
 Getting Started Guide i

OBJECTIME 

ObjecTime Developer 5.2.1

Getting Started Guide

& Release Notice

Product Release: ObjecTime Developer 5.2.1
Document Version: 1.0
Release Date: February 1999
Part Number: OT-R521-DOC808

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

Printed in Canada

Important Notice

Copyright 1991-1999 ObjecTime Limited. All rights reserved.
Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.
ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.
The license management portion of this product is based on:
Elan License Manager  1989-1999 Elan Computer Group, Inc. All rights reserved.
ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in
this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer
of express or implied warranties in certain transactions; therefore, this statement may not apply to you.
ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered
by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the License Agree-
ment associated with your purchase.
Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Com-
mercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.
For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined
in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors.

The contractor/manufacturer is:
ObjecTime Limited
340 March Road
Kanata, Ontario

Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the
following:
(A) Title to and ownership of the software and documentation shall remain with the Contractor.
(B) User of the software and documentation shall be limited to the facility for which it is acquired.
(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form,
to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors
and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility,
and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does
not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain
without restrictions.
(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired
at any other facility to which that computer may be transferred; to use the computer software and documentation with a backup com-
puter when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to
modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject
to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government
except as provided in subparagraph(c)(2).
(c)(2) The restricted computer software may be —
(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation
to which such computer or computers may be transferred;
(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;
(iii) Reproduced for safekeeping (archives) or backup purposes;
(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the
derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in
this contract.
The following are trademarks or registered trademarks of their respective companies or organizations:
VxWorks, Tornado / Wind River Systems Inc. pSOS,pRISM,pRISM+ / Integrated Systems Inc. QNX / QNX Software Systems Ltd.
LynxOS / Lynx Real Time Systems Inc. VRTX, MRI C++,Spectra / Microtec Inc. Green Hills C++ / Green Hills Software, Inc. Cygnus
C++ / Cygnus Support. Watcom C++ / Sybase Inc. Elan License Manager / Elan Computer Group, Inc. OPEN LOOK, UNIX / UNIX
System Laboratories, Inc. FrameMaker, FrameViewer, PostScript, Acrobat / Adobe Systems, Inc. Hewlett-Packard / Hewlett-Packard
Company. SGI R3000, R4000, IRIX / Silicon Graphics Inc. AIX, IBM, PowerPC, RISC System/6000 / International Business Machines
Corporation. WindowsNT, VisualC++,Visual Source Safe / Microsoft Corporation. Sun Microsystems, Sun Workstation, OpenWin-
dows, Solaris, SunView, SPARC, SPARCstation / Sun Microsystems, Inc. X Window System, X11 / Massachusetts Institute of Tech-
nology. Smalltalk-80, ObjectWorks/Smalltalk / ParcPlace Systems, Inc. GNU / The Free Software Foundation. ClearCase, Purify /Pure
Atria Corporation. Rational. Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Commu-
nications Corporation in the United States and other countries. Microsoft, Windows, and Windows NT are either trademarks or regis-
tered trademarks of Microsoft Corporation. All other brand names are trademarks of their respective holders.

ObjecTime Support
Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime Developer.

ObjecTime Support

ObjecTime Support Hotline: (613) 591-3400

ObjecTime Support E-mail: support@objectime.com

ObjecTime Sales

Sales Hotline outside the Ottawa area: 1-800-567-TIME

Sales Hotline within the Ottawa area: (613) 591-3831

Sales Email: sales@objectime.com

ObjecTime Limited

ObjecTime Fax: (613) 591-3784

Visit our Web Site: www.objectime.com
 Getting Started Guide iii

iv Getting Started Guide

Getting Start
Table of Contents
Welcome to ObjecTime Developer 5.2.1. 1

Introduction . 1

What’s new in Developer 5.2.1/5.2 . 2

Year 2000 Compliance . 5

Packaging Changes . 6
Developer WebPublisher . 6
Developer TestScope . 6
Installation Keys . 6

ObjecTime Model Examples. 8

Documentation Errata: . 11

Model Upgrade/Conversion. 17

Model Conversion . 17
Adding Dependencies . 17
Environment and CUPs conversions 18
Detail level code changes . 19
Removing PWD from Inclusion Paths 19

Getting Started with Windows NT. 21
Network vs. Local Installation . 21
Supported Network Configurations 22
Installation Requirements . 22
File System Requirements . 22
Local Workstation Requirements . 23
Installing Netscape Navigator . 23
Configuring for use with Internet Explorer 4.0 24

Installing ObjecTime Developer 5.2.1 .26
Uninstalling Developer 5.2.1 . 33
Setting Up a User Workstation . 34

Starting ObjecTime Developer 5.2.1 on Windows NT 36
Using the ObjecTime Developer Launcher 37
ed Guide Table of Contents v

Getting Started with Unix .41
Network vs. Local Installation . 41
Supported Network Configurations 42
Installation Requirements . 42
Local Workstation Requirements . 43

Installing ObjecTime Developer 5.2.1 .45
Uninstalling ObjecTime Developer 5.2.1 47
Setting Up a User Workstation . 47
Environment Variables . 47
Fonts . 47
Additional Settings . 48
Optional settings . 48

Starting ObjecTime Developer 5.2.1 .50

Supported Platforms. .53
Platforms No Longer Supported in
Objectime Developer 5.2.1 . 54

License Manager Operations .55

Licensing Changes .55
 License Acquisition Suppression . 55

ObjecTime Developer Licensing .57
ObjecTime Licenses . 57

License Registration .58
License manager registration . 58
Obtaining the workstation machineId and IP address 59

Invoking License Manager Executables .61

Installation of Encrypted Keys .61

License Manager. .63
Starting up the License Manager . 63
Setting the Time Zone Variable on Windows NT 64
Automatically starting up the License Manager 65
Bringing Down the License Manager 66
License Manager Operation . 66
Querying the License Manager . 67

Documentation Roadmap. .71

ObjecTime Developer 5.2.1 Documentation Set71
User Guide . 72
C++ Language Guide . 72
C++ Target Guide . 72
C Language Guide . 73
RPL Language Guide . 73
vi Table of Contents Getting Started Guide

Tutorial Guide . 73
Getting Started Guide & Release Notice 73

Suggested Reading Path . 73

Online Reading . 75
Online Search Engine . 75

ClearCase Support Enhancements. 79

Introduction . 79
Definitions . 79
Summary . 79
 Project Files . 80

The development process. 82

Toolset Enhancements . 83
Enabling Clearmake mode . 83
Save to Library . 84
Enhanced editing modes . 84
Project file activation . 85
External diff before marking solid delta 85

Configuring your project to use Clearmake. 86
Configuring your view . 86
Configuring your environment . 86
Configuring the session image . 87
Configuring the model . 87

Using Clearmake for developers. 88
Creating a new object . 88
Making changes to project file . 88
Invoking Clearmake from the Toolset 88
Invoking Clearmake from the command-line 89
Enabling parallel builds with Clearmake 89
Recompiling with Clearmake . 90
Which classes get compiled . 90
Swapping between Clearmake and non-Clearmake mode 91
Zero-length .dep files . 91

Using Clearmake for loadbuilders. 92

Restrictions and Limitations . 93
No unspecified replication factors 93
No ROOM compile time checking 93
 No N-way merge support . 94
Time-stamp driven make support . 94
No shared views . 94
View-extended path names . 94
Exclusions . 94
Known issues . 95
Getting Started Guide Table of Contents vii

Changes in Developer 5.2.1/5.2 .97

ClearCase Support Enhancements. .98
ClearCase . 98

Packages. .99
CUPs Replacement . 99

Code Generation & Compilation Changes 100

Make Utilities Supported .101

Data class inclusions. .103

Deterministic Loadbuild .104

Library Management .106
Library capabilities enhancements 106
ClearCase . 107
RCS . 108
Linear Form . 108

 Problems Addressed in this Release .114

General Information .115

Toolset Memory Requirements .115
Typical model memory usage . 116
Memory usage in operations . 117
Context vs. update memory usage 117
Model file sizes . 118
Summary . 118

Microsoft Visual SourceSafe (MSVSS) .119

Limits .120

Special Notes and Reminders. .120

Perl Information .121
Building a Model with VC50 Debugging Information 122

Troubleshooting .123

Troubleshooting Unix .123
CD read errors . 123
Incorrect key mappings . 123
SCCS/RCS files missing . 123
Cannot allocate color . 123
Font problems . 124
Socket connections: . 127
Online Help . 127
License Server Upgrades . 128

Troubleshooting Windows NT .129
Screen flicker . 129
viii Table of Contents Getting Started Guide

Install/Uninstall Problems . 129
Online Help . 131
Compilation problems: . 131
MSVSS Library problems . 133
DLL loading problem . 134
Mailing exception files . 134
Starting ObjecTime Developer . 134
Troubleshooting License Manager 134
ICON Display . 136

Developer 5.2.1 Directory Contents . 137

Known Limitations / Restrictions . 141

Inconsistent compile state. 141

Supported Platforms .142
External Layer . 142

X11 . 142
Windows NT . 142
Working Directory . 143
Merging . 143
Class differences merging . 143

User interface . 145
Batch Mode . 145
Library . 145
Emergency Passivation . 146
Memory Usage . 146
Platforms . 146
DOORS . 146
Default Parser/Scanner Generator 147
Help . 147
Simulation and Target Compatibility 147
Inclusion Paths . 147
Simulation Timing . 147
Getting Started Guide Table of Contents ix

x Table of Contents Getting Started Guide

Chapter 1

Getting Start
1 Welcome to ObjecTime
Developer 5.2.1
as
Introduction
The ObjecTime Developer 5.2.1 release builds on the capabilities introduced in the previous releases
to meet your large project scalability needs. You can now maximize your team’s productivity by taking
advantage of features such as enhanced project files, ClearCase view synchronization, and improved
editing modes.

Developer WebPublisher and Developer TestScope, two optional, separately-purchased components are
also available for use with the ObjecTime Developer 5.2.1 release.

Developer WebPublisher enables output of an ObjecTime Developer model in HTML format, so you
can view and interactively navigate through the model using a web browser.

Developer TestScope extends ObjecTime Developer’s design-automation capabilities to model, debug
and test.

This chapter provides an introduction to ObjecTime Developer 5.2.1. The chapter’s five main are
describe:

• What’s new in Developer 5.2.1/5.2

• Year 2000 Compliance

• Packaging changes introduced for 5.2

• Model examples

• Documentation Errata
ed Guide Welcome to ObjecTime Developer 5.2.1 1

What’s new in Developer 5.2.1/5.2

t
ple,
n-

s

ns

t has
n-
d.

lso

el-
r

ca-

ve
ft-
What’s new in Developer 5.2.1/5.2
The following highlights some of the new features available in the ObjecTime Developer 5.2.1 release:

• Project file enhancement: Project files now contain a list of packages, and only those classes tha
are in the update but not any package. This allows you to make changes to a package (for exam
add or remove classes) without requiring a change in the project file, thereby removing the conte
tion for the project file in large team environments.

• ClearCase Support Enhancements:

• View synchronization: ClearCase users can now synchronize the toolset with ClearCase view
allowing designers to access the work of others in a parallel fashion.

• Version Based or View Based project file activation: You now have the option of activating
a project file using either specific version information for classes, or based on the class versio
in the current view.

• Enhanced editing mode: When the "Allow edits on non-checked out objects" user preference
is in an unchecked state and a class is changed as a result of some operation on a class tha
been checked out, for example, signal change in a protocol resulting in a change to a no
checked out class, the toolset checks out the non-checked out class and marks it as change

• Save to library command: A new "save to library" command is added to the update menu. This
allows ClearCase users to save any changed classes to the library. This command is a
executed automatically at compile time.

See “ClearCase Support Enhancements” on page 79 of the ObjecTime Developer 5.2.1 (Base) Get-
ting Started Guide and Release Notice for further information.

• Microsoft Visual C++ 6.0: ObjecTime Developer 5.2.1 supports Microsoft Visual C++ 6.0.

• General problem fixes: This release fixes problems reported in the 5.2 release. For full details of
problems fixed in this release, please see the "Problems fixed in this release" section.

• Developer WebPublisher: The Developer WebPublisher 5.2.1 optional product is available for use
with all three of the ObjecTime Developer 5.2.1 product packages. Please see the ObjecTime Dev
oper User Guide, Web Model Publisher, Chapter 27, and the enclosed product information sheet fo
details about Developer WebPublisher’s capabilities.

• Developer TestScope: The Developer TestScope 5.2.1 optional product is available for use with all
three of the ObjecTime Developer 5.2.1 product packages. Developer TestScope extends ObjecTime
Developer’s design-automation capabilities to model, debug and test. Please see the product infor-
mation sheet enclosed with ObjecTime Developer 5.2.1 for details about Developer TestScope’s
pabilities.

The following highlights some of the new features available in the ObjecTime Developer 5.2 release:

• Code Generation and Compilation enhancements: Release 5.2 incorporates significant changes
in the way in which code generation and compilation of models is performed. These changes ha
been made in order to improve performance as well as to better integrate with the customer’s so
ware development environment and processes.

The significant changes are:

• The toolset has been partitioned into modeling and code generation components.
2 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

What’s new in Developer 5.2.1/5.2

-
-

nt

ed

es

he
he

s

h

ary
re
e

or

e
e

• Timestamp driven make: Industry standard timestamp driven code generation and compilation
(using make and makefiles)

• Loadbuild reuse: The reuse of loadbuild results is now supported for ObjecTime models using ei
ther ClearCase and derived objects or with the VPATH facility supported by GNU make. See Ap
pendix F in the User Guide which describes ‘Loadbuild Re-use’.

• Inter-class dependencies: Dependencies between classes are now explicitly captured. This allows
generation of code for classes which only has the includes it requires. This improves compilation
performance.

• Multiple environment configurations: Maintain separate configurations for different environ-
ments. This is useful in situations where you need to frequently switch between targets of differe
configurations.

• Multi-targeting and simulation support: Switch between simulation and multiple target configu-
rations without the need to do a full recompile upon switching.

• Cross platform support for ClearCase: You can now use ObjecTime Developer with ClearCase
transparently across NT and UNIX platforms. New configuration management enhancements, list
below, make ObjecTime and ClearCase a powerful combination.

• Configuration Management related enhancements: Several CM related enhancements are intro-
duced in this release:

• A new user preference is provided for checkout policy enforcement. When enabled, class
cannot be modified until after they are checked out from the CM system.

• A new user preference is provided for version sequencing enforcement. When enabled, t
toolset reports version skipping as an error, and provides the option to perform a merge of t
two different versions.

• Hierarchical Libraries. Users can navigate through nested libraries in the same way a
navigating through a directory structure.

• External scripts can be used to achieve custom version handling.

• Branch compatible Library Browser displays branch tags & version extended pathnames.

• User configurable global path to library scripts through the Library Configuration dialog. If an
objectime_scripts_dir is specified, then it overrides the scripts identified through the global pat
specification.

• Multi-library ‘sync with library’ is supported. As well, a new content synchronization option is
also provided to enable synchronization to be based on the actual source content in the libr
instead of just the version number. If you are a ClearCase user, the content diff scripts a
provided for you. If you are not using ClearCase, you must implement the scripts to do th
content diff.

• Features for multi-stream development:

• The Differences Tool has been enhanced to detect the graphical information of objects, f
example, size or position.

• A new Class Version Merge Tool, based on the Differences Tool, is now available. You can us
it to identify differences between two class versions and propagate modifications from on
version to another.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 3

What’s new in Developer 5.2.1/5.2

r-
nd

e
r

-
nt

i-

for
mer
er
• Project files: Project files provide an alternate specification for an update. These files provide a ve
sionable, textual specification of the complete model, and contain information such as names a
location of classes/packages in the model, environment configuration file names, etc.

• Data class inclusions: You can now specify external inclusions on data classes. This is done via th
Data Class Editor View menu, inclusions menu option. This improves compilation performance ove
the pre-5.2 releases by eliminating superfluous inclusions.

• Windows User Interface: Users now have the option of switching between the standard ObjecTime
user interface, or the Windows look and feel. Please see the ObjecTime Developer User Guide to
find out full details on how to do this.

• Color preferences: Users can now customize their environment colors. Specifically, the workspace
color and graphics editor colors can be specified via a user preference.

• Storage of environment configurations: Environment configurations can now be stored separately
from a model. This allows better control of environment configurations (for example, through ver
sioning), and provides an easy mechanism for sharing configurations throughout a developme
group.

• Large model toolset tuning: New user preferences are provided to enable better user control when
dealing with large models. These preferences allow for performance and memory utilization optim
zations when working with large models which are more than 3 MB when passivated.

• Online documentation search engine: Online documentation now provides a search engine to
make it easier to find information.

• Customer Support website access: The Customer Support restricted access website is now a single
click away. A new menu item launches the user configured web browser, and prompts the user
the username and password to the support website. If you do not have a password for the Custo
Support website, please check with your project's ObjecTime prime, or request it through custom
support.
4 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

Year 2000 Compliance
Year 2000 Compliance
Complete Year 2000 testing has been performed by ObjecTime Limited, including correct handling of
leap year calculations. ObjecTime Developer 5.2.1 is year 2000 compliant. The ObjecTime Developer
class libraries will function correctly across the year 2000 boundary with one clarification. The RPL
Date class allows the year to be specified as either a two digit (interpreted as 2000 - 2050 if the entered
year is less than 51, or interpreted as 1951 - 1999, if the entered year is greater than or equal to 51) or a
four digit (relative to the start of the Roman calendar) number. It is recommended that existing models
be converted to use the four digit year format.

Note: For further details on ObjecTime Limited’s Year 2000 Compliance Policy please visit:

http://www.objectime.com/otl/about/y2k.html

The license keys used by the License Manager are year 2000 compliant, with the exception of the
License Manager log file, which lists only the two last digits of the year.

It is recommended that you review the Year 2000 compliance policies and statements from the vendors
of your operating system, development tools and configuration management software.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 5

Packaging Changes

ug

 De-
Packaging Changes
The ObjecTime Developer product is available in 3 different product packages for the 5.2.1 product
release. The ObjecTime Developer (Base), ObjecTime Developer for C++ and ObjecTime Developer
for C make up the three product offerings.

ObjecTime Developer: Includes the toolset and Simulation Services Library components and replaces
the product known as Modeler which was available with the ObjecTime Developer 5.1.1 release. It can
be used for modeling and Simulation only.

ObjecTime Developer for C++: Includes the base ObjecTime Developer product package and also
includes the C++ Target Services Library. It can be used for modeling, Simulation, and total code gener-
ation for C++ targets.

ObjecTime Developer for C: Includes the base ObjecTime Developer product package and also
includes the C Target Services Library. It can be used for modeling, Simulation, and total code genera-
tion for C targets.

Optionally, you may choose to upgrade any one of the packages with support for one, or more, of the
Target Services Libraries. This is supported through upgrades which can be applied to your base Objec-
Time Developer or either of the language specific packages. For instance, owners of ObjecTime Devel-
oper 5.2.1 - C Target Module can optionally add the C++ Target Module to enable C++ code generation.

Developer WebPublisher

Developer WebPublisher 5.2.1 allows you to publish models in HTML format for viewing with either of
the two standard internet browsers (Netscape 4.04 and Microsoft Internet Explorer 4).

Note: This product is available for purchase and can be used with all three of the ObjecTime Devel-
oper 5.2.1 product packages. Please see the product information sheet enclosed with ObjecTime De-
veloper 5.2.1 for details about Developer WebPublisher’s capabilities.

Developer TestScope

Developer TestScope extends ObjecTime Developer's design-automation capabilities to model deb
and test.

Note: This product is available for purchase and can be used with all three of the ObjecTime Devel-
oper 5.2.1 product packages. Please see the product information sheet enclosed with ObjecTime
veloper 5.2.1 for details about Developer TestScope’s capabilities.

Installation Keys

An envelope is included with your ObjecTime shipment which contains the installation keys necessary
to install the software from the CD media. These keys are unique to your order and the envelope and
contents should be kept in a safe place to facilitate future installations should a re-install become neces-
sary. If these keys are misplaced please send a request for replacement keys to the ObjecTime Support
6 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

Packaging Changes
e-mail address (support@objectime.com) providing your company name, project, and the ObjecTime
product purchased.

Note: The installation keys are distinct from the license keys. You are required to obtain license keys
from ObjecTime Support to run the software.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 7

ObjecTime Model Examples
ObjecTime Model Examples
Included with the ObjecTime Developer base product are a number of example models which the users
are encouraged to reference and build upon. Four different types of model examples are provided: RPL,
Batch Mode, C++ and C. To access the model examples from an ObjecTime session using the Objec-
Time Classic User Interface Mode, select the Open Model Examples Directory menu item which can be
found in the main ObjecTime menu (see Figure 1).

Figure 1 Main ObjecTime Menu

When the Model Examples Directory is opened, the following directory browser will be displayed, and
the user will have the option of browsing one or more of the model example directories to activate the
model example of choice (see Figure 2).
8 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

ObjecTime Model Examples
Figure 2 Model Examples Directory

From an ObjecTime session configured as the ObjecTime Windows NT User Interface Mode, the model
examples can be found through the Browsers pull down menu (see Figure 3).

Figure 3 Browser—Pull Down Menu.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 9

ObjecTime Model Examples
As with the classic mode, when the Model Examples Directory is opened, a directory browser will be
displayed, and the user will have the option of browsing one or more of the model example directories
to activate the model example of choice (see Figure 4).

Figure 4 Directory Browser
10 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

Documentation Errata:

ll it’s

e fol-

nd

rk in
Documentation Errata:
Note the following updates to the information contained in the ObjecTime Developer 5.2 User Guide.
Please read and note the following changes to your documentation set.

At the end of the Introduction, Chapter 1, page 14:

In the Event of Being “Locked-Out” From ObjecTime...

In certain rare conditions, you may find that ObjecTime does not respond to any user input. In this case you
can try one of the following strategies in order to force a save of all your updates within the Workspace
Browser as well as the ObjecTime session. Note that each of these files will be saved under a special name
with the word “crash” in the filename.

Signaling the ObjecTimeVM process to save

This method will send a special signal to the running ObjecTime program instructing it to save a
updates.

In Unix:

1 Find the process ID of the running ObjecTime program. The program name is ObjecTimeVM. Th
lowing command can be used to determine the process ID for Solaris-based workstations:

ps -aux | grep ObjecTimeVM

2 Enter in the following command, where pid is the process ID determined in step 1:

kill -USR1 pid

In Windows NT:

Use the otsave.exe utility for this purpose. Start the ObjecTime Developer 5.2.1 Command Prompt a
type otsave. You will be prompted with the process IDs (PID) of the ObjecTime Developer (s) running.
Enter the appropriate PID.

Normally, ObjecTime will begin the save operation within a minute or so.

Using the ObjecTime Debug Mode to save

The following steps will bring up a special command window which allows you to save the wo
progress:

1 Select the following keys simultaneously: Control - Shift - C

2 This will bring up the ObjecTime Debug Mode window. Now type save, and terminate by hitting the
Enter key.

If this works, ObjecTime will immediately begin the save operation.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 11

Documentation Errata:
The emergency save operation described here can be time consuming depending on the number and size of
the updates contained within your Workspace Browser. This operation also saves the image file and all of
the updates contained in the image. These files can take up a large amount of disk space. If you do not have
enough free disk space, the ObjecTime emergency save operation will not function properly and may result
in some files being truncated.

Using the ObjecTime Debug Mode to refresh the screen

In rare cases, an ObjecTime session can get out of sync with the X-Window System in Unix. If your Objec-
Time window stops refreshing properly, try the following steps:

1 Select the following keys simultaneously: Control - Shift - C

2 This will bring up the ObjecTime Debug Mode window. Now type help, and terminate by hitting the
Enter key.

If this works, the ObjecTime window will start refreshing properly again. (PR 8398)

In Model Environment Setup, Chapter 23, page 387 under Parallel Flags add the following sec-
tion:

Using an environment variable for Parallel Make flags.

Since compilation performance depends on the developer’s compilation environment (and not on the
update), it may be appropriate to make the parallel make flags field access an environment variable.
For example, setting Parallel Make Flags to $(OBJECTIME_PMAKE_FLAGS) in the configuration. This
Make macro can look-up an Environment Variable set by the user to different values depending on
their compilation environment. Assuming the chosen flavor of Make supports the -j option for par-
allel building, a load-builder might do (in C-shell):

setenv OBJECTIME_PMAKE_FLAGS "-j 8"

while a developer might be satisfied with:

setenv OBJECTIME_PMAKE_FLAGS "-j 4"

and a user who does not set this environment variable will build serially. (PR 8993)

In Model Compilation and Execution, Chapter 22, page 371 after Guidelines/Hints add the fol-
lowing sections:

Parallelizing Clearmake

Parallel building is enabled for both code-generation and compilation on Unix platforms. (As of
ClearCase 3.2.1, Clearmake does not support parallel building for NT.) However, use of the Clear-
make concurrency environment variables CCASE_CONC and CLEARCASE_BLD_CONC is not
recommended (see the section below).
12 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

Documentation Errata:
It is adviseable to put $(OBJECTIME_PMAKE_FLAGS) in the Parallel Flags field of your config-
uration browser. This way the user (not the update) decides how much parallelization his compila-
tion host(s) use.

The user must then assign some environment variables. For example:

setenv OBJECTIME_PMAKE_FLAGS "-J 4"

setenv CCASE_HOST_TYPE sun5

Then, create a build host file (~/.bldhost.sun5) as described in the ClearCase Reference man-
ual (cf bldhost). For example:

-idle 10%

beef

helium

beef

beef

where the machine "beef" has significantly more processing power than the machine "helium".

Clearmake can now be invoked from the command-line, or by the toolset, without arguments, and
the parallel flags will be correctly invoked for the Generation and Compilation Makefiles.

Using environment variables for Parallel Clearmake flags.

Clearmake (for Unix) supports the -J option for parallel distributed building. In addition to the sce-
nario described in the above section (Using an environment variable for Parallel Make flags), the
environment variables

CCASE_CONC

or, its longer version

CLEARCASE_BLD_CONC

can be set by the user to define the concurrency level if the -J option is not specified within the update
itself.

However, because of the way ClearCase buffers and merges parallel build stream output, the
progress messages of a ClearCase session are typically spooled until the entire build is finished.
ClearCase users are encouraged to use a scenario as described in Using an environment variable for
Parallel Make flags above. (PR 8993)

 In Batch Mode, Appendix D, page 516, under ‘Command file syntax’ - ‘Commands’ replace the
list of Commands with the following :

Commands

<commands> ::= ! <command> ! *

<command>1 ::=
log <text_string> |

1. The activate keyword is optional in order to remain compatible with the initial version of the batch mode grammar.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 13

Documentation Errata:

ace
storageFormat <format_options> |

activate [<update_file_name>|<context_file_name> <update_name>]
 <actions>* |

activateProject[<full_path> | <file_name> <optonial_versions> | <actions> |

logSeconds <optional_comments> |

logDateAndTime <optional_comments> |

saveSessionWhenDone|

abandonSessionWhenDone|

clearSignalMapping|

select <update_name> <actions>*

(PR8260)

In RTS Control Panel, Chapter 24, page 414, in the ‘Trace Configuration Dialog’ section replace
the definition of States with the following :

States — when turned OFF no FSM states are in the trace. When turned ON included in the tr
are changes in the FSM states of the actors as the states change.

In The Generic Library Interface, Appendix C, page 510, under ‘objectime_diff’ replace the sec-
tions titled Description and Input parameters (from toolset) with the following:

Description

Used to determine if the linear form files differ or not. The ignore option (-i) ignores reference to
versions, for example, of contained actors, the class from which it is derived, and so on.

Input parameters (from toolset)

-I <imageLF_File> #Required

-O <outputLF_File> #Required

-i #Optional

In Differences and Class Version Merge Tool, Chapter 9, page 143 the following text should be
deleted:

- the word ‘semantic’ in the first sentence

- the footnote (2) for Message Sequence Charts in the first sentence.

The sentence should now read:
14 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

Documentation Errata:
The Differences and Class Version Merge tool allows you to determine the differences between two
ObjecTime classes1, Message Sequence Charts (MSCs), contexts, updates, or packages2.
Getting Started Guide Welcome to ObjecTime Developer 5.2.1 15

Documentation Errata:
16 Welcome to ObjecTime Developer 5.2.1 Getting Started Guide

Chapter 2

Getting Start
2 Model Upgrade/Conversion
ear

ted

g
ll

 be

1
es

out
ill

es
a-
Model Conversion
If you are moving from ObjecTime Developer 5.2 to 5.2.1, no model changes are required.

Moving models forward, from pre-5.2 to 5.2.1, requires these models to be converted. Most conversions
for an update will be automatic and will not require any user action beyond accepting that the conver-
sion will take place. Once converted, the update will not activate with pre-5.2.1 versions of the toolset.
Model conversion from pre-5.2 models is required to address the following:

• Dependencies between model components need to be explicitly captured in the stored class (Lin
Form) files.

• Environment specifications on compilation unit packages (CUPs) must be preserved and conver
to the new configuration specification supported by packages in 5.2.1.

• Detail level code must be changed to accommodate changes to the runtime system interface.

Automatic model conversion will be supported to move from 5.0, 5.1, 5.1.1 and 5.2 to 5.2.1. Movin
from pre-5.0 model versions require conversion to 5.0 before the 5.2.1 conversion is attempted. A
available universal patches should be installed on the pre-5.2.1 ObjecTime image and the model to
converted should be passivated with this image before the conversion to 5.2.1 is performed.

Note: For 5.0 this includes universal patches 001 through to 088, for 5.1: universal patches 00
through to 033 and for 5.1.1: universal patches 001 through to 033, and for 5.2 : universal patch
001, 003-015, 017-030.

Adding Dependencies

Before a pre-5.2 model can be compiled in 5.2.1, the inter-class dependencies must be added. With
the dependencies, the inclusions in the generated code will be incomplete and model compilation w
fail.

Note: Model dependencies calculation can take several minutes on a large model.

When a pre-5.2 model is brought into the 5.2.1 toolset, the user will be presented with a list of class
for which dependency calculation should be performed. Accepting this will initiate dependency calcul
tion and updating.
ed Guide Model Upgrade/Conversion 17

Model Conversion

d a
un a
 will
tives
ily
s are
he
odel

ng
only
his

ncy
ly.
nts
lass
list

is
n-

ate
f

n-
vel

cti-
sso-
e:

ery
Model dependency calculation may not capture all needed dependencies and the user may have to man-
ually complete the task. This can happen, for example, when a class reference is “hidden” behin
macro and only becomes evident when the macro is expanded. Since model conversion does not r
pre-processor on the detail level code, such cases will not be detected and a required dependency
not be added. When a dependency is not detected, the generated code will be missing include direc
which will cause the compilation to fail. The error message and error mapping should make it read
apparent which class needs to be added to the dependency list of which other class. Dependencie
added manually with the properties editor of the class for which the dependency is to be added. T
dependency can either be typed into the dependency pane or a reference can be dragged from the m
browser into the dependency pane.

Note: The new code generation feature has introduced a more disciplined approach to includi
header files in the generated code. As a result, “hidden” dependencies, for example, a data class
referenced in a transition code block, must be explicitly placed as a dependency for the class. If t
is not done, then compilation errors will occur.

When bringing pre-5.2 model components, classes and packages, forward into 5.2.1, the depende
calculation part of the conversion process is not automatically invoked but must be initiated manual
This is because the toolset version which produced the component is not stored in the compone
source. After all the classes and packages have been merged into the 5.2.1 toolset, “Generate C
Dependencies” can be invoked from the update menu of the toolset. This will present the user with a
of classes which will be analyzed as part of the dependency calculation and updating.

Environment and CUPs conversions

Conversion of CUPs will be automatically initiated when a CUP or an update containing a CUP
brought into the toolset. The result of bringing a CUP into the toolset is that a set of package-level co
figurations (one for each language option) will be created and associated with the package.

In order for a package level confide to take effect, within an update, it must be associated with an upd
level confide. This is done from the properties editor of the package confide. The configuration field o
the package confide property editor allows the entering of the update level confide with which this co
fide is associated. When the particular update-level confide is active, the corresponding package-le
confide is also active.

If a package has only one or a few relevant configurations language options in pre-5.2, which are a
vated, then the user can create update level configurations for each language option and manually a
ciate the corresponding package-level configurations with the update-level configurations. If there ar

• a large number of active configurations at various times,

• or a large number of packages,

• then performing the association between package and update level configurations would be v
time consuming.

In this case, a special patch can be used to help automate the process.
18 Model Upgrade/Conversion Getting Started Guide

Model Conversion

 by
de-
ns

er
ed
the

dded

ally

ed
for
 this
lu-
s is
r-

th
r
of
To automatically associate a large number of packages or package configurations with update level con-
figurations:

1 Merge the CUPs into the toolset.

2 Create a set of update-level configurations with the same names as the package-level configurations,
which are to be associated with the update-level configurations.

3 Apply the patch CUPConfigurationAssociation.patch which will go over all the packages in the
update, associating each package-level confide with the update-level confide of the same name.

This patch, CUPConfigurationAssociation.patch, is located in $OBJECTIME_HOME/specials, can
be applied to the toolset by dragging it onto the workshops browser of the toolset.

After the model has been converted by activating the patch, the update should be passivate and the ses-
sion abandoned. This is to ensure that the development image does not contain the conversion patch.

Detail level code changes

Some changes in pre-5.2 detail level code may be required in order to get the model being converted to
compile with the 5.2.1 runtime systems (Simulation, C++ or C). Changes will be required if the model
has made use of interfaces which had changed in 5.2. For a list of run-time system changes, see the Get-
ting Started and Release Notice for the appropriate language.

• In pre-5.2 versions of the toolset, actor detailed-level code had access to all the signals defined
all the protocols used in a model. In 5.2/5.2.1, the signals names automatically available in the
tailed-level code are those which are defined by the protocols of the ports of an actor. This mea
that detail-level code which made use of signals not defined in protocols on the actor, will no long
compile. If the code references a signal which is not defined in any of the protocol classes referenc
by the actor’s ports and SAPs, then the code can be made to compile by adding the protocol to
dependency list of the actor.

• Data classes do not have automatic access to any signals and must have explicit dependencies a
in order to reference signal names.

• In previous releases, if a user code segment did not terminate in a semi-colon, one was automatic
added. This feature has been removed in ObjecTime Developer 5.2/5.2.1.

After model conversion has been completed, it is advisable that all update level inclusions are review
to determine if they can now be moved either to the package or class level. In the past, inclusions
data classes had to be specified at the update level that resulted in all classes in the update having
inclusion, regardless of whether it was required or not. With 5.2/5.2.1, data classes now support inc
sions and some update level inclusions can be moved to the data class level. Moving the inclusion
not necessary for correct compilation, but can make a significant improvement to the compilation pe
formance.

Removing PWD from Inclusion Paths

"$(PWD)" can probably be removed from your update's Inclusion Paths, if it exists. This inclusion pa
was typically added automatically in previous releases of ObjecTime Developer. It is unlikely that you
project depends on this path for compilation, and potentially dangerous if it does. The interpretation
Getting Started Guide Model Upgrade/Conversion 19

Model Conversion
"$(PWD)" depends on the implementation of your Make executable, since Make is initially invoked in a
directory different from where the compiler is invoked.

Furthermore, Clearmake users will want to remove references to "$(PWD)" from their Inclusion Paths
because it makes all compiled files dependent on the expansion of PWD. Failure to remove such refer-
ences will cause an unnecessary recompile of all files whenever the definition of PWD changes, such as
when building from the command-line versus building from the toolset.
20 Model Upgrade/Conversion Getting Started Guide

Chapter 3

Getting Start
3 Getting Started with Windows
NT
d
e

-
l

ch-

n
e

ingle
on
cal
a-

To
This chapter describes how to install, configure and begin to use ObjecTime Developer 5.2.1 with
Microsoft Windows NT. This document assumes that the user has a basic understanding of how to use
and administer Windows NT.

The main steps involved in getting started with Windows NT are described in the following sections:

• Installing a Browser (“Installing Netscape Navigator” on page 23 or “Configuring for use with In-
ternet Explorer 4.0” on page 24) covers how to set up a browser for viewing the on-line help an
documentation. If Navigator or Explorer 4.0 is already installed on your system, this step can b
skipped.

• InstallingObjecTime Developer 5.2.1 (“Installing ObjecTime Developer 5.2.1” on page 26) covers
how to install ObjecTime Developer 5.2.1 software on a Windows NT workstation or server.

• Setting up a User Workstation (“Setting Up a User Workstation” on page 34) describes how to set
up a Windows NT workstation from an existing ObjecTime Developer installation on a central net
work file server. This step is not required if you are installing ObjecTime Developer 5.2.1 on a loca
workstation.

• Starting ObjecTime Developer 5.2.1 (“Starting ObjecTime Developer 5.2.1 on Windows NT” on
page 36) describes how to start the Developer 5.2.1 toolset using the ObjecTime Developer Laun
er.

Network vs. Local Installation

Two scenarios are available when installing ObjecTime Developer 5.2.1 on Windows NT. You ca
install Developer on a local workstation disk, or you can install Developer on a central network fil
server.

Each scenario has advantages: Network installations can be shared between multiple users at a s
site, reducing the amount of local disk space required on each workstation, centralizing administrati
and maintenance, and reducing the effort required to upgrade multiple users. On the other hand, lo
installation can provide a significant performance advantage, especially with slower network configur
tions.

During the setup process you will be asked to select a destination directory for the Developer files.
create a local stand-alone workstation installation, select a destination directory on a local disk.
ed Guide Getting Started with Windows NT 21

-

r

le

th

d

to

es
re
l-
To create a shared network installation, select a destination directory on a shared network disk. After
installing the Developer files on the network disk, run Setup from each network workstation and per-
form a “User Setup,” as described in “Setting Up a User Workstation” on page 34.

Supported Network Configurations

ObjecTime Developer 5.2.1 can either run locally on a Windows NT workstation, or through a Win
dows NT file server under the following configuration conditions:

• The network must use Microsoft networking, with TCP/IP enabled.

Mixed Unix and Windows NT Installation

ObjecTime Developer 5.2.1 can run on a Windows NT workstation connected to a Unix file serve
under the following configuration conditions:

• Network file system must be NFS.

• Supported NFS clients are Chameleon and Hummingbird. Make sure to install the clients properly:

• Support for mixed case file names must be enabled.

• Consult the NFS client documentation regarding soft links. Some implementations can’t hand
these very well.

• The path to the Setup program must conform to the 8.3 DOS file naming convention, and the pa
cannot be longer than 63 characters including drive letter and the name of the Setup program.

Installation Requirements

• Windows NT – Windows NT 4.0 (Workstation or Server) is required to install ObjecTime Devel-
oper 5.2.1. Windows NT (Build 1381 - Service Pack 3), versions prior to version 4.0 are supporte
as network file servers only.

• CD-ROM drive – A CD-ROM drive is required to install Developer 5.2.1 from CD. If a CD-ROM
drive is unavailable, copy the contents of the disk to a network file server, map the network disk
a drive letter, and perform the installation from the mapped network location.

• Administrators Group Membership – Membership in the Administrators group is required to set
up Developer 5.2.1. Refer to the Windows NT documentation on how to assign those privileges.

• 50 MB to 64 MB free disk space – A minimum ObjecTime Install requires 50 MB of free disk
space, and a full installation requires 64 MB. 100 KB of disk space is required for fonts on the drive
where Windows NT system files are located, and an additional 300 KB is required if the License
Manager is installed.

• Printer – The default printer requirement is, at minimum, a Windows NT compatible printer. The
recommended printer is a PostScriptTM printer.

File System Requirements

• File names – The code generation process in ObjecTime Developer makes use of long file nam
with mixed-case characters. The file system where the Developer software is installed and whe
Developer working directories are saved must support this type of file name convention for Deve
oper to function properly. File names containing spaces are not supported.
22 Getting Started with Windows NT Getting Started Guide

-
ile

S
 a

n

-
 to a

3).

ly
ill

e
m,

re
.

Note: Directory names are subject to the same limitations as file names.

• Native file systems on Windows NT 4.0: Developer 5.2.1 supports both FAT and NTFS file sys-
tems.

• NFS – Developer 5.2.1 supports the use of NFS file systems for network installations and Unix com
patibility. If you choose to use NFS, be sure to configure the NFS software such that the case of f
names is preserved when saving files to NFS disks.

Note that while a Windows NT workstation can be set up to use a Developer installation on a NF
disk, the Windows NT setup program cannot perform an installation to a NFS location. To create
shared network installation of Developer on a NFS disk, first install Developer from a Unix work-
station using the Unix setup program, and then continue with “Setting Up a User Workstation” o
page 34.

• UNC path names – Developer 5.2.1 does not support UNC path names (that is, Network Neighbor
hood path names) for network resources. To use a network resource, map the desired resource
drive letter.

Local Workstation Requirements

• Windows NT 4.0 – Windows NT 4.0 (Workstation or Server) or later is required to run ObjecTime
Developer 5.2.1. ObjecTime recommends that you use Windows 4.0 (Build 1381 - Service Pack

• Pentium processor – A Pentium Pro or Pentium II processor is recommended for improved perfor-
mance.

• 64 MB main memory minimum – For large models or build operations, 128 MB or greater is rec-
ommended for improved performance.

• Toolset Memory Requirements – “Toolset Memory Requirements” on page 115 describes the
memory requirements for models.

• 12 MB disk space per working directory minimum – Each user may have one or more Developer
5.2.1 working directories which contain the user’s session file. Developer session files are initial
12 MB and will increase in size with use. (Code generation, compilation, passivation, and so on w
add to the space required.)

• 256 color graphics adapter – A high resolution graphics adapter with support for more than 256
colors is recommended.

Installing Netscape Navigator
Online help and documentation for Developer 5.2.1 is provided in HTML format. In order for the help
system to function correctly, Netscape Navigator, or alternatively Microsoft’s Internet Explorer, must b
installed on the user’s system. If Navigator 4.04, or Explorer 4.0, is already installed on your syste
this step may be skipped.

Note: Netscape Navigator is provided with the release as part of the on-line help system. You a
licensed to install one copy of Navigator 4.04 per licensed copy of ObjecTime Developer 5.2.1
Please refer to the Netscape license agreement for terms and conditions.
Getting Started Guide Getting Started with Windows NT 23

,

lp
te

ng
a
her

ters
t,
use
d

he
e,
The following procedure describes how to install Netscape Navigator 4.04 for Windows NT.

1 If necessary, load the ObjecTime Developer 5.2.1 CD into the CD-ROM drive.

Note: If the system is configured with the autorun feature enabled, the ObjecTime Developer 5.2.1
Setup program will run automatically. Click “Cancel” to exit Setup.

2 Locate the Netscape Navigator Setup program

Netscape Navigator software is provided on the ObjecTime Developer 5.2.1 CD in the
Netscape\Windows\Setup\Win32 directory. Use the Windows Explorer to open a win-
dow displaying the contents of the Netscape folder. For example, double-click “My Computer”
double-click the icon for the ObjecTime CD, and continue opening the “Netscape”, “Win” and
“32bit” folders by double-clicking the appropriate icons.

Note: If the system is configured with the autorun feature enabled, double-clicking the icon for the
ObjecTime CD will automatically run the ObjecTime Developer Setup. To display the contents of
the CD, right-click on the CD icon and select “Open.”

3 Read the Netscape Readme

Please refer to the Netscape Readme.txt file for installation notes and for any platform specific
installation instructions before proceeding with Setup. Double-click on the Readme.txt icon to
view the file. (Note that the .txt file name extension may not be visible.)

4 Run Netscape Navigator Setup

Double-click the Setup.exe icon to run Setup. (Note that the .exe file name extension may not be
visible.)

Configuring for use with Internet Explorer 4.0
The ObjecTime Help system is configured by default to use Netscape when opening the HTML he
pages. It is possible to configure ObjecTime to use any HTML browser which supports an appropria
Application Programmer Integration (API). In particular, it is possible to configure ObjecTime to use
Internet Explorer for the help system. It should be noted, however, that ObjecTime's use of anythi
except Netscape is not fully supported by ObjecTime Limited. Although ObjecTime has tried to offer
system flexible enough to support various browsers, problems or errors stemming from the use of ot
browsers are outside the scope of ObjecTime Support.

ObjecTime's method to support other browsers makes use of a batch file which is passed parame
indicating the path of the file to open and the tag to search for in the file. In order to use this scrip
Netscape must be uninstalled from the machine which is running ObjecTime (this is necessary, beca
ObjecTime first looks for Netscape on the host machine, and if there, will start it up. If it does not fin
Netscape, ObjecTime will then run the ObjecTimeStartHelp batch file).

There are two methods for changing the help browser behavior in ObjecTime. One is to set t
OBJECTIME_VIEWER environment variable to the executable name of the browser you wish to us
and the other is to modify the batch file %OBJECTIME_HOME%/bin/winnt4/ObjecTimeStartHelp.bat
to use internet explorer.
24 Getting Started with Windows NT Getting Started Guide

Example 1:

Set the OBJECTIME_VIEWER environment variable to ‘iexplore’ in the ‘System Properties’ window
under the 'Environment' tab.

Example 2:

Modify the ObjecTimeStartHelp.bat batch file by changing ‘netscape’ to read ‘iexplore’.
Getting Started Guide Getting Started with Windows NT 25

Installing ObjecTime Developer 5.2.1

-

.
net-

o-

-

n
-

Installing ObjecTime Developer 5.2.1
Note: If you have a previous release of ObjecTime Developer installed, you can:

• either uninstall it prior to installing ObjecTime Developer 5.2.1

• or, install it after installing ObjecTime Developer 5.2.1

following the procedure outlined in “Uninstall of “old” ObjecTime Release causes run failure of
5.2.1 in the following ways:.” on page 130 of this document.

A wizard-style setup program is provided to facilitate installing ObjecTime Developer 5.2.1 on Win
dows NT. The setup program can perform two types of procedures:

• “User Setup” will configure a user’s workstation to run Developer from an existing central network
installation of ObjecTime Developer. See “Setting Up a User Workstation” on page 34 for details.

• “ObjecTime Install” will install the Developer files to either a local workstation disk or a shared net-
work disk, and will configure the local workstation so that it is ready to run ObjecTime Developer
This procedure should be used to create either a stand-alone workstation installation, or a central
work installation on a shared NTFS disk. This procedure is described below.

1 Load the ObjecTime Developer 5.2.1 CD into the CD-ROM drive

Note: If the system is configured with the autorun feature enabled, the setup program will run aut
matically and you may continue with step 3.

2 Run Setup

Use the Windows Explorer to open a window displaying the contents of the CD-ROM drive. For ex
ample, double-click “My Computer” and then double-click the icon for the ObjecTime CD. Double-
click the Setup.exe icon to run Setup. Note that the .exe file name extension may not be visible.

If Nestcape Navigator is not installed on your system prior to installation, the following warning
message will be displayed during the installation, at which point you can either abort the installatio
and install Netscape, or continue with the ObjecTime installation and install Navigator 4.04 or In
ternet Explorer 4.0 after the ObjecTime installation has been completed.:
26 Getting Started with Windows NT Getting Started Guide

Installing ObjecTime Developer 5.2.1
3 Identification Information

You must accept the license agreement to proceed. If you do not agree with the terms of the license
agreement, the installation should be aborted and all software and documentation should be returned
to ObjecTime Limited. if you accept the terms and conditions of the license agreement, you must
identify yourself and the company you represent.

4 Select “ObjecTime Install”

After reviewing the license agreement and entering identification information, you will be prompted
with the “Setup Type” dialog. Select “ObjecTime Install.”
Getting Started Guide Getting Started with Windows NT 27

Installing ObjecTime Developer 5.2.1
5 Enter Installation Keys

Locate the Installation Key letter which you had received with your ObjecTime software media ship-
ment. You will be required to enter these keys to install the appropriate ObjecTime software pack-
ages.

6 Select the Set-Up Type

The default set-up type of Typical should always be used unless you are working with ObjecTime
Support on installation or packaging issues.
28 Getting Started with Windows NT Getting Started Guide

Installing ObjecTime Developer 5.2.1

e-
7 Product Package Confirmation

The product packages which will be installed are displayed and you must acknowledge these by
clicking on the Next button. These packages will match the products which were ordered through
ObjecTime as identified by your installation keys.

8 Select a Destination Directory

The destination directory is the file system location where the main Developer files are copied. The
default location is C:\ObjecTime\Developer5.2.1, where C: is the drive where Win-
dows NT is installed. ObjecTime recommends that you select the default installation location. If you
choose to change the installation location, refer to the limitations described in “File System Requir
ments” on page 22.
Getting Started Guide Getting Started with Windows NT 29

Installing ObjecTime Developer 5.2.1

on

an
ne

-
r-

4.

e

n
ep-
il
ep-
uch
9 Select a Program Folder

A program folder must be identified to which the ObjecTime icons are added. The default is Objec-
Time Developer 5.2.1.

10 Setup Options

After entering the Program Folder name you will be asked to select the initial product setup options.
These options are user-specific, and may be modified later by selecting the “Preferences” butt
from the ObjecTime Developer Launcher. The following options are available:

License Manager: The location of the license manager must be specified in order for ObjecTime
Developer to run. The license manager may be installed on the local workstation, or the system c
be configured to use a license manager that is available on a remote network workstation. Only o
license manager needs to be installed on the network.

If you select to “Install the License Manager on the local workstation”, you must follow the proce
dure described in the “License Manager Operations” chapter after completing the installation in o
der to configure and start the license manager.

Note: If you choose to run the license manager locally, set the TZ (Time Zone) variable. Install pre-
sents a warning if TZ is not set. See “Setting the Time Zone Variable on Windows NT” on page 6

If you select to “Use a License Manager installed on a remote workstation”, you must specify th
network IP address or host name of the workstation on which the license manager is installed.

E-mail for Exceptions File: If the toolset encounters a problem and an exception is generated, a
exception file is created and mailed to the e-mail address specified. The default address is “exc
tions@ObjecTime.com.” If the address is blank, the exception file will not be sent out. This e-ma
address is also used when mailing comments to ObjecTime support. It is recommended that exc
tions be sent to the default address unless you have an internal support group that assists with s
problems.
30 Getting Started with Windows NT Getting Started Guide

Installing ObjecTime Developer 5.2.1
External Editor: ObjecTime Developer supports the use of a user-specified text editor for editing
detailed source code in the toolset. Use this option to specify the full path of the editor executable.

11 Confirm Set-Up

You will be asked to confirm the installation parameters at which point the installation process will
begin.

Review the setup options carefully and click “Back” to make any modifications. Click “Next” to be-
gin the installation.
Getting Started Guide Getting Started with Windows NT 31

Installing ObjecTime Developer 5.2.1

.

After installation is completed, you will be prompted to read the Readme file, which contains last
minute additions to the release notes. Review the Readme file by clicking on the “Yes” button.

12 Restart System

It is strongly recommended that you restart the system to complete the installation.

Obtain License Keys.

When upgrading from 5.2 to 5.2.1:

• after installing the software, activate your 5.2 License Keys.

For a new 5.2.1 license or when upgrading from pre-5.2:

• after installing the software, obtain License Keys from ObjecTime Support to run the software
See “License Manager Operations” on page 55 for complete instructions.
32 Getting Started with Windows NT Getting Started Guide

Installing ObjecTime Developer 5.2.1

”

,”
l

e
ts

the
 the

.cpl
d in

ty
e

Uninstalling Developer 5.2.1

ObjecTime Developer 5.2.1 may be uninstalled by selecting the “Uninstall ObjecTime Developer 5.2.1
icon from the “ObjecTime Developer 5.2.1” folder created by the setup program.

If the Uninstall icon is not present, open the “Control Panel,” double-click on “Add/Remove Programs
select “ObjecTime Developer 5.2.1” from the list of applications, and click “Add/Remove” to uninstal
ObjecTime Developer.

The uninstall utility does not remove ObjecTime fonts that are installed by Setup. To manually remov
ObjecTime fonts, open the “Control Panel,” open the “Fonts” folder, and delete the ObjecTime fon
(otl10b, otl10i, otl10r, otl10s, otl10t.)

If the license manager is running locally on the system, the uninstall procedure does not remove
License Manager service from the system. The license manager can be disabled by the user through
Elan LM applet of the system control panel.

To remove the license manager manually, remove the files objectime_elmd.exe and objectime_elmd
which are the license manager executables and control panel respectfully. These files are locate
C:\winnt\system32.

Note: On systems where ObjecTime Developer has been installed incrementally, the uninstall utili
may fail to completely remove all the files that were installed. To remove the remaining files, delet
the ObjecTime Developer 5.2.1 installation directory manually.
Getting Started Guide Getting Started with Windows NT 33

Installing ObjecTime Developer 5.2.1

l-

 or
ay
te
e
m

-

s

e
-

r

-

Setting Up a User Workstation

The following procedure describes how to set up a user workstation so that it can run ObjecTime Devel-
oper 5.2.1 from an existing network installation. If you are installing a stand-alone workstation, this
procedure is not required. For more information on network installations, see “Network vs. Local Insta
lation” on page 21.

To complete this procedure, ObjecTime Developer must already be installed on another workstation
server at a location that is accessible over the network. The ObjecTime Developer installation m
either be on a NTFS disk on a remote Windows NT workstation, or it may be on a NFS disk on a remo
Unix workstation. If you intend on using ObjecTime Developer over an NFS disk, you must have th
appropriate NFS software installed and properly configured on the local workstation. See “File Syste
Requirements” on page 22 for more information.

Note: The network location where the central ObjecTime Developer installation resides must be
mapped to a drive letter before proceeding with a “User Setup.” For NFS installation, it is recom
mended that the Developer5.2.1 directory containing the ObjecTime Developer files be
mapped directly to a drive letter. For example, map \\server\appl\Objec-
Time\Developer5.2.1 to the drive letter D:.

To map a network drive, right-click on “My Computer” and select “Map Network Drive.” Select an
unused drive letter to map, browse to the desired network path, and click “OK.” Refer to the Window
NT documentation for more information on mapping network resources.

The following steps for setting up a user workstation as a client of a network server is similar to th
steps involved in an “ObjecTime Install.” However, the only files that are installed on the local worksta
tion with this type of setup are the ObjecTime font files.

1 Run Setup

Use the Windows Explorer to open a window displaying the contents of the NTSetup subdirectory
of the central ObjecTime Developer installation. For example, if the central ObjecTime Develope
installation is located at D:\, double-click “My Computer”, double-click the icon for disk D:, and
then double-click the NTSetup folder. Double-click the Setup.exe icon to run Setup. Note
that the .exe file name extension may not be visible.

Note: You can also perform a “User Setup” by running ObjecTime Developer Setup from the De
veloper 5.2.1 CD, but you will need to manually specify the network location of the ObjecTime
Home directory in step 3 below.
34 Getting Started with Windows NT Getting Started Guide

Installing ObjecTime Developer 5.2.1

h
t

e

2 Select “User Setup”

After reviewing the license agreement and entering identification information (see items 1 throug
3 in the Standard ObjecTime Install), you will be prompted with the “Setup Type” dialog. Selec
“User Setup.”

3 Specify the ObjecTime Home Directory

The ObjecTime home directory is the location where the existing network installation of ObjecTim
Developer resides. For the above example, the ObjecTime home location is D:\.

4 Follow steps 9 through 12 as in the standard ObjecTime Install scenario.
Getting Started Guide Getting Started with Windows NT 35

Starting ObjecTime Developer 5.2.1 on Windows NT

”

e

 a

d

er

e

-

Starting ObjecTime Developer 5.2.1 on Windows NT
Installing Developer 5.2.1 on a Windows NT workstation will create an “ObjecTime Developer 5.2.1
folder containing several shortcut icons.

This folder is added to the “Programs” entry of the system’s “Start” menu and the following icons ar
created:

• ObjecTime Developer starts the ObjecTime Launcher program. The Launcher is used to create
working directories, configure start-up options, and to start the ObjecTime Developer toolset with
specific working directory. For details, see “Using the ObjecTime Developer Launcher” below.

• ObjecTime Developer Command Prompt starts a Windows NT command prompt window con-
figured with the required environment variables for running the ObjecTime Developer comman
line utilities. All Developer utilities including license manager scripts and Target Services Library
build operations should be executed from this window. Refer to the chapter on “License Manag
Operations” for further details on the License Manager utilities.

• Readme displays release notes containing important up-to-date information not included in th
printed documentation.

• Online Documentation displays the on-line version of the printed documentation.

• Uninstall ObjecTime Developer 5.2.1 will uninstall Developer from the workstation. See “Unin-
stalling Developer 5.2.1” on page 33.

Note: You can start an ObjecTime Developer toolset session for a specific working directory by dou
ble-clicking on the ObjecTime5.2.otd session file located in the working directory.
36 Getting Started with Windows NT Getting Started Guide

Starting ObjecTime Developer 5.2.1 on Windows NT

e

cuta-
es

e
that

or

-

n
k
-

-

-

Using the ObjecTime Developer Launcher

ObjecTime Developer sessions are saved in “working directories.” Working directories contain th
Developer 5.2.1 session file (ObjecTime5.2.otd) plus any other files that are generated while
you use the toolset. For example, when you use the toolset to generate source code and build exe
bles for your models, the session’s working directory is the default location where the generated fil
will be saved.

Although it is possible for a user to have just one working directory, it is usually more convenient to us
more than one. For example, you may choose to have a separate working directory for each project
you are working on.

The ObjecTime Developer Launcher provides an interface for creating new working directories and f
configuring and starting toolset sessions.

• Working Directories: This list box provides access to the most recently used working directories.
To start the Developer toolset, select a working directory from the list and click “Open.” If you ha
ven’t used Developer before, this list will be empty.

• New: This button allows you to create new working directories. A dialog appears where you ca
specify the location for the new directory. Enter the full path name for the new directory and clic
“Create” to create it. When finished, the new directory name will be added to the Working Directo
ries list.

Note: The file name limitations described on page 22 also apply to Developer 5.2.1 working direc
tories.

• Browse: This button allows you to add an existing Developer 5.2.1 working directory to the Work-
ing Directories list.

Note: You cannot specify an arbitrary existing directory as an ObjecTime Developer working direc
tory. The directory specified must contain a valid Developer session file
(ObjecTime5.2.otd).
Getting Started Guide Getting Started with Windows NT 37

Starting ObjecTime Developer 5.2.1 on Windows NT

t

n-
ati-

on,
tch

et.
e

Startup Options

The launcher allows you to specify a number of startup options when starting a toolset session.

• Capture Output to Window: If selected, console output from the Developer toolset is displayed in
a window. This option is selected by default. Either “Capture Output to Window” or “Capture Outpu
to File” must be selected.

• Capture Output to File: If selected with a valid file name specified, console output from the De-
veloper toolset will be saved in the specified file.

• Enable Batch Mode: If selected, the launcher will start the toolset in batch mode. Specify the file
containing the batch mode commands. Refer to the User Guide for further information on Batch
Mode.

• Enable Target Observability: If selected, the launcher will start a RTS controller before loading
the toolset session. The toolset will automatically be connected to the running RTS controller to e
able the target observability feature. When the toolset session ends, the RTS controller is autom
cally stopped. Refer to the ObjecTime Developer User Guide for further information on target
observability.

Command Line Parameters

The ObjecTime Developer Launcher executable is called ObjecTime5.2.exe, and is located in
the bin\winnt4 subdirectory of the ObjecTime home directory. The default location is:

C:\ObjecTime\Developer5.2.1\bin\winnt4\ObjecTime5.2.exe

where C: is the drive where Windows NT is installed.

The launcher can be started from the ObjecTime Developer Command Prompt, or from a shortcut ic
with the following command-line parameters. These parameters can be useful for automating ba
mode sessions or for setting up shortcut icons with frequently used startup options.

• <workingDir>\ObjecTime5.2.otd allows you to specify a working directory to auto-
matically load. If a valid working directory is provided, the launcher interface will not appear but
will immediately start the toolset with the session file in the specified working directory.

• -verbose is equivalent to selecting the “Capture Output to Window” option.

• -verbose=<filename> is equivalent to selecting the “Capture Output to File” option.

• -file=<filename> is equivalent to selecting the “Enable Batch Mode” option.

• -control is equivalent to selecting the “Enable Target Observability” option.

• -console is equivalent to starting an “ObjecTime Developer Command Prompt.”

Specifying Additional Environment Variables

The Windows NT Developer toolset recognizes the same environment variables as the Unix tools
You can use.bat files to specify the desired environment variables, and then automatically start th
toolset session by invoking the Launcher with the appropriate parameters. Example:

set USER_MAKE_FLAGS= -j4
ObjecTime5.2.exe C:\OT52\ObjecTime5.2.otd -control
38 Getting Started with Windows NT Getting Started Guide

Starting ObjecTime Developer 5.2.1 on Windows NT
Running a batch file containing the above commands from an ObjecTime Developer Command Prompt
will automatically start a toolset session with the C:\OT52\ObjecTime5.2.otd session file,
Target Observability enabled, and with the compile environment variable USER_MAKE_FLAGS set
to -j4.
Getting Started Guide Getting Started with Windows NT 39

Starting ObjecTime Developer 5.2.1 on Windows NT
40 Getting Started with Windows NT Getting Started Guide

Chapter 4

Getting Start
4 Getting Started with Unix
d

k-

c-
t-

ingle
on
cal
a-
The procedure for installing ObjecTime Developer 5.2.1 in Unix is described in the following section.
Note that unless specified otherwise, your system administrator will generally carry out the following
steps.

For environments where there is more than one user of ObjecTime Developer 5.2.1, we strongly recom-
mend that the main ObjecTime Developer 5.2.1 files be installed on a centralized file server.

The main steps involved in getting started with UNIX are described in the following sections:

• Installing Netscape Navigator (“Installing Netscape Navigator” on page 43) covers how to set up
Netscape Navigator for viewing the on-line help and documentation. If Navigator is already installe
on your system, this step can be skipped.

• Installing ObjecTime Developer 5.2.1 (“Installing ObjecTime Developer 5.2.1” on page 45) cov-
ers how to install ObjecTime Developer 5.2.1 software on a Unix workstation or server.

• Setting up a User Workstation (“Setting Up a User Workstation” on page 47) describes how to set
up a Unix workstation from an existing ObjecTime Developer installation on a central network file
server. This step is not required if you are installing ObjecTime Developer 5.2.1 on the local wor
station.

• Starting ObjecTime Developer 5.2.1 (“Starting ObjecTime Developer 5.2.1” on page 50) de-
scribes how to start the Developer 5.2.1 toolset.

Network vs. Local Installation
Two scenarios are available when installing ObjecTime Developer 5.2.1 on Unix. You can install Obje
Time Developer on a local workstation disk, or you can install ObjecTime Developer on a central ne
work file server.

Each scenario has advantages: Network installations can be shared between multiple users at a s
site, reducing the amount of local disk space required on each workstation, centralizing administrati
and maintenance, and reducing the effort required to upgrade multiple users. On the other hand, lo
installation can provide a significant performance advantage, especially with slower network configur
tions.
ed Guide Getting Started with Unix 41

r

r

le

th

to

-

During the setup process you will be asked to select a destination directory for the Developer files. To
create a local stand-alone workstation installation, select a destination directory on a local disk.

To create a shared network installation, select a destination directory on a shared network disk. After
installing the Developer files on the network disk, run Setup from each network workstation and per-
form a “User Setup,” as described in “Setting Up a User Workstation” on page 47.

Supported Network Configurations

Pure Unix Installation

ObjecTime Developer 5.2.1 either running locally on a Unix workstation, or using a Unix file serve
under the following configuration conditions:

• File system must be NFS.

• Network must use TCP/IP.

Mixed Unix and WindowsNT Installation

ObjecTime Developer 5.2.1 can run on a Windows NT workstation connected to a Unix file serve
under the following configuration conditions:

• Network File system must be NFS.

• Local file system must be NTFS. FAT is not supported.

• Supported NFS clients are Chameleon and Hummingbird. Make sure to install the clients properly:

• Support for mixed case file names must be enabled.

• Consult the NFS client documentation regarding soft links. Some implementations can’t hand
these very well.

• The path to the Setup program must conform to the 8.3 DOS file naming convention, and the pa
can not be longer than 63 characters including drive letter and the name of the Setup program.

Installation Requirements
• CD-ROM drive – A CD-ROM drive is required to install Developer 5.2.1 from CD. If a CD-ROM

drive is unavailable, copy the contents of the disk to a network file server, map the network disk
a Unix file system, and perform the installation from the network location.

• Administrators Group Membership – system administrator (root or super-user) privileges are re-
quired.

• 50 MB to 170 MB free disk space – A minimum ObjecTime Install requires 50 MB of free disk
space, and a full installation requires 170 MB (which would include support for the complete set of
ObjecTime toolset platforms).

• Printer – The default printer requirement is, at minimum, a Unix compatible printer. The recom
mended printer is a PostScriptTM printer.
42 Getting Started with Unix Getting Started Guide

ly

he

 li-
se

M
fi-
Local Workstation Requirements

• 64 MB main memory minimum – For large models or build operations, 128 MB or greater is rec-
ommended for improved performance.

• Toolset Memory Requirements – “Toolset Memory Requirements” on page 115 describes the
memory requirements for models.

• 12 MB disk space per working directory minimum – Each user may have one or more Developer
5.2.1 working directories which contain the user’s session file. Developer session files are initial
12 MB and will increase in size with use.

• 256 color graphics adapter – A high resolution graphics adapter with support for at least 256 colors
is recommended.

Installing Netscape Navigator

Online help and documentation for Developer 5.2.1 is provided in HTML format. In order for the help
system to function correctly, Netscape Navigator 4.04 must be installed on the user’s system. T
required software is included on the Developer 5.2.1 CD in the Netscape subdirectory.

Note: Netscape Navigator is provided with the release as part of the online help system. You are
censed to install one copy of Navigator 4.04 per licensed copy of ObjecTime Developer 5.2.1. Plea
refer to the Netscape license agreement for the terms and conditions.

Unix versions of Netscape Navigator 4.04 are located in the netscape/unix directory of the Devel-
oper 5.2.1 CD. Separate subdirectories contain versions specific to each toolset platform.

• hpux_10 contains binaries for HPUX 10.20

• irix_62 contains binaries for IRIX 6.2

• sunos413 contains binaries for SunOS 4.1.3

• sunos_551 contains binaries for Solaris 2.5 and higher

• aix_4 contains binaries for AIX 4.2.1

Consult the file netscape/unix/_readme.txt included on the Developer 5.2.1 CD prior to install-
ing Netscape Navigator.

1 Create a directory where Netscape Navigator will be installed.

mkdir /appl/netscape
2 Change directory to the created directory.

chdir /appl/netscape
3 Unpack the Netscape tar file for your toolset platform from the Developer 5.2.1 CD. Note: The file-

system location where CD-ROM devices are mounted and the case of filenames on the CD-RO
are dependent upon the version of Unix being used. The following commands may require modi
cation to work on your system.

Solaris: In this example, the Developer 5.2.1 CD is mounted at /cdrom/objectime. Solaris usu-
ally makes filenames lowercase on CD-ROM devices.
Getting Started Guide Getting Started with Unix 43

tar -xvf /cdrom/objectime/netscape/unix/sunos_551/sparc/netscape.tar

HP-UX: In this example, the Developer 5.2.1 CD is mounted at /cdrom. HP-UX usually makes
filenames uppercase, and appends each filename with ‘;1’. Note that the quotes around the file-
name are required.

tar xvf ’/cdrom/NETSCAPE/UNIX/HPUX_10/NETSCAPE.TAR;1’
4 Review the Netscape README.install file for any platform specific installation instructions.

5 Add the installed Netscape executable to your path. This should be added to your shell initialization
file so that Netscape is available every time you log on.

C shell: setenv PATH /appl/netscape:$PATH
44 Getting Started with Unix Getting Started Guide

Installing ObjecTime Developer 5.2.1
Installing ObjecTime Developer 5.2.1
1 Place the Developer 5.2.1 CD in the CD-ROM drive.

2 Mount the CD-ROM device.

You are usually required to be a system administrator (root or super-user) to be able to do this. See
the instructions for your particular CD-ROM drive and operating system for details.

AIX: mount /CDROM

(or put entry for /CDROM in /etc/filesystems)

HP-UX: mount -rt cdfs /dev/dsk/c201d5l1 /cdrom

IRIX: mount /CDROM

(or put entry for /CDROM in /etc/fstab)

Solaris: mount -rF hsfs /dev/sr1 /cdrom

SunOS: mount -rt hsfs /dev/sr1 /cdrom

where /dev/sr1 is the CD-ROM device.

3 From a shell window, change directory to the mounted CD-ROM device.

For example:

cd /cdrom

4 Run the setup script.

./setup.sh

On HP-UX, it may be necessary to use the following command (including the quotes):

sh ’./SETUP.SH;1’

5 Enter an Installation Key.

Locate the Installation Key letter which you had received with your ObjecTime software media ship-
ment. You will be required to enter these keys to install the appropriate ObjecTime software pack-
ages.

“Enter an installation key:” enter-urkey-frmth-shpng-envlp<ENTER>

6 Review and accept the term of the license agreement.

The license agreement will be displayed and you will be prompted to accept or reject the license
agreement. You must accept it to continue:

“ Enter Y<ENTER> to Accept, R<ENTER> to Read again, or Q<ENTER> to
Quit:” Y<ENTER>
7 Specify the installation type.

The default set-up type of Typical should always be used unless you are working with ObjecTime
Support on installation or packaging issues.

“Press T<ENTER> for Typicall Installation ,

or C<ENTER> for Custom Installation:” T<ENTER>

8 Specify the platforms to be supported by the ObjecTime installation.
Getting Started Guide Getting Started with Unix 45

Installing ObjecTime Developer 5.2.1
Select all platforms to be supported by this installation. The default is no and in the example, only
SUN5 was selected by typing “y<ENTER>” at the SUN5 prompt.

“Which platforms would you like to be supported?

HP10 Y/N [n]?

IRIX6 Y/N [n]?

SUN4 Y/N [n]?

SUN5 Y/N [n]? y<ENTER>

NT4 Y/N [n]?

AIX4 Y/N [n]?

Platforms to be supported:

SUN5”

9 Specify the installation directory.

The script will prompt you for a directory into which it will copy the Developer 5.2.1 files. The di-
rectory name must be specified as an absolute path name. A Developer5.2.1 sub-directory will be
created in the directory that you specify. You must have write permissions for the installation direc-
tory. If the directory does not exist, you will be asked if you would like to create it.

“Enter absolute installation directory path:”

/testing<ENTER>

10 Confirm the ObjecTime Developer 5.2.1 Packages to Install.

You will be asked to confirm the packages and installation directory.

The following 6 packages are selected for installation in the

directory ‘/testing’:

(I: Package already installed if ‘Y’)

Package description Size in KB I

==

ObjecTime Platform Independent Code 14804 N

SimulationRTS Common Code 1179 N

Solaris SimulationRTS libraries 2927 N

Generic On-line Documentation and HELP 18968 N

C++ On-line Documentation and HELP 2514 N

Solaris Toolset Libraries 5612 N

==

Selected size: 46004 kB

Free disk space: 1218000 kB

Type M<ENTER> to Modify installation directory path, or

Y<ENTER> to Begin installing the selected packages:” Y<ENTER>

11 Obtain License Keys.

When upgrading from 5.2 to 5.2.1:
46 Getting Started with Unix Getting Started Guide

Installing ObjecTime Developer 5.2.1

.

in

ari-

n.

p

• after installing the software, activate your 5.2 License Keys.

For a new 5.2.1 license or when upgrading from pre-5.2:

• after installing the software, obtain License Keys from ObjecTime Support to run the software
See “License Manager Operations” on page 55 for complete instructions.

Uninstalling ObjecTime Developer 5.2.1

To uninstall ObjecTime Developer use the following procedure:

1 Remove the installation directory and all of its contents.

2 Save any user data files in another location before removing the installation directory.

3 If you are upgrading to ObjecTime Developer 5.2.1, be sure to follow the procedure described
“Starting ObjecTime Developer 5.2.1” on page 50 before removing the previous version of Objec-
Time Developer.

Setting Up a User Workstation

Environment Variables

ObjecTime Developer requires a number of environment variables to be set. Set the environment v
able $OBJECTIME_HOME to the new ObjecTime5.2.1 installation directory. Also, set the
$OBJECTIME_LICENSE_SERVER variable to the name of the workstation running the ObjecTime
license manager. Add $OBJECTIME_HOME/bin to your path.

These lines can be added to your shell initialization file, so that they are available every time you log o

Bourne shell (sh or ksh):

OBJECTIME_HOME=/disk/apps/ObjecTime/Developer5.2.1
export OBJECTIME_HOME
OBJECTIME_LICENSE_SERVER=machine1
export OBJECTIME_LICENSE_SERVER
PATH=$PATH:$OBJECTIME_HOME/bin
export PATH

C shell (csh):

setenv OBJECTIME_HOME /disk/apps/ObjecTime/Developer5.2.1
setenv OBJECTIME_LICENSE_SERVER machine1
set path=($path $OBJECTIME_HOME/bin)

Either logout and then login again, or perform the rest of the upgrade from a new command shell.

Fonts

Note: You should contact your system administrator to determine how to configure the font set-u
on your system.
Getting Started Guide Getting Started with Unix 47

Installing ObjecTime Developer 5.2.1
Set the X-windows Font path to point to the new $OBJECTIME_HOME. The following command
should be added to the X11 start-up script (usually .xinitrc, .x11start or .openwin-init):

xset +fp $OBJECTIME_HOME/fonts/<machine-type>

where <machine-type> is the type of workstation you are executing on (or if executing ObjecTime
remotely through another workstation, the type of that workstation). Examples: sun4, sun5, hp, ncd (for
NCD X-terminals), ibm.

Note: The ObjecTime fonts will not be set properly, if the user is on an X-Terminal which obtains
its boot files from a file server which does not have access to the $OBJECTIME_HOME/fonts di-
rectory. In this case the fonts should be copied to the file server from which the X-Terminal obtains
its boot files.

You may need to add the OT fonts path with:

xset +fp /disk6/Release5.2.1/Developer5.2.1/fonts/sun

xset fp rehash

Fonts are universal resources and these commands can be typed in any shell on your machine.

Additional Settings

ObjecTime can also be run in batch mode. Please consult the chapter on Batch Mode ObjecTime in the
ObjecTime User Guide for further details on this.

Optional settings

The following optional configuration settings may also be made:

For users that wish to use an external editor to edit their RPL, C or C++ code segments, the environment
variable OBJECTIME_EDITOR must be set to an appropriate window system command to start up the
editor.

For example under OpenWindows you could set it as follows to start up an emacs editor:

setenv OBJECTIME_EDITOR "shelltool emacs"

Or to start up vi under the X Window System, use the following for SunOS:

setenv OBJECTIME_EDITOR "xterm -e /usr/ucb/vi"

Or for Solaris, HP or IBM use:

setenv OBJECTIME_EDITOR "xterm -e /usr/bin/vi"
48 Getting Started with Unix Getting Started Guide

Installing ObjecTime Developer 5.2.1

ic
-

fol-

-
an-
er
The user may also wish to select a default printer at this time. The environment variables PRINTER (for
a Sun), and LPDEST (for an HP) will be used by ObjecTime when printing. For example, if the desired
printer is ps3 then the following line could be added to the ~/.cshrc file (assuming csh):

setenv PRINTER ps3 (for SUN)

setenv LPDEST ps3 (for HP)

If you are using a color terminal, you may wish to have the FrameMaker documentation output produce
color graphics. To enable this, add the following two lines to your .xrdb file:

maker.colorDocs: True

maker.colorImages: True

You will then want to reinitialize your X Window System resources as follows:

xrdb -load .xrdb

If you are running ObjecTime from an NCD X-Terminal, then you may wish to add the following key
mapping changes in your X Window System start-up file in order to use the alt key.

xmodmap -e “keysym Alt_L = Meta_L Alt_L”

xmodmap -e “keysym Alt_R = Meta_L Alt_R”

When using HPView on X-Terminals, you must change the keyboard focus policy to provide automat
window focus where the cursor is; otherwise you will not be able to type into textpanes within Objec
Time.

Note: You will have to add the two xmodmap functions relating to Alt_L and Alt_R to your XWin-
dow start-up file in addition to those specifically referring to HPView.

For the HP7XX series workstation, in order for the short-cut keys to work, the following xmodmap
changes must be made:

xmodmap -e “remove mod1 = Mode_switch”

In order to use the shift-Tab to allow the user to go to a previous node in the RPL editor, execute the
lowing xmodmap command:

xmodmap -e “keycode 63 = Tab”

The user environment variable OBJECTIME_LICENSE_HOLDTIME can be set to the number of sec
onds for a toolset license, that has just been relinquished by a user, to be reserved by the License M
ager for that user. The default hold time is 300 seconds. For more details see “License Manag
Operations” on page 55.
Getting Started Guide Getting Started with Unix 49

Starting ObjecTime Developer 5.2.1
Starting ObjecTime Developer 5.2.1
These operations are normally carried out requiring that you use your userid.

Create a new working directory for ObjecTime5.2.1:

create_objectime_dir <new-dir-name>

where <new-dir-name> is the name of the new local ObjecTime directory to be created. The new
release level of ObjecTime is now ready to run.

Change the current directory to the new ObjecTime directory. Start up ObjecTime by typing the follow-
ing:

1 cd <new_dir_name>

2 objectime&.

Activate the previous designs, if any, by dragging your updates from the appropriate Directory Browser
to the Workspace Browser.

After activating all pre-5.2.1 designs, each user should passivate them again, so that they are saved in
5.2.1 format. This should be to another directory, so that the original updates are not lost.

If no problems occur, you may delete the older ObjecTime user directory after a suitable period of time
(and, if applicable, the directory containing the old (5.0, 5.1/5.1.1, 5.2) updates).

Delete the main directory for the previous release once all users are up and running successfully with
the new release.

Startup Options

The ObjecTime script may take a number of different options.

Either of the following two options can be used to change the display variable

• DISPLAY=<displayName>

• -display <displayName>

The following three invokations are equivalent:

1) objectime -display xterm1:0

2) objectime DISPLAY=xterm1:0

3) setenv DISPLAY xterm1:0 ; objectime

The following options control how "verbose" the objectime script is:
50 Getting Started with Unix Getting Started Guide

Starting ObjecTime Developer 5.2.1
• -q

• -quiet

• -v

• -verbose

The final command line option is:

• -control

This option controls whether or not the Target Observability controller is started automatically.

objectime -control (start controller automatically)

objectime (do not start controller)
Getting Started Guide Getting Started with Unix 51

Starting ObjecTime Developer 5.2.1
52 Getting Started with Unix Getting Started Guide

Chapter 5

Getting Start
5 Supported Platforms
The following table shows the supported platforms for ObjecTime Developer 5.2.1.

5.2.1 Host Platforms

Toolset Host Simulation Services Library Name

AIX 4.2.1 (PowerPC) AIX4.ppc-CSet-3.1.4

AIX4.ppc-gnu-2.8.1a

a. Note: Do not use the 02 (or higher) optimization setting.

HPUX 10.20 HPUX10.hppa-gnu-2.8.1

HPUX10.hppa-HPC++-10.11

IRIX 6.2 IRIX6.r4400-gnu-2.8.1

IRIX6.r4400-ProDev-7.2

Solaris 2.5.1
Solaris 2.6 SUN5.sparc-gnu-2.8.1

SUN5.sparc-SunC++-4.0.1

SUN5.sparc-SunC++-4.1

SUN5.sparc-SunC++-4.2

SUN5.sparc-Green-1.8.8

Sun OS 4.1.3 SUN4.sparc-gnu-2.8.1

SUN4.sparc-SunC++-4.0.1

SUN4.sparc-Green-1.8.8

WindowsNT 4.0 NT40.x86-VisualC++-5.0

NT40.x86-VisualC++-6.0
ed Guide Supported Platforms 53

Platforms No Longer Supported in Objectime Developer 5.2.1

The following are host platforms or compilers that were supported in ObjecTime Developer 5.2, but are no
longer supported with ObjecTime Developer 5.2.1.

Toolset Host Simulation Services Library Name

WindowsNT 4.0 NT40.x86-VisualC++-4.2
54 Supported Platforms Getting Started Guide

Chapter 6

Getting Start
6 License Manager Operations
 the
Licensing Changes
On startup the toolset will acquire licenses for the toolset and for all available code generators, unless
they are suppressed by setting the appropriate environment variables. The code generator licenses will
be shared with the code generator when it is invoked from the toolset.

The new licenses used by ObjecTime Developer 5.2.1 are:

• 9004 Total number of 5.2.1 toolset sessions. One license is allocated for each active toolset.

• 9030 Total code generation licenses

• 9031 C++ code generation licenses.

• 9032 C code generation licenses

• 9033 Simulation code generation licenses. This enables code generation for the SimRTS for both
C++ and C versions of the product.

 License Acquisition Suppression

Whenever started, all variants of ObjecTime Developer (Basic, C, or C++) acquire a license token for
each available variant for which the license manager has licenses. It is important to know this in instal-
lations where many variants of the tool is installed, using the same license manager.

For example, if you have three licenses for ObjecTime Developer 5.2.1 (OTD Base) and seven for
ObjecTime Developer 5.2.1 for C++ (OTD C++), for a total of 10 simultaneous users. The first seven
users to log on will get tokens for the C++ code generation, whether they are using OTD C++ or OTD
Base. If the three OTD Base users get their tokens first, only four of the OTD C++ users will be allowed
to generate code. Also note that even though the OTD Base users have a C++ code generation token,
they will also not be able to generate code as the necessary libraries were not installed on their system.

There are two solutions to this situation: Using the license manager functionality to restrict the users
able to get tokens, or setting environment variable for the users/workstation to limit the tokens acquired.
ed Guide License Manager Operations 55

Licensing Changes

cate

c-
Using the License Manager

The first method is to use the capabilities of the License Manager to restrict the users/workstation
allowed to acquire certain license tokens. This is done by creating or modifying the License Manager’s
resource file to include lines such as:

Reserve C++ licenses (9031) for the group

9031:cppusers:user1,user2,user3,user4,user5,user6,user7:7:30

or:

Exclude group from using C (9032) licenses

9032:basicusers:usera,userb,userc:EXCLUDE:0

Refer to the “License Manager Operation” appendix of the User Guide for more information regarding
this capability.

Environment Variables

Code generation license acquisition can be suppressed by setting user environment variables to indi
that licenses of a certain type not be acquired.

To suppress the license acquisition, set the following environment variables to 0 before starting Obje
Time:

• 9031 C++ code generation: OBJECTIME_CPP_GENERATION

• 9032 C code generation: OBJECTIME_C_GENERATION
56 License Manager Operations Getting Started Guide

ObjecTime Developer Licensing
ObjecTime Developer Licensing
The license manager is used to control access to ObjecTime Developer. In ObjecTime Developer 5.2.1,
the ObjecTime License Manager controls access to the toolset for Unix and Windows NT hosts. The
License Manager can be run on either Unix or Windows NT machines.

Note: If you install ObjecTime in a stand-alone configuration, you can install the License Manager
to execute on the same workstation as ObjecTime.

Licensing is managed by a License Manager program which is generally run on some centrally accessi-
ble file server. If you install ObjecTime in a stand-alone configuration, you can install the License Man-
ager to execute on the same workstation as ObjecTime. In addition to having the license manager
service clients on a network, the license manager can also be used to provide licenses to clients remotely
connected using dialup networking. All that is required, in terms of obtaining a license for ObjecTime
Developer, is that the machine hosting the license manager is accessible, and identified as the license
server, to the machine running the toolset. TCP/IP networking is required to communicate with the
license server.

ObjecTime Licenses

The License Manager is responsible for issuing tokens for the various products and their associated fea-
tures that a customer may have purchased. In order to use a particular product and its feature(s), the exe-
cuting product must obtain the appropriate feature token (see the table below for a list of valid feature
tokens). Hence the License Manager must be running for you to initiate any product feature. The Objec-
Time 5.2.1 License Manager can support ObjecTime 4.4, 5.0, 5.1, 5.1.1, 5.2 and 5.2.1 licenses simulta-
neously. The 4.4, 5.0, 5.1, 5.1.1, 5.2, 5.2.1 licenses are managed as a common pool with the maximum
number of tokens available at any one time equal to the total number of licenses purchased.

Table 1 Toolset Feature Requirements

Feature (license) Toolset version

4.4 5.0 5.1 and 5.1.1 5.2 and 5.2.1

9000 (4.4 and total) X X X X

9001 or 9002 (Unix or NT) X (one of
9001 or 9002
but not both)

X (one of
9001 or 9002
but not both)

9003 (5.1) X

9004 (5.2.1 Toolset) X

9010 (C/C++ Modeling) X

9020 (5.0) X
Getting Started Guide License Manager Operations 57

License Registration

.

ress
e

The above table shows the licensing requirements for various versions of the toolset. Different versions
of the toolset require different sets of licenses to run. On startup, the toolset attempts to obtain the
licenses necessary. The table indicates which licenses are required for each toolset version, with an X in
the cell selected by version and feature.

In the remainder of this section, the term product refers to the product/feature combination.

Only Floating Licenses are supported. A Floating License enables the product to be executed on any
workstation, within a networked workgroup, up to a maximum of N simultaneous usages, where N is the
number of Floating Licenses purchased. A single License Manager running on a centralized server can
manage Floating Licenses for the workgroup. If desired, the set of Floating licenses can be split among
multiple License Managers.

License Registration
When upgrading from 5.2 to 5.2.1:

• after installing the software, activate your 5.2 License Keys.

For a new 5.2.1 license or when upgrading from pre-5.2:

• after installing the software, obtain License Keys from ObjecTime Support to run the software
See “License Manager Operations” on page 55 for complete instructions.

To produce these keys, we require certain workstation information such as its machineid and IP ad-
dress.

License manager registration

To enable the License Manager program, Objectime Support requires the machineId and the IP add
of the file server or workstation upon which the License Manager program will be executing. Pleas

9030 (Total Code Generation) X

9031 (5.2.1 C++ Code Generation) X

9032 (5.2.1 C Code Generation) X

9033 (5.2.1 SimRTS Code Genera-
tion)

X

Notes
1 Compatibility with earlier versions of ObjecTime will be maintained. It will be possible

to start to use the 5.2.1 license manager and supporting scripts with toolset versions back
to 4.4.1.

2 Demo key support will carry over to the new license keys.

Feature (license) Toolset version
58 License Manager Operations Getting Started Guide

License Registration

-
n-

ys.

e.
provide ObjecTime Support with this information by filling out the License Manager Registration Form
and sending it to us.

Obtaining the workstation machineId and IP address

A script utility has been provided which, in most cases, can provide the required machine ID and IP
address information necessary to obtain License Keys from ObjecTime Support.

Note: 5.2 License Upgrade to 5.2.1 License - New License Keys are not required when upgrading
from ObjecTime Developer 5.2 to ObjecTime Developer 5.2.1. Simply follow the installation in-
structions using your 5.2 License Keys.

To obtain this information, execute the following script in a command or shell-tool window:

$OBJECTIME_HOME/bin/ObjecTimeKeyInfo

This command returns information about the server machine on which you will run your license server.
The command is run from the server machine, taking no parameters, and returns the machine’s IP
address and machineId.

Command:

Unix: ObjecTimeKeyInfo

Windows NT: ObjecTimeKeyInfo

Note: On Windows NT, commands must be invoked from the ObjecTime Developer Command
Prompt. This is a console window started from the ObjecTime command group which has the en
vironment variables set appropriately. Attempting to run the commands on a PC from a normal co
sole window will cause the commands to fail.

Example:

ObjecTimeKeyInfo
host: machine
IP addr: 192.139.251.207
MACHINEID: c08bfbcf762a
Server target : NT
ObecTimeKey information written to file otinfo

New 5.2.1 License - The ObjecTimeKeyInfo command provides a file, otinfo, that you
should email as an attachment to ObjecTime support (support@ObjecTime.com) when requesting ke

• Please include the following user information: your company name, project, and ObjecTime prim
This will assist ObjecTime support in identifying and handling your key request quickly.

• On Windows NT, the MACHINEID is the Volume Serial Number of the first logical hard disk on
the PC. This will normally be C: and the ObjecTimeKeyInfo command will look for this drive. If
for some reason the first drive is not C:, then the Volume Serial Number for the first logical disk
must be obtained by using the DIR command and noting the Volume Serial Number of this drive.
Getting Started Guide License Manager Operations 59

License Registration

r
r

nd
h

• When running the license server on Windows NT, the IP address that the license manager locks to
will be that of the installed network card. If dialup networking is subsequently invoked on the serve
machine and a dynamic IP address generated, then the license manager may use this address fo
host locking. If this IP address is different than the network card address used for key generation,
then the license manager will report that the license keys are not valid for the current machine a
licensing will fail. Note that the License Manager requires a valid IP address for the host on whic
it is running. A WindowsNT workstation (or laptop) with its network card removed will not have a
valid IP address and the license manager will fail to start on such a configuration.

• Please note that the Unix script makes use of the /etc/hosts file which must be readable by the user.
If not, you may have to run the script as root. If the utility is unable to determine this information,
please consult your Unix administrator.
60 License Manager Operations Getting Started Guide

Invoking License Manager Executables

h
al

e

d
ate

ed
s

Invoking License Manager Executables
All the licensing commands are available on both Unix and Windows NT. The commands are identical
on both platforms with the exception that on Windows NT the starting and stopping of the license man-
ager is done from the ElanLM control panel. Also, on Windows NT the commands are case insensitive.
That is, capitalization is not significant when invoking them on Windows NT, but on Unix, incorrect
capitalization will result in the command not being found.

Note: Before you can invoke any ObjecTime License Manager executables you must set the follow-
ing environment variables:

• OBJECTIME_LICENSE_SERVER - Set to the host name of the machine where the License
Manager is to run.

• OBJECTIME_HOME - Set to the main installation directory of the ObjecTime release.

You must then ensure that $OBJECTIME_HOME/bin is also set in your PATH.

Note: On Windows NT, commands must be invoked from the ObjecTime Developer Command
Prompt. This is a console window started from the ObjecTime Developer command group whic
has the environment variables set appropriately. Attempting to run the commands from a norm
console window will cause the commands to fail.

Installation of Encrypted Keys
Unix: activateKey [-f keyfile] [-k keydir] [-demo]

Windows NT: activateKey [-f keyfile] [-k keydir] [-demo]

Arguments:

• keyfile - the filename containing license keys. If the keyfile argument is absent then you
will be prompted for the key. The activateKey command will need to be run for each key
being installed, where a key is a digit string separated by line breaks in the provided fil
containing the keys. If the keyfile argument is used, but the keyfile is not in the current
directory, then the full absolute path to the keyfile must be specified.

• keydir - the full path to the directory into which to write the license files. If the keydir
argument is absent then these will be written to $OBJECTIME_HOME/license.

• demo - this option is used when installing demo keys which are license keys that are not locke
to any particular machine. Demo keys are used for evaluation purposes and have an expiry d
associated with them. Specifying -demo tells the key activation routines that these are demo
keys and not to prompt for the license server IP address and machineid. If this option is specifi
with non-demo keys, the keys will install but the license manager will not recognize them a
valid keys. Only specify -demo if you know that you are installing time-limited demo keys.

Example: prompt> activateKey -f keyfile -k /directory/user/test
ObjecTime Key activation program.
Key input file:keyfile
Getting Started Guide License Manager Operations 61

Installation of Encrypted Keys
Enter IP address of the server (default 192.139.251.207):
Enter server target type UNIX or NT (UNIX default)
Licenses installed in /directory/user/test.

If the IP address of the workstation where the License Manager is running does not match the IP address
that was encoded into the Primary Key for any product, then that key will be discarded and an error
report will be output to the License Manager log.

Note: Prior to installing or adding keys, please terminate or stop the License Manager if it is already
currently running. Users who already have a token will be unaffected by the shutdown though no
new tokens can be issued until the License Manager is back up again.
62 License Manager Operations Getting Started Guide

License Manager
License Manager
Starting up the License Manager

Note: It is recommended that the same userId be used to both install the license keys and start the
license manager. This is because the license manager will periodically re-write the license files, and
if the ownership of the files prevents this, the license manager will report an error in the log file and
no licenses will be available.

Unix:

startLicenseManager [-v msglevel][-l logfile][-k keydir][-r resfile]
Arguments:

msglevel - A number from 1 to 9 indicating the amount of information to write to the
log file. If absent, then msglevel defaults to 3.

1. Error messages only
2. License failures
3. License activity
4. Client connects/disconnects
5. Message per packet received
6. Message per packet sent
7. Further client and Zombie process info
8. Key information
9. All available information

logfile - The path and filename for the logfile. If absent then the default is
$OBJECTIME_HOME/license/ObjecTimeLicenseManager.log

keydir - The path where the license key files can be found. If absent it defaults to
$OBJECTIME_HOME/license.

resfile - This is the absolute path and name of a customer maintained resource file
used to control the reservation of licenses located in the license key directory.

WindowsNT:

On Windows NT, the license manager is started and stopped from the ElanLM control panel. Prior to
starting the license manager, the TimeZone variable needs to be set. Before activating the license man-
ager, several settings must first be made:

1 Startup should be set to automatic. This will cause the License Manager to be started whenever the
server machine is re-booted.

2 Click the settings button and set the license directory and logfile name then close the window. The
logfile must specify the full path or no log file will be written.

3 Click the launch button.

Note: On Windows NT, this command requires an administrator class user to execute.
Getting Started Guide License Manager Operations 63

License Manager
By default the log file $OBJECTIME_HOME/license/ObjecTimeLicenseManager.log is cre-
ated with message output level 3. It is recommended that you always keep a log, since if something goes
wrong the error will usually be detailed therein. Things like invalid keys, mismatching key counts, and other
interesting information will be recorded, but, depending upon your message output level, so too will token
grants and releases. Further, if you want to be able to keep track of these things for reporting purposes, you
must have a log file.

Please note that the process name of the License Manager is elmd.

Setting the Time Zone Variable on Windows NT

For proper operation of the license manager over time changes the Time Zone variable must be set. This
should be handled by the installation process. The Time Zone variable does not need to be set on Unix
systems.

To set the Time Zone variable, proceed as follows:

1 Open the Control Panel.

2 Select System.

3 Click on the Environment tab.

4 Click on any system variable. (not user variable)

5 Replace it with TZ /correct value.Eastern Standard Time is used in the figure below.
64 License Manager Operations Getting Started Guide

License Manager

-

t
's

ou

d of

can be

type:
Use the following syntax to set the Time Zone environment variable:

• set TZ=tzn[+ | -]hh[:mm[:ss]][dzn]

• tzn - Three-letter time-zone name, such as PST.

• hh - Difference in hours between UTC and local time. Optionally signed. You must specify the cor
rect offset from the Coordinated Universal Time (UTC).

• mm - Minutes. Separated from hh by a colon (:).

• ss - Seconds. Separated from mm by a colon (:).

• dzn - Three-letter daylight-saving-time zone such as PDT. If daylight saving time is never in effec
in the locality, set TZ without a value for dzn. ObjecTime Developer assumes the United States
rules for implementing the calculation of Daylight Saving Time (DST).

For example, to set the TZ environment variable to correspond to the current time zone in Germany, y
can use one of the following statements:

set TZ=GST1GDT

set TZ=GST+1GDT

These strings use GST to indicate German standard time, assume that Germany is one hour ahea
UTC, and assume that daylight savings time is in effect.

6 Click Set.

Make sure that the variable is added to the System section and not the user section. You need Adminis-
trator privileges to do this.

Automatically starting up the License Manager

It may be convenient to automatically start up the License Manager at file server boot time. This
done by including the following lines in the appropriate file (for sh) replacing YourReleaseDirectory
and server as appropriate:

OBJECTIME_HOME=/YourReleaseDirectory; export OBJECTIME_HOME
PATH="$PATH:$OBJECTIME_HOME/bin"; export PATH
if [-f $OBJECTIME_HOME/bin/startLicenseManager]; then

OBJECTIME_LICENSE_SERVER=server
export OBJECTIME_LICENSE_SERVER
$OBJECTIME_HOME/bin/startLicenseManager

fi

Note: In the above lines, OBJECTIME_HOME must be set to the full path name of the ObjecTime
installation directory (that is, $INSTALL/Developer5.2.1). As well, OBJECTIME_LI-
CENSE_SERVER must be set to the node name of the file server running the License Manager.

The following shows the particular file to insert the above lines into based on the file server platform

• SunOS: /etc/rc.local

• Solaris: /etc/rc2.d/S94ObjecTime

• HP-UX: /etc/rc within function localrc()
Getting Started Guide License Manager Operations 65

License Manager

ser.

he

 by

ir type.

r
would

ueued
d using
• IBM AIX: /etc/rc

Note: The License Manager in this case is owned by root, and hence can only be terminated by root.

• Windows NT: On WindowsNT, the License Manager is controlled through the control panel and
cannot be started from the command line. This command must be run by an administrator-class u

Before activating the license manager, several settings must be made first:

1 Startup should be set to automatic. This will cause the License Manager to be started whenever the
server machine is re-booted.

2 Click the settings button and set the license directory and logfile name then close the window. T
logfile must specify the full path or no log file will be written. The ObjecTime install will fill in de-
fault locations for the logfile and license files directory. These defaults are the same as assumed
the other licensing scripts.

3 Click the launch button.

Bringing Down the License Manager

On Unix, the command

killLicenseManager

will terminate the License Manager specified in the environment variable OBJECTIME_LICENSE_SER-
VER.

On Windows NT, the license manager is stopped from the ElanLM control panel.

Note: On Windows NT this command requires an administrator class user to execute.

License Manager Operation

When an ObjecTime product is initiated, the user is informed how many tokens were granted and the
For example, when starting up the ObjecTime Toolset, the following messages may be displayed:

 objectime: [3] Connected with server "machine1"
objectime: [3] Granted 1 license for "Total"
objectime: [3] Granted 1 license for "TotalUnix"
objectime: [3] Granted 1 license for "Toolset 5.2.1"

[3] indicates the client ID used by the License Manager. machine1 is the node name of the file serve
which is running the License Manager. Upon exiting the ObjecTime Toolset, the following message
then be issued, indicating that the token has been returned to the pool:

objectime: [3] disconnecting

License Queuing

If a license token is not available upon the start-up of ObjecTime, ObjecTime will be automatically q
and a list of users who currently have active tokens will be output. The queuing can then be cancelle
66 License Manager Operations Getting Started Guide

License Manager

oken (but
oken), or
an one
 will be
anager

 already
esumes

ailable
^c (that is, control-c). On Windows NT, queuing results in a dialog box being displayed. You may press the
Cancel button to stop the queuing operation.

If communication with the License Manager had been lost, and then re-established, a new license token will
have to be allocated. If none are available, the user will be given the option of queuing for a license or
invoking the emergency passivation feature (that is invoked for example, when the ObjecTime application is
signalled via kill -USR1).

License hold time

When a user relinquishes a toolset license, the License Manager will reserve that license for 300 seconds for
re -accessing by that user. To overr ide this defaul t t ime, the user environment var iable
OBJECTIME_LICENSE_HOLDTIME can be set to the number of seconds for a toolset license to be
reserved for re-access. Setting this environment variable to zero will result in the license being immediately
returned to the pool upon exiting the ObjecTime session. On Windows NT, this setting is accessible via the
ElanLM control panel.

License auditing

During normal execution of a product, each corresponding Unix process with a token periodically notifies
the License Manager (every 200 seconds) that it is alive and is still using its token. If a process fails to report
(for example, dies), without releasing the token, the token will be returned to the pool after ten minutes.

The utility killUserLicense <userid> also allows the administrator to force the de-allocation of an
ObjecTime session’s license token. This can be used in those situations where a session still has a t
the user is unable, for whatever reason, to terminate the session properly and thereby release the t
when a token is still being held by the License Manager (see License hold time above). If more th
license token has been issued to a particular user (distinguished by their userId), then a list of these
given from which the one to de-allocate can be chosen. Note that only the owner of the License M
process can use this utility.

If the License Manager goes down or is otherwise unable to communicate to the process, those who
have a token will be able to continue work and will be reissued tokens when the License Manager r
operation.

Querying the License Manager

Currently allocated licenses

The command

licenseInfo

will give you information regarding who is currently using the system, and the number of used and av
licenses. This information will be given for all active license managers. For example:

ObjecTime License Manager Information System
Please wait...
Getting Started Guide License Manager Operations 67

License Manager
Server user1:
 CID LID User Feature Group Started
 --- --- ------------------------------ ---------- -------- -------
 1 1 user1@user1 Total - Aug 03 11:36
 2 2 user1@user1 Total - Aug 03 11:40
Total [9000]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

TotalUnix [9001]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ------------------------- ---------- -------- -------
 1 1 user1@user1 TotalNT - Aug 03 11:36
 2 2 user1@user1 TotalNT - Aug 03 11:40
TotalNT [9002]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

Total5.1 [9003]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ----------------------- ---------- -------- -------
 1 1 user1@user1 Total5.2.1 - Aug 03 11:36
 2 2 user1@user1 Total5.2.1 - Aug 03 11:40
Total5.2 [9004]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

C++ [9010]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

Total5.0 [9020]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ----------------------- ---------- -------- ------------
 1 1 user1@user1 TotalCodeG - Aug 03 11:36
 2 2 user1@user1 TotalCodeG - Aug 03 11:40
TotalCodeGen [9030]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ----------------------------- ---------- -------- -------
 S 1 1 user1@user1 CodegenCPP - Aug 03 11:36
68 License Manager Operations Getting Started Guide

License Manager
 2 2 user1@user1 CodegenCPP - Aug 03 11:40
CodegenCPP5.2 [9031]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- --------------------------- ---------- -------- ------------
 S 1 1 user1@user1 CodegenC5. - Aug 03 11:36
 2 2 user1@user1 CodegenC5. - Aug 03 11:40
CodegenC5.2 [9032]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started

 --- --- --------------------------- ---------- -------- ------------
 S 1 1 user1@user1 CodegenSim - Aug 03 11:36
 2 2 user1@user1 CodegenSim - Aug 03 11:40
CodegenSimRTS5.2 [9033]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

ObjecTime license server information.

C:\>pause
Press any key to continue . . .
Getting Started Guide License Manager Operations 69

License Manager

amal-
Usage statistics

To receive a breakdown of license manager usage use the command

serverUsageReport [log_path] [daily]

where

• log_path - is the absolute path-name for the file where status information has been logged.
Default: /tmp/ObjecTimeLicenseManager.log

• daily - allows you to optionally have the activity report broken down by daily usage, rather than
gamated. This parameter is case insensitive.

The following shows an example using the reporting facility:

 serverUsageReport

ObjecTime License Manager Information System

 Total Total Over Number Number Percent Total
Feature Requests InUse SoftLim Issued Denied Denied Time Used
--
CodegenC5.2 54 4 54 0 0% 6:45:48
CodegenCPP5.2 54 4 54 0 0% 6:45:52
CodegenSimRTS5.2 54 4 54 0 0% 6:45:46
Total 58 3 55 3 5% 12:10:53
Total5.1 1 1 1 0 0% 0:07:37
Total5.2 54 3 54 0 0% 12:03:06
TotalCodeGen 54 3 54 0 0% 12:02:44
TotalNT 51 2 51 0 0% 9:04:40
TotalUnix 4 3 4 0 0% 3:06:09
70 License Manager Operations Getting Started Guide

Chapter 7

Getting Start
7 Documentation Roadmap
ObjecTime Developer 5.2.1 Documentation Set
The ObjecTime Developer 5.2.1 Documentation Suite for Release 5.2.1 contains the following docu-
ments: 5.2 User Guide, 5.2 C++Language Guide, 5.2 C Language Guide, 5.2 RPL Language Guide,
5.2 Tutorial Guide, 5.2 C++ Target Guide, ObjecTime Developer 5.2.1 Getting Started Guide &
Release Notice, C++ Target Module 5.2.1 Getting Started Guide & Release Notice and C Target Mod-
ule 5.2.1 Getting Started Guide & Release Notice. The Documentation Sets are structured as follows:

Note: Where differences exist, the documentation highlights Windows NT and Unix specific infor-
mation.

Table 2 ObjecTime Developer (OTD) 5.2.1 Documentation Sets

ObjecTime Developer
ObjecTime Developer for

C++
ObjecTime Developer for

C

User Guide 5.2 User Guide 5.2 User Guide 5.2

Tutorial Guide 5.2 Tutorial Guide 5.2 Tutorial Guide 5.2

C++ Language Guide 5.2 C++ Language Guide 5.2 C Language Guide 5.2

RPL Language Guide 5.2 RPL Language Guide 5.2

OTD 5.2.1 Getting Started &
Release Notice

OTD 5.2.1 Getting Started &
Release Notice

OTD 5.2.1 Getting Started &
Release Notice

C++ Target Module 5.2.1 Get-
ting Started & Release Notice

C Target Module 5.2.1 Getting
Started & Release Notice

C++ Target Guide 5.2
ed Guide Documentation Roadmap 71

ObjecTime Developer 5.2.1 Documentation Set
User Guide

This document contains detailed reference material for all the tools and windows in the ObjecTime
Developer 5.2.1 Toolset. It also contains instructional task-related information for users who are less
familiar with the Toolset interface and need instruction on how to perform certain tasks. The User
Guide contains descriptions of all the basic concepts underlying the ObjecTime toolset including topics
common to the C++ and C Language usage.

Note: It is strongly recommended that you review the User Guide in detail.

The ObjecTime Developer 5.2.1 Toolset contains tools for all aspects of the real-time development life-
cycle. The document is organized into five major parts describing these tools: Model Management,
Model Editing, Requirements Capture, Model Compilation & Execution, and an Introduction which
provides a general overview of ObjecTime for new users.

Figure 5 ObjecTime User Guide Organization

C++ Language Guide

The C++ Language Guide contains information on how to use the Toolset to develop and compile mod-
els in a C++ environment for a variety of targets. It also contains information on the generated code
structure of a C++ model, and information on customizing certain aspects of the generated code. The
C++ programming interface to the Run-Time System Services and all built-in data types are also pro-
vided. This is required reading and reference material for building any C++ model in ObjecTime. In
addition, the document describes how to interface ObjecTime with other applications through the Exter-
nal Layer interface. Essentially, any information about the use of C++ in an ObjecTime application can
be found in this document.

C++ Target Guide

The C++ Target Guide describes the architecture of the Target Run-Time System (Target Services
Library) for ObjecTime Developer 5.2.1. This document describes the structure of each Target Services
Library part and its collaborations in enough detail to allow users to understand and debug their Target-
based models. It will also allow users to understand how and where they can customize Target-based
programs.

Model
Editing

Model
Compile/Execute

Requirements
Capture

Model
Management
72 Documentation Roadmap Getting Started Guide

Suggested Reading Path
C Language Guide

The C Language Guide describes all aspects of C usage in ObjecTime, including the toolset interface
for using C within ObjecTime (and the use of C and C++ actors in one design), the semantics of the
ROOM run-time system service calls and rules for integrating external libraries, data structures, and
applications with your ObjecTime C models.

RPL Language Guide

The RPL Language Guide contains information on building RPL-based models in ObjecTime. This
document describes the RPL language, and all built-in data types, along with the RPL programming
interface to the Run-Time System Services. Information about the RPL syntax-directed editor is also
contained in this document.

Tutorial Guide

There is one Tutorial Guide with three different sections : (1) the RPL version of the Tutorial, (2) the
C++ version of the Tutorial and (3) the C version of the Tutorial.

Getting Started Guide & Release Notice

It is recommended that the user reads this guide to get the most up-to-date information on this release.
For ObjecTime Developer 5.2.1, the ObjecTime Developer Getting Started and Release Notice
describes the base product. The ObjecTime Developer for C++ Getting Started and Release Notice and
the ObjecTime Developer for C Getting Started and Release Notice describe the areas specific to the
C++ and C Language Modules.

Suggested Reading Path
We strongly recommend that users who are new to the ObjecTime Developer concepts and toolset read
the User Guide and follow the examples in the Tutorial Guide (RPL, C or C++ sections as appropriate).
All users will need to reference the User Guide, the C++ Language Guide, the C Language Guide or
the RPL Language Guide as they build models in ObjecTime Developer. Figure 6 below shows the rec-
ommended reading paths for different user needs.

Note: For more information on Real-Time Object-Oriented Modeling (ROOM), please refer to the
following sources:

• the ObjecTime Developer User Guide,

• the Real-Time Object-Oriented Modeling. Selic, Gullekson, and Ward. John Wiley & Sons,
Inc., 1994.
Getting Started Guide Documentation Roadmap 73

Suggested Reading Path
Figure 6 Recommended Reading Paths in the ObjecTime Developer Document Set

Note: The C Language Guide is only included in the ObjecTime Developer C Target Module doc-
umentation set. The C++ Target Guide is only included in the ObjecTime Developer C++ Target
Module documentation set. The information in the C++ Language Guide is applicable to both the
C++ Simulation Services Library and the C++ Target Services Library.

User
Guide

RPL

Tutorial

C++

New Users

Experienced Users

 RPL, C++,

Notice

Administrators

C++

Installation
Instructions

in
CD Insert &

Release
Notice

Release

Getting
Started
Guide

&

Guide

Target
Guide

Guide
Language

Guide
Language

 or C

C

Guide
Language

74 Documentation Roadmap Getting Started Guide

Online Reading
Online Reading
The complete set of HTML-based ObjecTime Developer 5.2.1 documentation is linked to the Objec-
Time Developer 5.2.1 Help. When a user clicks on the menu item Help Contents of the toolset menu,
the configured browser comes up with the top level documentation page. Also, the user can obtain
online context sensitive help by clicking on the menu item Help of any ObjecTime Developer menu. All
online documentation may be accessed through the online Help System with every cross-reference in
the documentation set as a hypertext link to the referenced material. Clicking on any cross-reference
will take you to the referenced location.

Online Search Engine

The ability to search the online documentation has been added into the 5.2 product release. From the
ObjecTime Online documentation, the search engine can be brought up from any one of a number of
places.

Figure 7 Help Contents
Getting Started Guide Documentation Roadmap 75

Online Reading
Figure 8 A Table of Contents

Figure 9 An Index
76 Documentation Roadmap Getting Started Guide

Online Reading
The online search engine can be used to identify documents within the online documentation which
contains the identified keywords.

Figure 10 Search Engine

Within the identified documents, the find function of the browser should be used to jump to the specific
references.
Getting Started Guide Documentation Roadmap 77

Online Reading
78 Documentation Roadmap Getting Started Guide

Chapter 8

Getting Start
8 ClearCase Support
Enhancements
t,

e
for

e

he
his

e

les

d
r-
Introduction
This chapter discusses ObjecTime Developer’s ClearCase Support Enhancement introduced in the 5.2.1
release. ObjecTime Developer 5.2.1 is designed to better support the ClearCase environment, and in
particular Clearmake. It extends compilation capabilities to allow compilation outside of the Toolse
and use of Clearmake’s facilities to manage dependencies and store loadbuild artifacts.

Definitions

This section contains brief definitions of some of the terms used in this chapter.

Toolset - this refers to the main executable program of ObjecTime Developer. Model editing is don
within the Toolset. All scripts and the external code generation subsystem are not part of the Toolset
the purposes of this document.

Code Generation Subsystem - this refers to the ObjecTime subsystem that generates C++ source cod
from an ObjecTime model.

Root Package - this refers to the logical package that represents an update/context. All classes in t
update/context appear in this package. This term is used only for the purpose of discussion within t
chapter.

Summary

The ClearCase Support Enhancements:

• allow Toolset synchronization with ClearCase views through commands that synchronize th
Toolset’s view with the ClearCase view of classes.

• allow designers to access parallel work from others via the synchronization noted above.

• allow external builds through a modification to the code generation subsystem to use the project fi
stored in ClearCase.

• allow the re-use of loadbuild artifacts through the use of ClearCase wink-in. This is implemente
through modifications to the external code/makefile generation process to properly support Clea
make rules within this process.
ed Guide ClearCase Support Enhancements 79

Introduction

nly

ed

6 or

e

ct
ub-

t do
 by
y be

ves

-

p

• redesign project files such that they do not contain all classes from an update. They contain o
packages and the classes from the root package.

• allow traceability of loadbuild artifacts back to the originating class files in the project, using the
ClearCase config records of derived objects.

• enable Clearmake’s automatic dependency tracking, using the ClearCase config records of deriv
objects.

ClearCase Support Enhancements support ClearCase version 3.2 running under Solaris 2.5.1/2.
Windows NT 4.0.

The following are not supported by the ClearCase Support Enhancements:

• external builds for the ObjecTime simulation environment are not supported.

• only the C++ language is supported.

 Project Files

This section is a brief description of an ObjecTime project file and how it is used with the ClearCas
Support Enhancements.

Project files in ObjecTime Developer 5.2 contained a list of classes, packages, thread mappings and
configurations, along with their versions, which were activated to form an update. Activating a proje
file merged the referenced objects into the Toolset and created an update. When a project file was s
mitted, you were required to submit all checked out versioned objects referenced by the project file.

ObjecTime Developer 5.2.1 changes the definition of project files to avoid storage of all classes within
the class list. Instead, the class list only references the classes which appear in the root package bu
not appear in any of the packages referenced by the project file. The entire list of classes is computed
using the package list and traversing the contents of the packages. Using this scheme, classes ma
added to or removed from packages without requiring a change in the project file. This scheme remo
the contention for the project file between developers when working in a large team environment.

From a ClearCase view, it is now possible to initiate a Clearmake without involving the Toolset. Objec-
Time Developer 5.2.1 extends the use of project files to allow them to be used for an external build pro
cess.The following arguments may be supplied at the command line:

• select a specific project file to use for the build

• select an output path for the build

• select the top actor to use for the build

• select the active configuration from those listed within that project file to use for the build.

If no configuration is selected, the default configuration stored within the project file is used. If no to
actor is selected, the default top actor specified within the project file is used.
80 ClearCase Support Enhancements Getting Started Guide

Introduction
Note: When a project file is used for a Clearmake build process, the versioning information is ig-
nored. Instead, the version that is in the current view is used. This applies to both internal builds, that
is, builds initiated from within the Toolset, and external builds.

ObjecTime Developer 5.2.1 extends the activation of project files to include an option which allows
you to merge either the specifically named versions of entities (classes, packages, configurations) or the
version of these entities which are in the current view.
Getting Started Guide ClearCase Support Enhancements 81

The development process

-

r

t be

t
eup

)
out
ot

ed
n

l.

s
f
he

t

The development process
This section discusses one possible set of steps to employ when using the Toolset in conjunction with
the various roles involved. There are potentially three main roles and are described as follows:

• Developer: The developer is responsible for adding/changing/deleting new objects to/from the up
date, such as classes/configurations/threads setups

• The developer works in read-only mode, that is, ‘Allow edits on non-checked out objects’ use
preference is turned off.

• Before editing a class, the developer will check it out

• The developer makes changes and then saves them to the library

• If the developer adds or removes classes within packages, then the affected packages mus
checked out and resubmitted to the library

• Integrator: The integrator is responsible for adding/maintaining/deleting packages, ensuring tha
packages/project files are updated as needed and reflect the most recent developer-released lin
of classes.

• At the integration cutoff, the integrator will merge in the project file for the previous loadbuild.
This brings in the current version (version in view) of the packages (and other objects
referenced by the project file and the objects referenced by these packages. Then checking
and submitting the new project file creates a version that reflects the most recent lineup of ro
level objects.

• This job may be performed either interactively or in batch mode.

• Load builder: The load builder is responsible for building the load from the appropriate project files
and is able to work outside the toolset, if the most current versions of the project file to build from
are stored in the library. Note that if the loadbuilder builds loads outside of the toolset, it is suggest
that a verification step be done within the toolset as part of the loadbuild process. This verificatio
step, performed by selecting the ‘verify’ mode on the compile dialog, would ensure that the ROOM
model validation is performed. See “No ROOM compile time checking” on page 93 for more detai

Note: The role of the integrator may be played by a developer.

Checking in a file does not automatically imply submission to the build. Submission to the build i
an explicit process whereby the top level integrator (builder of the update) is explicitly notified o
deletions/additions to the project file. This could be automated/enforced as an integral part of t
build.

• The Configuration Management topic is covered in-depth in ObjecTime’s Advanced Developmen
Workshop.
82 ClearCase Support Enhancements Getting Started Guide

Toolset Enhancements

ake
e.

his
ase
 is

y

x-
Toolset Enhancements
This section discusses the changes to the Toolset to implement the ClearCase Support Enhancements.
The changes are described as changes to the ObjecTime Developer version 5.2 release.

Enabling Clearmake mode

Make Types are specified in the Targets properties editor as seen in Figure 11, “ClearCase/Clearm
mode,” on page 83. ObjecTime Developer 5.2.1 changes the behavior of the ‘Clearmake’ make typ
This make type will now be used to indicate that the ClearCase/Clearmake mode is in effect. When t
mode is turned off, by selecting another make type, the Toolset behaves as it did in 5.2. Using ClearC
as a library system does not imply or require using Clearmake as the Make Type.When this mode
turned on, the following changes occur to the compile process:

• The compile dialog button Generate Changes Only is disabled and turned off.

• If the Recompile button on the compile dialog is selected, a clearmake -u is performed.

• No IF (Intermediate Form) files are generated during the compile. The compilation works directl
off the files stored in the ClearCase library.

• The Save to Library command (see below) is automatically run when the Compile menu item is e
ecuted. You are informed of any issues encountered with saving.

FIGURE 11. ClearCase/Clearmake mode
Getting Started Guide ClearCase Support Enhancements 83

Toolset Enhancements

 has

t in

 is

ly
d out
other
nsi-

2.1
olid

e

Save to Library

The Save to Library command is added to the Update application menu of the model and update brows-
ers. This menu item performs the following:

• saves the current changes to each checked-out class in the library.

• for added classes, creates a view private file if the class has not been checked out. If the class
been checked out, then it is treated like the changed classes above.

• references to deleted classes are removed from the project file. Deleted classes continue to exis
the library and in older versions of the project files.

• does not cause a new version of the project file to be written to the library (unless the project file
checked out).

FIGURE 12. Saving to Library Summary

Enhanced editing modes

The user preference ‘Allow edits on non-checked out objects’ allows you to specify the use of read-on
editors on objects that are not checked out. When this option is not selected, a class must be checke
before it can be edited. One deficiency in this scheme is that edits on classes can cause changes to
classes that are not checked out. For example, removing signals from a protocol class can cause tra
tion events to change thereby changing the class containing the transition. ObjecTime Developer 5.
addresses this deficiency by forcing a class to be checked out when it is marked as changed (with a s
delta).

Note: When using ClearCase, the ‘Allow Edits on non-checked out objects' checkbox should b
OFF.
84 ClearCase Support Enhancements Getting Started Guide

Toolset Enhancements

to
figu-
ck-
 is
the

ges/
ltas.
ses

ed
f
. If
FIGURE 13. ObjecTime Preferences

Project file activation

As discussed earlier, ObjecTime Developer 5.2.1 extends the activation of project files to include an
option which allows you to merge either the specifically named versions of entities (classes, packages,
configurations) or the version of these entities which are in the current view. This is done through the
‘Freeze version of objects’ check button on the dialog which appears when a project file is brought in
the Toolset. This check button, when set, causes the specifically referenced package, class and con
ration versions to be brought into the Toolset. When this button is unchecked, the versions of the pa
ages, classes and configurations that are in the current view are brought into the Toolset. It
recommended to leave the button unchecked and to modify your ClearCase config spec to pull in
appropriate versions of all objects.

FIGURE 14. Merging project file

External diff before marking solid delta

When edits are performed in the Toolset, they can result in changes to other objects (classes/packa
configurations). These subsequent changes result in these other objects being marked with solid de
Because the algorithm that marks these objects with solid deltas is overly pessimistic, there are ca
where library objects are marked with a solid delta when it is not required. This is automatically enabl
when Clearmake mode is ON. If “Allow edits on non-checked out objects’ is OFF, the objectime_dif
script is run to determine precisely if objects need to be marked with a solid delta and checked out
they are not different, the objects are not checked out.
Getting Started Guide ClearCase Support Enhancements 85

Configuring your project to use Clearmake

 the

ol

y

e

Configuring your project to use Clearmake
There are four steps to configuring your project to use Clearmake, and they are given below.

Configuring your view

There are very few restrictions imposed on the config spec that defines your view. ObjecTime Devel-
oper does not internally use any branches, labels or attributes on file elements, so it should adapt readily
to any pre-existing configuration management. The file elements visible within your view are defined
by your config specs. For more information on config specs, refer to your ClearCase documentation.

We recommend that the CHECKEDOUT rule should precede any other rules (unless you do not intend
to check out any files), so that the toolset can read and write checked-out files.

When different files in the project are selected by different rules in the config spec, the state of the
whole project in the view must be kept self-consistent. This is particularly important during Generation,
since any single class can read many other LF classes.

On Windows NT, the view is mapped to a drive letter (typically Z:). A known limitation currently
requires all developers to map their view to the same drive letter. Furthermore, all developers’ drive-
mappings must be the same case, that is, Z: or z:. This is required because build scripts stored in
config records must match identically for wink-in to work.

On Windows NT, the MVFS (multiversion file system) must preserve case. This is set in the Contr
Panel by proceeding as follows:

1 open the ClearCase icon

2 select the MVFS tools

3 check the “Case Preserving” checkbox.

Configuring your environment

You are required to tell the code generator where it can put its temporary files so that clearmake
does not track them. The environment variable OBJECTIME_CODEGEN_TEMP must be set to an
pre-existing directory not in a ClearCase view. For example, on Unix:

setenv OBJECTIME_CODEGEN_TEMP /tmp

On Windows NT, the OBJECTIME_CODEGEN_TEMP environment variable can be created from th
Control Panel’s System folder with a value such as C:\temp.

If you do not have this environment variable set, wink-in will likely not occur.
86 ClearCase Support Enhancements Getting Started Guide

Configuring your project to use Clearmake

n

y
ect

ject
ned
ra-
ers

ear
ill
he

ke

ile-
nal
Configuring the session image

You must specify the path to the forClearCase scripts in your session’s Library Configuration menu. O
Windows NT, typically this path is %OBJECTIME_HOME%\bin\LibraryInterface\forClearCase. On
UNIX, this path is $OBJECTIME_HOME/bin/LibraryInterface/forClearCase. Unix users can alterna-
tively put a symbolic link (.objectime_scripts_dir) in all ClearCase libraries.

From the Library Configuration menu, de-select "use objectime_library_info for sync".

If you are using the user preference "Allow edit on non-checked out objects" (this option is on b
default), you must be very careful to check-out all files that get black deltas. It is suggested to de-sel
this user preference, when using ClearCase.

Configuring the model

All classes must be versioned in ClearCase, as well as the config files, the package files and the pro
file. Package configurations, however, do not need to be separately versioned since they are versio
as part of their package. Access to project and config files may be restricted only to those user, integ
tor, or loadbuilder roles. Access to package files and their classes may be restricted to the develop
who regularly work on that package.

The Output Path (part of the project properties) must be within the same ClearCase view as the lin
form class files. If the session was launched from that view, then PWD (the default Output Path) w
work. If the session was not launched from the view, the Output Path must contain a path within t
view. On Windows NT, this would typically mean the Output Path must be explicitly the drive letter
Z:.

To activate Clearmake mode, the active configuration's Make Type must be Clearmake. The Ma
Name should be "clearmake" (whatever your Clearmake executable is named). See Figure 11,
“ClearCase/Clearmake mode,” on page 83.

In non-Clearmake mode, dependency analysis is done by a makedepend script which examines
inclusion paths. In Clearmake mode, dependencies are tracked by Clearmake which watches f
accesses within the view and ignores file-access outside the view. You may wish to version exter
inclusion files in ClearCase and change the inclusion paths within your models.
Getting Started Guide ClearCase Support Enhancements 87

Using Clearmake for developers

t
he

nd

nse-

es-

ny
Using Clearmake for developers
Creating a new object

All objects (projects, project configurations, packages, actor classes, data classes and protocol classes)
must be versioned in ClearCase before a Generate or Compile can be issued. After creating the new
object in the ObjecTime session, it should be checked-out from a ClearCase library.

When classes within a package are added, deleted or renamed, the package file must be checked out as
well.

When classes not within a package, or packages or project configurations are added, deleted or
renamed, the project file must be checked out as well. To reduce project file contention, these activities
should be minimized. Most (if not all) classes should appear within a package file.

Making changes to project file

You will need to checkout the project file whenever performing the following activities:

• adding, deleting or renaming unpackaged classes (classes not in a compilation package)

• adding, deleting or renaming project configurations

• adding, deleting or renaming packages

• changing the Threads configuration

• changing the default Output Path

• changing the default Top Actor

• changing the default Active Configuration

In order to reduce checkout contention for the project file, typical development activities should no
normally affect the project file. Configuration management may choose to restrict write-access to t
project file, such that the above activities are only performed by load-builders or integrators.

This does not restrict developers. Developers can ‘temporarily’ change the Output Path, Top Actor a
Active Configuration used in their session without writing the project file.

Classes can be added, deleted and renamed from packages by checking out the package file. Co
quently, write-access of the package file is required for developers performing this activity.

It is a known limitation that the project file does not get a black delta when one of these changes nec
sitates a checkout.

Invoking Clearmake from the Toolset

Once the model is properly configured, invoking a Compilation using Clearmake is the same as a
other compilation: select the Top Actor and compile it.
88 ClearCase Support Enhancements Getting Started Guide

Using Clearmake for developers

r-
ec-
e.
d.

c-

-

While a toolset-initiated Compile is running, the progress dialog will flash messages about what files it
is generating, compiling or winking-in. On Unix, you can also run:

 tail -f compile.output.<ACTIVE_CONFIG>

to follow Compilation progress, where <ACTIVE_CONFIG> is the name of the Active Configura-
tion.

Invoking Clearmake from the command-line

If invoking Clearmake from command-line, use the following command:

 perl $OBJECTIME_HOME/codegen/generate.pl \

 -p <OUTPUT_PATH> -j <PROJECT_FILE> \

 -m <MAKE> -t Clearmake \

 [-c <ACTIVE_CONFIG>] [-a <TOP_ACTOR>] [-o <OUTPUT_FILE>] \
 compile

For convenient copy-and-pasting, the exact command used by the last Compile (that is, as issued by the
toolset’s Compile) is wri t ten out to the Compilat ion Results f ile, "compile.out-
put.<ACTIVE_CONFIG>". The options are as follows:

• OUTPUT_PATH is an absolute directory-path that tells where the build should be produced. Diffe
ent projects can have the same OUTPUT_PATH because the build results actually go in a sub-dir
tory named after the Project. The OUTPUT_PATH used by the toolset is stored in the project fil
The default Output Path of a Project file is $PWD, the directory from where the toolset was starte
The OUTPUT_PATH must be provided to generate.pl (no default is available) because it
starts writing files before the Project file is read.

• PROJECT_FILE is an absolute file-path to the project file.

• MAKE is the name of the Make executable. Typically, this is "clearmake", which must be on
your path.

• The option "-t Clearmake" (when produced by the toolset) specifies the Make Type used in the A
tive Configuration. This activates the Clearmake mode.

• ACTIVE_CONFIG is the active configuration, which by default is specified in the project file. A
developer can override the active configuration without having write access to the project file.

• TOP_ACTOR is the top actor, which by default is specified in the project file. A developer can over
ride the top actor without having write access to the project file.

• OUTPUT_FILE is the Compilation Results file, which by default is "compile.output" (or
“compile.output.<ACTIVE_CONFIG>” if the active configuration is provided on the
command line). This can be read into the toolset using "Import Compilation Results..."

Enabling parallel builds with Clearmake

Parallel building is enabled for both code-generation and compilation on Unix platforms.
Getting Started Guide ClearCase Support Enhancements 89

Using Clearmake for developers

 is

s.

bld-

the

not
-
ed,
ile

e
si-
Note: As of ClearCase 3.2.1, Clearmake does not support parallel building for NT.)

However, use of the Clearmake concurrency environment variables CCASE_CONC and
CLEARCASE_BLD_CONC is not recommended. Because of the way ClearCase buffers and merges
parallel build stream output, the progress messages of a ClearCase session are typically spooled until
the entire build is finished. ClearCase users are encouraged to use a scenario as described below.

As discussed in the section, ‘Using an environment variable for Parallel Make Flags’ on page 12, it
advisable to put $(OBJECTIME_PMAKE_FLAGS) in the Parallel Flags field of your configuration
browser. This way you (not the update) decide how much parallelization your compilation host(s) use

Your must then assign some environment variables. For example:

setenv OBJECTIME_PMAKE_FLAGS "-J 4"

setenv CCASE_HOST_TYPE sun5

Then, create a build host file (~/.bldhost.sun5) as described in the ClearCase Reference manual (
host). For example:

-idle 10%

beef

helium

beef

beef

where the machine "beef" has significantly more processing power than the machine "helium".

Clearmake can now be invoked from the command-line, or by the toolset, without arguments, and
parallel flags will be correctly invoked for the Generation and Compilation Makefiles.

Recompiling with Clearmake

Recompile invokes a “clearmake -u” which will turn OFF Clearmake’s build-avoidance. At
present, it does not turn OFF the code-generator’s build-avoidance and a header file that does
change does not get rewritten. The step “Making Configuration Files” will also exercise build-avoid
ance in creating makefile fragments, and so on. If you want to guarantee that all new files get creat
delete the C++/ and build/ subdirectories to remove all previous derived objects. Then, do a recomp
to ensure no derived objects get winked-in.

Winked-in is not performed when recompile is selected.

Which classes get compiled

While code is generated for all classes in the project, only classes within the ‘transitive-closure’ of th
top actor get compiled. Transitive-closure is calculated only after all classes are generated. The tran
tive-closure calculation is used to reduce compilation time.
90 ClearCase Support Enhancements Getting Started Guide

Using Clearmake for developers

en
Swapping between Clearmake and non-Clearmake mode

Changing the Make Type of the Active Configuration between Clearmake and non-Clearmake necessi-
tates a recompile to force all Makefile and Makefile Fragments to be regenerated. Alternatively to this,
the configuration should be duplicated, modified, and renamed.

Changing from Clearmake mode to non-Clearmake mode by activating a new configuration requires a
recompile to force all IF files (intermediate-form) to get rewritten to the output directory. Clearmake
mode does not produce IF files. In non-Clearmake mode, all build artifacts are written as view-private
files.

Changing from non-Clearmake mode to Clearmake mode by activating a new configuration does not
require a recompile. Clearmake will replace all view-private files with their respective derived object
counter-parts. The content of these may be identical.

Zero-length .dep files

When using Clearmake to compile directly from the ClearCase library, ObjecTime Code Generation
will create zero-length .dep files. These files are required for the code generator’s build avoidance wh
using Clearmake.
Getting Started Guide ClearCase Support Enhancements 91

Using Clearmake for loadbuilders
Using Clearmake for loadbuilders
For the most part, loadbuilders follow the exact same procedures as developers.

If during a partially-successful loadbuild, a change is made to some of the project files, the changed
files should be submitted by the loadbuilders before continuing the build (even when the changes are
known to be not final.). This will ensure the final product is completely traceable to versioned files, and
not dependent on view-private files.
92 ClearCase Support Enhancements Getting Started Guide

Restrictions and Limitations

ly
he

on
s

 a
rs
Restrictions and Limitations
This section discusses the restrictions imposed on the user when using the external build facility.

No unspecified replication factors

The use of unspecified replication factors is currently not supported with ObjecTime Developer 5.2.1
for ClearCase external builds. To use the external build capability you must manually remove unspeci-
fied replication factors.

The code generator flags any unspecified replication factors appearing on actors and ports as an error.

No ROOM compile time checking

Model compilation usually includes validation of a ROOM model prior to code generation of the model.
When using the external build facility of the ClearCase Support Enhancements, many of the
usual ROOM validation checks are not performed since these are usually done inside the Toolset.
This section discusses the validation which occurs when doing Toolset-based compilation, but which is
skipped when doing an external build. Care should be taken to avoid these situations when performing
an external build. In general, it is suggested that when making changes to models that the verification
step of the compilation process be executed within the Toolset. This will help to eliminate problems due
to the external build not detecting model errors.

Violation of ROOM semantics during compilation can result in errors or warnings, or a combination of
both. Errors are serious violations, which prevent code generation from taking place. Warnings are
minor violations that can be due to incomplete models, or to violation of semantics, which aren’t strict
enforced, for example, binding replication mismatches, and hence do not prevent generation of t
code. The Toolset can optionally generate warnings for the following:

• the sum of the replication factors of all the bindings connected to a port is not equal to the replicati
factor of the port, or, if an interface port, the product of the port’s replication factor and that of it
actor reference

• a choice point does not have both a true and a false continuing transition segment

• a choice point does not have a condition defined

• an FSM state is not reachable from the initial transition

• an FSM state cannot be exited to another state other than a containing state

• a transition does not have a triggering event defined

The Toolset generates a warning if the following is true:

• more than one transition with no guard condition in the local scope of a FSM state is triggered by
particular incoming signal of a particular end port or SAP/SPP, such that there are duplicate trigge
in the same scope

The Toolset reports errors whenever any of the following are true:
Getting Started Guide ClearCase Support Enhancements 93

Restrictions and Limitations

d-

hich

rget

e

ro-
ode
cut-
t-

rted

up-
s

h-
• an outgoing signal from one endpoint of a binding is not defined as an input signal for the other en
point, or its data type (if not Null) is not the same or a subclass of that of the input signal

• a cyclic dependency exists between data classes. For example, class Boo references class Foo w
references Boo subclass BooHoo which references Boo

The Toolset reports the following error if the model is to be compiled for the Target RTS:

• an actor reference, port or SAP/SPP is excluded in an actor subclass to be compiled for the Ta
RTS

The Toolset reports the following error if the model is to be compiled for the C Target RTS:

• a C actor class contains an imported actor reference

 No N-way merge support

There is no support for automatic N-way merges. You must do multiple 2-way merges within th
Toolset.

Time-stamp driven make support

The ClearCase Support Enhancement does not co-exist with a time-stamp driven (non-Clearmake) p
cess (since intermediate form files will not be generated). The ClearCase/Clearmake make type m
can be used to switch between the two options. In Clearmake mode, you must use a Clearmake exe
able to build (typically ‘clearmake’). In non-clearmake mode, you should not use a Clearmake execu
able.

No shared views

The use of ClearCase shared views is not a recommended development paradigm and is not suppo
by OTD 5.2.1.

View-extended path names

The use of view-extended pathnames is not a recommended development paradigm, and is not s
ported in ObjecTime Developer 5.2.1. Any other mechanism for referring to files in another view i
similarly not supported. All classes should be visible within the same view.

Exclusions

The following are not supported in ObjecTime Developer 5.2.1 ClearCase Enhancements:

• builds for the ObjecTime SimulationRTS environment are not supported using Clearmake.

• only the C++ language is supported by the ClearCase external build.

• the capabilities implemented with ObjecTime Developer 5.2.1 apply only to Clearmake and not ot
er make variants.
94 ClearCase Support Enhancements Getting Started Guide

Restrictions and Limitations

ll
o-
-

s
n
ive

ry
Known issues

• The project file does not get a black delta when one of these changes necessitates a checkout.

• The recompile button does not turn off the code-generator’s build-avoidance, although it will te
Clearmake to force recompilation of older generated files. If the code-generator had previously pr
duced a view-private file, or a file dependent on a view-private LF file, the code-generator’s build
avoidance will not regenerate the file (and hence, not update its config record).

• On Windows NT, you must use the same drive letter for viewing across the project. All reference
to linear-form files (including the check-out dialog, the project file, and the package files) contai
the drive letter. When using ClearCase, this forces all developers to map their view to the same dr
letter (typically Z:).

• In order to use Clearmake, and build from the library, the storage format must be textual. If the bina
storage format is used, Clearmake cannot be used to build the library.
Getting Started Guide ClearCase Support Enhancements 95

Restrictions and Limitations
96 ClearCase Support Enhancements Getting Started Guide

Chapter 9

Getting Start
9 Changes in Developer 5.2.1/5.2
er
++
This chapter provides additional information on the changes covered in “What's new in Develop
5.2.1/5.2” on page 2 in Chapter 1 of this Guide. For details of the changes applicable to the C and C
Language Modules, please refer to the Changes in ObjecTime Developer 5.2.1 chapters in the Objec-
Time Developer for C Getting Started and Release Notice and the ObjecTime Developer for C++ Get-
ting Started and Release Notice respectively.

The main areas covered in this chapter are as follows:

• ClearCase Support Enhancements - 5.2.1

• Packages- 5.2

• Multi-Language Framework (MLF) - 5.2

• Make Utilities Supported - 5.2

• Data Class Inclusion - 5.2

• Deterministic Loadbuild - 5.2

• Library Management - 5.2

• Problems fixed - 5.2
ed Guide Changes in Developer 5.2.1/5.2 97

ClearCase Support Enhancements

ion,
ClearCase Support Enhancements
ClearCase

ObjecTime Developer 5.2.1 is designed to better support the ClearCase environment, and in particular
Clearmake. It extends compilation capabilities to allow compilation outside of the Toolset, and use of
Clearmake’s facilities to manage dependencies and store loadbuild artifacts. For a detailed descript
see “ClearCase Support Enhancements” on page 79 in this Guide.
98 Changes in Developer 5.2.1/5.2 Getting Started Guide

Packages

s”

st be
The
d
The
tire
Packages
CUPs Replacement

In ObjecTime Developer 5.2, CUPs were replaced with enhanced environment specification for pack-
ages. The ability to generate and compile the code for a package has been used to allow designers to
reuse the results of a build and not have to perform the code generation and compilation themselves.
This requirement is now satisfied by a facility to reuse the results of a loadbuild for all model compo-
nents and it is no longer possible or required to compile a package independently of an update. Packages
must now always be compiled in the context of an update. See “Environment and CUPs conversion
on page 18 in this guide for further details.

It is still possible to associate some environment settings with a package. But because packages mu
compiled in the context of an update, not all environment settings make sense at the package-level.
package-level configuration now supports compiler flags, include files and paths, and library files an
paths. The flags and inclusions are applied to all the classes in the package and child packages.
library path and files are propagated to the update-level from each package, and so apply to the en
executable.
Getting Started Guide Changes in Developer 5.2.1/5.2 99

Code Generation & Compilation Changes

e
em-
m

er-
lass
iles

se
Code Generation & Compilation Changes
ObjecTime Developer 5.2 incorporated significant changes in the way in which code generation and
compilation of models is performed. These changes have been made in order to improve performance,
as well as to better integrate with the customer’s software development environment and processes.

The significant changes introduced in release 5.2 were as follows:

• Using timestamp (make) driven code generation and compilation

• Allow re-use of build results. The generated C++/C and object files resulting from a build of th
models can be reused by designers, thus saving them the time required to compile the model th
selves before commencing development work. This is supported with either the VPATH mechanis
of GNU make or the sharing of derived objects when using ClearCase.

• Explicit inter-class dependencies are now tracked improving the generated code’s compilation p
formance. The inclusion relationships between classes are now calculated based on the inter-c
dependencies. This results in faster compilation performance because the number of include f
which are read, when compiling a class, is now restricted to only those files that are required.

The meaning of some of the Compile Dialog Options is changed in ObjecTime Developer 5.2.1. Plea
refer to Chapter 22 ‘Model Compilation and Execution’ in the ObjecTime Developer User Guide.
100 Changes in Developer 5.2.1/5.2 Getting Started Guide

Make Utilities Supported

n-
the

 are
ing

d

Make Utilities Supported
Effective in release 5.2 of ObjecTime Developer, compilation and code generation are controlled by
Makefiles. You have the ability to choose which make utility will be used for the code generation and
compilation phases of model generation. Different make utilities expect Makefiles in slightly different
formats, and some specific features of these utilities are supported by selecting particular Make types.
Effective in release 5.2.1, the Make types available are Clearmake, MS_nmake, Gnu_make and
Unix_make.

The Make Type should be set to Clearmake when using the ClearCase Support Enhancement. You
can only use this Make Type when you are using ClearCase as your CM system. Clearmake is supported
for various platforms. See Chapter 8 for further details. Using ClearCase as your CM system does not
require that you specify Clearmake as your Make Type and clearmake as your Make Name; any
other make utility will work correctly when using ClearCase as the CM system.

The Make Type should be set to MS_nmake when the make utility is nmake on Windows NT. This is
required because of a minor formatting difference between MS_nmake and Unix_make.
MS_nmake is the default Make Type on Windows NT.

The Make Type should be set to Gnu_make when using Load Build Paths for reusing load-build
results. This uses Gnu_make’s implementation of VPATH to reuse load-build results. If you have no
Load Build Paths, the Gnu_make Makefile format is identical to Unix_make.

Unix_make produces a Makefile which can be interpreted by almost any Make utility.
Unix_make is the default Make Type on Unix machines.

The Make Type (and corresponding Make Name) are set from the target’s Properties Editor of the La
guage Options in the Update Configuration. The Make Name must be a compatible executable of
chosen Make Type.

Specifying clearmake as the Make Name is only recommended if the Make Type is Clearmake.
The makefiles generated for a non-Clearmake Make Type, when run with clearmake, result in
the code generation being performed twice for the changed classes. Although the compilation results
correct in this circumstance, there is a significant time penalty due to the extra code generation tak
place.

Recommended make utilities

The following table lists the recommended make utilities for all toolset platforms. Except where note
below, all listed make utilities are compatible with Make Type Unix_make. This table is neither
Getting Started Guide Changes in Developer 5.2.1/5.2 101

Make Utilities Supported
exhaustive nor exclusive; other compatible make utilities may be provided with your compilation host
operating system or your compiler.

Table 3

Make type Platform Notes

AIX make AIX 4

ClearCase clearmake supported Unix plat-
forms

version 3.2 or later

Windows NT version 3.2 or later

Gnu make all Unix platforms Version 3.71 and above is recommended. Sup-
ported by Make Type “Gnu_make” or
“Unix_make”.

Windows NT Use version "3.74+wrs-2", available with Wind
River Systems' Tornado. Supported by Make Type
“Gnu_make” or “Unix_make”.

HP make HPUX 10

Irix make Irix 6

Microsoft nmake Windows NT Version "1.62.7022"is recommended (available
with Microsoft Visual C++ 5.0). Requires Make
Type “MS_nmake”.

Pmake (Parallel make) various Unix platforms Various compatible third-party distributions are
available.

Sun make Sun 4, Sun 5 includes SUNW_SPRO and SVR4 make
102 Changes in Developer 5.2.1/5.2 Getting Started Guide

Data class inclusions
Data class inclusions
As of ObjecTime Developer 5.2, inclusions can be added to data classes. If the definition of a data
class requires external inclusions, then these can be added at the data class level and need not be speci-
fied at the update level as in pre-5.2.1 releases of ObjecTime. This will improve compilation perfor-
mance since it eliminates superfluous inclusions.
Getting Started Guide Changes in Developer 5.2.1/5.2 103

Deterministic Loadbuild

 the
Deterministic Loadbuild
As of ObjecTime Developer 5.2, due to the way signal numbering is handled for incremental code gen-
eration, it is possible that the generated code for the two instances of the same model be different. These
differences will be confined to the signal numbering values and are the result of the way the code gener-
ator adds new signals to a model. In order to avoid a complete recompile when a new signal is added,
the code generator adds new signals to the end of a list. This means that the value a signal receives
depends on what other signals have been added before.

To obtain a completely deterministic build, all that is required is that a total recompile be performed
from a clean directory. This will ensure that the generated code will be identical and any differences
between two models that are completely regenerated, will be the result of actual model differences and
not caused by the order of operations as performed in the toolset (as has been the case in the past).

The order of merging affects the order in which the classes are listed in the project file. This in turn
affects the order of code generation for:

• RTSystem.h

• RTSignal.h

• Data classes aggregated at the package level

The next two sections provide details on how to merge classes in a consistent manner.

Fully Specified Merge Script

Merge maintains the internal order of the added classes in the same order in which they are listed in
merge script. For example, if you use the following merge script:

! select AnUpdate
merge from /whatever/mylib.otlib

Actor1.actor *
Actor2.actor *
Actor3.actor *
Protocol1.port *
Protocol2.port *
Protocol3.port *
Data1.data *
Data2.data *
Data3.data *

endMerge !

then the following is true:

• the internal order of the actor classes is Actor1, Actor2, Actor3;

• the internal order of the protocol classes is Protocol1, Protocol2, Protocol3;

• and the internal order of the data classes is Data1, Data2, Data3.

Note: The order only matters relative to other entries of the same type.
104 Changes in Developer 5.2.1/5.2 Getting Started Guide

Deterministic Loadbuild

e

So, the following merge script results in the same internal order as above:

! select AnUpdate
merge from /whatever/mylib.otlib

Actor1.actor *
Protocol1.port *
Data1.data *
Actor2.actor *
Protocol2.port *
Data2.data *
Actor3.actor *
Protocol3.port *
Data3.data *

endMerge !

Note that the internal order can be observed in a couple of ways:

1 Open a Properties Editor on the update. The class/package list displays the entries in their internal
order.

2 Listing the contents of a project file.

Partially Specified Merge Script

If the required classes are not all listed in the merge script, then the merge will determine that some
classes are missing, and then look in the library/directory. This process is driven by the combination of
the order specified in the merge script, and the order of the references in the classes that are being
merged. After retrieving the first set of missing classes, then more classes may be required, so this pro-
cess is repeated until all the classes have been retrieved.

For example, assume you have a library containing the following actor classes:

• A1 which contains references to A2 and A3 (in that order)

• A2 which contains references to A4 and A5 (in that order)

• A3, A4, and A5 which are 'empty' (i.e. don't reference anyone else)

Now, if you just specify A1 in the merge script, the resulting internal order will be A1, A2, A3, A4, A5.

If you specify A1 and A4 in the merge script, the resulting internal order will be A1, A4, A2, A3, A5.

Note: If you are just merging packages and then relying on the merge operation to extract all th
referenced classes, then you are doing a partially specified list.

If an entry in the partially specified list is modified (for example, a reference to a new class is added to
it), then the resulting order of all the classes after it could be different than they would have been when
merged with the previous version of the class.

If a fully specified list was used, then there is much better control over this (for example, new classes
can be added at the end of the full list). For a model that needs exactly repeatable code generation, then
you should use fully specified lists.
Getting Started Guide Changes in Developer 5.2.1/5.2 105

Library Management
Library Management
Library capabilities enhancements

In ObjecTime Developer 5.2, several enhancements were added to ObjecTime Developer’s library
capabilities. While some of these enhancements are intended to improve ObjecTime’s ability to inter-
work with ClearCase, all of the enhancements can be used with any Change Management system. Even
though some of the enhancements require modifications to the library scripts, the release is fully com-
patible with existing scripts from previous releases.

The ClearCase library scripts have been rewritten in Perl and are common for both Unix and NT. The
new scripts take advantage of the improved Version String Handling and Sync With Library enhance-
ments described below.

Default Location for Library Scripts

It is no longer necessary to place an .objectime_scripts_dir directory for Unix, or an
objectime_scripts_dir_nt directory for NT, in every library directory. Instead a default
directory location can be entered in the Library Configuration pane under the toolset menu. If a
scripts_dir does exist in the library, the scripts in that directory will be used; otherwise, the
scripts that are in the default directory will be used.

Note: If the library system is down, the objectime_library_info script causes ObjecTime Developer
(OTD) to hang (that is, the OTD toolset waits for an .otlib library script to terminate).

Check out and read only modifications

Classes which are not checked out from the CM system would be read only, as in a context. Before you
can make editing changes, check out the class. This read only enforcement would apply to all objects
which can be checked out of a library including project files and configurations. Enforcing the read only
aspects of classes only applies to direct edits of the classes. If editing a class has an impact on other
classes which are not currently checked out, then the toolset will in no way prevent these changes from
occurring, although a delta will appear beside the affected class. This class of changes primarily applies
to editing a class and having its subclasses change as a result.

This feature would be controlled by and could be disabled through a user preference.

Currently, when you check out a class, a check is performed which compares the version in the CM sys-
tem to that in the update. If there is a mismatch, a warning appears which can be ignored. This will be
changed so that you will be presented with a dialog which gives the option of merging in the class from
the CM system or cancelling the CheckOut request. If you cancel the checkout, the result must be that
the class is not checked out.

This feature will also be controlled with a user preference.
106 Changes in Developer 5.2.1/5.2 Getting Started Guide

Library Management

in

ts
the
d.
he

on-

p-
er-
ith

he
n-

that

rns
the
to

d

 NT
s

Read-only for unchecked out classes

A user preference has been added that disallows the ability to edit unchecked-out elements; see the pref-
erence “Editing Modes”. Preferences are set from the Preferences Editor under the toolset menu.

Hierarchical library browsing

A Libraries pane has been added to the Library Browser which allows libraries that are contained with
libraries to be easily browsed.

Sync With Library

An alternative library synchronization method has been added that relies on external library scrip
objectime_sync and objectime_diff. Use of these scripts allows the update to be synchronized with
Linear Form (LF) files contained in the library directory or directories where the files have been copie
Versions of the objectime_sync and objectime_diff scripts are provided for ClearCase. In addition to t
new scripts, the Library Configuration must be set to now use objectime_library_info for
sync, in order to use external LF comparisons for synchronizing.

In addition, it is also possible to synchronize the delta symbols in the Update Browser based on the c
tents of the LF files. This capability also relies on the objectime_sync and objectime_diff scripts.

Since LF files contain the version string of elements that they reference, if a reference element is u
versioned, the LF file that is stored in the library that represents the element that contains the upv
sioned element is technically out-of-date even though its design has not changed. The Sync W
Library capability allows differences of this type to be ignored.

Improved Version String Handling

To support complex version strings (for example, Release1/BugFixes/1) and version branching, t
objectime_library_capabilities script can be extended to turn on the NoVersionNumbers and NoVersio
Sort capability.

The VersonNumbers capability turns off the default assumptions made on check-out and assumes
the objectime_check_out script returns both the current and the next (upon submit) version string.

The newest version of objectime_check_out for ClearCase (as part of ClearCase integration) retu
two version strings as opposed to just one. The first string is the version that is the most recent in
library and the second string is the version number on submitting it back to the library. This is done
remove the most recent comparison data from the toolset.

The NoVersionSort capability disables the default sorting performed by the Version Browser an
assumes that the list should be displayed in the order output by the objectime_version_info script.

ClearCase

The ClearCase Unix scripts have been replaced with Perl scripts that are common across Windows
and Unix. The new scripts return the ClearCase version ID (without the /main/ prefix). This allow
ClearCase branching to be used without having to modify the scripts.
Getting Started Guide Changes in Developer 5.2.1/5.2 107

Library Management

to

er
r.
The versions of ClearCase supported are:

• 3.1.1 : for HPUX 10.20 and Solaris 2.6 (with a 3.1.1 patch).

• 3.2 : for Solaris 2.6, HPUX 10.20, SunOS 4.1.3 and Windows NT 4.0.

Two new library scripts objectime_sync and objectime_diff have been provided for ClearCase.

RCS

The RCS system must support the “x” option in order to interwork with ObjecTime Developer. The “x”
option allows for the specification of suffixes for RCS files. Please refer to your RCS documentation
confirm this.

Linear Form

The following summarizes the changes made to the linear form grammar for release 5.2.1. Custom
tools which process linear form will have to be modified to accommodate the changes in the gramma

Added tokens

BLACKBOX
DEPENDENCIES
LOADBUILD
OUTPUT
PROJECT
RECTILINEAR
STEREOTYPE

Added productions

optStereotype/* NEW in 5.2.1 */
: /*empty*/

 | STEREOTYPE TEXTSTRING
 ;

optDependencies /* NEW in 5.2.1 */
 : /*empty*/
 | DEPENDENCIES ‘{‘ dependencyList ‘}’
 ;

 dependencyList
 : /*empty*/
 | dependencyList dependencyItem ‘;’
 ;

108 Changes in Developer 5.2.1/5.2 Getting Started Guide

Library Management
 dependencyItem
 : DEFINE classType className optInPackage optLibraryVersion optSte-
reotype optDescription

;

optStereotype /* NEW in 5.2.1 */
 : /*empty*/
 | STEREOTYPE TEXTSTRING
 ;
graphicLine /* NEW in 5.2.1: optRectilinear */
 : graphicSpec optWidth optSmooth optRectilinear FROM pointsList
 ;

optRectilinear /* NEW in 5.2.1 */
 : /*empty*/
 | RECTILINEAR
 ;

optCompilationPath /* NEW in 5.2.1 */
 : /*empty*/
 | PATH TEXTSTRING
 ;

projectSpec /* NEW in 5.2.1 */
 : PROJECT projectName
 optLibraryVersion
 optDescription
 optDependencies
 projectPublicComponents
 threadsSpec
 libraryPaths
 outputPath
 loadBuildPaths
 ‘;’
 ;

 projectName
 : IDENT
 ;

 projectPublicComponents
 : /*empty*/
 | PUBLIC ‘{‘
 projectComponentList
 activeEnvironment
Getting Started Guide Changes in Developer 5.2.1/5.2 109

Library Management
 optTopActor
 ‘}’
 ;

 projectComponentList
 : /*empty*/
 | projectComponentType componentName optLibraryVersion optDerived-
FromSuperClass optInPackage ‘;’ projectComponentList
 ;

 projectComponentType
 ;

 activeEnvironment
 : ACTIVE ENVIRONMENT IDENT ‘;’
 ;

 optTopActor
 : /*empty*/
 | TOP ACTOR actorClassName optLibraryVersion ‘;’
 ;

 libraryPaths
 : LIBRARY PATHS ‘{‘ pathList ‘}’
 ;

 loadBuildPaths
 : LOADBUILD PATHS ‘{‘ pathList ‘}’
 ;

 pathList
 : /*empty*/
 | PATH libraryPath ‘;’ pathList
 ;

 outputPath
 : OUTPUT PATH libraryPath ‘;’
 ;
optEnvironmentSpec
 : /*empty*/
 | environmentSpec
 ;

environmentName
 : TEXTSTRING
 ;
110 Changes in Developer 5.2.1/5.2 Getting Started Guide

Library Management
Changed productions

modelEntitySpec
 : actorClassSpec
 | protocolClassSpec
 | dataClassSpec
 | constantSpec
 | packageSpec
 | requirementSpec
 | mscSpec
 | environmentSpec /* NEW in 5.2.1 */
 | projectSpec /* NEW in 5.2.1 */
 ;

realValue
 : NUMBER /* NEW in 5.2.1 */
 | REAL_NUMBER
 | constantName optLibraryVersion
 ;

dataClassSpec
 : DATA CLASS dataClassName
 optLibraryVersion
 optDerivedFromSuperClass
 ISA dataTypeSpec
 optDependencies /* NEW in 5.2.1 */
 ‘;’
 ;

choiceSpec /* NEW in 5.2.1: inclusionsSpec */
 : CHOICE properties choiceTypes inclusionsSpec methodsSpec
 ;

enumeratedSpec /* NEW in 5.2.1: inclusionsSpec */
 : ENUMERATED properties enumeratedValues inclusionsSpec meth-
odsSpec
 ;
sequenceSpec /* NEW in 5.2.1: inclusionsSpec */
 : SEQUENCE properties fields inclusionsSpec methodsSpec
 ;

protocolClassSpec
 : PROTOCOL CLASS protocolClassName
 optLibraryVersion
Getting Started Guide Changes in Developer 5.2.1/5.2 111

Library Management
 derivedFromOrService
 properties
 inMessagesSpec
 outMessagesSpec
 mscsSpec
 optDependencies /* NEW in 5.2.1 */
 ‘;’
 ;
actorClassSpec
 : ACTOR CLASS actorClassName
 optLibraryVersion
 optDerivedFromSuperClass
 optExclude
 properties
 actorInterfaceSpec
 actorImplementationSpec
 actorConfigurationSpec
 optDependencies /* NEW in 5.2.1 */
 ‘;’
 ;

localIncludeItem /* NEW in 5.2.1: optStereotype */
 : DEFINE inclusionName optActor optStereotype properties
 ;

defaultPackageDefinition
 : optCompilationPath /* NEW in 5.2.1 */
 properties
 packagePublicComponents/* changed */
 packagePrivateComponents/* changed */
 packageSignals
 packageActors
 optEnvironmentSpec
 optThreadsSpec
 ;

packagePublicComponents
 : /*empty*/
 | PUBLIC ‘{‘ packageComponentsList ‘}’
 ;

packageComponentsList
 : /*empty*/
 | packageComponentsList packageComponent ‘;’
 ;
112 Changes in Developer 5.2.1/5.2 Getting Started Guide

Library Management

packageComponent
 : packageComponentType componentName optInPackage optLibrary-
Version optPermissions
 ;

packageComponentType
 : classType | PACKAGE
 ;

componentName
 : IDENT
 ;

environmentSpec
 : ENVIRONMENT environmentName optLibraryVersion bracketedEx-
pression ‘;’
 ;

compilationPackageDefinition
 : ISA COMPILATION defaultPackageDefinition
 ;

anyValue
 : IDENT
 | NUMBER
 | REAL_NUMBER
 | TEXTSTRING
 | boolean

 | enclosedExpression
 | bracketedExpression
 | ‘&’ | ‘*’ | ‘@’ | ‘\\’ | ‘:’ | ‘.’ | ‘,’ | ‘!’ | ‘?’
 | ‘=’ | ‘<‘ | ‘>’ | ‘+’ | ‘-’ | ‘#’ | ‘;’ | ‘/’ | ‘~’
 | ACTIVE | CONFIGURATION | FIELDS | PROPERTY | PROPER-
TIES | SEQUENCE | SYSTEM
 | THREADS | UNDEFINED | VALUE | VALUES | VERSION | VER-
SIONS
 | ‘[‘ ‘]’
 ;
Getting Started Guide Changes in Developer 5.2.1/5.2 113

Problems Addressed in this Release
 Problems Addressed in this Release
For a complete list of problems which have been addressed in this release, please refer to the ObjecTime
web site at:

http://www.objectime.com/support/restricted-dir/index.html.

You will be prompted to enter your assigned ObjecTime user name and password to gain access.
114 Changes in Developer 5.2.1/5.2 Getting Started Guide

Chapter 10

Getting Start
10 General Information
Toolset Memory Requirements
This section discusses the memory requirements for the ObjecTime Toolset and the disk space require-
ments for saved models. This information will help you better understand how memory is utilized in the
ObjecTime Toolset and to help plan system requirements for the development environment before a
large project is started.

This section does not discuss the size of the generated executable for an ObjecTime model (for an esti-
mate of the size of the generated executable for a C++ model see the ’ObjecTime Model Size Estima-
tion’ section of the C++ Target Guide).

The platform-specific sections of this guide deal with the minimum requirements to run the Toolset on
each platform (see System Requirements in this chapter, and System Requirements in the ’Getting
Started with Unix’ chapter). In addition to the basic memory requirement to run the Toolset, additional
memory will usually be required to build and run models. The amount of memory required will depend
on the size of the model. This section will deal with trying to estimate the memory requirements for
models.

Memory consumption for ObjecTime models varies with many factors. The memory consumption var-
ies with the number of the various design objects used, such as:

• actor classes

• protocol classes

• data classes

• configurations and their attributes

• packages

• actor references

• bindings

• ports

• states

• transitions

• choice points

• events
ed Guide General Information 115

Toolset Memory Requirements

s,
ura-

es,
e
pic

els
e in
ers

B
d

• functions

• inclusions

• ESVs

• MSCs and their contents

• probes and their attributes

• etc.

Memory consumption also varies with the amount of code (RPL, C and C++) entered in transition
guard conditions, functions and inject messages, as well as strings entered in places such as config
tion parameters and the description field in property editors.

Perhaps not so obvious, memory consumption also varies with things like:

• the number of equivalences defined in a model

• the number of requirements links

• the number of inflection points on bindings/transitions

• the depth of inheritance class hierarchies

• the number of excluded objects in a subclass

• the types of edits performed on a model in the current session

• the number and types of windows open on various components in the model

• and so on.

Memory consumption will also increase once a model has been compiled. Given all of these variabl
it is very difficult to give an exact formula for the memory requirement of any given model. Instead, w
have studied several typical models to offer an estimation of the memory required at a macrosco
level.

Typical model memory usage

We have studied several typical ObjecTime models. While the data given here is typical for the mod
we have studied, care should be taken in how these numbers are used. In particular, it is possibl
cases of some specific models to obtain sizes which are off by an order of magnitude from the numb
presented here, especially if the model in question does not meet our definition of a “typical” model.

The models which we have studied are typically characterized as follows:

• X Actor classes

• between 0.4*X and 0.7*X Protocol classes

• between 0.7*X and 3*X Data classes

• on average each actor class has between 70 and 200 uncommented lines of code

Given this characterization, the in-memory size of these models is typically between 40 KB and 130 K
times X (for example, if X is 100 for a particular model, then the toolset will require between 4 MB an
13 MB to store the model in memory). Note that this sizing is done before compilation.
116 General Information Getting Started Guide

Toolset Memory Requirements

will
ting
ted

he
e

Memory usage in operations

Operations such as activation, passivation and merging will make copies of various internal data struc-
tures before and after the operation. At times, these operations will make complete copies of the Objec-
Time model being operated on. Because of this, these operations will increase memory requirements
during the execution of the operation (often this increase is equal to and sometimes double the memory
required to hold the model in memory). Keep in mind that this memory is only required for the duration
of the operation and will be released back to the ObjecTime memory pool, for use by other operations/
models, once the operation is complete. Note that, at this time, memory allocated by ObjecTime Devel-
oper from the underlying OS will remain allocated until the Toolset quits. The Toolset will not dynami-
cally release unused memory back to the OS.

Context vs. update memory usage

Another issue related to memory usage is that relating to contexts and updates. When contexts are being
used, the typical work scenario has the designer activate the context and then create an update from the
context, after which all edits are performed on this update. It should be noted that contexts and updates
are the same size while in memory, and creating an update from a context essentially creates a duplicate
copy of the context. One method to avoid this duplication, and therefore decrease memory consump-
tion, is to remove the context from memory and work only on the update.

Two procedures for doing this are as follows:

• start with an activated context in memory with an update created from it

• passivate the update

• delete the update

• delete the context

• activate the update

• save and exit the session

• restart the session

or alternately:

• start with an activated context in memory with an update created from it

• passivate the update

• abandon the session

• restart a clean/empty session

• activate the update

Through the use of this technique, only one copy of the classes are stored in memory. Note that this
have the side effect of causing the update to be associated with 'TheContext' rather than the origina
context. One consequence of this new association is that if the original context had a library associa
with it; this information is lost. Putting this library path into TheContext's library entry will serve as a
workaround for this situation. One other consequence of the association with TheContext is that t
'Show Changes' menu item on the Update menu will now return different results than it would hav
when the update was associated with the original context.
Getting Started Guide General Information 117

Toolset Memory Requirements
Model file sizes

Passivated (file) versions of models (updates and contexts) are smaller than the in-memory size of the
model. The in-memory size of a model is anywhere between 2 and 5 times the size of the passivated
file. As is usual for memory sizing issues, this is an approximation of the size ratios. It is possible to
have different ratios.

Note: This ratio only applies to passivated updates and contexts. Since project files contain refer-
ences rather than the objects themselves (as do updates and contents), they will be much smaller in
size.

Summary

The results discussed above will now be presented in a more compact form. Keep in mind that this dis-
cussion applies to models characterized by our "typical" model definition, and that actual memory
usage may vary from the numbers presented here.

1) Given a typical model with X actor classes, the in-memory size of this model will be:

Y = between 40KB * X and 130KB * X

2) If both a context and update of this model are to be stored in memory, this would require 2*Y of
memory. By removing the original context, only Y of memory would be required.

3) Operations involving this model may require an additional Y to 2Y of memory needed only for the
duration of the operation. This memory is not released back to the OS but will be available for use by
other toolset operations and model storage.

4) The passivated file (update or context) size of this model should be between Y/2 and Y/5.
118 General Information Getting Started Guide

Microsoft Visual SourceSafe (MSVSS)
Microsoft Visual SourceSafe (MSVSS)
The following notes apply to using Microsoft Visual SourceSafe (MSVSS) as a library system:

1) The ObjecTime library scripts for Microsoft Visual SourceSafe (MSVSS) do not allow the use of
the ’multiple checkouts’ feature of MSVSS.

2) ObjecTime scripts currently set the file type to binary format regardless of the setting within the
toolset. Explicitly changing the file type to text, will cause problems with some of the library scripts.

3) If a file is manually deleted from an ObjecTime project in MSVSS without setting the ’Destroy
Permanently’ option, and later a user tries to create a file with the same name, then the destroyed file
will be restored which will leave ObjecTime in an out of sync state.

4) The same user (on the same or different systems) should not perform more than one MSVSS li-
brary interface operation (even in different MSVSS projects at the same time). Two or more library
interface operation might collide with each other and cause incorrect results and error messages.
(PR4292)
Getting Started Guide General Information 119

Limits

F-THEN/

ents.

w

n-

ill
e,
ys-
p-

le,
f

ame
n 1.1

sion”,
t
Limits
Model Limits (RPL, C and C++)

The total number of ports + SAPs + ESVs + actorRefs per actor class <= 256. This includes inherited
components.

RPL Code Editor

• 2000 lines per code segment

RPL Limits

• 256 method variables (arguments and temp vars)

• 256 literals (strings, numbers, symbols, characters, message selectors, referenced class names, I
ELSE/WHILE/FOR bodies)

• 256 levels of nested IF/WHILE/FOR statements

• There is a limit on the size of the compiled code generated for the inside of IF/WHILE/FOR statem
In practice this is not a problem, but is still a possible limit.

Simulation Services Library Limits

• A maximum of 16,384 actors can be incarnated at run-time in a model.

• When using the SimulationRTS you must have selected the “Basic” debugging tool in order allo
the “Load” option to be used.

Special Notes and Reminders
• ObjecTime Developer conventions for environment variables are as follows:

General: Toolset uses host conventions - $<name> in UNIX and %<name>% in NT

Exceptions:

Environment Browser supports $ for both UNIX and NT. It does not support %

Package path supports $ for both UNIX and NT. It does not support %

• To improve performance when you do a merge, especially with large systems, do NOT select “Ca
celable” which is the default on the Merging dialog. If you do select “Cancelable” ObjecTime will
make a copy of the entire update and merge into this copy. If the merge is successful, the copy w
replace the original. This will cause the entire system to be recompiled the next time you compil
as if you had selected “Recompile”. Thus merging in as little as one class can cause your entire s
tem to be recompiled. Therefore, we generally recommend that you deselect the “Cancelable” o
tion.

• The external editor started up by ObjecTime must be a window based editor. On Unix, for examp
one must use “xterm -e vi” instead of “vi”. On Windows NT, one must use “Wordpad” instead o
“edit.com” for example.

• Version 1.1 of an object in a library is often used as a dummy placeholder to reserve the object n
within the library. You will get inconsistent error messages if you try to merge a placeholder versio
class, package or requirement from a library, for example, “Error occurred when extracting a ver
“Error extracting a requirement”, “Error reading from <requirement>”, “Error checking requiremen
definition header”, or “Error bad header for requirements file”. (PR1560)
120 General Information Getting Started Guide

Perl Information

at

tory or
ove

into a

 ports
s early

ss of
d will

mend

s

le

ner-

ion
n be
r-

eric
ar-
a').
f this
 on

 of the
brary.
A new
 Perl is

odels

 that
• Library check in and check out of a class will cause a refresh of any library browsers open on th
library — once for each class accessed. To speed operations where many classes are either checked
in or checked out, close the library browsers before beginning the operation.

• ObjecTime does not guarantee proper operation when an image (.otd) file is created in one direc
on one host platform and is then opened in a different directory or host platform. If you need to m
updates between directories or platforms, you should passivate your updates and activate them
different workspace at the destination location.

• Once an actor has been compiled, modifications to the replication factor of the actor itself or of any
may cause a recompile of the complete model. We recommend specifying the replication factors a
as possible or editing them in a batched fashion.

Also note that for unspecified replication factors (replication factor = *), if you change the root cla
an actor, the actor’s previous replication factor will be statically copied over to the new system, an
not take on an intended new value unless explicitly compiled. In this situation, we recom
regenerating the entire model to ensure that the intended replication factor is applied.

• ObjecTime currently assumes that library scripts on Windows NT are written in Perl. On Window
NT, each library script is invoked using the command 'perl -w
<script_name_and_arguments>'.

• Users should not rename the ObjecTime image files. For example, renaming the image fi
"ObjecTime5.2.otd" to "MyImage.otd" will prevent the image from being loaded.

• In order to support building the linear form parser on multiple platforms, GNU Bison (version 1.25
and later) becomes the default parser generator and flex (version 2.5.4 and later) the default scan
generator. Both of these tools are publicly available on a number of sites on the Internet.

• ObjecTime uses a very simple algorithm for comparing version numbers. It assumes that a vers
number is a series of segments separated by periods (for example, '1.main.3'). Each segment ca
either a (positive) integer or a string. The comparison of two version numbers is a pairwise compa
ison of the segments. If the two segments being compared are all digits, then the expected num
comparison is done (for example, '1.30' is higher than '1.4'). If either of the segments contains ch
acters other than digits, then a string comparison is done (for example, '1.30' is earlier than '1.4
The comparison also assumes that both version numbers have the same number of segments. I
is not true, then it will only compare the smaller number of segments and return an answer based
that.

Perl Information
• Perl plays a number of roles in ObjecTime Developer 5.2.1.

1. To produce a dependency list for Target Services Library source files to permit recompilation
libraries by customers following any customization/configuration change of the Target Services Li
Perl must be in the search path for dependency list (a.k.a. "depends" file) generation to work.
"depends" file can be generated on the host where ObjecTime is run or on any other host where
already installed.

2. To pre-process our generated make files on UNIX hosts in preparation for their use in building m
for Windows NT targets using the Visual C++ compiler.

3. To permit execution of our make files on Windows NT targets when compiling and linking on
platform using Visual C++.
Getting Started Guide General Information 121

Perl Information

nix or
Perl is included with the ObjecTime release. The version of Perl in use at the time of release was 5.002
beta3 on SunOS, Solaris, HPUX 10, IRIX and AIX. On Windows NT, the version in use at the time of
release is 5.003_07. On QNX, the version supplied for QNX is “5.002 with DEBUGGING”

To run the Perl scripts provided with ObjecTime, make sure the path is properly set up on your U
Windows NT platform.

Building a Model with VC50 Debugging Information

NEW in 5.2: For Windows NT users that are developing with the Visual C++ 5.0 tools, ObjecTime
Developer now offers integration with the Visual C++ source debugger. This permits setting and clear-
ing of transition code source breakpoints at run-time within ObjecTime Developer.

Before you compile your ObjecTime model:

• Ensure DevStudio’s bin and sharedIde\bin are in your path.

• Read ‘Pure Windows NT Installation’ under ‘Supported Network Configurations’ in the Introduc-
tion of this Guide.

• Read Appendix E, Integrating Developer Studio on Windows NT, in the C++ Language Guide.
122 General Information Getting Started Guide

Chapter 11

Getting Start
11 Troubleshooting
/or
no
e

-
n
ou
Troubleshooting Unix
This section lists common problems and errors encountered when installing and running ObjecTime
Developer. With the description of the problem is the suggested course of action required to overcome
the problem.

CD read errors

If you are installing from a CD-ROM drive across the network and you are using a fast CD-ROM
device, you may see some tar read errors during the installation process. To avoid the problem, either
copy the CD contents to a local disk drive and run the installation from there, or run setup.sh from
the machine to which the CD-ROM drive is connected.

Incorrect key mappings

If you are running ObjecTime from an HP workstation or from an NCD X-terminal, and some keys on
your keyboard are not working. “Optional settings” on page 48 for more information.

SCCS/RCS files missing

Upon starting up ObjecTime, you may receive several messages indicating that several SCCS and
RCS commands cannot be found. If you are not using the ObjecTime library system, then this is of
concern. Otherwise, you may wish to speak with your UNIX administrator to see about obtaining th
missing files.

Cannot allocate color

This problem can occur if there are insufficient color resources for all of the X Window System applica
tions that you are currently running. Typically a message will be issued by the X Window System o
start-up of an application that cannot obtain the required colors. In this case, we recommend that y
start up the X Window System with a static color palette.
ed Guide Troubleshooting 123

Troubleshooting Unix

nts

s
e,
-
he

d
the

is.

ms

of
For Sun OpenWindows 3.2, this can be done by using the following command when starting up:

openwin -dev /dev/fb staticvis

 Configuring OpenWindows for use with a Gray-Scale Screen

The following indicates the options that should be used when starting up OpenWindows:

OpenWindows 3.2:

-dev /dev/fb grayvis staticvis

OpenWindows 3.3:

-dev /dev/fb defclass StaticGray grayvis

Font problems

If a dialog is presented which indicates that fonts cannot be found, then the font path was likely not set
correctly. Please see “Starting ObjecTime Developer 5.2.1” on page 50. Refer to the step where fo
are set using the xset command.

 Setup of Fonts for X-Terminals

The ObjecTime fonts will not be set properly if the user is on an X-Terminal which obtains its boot file
from a file server that does not have access to the $OBJECTIME_HOME/fonts directory. In this cas
the fonts should be copied to the file server from which the X-Terminal obtains its boot files. Alter
nately, the X-Terminal can be changed to obtain its boot files from the same file server upon which t
Developer release files have been installed.

 Setup of Fonts for PC and Mac Based X-Terminal Software Packages

To use the ObjecTime fonts with your X-Terminal package, you will first need to convert the delivere
fonts into a format acceptable to your software. Then, you will need to install the fonts and associate
font aliases with the font files. The steps are as follows:

1 Converting fonts - Most X-Terminal software packages have a utility to convert fonts in ‘bdf’ for-
mat to an acceptable format. Each software package is different in the exact procedure to do th
Consult your manual on how to do this. You will find a ‘bdf’ version of the ObjecTime fonts in the
‘fonts’ directory, which is inside the ObjecTime installation directory ($OBJECTIME_HOME/
fonts/bdf). This directory contains the five font files in bdf format. Use your X-Terminal’s conver-
sion utility to convert the bdf files into the form used by your software.

2 Installing fonts - Refer to your X-Terminal’s manual for the procedure to install the newly created
fonts. For some packages, you copy the files to a specific directory, for others, you select menu ite
to install the font files.

3 Associating font aliases with font files - The ObjecTime code refers to the fonts by the ISO stan-
dard font name. These are long cryptic strings that describe the font. This information is not part
124 Troubleshooting Getting Started Guide

Troubleshooting Unix

t
t
for-
e

ly to
e

ix

lled
the font file, therefore your X-Terminal will have to be told about this information in a separate step.
This information is usually found in the ‘fonts.alias’ files for standard X fonts (e.g., see
$OBJECTIME_HOME/fonts/sun/fonts.alias). This information is entered by associating the shor
font name (e.g., ‘otl10r’) with the long ISO string. The method for doing this varies with the differen
software packages. Some packages have menu items and dialog boxes to manually enter the in
mation. Other packages allow you to place the information in a file. Refer to your manual for th
exact procedure for doing this. The aliases you need to specify are as follows:

font alias

otl10b -objectime-otl-bold-r-normal--12-100-75-75-p-60-iso8859-1

otl10s -objectime-otl-ultrabold-r-normal--12-100-75-75-p-60-iso8859-1

otl10r -objectime-otl-normal-r-normal--12-100-75-75-p-60-iso8859-1

otl10t -objectime-otl-ultralight-r-normal--12-100-75-75-p-60-iso8859-1

otl10i -objectime-otl-normal-i-normal--12-100-75-75-p-60-iso8859-1

You need to type these aliases exactly with no spaces. The best way to enter these strings is probab
open up one of the ‘fonts.alias’ files with a text editor, and copy the strings directly from the file into th
file or dialog boxes associated with your X package.

Note that when using Mac/PC based X terminal packages, you probably don’t want to use the Un
‘xset +fp ...’ command to set the font path, as this may cause problems when starting up ObjecTime.

 Font Installation Diagnostics

Once the fonts have been installed, you can perform these diagnostics to verify that they are insta
correctly.

Try the Unix command ‘xlsfonts | grep otl’ and verify that the output is:

-objectime-otl-bold-r-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-normal-i-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-normal-r-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-ultrabold-r-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-ultralight-r-normal--12-100-75-75-p-60-iso8859-1

otl10b
Getting Started Guide Troubleshooting 125

Troubleshooting Unix

n,
otl10i

otl10r

otl10s

otl10t

If not, then the ObjecTime fonts cannot be found. Retry the font installation procedure. Once the fonts
are found, then the Unix commands:

xfd -fn otl10b

xfd -fn otl10i

xfd -fn otl10r

xfd -fN OTL10s

xfd -fn otl10t

can be used to open up windows on the five fonts to verify that they look correct. Here is a quick
description of the characters in the fonts to verify that you have the correct font:

otl10b - bold characters: upper/lower case, four arrows and ‘ent’

otl10i - italic font

otl10r - upper/lower case characters, special icons (document, check mark, stop sign, yield sig

etc.)

otl10s - icon only font: document, check mark, stop sign, yield sign, etc.

otl10t - template font: each cell (character) is really a multi-character bitmap (e.g. ‘<keyword>’,

‘<type-name>’, ‘<literal>’)

If the fonts look correct, there should be no problem running ObjecTime.

• After starting my first ObjecTime Developer session, the fonts look like they don’t have
spaces between the words.

Possible cause: New fonts conflict with your previous installation of ObjecTime Developer 5.X, used
through NFS software.
126 Troubleshooting Getting Started Guide

Troubleshooting Unix

g

e
n
 to
e

Solution: Point your NFS client software to use newly installed fonts and removed previously compiled
ones. Restart the system and restart ObjecTime Developer session.

Socket connections:

• Cannot open socket connection to external Layer Service master.

Upon initialization of a model that contains SAPs, the toolset times out for each socket connection
attempt (one for each SAP) and displays an error dialog of "Cannot open socket connection to external
Layer Service master." If there is a large number of SAPs, the user interface has the appearance of hang-
ing. It does not respond to mouse input or nor are windows refreshed until all attempts are completed.
This is caused when either the toolset or the rtsController runs out of socket descriptors. To fix this sim-
ply increase the number of available socket descriptors using the “limit” command before startin
ObjecTime.

Online Help

If the UNIX platform in which the toolset is running, does not have a browser installed, the following
error message will be displayed when the toolset is launched.

You must install a compatible browser for online help to function. Please refer to “Installing Netscap
Navigator” on page 43 in this guide for installation instructions. If you had previously been running a
earlier version of Netscape, it may be necessary to uninstall the older version of Netscape prior
installing version 4.04 from the ObjecTime Developer CD. When a help request is issued from th
Getting Started Guide Troubleshooting 127

Troubleshooting Unix

will
jec-
de
toolset without a validly configured browser, the following message will be displayed. Once again,

please check to ensure either Netscape Navigator has been configured properly as per the instructions in
the “Installing Netscape Navigator” on page 43 in this guide.

License Server Upgrades

If you need to replace the ObjecTime license server, or perform a disk replacement on the server, it
be necessary to have new license keys generated by ObjecTime support. After the upgrade and Ob
Time installation have been completed, please refer to “License Registration” on page 58 in this gui
for further information.
128 Troubleshooting Getting Started Guide

Troubleshooting Windows NT
Troubleshooting Windows NT
Screen flicker

If the colors in ObjecTime Developer ’flicker’, when switching between applications then your system is
set for 256 colors. Increase the number of colors in your Display settings.

Install/Uninstall Problems

• Install will not proceed for non-Administrators.

The user doing the install must be in the Administrator group to run ObjecTime Developer 5.2.1 Install.
There is a concept of Administrator privileges on the System in NT, rather than network administrator.
To add the user administrator privileges, you have to login as an administrator for the system (not a net-
work administrator) and run "User Manager" utility in Start Menu\Programs\Administrative
Tools(Common). Select Administrators group and add the user to the group. Refer to Windows NT doc-
umentation for further details.

• Uninstall leaves incrementally installed ObjecTime files on the disk.

Always run the uninstall program before re-installing ObjecTime Developer. If components have been
incrementally installed they will not be removed by the uninstall but must be removed manually.

• Install fails trying to create rtsController.exe

If you try to install into a directory that previously held an ObjecTime installation and one (or more) of
the executables is STILL RUNNING then this error will occur. Simply do the following:

1 Reboot the workstation.

2 Delete the partial install (ensure that all the files are deleted).

3 Start the install again.

• Font installation error.

If the ObjecTime installation procedure returns an error (see below) on Font install, it is due to Win-
dows NT not allowing the installer to remove previously installed fonts.
Getting Started Guide Troubleshooting 129

Troubleshooting Windows NT

nly
ne.
You may do one of the following:

• reboot or reinstall ObjecTime

• follow the instructions in the dialog (after the next reboot)

• Uninstall of “old” ObjecTime Release causes run failure of 5.2.1 in the following
ways:.
• Loss of license manager from system

• Loss of environment settings for OBJECTIME_HOME and PATH inclusing of
%OBJECTIME_HOME%\BIN\WINNT4

This is due to problems with multiple ObjecTime Releases sharing the same registry entries. This o
happens if you need to uninstall a previous release of ObjecTime Developer after installing a new o
To avoid this problem, use the following procedure to uninstall a previous release

• For the scenario where you have:

• installed OT5.1

• then installed OT 5.2.1

if you want to uninstall OT 5.1, you should:

1 Do a user setup in OT 5.1.

2 Uninstall OT 5.1.

3 Do a user setup on OT 5.2.1.

• Listbox is empty

During setup the user can go to the Directory Browser to select the destination directory for ’ObjecTime
Install’. When the user enters the browser a second time (for example: click Cancel and click Browse
again) sometimes the user will not see mapped network drives, the listbox will be empty. This is a
known limitation related to the InstallShield software, the installation utility used by ObjecTime.

To work around the problem, press then network button on the browser and press cancel in the network
dialog to go back to the Browser.
130 Troubleshooting Getting Started Guide

Troubleshooting Windows NT

e
r
e
e

he
r or

vi-

r
-
nt
her
Online Help

If the Windows NT platform in which the toolset is running, does not have a browser installed, the fol-
lowing error message will be displayed when the toolset is launched.

You must install a compatible browser for online help to function. Please refer to “Installing Netscap
Navigator” on page 23 or “Configuring for use with Internet Explorer 4.0” on page 24 in this guide fo
installation instructions. If you had previously been running an earlier version of Netscape, it may b
necessary to uninstall the older version of Netscape prior to installing version 4.04 from the ObjecTim
Developer CD. When a help request is issued from the toolset without a validly configured browser, t
following message will be displayed. Once again, please check to ensure either Netscape Navigato

Internet Explorer has been configured properly as per the instructions in the “Installing Netscape Na
gator” on page 23 or “Configuring for use with Internet Explorer 4.0” on page 24 in this guide.

Compilation problems:

Compile fails on valid C++ model for TargetRTS or SimulationRTS with VC++ 5.0 / 6.0

The INCLUDE and LIB environment variables may not be properly set. Start "ObjecTime Develope
Command Prompt" from "ObjecTime Developer 5.2.1" group in the Start Menu and run the "set" com
mand. Ensure that your compiler binaries are on the path and that the INCLUDE and LIB environme
variables are set (for example, they could be set for the user who installed VC++, but not set for anot
user). Set the environment variables. Refer to the VC++ documentation for further details.
Getting Started Guide Troubleshooting 131

Troubleshooting Windows NT

e
h.

us
Error loading Actor (“could not spawn process”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.

Error linking Actor (“error from nmake”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.

Windows NT Compilation Command Line Limits

In 5.2.1: If you encounter a compilation error message that complains about the command line being
too long, the cause may be that the length of your compile or linker has exceeded a limit.

Windows NT compilation has command line limits in two areas: source compilation and linking. Both
limits have been explored for the Visual C++ 4.2, Visual C++ 5.0, Visual C++ 6.0, VRTX PPC Microtec
1.4 and Tornado 1.0.1 PPC Cygnus 2.7.2 compilers.

Source File Compilation

The variables in source compilation are the update name, the %OBJECTIME_HOME% path, compila-
tion options, the local working directory and include directories. The only compiler that has a measur-
able limit is Microtec’s VRTX compiler. The command line limit is 768 characters.

A workaround for the problem is to reduce the number of include directories by combining includ
files. Other solutions are to shorten paths and names for the variables listed in the previous paragrap

Linking

T h e v a r i a b l e s in l i n k i n g a r e th e u p d a t e n a m e , t h e % OB J E C T IM E _ HO ME % p a th
(%OBJECTIME_HOME% in NT), the link options, the number and name length of libraries, the library
search paths and the local working directory. The link limits are shown below:

A workaround for the problem is to shorten paths and names for the variables listed in the previo
paragraph.

Table 4 Link Limits

Platforms Link Limit

Visual C++ 4.2: 2049 characters

Visual C++ 5.0: more than 20875 characters

VRTX PPC Microtec 1.4 4147 characters

Tornado 1.0.1 PPC Cygnus 2.7.2 4150 characters

HPUX 10.20 16384 characters (make: “couldn’t load shell.stop”)
132 Troubleshooting Getting Started Guide

Troubleshooting Windows NT

a

tor.
ion.

t

MSVSS Library problems

MSVSS Library Interface fails to find scripts or project

Possible cause: ObjecTime library directory incorrect for Windows NT.

Solution: In order for ObjecTime to recognize a directory as a valid library to be accessed with the script
interface, the directory name must end with ‘.otlib’. This directory will sometimes be referred to as
‘script library’. A script library must contain an entry that is a directory containing the scripts required
to interact with that library. This subdirectory must be named ‘.objectime_scripts_dir’ for UNIX
and ‘objectime_scripts_dir_nt’ for Windows NT.

Visual SourceSafe is a project-oriented library system as opposed to the directory-oriented library sys-
tem assumed by ObjecTime. In order to use Visual SourceSafe, an extra step is necessary to map the
directory name to a project name. This is done by creating a file named ObjecTimeMSVSSProject
and placing it in the .otlib directory (not the scripts subdirectory). This file should specify the
name of the project used within the Visual SourceSafe library for any classes/packages that are
p laced i n th is l i b ra ry . A n e x a m p l e o f t h i s f i l e i s p r o v id e d i n t h e d i r e c t o r y
%OBJECTIME_HOME%\bin\LibraryInterface\forMSVSS.

MSVSS Library Interface commands fail to execute with the message ’Cannot execute
MSVSS command ’

Possible cause: MSVSS binaries are not on the path.

Solution: Add MSVSS binaries directory to the path and restart ObjecTime Developer session.

MSVSS Library Interface commands fail to execute with a message ‘Cannot create project <Project
Name> ’

Possible cause: You are not configured as a SourceSafe user.

Solution: Each user has to be configured, before using SourceSafe, through SourceSafe Administra
Request from your MSVSS administrator to add you as a user and restart ObjecTime Developer sess

 MSVSS Library Interface commands fail to execute with the message ’Could not open
ObjecTimeMSVSSProject’

Possible cause: ObjecTimeMSVSSProject file is missing from the library directory.

Solution: Each MSVSS library directory should contain this file to point ObjecTime Developer to
which MSVSS project to use. Sample of the file is available in <OBJECTIME_HOME \bin\Library-
Interface\forMSVSS>. Copy the file into the library directory and, if desired, modify the default projec
name stored in it.
Getting Started Guide Troubleshooting 133

Troubleshooting Windows NT

un-

 a

s

lly

igi-

e
on-
e

lid,
card
en-

nse

se
y

his
DLL loading problem

On starting ObjecTime Developer on Windows NT, user sees the error message “ObjecTime enco
tered an error while attempting to load a dynamic link library called: EMERG.DLL.”

Possible cause: The user has overridden the environment variable OBJECTIME_HOME by defining
user variable in the system environment.

Solution: Installation automatically sets the OBJECTIME_HOME variable for the NT user. The user i
therefore advised not manually set the variable.

Mailing exception files

Windows Messaging must be installed before either exception files or comment files are automatica
mailed. The format supported is SMTP (internet format addresses).

Starting ObjecTime Developer

The image file found in the working directory cannot be renamed from ObjecTime5.2.otd. If it is
renamed, it cannot be started by double-clicking or by other means and it must be renamed to the or
nal name.

Troubleshooting License Manager

On Windows NT, the License Manager utilities fail to execute from the command prompt

License manager utilities must be invoked from the ObjecTime command prompt available from th
ObjecTime command group in the Start Menu. This is because the commands rely on certain envir
ment variables, which will not be set in a normal command console but will be set by the “ObjecTim
Developer Command Prompt”.

License manager fails when running on a stand-alone Windows NT machine

If the license keys do not work for a stand-alone system, and the logfile indicates that they are not va
then the IP address used to generate the keys may be different than the address for the network
installed on the machine. If this happens, make sure the IP address supplied to ObjecTime for key g
eration is the one for the installed network card.

Note: a stand-alone system must have an ethernet card installed in order to be able to run the lice
manager.

License file corruption

If licensing suddenly fails, and the logfile indicates that the license files are not valid, then the licen
files may have become corrupted. The solution is to reinstall the license key files with the activateKe
command. It is recommended that the original keys from ObjecTime always be retained in case t
happens.
134 Troubleshooting Getting Started Guide

Troubleshooting Windows NT

de
It is also recommended that the account used to install the license keys be the same one used to run the
license manager.

Dialup networking conflicts

If licensing on a stand-alone machine suddenly stops working, then this may be an interaction with dia-
lup networking. If dialup networking is activated, the dynamically assigned IP address may conflict
with the IP address of the network card. This can cause the license manager to think it is running on a
machine for which the license keys are not valid.

If this happens, dialup networking can be deactivated and the problem should be corrected. If it is
required that dialup networking be used on the same system as the one running the license manager,
then the system administrator should configure dialup networking to use a static IP address that is the
same as the one on the installed network card.

This problem can be avoided if the network card is installed before the dialup networking. If installation
is done in this order, the activation of dialup networking should not conflict with the IP address obtained
by the license manager from the network card.

Logfile creation failure

Failure to create a license manager logfile can be caused by the failure to specify a full path name and
file name. Relative paths will not work when specifying the logfile location and name.

Key activation failure

If the license manager key files are not created when the activateKey command is run, then make sure
that a full path name is specified for the license key directory. Also, make sure that the account from
which activateKey is being run has write permission for the license directory.

Inactive License Manager

Immediately following the installation of the license manager on Windows NT, the license manager will
not be running. The license manager will be started automatically the next time the machine supporting
the license manager is restarted. An alternative to restarting the machine is to start the license manager
manually. This can be done using the ElanLM control panel accessible from the control panel window.

The TZ environment variable should be set to a valid value. Otherwise when the time changes between
daylight savings time and standard time, the license files will become invalid and will have to be rein-
stalled using activateKey.

License Server Upgrades

If you need to replace the ObjecTime license server, or perform a disk replacement on the server, it will
be necessary to have new license keys generated by ObjecTime support. After the upgrade and Objec-
Time installation have been completed, please refer to “License Registration” on page 58 in this gui
for further information.
Getting Started Guide Troubleshooting 135

Troubleshooting Windows NT
ICON Display

If the ObjecTime icon which is displayed under Windows NT does match the documentation, you may
need to increase the number of colors which Windows NT uses to display the program icons. In order to
correct, you will need to bring up Display Properties from the Desktop of your NT workstation and
check the box as displayed in the following figure.
136 Troubleshooting Getting Started Guide

Appendix A

Getting Start
ADeveloper 5.2.1 Directory Contents
’s
-
tion

les/

l-
.

After installation of the main ObjecTime files has been completed, the directory structure should be as
follows. Please ensure that the <INSTALL> directory and all its files are readable, and not writable, by
all users of ObjecTime. The Developer 5.2.1 directory and its sub-directories contain all the individual
files that comprise the particular release. Some of the files and directories included here are:

<INSTALL>/Developer5.2.1 (this is the top level)

Help

This directory and its sub-directories contains the on-line Help, as well as an on-line version of the
HTML conversions of all ObjecTime manuals (complete with hypertext links).

Training

This directory and its sub-directories contain model updates for the Tutorial (RPL, Batch, C and C++
examples) together with those for additional user exercises.

specials

This directory will contain any special patch patches that may be issued for your installation.

image/ObjecTime5.2.otd

This is called the image or session file, and is a combination of all the code and data corresponding to
the executing ObjecTime program. This file will be copied by every user (through the use of the
create_objectime_dir shell script on UNIX, or through the Launcher under Windows NT) into the user
own private directory. All ObjecTime models will be stored automatically in this file whenever the ses
sion is saved. Note that you should also save each model Update, using the ObjecTime passiva
mechanism, for backup purposes.

bin

The bin directory holds the ObjecTime executables and various scripts. The three main executab
scr ip ts for runn ing ObjecTime are descr ibed below (Ob jecTimeVM.* , ob jec t ime,
create_objectime_dir). Additional scripts include copy_objectime_dir, otdebug, otprint,
objectime_viewer. Executables/scripts for licensing are: ObjecTimeKeyInfo, startLicenseManager, kil
L i censeManage r, k i l lUserL i cense , l i cense In fo , ac t i va teKey, serverUsageRepor t
ed Guide Developer 5.2.1 Directory Contents 137

n-
nt.

ruc-

n

 in

rs
$OBJECTIME_HOME/bin also contains subdirectories for each of the supported workstation plat-
forms.

bin/*/ObjecTimeVM.*

These are the modified ObjectWorks/Smalltalk virtual machines for various platforms. These files are
executed in conjunction with the ObjecTime5.2.otd file.

bin/*/objectime

This is a UNIX shell script which you use to invoke the ObjecTime toolset. It automatically selects the
appropriate virtual machine for execution depending on the type of workstation it is invoked from.

bin/create_objectime_dir

This is a UNIX shell script which is used to create a directory which contains an ObjecTime session file.
ObjecTime is always executed from this created directory.

Note: In Windows NT, the function of ‘bin/objectime’ and ‘bin/create_objectime_dir’ are combined
into a single file ‘bin/winnt4/ObjecTime5.2.1.exe’.

license

This directory contains various files containing encrypted information and is used by the License Ma
ager in order to ensure that ObjecTime is being executed according to the End-User License Agreeme

ModelExamples

Various examples illustrating the use of ObjecTime features are included here. Each update has inst
tions on its use within the Properties Editor of its Update Browser.

C++/SimulationRTS

This directory contains all of the source code, makefiles and other files required by the C++ Simulatio
Services Library.

RPL

This directory contains files used by the RPL browsers in ObjecTime.

fonts/*

This directory contains directories containing required text fonts.

linearForm

This directory contains yacc specifications for the ObjecTime linear form output used to store classes
a library or directory.

tools

This directory contains shared libraries which allow ObjecTime to integrate with source code debugge
on different target platforms.
138 Developer 5.2.1 Directory Contents Getting Started Guide

s
ng

ur
ntsetup

This directory contains the setup programs for installing ObjecTime on Windows NT.

Note: In Windows NT, the directory ‘ntsetup’ is used to perform a remote setup. By accessing thi
directory, which contains the file ‘setup.exe’, you can setup from a remote machine using an existi
installation.

Versions

This directory contains packaging and version information..

WebModelPublisher

This directory contains executables and scripts for the Web Model Publisher option if applied to yo
ObejcTime installation

Codegen

This directory contains executables and scripts relating to code generation utilities.
Getting Started Guide Developer 5.2.1 Directory Contents 139

140 Developer 5.2.1 Directory Contents Getting Started Guide

Appendix B

Getting Start
BKnown Limitations / Restrictions
ter
on
to
cre-

ry
al

en-

re-
e
as
Inconsistent compile state
It is possible, after some model and environment changes, to get into a state where the model compila-
tion is failing even though the model should compile. In such circumstances, the only solution is to
remove the generated files (C++/C, makefiles and dependency files) and start again. This problem
occurs because dependency (.dep) files contain the last-known set of depended files, and will only be
rewritten if one of these files (or the Inclusion Paths) changes. Consequently, the Makefile requires that
all of the last-known set of depended files already exist.

Known examples of where model/environment changes will cause compile problems which require
cleaning up generated files are the following:

• An external header file, or path to a header file, is renamed both externally and in the toolset, af
a compile has been performed. This will cause the compile to fail during the dependency calculati
phase of compilation. This is because dependency files referring to the old file/path will be used
calculate the new dependencies. Since the file no longer exists or has moved, the dependency
ation script, makedepend will not find the file and will fail.

• The loadbuild paths set in the update properties editor are changed to point at a different directo
after a compile has been performed. The generated dependency files will still point at the origin
loadbuild directory resulting in the wrong files being considered during model compilation.

To recover from the above situations, some of the generated files must be removed. To remove the g
erated files, the makefile in the update directory can be run by using the command “make
CLEAN_ALL.NOW” from the update directory. This will remove the LF, C++, C and build directo-
ries, their contents and subdirectories. A subsequent re-compile from the toolset will re-generate these
directories and their contents.

If VPATH is being used for build reuse, then the “Generate Changes Only” should be selected on the
compile. This will bring the toolset/environment into a state consistent with the build context and th
changes made in the toolset since the update was created from the context (or the project file w
merged into the toolset).
ed Guide Known Limitations / Restrictions 141

Supported Platforms

PC),

 with

-
r
uld

 a
on-

rs.
ists
he
s
p-
se
e

X
e

ts
ned

e-
his
],

 in
t

Supported Platforms
• The following platforms are supported for version 5.2.1 of the ObjecTime Toolset: AIX 4.2.1 (Power

HPUX 10.20, IRIX 6.2, Solaris 2.5.1, Solaris 2.6, SunOS 4.1.3 and Windows NT 4.0.

• ObjecTime does not guarantee correct operation if you use the -O2 or higher optimization setting
the gnu compiler on the AIX4 single and multi threaded platforms. (PR 1943)

• During compilation for pSOS platforms, a Warning: ‘pointer to function cast to pointer to non func-
tion’ appears in the Error Browser. This is a valid warning. The (void*) array _types[] is used in Tar
get Observability to allow us to print non-ASN.1 types that are fields of Sequences. It is void* rathe
than a function pointer because flags can be part of the array as well. This warned message sho
be disregarded by the user.

External Layer

• In situations using External Layer short circuit connections with the TargetRTS, you should use
SPP replication factor greater than the number of connections required. This is because of a race c
dition in which a new connection may be requested before the old one is removed. (PR1874)

X11
X server bugs on HP-UX 10.20 in ObjecTime Developer for C++ and C

• We have discovered a few graphic-related bugs when using ObjecTime on HP-UX 10.20 X serve
Some of the ObjecTime code has been rewritten to work around these X server bugs, but there ex
at least one minor graphic anomaly around which we cannot work. This problem happens when t
ObjecTime window is partially covered by another X server window. In this state, when window
and dialogs are closed on the main ObjecTime window, the background may not be redrawn pro
erly. A user workaround is to either collapse and then expand the main ObjecTime window to cau
it to redraw when this graphic corruption occurs, or just to not use windows overlapping with th
main ObjecTime window.

Note that this problem has been found to occur on various versions of the X server for the HP-U
10.20, and certainly occurs on the most recent version of the X server at the time of the ObjecTim
5.2.1 release.The bug is known to occur on the following patch level of the X server:

PHSS_11628 s700_800 10.20 X/Motif Runtime July97 Periodic patch

Windows NT

• You cannot delete files when they are currently open or being observed in the Explorer. This impac
how ObjecTime code generation and possibly other subsystems work. An error message is retur
if the update/C++ or update/C directory is open during code generation.

• When you start ObjecTime Developer with Target Observability enabled, there might be a slight d
lay before the socket connection between the Toolset and the Controller is established. During t
time, the 'Load' radio button in the Compile dialog box is disabled. If this happens, click [Cancel
wait a couple of seconds, and try again. (PR4181)

• The Toolset display sometimes doesn't get completely updated when dragging another window
front of an open Toolset window. Thin background colored vertical lines might be left on the Toolse
window. To refresh the window, maximize it and then restore its size. (PR3226)
142 Known Limitations / Restrictions Getting Started Guide

X11

the

s-

n-

a
 in

-

 merge.

for

p-

r-

p-
ng
f the
 two
 re-

tor-
he
• If the license manager is running locally on the system, the uninstall procedure does not remove
License Manager service from the system. The license manager can be disabled by the user through
the system control panel.

• When using online help each selection of a menu item will open up a new copy of the default brow
er. This is due to a limitation in the browser interface on the Windows NT platform.

• If you start a compilation of a larger C++ model and abandon the ObjecTime session, the Task Ma
ager reveals that the compiler continues to execute. (PR 3834)

 NEW as of 5.2: The following issues are new since ObjecTime Developer 5.2:

• Pathnames: ObjecTime Developer 5.2 can’t be installed in a directory whose pathname contains
space. It can handle include or library directory names that contain spaces if they are enclosed
double quotes. (PR3833)

• Cross Platform Access: In ObjecTime Developer 5.2, when using PVCS libraries for Windows NT/
Unix cross-platform development, you can access Unix PVCS libraries from the Windows NT en
vironment but you cannot access Windows NT PVCS libraries from the Unix environment.

• Windows NT Compilation Limits: For information on source compilation and linking limits, see
“Windows NT Compilation Command Line Limits” on page 132 of this guide.

Working Directory

Note: Do not store files or updates in the ObjecTime Working Directory. Set up another directory
where you can passivate your updates.

Merging

• Daemons placed on an unconnected transition point from the inside of a state, will be lost during a

SimulationRTS

• The 'size' method on subclass ports in the SimulationRTS always returns the replication factor
the base class, even if the replication factor is different for the subclass. (PR3410)

• When using Windows NT to recompile the SimulationRTS you must use the makent.bat script su
plied.

Class differences merging

To perform merging of changes from different versions of a class, it is recommended that the diffe
ences tool and CVM (class versions merge), accessible from the toolset menu, be used.

Some development environments support multi-way merging of classes. This facility is used to su
port simultaneous check out of a class. The results are then merged together. Multi-way mergi
takes into account what has been added and deleted, relative to a common ancestor version o
class, and constructs a class which contains all the appropriate changes. In some cases when
changes have been made in the same area, the tool signals a conflict which must be manually
solved. ClearCase’s ClearMerge is one such utility which performs multi-way merging.

Some customers have asked about the possibility of using these external merge facilities on the s
age linear form of ObjecTime models. ObjecTime cannot recommend this practice because of t
Getting Started Guide Known Limitations / Restrictions 143

X11
possible corruptions which may result. Due to the structure of the model files, they are not amenable
to textual merging, and such an attempt may result in a corrupted file. Corrupted files may not be
readable by the toolset or they may be readable but result in incorrect code being generated.

To perform merging of changes from different versions of a class, it is recommended that the differ-
ences tool and CVM (class versions merge), accessible from the toolset menu, be used.
144 Known Limitations / Restrictions Getting Started Guide

User interface

Time
Time. If
ll cause
ey will

ected,
e fixed
s and

, you

dow'

reens.
fore, if
y>

le

ain

re-

n-
ed

t types
 cause a
User interface
Shortcut Keys

• We have discovered minor problems when using ObjecTime's shortcut keys when running Objec
under various window managers. Some window managers use the same shortcut keys as Objec
a window manager has the same shortcut key as is used in ObjecTime, typing the shortcut key wi
the window manager to perform the action as defined by the window manager and the shortcut k
not be delivered to ObjecTime.

In short, if you discover ObjecTime shortcut keys that either do not work or do something unexp
then your window manager may be intercepting these shortcut keys. This problem can usually b
by modifying your window manager's shortcut key map. A few known problems with shortcut key
possible fixes are listed below.

• The default configuration for OpenWindows 3.3 has the shortcut key “Meta-W” defined to close
OpenWindows windows. When using ObjecTime, this default behavior will close (collapse) the
ObjecTime window. To disable this behavior and use Meta-W to close windows inside ObjecTime
can:

• open the OpenWindows properties windows (from the background menu)

• select category 'Keyboard'

• set 'Keyboard Menu Equivalents' to 'Application Only' instead of the default 'Application + Win

• The OpenWindows Virtual Window Manager (the window manager which simulates many virtual
screens on one monitor) uses the Meta-<arrow key> shortcut keys to allow switching between sc
ObjecTime also uses these shortcut keys in the RPL editor for navigating between nodes. There
using the OpenWindows virtual window manager, you will not be able to use the Meta-<arrow ke
shortcut keys in the RPL editor.

Batch Mode

• When merging in batch mode in ObjecTime Developer 5.2.1, incorrect syntax in the batch script fi
may cause system exceptions. For example, merge from /home/user1/tests/OpMan-
ager.actor endmerge would cause system exceptions to occur. The correct syntax for this
operation is:

merge from /home/user1/tests OpManager.actor endMerge

• When using the batch mode "selectOption" action, only language option names that do not cont
spaces can be specified.

Library

• SourceSafe Library Management reports that all ObjecTime class types are binary, even if they
ally are in text mode. (PR4174)

• Library System: When submitting classes to a library, do not cancel the submission by clicking [Ca
cel]. Doing so might result in a bad state, where the Toolset indicates that the class is still check
out, but the library system thinks it's not checked out. (PR3117)

• The library system does not currently prevent several users from submitting two classes of differen
(for example, actor class and data class), but with the same name, to the same library. This may
Getting Started Guide Known Limitations / Restrictions 145

User interface

up-

his is
ted
king
nter

e

 script
s.

shows

 should

his
or-
system error upon subsequent merging of one of these classes from the library. Hence users should
ensure the uniqueness of all class names submitted to the library.

• The RCS library mechanism allows a user to check out classes more than once through multiple
dates open in the same session. (PR 1124)

If a class is checked out more than once, unchecking it out will result in only the local update browser
being updated.

Note: SCCS libraries do not have this problem.

• Auto-mounted file systems can sometimes result a problem if there is no activity for a long time. T
specifically applicable when using auto-mounted libraries. Some systems remove the auto-moun
library after a certain period of inactivity. The workaround is to leave one shell with its current wor
directory in the library directory, that is, open a shell and cd to the library directory. The auto-mou
considers it in use and will not remove the file system.

Note: There is an incompatibility with the generic use of PVCS and SCCS libraries at the same time.
To use PVCS and SCCS together, use the library script interface to both and make sure that your
Path provides access to all PVCS tools and to the SCCS command. Place PVCS before SCCS in the
Path.

Emergency Passivation

• The kill -USR1 facility may not be able to invoke the emergency save operation in the event of th
X-Server crashing.

Memory Usage

• To ensure the most optimum use of memory, we recommend that users should periodically1 passivate
their updates and then re-activate them into a fresh ObjecTime session created via the
create_objectime_dir. This is especially needed if you have cancelled several activations of update

Platforms

SGI Machines

• The license server does not seem to recognize user IDs correctly, therefore running ‘licenseInfo’
user IDs for all license holders as ‘unknown’.

• You must use the pcf fonts with SGI machines.

AIX Machines

• A session saved on an AIX machine can not be used on any other platform. Updates or contexts
be used to transfer models from AIX machines to any other platform.

DOORS

• The elements in the ObjecTime design update should not contain any double quotation marks. T
causes an error when the exported linear form for the update is imported into a DOORS Design F
mal Module.

1. Weekly, or more often if memory consumption appears excessive.
146 Known Limitations / Restrictions Getting Started Guide

User interface

ult
.

t
).

tem.
hen

er.

to

la-

ll
g
ut-

kes
• DOORS Integration Pack 2.2 will be required for compatibility with ObjecTime Developer 5.2.1.

• DOORS Integration Pack 2.1 is required for compatibility with ObjecTime Developer 5.2.

• Starting with DOORS Integration Pack 2.1, a file in:

Unix: $DOORSHOME/bin/OT_Version

or on Windows NT: %DOORSHOME%\bin\OT_Version

OT_Version can be viewed to identify the version of the integration pack which is installed. If this
file is missing, the installed integration pack is of a previous version.

Default Parser/Scanner Generator

• In order to support building the linear form parser on multiple platforms, GNU Bison (version 1.25
and later) is now the default parser generator and flex (version 2.5.4 and later) is now the defa
scanner generator. Both of these tools are publicly available on a number of sites on the Internet

Help

• If you bring up help from within the Toolset, and your configured browser isn't running, the Toolse
will start the browser for you. But when you exit the Toolset, the browser is left running. (PR4185

• ObjecTime Developer passes several parameters to Netscape when starting the online help sys
Therefore, if a system administrator wishes to use a script to invoke the Netscape executable, t
these parameters must be passed to the executable.

• The link from the help index page always goes to the Table of Contents and skips the front matt
To review this material go to the document and select [Top].

Simulation and Target Compatibility

• When using recall/recallAll in OTD 5.2.1 do not use default arguments. Supply both arguments
be fully compatible with the Simulation RTS and the Target RTS.

Inclusion Paths

• Use absolute inclusion paths (as opposed to relative inclusion paths) as the results from using re
tive inclusion paths can be inconsistent and in some cases will simply not work.

Simulation Timing

There are known problems using invokes with C++ actors under simulation timing, which even an a
C++ model won't fix. This has to do with the single thread that C++ simulation actors run under, sharin
the same stack. Using invokes under simulation timing can often result in cases where the C++ exec
able stack is not unwound in the proper order. To be safe, only RPL actors should be used with invo
under simulation timing.
Getting Started Guide Known Limitations / Restrictions 147

User interface
148 Known Limitations / Restrictions Getting Started Guide

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

	ObjecTime Developer 5.2.1
	Getting Started Guide
	& Release Notice
	Product Release: ObjecTime Developer 5.2.1
	Document Version: 1.0
	Release Date: February 1999
	Part Number: OT-R521-DOC808
	ObjecTime Limited
	340 March Road
	Kanata, Ontario
	Canada K2K 2E4
	Printed in Canada
	Important Notice
	Copyright 1991-1999 ObjecTime Limited. All rights reserved.
	Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United St...
	ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ...
	The license management portion of this product is based on:
	Elan License Manager ” 1989-1999 Elan Computer Group, Inc. All rights reserved.
	ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX...
	ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and ...
	Restricted Rights Legend
	Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subp...
	For units of the Department of Defense (DoD), the license for this software is subject to the “Re...
	The contractor/manufacturer is: ObjecTime Limited
	340 March Road
	Kanata, Ontario
	Canada, K2K 2E4
	When acquired by the Government, commercial computer software and related documentation so legend...
	(A) Title to and ownership of the software and documentation shall remain with the Contractor.
	(B) User of the software and documentation shall be limited to the facility for which it is acqui...
	(C) The Government shall not provide or otherwise make available the software or documentation, o...
	(D) The Government shall have the right to use the computer software and documentation with the c...
	COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS
	(c) (1) The restricted computer software delivered under this contract may not be used, reproduce...
	(c)(2) The restricted computer software may be —
	(i) Used or copied for use in or with the computer or computers for which it was acquired, includ...
	(ii) Used or copied for use in or with backup computer if any computer for which it was acquired ...
	(iii) Reproduced for safekeeping (archives) or backup purposes;
	(iv) Modified, adapted, or combined with other computer software, provided that the modified, com...
	The following are trademarks or registered trademarks of their respective companies or organizati...
	VxWorks, Tornado / Wind River Systems Inc. pSOS,pRISM,pRISM+ / Integrated Systems Inc. QNX / QNX ...
	ObjecTime Support
	Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime Developer.
	ObjecTime Support
	ObjecTime Support Hotline: (613) 591-3400
	ObjecTime Support E-mail: support@objectime.com

	ObjecTime Sales
	Sales Hotline outside the Ottawa area: 1-800-567-TIME
	Sales Hotline within the Ottawa area: (613) 591-3831
	Sales Email: sales@objectime.com

	ObjecTime Limited
	ObjecTime Fax: (613) 591-3784

	Visit our Web Site: www.objectime.com
	Table of Contents
	Welcome to ObjecTime Developer 5.2.1 1

	Introduction 1
	What's new in Developer 5.2.1/5.2 2
	Year 2000 Compliance 5
	Packaging Changes 6
	Developer WebPublisher 6
	Developer TestScope 6
	Installation Keys 6
	ObjecTime Model Examples 8
	Documentation Errata: 11
	Model Upgrade/Conversion 17

	Model Conversion 17
	Adding Dependencies 17
	Environment and CUPs conversions 18
	Detail level code changes 19
	Removing PWD from Inclusion Paths 19
	Getting Started with Windows NT 21

	Network vs. Local Installation 21
	Supported Network Configurations 22
	Installation Requirements 22
	File System Requirements 22
	Local Workstation Requirements 23
	Installing Netscape Navigator 23
	Configuring for use with Internet Explorer 4.0 24
	Installing ObjecTime Developer 5.2.1 26
	Uninstalling Developer 5.2.1 33
	Setting Up a User Workstation 34
	Starting ObjecTime Developer 5.2.1 on Windows NT 36
	Using the ObjecTime Developer Launcher 37
	Getting Started with Unix 41

	Network vs. Local Installation 41
	Supported Network Configurations 42
	Installation Requirements 42
	Local Workstation Requirements 43
	Installing ObjecTime Developer 5.2.1 45
	Uninstalling ObjecTime Developer 5.2.1 47
	Setting Up a User Workstation 47
	Environment Variables 47
	Fonts 47
	Additional Settings 48
	Optional settings 48
	Starting ObjecTime Developer 5.2.1 50
	Supported Platforms 53

	Platforms No Longer Supported in
	Objectime Developer 5.2.1 54
	License Manager Operations 55

	Licensing Changes 55
	License Acquisition Suppression 55
	ObjecTime Developer Licensing 57
	ObjecTime Licenses 57
	License Registration 58
	License manager registration 58
	Obtaining the workstation machineId and IP address 59
	Invoking License Manager Executables 61
	Installation of Encrypted Keys 61
	License Manager 63
	Starting up the License Manager 63
	Setting the Time Zone Variable on Windows NT 64
	Automatically starting up the License Manager 65
	Bringing Down the License Manager 66
	License Manager Operation 66
	Querying the License Manager 67
	Documentation Roadmap 71

	ObjecTime Developer 5.2.1 Documentation Set 71
	User Guide 72
	C++ Language Guide 72
	C++ Target Guide 72
	C Language Guide 73
	RPL Language Guide 73
	Tutorial Guide 73
	Getting Started Guide & Release Notice 73
	Suggested Reading Path 73
	Online Reading 75
	Online Search Engine 75
	ClearCase Support Enhancements 79

	Introduction 79
	Definitions 79
	Summary 79
	Project Files 80
	The development process 82
	Toolset Enhancements 83
	Enabling Clearmake mode 83
	Save to Library 84
	Enhanced editing modes 84
	Project file activation 85
	External diff before marking solid delta 85
	Configuring your project to use Clearmake 86
	Configuring your view 86
	Configuring your environment 86
	Configuring the session image 87
	Configuring the model 87
	Using Clearmake for developers 88
	Creating a new object 88
	Making changes to project file 88
	Invoking Clearmake from the Toolset 88
	Invoking Clearmake from the command-line 89
	Enabling parallel builds with Clearmake 89
	Recompiling with Clearmake 90
	Which classes get compiled 90
	Swapping between Clearmake and non-Clearmake mode 91
	Zero-length .dep files 91
	Using Clearmake for loadbuilders 92
	Restrictions and Limitations 93
	No unspecified replication factors 93
	No ROOM compile time checking 93
	No N-way merge support 94
	Time-stamp driven make support 94
	No shared views 94
	View-extended path names 94
	Exclusions 94
	Known issues 95
	Changes in Developer 5.2.1/5.2 97

	ClearCase Support Enhancements 98
	ClearCase 98
	Packages 99
	CUPs Replacement 99
	Code Generation & Compilation Changes 100
	Make Utilities Supported 101
	Data class inclusions 103
	Deterministic Loadbuild 104
	Library Management 106
	Library capabilities enhancements 106
	ClearCase 107
	RCS 108
	Linear Form 108
	Problems Addressed in this Release 114
	General Information 115

	Toolset Memory Requirements 115
	Typical model memory usage 116
	Memory usage in operations 117
	Context vs. update memory usage 117
	Model file sizes 118
	Summary 118
	Microsoft Visual SourceSafe (MSVSS) 119
	Limits 120
	Special Notes and Reminders 120
	Perl Information 121
	Building a Model with VC50 Debugging Information 122
	Troubleshooting 123

	Troubleshooting Unix 123
	CD read errors 123
	Incorrect key mappings 123
	SCCS/RCS files missing 123
	Cannot allocate color 123
	Font problems 124
	Socket connections: 127
	Online Help 127
	License Server Upgrades 128
	Troubleshooting Windows NT 129
	Screen flicker 129
	Install/Uninstall Problems 129
	Online Help 131
	Compilation problems: 131
	MSVSS Library problems 133
	DLL loading problem 134
	Mailing exception files 134
	Starting ObjecTime Developer 134
	Troubleshooting License Manager 134
	ICON Display 136
	Developer 5.2.1 Directory Contents 137
	Known Limitations / Restrictions 141

	Inconsistent compile state 141
	Supported Platforms 142
	External Layer 142
	X11 142
	Windows NT 142
	Working Directory 143
	Merging 143
	Class differences merging 143
	User interface 145
	Batch Mode 145
	Library 145
	Emergency Passivation 146
	Memory Usage 146
	Platforms 146
	DOORS 146
	Default Parser/Scanner Generator 147
	Help 147
	Simulation and Target Compatibility 147
	Inclusion Paths 147
	Simulation Timing 147
	Welcome to ObjecTime Developer 5.2.1

	Introduction
	The ObjecTime Developer 5.2.1 release builds on the capabilities introduced in the previous relea...
	Developer WebPublisher and Developer TestScope, two optional, separately-purchased components are...
	Developer WebPublisher enables output of an ObjecTime Developer model in HTML format, so you can ...
	Developer TestScope extends ObjecTime Developer's design-automation capabilities to model, debug ...
	This chapter provides an introduction to ObjecTime Developer 5.2.1. The chapter’s five main areas...

	• What’s new in Developer 5.2.1/5.2
	• Year 2000 Compliance
	• Packaging changes introduced for 5.2
	• Model examples
	• Documentation Errata
	What's new in Developer 5.2.1/5.2
	The following highlights some of the new features available in the ObjecTime Developer 5.2.1 rele...
	• Project file enhancement: Project files now contain a list of packages, and only those classes ...
	• ClearCase Support Enhancements:
	• View synchronization: ClearCase users can now synchronize the toolset with ClearCase views allo...
	• Version Based or View Based project file activation: You now have the option of activating a pr...
	• Enhanced editing mode: When the "Allow edits on non-checked out objects" user preference is in ...
	• Save to library command: A new "save to library" command is added to the update menu. This allo...
	See “ClearCase Support Enhancements” on page�79 of the ObjecTime Developer 5.2.1 (Base) Getting S...
	• Microsoft Visual C++ 6.0: ObjecTime Developer 5.2.1 supports Microsoft Visual C++ 6.0.
	• General problem fixes: This release fixes problems reported in the 5.2 release. For full detail...
	• Developer WebPublisher: The Developer WebPublisher 5.2.1 optional product is available for use ...
	• Developer TestScope: The Developer TestScope 5.2.1 optional product is available for use with a...
	The following highlights some of the new features available in the ObjecTime Developer 5.2 release:

	• Code Generation and Compilation enhancements: Release 5.2 incorporates significant changes in t...
	The significant changes are:
	• The toolset has been partitioned into modeling and code generation components.
	• Timestamp driven make: Industry standard timestamp driven code generation and compilation (usin...
	• Loadbuild reuse: The reuse of loadbuild results is now supported for ObjecTime models using eit...
	• Inter-class dependencies: Dependencies between classes are now explicitly captured. This allows...
	• Multiple environment configurations: Maintain separate configurations for different environment...
	• Multi-targeting and simulation support: Switch between simulation and multiple target configura...
	• Cross platform support for ClearCase: You can now use ObjecTime Developer with ClearCase transp...
	• Configuration Management related enhancements: Several CM related enhancements are introduced i...
	• A new user preference is provided for checkout policy enforcement. When enabled, classes cannot...
	• A new user preference is provided for version sequencing enforcement. When enabled, the toolset...
	• Hierarchical Libraries. Users can navigate through nested libraries in the same way as navigati...
	• External scripts can be used to achieve custom version handling.
	• Branch compatible Library Browser displays branch tags & version extended pathnames.
	• User configurable global path to library scripts through the Library Configuration dialog. If a...
	• Multi-library ‘sync with library’ is supported. As well, a new content synchronization option i...
	• Features for multi-stream development:
	• The Differences Tool has been enhanced to detect the graphical information of objects, for exam...
	• A new Class Version Merge Tool, based on the Differences Tool, is now available. You can use it...
	• Project files: Project files provide an alternate specification for an update. These files prov...
	• Data class inclusions: You can now specify external inclusions on data classes. This is done vi...
	• Windows User Interface: Users now have the option of switching between the standard ObjecTime u...
	• Color preferences: Users can now customize their environment colors. Specifically, the workspac...
	• Storage of environment configurations: Environment configurations can now be stored separately ...
	• Large model toolset tuning: New user preferences are provided to enable better user control whe...
	• Online documentation search engine: Online documentation now provides a search engine to make i...
	• Customer Support website access: The Customer Support restricted access website is now a single...
	Year 2000 Compliance
	Complete Year 2000 testing has been performed by ObjecTime Limited, including correct handling of...
	Note: For further details on ObjecTime Limited’s Year 2000 Compliance Policy please visit:
	http://www.objectime.com/otl/about/y2k.html
	The license keys used by the License Manager are year 2000 compliant, with the exception of the L...
	It is recommended that you review the Year 2000 compliance policies and statements from the vendo...
	Packaging Changes
	The ObjecTime Developer product is available in 3 different product packages for the 5.2.1 produc...
	ObjecTime Developer: Includes the toolset and Simulation Services Library components and replaces...
	ObjecTime Developer for C++: Includes the base ObjecTime Developer product package and also inclu...
	ObjecTime Developer for C: Includes the base ObjecTime Developer product package and also include...
	Optionally, you may choose to upgrade any one of the packages with support for one, or more, of t...
	Developer WebPublisher

	Developer WebPublisher 5.2.1 allows you to publish models in HTML format for viewing with either ...
	Note: This product is available for purchase and can be used with all three of the ObjecTime Deve...
	Developer TestScope

	Developer TestScope extends ObjecTime Developer's design-automation capabilities to model debug a...
	Note: This product is available for purchase and can be used with all three of the ObjecTime Deve...
	Installation Keys

	An envelope is included with your ObjecTime shipment which contains the installation keys necessa...
	Note: The installation keys are distinct from the license keys. You are required to obtain licens...
	ObjecTime Model Examples
	Included with the ObjecTime Developer base product are a number of example models which the users...
	Figure 1 Main ObjecTime Menu

	When the Model Examples Directory is opened, the following directory browser will be displayed, a...
	Figure 2 Model Examples Directory

	From an ObjecTime session configured as the ObjecTime Windows NT User Interface Mode, the model e...
	Figure 3 Browser—Pull Down Menu.
	As with the classic mode, when the Model Examples Directory is opened, a directory browser will b...
	Figure 4 Directory Browser

	Documentation Errata:
	Note the following updates to the information contained in the ObjecTime Developer 5.2 User Guide...

	At the end of the Introduction, Chapter 1, page 14:
	In the Event of Being “Locked-Out” From ObjecTime...
	In certain rare conditions, you may find that ObjecTime does not respond to any user input. In th...
	Signaling the ObjecTimeVM process to save
	This method will send a special signal to the running ObjecTime program instructing it to save al...
	In Unix:
	1 Find the process ID of the running ObjecTime program. The program name is ObjecTimeVM. The foll...

	ps -aux | grep ObjecTimeVM
	2 Enter in the following command, where pid is the process ID determined in step 1:

	kill -USR1 pid
	In Windows NT:
	Use the otsave.exe utility for this purpose. Start the ObjecTime Developer 5.2.1 Command Prompt a...
	Normally, ObjecTime will begin the save operation within a minute or so.
	Using the ObjecTime Debug Mode to save
	The following steps will bring up a special command window which allows you to save the work in p...
	1 Select the following keys simultaneously: Control - Shift - C
	2 This will bring up the ObjecTime Debug Mode window. Now type save, and terminate by hitting the...

	If this works, ObjecTime will immediately begin the save operation.
	The emergency save operation described here can be time consuming depending on the number and siz...
	Using the ObjecTime Debug Mode to refresh the screen
	In rare cases, an ObjecTime session can get out of sync with the X-Window System in Unix. If your...
	1 Select the following keys simultaneously: Control - Shift - C
	2 This will bring up the ObjecTime Debug Mode window. Now type help, and terminate by hitting the...

	If this works, the ObjecTime window will start refreshing properly again. (PR 8398)

	In Model Environment Setup, Chapter 23, page 387 under Parallel Flags add the following section:
	Using an environment variable for Parallel Make flags.
	Since compilation performance depends on the developer's compilation environment (and not on the ...
	setenv OBJECTIME_PMAKE_FLAGS "-j 8"
	while a developer might be satisfied with:
	setenv OBJECTIME_PMAKE_FLAGS "-j 4"
	and a user who does not set this environment variable will build serially. (PR 8993)

	In Model Compilation and Execution, Chapter 22, page 371 after Guidelines/Hints add the following...
	Parallelizing Clearmake
	Parallel building is enabled for both code-generation and compilation on Unix platforms. (As of C...
	It is adviseable to put $(OBJECTIME_PMAKE_FLAGS) in the Parallel Flags field of your configuratio...
	The user must then assign some environment variables. For example:
	setenv OBJECTIME_PMAKE_FLAGS "-J 4"
	setenv CCASE_HOST_TYPE sun5
	Then, create a build host file (~/.bldhost.sun5) as described in the ClearCase Reference manual (...
	-idle 10%
	beef
	helium
	beef
	beef
	where the machine "beef" has significantly more processing power than the machine "helium".
	Clearmake can now be invoked from the command-line, or by the toolset, without arguments, and the...
	Using environment variables for Parallel Clearmake flags.
	Clearmake (for Unix) supports the -J option for parallel distributed building. In addition to the...
	CCASE_CONC
	or, its longer version
	CLEARCASE_BLD_CONC
	can be set by the user to define the concurrency level if the -J option is not specified within t...
	However, because of the way ClearCase buffers and merges parallel build stream output, the progre...

	In Batch Mode, Appendix D, page 516, under ‘Command file syntax’ - ‘Commands’ replace the list of...
	Commands
	<commands> ::= ! <command> ! *
	<command> ::=
	log <text_string> |
	storageFormat <format_options> |
	activate [<update_file_name>|<context_file_name> <update_name>] <actions>* |
	activateProject[<full_path> | <file_name> <optonial_versions> | <actions> |
	logSeconds <optional_comments> |
	logDateAndTime <optional_comments> |
	saveSessionWhenDone|
	abandonSessionWhenDone|
	clearSignalMapping|
	select <update_name> <actions>*
	(PR8260)

	In RTS Control Panel, Chapter 24, page 414, in the ‘Trace Configuration Dialog’ section replace t...
	States — when turned OFF no FSM states are in the trace. When turned ON included in the trace are...

	In The Generic Library Interface, Appendix C, page 510, under ‘objectime_diff’ replace the sectio...
	Description
	Used to determine if the linear form files differ or not. The ignore option (-i) ignores referenc...
	Input parameters (from toolset)
	-I <imageLF_File> #Required
	-O <outputLF_File> #Required
	-i #Optional

	In Differences and Class Version Merge Tool, Chapter 9, page 143 the following text should be del...
	- the word ‘semantic’ in the first sentence
	- the footnote (2) for Message Sequence Charts in the first sentence.
	The sentence should now read:
	The Differences and Class Version Merge tool allows you to determine the differences between two ...
	Model Upgrade/Conversion

	Model Conversion
	If you are moving from ObjecTime Developer 5.2 to 5.2.1, no model changes are required.
	Moving models forward, from pre-5.2 to 5.2.1, requires these models to be converted. Most convers...

	• Dependencies between model components need to be explicitly captured in the stored class (Linea...
	• Environment specifications on compilation unit packages (CUPs) must be preserved and converted ...
	• Detail level code must be changed to accommodate changes to the runtime system interface.
	Automatic model conversion will be supported to move from 5.0, 5.1, 5.1.1 and 5.2 to 5.2.1. Movin...
	Note: For 5.0 this includes universal patches 001 through to 088, for 5.1: universal patches 001 ...
	Adding Dependencies

	Before a pre-5.2 model can be compiled in 5.2.1, the inter-class dependencies must be added. With...
	Note: Model dependencies calculation can take several minutes on a large model.
	When a pre-5.2 model is brought into the 5.2.1 toolset, the user will be presented with a list of...
	Model dependency calculation may not capture all needed dependencies and the user may have to man...
	Note: The new code generation feature has introduced a more disciplined approach to including hea...
	When bringing pre-5.2 model components, classes and packages, forward into 5.2.1, the dependency ...
	Environment and CUPs conversions

	Conversion of CUPs will be automatically initiated when a CUP or an update containing a CUP is br...
	In order for a package level confide to take effect, within an update, it must be associated with...
	If a package has only one or a few relevant configurations language options in pre-5.2, which are...

	• a large number of active configurations at various times,
	• or a large number of packages,
	• then performing the association between package and update level configurations would be very t...
	In this case, a special patch can be used to help automate the process.
	To automatically associate a large number of packages or package configurations with update level...
	1 Merge the CUPs into the toolset.
	2 Create a set of update-level configurations with the same names as the package-level configurat...
	3 Apply the patch CUPConfigurationAssociation.patch which will go over all the packages in the up...

	This patch, CUPConfigurationAssociation.patch, is located in $OBJECTIME_HOME/specials, can be app...
	After the model has been converted by activating the patch, the update should be passivate and th...
	Detail level code changes
	Some changes in pre-5.2 detail level code may be required in order to get the model being convert...

	• In pre-5.2 versions of the toolset, actor detailed-level code had access to all the signals def...
	• Data classes do not have automatic access to any signals and must have explicit dependencies ad...
	• In previous releases, if a user code segment did not terminate in a semi-colon, one was automat...
	After model conversion has been completed, it is advisable that all update level inclusions are r...
	Removing PWD from Inclusion Paths

	"$(PWD)" can probably be removed from your update's Inclusion Paths, if it exists. This inclusion...
	Furthermore, Clearmake users will want to remove references to "$(PWD)" from their Inclusion Path...
	Getting Started with Windows NT

	This chapter describes how to install, configure and begin to use ObjecTime Developer 5.2.1 with ...
	The main steps involved in getting started with Windows NT are described in the following sections:

	• Installing a Browser (“Installing Netscape Navigator” on page�23 or “Configuring for use with I...
	• InstallingObjecTime Developer 5.2.1 (“Installing ObjecTime Developer 5.2.1” on page�26) covers ...
	• Setting up a User Workstation (“Setting Up a User Workstation” on page�34) describes how to set...
	• Starting ObjecTime Developer 5.2.1 (“Starting ObjecTime Developer 5.2.1 on Windows NT” on page�...
	Network vs. Local Installation

	Two scenarios are available when installing ObjecTime Developer 5.2.1 on Windows NT. You can inst...
	Each scenario has advantages: Network installations can be shared between multiple users at a sin...
	During the setup process you will be asked to select a destination directory for the Developer fi...
	To create a shared network installation, select a destination directory on a shared network disk....
	Supported Network Configurations
	ObjecTime Developer 5.2.1 can either run locally on a Windows NT workstation, or through a Window...

	• The network must use Microsoft networking, with TCP/IP enabled.
	Mixed Unix and Windows NT Installation
	ObjecTime Developer 5.2.1 can run on a Windows NT workstation connected to a Unix file server und...

	• Network file system must be NFS.
	• Supported NFS clients are Chameleon and Hummingbird. Make sure to install the clients properly:
	• Support for mixed case file names must be enabled.
	• Consult the NFS client documentation regarding soft links. Some implementations can’t handle th...
	• The path to the Setup program must conform to the 8.3 DOS file naming convention, and the path ...
	Installation Requirements

	• Windows NT – Windows NT 4.0 (Workstation or Server) is required to install ObjecTime Developer ...
	• CD-ROM drive – A CD-ROM drive is required to install Developer 5.2.1 from CD. If a CD-ROM drive...
	• Administrators Group Membership – Membership in the Administrators group is required to set up ...
	• 50 MB to 64 MB free disk space – A minimum ObjecTime Install requires 50 MB of free disk space,...
	• Printer – The default printer requirement is, at minimum, a Windows NT compatible printer. The ...
	File System Requirements

	• File names – The code generation process in ObjecTime Developer makes use of long file names wi...
	Note: Directory names are subject to the same limitations as file names.
	• Native file systems on Windows NT 4.0: Developer 5.2.1 supports both FAT and NTFS file systems.
	• NFS – Developer 5.2.1 supports the use of NFS file systems for network installations and Unix c...
	Note that while a Windows NT workstation can be set up to use a Developer installation on a NFS d...
	• UNC path names – Developer 5.2.1 does not support UNC path names (that is, Network Neighborhood...
	Local Workstation Requirements

	• Windows NT 4.0 – Windows NT 4.0 (Workstation or Server) or later is required to run ObjecTime D...
	• Pentium processor – A Pentium Pro or Pentium II processor is recommended for improved performance.
	• 64 MB main memory minimum – For large models or build operations, 128 MB or greater is recommen...
	• Toolset Memory Requirements – “Toolset Memory Requirements” on page�115 describes the memory re...
	• 12 MB disk space per working directory minimum – Each user may have one or more Developer 5.2.1...
	• 256 color graphics adapter – A high resolution graphics adapter with support for more than 256 ...
	Installing Netscape Navigator

	Online help and documentation for Developer 5.2.1 is provided in HTML format. In order for the he...
	Note: Netscape Navigator is provided with the release as part of the on-line help system. You are...
	The following procedure describes how to install Netscape Navigator 4.04 for Windows NT.
	1 If necessary, load the ObjecTime Developer 5.2.1 CD into the CD-ROM drive.

	Note: If the system is configured with the autorun feature enabled, the ObjecTime Developer 5.2.1...
	2 Locate the Netscape Navigator Setup program

	Netscape Navigator software is provided on the ObjecTime Developer 5.2.1 CD in the Netscape\Windo...
	Note: If the system is configured with the autorun feature enabled, double-clicking the icon for ...
	3 Read the Netscape Readme

	Please refer to the Netscape Readme.txt file for installation notes and for any platform specific...
	4 Run Netscape Navigator Setup

	Double-click the Setup.exe icon to run Setup. (Note that the .exe file name extension may not be ...
	Configuring for use with Internet Explorer 4.0

	The ObjecTime Help system is configured by default to use Netscape when opening the HTML help pag...
	ObjecTime's method to support other browsers makes use of a batch file which is passed parameters...
	There are two methods for changing the help browser behavior in ObjecTime. One is to set the OBJE...
	Example 1:
	Set the OBJECTIME_VIEWER environment variable to ‘iexplore’ in the ‘System Properties’ window und...
	Example 2:
	Modify the ObjecTimeStartHelp.bat batch file by changing ‘netscape’ to read ‘iexplore’.
	Installing ObjecTime Developer 5.2.1
	Note: If you have a previous release of ObjecTime Developer installed, you can:
	• either uninstall it prior to installing ObjecTime Developer 5.2.1
	• or, install it after installing ObjecTime Developer 5.2.1
	following the procedure outlined in “Uninstall of “old” ObjecTime Release causes run failure of 5...
	A wizard-style setup program is provided to facilitate installing ObjecTime Developer 5.2.1 on Wi...

	• “User Setup” will configure a user’s workstation to run Developer from an existing central netw...
	• “ObjecTime Install” will install the Developer files to either a local workstation disk or a sh...
	1 Load the ObjecTime Developer 5.2.1 CD into the CD-ROM drive

	Note: If the system is configured with the autorun feature enabled, the setup program will run au...
	2 Run Setup

	Use the Windows Explorer to open a window displaying the contents of the CD-ROM drive. For exampl...
	If Nestcape Navigator is not installed on your system prior to installation, the following warnin...
	3 Identification Information

	You must accept the license agreement to proceed. If you do not agree with the terms of the licen...
	4 Select “ObjecTime Install”

	After reviewing the license agreement and entering identification information, you will be prompt...
	5 Enter Installation Keys

	Locate the Installation Key letter which you had received with your ObjecTime software media ship...
	6 Select the Set-Up Type

	The default set-up type of Typical should always be used unless you are working with ObjecTime Su...
	7 Product Package Confirmation

	The product packages which will be installed are displayed and you must acknowledge these by clic...
	8 Select a Destination Directory

	The destination directory is the file system location where the main Developer files are copied. ...
	9 Select a Program Folder

	A program folder must be identified to which the ObjecTime icons are added. The default is ObjecT...
	10 Setup Options

	After entering the Program Folder name you will be asked to select the initial product setup opti...
	License Manager: The location of the license manager must be specified in order for ObjecTime Dev...
	If you select to “Install the License Manager on the local workstation”, you must follow the proc...
	Note: If you choose to run the license manager locally, set the TZ (Time Zone) variable. Install ...
	If you select to “Use a License Manager installed on a remote workstation”, you must specify the ...
	E-mail for Exceptions File: If the toolset encounters a problem and an exception is generated, an...
	External Editor: ObjecTime Developer supports the use of a user-specified text editor for editing...
	11 Confirm Set-Up

	You will be asked to confirm the installation parameters at which point the installation process ...
	Review the setup options carefully and click “Back” to make any modifications. Click “Next” to be...
	After installation is completed, you will be prompted to read the Readme file, which contains las...
	12 Restart System

	It is strongly recommended that you restart the system to complete the installation.
	Obtain License Keys.

	When upgrading from 5.2 to 5.2.1:
	• after installing the software, activate your 5.2 License Keys.
	For a new 5.2.1 license or when upgrading from pre-5.2:
	• after installing the software, obtain License Keys from ObjecTime Support to run the software. ...
	Uninstalling Developer 5.2.1

	ObjecTime Developer 5.2.1 may be uninstalled by selecting the “Uninstall ObjecTime Developer 5.2....
	If the Uninstall icon is not present, open the “Control Panel,” double-click on “Add/Remove Progr...
	The uninstall utility does not remove ObjecTime fonts that are installed by Setup. To manually re...
	If the license manager is running locally on the system, the uninstall procedure does not remove ...
	To remove the license manager manually, remove the files objectime_elmd.exe and objectime_elmd.cp...
	Note: On systems where ObjecTime Developer has been installed incrementally, the uninstall utilit...
	Setting Up a User Workstation

	The following procedure describes how to set up a user workstation so that it can run ObjecTime D...
	To complete this procedure, ObjecTime Developer must already be installed on another workstation ...
	Note: The network location where the central ObjecTime Developer installation resides must be map...
	To map a network drive, right-click on “My Computer” and select “Map Network Drive.” Select an un...
	The following steps for setting up a user workstation as a client of a network server is similar ...
	1 Run Setup

	Use the Windows Explorer to open a window displaying the contents of the NTSetup subdirectory of ...
	Note: You can also perform a “User Setup” by running ObjecTime Developer Setup from the Developer...
	2 Select “User Setup”

	After reviewing the license agreement and entering identification information (see items 1 throug...
	3 Specify the ObjecTime Home Directory

	The ObjecTime home directory is the location where the existing network installation of ObjecTime...
	4 Follow steps 9 through 12 as in the standard ObjecTime Install scenario.

	Starting ObjecTime Developer 5.2.1 on Windows NT
	Installing Developer 5.2.1 on a Windows NT workstation will create an “ObjecTime Developer 5.2.1”...
	This folder is added to the “Programs” entry of the system’s “Start” menu and the following icons...

	• ObjecTime Developer starts the ObjecTime Launcher program. The Launcher is used to create worki...
	• ObjecTime Developer Command Prompt starts a Windows NT command prompt window configured with th...
	• Readme displays release notes containing important up-to-date information not included in the p...
	• Online Documentation displays the on-line version of the printed documentation.
	• Uninstall ObjecTime Developer 5.2.1 will uninstall Developer from the workstation. See “Uninsta...
	Note: You can start an ObjecTime Developer toolset session for a specific working directory by do...
	Using the ObjecTime Developer Launcher

	ObjecTime Developer sessions are saved in “working directories.” Working directories contain the ...
	Although it is possible for a user to have just one working directory, it is usually more conveni...
	The ObjecTime Developer Launcher provides an interface for creating new working directories and f...

	• Working Directories: This list box provides access to the most recently used working directorie...
	• New: This button allows you to create new working directories. A dialog appears where you can s...
	Note: The file name limitations described on page�22 also apply to Developer 5.2.1 working direct...
	• Browse: This button allows you to add an existing Developer 5.2.1 working directory to the Work...
	Note: You cannot specify an arbitrary existing directory as an ObjecTime Developer working direct...
	Startup Options
	The launcher allows you to specify a number of startup options when starting a toolset session.

	• Capture Output to Window: If selected, console output from the Developer toolset is displayed i...
	• Capture Output to File: If selected with a valid file name specified, console output from the D...
	• Enable Batch Mode: If selected, the launcher will start the toolset in batch mode. Specify the ...
	• Enable Target Observability: If selected, the launcher will start a RTS controller before loadi...
	Command Line Parameters
	The ObjecTime Developer Launcher executable is called ObjecTime5.2.exe, and is located in the bin...

	C:\ObjecTime\Developer5.2.1\bin\winnt4\ObjecTime5.2.exe
	where C: is the drive where Windows NT is installed.
	The launcher can be started from the ObjecTime Developer Command Prompt, or from a shortcut icon,...

	• <workingDir>\ObjecTime5.2.otd allows you to specify a working directory to automatically load. ...
	• -verbose is equivalent to selecting the “Capture Output to Window” option.
	• -verbose=<filename> is equivalent to selecting the “Capture Output to File” option.
	• -file=<filename> is equivalent to selecting the “Enable Batch Mode” option.
	• -control is equivalent to selecting the “Enable Target Observability” option.
	• -console is equivalent to starting an “ObjecTime Developer Command Prompt.”
	Specifying Additional Environment Variables
	The Windows NT Developer toolset recognizes the same environment variables as the Unix toolset. Y...

	set USER_MAKE_FLAGS= -j4 ObjecTime5.2.exe C:\OT52\ObjecTime5.2.otd -control
	Running a batch file containing the above commands from an ObjecTime Developer Command Prompt wil...
	Getting Started with Unix

	The procedure for installing ObjecTime Developer 5.2.1 in Unix is described in the following sect...
	For environments where there is more than one user of ObjecTime Developer 5.2.1, we strongly reco...
	The main steps involved in getting started with UNIX are described in the following sections:

	• Installing Netscape Navigator (“Installing Netscape Navigator” on page�43) covers how to set up...
	• Installing ObjecTime Developer 5.2.1 (“Installing ObjecTime Developer 5.2.1” on page�45) covers...
	• Setting up a User Workstation (“Setting Up a User Workstation” on page�47) describes how to set...
	• Starting ObjecTime Developer 5.2.1 (“Starting ObjecTime Developer 5.2.1” on page�50) describes ...
	Network vs. Local Installation

	Two scenarios are available when installing ObjecTime Developer 5.2.1 on Unix. You can install Ob...
	Each scenario has advantages: Network installations can be shared between multiple users at a sin...
	During the setup process you will be asked to select a destination directory for the Developer fi...
	To create a shared network installation, select a destination directory on a shared network disk....
	Supported Network Configurations
	Pure Unix Installation
	ObjecTime Developer 5.2.1 either running locally on a Unix workstation, or using a Unix file serv...

	• File system must be NFS.
	• Network must use TCP/IP.
	Mixed Unix and WindowsNT Installation
	ObjecTime Developer 5.2.1 can run on a Windows NT workstation connected to a Unix file server und...

	• Network File system must be NFS.
	• Local file system must be NTFS. FAT is not supported.
	• Supported NFS clients are Chameleon and Hummingbird. Make sure to install the clients properly:
	• Support for mixed case file names must be enabled.
	• Consult the NFS client documentation regarding soft links. Some implementations can’t handle th...
	• The path to the Setup program must conform to the 8.3 DOS file naming convention, and the path ...
	Installation Requirements

	• CD-ROM drive – A CD-ROM drive is required to install Developer 5.2.1 from CD. If a CD-ROM drive...
	• Administrators Group Membership – system administrator (root or super-user) privileges are requ...
	• 50 MB to 170 MB free disk space – A minimum ObjecTime Install requires 50 MB of free disk space...
	• Printer – The default printer requirement is, at minimum, a Unix compatible printer. The recomm...
	Local Workstation Requirements

	• 64 MB main memory minimum – For large models or build operations, 128 MB or greater is recommen...
	• Toolset Memory Requirements – “Toolset Memory Requirements” on page�115 describes the memory re...
	• 12 MB disk space per working directory minimum – Each user may have one or more Developer 5.2.1...
	• 256 color graphics adapter – A high resolution graphics adapter with support for at least 256 c...
	Installing Netscape Navigator

	Online help and documentation for Developer 5.2.1 is provided in HTML format. In order for the he...
	Note: Netscape Navigator is provided with the release as part of the online help system. You are ...
	Unix versions of Netscape Navigator 4.04 are located in the netscape/unix directory of the Develo...

	• hpux_10 contains binaries for HPUX 10.20
	• irix_62 contains binaries for IRIX 6.2
	• sunos413 contains binaries for SunOS 4.1.3
	• sunos_551 contains binaries for Solaris 2.5 and higher
	• aix_4 contains binaries for AIX 4.2.1
	Consult the file netscape/unix/_readme.txt included on the Developer 5.2.1 CD prior to installing...
	1 Create a directory where Netscape Navigator will be installed.

	mkdir /appl/netscape
	2 Change directory to the created directory.

	chdir /appl/netscape
	3 Unpack the Netscape tar file for your toolset platform from the Developer 5.2.1 CD. Note: The f...

	Solaris: In this example, the Developer 5.2.1 CD is mounted at /cdrom/objectime. Solaris usually ...
	tar -xvf /cdrom/objectime/netscape/unix/sunos_551 /sparc/netscape.tar
	HP-UX: In this example, the Developer 5.2.1 CD is mounted at /cdrom. HP-UX usually makes filename...
	tar xvf '/cdrom/NETSCAPE/UNIX/HPUX_10/NETSCAPE.TAR;1'
	4 Review the Netscape README.install file for any platform specific installation instructions.
	5 Add the installed Netscape executable to your path. This should be added to your shell initiali...

	C shell: setenv PATH /appl/netscape:$PATH
	Installing ObjecTime Developer 5.2.1
	1 Place the Developer 5.2.1 CD in the CD-ROM drive.
	2 Mount the CD-ROM device.

	You are usually required to be a system administrator (root or super-user) to be able to do this....
	AIX: mount /CDROM
	(or put entry for /CDROM in /etc/filesystems)
	HP-UX: mount -rt cdfs /dev/dsk/c201d5l1 /cdrom
	IRIX: mount /CDROM
	(or put entry for /CDROM in /etc/fstab)
	Solaris: mount -rF hsfs /dev/sr1 /cdrom
	SunOS: mount -rt hsfs /dev/sr1 /cdrom
	where /dev/sr1 is the CD-ROM device.
	3 From a shell window, change directory to the mounted CD-ROM device.

	For example:
	cd /cdrom
	4 Run the setup script.

	./setup.sh
	On HP-UX, it may be necessary to use the following command (including the quotes):
	sh './SETUP.SH;1'
	5 Enter an Installation Key.

	Locate the Installation Key letter which you had received with your ObjecTime software media ship...
	“Enter an installation key:” enter-urkey-frmth-shpng-envlp<ENTER>
	6 Review and accept the term of the license agreement.

	The license agreement will be displayed and you will be prompted to accept or reject the license ...
	“Enter Y<ENTER> to Accept, R<ENTER> to Read again, or Q<ENTER> to Quit:” Y<ENTER>
	7 Specify the installation type.

	The default set-up type of Typical should always be used unless you are working with ObjecTime Su...
	“Press T<ENTER> for Typicall Installation,
	or C<ENTER> for Custom Installation:” T<ENTER>
	8 Specify the platforms to be supported by the ObjecTime installation.

	Select all platforms to be supported by this installation. The default is no and in the example, ...
	“Which platforms would you like to be supported?
	HP10 Y/N [n]?
	IRIX6 Y/N [n]?
	SUN4 Y/N [n]?
	SUN5 Y/N [n]? y<ENTER>
	NT4 Y/N [n]?
	AIX4 Y/N [n]?
	Platforms to be supported:
	SUN5”
	9 Specify the installation directory.

	The script will prompt you for a directory into which it will copy the Developer 5.2.1 files. The...
	“Enter absolute installation directory path:”
	/testing<ENTER>
	10 Confirm the ObjecTime Developer 5.2.1 Packages to Install.

	You will be asked to confirm the packages and installation directory.
	The following 6 packages are selected for installation in the
	directory ‘/testing’:
	(I: Package already installed if ‘Y’)
	Package description Size in KB I
	==
	ObjecTime Platform Independent Code 14804 N
	SimulationRTS Common Code 1179 N
	Solaris SimulationRTS libraries 2927 N
	Generic On-line Documentation and HELP 18968 N
	C++ On-line Documentation and HELP 2514 N
	Solaris Toolset Libraries 5612 N
	==
	Selected size: 46004 kB
	Free disk space: 1218000 kB
	Type M<ENTER> to Modify installation directory path, or
	Y<ENTER> to Begin installing the selected packages:” Y<ENTER>
	11 Obtain License Keys.

	When upgrading from 5.2 to 5.2.1:
	• after installing the software, activate your 5.2 License Keys.
	For a new 5.2.1 license or when upgrading from pre-5.2:
	• after installing the software, obtain License Keys from ObjecTime Support to run the software. ...
	Uninstalling ObjecTime Developer 5.2.1
	To uninstall ObjecTime Developer use the following procedure:
	1 Remove the installation directory and all of its contents.
	2 Save any user data files in another location before removing the installation directory.
	3 If you are upgrading to ObjecTime Developer 5.2.1, be sure to follow the procedure described in...

	Setting Up a User Workstation
	Environment Variables

	ObjecTime Developer requires a number of environment variables to be set. Set the environment var...
	These lines can be added to your shell initialization file, so that they are available every time...
	Bourne shell (sh or ksh):
	OBJECTIME_HOME=/disk/apps/ObjecTime/Developer5.2.1
	export OBJECTIME_HOME
	OBJECTIME_LICENSE_SERVER=machine1
	export OBJECTIME_LICENSE_SERVER
	PATH=$PATH:$OBJECTIME_HOME/bin
	export PATH
	C shell (csh):
	setenv OBJECTIME_HOME /disk/apps/ObjecTime/Developer5.2.1
	setenv OBJECTIME_LICENSE_SERVER machine1
	set path=($path $OBJECTIME_HOME/bin)
	Either logout and then login again, or perform the rest of the upgrade from a new command shell.
	Fonts

	Note: You should contact your system administrator to determine how to configure the font set-up ...
	Set the X-windows Font path to point to the new $OBJECTIME_HOME. The following command should be ...
	xset +fp $OBJECTIME_HOME/fonts/<machine-type>
	where <machine-type> is the type of workstation you are executing on (or if executing ObjecTime r...
	Note: The ObjecTime fonts will not be set properly, if the user is on an X-Terminal which obtains...
	You may need to add the OT fonts path with:

	xset +fp /disk6/Release5.2.1/Developer5.2.1/fonts/sun
	xset fp rehash
	Fonts are universal resources and these commands can be typed in any shell on your machine.
	Additional Settings

	ObjecTime can also be run in batch mode. Please consult the chapter on Batch Mode ObjecTime in th...
	Optional settings

	The following optional configuration settings may also be made:
	For users that wish to use an external editor to edit their RPL, C or C++ code segments, the envi...
	For example under OpenWindows you could set it as follows to start up an emacs editor:
	setenv OBJECTIME_EDITOR "shelltool emacs"
	Or to start up vi under the X Window System, use the following for SunOS:
	setenv OBJECTIME_EDITOR "xterm -e /usr/ucb/vi"
	Or for Solaris, HP or IBM use:
	setenv OBJECTIME_EDITOR "xterm -e /usr/bin/vi"
	The user may also wish to select a default printer at this time. The environment variables PRINTE...
	setenv PRINTER ps3 (for SUN)
	setenv LPDEST ps3 (for HP)
	If you are using a color terminal, you may wish to have the FrameMaker documentation output produ...
	maker.colorDocs: True
	maker.colorImages: True
	You will then want to reinitialize your X Window System resources as follows:
	xrdb -load .xrdb
	If you are running ObjecTime from an NCD X-Terminal, then you may wish to add the following key m...
	xmodmap -e “keysym Alt_L = Meta_L Alt_L”
	xmodmap -e “keysym Alt_R = Meta_L Alt_R”
	When using HPView on X-Terminals, you must change the keyboard focus policy to provide automatic ...
	Note: You will have to add the two xmodmap functions relating to Alt_L and Alt_R to your XWindow ...
	For the HP7XX series workstation, in order for the short-cut keys to work, the following xmodmap ...
	xmodmap -e “remove mod1 = Mode_switch”
	In order to use the shift-Tab to allow the user to go to a previous node in the RPL editor, execu...
	xmodmap -e “keycode 63 = Tab”
	The user environment variable OBJECTIME_LICENSE_HOLDTIME can be set to the number of seconds for ...
	Starting ObjecTime Developer 5.2.1
	These operations are normally carried out requiring that you use your userid.
	Create a new working directory for ObjecTime5.2.1:
	create_objectime_dir <new-dir-name>
	where <new-dir-name> is the name of the new local ObjecTime directory to be created. The new rele...
	Change the current directory to the new ObjecTime directory. Start up ObjecTime by typing the fol...
	1 cd <new_dir_name>
	2 objectime&.

	Activate the previous designs, if any, by dragging your updates from the appropriate Directory Br...
	After activating all pre-5.2.1 designs, each user should passivate them again, so that they are s...
	If no problems occur, you may delete the older ObjecTime user directory after a suitable period o...
	Delete the main directory for the previous release once all users are up and running successfully...
	Startup Options

	The ObjecTime script may take a number of different options.
	Either of the following two options can be used to change the display variable
	• DISPLAY=<displayName>
	• -display <displayName>
	The following three invokations are equivalent:
	1) objectime -display xterm1:0
	2) objectime DISPLAY=xterm1:0
	3) setenv DISPLAY xterm1:0 ; objectime
	The following options control how "verbose" the objectime script is:
	• -q
	• -quiet
	• -v
	• -verbose
	The final command line option is:
	• -control
	This option controls whether or not the Target Observability controller is started automatically.
	objectime -control (start controller automatically)
	objectime (do not start controller)
	Supported Platforms

	The following table shows the supported platforms for ObjecTime Developer 5.2.1.
	5.2.1 Host Platforms
	Toolset Host
	Simulation Services Library Name
	AIX 4.2.1 (PowerPC)
	AIX4.ppc-CSet-3.1.4
	AIX4.ppc-gnu-2.8.1
	HPUX 10.20
	HPUX10.hppa-gnu-2.8.1
	HPUX10.hppa-HPC++-10.11
	IRIX 6.2
	IRIX6.r4400-gnu-2.8.1
	IRIX6.r4400-ProDev-7.2
	Solaris 2.5.1
	Solaris 2.6
	SUN5.sparc-gnu-2.8.1
	SUN5.sparc-SunC++-4.0.1
	SUN5.sparc-SunC++-4.1
	SUN5.sparc-SunC++-4.2
	SUN5.sparc-Green-1.8.8
	Sun OS 4.1.3
	SUN4.sparc-gnu-2.8.1
	SUN4.sparc-SunC++-4.0.1
	SUN4.sparc-Green-1.8.8
	WindowsNT 4.0
	NT40.x86-VisualC++-5.0
	NT40.x86-VisualC++-6.0
	Platforms No Longer Supported in Objectime Developer 5.2.1

	The following are host platforms or compilers that were supported in ObjecTime Developer 5.2, but...
	Toolset Host
	Simulation Services Library Name
	WindowsNT 4.0
	NT40.x86-VisualC++-4.2
	License Manager Operations

	Licensing Changes
	On startup the toolset will acquire licenses for the toolset and for all available code generator...
	The new licenses used by ObjecTime Developer 5.2.1 are:

	• 9004 Total number of 5.2.1 toolset sessions. One license is allocated for each active toolset.
	• 9030 Total code generation licenses
	• 9031 C++ code generation licenses.
	• 9032 C code generation licenses
	• 9033 Simulation code generation licenses. This enables code generation for the SimRTS for both ...
	License Acquisition Suppression

	Whenever started, all variants of ObjecTime Developer (Basic, C, or C++) acquire a license token ...
	For example, if you have three licenses for ObjecTime Developer 5.2.1 (OTD Base) and seven for Ob...
	There are two solutions to this situation: Using the license manager functionality to restrict th...
	Using the License Manager

	The first method is to use the capabilities of the License Manager to restrict the users/workstat...
	# Reserve C++ licenses (9031) for the group
	9031:cppusers:user1,user2,user3,user4,user5,user6,user7:7:30
	or:
	# Exclude group from using C (9032) licenses
	9032:basicusers:usera,userb,userc:EXCLUDE:0
	Refer to the “License Manager Operation” appendix of the User Guide for more information regardin...
	Environment Variables

	Code generation license acquisition can be suppressed by setting user environment variables to in...
	To suppress the license acquisition, set the following environment variables to 0 before starting...

	• 9031 C++ code generation: OBJECTIME_CPP_GENERATION
	• 9032 C code generation: OBJECTIME_C_GENERATION
	ObjecTime Developer Licensing
	The license manager is used to control access to ObjecTime Developer. In ObjecTime Developer 5.2....
	Note: If you install ObjecTime in a stand-alone configuration, you can install the License Manage...
	Licensing is managed by a License Manager program which is generally run on some centrally access...
	ObjecTime Licenses

	The License Manager is responsible for issuing tokens for the various products and their associat...
	Table 1 Toolset Feature Requirements

	Feature (license)
	Toolset version
	4.4
	5.0
	5.1 and 5.1.1
	5.2 and 5.2.1
	9000 (4.4 and total)
	X
	X
	X
	X
	9001 or 9002 (Unix or NT)
	X (one of 9001 or 9002 but not both)
	X (one of 9001 or 9002 but not both)
	9003 (5.1)
	X
	9004 (5.2.1 Toolset)
	X
	9010 (C/C++ Modeling)
	X
	9020 (5.0)
	X
	9030 (Total Code Generation)
	X
	9031 (5.2.1 C++ Code Generation)
	X
	9032 (5.2.1 C Code Generation)
	X
	9033 (5.2.1 SimRTS Code Generation)
	X
	Notes
	1 Compatibility with earlier versions of ObjecTime will be maintained. It will be possible to sta...
	2 Demo key support will carry over to the new license keys.

	The above table shows the licensing requirements for various versions of the toolset. Different v...
	In the remainder of this section, the term product refers to the product/feature combination.
	Only Floating Licenses are supported. A Floating License enables the product to be executed on an...
	License Registration
	When upgrading from 5.2 to 5.2.1:
	• after installing the software, activate your 5.2 License Keys.
	For a new 5.2.1 license or when upgrading from pre-5.2:
	• after installing the software, obtain License Keys from ObjecTime Support to run the software. ...
	To produce these keys, we require certain workstation information such as its machineid and IP ad...
	License manager registration

	To enable the License Manager program, Objectime Support requires the machineId and the IP addres...
	Obtaining the workstation machineId and IP address

	A script utility has been provided which, in most cases, can provide the required machine ID and ...
	Note: 5.2 License Upgrade to 5.2.1 License - New License Keys are not required when upgrading fro...
	To obtain this information, execute the following script in a command or shell-tool window:
	$OBJECTIME_HOME/bin/ObjecTimeKeyInfo
	This command returns information about the server machine on which you will run your license serv...
	Command:
	Unix: ObjecTimeKeyInfo
	Windows NT: ObjecTimeKeyInfo
	Note: On Windows NT, commands must be invoked from the ObjecTime Developer Command Prompt. This i...
	Example:
	ObjecTimeKeyInfo
	host: machine
	IP addr: 192.139.251.207
	MACHINEID: c08bfbcf762a
	Server target : NT
	ObecTimeKey information written to file otinfo
	New 5.2.1 License - The ObjecTimeKeyInfo command provides a file, otinfo, that you should email a...
	• Please include the following user information: your company name, project, and ObjecTime prime....
	• On Windows NT, the MACHINEID is the Volume Serial Number of the first logical hard disk on the ...
	• When running the license server on Windows NT, the IP address that the license manager locks to...
	• Please note that the Unix script makes use of the /etc/hosts file which must be readable by the...
	Invoking License Manager Executables
	All the licensing commands are available on both Unix and Windows NT. The commands are identical ...
	Note: Before you can invoke any ObjecTime License Manager executables you must set the following ...
	• OBJECTIME_LICENSE_SERVER - Set to the host name of the machine where the License Manager is to ...
	• OBJECTIME_HOME - Set to the main installation directory of the ObjecTime release.
	You must then ensure that $OBJECTIME_HOME/bin is also set in your PATH.
	Note: On Windows NT, commands must be invoked from the ObjecTime Developer Command Prompt. This i...
	Installation of Encrypted Keys
	Unix: activateKey [-f keyfile] [-k keydir] [-demo]
	Windows NT: activateKey [-f keyfile] [-k keydir] [-demo]
	Arguments:

	• keyfile - the filename containing license keys. If the keyfile argument is absent then you will...
	• keydir - the full path to the directory into which to write the license files. If the keydir ar...
	• demo - this option is used when installing demo keys which are license keys that are not locked...
	Example: prompt> activateKey -f keyfile -k /directory/user/test
	ObjecTime Key activation program.
	Key input file:keyfile
	Enter IP address of the server (default 192.139.251.207):
	Enter server target type UNIX or NT (UNIX default)
	Licenses installed in /directory/user/test.
	If the IP address of the workstation where the License Manager is running does not match the IP a...
	Note: Prior to installing or adding keys, please terminate or stop the License Manager if it is a...
	License Manager
	Starting up the License Manager

	Note: It is recommended that the same userId be used to both install the license keys and start t...
	Unix:

	startLicenseManager [-v msglevel][-l logfile][-k keydir][-r resfile]
	Arguments:
	msglevel - A number from 1 to 9 indicating the amount of information to write to the log file. If...
	1. Error messages only
	2. License failures
	3. License activity
	4. Client connects/disconnects
	5. Message per packet received
	6. Message per packet sent
	7. Further client and Zombie process info
	8. Key information
	9. All available information

	logfile - The path and filename for the logfile. If absent then the default is $OBJECTIME_HOME/li...
	keydir - The path where the license key files can be found. If absent it defaults to $OBJECTIME_H...
	WindowsNT:
	On Windows NT, the license manager is started and stopped from the ElanLM control panel. Prior to...
	1 Startup should be set to automatic. This will cause the License Manager to be started whenever ...
	2 Click the settings button and set the license directory and logfile name then close the window....
	3 Click the launch button.

	Note: On Windows NT, this command requires an administrator class user to execute.
	By default the log file $OBJECTIME_HOME/license/ObjecTimeLicenseManager.log is created with messa...
	Please note that the process name of the License Manager is elmd.
	Setting the Time Zone Variable on Windows NT
	For proper operation of the license manager over time changes the Time Zone variable must be set....
	To set the Time Zone variable, proceed as follows:
	1 Open the Control Panel.
	2 Select System.
	3 Click on the Environment tab.
	4 Click on any system variable. (not user variable)
	5 Replace it with TZ /correct value.Eastern Standard Time is used in the figure below.

	Use the following syntax to set the Time Zone environment variable:

	• set TZ=tzn[+ | -]hh[:mm[:ss]][dzn]
	• tzn - Three-letter time-zone name, such as PST.
	• hh - Difference in hours between UTC and local time. Optionally signed. You must specify the co...
	• mm - Minutes. Separated from hh by a colon (:).
	• ss - Seconds. Separated from mm by a colon (:).
	• dzn - Three-letter daylight-saving-time zone such as PDT. If daylight saving time is never in e...
	For example, to set the TZ environment variable to correspond to the current time zone in Germany...
	set TZ=GST1GDT
	set TZ=GST+1GDT
	These strings use GST to indicate German standard time, assume that Germany is one hour ahead of ...
	6 Click Set.

	Make sure that the variable is added to the System section and not the user section. You need Adm...
	Automatically starting up the License Manager

	It may be convenient to automatically start up the License Manager at file server boot time. This...
	OBJECTIME_HOME=/YourReleaseDirectory; export OBJECTIME_HOME
	PATH="$PATH:$OBJECTIME_HOME/bin"; export PATH
	if [-f $OBJECTIME_HOME/bin/startLicenseManager]; then
	OBJECTIME_LICENSE_SERVER=server
	export OBJECTIME_LICENSE_SERVER
	$OBJECTIME_HOME/bin/startLicenseManager
	fi
	Note: In the above lines, OBJECTIME_HOME must be set to the full path name of the ObjecTime insta...
	The following shows the particular file to insert the above lines into based on the file server p...

	• SunOS: /etc/rc.local
	• Solaris: /etc/rc2.d/S94ObjecTime
	• HP-UX: /etc/rc within function localrc()
	• IBM AIX: /etc/rc
	Note: The License Manager in this case is owned by root, and hence can only be terminated by root.
	• Windows NT: On WindowsNT, the License Manager is controlled through the control panel and canno...
	Before activating the license manager, several settings must be made first:
	1 Startup should be set to automatic. This will cause the License Manager to be started whenever ...
	2 Click the settings button and set the license directory and logfile name then close the window....
	3 Click the launch button.

	Bringing Down the License Manager
	On Unix, the command

	killLicenseManager
	will terminate the License Manager specified in the environment variable OBJEC�TIME_LI�CENSE_SER�...
	On Windows NT, the license manager is stopped from the ElanLM control panel.
	Note: On Windows NT this command requires an administrator class user to execute.
	License Manager Operation
	When an ObjecTime product is initiated, the user is informed how many tokens were granted and the...

	objectime: [3] Connected with server "machine1"
	objectime: [3] Granted 1 license for "Total"
	objectime: [3] Granted 1 license for "TotalUnix"
	objectime: [3] Granted 1 license for "Toolset 5.2.1"
	[3] indicates the client ID used by the License Manager. machine1 is the node name of the file se...

	objectime: [3] disconnecting
	License Queuing

	If a license token is not available upon the start-up of ObjecTime, ObjecTime will be automatical...
	If communication with the License Manager had been lost, and then re-established, a new license t...
	License hold time

	When a user relinquishes a toolset license, the License Manager will reserve that license for 300...
	License auditing

	During normal execution of a product, each corresponding Unix process with a token periodically n...
	The utility killUserLicense <userid> also allows the administrator to force the de-allocation of ...
	If the License Manager goes down or is otherwise unable to communicate to the process, those who ...
	Querying the License Manager
	Currently allocated licenses
	The command

	licenseInfo
	will give you information regarding who is currently using the system, and the number of used and...
	ObjecTime License Manager Information System
	Please wait...
	Server user1:
	CID LID User Feature Group Started
	--- --- ------------------------------ ---------- -------- -------
	1 1 user1@user1 Total - Aug 03 11:36
	2 2 user1@user1 Total - Aug 03 11:40
	Total [9000]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	TotalUnix [9001]: 25 licenses, 0 in use; installed Aug-03-98
	Expires Oct-30-98.
	CID LID User Feature Group Started
	--- --- ------------------------- ---------- -------- -------
	1 1 user1@user1 TotalNT - Aug 03 11:36
	2 2 user1@user1 TotalNT - Aug 03 11:40
	TotalNT [9002]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	Total5.1 [9003]: 25 licenses, 0 in use; installed Aug-03-98
	Expires Oct-30-98.
	CID LID User Feature Group Started
	--- --- ----------------------- ---------- -------- -------
	1 1 user1@user1 Total5.2.1 - Aug 03 11:36
	2 2 user1@user1 Total5.2.1 - Aug 03 11:40
	Total5.2 [9004]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	C++ [9010]: 25 licenses, 0 in use; installed Aug-03-98
	Expires Oct-30-98.
	Total5.0 [9020]: 25 licenses, 0 in use; installed Aug-03-98
	Expires Oct-30-98.
	CID LID User Feature Group Started
	--- --- ----------------------- ---------- -------- ------------
	1 1 user1@user1 TotalCodeG - Aug 03 11:36
	2 2 user1@user1 TotalCodeG - Aug 03 11:40
	TotalCodeGen [9030]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	CID LID User Feature Group Started
	--- --- ----------------------------- ---------- -------- -------
	S 1 1 user1@user1 CodegenCPP - Aug 03 11:36
	2 2 user1@user1 CodegenCPP - Aug 03 11:40
	CodegenCPP5.2 [9031]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	CID LID User Feature Group Started
	--- --- --------------------------- ---------- -------- ------------
	S 1 1 user1@user1 CodegenC5. - Aug 03 11:36
	2 2 user1@user1 CodegenC5. - Aug 03 11:40
	CodegenC5.2 [9032]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	CID LID User Feature Group Started
	--- --- --------------------------- ---------- -------- ------------
	S 1 1 user1@user1 CodegenSim - Aug 03 11:36
	2 2 user1@user1 CodegenSim - Aug 03 11:40
	CodegenSimRTS5.2 [9033]: 25 licenses, 2 in use; installed Aug-03-98
	Expires Oct-30-98.
	ObjecTime license server information.
	C:\>pause
	Press any key to continue . . .
	Usage statistics
	To receive a breakdown of license manager usage use the command

	serverUsageReport [log_path] [daily]
	where

	• log_path - is the absolute path-name for the file where status information has been logged. Def...
	• daily - allows you to optionally have the activity report broken down by daily usage, rather th...
	The following shows an example using the reporting facility:

	serverUsageReport
	ObjecTime License Manager Information System
	Total Total Over Number Number Percent Total
	Feature Requests InUse SoftLim Issued Denied Denied Time Used
	--
	CodegenC5.2 54 4 54 0 0% 6:45:48
	CodegenCPP5.2 54 4 54 0 0% 6:45:52
	CodegenSimRTS5.2 54 4 54 0 0% 6:45:46
	Total 58 3 55 3 5% 12:10:53
	Total5.1 1 1 1 0 0% 0:07:37
	Total5.2 54 3 54 0 0% 12:03:06
	TotalCodeGen 54 3 54 0 0% 12:02:44
	TotalNT 51 2 51 0 0% 9:04:40
	TotalUnix 4 3 4 0 0% 3:06:09
	Documentation Roadmap

	ObjecTime Developer 5.2.1 Documentation Set
	The ObjecTime Developer 5.2.1 Documentation Suite for Release 5.2.1 contains the following docume...
	Table 2 ObjecTime Developer (OTD) 5.2.1 Documentation Sets

	ObjecTime Developer
	ObjecTime Developer for C++
	ObjecTime Developer for C
	User Guide 5.2
	User Guide 5.2
	User Guide 5.2
	Tutorial Guide 5.2
	Tutorial Guide 5.2
	Tutorial Guide 5.2
	C++ Language Guide 5.2
	C++ Language Guide 5.2
	C Language Guide 5.2
	RPL Language Guide 5.2
	RPL Language Guide 5.2
	OTD 5.2.1 Getting Started & Release Notice
	OTD 5.2.1 Getting Started & Release Notice
	OTD 5.2.1 Getting Started & Release Notice
	C++ Target Module 5.2.1 Getting Started & Release Notice
	C Target Module 5.2.1 Getting Started & Release Notice
	C++ Target Guide 5.2
	Note: Where differences exist, the documentation highlights Windows NT and Unix specific informat...
	User Guide

	This document contains detailed reference material for all the tools and windows in the ObjecTime...
	Note: It is strongly recommended that you review the User Guide in detail.
	The ObjecTime Developer 5.2.1 Toolset contains tools for all aspects of the real-time development...
	Figure 5 ObjecTime User Guide Organization
	C++ Language Guide

	The C++ Language Guide contains information on how to use the Toolset to develop and compile mode...
	C++ Target Guide

	The C++ Target Guide describes the architecture of the Target Run-Time System (Target Services Li...
	C Language Guide

	The C Language Guide describes all aspects of C usage in ObjecTime, including the toolset interfa...
	RPL Language Guide

	The RPL Language Guide contains information on building RPL-based models in ObjecTime. This docum...
	Tutorial Guide

	There is one Tutorial Guide with three different sections : (1) the RPL version of the Tutorial, ...
	Getting Started Guide & Release Notice

	It is recommended that the user reads this guide to get the most up-to-date information on this r...
	Suggested Reading Path
	We strongly recommend that users who are new to the ObjecTime Developer concepts and toolset read...
	Note: For more information on Real-Time Object-Oriented Modeling (ROOM), please refer to the foll...
	• the ObjecTime Developer User Guide,
	• the Real-Time Object-Oriented Modeling. Selic, Gullekson, and Ward. John Wiley & Sons, Inc., 1994.
	Figure 6 Recommended Reading Paths in the ObjecTime Developer Document Set

	Note: The C Language Guide is only included in the ObjecTime Developer C Target Module documentat...
	Online Reading
	The complete set of HTML-based ObjecTime Developer 5.2.1 documentation is linked to the ObjecTime...
	Online Search Engine

	The ability to search the online documentation has been added into the 5.2 product release. From ...
	Figure 7 Help Contents
	Figure 8 A Table of Contents
	Figure 9 An Index
	The online search engine can be used to identify documents within the online documentation which ...
	Figure 10 Search Engine

	Within the identified documents, the find function of the browser should be used to jump to the s...
	ClearCase Support Enhancements

	Introduction
	This chapter discusses ObjecTime Developer’s ClearCase Support Enhancement introduced in the 5.2....
	Definitions

	This section contains brief definitions of some of the terms used in this chapter.
	Toolset - this refers to the main executable program of ObjecTime Developer. Model editing is don...
	Code Generation Subsystem - this refers to the ObjecTime subsystem that generates C++ source code...
	Root Package - this refers to the logical package that represents an update/context. All classes ...
	Summary

	The ClearCase Support Enhancements:
	• allow Toolset synchronization with ClearCase views through commands that synchronize the Toolse...
	• allow designers to access parallel work from others via the synchronization noted above.
	• allow external builds through a modification to the code generation subsystem to use the projec...
	• allow the re-use of loadbuild artifacts through the use of ClearCase wink-in. This is implement...
	• redesign project files such that they do not contain all classes from an update. They contain o...
	• allow traceability of loadbuild artifacts back to the originating class files in the project, u...
	• enable Clearmake’s automatic dependency tracking, using the ClearCase config records of derived...
	ClearCase Support Enhancements support ClearCase version 3.2 running under Solaris 2.5.1/2.6 or W...
	The following are not supported by the ClearCase Support Enhancements:
	• external builds for the ObjecTime simulation environment are not supported.
	• only the C++ language is supported.
	Project Files

	This section is a brief description of an ObjecTime project file and how it is used with the Clea...
	Project files in ObjecTime Developer 5.2 contained a list of classes, packages, thread mappings a...
	ObjecTime Developer 5.2.1 changes the definition of project files to avoid storage of all classes...
	From a ClearCase view, it is now possible to initiate a Clearmake without involving the Toolset. ...
	• select a specific project file to use for the build
	• select an output path for the build
	• select the top actor to use for the build
	• select the active configuration from those listed within that project file to use for the build.
	If no configuration is selected, the default configuration stored within the project file is used...
	Note: When a project file is used for a Clearmake build process, the versioning information is ig...
	ObjecTime Developer 5.2.1 extends the activation of project files to include an option which allo...
	The development process
	This section discusses one possible set of steps to employ when using the Toolset in conjunction ...
	• Developer: The developer is responsible for adding/changing/deleting new objects to/from the up...
	• The developer works in read-only mode, that is, ‘Allow edits on non-checked out objects’ user p...
	• Before editing a class, the developer will check it out
	• The developer makes changes and then saves them to the library
	• If the developer adds or removes classes within packages, then the affected packages must be ch...
	• Integrator: The integrator is responsible for adding/maintaining/deleting packages, ensuring th...
	• At the integration cutoff, the integrator will merge in the project file for the previous loadb...
	• This job may be performed either interactively or in batch mode.
	• Load builder: The load builder is responsible for building the load from the appropriate projec...
	Note: The role of the integrator may be played by a developer.
	Checking in a file does not automatically imply submission to the build. Submission to the build ...
	• The Configuration Management topic is covered in-depth in ObjecTime’s Advanced Development Work...
	Toolset Enhancements
	This section discusses the changes to the Toolset to implement the ClearCase Support Enhancements...
	Enabling Clearmake mode

	Make Types are specified in the Targets properties editor as seen in Figure�11, “ClearCase/Clearm...
	• The compile dialog button Generate Changes Only is disabled and turned off.
	• If the Recompile button on the compile dialog is selected, a clearmake -u is performed.
	• No IF (Intermediate Form) files are generated during the compile. The compilation works directl...
	• The Save to Library command (see below) is automatically run when the Compile menu item is exec...
	FIGURE 11. ClearCase/Clearmake mode
	Save to Library

	The Save to Library command is added to the Update application menu of the model and update brows...
	• saves the current changes to each checked-out class in the library.
	• for added classes, creates a view private file if the class has not been checked out. If the cl...
	• references to deleted classes are removed from the project file. Deleted classes continue to ex...
	• does not cause a new version of the project file to be written to the library (unless the proje...
	FIGURE 12. Saving to Library Summary
	Enhanced editing modes

	The user preference ‘Allow edits on non-checked out objects’ allows you to specify the use of rea...
	Note: When using ClearCase, the ‘Allow Edits on non-checked out objects' checkbox should be OFF.
	FIGURE 13. ObjecTime Preferences
	Project file activation

	As discussed earlier, ObjecTime Developer 5.2.1 extends the activation of project files to includ...
	FIGURE 14. Merging project file
	External diff before marking solid delta

	When edits are performed in the Toolset, they can result in changes to other objects (classes/pac...
	Configuring your project to use Clearmake
	There are four steps to configuring your project to use Clearmake, and they are given below.
	Configuring your view

	There are very few restrictions imposed on the config spec that defines your view. ObjecTime Deve...
	We recommend that the CHECKEDOUT rule should precede any other rules (unless you do not intend to...
	When different files in the project are selected by different rules in the config spec, the state...
	On Windows NT, the view is mapped to a drive letter (typically Z:). A known limitation currently ...
	On Windows NT, the MVFS (multiversion file system) must preserve case. This is set in the Control...
	1 open the ClearCase icon
	2 select the MVFS tools
	3 check the “Case Preserving” checkbox.
	Configuring your environment

	You are required to tell the code generator where it can put its temporary files so that clearmak...
	setenv OBJECTIME_CODEGEN_TEMP /tmp
	On Windows NT, the OBJECTIME_CODEGEN_TEMP environment variable can be created from the Control Pa...
	If you do not have this environment variable set, wink-in will likely not occur.
	Configuring the session image

	You must specify the path to the forClearCase scripts in your session’s Library Configuration men...
	From the Library Configuration menu, de-select "use objectime_library_info for sync".
	If you are using the user preference "Allow edit on non-checked out objects" (this option is on b...
	Configuring the model

	All classes must be versioned in ClearCase, as well as the config files, the package files and th...
	The Output Path (part of the project properties) must be within the same ClearCase view as the li...
	To activate Clearmake mode, the active configuration's Make Type must be Clearmake. The Make Name...
	In non-Clearmake mode, dependency analysis is done by a makedepend script which examines inclusio...
	Using Clearmake for developers
	Creating a new object

	All objects (projects, project configurations, packages, actor classes, data classes and protocol...
	When classes within a package are added, deleted or renamed, the package file must be checked out...
	When classes not within a package, or packages or project configurations are added, deleted or re...
	Making changes to project file

	You will need to checkout the project file whenever performing the following activities:
	• adding, deleting or renaming unpackaged classes (classes not in a compilation package)
	• adding, deleting or renaming project configurations
	• adding, deleting or renaming packages
	• changing the Threads configuration
	• changing the default Output Path
	• changing the default Top Actor
	• changing the default Active Configuration
	In order to reduce checkout contention for the project file, typical development activities shoul...
	This does not restrict developers. Developers can ‘temporarily’ change the Output Path, Top Actor...
	Classes can be added, deleted and renamed from packages by checking out the package file. Consequ...
	It is a known limitation that the project file does not get a black delta when one of these chang...
	Invoking Clearmake from the Toolset

	Once the model is properly configured, invoking a Compilation using Clearmake is the same as any ...
	While a toolset-initiated Compile is running, the progress dialog will flash messages about what ...
	tail -f compile.output.<ACTIVE_CONFIG>
	to follow Compilation progress, where <ACTIVE_CONFIG> is the name of the Active Configuration.
	Invoking Clearmake from the command-line

	If invoking Clearmake from command-line, use the following command:
	perl $OBJECTIME_HOME/codegen/generate.pl \
	-p <OUTPUT_PATH> -j <PROJECT_FILE> \
	-m <MAKE> -t Clearmake \
	[-c <ACTIVE_CONFIG>] [-a <TOP_ACTOR>] [-o <OUTPUT_FILE>] \ compile
	For convenient copy-and-pasting, the exact command used by the last Compile (that is, as issued b...
	• OUTPUT_PATH is an absolute directory-path that tells where the build should be produced. Differ...
	• PROJECT_FILE is an absolute file-path to the project file.
	• MAKE is the name of the Make executable. Typically, this is "clearmake", which must be on your ...
	• The option "-t Clearmake" (when produced by the toolset) specifies the Make Type used in the Ac...
	• ACTIVE_CONFIG is the active configuration, which by default is specified in the project file. A...
	• TOP_ACTOR is the top actor, which by default is specified in the project file. A developer can ...
	• OUTPUT_FILE is the Compilation Results file, which by default is "compile.output" (or “compile....
	Enabling parallel builds with Clearmake

	Parallel building is enabled for both code-generation and compilation on Unix platforms.
	Note: As of ClearCase 3.2.1, Clearmake does not support parallel building for NT.)
	However, use of the Clearmake concurrency environment variables CCASE_CONC and CLEARCASE_BLD_CONC...
	As discussed in the section, ‘Using an environment variable for Parallel Make Flags’ on page�12, ...
	Your must then assign some environment variables. For example:
	setenv OBJECTIME_PMAKE_FLAGS "-J 4"
	setenv CCASE_HOST_TYPE sun5
	Then, create a build host file (~/.bldhost.sun5) as described in the ClearCase Reference manual (...
	-idle 10%
	beef
	helium
	beef
	beef
	where the machine "beef" has significantly more processing power than the machine "helium".
	Clearmake can now be invoked from the command-line, or by the toolset, without arguments, and the...
	Recompiling with Clearmake

	Recompile invokes a “clearmake -u” which will turn OFF Clearmake’s build-avoidance. At present, i...
	Winked-in is not performed when recompile is selected.
	Which classes get compiled

	While code is generated for all classes in the project, only classes within the ‘transitive-closu...
	Swapping between Clearmake and non-Clearmake mode

	Changing the Make Type of the Active Configuration between Clearmake and non-Clearmake necessitat...
	Changing from Clearmake mode to non-Clearmake mode by activating a new configuration requires a r...
	Changing from non-Clearmake mode to Clearmake mode by activating a new configuration does not req...
	Zero-length .dep files

	When using Clearmake to compile directly from the ClearCase library, ObjecTime Code Generation wi...
	Using Clearmake for loadbuilders
	For the most part, loadbuilders follow the exact same procedures as developers.
	If during a partially-successful loadbuild, a change is made to some of the project files, the ch...
	Restrictions and Limitations
	This section discusses the restrictions imposed on the user when using the external build facility.
	No unspecified replication factors

	The use of unspecified replication factors is currently not supported with ObjecTime Developer 5....
	The code generator flags any unspecified replication factors appearing on actors and ports as an ...
	No ROOM compile time checking

	Model compilation usually includes validation of a ROOM model prior to code generation of the mod...
	Violation of ROOM semantics during compilation can result in errors or warnings, or a combination...
	• the sum of the replication factors of all the bindings connected to a port is not equal to the ...
	• a choice point does not have both a true and a false continuing transition segment
	• a choice point does not have a condition defined
	• an FSM state is not reachable from the initial transition
	• an FSM state cannot be exited to another state other than a containing state
	• a transition does not have a triggering event defined
	The Toolset generates a warning if the following is true:
	• more than one transition with no guard condition in the local scope of a FSM state is triggered...
	The Toolset reports errors whenever any of the following are true:
	• an outgoing signal from one endpoint of a binding is not defined as an input signal for the oth...
	• a cyclic dependency exists between data classes. For example, class Boo references class Foo wh...
	The Toolset reports the following error if the model is to be compiled for the Target RTS:
	• an actor reference, port or SAP/SPP is excluded in an actor subclass to be compiled for the Tar...
	The Toolset reports the following error if the model is to be compiled for the C Target RTS:
	• a C actor class contains an imported actor reference
	No N-way merge support

	There is no support for automatic N-way merges. You must do multiple 2-way merges within the Tool...
	Time-stamp driven make support

	The ClearCase Support Enhancement does not co-exist with a time-stamp driven (non-Clearmake) proc...
	No shared views

	The use of ClearCase shared views is not a recommended development paradigm and is not supported ...
	View-extended path names

	The use of view-extended pathnames is not a recommended development paradigm, and is not supporte...
	Exclusions

	The following are not supported in ObjecTime Developer 5.2.1 ClearCase Enhancements:
	• builds for the ObjecTime SimulationRTS environment are not supported using Clearmake.
	• only the C++ language is supported by the ClearCase external build.
	• the capabilities implemented with ObjecTime Developer 5.2.1 apply only to Clearmake and not oth...
	Known issues

	• The project file does not get a black delta when one of these changes necessitates a checkout.
	• The recompile button does not turn off the code-generator’s build-avoidance, although it will t...
	• On Windows NT, you must use the same drive letter for viewing across the project. All reference...
	• In order to use Clearmake, and build from the library, the storage format must be textual. If t...
	Changes in Developer 5.2.1/5.2

	This chapter provides additional information on the changes covered in “What's new in Developer 5...
	The main areas covered in this chapter are as follows:

	• ClearCase Support Enhancements - 5.2.1
	• Packages- 5.2
	• Multi-Language Framework (MLF) - 5.2
	• Make Utilities Supported - 5.2
	• Data Class Inclusion - 5.2
	• Deterministic Loadbuild - 5.2
	• Library Management - 5.2
	• Problems fixed - 5.2
	ClearCase Support Enhancements
	ClearCase

	ObjecTime Developer 5.2.1 is designed to better support the ClearCase environment, and in particu...
	Packages
	CUPs Replacement

	In ObjecTime Developer 5.2, CUPs were replaced with enhanced environment specification for packag...
	It is still possible to associate some environment settings with a package. But because packages ...
	Code Generation & Compilation Changes
	ObjecTime Developer 5.2 incorporated significant changes in the way in which code generation and ...
	The significant changes introduced in release 5.2 were as follows:

	• Using timestamp (make) driven code generation and compilation
	• Allow re-use of build results. The generated C++/C and object files resulting from a build of t...
	• Explicit inter-class dependencies are now tracked improving the generated code’s compilation pe...
	The meaning of some of the Compile Dialog Options is changed in ObjecTime Developer 5.2.1. Please...
	Make Utilities Supported
	Effective in release 5.2 of ObjecTime Developer, compilation and code generation are controlled b...
	The Make Type should be set to Clearmake when using the ClearCase Support Enhancement. You can on...
	The Make Type should be set to MS_nmake when the make utility is nmake on Windows NT. This is req...
	The Make Type should be set to Gnu_make when using Load Build Paths for reusing load-build result...
	Unix_make produces a Makefile which can be interpreted by almost any Make utility. Unix_make is t...
	The Make Type (and corresponding Make Name) are set from the target’s Properties Editor of the La...
	Specifying clearmake as the Make Name is only recommended if the Make Type is Clearmake. The make...
	Recommended make utilities

	The following table lists the recommended make utilities for all toolset platforms. Except where ...
	Table 3

	Make type
	Platform
	Notes
	AIX make
	AIX 4
	ClearCase clearmake
	supported Unix platforms
	version 3.2 or later
	Windows NT
	version 3.2 or later
	Gnu make
	all Unix platforms
	Version 3.71 and above is recommended. Supported by Make Type “Gnu_make” or “Unix_make”.
	Windows NT
	Use version "3.74+wrs-2", available with Wind River Systems' Tornado. Supported by Make Type “Gnu...
	HP make
	HPUX 10
	Irix make
	Irix 6
	Microsoft nmake
	Windows NT
	Version "1.62.7022"is recommended (available with Microsoft Visual C++ 5.0). Requires Make Type “...
	Pmake (Parallel make)
	various Unix platforms
	Various compatible third-party distributions are available.
	Sun make
	Sun 4, Sun 5
	includes SUNW_SPRO and SVR4 make
	Data class inclusions
	As of ObjecTime Developer 5.2, inclusions can be added to data classes. If the definition of a da...
	Deterministic Loadbuild
	As of ObjecTime Developer 5.2, due to the way signal numbering is handled for incremental code ge...
	To obtain a completely deterministic build, all that is required is that a total recompile be per...
	The order of merging affects the order in which the classes are listed in the project file. This ...

	• RTSystem.h
	• RTSignal.h
	• Data classes aggregated at the package level
	The next two sections provide details on how to merge classes in a consistent manner.
	Fully Specified Merge Script
	Merge maintains the internal order of the added classes in the same order in which they are liste...

	! select AnUpdate
	merge from /whatever/mylib.otlib
	Actor1.actor *
	Actor2.actor *
	Actor3.actor *
	Protocol1.port *
	Protocol2.port *
	Protocol3.port *
	Data1.data *
	Data2.data *
	Data3.data *
	endMerge !
	then the following is true:

	• the internal order of the actor classes is Actor1, Actor2, Actor3;
	• the internal order of the protocol classes is Protocol1, Protocol2, Protocol3;
	• and the internal order of the data classes is Data1, Data2, Data3.
	Note: The order only matters relative to other entries of the same type.
	So, the following merge script results in the same internal order as above:

	! select AnUpdate
	merge from /whatever/mylib.otlib
	Actor1.actor *
	Protocol1.port *
	Data1.data *
	Actor2.actor *
	Protocol2.port *
	Data2.data *
	Actor3.actor *
	Protocol3.port *
	Data3.data *
	endMerge !
	Note that the internal order can be observed in a couple of ways:
	1 Open a Properties Editor on the update. The class/package list displays the entries in their in...
	2 Listing the contents of a project file.

	Partially Specified Merge Script

	If the required classes are not all listed in the merge script, then the merge will determine tha...
	For example, assume you have a library containing the following actor classes:

	• A1 which contains references to A2 and A3 (in that order)
	• A2 which contains references to A4 and A5 (in that order)
	• A3, A4, and A5 which are 'empty' (i.e. don't reference anyone else)
	Now, if you just specify A1 in the merge script, the resulting internal order will be A1, A2, A3,...
	If you specify A1 and A4 in the merge script, the resulting internal order will be A1, A4, A2, A3...
	Note: If you are just merging packages and then relying on the merge operation to extract all the...
	If an entry in the partially specified list is modified (for example, a reference to a new class ...
	If a fully specified list was used, then there is much better control over this (for example, new...
	Library Management
	Library capabilities enhancements

	In ObjecTime Developer 5.2, several enhancements were added to ObjecTime Developer's library capa...
	The ClearCase library scripts have been rewritten in Perl and are common for both Unix and NT. Th...
	Default Location for Library Scripts

	It is no longer necessary to place an .objectime_scripts_dir directory for Unix, or an objectime_...
	Note: If the library system is down, the objectime_library_info script causes ObjecTime Developer...
	Check out and read only modifications

	Classes which are not checked out from the CM system would be read only, as in a context. Before ...
	This feature would be controlled by and could be disabled through a user preference.
	Currently, when you check out a class, a check is performed which compares the version in the CM ...
	This feature will also be controlled with a user preference.
	Read-only for unchecked out classes

	A user preference has been added that disallows the ability to edit unchecked-out elements; see t...
	Hierarchical library browsing

	A Libraries pane has been added to the Library Browser which allows libraries that are contained ...
	Sync With Library

	An alternative library synchronization method has been added that relies on external library scri...
	In addition, it is also possible to synchronize the delta symbols in the Update Browser based on ...
	Since LF files contain the version string of elements that they reference, if a reference element...
	Improved Version String Handling

	To support complex version strings (for example, Release1/BugFixes/1) and version branching, the ...
	The VersonNumbers capability turns off the default assumptions made on check-out and assumes that...
	The newest version of objectime_check_out for ClearCase (as part of ClearCase integration) return...
	The NoVersionSort capability disables the default sorting performed by the Version Browser and as...
	ClearCase

	The ClearCase Unix scripts have been replaced with Perl scripts that are common across Windows NT...
	The versions of ClearCase supported are:

	• 3.1.1 : for HPUX 10.20 and Solaris 2.6 (with a 3.1.1 patch).
	• 3.2 : for Solaris 2.6, HPUX 10.20, SunOS 4.1.3 and Windows NT 4.0.
	Two new library scripts objectime_sync and objectime_diff have been provided for ClearCase.
	RCS

	The RCS system must support the “x” option in order to interwork with ObjecTime Developer. The “x...
	Linear Form

	The following summarizes the changes made to the linear form grammar for release 5.2.1. Customer ...
	Added tokens

	BLACKBOX
	DEPENDENCIES
	LOADBUILD
	OUTPUT
	PROJECT
	RECTILINEAR
	STEREOTYPE
	Added productions

	optStereotype /* NEW in 5.2.1 */
	: /*empty*/
	| STEREOTYPE TEXTSTRING
	;
	optDependencies /* NEW in 5.2.1 */
	: /*empty*/
	| DEPENDENCIES ‘{‘ dependencyList ‘}’
	;
	dependencyList
	: /*empty*/
	| dependencyList dependencyItem ‘;’
	;
	dependencyItem
	: DEFINE classType className optInPackage optLibraryVersion optStereotype optDescription
	;
	optStereotype /* NEW in 5.2.1 */
	: /*empty*/
	| STEREOTYPE TEXTSTRING
	;
	graphicLine /* NEW in 5.2.1: optRectilinear */
	: graphicSpec optWidth optSmooth optRectilinear FROM pointsList
	;
	optRectilinear /* NEW in 5.2.1 */
	: /*empty*/
	| RECTILINEAR
	;
	optCompilationPath /* NEW in 5.2.1 */
	: /*empty*/
	| PATH TEXTSTRING
	;
	projectSpec /* NEW in 5.2.1 */
	: PROJECT projectName
	optLibraryVersion
	optDescription
	optDependencies
	projectPublicComponents
	threadsSpec
	libraryPaths
	outputPath
	loadBuildPaths
	‘;’
	;
	projectName
	: IDENT
	;
	projectPublicComponents
	: /*empty*/
	| PUBLIC ‘{‘
	projectComponentList
	activeEnvironment
	optTopActor
	‘}’
	;
	projectComponentList
	: /*empty*/
	| projectComponentType componentName optLibraryVersion optDerivedFromSuperClass optInPackage ‘;’ ...
	;
	projectComponentType
	;
	activeEnvironment
	: ACTIVE ENVIRONMENT IDENT ‘;’
	;
	optTopActor
	: /*empty*/
	| TOP ACTOR actorClassName optLibraryVersion ‘;’
	;
	libraryPaths
	: LIBRARY PATHS ‘{‘ pathList ‘}’
	;
	loadBuildPaths
	: LOADBUILD PATHS ‘{‘ pathList ‘}’
	;
	pathList
	: /*empty*/
	| PATH libraryPath ‘;’ pathList
	;
	outputPath
	: OUTPUT PATH libraryPath ‘;’
	;
	optEnvironmentSpec
	: /*empty*/
	| environmentSpec
	;
	environmentName
	: TEXTSTRING
	;
	Changed productions

	modelEntitySpec
	: actorClassSpec
	| protocolClassSpec
	| dataClassSpec
	| constantSpec
	| packageSpec
	| requirementSpec
	| mscSpec
	| environmentSpec /* NEW in 5.2.1 */
	| projectSpec /* NEW in 5.2.1 */
	;
	realValue
	: NUMBER /* NEW in 5.2.1 */
	| REAL_NUMBER
	| constantName optLibraryVersion
	;
	dataClassSpec
	: DATA CLASS dataClassName
	optLibraryVersion
	optDerivedFromSuperClass
	ISA dataTypeSpec
	optDependencies /* NEW in 5.2.1 */
	‘;’
	;
	choiceSpec /* NEW in 5.2.1: inclusionsSpec */
	: CHOICE properties choiceTypes inclusionsSpec methodsSpec
	;
	enumeratedSpec /* NEW in 5.2.1: inclusionsSpec */
	: ENUMERATED properties enumeratedValues inclusionsSpec methodsSpec
	;
	sequenceSpec /* NEW in 5.2.1: inclusionsSpec */
	: SEQUENCE properties fields inclusionsSpec methodsSpec
	;
	protocolClassSpec
	: PROTOCOL CLASS protocolClassName
	optLibraryVersion
	derivedFromOrService
	properties
	inMessagesSpec
	outMessagesSpec
	mscsSpec
	optDependencies /* NEW in 5.2.1 */
	‘;’
	;
	actorClassSpec
	: ACTOR CLASS actorClassName
	optLibraryVersion
	optDerivedFromSuperClass
	optExclude
	properties
	actorInterfaceSpec
	actorImplementationSpec
	actorConfigurationSpec
	optDependencies /* NEW in 5.2.1 */
	‘;’
	;
	localIncludeItem /* NEW in 5.2.1: optStereotype */
	: DEFINE inclusionName optActor optStereotype properties
	;
	defaultPackageDefinition
	: optCompilationPath /* NEW in 5.2.1 */
	properties
	packagePublicComponents /* changed */
	packagePrivateComponents /* changed */
	packageSignals
	packageActors
	optEnvironmentSpec
	optThreadsSpec
	;
	packagePublicComponents
	: /*empty*/
	| PUBLIC ‘{‘ packageComponentsList ‘}’
	;
	packageComponentsList
	: /*empty*/
	| packageComponentsList packageComponent ‘;’
	;
	packageComponent
	: packageComponentType componentName optInPackage optLibraryVersion optPermissions
	;
	packageComponentType
	: classType | PACKAGE
	;
	componentName
	: IDENT
	;
	environmentSpec
	: ENVIRONMENT environmentName optLibraryVersion bracketedExpression ‘;’
	;
	compilationPackageDefinition
	: ISA COMPILATION defaultPackageDefinition
	;
	anyValue
	: IDENT
	| NUMBER
	| REAL_NUMBER
	| TEXTSTRING
	| boolean
	| enclosedExpression
	| bracketedExpression
	| ‘&’ | ‘*’ | ‘@’ | ‘\\’ | ‘:’ | ‘.’ | ‘,’ | ‘!’ | ‘?’
	| ‘=’ | ‘<‘ | ‘>’ | ‘+’ | ‘-’ | ‘#’ | ‘;’ | ‘/’ | ‘~’
	| ACTIVE | CONFIGURATION | FIELDS | PROPERTY | PROPERTIES | SEQUENCE | SYSTEM
	| THREADS | UNDEFINED | VALUE | VALUES | VERSION | VERSIONS
	| ‘[‘ ‘]’
	;
	Problems Addressed in this Release
	For a complete list of problems which have been addressed in this release, please refer to the Ob...
	http://www.objectime.com/support/restricted-dir/index.html.
	You will be prompted to enter your assigned ObjecTime user name and password to gain access.
	General Information

	Toolset Memory Requirements
	This section discusses the memory requirements for the ObjecTime Toolset and the disk space requi...
	This section does not discuss the size of the generated executable for an ObjecTime model (for an...
	The platform-specific sections of this guide deal with the minimum requirements to run the Toolse...
	Memory consumption for ObjecTime models varies with many factors. The memory consumption varies w...

	• actor classes
	• protocol classes
	• data classes
	• configurations and their attributes
	• packages
	• actor references
	• bindings
	• ports
	• states
	• transitions
	• choice points
	• events
	• functions
	• inclusions
	• ESVs
	• MSCs and their contents
	• probes and their attributes
	• etc.
	Memory consumption also varies with the amount of code (RPL, C and C++) entered in transitions, g...
	Perhaps not so obvious, memory consumption also varies with things like:

	• the number of equivalences defined in a model
	• the number of requirements links
	• the number of inflection points on bindings/transitions
	• the depth of inheritance class hierarchies
	• the number of excluded objects in a subclass
	• the types of edits performed on a model in the current session
	• the number and types of windows open on various components in the model
	• and so on.
	Memory consumption will also increase once a model has been compiled. Given all of these variable...
	Typical model memory usage

	We have studied several typical ObjecTime models. While the data given here is typical for the mo...
	The models which we have studied are typically characterized as follows:

	• X Actor classes
	• between 0.4*X and 0.7*X Protocol classes
	• between 0.7*X and 3*X Data classes
	• on average each actor class has between 70 and 200 uncommented lines of code
	Given this characterization, the in-memory size of these models is typically between 40 KB and 13...
	Memory usage in operations

	Operations such as activation, passivation and merging will make copies of various internal data ...
	Context vs. update memory usage
	Another issue related to memory usage is that relating to contexts and updates. When contexts are...
	Two procedures for doing this are as follows:

	• start with an activated context in memory with an update created from it
	• passivate the update
	• delete the update
	• delete the context
	• activate the update
	• save and exit the session
	• restart the session
	or alternately:

	• start with an activated context in memory with an update created from it
	• passivate the update
	• abandon the session
	• restart a clean/empty session
	• activate the update
	Through the use of this technique, only one copy of the classes are stored in memory. Note that t...
	Model file sizes

	Passivated (file) versions of models (updates and contexts) are smaller than the in-memory size o...
	Note: This ratio only applies to passivated updates and contexts. Since project files contain ref...
	Summary

	The results discussed above will now be presented in a more compact form. Keep in mind that this ...
	1) Given a typical model with X actor classes, the in-memory size of this model will be:
	Y = between 40KB * X and 130KB * X
	2) If both a context and update of this model are to be stored in memory, this would require 2*Y ...
	3) Operations involving this model may require an additional Y to 2Y of memory needed only for th...
	4) The passivated file (update or context) size of this model should be between Y/2 and Y/5.
	Microsoft Visual SourceSafe (MSVSS)
	The following notes apply to using Microsoft Visual SourceSafe (MSVSS) as a library system:

	1) The ObjecTime library scripts for Microsoft Visual SourceSafe (MSVSS) do not allow the use of ...
	2) ObjecTime scripts currently set the file type to binary format regardless of the setting withi...
	3) If a file is manually deleted from an ObjecTime project in MSVSS without setting the 'Destroy ...
	4) The same user (on the same or different systems) should not perform more than one MSVSS librar...
	Limits
	Model Limits (RPL, C and C++)

	The total number of ports + SAPs + ESVs + actorRefs per actor class <= 256. This includes inherit...
	RPL Code Editor

	• 2000 lines per code segment
	RPL Limits

	• 256 method variables (arguments and temp vars)
	• 256 literals (strings, numbers, symbols, characters, message selectors, referenced class names,...
	• 256 levels of nested IF/WHILE/FOR statements
	• There is a limit on the size of the compiled code generated for the inside of IF/WHILE/FOR stat...
	Simulation Services Library Limits

	• A maximum of 16,384 actors can be incarnated at run-time in a model.
	• When using the SimulationRTS you must have selected the “Basic” debugging tool in order allow t...
	Special Notes and Reminders
	• ObjecTime Developer conventions for environment variables are as follows:
	General: Toolset uses host conventions - $<name> in UNIX and %<name>% in NT
	Exceptions:
	Environment Browser supports $ for both UNIX and NT. It does not support %
	Package path supports $ for both UNIX and NT. It does not support %
	• To improve performance when you do a merge, especially with large systems, do NOT select “Cance...
	• The external editor started up by ObjecTime must be a window based editor. On Unix, for example...
	• Version 1.1 of an object in a library is often used as a dummy placeholder to reserve the objec...
	• Library check in and check out of a class will cause a refresh of any library browsers open on ...
	• ObjecTime does not guarantee proper operation when an image (.otd) file is created in one direc...
	• Once an actor has been compiled, modifications to the replication factor of the actor itself or...
	Also note that for unspecified replication factors (replication factor = *), if you change the ro...
	• ObjecTime currently assumes that library scripts on Windows NT are written in Perl. On Windows ...
	• Users should not rename the ObjecTime image files. For example, renaming the image file "ObjecT...
	• In order to support building the linear form parser on multiple platforms, GNU Bison (version 1...
	• ObjecTime uses a very simple algorithm for comparing version numbers. It assumes that a version...
	Perl Information
	• Perl plays a number of roles in ObjecTime Developer 5.2.1.
	1. To produce a dependency list for Target Services Library source files to permit recompilation ...
	2. To pre-process our generated make files on UNIX hosts in preparation for their use in building...
	3. To permit execution of our make files on Windows NT targets when compiling and linking on that...
	Perl is included with the ObjecTime release. The version of Perl in use at the time of release wa...
	To run the Perl scripts provided with ObjecTime, make sure the path is properly set up on your Un...
	Building a Model with VC50 Debugging Information

	NEW in 5.2: For Windows NT users that are developing with the Visual C++ 5.0 tools, ObjecTime Dev...
	Before you compile your ObjecTime model:

	• Ensure DevStudio’s bin and sharedIde\bin are in your path.
	• Read ‘Pure Windows NT Installation’ under ‘Supported Network Configurations’ in the Introductio...
	• Read Appendix E, Integrating Developer Studio on Windows NT, in the C++ Language Guide.
	Troubleshooting

	Troubleshooting Unix
	This section lists common problems and errors encountered when installing and running ObjecTime D...
	CD read errors

	If you are installing from a CD-ROM drive across the network and you are using a fast CD-ROM devi...
	Incorrect key mappings

	If you are running ObjecTime from an HP workstation or from an NCD X-terminal, and some keys on y...
	SCCS/RCS files missing

	Upon starting up ObjecTime, you may receive several messages indicating that several SCCS and/or ...
	Cannot allocate color

	This problem can occur if there are insufficient color resources for all of the X Window System a...
	For Sun OpenWindows 3.2, this can be done by using the following command when starting up:
	openwin -dev /dev/fb staticvis
	Configuring OpenWindows for use with a Gray-Scale Screen

	The following indicates the options that should be used when starting up OpenWindows:
	OpenWindows 3.2:
	-dev /dev/fb grayvis staticvis
	OpenWindows 3.3:
	-dev /dev/fb defclass StaticGray grayvis
	Font problems

	If a dialog is presented which indicates that fonts cannot be found, then the font path was likel...
	Setup of Fonts for X-Terminals

	The ObjecTime fonts will not be set properly if the user is on an X-Terminal which obtains its bo...
	Setup of Fonts for PC and Mac Based X-Terminal Software Packages
	To use the ObjecTime fonts with your X-Terminal package, you will first need to convert the deliv...
	1 Converting fonts - Most X-Terminal software packages have a utility to convert fonts in ‘bdf’ f...
	2 Installing fonts - Refer to your X-Terminal’s manual for the procedure to install the newly cre...
	3 Associating font aliases with font files - The ObjecTime code refers to the fonts by the ISO st...

	font alias
	otl10b -objectime-otl-bold-r-normal--12-100-75-75-p-60-iso8859-1
	otl10s -objectime-otl-ultrabold-r-normal--12-100-75-75-p-60-iso8859-1
	otl10r -objectime-otl-normal-r-normal--12-100-75-75-p-60-iso8859-1
	otl10t -objectime-otl-ultralight-r-normal--12-100-75-75-p-60-iso8859-1
	otl10i -objectime-otl-normal-i-normal--12-100-75-75-p-60-iso8859-1
	You need to type these aliases exactly with no spaces. The best way to enter these strings is pro...
	Note that when using Mac/PC based X terminal packages, you probably don’t want to use the Unix ‘x...
	Font Installation Diagnostics

	Once the fonts have been installed, you can perform these diagnostics to verify that they are ins...
	Try the Unix command ‘xlsfonts | grep otl’ and verify that the output is:
	-objectime-otl-bold-r-normal--12-100-75-75-p-60-iso8859-1
	-objectime-otl-normal-i-normal--12-100-75-75-p-60-iso8859-1
	-objectime-otl-normal-r-normal--12-100-75-75-p-60-iso8859-1
	-objectime-otl-ultrabold-r-normal--12-100-75-75-p-60-iso8859-1
	-objectime-otl-ultralight-r-normal--12-100-75-75-p-60-iso8859-1
	otl10b
	otl10i
	otl10r
	otl10s
	otl10t
	If not, then the ObjecTime fonts cannot be found. Retry the font installation procedure. Once the...
	xfd -fn otl10b
	xfd -fn otl10i
	xfd -fn otl10r
	xfd -fn otl10s
	xfd -fn otl10t
	can be used to open up windows on the five fonts to verify that they look correct. Here is a quic...
	otl10b - bold characters: upper/lower case, four arrows and ‘ent’
	otl10i - italic font
	otl10r - upper/lower case characters, special icons (document, check mark, stop sign, yield sign,...
	otl10s - icon only font: document, check mark, stop sign, yield sign, etc.
	otl10t - template font: each cell (character) is really a multi-character bitmap (e.g. ‘<keyword>...
	If the fonts look correct, there should be no problem running ObjecTime.
	• After starting my first ObjecTime Developer session, the fonts look like they don't have spaces...
	Possible cause: New fonts conflict with your previous installation of ObjecTime Developer 5.X, us...
	Solution: Point your NFS client software to use newly installed fonts and removed previously comp...
	Socket connections:

	• Cannot open socket connection to external Layer Service master.
	Upon initialization of a model that contains SAPs, the toolset times out for each socket connecti...
	Online Help

	If the UNIX platform in which the toolset is running, does not have a browser installed, the foll...
	You must install a compatible browser for online help to function. Please refer to “Installing Ne...
	License Server Upgrades

	If you need to replace the ObjecTime license server, or perform a disk replacement on the server,...
	Troubleshooting Windows NT
	Screen flicker

	If the colors in ObjecTime Developer 'flicker', when switching between applications then your sys...
	Install/Uninstall Problems

	• Install will not proceed for non-Administrators.
	The user doing the install must be in the Administrator group to run ObjecTime Developer 5.2.1 In...
	• Uninstall leaves incrementally installed ObjecTime files on the disk.
	Always run the uninstall program before re-installing ObjecTime Developer. If components have bee...
	• Install fails trying to create rtsController.exe
	If you try to install into a directory that previously held an ObjecTime installation and one (or...
	1 Reboot the workstation.
	2 Delete the partial install (ensure that all the files are deleted).
	3 Start the install again.

	• Font installation error.
	If the ObjecTime installation procedure returns an error (see below) on Font install, it is due t...
	You may do one of the following:

	• reboot or reinstall ObjecTime
	• follow the instructions in the dialog (after the next reboot)
	• Uninstall of “old” ObjecTime Release causes run failure of 5.2.1 in the following ways:.
	• Loss of license manager from system
	• Loss of environment settings for OBJECTIME_HOME and PATH inclusing of %OBJECTIME_HOME%\BIN\WINNT4
	This is due to problems with multiple ObjecTime Releases sharing the same registry entries. This ...
	• For the scenario where you have:
	• installed OT5.1
	• then installed OT 5.2.1
	if you want to uninstall OT 5.1, you should:
	1 Do a user setup in OT 5.1.
	2 Uninstall OT 5.1.
	3 Do a user setup on OT 5.2.1.

	• Listbox is empty
	During setup the user can go to the Directory Browser to select the destination directory for 'Ob...
	To work around the problem, press then network button on the browser and press cancel in the netw...
	Online Help

	If the Windows NT platform in which the toolset is running, does not have a browser installed, th...
	You must install a compatible browser for online help to function. Please refer to “Installing Ne...
	Compilation problems:
	Compile fails on valid C++ model for TargetRTS or SimulationRTS with VC++ 5.0 / 6.0

	The INCLUDE and LIB environment variables may not be properly set. Start "ObjecTime Developer Com...
	Error loading Actor (“could not spawn process”)

	If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured t...
	Error linking Actor (“error from nmake”)

	If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured t...
	Windows NT Compilation Command Line Limits
	In 5.2.1: If you encounter a compilation error message that complains about the command line bein...
	Windows NT compilation has command line limits in two areas: source compilation and linking. Both...
	Source File Compilation
	The variables in source compilation are the update name, the %OBJECTIME_HOME% path, compilation o...
	A workaround for the problem is to reduce the number of include directories by combining include ...
	Linking
	The variables in linking are the update name, the %OBJECTIME_HOME% path (%OBJECTIME_HOME% in NT),...
	Table 4 Link Limits

	Platforms
	Link Limit
	Visual C++ 4.2:
	2049 characters
	Visual C++ 5.0:
	more than 20875 characters
	VRTX PPC Microtec 1.4
	4147 characters
	Tornado 1.0.1 PPC Cygnus 2.7.2
	4150 characters
	HPUX 10.20
	16384 characters (make: “couldn’t load shell.stop”)
	A workaround for the problem is to shorten paths and names for the variables listed in the previo...
	MSVSS Library problems
	MSVSS Library Interface fails to find scripts or project

	Possible cause: ObjecTime library directory incorrect for Windows NT.
	Solution: In order for ObjecTime to recognize a directory as a valid library to be accessed with ...
	Visual SourceSafe is a project-oriented library system as opposed to the directory-oriented libra...
	MSVSS Library Interface commands fail to execute with the message 'Cannot execute MSVSS command '

	Possible cause: MSVSS binaries are not on the path.
	Solution: Add MSVSS binaries directory to the path and restart ObjecTime Developer session.
	MSVSS Library Interface commands fail to execute with a message ‘Cannot create project <Project N...
	Possible cause: You are not configured as a SourceSafe user.
	Solution: Each user has to be configured, before using SourceSafe, through SourceSafe Administrat...
	MSVSS Library Interface commands fail to execute with the message 'Could not open ObjecTimeMSVSSP...

	Possible cause: ObjecTimeMSVSSProject file is missing from the library directory.
	Solution: Each MSVSS library directory should contain this file to point ObjecTime Developer to w...
	DLL loading problem

	On starting ObjecTime Developer on Windows NT, user sees the error message “ObjecTime encountered...
	Possible cause: The user has overridden the environment variable OBJECTIME_HOME by defining a use...
	Solution: Installation automatically sets the OBJECTIME_HOME variable for the NT user. The user i...
	Mailing exception files

	Windows Messaging must be installed before either exception files or comment files are automatica...
	Starting ObjecTime Developer

	The image file found in the working directory cannot be renamed from ObjecTime5.2.otd. If it is r...
	Troubleshooting License Manager
	On Windows NT, the License Manager utilities fail to execute from the command prompt

	License manager utilities must be invoked from the ObjecTime command prompt available from the Ob...
	License manager fails when running on a stand-alone Windows NT machine

	If the license keys do not work for a stand-alone system, and the logfile indicates that they are...
	Note: a stand-alone system must have an ethernet card installed in order to be able to run the li...
	License file corruption

	If licensing suddenly fails, and the logfile indicates that the license files are not valid, then...
	It is also recommended that the account used to install the license keys be the same one used to ...
	Dialup networking conflicts

	If licensing on a stand-alone machine suddenly stops working, then this may be an interaction wit...
	If this happens, dialup networking can be deactivated and the problem should be corrected. If it ...
	This problem can be avoided if the network card is installed before the dialup networking. If ins...
	Logfile creation failure

	Failure to create a license manager logfile can be caused by the failure to specify a full path n...
	Key activation failure

	If the license manager key files are not created when the activateKey command is run, then make s...
	Inactive License Manager

	Immediately following the installation of the license manager on Windows NT, the license manager ...
	The TZ environment variable should be set to a valid value. Otherwise when the time changes betwe...
	License Server Upgrades

	If you need to replace the ObjecTime license server, or perform a disk replacement on the server,...
	ICON Display

	If the ObjecTime icon which is displayed under Windows NT does match the documentation, you may n...
	Developer 5.2.1 Directory Contents

	After installation of the main ObjecTime files has been completed, the directory structure should...
	<INSTALL>/Developer5.2.1 (this is the top level)
	Help
	This directory and its sub-directories contains the on-line Help, as well as an on-line version o...
	Training
	This directory and its sub-directories contain model updates for the Tutorial (RPL, Batch, C and ...
	specials
	This directory will contain any special patch patches that may be issued for your installation.
	image/ObjecTime5.2.otd
	This is called the image or session file, and is a combination of all the code and data correspon...
	bin
	The bin directory holds the ObjecTime executables and various scripts. The three main executables...
	bin/*/ObjecTimeVM.*
	These are the modified ObjectWorks/Smalltalk virtual machines for various platforms. These files ...
	bin/*/objectime
	This is a UNIX shell script which you use to invoke the ObjecTime toolset. It automatically selec...
	bin/create_objectime_dir
	This is a UNIX shell script which is used to create a directory which contains an ObjecTime sessi...
	Note: In Windows NT, the function of ‘bin/objectime’ and ‘bin/create_objectime_dir’ are combined ...
	license
	This directory contains various files containing encrypted information and is used by the License...
	ModelExamples
	Various examples illustrating the use of ObjecTime features are included here. Each update has in...
	C++/SimulationRTS
	This directory contains all of the source code, makefiles and other files required by the C++ Sim...
	RPL
	This directory contains files used by the RPL browsers in ObjecTime.
	fonts/*
	This directory contains directories containing required text fonts.
	linearForm
	This directory contains yacc specifications for the ObjecTime linear form output used to store cl...
	tools
	This directory contains shared libraries which allow ObjecTime to integrate with source code debu...
	ntsetup
	This directory contains the setup programs for installing ObjecTime on Windows NT.
	Note: In Windows NT, the directory ‘ntsetup’ is used to perform a remote setup. By accessing this...
	Versions

	This directory contains packaging and version information..
	WebModelPublisher

	This directory contains executables and scripts for the Web Model Publisher option if applied to ...
	Codegen

	This directory contains executables and scripts relating to code generation utilities.
	Known Limitations / Restrictions

	Inconsistent compile state
	It is possible, after some model and environment changes, to get into a state where the model com...
	Known examples of where model/environment changes will cause compile problems which require clean...

	• An external header file, or path to a header file, is renamed both externally and in the toolse...
	• The loadbuild paths set in the update properties editor are changed to point at a different dir...
	To recover from the above situations, some of the generated files must be removed. To remove the ...
	If VPATH is being used for build reuse, then the “Generate Changes Only” should be selected on th...
	Supported Platforms
	• The following platforms are supported for version 5.2.1 of the ObjecTime Toolset: AIX 4.2.1 (Po...
	• ObjecTime does not guarantee correct operation if you use the -O2 or higher optimization settin...
	• During compilation for pSOS platforms, a Warning: ‘pointer to function cast to pointer to non f...
	External Layer

	• In situations using External Layer short circuit connections with the TargetRTS, you should use...
	X11
	X server bugs on HP-UX 10.20 in ObjecTime Developer for C++ and C

	• We have discovered a few graphic-related bugs when using ObjecTime on HP-UX 10.20 X servers. So...
	Note that this problem has been found to occur on various versions of the X server for the HP-UX ...
	PHSS_11628 s700_800 10.20 X/Motif Runtime July97 Periodic patch
	Windows NT

	• You cannot delete files when they are currently open or being observed in the Explorer. This im...
	• When you start ObjecTime Developer with Target Observability enabled, there might be a slight d...
	• The Toolset display sometimes doesn't get completely updated when dragging another window in fr...
	• If the license manager is running locally on the system, the uninstall procedure does not remov...
	• When using online help each selection of a menu item will open up a new copy of the default bro...
	• If you start a compilation of a larger C++ model and abandon the ObjecTime session, the Task Ma...
	NEW as of 5.2: The following issues are new since ObjecTime Developer 5.2:
	• Pathnames: ObjecTime Developer 5.2 can’t be installed in a directory whose pathname contains a ...
	• Cross Platform Access: In ObjecTime Developer 5.2, when using PVCS libraries for Windows NT/ Un...
	• Windows NT Compilation Limits: For information on source compilation and linking limits, see “W...
	Working Directory

	Note: Do not store files or updates in the ObjecTime Working Directory. Set up another directory ...
	Merging

	• Daemons placed on an unconnected transition point from the inside of a state, will be lost duri...
	SimulationRTS

	• The 'size' method on subclass ports in the SimulationRTS always returns the replication factor ...
	• When using Windows NT to recompile the SimulationRTS you must use the makent.bat script supplied.
	Class differences merging

	To perform merging of changes from different versions of a class, it is recommended that the diff...
	Some development environments support multi-way merging of classes. This facility is used to supp...
	Some customers have asked about the possibility of using these external merge facilities on the s...
	To perform merging of changes from different versions of a class, it is recommended that the diff...
	User interface
	Shortcut Keys

	• We have discovered minor problems when using ObjecTime's shortcut keys when running ObjecTime u...
	In short, if you discover ObjecTime shortcut keys that either do not work or do something unexpec...
	• The default configuration for OpenWindows 3.3 has the shortcut key “Meta-W” defined to close Op...
	• open the OpenWindows properties windows (from the background menu)
	• select category 'Keyboard'
	• set 'Keyboard Menu Equivalents' to 'Application Only' instead of the default 'Application + Win...
	• The OpenWindows Virtual Window Manager (the window manager which simulates many virtual screens...
	Batch Mode

	• When merging in batch mode in ObjecTime Developer 5.2.1, incorrect syntax in the batch script f...
	merge from /home/user1/tests OpManager.actor endMerge
	• When using the batch mode "selectOption" action, only language option names that do not contain...
	Library

	• SourceSafe Library Management reports that all ObjecTime class types are binary, even if they r...
	• Library System: When submitting classes to a library, do not cancel the submission by clicking ...
	• The library system does not currently prevent several users from submitting two classes of diff...
	• The RCS library mechanism allows a user to check out classes more than once through multiple up...
	If a class is checked out more than once, unchecking it out will result in only the local update ...
	Note: SCCS libraries do not have this problem.
	• Auto-mounted file systems can sometimes result a problem if there is no activity for a long tim...
	Note: There is an incompatibility with the generic use of PVCS and SCCS libraries at the same tim...
	Emergency Passivation

	• The kill -USR1 facility may not be able to invoke the emergency save operation in the event of ...
	Memory Usage

	• To ensure the most optimum use of memory, we recommend that users should periodically passivate...
	Platforms
	SGI Machines

	• The license server does not seem to recognize user IDs correctly, therefore running ‘licenseInf...
	• You must use the pcf fonts with SGI machines.
	AIX Machines

	• A session saved on an AIX machine can not be used on any other platform. Updates or contexts sh...
	DOORS

	• The elements in the ObjecTime design update should not contain any double quotation marks. This...
	• DOORS Integration Pack 2.2 will be required for compatibility with ObjecTime Developer 5.2.1.
	• DOORS Integration Pack 2.1 is required for compatibility with ObjecTime Developer 5.2.
	• Starting with DOORS Integration Pack 2.1, a file in:
	Unix: $DOORSHOME/bin/OT_Version
	or on Windows NT: %DOORSHOME%\bin\OT_Version
	OT_Version can be viewed to identify the version of the integration pack which is installed. If t...
	Default Parser/Scanner Generator

	• In order to support building the linear form parser on multiple platforms, GNU Bison (version 1...
	Help

	• If you bring up help from within the Toolset, and your configured browser isn't running, the To...
	• ObjecTime Developer passes several parameters to Netscape when starting the online help system....
	• The link from the help index page always goes to the Table of Contents and skips the front matt...
	Simulation and Target Compatibility

	• When using recall/recallAll in OTD 5.2.1 do not use default arguments. Supply both arguments to...
	Inclusion Paths

	• Use absolute inclusion paths (as opposed to relative inclusion paths) as the results from using...
	Simulation Timing

	There are known problems using invokes with C++ actors under simulation timing, which even an all...

