
Rational Software Corporation
Model Examples
RATIONAL ROSE® REALTIME

VERSION: 2002.05.00

PART NUMBER: 800-025110-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025110-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Chapter 1 Examples Introduction 7

Tips for browsing model examples 8

Referenced Configurations 11

Chapter 2 C++ Model Examples 13

CoffeeMachine 14

DynamicForwarding 14

TrafficLights 15

GameOfLife 15

IntegratingData 15

SendReceiveData 16

UserPrompt 16

ObserverPattern 17

DynamicStructurePatterns 17

IsrExample 18

SocketInterfaceExample 29

Callbacks 37
Model Examples - Rational Rose RealTime v

Chapter 3 C Model Examples 47

CardGame 47

SendReceiveData 48

Chapter 4 RRTEI Examples 49

Various SummitBasic sample scripts 50

CreateCapsule1State 50

Chapter 5 Patterns 51

Gang of Four Design Patterns 51
Mediator Pattern 52
Chain of Responsibility Pattern 56
Factory Method Pattern 57
Observer Pattern 58

Safe Dynamic Structure Pattern 60
Motivation 61
Applicability 64
Participants 64
Consequences 66
Implementation 69
Accessor Capsules 71

Index 75
vi Model Examples - Rational Rose RealTime

Chapter 1

Examples Introduction

Rational Rose RealTime comes installed with a variety of example models and sample
RRTEI scripts. You can access the sample models and scripts in one of two ways:

� Look through the documentation abstracts included in the help. When you find an
interesting sample, click on the link at the top of the abstract to view or download
sample files.

� Browse the Rose RealTime examples directory structure in the installation
directory:

$ROSERT_HOME/Examples (on Unix)
%ROSERT_HOME%/Examples (on WindowsNT)

Note: On Unix, the links at the top of the example abstracts dont’ work. You will have
to browse the directory structure to open a sample.

There are four categories of examples:

� “C++ Model Examples” on page 13

� “C Model Examples” on page 47

� “RRTEI Examples” on page 49

� “Patterns” on page 51
Model Examples - Rational Rose RealTime 7

Chapter 1 Examples Introduction
Tips for browsing model examples

The model examples have been developed using a set of conventions that allow you to
easily navigate and understand each model:

� On the main use case diagram in the Use Case View, every model contains a
textual explanation of the models domain requirements and what is demonstrated
by the model. Large models may even have use cases.

� Browse model elements documentation. The documentation is meant to explain
the responsibility of the element, and any special instructions that is relevant.
Using the documentation pane is a good way of browsing documentation.
8 Model Examples - Rational Rose RealTime

Tips for browsing model examples
� Each capsule, which was designed as the top level container for the example
model, is stereotyped as “Top Level”. Generaly, these are the capsules you should
look at first to understand the structure of the example model. The top level
capsule will usually contain sequence diagrams that should be viewed to
understand the main interactions between the contained capsule roles.

� Each model contains sequence diagrams that illustrate example communication
scenarios in the example model. A quick way of browsing sequence diagrams is
via the Browse > Sequence Diagrams menu item.
Model Examples - Rational Rose RealTime 9

Chapter 1 Examples Introduction
� Before building and running a component review the component diagram named
“Tips for building and running the model”. The diagram contains text outlining
any special requirements for building and running the model.

� Each component view will contain a package for each platform (operating system)
on which the model example was tested. Each operating system component
package will contain a set of components named using the following convention:

<component name>_<libset name>

For example:

AutoTestMarkI_x86VisualCpp60

(Meaning the AutoTest capsules for the MarkI coffee machine
compiled for the x86 processor with the Visual C++ 6.0
compiler)

MarkI_sparcgnu281

(Meaning the MarkI coffee machine capsules compiled for the
sparc processor with the gnu 2.8.1 compiler)

The example models have been tested with each configuration that exists in the
Component View.
10 Model Examples - Rational Rose RealTime

Referenced Configurations
� The deployment view contains a package for each OS and processor that was used
to test the example models. Each processor contains the component instances that
can be run on it.

Referenced Configurations

Each model example contains the components on which the example was tested. If you
want to build the example for another platform, make a copy of a component and
configure appropriatly.

Some models will require more work then others to port to other platforms, for this
reason it may be best that you are very familiar with the model example, any
supporting files, and your target environment before trying to port an example.
Model Examples - Rational Rose RealTime 11

Chapter 2

C++ Model Examples

Listed in the following table are the C++ model examples currently available. See the
C++ Reference for more information regarding use of C++ within Rose RealTime
models.

Model Description

Callbacks Provides an example of using callbacks within a Rose
RealTime application.

CoffeeMachine Models a simple coffee machine that includes a complete
set of use cases and test harnesses. This is a good
intermediate level model.

DynamicForwarding Demonstrates how to implement dynamic forwarding.

DynamicStructurePatterns Provides examples of the dynamic structure patterns.

GameOfLife Is an implemetation of the classic Game of Life invented by
the mathematician John Conway around 1970.

IntegratingData Demonstrates how any kind of well formed data class can
be integrated with Rose RealTime. Uses external libraries
and template classes.

IsrExample Provides and example of using interupt service routines
within a Rose RealTime model.

ObserverPattern Demonstrates an implementation of the Observer pattern
explained in Gang of Four Design Patterns.

SendReceiveData Provides an example of sending data between capsules.
Example includes sending by value, sending by reference,
and sending subclasses.
Model Examples - Rational Rose RealTime 13

Chapter 2 C++ Model Examples
CoffeeMachine

This is a model of a coffee machine that includes a variety of sensors and actuators,
including a money box.

This is an introductory to moderate-level model. It is a good example of requirements
capture and use cases, traceability from requirements to testing, automated testing,
inheritance and layering. It also shows how a simple model, the MarkI coffee machine,
can be scaled to include a new feature, the money box.

DynamicForwarding

This is a model that demonstrates how to implement dynamic forwarding. Dynamic
forwarding allows the maintenance of a protocol class to be decoupled from the places
where it is used to forward messages. Static forwarding requires you to look at the
signal that was received then decide how to forward, this is fine if the protocol is known
at design time. However if the protocol is not known, or you don’t want to couple your
detail level code with the protocol you can use the dynamic forwarding method
illustrated in this example model.

SocketInterfaceExample Demonstrates how to use the CustomPeerControler to
integrate sockets into a model.

TrafficLights This is a good starter model. It shows simple structure,
inheritance, and nested behavior used in the implemetation
of a simple traffic light simulation.

UserPrompt Demonstrates approaches for getting user input into a
model. Uses MFC on WindowsNT and stdin on Unix.

Model Description
14 Model Examples - Rational Rose RealTime

TrafficLights
TrafficLights

Traffic Lights captures the behavior of a set of traffic lights at an intersection in
Austria, as observed by a North American visitor. It also includes the North American
behavior for comparison.

Traffic Lights is a good starter model. It shows simple structure, inheritance, and
nested behavior.

GameOfLife

This is the classic Game of Life invented by the mathematician John Conway around
1970.

This model includes a large and variable array of capsule roles, which interact with
each other through a mediator. It also shows a class utility that controls how many
capsule roles are instantiated at runtime, and includes game observer and game
initialization capsules.

IntegratingData

This example shows how any kind of well formed data class can be integrated with
Rose RealTime, so that it can be safely sent, received, and optionaly observed in a Rose
RealTime model.

This example demonstrates integrating the following data types:

� a class with pointers

� a class with smart memory management

� a simple class (no pointers) defined outside the toolset

� a complex class defined outside the toolset

� the STL string class

� an instance based on the STL vector template class

The example also shows how to use externally created libraries as components of type
External Library.
Model Examples - Rational Rose RealTime 15

Chapter 2 C++ Model Examples
The example contains the following supporting files:

� extclasses.h - defines two sample classes called Sample1, and Sample2.

� extclasses.cpp - contains the implementation for the two sample classes.

� sstream.h - contains a class which implements a stringstream.

� lib/<platform>/extclasses.lib, extclasses.a - there is a library for each platform
on which the example was tested. The library contains the compiled classes
defined in extclasses.h. This library is referenced from within the External Library
Component defined in the toolset.

SendReceiveData

This is a simple model that includes Sender and Receiver capsules that demonstrate
how to send and receive a variety of built-in data types.

Have a look at this example for information on message sends, on the correct syntax
for sending a variety of data types, how to receive each of these types in another
capsule, how to log the received data to the console, and how to observe these messages
at run-time.

UserPrompt

This example demonstrates:

1. Two approaches for getting user input into a Rose RealTime executable, one
generic and the other specific to Windows NT.

2. Integration of a Rose RealTime executable with a graphical dialog DLL on the
Windows NT platform.

The example contains the following supporting files:

� Mfc/dialog_dll.dsp - is the project file used to build the dll that contains a sample
dialog box. The Mfc directory also contains all the source files for building a dll
which contains a function which displays a password dialog.

� Mfc/PasswordData.h - contains a password structure which is used to pass data
between the password dialog and the model.

To build this model and the MFC dll please refer to the component diagram in the
example model named “Tips for building and running this model”.
16 Model Examples - Rational Rose RealTime

ObserverPattern
ObserverPattern

Sometimes in a system, two or more objects need to simultaneously present different
views of the same data. Whenever the data changes, often through some action of one
of the observing objects, all observers need to be notified of the change. The Observer
Pattern is presented in the book: Gamma, E., et al, Design Patterns - Elements of
reusable object-oriented software, Addison-Wesley, 1995. This book is often referred
to as the Gang of Four (GOF) Patterns Book.

This example is one of many possible implementations of the Observer Pattern. It is
capsule rather than class based, and therefore differs in some ways from the class-
centric implementation presented in the GOF patterns book.

This example uses the following mechanisms:

� Dynamically incarnated capsules that are subsequently imported into an observer
plug-in role.

� The ability to broadcast a message to all capsules that are bound to a port with a
multiplicity greater than one.

DynamicStructurePatterns

This is a large model that includes examples of the Dynamic Structure Pattern, and of
the Accessor Mechanism discussed in more detail in “Safe Dynamic Structure Pattern”
on page 60.

A common problem in many systems is a resource with limited availability to which a
wide variety of other elements require access. There is a need to dynamically
coordinate access to the limited resource. When access to the resource is required you
want to set up a dynamic connection (binding) to it if the resource is available. When
the use of the limited resource is complete, you want to tear down the dynamic
connection. This frees up the resource and enables it to participate in a different
connection. The relationship between the resource and its user is independent of the
problem of managing access to the resource. The relationship could be peer-to-peer,
client-server, etc.

Use the dynamic structure pattern when:

� The binding required between 2 elements is temporary in nature.

� You need to dynamically coordinate access between 2 elements.
Model Examples - Rational Rose RealTime 17

Chapter 2 C++ Model Examples
❑ Dynamically arrange the connection.

❑ Coordinate the use of the connection.

❑ Tear-down the connection.

� The 2 elements that need to be bound together reside in the same physical process.
If distributed communication is required, you need to use the layer services
(unwired ports). You may still want to use this pattern when controlling client
access to the proxies or controlling proxy access to the service.

� A scaleable, testable, safe solution for dynamic structure through the use of
multiple containment is required.

An Accessor is a general mechanism that can be used to dynamically connect capsules.

IsrExample

This model is intended to provide a simple demonstration of a strategy for interfacing
a Rose RealTime model and an ISR (Interrupt Service Routine).

Note: This example is intended for Unix only.

It is recommended that you read the rest of this topic before viewing the model. The
rest of this topic will provide an explanation of the strategy, an overview of what the
example does, and provides some detail on specific portions of the model that are
important to the strategy being demonstrated.

� “Background Information” on page 19

� “The ISR Interfacing Strategy” on page 19

� “ISR Interface Example Model” on page 23

� “Example Model Description” on page 23

� “Expanding on the Example” on page 29

In addition, this example discusses and makes use of a Rose RealTime Services
Library class named RTCustomController.

The example contains the following supporting files:

For the example, there is some external code that accompanies it in the form of .cc and
.h files. There is a Solaris version and a Tornado version of the external code. The
external code provides the shared data resources (for this example, global variables
ISRFired and ISRCounter) and the ISR operation itself. The files are sufficiently
documented, so no further explanation is provided here.
18 Model Examples - Rational Rose RealTime

IsrExample
� ISR_Interface_SUN5T.h, .cc - sources files for Solaris-specific external code.

� SUN5T_With_External.mk - Makefile insert file for compiling the Solaris-
specific external code. This is called from the Component::C++
Compilation::CompilationMakeInsert property.

� ISR_Interface_TORNADO101T.h, .cc - source files for Tornado-specific
external code

� TORNADO101T_With_External.mk - Makefile insert file for compiling the
Tornado-specific external code.

Background Information

Many real-time applications require interaction with interrupts/ISRs and developing
such applications with Rose RealTime does not change those requirements. In general,
using ISRs with an application requires knowledge of concurrency issues. When
attempting to use ISRs with a Rose RealTime model, this is still the case. The
underlying Services Library and how a model uses them must be considered. It is
expected that readers and users of the example are knowledgeable about concurrency
issues and about the Services Library. Of course, it is also assumed that the readers
already understand the use of ISRs, especially in their target environment.

This specific strategy and example only applies to a multithreaded Services Library
application.

The example model provided is intended to be an example only and is only supported
as such.

The ISR Interfacing Strategy

Overview of the Issues

Applications that interact with devices of any kind often need to be notified of certain
events. Common approaches for receiving this notification are: polling, i.e.,
continuously and explicitly checking for an occurrence of something, and blocking,
i.e., using an operating system call to block the application (or the task) until an
interrupt/ISR causes the call to unblock. From a Rose RealTime model perspective,
both of these approaches are still valid. Both of these approaches force the application
to perform some operation to receive the event. It is never safe to attempt to call
directly into the model from an ISR (or any external thread of control).
Model Examples - Rational Rose RealTime 19

Chapter 2 C++ Model Examples
A polling approach is very simple to implement in a Rose RealTime model and no
special knowledge about concurrency or the Services Library is required. The simplest
idea for this is to declare a Timing port (creating a port with the predefined Timing
protocol) on a capsule and use it to trigger self transitions at whatever interval desired,
where the self transition would check for event occurrence. However, any polling
approach causes unnecessary CPU consumption. Implementing a blocking approach
in a Rose RealTime model is possible; however, in the simplest case of blocking in a
transition, it would cause the model to block such that inter-capsule messages could
not be delivered and/or processed. Placing the blocking capsule on its own Rose
RealTime physical thread may appear to be a quick solution. However, there are issues
with this approach as well: dedicating a task or thread consumes additional resources
(memory, CPU, etc.) and, the Services Library implementation uses internal messages
to perform some of its operations, specifically incarnation and destroy. Blocking the
capsule would not allow these messages to be processed. For some applications these
approaches and accompanying limitations/restrictions may be suitable. There is a third
approach that can be used that addresses some of the issues mentioned above. This
document describes the third approach.

The Strategy

The strategy explained and demonstrated by this ISR interfacing example uses a
combination of polling and blocking. The strategy provides the polling portion via the
normal message dispatching loop of the RTPeerController of the Services Library
when delivering messages and the blocking portion via the normal waiting mechanism
used by the RTPeerController when there are no messages to deliver. Using the
RTCustomController class as the implementation class of a Rose RealTime physical
thread and an accompanying "ISR layer" capsule, one can provide capsule operations
that change the control flow of the thread such that interaction with an ISR can be
accomplished easily and efficiently. (The RTCustomController class is derived from
the RTPeerController class.)

There are several model elements that need to be provided for this approach:

1. a wakeup operation in the ISR layer capsule

2. a waitForEvents operation in the ISR layer capsule

3. a high priority event processing operation in the ISR layer capsule

4. a shared data resource for passing information from the ISR to the model

A description of each of the model elements listed above, followed by a runtime
scenario is a suitable way to explain them. A later description of the example model
will give more concrete details because the example actually implements the scenario
(and strategy) described. Knowledge of the Services Library message passing
algorithm will be helpful in understanding these descriptions.
20 Model Examples - Rational Rose RealTime

IsrExample
The ISR layer capsule must implement and provide two operations (as part of its
interface to the RTCustomContoller): waitForEvents() and wakeup (). The purpose of
these operations is to provide a way for the custom controller to wait and to be woken
up. A semaphore is a commonly used resource that can be used for blocking (waiting)
on and signaling to unblock, so the ISR layer capsule must provide this resource. The
waitForEvents() operation simply waits on or takes a token from the semaphore and
the wakeup() operation posts to or gives a token to the semaphore. These operations
are used in the normal processing and control flow of the Services Library during
interthread message sending. When a controller (controlling delivery of all messages
on a Rose RealTime physical thread) has no messages to deliver it sleeps by calling
waitForEvents(). When a message from another Rose RealTime thread is delivered to
the sleeping controller, the delivering controller calls the sleeping controller’s
wakeup(). The ISR layer capsule also provides a high priority event processing
operation that will be called from the custom controller’s dispatching loop. This
operation can be used to determine if an ISR has been called since the last time it
checked. Detection of an ISR being called can be as simple as checking a global or
shared resource such as a variable or queue that both the capsule and the ISR can
access. This shared resource would preferably be something that is thread-safe or
interrupt-safe. The ISR can place information in this shared resource, indicating that
the ISR has been called and also providing the data of interest.

At runtime, the ISR layer capsule provides a pointer to its wakeup() operation for the
ISR to access (as it will later call it). At some time later, the model (could be the ISR
layer capsule) sets up an ISR to be called upon occurrence of some interrupt. While
there are no interrupts the model, and in particular, the capsules on the Custom
Controller thread, can send and receive messages as normal. During this normal
processing, the ISR capsule’s high priority processing operation is called each time
through the Custom Controller’s dispatching loop, that is prior to each message
delivery. The processing operation checks the shared data resource to determine if the
ISR has been called. Assuming that no interrupts have occurred, then the operation
returns immediately and the dispatch loop carries on with normal processing.

At some time later the interrupt occurs and the ISR is called. The ISR places some
information in the shared data resource and then uses the capsule’s wakeup() operation
to attempt to wake up the custom controller. It is not easy for the ISR to determine
whether or not the custom controller is actually sleeping. Some scheme or protocol
can be arranged between the ISR and the ISR layer capsule such that ISR only attempts
to wake up the custom controller if the shared data resource is empty. For this to work,
the ISR layer capsule’s processing operation would always empty the resource upon
detection that there is new data contained in it. For the ISR and the processing
operation to be more efficient, the "detection" mechanism should not be a costly call.
(A call to check an RTOS queue for example may be too time consuming. The
detection mechanism should just be a global variable.)
Model Examples - Rational Rose RealTime 21

Chapter 2 C++ Model Examples
When the ISR layer capsule’s processing operation is called during execution of the
custom controller’s dispatch loop, the operation detects that the ISR has been called
(the shared data resource has data in it), and then performs whatever processing is
required as a result of the interrupt. There are several ways for the processing to occur.
If the processing is time critical (although not critical enough that it all had to occur in
the ISR), then it can occur right in the ISR layer capsule’s processing operation. If the
processing is not too time critical, the processing operation can send a message to
another capsule in the model for processing.

This can be done with a send or invoke. For a send, being asynchronous, the actual
processing of the interrupt notifications would occur later because the message will be
queued within the Services Library for delivery to some other capsule, but quick,
repeated notifications would be detected/picked up sooner. For an invoke, being
synchronous, the processing of individual notifications will be faster, but detection of
quick, repeated notifications would not be. (Invokes also require the invoked capsule
to be on the same thread as the ISR layer capsule.) It basically comes down to whether
queuing is desired in the model (asynchronous sends) or in the data resource (assuming
a buffer or queue required in this case) shared by the ISR layer capsule and the ISR.
The amount of processing done in the ISR itself must be kept to the absolute minimum.
In most cases hopefully, the only processing done in the ISR is to set the shared data
resource.

This strategy provides a way for an ISR to indirectly and quickly notify a capsule that
an interrupt has occurred, while maintaining the run-to-completion event handling
model of the Rose RealTime runtime system. The capsule or model does not have to
continually poll or block just for the purpose of interrupt or ISR detection. This
strategy could also be used for interfacing with any external thread of control if
receiving input from the external thread is considered high in priority. (High in priority
refers to higher than message processing because the high priority processing
operation is actually called before attempting to deliver a message.)

Please note that capsule operation providing the wakeup functionality must not do
anything more than perform the wakeup, whatever that may be, because the thread of
control is the ISR, not a Rose RealTime thread.
22 Model Examples - Rational Rose RealTime

IsrExample
ISR Interface Example Model

Overview of the Example Model

The example model for demonstrating the ISR Interface strategy is a very simple one.
However, it should still provide a good example of the basic strategy that can be built
upon for developing and using the strategy in real applications. The basic requirement
of the example model (application) is that it must be notified of an interval-based timer
interrupt occurring twice per second for a period of time. An ISR layer capsule,
working with the RTCustomController, receives (detects) the notification from the
ISR/interrupt. The ISR layer also interacts with the application layer. The application
layer requests with the ISR layer that it be notified of the interrupts. The ISR layer
starts the interval-based timer, detects the interrupts (ISR called), and notifies the
application layer upon each detection. After a period of time, the application layer
requests that the notifications stop.

The current example has a VxWorks ISR layer and a Solaris ISR layer. (Knowledge
of VxWorks and/or UNIX would be beneficial in understanding the example
description and the example itself.) The VxWorks ISR layer uses a semaphore
(VxWorks) for the wait/wakeup mechanism and uses a watchdog timer for the interval-
based timer interrupts. (When the watchdog timer expires, a previously user-registered
operation (ISR) is called.) The Solaris ISR layer uses a semaphore (POSIX) for the
wait/wakeup mechanism and uses an interval timer (itimer) for the timer interrupts.
(When the itimer expires, a SIGALRM signal is sent to the process/thread, and then a
previously user-registered operation (signal handler for SIGALRM) is called.) All of
the target-specific code (except for ATTRIBUTEs) is located in capsule operations.
The shared data resources used for both are simply two global variables, one to provide
a "detection" mechanism and one to provide what may be considered as the data of
interest. While it may be suitable to use a global variable for the detection mechanism,
it would be better to choose a thread/task-safe or interrupt-safe data resource for
sharing any interesting data, especially to allow buffering of such data. An example of
such a data resource is an operating system message queue, which can often be
written/sent to from an ISR. However, for the convenience of developing this example
the global variable approach is acceptable.

Example Model Description

Packages and Classes of the Model

The model consists of the following packages and classes:
Model Examples - Rational Rose RealTime 23

Chapter 2 C++ Model Examples
Package ISRLayer

� Capsule BaseCustomIPCLayer: skeleton behavior for set up of a capsule to use
with the RTCustomController

� Capsule SolarisISRLayer (derived from BaseCustomIPCLayer): Solaris-specific
capsule for providing set up and management of a Solaris itimer and for detecting
itimer ISR calls

� Capsule TornadoISRLayer (derived from BaseCustomIPCLayer): Tornado-
specific capsule for providing set up and management of a VxWorks watchdog
timer and for detecting watchdog ISR calls

� Protocol InterruptControl: protocol for ISR and application layers to use for
interrupt requests and notifications

Package Application

� Capsule SomeInterruptProcessor: simple capsule for requesting interrupt
notifications and for processing the notifications

Package TestSolarisItimer

� Capsule TopSolarisItimer: test capsule (harness) for Solaris

Package TestTornadoWD

� Capsule TopTornadoWD: test capsule (harness) for Tornado

The ISR itself and the shared data resources used are actually located in external code
(.h and .cc) that must be compiled and linked with model. (For simplicity, the
compilation of the external file is accomplished by using a Target override file (see
Overrides in the Online Help for a description of override files).

Class Descriptions

It is recommended that the example model be available in the toolset while reading this
so that the model can easily be viewed and navigated to provide a better understanding
of the descriptions. The detailed code is commented and some of the specification
dialogs contain some description.
24 Model Examples - Rational Rose RealTime

IsrExample
ISRLayer – BaseCustomIPCLayer:

This capsule has no detailed behavior. It simply provides a skeleton FSM that can be
used for setup of a capsule to use the RTCustomController. It also provides three
empty capsule operations that are to represent the wakeup, wait, and high priority event
processing operations. Detailed behavior and additional states can be added to this
capsule to provide the ISR layer capsule or a class can be derived from it to provide the
specific ISR interfacing (and application layer interfacing) that is desired. The latter
approach is used for this example.

ISRLayer – SolarisISRLayer:

This capsule’s main purpose is to detect ISR calls and pass notification on to a capsule
that previously requested such notification.

External files (source code) contain the ISR itself and the shared data resources (global
variables chosen for this example).

This capsule provides the structural interface for a capsule to request and receive
interrupt. This interface is provided through the InterruptControl protocol.

This capsule provides the behavior for:

� set up of internal wait/wakeup mechanism resource (semaphore)

� set up and management of an itimer

� set up of data by the itimer ISR

� set up of its capsule operations for use by the RTCustomController

� responding to interrupt notification requests

� sending notification requests

� detection of ISR call (via change in global variable)

The capsule contains the following attributes:

� semaForSync: semaphore id

� internalSetupSucceeded: flag to indicate whether set up of the semaphore
succeeded

� externalSetupSucceeded: flag to indicate whether set up of the itimer ISR
succeeded

The capsule has the following states:

� Reset: all set up fails

� Operational: all set up succeeds and the capsule is ready to respond to capsules
and to detect ISR calls
Model Examples - Rational Rose RealTime 25

Chapter 2 C++ Model Examples
� WaitInterruptRequests: awaiting request for interrupt notification from other
capsule

� InformingOfInterrupts: other capsule has requested notifications; notifications are
sent

The capsule provides the following capsule operations for registration with
RTCustomController:

� wakeup(): called to wakeup the controller the capsule is on

� waitForEvents(): called by the controller to have itself wait while there is nothing
to do

� checkInterrupts(): called by the controller, prior to dispatching a message, for the
purposes of detecting and processing "high priority events"

The setup of the semaphore and the ISR both occur during the initial transition chain.
The first to occur is the internal set up - creation and initialization of the semaphore.
If it fails, then the first choice point will fail, causing the entry into the Reset state. The
false chain or the Reset state is where any error handling or recovery would take place.
For this example, the handling only provides consumption of all received messages. If
the internal set up succeeds, the first choice point passes and the external set up is
attempted - set up of the itimer ISR (signal handler for SIGALRM). This set up also
includes registering its wakeup() operation via the external operation
registerWakeupWithISR() such that the ISR can access it. If the external set up fails,
then the second choice point will fail causing a change to the Reset state. If it succeeds,
then the true chain is executed, at which time the capsule’s three "controller"
operations waitForEvents(), wakeup(), and checkInterrupts() are registered with the
RTCustomController. Upon completion of the true chain, the Operation state is
entered.

When the Operational state is entered, the WaitInterruptRequests state is immediately
entered. At this time, the capsule waits for a request to be notified of interrupts. Note
that at this time, although the RTCustomController is using the capsule’s wakeup() and
waitForEvents(), the capsule (and thread) can send and receive interthread and
intrathread messages as per normal. Upon reception of a notifyOfInterrupts signal, the
notifyOfInterrupts transition is taken and the InformingOfInterrupts state is entered. In
the transition the itimer is activated and the notification is replied to with an
interruptAccept signal

While in the InformingOfInterrupts state, a noMoreInterrupts signal can be received,
at which time the noMoreInterrupts transition is taken. In the transition, the itimer is
deactivated. However, the main purpose of the InformingOfInterrupts state is for the
capsule to detect itimer ISR calls. The detection is in the checkInterrupts() operation,
which is actually called from the RTCustomController’s dispatching loop each time
26 Model Examples - Rational Rose RealTime

IsrExample
around, as opposed to from within a transition upon arrival of a message. The detection
of the ISR call is determined by the ISRFired global variable being non-zero. If it is
non-zero then (post-) processing of the interrupt occurs. First, the ISRFired variable is
set to zero such that the ISR can set it again on the next call. (This is the detection
protocol that has been arranged between the capsule and ISR. It would be practical to
disable the interrupt around the section of code that accesses ISRFired in the capsule,
but this example does no do that.) The processing that this capsule provides is only to
invoke, with the interruptOccurred signal, the capsule that requested notifications. An
invoke was chosen because it is faster than an asynchronous send.

ISRLayer – TornadoISRLayer:

This capsule is very similar to the SolarisISRLayer. The difference is the use of
Tornado specific types and operating systems calls. The types are used for declaration
of the attributes. The operating system calls are all isolated to capsule operations.
Given that the two capsules are so similar it probably would not take too much extra
effort to wrap the attributes and operating system calls into two external classes that
provide a common interface and then just use one capsule. But for this example, the
two capsules do contain target specific code. With these two capsules behaving the
same, a description of this capsule is not required. It should only be noted that this
capsule uses a Tornado specific semaphore (binary) and uses a Tornado watchdog
timer for the interval timer. The watchdog timer is not really an interval timer, but is
only triggered once per start/activation. Because of this some special handling is
required to pass information to the watchdog timer ISR such that it can start another
timer within the ISR. Starting the next watchdog in the ISR instead of the capsule will
provide for better accuracy (less drift) in the interrupt occurring at the desired interval.

External files (source code) contain the ISR itself and the shared data resources (global
variables chosen for this example).

Application – SomeInterruptProcessor:

This capsule’s main operations are to receive interrupt (interval-based timer interrupts
twice per second) notification and to perform appropriate processing. This capsule
uses the InterruptControl protocol to request interrupt notification and to receive
interrupt notification.

This capsule provides the behavior for:

� requesting interrupt notification

� processing interrupt notifications for a period of time

� canceling interrtupt notification

The capsule contains the following attributes:
Model Examples - Rational Rose RealTime 27

Chapter 2 C++ Model Examples
� waitForAcceptTID: RTTimerId used to cancel repeated timeout requests while
attempting to request interrupt notifications

The capsule has the following states:

� Idle: awaiting to attempt interrupt notification requests

� WaitServiceAcceptance: repeatedly request interrupt notifications until accepted

� WaitForInterrupts: receive notifications and process them

While in the WaitServiceAcceptance state, the capsule responds to Timing port
timeouts. On a timeout transition, an interruptRequest signal is sent via the
InterruptControl protocol and another timeout is set. Also in this state, the capsule
responds to an interruptAccepted signal, at which time the interruptAccepted transition
is taken and the WaitForInterrupts state is entered. In the transition, the previously
requested timeout for retry of interrupt requests is canceled. In addition, a new timeout
is set that represents the period of time that the capsule will respond to the interrupt
notifications. For this example, 20 seconds was chosen.

In the WaitForInterrupts state, the capsule receives interruptOccurred signals. For these
signals, the interruptOccurred self transition is taken and the interrupt notification is
processed. For this example, the processing is simply to set a global variable,
ISRCounter, to zero that was previously incremented by the ISR. (In a real application,
a global variable for data transfer would probably not be appropriate in order to avoid
simultaneous access of the data buffer by the user (capsule) and the ISR. Instead,
interrupt/thread safe buffers would be used.) After a period of time, the Timing port
timeout signal arrives, the timeToStop transition is taken, and the Idle state is entered
again. In the transition, a noMoreInterrupts signal is sent via the InterruptControl
protocol to cancel the notifications.

In the Idle state, the capsule can receive some late interruptOccurred signals. They can
occur because in this example it is possible (if the interval used by the ISR layer is
small enough) that an interrupt notification can be sent after the cancellation of
notifications has been sent.

TestSolarisItimer and TestTornadoWD:

The capsules in these test packages do nothing more than incarnate the capsules under
test. There are two important things to note about the test capsules. They each contain
a reference to an appropriate ISRLayer capsule and a SomeInterruptProcessor capsule
with a binding connecting the references to the InterruptControl port on each. They
incarnate the ISR layer capsule onto a Rose RealTime physical thread that uses the
RTCustomController as the implementation class.
28 Model Examples - Rational Rose RealTime

SocketInterfaceExample
External Code:

For the example, there is some external code that accompanies it in the form of .cc and
.h files. There is a Solaris version and a Tornado version of the external code. The
external code provides the shared data resources (for this example, global variables
ISRFired and ISRCounter) and the ISR operation itself. The files are sufficiently
documented, so no further explanation is provided here.

Expanding on the Example

When the strategy and example are understood, the strategy can be used for much
bigger and better things. Here is a list of some of things one may want to use it for:

� Single interrupt notification to a single capsule (basically the example provided)

� Single interrupt notification to multiple capsules

� ISR layer could maintain a list (replicated ports) of those to be notified

� Multiple interrupt notifications to single/multiple capsules

� ISR layer could maintain a list of interrupt data (ISRs, shared data resources, etc)
and can detect calling of any of the ISRs

� ISR layer on multiple threads (each requiring the use of a RTCustomController
on separate threads)

This ISR interfacing strategy provides a reasonably efficient approach for interfacing
a Rose RealTime model with an interrupt/ISR. However, it is still up to the
designer/project to determine what the real performance, reliability, and response
requirements are for any interrupts that may be used in their application. The strategy
should be reviewed for possible incorporation, and if it appears suitable, it should be
fully prototyped in the target environment to ensure that it is tested to determine if it
can meet expected requirements.

SocketInterfaceExample

This example is intended to provide a simple example of integrating socket-based IPC
into a Rational Rose RealTime application.

Why use IPC?

Socket based communication appears at first glance to provide an ideal mechanism for
implementing a distributed application. If connectivity were the only requirement, then
sockets might be ideal, however many projects often have other, difficult to realize
requirements, like:
Model Examples - Rational Rose RealTime 29

Chapter 2 C++ Model Examples
� ease of use, including ease of changing the distribution architecture;

� the mapping of object-to-object communication and sockets;

� rerouting messages when transports fail;

� a name service so that the sender can find the receiver;

� fault tolerance so that when something fails there is a back-up;

� dealing with data representation issues in a mixed CPU environment;

� fault reporting so that when things go wrong the application can react;

� optimization for memory and performance

It is important that the reader realize that the IPC example in this note is not intended
to serve as a robust IPC implementation guideline, but an illustration of a simple design
technique. Building and maintaining a robust distribution infrastructure can require the
resources of a dedicated team. An example of a robust, industrial strength IPC
implementation designed to meet the application needs for reliability, availability,
performance, fault-tolerance, and ease of use, is beyond the scope of this note.

Build Versus Buy

If you require more than a simple IPC mechanism, then you should consider Rational
Connexis. Connexis works together with Rational Rose RealTime to let you model
and build distributed Rose RealTime applications. Built-in middleware provides an
off-the-shelf communication infrastructure that solves many of the challenges
common to distributed applications including object-to-object connectivity, fault
tolerance, name lookup service, reliability and performance. Capsules continue to
communicate with each other in the same way as with Rose RealTime - by sending
messages to ports -however the receiving capsule can be in another process, or even on
another processor. For more information on Rational Connexis see
http://www.rational.com/products.

Pre-requisites

To understand this IPC example the reader should be familiar with sockets, IPC in
general, multi-threaded applications and the Rational Rose RealTime C++ Services
Library. This example discusses and makes use of a C++ Services Library subclass of
RTPeerController known as RTCustomController. For detailed information on the
RTCustomController and its usage please consult the Rational Rose RealTime Online
Help.
30 Model Examples - Rational Rose RealTime

SocketInterfaceExample
Overview

In this simple example, the main loop of a RTCustomController waits on a socket for
messages. The key benefit to this approach is that no capsule is required to block on
the socket interface. In addition the capsule receiving messages from a socket can also
receive messages from other capsules. To keep the example simple, the messages
received will be a stream of bytes over a socket at a specific IP and socket address.
There is no attempt to decompose the stream into a sequence of messages destined for
other ports or capsules, nor is any encoding or decoding of data performed. This is not
an example of a robust IPC solution.

Socket Example Description

This section presents an example of how a TCP/IP socket connection can be monitored
by a capsule (TCPClient) incarnated on a RTCustomController thread. The server side
of the connection uses the same monitoring mechanism and will not be presented here.

The client consists of three capsules:

� SenderSameThread (top level capsule). Incarnates an IPCSender capsule on the
RTCustomController thread.

� IPCSender - controls the number of messages exchanged with the server through
the contained optional capsule 'customIPCLayer' (Figure 2).

� TCPClient - capsule monitoring the IPC channel when incarnated on the
RTCustomController. It overrides only the 'waitForEvents' and 'wakeup' controller
functions.
Model Examples - Rational Rose RealTime 31

Chapter 2 C++ Model Examples
Figure 1-2. The IPCSender incarnates an IPC monitoring capsule on the
RTCustomController thread.
32 Model Examples - Rational Rose RealTime

SocketInterfaceExample
Figure 3. Behavior of a capsule monitoring a TCP/IP socket connection

This example uses two Services Library implementation classes. RTTcpSocket
represents the IPC channel used in this example. The following methods are used:

� int RTTcpSocket::create() - makes the system call 'socket()' and sets channel
attributes.

� int RTTcpSocket::connect() - makes the system call 'connect()'.

� int RTTcpSocket::state() - returns '::Established' if the socket file descriptor is
usable.

� int RTTcpSocket::read() - reads a socket file descriptor (using the system call
'read').
Model Examples - Rational Rose RealTime 33

Chapter 2 C++ Model Examples
� int RTTcpSocket::write() - writes on a socket file descriptor (using the system call
'write').

� int RTTcpSocket::close() - closes the underlying socket descriptor.

RTIOMonitor is the other Services Library implementation component used and is
constructed to contain the parameters required by the 'select' system call.

This example uses these Services Library implementation classes for the convenience
of providing a quick and simple example. However, it is recommended that customers
provide their own implementation for socket related interfaces.

The attribute 'c_socket' (of class RTTcpSocket) represents the application-specific
IPC channel. 'ioMonitor' (of class RTIOMonitor) is used here to monitor the external
channel ('c_socket') and the internal socket descriptor, 'internalFd', used by other
threads to wake-up the Custom Controller thread. 'internalFd' is a UDP socket, which
is connectionless and has no flow control, but is suitable to use for the purpose of local
host (board) communication.

Please note that for this example there is no behavior provided in the transitions leading
to the Reset state (of TCPClient) nor in the Reset state itself. However, this is where
one may want to provide error handling and recovery.

The macro REGISTER_LAYER takes three arguments - pointers to the 'waitFunc',
'wakeupFunc' and 'processFunc' functions to be called by the RTCustomController. If
any of these are null pointers, the default values are used.

Figures 4 and 5 show the implementation of the functions 'wakeup' and
'waitForEvents'. In this case, IPC data is processed at the end of 'waitForEvents',
conferring this channel a lower priority than for Rose RealTime messages.
34 Model Examples - Rational Rose RealTime

SocketInterfaceExample
Figure 4. An implementation for the waitForEvents function called when the
RTCustomController has no messages left to deliver (TCPClient::waitForEvents).
Model Examples - Rational Rose RealTime 35

Chapter 2 C++ Model Examples
Figure 5. An implementation for the wakeup function called when the
RTCustomController receives an inter-thread message (TCPClient::wakeUp).

Figure 6 shows an example of the wakeup control flow of an interthread message send
related to the usage of the RTCustomController.
36 Model Examples - Rational Rose RealTime

Callbacks
Figure 6: Wakeup control flow of interthread message send involving
RTCustomController.

Callbacks

The Callback example is intended to provide an overview of issues and development
approaches/strategies related to using callback/RPC mechanisms with code developed
using Rose RealTime. Though this approach is neither recommended, nor
demonstrates good OO practice, it has nonetheless become a communications
mechanism many of our customers are familiar with and need to make use of.
Model Examples - Rational Rose RealTime 37

Chapter 2 C++ Model Examples
For this example model, review the following topics:

� “Background Information” on page 38

� “Rose RealTime Constraints” on page 39

� “Simple, Single Callback Approach” on page 43

� “Multiple Callback Approach” on page 44

� “Callbacks Returning Data” on page 45

The example contains the following supporting files:

For the example, there is some external code that accompanies it in the form of .cc and
.h files. The external code provides the shared data resources (for this example, global
variables, and a callback interface simulation functions). The files are sufficiently
documented, so no further explanation is provided here.

� External_CPP.h, .cpp - Source files for callback interface simulation stub.

� External.mk - Compilation overrides file for compiling the external source code
at the same time as the model is built from within the toolset.

Background Information

The callback approach to communication between application components has been
used quite successfully in many different environments. Windowing systems often use
callbacks to facilitate the processing involved with handling window events. Signal
handlers use this approach to allow users to "register" the routine responsible for
reacting to the signal. As well, many off the shelf communications packages are based
on an RPC mechanism. Application users of the package register their "services" with
a controller, which in turn makes these registered interfaces available to all applications
needing the services. The user of this mechanism should be familiar with the Services
Library and the thread architecture on their target platform. The user should also be
familiar with the callback concepts.

Please note that although signal handlers (interrupt service routines) use a callback
type approach, the strategy explained by this application note is not suitable for use by
signal handlers. The strategy requires use of the Services Library in a way that uses
system calls that are normally not allowed to be called from within a signal handler.

The example model provided is intended to be an example only and is only supported
as such.
38 Model Examples - Rational Rose RealTime

Callbacks
Rose RealTime Constraints

The callback approach violates several key architectural premises of the capsule
paradigm. The use of this mechanism with software developed using Rose RealTime
will thus require careful consideration as to the extent of this violation and the resultant
constraints which must be placed upon the code which implements the callback
mechanism. The following discussion outlines many of the areas the user will have to
be aware of when using callbacks with Rose RealTime.

Capsule encapsulation

The developer using callbacks in Rose RealTime must build some knowledge about the
implementation of the callback mechanism into the model. Thus, you are creating a
dependency between the capsule exporting a function to a callback mechanism, the
Rose RealTime capsule ultimately performing the work, and some piece of external
code. Changes to any of those components will lead to cascading changes in other
areas of your model.

Capsule concurrency

Rose RealTime maintains the concept of all capsules being separate "units of
concurrency" within a model. For the most part, this is accomplished in the use of
asynchronous messaging between capsules requiring the services of other capsules.
By their nature, callbacks introduce a synchronous restriction into the system, since in
many cases, the service being provided by the Rose RealTime capsule handling the
callback, will have to ensure that all necessary actions have been performed to satisfy
the request and then return data to the caller. As well, all developers involved in this
endeavor must also have a fairly sound understanding of how work is to be serialized
in both the model and the external process.

Common, Unprotected Data access during a send

The Services Library is designed and implemented such that each physical thread used
by the application has a single thread of control, implemented by an instance of the
RTPeerController object. All access, to Services Library data and capsules allocated
on that thread, is managed by this instance of the controller, i.e. the controller has the
thread of control. Rose RealTime uses "Run to Completion" semantics which specify
that a capsule, in the process of executing a transition on a thread, must complete the
transition, including entry, exit, guard, and choice-point code segments, before any
other capsule on that thread may begin handling a message. Thus, there is no need to
protect the access of these elements. Interactions between Services Library threads
Model Examples - Rational Rose RealTime 39

Chapter 2 C++ Model Examples
(messaging between capsules on different threads) access globally shared data through
mutual exclusion resources (mutex). In this case, the shared data is an inbox (queue)
for dropping off messages. During a message send, the Services Library determines if
the destination port is on another thread and uses the appropriate mutex to protect the
drop off of the message.

A callback runs on the external thread of control, which can be defined as some non-
Rose RealTime thread of control, such as some other user application or system
services providing the callback functionality. In the next section, reference is made to
a Callback Capsule. This is defined as the capsule containing the function (callback
function) which is exported to the external application and used by the external
application to "call" into the model to perform some action. This presents a problem to
the Services Library since the assumption, as noted above, is that a component of the
Services Library (the RTPeerController) is always in control. When the callback runs,
and executes a send() call, as one would expect it to do, it will be obtaining a message
from a list of free messages, populating the message information, including data, and
then dropping it in the destination thread’s InQueue.

If a capsule, running on the same thread on which the Callback capsule is incarnated,
is performing a send() at the same time as the callback is executing, the freeList
message queue for the thread can become corrupted. This would occur if the operating
system preempted the running capsule’s thread and allowed the thread on which the
callback is occuring to become active and perform the callback. The corruption of the
message queue can also occur if the simultaneous access were to occur when the
message is freed up and returned to the free message list. Beyond just the messaging
corruption, a callback executing while a capsule is executing a transition, can corrupt
the data of the capsule if the callback function and the transition code both alter the
data element, leaving the capsule and the thread in an indeterminate state. As
mentioned above, this is a violation of the Capsule Run-to-completion semantics.
Please refer to Figure Inter-Thread Messaging below for the sequence involved in
performing a send() operation from a capsule on one thread to another thread.

Note: A callback function should only perform a send() call to a capsule on another
thread. (As explained above, the Services Library uses a mutex during a message send
to another thread. Most signal handlers (interrupt service routines) do not allow
access to a mutex and that is why this approach is not suitable when using them.)
Capsules incarnated on the callback thread must not process any messages. As well,
access to data in a callback function, such as extended state variables of the callback
capsule, needs to be carefully controlled and should be protected with a mutex,
especially if the data needs to be updated.
40 Model Examples - Rational Rose RealTime

Callbacks
Figure 1 Figure: Inter-Thread Messaging

Control Flow of an inter-thread message send:

1. Get next message from the freeList.

2. Fill in signal and priority.

3. If sending an RTDataObject: make a copy of the data.

4. Fill in data field with pointer to data.

5. Queue the message on the receiving thread’s inQueue and update inPriority if
necessary.

6. Call receive() on the receiver (destination capsule’s RTPeerController).

7. Receiver thread moves messages from the inQueue to internal message queues by
calling retrieveEvents().
Model Examples - Rational Rose RealTime 41

Chapter 2 C++ Model Examples
Recommended Design Approach

Given the constraints outlined above, the following points need to be taken into
consideration when developing the software in Rose RealTime to handle a callback
mechanism. Please refer to the diagrams below for clarification of the structure and
behaviour described.

Figure 2 Figure: OTServiceProxy Capsule

Note: Note: The callbackConfig port is used in the sample model to indicate to the
callbackActor to register the callback function.
42 Model Examples - Rational Rose RealTime

Callbacks
Figure 3 Figure: CallbackActor capsule behaviour

Simple, Single Callback Approach

This approach assumes that there will be only one possible callback occurring at a time
and that no data is returned from the callback function.

� The Callback interface should be encapulated in a Proxy Capsule
(OTServiceProxy). This Proxy capsule will contain an optional instance of the
capsule which contains the callback function (callbackActor) along with an
instance of the capsule which will handle the actual servicing of the callback,
from a Rose RealTime perspective (serviceProvider).

� The OTServiceProxy capsule must incarnate the callbackActor on it’s own
thread. This has the effect of indicating to the Services Library that the message
queues will have to be protected since messages sent from this callbackActor will
be cross-thread sends. Inter-thread message sends are thread-safe.

� The Callback Capsule (callbackActor) will have no behaviour, other than an
initial transition (see Figure: Callback Capsule behaviour above). On this initial
transition, it will register its services, i.e. exported functions, with the external
system through whatever mechanism is provided. The callbackActor must not
have any entry code, exit code, or transitions handling incoming signals. This
effectively means that after the initial transition is run, the normal processing of
the thread, on which the callbackActor is incarnated, is never executed.

� If the callback must be de-registered when the capsule is destroyed, this could be
done in a separate function which is designated as a destructor function on the
callbackActor capsule.
Model Examples - Rational Rose RealTime 43

Chapter 2 C++ Model Examples
� Registered functions of a Callback Capsule may access extended state variables,
other functions defined on the callbackActor, and perform port.send() calls
destined to capsules on other threads. No messaging to capsules on the same
thread as the callbackActor is permitted. The amount of work done in the actual
function should be minimal. Some data preparation, followed by a port.send() to
the serviceProvider capsule is the recommended approach.

Note: Note that if a class (as opposed to instance) scoped operation (static function)
is registered with the callback mechanism, the capsule will have to store a pointer to
the instance in some global variable so that during the callback you can access the
capsule instances attributes (ports …) and operations. This mechanism is used in the
example model.

� All work done to actually service the callback must be done by capsules, other
than the callback capsule, running on other threads. Specifically, the
serviceProvider will handle the message sent from the callbackActor’s callback
function, converting it into the messages and function calls needed to satisfy the
service request, within the rest of the Rose RealTime developed application.

Multiple Callback Approach

This approach assumes that there will be multiple callbacks occurring concurrently,
but that no data is returned from the callback function.

1. Similar setup to the Simple case.

2. The Scenarios for this are:

� Callback Capsule (callbackActor) may have several functions it registers.

� Several different Callback capsules and thus Proxy capsules are developed with
different exported services for each, and/or

� Several external application threads may call back using the published
functions(s) concurrently.

3. In these situations, the access to these exported callback functions must be
serialized to ensure that no two functions are active at the same time. This is
accomplished through one of the following methods:

� Each Callback capsule has a single function and is placed on a separate thread
from every other capsule. This approach is very heavy on task resources. A
separate thread is needed for each of the external threads which can access the
callbacks. This approach assumes that no two external threads will access the
same callback thread at the same time. It will thus not address this third situation
of concurrent calls to the same service function on the same callbackActor from
separate external threads.
44 Model Examples - Rational Rose RealTime

Callbacks
� All Callback Capsules are incarnated on the same callback thread, but access, to
the published service functions, is serialized through the use of a mutex. On entry
to a service function, the mutex is set, restricting all other access, the function
processing is completed, and the mutex is released, allowing the next caller to run
it’s function.

The second approach, outlined in (3) is recommended for most situations since it will
address all the concurrent access concerns. If there are a large number of callback
capsules, service functions, and/or calling threads, placing multiple callback capsules
on several callback threads, each protected with a separate mutex, would improve
concurrency aspects of this approach, allowing several callbacks to be active, on
separate threads, at the same time.

Callbacks Returning Data

This approach assumes that there will be multiple callbacks occurring concurrently
and that data of some sort is returned from the callback function.

� Extension of either the Simple or Multiple cases. (see Appendix A: Callback
Function)

� In this case, the callbackActor passes a pointer to the data item which needs to be
returned, when the message is sent (port.send()) to the serviceProvider.

� A separate mutex (for synchronization purposes as opposed to mutual exclusion)
is configured to allow the callbackActor to block, after the send, until the
serviceProvider has finished processing the callback and has filled in the data.

� The serviceProvider capsule then releases the mutex, freeing the
callbackActor’s callback function to complete, returning the data. The code
segment in Appendix B: Callback WaitForData Function, is an example of the
code needed to wait for the data to be prepared by the serviceProvider.

Sample Model Outline

The sample model for Callbacks is provided in CallbacksDemo.rtmdl, which needs to
be loaded into Rose RealTime

The Semaphore class contains macros (in the HeaderPreface property of the C++ tab
of this class) defines MUTEX_INIT, MUTEX_LOCK, and MUTEX_UNLOCK to
handle the serialization. These macros must be tailored to the mutex/semaphore
support for the target system.
Model Examples - Rational Rose RealTime 45

Chapter 2 C++ Model Examples
There are 3 top level capsules (can be found in the TestHarnesses package) in the
sample model. The SimpleExampleTop demonstrates the simplest callback scenario,
whereby the callback capsule is placed on its own thread and access is made by a single
simulated external application thread (actually a Rose RealTime Capsule on it’s own
Rose RealTime thread for testing). The SimpleProtectedExampleTop is the next level
of complexity whereby the access to the callback function(s) is serialized by a mutex.
The SimpleProtectedDataExampleTop capsule contains the capsules which
demonstrate the last level of complexity in which the callbacks are serialized with a
mutex and the callback needs to return some data.
46 Model Examples - Rational Rose RealTime

Chapter 3

C Model Examples

Listed in the following table are the C model examples currently available. See the C
Language Guide for more information regarding use of C within Rose RealTime
models.

CardGame

This is a C version of the model developed in the Card Game tutorial. In addition the
model contains extended functionality to demonstrate how to use replication, threads,
inheritance in C models. This is a good model to understand before starting your own
C models.

Model Description

CardGame Provides a C version of the Card Game tutorial model. In
addition contains extended functionality to show threads, and
replication in C models.

SendReceiveData Provides an example of sending data between capsules. Example
includes sending by value and sending by reference.
Model Examples - Rational Rose RealTime 47

Chapter 3 C Model Examples
SendReceiveData

This is a simple model that includes Sender and Receiver capsules that demonstrate
how to send and receive a variety of built-in data types.

Have a look at this example for information on message sends, on the correct syntax
for sending a variety of data types, how to receive each of these types in another
capsule, how to log the received data to the console, and how to observe these messages
at run-time.
48 Model Examples - Rational Rose RealTime

Chapter 4

RRTEI Examples

Listed in the following table are the Rose Extensibility examples currently available.
See the RRTEI Guide for more information regarding the RRTEI and the SummitBasic
script reference.

See the Tutorials for related step by step instructions for building SummitBasic scripts
and using Rose RealTime as an automation server.

The $ROSERT_HOME/Scripts directory contains source files for utility scripts that
are used within Rose RealTime. These provide good examples of using SummitBasic
and the RRTEI. We recommend that you make a backup copy before modifying any of
these scripts.

Script Description

Various SummitBasic
sample scripts

Demonstrates how to use the RRTEI to write
SummitBasic scripts.

CreateCapsule1State VisualBasic example of using Rose RealTime as an
automation server.
Model Examples - Rational Rose RealTime 49

Chapter 4 RRTEI Examples
Various SummitBasic sample scripts

There are a number of simple SummitBasic scripts that demonstrate particular aspects
of BasicScript syntax and the RRTEI interface.

CreateCapsule1State

sd

This is an example of using Visual Basic to use Rose RealTime as an automation
server. You can also consult the Tutorials for related step by step instructions for using
Rose RealTime as an automation server.
50 Model Examples - Rational Rose RealTime

Chapter 5

Patterns

This chapter contains discussions regarding the using design patterns in Rose
RealTime.

� “Gang of Four Design Patterns” on page 51

� “Safe Dynamic Structure Pattern” on page 60

Gang of Four Design Patterns

Software Designers have found patterns to be a useful concept. This interest has
spawned a considerable patterns literature, including the book Design Patterns -
Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, commonly referred to as the Gang of Four (GOF)
Patterns book.

Patterns become more visually apparent when you use a visual modeling tool such as
Rational Rose RealTime. In the literature patterns are usually presented using a visual
notation, such as UML. With Rose RealTime the visual notation is also the model from
which executable code is generated.

Every domain or application can have its own chartacteristic patterns. This section
does not claim to provide a set of patterns that will be generally useful across all
domains. What we have done is to explore the patterns presented in one popular book,
and see how they apply to a variety of models that have been done using Rose
RealTime.

The patterns in the GOF Patterns book are presented in the context of a user interface
domain, which is quite different from what is typically found in real-time applications.
However the abstract aspects of some of these patterns are obviously of general interest
to real-time developers.
Model Examples - Rational Rose RealTime 51

Chapter 5 Patterns
In this section we briefly present five concrete examples loosely based on the patterns
presented in the GOF Patterns book. These are not necessarily the patterns that will
make sense in your applications, and we are not suggesting that you take any of these
and blindly apply them to your projects. Instead the intent here is to present the concept
of patterns as they apply to systems built using capsules. We hope that these examples
will get you thinking about the patterns that apply within your own applications.

We suggest that you look over this section and the sample models in conjunction with
a copy of the GOF Patterns book.

Several GOF patterns are at least partially contained as part of the Rose RealTime
paradigm - for example the Façade and State patterns. A capsule has much in common
with a Façade. State is a first class concept within Rose RealTime.

The four examples presented here are:

� “Mediator Pattern” on page 52

� “Chain of Responsibility Pattern” on page 56

� “Factory Method Pattern” on page 57

� “Observer Pattern” on page 58

For more information on The Gang of Four design patterns and book, you may want
to visit the following site:

http://hillside.net/patterns/DPBook/DPBook.html

Complete information on the book is as follows:

Title: Design Patterns : Elements of Reusable Object-Oriented Software

Authors: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

ISBN: 0-201-63361-2

Details: Addison-Wesley, 1994

Mediator Pattern

A Mediator capsule mediates or controls the interactions between a set of two or more
colleauge capsules. It provides for very loose coupling between capsules.
52 Model Examples - Rational Rose RealTime

Gang of Four Design Patterns
See the MarkI_Container or MarkII_Container capsules in the
CoffeeMachine_MoneyBox example model. The MarkI_Brewer and MarkII_Brewer
capsules function as concrete mediators, while CUSprayer, CUFrontPanel, CUWarmer
and CUCashBox function as concrete colleauges.
Model Examples - Rational Rose RealTime 53

Chapter 5 Patterns
Mediator capsules tend to have modeless behavior. They simply forward messages
between ports and don’t retain any state history. The state diagram of the
MarkI_Brewer is typical:
54 Model Examples - Rational Rose RealTime

Gang of Four Design Patterns
The Game of Life example model provides another example of a Mediator. The
SpaceTime capsule mediates between a large number of identical Cell capsules. Cells
have no direct knowledge of who their neighbors are. SpaceTime does know who every
Cell’s neighbors are, and is able to forward each message from one Cell to all of that
Cell’s neighbors.
Model Examples - Rational Rose RealTime 55

Chapter 5 Patterns
Chain of Responsibility Pattern

The GOF book describes the intent of the Chain of Responsibility pattern as follows:

“Avoid coupling the sender of a request to its receiver by giving more than one object
a chance to handle the request. Chain the receiving objects and pass the request along
the chain until an object handles it.”

The Message Forwarding example model is a very simple example of this. Capsules
are always decoupled from the receiver of the messages they send, because all that a
capsule does is send a message out a port, and the capsule has no knowledge of how or
even if the port is bound. In the Message Forwarding example, CapsuleA sends a
message to CapsuleB which directly forwards it to CapsuleC.

A somewhat more complex example is found in the AlarmClock model used in the
Rose RealTime Evaluation Workshop. This model is connected to an external Java
application which includes a number of buttons that users can press to update the time
and adjust various alarm settings. It also displays the currently set time and various
status messages. It allows the user to control the Rose RealTime model, and
immediately view the results. All interaction with the Java GUI passes through one
capsule, called CapsuleX in the diagram below.

Some of the messages arriving at CapsuleX have to do with setting up a socket
connection between the Rose RealTime model and the Java GUI. These messages are
processed directly by CapsuleX. Any other messages it forwards out its port which is
bound to CapsuleY. CapsuleY is responsible for converting certain combinations of
GUI button presses into higher level commands which it eventually passes on to
CapsuleZ through its port. CapsuleY immediately forwards all messages that it doesn’t
process on to CapsuleZ. CapsuleZ in turn processes some messages, but directly
forwards everything having to do the setting of alarms on to CapsuleQ.

Thus, there’s a chain of responsibility starting with CapsuleX and continuing on to
CapsuleQ. Each capsule in the chain has a chance to process each received message if
that is part of its responsibility. Otherwise it forwards it on to the next capsule in the
chain.
56 Model Examples - Rational Rose RealTime

Gang of Four Design Patterns
Factory Method Pattern

The GOF Patterns GOF says about the Factory Method pattern:

“Define an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.”

The CoffeeMachine_MoneyBox model includes an example of the Factory Method
Pattern. MarkII_Container is a subclass of MarkI_Container, and MarkII_Brewer is a
subclass of MarkI_Brewer. At the same time, MarkI_Brewer is part of
MarkI_Container, and MarkII_Brewer is part of MarkII_Container. This sets up
parallel inheritance hierarchies as shown in the following class diagram:
Model Examples - Rational Rose RealTime 57

Chapter 5 Patterns
Observer Pattern

Sometimes in a system, two or more objects need to simultaneously present different
views of the same data. Whenever the data changes, often through some action of one
of the observing objects, all observers need to be notified of the change.

For an example of one quite simplistic implementation of the Observer Pattern using
capsules in Rose RealTime, please load and run ObserverPattern.rtmdl. Mirroring the
description in the GOF Patterns book, this model includes four capsules - Subject,
Observer, ConcreteSubject and ConcreteObserver, related as shown in the following
diagram. The SOProtocol protocol class includes signals that allow concrete subjects
and observers to communicate with each other.

The following diagram shows the structure diagram for ObserverPattern, the top
capsule in the system. There is one subject, with some variable number of observers.

The observers are dynamically incarnated at runtime, and are then imported into the
observerP capsule plug-in role, which has a connector to the subject. The reason for
doing this is to simulate a larger system where a capsule might be incarnated at one
location in the model, and then imported into a different role for connection to a
subject.
58 Model Examples - Rational Rose RealTime

Gang of Four Design Patterns
In this example, the subject does not keep track of the observers that it is connected to.
When it receives a Modification message from any one of the observers, it simply
sends a ChangeNotification message back out the so port. This acts a broadcast to any
capsules that happen to be connected to the so port, because the message send is not to
any specific instance of the port, which effectively makes it a broadcast.

To clarify what’s happening, look at the transition code for this simple model. Then
build and run the model. Follow the instructions contained in the “Tips on running this
model” diagram within the Component View.
Model Examples - Rational Rose RealTime 59

Chapter 5 Patterns
Safe Dynamic Structure Pattern

A common problem in many systems is a resource with limited availability to which a
wide variety of other elements require access. There is a need to dynamically
coordinate access to the limited resource. When access to the resource is required you
want to set up a dynamic connection (binding) to it if the resource is available. When
the use of the limited resource is complete, you want to tear down the dynamic
connection. This frees up the resource and enables it to participate in a different
connection. The relationship between the resource and its user is independent of the
problem of managing access to the resource. The relationship could be peer-to-peer,
client-server, etc.

Use the dynamic structure pattern when:

� The binding required between 2 elements is temporary in nature.

� You need to dynamically coordinate access between 2 elements.

❑ Dynamically arrange the connection.

❑ Coordinate the use of the connection.

❑ Tear-down the connection.

� The 2 elements that need to be bound together reside in the same physical process.
If distributed communication is required, you need to use the layer services
(unwired ports). You may still want to use this pattern when controlling client
access to the proxies or controlling proxy access to the service.

� A scaleable, testable, safe solution for dynamic structure through the use of
multiple containment is required.

An Accessor is a general mechanism that can be used to dynamically connect capsules.

� “Motivation” on page 61 - The forces and types of design problems which led to
the development of the safe dynamic structure pattern.

� “Applicability” on page 64 - When you should use safe dynamic structure.

� “Participants” on page 64 - Description of the capsules and their purpose.

� “Consequences” on page 66 - The benefits of using safe dynamic structure.

� Implementation - Things to consider when applying the pattern to your problem.

� “Accessor Capsules” on page 71 - An Accessor capsule is a general mechanism,
that amongst other uses, can be used to help implement safe dynamic structure.
60 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
Motivation

Design problem

A common problem found in many systems is that there is a resource with limited
availability to which a wide variety of other elements require access. There is a need
to dynamically coordinate access to the limited resource. When access to the resource
is required you want to set up a dynamic connection (binding) to it if the resource is
available. When the use of the limited resource is complete, you want to tear down the
dynamic connection. Thus freeing up the resource and enabling it to participate in a
different connection. The relationship between the resource and its user is independent
of the problem of managing access to the resource. The relationship could be peer-to-
peer, client-server, etc.

For example, consider a client-service type of system. We have a service that can
handle MaxServiceRequests from clients at any point in time and a MaxClients
number of clients that want to make use of the service. MaxClients is greater than
MaxServiceRequests, making the service a limited resource. The service is
implemented by a capsule and will respond to requests from other capsules. We want
to dynamically arrange a connection (binding) between the Client capsule and the
Service capsule only when the client requires the service to perform one of its tasks.

Usually designs which require dynamic structure make use of multiple containment.
With multiple containment, a single capsule instance can exist in more than one
capsule role at a point in time. This allows you to dynamically configure the structure
of the system during execution.

In our example, the client identifies that it needs to perform some work that requires
the use of the service. A request for access to the service is then made. If the service is
available, it is expected that the bindings between the client and the service be
dynamically setup. When the client finished its task, it provides notification that the
service is no longer needed. It is expected that the bindings between the client and the
service then be dynamically torn down.

Forces

When we make use of dynamic structure, we want to do so in a safe fashion. Therefore,
we need to carefully consider how will the connection be arranged. Which capsule
should be involved in two roles (that is, be imported to create the dynamic binding)?
Where is the dynamic relationship to be managed? Can we take full advantage of
structure to set up the dynamic binding and minimize the amount of detail code
required? How scaleable is the solution? Will it handle increases in the number of
clients, number of clients requests, etc.?
Model Examples - Rational Rose RealTime 61

Chapter 5 Patterns
Below is a simplified view of a safe dynamic structure framework. The ClientManager
implements the policy for obtaining access to the service. The
ServiceConnectionManager manages the access to the service. The ServiceAccessor is
the same capsule instance contained in both aspects at run-time (i.e. multiple
containment). The Client communicates directly with Service through the
ServiceAccessor.

In a simple scenario, the client identifies that it has a task to perform. The
ClientManager decides what service is required and makes a request to the
ServiceManager. The request contains the id of the ServiceAccessor. The
ServiceManager decides if the service was available. If it is, it imports the
ServiceAccessor so that it is bound with the service. This results in a connection
between the client and the service (they are dynamically bound). Messages coming
from the client go through the ServiceAccessor and arrive at the Service. Similarily the
messages from the Service go through the ServiceAccessor and arrive at the client. The
ServiceAccessor acts as a conduit for the messages. The ServiceAccessor also acts as
a conduit for future messages (regarding this particular connection) between the
ServiceManager and ClientManager. There is a ClientManager-ServiceManager
communication path on a per-client-service interaction basis.
62 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
We wanted the Client of the service to concentrate on its primary responsibilities. The
policy for establishing a connection in the model example is simple, but in a full robust
system it can become quite complex. Therefore ClientManager is responsible for
requesting the establishment of the connection. It knows what services are required for
the task (there could be more than 1), where to obtain particular kinds of services, what
the retry policy is if the service is initially unavailable, the order in which to obtain and
release the services, etc.. This allows the Client to concentrate on its primary
responsibilities.

The ServiceConnectionManager manages the access to the service. It is responsible for
importing/deporting the user of the service into a multiple containment relationship.
We don't want the service to be imported/deported elsewhere because this would result
in the ServiceConnectionManager losing control over it, leaving it vulnerable to errors
in the user of the service. For example what if the user of the service never gives it up,
what if they destroy the service, what if they import the service again after they release
it, etc. These types of errors would not only affect the ServiceConnectionManager, but
they could potentially cause unexplained behavior for other users of the service.

We also don't want to try and import the client directly into a slot connecting to the
service either. In the system, there are likely to be many different types of clients each
having different interfaces (ports) for communicating with other areas of the system. It
would be difficult for all of them to share the same inheritance hierarchy in order for
them all to be compatible with a single slot with which to access the server. Instead the
element that is to be imported is a ServiceAccessor. The ServiceAccessor has only
relay ports which are bound to conjugated relay ports on the other side of the capsule.
The binding passes straight through the capsule. The ServiceAccessor also does not
have any behavior. This type of capsule is also sometimes known as a pass-through
capsule. It is essentially a "proxy" object that allows two completely independent
capsules to band together.

We wanted to use structure (multiple containment) and explicit binding between ports
rather than unwired ports. This way the connections are visible, observable and highly
controllable. The layer service used by unwired ports does not have these properties.

We want to minimize the amount of detail code necessary and instead take advantage
of structure. We want to avoid the use of data structures to keep track of requests
issued, which services are in use, etc. These data structures don't usually scale up. As
the number of clients and services in the executing model grows, the size of these
structures increases along with the time to manage and maintain them. They are a
source of hidden complexity and potential error.
Model Examples - Rational Rose RealTime 63

Chapter 5 Patterns
The ServiceAccessor has relay ports for the communication between the Client and the
Service, plus it has relay ports to allow for communication between the ClientManager
and the ServiceConnectionManager. ClientManager has a communication path
directly to ServerManager on a per-client-service interaction basis. Messages
regarding the establishment and tearing down of the dynamic connection are sent along
this path. Using the ServiceAcessor in this fashion provides the "context of the request"
to both the ClientManager and the ServiceConnectionManager allowing us to
minimize the amount of detail code they have and the amount of data sent in messages.

Applicability

Use Safe dynamic structure when:

� The binding required between 2 elements is temporary in nature.

� You need to dynamically coordinate access between 2 elements.

❑ Dynamically arrange the connection.

❑ Coordinate the use of the connection.

❑ Tear-down the connection.

� The 2 elements that need to be bound together reside in the same physical process.
If distributed communication is required, you need to use the layer services
(unwired ports). You may still want to use this pattern when controlling client
access to the proxies or controlling proxy access to the service.

� A scaleable, testable, safe solution for dynamic structure through the use of
multiple containment is required.

An overview of the solution and the forces that led to its development are described in
the Motivation section. The benefits of using this safe dynamic structure pattern are
discussed in the Consequences section.

Participants

ClientManager

The ClientManager is responsible for requesting the establishment and destruction of
a connection(s) needed by a client to do work. It manages the policy for the
establishment of a connection(s) between the client and the service(s)

� can determine the best place to obtain a service if offered by more than one
ServiceConnectionManager.
64 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
� can implement the policy for setting up the connections if more than one dynamic
connection is required (i.e. order of setup, what to do if one of the connections can
not be made, etc.). It also ensures all connections have been setup before the client
performs its task.

� implement the retry policy when the service connection can not be obtained. (i.e.
wait and retry, abort, retry immediately, etc.).

� implement the tear down policy when the client is finished its task. (i.e. release the
services in a particular order, delay releasing some of the services in case the
client requires them again very soon after, etc.)

Client

The Client capsule represents the element requiring the use of a service in order to
perform a task. It does not know which specific service is required, it simply identifies
the task it wants to perform and waits for notification to go ahead. In the model
example it is a very simple capsule for purposes of showing the dynamic structure
pattern. Its complexity does not impact the solution. It might have ports for interfacing
with other capsules. It may in turn contain capsule roles. It may be a fixed capsule role
(as shown in the model example), but is more likely to be incarnated or imported into
the capsule role in the ClientManager.

Accessor

The Accessor is an abstract capsule. It contains the relay ports needed for the
coordination and tear down of the connection. It does not have any behavior.

ServiceAccessor

The ServiceAccessor is a subclass of the Accessor capsule. It additionally contains the
relay ports specific to the protocol between the Client and Service capsules. It also does
not have any behavior. It simply acts as a conduit for messages. The solution easily
allows different accessors to be derived based on the nature of interfaces of the
services.

ConnectionManager

The ConnectionManager is an abstract capsule. It is responsible for providing the
framework for establishing and tearing down a dynamic connection. Its client and
coordination capsule roles are based upon the Accessor capsule (also abstract).
Model Examples - Rational Rose RealTime 65

Chapter 5 Patterns
ServiceConnectionManager

The ServiceConnectionManager specializes ConnectionManager to support a
connection to the Service Capsule. It is responsible for controlling access to the
service. The framework easily allows different service connection managers to be
derived based on the nature of the service to be accessed. The
ServiceConnectionManager

� determines if the service is unavailable (busy), and notifies the requestor.

� sets up the dynamic connection between the client and the service and notifies
when the connection is complete.

� destroys the dynamic connection between a user and the service when notified the
service is no longer required.

� confirms when the dynamic connection is about to be torn down.

Service

The Service is a component in the sense that it is a non-trivial, nearly independent, and
reuseable part of a system that fulfills a clear function. The Services fulfils this function
for numerous and possibly different types of clients. The Service has a restriction that
it can interact with only MaxServiceRequests clients at any point in time.

Consequences

Safe Dynamic Structure has the following benefits:

1.Safe dynamic structure

It is ensured that the connection will be set up before the client attempts to use it. The
connection will be torn down only when the user of the connection is finished with the
service. There is very little detail code and no connection data is maintained reducing
the risk of coding errors. The complexity regarding the state of the connection is not
implemented by detail code, but rather by structure. The service library's information
is used rather than the application duplicating the information (further reducing the risk
the information getting out of sync with the actual system).
66 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
2.High cohesion

Each capsule has a single well defined responsibility. The ClientManager manages
only the policy for establishing the connections. It does not create or destroy the
connections. The ServiceConnectionManager is responsible only for the controlling
access to the service. The ServiceAccessor acts only as a conduit for messages. There
is no behavior in this capsule. The capsules being connected require no knowledge of
who or how they are being connected. The user of the service must however adhere to
the clientTransaction protocol ("go" and "done" messages).

3.Low coupling

Capsules are communicating only with the other capsules in their layer of abstraction
or lower. The communication between capsules is specific to the purpose of their
functions. None of the capsules are acting as routers of messages. The number of
messages to setup and terminate a connection is minimal.

Only the serviceAccessor capsule id is sent as data in the initial request for service. The
communication between the capsules involved is purely signal based (no detailed data
required). The protocols are request - success/failure in nature. The results of the
request do not need to be interpreted nor analyzed.

The capsules do not know or depend upon how the other capsules perform their tasks
in response to messages sent. The ClientManager does not know anything about the
service's implementation nor how the connection will be built. The
ServiceConnectionManager does not need to know all the client's interfaces (only the
serviceAccessor is imported). The client identifies the task it wants to perform, it does
not need to know which particular services are needed, where they are located in the
system, how to connect to them, the retry policy, etc. It is completely isolated from the
details of the connection policy that is implemented by the ClientManager. Both ends
of the dynamic connection are unaware that they are part of a multiple containment
hierarchy.

The Client, ClientManager, ServiceConnectionManager and Service capsules can be
developed independently. This is due in part to the low coupling and high cohesiveness
of the elements and in part to the logical layering of the model. The elements being
developed do not mix low level concerns from the problem domain with the high level
concerns of the solution domain. The teams working on the Client and Service can be
specialists in the intricacies of the client and service. While the teams working on the
ClientManager and ServiceConnectionManager can be specialists for higher level
solution concerns such as connection policies.
Model Examples - Rational Rose RealTime 67

Chapter 5 Patterns
4.Testable

You can easily test the capsules which make use of the connection without establishing
a connection. Neither the client nor the service participate in the the establishment nor
tear down of the connection. The interaction protocol between the client and service is
independent of the manner in which they are connected. If they could be tested
independently before introducing the dynamic relationship, they still can. For unit
testing purposes, you can use fixed capsule roles for the connection between the client
and the service in a test container. The test container would tell the client to go
immediately in response to the needToDoWork request.

The establishment of the dynamic relationship can be easily tested. The parties being
connected are independent of the dynamic relationship. The example model uses very
simple client and service capsules to focus on illustrating the safe dynamic structure
pattern.

5.Scalable and flexible

The subclass hierarchy allows you to easily customize the solution for different types
of and services. The use of the ServiceAccessor allows you to easily customize the
solution for many different types of clients.

The high level of cohesiveness results in a flexible solution. The ClientManager and
ServiceConnectionManager capsules can be customized according to your system's
particular requirements.

The solution is scaleable since it takes advantage of the sturcture information
maintained by the service library. Increasing the number of clients, services, etc. do not
cause any internal data structures to grow.

Increasing the number of client results in an increased number of service accessors,
there is no affect on the ServiceConnectionManager. Increasing the number of
ClientManagers results in an increase in the replication factor of the serviceAccess port
on the ServiceConnectionManager only. Increasing the number of Service capsules
instead of replicating the port on the Service capsule has no affect.
68 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
Implementation

Consider the following when implementing Safe Dynamic Structure pattern:

1.ServiceAccessor

When using the ServiceAccessor as a conduit for messages, the messages appear to
need to pass through an extra pair of ports before they arrive at their destination. While
it may look like there is overhead in the use of the ServiceAccessor, this is not the case.
When the UML model is compiled (i.e. code is generated to represent the model), the
relay ports are optimized away in the generated code. Thus messages sent from either
side of the ServiceAccessor arrive directly at their destination's message queue.

2.Use of the coordination capsule role

The coordination capsule role is used to convey the result of the request to access the
service (serviceReady, serviceUnavailable). In the success situation, the result is the
serviceAccessor is imported twice (once as a coordinator, once as a client). The benefit
of using the coordination role is it makes it simple to ensure the serviceAvailable
message is sent to the right requestor. If you wanted to send this message when the
serviceAccessor is in its client role, you would need to know which slot it was imported
into (in order to know the port index on which to send the message). This can still be
determined, it requires looking at each client instance and determining if it equals the
one which was just imported. Use the frame service's incarnationAt method to get each
client instance's id. If MaxServiceRequests is small you may find this more efficient
than doing the second import. Keep in mind though that the improvement would only
be noticeable if the ServiceConnectionManager handled a high volume of requests and
the cardinality of the client capsule role is low.

3.Service role cardinality

The example shows a single service with a port with a cardinality greater than one.
There are no restrictions in the pattern preventing the Service from having a cardinality
greater than one. In the end the cardinality of the client capsule role just needs to match
the number of bindings to the Service supported.
Model Examples - Rational Rose RealTime 69

Chapter 5 Patterns
4.ServiceConnectionManager

The example shows a ServiceConnectionManager which does not interact with the
service. When building your model, you will want to determine if the your Service
needs to notify the ServiceConnectionManager of errors. Whether the
ServiceConnectionManager needs to reset it on termination of a connection, etc.. As
well, the ServiceConnectionManager may also implement some usage restrictions, for
example limiting the length of the access. The ServiceConnectionManager could be
extended to support your requirements.

5.Fixed Client and ServiceAccessor capsule roles in the
ClientManager

The example shows fixed Client and ServiceAccessor capsule roles in the
ClientManager. Depending on your requirements, you can instead import or
dynamically incarnate the Client and ServiceAccessor in the ClientManager. In fact if
you are importing the Client, you may prefer to import a pass through representive of
the Client. Possibly even reusing this pattern.

Building an application using the Safe Dynamic Structure
pattern

When applying the pattern to your application, you may find it easier to start with the
sample implementation given in the example model.

� Import the safe dynamic structure package from the model example into your
model.

� Determine the capsules which correspond to the "Client" and "Service"
components. Determine the protocol(s) which govern their communication.

� Create a subclass of the Accessor capsule. Specialize it by adding the relay ports
for the protocol(s) just identified.

� Create a subclass of the ConnectionManager capsule. Specialize it for your
service by:

❑ overriding the client capsule role's class with the Accessor subclass just
created.

❑ overriding the client capsule role's cardinality with a constant that represents
the maximum number of users of your service allowed.

❑ creating a capsule role for your capsule representing the service. Connect up
the bindings between the client and the service.

❑ overriding the choice point in the behavior to check if active is less than the
constant representing the maximum number of users allowed.
70 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
� Modify your client component to utilize the ClientTransaction protocol.

� Create a new capsule representing your ClientManager. This capsule will be very
specific to your application since it implements your connection and retry
policies. The ClientManager in the example shows a simple implementation of
such a capsule. When creating your ClientManager, you may find it easier to
create it from a copy of the ClientManager capsule. To create a copy of the
ClientManager, create a subclass of the ClientManager capsule and then delete the
inheritance relationship. When you delete the inheritance relationship, activate the
checkbox to absorb all superclass properties. This way you will have a copy of the
ClientManager that you can modify as drastically as desired.

Accessor Capsules

This document briefly introduces the concept of an Accessor capsule. For detailed
examples, please look at and run the various systems contained in the Rational Rose
RealTime AccessorExample model.

What is an Accessor

An Accessor is a capsule that contains two or more relay ports. It must be possible to
legally connect each relay port to at least one other compatible relay port on the
Accessor. A pure Accessor contains no end ports and no internal behavior. At least two
ports must be internally connected for an Accessor to be usable at run-time.

This is the simplest possible Accessor:

The following diagram shows a more complex Accessor:
Model Examples - Rational Rose RealTime 71

Chapter 5 Patterns
The following diagram shows a family of Accessors that belong to the same
inheritance hierarchy:

Some Uses for Accessors

An Accessor can be used to dynamically bind pairs of capsules at run-time.
72 Model Examples - Rational Rose RealTime

Safe Dynamic Structure Pattern
In the following simple configuration, the optional Accessor functions as an on/off
switch. If the Accessor is currently incarnated (if the switch is on), then messages
between capsules one and two will arrive at their destination. If the Accessor is not
currently incarnated (if the switch is off), then messages will not be able to get through.
The containing capsule controls whether or not messages arrive by dynamically
incarnating and destroying the Accessor.

In the next configuration, the Accessor serves as a three-way switch.

� If the Accessor is not incarnated, then the switch is off.

� If the Accessor’s pOneConj port is internally connected to port pOneAltA, then
message flow will be switched between capsules one and two.

� If the Accessor’s pOneConj port is internally connected to port pOneAltB, then
message flow will instead be between capsules one and three.

An Accessor can also be used to dynamically connect capsules contained within
multiple subsystems, using multiple containment. An Accessor is incarnated within
Subsystem X and is then passed in a message to Subsystem Y using either a wired or
unwired communication path (not shown in diagram). Subsystem Y imports the
Accessor into one of several possible plug-in capsule roles, effectively connecting
capsules contained within the two subsystems.

In the following diagram, at run-time, capsule one can be connected to either capsule
two or three depending on whether the SubsystemX accessor is imported into
SubsystemY is accessorTwo or accessorThree plug-in capsule role.
Model Examples - Rational Rose RealTime 73

Chapter 5 Patterns
74 Model Examples - Rational Rose RealTime

Index
A
Accessor

Capsules 71
defined 71
uses 72

Accessor Capsules 71

B
building

using the Safe Dynamic Structure
patterndesign patterns

building using Safe Dynamic
Structure patterns 70

C
C model examples 47

CardGame 47
SendReceiveData 47

C++ Model examples 13
Callbacks 13
CoffeeMachine 13
DynamicForwarding 13
DynamicStructurePatterns 13
GameOfLife 13
Model Examples - Rational Rose RealTime

IntegratingData 13
IsrExample 13
ObserverPattern 13
SendReceiveData 13
SocketInterfaceExample 14
TrafficLights 14
UserPrompt 14

Callbacks 13
Callbacks example model

Callbacks Returning Data 45
Capsule concurrency 39
Capsule encapsulation 39
Common, Unprotected Data access

during a send 39
Control Flow of an inter-thread mes-

sage send 41
information 38
Multiple Callback Approach 44
Recommended Design Approach 42
Rose RealTime constraints 39
Sample Model Outline 45
Simple, Single Callback Approach 43

Callbacks model example (C++) 13, 37
CardGame model example (C) 47
Chain of Responsibility Pattern 56
75

Index
CoffeeMachine model example 13
CoffeeMachine model example (C++)

13, 14
Command Line Model Debugger 7, 13,

47, 49, 51
Command line model debugger 7, 13, 47,

49, 51
coordination capsule role 69

D
design patterns

applicability 64
chain of responsibility 56
consequences 66
factory method 57
implementation 69
Mediator 52
motivation 61
observer 58
participants 64
safe dyncmic structure 60

design patterns (example models) 51
DynamicForwarding model example

(C++) 13, 14
DynamicStructurePatterns model exam-

ple (C++) 17
DynamicStructurePatters model example

(C++) 13

E
example models

C model examples 47
design patterns 51
76

examples
C++ models 13
directory 7
tips for browsing 8
Unix directory 7
Windows directory 7

extclasses.a 16
extclasses.cpp 16
extclasses.h 16

F
Factory Method Pattern 57

G
GameOfLife model example (C++) 13,

15

I
IntegratingData model example (C++)

13, 15
ISR interfacing strategy (C++ model ex-

ample) 19
IsrExample model example

Application - SomeInterruptProces-
sor 27

class descriptions 24
example model 23
expanding on the Example 29
External Code 29
information 19
ISR interfacing strategy 19
ISRLayer - BaseCustomIPCLayer 25
ISRLayer - SolarisISRLayer 25
ISRLayer - TornadoISRLayer 27
Model Examples - Rational Rose RealTime

Index
model description 23
Package Application 24
Package ISRLayer 24
Package TestSolarisItimer 24
Package TestTornadoWD 24
strategy 20
supporting files 18
TestSolarisItimer and TestTornad-

oWD 28
IsrExample model example (C++) 13, 18

M
Mediator Pattern 52
model

C++ examples 13
model examples

RRTEI 49
models

tips for browsing model examples 8

O
Observer Pattern 58
ObserverPattern model example (C++)

13, 17

R
referenced configurations

model examples 11
RRTEI example models

CreateCapsule1State 50
Various SummitBasic sample scripts

50
RRTEI model examples 49
Model Examples - Rational Rose RealTime

S
Safe Dynamic Structure Pattern 60
SendReceiveData model example (C) 48
SendReceiveData model example (C++)

13, 16
Service role cardinality 69
ServiceAccessor 69
ServiceConnectionManager 70
SocketInterfaceExample example model

Build Versus Buy 30
description 31
IPC 29
overview 31
Pre-requisites 30

SocketInterfaceExample model example
(C++) 14, 29

sstream.h 16

T
TrafficLights model example (C++) 14,

15

U
UserPrompt model example (C++) 14, 16
77

	Model Examples
	Examples Introduction
	Tips for browsing model examples
	Referenced Configurations

	C++ Model Examples
	CoffeeMachine
	DynamicForwarding
	TrafficLights
	GameOfLife
	IntegratingData
	SendReceiveData
	UserPrompt
	ObserverPattern
	DynamicStructurePatterns
	IsrExample
	Background Information
	The ISR Interfacing Strategy
	The Strategy
	ISR Interface Example Model
	Example Model Description
	Class Descriptions
	Expanding on the Example

	SocketInterfaceExample
	Why use IPC?
	Build Versus Buy
	Pre-requisites
	Overview
	Socket Example Description

	Callbacks
	Background Information
	Rose RealTime Constraints
	Capsule encapsulation
	Capsule concurrency
	Common, Unprotected Data access during a send
	Recommended Design Approach
	Simple, Single Callback Approach
	Multiple Callback Approach
	Callbacks Returning Data
	Sample Model Outline

	C Model Examples
	CardGame
	SendReceiveData

	RRTEI Examples
	Various SummitBasic sample scripts
	CreateCapsule1State

	Patterns
	Gang of Four Design Patterns
	Mediator Pattern
	Chain of Responsibility Pattern
	Factory Method Pattern
	Observer Pattern

	Safe Dynamic Structure Pattern
	Motivation
	Design problem
	Forces

	Applicability
	Participants
	ClientManager
	Client
	Accessor
	ServiceAccessor
	ConnectionManager
	ServiceConnectionManager
	Service

	Consequences
	1.Safe dynamic structure
	2.High cohesion
	3.Low coupling
	4.Testable
	5.Scalable and flexible

	Implementation
	1.ServiceAccessor
	2.Use of the coordination capsule role
	3.Service role cardinality
	4.ServiceConnectionManager
	5.Fixed Client and ServiceAccessor capsule roles in the ClientManager
	Building an application using the Safe Dynamic Structure pattern

	Accessor Capsules
	What is an Accessor
	Some Uses for Accessors

	Index

