
Rational Software Corporation
C Porting Guide
RATIONAL ROSE® REALTIME

VERSION: 2002.05.00

PART NUMBER: 800-025102-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025102-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Chapter 1 Introduction 1

Other resources 2

Chapter 2 Before starting a port 3

OS knowledge and experience 3

Tool chain functionality 3

OS capabilities 4

Simple non-Rose RealTime program on target 5

TCP/IP functionality 6

Floating point operations 6

Standard input/output functionality 6

Debugging 6

Training 7

Support 7

What to do before calling Rational support 7
C Porting Guide - Rational Rose RealTime i

Chapter 3 Porting the TargetRTS 9

Phases of a port 9

Choose a configuration name 10

Create a setup script 12

TargetRTS makefiles 14

Default makefile 17

Target makefile 20

Libset makefile 21

Config makefile 21

Chapter 4 Porting the TargetRTS for C 27

Platform-specific implementation 32
Method RTTimespec_clock_gettime(timespec) 33
Constructor
RTThread_construct(this,job,priority,stacksize)
33
Class RTMutex 33
Class RTSyncObject 34
main() function 35
Class RTMain 36
Method RTStdio_putString() 36
Method RTDebuggerInput_nextChar() 37
Class RTTcpSocket 37
Class RTIOMonitor 37
File main.c 37

Adding new files to the TargetRTS 37
The MANIFEST.c file 38
Regenerating make dependencies 38
ii C Porting Guide - Rational Rose RealTime

Chapter 5 Modifying the error parser 39

How the error parser works 40

Reusing an existing error parser 42

Creating a new error parser 42

Chapter 6 Testing and Tuning the TargetRTS 45

Testing the TargetRTS 45

Disabling TargetRTS features for performance 45

Target compiler optimizations 46

Target operating system optimizations 46

Specific TargetRTS performance enhancements 46

Chapter 7 Common problems and pitfalls 47

Problems and pitfalls with target toolchains 47
Compiler optimizations 48
Linker configuration file 48
System include files 48

Problems and pitfalls with TargetRTS/RTOS interaction 49
Return codes for POSIX function calls 49
Thread creation 49
Real-time clock 49
Signal handlers 50
RTOS supplies main() function 50
Default command line arguments 50
Exiting application 51

Problems and pitfalls with target TCP/IP interfaces 51
select() statement 52
gethostbyname() reentrancy 52
C Porting Guide - Rational Rose RealTime iii

Chapter 8 TargetRTS porting example 53

Choosing the configuration name 53

Create setup script 54

Create makefiles 55
Libset makefile 55
Target makefile 57
Configuration makefile 57

TargetRTS configuration definitions 58

Code changes to TargetRTS classes 58

Building the new TargetRTS 60

Index 61
iv C Porting Guide - Rational Rose RealTime

Chapter 1

Introduction

The TargetRTS is the set of run-time services that provide a framework
on which a Rational Rose RealTime model can run. It provides the run-
time implementation of the UML-RT constructs used in the model.
Figure 1 shows the context of the TargetRTS in building an
executable program.

This guide describes the steps required to port the TargetRTS to a new
target environment. The new target may simply be a new version of an
operating system or compiler on a UNIX host. In more complicated
cases it may be a new operating system, compiler and target hardware.
The latter scenario is of more interest to this guide, although all the
information required for the former scenario is provided.
C Porting Guide - Rational Rose RealTime 1

Chapter 1 Introduction
This guide is specifically designed for software development
professionals familiar with the target environment they intend to port
to. It is assumed that the reader has significant knowledge and
experience with the development environment, operating system, and
target hardware.

Figure 1 The TargetRTS in context

Other resources

Before starting a port, ensure that you have the following documents
and material available:

� Operating system documentation (for system calls, available
services)

� Compiler documentation

� Sample programs that come with compiler or operating system (use
these to test your toolchain)

� Rose RealTime C Guide

� Rose RealTime example models (to test the port)
2 C Porting Guide - Rational Rose RealTime

Chapter 2

Before starting a port

This chapter describes what you need to do before starting the port.

OS knowledge and experience

Knowledge and experience with the target operating system is key to a
successful port. This knowledge should extend to development
environment and target hardware. The type of knowledge required
includes such details as synchronization mechanisms, thread
creation, memory management, timing, device drivers, board support
packages, memory maps, TCP/IP support, priority and scheduling
schemes, and so forth. See “OS capabilities” on page 4. for a list of OS
capabilities required by the TargetRTS.

Experience with porting the TargetRTS to other platforms will aid
greatly, as the ports tend to follow a pattern. For each development
environment and operating system there are bound to be a few
surprises. See “Common problems and pitfalls” on page 47.

Tool chain functionality

A functioning development environment must be in place before
porting can begin. This includes the correct installation of tools such
as linkers, compilers, assemblers and debuggers. To build the
TargetRTS you must have working version of Perl for your development
host (version 5.002 or greater). Perl is used extensively in the makefiles
for the TargetRTS.
C Porting Guide - Rational Rose RealTime 3

Chapter 2 Before starting a port
It is also important to initialize environment variables for inclusion of
header files and location of library files. An easy way to test this is the
creation of simple program, such as “Hello World”, which is compiled
and run on the target. This step is described in “Simple non-Rose
RealTime program on target” on page 5.

OS capabilities

The target operating system must have a set of services that satisfy the
requirements of the TargetRTS. In general, most commercial real-time
operating systems (RTOSes) have these services. Before starting a port,
check for these basic capabilities in the target RTOS. Table 1 lists the
TargetRTS feature and its corresponding RTOS service

Table 1 Required operating system features for the C TargetRTS

TargetRTS Feature Operating System Service

RTTimespec_getclock()

(method required)
A function is required to return the current time. The more
precision the better. In general, an RTOS will return time
with precision of its internal timer.

RTThread_construct()

(constructor required for
threaded targets)

Task creation function - must be able to create task or thread
with specified stack size and priority. Be aware of priority
scheme - some RTOSes use 0 as highest priority while others
may use 0 for lowest priority.

RTMutex

(all 4 methods required for
threaded targets)

A mutual exclusion mechanism. Some RTOSes provide opti-
mized mutex service along with semaphores.

RTSyncObject

(all 5 methods required for
threaded targets)

Semaphore, mailbox, signal - service must provide infinite
and timed blocking.

RTStdio_putString()

(output to console)
Standard output - this may not be provided out-of-the-box.
For embedded targets, device drivers added to the board sup-
port package may be required. Output is generally routed to
external serial ports but TCP/IP or UDP/IP may be used
instead.

RTDebuggerInput_nextChar
()
(input from console)

Standard input, as above. This can be removed from the Tar-
getRTS via configuration options.
4 C Porting Guide - Rational Rose RealTime

Simple non-Rose RealTime program on target
Simple non-Rose RealTime program on target

An easy way to test the tool chain functionality is to create a simple
program that prints out “Hello World” on the console.

This program should not use any TargetRTS code or libraries. Compile
and link the program outside of Rose RealTime using your tool chain,
and download the executable to the target. If it executes successfully,
then your development environment is ready.

Further testing is strongly recommended. This would include some
basic RTOS services such as thread creation in your test program.
Again, no TargetRTS code or libraries should be used. Many RTOSes
provide example programs to compile and run. Try these out and verify
the functionality of your setup. If you are using a source-level
debugger, verify that you can step through the source code and
examine variables. If the debugger is aware of operating system data
structures, check if you can examine these. The purpose of this testing
to ensure that all of the required operating system features are
operational and understood before attempting the port of the
TargetRTS.

Target Observability TCP/IP support is required. This includes device drivers in
the board support package for the ethernet hardware on the
target. If not provided this is a substantial do-it-yourself
project. Target Observability can be removed from the Targe-
tRTS via configuration options.

malloc, free The RTOS must support some sort of memory management.
In general, this is hidden from the user by the compiler as the
RTOS resolves the malloc and free symbols.

main() function Some RTOSes have their own main function defined. If so,
then the main function in the TargetRTS must be redefined.

TargetRTS Feature Operating System Service
C Porting Guide - Rational Rose RealTime 5

Chapter 2 Before starting a port
TCP/IP functionality

In order to support Target Observability for the new port, the target
operating system must provide a compatible TCP/IP stack. In general,
the TCP/IP layer must support the BSD sockets interface, that is, the
creation and deletion of sockets, functions such as socket(),
connect(), bind(), listen(), select(), and so forth. Typically,
RTOSs try to provide a BSD-compliant TCP/IP stack. TCP/IP
functionality can be a common source of problems with new ports. See
“Common problems and pitfalls” on page 47.

If a TCP/IP stack is not provided, then you must implement one, which
might require significant effort. Alternatively, the use of SLIP or PPP
over a serial connection may be an option, but would require
customizations. It would also affect the performance of Target
Observability.

Floating point operations

Some of the C TargetRTS classes require the use of floating point
operations. Investigate the support for floating point on your target
system.

Standard input/output functionality

The TargetRTS needs standard input and output to a console for log
messages, panic messages, and debugger input/output. This may
already be provided by the target development or operating system.
Some embedded RTOS and development tools may not provide
standard input and output, and instead require the addition of serial
port device drivers to the board support package. The use of TCP/IP or
UDP/IP to provided standard input/output is also an option.

Debugging

The use of a source-level debugger that provides some sort of operating
system awareness is the best development tool for the port. This is the
easiest way to examine source code, memory, variables, registers,
stacks, and so forth.
6 C Porting Guide - Rational Rose RealTime

Training
Training

Training is an important component of a successful port. Rational
offers training courses to help users understand, use, and port the
TargetRTS. Your RTOS vendor may also offer training and this is
recommended as well.

Support

Rational provides support for the standard ports as identified in the
Installation Guide. All reported issues will be duplicated on one or more
of the standard referenced configurations.

What to do before calling Rational support

The following steps should be followed before calling Rational support
for help with a custom port of the TargetRTS.

1. Get to know your compiler/linker/debugger tool chain. Be sure it
is installed correctly, and that programs can be compiled, linked,
downloaded to the target hardware and run successfully.

2. Get to know your target operating system. Be sure that an example
multithreaded program that exercises the various features of the
RTOS is compiled, linked and downloaded to the target hardware
and runs successfully. Do not use Rational Rose RealTime for this
example program. This should be produced independently to verify
tool chain and RTOS functionality.

3. Read this guide and the C Reference included with Rational Rose
RealTime to understand the required capabilities of the RTOS
needed to support the TargetRTS.

4. Ensure that the TCP/IP stack for your target platform is
operational. In particular the sockets interface must be working,
and additional utilities such as gethostbyname() must be
functional.
C Porting Guide - Rational Rose RealTime 7

Chapter 2 Before starting a port
5. Test the functionality of the standard input and output for your
target. This will probably be verified in earlier steps.

6. Learn how to use the target debugger. This will be a useful tool
when doing the port.

7. Get as much training on Rational Rose RealTime, the RTOS, and
your tool chain as possible.
8 C Porting Guide - Rational Rose RealTime

Chapter 3

Porting the TargetRTS

The most common customization to the TargetRTS is porting it to a
new platform. A platform is defined by the TargetRTS as the
combination of the operating system, target hardware and the
compiler/linker tool chain. A new operating system requires the most
work since it often requires implementation changes. However, a new
compiler may also require changes, in particular, to the configuration
files.

The ports supported by Rational Software and shipped with the
TargetRTS source are a good place to begin considering design
alternatives for a new port. The root directory for the TargetRTS source
will be referred to from this point forward using the environment
variable $RTS_HOME. It is usually defined as
$ROSERT_HOME/C/TargetRTS. For WinNT, assume
%ROSERT_HOME%\C\TargetRTS. In the sections that follow, examples
are extracted from this source.

Phases of a port

The major steps for implementing the port are as follows:

� Performing pre-port steps (see “Before starting a port” on page 3).

� Naming the platform (see “Choose a configuration name” on
page 10).

� Defining the setup script (see “Create a setup script” on page 12).

� Defining the platform-specific makefiles (see “TargetRTS makefiles”
on page 14).
C Porting Guide - Rational Rose RealTime 9

Chapter 3 Porting the TargetRTS
� Defining the platform-specific header files (see “Porting the
TargetRTS for C” on page 27).

� Defining the platform-specific implementation of TargetRTS
features (see “Preprocessor definitions” on page 28).

� Building the new TargetRTS and fix compile and link problems (see
“Building the new TargetRTS” on page 60).

� Testing the new TargetRTS and tune the performance of the
TargetRTS (see “Testing and Tuning the TargetRTS” on page 45).

Choose a configuration name

The first step in implementing a port is picking the name for the
configuration. This name and parts of it are used by the various
loadbuild tools to find the files needed to build the TargetRTS for that
configuration. It is also used during compilation of the Rose RealTime
models. There are two parts to the name: <target> and <libset>. The
resulting names for TargetRTS configurations are defined as the
concatenation of the target and libset names in the following pattern:

<config> ::= <target>.<libset>

Examples are given in Table 2

Table 2 Example configuration names.

Config Name Description

HPUX10S.hppa-gnu-2.8.1 HP-UX 10.x SingleThreaded on a HP-PA pro-
cessor using Free Software Foundation gnu
version 2.8.1

SUN5T.sparc-gnu-2.8.1 Solaris 2.x MultiThreaded on a Sparc proces-
sor using Free Software Foundation gnu ver-
sion 2.8.1
10 C Porting Guide - Rational Rose RealTime

Choose a configuration name
Target name

The target name presents the implementation-specific components of
the TargetRTS. These components are generally specific to a given
configuration, of a given version, of a given operating system. The
target name is also used to name the configuration of the target, for
example, single versus multi-threaded. The target name is defined as
follows:

<target> ::= <OS name><OS version><RTS config>

For example: SUN5T. The components of <target> are defined as
follows:

<OS name> identifies the operating system (for example, SUN)

<OS version> identifies the major version of that operating system (for
example, 5 meaning SunOS 5.x, that is, Solaris 2.x). Do not use
periods in the OS version, as this will confuse the make utility when
trying to build the TargetRTS.

<RTS config> is a single letter to further identify the configuration.
Currently only ‘S’ for single-threaded and ’T’ for multi-threaded
configurations are supported.

SUN5S.sparc-SunC-5.0 Solaris 2.x SingleThreaded on a Sparc proces-
sor using Sun Microsystems SPARCUtils C
version 5.0

NT40T.x86-VisualC++-6.0 Windows NT 4.0 MultiThreaded on an x86
processor using Microsoft Visual C version 6.0

TORNADO2T.ppc-cygnus-
2.7.2-960126

Tornado 2.x MultiThreaded on a Motorola
PowerPC processor using Cygnus C version
2.7.2-960126

Config Name Description
C Porting Guide - Rational Rose RealTime 11

Chapter 3 Porting the TargetRTS
Libset name

Although the actual libset names can be chosen arbitrarily, by
convention those used by Rose RealTime are defined as follows:

<libset> ::= <processor>-<compiler name>-<compiler version>

For example: sparc-gnu-2.8.1. The components of <libset> are
defined as follows:

<processor> identifies processor architecture name

<compiler name> identifies the compiler product name or the vender
for the compiler

<compiler version> identifies the compiler version. It is OK to use
periods in the compiler version text.

Create a setup script

The setup script is a file (setup.pl) containing Perl commands that
set up the environment for the compilation of the TargetRTS for the
platform. This file is contained in the
$RTS_HOME/config/<config> directory. If the target tool chain
environment variables are part of a user’s standard environment, then
the variables in the setup.pl file may not be necessary. These
environment variables defined in the setup.pl file are not available
when using the toolset to build user models.

The commands in the setup.pl file are executed before any of the
TargetRTS compilation tools are invoked. Typically, definitions for
locations of files on the host platform are included in this file. This
usually includes setting the shell environment variable PATH to point
to the appropriate tools. Two variables must be defined for all targets,
namely the $preprocessor variable and the $supported variable.
The $preprocessor variable defines the preprocessor command
appropriate for the compilation environment, and is used to
automatically generate source code dependencies for the TargetRTS.
The $supported variable defines whether this target is supported by
Rose RealTime. Valid values for $supported are ‘Yes’, ‘No’ and
’Custom’. For a custom port, we recommend the value ’Custom’. This
variable has no impact on how the port can be compiled or used.
12 C Porting Guide - Rational Rose RealTime

Create a setup script
Another variable to note is $target_base. This variable indicates
that the implementation of the target-specific features of the
TargetRTS are rooted in the same source directory as the
$target_base target. For example, for the TORNADO2 targets, the
$target_base is set to ‘TORNADO101’. Therefore, TORNADO2
specific implementations of TargetRTS classes are found in the same
source directory as those of the TORNADO101 target, that is,
$RTS_HOME/src/target/TORNADO101.

The example file, $RTS_HOME/config/TORNADO2T.ppc-cygnus-
2.7.2-960126/setup.pl, contains the following:

if($OS_HOME = $ENV{'OS_HOME'})
{

$os = $ENV{'OS'} || 'default';

if($os eq 'Windows_NT')
{

$wind_base = $ENV{'WIND_BASE'};
$wind_host_type = 'x86-win32';
$ENV{'PATH'} = "$wind_base/host/$wind_host_type/bin;$ENV{'PATH'}";

}
else
{

$rosert_home = $ENV{'ROSERT_HOME'};
chomp($host = `$rosert_home/bin/machineType`);

$wind_base = "$OS_HOME/wrs/tornado-2.0";
if($host eq 'sun5')
{

$wind_host_type = 'sun4-solaris2';
}
elsif($host eq 'hpux10')
{

$wind_host_type = 'parisc-hpux10';
}
$ENV{'PATH'} = "$wind_base/host/$wind_host_type/bin:$ENV{'PATH'}";
$ENV{'WIND_BASE'} = "$wind_base";

}

C Porting Guide - Rational Rose RealTime 13

Chapter 3 Porting the TargetRTS
$ENV{'GCC_EXEC_PREFIX'} ="$wind_base/host/$wind_host_type/lib/gcc-
lib/";

$ENV{'VXWORKS_HOME'} = "$wind_base/target";
$ENV{'VX_BSP_BASE'} = "$wind_base/target";
$ENV{'VX_HSP_BASE'} = "$wind_base/target";
$ENV{'VX_VW_BASE'} = "$wind_base/target";
$ENV{'WIND_HOST_TYPE'} = "$wind_host_type";

}

$preprocessor = "ccppc -DPRAGMA -E -P >MANIFEST.i";
$target_base = 'TORNADO101';
$supported = 'Yes';

Note: The setup file is not used when compiling the generated source,
neither from within the toolset, nor from the command line. The
environment variables defined in the setup file must instead be defined
in the user’s environment before starting the Rose RealTime toolset. In
the given example, the setup file assumes that the user’s environment
has the variable OS_HOME already defined as a partial path to where the
RTOS is installed.

TargetRTS makefiles

Two types of builds are supported by the makefiles for the TargetRTS:
compilation of the TargetRTS libraries and compilation of the
generated code. The platform-specific definitions are required by both
and are thus placed in separate files. The sequencing of the makefiles
for the two paths are shown in Figure 2, “Sequencing of Makefiles,” on
page 15.
14 C Porting Guide - Rational Rose RealTime

TargetRTS makefiles
Figure 2 Sequencing of Makefiles
C Porting Guide - Rational Rose RealTime 15

Chapter 3 Porting the TargetRTS
As shown, there is a makefile for each of the following:

� $RTS_HOME/src/Makefile is the root makefile for TargetRTS
compilation. It invokes a Perl script called Build.pl. This script
checks the dependencies for the TargetRTS source code and
generates a makefile called depend.mk in the
$RTS_HOME/build-<config> directory. It then builds the
TargetRTS from this directory. This makefile and Build.pl
should not be customized, and will not be discussed further in this
document.

� $RTS_HOME/src/nt-main.mk (main.mk for Unix) contain the
main definitions for compiling the TargetRTS libraries. These
makefiles should not be customized, and will not be discussed
further in this document.

� The generated makefile for the model being compiled. See the C
Guide for more details on how this makefile is generated.

� $RTS_HOME/codegen/ms_nmake.mk (gnu_make.mk for Gnu,
unix_make.mk for other Unix) contain the main definitions for
compiling a model. These makefiles should not be customized, and
will not be discussed further in this document.

� $RTS_HOME/libset/default.mk, the default macro definitions
that may be overridden by the platform specific makefiles. See
“Default makefile” on page 17.

� $RTS_HOME/libset/<libset>/libset.mk is the definition
specific to the compiler. See “Libset makefile” on page 21.

� $RTS_HOME/target/<target>/target.mk is the definition
specific to the target operating system. See “Target makefile” on
page 20.

� $RTS_HOME/config/<config>/config.mk is the definition
specific to the combination of the compiler, operating system and
TargetRTS configuration. See “Config makefile” on page 21.

The default.mk, libset.mk, target.mk, and config.mk
makefiles are used to compile both the TargetRTS libraries and the
model.
16 C Porting Guide - Rational Rose RealTime

Default makefile
Compilation of the model is usually performed by right-clicking on
your favorite Component in the toolset and choosing Build >
Build... > Generate and compile. , or set the Component as
default and hit [F7]. It is, however, also possible to just generate the
source and make files needed from within the toolset, and compile from
the $UPDATE_DIR by issuing the make command (nmake for Windows
NT).

Compilation of the TargetRTS is performed from the $RTS_HOME/src
directory by issuing the command

make <target>.<libset>

For example in Unix:

make SUN5T.sparc-gnu-2.8.1

For example in Windows NT:

nmake CONFIG=NT40T.x86-VisualC++-6.0

Default makefile

The target.mk, libset.mk and config.mk makefiles are expected
to override defaults defined in $RTS_HOME/libset/default.mk.
The defaults are as follows:

======== General Defaults ===

CONFIG = $(TARGET).$(LIBRARY_SET)

Defaults for macros which may be modified by
libset/$(LIBRARY_SET)/libset.mk
target/$(TARGET)/target.mk
or config/$(CONFIG)/config.mk

PERL = rtperl
FEEDBACK = $(PERL) "$(RTS_HOME)/tools/feedback.pl"
MERGE = $(PERL) "$(RTS_HOME)/tools/merge.pl"
NOP = $(PERL) "$(RTS_HOME)/tools/nop.pl"
RM = $(PERL) "$(RTS_HOME)/tools/rm.pl"
RMF = $(RM) -f
TOUCH = $(PERL) "$(RTS_HOME)/tools/touch.pl"
C Porting Guide - Rational Rose RealTime 17

Chapter 3 Porting the TargetRTS
codegen makefiles stuff

RTCOMP = $(PERL) "$(RTS_HOME)/codegen/rtcomp.pl"
RTLINK = $(PERL) "$(RTS_HOME)/codegen/rtlink.pl"
VENDOR = generic

Macros used when make must recurse

MAKEFILE = Makefile

Macros used when creating an object file from a C source file

CC = $(FEEDBACK) -fail \
 CC should be defined by libset.mk or generated makefile
DEBUG_TAG = -g
DEPEND_TAG = -I
DEFINE_TAG = -D
INCLUDE_TAG = -I
LIBSETCCEXTRA =
LIBSETCCFLAGS =
OBJECT_OPT = -c
OBJOUT_OPT = -o
OBJOUT_TAG =
SHLIBCCFLAGS = -PIC
TARGETCCFLAGS =

Macros used when creating an object library from a set of object files

AR_CMD = $(PERL) "$(RTS_HOME)/tools/ar.pl"
AR = $(AR_CMD)
LIBOUT_OPT =
LIBOUT_TAG =
RANLIB = $(NOP)

Macros used when creating a shared library from a set of object files

SHLIB_CMD = $(FEEDBACK) -fail Shared libraries not supported.
SHLIBOUT_OPT = -o
SHLIBOUT_TAG =
18 C Porting Guide - Rational Rose RealTime

Default makefile
Macros used when creating an executable from a set of object files,
libraries

LD = $(CC)
DIR_TAG = -L
LIBSETLDFLAGS =
LIB_TAG = -l
OT_LIB_TAG = -l
TARGETLDFLAGS =
TARGETLIBS =
EXEOUT_OPT = -o
EXEOUT_TAG =

Macros used to construct names of various kinds of files

EXEC_EXT =
LIB_PFX = lib
LIB_EXT = .a
C_EXT = .c
OBJ_EXT = .o
SHLIB_PFX = lib
SHLIB_EXT = .so

========= Shared Macros ===

RTCODEBASE can be overridden in the target/$(TARGET)/target.mk file
RTCODEBASE = $(PLATFORM)

RTSYSTEM_INCPATHS = \
 $(INCLUDE_TAG)"$(RTS_HOME)/libset/$(LIBRARY_SET)" \
 $(INCLUDE_TAG)"$(RTS_HOME)/target/$(TARGET)" \
 $(INCLUDE_TAG)"$(RTS_HOME)/include"

RTS_LIBRARY = $(RTS_HOME)/lib/$(CONFIG)

SYSTEM_LIBS = $(DIR_TAG)"$(RTS_LIBRARY)" \
 $(OT_LIB_TAG)ObjecTimeC \
 $(OT_LIB_TAG)ObjecTimeCTransport \
 $(OT_LIB_TAG)ObjecTimeC \
 $(OT_LIB_TAG)ObjecTimeCTransport
C Porting Guide - Rational Rose RealTime 19

Chapter 3 Porting the TargetRTS
========= Linking ==

LD_OUT = $@

LD_HEAD = \
 $(EXEOUT_OPT) $(EXEOUT_TAG)$(LD_OUT) \
 $(LIBSETLDFLAGS) \
 "$(RTS_LIBRARY)/main$(OBJ_EXT)"

ALL_OBJS_LIST = $(ALL_OBJS)

LD_TAIL = \
 $(SYSTEM_LIBS) \
 $(TARGETLDFLAGS) \
 $(TARGETLIBS)

======== Compiling ===

CC_HEAD = \
 $(OBJECT_OPT) $(OBJOUT_OPT) $(OBJOUT_TAG)$@ \
 $(LIBSETCCFLAGS) \
 $(TARGETCCFLAGS) \
 $(RTSYSTEM_INCPATHS)

CC_TAIL =

==

Target makefile

The $RTS_HOME/target/<target>/target.mk makefile provides
definitions specific to the operating system. The definitions in this
makefile override the defaults in $RTS_HOME/libset/default.mk.
An example target makefile file,
$RTS_HOME/target/SUN5T/target.mk, contains the following:

TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT
TARGETLDFLAGS = $(LIB_TAG)nsl $(LIB_TAG)socket -R$(RTS_LIBRARY)
TARGETLIBS = $(LIB_TAG)posix4 $(LIB_TAG)thread
20 C Porting Guide - Rational Rose RealTime

Libset makefile
Libset makefile

The $RTS_HOME/libset/<libset>/libset.mk makefile provides
definitions specific to the compiler. The definitions in this makefile
override the defaults in $RTS_HOME/libset/default.mk. An
example libset makefile file, $RTS_HOME/libset/sparc-gnu-
2.8.1/libset.mk, contains the following:

VENDOR = gnu

CC = g++
SHLIB_CMD = $(CC) -shared -z text -o

LIBSETCCFLAGS = -V2.8.1
LIBSETCCEXTRA = -O4 -finline -finline-functions -Wall -Winline \
 -Wwrite-strings
SHLIBS =
LIBSETLDFLAGS = -V2.8.1

Config makefile

The $RTS_HOME/config/<config>/config.mk makefile provides
definitions specific to the combination of the compiler, operating
system and TargetRTS configuration. This makefile is empty for most
target/libset combinations. Usually this file will only be needed to work
around issues that may not appear in either the target or libset alone.
An example use of this file can be found in
$RTS_HOME/config/OSE401T.ppc603-Diab-4.1a/config.mk:

EXEC_EXT = .elf

TARGETCCFLAGS = \
 $(DEFINE_TAG)BIG_ENDIAN \
 $(INCLUDE_TAG)$(OSE_ROOT)/powerpc/include \
 $(INCLUDE_TAG)$(OSE_ROOT)/powerpc/krn-603/include

TARGETLDFLAGS = \
 (DIR_TAG)(OSE_ROOT)/powerpc/lib \
 $(LIB_TAG)inett \
 $(LIB_TAG)inetutil \
 $(LIB_TAG)rtc \
 (DIR_TAG)(OSE_ROOT)/powerpc/krn-603/lib \
 $(LIB_TAG)krn1dpr \
 $(LIB_TAG)krnflib
C Porting Guide - Rational Rose RealTime 21

Chapter 3 Porting the TargetRTS
Table 3 defines which make macros can be redefined and where they
are set.

Table 3 Make macro definitions

Macro Name Defined where Note

TARGET Defined in ms_nmake.mk,
gnu_make.mk and
unix_make.mk.

Redefinition not recommended.

CONFIG Defined in default.mk. Redefinition not recommended.

PERL Default defined in default.mk
as “perl”

Some compilation hosts may require
an explicit path; if necessary, rede-
fine in libset.mk or con-
fig.mk.

FEEDBACK Defined in default.mk. Redefinition not recommended.

MERGE Defined in default.mk. Redefinition not recommended.

NOP Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RM Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RMF Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

TOUCH Default defined in default.mk. Redefinition from Perl script to
(faster) OS-dependent command is
possible.

RTGEN Defined in default.mk. Redefinition not recommended.

RTCOMP Defined in default.mk. Redefinition not recommended.

RTLINK Defined in default.mk. Redefinition not recommended.
22 C Porting Guide - Rational Rose RealTime

Config makefile
VENDOR Default defined in default.mk
as “generic” and intended to be over-
ridden in libset.mk.

During porting, this may be left as
“generic”. However, you should pro-
vide an error-parser script eventually.
Since error formats are typically ven-
dor-specific (independent of the ver-
sion of the compiler or of the
compilation host-type), scripts are
identified by the vendor’s name in
libset.mk.

MAKEFILE Defined in default.mk. Redefinition not recommended.

CC Default defined in default.mk
to cause compile-time error; must be
redefined in libset.mk.

Must be redefined in libset.mk
before porting.

DEBUG_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

DEPEND_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

DEFINE_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

INCLUDE_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

LIBSETCCEXTRA Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.

LIBSETCCFLAGS Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.

OBJECT_OPT Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

OBJOUT_OPT Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

OBJOUT_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler.

TARGETCCFLAGS Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.
C Porting Guide - Rational Rose RealTime 23

Chapter 3 Porting the TargetRTS
AR_CMD Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

LIBOUT_OPT Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

LIBOUT_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

RANLIB Default defined in default.mk. Redefine in libset.mk or tar-
get.mk if necessary for a linker.

LD Default defined in default.mk. Redefine in libset.mk if linker
must be different from compiler
(most compilers can invoke the
linker anyhow), or if a preprocessing
script is necessary.

DIR_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

LIBSETLDFLAGS Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

LIB_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

OT_LIB_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

TARGETLDFLAGS Default defined in default.mk. Redefine in config.mk or tar-
get.mk if necessary for a linker.

TARGETLIBS Default defined in default.mk. Redefine in config.mk or tar-
get.mk if necessary for a linker.

EXEOUT_OPT Default defined in default.mk. Redefine in libset.mk or tar-
get.mk if necessary for a linker.

EXEOUT_TAG Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

EXEC_EXT Default defined in default.mk. Redefine in config.mk, lib-
set.mk or target.mk if neces-
sary for a linker.
24 C Porting Guide - Rational Rose RealTime

Config makefile
LIB_PFX Default defined in default.mk. Redefine in config.mk or lib-
set.mk if necessary for a linker.

LIB_EXT Default defined in default.mk. Redefine in libset.mk if neces-
sary for a linker.

OBJ_EXT Default defined in default.mk. Redefine in libset.mk if neces-
sary for a compiler/linker.

RTSYSTEM_INCPA
THS

Defined in default.mk. Redefinition not recommended.

RTS_LIBRARY Defined in default.mk. Redefinition not recommended.

SYSTEM_LIBS Defined in default.mk. Redefinition not recommended.

LD_OUT Defined in default.mk. Redefinition not recommended.

LD_HEAD Default defined in default.mk. Redefine in config.mk, lib-
set.mk or target.mk if neces-
sary for a linker.

ALL_OBJS_LIST Default defined in default.mk.
as the concatenation of all object
files in the update.

Redefine in libset.mk to
“%$(ALL_OBJS_LISTFILE)” to
pass list of object files to linker (or
linker script), if line length limita-
tions forbid passing list via shell.

LD_TAIL Default defined in default.mk. Redefine in config.mk, lib-
set.mk or target.mk if neces-
sary for a linker.

CC_HEAD Default defined in default.mk. Redefine in config.mk, lib-
set.mk or target.mk if neces-
sary for a compiler.

CC_TAIL Default defined in default.mk. Redefine in config.mk, lib-
set.mk or target.mk if neces-
sary for a compiler.
C Porting Guide - Rational Rose RealTime 25

Chapter 4

Porting the TargetRTS for C

Much of the configurability of the TargetRTS is done at the source code
file level: target-specific source files override common source files. This
is illustrated in the next section on platform-specific implementations.
However, configurability is also available within a source file using
preprocessor definitions. The configuration is set in two C header files:

� $RTS_HOME/target/<target>/RTTarget.h for specifying the
operating system specific definitions.

� $RTS_HOME/libset/<libset>/RTLibSet.h for specifying the
compiler specific definitions; this file does not exist by default.

Definitions made in these files override their default definitions in
$RTS_HOME/include/RTPubl/Config.h. The symbols and their
default values are listed in Table 4.

Note: In Table 4, in general, defining a symbol with the value 1 enables
(= sets) the feature the symbol represents and defining it with the value
0 disables (= clears) the feature.
C Porting Guide - Rational Rose RealTime 27

Chapter 4 Porting the TargetRTS for C
Table 4 Preprocessor definitions

Symbol Default Value Possible Values Description

USE_THREADS none, must be
defined in the
platform
headers
(usually
RTTarget.h)

0 or 1 Determines whether the
single-threaded or multi-
threaded version of the
TargetRTS is used. If
USE_THREADS is 0, the
TargetRTS is single-
threaded. If USE_THREADS
is 1, the TargetRTS is multi-
threaded.

MESSAGE_
DEFERRAL

1 0 or 1 If 1, message deferral
capabilities per controller
will be present in the
TargetRTS. If 0, no message
deferral capabilities at all.

TIMING_SERVICE 1 0 or 1 If 1, timing service will be
available in the TargetRTS.

TO_OVER_TCP 1if
OBSERVABLE

0 or 1 Set to 1 if Target
Observability over TCP/IP
should be supported.

LOG_MESSAGE 1if
OTRTSDEBUG
!=
DEBUG_NONE

0 or 1 Sets whether the debugger
can log the contents of
messages.

LOG_SERVICE 1 0 or 1 Sets whether the
RTLog_show_... methods
should be available or not.

RTS_NAMES 1 0 or 1 Sets whether the name
strings in the data structs
should be present or not.

STDIO_ENABLED 1 0 or 1 Sets whether the RTStdio_
and RTLog_ methods should
be available or not.

OBJECT_DECODE 1 0 or 1 Enables the conversion of
strings to objects. Needed
for Target Observability.
28 C Porting Guide - Rational Rose RealTime

OBJECT_ENCODE 1 0 or 1 Enables the conversion of
objects to strings. Needed
for Target Observability.

SEND_BY_VALUE 1 0 or 1 If 1, send data using type
descriptors. If 0, just send
pointers.

OTRTSDEBUG DEBUG_
VERBOSE

DEBUG_
VERBOSE

Enables the TargetRTS
debugger. It will make it
possible to log all important
internal events such as the
delivery of messages, the
creation and destruction of
capules, and so on. This is
necessary for the target
debug feature.

DEBUG_NONE Reduces the size of the
resulting executable while
increasing performance.
However, the RTS debugger
will not be available.

RTS_MEMORY_
POLICY

RTS_CAN_
ALLOCATE if
OBSERVABLE
or PURIFY, else
RTS_NEVER_
ALLOCATE

RTS_CAN_
ALLOCATE

Dynamic memory allocation
is always allowed.

RTS_WARN_
ALLOCATE

Dynamic memory allocation
is always allowed, but a
warning is printed on the
console.

RTS_NEVER_
ALLOCATE

Dynamic memory allocation
is not allowed at all after
system initialization.

PURIFY 0 0 or 1 If 1, this flag indicates that
the Purify tool is being used.
This tells the TargetRTS to
disable all object caching,
which degrades
performance but allows
Purify to monitor
RTMessage objects.

Symbol Default Value Possible Values Description
C Porting Guide - Rational Rose RealTime 29

Chapter 4 Porting the TargetRTS for C
RTS_COMPATIBLE 521 521 or 610 If 521, obsolete features
from ObjecTime Developer
5.2.1 of the TargetRTS will
be present. Set to 610 to
disable backwards
compatibility.

RTS_INLINES 0 0 or 1 Controls whether TargetRTS
header files define any inline
functions.

RTMESSAGE_
PAYLOAD_SIZE

36 any scalar value
>= 0

Reserve this many bytes in
RTMessage for small
objects. When data must be
copied, objects that are no
larger than this will use that
space in the message itself
rather than allocated on the
heap.

INTERNAL_LAYER_
SERVICE

1 0 or 1 Should internal SAPs and
SPPs be supported?

MAX_NUM_SPPS 10 any scalar value
> 0

Maximum number of SAPs
and SPPs that can be
connected at any given time.

DEBUGGER_STACK_
SIZE

20480 any scalar value
> 0

Stack size in bytes for the
debugger ("main") thread.

MINIMUM_FREE_
MSGQ_SIZE

5 any scalar value
> 0

When freeing a message,
keep at least this many
messages in the Controller’s
free list.

DEFAULT_FREE_
MSGQ_SIZE

10 any scalar value >
MINIMUM_
FREE_
MSGQ_SIZE

When freeing a message,
keep at most this many
messages in the Controller’s
free list.

RTS_CLEANUP_
MECHANISM

1 0 or 1 If 1, provide destructors and
call them on shutdown, etc.
If 0, do not (this is a space
optimization).

Symbol Default Value Possible Values Description
30 C Porting Guide - Rational Rose RealTime

MULTIPLE_
PRIORITIES

1 0 or 1 If 1, there are 6 distinct
priorities and 6 message
queues per controller. If 0,
there is only 1 prioirity and
1 queue per controller.

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains
for better performance at
the expense of potentially
larger executable memory
size.

INLINE_METHODS <blank> inline or <blank> Inlines user-defined capsule
methods for better
performance at the expense
of potentially larger
executable memory size.

OBSERVABLE 1 if debugger,
decoding and
encoding all are
enabled.

0 or 1 The ability to use the Target
Observability facilities.

Symbol Default Value Possible Values Description
C Porting Guide - Rational Rose RealTime 31

Chapter 4 Porting the TargetRTS for C
Platform-specific implementation

The implementation of the TargetRTS is contained in the
$RTS_HOME/src directory. In this directory, there is a subdirectory
for each class. In general, within each subdirectory there is one source
file for each method in the class. Wherever possible, the name of the
source file matches the name of the method.

To port the TargetRTS to a new platform, it may be necessary to replace
some of these methods. Additionally, some of the methods that do not
have default behaviors must be provided. The target-specific source is
placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where
<target_base> is the target name without the trailing ‘S’ or ‘T’. For
the remainder of this section, the target directory is referred to as
$TARGET_SRC. For example, the target source directory for <target>
SUN5T is $RTS_HOME/src/target/SUN5. This directory provides an
overlay to the $RTS_HOME/src directory. When the TargetRTS
loadbuild tools search for the source for a method, it searches first in
the $TARGET_SRC directory, then in $RTS_HOME/src.

Note: There is only a single source directory for all configurations of the
TargetRTS for a given platform. C preprocessor macros, such as
USE_THREADS, may be used to differentiate code for specific
configurations.

There is a sample port in the $RTS_HOME/target/sample
subdirectory to use as a template for a port to a new target. These
implementations can be incorporated into a target implementation by
copying the contents of these subdirectories into the $TARGET_SRC
directory. You may also want to search the other target subdirectories
to verify that the implementation of various TargetRTS classes
resembles your target RTOS. You can copy any required code to the
new $TARGET_SRC directory.

Table 5 shows the functions that must be provided in any port of the
TargetRTS. These are the minimum requirements for a new port, as
most ports will include changes to more classes than those listed.

The remainder of this section discusses the most common required
implementation code required for a new target.
32 C Porting Guide - Rational Rose RealTime

Platform-specific implementation
Method RTTimespec_clock_gettime(timespec)

To implement the Timing service, the TargetRTS uses the time of day
clock. The method RTTimespec_clock_gettime(), found in the
file $TARGET_SRC/Timespec/getclock.c, gets the time of day
from the operating system. There is no default implementation of this
method and it must be provided by the target. The format of this time
of day is the POSIX-style struct timespec which contains two fields:
the number of seconds and the number of nanoseconds from some
fixed point of time. This fixed point is usually the Universal Time
reference point of January 1, 1970. This does not need to be the case.
However, to support absolute time-outs, the TargetRTS assumes that
the reference time is midnight of some day.

Constructor RTThread_construct(this,job,priority,stacksize)

To support multi-threading, the TargetRTS provides the class
RTThread. The constructor should create a stack and start a new
thread using RTThread_run(this) as its entry point. There is no
default implementation, the target implementation must provide the
constructor for this class in the file $TARGET_SRC/Thread/ct.c.

Class RTMutex

In the multi-threaded TargetRTS, shared resources are protected using
mutexes implemented by the class RTMutex. There is no default
declaration or implementation. The description of the RTMutex class
should be placed in the file $TARGET_SRC/RTPriv/Mutex.h. There
are four methods to RTMutex:

� RTMutex_construct(this) — the constructor, in
$TARGET_SRC/Mutex/ct.c, performs any initialization of the
mutex.

Table 5 Required TargetRTS Classes and Functions

Required TargetRTS Classes and Functions

RTTimespec_clock_gettime()

RTThread_construct()

RTMutex (all 4 methods)

RTSyncObject (all 5 methods)
C Porting Guide - Rational Rose RealTime 33

Chapter 4 Porting the TargetRTS for C
� RTMutex_destruct(this) — the destructor, in
$TARGET_SRC/Mutex/dt.c, performs any clean up when the
mutex is no longer required.

� RTMutex_enter(this) — in $TARGET_SRC/Mutex/enter.c,
locks the mutex if it is available, or blocks the current thread until
it is available.

� RTMutex_leave(this) — in $TARGET_SRC/Mutex/leave.c,
frees the mutex and unblocks the first thread waiting on the
RTMutex_enter().

Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is
implemented by class RTSyncObject. Many operating systems
provide what is known as a ‘binary semaphore’. A synchronization
object is essentially the same thing. Many implementations of a
semaphore, however, do not provide a wait (or ‘pend’) with time-out.
The lack of this time-out feature requires the use of a more
heavyweight implementation using a mutex and a condition variable
(POSIX condition variables have a ‘timedwait’ feature). A description of
each method can be found in the
$RTS_HOME/src/target/sample/SyncObj directory. There is no
default declaration or implementation. The description of the
RTSyncObject class should be placed in the file
$TARGET_SRC/RTPriv/SyncObj.h. The implementation of five
methods is required:

� RTSyncObject_construct(this) — the constructor, in
$TARGET_SRC/SyncObj/ct.c, performs any initialization
required.

� RTSyncObject_destruct(this) — the destructor, in
$TARGET_SRC/SyncObj/dt.c, performs any clean up given that
the sync object is no longer required.

� RTSyncObject_signal(this) — in
$TARGET_SRC/SyncObj/signal.c. Signal this synchronization
object. If the owner is currently waiting, it should be readied.
Otherwise the state of this object should be such that the next call
to wait or timedwait made by the owner will not block. Signalling a
second or subsequent time should have no effect.
34 C Porting Guide - Rational Rose RealTime

Platform-specific implementation
� RTSyncObject_wait(this) — in
$TARGET_SRC/SyncObj/wait.c. Wait for this synchronization
object to be signalled. Only the owning thread is permitted to use
this function. If the object is in the 'signalled' state it should be
reset to 'unsignalled' and the function should return immediately.
Otherwise the current thread should block until either the object is
signalled by another thread or the absolute expiry time arrives,
whichever occurs first. The object should always be left in the
'unsignalled' state.

� RTSyncObject_timedwait(this,expiryTime) — in
$TARGET_SRC/SyncObj/timewait.c. Wait for this
synchronization object to be signalled. Only the owning thread is
permitted to use this function. If the object is in the 'signalled' state
it should be reset to 'unsignalled' and the function should return
immediately. Otherwise the current thread should block until the
object is signalled by another thread. The object should always be
left in the 'unsignalled' state.

main() function

In order for the execution of the TargetRTS to begin, code must be
provided to call RTMain_entryPoint(int argc, const char *
const * argv), passing in the arguments to the program. This code
is placed in the file $TARGET_SRC/Main/main.c.

On many platforms, this is the code for the main() function, which
simply passes argc and argv directly. However, on other platforms,
these parameters must be constructed. For example, with Tornado, the
arguments to the program are placed on the stack. An array of strings
containing the arguments must be explicitly created.

If the platform does not provide a mechanism for passing arguments to
an executable, default arguments for use by RTMain_entryPoint()
can be defined in the toolset. These arguments are made available by
the code generator, and can be used by overriding main() to call
RTMain_entryPoint(0, (const char * const *)0);
instead.
C Porting Guide - Rational Rose RealTime 35

Chapter 4 Porting the TargetRTS for C
Class RTMain

RTMain_entryPoint() indirectly via RTMain_mainLine() calls a
number of methods for target-specific initialization and shutdown.
These methods are as follows:

� RTMain_startup() — in file $TARGET_SRC/Main/startup.c,
it initializes the target in preparation for execution of the model.
This includes things such as setting the priority of the main
thread, calling static constructors, and initializing devices, for
example, timers and consoles. Note that on most platforms this
method is empty.

� RTMain_shutdown() — in file
$TARGET_SRC/Main/shutdown.c, it generally undoes the
initialization that was performed in RTMain_startup(), for
example, calling static destructor and cleaning up operating
resources such as file descriptors.

� RTMain_installHandlers() — in file
$TARGET_SRC/Main/allHand.c. In addition to target start-up
and shutdown, RTMain_mainLine() also calls this method to
install Unix style signal handlers, where available. These signal
handlers are used by the single threaded TargetRTS for timer and
I/O interrupts. If the target OS does not implement signal
handlers, this method can be overridden by an empty method.

� RTMain_installOneHandler() — in file
$TARGET_SRC/Main/oneHand.c. This method is used by
RTMain_installHandlers() to install the Unix style signal
handlers. These signal handlers are used by the single threaded
TargetRTS for timer and I/O interrupts. If the target OS does not
implement signal handlers, this method can be overridden by an
empty method.

Method RTStdio_putString()

The RTStdio class handles output of diagnostic messages to the
standard error. If your target does not support the fputs() function,
you must supply a replacement for the RTStdio_putString()
method in $TARGET_SRC/Stdio/string.c. This method outputs a
string to the standard error device.
36 C Porting Guide - Rational Rose RealTime

Adding new files to the TargetRTS
Method RTDebuggerInput_nextChar()

The RTDebuggerInput class handles the input to the TargetRTS
debugger. If your target system does not support the fgetc()
function, then you must supply a replacement for the
RTDebuggerInput_nextChar() method in
$TARGET_SRC/DebugInp/nextChar.c. This method reads
individual characters from the standard input device.

Class RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to
the sockets library of the target operating system. Many operating
systems provide the familiar BSD sockets interface. If this is the case
then little modification is necessary. Typically, small changes to data
types are needed to satisfy the sockets interface. If code changes are
required, override the functions in RTinet.

Class RTIOMonitor

The RTIOMonitor class is used to monitor activity on a set of TCP/IP
sockets. This class makes use of file descriptor sets and the select()
function. There may be differences in the way these sets are
implemented on your target operating system.

File main.c

The file main.c contains the main function for the TargetRTS and
therefore the entire application. Some operating systems already have
a main function defined. This file must be modified to take this into
account. A typical solution is to create a root thread, which in turn
calls the entry point to the TargetRTS, RTMain_entryPoint().

Adding new files to the TargetRTS

If you create a new method in a new file for an existing class, or you are
adding a new class to the TargetRTS, then you must add the new file
names to a manifest file. This must be done in order for the dependency
calculations to include the new files and thus include them into the
TargetRTS.
C Porting Guide - Rational Rose RealTime 37

Chapter 4 Porting the TargetRTS for C
The MANIFEST.c file

This file lists all the elements of the run-time system. There is one entry
per line, and each entry has two or more fields separated by
whitespace. The first field is a directory name. The second field is the
base name of a file. By convention the directory name and file name
typically correspond to the class name and member name,
respectively. The third and subsequent fields, if present, give an
expression that evaluates to zero when the element should be
excluded. Note that the expression is evaluated by Perl and so should
be of a form that it can handle.

If you have added a new generic (non-target specific) source file to the
TargetRTS, you must add an entry to the
$RTS_HOME/src/MANIFEST.c file for this file. By convention, the
entry should be placed next to the other files for the specific class that
you have modified. If you are adding a whole class, then place the
entries next to the super class if it exists, or next to similar classes in
the MANIFEST.c file.

Be sure to associate the new entry with the proper GROUP, see
MANIFEST.c for details.

Regenerating make dependencies

If a file has been overridden in $TARGET_SRC directory or a new file
has been added to the MANIFEST.c, you must regenerate the
dependencies in order for the modification to be included in the new
TargetRTS. This is done by removing the depend.mk file in the build
directory, $RTS_HOME/build-<config>. This will cause the
dependencies to be recalculated and a new depend.mk file to be
created.
38 C Porting Guide - Rational Rose RealTime

Chapter 5

Modifying the error parser

The error parser is intended to convert specific compiler (or linker)
error messages and convert them into a format that can be browsed by
the modeling user from the Build Errors tab within the toolset.
Whenever possible, the format identifies a browseable model element,
as well as including the description and the severity of the compiler
message.

Typically, compilers cite a particular line-number of a source file when
producing an error or warning message. Since the source files are
generated by the code-generator, the line numbers are meaningless to
the modeling user. The error parser provides a mechanism to translate
a line-number from an arbitrary source file into a reference to a
particular model element. The intention is that the modeling user can
double-click a compiler message and see where the problem occurred
in the model: for example which transition, or which member
definition. The user can then take corrective action and compile the
model again. Unfortunately (as with hand-written source files), the
corrective action is not always where the problem occurred, but it is
usually a good start.

Most linker messages do not cite a particular line-number, since their
problems are typically about undefined symbols, multiply defined
symbols or misuses of the command-line options. In these cases, the
errors can be resolved by modifying a component within the model. It
is not possible to always correctly determine which component
property, or even which component produced the message (typically
the executable component is tagged).
C Porting Guide - Rational Rose RealTime 39

Chapter 5 Modifying the error parser
The error parser is intended as a convenience to the model designer,
but it cannot correctly identify the source model-element for all errors,
including compiler command-line errors, compilation errors caused by
RTS headers and linkage errors. In these cases, no model-element is
given, but an error message should still be returned to the toolset.

How the error parser works

Before modifying the error parser, it is important to understand how it
works.

The error parsing rules

The error parsing rules are considered vendor-specific; they do not
vary dramatically between compilation host platforms or between
subsequent compiler-version releases. Each libset references its
associated error parser via the VENDOR make macro in the
$RTS_HOME/libset/<libset>/libset.mk file. For each vendor
name <vendor>, there is a corresponding subdirectory
$RTS_HOME/codegen/compiler/<vendor>. In each of these
directories there are two Perl scripts, comp.pl and link.pl. These
two files contain a set of regular expressions (regexps), along with a
handler function pointer for each regexp.

Each regexp used is a Perl regular expression. If you are not familiar
with Perl or regular expressions in general, it is suggested that you
obtain a Perl book or find an equivalent reference online. As an
example, the two O’Reilly books Programming Perl and Mastering
Regular Expressions are excellent sources of Perl and regexp
information.

When the code that was generated from the Rose RealTime toolset is
compiled, it is done via the main compilation controller script
$RTS_HOME/codegen/rtcomp.pl. This script loads the vendor-
specific regular expressions in
$RTS_HOME/codegen/compiler/<vendor>/comp.pl and applies
these regexps to each line printed by the compiler.

The same procedure is done while linking, but it’s done by the main
linking controller script $RTS_HOME/codegen/rtlink.pl which
loads the vendor-specific regular expressions in
$RTS_HOME/codegen/compiler/<vendor>/link.pl instead.
40 C Porting Guide - Rational Rose RealTime

How the error parser works
How "rtcomp.pl" integrates with the compiler

Once issued by the make utility, every compilation command-line is
wrapped in a call to a perl script "rtcomp.pl". For example,

> rtperl "C:\RoseRT6.2/C/TargetRTS/codegen/rtcomp.pl" \
-vendor VisualC++ -spacify dq \
-I ../src -componentname NewComponent1 \
-src NewCapsule1 ../src/NewCapsule1.c -- \
cl /c /FoNewCapsule1.OBJ /nologo /G5 /GX /GF /MD \
/I"C:\RoseRT6.2/C/TargetRTS/libset/x86-VisualC++-6.0" \
/I"C:\RoseRT6.2/C/TargetRTS/target/NT40T" \
/I"C:\RoseRT6.2/C/TargetRTS/include" /Zi /I../src \
../src/NewCapsule1.c

!> Compiling NewCapsule1
NewCapsule1.c
../src/NewCapsule1.c(25) : error C2065: 'i' : undeclared identifier
GES capsuleClass 'NewCapsule1' transition ':TOP:Initial:Initial' line '1'
description 'C2065: ''i'' : undeclared identifier' severity 'error'

The perl script "rtcomp.pl" has the following functions:

� It explicitly provides feedback on the current activity ("!>
Compiling NewCapsule1")

� If necessary, it creates GES (Generic Error Stream) errors based on
incorrect command-line usage (typically these are tagged to the
component).

� It runs the compiler, using the command-line arguments following
the -- argument. Compiler output is captured for error parsing and
conversion to GES.

� Assuming the compilation was successful, the perl script performs
compilation dependency analysis and stores the results in local
.dep files for future build-avoidance. (This step is skipped when the
Compilation Make Type is "ClearCase_clearmake" or
"ClearCase_omake".)

� It returns an exit code (back to the Makefile) indicating the
compilation's success or failure, depending on the existence of any
errors.

While parsing the errors, any reference to a source-file line-number is
converted into a model element reference by scanning through the
offending file to see if the offending line-number is embedded within a
pair of RME (Referrable Model Element) labels. These RME labels are
provided by the code generator for exactly this purpose.
C Porting Guide - Rational Rose RealTime 41

Chapter 5 Modifying the error parser
The resulting message is printed out in GES (Generic Error Stream)
format, an internal format. GES format must start with "GES" and
must contain a description and severity field. Other fields identifying
the model element will only be provided if they can be found.

Reusing an existing error parser

If you are porting to a new libset, but using an existing compiler
vendor, just set the VENDOR make macro in the
$RTS_HOME/libset/<libset>/libset.mk file to reference the
existing vendor, and the error parsing port is done.

Creating a new error parser

If you are porting to a new vendor, you will first need to pick a vendor
name <vendor>. Then create the directory
$RTS_HOME/codegen/compiler/<vendor> and the two files
comp.pl and link.pl in this directory.

Each of the files should contain the following (reading this requires
some knowledge of Perl):

� The package identifier: package config; first in the file.

� An array, @handlers, where each element is a reference to an
array with two elements: the regexp matching string, and a
reference to the associated handler routine.

� A line saying return 1; (or just 1;) at the end of the file, to
indicate to Perl that this file was loaded and initialized OK.

A typical comp.pl, for the vendor VisualC++ (Microsoft Visual C++),
contains the following:

package config;

@handlers =
(
 ['^(.*)\((\d+)\)\s+:\s+fatal error (.*)',
 sub { rterror::action_print($1, $2, $3, 0); }],
 ['^(.*)\((\d+)\)\s+:\s+error (.*)',
 sub { rterror::action_print($1, $2, $3, 0); }],
 ['^(.*)\((\d+)\)\s+:\s+warning (.*)',
 sub { rterror::action_print($1, $2, $3, 1); }],
42 C Porting Guide - Rational Rose RealTime

Creating a new error parser
 ['(warning.*)', sub { rterror::action_message($1, 1); }],
 ['(fatal error.*)', sub { rterror::action_message($1, 0); }]
);

return 1;

In this example you can see that each of the five elements in the
@handlers array is a reference to another array with two elements (as
indicated by the [,] notation). The first of these two elements is a
string containing the regexp we’re trying to match, and the second
element contains a reference to the handler routine. The regexps are
written so that they’ll save (as indicated by the () notation) the file
name, the line number and the descriptive message in the variables
$1, $2 and $3 respectively. These variables are used in the call to the
Perl handler routines rterror::action_print() and
rterror::action_message().

When compiling the generated code (or linking, in which case the script
link.pl is used), each line printed by the compiler (linker) is matched
against the regular expressions in the @handlers array, starting with
the first (topmost) regexp. If there is no match, the next regexp below
is tried and so on, until there either was a match, or we’ve come to the
end of the @handlers array. The default behavior for an unmatched
compiler message is to ignore the message.

The following three handler methods can be used inside the sub {
... } part:

rterror::action_print($fileName, $lineNr, $msg, $severity);

If fileName exists, it prints the RME tag from the file, along with line
number, message and the severity text (0 for ’error’, 1 for ’warning’). If
fileName wasn’t found, it prints the file name, line number, message
and severity text.

rterror::action_message($msg, $severity);

Prints the message and the severity text, optionally prepended by the
component name if known. This is particularly useful when the error
is likely in a component (such as errors during linking, or problems
with compiler flags).
C Porting Guide - Rational Rose RealTime 43

Chapter 5 Modifying the error parser
rterror::action_ignore();

Takes no parameters, does nothing.

You will need to figure out what error expressions your compiler and
linker generate, and populate the @handlers array in comp.pl or
link.pl with appropriate regular expressions. There are a couple of
ways to efficiently determine what the errors your compiler generates
looks like:

1. Write a model that contains a representative set of compilation
errors, compile it, and observe the output for the errors it
generates. Add expressions one at a time and recompile until you
have successfully captured all the errors.

2. Use programs that search the actual compiler or linker executable
for strings. Then manually examine the output and intelligently
determine which of the strings look like error statements.
44 C Porting Guide - Rational Rose RealTime

Chapter 6

Testing and Tuning the TargetRTS

This section briefly describes testing the TargetRTS, and areas in the
TargetRTS that can be tuned to improve performance.

Testing the TargetRTS

A port to a new platform requires testing the TargetRTS. There are a
few Rose RealTime models that are part of the installation and can be
used to test the functionality of the TargetRTS. These tests are not
comprehensive, but provide some assurance that the port was
successful. Please take a look at
$ROSERT_HOME/Examples/Models/C for information on what’s
available.

We also suggest that you visit the Rational Rose RealTime product
support web site for the latest updates, models and patches. The URL
is http://w
ww.rational.com/products/rosert/support/.

Disabling TargetRTS features for performance

The TargetRTS can be modified to exclude many of its features to
provide a minimum high performance feature set. The section
“Configuring and customizing the Services Library” in the C Guide
describes how to create such a version of the TargetRTS. The concepts
of a “minimal TargetRTS” disables Target Observability, logging service
and the RTS debugger. The minimal TargetRTS should provide
significant performance gains over the fully featured version.
C Porting Guide - Rational Rose RealTime 45

Chapter 6 Testing and Tuning the TargetRTS
Target compiler optimizations

Most compilers provide optimizations at the object code generation
stage that can produce faster running code. In general, if your compiler
supports such optimizations, they should be used. Be sure to remove
all debug options at the same time since they may cancel out certain
or all optimizations. Some optimizations may come at the cost of code
size. If application code size is a factor for your target, then the benefit
of optimization versus code size will have to analyzed. Many compilers
may have different levels of optimization, which may produce differing
degrees of code size and performance enhancements. It is hard to
predict the outcome of such optimizations in C. Using a performance
testing model which measures the speed of certain operations may
prove useful.

Optimizations can cause errors in the running application that were
not present before optimizations were enabled. Be sure to fully test the
TargetRTS after enabling any optimizations.

Target operating system optimizations

The Target operating system may provide optimizations. For example,
it may be possible to link in a non-debug version of the OS with the
application. These optimizations are specific to each RTOS. Refer to the
documentation for your specific RTOS.

Specific TargetRTS performance enhancements

In C, one key area that can improve performance in the TargetRTS is
in inter-thread message passing. The TargetRTS make use of two
synchronization mechanisms for much of its message passing, namely,
the RTMutex and RTSyncObject classes. Some operating systems
provide heavy-weight and light-weight synchronization mechanisms.
The light-weight version has less features but higher performance;
whereas, the heavy-weight version may have more features but poorer
performance. Your choice of implementation for the RTMutex and
RTSyncObject may affect the performance of inter-thread message
passing, so be sure to investigate and determine the lightest-weight
mechanism necessary to satisfy the requirements of these classes.
46 C Porting Guide - Rational Rose RealTime

Chapter 7

Common problems and pitfalls

This section contains common problems and pitfalls that we have
encountered with previous ports. The TargetRTS is supported on a
number of platforms and has been verified on each of these platforms.
In general, the problems and pitfalls encountered are mainly due to
RTOS and tool chain differences from those verified in the standard
platforms - for a complete list, please see the Rational Rose RealTime
Installation Guide. Other problems arise from lack of support for
certain features required by the TargetRTS and thus require a custom
workaround to satisfy the TargetRTS.

Target-specific source is placed in a subdirectory of
$RTS_HOME/src/target/<target_base>, where
<target_base> is the target name without the trailing ‘S’ or ‘T’. For
the remainder of this section, the target directory is referred to as
$TARGET_SRC

Problems and pitfalls with target toolchains

This section describes possible problems with the tools used to build
the TargetRTS and the model.
C Porting Guide - Rational Rose RealTime 47

Chapter 7 Common problems and pitfalls
Compiler optimizations

Compiler optimizations, in general, either help speed up the
application, or make the footprint of the executable smaller. Some
optimizations can unfortunately cause errors in the application. One
such problem occurs when the compiler optimizes references to a
memory location that is not modified by the application. It assumes
that because the application does not modify the contents of the
address, it is never modified. In a multi-threaded environment, some
compiler optimizations might not yield the desired result, so be
cautious.

Optimizations vary from compiler to compiler, so refer to the
documentation for your specific tool chain. Review the optimizations
that are available and be aware that some may cause errors in the
application. Running a set of test models is a good way to ensure the
optimizations have not broken the TargetRTS.

Make sure the test models you use exercise each of the target OS
primitives used by the TargetRTS. See Table 1, “Required operating
system features for the C TargetRTS,” on page 4 for a list of these
features.

Linker configuration file

When linking an application to a embedded target, there is usually
some sort of linker configuration file that defines where in memory
each section of the application will go. Many default linker
configuration files are included without the user’s knowledge and may
cause strange linking errors as applications grow larger. Be sure to
define your own linker configuration file appropriate for your target.

System include files

The structure and content of include files can be a challenge when
moving to a new tool chain. In the TargetRTS an attempt is made to
isolate the nuances of include files for each RTOS into a few specific
include files that can be used by all the target-specific code. In general,
all RTOS-specific definitions should be combined into a file called
<os_name>.h in the $TARGET_SRC/RTPriv directory. This way all
include files needed to access OS functions can be found in this one
file. In the C TargetRTS, for TCP/IP specific include files, a file called
48 C Porting Guide - Rational Rose RealTime

Problems and pitfalls with TargetRTS/RTOS interaction
Tcp.h should be created in the $TARGET_SRC/RTPriv directory.
This file should contain all the necessary include files required for
TCP/IP functions. Other, more specific, header files may be required to
isolate unique interfaces for your RTOS. These may be added to the
$TARGET_SRC/RTPriv directory as needed.

Problems and pitfalls with TargetRTS/RTOS interaction

This section describes the possible problems between the operating
system and the system calls that are part of the TargetRTS.

Return codes for POSIX function calls

Even though POSIX is a standard, there are still some discrepancies in
the implementation of the interface. Some implementations of the
POSIX function calls return an error code, while others return -1 and
store the result in global variable errno. Check your specific RTOS to
see how error conditions are reported.

Thread creation

Thread creation has caused problems in the past. One specific problem
is the lack of free space on the heap to allocate the stack for the new
thread. This causes a system crash with no error message or exception
raised. Other potential pitfalls arise with thread priorities. Do not alter
the relative priorities of the C TargetRTS threads (main thread, timer
thread and debugger thread). Incorrect priorities may effect the
functioning of the external layer, timers, debugger or even the Rose
RealTime application.

Real-time clock

Most RTOSes provide a function to retrieve the current system time.
Typically it may return clock ticks, milliseconds or even nanoseconds.
In the C TargetRTS, a conversion from the RTOS time to RTTimespec
is typically required in order to satisfy the requirements of the
RTTimespec_clock_gettime() function. Some RTOSes may
provide a macro or function to resolve the number of ticks per second
and thus make conversion to RTTimespec straightforward. Others
may require hard-coded conversion based on the known tick rate for
the RTOS. If this rate is later changed then the conversion will fail. This
results in incorrect behavior for all timers in the Rose RealTime model.
C Porting Guide - Rational Rose RealTime 49

Chapter 7 Common problems and pitfalls
Signal handlers

Many RTOSes do not use signals that are typical of UNIX operating
systems. If your RTOS does not provide signals, be sure to override the
C TargetRTS code in RTMain_installHandlers() and
RTMain_installOneHandler().

RTOS supplies main() function

The TargetRTS assumes that it defines the main() function for an
application. Some RTOSs may provide their own main() function,
which causes a duplicate reference error at link time. If this is the case
for your RTOS, you have to modify the code in
$TARGET_SRC/Main/main.c. Typically, you have to start a thread
that contains the main() function for the Rose RealTime application.
The documentation for the RTOS will describe how to start your
application in this manner.

Default command line arguments

Embedded targets do not usually have access to command line
arguments, so RTOSs rarely provide a way to pass command line
arguments to a running application. If your RTOS does not support
command line arguments, you can use the default argument
mechanism in the toolset. This feature lets you enter a set of default
arguments for each component, and these arguments will appear in
the generated code.

These arguments can be specified in the toolset via Component
Specification > C Executable > DefaultArguments. Please note that these
arguments will appear in the generated code verbatim as strings, so
use quotes around, and commas between, your arguments to avoid
compilation errors.
50 C Porting Guide - Rational Rose RealTime

Problems and pitfalls with target TCP/IP interfaces
You will also have to create a slightly modified main() function and
put it into $TARGET_SRC/Main/main.c. The modification needed is
that instead of calling RTMain_entryPoint() with the arguments
argc and argv, like in this default $RTS_HOME/src/Main/main.c:

int main(int argc, const char * const * argv) /* Standard main */
{
 return RTMain_entryPoint(argc, argv);
}

...you should call RTMain_entryPoint() with two null arguments,
like this:

int main() /* This main takes no arguments */
{
 return RTMain_entryPoint(0, (const char * const *)0);
}

This will cause the TargetRTS to use the default arguments instead.
Please note that default arguments behave just like "real" command
line arguments; the first argument, RTMain_argv()[0] is the name
of the program. Your arguments are available in position [1] and
onwards.

Exiting application

In the C TargetRTS, the RTStdio_panic() function requires a way
to terminate the application. This is achieved by calling
RTMain_exit() which calls exit() to exit the application. If your
RTOS does not support the exit() function, you have to override the
code in $TARGET_SRC/Main/exit.c to use the exit function specific
to your RTOS.

Problems and pitfalls with target TCP/IP interfaces

This section describes the possible problems with OS specific TCP/IP
interfaces. Your model can still run without TCP/IP support in the
TargetRTS, however Target Observability (i.e. observing a running
model from the toolset) will be disabled.
C Porting Guide - Rational Rose RealTime 51

Chapter 7 Common problems and pitfalls
select() statement

Some implementations of the select() statement do not correctly
use the value set in the width parameter. Consequently the function
thinks the file descriptor sets are larger than they really are. This can
cause memory corruption and, consequently, serious failures in the
running application. To overcome this problem in the C TargetRTS,
some targets (OSE) override the RTIOMonitor_min_size() function
in $TARGET_SRC/IOMonit/min_size.c. In these cases, the
minimum size is assumed to be the maximum file descriptor set size.

gethostbyname() reentrancy

A problem was found on some UNIX targets when trying to use the
gethostbyname() function in a multi-threaded application. The call
was replaced with a call to the gethostbyname_r() function, which
is re-entrant and thread safe. If this is the case for your target OS,
change the code for RTinet_lookup() in
$TARGET_SRC/Inet/lookup.c in the C TargetRTS.
52 C Porting Guide - Rational Rose RealTime

Chapter 8

TargetRTS porting example

This section provides an example of porting the TargetRTS for C to a
new platform. This is an example port rather than customization of an
existing port. See the C Guide for a customization example. This
porting example should help implement the information presented in
previous sections. The target platform for this example is the Tornado
2 real-time operating system using the Cygnus C Compiler version
2.7.2-960126 for Motorola PowerPC microprocessors. This is a
currently supported platform.

Note: The printed version of this document contains a workbook that
can be used to capture the information you will need to reference while
performing a port.

Choosing the configuration name

The configuration name is an important identifier of the TargetRTS. It
identifies the operating system, hardware architecture and (cross)
compiler. In this example, the operating system is Tornado 2. The
hardware architecture is Motorola PowerPC (ppc). The compiler is the
Cygnus C Compiler version 2.7.2-960126. For this example we will
only consider the multi-threaded version of the TargetRTS since this
provides the most interesting porting challenges. The resulting
configuration name is as follows:

<target> = TORNADO2T
<libset> = ppc-cygnus-2.7.2->960126
<config> = <target>.<libset>= TORNADO2T.ppc-cygnus-2.7.2-960126
C Porting Guide - Rational Rose RealTime 53

Chapter 8 TargetRTS porting example
Create setup script

The setup script is in the file $RTS_HOME/config/TORNADO2T.ppc-
cygnus-2.7.2-960126/setup.pl. This file is a Perl script that
defines environment variables for the compilation of the TargetRTS:

if($OS_HOME = $ENV{'OS_HOME'})
{

$os = $ENV{'OS'} || 'default';

if($os eq 'Windows_NT')
{

$wind_base = $ENV{'WIND_BASE'};
$wind_host_type = 'x86-win32';
$ENV{'PATH'} = "$wind_base/host/$wind_host_type/bin;$ENV{'PATH'}";

}
else
{

$rosert_home = $ENV{'ROSERT_HOME'};
chomp($host = `$rosert_home/bin/machineType`);

$wind_base = "$OS_HOME/wrs/tornado-2.0";
if($host eq 'sun5')
{

$wind_host_type = 'sun4-solaris2';
}
elsif($host eq 'hpux10')
{

$wind_host_type = 'parisc-hpux10';
}
$ENV{'PATH'} = "$wind_base/host/$wind_host_type/bin:$ENV{'PATH'}";
$ENV{'WIND_BASE'} = "$wind_base";

 }

$ENV{'GCC_EXEC_PREFIX'} ="$wind_base/host/$wind_host_type/lib/gcc-lib/";
$ENV{'VXWORKS_HOME'} = "$wind_base/target";
$ENV{'VX_BSP_BASE'} = "$wind_base/target";
$ENV{'VX_HSP_BASE'} = "$wind_base/target";
$ENV{'VX_VW_BASE'} = "$wind_base/target";
$ENV{'WIND_HOST_TYPE'} = "$wind_host_type";

}

$preprocessor = "ccppc -DPRAGMA -E -P >MANIFEST.i";
$target_base = 'TORNADO101';
$supported = 'Yes';
54 C Porting Guide - Rational Rose RealTime

Create makefiles
The setup script must contain the mandatory definitions for the
$preprocessor and $supported flags. The tool chain environment
variables are usually required for cross compiler tools such as Cygnus,
since it is not typically part of a user’s command path, and the
environment variable definitions are probably not already defined in
most users’ environments. Note that the $target_base variable is set
to TORNADO101. This means that the TORNADO2T target uses the same
code base for the TargetRTS classes as the TORNADO101 target.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles
needed to build the TargetRTS for the platform and to build Rose
RealTime models on this new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler.
The command line interface for C compilers can differ significantly,
particularly for cross-compilers such as the Cygnus C compiler. It is in
this file that we make definitions for command line options for the
compiler and linker and override other definitions made in
$RTS_HOME/libset/default.mk. See “Default makefile” on
page 17 for details. In any port of the TargetRTS there are certain
commands required in the tool chain in order to support the building
of the TargetRTS. Table 7 illustrates these required commands, the
Unix equivalent, and the Cygnus variant.

Table 6 Tools required for building the TargetRTS.

Command Unix Cygnus

library archive ar $RTS_HOME/tools/
ar.pl -create=arppc,rc

C Compiler CC ccppc

Linker ld -r $RTS_HOME/tar-
get/TORNADO2T/link.
pl ARCH=ppc

VENDOR n/a cygnus
C Porting Guide - Rational Rose RealTime 55

Chapter 8 TargetRTS porting example
The library archive command (ar) for the Cygnus tool chain requires
the use of a script to work the way the TargetRTS build requires. The
libset makefile must define the VENDOR macro that instructs the error
parser which type of compiler is being used. The error parser uses this
information to decode error messages returned by the compiler to a
format compatible with the Rose RealTime toolset.

Another important role of the libset makefile is the definition of
command line options. Table 7 illustrates the typical subset of
command line options, the Unix equivalent, and the Cygnus variant.

Table 7 Important toolchain command line options

The compiler options may vary greatly from one platform to another,
but must support some basic features. Read the compiler
documentation carefully and review some of the libset.mk for other
TargetRTS platforms for guidance. A list of required features follows:

� to compile source files into object files only (that is, not to the link
phase), typically the ‘-c’ option

� to place the object file in a desired directory and file name, typically
the ‘-o’ option

� to produce shared libraries, typically the ‘-G’ option

� to link and place the executable in a desired directory and file
name, typically the ‘-o’ option for the link phase

� to turn on debugging instructions in the compiled code, typically
the ‘-g’ option

� to specify the pathname of include files, typically the ‘-I’ option

� to specify the pathname of libraries, typically the ‘-L’ option

� to specify the libraries to link, typically the ‘-l’ (ell) option

� to turn on code optimization, typically ‘-O’ option and sub-options

The contents of the libset makefile, $RTS_HOME/libset/ppc-
cygnus-2.7.2-960126/libset.mk , is as follows:

AR_CMD = $(PERL) $(RTS_HOME)/tools/ar.pl -create=arppc,rc
CC = ccppc
LD = ldppc

Option Unix Cygnus

LIBSETCCFLAGS -DPRAGMA -nostdinc -
DCPU=PPC603
56 C Porting Guide - Rational Rose RealTime

Create makefiles
RANLIB = ranlibppc

VENDOR = cygnus

LIBSETCCFLAGS = -DPRAGMA -nostdinc -DCPU=PPC603
SHLIBS =

Target makefile

The target makefile is used to make definitions specific to the target
operating system and the TargetRTS configuration. These are usually
specific command line options for the compiler and linker to define
such things as include directories for the target OS and libraries and
their pathnames. These definitions must be common to all
TORNADO2T targets, regardless of libsets. The contents of the target
makefile, $RTS_HOME/target/TORNADO2T/target.mk, is as
follows:

TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT \
$(INCLUDE_TAG)$(VXWORKS_HOME)/h -fno-builtin

TARGETLDFLAGS = -r
RTCODEBASE = TORNADO101

Configuration makefile

The configuration makefile is used to make definitions required by the
operating system and compilation environment together. In this
particular case, the configuration makefile,
$RTS_HOME/config/TORNADO2T.ppc-cygnus-2.7.2-
960126/config.mk, is empty because there is no need for any
definitions specific to the compiler and operating system combination.
C Porting Guide - Rational Rose RealTime 57

Chapter 8 TargetRTS porting example
TargetRTS configuration definitions

The default configuration definitions for the TargetRTS are found in the
include file $RTS_HOME/include/RTPriv/Config.h. The
definitions in this file can be overridden by
$RTS_HOME/target/TORNADO2T/RTTarget.h and possibly
$RTS_HOME/libset/ppc-cygnus-2.7.2-960126/RTLibSet.h.

These definitions are used to enable and disable various features in the
TargetRTS. By default almost all of the TargetRTS features are enabled
(for example, Target Observability). The porting effort may be made
easier if some of these features are disabled. See section “TargetRTS
Customization Example” in the C Guide for instructions on how to
build a minimized TargetRTS. The content of the file
$RTS_HOME/target/TORNADO2T/RTTarget.h is as follows:

#ifndef __RTTarget_h__
#define __RTTarget_h__ included

#define USE_THREADS 1

#define DEFAULT_DEBUG_PRIORITY 60
#define DEFAULT_MAIN_PRIORITY 75
#define DEFAULT_TIMER_PRIORITY 70

#endif /* __RTTarget_h__ */

There is no need for the file $RTS_HOME/libset/ppc-cygnus-
2.7.2-960126/RTLibSet.h since no compiler-specific compile-
time features need to be modified.

Code changes to TargetRTS classes

Most ports to new targets require some minor changes to the
TargetRTS code. These changes typically apply to operating system
features for thread (task) creation and destruction, mutual exclusion
and synchronization and time services. Table 4, “Preprocessor
definitions,” on page 28 gives a description of TargetRTS classes that
might require changes.
58 C Porting Guide - Rational Rose RealTime

Code changes to TargetRTS classes

-

The required changes to the TargetRTS source for TORNADO2 and the
Cygnus compiler are located in the
$RTS_HOME/src/target/TORNADO101 directory. See the
discussion for the setup script above for an explanation of why the
directory is called TORNADO101 rather than TORNADO2. For the
remainder of this section, this directory is referred to as
$TARGET_SRC.

The files in the $TARGET_SRC directory each override their
counterpart in $RTS_HOME/src. To override a definition from the
source directory, a new subdirectory should be created in
$TARGET_SRC. For example, the new definition for
RTTimespec_clock_gettime() requires a subdirectory
$TARGET_SRC/Timespec. The new file containing
RTTimespec_clock_gettime() would be
$TARGET_SRC/Timespec/getclock.c.

The required changes to the TargetRTS are too large to include in this
document. Table 8 contains a summary of the required changes to
each file.

Table 8 Quick summary of common TargetRTS source file changes

Class File Change

RTInet (dir
Inet)

async.c Modified version since FIOASYNC was not defined.

RTInet (dir
Inet)

lookup.c gethostbyname not available, use hostGetByName instead

main (dir
Main)

main.c main already defined by RTOS, use rtsMain with nonstandard
argument handling instead.

RTMutex (dir
Mutex)
(required)

ct.c
dt.c
enter.c
leave.c

Required implementation using Tornado specific calls to semMCre
ate, semDelete, semTake and semGive.
C Porting Guide - Rational Rose RealTime 59

Chapter 8 TargetRTS porting example

-

Building the new TargetRTS

Once the setup script, makefiles and source are complete the
TargetRTS is ready to be built. To build the TargetRTS for the Tornado
2 Cygnus target, type the following in the $RTS_HOME/src directory:

make TORNADO2T.ppc-cygnus-2.7.2-960126

This will create the directory $RTS_HOME/build-TORNADO2T.ppc-
cygnus-2.7.2-960126 which will contain the dependency file and
object files for the TargetRTS. If the build completes successfully the
resulting Rose RealTime libraries will be placed in the
$RTS_HOME/lib/TORNADO2T.ppc-cygnus-2.7.2-960126 directory.

RTSyncObject
(dir SyncObj)
(required)

ct.c
dt.c
signal.c
wait.c
timewait.c

Required implementation using Tornado specific calls to semBCre
ate, semDelete, semGive and semTake.

RTThread (dir
Thread)
(required)

ct.c Required implementation using Tornado specific calls to
taskSpawn and taskDelete.

RTTimespec
(dir Timespec)
(required)

getclock.c Required implementation using Tornado specific call to
clock_gettime.

Class File Change
60 C Porting Guide - Rational Rose RealTime

Index
A
arguments 35

B
building the new TargetRTS 60

C
C Porting Guide

see porting 27
TargetRTS 2

Classes
RTCondVar

extending the Mutex 34
RTDiagStream 35
RTIOMonitor 37
RTMain 36

target-specific methods 36
RTMutex 33

protecting shared resources 33
RTSyncObject 34
RTTcpSocket 37

code changes to TargetRTS classes 58
common overrides required for a new tar-

get 32
C Porting Guide - Rational Rose RealTime

compiler optimizations 48
config makefile 21
Configuration makefile 57
configuration makefile 57

D
Debugger 29
Debugging 6
Default makefile 17
disabling TargetRTS features for perfor-

mance 45

E
error parser 40

creating new,porting
creating a new error parser 42

reusing 42
error parsing rules 40
exiting application 51

F
File main.cc 37
floating point operations 6
61

Index
floating point operations (C Porting
Guide) 6

functions
gethostbyname() reentrancy 52
main() 35
RTMain_mainline() 36
RTMain_targetShutdown() 36
RTMain_targetStartup() 36
RTOS supplies main() 50

G
generated 14
gethostbyname() reentrancy 52

L
libset

makefiles 21
name, components of 12
platform name, part of 10

Libset makefile 21, 55
libset makefile 21
libset name 12
linking problems 48
LOG_MESSAGE 28

M
main 35
main() function 35
Make

macro definitions 22
make dependencies

regenerating 38
62

makefiles 14
config, template 21
creating 55
default 17
libset,template 21
sequencing of 15
target 20
TargetRTS 14
typical target, template 20

makefiles, creating 55
MANIFEST.c File 38
MANIFEST.c file 38
Modifying the error parser 39
multi-threaded mode

support for 33
Mutex

methods to protect shared resources
33

N
new error parser, creating a 42

O
OBJECT_DECODE 28
OBJECT_ENCODE 29
OS capabilities 4
OS knowledge and experience 3
OTRTSDEBUG 29

P
PATH variable 12
Performance enhancements 46
phases of a port 9
C Porting Guide - Rational Rose RealTime

Index
platform
two-part name

target and libset 10
platform name, choosing a 10, 53
platform-specific implementation 32
port, major steps for implementing the 9
Porting

Target compiler optimizations 46
porting

adding new files to TargetRTS 37
before starting 3
Class RTIOMonitor 37
Class RTMain 36
Class RTMutex 33
Class RTSyncObject 34
Class RTTcpSocket 37
compiler optimizations 48
Config makefile 21
configuration name 10
Constructor

RTThread_construct(this,job,
priority,stacksize) 33

creating makefiles 55
Creating setup script 54
Default command line arguments 50
default makefile 17
disabling TargetRTS features for per-

formance 45
error parser 42
File main.c 37
Floating point operations 6
Libset makefile 21
Linker Configuration files 48
main() function 35
MANIFEST.c file 38
C Porting Guide - Rational Rose RealTime

Method
 RTDebuggerInput_nextChar() 37
Method RTStdio_putString() 36
Method
 RTTimespec_clocl_gettime() 33
modifying the error parser 39
OS capabilities 4
performance enhancements 46
Phases of 9
Platform-specific implementation 32
Preprocessor definitions 28
problems 47
Regenerating make dependencies 38
Required TargetRTS Classes and

Functions 33
setup script 12
system include files 48
target TCP/IP interfaces 51
TargetRTS 9
TargetRTS example 53
TargetRTS Feature for C 4
TargetRTS for C 27
TargetRTS makefiles 14
TargetRTS performance enhance-

ments 46
TargetRTS/RTOS interaction 49
TCP/IP functionality 6
testing the TargetRTS 45
Tool chain functionality 3
troubleshooting 47

POSIX function calls 49
problems and pitfalls

target toolchains 47
TargetRTS/RTOS interaction 49
TCP/IP interfaces 51
63

Index
R
Rational Support, what to do before call-

ing 7
Real-time clock 49
regenerating make dependencies 38
reusing an existing error parser 42
rtcomp.pl 41
RTMain_mainline() 36
RTMain_targetShutdown() function 36
RTMain_targetStartup() function 36
RTOS supplies main() function 50

S
script

creating setup script for porting Tar-
getRTS 54

script for porting 12
Select() statement 52
setup script 12

TargetRTS compilation to the plat-
form 12

setup script, creating a 12, 54
signal handlers 50
Simple 5
simple non-Rose RealTime program on

target 5
standard input/output functionality 6

T
target

name, components of 11
platform name, part of 10

Target compiler operations 46
target compiler optimizations 46
Target makefile 20
64

target makefile 20, 57
Target name 11
target name 11
Target operating system optimizations 46
target operating system optimizations 46
TargetRTS 2, 14

adding new files 37
building new 60
code to change classes 58
configuration definitions 58
defcual makefile 17
disabling features for performance 45
makefiles 14
performance enhancements 46
performance improvements 45
porting (C) 9
porting example 53
porting for C 27
testing 45

TargetRTS classes, code changes to 58
TargetRTS features, disabling for perfor-

mance 45
TargetRTS makefiles 14
TCP/IP functionality 6
Testing 45
Tool chain functionality 3
Training 7
troubleshooting

Compiler optimizations 48
Default command line arguments 50
Linker Configuration files 48
porting for C 47
Problems and pitfalls with target tool-

chains 47
C Porting Guide - Rational Rose RealTime

Index
Real-time clock 49
Return codes for POSIX function

calls 49
RTOS supplies main() function 50
Signal handlers 50
system include files 48
target TCP/IP interfaces 51
TargetRTS/RTOS interaction 49
thread creation 49

U
USE_THREADS 28
65

C Porting Guide - Rational Rose RealTime

	C Porting Guide
	Introduction
	Other resources

	Before starting a port
	OS knowledge and experience
	Tool chain functionality
	OS capabilities
	Simple non-Rose RealTime program on target
	TCP/IP functionality
	Floating point operations
	Standard input/output functionality
	Debugging
	Training
	Support
	What to do before calling Rational support

	Porting the TargetRTS
	Phases of a port
	Choose a configuration name
	Target name
	Libset name

	Create a setup script
	TargetRTS makefiles
	Default makefile
	Target makefile
	Libset makefile
	Config makefile

	Porting the TargetRTS for C
	Platform-specific implementation
	Method RTTimespec_clock_gettime(timespec)
	Constructor RTThread_construct(this,job,priority,stacksize)
	Class RTMutex
	Class RTSyncObject
	main() function
	Class RTMain
	Method RTStdio_putString()
	Method RTDebuggerInput_nextChar()
	Class RTTcpSocket
	Class RTIOMonitor
	File main.c

	Adding new files to the TargetRTS
	The MANIFEST.c file
	Regenerating make dependencies

	Modifying the error parser
	How the error parser works
	The error parsing rules
	How "rtcomp.pl" integrates with the compiler

	Reusing an existing error parser
	Creating a new error parser

	Testing and Tuning the TargetRTS
	Testing the TargetRTS
	Disabling TargetRTS features for performance
	Target compiler optimizations
	Target operating system optimizations
	Specific TargetRTS performance enhancements

	Common problems and pitfalls
	Problems and pitfalls with target toolchains
	Compiler optimizations
	Linker configuration file
	System include files

	Problems and pitfalls with TargetRTS/RTOS interaction
	Return codes for POSIX function calls
	Thread creation
	Real-time clock
	Signal handlers
	RTOS supplies main() function
	Default command line arguments
	Exiting application

	Problems and pitfalls with target TCP/IP interfaces
	select() statement
	gethostbyname() reentrancy

	TargetRTS porting example
	Choosing the configuration name
	Create setup script
	Create makefiles
	Libset makefile
	Target makefile
	Configuration makefile

	TargetRTS configuration definitions
	Code changes to TargetRTS classes
	Building the new TargetRTS

	Index

