose RealTime allows you to perform advanced layout operations on diagrams. For
example, you can align, change the view spread, and make elements the same size.
You can also configure the way lines are drawn:

Figure 3 Layout menu - right-click on any diagram
74 Chapter 7 - Migration

Figure 4 Line attributes menu - Edit > Line Attributes

New Modeling Language Elements

Rose RealTime introduces new modeling elements - capsules, protocols, and ports -
and a new diagram - the structure diagram. The Rational Rose RealTime Modeling
Language Guide contains information about the new modeling elements, as well as a
summary of the real-time specializations to the UML.

You can also review the Concept Tutorials.

Code Generation, Building, and Running

An important difference between Rose and Rose RealTime is the support for building
and executing models from within the toolset. Note the following:

� Rose RealTime is not meant to be used in a round trip process. The model contains
all the information required to generate, build, and run elements in the model.

� Rose RealTime does not ship with a compiler for your target environment. You
must install and configure a compiler for your target. Rose RealTime will use that
compiler to build the model.

For more information, see the Rational Rose RealTime Toolset Guide, available through
the online Help.
Migrating from Rational Rose 75

Opening Models from Rational Rose

Rose RealTime can open files saved with Rational Rose 98, 98i, and Rose 2000 (.mdl
files).

Fixing unresolved references

When importing a model from Rose 98, 98i, or Rose 2000 into Rose RealTime, you
should fix any model errors in Rose (Tools > Check Model) before trying to import the
model. In particular, it is important to resolve any unresolved references. Rose is not
concerned with unresolved references; however, they are very important in Rose
RealTime as they can result in incomplete code generation and compilation errors.

For more information, see “Model Validation” in the Guide to Team Development.

Tasks

To open a Rational Rose model in Rose RealTime:

1 Select File > Open and choose Rose Model (.mdl) from the Files of Type pull-down
menu.

2 Select a file and click Open.

Files from Rose versions older than Rose 98 have to be opened in Rose 98 and saved
first.

Note: Opening a new model discards any existing model that you have. The tool
prompts you to save changes first.

List of Importation Log Messages

The following messages may appear in the Log after a Rose98 model has been
imported.

Message: Warning: Renamed elementClass “oldElementName” to
“newElementName”.

Description: A loaded model element has been renamed to conform with Rose
RealTime's naming requirements. Double-clicking on the warning in the log, this may
display the renamed element.

Message: Error: Unresolved reference from ... to ... by ...

Description: The toolset was unable to resolve a reference between two model
elements. This is usually the result of loading an incomplete model, for example,
when the user has updated only part of a model from CM. The rest of the model needs
76 Chapter 7 - Migration

to be loaded in order for the reference to be resolved. However, in some cases, the
unresolved model element is removed from the model and the deletion is recorded in
the log window.

Message: Error: Error reading file fileName at line lineNumber or Error message
detail.

Description: The error message detail may contain validation errors originating from
the internal meta-model. Possible error message details that originate from the petal
reader are listed below.

Message: Invalid syntax.

Description: The file contents cannot be read by the toolset. The user should send the
file to customer support with a description of what they were doing when the file was
created. For example, if you import a Rose98 model and make some changes to the
Component View, the file will not reload in Rose RealTime.

Limitations and Restrictions

When a Rose model is opened in Rose RealTime, the following elements are not
converted:

� State diagrams and Activity diagrams

The model opens, but the state diagrams and activity diagrams are not present in
Rose RealTime.

� Importing Rose models containing controllable units is not supported.

If the Rose model file contains controllable units, you should export the model
from Rose98 into a single .ptl petal file (File > Export Model), that can then be opened
with Rose RealTime (File > Open, and select All Files... in the combo box to display
.ptl files).

� Three-tier class diagrams are not supported in Rose RealTime.

If the Rose model file contains a three-tier class diagram, you should create a copy
of the Rose model that does not contain a three-tier diagram to import into Rose
RealTime.

Note: The conversion of models is supported in one direction only: once models are
brought into Rose RealTime, if they are converted back to Rose, the additional Rose
RealTime functionality will not appear in Rose. Working in a mixed Rose
RealTime/Rose environment is not supported. Generated code is not compatible
between the two tools.
Migrating from Rational Rose 77

Importing Rational Rose Generated Code

Source code that has been generated from a Rose model and has been edited within
the preserved regions may be imported.

To import Rose generated code:

1 Verify that the Rose .mdl file is not newer than the generated code. If so, regenerate
the code.

2 Open the Rose model.

For details, see Opening Models from Rational Rose on page 76.

3 Choose Tools > Import Code....

If code was generated from this model using Rational Rose and the model was
saved after the code generation was performed, a "Rose Code Import" window
appears. Otherwise, a "There are no cpp or h files available for import" message is
displayed.

The Rose Code Import Window lists all the .cpp and .h files that were generated
from the model and lets you select all or a subset of the files. It also displays the
classes that will be affected by each file that is selected. After a file is imported, it
will not be listed if code importation is repeated.

4 After you have complete importation and are satisfied with the results, save the
model.

Limitations and Restrictions
� No action will be taken on empty preserved regions. As a result, constructors,

destructors and operators that are generated by Rose and have empty preserved
regions, will not be added to the model.

� Use of the Code Name properties for classes and operations can cause inconsistent
naming in the generated code. The inconsistencies can cause compile time errors,
which can be resolved manually.
78 Chapter 7 - Migration

Migrating from ObjecTime Developer 5.2/5.2.1

Users migrating from ObjecTime Developer can open their models in Rose RealTime.
First, see the Conversion Guide - ObjecTime Developer to Rational Rose RealTime to get
your ObjecTime Developer model loaded and built in Rose RealTime.

Terminology

The modeling language and toolset terminology in Rose RealTime is different than
that used in ObjecTime. This section provides an overview of the changes.

Actor/binding/protocol class

Rose RealTime supports the UML modeling language. Therefore, certain modeling
elements are referred to by UML standards differently than they are in ROOM
(Real-Time Object-Oriented Modeling). For detailed information regarding the UML
modeling elements supported in Rose RealTime, see the Modeling Language Guide.

Table 10 Terminology mappings from ROOM to UML

Context/update

In ObjecTime Developer, contexts contain a group of related actors, protocols, and
data classes. In Rose RealTime, models are stored in controlled units that can vary in
granularity. For example, the whole model can be stored as a single controlled unit
(default) or each element can be stored individually. If a model is stored as one
controlled unit, then the model file (.rtmdl) contains all information about a model. If
the model file is read-only, then when the model is opened in Rose RealTime it is also
read-only.

ROOM UML

actor class capsule

actor reference capsule role

protocol class protocol

port port

SAP/SPP unwired ports

binding connector
Migrating from ObjecTime Developer 5.2/5.2.1 79

Activation/passivation

These terms have been replaced by more commonly used open and save. You open a
model into Rose RealTime, and save it to disk.

For more information, see the Toolset Guide.

Workspace browser

In ObjecTime Developer, workspace browsers showed all activated contexts and
updates. Since Rose RealTime only supports one model loaded at a time, there is no
equivalent concept.

The workspace in Rose RealTime is associated with a specific model and is saved as
such. The workspace can be stored under Configuration Management, if desired.

Model browser

Rose RealTime still has a model browser. You can, however, have more than one
browser for a model, and each browser shows the model from three different views:
the Model View, the Containment View, and the Inheritance View.

For more information, see the Toolset Guide.

Project files

Project files do not exist in Rose RealTime. An equivalent concept is the model file
(.rtmdl) that contains references to a set of packages, but does not contain version
information. Rose RealTime does not manage versions of files. Instead the model file
loads the packages it finds on disk. It is up to the developer, through their
configuration management process, to ensure that the files on disk are the correct
version.

Library browser

Library browsers do not exist in Rose RealTime. Because of the changed underlying
model representation, the configuration management integration has changed
significantly in Rose RealTime.

It is highly recommended that you read the Guide to Team Development for a detailed
introduction to using source control with Rose RealTime.

User Interface Differences

For a complete description of the Rose RealTime user interface, please refer to the
Toolset Guide. Rose RealTime looks very different than ObjecTime Developer.
Although you can accomplish almost everything you can in ObjecTime Developer, the
80 Chapter 7 - Migration

steps and mechanics are very different. For this reason, it is recommended that you
review the tutorials to become familiar with the interface. You can also take the
Rational University course called DRTSWRRRT.

Note: When using Rose RealTime, everything is right-click-centric, meaning that you
can right-click on every element in the toolset to show a context-menu that contains
actions that you can perform.

Property editors

Property editors have been replaced by specification dialogs. Every modeling element
has a specification dialog that contains a non-graphical view of its properties. To
access an element’s specification, right-click on the element (in either the browser or
on a diagram) and select Open Specification.

List headers

In ObjecTime Developer, every window has a list header in which you can access
menu items specific to that window. In Rose RealTime, these have been replaced by
right-click menus and the main application menu.

State and structure diagrams

To open a state or structure diagram, right-click a capsule, and click Open Structure
Diagram or Open State Diagram. The state and structure diagram editors appear in the
same window. You can switch between one and the other using the tabs at the bottom
of the window. If you want to see the structure and state diagrams simultaneously,
click and drag one of the tabs away from the window. This undocks the diagram and
creates a new window containing only the selected diagram. You can redock the
diagrams by dragging one of the tabs into the other.

For more information, see the Conversion Guide, ObjecTime Developer to Rational Rose
RealTime.

Compilation

In ObjecTime Developer 5.2/5.2.1, data classes were compiled one package at a time.
In Rose RealTime, data classes are compiled one class at a time.
Migrating from ObjecTime Developer 5.2/5.2.1 81

Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1

Models from these previous versions of Rose RealTime are compatible with this
version. However, there are some changes in team development and language
add-ins that require you to plan some changes to your model.

Note: Beta customers must uninstall before installing the new release.

File Format Changes

When opening a Rose RealTime 6.x model, a dialog may warn you that the next time
the model is saved, the files will be saved in the new file format. To prevent the
original model from being overwritten, on the File menu, click Save As.

Figure 5 Warning dialog

For this reason, when working with a model under source control, you must check
out all controlled units so that they can be saved in the new format.

Source Control Migration

If your model is in source control, you need to load it into the new release of Rose
RealTime.

To save a file in the new file format:

1 In the 6.0 toolset, all files should be checked in, and the model should build and
test successfully.

The source control administrator/model converter checks out all files from the 6.0
toolset.

2 Install and start the new release of Rose RealTime.

3 Open the .rtmdl file in Rose RealTime.

Note: Do not open the workspace (.rtwks).

4 Save the model.
82 Chapter 7 - Migration

5 Configure the source control settings.

6 Save the Workspace.

7 Submit all changes.

Note: Migration from 6.0 is one-way. After you have migrated a model , you cannot
successfully reload a controlled unit in 6.0 format. Although the toolset lets you
attempt to reload a controlled unit, several errors will be reported. A mixed model is
not supported.

ClearCase integration

Rose RealTime models currently stored in a ClearCase VOB should be converted to
use the type manager in order to take advantage of the new integration features. A
script, cc_chtype.pl, has been included to help in the conversion process. The script,
located in $ROSERT_HOME/bin/$ROSERT_HOST/cc, produces a log of commands
that will convert the existing model files from the default "text_file" type to the
supplied "rosert_unit" type.

After following the setup directions detailed in the "Source Control Tools" chapter of
the Guide to Team Development, use the following invocation from the root of your VOB
to produce a batch file, which when executed will convert any Rose RealTime files to
the rosert_unit type:

rtperl cc_chtype.pl -cmdfile chcmds.bat -recurse *

After examining the chcmds.bat file and verifying that the commands contained
within it are the commands you want to perform, execute the batch file.

If you do not want to be queried to convert each file, add "-chargs -f" to the
cc_chtype.pl command line before the -recurse argument.

rtperl cc_chtype.pl -cmdfile chcmds.bat -chargs -f -recurse *

This will generate commands that force the type change without querying.

For ClearCase users who want to use clearmake, there is a problem with filenames
with spaces in them. For help with this, contact Technical support at:

http://www.rational.com/support

Migrating customized CM scripts

For complete information on library scripts and what scripts may require
modification to meet your specialized CM needs, see the Guide to Team Development.
Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1 83

http://www.rational.com/products/rosert

Language Add-in Changes

The C and C++ Language Add-Ins have changed, it is very important to read C
Language Migration on page 87 and C++ Language Migration on page 90 for instructions
on migrating existing models to either of these Language Add-Ins.

Note: Rational Rose RealTime version 2001A.04.00 now also supports the Java
language.

Running Two Different Releases of Rose RealTime

Windows NT

If you need to run both versions of the tool while your are converting your models to
the new release, you need to start the 6.02 release with a batchfile to reset your
environment settings to the 6.02 defaults. This script is available on the Rose RealTime
support website in the patches and updates section:

http://www.rational.com/support

Note: Add-Ins and other product integrations may not work with the 6.0.2 release
after you have installed the new release on your workstation because of the new
registry settings. We recommend that you remove the 6.0.2 release from your
workstation as soon as your 6.0.2 model has been converted to the new release.

UNIX

You can set up your environments to run both releases of Rose RealTime, but do not
run them from the same machine at the same time. This is a MainWin limitation.

For additional information, see Upgrading to 6.4 While Maintaining an Earlier Version on
page 38.

Workspace Files

Version 6.0.x workspace files are not supported. You must open the model without the
workspace. The unsupported workspace is backed up to a file.
84 Chapter 7 - Migration

http://www.rational.com/products/rosert

RRTEI Changes

If you have previously used any of the following classes or functions in your scripts,
they have to be removed in order for your scripts to be compatible with this new
release:

� ComponentAggregationCollection class

� ComponentAggregation class

� Component::GetComponentAggregation()

� Component::AddComponentAggregation()

� Component::DeleteComponentAggregation()

� ComponentPackage::GetObject()

� RSSchedule enumeration

� Schedule rich type

If you have previously used any of the following classes or functions in your scripts,
they have to be replaced in order for your scripts to be compatible with this new
release. Use the model element’s tool’s properties. For example, The old
Component::OutputPath property can now be retrieved by the "C++ Generation"
OutputDirectory property from the component.

� Component::OutputPath

� Component::TopCapsule

� Component::RTSType

� Component::TargetLibrary

� Component::RTSDescription

� Component::CompilerName

� Component::CompilerLibrary

� Component::CompilerFlags

� Component::CompilerDescription

� Component::Inclusions

� Component::UserObjectFiles

� Component::InclusionPaths

� Component::LinkerName
Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1 85

� Component::LinkerFlags

� Component::LinkerDescription

� Component::ExecutableFileName

� Component::Platform

� Component::MultiThreaded

� Component::DefaultArgs

� Component::TargetDescription

� Component::CodeGenMakeName

� Component::CodeGenMakeFlags

� Component::CodeGenMakeOverridesFile

� Component::CodeGenMakeDescription

� Component::CompilationMakeName

� Component::CompilationMakeType

� Component::CompilationMakeFlags

� Component::CompilationMakeOverridesFile

� Component::CompilationMakeDescription

� Component::UserLibraries

� Component::UserSourceFiles

� Component::UserLibraryPaths

� Component::CodeGenMakeType

� Component::AddInclusion()

� Component::DeleteInclusion()

� Component::AddUserLibrary()

� Component::RemoveUserLibrary()

� Component::AddUserObjectFile()

� Component::DeleteUserObjectFile()

� Component::AddInclusionPath()

� Component::DeleteInclusionPath()
86 Chapter 7 - Migration

� Component::GetInclusionPathFlag()

� Component::AddUserLibraryPath()

� Component::DeleteUserLibraryPath()

C Language Migration

The following section provides details on migration issues specific to the C Language
Add-in.

For more information on the C Language Add-in, refer to the Rational Rose RealTime C
Reference .

Converting a C++ Model to C

You can convert a C++ model to C, however, the process is not as simple as changing
the language of each model element. First, the C Services Library’s API is different
than that of the the C++ Services Library, meaning that all the Services Library
references in the detail code must be changed. Secondly, the C Services Library does
not support dynamic structure (import/deport), which may require you to re-design
you model. In addition, all issues regarding conversion from regular C++ to C still
apply to the conversion (for example, polymorphism is not supported in C,
encapsulation is not enforced, all fields in a struct are public, and so on...).

You should decide early in the development cycle whether your project will be
developed in C or C++ because changing languages in the middle of development
requires a lot of work.

To convert an existing Rose RealTime model based on the C++ language:

1 Make a backup copy of the C++ model that you are trying to convert.

2 Change the language of each model element. The language setting is on the General
tab of each element’s specification dialog.

Note: When model elements change languages, all the C++ language properties
are replaced by C language properties. Therefore, any properties that have been
modified are lost when the language is changed.

3 Review the Rational Rose RealTime C Reference for descriptions of the new C
properties and how these are to be used in your model.

4 All attribute and operations should be made public. The model will still build with
them as private or protected, but the code generator will output many warnings in
this regard.
C Language Migration 87

5 If your C++ model depends on dynamic structure and importation, you can mimic
this behavior in a C model by combining the static linkage of ports between
capsules and the dynamic linkage of unwired ports. With some re-design, you can
replace importation from your C++ model to use unwired ports and the
RTPort_registerAs() and RTPort_deregister() functions to bind and unbind ports
dynamically.

6 Convert all timing ports to C Timing, and then add a timing capsule to your
model.

7 Remove all Log ports and all Exception ports.

8 When your design can be supported by C Services Library features, you can
convert the syntax in your detail code.

Note: We recommend that you start converting a small set of capsules that can be
built and tested separately before trying to convert the whole model. Iteratively
modify detail code, build, and test.

9 Update your components to C components.

10 Configure any of the build properties that are required.

ObjecTime Developer for C Migration

ObjecTime Developer for C models can be imported into Rose RealTime, compiled,
and run with only minor modifications to the model. Functional updates (like a
proper recall mechanism and data integration) was not provided via the ObjecTime
Developer for C interface and thus will only be available via the new C UML Services
Library API.

Importing models

Prior to importing a model, you should read the Conversion Guide, ObjecTime Developer
to Rational Rose RealTime to understand important issues involved with migrating
ObjecTime Developer models to Rose RealTime.

To import an ObjecTime Developer for C model into Rational Rose RealTime:

1 Set the default language to C.

2 Set the default environment to C TargetRTS through Tools > Options >
Language/Environment Tab. This will ensure that protocol classes import as C
Protocols.

3 Export and import your OTD for C model. For details, see the Conversion Guide -
ObjecTime Developer to Rational Rose RealTime.
88 Chapter 7 - Migration

4 When the model has been imported, replace all ports of type Timing with type
CTiming in your model.

Note: Your triggers (on timeout) will remain valid.

5 Update your timing service. If you have a simple timing service, to get you started,
replace whatever timing capsule you had with the one available in Logical
View::RTCClasses::TimerPackage::Timer. You can override this later with a
custom timer after you get your model working.

6 Build your target.

Note: If you receive a signal is undefined build error, replace signal with
ROOM_Signal(port, signal) for the given port.

Converting global signals to local signals

A common update that may be required to some imported models involves the way
the signals are now represented. In order to provide local signals, and thus the ability
to build libraries without global system knowledge, more macro operations are
necessary.

The only supported way of creating signals with the backwards compatible interface
is with these primitives:

� ROOM_Signal(port, signal), where port is the name of the port (unqualified with
respect to the this pointer) and signal is the name of the signal.

� ROOM_InSignal(port, signal), where the parameters are specified identically to
the previous case.

In ObjecTime Developer, these macros unfortunately returned signal. You may have
tried to optimize out the use of these macros, and used the signal name when sending
messages through these services. However, this will no longer work because these
macros now create a local signal (relative to the protocol class of the port). As a result,
you will find compile errors when you go to build your model indicating that the
signal is undeclared. Do the following:

Every call of

ROOM_PortSend(port, signal)

needs to be replaced with

ROOM_PortSend(port, ROOM_Signal(port, signal))

This change applies to all signals used in ROOM_ macros.
C Language Migration 89

Timing service

The global signal timeout no longer exists. You need to use Timing_rt_timeout or use
the ObjecTime Developer RSL_Timeout() macro that has been mapped to
Timing_rt_timeout.

Also, remember that these macro operations de-references the pointer for you, so all
you have to do is provide the names.

C++ Language Migration

The following section provides details on migration issues specific to the C++
Language Add-in.

For more information on the C Language Add-in, refer to the C++ Reference.

If you are upgrading from a previous release of either ObjecTime Developer or Rose
RealTime, to build and run your model in Backwards Compatibility Mode on page 90.
Then, you can convert to the new syntax described in Changes on page 94.

See the Conversion Guide, ObjecTime Developer to Rational Rose RealTime, that is available
as part of the online Help system.

Backwards Compatibility Mode

An essential requirement of the C++ Language Add-in is that it allows models from
previous releases to be loaded, compiled, and run with only small syntax changes to
the model. Because of the scope of the changes required to the Language Add-in, most
models will contain constructs that still will not compile even in backwards
compatibility mode because of the increased send type checking and removal of
global signals.

Note: Global signals have been replaced by a signal number local to each protocol
class defining the signal. Signals with the same name in different protocols do not
share the same integer value.

Migrating in two steps

You can plan your conversion in two steps:

1 Build your model in backwards compatibility.

2 Convert to the new syntax.
90 Chapter 7 - Migration

Since you retain the benefits of type safety even in backwards compatibility mode,
one option would be to keep active projects in backwards compatibility and only use
the new syntax on new projects.

Advantages of backwards compatibility versus changing all syntax

� Only small changes to user code are required.

� There are no run-time penalties.

� You can optionally benefit from the new message send type safety.

Disadvantages

� There are stubs generated for each protocol to allow backwards compatibility.
More code is therefore generated in backwards compatibility mode.

� Compilation times are longer because there is more code to compile.

What does backwards compatibility do?

Protocols can be marked as backwards compatible (see the C++ Target RTS tab of the
Protocol Specification). This will tell the code generator to create stub code in the
protocol classes to allow use of the old Communication Services syntax.

Compiler will find all errors

Many errors in existing models will be discovered by the compiler. After a build, the
Build Errors pane of the output window will have a list of all compile errors.
Double-click on the error and the code section containing the error appears.

Figure 6 Sample output window showing build errors
C++ Language Migration 91

Building a model in backwards compatibility mode

Follow these steps to build and run a model loaded into Rose RealTime to be built and
run in backwards compatibility mode.

Step 1: Optional type checking

A flag has been added to the C++ TargetRTS tab for protocols called TypeSafeSignals.
By default this property is turned on. Turning off the flag causes the code generator to
ignore the types for all signals in the protocol class. This is the same as setting them
all to blank (i.e. any). This sets the type of the data to be sent to void * and allows
SEND_SCALAR to work without change. This is considered a true backwards
compatibility mode with the added advantage that it affects the new send syntax as
well (i.e. you can turn off backwards compatibility and turn off type safe signals).

If you want to continue to use the SEND_SCALAR macro you should turn off the
TypeSafeSignals property on these protocols.

Step 2: Enable BackwardsCompatible protocol property

� Press F12 or select Tools > Options from the main menu, and in the options tab
and select the C++ Target RTS tab. Then set the Type to Protocol and ensure that
the BackwardsCompatible checkbox is checked.

This will ensure that all protocols default to backwards compatibility mode.

Note: On loading of ObjecTime Developer models all protocols will automatically be
set to backwards compatibility mode.
92 Chapter 7 - Migration

Step 3: Clean up unsafe sends

Most models contain unsafe sends and sends that are not used as defined in the
associated protocol. You should fix these constructs so that you do not need to debug
bugs caused by these kinds of errors.

The compiler will find these errors. However if you know where you have signal-type
incompatibilities, you can manually fix them.

Previous versions of the C++ UML Services Libraries allowed sending a signal,
defined in the protocol to have a data class, to be sent without data. Because of the
new tightened type safety of sends, this is no longer allowed and will result in
compilation errors. To compile in backards compatibility mode you will have to
modify all errors of this type.

This is an example of a typical compile error for a signal-data class mismatch:

int __thiscall NewProtocol1::base::send(const struct RTSignal_start

&,const class AClass1 &,int)' : cannot convert parameter 2 from

'int' to 'const class AClass1 &

Step 4: Remove unspecified ‘*’ replication values

You can search your model for unspecified replication values by using the find tool
and searching Cardinality/Multiplicity fields for the value ‘*’.

Step 5: Investigate remaining syntax changes

� The first step is to identify if you use message forwarding or if you access signal
names in user code. You will have to convert these constructs as described in
“Forwarding” on page 101 and “Discriminating in Code the Signal of a Received
Message” on page 100.

Example compile error message when using old forwarding syntax:

int __thiscall NewProtocol1::base::send(const struct RTSignal_start

&,const class AClass1 *,const struct RTObject_class *,int)' : cannot

convert parameter 1 from 'int' to 'const struct RTSignal_start &'

Example compile error message when using signal name in user code:

binary '==' : no operator defined which takes a left-hand operand of

type 'int' (or there is no acceptable conversion)

Note: If you still have compilation problems, review “Changes” on page 94 to ensure
that you are not using classes that have been removed from the Services Library.
C++ Language Migration 93

Full migration

When your model is compiling and running in backwards compatibility mode, the
next step for full migration is a communication service syntax change. You will have
to find and replace occurrences of old syntax with the new syntax and individually
turn off the BackwardsCompatibility flag on a per protocol basis. For a complete
listing of the change communication service primitives, see “Changes” on page 94
section.

Changes

This section explores all the changes affecting users of the C++ Language Add-in who
will be migrating their existing models to this new version.

C++ UML Services Library

Adding support for libraries and type safety required changing the Communication
Service API. Review these sections to understand the new C++ Services Library
changes.

� Type safety explained on page 95

� New classes for protocols, signals, and ports on page 95

� API Changes Summary on page 96

� Macros on page 105

� External Layer Service (ELS) on page 106

No attempt will be made to describe changes made to the private or undocumented
features of the C++ Services Library. We recommend that you always use only the
documented interfaces.

Note: For minor problems migrating customizations or configurations of the C++
UML Services Library contact Rational Technical Support. For all other problems
migrating your custom changes contact your sales representative to arrange for
consulting services to assist in the migration.

Code generation and compilation

Components have been expanded to allow building libraries and model external
libraries.
94 Chapter 7 - Migration

New classes for protocols, signals, and ports

In previous versions of the Services Library RTEndPort and RTEndPortRef classes
were used to represent port instances and port references. These classes have been
replaced by RTProtocol, RTOutSignal, RTInSignal, and RTSymmetricalSignal
classes.

For each protocol in a model a structure is generated. Contained in the structure are a
Base and Conjugate class which are subclasses of RTProtocol. For each signal defined
in the protocol an operation is generated in the Base and Conjugate classes. The
introduction of the new classes has changed the syntax of communication service
operations.

Type safety explained

In a protocol specification, a signal may be defined with an associated data class.
Previously, it was optionally up to the software designer whether or not to actually
send data along with such signals. In addition you were able to send signals that were
not defined on the port on which they were sent.

In summary, there has never been any support for compile-time validation that user
code conformed to a protocol specification. Consequently all errors of this type could
only be caught at run-time, resulting in developers having to track down “unexpected
message warnings” and run-time exceptions.

How has this been changed?

In the new UML Services Library, you must send data if the signal has an associated
data type. The data must be of the type, or a subclass of the type, specified for that
signal. Alternatively, the data may be of type void or left empty. A data class type left
empty (that is, no type specified) implies that you can send anything with the signal.
In addition you can only send signals that have been defined on the protocol role
associated with the port.

Note: Backwards compatibility mode allows previous release syntax to be used in
models compiled with the current release of the C++ Services Library.

The TypeSafeSignals flag on protocols can be used to force the code generator to
ignore the data class value of all signals defined in a protocol. The code generator
treats the signal’s data class as being empty, thus allowing any type of data class to be
sent with the signal.
C++ Language Migration 95

API Changes Summary

The changes affecting the communication service interface can be grouped into the
following usage scenarios:

� Asynchronous Sends on page 97 (to one or all port instances)

� Synchronous Sends on page 97 (to one or all port instances)

� Message Reply on page 98

� Defer, Recall, and Purge on page 99 (one or all signals to one or all port instances)

� Port Indexes on page 100

� Discriminating in Code the Signal of a Received Message on page 100

� Forwarding on page 101 (potentially from one protocol to another and to one or all
port instances)

� RTPortRef Operations on page 103

In addition to the changes in the communication service review these issues that may
impact your conversion:

� RTTimespec parameters

All examples in this section assume that a replicated port called aPort of type
aProtocol is defined on a capsule. The protocol is symmetric (in and out signals are
the same) and is defined as:

Note: The examples show sending RTInteger (a type of RTDataObject with which
ObjecTime Developer 5.2 users will be familiar), and regular classes created using
Rose RealTime 6.0, AClass1.

Signal Data Class

start AClass1

stop int

reset RTInteger
96 Chapter 7 - Migration

Asynchronous Sends

5.2/6.0

port.send(signal, rtdataobject, priority);

port.send(signal, data, type, priority);

port[index]->send(signal, rtdataobject, priority);

port[index]->send(signal, data, type, priority);

New syntax

port.signal(rtdataobject).send(priority);

port.signal(data).send(priority);

port.signal(rtdataobject).sendAt(index, priority);

port.signal(data).sendAt(index, priority);

New syntax example

RTInteger level(15); // RTDataObject

AClass1 mdata(49, 1.23);

aPort.reset(level).send(); // broadcast

aPort.start(mdata).send(); // broadcast

aPort.reset(level).sendAt(1); // single port

aPort.start(mdata).sendAt(1); // single port

Synchronous Sends

5.2/6.0

port.invoke(repbufs, signal, rtdataobject);

port[index]->invoke(repbuf, signal, rtdataobject);

port.invoke(repbufs, signal, data, type);

port[index]->invoke(repbuf, signal, data, type);

New syntax

port.signal(rtdataobject).invoke(repbufs);

port.signal(data).invoke(repbufs);

port.signal(rtdataobject).invokeAt(index, repbuf);

port.signal(data).invokeAt(index, repbuf);
C++ Language Migration 97

New syntax example

RTInteger level(5); // RTDataObject

AClass1 mdata(49, 1.23);

RTMessage replyBuffers[5];

RTMessage replyBuffer;

aPort.reset(level).invoke(replyBuffers); // broadcast

aPort.start(level).invokeAt(1, &replyBuffer); // single port

aPort.reset(mdata).invoke(replyBuffers); // broadcast

aPort.start(mdata).invokeAt(1, &replyBuffer); // single port

Message Reply

5.2/6.0

msg->sap()->send(signal, rtdataobject);

msg->sap()->send(signal, data, type);

msg->reply(signal, rtdataobject);

msg->reply(signal, data, type);

New syntax

rtport->signal(rtdataobject).reply();

rtport->signal(data).reply();

New syntax example

RTInteger level(5); // RTDataObject

AClass1 mdata(49, 1.23);

rtport->reset(level).reply();

rtport->start(mdata).reply();

Note: rtport is an argument passed to each transition code segment. It is a pointer to
the port on which the triggering signal was received. For more information see
“Parameters available in transition code” on page 107.

If a transition is triggered by signals arriving from different ports with different
protocols, then the rtport argument cannot be used to reply. In these cases you will
have to either explicitly cast the port or create a separate transition to reply to signals
arriving on a specific port.

((AProtocol::Base *)msg->sap())->Ack().Send();
98 Chapter 7 - Migration

The difference between rtport and msg->sap() is that rtport is coerced to the correct
protocol type by the code generator whereas msg->sap() is a pointer to the a generic
RTProtocol object.

Defer, Recall, and Purge

5.2/6.0

port.purge(signal);

port[index]->purge(signal);

port.recall(signal, front);

port[index]->recall(signal, front);

port.recallAll(signal, front);

port[index]->recallAll(signal, front);

port.recallAll();

port.recallAll(0, front);

New syntax

port.signal().purge();

port.signal().purgeAt(index);

port.signal().recall(front);

port.signal().recallAt(index, front);

port.signal().recallAll(front);

port.signal().recallAllAt(index, front);

port.recall();

port.recallFront();

port.recallAt(index);

port.recallAll();

port.recallAllFront();

port.recallAllAt(index);

port.purge();

port.purgeAt(index);

New syntax example

// a signal must have already been deferred

// using a call to msg->defer().
C++ Language Migration 99

// purge all deferred messages on all port instances

aPort.purge();

// recall all deferred bye signals

aPort.bye().recall();

Port Indexes

5.2/6.0

msg->sap()->getIndex(); // 0-based

msg->sap()->index(); // 1-based

msg->sap()->at(index) // 1-based

New syntax

msg->sapIndex0(); // 0-based

msg->sapIndex(); // 1-based

Note: The at() , and getIndex() operations are no longer supported.

New syntax example

AClass1 mdata(1, 4.56);

int index = msg->sapIndex0();

// send back to same port instance on

// which we just received a message.

rtport->start(mdata).sendAt(index);

Discriminating in Code the Signal of a Received Message

You may have code that used a signal outside the scope of a message send. For
example:

AClass1 mdata(1,4.56);

int index = msg->sap()->getIndex();

if(msg->getSignal() == hello)

{

aPort.start(mdata).sendAt(index);

}

100 Chapter 7 - Migration

Since these signal values are not global you have to use the enumeration values for
the signals defined in their respective protocol role. For example, you would have to
change the above code fragment to:

AClass1 mdata(1,4.56);

int index = msg->sapIndex0();

if(msg->getSignal() == NewProtocol1::Base::rti_hello)

{

aPort.start(mdata).sendAt(index);

}

Note: The signal value in the protocol will always be called rti_<signalname>. You
can easily reference it by using the following syntax:
Protocol::<ProtocolRole>::rti_<signalname>, as shown above. ProtocolRole will be
either Base or Conjugate.

Forwarding

In previous versions of the C++ UML Services Library, you were permitted to blindly
forward signals out other port instances. Because signal numbers are no longer global
(that is, a signal with the same name and data class in two protocols won’t have the
same signal number) this will no longer work.

5.2/6.0 forwarding syntax:

port.send(msg->signal, msg->data);

port.send(msg->signal, msg->data, msg->type);

Static Forwarding Pattern

In most cases, you can implement simple forwarding behavior by discriminating the
received signal then explicitly sending a signal out another port. The outgoing signal
doesn’t necessarily have to be the same name as the incoming signal. Static
forwarding requires signal discrimination in a transition (for example, using a switch
statement) or adding transitions for each signal being forwarded.
C++ Language Migration 101

Examples

// using one transition to route all

// incoming messages to other ports.

switch(msg->getSignal())

{

case NewProtocol1::Base::rti_start:

outport.start(*rtdata).send();

break;

case NewProtocol1::Base::rti_stop:

outport.stop(*rtdata).send();

break;

default:

log.log(“Unexpected message”);

}

// or you could have one transition per

// signal. In this case each transition

// would forward one signal.

outport.start(*rtdata).send();

Dynamic Forwarding

Some routing capsules are designed so that they won’t know the exact protocols for
the forwarding ports at design time (that is, they could be overridden at run-time). In
these cases, the switch statement described in the static forwarding pattern does not
provide a good solution.

Dynamic forwarding provides run-time mapping from one protocol to another. It
works by creating a signal map table to map signal numbers from one protocol to
another based on the signal name and the data class. This provides constant signal
lookup. In addition, signals that don’t have compatible data classes are not added to
the signal map.

Dynamic forwarding support has not been added to the UML Services Library.
Instead a set of classes has been created that can be used in any model that requires
this level of forwarding. To use dynamic forwarding please refer to the Dynamic
102 Chapter 7 - Migration

Forwarding model example in the Examples. The example model contains the
forwarding classes, or adaptors, and sample usage of these classes. In general
capsules requiring dynamic forwarding will have to do the following:

1 For each port pair where forwarding will be used, an adaptor object is created to
initialize and encapsulate the signal map. If you have forwarding from port A to B
and A to C you will need 2 adaptor objects.

2 Each adaptor is initialized at run-time with the in and out protocols. This will
create the signal map.

3 When forwarding is required in a transition, pass the message to be forwarded to
the adaptor.

The example model that contains the forwarding classes (adaptors and signal maps)
can be found in:

$ROSERT_HOME/Examples/Models/C++/DynamicForwarding

RTPortRef Operations

The RTPortRef class is no longer part of the UML C++ Services Library. Operations
that used to be available on this class have been moved to the RTProtocol class. This is
a summary of the operations that have changed going from the RTPortRef to the
RTProtocol class:

RTEndPort ** RTPortRef::incarnations()

This was last present in ObjecTime Developer 5.2. You will have to use a port
(RTProtocol) paired with an index wherever a pointer to RTEndPort appeared
previously. For example, before you would have:

RTEndPort ** ports = portref.incarnations();

for(int i = 0; i < portref.size(); i++)

(*ports)[i]->send(ack);

This has to be converted to:

for(int i = 0; i < portref.size(); i++)

portref.ack().sendAt(i);

The valid indices are from 0 to (port.size()-1), inclusive.
C++ Language Migration 103

RTEndPort ** RTPortRef::incarnationsTo()

There is no direct replacement for this. Users will have to base their loop on the port
index rather than an index into the returned array of pointers. Within that loop you
will want to use

int RTProtocol::isIndexTo(int, RTActor *) const

to discover the replication indices which correspond to incarnations that would
previously have been included in the array. This new interface is more efficient
because it avoids the need to allocate and release a block of memory.

RTEndPort * RTPortRef::incarnationTo():

This operation is replaced by RTProtocol::indexTo(). For example, here is a common
use of incarnationTo and how it can be converted to use indexTo:

RTActorId aid = frame.incarnate(role1);

RTEndPort * port = (RTEndPort *)0;

if(aid.isValid()) {

 port = replicatedportref.incarnationTo(aid);

 if(port != (RTEndPort *)0)

 port->send(Signal);

}

Is replaced with RTProtocol::indexTo(),

RTActorId aid = frame.incarnate(role1);

int port_index;

if(aid.isValid()) {

 port_index = replicatedportref.indexTo(aid);

 if(port_index != -1)

 port.Signal().sendAt(port_index);

}

RTTimespec Pameters

ObjecTime Developer (OTD) models which used the RTTimespec constructor with
only one parameter, as in the following code:

timer.informIn(RTTimespec(2));
104 Chapter 7 - Migration

will result in a compile error after conversion of the model to Rose RealTime. The
compile error will appear something like:

..\rtg\Driver.cpp(67) : error C2440: 'type cast' : cannot convert from
'const int' to 'struct RTTimespec'

No constructor could take the source type, or constructor overload
resolution was ambiguous.

The reason is that in OTD, the RTTimespec constructor included default arguments,
that is, RTTimespec (long=0, long=0). The default constructor values are not
supported on RTTimespec in Rose RealTime. Any code that made use of the default
arguments needs to be changed to supply both constructor arguments. For example:

RTTimespec(2);

must be changed to:

RTTimespec(2, 0);

RTSignalNames

Some users have accessed this private structure to find signal names. Support for
accessing this structure was never supported and has been removed from the UML
Services Library. If you have referenced this structure look at replacing this
functionality with the RTMessage::getSignalName() operation which returns the
name of the signal received in the current message.

Macros

The following pre-defined macros will continue to be backards compatible.

SEND_PTR(ptr)

RECEIVE_PTR(type)

SEND_SCALAR(value)

RECEIVE_SCALAR(type)

SEND_EXT(value)

RECEIVE_EXT(type)
C++ Language Migration 105

External Layer Service (ELS)

In version 6.0 of the C++ Services Library the ELS was included in the pre-compiled
C++ UML Services Libraries. However source code was not shipped. In the current
release of Rose RealTime the ELS is not provided for use, nor supported with the
release. Please refer to the IPC Application Note and Example for information on how
the ELS can be replaced. The External Layer has been replaced by Rational Connexis.
Further information on Add-ins, including Connexis, can be found in the online Help
and on the Rose RealTime product web site:

http://www.rational.com/products

Code Generation

To support scalable build environments the C++ Language Add-in now supports the
ability to break systems into a number of independently buildable components. You
can now use components to build libraries, executables, and model external libraries.
See Components on page 106. To support different component types and provide an
extensible interface for components several Model Properties have been added to
components.

Components

Components are collections of references to model elements that are used to build
something. In Rose RealTime, there are three kinds of components:

� C++ Executable: produces an executable.

� C++ Library: produces a library file containing the object files for the classes
referenced by the component.

� C++ External Library: does not actually produce a build output, but represents a
pre-built and packaged component within a model.

The build options for each component type are stored in a set of model properties. In
Rose RealTime 6.0, a component’s build options were hard-coded attributes of the
component. See the Rational Rose RealTime C++ Reference for more information about
how to use the new component types.
106 Chapter 7 - Migration

Directory structure

The code generation directory structure has changed, it is now:

<component name>

<build>

capsule1.exe

capsule1.obj

...

<src>

Makefile

capsule1.dep

capsule2.dep

capsule1.cpp

capsule1.h

...

Parameters available in transition code

Within each transition code segment there are two new parameters that are available.

Note: The msg variable is still available in transition code and capsule operations.

rtdata: This is the equivalent of the RTDATA macro. It is the data sent with the
message cast to the data type specified in the protocol for the incoming signal. The
rtdata parameter is cast to the lowest common superclass of the possible data classes
for the given code segment.

int level = *rtdata;

Note: Models which used RTDATA do not have to change. RTDATA and rtdata are
equivalent.

If a transition is triggered by multiple signals with different data classes, you will
have to cast msg->data yourself.

int level = *(const int *)msg->data;

rtport: This is a pointer to the port cast to the appropriate protocol type, on which the
message that triggered the transition was received. You can use this parameter to
reply to messages. See Message Reply on page 98.
C++ Language Migration 107

Port cardinality cannot be unspecified

Because there is no way to resolve unspecified cardinalities between libraries, capsule
role replication cardinalities cannot be left unspecified as ‘*’. You should use constants
to specify replication values.

Makefile overrides changes

Previously the makefile override property was set to a file name which contained a
makefile fragment which was to be included into the main makefiles with an include
statement. Now the makefile overrides property is added, as is, to the makefile. That
means that you don’t have to create a separate file outside of the toolset to contain any
additional makefile commands.

Previous models which contain makefile overrides are converted by adding the
include statement to the property.

Model Properties

Component build settings are now stored in model properties. This allows easy
extensibility and sharing of build options. Although the actual build properties have
not changed much, they have been re-arranged. Build options now exist for each
component type and for generic generation and compilation settings.

Component type properties: C++ Executable, C++ Library, C++ External Library.

Generic build settings: C++ Generation, C++ Compilation

See the Rational Rose RealTime C++ Reference for descriptions of the component model
properties.

Advanced property editors

A number of properties introduced in this release require more than simply a true or
false value. Instead some properties represent a set of parameters. To assist
configuring properties that have several parameters that can be set, graphical editors
have been added to property sheets to allow editing of these complex properties. If a
property has an advanced property editor you will notice an Edit... or Select... button
beside the property. Press the button to access the extended property editor window.
108 Chapter 7 - Migration

8Integration Notes
Contents

This chapter is organized as follows:

� Overview on page 109
� Configuration Management (CM) Tools Integration on page 110
� Requirements Management Tools Integration on page 111
� Unit Testing Tools Integration on page 112
� Microsoft Development Environment on page 113
� Integration with Rational Robot on page 113
� Naming Directories on page 113

Overview

Rational Rose RealTime can coexist on the same workstation with any Rational or
ObjecTime product. In addition Rational Rose RealTime is shipped with
"out-of-the-box" integrations with several popular development tools. It will simplify
tool-chain complexity by providing teams with seamless integration to leading
real-time operating systems, compilers, symbolic debuggers, and other
market-leading Rational Software products. For a list of supported platform
"line-ups", see Referenced Host Configurations on page 14.
109

Configuration Management (CM) Tools Integration

The following CM tools are supported with integration for Rose RealTime. For more
information on integrating these tools, see the Guide to Team Development.

ClearCase on a UNIX Server and Clients on both NT and UNIX

You can access a ClearCase server on UNIX with Rose RealTime clients running on
both NT and UNIX workstations. For more information on integrating these tools, see
the Guide to Team Development.

Migrating from Rational Rose and ObjecTime Developer

In order to migrate models into Rose RealTime from either Rational Rose or
ObjecTime Developer where models were previously stored in a configuration
management system, the model must be brought into the Rational Rose or the
ObjecTime Developer tool and written to a single file. Please refer to Migration on
page 73.

When importing a model from Rose into Rose RealTime, you are encouraged to
resolve any model errors in Rose (Tools > Check Model) before trying to import the
model. It is important to fix unresolved references. In general, Rose is not concerned
with unresolved references; however, they are very important in Rose RealTime as
they can result in incomplete code generation and compilation errors.

In order to export the ObjecTime model in a format that is readable by Rose RealTime,
a patch must be applied to the 5.2 or 5.2.1 toolset to format the file in a single linear
form file with all the required information. The patch is available from Rational
Customer Support for both the 5.2 and 5.2.1 product release only. Please contact the
Rational Customer Support group for further information.

Tools Version

Rational ClearCase (Base and UCM) 3.2.1 (requires patch 10), 4.0, 4.1

Microsoft Visual SourceSafe (NT, 2000 and
XP Pro only)

5.0 and 6.0

RCS (UNIX only) 5.7

SCCS (UNIX only) 5.6 on Solaris
76.1.1.1 on HPUX

PVCS Integration 6.5
110 Chapter 8 - Integration Notes

After the model is imported into Rose RealTime, it can then be stored in the
configuration management system.

Note: RRT_Export patches are available on the Rational web site.

Requirements Management Tools Integration

The following tools are supported for integration with Rose RealTime.

Rational SoDA for Word

SoDA and Rose RealTime will work together out of the box if installed from the Suite.
Rose RealTime offers the same level of SoDA integration as Rose. For information on
how SoDA and Rose RealTime integrate, see the Rose integration section in the SoDA
documentation.

Please refer to the product support page at

http://www.rational.com/support

for the latest updates on SoDA integration.

Note: In order to generate a report using SoDA, the Rose RealTime model must have
been saved at least once. If the Rose RealTime model has never been saved, it will be
untitled. An untitled model will cause SoDA to generate errors.

Rational RequisitePro

RequisitePro and Rose RealTime will work together out of the box if installed from the
Suite. Rose RealTime offers the same level of RequisitePro integration as Rose. For
information on how RequisitePro and Rose RealTime integrate, see the Rose
integration section in the RequisitePro documentation.

Note: The Rose RealTime Requisite Pro integration does not support the association
of a Rose RealTime package with a RequisitePro project. Use Case and Model
association is supported.

Tools Version

Rational SoDA for Word (NT only) 2000.02.10 and later

Rational RequisitePro 2000.02.10 and later
Requirements Management Tools Integration 111

http://www.rational.com/products/rosert

Unit Testing Tools Integration

The following tools are supported for integration with Rose RealTime.

Rational Purify

Once a component is built and a component instance has been created, the instance
can then be run and observed. Purify detects errors in your own code as well as the
components your software uses. For information, see the Running and Debugging
section in the Rational Rose RealTime Toolset Guide.

Adding options to Purify on UNIX

The toolset looks for an installation of Purify by checking for an environment variable
named PURE_HOME. This environment variable is not set up by installing Rational
Purify.

You must set this environment variable manually. The variable need not point to a
directory containing Purify, nor is it required to point to a directory. The variable may
contain anything, but must be set.

Occasionally, you may need to add options during a Purify’d build on UNIX. For
example, Purify on HP needs to know the name of the linker or collector used by
Gnu g++.

Options can be added by changing PURIFY_OPTIONS in the
CompilationMakeInsert field of the executable component.

The default value of PURIFY_OPTIONS (generated in the Makefile by the code
generator) is:

PURIFY_OPTIONS = -log-file=$(BUILD_TARGET).txt -windows=no

To accommodate using g++ on HP, you can add the following:

PURIFY_OPTIONS = -log-file=$(BUILD_TARGET).txt -windows=no
-collector=/usr/lib/gcc-ld -g++=yes

Where the path of to the collector, gcc-ld in most cases, should be the path that is
specific to your environment.

Tools Version

Purify for UNIX and Windows NT 2001.03.00 and later
112 Chapter 8 - Integration Notes

For proper integration of Purify when running the Purify’d executable from the
toolset, you should preserve the default options.

For an explanation of Purify options, see Running a component instance with Purify in
the Toolset Guide.

Microsoft Development Environment

We recommend that you install the latest service packs available from Microsoft for
Visual Studio or Visual C++.

Integration with Rational Robot

Installing the 2002.05.00 release of Rational Rose RealTime will interfere with the
operation of the 6.1 release of Rational Robot.

We recommend that you upgrade to the 2002.05.00 release of Rational Robot.

Naming Directories

Avoid using spaces in directory names if you plan to integrate with Tornado, OSE or
VRTX embedded operating systems. For additional information, see the Technical
Notes in the Technical Support section on our web site at:

http://www.rational.com/support
Microsoft Development Environment 113

http://www.rational.com/products/rosert

9Starting Rational Rose
RealTime
Contents

This chapter is organized as follows:

� Starting Rose RealTime on Windows on page 115
� Starting Rose RealTime on UNIX on page 115
� Rose RealTime for UNIX and the X Window System on page 116
� Automating Rose RealTime on page 119
� Command Line Options on page 119

Starting Rose RealTime on Windows

To start Rose RealTime on Windows, on the Start menu, choose Programs > Rational Rose
RealTime.

Note: You must first install license keys before running Rational Rose RealTime.

Temporary license keys can be found in the product package. Instructions on how to
request permanent license keys, see Installing License Keys on page 61.

For additional information on configuring you evnironment variables, see Configuring
Your Environment on page 31.

Starting Rose RealTime on UNIX

You can start Rose RealTime from a UNIX command shell prompt by typing:

RoseRT

You can also use the following to start Rose RealTime on Unix:

RoseRT -recreate_registry

Setting this option creates a default registry.
115

Start-up options for UNIX

-regedit

Edits the internal registry that maintains mappings of directory names and other
information required by the Rose RealTime tool. This registry mimicks the function of
the WindowsNT registry, except that on UNIX the registry is maintained directly by
Rose RealTime.

-startuplicense

Creates a startup license.

-recreate_registry

Creates a default registry, throwing away any changes made through the -regedit
option.

-q | -quiet

Limits the output of the tool on startup.

-v | -verbose

Provides verbose output on startup.

-cleanup

Kills all running applications using MainWin and then cleans up the x-server
resources.

You should be very careful with this command as it will kill all MainWin applications
running under your Id.

Note: If your last Rose RealTime session ended unexpectedly (by crashing), always
use this option.

Rose RealTime for UNIX and the X Window System

When running on UNIX platforms, Rose RealTime relies on the X Window System to
provide basic user interface services. Rose RealTime supports the most common
versions of the X Window System: Version 11 Release 5 and Version 11 Release 6.

The following topics provide background information on how Rose RealTime
interacts with the X Window System and highlights any specific requirements.
116 Chapter 9 - Starting Rational Rose RealTime

X clients

The X Window System employs a network-enabled client-server architecture. Rose
RealTime is a client application within this architecture. X clients interact with the
user via an X server which may or may not be running on the same system as the
client application. If the server and client are not running on the same system, the X
client is said to be using a remote display.

X servers

The X server is a program that controls interaction between the user and an X client
application via the keyboard, mouse and graphical display screen. The X server runs
locally on the system where the display is attached.

On UNIX workstations the X server is normally provided by the system vendor. If
you want to run Rose RealTime on a UNIX workstation and remotely display it on a
Windows workstation, a third-party X server (such as, Hummingbird Exceed) is
required. Rose RealTime has been qualified to be used with Hummingbird Exceed 6.1.

X window managers

The X window manager is a special X application that facilitates running multiple X
clients within separate windows on a single X server. The window manager provides
mechanisms for resizing and moving windows and designating which X client has
input focus at a given time.

Most X environments include a window manager. Rose RealTime supports most
commonly used window managers including:

� Common Desktop Environment (CDE)

� Motif (MWM)

� Exceed native window manager

When available, the CDE window manager is recommended.
Rose RealTime for UNIX and the X Window System 117

Input focus (active window) policy

The X window manager often allows the user to specify a policy for delegating input
focus. This window is also referred to as the active window. There are two common
settings:

� Click to focus. In this mode, the user must click on a window with the mouse to
give it input focus. This is most consistent with the Windows focus policy and is
the recommended configuration.

� Point to focus. In this mode, the user points to a window with the mouse to give it
input focus.

Window order policy

The user can also often specify with the window manager whether the active window
must be the top-most window displayed. Under CDE this option is called "Raise
Window When Made Active". This option should be enabled for consistency with the
Windows user interface.

Notes

� CDE's window manager option Allow Primary Windows On Top should also be
enabled. Depending on which window manager you use, add one of the following
to your .Xdefaults file:

❑ OpenWindows.KeepTransientsAbove: True

❑ Dtwm*secondariesOnTop: True

❑ 4dwm*secondariesOnTop: True

then run the following:

 xrdb ~/.Xdefaults

Setting this Xresource to True in each user's .Xdefaults file ensures that dialogs are
always stacked above their associated primary windows.

� Exceed’s Native Window Manager does not display a button for Rose RealTime in
the Windows Taskbar. For this reason it is recommended that a remote CDE
window manager be used instead of Exceed's native window manager. If you
prefer to use Exceed's native window manager, you can use the ALT+TAB shortcut
key to switch from another application to Rose RealTime.
118 Chapter 9 - Starting Rational Rose RealTime

Automating Rose RealTime

Rose RealTime can be programmed to automatically perform a wide variety of tasks
through the Rose RealTime Extensibility Interface (RRTEI). The RRTEI is accessible
through Basic scripts and from COM automation clients. This interface can be used to
create add-ins and scripts. Rose RealTime also supports the Rose Extensibility
Interface (REI) for compatibility with Rose. The complete documentation for the
RRTEI is included in the Rose RealTime Online Help System.

Running Rose RealTime as an automation server consumes a license when the
application is made visible.

Command Line Options

The following are command line options for Rose RealTime on UNIX:

<filename>

A user option to load a model on startup.

-nologo

A user option to suppress the logo screen on startup.

-emulateREI

A user option to enable the Rose Extensibility Interface (REI). Overrides the settings in
tools/options.

Note: The Rose RealTime Extensibility Interface (RRTEI) is still available.

-noEmulateREI

A user option to disable the Rose Extensibility Interface (REI). Overrides the settings
in tools/options.

Note: The Rose RealTime Extensibility Interface (RRTEI) is still available.

-register or -regserver

Enters the applications registry settings into the registry.
Automating Rose RealTime 119

-unregister or -unregserver

Removes the applications registry settings from the registry.

-runScriptAndQuit

Use in conjunction with a compiled script passed as parameter. When the toolset is
launched with this command line option, the toolset starts hidden, runs the script and
quits. All of this is done without consuming a license. This is particularly useful to
allow batch mode builds.
120 Chapter 9 - Starting Rational Rose RealTime

10Add-Ins
Contents

This chapter is organized as follows:

� Web Publisher on page 121
� Model Integrator on page 123
� Rose C++ Analyzer on page 124

Web Publisher

Web Publisher enables you to create a web-based (HTML) representation of a Rose
RealTime model, which others can view using a standard browser such as Netscape
Navigator or Microsoft’s Internet Explorer.

Unlike sequential formats, such as paper or text files, Web Publisher lets you
non-sequentially browse, search, and navigate your design. You can publish
successive iterations of an evolving model for review or for sharing information.
Another potential use is to publish documentation for a frozen API or framework.

Web Publisher recreates model elements, including diagrams, classes, packages,
relationships, attributes, and operations. Once published, hypertext links enable you
to traverse the model much as you would in Rose RealTime.

You can control what Web Publisher includes by setting a variety of options. For
example, you can select which packages of a model are published, the amount of
detail to include, the notation to use, and the graphics format for diagrams. The View
feature lets you launch your default browser and view the published model directly
from Web Publisher.

Suggested Workflow

Follow these steps to generate the files needed to create a web-based version of a Rose
RealTime model:

1 Open the model you want to publish.

2 Select Tools > Web Publisher.
121

3 From the Web Publisher dialog, select the publishing options you need.

Note: The dialog displays the options that were selected the last time a model was
published.

4 Click Publish when you are ready to publish the model.

5 Use View to open your default web browser and view the published model.
Remember that in the future you can open the published model in the browser by
opening the root file name you specified on the Web Publisher dialog.

6 Click Close to close the dialog.

Limitations

The following browsers are supported:

� Microsoft's Internet Explorer 4.0 or better. (www.microsoft.com)

� Netscape's Communicator 4.06 or better. (http://www.netscape.com/download)
If you want to publish the images in PNG format you need to add PNG support to
Netscape Communicator. PNG Live
(http://codelab.siegelgale.com/solutions/pnglive2.html) is a plug-in that
provides PNG support for Netscape Communicator. Netscape Communicator 4.5
or better has built-in support for PNG and therefore does not require any special
plug-in to view web pages created by Web Publisher.
(www.netscape.com/download)

� Only eight colors are directly supported in published diagrams. Other colors are
obtained by dithering. If you want to avoid dithering, set up Rose RealTime to use
line and fill colors that are among the eight available.

The following table includes the eight available colors and their RGB values.

Red 255 0 0

Green 0 255 0

Blue 0 0 255

White 255 255 255

Black 0 0 0

Yellow 255 255 0

Magenta 255 0 255

Light Blue 0 255 255
122 Chapter 10 - Add-Ins

� In published diagrams, you can normally click on a model element to go to that
model element's specification information. This does not work for some model
elements. These include aggregation relationships on the class diagram, transitions
on the state diagram, association roles on the collaboration diagram, and
connections on the deployment diagram.

For more information consult the Web Publisher online help.

Model Integrator

The Rose RealTime Model Integrator add-in allows you to compare up to seven
units/models - called contributors - to a common root model/units - called the base
contributor.

The add-in exists as a separate executable that can be launched stand-alone or from
the toolset using Tools > Model Integrator. It is launched by the toolset when using the
Source Control > Show Differences.

It is capable of acting as a ClearCase Type Manager, meaning that ClearCase uses
Model Integrator for showing differences and merging Rose RealTime units/models.

Suggested Workflow

Merging two branches of a model

Assuming a base model B and two models C1 and C2, having B as their common
historical ancestor.

From Rose RealTime, select Tools > Model Integrator to launch Model Integrator

From Model Integrator

1 Select File > Contributors to open the Contributors dialog.

2 First enter the base contributor B, then the two other contributors C1 and C2.

3 Click Merge.

For each contributor, Model Integrator loads the first level of subunits and brings
up the subunits dialog.

4 Press OK to load all subunits.

Model Integrator now shows the merged model potential conflicts.

5 Resolve each conflict by selecting the contributor to use for that conflict. To see
model differences, select Options > Compare Model.
Model Integrator 123

6 When all conflicts are resolved, select File > Save As and choose a file name.

7 In the subunits dialog that follows, click OK.

Comparing local unit with the one in source control database

From Rose RealTime, select the unit to compare in the browser. Open the context
menu and select Source Control > Show Differences.

For more information consult the Model Integrator online help.

Rose C++ Analyzer

The Rose C++ Analyzer is an executable bundled with Rational Rose 2000’s Rose C++
add-in. Used in conjunction with the Tools > Import menu command, it provides a way
to import legacy C++ systems into Rose RealTime.

Rose RealTime only supports the initial reverse engineering since the code is
embedded within its model. Full target observability from the toolset is supported,
thus eliminating the need to update code outside the toolset environment.

Note: The online help for the Rose C++ Analyzer contains Rose 2000 specific
information that may not be applicable to Rose RealTime. We suggest you limit your
use of the add-in to the Suggested Workflow described below.

Suggested Workflow

From Rose RealTime, select Tools > C++ Analyzer to launch Analyzer.

From Rose C++ Analyzer

1 Create Project.

2 Set compiler settings.

3 Add Files.

4 Analyze.

5 Code Cycle.

6 Export to Rose.

From Rose RealTime

1 Select File > Open to load the Rose Model.

2 Select Tools > Import Code to import code from source files.
124 Chapter 10 - Add-Ins

Notes

� When you create a Rose C++ Analyzer project for the first time, the following
message prompts you to define the $DATA/Rose pathmap symbol:

Click OK to bring up the following dialog:

In the Actual Path field, enter an existing path where the Rose C++ Analyzer will
store information about analyzed source files. Click Add and then OK.

� Windows NT users: You may not get this dialog if Rational Rose 2000 is already
installed on your machine. In this case, the Import Code window appears.

� UNIX users: The default pathmap symbol $DATA/ must be replaced with $DATA.
Rose C++ Analyzer 125

Limitations
� C++ capabilities are limited by Rose RealTime’s code generator ’s own limitation,

for example, C++ templates, namespaces

� Round-trip engineering is not supported (and not needed).

� Pathmap functionality is not supported (and not needed).

For more information consult the Rose C++ Analyzer online help.
126 Chapter 10 - Add-Ins

11Uninstalling Rational
Rose RealTime
Contents

This chapter is organized as follows:

� Windows on page 127
� UNIX on page 127

Windows

To uninstall Rose RealTime from a Windows machine:

1 Click Start > Settings > Control Panel.

2 Double-click Add/Remove Programs.

3 Select Rational Rose RealTime and click Change/Remove.

Follow the instructions on your screen to remove Rose RealTime.

Note: We recommend that you also remove the Rose RealTime directories and
registry settings from your system after uninstalling Rational Rose RealTime. These
directories are:

HKEY_CURRENT_USER\Software\Rational Software\Rose RealTime

HKEY_LOCAL_MACHINE\Software\Rational Software\Rose RealTime

UNIX

To uninstall Rose RealTime from a UNIX machine:

1 Save any user data files in another location before removing the installation
directory.

2 Remove the installation directory and all of its contents.
127

Index
A
accessing

online help 8
activation process

licenses 55
active window policy (X window system) 118
adding

printer on UNIX,printing
adding a printer on UNIX 18

add-ins
Model Integrator 123
Rose C++ Analyzer 124

administering Licenses 22
administering licenses 23
administration commands

licensing on Unix 56
Administrative Installation 28
Administrative Installation Tasks 24
Administrator Installation Tasks 24
Advanced property editors 108
Advantages of backwards compatibility 91
API Changes 96
asynchronous sends 97
automating

Rose RealTime 119
Automating Rose RealTime 119

B
backwards compatibility

advantages 91
disadvantages 91

Backwards Compatibility Mode 90
bin (directory) 8
Building a model in backwards compatibility

mode 92

C
C language migration 87
C++ Language Migration 90
C++ language migration 90
C++ UML Services Library 94
CD-ROM

mounting instructions 40
unmount 43

-cleanup 116
ClearCase integration 83
ClearCase on a UNIX Server 110
Client Installation 24
Client Installation from the Network 30
Client Installation Tasks 22
Code browser 74
Code editors 74
Code Generation 106
Command Line Options 119
command line options 119
commands

license manager 52
configuration management tools integration 110
configuration requirements

UNIX 13
Windows 2000 12
Windows XP Pro 12
WindowsNT 11

configurations
host 14

configuring
environment 31

Configuring a Unix Workstation to Point to a
FlexLm Server 54

contacting Rational technical publications xiii
contacting Rational Technical Support 4
contacting Rational technical support xiv
convert an existing Rose RealTime model 87
converting a C++ model to C 87
Index 129

creating
Executables for Hosts without Toolset

Support 17
creating executables 17

D
Defer 99
documentation feedback xiii
Dynamic Forwarding 102

E
Emergency Keys 47
-emulateREI 119
Enable BackwardsCompatible protocol

property 92
environment configuration 31
environment variables

configuring for Windows 31
exinstal 53
External Layer Service (ELS 106

F
file

license 51
File Format Changes 82
file format changes 82
Fixing unresolved references 76
fixing unresolved references 76
FLEXIm

application program 54
FlexLm

configuring for Unix 54
Floating License 46
floating license key for Unix 65
Forwarding 101

G
generating

executable without a common file system 17
generating executables 17
getting help 4

H
Hhupd.exe 9
host configurations 14
hosts

creating executables without Toolset
support 17

how to get help 4

I
Imgrd 53
import an ObjecTime Developer for C model 88
Importation Log Messages 76
importing

log messages when migrating 76
Rational Rose generated code 78

Input focus (active window) policy 118
input focus (active window) policy 118
install program

run 41
installation

Rational Software Setup program 24
Installation Guide Updates 2
installation instructions

Unix 38
installation types 26
installing

compiler environment setup 33
floating license key for Unix 65
instructions 21
license key 64, 68
license keys 61
on Unix 37
130 Index

permanent license on Unix 66
permanent license on Windows 61
Rational Rose RealTime on Windows 23
startup license on Unix 65
startup license on Windows 61
testing your environment 32
upgrade information 23
upgrade information for Unix 37

installing licenses 23
integration

Microsoft Development Environment 113
naming directories 113
Rational Purify 112
Rational RequisitePro 111
Rational Robot 113
Rational SoDA for Word 111

integration notes 109

K
key file for licenses 54
keys

emergency 47

L
Language Add-in Changes 84
Layout tools 74
Library browser 80
license

floating key for Unix 65
Node-Locked 46

license activation process 55
license daemon 51

start 52
license file 51
license file format 57
license files 57
license key

installing 64
License Key File 54
license key file 50, 54
license keys

installing 61

License Manager 51
license manager 51

verify 52
license manager commands 52
License Manager Daemon 53
license manager daemon 53
license server, upgrading 23
license_check 53
license_setup 50
licenses

Floating 46
key file 54
node-locked 46
on Unix 55
Permanent 46
Temporary 46
types 46

licensing
integration with Rational Suites 68
license usage order 23
troubleshooting 69

licensing on Unix 55
administration commands 56

line styles 74
LKAD 23
lmdiag 53
lmdown 53
lmgrd 51, 53, 55

running from command prompt 55
lmhostid 53
lmread 53
lmstat 53
log messages 76

M
Macros 105
Mainsoft 18
MainWin 18
Makefile overrides changes 108
Message Reply 98
migrating

building 75
C language migration 87
Index 131

C++ language migration 90
code generation 75
converting a C++ model to C 87
customized CM scripts 83
file format changes 82
from ObjecTime Developer 5.2 and 5.2.1 79
from Rational Rose 73
from Rational Rose and ObjecTime

Developer 110
from Rose RealTime 6.0, 6.0.1, 6.0.2, 6.1 82
importation log messages 76
importing Rational Rose generated code 78
limitations and restrictions 77
new modelling language elements 75
ObjecTime Developer for C migration 88
opening models from Rational Rose 76
RRTEI changes 85
running 75
source control migration 82
terminology changes 79
user interface differences 73

Migrating customized CM scripts 83
migration 94

language add-in changes 84
running two different releases of Rose

RealTime 84
workspace files 84

Model browser 80
Model Integrator add-in 123
Model Properties 108
modelling language elements 75
models

opening from Rational Rose 76
mounting the CD-ROM 40
Multiple model browsers 74

N
Node-Locked Licenses 46
-noEmulateREI 119
-nologo 119

O
ObjecTime Developer for C migration 88
opening models from Rational Rose 76
order policy for windows 118
Ordering Information 7

P
Parameters available in transition code 107
passivation 80
permanent license key

receiving 50
Permanent Licenses 46
platforms (see referenced configurations) 11, 14
Port cardinality 108
Port Indexes 100
printers

adding on Unix 18
Project files 80
PSCRIPT dirver 18
Purge 99
Purify on UNIX 112

Q
-q 116
-quiet 116

R
rational

vendor daemon 51
Rational SoDA for Word 111
Rational Software Setup program 24
Rational technical publications

contacting xiii
Rational technical support

contacting xiv
Rational Web site 7
rational_dir 36
read

license file 53
Recall 99
132 Index

-recreate_registry 115, 116
referenced configuation requirements

Windows UNIX 13
referenced configuration requirements

Windows 2000 12
Windows NT 11
Windows XP Pro 12

referenced configurations 11, 12
referenced configurations and targets 15
referenced host configurations 14
-regedit 116
-register 119
-regserver 119
replication values 93
requesting licenses 23
requirements 13

referenced configuration 11
referenced configurations 12, 13
Toolchain 13

Requirements Management Tools
Integration 111

requirements Management tools integration 111
ROOM_InSignal 89
ROOM_PortSend 89
ROOM_Signal 89
Rose C++ Analyzer add-in 124
Rose RealTime for Unix 116
RoseRT -recreate_registry 115
ROSERT_HOME 8
RRTEI Changes 85
RRTEI changes 85
rs_install 41

license_check 53
license_setup 50

RTPortRef operations 103
RTSignalNames 105
RTTimespec Pameters 104
run

install program 41
-runScriptAndQuit 120

S
send

synchronous 97
SEND_SCALAR 92
sends

asynchronous 97
Source Control Migration 82
start

license daemon 52
new vendor daemon 53

start script
single server 52

starting
command line options 119

starting Rose RealTime
Unix 115
Unix startup options 116
Windows 115

Start-up options for UNIX 116
-startuplicense 116
Static Forwarding Pattern 101
status

feature usage 53
license daemons 53

synchronous sends 97

T
targets 15
Technical Support

contacting 4
Temporary License 46
Terminology mappings (from ROOM to

UML) 79
Timing service 90
To 65
Toolchain 13
Toolchain requirements 13

Compiler 13
compiler 13
Help Viewer 13
Index 133

RealTime Operating System 14
real-time Operating System 14

Toolchanin requirements 13
Type safety explained 95

U
Uninstalling 127
uninstalling

Rational Rose RealTime on Unix 127
Rational Rose RealTime on Windows 127

unit testing tools integration 112
UNIX

adding printer on 18
after you install 42
configuration requirements 13

Unix
adding a printer 18

UNIX and the X Window System 116
unmount

CD-ROM 43
-unregister 120
-unregserver 120
unresolved references 76
unsafe sends 93
upgrade Information 23
upgrading

license server 23
User Interface Differences 80

V
-v 116
Vendor Daemon 53
Vendor daemon

licenses 53
vendor daemon 51, 53
-verbose 116
verify

license manager operation 52

W
web site

Rational 7
what’s new 3
window order policy 118
window order policy (X window system) 118
Windows

Toolchain requirements 13
Windows 2000 12
Windows NT

configuration requirements 11
Windows XP Pro

configuration requirements 12
Workspace browser 80
Workspace Files 84
workspace files 84

X
X clients 117
X servers 117
X window managers 117
X Window system 116, 117, 118
134 Index

	Installation Guide
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction
	Contents
	Welcome to Rational Rose RealTime
	Release Notes
	Installation Guide Updates

	Overview of Rose RealTime Capabilities
	What’s New?
	How to Get Help
	Contacting Rational Technical Support Through the Help Menu
	Contacting Rational Technical Support by Email or Telephone
	License Support Contact Information
	Evaluation and Ordering Information
	Rational Web Site

	Directory Contents
	Accessing the Online Help System

	Referenced Configurations and Toolchain Requirements
	Contents
	Referenced Configurations
	Requirements for Windows NT
	Requirements for Windows 2000
	Requirements for Windows XP Pro
	Requirements for UNIX

	Toolchain Requirements
	Help Viewer (Windows Only)
	Compiler
	Real-time Operating System

	Referenced Host Configurations
	Creating Executables for Hosts without Toolset Support
	Generating an Executable Without a Common File System

	Adding a Printer on UNIX

	Installing Rational Rose RealTime on Windows
	Contents
	Before You Install
	Client Installation Tasks
	Administering Licenses
	Preparing for a Rational Rose RealTime Installation

	Upgrade Information
	Administrative Installation Tasks

	Using the Rational Software Setup Program
	Performing a Client Installation
	Performing an Administrative Installation
	Performing a Client Installation from the Network
	After You Install
	Updating Batch Files
	Configuring Your Environment
	Installing Professional Edition Software

	Testing your Environment

	Installing Rational Rose RealTime on UNIX
	Contents
	Before You Install
	Installing in Secure Environments
	Installing Multiple OS Versions of Rational Suite DevelopmentStudio RealTime (UNIX)
	Stopping and Restarting an Installation

	Upgrade Information
	Upgrading to New Version Only (Uninstalling Earlier Version)
	Upgrading to 6.4 While Maintaining an Earlier Version

	Installation Instructions
	After You Install
	Source to Setup Script
	Set Connexis Variable
	Unmount the CD-ROM Drive
	Install the Professional Edition Software
	Starting Rational Rose RealTime (UNIX)

	Understanding Rose RealTime Licenses
	Contents
	How Licenses Work
	Types of Licenses
	Node-Locked Licenses
	Floating Licenses
	Permanent Licenses and Temporary License Keys
	Emergency and Evaluation Keys
	Suite Licenses and Point Product Licenses
	Returning License Keys
	Upgrading Licenses

	Requesting License Keys
	Receiving and Importing License Keys
	Requesting License Keys by Fax
	Receiving Permanent License Keys

	Converting a Temporary License to a Permanent License
	Licenses for Windows
	The License Manager
	UNIX

	License Manager Commands
	Additional Licensing Commands
	License Manager Daemon (lmgrd)
	Vendor Daemon
	License Key File
	Application Program

	Configuring a UNIX Workstation to Point to a FlEXlm Server
	License Activation Process

	Licensing on UNIX
	Running the lmgrd from a Command Prompt
	Example
	Administration Commands

	The License File
	Format

	UNIX Licenses
	Start-up or Emergency keys
	Node-Locked keys
	Floating keys
	TLA

	Frequently Asked Questions

	Installing License Keys
	Contents
	Before You Begin
	Installing a Startup or Permanent License on Windows
	Installing a Permanent License on Windows
	Installing the License Key
	Installing a Floating License Key on a UNIX server

	Installing a Startup or Permanent License on UNIX
	Installing a Startup License on UNIX
	Installing a Permanent License on UNIX
	Installing the License Key

	Integration With Rational Suites Licensing
	Troubleshooting
	Windows
	UNIX server
	UNIX

	Migration
	Contents
	Migrating from Rational Rose
	User Interface Differences
	New Modeling Language Elements
	Code Generation, Building, and Running
	Opening Models from Rational Rose
	List of Importation Log Messages
	Limitations and Restrictions
	Importing Rational Rose Generated Code
	Limitations and Restrictions

	Migrating from ObjecTime Developer 5.2/5.2.1
	Terminology
	User Interface Differences
	Compilation

	Migrating from Rose RealTime 6.0/6.0.1/6.0.2/6.1
	File Format Changes
	Source Control Migration
	Migrating customized CM scripts

	Language Add-in Changes
	Running Two Different Releases of Rose RealTime
	Workspace Files
	RRTEI �Changes

	C Language Migration
	Converting a C++ Model to C
	ObjecTime Developer for C Migration
	Importing models
	Converting global signals to local signals
	Timing service

	C++ Language Migration
	Backwards Compatibility Mode
	Migrating in two steps
	What does backwards compatibility do?
	Compiler will find all errors
	Building a model in backwards compatibility mode
	Full migration

	Changes
	C++ UML Services Library
	Code generation and compilation
	New classes for protocols, signals, and ports
	Type safety explained
	How has this been changed?
	API Changes Summary
	Asynchronous Sends
	Synchronous Sends
	Message Reply
	Defer, Recall, and Purge
	Port Indexes
	Discriminating in Code the Signal of a Received Message
	Forwarding
	RTPortRef Operations
	RTTimespec Pameters
	RTSignalNames
	Macros
	External Layer Service (ELS)

	Code Generation
	Components
	Directory structure
	Parameters available in transition code
	Port cardinality cannot be unspecified
	Makefile overrides changes

	Model Properties
	Advanced property editors

	Integration Notes
	Contents
	Overview
	Configuration Management (CM) Tools Integration
	ClearCase on a UNIX Server and Clients on both NT and UNIX
	Migrating from Rational Rose and ObjecTime Developer

	Requirements Management Tools Integration
	Rational SoDA for Word
	Rational RequisitePro

	Unit Testing Tools Integration
	Rational Purify
	Adding options to Purify on UNIX

	Microsoft Development Environment
	Integration with Rational Robot
	Naming Directories

	Starting Rational Rose RealTime
	Contents
	Starting Rose RealTime on Windows
	Starting Rose RealTime on UNIX
	Start-up options for UNIX

	Rose RealTime for UNIX and the X Window System
	X clients
	X servers
	X window managers
	Input focus (active window) policy
	Window order policy

	Automating Rose RealTime
	Command Line Options

	Add-Ins
	Contents
	Web Publisher
	Suggested Workflow
	Limitations

	Model Integrator
	Suggested Workflow

	Rose C++ Analyzer
	Suggested Workflow
	Limitations

	Uninstalling Rational Rose RealTime
	Contents
	Windows
	UNIX

	Index

