
Rational Rose
Guide to Team
Development

Copyright © 1993–2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023309-000

June 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified
Process are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are
used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

ii Rational Rose Guide to Team Development

Contents

How This Manual Is Organized ix

Related Documentation x

Chapter 1 Understanding Team Development 1

Planning for Team Development 1
Developing a Strategy 2

Current Projects 2
Developing for reuse 2

How Rational Rose Supports Team Development 3

Using this Guide 4

Chapter 2 Breaking a Model into Controlled Units 7

What is a Controlled Unit? 7
What Can be a Controlled Unit 8
How Controlled Units are Related and What They Contain 9

Working with Controlled Units 12
Creating Controlled Units 12
Loading, Reloading and Unloading Controlled Units 12
Creating and Using Model Workspaces 14

Understanding Workspaces 14
How a Saved Model Differs from a Model Workspace 15
Rational Rose Guide to Team Development i

Contents
Workspace Example 15
Creating and Saving a Model Workspace 17
Loading a Model Workspace 17

Protecting Controlled Units 17
To Write-Protect a Controlled Unit 18
To Write-Enable a Controlled Unit 18

Splitting a Controlled Unit 18
Merging Controlled Units 19
Adding Controlled Units to a Model (Importing/Loading) 19
Uncontrolling Controlled Units 20

Creating Virtual Paths to Controlled Units 21
Understanding Virtual Path Maps 21
How Virtual Paths Work 22
How to Create Virtual Path Maps 23
Defining a Path Map Relative to the Location of the Model File 24
Defining a New Path Map Using Another Path Map Symbol 25
Defining a Path Map with Wildcards 25
Using Virtual Paths for the Value of a Model Property 26
Using Path Maps for other Artifacts 26
Where Virtual Path Maps are Stored 27

Checking References and Access Violations 27
Check Model 27
Show Access Violations 28

Organizing Controlled Units for Teams 29
Suggested Strategies 29

Chapter 3 Comparing and Merging Models 31

About the Model Integrator 31
About the Model Integrator Interface 32

Browser view 32
Property view 33
Text views 33
Other Interface Features 33

About Contributors 34
ii Rational Rose Guide to Team Development

About the Base Model 34
Comparing Models 34
Merging Models 35
About Differences and Conflicts 35
About Model Files and Model Integrator 36
Understanding Semantic Checking 38

Limitations of Semantic Checking 40
About Memory Requirements and Performance 40

About Model Integrator and ClearCase 42
Merging Whole Models with Controlled Subunits 42
Starting Model Integrator in a ClearCase Integration 43

Comparing and Merging Models 44
Starting Model Integrator 44
Preparing Models for Merging 44
Selecting the Contributors 44
Loading or Unloading Controlled Units 45

Subunit Status 46
Loading Subunits 47
Saving Subunits 47
Subunit File and Path Names 48
How to Resolve Subunit Loading Errors 48
Setting a New Context for Subunits 49

Using Compare Mode 50
Using Merge Mode 50

AutoMerge 50
Interpreting Compare and Merge Results 51
Navigating through a model 53

Searching for a Model Element 53
Viewing Conflicts and Differences 54
Viewing Conflicts and Differences with Auto Advance 55
Viewing Model Elements that have Moved 56
Viewing the Parent of a Node 56
View Nodes Referenced by this Node 57

Accepting Changes from Contributors 58
Deciding Which Contributor to Select 59
Two Ways to Accept Changes 59

Changing Nodes with Differences 60
Rational Rose Guide to Team Development iii

Contents
Reversing Changes to Nodes 61
Using Subtree Mode 61
Using Semantic Checking On-the-Fly 62

When a Contributor is Disabled by Semantic Checking 62
Checking Merged Model for Consistency 62
Correcting Merge Errors 63
Saving the Results 65

Performing a Partial Merge 65

Merging Models Without a Base Model 66

Viewing a Single Model File 67

Using Model Integrator from the Command Line 67

Chapter 4 Working with a Version Control System 71

Understanding Version Control 71
Types of Version Control Systems 72

File Based Version Control Systems 72
View Based Version Control Systems 72

Version Control Development Concepts 72
Development Activity 72
Integration 73
Lineup 73
Working in Isolation 73

Versioning Strategies 74
Single Stream Versioning 74
Parallel Stream Versioning 75

Using Rose’s Integration with Version Control Systems 78
Version Control Add-In 78
ClearCase Add-In 79
Choosing and Activating a Version Control Add-In 79

Using Rational ClearCase 80
About ClearCase 80
Versioned Object Bases (VOBs) 81
ClearCase Views 82
iv Rational Rose Guide to Team Development

Setting ClearCase Up to Work with Rose 82
Steps for Setup 83

Using Microsoft Visual SourceSafe 84
Setting Up Microsoft Visual SourceSafe to Work with Rose 84

Steps for Setup 84

Using Version Control Features From Rose 85
Using the Version Control Add-In on a Previously Controlled
Model 85
Adding Controlled Units to Version Control 86
Checking in Controlled Units 87
Checking Out Controlled Units 88
Undoing the Check-Out of Controlled Units 89
Getting the Latest Version of Controlled Units 89
Removing Controlled Units from Version Control 90

Working with Non-SCC Version Control Systems 91
Repository Mapping Files (.rmf) 92
Version Control Operation Behavior with SCCS 92
RCS/SCCS Repository Setup 93
RCS/SCCS Workstation Setup 93

Command Line Access to the Source Control Tool 93
Create an RMF File 93
Set RMF Environment Variable 93

Chapter 5 Establishing a Model Architecture and Process for Team
Development 95

About Model Architecture and Process 95

Establishing Roles and Responsibilities 95
Model Architect 96
Model Manager 96
Modeler/Developer 98
Integrator 98

Developing a Model Architecture 99
Understanding Subsystems 99
Rational Rose Guide to Team Development v

Contents
One Model versus Multiple Models 101
Mapping the Architecture to Subsystems 102
Checking Package Dependencies for Completeness 103

Show Access Violations 103
Determine the External Dependencies for a Package 103

Checking if a Subsystem is Self-Contained 104
Defining Subsystem Interfaces 105
Setting Up Subsystem Components 105

Components in Subsystems 105
Providing Support for Unit Testing 107
Using Property Sets for Build Settings 107
Creating Processors and Component Instances 108

Project Level Processors 108
Subsystem Level Processors 108
Component Instances 109

Preparing and Releasing Subsystems 109
Splitting a Model into Subsystem Models 110

Should you split the model before adding to version
control? 111
Splitting a Model not in Version Control 111

Splitting a Model Under Version Control 114

Managing/Administering a Model 117
Setting Up Compatible Workspaces 117
Setting Up Version Control System and Repository 118
Partitioning the Model into Controlled Units 118
Save Model to Local Work Area 119
Adding the Model to Version Control 119
Defining Developer Work Areas 119
Creating Labels and Lineups 120
Manipulating the Version Control Repository 120

Developing/Implementing a Model 120
Setting up Version Control 120
Setting up Developer Work Areas 120
Getting a Specific Lineup of a Model 121
Opening a Model Under Version Control 121
Working under Version Control 121
vi Rational Rose Guide to Team Development

Comparing and Merging Model Elements 121
Promoting Changes for Integration 122

Building and Integrating 122
Building using Automated Scripts 122
Building within a Larger Build Procedure 123
Reusing Build Artifacts 124

Creating Reusable Build Artifacts 124
Using Build Artifacts 125

Integrating Changes 126
Automating Model Validation 126

Chapter 6 Parallel Development Sample Using ClearCase 127

Overview 127

Using View Templates 129

ClearCase Entities 130

Initial Setup 131
Create the Integrator View 131
Create Project Labels 131
Create Initial Lineup 132
Creating the Developer View Template 132

Windows NT 133
Unix 135

Automated builds 135
Create the Build View 136

Unix 136
Label Build Files 136
Perform Build 137
When the Build Completes Successfully 137

Create a new lineup label and apply to build file versions 137
Apply TC_LATEST_STABLE to build file versions 137
Make New Lineup Available to Developers 138

Developer Process 138
Creating a Developer View 139
Rational Rose Guide to Team Development vii

Contents
Windows NT 139
Unix 139

Starting a Development Activity 139
Windows NT 139
Unix 140

Working on a Development Activity 140
Finishing a Development Activity 140

Windows NT 140
Unix 140

Integration process 141

View Template Script Usage 141
vtadmin 141
vtsetview 142
viii Rational Rose Guide to Team Development

Preface

This guide, Rational Rose Guide to Team Development, is intended for
those users who work in or support teams of modelers/developers. It
provides background information about Rose and the tools that
support working in teams, as well as guidelines for managing parallel
development.

How This Manual Is Organized

This manual contains the following six chapters:

� Chapter 1—Introduction

Provides an overview of the material covered in the guide.

� Chapter 2—Breaking a Model into Controlled Units

Introduces controlled units and describes how they can be used to
partition a model into manageable parts.

� Chapter 3—Comparing and Merging Models

Describes how to use Model Integrator to compare and merge the
work of multiple developers.

� Chapter 4—Working with a Version Control System

Describes the fundamental concepts behind version control
systems and provides details about Rose’s integration with
ClearCase and Microsoft Visual SourceSafe.

� Chapter 5—Establishing a Model Architecture and Process for
Team Development
Rational Rose Guide to Team Development ix

Preface
Provides guidelines for defining team roles and responsibilities and
for developing a process for managing parallel development.

� Chapter 6—Parallel Development Sample Using ClearCase

Documents a sample environment using ClearCase as the version
control system.

Related Documentation

The information in this guide spans numerous products, both from
Rational and from other software vendors. To learn more about these
products, you should become familiar with their documentation. The
Rational Rose Guide to Using Rose and the Rational Rose online help
provide detailed information about Rose models and the Model
Integrator.
x Rational Rose Guide to Team Development

Chapter 1

Understanding Team Development

Planning for Team Development

Developing complex systems requires that groups of analysts,
architects, and developers be able to see and access the “big picture”
while working on their own portion of that picture —simultaneously.
Successfully managing an environment where multiple team members
have different kinds of access to the same model requires:

� Formulating a working strategy for managing team activity

� Having the tools that can support that strategy
Rational Rose Guide to Team Development 1

Chapter 1 Understanding Team Development
Developing a Strategy

When developing a strategy for working in teams, remember that there
are two facets to consider:

� Developing a strategy that supports current development

� Developing a strategy for maintaining and retrieving the reusable
modeling artifacts that result

Current Projects

When developing current projects, the tools a team uses must be able
to:

� Provide all team members with simultaneous access to the entire
model

� Control which team members can update different model elements

� Introduce change in a controlled manner

� Maintain multiple versions of a model

Implementing a configuration management/version control system is
essential for complex projects. A configuration management system
can effectively support team development as long as it:

� Protects developers from unapproved model changes

� Supports comparing and merging all changes made by multiple
contributors

� Supports distributed (geographically dispersed) development

Developing for reuse

When you develop a system, you are developing valuable project
artifacts that can be reused. Artifacts are typically maintained in some
type of repository. To support reuse:

� Model artifacts should be architecturally significant units, such as
patterns, frameworks, and components (not usually individual
classes)

� All members of a team, no matter where they are located, should
have access to reusable artifacts

� It should be easy to catalog, find, and then apply these artifacts in
a model
2 Rational Rose Guide to Team Development

How Rational Rose Supports Team Development
A reuse repository can differ from your project’s configuration
management system as long as it supports versioning. The repository
should also support cataloging artifacts at an appropriate level of
granularity (for example, at the component level).

How Rational Rose Supports Team Development

To support teams of analysts, architects, and software developers,
Rational Rose:

� Allows team development of a shared model by supporting
decomposition of the model into versionable units, called controlled
units.

� Permits model files and controlled units to be moved or copied
among work areas by using the virtual path map mechanism.

� Enables teams to manage their model in concert with other project
artifacts by integrating with standard source control systems.

� Provides a separate tool, called Model Integrator, to compare and
merge controlled units.

� Enables teams to build their models in concert with other project
artifacts by integrating with standard build environments.

Since managing parallel development is so crucial, Rose provides
integrations with Rational ClearCase and with SCC compliant version
control systems, such as Microsoft Visual Source Safe. By integrating
configuration management systems, Rose makes the most frequently
used version control commands directly accessible from Rose menus,
including the typical check in and check out functions that are used
every day.
Rational Rose Guide to Team Development 3

Chapter 1 Understanding Team Development
Using this Guide

This guide provides an overview of the basic team development
concepts in Rational Rose, as well as how to set up and use Rational
Rose in a team.

The information it contains spans product lines, including software
from other vendors. Its primary goal is to help you develop and tailor
your own guidelines that you can implement.

While it does provide detailed explanations of some features (such as
Model Integrator), you will need to rely on additional product libraries
for information. For example, you will need the ClearCase
documentation in order to configure and set up ClearCase to work in
your environment.
4 Rational Rose Guide to Team Development

Using this Guide
In addition to this guide, consider checking Rational’s web site
(www.rational.com) for white papers, technical notes, and articles
relating to team development.
Rational Rose Guide to Team Development 5

Chapter 2

Breaking a Model into Controlled Units

What is a Controlled Unit?

By default, Rose saves a complete model as a single model (.mdl) file.
However, when many users are working on a model at the same time,
you can reduce contention and enable parallel development by
breaking the model into a series of individual files called controlled
units.

Controlled units are the configuration elements that a team places
under version control. When using controlled units, each team or each
team member is responsible for maintaining or updating a specific
unit.

The lowest level of granularity for a controlled unit is a package in the
use case, logical and component views of a model since packages are
considered the smallest architecturally significant elements.
Rational Rose Guide to Team Development 7

Chapter 2 Breaking a Model into Controlled Units
What Can be a Controlled Unit

You can create controlled units for packages in your Use Case, Logical,
Component, and Deployment Views, as well as a controlled unit for
your model properties.

When you create controlled units, you name each new file but you use
one of these four extensions for the particular type of controlled unit
you’re creating:

� Logical packages and use-case packages are stored in .cat files

� Component packages are stored in .sub files

� A deployment view is stored in a .prc file

� Model properties are stored in a .prp file

You can have an unlimited number of .cat and .sub files but since a
Rose model supports one deployment diagram, there is only one .prc
file. Similarly, there is a single set of model properties and only one .prp
file.

Note that you cannot create controlled units for three of the top-most
views, namely the Use Case, Logical, and Component Views.
8 Rational Rose Guide to Team Development

What is a Controlled Unit?
How Controlled Units are Related and What They Contain

When you create a controlled unit from a package, the contents of the
package are moved from the model file (or enclosing package) and
stored in the new unit file. The new controlled unit file contains:

� All model elements that are in the package

� All packages that are in the package (or a reference to those
packages if they are also controlled units)

� All diagrams that belong to the package

The original file no longer holds the contents of the package. Instead,
the original file now only references the new controlled unit’s file.

Note that the model file only references the first level of controlled
units. Thus, a controlled unit that holds another controlled unit also
holds the reference to that unit.

Packages own modeling elements such as other packages. Ownership
implies a one-to-one relationship. Therefore every package is owned by
exactly one other package in the model.

When you work on a controlled unit, you can change its contents
without affecting the controlled unit it might belong to, or controlled
units it encloses. For example:
Rational Rose Guide to Team Development 9

Chapter 2 Breaking a Model into Controlled Units
In this case, articles.cat can be changed without affecting
business_serv.cat and business_serv.cat can be changed without
affecting ordersys.mdl.

You can create a virtually unlimited hierarchy of controlled units where
top level controlled units consist of references to other controlled units.

For example, you could make all packages controlled units with top-
level packages that are pointers to nested packages. When you do this,
you enable two developers to check out packages that belong to the
same higher level package.

Note, too, that packages can be shared. By creating controlled units,
multiple models can share the same packages, enabling you to
effectively reuse model elements.

How you partition a model and the type of hierarchy you implement will
depend on how team members will operate, both physically (who works
on which packages) as well as logically (how best to partition the model
and preserve its design).

The following illustrates how controlled unit hierarchies appear in the
Rose browser.
10 Rational Rose Guide to Team Development

What is a Controlled Unit?
Note that the format Rose uses for the model (.mdl) and controlled unit
files is called a petal format. It’s a text based format, meaning that you
can open and view the files in any text editor. The petal format is the
same on Windows and Unix platforms, thus enabling teams of
developers on different platforms to share models.
Rational Rose Guide to Team Development 11

Chapter 2 Breaking a Model into Controlled Units
Working with Controlled Units

Creating Controlled Units

To designate a package as a controlled unit, you select the package in
the browser or diagram then click File > Units >Control. Rose prompts
you to supply a location and a filename with the appropriate extension
then it moves the contents of the selected package from the model file
(or enclosing controlled unit) into the specified file.

Note that once you have created one or more controlled units, you must
save your Rose model in order to save the new references in any
enclosing controlled units or in the model (.mdl) file.

Because the model file (or the enclosing controlled unit if the new unit
is going to be created inside another unit) is changed when a new
controlled unit is created, make sure that the enclosing file is write-
enabled. If it is under version control, you must check the file out.

Carefully consider the file structure you implement when
creating/saving controlled units. If the controlled unit will be under
version control, the file structure you use may need to correspond to
the version control structure.

Also, in the early stages of analysis and design, the architecture of your
model can change, sometimes drastically. During these early stages,
modeling elements may be created, moved, or deleted often. When a
controlled unit is moved in the model, the corresponding controlled
unit file is not automatically moved in the directory structure. If there
is significant change, the directory structure can become fragmented
resulting in situations where controlled units that are logically grouped
in the model will not be physically located in the same directory
hierarchy.

Loading, Reloading and Unloading Controlled Units

There are three ways to load controlled units:

� By opening a model, If a model has controlled units, Rose will
prompt you whether or not to load all the subunits when you open
the model. If you respond with Yes, Rose loads all of the controlled
units associated with the model.
12 Rational Rose Guide to Team Development

Working with Controlled Units
� By manually loading units. You can use File > Units > Load (or
Reload) to individually load each controlled unit file you need. Note
that when you point to a package in the browser, Rose displays the
controlled unit file name on the status bar (whether or not it is
currently loaded).

If you double-click on an unloaded package in the browser Rose
will load it.

Note that you can use File > Units > Load or File > Import if you
want to add controlled units from another source to your model.

� By loading a model workspace. Rose enables you to save your
working environment (the set of controlled units you have loaded).
For complete details about model workspaces, see Creating and
Using Model Workspaces later in this chapter.

If your model is large, or you are planning to work on a few specific
units, you can greatly reduce latency and resource consumption by
manually loading individual controlled units or by creating and then
loading a model workspace.

Note that to view or update a unit that has been modified by another
developer since you loaded it, you must reload the unit by using File >

Units > Reload.

Rose uses these icons in the browser to indicate which units are loaded
and unloaded:
Rational Rose Guide to Team Development 13

Chapter 2 Breaking a Model into Controlled Units
In diagrams, Rose uses adornments to indicate which model elements
are controlled units and whether there are unresolved references to
unloaded units. (You enable or suppress adornments by using Tools >

Options > Diagram > Display.)

To unload a controlled unit, select the controlled unit in a diagram
then click File > Units > Unload.

Creating and Using Model Workspaces

Understanding Workspaces

A workspace is a snapshot of all currently loaded units and open
diagrams. By defining one or more workspaces, you can set up your
working environment in Rational Rose and return to that environment
14 Rational Rose Guide to Team Development

Working with Controlled Units
each time you are ready to work. When you load the workspace, Rose
restores the snapshot by loading the specified controlled units and
opening the correct diagrams.

If you are working with large models that are divided into many
controlled units, you will notice even greater productivity gains by
using workspaces to load predefined units and diagrams.

How a Saved Model Differs from a Model Workspace

A saved Rational Rose model contains the diagrams, elements, and
controlled units that make up the complete model. A model workspace
contains the actual state of open diagrams and controlled units for a
specific saved model at a given point in time.

It is possible to have multiple workspaces that correspond to only one
model. For example, during analysis and design, you might want to
define one model workspace that displays the most important analysis
diagrams and controlled units, and another model workspace that
displays the most important design diagrams and controlled units.
Each workspace is different but uses the same model.

It is also important to note that saving a model workspace will not
affect how the model is loaded on another machine. If a co-worker
wants to load a model using a model workspace you defined on your
machine, the co-worker must have a copy of the model workspace and
model located in the same folder on his or her machine.

By default, Rational Rose will name the workspace <model name>-
<Operating System User Name>.wsp. For example, the name of a saved
model workspace might look like MyModelName-JillUser.wsp.

Note: Rational Rose stores all workspace files (*.wsp) in the
workspaces folder of the Rose installation directory.

Workspace Example

The following sample shows how using model workspaces can benefit
a team working on a large model.

A new software developer has just joined a distributed team that is
working on a very large model containing over 200 controlled units.
Through the course of the next several months, the new developer will
model several systems in the Use Case Model and will modify the
Business Actors and Use Cases (as shown in browser illustration). In
Rational Rose Guide to Team Development 15

Chapter 2 Breaking a Model into Controlled Units
order to help the new developer, the team’s project manager created a
model workspace that will load all of the units the software developer
will be responsible for, as well as some of the more important diagrams.

When the developer loads the model workspace, the Business Actors,
Business Use Cases, eCommerce System, POS System, Telesales
System, and Warehouse System controlled units all load. The
workspace configuration will also display some important class and
activity diagrams in the diagram window.

The model workspace will help the new developer by:

� Automatically loading the controlled units that the developer is
responsible for

� Displaying some of the more important diagrams the developer
should examine first

� Saving the developer time because Rose only has to load six out of
200+ controlled units

� Eliminating confusion by limiting the scope of information the
developer sees
16 Rational Rose Guide to Team Development

Working with Controlled Units
After working in the model, the developer can easily customize the
model workspace the project manager created, or create additional
model workspaces to create efficiency.

Creating and Saving a Model Workspace

To create a model workspace you load all controlled units that you will
want to restore when loading this workspace. Open all diagrams to
restore when loading this workspace. Click File > Save Workspace.

Name the model workspace file in the Save As dialog box. The default
model workspace name is <model name><Operating System Use
Name>.wsp.

Rational Rose stores all model workspace files (*.wsp) in the Rose
workspaces folder.

Loading a Model Workspace

To load a model workspace, click File > Load Model Workspace. Select
the name of workspace file (*.wsp) to load.

Protecting Controlled Units

When loading a controlled unit into a model, Rose makes the unit
write-protected or write-enabled depending on the file’s current status
in the file system. Thus, a controlled unit, which is read only in the file
system, is write-protected in the model and Rose prevents you from
modifying it. This means that the toolbox is grayed out on all of its
diagrams and you are not able to update the Specifications of the
contained model elements.

Note: If a write-protected controlled unit contains other controlled units,
the write-protection is not extended to the contained controlled units.

A unit's write protection status is displayed in the Rose window’s
status bar when selecting the controlled unit in the browser. For
example:
Rational Rose Guide to Team Development 17

Chapter 2 Breaking a Model into Controlled Units
If you are using a version control add-in, Rose handles the write-
protection of controlled unit automatically. Thus, a checked-in unit is
automatically write-protected.

There may be situations when you may want to write-protect or write-
enable a controlled unit manually from within Rational Rose (even if
the controlled unit is under version control). For example, if:

� You want to load a checked-in unit, modify it, and save the result
to a new file. To do this, you must manually write-enable the unit
after loading.

� You have loaded a checked-out unit with the intention of browsing
rather than modifying it. Manually write-protecting the unit
assures that you will not inadvertently change it. Once you reload
the model, write-protection no longer applies, and you will be able
to edit the file.

You can change a unit’s write-protection manually from within
Rational Rose by using File > Units > Write Protect/Write Enable.

To Write-Protect a Controlled Unit

There are three ways to write-protect a controlled unit:

� If you are using a version control system, place the controlled unit
under version control and have it checked-in.

� Make the file read-only by setting the file protection of the .cat file
to read-only in the underlying file system.

� By right-clicking on the controlled unit in the browser, and clicking
Write Protect on the Units menu.

To Write-Enable a Controlled Unit

To write-enable a controlled unit under version control, click Tools >

Version Control > Check Out. This will check the unit out and allow you
to edit it.

Splitting a Controlled Unit

If a controlled unit becomes too large or if several team members often
need to update a unit at the same time, you can split the unit. There
are two ways to split a controlled unit:

� Remove the unit and split it into two different units
18 Rational Rose Guide to Team Development

Working with Controlled Units
� Keep the unit, but divide its contents into two new sub-units

To split a controlled unit into two units, make sure that the controlled
unit is write-enabled. If it is under version control, you must check the
file out. If you want the original unit to constitute one of the new units,
create one new package at the same level as the controlled unit.
Otherwise, create two new packages.

Move the contents that should belong to the new package (including
the associations) from the unit into that package by using drag-and-
drop in the browser. Or, move the contents by selecting an element in
a diagram, copying the element to the clipboard, pasting it into a
diagram that is owned by the new package, and then clicking Relocate

on the Edit menu. Designate the new package(s) as a controlled unit.

Note: If you move classes from one package to another the
dependencies and generalizations move but NOT the associations. The
associations must be moved manually.

To divide the contents of a controlled unit into two sub-units, make
sure that the controlled unit is write-enabled. If it is under version
control, you must check the file out.

Create two new packages in the package that correspond to the
controlled unit, then move the contents from the unit into the two
packages by using drag-and-drop in the browser. Make sure to move
any associations as well. Designate the new packages as controlled
units.

Merging Controlled Units

You can display the differences between and merge two versions of a
controlled unit by using the Model Integrator found on the Tools menu.

For more information, see Chapter 3.

Adding Controlled Units to a Model (Importing/Loading)

The controlled units you create can be imported or loaded into other
models. Importing and loading add a reference to a controlled unit to a
model. It does not make a copy of the controlled unit. The imported
controlled units can be edited in both models and changes made in one
model will be visible in the other model. (As with any file, the controlled
unit cannot be open simultaneously in two different models.)
Rational Rose Guide to Team Development 19

Chapter 2 Breaking a Model into Controlled Units
Rose imports controlled units to the diagrams that currently have
focus control. Thus, be sure you are in the diagram where you want to
import the controlled units. The import will fail if you import to the
wrong type of diagram. (For example, you can’t import .cat files to a
deployment diagram.)

Note that when you import a controlled unit, Rose tries to resolve any
references. If an element has a reference that Rose cannot resolve, the
problem is logged.

Before you import a controlled unit, make sure that the destination
model file or enclosing controlled unit is write-enabled. If under version
control, you must check the files out.

To import a controlled unit, click File > Import. In the dialog box, be
sure to select *.cat or *.sub, or *.* as the file type. Do not import a .ptl
file. These are exported model files. When you import them, they
replace the contents of your model.

Uncontrolling Controlled Units

Uncontrolling a controlled unit incorporates the contents into the
model file or into the enclosing controlled unit if the unit to uncontrol
is contained within another unit. After uncontrolling a unit the
enclosing file will no longer reference that unit’s file. Instead, the
contents of the uncontrolled unit’s file is inserted into the enclosing
file.

Before you uncontrol a unit, make sure that the model file (or the
enclosing controlled unit) is write-enabled. If it is under version
control, check the file out.

If you are using one of the version control add-ins, select the model
element and click Tools > Version Control > Remove from Version

Control. The contents of the unit are now incorporated into the
corresponding package in the model and the file is removed from
version control.

If you are not using version control, right-click on the package in the
browser and click Uncontrol on the Units menu. The contents of the
unit are incorporated into the corresponding package in the model, but
the file still exists in the file system.

Save the model (or enclosing controlled unit), which now holds the
contents of the unit file instead of only referencing it.
20 Rational Rose Guide to Team Development

Creating Virtual Paths to Controlled Units
Creating Virtual Paths to Controlled Units

Understanding Virtual Path Maps

Rose provides the ability to define symbolic names for file paths. Each
user can control how these symbolic or virtual names are defined in his
or her own workspace.

Path maps are essential for working in teams, especially where all
users cannot work in exactly the same directory on their local
machines. Using path maps allows model files to be distributed and
relocated.

When you create controlled units, the enclosing model file or controlled
unit stores the reference to the new unit as a file path. In the sample
illustration that follows, the classics.mdl file contains the path to
analysis.cat, the Analysis Model controlled unit file. (Note that in the
illustration the text is actually the contents of the .mdl and .cat files
when opened in a text editor.) The analysis.cat file contains a path to
eCommReal.cat, the controlled unit for the eCommerce System
Realizations package which Analysis Model encloses.
Rational Rose Guide to Team Development 21

Chapter 2 Breaking a Model into Controlled Units
By defining virtual path maps, you substitute these absolute paths
with virtual paths, thus allowing you to move models and controlled
units between different folder structures and to update them from
different workspaces.

How Virtual Paths Work

When Rose reads from or writes to a model, it tries to substitute every
absolute path with a virtual path. When Rose opens a controlled unit,
or uses a path specified in a model property, each virtual path is
converted to an absolute path.

For example, if a user has defined a virtual path,

$MYPATH=Z:\MyModels\classics

and saves a package as
22 Rational Rose Guide to Team Development

Creating Virtual Paths to Controlled Units
Z:\MyModels\classics\analysis.cat

the model file will refer to the package as

$MYPATH\analysis.cat

When another user, who has defined $MYPATH as

$MYPATH=X:\MyModels\classics

opens the same model from his or her "X" drive, Rose resolves the
internal reference to the controlled unit and loads the following file:

X:\MyModels\classics\analysis.cat

Once you create virtual path maps, when anyone on a team opens or
saves a model, Rose will try to match the longest possible file path to
the symbols in the path map and will keep trying, so you can end up
with concatenated path map symbols.

Note: Each user that is going to work on a model will have to define the
same path map symbols before opening the model. For example, another
user with the private workspace Y:\MyModels, must define
$MYPATH=Y:\MyModels. It is also recommended that you not use path
maps to point to network drives or shared files.

How to Create Virtual Path Maps

You use File > Edit Path Map to open the Virtual Path Map dialog.
Rational Rose Guide to Team Development 23

Chapter 2 Breaking a Model into Controlled Units
Note that you do not enter the $ before the Symbol name. (It’s added
for you.) When you click Add, the new path map is added to the list of
existing path maps at the top of the dialog.

Defining a Path Map Relative to the Location of the Model File

A leading "&" on a path name indicates that the path is relative to the
model file or the enclosing controlled unit (if any). For example,
suppose you have created a model:

X:\MyModels\classics.mdl

and a controlled unit:

X:\MyModels\units\analysis.cat.

To allow different users to open the model and load the unit in different
locations, each user can create a path map:

$CURDIR=&.
24 Rational Rose Guide to Team Development

Creating Virtual Paths to Controlled Units
When the model is saved, the reference from the model file to the
package is stored as:

$CURDIR\units\data_serv.cat

When the model is opened in another location, $CURDIR is expanded
to the physical path to the model in that specific workspace, for
example:

Z:\ordersystem.

Note: The "&" requires that the controlled units be located in the same
directory as the model file or in a subdirectory of the model file.

Defining a New Path Map Using Another Path Map Symbol

The actual path in a path map definition can contain existing path map
symbols. For example, if there is a path map, $ROOT=X:\model_vob,
you can define a path map for the path X:\model_vob\MyModels by
simply adding the path map $MYPATH=$ROOT\MyModels.

Defining a Path Map with Wildcards

A wildcard character (*) in the path map can be used to parameterize a
virtual path. For example, if the following virtual path is defined:

$SUBSYSTEM=\server\models\project*\fred

and each user working on "project" has his or her own set of model files
within each subsystem, then a controlled unit belonging to the display
subsystem may have the following path:

\server\models\project\display\fred\diagrams.cat

The model file will refer to the unit as:

$SUBSYSTEM(display)/diagrams.cat

When the model is opened by user "susanne," who has the following
virtual path definition:

$SUBSYSTEM=\server\models\project*\susanne

the virtual path reference to the unit is converted back to the actual
path:

\server\models\project\display\susanne\diagrams.cat
Rational Rose Guide to Team Development 25

Chapter 2 Breaking a Model into Controlled Units
This allows different users to work on the same files with the same
contents but in different folders without having to define a virtual path
symbol for each such folder.

Note that the slashes you use to define a path map are not literal,
meaning that Rose will substitute the correct format for Windows or
Unix platforms.

Using Virtual Paths for the Value of a Model Property

Rose does not convert actual paths in model properties to virtual
paths. In order to use a virtual path in the value of a model property,
you must manually enter the virtual path map symbol, including the
"$" sign—for example, $CURDIR—into the value of the model property.

Using Path Maps for other Artifacts

In addition to using path maps for model and controlled unit files, you
can use them for any artifacts that are attached to your model, such
as documents, code, and URLs.

It is strongly recommended that you maintain one path map for all
model artifacts, including model and controlled unit files. However, if
that’s not possible, you will need to create separate path maps for each
directory structure.

The easiest way to use path maps for artifacts other than model and
controlled unit files is to create the path map before you attach the
artifact. When you do this, Rose automatically converts the absolute
path to a virtual path when you attach the artifact and save it.

For example, suppose you created the path map:

$MYDOCS =E:\Rational

Then, when you attach the file “test.doc” that resides in your
E:\Rational directory to the Analysis Model package in a Rose model,
the following virtual path is added to the analysis.cat file (the controlled
unit for the Analysis Model package):

external_docs (list external_doc_list
(object external_doc

external_doc_path "$MYDOCS\\test.doc"))
26 Rational Rose Guide to Team Development

Checking References and Access Violations
If you attach an artifact before you create a path map, Rose will not
automatically convert the absolute to a virtual path when you save
your model. (Note that it does automatically do the conversion for
controlled units and .mdl files.)

To get around this, you simply need to move the artifact to another part
of your model, move it right back to its appropriate location, then save
the model. (There’s no need to save the model when the artifact is in its
“temporary” location.)

Similarly, if you delete or change a path map, you need to do the same
thing in order for Rose to register the change.

Where Virtual Path Maps are Stored

Virtual path maps are kept in two places in your system registry: the
users area and the system area. A user can typically see and access
only the virtual path maps in his or her area of the registry.

There are also system virtual path maps that are in
H_KEY_LOCAL_MACHINE. You need to be administrator on the
machine to edit these virtual path maps.

Checking References and Access Violations

Once you create controlled units and unit ownership becomes
distributed, it becomes increasingly important to check the integrity of
your model. There are two ways to do this:

� By using Check Model

� By using Show Access Violations

Check Model

Check Model (Tools > Check Model) traverses the entire model looking
for unresolved references and places the results into the log. It is
designed to be used when you are saving your model to multiple
controlled units, to ensure that all the units are consistent with one
another. This is especially useful where parallel development occurs in
multiple controlled units, since it is possible for different units to get
out of synch with one another.
Rational Rose Guide to Team Development 27

Chapter 2 Breaking a Model into Controlled Units
In a model where one item holds a reference to another item, it is
possible that a reference exists, but there isn’t an item in the model of
the right kind or with the right name. In that instance, the reference is
unresolved.

Check Model checks the reference:

� To the supplier of any kind of dependency, generalization,
association, realizes, instantiation, etc.

� From a view on a diagram to an item in the model

� From a logical package to its assigned component package and
from a module to its assigned class

� From an object to its class

� From a message on an object diagram to an operation in a class

� From dynamic semantics in an operation to a scenario diagram

Show Access Violations

Show Access Violations (Report > Show Access Violations) provides a
list of all access violations between packages in a model.

As projects get larger, access violations become more important and
Show Access Violations is the primary tool for verifying that a large
project is maintaining its design architecture.

An access violation occurs when a class in one package references a
class in another package without an import relationship between the
two packages. The import relationship is a dependency between the
two packages. The direction of the dependency must be the same
direction as the relationship between the classes or interfaces.

An access violation will also occur when a package references a class
from another package whose export control is not set to Public. In this
case, the presence of an import relationship between the two packages
has no bearing. All references to non-public classes from different
packages are sited as violations.

Import (dependency between packages) is not transitive, so if package
A imports package B, which imports package C, then package A is not
importing package C. A would have to have import package C
separately.
28 Rational Rose Guide to Team Development

Organizing Controlled Units for Teams
Also, a package that has a nested package automatically gets visibility
to the nested package. The inner package does not have visibility to its
parent. Any package that imports the parent does not get visibility to
the nested packages.

Violations are displayed in a dialog box. You can locate the diagram
and element where the violation occurs by selecting the violation from
the dialog box and selecting Browse.

Organizing Controlled Units for Teams

When a model is shared among teams of developers, it’s essential that
the model be partitioned so that it can evolve in a controlled manner.
One of the keys to successfully sharing a model is to manage the
dependencies between different portions of a model.

Ultimately, how many packages and controlled units to create becomes
a question for the project leader or model Architect and the person
responsible for the configuration management in your project. The
granularity level at which you want to be able to perform version
control may define what becomes a controlled unit. For example, all
packages could be made controlled units, including nested packages.
Doing so, provides the capability for two developers to check-out
packages that "belong" to the same higher level package.

Suggested Strategies

The following are strategies to consider when partitioning a model into
controlled units:

� The model should be a shell with nothing but controlled units
under the use case, logical, and component views·

� Create design model, analysis model, and business model
controlled units under the logical view

� Create an implementation model controlled unit under component
view·

� Consider separating actors and use case controlled units·

� Also consider separate controlled units for each use case·

� Prevent your use case controlled units from including any
diagrams that describe internal system operations or structure,
such as class or interaction diagrams·
Rational Rose Guide to Team Development 29

Chapter 2 Breaking a Model into Controlled Units
� Under the design model and analysis model packages, provide a
use case realizations controlled unit and provide a separate
controlled unit for each realization·

� Class and interaction diagrams that describe system internals
should go with the use case realizations

� Describe the system structure using a series of nested packages
that become controlled units·

� Layers and global packages should be at the top level of nesting·

� Maintain interfaces in separate controlled units·

� Describe each significant mechanism in its own controlled unit

� Control dependencies. Create UML subsystems by using packages
that provide discrete, well-defined services

� Subsystems should expose services only via UML interfaces—they
provide strong separation between major portions of the model

� Subsystem internals should depend only on the interfaces that are
offered by other subsystems

� Developers sometimes define class-level relations that violate
dependencies between packages and subsystems. To detect this in
a model, use Report >Show Access Violations.

For more details about model architecture, see Chapter 5.
30 Rational Rose Guide to Team Development

Chapter 3

Comparing and Merging Models

About the Model Integrator

The Rose Model Integrator is a tool for comparing and merging Rose
models. The Model Integrator lets you compare model elements from
up to seven contributor files, discover their differences, and merge them
into a recipient model.

For example, two developers may need to modify a shared model at the
same time. They can each copy the model, modify it separately, and
then use Model Integrator to merge their changes back into a single
shared copy of the model. Or they can use Model Integrator to compare
their models and identify the differences between them.

Model Integrator can also be used to view the contents of a single model
file. Model Integrator provides a different way of looking at the model
than the view provided by Rational Rose. Model Integrator provides a
low-level textual view of all the model elements and their properties.
This way of examining a model can be a quick way of viewing all the
property settings in use.

Model Integrator runs in two modes:

� Compare mode

� Merge mode

As described later in this chapter, you can switch between modes.
Rational Rose Guide to Team Development 31

Chapter 3 Comparing and Merging Models
About the Model Integrator Interface

The Model Integrator runs outside of Rose and provides its own
interface:

There are three major components to the interface:

� Browser view

� Property view

� Text view

Browser view

The left window pane is called the browser view. In this window, the
primary objects that make up the model are displayed in a hierarchical
tree structure similar to that used in Rational Rose. However, the
objects displayed in the browser view are not identical to the display in
Rose. Model Integrator displays some objects that Rose hides from your
view. See About Model Files for a brief discussion of the objects Model
Integrator displays.
32 Rational Rose Guide to Team Development

About the Model Integrator
Note that the browser view displays only a single view of the model
hierarchy, even though there are several models loaded. The browser
view shows all of the objects from all of the contributing models, but it
tries to partner objects that are the same across all the models. If all of
the contributors have the same model element located at the same
place, the browser will only display a single entry for that node of the
model.

If different contributors have the same model element located in
different places in the model, there will be a node in the browser view
for each location where the model element exists in the merged model.
However, only one of these locations will be written to the final merged
output model file (you will decide which one when you resolve the
conflict at that node).

On the left side of the browser window are icons that display the results
of comparing and, in merge mode, of merging the models. The meaning
of these icons is discussed in Interpreting Compare and Merge Results.

Property view

The upper right window pane is called the property view. This window
displays the set of properties that belong to the currently selected
object in the browser view. In this view there is a column for each
contributor and a column for the recipient model (in merge mode).
There is also a column of icons to help you see the comparison state of
the properties provided by the different contributors. These icons are
the same as the comparison icons mentioned above.

Text views

These windows along the lower right side of the main window display
the values from each contributor for the property currently selected in
the property view. In merge mode, the leftmost text view displays the
value for the recipient model, with the other contributors following it to
the right in numerical order. These windows are for viewing purposes
only. You cannot change the values displayed there.

Other Interface Features

The toolbar along the top makes some commonly used functions
available as buttons. All of these functions are also available in the
menus. When you position the cursor over the icons in the browser
Rational Rose Guide to Team Development 33

Chapter 3 Comparing and Merging Models
view, they display a message explaining the compare or merge state. At
the bottom of the screen, a status bar displays the merge status of the
node currently selected in the browser view.

About Contributors

Contributors are the models that form the input to Model Integrator.
Model Integrator accepts up to seven contributor models for merging.
All contributors must be of the same type – you cannot compare a .mdl
to a .sub file for example. A contributor can be any of the following:

� A model file, with or without its associated controlled units
(subunits). If you specify a model file (*.mdl) as the contributor, and
the model has subunits, you will be asked whether or not to load
its subunits.

� A controlled unit of a model

You can specify a single controlled unit (a .cat, .sub, .pty, .prc, or .prp
file) as the contributor. Controlled units are also referred to as
subunits.

The first contributor (Contributor 1) has special significance to Model
Integrator - it is the base model used for comparing the differences
between the other models.

About the Base Model

The base model is the model that is the ancestor to all of the other
contributor models being merged. That is, the base model is the version
of the model that existed before any changes were made. The base
model must always be specified as Contributor 1.

Comparing Models

Compare mode in the Model Integrator highlights the differences and
conflicts between two or more models. You can switch back and forth
between Compare mode and Merge mode, so you can begin a work
session in Compare mode and then switch to Merge mode if you decide
to merge the models. In Compare mode, you cannot make any changes
to the model, and the Merge menu and toolbar functions are disabled.
34 Rational Rose Guide to Team Development

About the Model Integrator
Merging Models

Merge mode incorporates all of the features of Compare mode, along
with additional information to support the decisions you need to make
in order to successfully merge model files. Model Integrator supports
two types of merge functionality:

� Automatic Merge - Model Integrator merges all changes that do not
produce conflicts.

� Selective Merge - Allows the user to optionally choose the
contributor for each difference found between the models to be
merged.

Automatic merge takes effect when Model Integrator first enters Merge
mode. It creates a recipient model and automatically merges all
unchanged or trivially changed nodes into the recipient model for you.
(A node is another name for an object in the model hierarchy. Examples
of nodes are classes, use cases, objects, operations, components, and
diagrams.) If the merged model has nodes that have conflicts, Model
Integrator displays an icon at the location of the conflict in the browser
window. As you make choices to resolve these conflicts, Model
Integrator shows you the results of your merge.

The selective merge feature lets you change the contributor at nodes
that have differences as well as conflicts. This can be useful when you
do not want to accept all of the changes that a contributor is making
to your model. It is also useful when you need to correct more
complicated errors such as those discovered by the semantic checking
functions.

Model Integrator is designed to merge models that have a common
ancestor (the base model). This is necessary when you keep your model
under version control, and two or more people need to modify the
model at the same time. However, Model Integrator also supports
merging models that do not have a base model.

About Differences and Conflicts

Model Integrator uses the base model (Contributor 1) to identify what
kinds of changes were made to the models being compared or merged.
Each contributor is first compared to the base model. The Model
Integrator displays additions, changes, and deletions between a
Rational Rose Guide to Team Development 35

Chapter 3 Comparing and Merging Models
contributor and its base model as differences. Symbols identify the
types of differences that are found. (These symbols are displayed in the
C column of both the browser view and the property view.)

In compare mode, Model Integrator only displays differences; but in
merge mode, Model Integrator also displays conflicts. A conflict occurs
when there are two or more differences at the same node of the model.
When Model Integrator finds a conflict, it cannot tell which one of the
different contributors should be incorporated into the recipient model.
(Conflicts are displayed in the M column of the browser window, along
with other status information about the merge.)

In Merge mode, Model Integrator will automatically incorporate
differences into the recipient model. However, it requires you to resolve
conflicts by selecting the contributor from which to accept changes.

Model Integrator also supports comparing and merging models without
using a base model as a reference point. However, in this mode, every
node of the model will be displayed as a difference. Conflicts still have
the same meaning in this mode.

About Model Files and Model Integrator

A Rational Rose model consists of a set of objects (also called model
elements, items or nodes), where each object has its own set of
properties that define attributes of the object. Model Integrator exposes
to your view all of the objects and properties defined in the models you
are merging. This way of looking at the model is considerably different
from the normal graphical presentation of the model in Rose. The
following is a brief introduction to the kinds of objects Rose models are
made from.

Basic Objects

The objects you are most concerned with when you create the model
are the objects that represent things in your application such as actors
and classes.

Diagram Objects

Each of the diagrams you create in your model is an object. They are
displayed differently in Model Integrator than in Rose. The diagram
titles will be the same in the browser window, but the diagrams are not
shown as pictures. They are shown as lists of their component objects.
36 Rational Rose Guide to Team Development

About the Model Integrator
Some of these components you are already familiar with, such as
Labels. Others will be new because normally Rose does not show them
to you. These objects include the view objects described below.

View Objects

Each basic object that appears in a diagram is represented by a view
object when it appears in a diagram. For example, when a class
appears on a diagram, the diagram object will have as a child a
ClassView object for that class, and so on for every kind of basic object.
Other view objects exist for items that are part of a mechanism,
described below.

Mechanism

A Mechanism is another normally hidden part of the model that
contains a set of objects used internally to implement parts of the
model you have created. A mechanism will contain more objects as
children.

quids

A quid is a unique identifying number that distinguishes the object it
is attached to regardless of the object’s name. A quid property is
generated by Rose for each object when the object is first created in the
model. quids are unique, so that they can be used to identify an object
even when the name of the object changes, or the object is moved in
the model. Model Integrator uses quids extensively to determine
whether objects are the same – if the quid is the same, then the objects
have a common ancestry.

References

Much of the power of the Rose model comes from the relationships that
exist between objects. These relationships are identified by reference
properties (or just references), based on quids, that enable one object
to point to another one. A given object in a model may have no
references at all or it may have many. Reference properties have
names; common names you will see are client, supplier, and quidu.
Model Integrator provides the command View > Referenced Nodes that
allows you to follow these references to view the model element that lies
at the other end of the reference.
Rational Rose Guide to Team Development 37

Chapter 3 Comparing and Merging Models
It is essential to maintain valid references between the objects in the
model after a merge is completed. When objects are deleted or moved,
Model Integrator must check to make sure that references from other
objects are still valid. This semantic checking function is performed
before the model is saved.

Unnamed Objects

Virtually every object in a Rose model has its own unique name.
However, you are not required to name every object that you create. For
objects that you do not name, Rose creates a name of the form
$UNNAMED$nn, where nn is a number.

Often a model will contain many unnamed objects which you are not
aware of because Rose never shows you the $UNNAMED$ string. Model
Integrator does display the actual name of every object, even unnamed
objects. Usually you can tell what an object is by looking at its icon in
the browser view, its properties (the object type will be at the top of the
property view), and in some cases by looking at the children of the
object.

Rose Model File Versions

Each new version of Rose contains new or improved features that must
be represented in the model files produced by that version. This leads
naturally to model files having their own versions. You can see the
model file version information listed in the property view of the very
first node of the model in the browser view, under the @Petal property.

It is a good idea to only merge models that have the same model file
version numbers. This avoids the problem of creating merged models
that declare themselves to be one version, but which contain some
model elements accepted from contributors which may be incomplete
or different from the expected version. Model Integrator itself is
independent of model file versions, and it does not know how to bring
old model files up to date.

Understanding Semantic Checking

Semantic checking is a merge mode feature that helps to ensure that
the merge choices you make are valid. There are two forms of semantic
checking available in Model Integrator. The first is performed by the
Check Merge function.
38 Rational Rose Guide to Team Development

About the Model Integrator
This function is called automatically before a merged model is saved. It
cross-references all of the nodes of the recipient model to make sure
that the final result is complete.

The second form of semantic checking is an optional, real-time version
of the Check Merge function. This function checks references on the
nodes as you access them, and it disables merge choices that would
introduce errors into the model.

For example, suppose that your base model contains class A.
Contributors 2 and 3 each make a change to one of the members of this
class, while contributor 4 deletes the class. If you have already
accepted changes from contributor 4 to delete the class, it does not
make any sense to allow you to accept one of the changes that
contributors 2 or 3 made to the class. However, with semantic checking
turned off, Model Integrator will allow you to make these contradictory
changes. Model Integrator would not discover the problem until either
you decided to save the recipient, or you used the Check Merge
function to verify the model.

This example is very simple and probably would not be a problem in
practice. But in a large, complicated model, it can be hard to remember
exactly which contributors present valid choices at a particular node of
the model. This problem can also arise when Model Integrator has
made automatic merge choices at nodes that do not have conflicts. If a
node is deleted automatically, you may not be aware of that fact when
you are viewing a conflict at one of its dependent nodes. Semantic
checking helps you to avoid these problems by making your choices
clear at each step.

When semantic checking is activated, and the user moves the current
selection to a new node of the model tree, the checker determines
which choices of contributor (if any) would result in an invalid model if
they were chosen by the user. These choices are then disabled in the
interface by disabling the appropriate menu items and toolbar buttons.

When working with a very large model, you may not want the overhead
of semantic checking. Or, you may want to make a change now and fix
it later. In this case, semantic checking can be disabled. Merge choices
can then be made in the normal manner. Once the merge choices are
made, the user can then select the Merge > Check Merge menu function
to check and repair the model. The model will always be checked for
validity before it is written to disk.
Rational Rose Guide to Team Development 39

Chapter 3 Comparing and Merging Models
Limitations of Semantic Checking

For performance reasons, on-the-fly semantic checking is limited to
checking only the nodes of the model you are viewing, and only when
you view them. Consequently it is still necessary to perform a check of
the whole model before it is saved to disk, and this check may reveal
errors that need to be corrected.

A more important limitation that affects both kinds of semantic
checking is that references to subunits that are not loaded into the
merge session cannot be checked.

About Memory Requirements and Performance

For a typical merge operation, Model Integrator must load three models
and then compile additional information from the loaded models to
compare and merge them. This requires an amount of memory
proportionate to both the number and the size of the contributors.

The exact proportion varies, but a good estimate of the maximum
amount required is to take the sum of the sizes of the model files you
are merging and multiply that number by 5 to get the amount of
memory Model Integrator will need to complete the merge operation.
This memory is in addition to that used by your operating system and
other programs you may be using.

If your models are small, this will not be a problem, but if you have 30
MB (megabyte) set of models to merge, this can put a strain on your
system. A typical sign of a serious memory deficiency is that loading
the models is extremely slow (Model Integrator may even appear to be
frozen) while the disk drive is constantly busy. This condition is known
as thrashing. It occurs because Model Integrator constantly requires
access to the entire data set of all the models you are merging, but
because of the physical memory shortage, much of this data is stored
in virtual memory on your hard disk (in your computer’s pagefile or
swap file, depending on which operating system you are using). The
computer ends up spending all of its time reading and writing the disk,
and very little real work is done. If your virtual memory configuration
is also insufficient, your computer may need to be rebooted in order to
recover.
40 Rational Rose Guide to Team Development

About the Model Integrator
Here are some tips on how to improve Model Integrator’s performance:

� Configure your computer with enough RAM memory to meet or
exceed the 5x requirement stated above. If you have 30 MB of
models to merge, you should have at least 150 MB of RAM memory
in your computer. Anything less will compromise performance, as
Model Integrator will have to store its data on the disk.

� If there is not enough physical memory to meet Model Integrator’s
requirements, make sure that you have allocated enough virtual
memory to accommodate Model Integrator’s needs. Consult your
operating system documentation or ask a system administrator to
adjust the available virtual memory.

� Close other programs to free up memory. Even if you have a lot of
RAM and virtual memory in your computer, other programs may be
claiming large portions of it. In some extreme cases, applications
may load system components which are not unloaded even when
the application exits. If you continue to have problems you may
want to try running Model Integrator after rebooting your computer
and before running other applications.

� Your operating system comes with tools to measure and report on
memory usage. For example, in the Windows NT environment, a
simple tool to use is the Task Manager and its Performance page.
Rational Rose Guide to Team Development 41

Chapter 3 Comparing and Merging Models
About Model Integrator and ClearCase

Model Integrator is designed to work with Rational ClearCase to allow
you to compare and merge individual model files from within the
ClearCase environment. You can use the standard ClearCase tools
such as the Version Tree Browser or the ClearCase context menus in
Windows Explorer to compare model file versions and merge branched
versions of models.

For example, you can right-click on a model file version displayed in
the ClearCase Version Tree Browser window to bring up a context
menu and select Compare > with Previous Version. ClearCase will
invoke Model Integrator to display the differences. Or, from Windows
Explorer you can right-click on a model file in a ClearCase view and
select ClearCase > Compare with Previous Version to accomplish the
same thing.

If you select one of the above compare commands and you do not see
the models displayed within Model Integrator it’s likely that the
ClearCase integration with Rose hasn’t been set up. See Chapter 4 for
instructions.

Merging Whole Models with Controlled Subunits

Currently ClearCase and Model Integrator only support comparing and
merging individual model files or controlled units directly from
ClearCase. Often this works well in a team environment because
modelers are only working on individual component files of the model.

For example, use cases can be divided into categories so that
developers only have to check out the .cat file that contains their use
cases. These files can be privately branched and subsequently merged
back into the main development branch without having to merge the
entire model.

However, it can be desirable to merge the entire model, because
semantic checking works best when the whole model is loaded into
Model Integrator. Currently the way this is performed is by
constructing a separate ClearCase view for each full contributor to the
merge session. Each view is constructed to make the correct version of
the model files for that contributor visible within the view. The model
files are checked out for writing in the view which will receive the merge
result.
42 Rational Rose Guide to Team Development

About Model Integrator and ClearCase
Starting Model Integrator in a ClearCase Integration

Model Integrator is started, not from a ClearCase menu, but from the
Rose Tools menu or by the standard method for the system you are
using (e.g., the Start menu in Windows). The merge session proceeds
in the same way it would if ClearCase were not involved). When
completed, the merged model files are saved and checked back into
ClearCase.
Rational Rose Guide to Team Development 43

Chapter 3 Comparing and Merging Models
Comparing and Merging Models

Starting Model Integrator

Do one of the following to start Model Integrator:

� From within Rose, select Tools > Model Integrator.

� In Windows, Model Integrator appears on the Start menu as part of
the Rose installation. You can select the Rational Rose Model
Integrator shortcut to begin working with Model Integrator without
starting Rose itself.

� From a UNIX shell process or a Windows console process, enter
modelint file.mdl

and click Return. For more information about the command line
interface, see Using Model Integrator from the Command Line (Note
that the directory containing the Model Integrator executable must
be in your path for this to work).

� You can also start Model Integrator from Rational ClearCase as
part of a ClearCase compare or merge operation. See About Model
Integrator and ClearCase.

Preparing Models for Merging

Before merging models, it is a good idea to check each model with the
Rose Tools > Check Model. If errors are reported, those errors should
be corrected before performing a merge with Model Integrator.

Selecting the Contributors

The easiest way to specify contributor files is to drag and drop the files
from the Windows Explorer onto the Model Integrator window
(Windows platform only). If the Contributors dialog is not open, Model
Integrator will open it for you. If it is open already, then you must drop
the files onto the dialog box, not the main window.

Alternatively, select File > Contributors to display the Contributors
dialog. Then, follow these steps to specify the files to compare or merge:

1. Do one of the following to specify the first .mdl, .cat, .sub, .pty,
.prc, or .prp file in the files list.

❑ Enter the fully qualified file name in the blank area of the Files
list.
44 Rational Rose Guide to Team Development

Comparing and Merging Models
❑ Click the Browse button at the top of the Files list control and
use the file browser to find a file to add to the list.

2. Click Enter to confirm the file name.

3. Click the (New) button to create a new file input field.

4. Repeat steps 1 through 3 until all files are specified

5. Click Compare or Merge.

Note: If the Compare/Merge Against Base Model checkbox is checked,
then the first specified file must the base model. If the first file listed is
not the base model, you can use the arrow buttons to change the order
of filenames listed in the Files area so that the base model is listed first.
Select one of the file names by clicking on it, then click the arrow key to
move it in the appropriate direction.

Model Integrator can provide a base model for you if you do not have
one to use. See Merging Models Without a Base Model.

Loading or Unloading Controlled Units

If one or more of the contributor files you specify have controlled units,
Model Integrator displays the Subunits dialog. This dialog allows you
to load or not load (unload) those units before comparing or merging
your files, and to save them again when you save the merged model.
Rational Rose Guide to Team Development 45

Chapter 3 Comparing and Merging Models
Subunit Status

The Status column displays the subunit status for each potential
subunit in the model you are loading or saving. The Status column can
display four different values when loading subunits, or two values
when saving:

Status indicates...

loaded This subunit has been loaded successfully.

not a unit This entry is not currently a separate subunit.
This model section is part of the main .mdl file.

LOAD Model Integrator will load this entry when you
click OK or Apply.

SAVE Model Integrator will save this entry to a
separate file when you click OK.

unloaded This subunit will not be loaded.
46 Rational Rose Guide to Team Development

Comparing and Merging Models
Loading Subunits

Subunits for each contributor are loaded separately, so you will get a
separate Subunits dialog for each contributor .mdl file that has
subunits. You can change the Status value back and forth between
LOAD and unloaded by clicking on the value with your left mouse
button. By default, Model Integrator will try to load all subunits for a
model. If there are units you do not want to load, click the Status value
to change the status to unload, and the subunit will be skipped. If you
do not want to load any subunits, click the Cancel button in the dialog.

When you complete one dialog and click OK, Model Integrator tries to
load the subunits you have specified with the LOAD Status field value.
If there is an error and some of the subunits cannot be loaded, the
Subunits dialog will be redisplayed.

Note: Model Integrator cannot perform reference checking for subunits
that are not loaded.

Each contributor with subunits will bring up its own Subunits dialog.
When you complete the final Subunits dialog, Model Integrator
immediately begins the Compare or Merge session.

Saving Subunits

When you save a model using File > Save or the save icon on the
toolbar, Model Integrator will also save your subunits to the same place
relative to the main .mdl file’s location. In this case, the Subunit dialog
will not be displayed. If you want to change the subunit configuration
of your model, use File > Save As. When you save the merged model
using this function, the Subunits dialog will be displayed. It allows you
to:

� Save your existing subunits configuration by simply clicking OK in
the dialog.

� Create new subunits by clicking on the Status column field for the
subunit you want to create. Model elements eligible to become
subunits are displayed in the Subunits dialog with the “not a unit”
Status value. Click on this value to change it to SAVE and when
you click OK or Apply a new subunit will be created.

� Eliminate subunits by clicking on the Status field and changing
the SAVE value to “not a unit”. When you click OK this part of the
model will be saved in the main .mdl file instead of a separate
subunit file.
Rational Rose Guide to Team Development 47

Chapter 3 Comparing and Merging Models
Whether you use the Subunits dialog or not, if you save subunits to a
directory that already contains copies of the same subunits, Model
Integrator will warn you that you are overwriting the subunits and ask
you if you want to continue. This is in addition to asking you if you
want to overwrite the main model file. You can answer Yes, No, or Yes
to All in order to save your entire set of subunits with no more
questions.

Subunit File and Path Names

The Subunits dialog displays two columns of path-related information
about the subunits in this model. The Virtual Path column shows the
value of the path stored in the parent model. This value may be an
absolute path or it may contain a virtual path map. The Actual Path
column displays the path that Model Integrator is using to try to load
the subunit.

If path map variables appear in the Actual Path column, you must use
the PathMap button to set a value for the path map variable.

Model Integrator shares path map variables with Rose and will use the
same values transparently. However, Model Integrator may require you
to enter a value for a path map variable if that variable has not
previously been defined on the machine you are using. This situation
is evident when you see a virtual path map variable listed in the Actual
Path column of the Subunits dialog.

You can left-click on the value listed in the Actual Path column and
directly edit the path name that Model Integrator will use to find the
subunit.

When saving a subunit, we recommend that you define a path map
variable (in the PathMap dialog) and set it equal to the value &. This
will prevent absolute path names from being stored in the .mdl file for
the subunits, which makes it easier to move the files to new storage
locations in the future.

How to Resolve Subunit Loading Errors

If you tell Model Integrator to load a subunit, but the load fails, Model
Integrator will display the Subunits dialog again to allow you to correct
the problem. The Status column of the dialog will show you the current
status of each subunit. You may need to scroll the dialog box down to
find a subunit that has not loaded. It will still display the LOAD status.
48 Rational Rose Guide to Team Development

Comparing and Merging Models
At this point you have several options to resolve the problem:

� You can directly edit the Actual Path field to change the path for
that particular subunit as mentioned above.

� If the subunit uses a path map variable, you can change the value
of the path map variable by clicking the PathMap button and
modifying the variable in the Pathmap dialog.

� You can first select the subunit in the list and then click the
Browse button to open a directory browser window and use it to
look for the file. Select a file in this window and click OK. The
filename will be placed in the Subunit dialog.

� You can change the current directory for path map variables that
take the value & by changing the Context field located at the top of
the Subunit dialog.

� You can elect to not load the subunit. Click on the Status field for
the subunit. You should see the status change to “unloaded.” The
subunit will not be included in the merge.

Setting a New Context for Subunits

The Context field is displayed at the top of the Subunits dialog. This
field shows the default path that Model Integrator will use to substitute
for the & path map symbol (see Chapter 2 for a description of how to
use path map symbols).

If you have created your models using a virtual path map, you can
define the value of the symbol to be &. When Model Integrator sees the
& symbol in the definition of a path map, it replaces the symbol with
the actual path specified in the Context field.

By default, the value of the Context field is the path where the main
model file (*.mdl) is located. However, if you have moved the files to a
new location, you can change the Context value and Model Integrator
will try to load the files from the new context.

You can select a new Context path by either entering a new value
directly into the Context field, or by clicking the Browse button to the
right of the field. This button brings up a standard file browser dialog
you can use to find the drive and folder you want.
Rational Rose Guide to Team Development 49

Chapter 3 Comparing and Merging Models
Using Compare Mode

Use compare mode to scroll through the model and observe the
differences between the contributors. If you decide you want to merge
the models, change the mode to merge mode or exit the program when
you’re done.

Using Merge Mode

In merge mode Model Integrator has already tried to automatically
merge the models for you. Your next step depends on the results of the
automatic merge.

AutoMerge

When Model Integrator first enters merge mode, it applies the
AutoMerge procedure to the entire set of contributors. The AutoMerge
procedure follows the rules illustrated in the following table for a
typical case of three contributors (not shown is a move operation, but
it behaves like a change).

A, B, C are model elements. “– “ means not present.

Note: Only the role of the base model is fixed in the AutoMerge
procedure. The order of the other contributors does not matter. Swapping
Contributor 2 and Contributor 3 does not affect the results.

AutoMerge
State

Contributor
1 (Base)

Contributor
2

Contributor
3

Result

No change A A A A

Added -- A -- A

Changed A A B B

Deleted A A -- --

Conflict A B C ?

Conflict A B -- ?

Conflict -- B C ?
50 Rational Rose Guide to Team Development

Comparing and Merging Models
The essence of this procedure is: if a contributor that is not the base
model introduces a change (adds, modifies, moves, or deletes an
object), that change is copied to the merged output instead of the
original object. However, if two or more contributors change the same
thing, then the AutoMerge procedure does not know how to decide
which one to choose. Instead, it generates a conflict.

By default Model Integrator uses automatic merge to merge all changes
that do not produce conflicts into your merged model. You can also use
the Merge > AutoMerge command to reapply automatic merging to
nodes of the model you have previously reverted using the Merge >

Revert command.

In the bottom right corner of the main window, you will see a message
in the status bar saying “Unresolved items nn” where nn is a number.
If the number of unresolved items is greater than zero, you must
resolve these items before the merge can be completed. Use the forward
toolbar button to find the first conflict. Examine the contributors for
this model element and accept your choice to resolve the conflict.

Interpreting Compare and Merge Results

Model Integrator shows you the results of comparing the contributing
models by displaying an icon to the left of each node in the browser
view. Icons indicating the results of comparing the models appear in
the C column. The following table depicts the Compare status icons
and their meanings. Note that the icons for differences are yellow, and
the icons for conflicts are red.
Rational Rose Guide to Team Development 51

Chapter 3 Comparing and Merging Models
Symbols indicating the status of a Merge operation appear in the M
column. The following table depicts the Merge status icons and their
meanings.
52 Rational Rose Guide to Team Development

Comparing and Merging Models
Note: The Merge results do not appear in Compare mode.

Navigating through a model

Searching for a Model Element

To search for a particular node by its name in the browser window,
select Edit > Search. Enter the search string, select the direction to
search in, and click Find.

The search starts at your current location in the browser window and
proceeds through all the nodes in the model that are displayed in the
browser window. (Use Edit > Expand All to display every model object in
the browser.) If the string is found, the browser window scrolls to
display the desired node, and its properties are displayed in the
property view. If the node found is not the desired one, click Find Next

to continue the search from the current point. When the search
reaches the last (first) node of the model, it will wrap back to the
beginning (end) and continue searching. If the string can not be found,
the function will beep. Once the desired node is found, click Cancel to
dismiss the search window.
Rational Rose Guide to Team Development 53

Chapter 3 Comparing and Merging Models
You do not have to specify the entire name you want to find. Model
Integrator performs the search by matching the string you enter
against any part of the model element name. The search is not case
sensitive.

Viewing Conflicts and Differences

The View menu contains a number of options for navigating through
conflicts and differences. These same commands also appear as
buttons on the toolbar. Use these commands to speed your way
through the merged model, making sure that you visit all the conflicts
and differences. These commands will automatically expand the
browser tree to make the next conflict visible, so you do not have to go
hunting for it.

Some of these commands, as noted in the following table, operate in
the same mode as the setting for Auto Advance mode. The text
displayed in the menus and tool tips will change to reflect this.
54 Rational Rose Guide to Team Development

Comparing and Merging Models
Viewing Conflicts and Differences with Auto Advance

The Auto Advance function automatically moves the current selection
in the browser window after you have accepted a change. The function
has three modes of operation:

� Conflict – advances to the next conflict.

� Differences – advances to the next difference.

� None – does not auto advance.
Rational Rose Guide to Team Development 55

Chapter 3 Comparing and Merging Models
You can change the Auto Advance setting by selecting your choice from
the Options > Auto Advance menu.

The Auto Advance setting also affects the functioning of the commands
for viewing conflicts and differences.

The Auto Advance function is set automatically when you load a set of
models. If the models have conflicts, then the Conflict mode is set. If
the model has no conflicts, but has differences, the Differences mode
is set. If there are no conflicts or differences, the None mode is set.

Viewing Model Elements that have Moved

Model Integrator can detect when you have moved items from one place
to another within your model (for example, by using drag and drop
editing or by using the clipboard within Rose). When you merge models
with elements that have been moved, Model Integrator will display all
the locations where the model elements could be placed by the different
contributors. However, you can only keep one of these locations in the
merged file.

When you see one of the status icons indicating that an item has been
moved, you can navigate between the different locations by selecting
the View > Other Locations menu item. Each time you select this
function, it will cycle to the next location where a contributor has
placed the model element you are viewing. If the model element has
only one location, this function will be disabled in the menu.

You can use the View > Previous Location menu item to quickly return
to the node you were originally viewing.

Viewing the Parent of a Node

Every node in the model, except for the first one, has a parent node.
Usually there is an important relationship between a node and its
parent. For example, the parent of a State node is a State Machine.

While merging models you may need to view the parent of a node you
are looking at, but if the model is large, the parent node may not be
visible on the screen. Use the View > Parent menu function to quickly
bring the parent node into view. You can use the View > Previous

Location menu function to quickly return to the node you were
originally viewing.
56 Rational Rose Guide to Team Development

Comparing and Merging Models
View Nodes Referenced by this Node

It is not uncommon for a particular node of a Rose model to reference
other nodes in the model. To ensure consistency in your merged model,
you may want to view these referenced nodes while making a decision
about which contributor to select to resolve a given conflict. Also, if
semantic checking is turned on and a choice of contributor has been
disabled, viewing the referenced nodes can often reveal why this is so.
The View > Referenced Node command makes this easy to do for those
nodes which have one or more of the three common types of references:
client, supplier, and quidu.

Note: For our purposes, these reference types are not important in and
of themselves. They are used internally within the Rose model and their
meaning changes depending on the node viewed. The only real
significance they have in Model Integrator is that they link two different
objects in the model together.

Nodes that have these references will display them in the property
view. Shown below is an excerpt from the property view of a TransView
object that has all three types of references. To the right of the
reference name is the name of the referenced node. You could scroll
through the browser trying to find this node, but this command makes
accurately finding it easy.

When a node in the model contains any of these references, the View >

Referenced Node menu will be active for the type of reference (client,
supplier, or quidu). The pop-up menu for each type of reference
contains an entry for the recipient and each contributor, since the
Rational Rose Guide to Team Development 57

Chapter 3 Comparing and Merging Models
referenced nodes may be in different places in different models (one of
the contributors may have moved them). If you or the Model Integrator
have already accepted a change for the referenced node, the Recipient
menu item will be active. Normally you would choose to view this one
because it is the one that will be saved in the merged model. If the
Recipient choice is not active, that means the referenced node is an
unresolved item.

Accepting Changes from Contributors

The results of the Merge are displayed in the main Model Integrator
window, as shown in the following example.

The X indicates a node that must be resolved before the merge can be
completed. To resolve the conflict, you must specify which of the
contributors to accept.
58 Rational Rose Guide to Team Development

Comparing and Merging Models
Deciding Which Contributor to Select

The crucial issue in performing a merge is of course deciding which
changes you want to keep, and which to throw away. There are a few
simple rules you can follow that will make this job easier:

� Merge often. Do not wait until you have forgotten why you did
something.

� Partition the work and the model so that people can work on
different parts without stepping on each other’s toes. This will
reduce the number of conflicts you have to resolve.

� Know the models you are merging. You should try to know in
advance which of the contributors you want to select for major
components of the model, such as classes and diagrams. This will
help guide the finer-grained choices you must make.

� You may encounter internal parts of the model that you do not
necessarily understand. There is a simple rule of thumb for making
merge decisions about these objects that are normally hidden:
Choose the same contributor for these items as you are selecting
for the related items you are familiar with.

For example, you have a Use Case with an associated Interaction
Diagram, and you are selecting contributor 3 for this diagram
because it has the most recent set of changes. If conflicts arise
among the hidden objects, such as the Mechanism or one of its
components, that are also part of this use case, you should select
contributor 3 for those objects as well. This will maintain
consistency in the final merged model.

Two Ways to Accept Changes

There are two functions that let you accept changes from a contributor.
You can:

1. Resolve all the remaining conflicts with Merge > Resolve All

Conflicts Using. This command lets you choose a single contributor
to resolve all the remaining unresolved items. It operates over the
entire merged model, regardless of where you are when you select
it. However, it only operates on unresolved conflicts. Nodes that
you have previously accepted changes for or that are displaying
only differences will not be affected.
Rational Rose Guide to Team Development 59

Chapter 3 Comparing and Merging Models
2. Resolve an individual conflict or difference by selecting its node
and then using Merge > Resolve Selected Nodes Using or one of the
corresponding toolbar buttons. This function copies one of the
available contributor choices to the recipient. Unlike Resolve All
Conflicts, it operates on any node that displays either a conflict or
a difference, and previous choices are overwritten.

This function can also be used with subtree mode to resolve an
entire subtree of model nodes at one time, or with a set of nodes
selected using the mouse and Shift/Ctrl keys. It affects all nodes
displaying either conflicts or differences, and it will change values
that have been set previously. Warning: Subtree mode is very
powerful. Use it with care.

Note that when semantic checking is enabled, Model Integrator will
disable choices of contributors which may produce errors in the
recipient model. If you wish to make the change anyway, you must
turn off Merge > Semantic Checking.

You can always use Edit > Undo to undo any merge choices you make.

Changing Nodes with Differences

You can accept changes from nodes which do not have conflicts, but do
have differences. In this case, Model Integrator’s AutoMerge procedure
has already made a choice for you. The choice of contributor is not
displayed in the M column of the browser window for clarity’s sake, but
you can see which contributor is currently chosen by looking at the
property view. The Recipient column displays the values for the chosen
contributor. The AutoMerge choice will be the contributor that is
different from the others.

You can override this choice by selecting the node in the browser and
applying Merge > Resolve Selected Nodes Using to select a different
contributor. The effect of this is to not accept the change because you
are choosing a contributor that did not change the model. This is
useful when, for example, you do not want to delete a model element
that is deleted in one of the contributors. When you apply this
command to a node with a difference, the M column will show the
contributor you’ve chosen for the result.
60 Rational Rose Guide to Team Development

Comparing and Merging Models
Reversing Changes to Nodes

If you change a node, you can always use Edit > Undo to restore it to its
original state. However, if you changed some time ago in your merge
session and you do not want to undo other work you have completed,
there is another choice. The Merge > Revert Selection command will
restore a node to the unmerged state.

The effect of this command is to make the node unresolved whether it
is a conflict or not. The M column for this node will change to display
the X icon. For conflict nodes, this command removes your choice of a
contributor to resolve the conflict. For difference nodes, this command
removes the AutoMerge choice made by Model Integrator.

The Merge > AutoMerge Selection command can only be applied to
nodes that have been reverted. Applying the AutoMerge command to
reverted nodes will restore them to the state they were in when the
merge session started.

Using Subtree Mode

Subtree Mode allows you to apply merge mode commands to both the
current node and to all of its children. Subtree mode can be activated
through either a toolbar icon, or by toggling Merge > Subtree Mode.

With Subtree mode turned off, you can visit each subtree node and
make independent choices of contributor for each node. With Subtree
mode turned on, Model Integrator will automatically apply the selected
command to all of the children of the current node.

Merge mode commands that are affected by Subtree mode are:

� Merge > Resolve Selected Nodes Using

� Merge > Revert Selection

� Merge > AutoMerge Selection

Subtree mode is useful when you want to accept a group of related
objects from a particular contributor. For example, you can accept an
entire diagram from a contributor by selecting the top level node of the
diagram, enabling Subtree mode, and then selecting Merge > Resolve

Selected Nodes Using (or use the toolbar buttons).

Subtree mode is very powerful. Use it with care, and remember to turn
it off when you’re done with it. But if you forget, you can always use
Edit > Undo to undo any unwanted changes.
Rational Rose Guide to Team Development 61

Chapter 3 Comparing and Merging Models
Using Semantic Checking On-the-Fly

Semantic checks are performed by the Check Merge function before
you save the merged model, but they are also available while you work.
Selecting Merge > Semantic Checking will enable Model Integrator to
perform some reference checking when you select a new node in the
browser to visit. Based on this check, Model Integrator will disable
merge choices that will result in merge errors later in the session.

Enable this function when you want to avoid accepting changes that
may produce errors. However, the checking performed by this function
is not complete because it would take too long to check the entire
model every time you select a different node. Consequently, Model
Integrator must still use the Check Merge function, and it may still find
errors, even when semantic checking is enabled.

When a Contributor is Disabled by Semantic Checking

When this happens you have two choices:

� Track down the reason the choice is disabled by looking at the
model elements referenced by this node (View > Referenced Node)
or the parents of this node or its referenced nodes (View > Parent).
Usually you will find that one of these nodes is already being
deleted by another contributor. Choose a new contributor that does
not delete the node, and then use View > Previous Location to
return to the original node and make the choice you want.

� Turn off Semantic Checking, and make the choices you want. Rely
on the Check Merge function to find any errors when you are done
with your merge.

Checking Merged Model for Consistency

Use Merge > Check Merge to check your merged model for internal
consistency. Inconsistency can occur during a merge operation when,
for example, one of the contributor models you are merging deletes
model elements that are still in use by one of the other contributors to
your merged model. This can occur because of:

� Decisions you make when you resolve conflicts between
contributors

� Decisions made by Model Integrator’s automatic merging feature
62 Rational Rose Guide to Team Development

Comparing and Merging Models
You can use the Check Merge command to check your model while you
are using Model Integrator to create a merged model. If there are errors,
the Check Merge dialog will open.

Before saving a merged model, Model Integrator automatically uses
Check Merge to verify the model for consistency. If a merged model fails
the Check Merge consistency check, Model Integrator will not allow you
to save it.

Correcting Merge Errors

The Merge Errors dialog floats above the main Model Integrator
window. It’s purpose is to provide a set of tools that can help you find
and correct errors that Model Integrator has detected in the merged
model.

The first step in repairing an error is to select an error message in the
list of errors in the Merge Errors dialog. Then, in general, to correct a
merge error, you must select a different contributor for some node of
the model (see Accepting Changes from Contributors). The Merge Errors
dialog has buttons that will help you to find the node you need to
change:

View Error - Takes you to the node of the model where the error was
discovered. We will call this the error node.

View Definition - Takes you to the node of the model which defines the
reference made by the error node.

View Parent - Takes you to the parent of the currently selected node
in the browser. Use this function to search for the parent of a definition
node. This button is used when you have a node whose parent is
deleted.

View Other Locations - If the node you are viewing has been moved to
different locations by a separate contributors, this function will take
you to the one of the other locations where the node exists. Only one of
these locations will actually exist in the merged output model; the
other nodes are marked for deletion. This button is used when you
have a forward reference error.

Refresh List - This command clears the error list and recomputes the
Check Merge function. If new errors are found they are listed. Use this
command after fixing all the errors because there may be other errors
that were hidden by the first set of errors. The same node of the model
Rational Rose Guide to Team Development 63

Chapter 3 Comparing and Merging Models
could have several errors, but only one will be reported at a time.
Sometimes you will fix one error and that will fix other errors as well.
Refresh List will always display the current set of errors (if any).

Check Merge detects three types of merge errors. The error messages
generated by Check Merge are:

This node references a node that is deleted.

The error node references another node in the model that has been
deleted in the merged model. The View Definition button will display
the location where the deletion occurs. This must be corrected because
the error node requires the other node to exist. To correct this error,
choose either

� A contributor at the definition node that does not delete the node.

� A contributor which deletes the error node (if one is available).

Generally, choosing the same contributor at both locations is the
preferred solution.

This node references a node whose parent is deleted.

Here the problem is essentially the same as for the first message above,
except that one of the parent nodes of the defining node is being
deleted, rather than the defining node itself. When the parent node is
deleted, all of its children will be deleted as well, so you must change
the parent node so that it is not deleted. Use the View Definition button
to go to the defining node in the model. Then use the View Parent
button to move up the model tree until you find the parent node that
is being deleted. Choose a contributor for this node that contains a
definition of the node rather than deletes it.

This node has a forward reference

The error node references another node in the model which has been
moved backward in the merged model (i.e. the definition previously
occurred before the reference in the original model, but now it occurs
after the node that references it). Certain forms of Rose model
references are only allowed to nodes that are defined first in the model.
The View Definition button will display the location where the node
originally was located. You can use the View Other Locations button to
find out where the referenced node was moved in the other
contributors. To correct this problem, you must choose a contributor
that will restore the definition node to its original place in the model. If
64 Rational Rose Guide to Team Development

Performing a Partial Merge
you wish to move the nodes to the new location, you must do it in Rose
after the merge is complete. This will allow all of the references and
definitions to be updated properly.

Saving the Results

Once the number of unresolved items is zero, you can begin saving the
model. Click the toolbar button to initiate the save operation. First,
Model Integrator will check the model for errors. If errors are found,
you must correct them before the model can be saved. The Merge
Errors dialog has the tools and help topics to help you correct these
problems. After you are finished, close the Merge Errors dialog and
save again.

Model Integrator will ask you to specify where to save the main model
file. Select a name and a directory for the output.

If your model has subunits and you loaded them, the Subunits dialog
appears to let you save the subunits. Click OK to continue the save
operation. Once the Subunit dialog closes, the merge is complete and
saved.

Performing a Partial Merge

You may have confined your editing in Rose to only a part of the model,
but when you load the model into Model Integrator, differences appear
in other parts of the model that you may not expect. This is not an error
on the part of Rose or Model Integrator; it simply reflects the fact that
the model is complicated, and not necessarily organized in the way you
might expect.

However, if you want to restrict your merge session to a part of the
model, here is a procedure you can follow to do so. It requires that you
use a base model, which will provide the output for the parts of the
model you do not want to modify. Follow this procedure to do a partial
merge of a model:

1. Enter Merge mode, either from the Contributors dialog or by
selecting Options > Merge Mode.

2. Turn subtree mode on by selecting Merge > Subtree Mode.

3. Select the root node of the model tree. This is the first node in the
browser window.
Rational Rose Guide to Team Development 65

Chapter 3 Comparing and Merging Models
4. Click Merge > Resolve Selected Nodes Using > Contributor 1. This
will cause the base model to be selected for all conflicts and
differences in the entire model. The M column for the entire model
will change to the 1 icon (nodes that were added by other
contributors will change to the 1- icon).

5. Select the part of the model to be actively merged. You can use
Subtree mode if the area you want to merge consists of one or more
subtrees. Otherwise you can select portions of the model by
holding down the Shift or Ctrl keys while clicking nodes you want
to select with the mouse (in other words, use the standard way of
selecting multiple items with the mouse). If you are selecting with
the mouse, make sure that you have expanded the model tree so
that all nodes can be selected (use View > Expand All).

6. Apply Merge > Revert Selection to this part of the model. This entire
part of the model should now display the X icon for each node.

7. Apply Merge > AutoMerge Selection to the same part of the model.

Now you have successfully restricted the AutoMerge function to a part
of the model. There should only be conflicts in the part of the model you
have reverted and automerged (if there are any at all). Complete your
merge of this part of the model and save the model normally.

Note: The Check Merge function may find errors due to references to the
parts of the model you have excluded from the merge with this
procedure. If this happens, you must resolve the reference errors even if
that means making changes outside of the area you have chosen to
merge. You cannot save a merged model that has reference errors.

Merging Models Without a Base Model

To merge two files that do not have a common base model as an
ancestor, do the following in the File > Contributors dialog:

1. Before clicking the Compare or Merge button to load the models,
uncheck the Compare/Merge Against Base Model check button in
the Contributors dialog box.

2. Load the models normally.

Model Integrator will automatically create a base model that is empty.
The base model will occupy the slot for Contributor 1, but it will not
normally be displayed and you cannot accept changes from it in the
merge.
66 Rational Rose Guide to Team Development

Viewing a Single Model File
Note: Previous versions of Model Integrator required you to supply your
own empty base model. Using this new feature, a separate empty base
model is no longer required. Because a base model is not required in this
mode, Model Integrator will let you specify a merge session with as few
as two files when Compare/Merge Against Base Model is not checked.

When merging models using this feature, all nodes in the contributors
that do not conflict with each other will appear with the + indicating
that they are being added to the merged model. Conflicting nodes will
behave normally.

Viewing a Single Model File

Model Integrator supports a view mode for viewing the contents of a
single model file. Do the following to view a single file.

1. Select File > Contributors.

2. Select a single file in the Contributors dialog, and then click the
View button.

Note: If two files are displayed, or if you have begun to enter a second
filename, the button text will change from View to Compare. When the
button displays Compare but you have only entered a single file name,
clicking the Compare button will still enter view mode.

Using Model Integrator from the Command Line

Model Integrator supports a simplified command line interface that can
be used from the DOS and UNIX command lines.

Command Description

modelint file.mdl Starts Model Integrator with file.mdl in the
View Mode.
Rational Rose Guide to Team Development 67

Chapter 3 Comparing and Merging Models
Additionally the following command line options can be used. You can
use either the slash character (/) or the minus sign (-) to begin each
option:

modelint file1.mdl file2.mdl Starts Model Integrator in Compare mode
for the two files.

modelint file1.mdl file2.mdl
file3.mdl

Starts Model Integrator in Merge mode
with the first file named on the command
line selected as the base contributor.

Command Description

/xcompare Starts Model Integrator in Compare mode
for the files named on the command line.
This is the default mode for two files, but
must be specified when comparing more
than two files.

/xmerge Starts Model Integrator in Merge mode for
the files named on the command line. This
is the default mode for three or more files.

/compare Starts Model Integrator in Compare mode
but does not display the results in
graphical mode. This mode performs the
compare operation and then exits to the
operating system with an exit code
indicating the result of the compare
operation: 0 for identical models or 1 for
models with differences.

Command Description
68 Rational Rose Guide to Team Development

Using Model Integrator from the Command Line
/merge Starts Model Integrator in Merge mode but
does not display the results in graphical
mode. If the merge algorithm detects
conflicts, the merge is aborted and the
program returns an exit code of 1. If the
merge can be completed without conflicts,
the merged file is written to disk to the file
named by the /out parameter. If no /out
parameter is specified, the Save dialog will
be displayed. The Subunits dialog will also
be displayed unless a subunit policy
choice is made.

/out filename Specifies the name of the file to write the
merged output file to. You must specify an
absolute or relative pathname for the file.
Either of the following are valid:
/out c:\models\test.mdl
/out .\test.mdl
but this is not valid
/out test.mdl

/ask
/all
/none

Subunit policy options:
The /ask option is the default in the
graphical mode of Model Integrator. By
default when reading and writing models,
Model Integrator will display a subunit
dialog that allows you to specify whether
they want to load/save subunits.
The /all option will load/save all the
subunits without prompting the user with
subunit dialogs.
The /none option will suppress the
loading/saving of subunits.

Command Description
Rational Rose Guide to Team Development 69

Chapter 4

Working with a Version Control System

Understanding Version Control

Successful team development requires versioning tools that meet
certain minimum requirements, including:

� The ability to access artifacts in a controlled manner even when
team members work from different geographic locations.

� An access mechanism that provides versioning of Rose models and
related artifacts.

� The ability for developers to concurrently access and modify
different versions of an artifact.

� The ability to evaluate and merge changes that are introduced
during concurrent development.

� Ability to define configurations of related artifacts then
checkpointing and retrieving them at any time.

Version control systems are intended to make team development
possible. At a minimum, they are repositories that store successive
versions of files. A version control repository may contain thousands of
files, but each version control user typically has a local working area
for storing only a copy of the files in the repository that he or she needs
to access.
Rational Rose Guide to Team Development 71

Chapter 4 Working with a Version Control System
Types of Version Control Systems

There are two types of version control systems, file based and view
based. Each type of system has different features and methods for
supporting the version control process. Consequently, there are
features of each type that are not supported by the other.

File Based Version Control Systems

Version control systems in this category include Microsoft Visual
SourceSafe, Rational ClearCase with snapshot views, RCS (Revision
Control System), and SCCS (Source Code Control System).

File based version control systems require each user to have a copy of
the files in a local folder and use the file system's read-only attribute to
control writing to files.

View Based Version Control Systems

In view based version control systems all versions of a file are stored in
a versioned file system.

Users don't work with the contents of the versioned file system directly.
Instead, they use a work area called a view that provides access to a
set of files in the versioned file system. Moreover, a view provides
access to an appropriate set of versions of those files by specifying how
to choose the version of each file that will be seen in the view.

Rational ClearCase is a view-based version control system.

Version Control Development Concepts

The following concepts are helpful when designing a development
process for working with Rose.

Development Activity

A development activity is comprised of changes to several elements.
Each activity should encompass a unit of work, such as fixing a bug or
adding a new feature. When the changes for an activity are submitted
to the repository, the model will evolve to a consistent new state.
72 Rational Rose Guide to Team Development

Understanding Version Control
Integration

Integration is the process of making changes available for use by other
developers. Sometimes integration will always be performed by a
specific person, but it is also normal for developers to play this role as
well.

Lineup

A lineup is a collection of specific versions of files from the version
control repository. Examples of lineups are:

� Version 4 of every file involved in a project

� The latest version of each file in the project that is dated before
midnight, May 12

� The version labeled "Build 6.1.112" of each file in the project

Lineups are used to represent significant combinations of files. In most
development environments, the files that go into any nightly or
production build form a lineup. Lineups are also valuable for
reproducing specific builds of the system. The term baseline is also
used to refer to a formal lineup.

Working in Isolation

It is essential that a developer’s work be isolated from the work that
other developers are doing. This is important for a number of reasons:

� To ensure that each developer can work without being influenced
by other developers’ editing, compiling, testing and debugging.

� To ensure that each developer can access the appropriate material
to perform his or her role. This usually requires using some sort of
lineup process.

� To ensure that each developer does not expose work to the rest of
the team until it is ready for integration.

To support these basic team development requirements, each
developer should have a private work area for implementing and
testing code in accordance with the project’s adopted standards and in
relative isolation from other developers.
Rational Rose Guide to Team Development 73

Chapter 4 Working with a Version Control System
In addition to providing access to source versions, a work area needs
to provide private (isolated) storage for files generated during software
development, including:

� Working (checked-out) versions of source files

� Executables

� Other work area private objects and source code, test
subdirectories, and test data files

A work area private storage would be typically located within a
developer’s home directory on a workstation.

Versioning Strategies

Single Stream Versioning

Single stream versioning refers to having a single series of version
numbers for each file. In effect, the version history for a file is a linear
sequence of revisions.

While developing a project using single stream versioning, a “latest is
greatest” approach is usually taken. This means that each developer
always works with the most recent version of files in the repository. To
edit a file, a reserved check out is performed on the latest version of the
file. After changes have been made, they are submitted. This
immediately makes the new version visible to other users, and will
become the latest version for others to base their changes on.

This also means that only one person can work on each file at any one
time since they must have the most recent version checked out in order
to perform work.

Single stream versioning is not ideally suited to doing bug fixes on an
existing release while doing new development for a future release.

Both file and view based version control systems can be used for small
projects without the need for branching or multiple stream
development.

Benefits:

� Simple to set up.

� Work area configurations do not need to be modified.

� Can browse any lineup stored in the repository.
74 Rational Rose Guide to Team Development

Understanding Version Control
Drawbacks:

� Work is always based on latest version of elements in version
control system.

� Cannot work on arbitrary lineups — only with most recent version

� If a developer checks in changes that are incompatible with the
latest lineup in the version control, integration and build problems
may arise.

Parallel Stream Versioning

Parallel stream versioning permits each file to have a branching tree of
versions. This allows many versions of the same file to be active at the
same time. The following figure shows the version tree for a typical file
in a parallel development project:
Rational Rose Guide to Team Development 75

Chapter 4 Working with a Version Control System
Most parallel development environments involve nominating a branch
in the version control system as the integration branch. The integration
branch is used for collecting all changes to the project (/main is the
integration branch in the above diagram). Testing, release builds, and
new development are all based on the contents of the integration
branch.
76 Rational Rose Guide to Team Development

Understanding Version Control
All labeled lineups should consist of file versions from the integration
branch. Once established, a labeled lineup can serve as a the basis for
builds, testing, or further development. Frequently, a temporary lineup
is established and built. If the build completes successfully and passes
basic sanity tests, the lineup is then made available as a baseline. This
process is usually automated, and should be done on a nightly/weekly
basis. In the version tree above, the TC_BASELINE_n labels indicate
stable baselines on the integration branch.

The lineup of file versions in the baseline is used for subsequent
development. Development activities should not be performed on the
integration branch, but separate from it. When a development activity
is finished, the changes for that activity can be merged by an integrator
back onto the integration branch. This ensures that the integration
branch is strongly controlled and that only correctly working models
are used to base further development on.

Benefits:

� Controlled baselines

� Baselines allow reuse of build results

� Provides better control over exposing changes to development team

Drawbacks:

� Requires more sophisticated version control system knowledge

� Separate integration step

� Work area configurations must be updated regularly
Rational Rose Guide to Team Development 77

Chapter 4 Working with a Version Control System
Using Rose’s Integration with Version Control Systems

Version Control Add-In

Rational Rose provides version control facilities such as versioning and
controlled access to model files by integrating with any SCC1 compliant
version control system.

Through its Version Control add-in, Rose makes the most frequently
used version control commands directly accessible from the Tools and
shortcut menus in Rose.

For example, you can use the Version Control add-in to:

� Add packages to version control, which you must do before you can
check out or check in the packages

� Check out and check in packages

� Start your SCC-compliant version control system

Version Control logs its actions in the Rose log window, as well as in
the log file that you specify on the Log tab of the Version Control
Options dialog box (Tools > Version Control > Version Control Options).

The Version Control Add-In automatically determines which version
control system is installed. To see which version control system and
SCC API version the Version Control Add-In is using, see the Version
Control Options dialog.

Note: For the Version Control Add-In to work with your version control
system, the version control system has to be correctly set up, see Setting
Up ClearCase to Work with Rose or Setting Up Microsoft Visual
SourceSafe to Work with Rose.

1SCC (Source Code Control) is the Microsoft standard API for version control
systems.
78 Rational Rose Guide to Team Development

Using Rose’s Integration with Version Control Systems
ClearCase Add-In

The ClearCase Add-In provides a tight integration between Rational
Rose and Rational ClearCase. In addition to the generic commands
that the Version Control Add-In provides, the ClearCase Add-In
provides:

� Reserved and unreserved checkout

� Additional ClearCase query and browse commands

� Support for managing files generated by the C++ and Ada Add-Ins

� ClearCase-specific log reporting, including the Cleartool commands
issued and complete ClearCase output messages for each
command

Note: For the ClearCase Add-In to work with ClearCase, ClearCase has
to be correctly set up. See Setting Up ClearCase to Work with Rose.

Choosing and Activating a Version Control Add-In

When you install Rational Rose, the installation program detects
whether ClearCase or an SCC-compliant version control system is
installed on your system. Based on this detection, either the Version
Control Add-in or the ClearCase Add-In is activated by default on your
system.

If you install or change your version control system after you have
installed Rose, you must ensure that the appropriate add-in is
activated. In addition, make sure that only one of the version control
add-in is active at a time. Because the Version Control and ClearCase
add-ins use many of the same commands, you may get error messages
or unpredictable results if both are activated.

To activate or deactivate a version control add-in, click Add-In Manager

on the Add-Ins menu and click the add-in you want to activate or
deactivate.

Note: If you are using Rational ClearCase for version control, we
recommend that you activate the ClearCase Add-In, even though in the
Windows NT environment, you can also use the Version Control Add-In.
The ClearCase Add-In provides a much tighter integration and gives you
direct access to many ClearCase commands from within Rational Rose.
Rational Rose Guide to Team Development 79

Chapter 4 Working with a Version Control System
Using Rational ClearCase

About ClearCase

ClearCase is a comprehensive software configuration management
system. It manages multiple variants of evolving systems, tracks which
versions were used in software builds, performs builds of individual
programs or entire releases according to user-defined version
specifications, and enforces site-specific development policies.

These capabilities enable ClearCase to address the critical
requirements of organizations that produce and release software,
namely:

� Effective development. ClearCase enables users to work efficiently,
allowing them to fine-tune the balance between sharing each
other’s work and isolating themselves from destabilizing changes.
ClearCase automatically manages the sharing of both source files
and the files produced by software builds.

� Effective management. ClearCase tracks the software build process
so that users can determine what was built and how it was built.
Further, ClearCase can instantly recreate the source base from
which a software system was built, allowing it to be rebuilt,
debugged, and updated -- all without interfering with other
programming work.

� Enforcement of development policies. ClearCase enables project
administrators to define development policies and procedures, and
to automate their enforcement.

At its core, ClearCase has a secure data repository. It contains data
that is shared by all users and includes current and historical versions
of source files, along with derived objects built from the sources by
compilers, linkers, etc.

In addition, the repository stores detailed accounting data on the
development process itself, such as who created a particular version,
what versions of source went into a particular build, and other relevant
information.
80 Rational Rose Guide to Team Development

Using Rational ClearCase
Conceptually, the data repository is a globally accessible, central
resource. The implementation, however, is modular. Each source
(sub)tree can be a separate versioned object base (VOB). VOBs can be
distributed throughout a local area network, accessed independently,
or linked into single logical tree.

Versioned Object Bases (VOBs)

ClearCase development data is organized into any number of versioned
object bases (VOBs). Each VOB provides permanent storage for all the
historical versions of all the source objects in a particular tree -- the
right versions of the development objects appear, and all other versions
are hidden.

A version-controlled object in a VOB is called an element. Its versions
are organized into a version tree structure with branches and
subbranches:

As this figure shows, branches have user-defined names, typically
chosen to indicate their role in the development process. All versions
have integer ID numbers. Important versions can be assigned version
labels to indicate development milestones, such as a product release.
Rational Rose Guide to Team Development 81

Chapter 4 Working with a Version Control System
ClearCase Views

Users access the ClearCase repository through views. A view is an
isolated virtual work area that provides dynamic access to the entire
data repository. The changes being made to a source file in a particular
view are invisible to other views. Software builds performed in a view
do not disturb the work taking place in other views.

Working in views, ClearCase users access version-controlled data
using standard path names and their accustomed commands and
programs. The view accesses the appropriate data automatically and
transparently.

A view’s isolation does not render it inaccessible. A view can be
accessed from any host in the local area network. A view can be shared
by several users working on a single host or on multiple hosts.

Setting ClearCase Up to Work with Rose

By using a view model combined with a virtual file system, ClearCase
allows users to specify the lineup of file versions with which they want
to work. (A configuration specification, or config spec, controls the
lineup used for a particular view.) Rose then sees the files in the
current view as if they were stored on a regular (non-ClearCase) file
system.

Rose specifies the set of files that make up the model and ClearCase
provides the versions of these files based on the view’s config spec.
Thus, in order for the files to be added to version control the model
must be saved to a view directory that is not view-private.

ClearCase lets you define a new element type, including specifying the
merge and differencing tool that should be used on files of the new
type. Rose uses this feature to define an element type that applies to
all Rose files placed under version control. With this element type
defined, all new Rose files that are placed into a VOB are associated
with the file type and will use Model Integrator as their default merge
and differencing tool. (For more information about Model Integrator,
see Chapter 3.)
82 Rational Rose Guide to Team Development

Using Rational ClearCase
Steps for Setup

Follow these steps to set up your ClearCase environment to work with
Rose:

1. Create and mount a ClearCase VOB (for example, ProjectRose).
Note that both VOBs and views must be created directly in
ClearCase; that is, outside of Rose.

2. Create a ClearCase view to provide access to the VOB you created.
If you are using ClearCase on Windows, you will need to map the
view to an appropriate Windows NT drive (for example, z:\)

3. Create all necessary views and prepare the model for team
development and organize the model in controlled units.

4. To create the rose_unit element type in the VOB(s) where you store
model files, do one of the following:

If you are using Rose in the Windows NT environment:

❑ In a ClearCase command prompt window, change the directory
to point to a drive and path representing a view and the VOB
where your model files will be.

❑ Create the element type in this VOB, by typing:

cleartool mkeltype -supertype text_file -manager _rose -c
"Model files" rose_unit

If you are using Rose in a Unix environment:

In Rose, click Tools->ClearCase->Setup VOB for Rose Units to add
the rose_unit element type and type manager to the VOB.
Rational Rose Guide to Team Development 83

Chapter 4 Working with a Version Control System
Using Microsoft Visual SourceSafe

Microsoft Visual SourceSafe (VSS) works by storing and retrieving files
on your local disk. Each VSS project has a working folder specified for
it. Rose saves model elements to and loads elements from this working
folder. VSS then checks those local files into and out of its repository.

Setting Up Microsoft Visual SourceSafe to Work with Rose

Steps for Setup
1. Make sure there is a Microsoft Visual SourceSafe database

available to store the model. The database must be created directly
in SourceSafe.

2. Since the Version Control Add-In uses the current user name to
identify the SourceSafe user, the system administrator must enter
you as a user before you can use the integration. (To find out what
is the current user name, click Version Control on the Tools menu
in Rose, and then click Version Control Options.)

3. In Microsoft Visual SourceSafe, open the database where the model
is going to be stored and create a project for the model. (You can
start the application from within Rose by clicking Start Version

Control Explorer on the Tools menu’s Version Control menu.)

4. Right-click on the project and click Set Working Folder. Select an
existing working folder where you want to version control your
model or create a new folder.

Note: If you attempt to control two files of the same name in the
same SourceSafe project, but you specify different working folders for
the files (for example, c:\NewPackage.cat and c:\temp\
NewPackage.cat), SourceSafe controls the first file in the project (c:\
NewPackage.cat), but it will not control the second file (c:\temp\
NewPackage.cat). No error message will inform you that the second
file was not controlled. For this reason, it is highly recommended that
you save all the files from a single project in the same working folder.
Otherwise, you may think you have controlled a file, when you
actually have not done so.

5. Choose Options from the Tools menu. On the Command Line

Options tab, select the Assume Project Based on Working Folder

check box.
84 Rational Rose Guide to Team Development

Using Version Control Features From Rose
Troubleshooting: If the Version Control commands on the Tools menu
in Rose do not work, the SourceSafe Integration component in
SourceSafe may not be installed. To install that component, start the
Microsoft Visual SourceSafe setup program. Click the Add/Remove

button and select the Enable SourceSafe Integration option on the
Maintenance Mode page.

Using Version Control Features From Rose

Using the Version Control Add-In on a Previously Controlled Model

If a model has already been put under version control, but not through
the Version Control Add-In, you must add the controlled units to
version control by using the Add to Version Control command. If you
do not do this, the Version Control Add-In will be unaware of the
previously controlled units.

Note: This information applies only to the Version Control Add-In. If you
are using the ClearCase Add-In, you do not have to do anything else. The
ClearCase Add-In can work with previously controlled units.

Follow these steps to prepare a previously controlled model for use with
the Version Control Add-In:

1. Make sure that the model is not opened in Rose.

2. In your version control system, check out all the controlled units
that belong to the model. (This cannot be done through the Version
Control Add-In because it does not know that the model is under
version control.)

3. In Rose, open the model, load all units, and click Add to Version

Control on the Tools menu’s Version Control menu.

4. If you want to check-in the files after this operation, clear the Keep

Checked Out option.

5. If you are using Microsoft Visual SourceSafe: Click the Browse

button and search for the project, then click OK. If all the files are
located in the same project, click Select All, then click OK.
Otherwise, click the check box next to each file that is located in
the selected project, click OK, and then repeat steps 3-5 for each
set of files that are located in a different project.
Rational Rose Guide to Team Development 85

Chapter 4 Working with a Version Control System
The model is already under version control, so the Version Control Add-
In only updates the controlled units with some additional Version
Control information, but from now on you can use the Version Control
commands to check out and check in the units.

Adding Controlled Units to Version Control

The following procedure describes how to save a package to a file and
how to control it in ClearCase or an SCC-compliant version control
system such as Microsoft SourceSafe. The same procedure is used to
control the model file, the deployment diagram, or the model
properties.

1. Make sure that the unit to which the package belongs—that is, the
model file or the enclosing package—is checked out.

2. Right-click on the package in either the browser or diagram, then
click Add to Version Control on the shortcut menu.

3. A list with all model elements that can be added to version control
is shown. The selected packages are selected by default in the list.
Make sure that all packages that you want to add to version control
are selected in the list.

4. If you are using Microsoft Visual SourceSafe, make sure that the
SourceSafe Project box refers to the project that represents the
working folder where the selected file units are (or will be) located.
If the box does not refer to the appropriate project, click Browse

and then select the appropriate project.

Note: It is not recommended that you create new projects in the
dialog box that is displayed when clicking the Browse button.
However, if you do, the working folder for the new project becomes the
same as the folder where you save the controlled units that you are
adding to version control.

5. If you want to keep the files checked in after this operation, clear
the Keep Checked Out check box.

6. Optionally, write a comment in the Comment box. Your version
control system inserts the comment as a description of the new
unit.

7. Optionally, click the Advanced button to display a dialog box with
additional options. Note that this button is not available for all
version control systems.

8. Click OK.
86 Rational Rose Guide to Team Development

Using Version Control Features From Rose
9. For each selected unit that has not been saved to file yet, a Save As

dialog box is displayed. In the displayed dialog box, specify the
name and storage location of the new unit (for example,
x:\ordersystem\units\user_serv.cat). You must save the file in the
appropriate working folder in SourceSafe or in the appropriate
ClearCase view.

10. Click Save.

Rose creates a file unit from each selected package, if needed, and adds
each file to the version control system.

Note: If you are using Microsoft Visual SourceSafe, the Add to Version
Control command can only handle files that are located in the same
SourceSafe project and working folder. Thus, to add files that belong to
different projects, you must repeat the Add to Version Control command
for each project.

Checking in Controlled Units

To check in a loaded controlled unit into ClearCase or an SCC-
compliant version control system such as Microsoft Visual SourceSafe,
use the following steps:

1. Right-click the unit in the browser or diagram and click Check In

on the shortcut menu. A list with all loaded, checked-out
controlled units in the current model is displayed. Any units that
are currently selected in the browser or in a diagram are selected
by default in the list.

2. Select the appropriate units.

3. Optionally, write an explanation of the checkin in the Comment

box. The text you type will be stored by your version control system
as history for the current check-in.

4. Optionally, click the Advanced button to display a dialog box with
additional options. For example, in order to check in an unchanged
unit in ClearCase, you must select the Check in even if identical
option in the Advanced dialog box. If you do not select that option
when checking in an unchanged unit, you will get an error
message. (Note that the Advanced button is not available for all
version control systems.)

5. Click OK. Rose checks in the units and makes the corresponding
model elements read-only in the model.
Rational Rose Guide to Team Development 87

Chapter 4 Working with a Version Control System
Note: If you are using the Version Control add-in, to be able to check in
a controlled unit from within Rose, the unit must previously have been
added to version control from within Rose by using the Add to Version
Control command. This restriction does not apply to the ClearCase add-
in.

If you are using the Version Control Add-In with Microsoft Visual
SourceSafe, the Check In command can only handle files that are located
in the same SourceSafe project and working folder. Thus, to check in files
that belong to different projects, you must repeat the Check In command
for each project.

Checking Out Controlled Units

To check out a loaded controlled unit from ClearCase or an SCC-
compliant version control system, use the following steps:

1. Right-click the unit in the browser or diagram and click Check Out

on the shortcut menu. A list with all loaded, checked in controlled
units in the current model is displayed. Any units that are
currently selected in the browser or diagram are selected by default
in the list.

2. Select the units you want to check out.

3. Optionally, write an explanation of the checkout in the Comment

box. The text you type will be stored by your version control system
as history for the current checkout.

4. Optionally, click the Advanced button to display a dialog box with
additional options. For example, if you are using ClearCase, you
can make an unreserved check-out with the advanced options.
(Note that the Advanced button is not available for all version
control systems.)

5. Click OK. Rose checks out the files and makes the contained model
elements editable.

6. If Rational Rose asks whether you want to load the unit, click Yes.

Note: If you are using Microsoft Visual SourceSafe, the Check Out
command can only handle files that are located in the same SourceSafe
project and working folder. Thus, to check out files that belong to
different projects, you must repeat the Check Out command for each
project.
88 Rational Rose Guide to Team Development

Using Version Control Features From Rose
To be able to check out a controlled unit, the unit must previously have
been added to version control from within Rose by using the Add to
Version Control command.

Undoing the Check-Out of Controlled Units

To undo the check-out of a loaded controlled unit and to load the latest
checked-in version:

1. Click Version Control on the Tools menu, and then click Undo

Check Out. A list with all loaded, checked-out controlled units in
the current model is displayed. Any packages that are currently
selected in the active diagram are selected by default in the list.

2. Select the checked-out unit.

3. Optionally, click the Advanced button to display a dialog box with
additional options. Note that this button is not available for all
version control systems.

4. Click OK.

5. In case Rose asks whether you want to save the changes before
loading a new unit, click No.

Note: If you are using Microsoft Visual SourceSafe, the Undo Check Out
command can only handle files that are located in the same SourceSafe
project and working folder. Thus, to undo the check-out of files that
belong to different projects, you must repeat the Undo Check Out
command for each project.

Getting the Latest Version of Controlled Units

To copy the latest checked-in version of a loaded controlled unit to your
Microsoft Visual SourceSafe working folder, or dynamically access it
via the ClearCase view in order to load that version into the model,
follow these steps:

1. Click Version Control on the Tools menu, and then click Get Latest.
A list with all loaded, checked-in controlled units in the current
model is displayed. Any packages that are currently selected in the
active diagram are selected by default in the list.

2. Select the appropriate unit.

3. Optionally, click the Advanced button to display a dialog box with
additional options. Note that this button is not available for all
version control systems.
Rational Rose Guide to Team Development 89

Chapter 4 Working with a Version Control System
4. Click Get.

5. In case Rose asks whether you want to save the changes before
loading a new unit, click No.

Note: If you are using Microsoft Visual SourceSafe, the Get Latest
command can only handle files that are located in the same SourceSafe
project and working folder. Thus, to get the latest versions of files that
belong to different projects, you must repeat the Get Latest command for
each project.

If you are using Rational ClearCase, the Get Latest command is only
valid for snapshot views. See your ClearCase documentation for more
information on views.

Removing Controlled Units from Version Control

To remove a loaded controlled unit from version control, follow these
steps:

1. Make sure that the unit to which the unit belongs—that is, the
model file or the enclosing package—is checked in.

2. Click Version Control on the Tools menu, and select Remove From

Version Control. A list with all loaded controlled units that have
been put under version control by the Version Control Add-In is
shown. Any packages that are currently selected in the active
diagram are selected by default in the list.

3. Select the unit that you want to remove.

4. Optionally, click the Advanced button to display a dialog box with
additional options. Note that this button is not available for all
version control systems.

5. Click OK. The selected unit is removed from version control and its
contents is incorporated into the model, but will continue to exist
as:

❑ For Microsoft Visual SourceSafe: A file in your working folder.

❑ For ClearCase: A file in your view, if you are using a snapshot
view, but the file is automatically removed from all dynamic
views.
90 Rational Rose Guide to Team Development

Working with Non-SCC Version Control Systems
Note: If you are using Microsoft Visual SourceSafe, the Remove From
Version Control command can only handle files that are located in the
same SourceSafe project and working folder. Thus, to remove files that
belong to different projects, you must repeat the command for each
project.

Note: To be able to remove a controlled unit from version control from
within Rose, the unit must have been added to version control from
within Rose, by using the Add to Version Control command.

Working with Non-SCC Version Control Systems

You can enable Rose to work with SCCS and RCS systems via scripts
that you write. Check Rational’s website for existing scripts that you
can modify.

Note that neither RCS nor SCCS directly support directory hierarchies.
To support a hierarchical repository, you will need to create a separate
RCS/SCCS storage directory for each level in the model hierarchy

For example, the repository structure might look something like the
following, where <dir> indicates a directory:

<repository>
<models>

<RCS>
MyModel.mdl,v

<MyModel>
<RCS>

LogicalView.cat,v
ComponentView.sub,v
UseCaseView.cat,v
DeploymentView.prc,v

<LogicalView>
<RCS>

...

<ComponentView>
<RCS>

...
Rational Rose Guide to Team Development 91

Chapter 4 Working with a Version Control System
Repository Mapping Files (.rmf)

Each developer in a team will use their own local working directory for
working on models. A special mapping file is then required to map the
local working directory to the repository directory representing the root
of the hierarchy. This map file is referred to as a Repository Mapping
File (RMF). Each line in the RMF is a file name prefix mapping that
works similarly to the virtual path map mechanism within Rose. Each
entry consists of two path prefixes, separated by an equals sign (=)

Example:

/home/john_doe/Rose/models=/repository/models

By applying this map file, the Rose RCS integration will map local
working directory

/home/john_doe/Rose/models

to repository directory

/repository/models/RCS

The RMF may contain multiple entries. The first valid prefix will be
used, and successive substitutions will not be applied

Before determining if an RMF source prefix is valid for a given path,
both the source and destination prefixes will have environment
variable substitution performed on them. Thus, assuming every user
had a Rose/models directory in a home directory, the following RMF
file could be used by all users working from the given repository:

/home/$user/Rose/models=/repository/models

Note: The RMF must not contain softlinks to directories. It must contain
the actual path to the directory

Version Control Operation Behavior with SCCS

SCCS does not support labeling. All labeling operations will be
unavailable from Rose.
92 Rational Rose Guide to Team Development

Working with Non-SCC Version Control Systems
RCS/SCCS Repository Setup

You must create the repository root directory. Be sure to place
appropriate access permissions on the directory so that users will have
the required access to the files.

If you will be using a global RMF for all users accessing the repository,
you should create it and place it in a location accessible to all users

RCS/SCCS Workstation Setup

Command Line Access to the Source Control Tool

The RCS/SCCS executables must be available from your path in order
for Rose to integrate with them.

Create an RMF File

Use a text editor to create the RMF file that will contain the mapping
between your local working directory and the RCS/SCCS repository.
Create an entry in your RMF to point to the working directory set aside
for your models (create a working directory if you don't already have
one).

Set RMF Environment Variable

Your RCS/SCCS script can examine an environment variable to
determine which RMF to use.

For RCS:

� Set the environment variable to the name of the file containing the
map entry. Example:

setenv ROSE_RCS_MAPFILE ~/MyRCSMap.txt

For SCCS:

� Set the environment variable to the name of the file containing the
map entry. Example:

setenv ROSE_SCCS_MAPFILE ~/MySCCSMap.txt
Rational Rose Guide to Team Development 93

Chapter 5

Establishing a Model Architecture and
Process for Team Development

About Model Architecture and Process

The previous chapters of this guide describe fundamental concepts
about models, how they are stored, and the tools that you use to
manage them. As essential as this information is, it is probably even
more important that you and your team develop and implement a
sound architecture for layering and partitioning your Rose models, as
well as defining a process for managing your model and related
artifacts throughout the development cycle.

This chapter provides:

� Guidelines for developing a model architecture

� A suggested breakdown of activities and roles associated with the
architecture

Note that the Rational Unified Process (RUP) provides detailed
information about the overall development process and should be one
of your primary resources for implementing team development.

Establishing Roles and Responsibilities

The process described in this chapter rely on these roles:

� Model Architect

� Model Manager

� Modeler/Developer
Rational Rose Guide to Team Development 95

Chapter 5 Establishing a Model Architecture and Process for Team Development
� Integrator

Depending on the scale of your project and your staffing, some roles
may be carried out by one person or by a team.

Model Architect

The architect role leads and coordinates technical activities and
artifacts throughout the project. The Architect establishes the overall
structure for each architectural view, including the decomposition of
the view, the grouping of elements, and the interfaces between these
major groupings.

Model Manager

The manager provides the overall version control infrastructure and
environment to the product development team. The manager function
supports the product development activity so that developers and
integrators have appropriate workspaces to build and test their work,
and so that all artifacts are available for inclusion in the deployment
96 Rational Rose Guide to Team Development

Establishing Roles and Responsibilities
unit as required. The manager also has to ensure that the version
control environment facilitates product review, and change and defect
tracking activities.
Rational Rose Guide to Team Development 97

Chapter 5 Establishing a Model Architecture and Process for Team Development
Modeler/Developer

This is the collective name for those workers who view or modify Rose
models.

Integrator

Developers deliver their tested components into an integration
workspace where integrators combine them to produce a build. An
integrator is also responsible for planning the integration, which takes
place at the subsystem and system levels, with each having a separate
integration workspace. Tested components are delivered from an
implementer's private development workspace into a subsystem
integration workspace, whereas integrated implementation
subsystems are delivered from the subsystem integration workspace
into the system integration workspace.
98 Rational Rose Guide to Team Development

Developing a Model Architecture
Developing a Model Architecture

One of the Architect’s primary goals is to structure or organize a Rose
model so that it can be used effectively by a team.

Product development often starts with a small team working on one
model. As development progresses, the team (and the model) grow to a
point where organizing the model appropriately becomes crucial to
supporting multiple teams working in parallel.

An Architect also has a profound impact on developing for reuse. You
can use Rational Rose to split parts of a model into highly cohesive
layers or frameworks that can be reused in multiple models.

The actual division of a model into packages and subsystems is
something of an art form and this chapter attempts to describe
guidelines that will help you get started. Remember that once a model
is well partitioned into subsystems, you can either work with one
model or split the model into separate models for each subsystem.

Understanding Subsystems

Packages are used to group model elements. There are four kinds of
packages in Rose: use case, logical, component, and deployment
packages. Each kind of package can only group certain model
Rational Rose Guide to Team Development 99

Chapter 5 Establishing a Model Architecture and Process for Team Development
elements. For example a logical package can group classes, whereas a
component package groups component diagrams and components.
Packages can also contain packages of the same kind, so it is possible
to decompose your models hierarchically.

A model is composed of the four root packages: Use Case View, Logical
View, Component View, and the Deployment View. The model is the top
level model element which contains all sub elements.

A subsystem is a concept and not an explicit modeling element in Rose.
The term is used to represent a set of related packages that can be
developed, tested, and released together. Subsystems provide strong
separation between major portions of your model and they form the
basis for reuse between models. In a layered development approach,
the model for each layer will share in the subsystems for the layers
beneath it.

A subsystem will typically consist of one or more logical packages and
one or more component packages. The logical packages contain the
classes in the subsystem and the component packages contain the
components that are used to build the subsystem.

By converting packages that provide discrete, well-defined services into
subsystems, you will be better able to control dependencies.
Subsystems expose services only through an interface and subsystem
internals should depend only on the interfaces that are offered by other
systems.
100 Rational Rose Guide to Team Development

Developing a Model Architecture
One Model versus Multiple Models

A large development project can result in a correspondingly large
model for the complete application. If the model has a layered
architecture, then it is possible to produce a set of smaller models that
follow the layering of the larger model.

One of the goals of having a separate model for each layer/subsystem
is to reduce the number of developers working on the same model. This
technique helps to isolate development work and reduce parallel
development issues.
Rational Rose Guide to Team Development 101

Chapter 5 Establishing a Model Architecture and Process for Team Development
To build the full project, one designer, typically called the builder,
opens a model that references all the subsystems that make up the
project, thus loading all the changes made to the packages in the
subsystems, then build from that model.

Before splitting a model into a set of subsystem models, you should
first consider the trade-offs.

Advantages of a model for each subsystem:

� Improves Rose performance and memory footprint simply because
the model is smaller.

� You can build, test, and release subsystems separately, reducing
system complexity.

� Groups can share subsystems. Teams can share stable versions of
subsystems.

Disadvantages:

� Can be more complicated to set up.

� Build process can be more involved.

� Might not be appropriate for small teams.

The following sections describe steps you should perform before
splitting a model to ensure that your model is well partitioned.

Mapping the Architecture to Subsystems

You can decompose a model by grouping modeling elements into
packages then assign a set of these packages to subsystems.

You should consider each subsystem as a distinct unit that you can
build and test independently, whether or not you will split the model.
You will also need to define and enforce the interfaces between
subsystems.

Tasks for Decomposing a Model into Subsystems

� Checking Package Dependencies for Completeness

� Checking if a Subsystem is Self-contained

� Defining Subsystem Interfaces

� Setting up Subsystem Components

� Providing support for Unit Testing

� Using Property Sets for Build Settings
102 Rational Rose Guide to Team Development

Developing a Model Architecture
� Creating Processors and Component Instances

� Preparing and Releasing Subsystems

Tasks for Splitting a Model

� Splitting a Model not in Version Control

� Splitting a Model Under Version Control

Checking Package Dependencies for Completeness

Developers sometimes define class-level relationships that violate
dependencies between packages and subsystems. Once you have
created packages and moved the model elements into the packages
(subsystems), you will want to ensure that the subsystems you have
created have the dependencies that you expect. If the dependencies
between subsystems are too complex, it will be difficult to work in
teams (changes won't be isolated) and split the model.

Show Access Violations

Use Report > Show Access Violations to verify that the designed
dependencies between packages (subsystems) are correct and
complete.

The Architect should revisit the package dependencies periodically to
check that the detailed implementation has not violated the intended
architecture.

Use Show Access Violations to verify that there are no violations in the
logical packages and component packages in the subsystem. You
should also verify that every class and logical package referenced by
the components in the subsystem are also part of the subsystem.

Determine the External Dependencies for a Package

The Specification dialog for a package contains a Relations tab which
shows the dependencies for this package. This is a quick way to see if
a package has any dependencies, but it can be difficult to visualize the
dependencies if you just look at this list. In order to properly visualize
the package relationships, use a class diagram.

To quickly create a class diagram showing the relationships for a
specific package, try the following:

1. Open the class diagram.
Rational Rose Guide to Team Development 103

Chapter 5 Establishing a Model Architecture and Process for Team Development
2. If this package is not already on this diagram, then drag it from the
browser onto the diagram.

3. Use Query > Add Classes to add all the classes from a package to a
diagram.

4. Press Ctrl A to select all of the classes in the diagram, then click
Query > Expand Selected Elements.

5. The resulting dialog allows you to add related elements to this
diagram based on the chosen options. To see the direct
dependencies for this package, set the options to expand one level
of suppliers. Ensure that dependency relations are chosen in the
Relations dialog.

By varying the options chosen in these dialogs you can quickly produce
a diagram showing the desired information. If many packages were
added to the diagram, then you may wish to use the automatic layout
feature to produce an initial layout for the diagram.

By reviewing the relationships in this diagram, the Architect can detect
any undesirable dependencies. Resolving an undesirable dependency
can involve either modifying the class(es) that caused the violation
and/or moving some of these classes to another package.

Checking if a Subsystem is Self-Contained

A self-contained subsystem is composed of packages that do not have
any dependencies to packages outside of the subsystem. A self-
contained subsystem can be shared without requiring any other
subsystems.

Assuming the package dependencies are complete (see Checking
Package Dependencies for Completeness), then checking whether a
subsystem is self-contained means examining the dependencies for the
packages in the subsystem to ensure that all of them are to other
packages within the subsystem.

A subsystem does not need to be self-contained in order to be shared,
as long as the sharing model contains all the other subsystems that are
required.
104 Rational Rose Guide to Team Development

Developing a Model Architecture
Defining Subsystem Interfaces

By reducing the coupling between subsystems, you can lessen the
chance of having integration problems caused by using subsystems
that have complex dependencies.

It is important for the subsystem producer to pay close attention to
which classes in a subsystem are public (visible and usable outside of
the subsystem) and which are private. For ease of use, it is also
recommended that the subsystem contain a set of class diagrams that
illustrate the public classes.

Best practices

1. Specify the visibility of each class (public or implementation).

2. Include one or more class diagrams showing the public classes.

You may also use different visual clues (such as color) for the public
classes in a class diagram.

Setting Up Subsystem Components

Rose can support general types of components such as:

� Executables

� Source code

� Binary code

� dlls

A small model may have a single executable component that is built to
produce the application. A large model will have an executable
component and many library components, typically corresponding to
the layering in the architecture.

In addition to the components that are used to build the complete
application, it is often useful to have components that build subsets of
the model, for example for unit testing purposes.

Components in Subsystems

Ideally each subsystem will contain one or more external library
components. These components are built as part of the build process
of a subsystem and are referenced in models that use the subsystem.
Rational Rose Guide to Team Development 105

Chapter 5 Establishing a Model Architecture and Process for Team Development
An external library component will allow the sharing model to reuse the
prebuilt library, which can dramatically reduce build times for a large
model.

A subsystem will often include multiple variations of each component,
such as a debug component and a release component. For ease of
navigation and organization, the subsystem should group the
components into packages (a Debug package and a Release package)
containing the debug and the release components.

The subsystem model will need one or more executable components
that are used to test the subsystem. Typically, the executable
component will only contain the testing classes and it will have a
dependency on the library component for the subsystem.

The following component diagram shows three components for a
sample subsystem. The BaseRelease component is a library that
contains the subsystem. The SanityTests and FullRegressionTests
components are executables that use the BaseRelease component.

Once you have created the necessary components and the
dependencies between them, you will have to determine which classes
belong to which components. Typically, this will follow naturally from
the architecture of the model although there can be issues that arise
during development. As new classes are created, they will need to be
106 Rational Rose Guide to Team Development

Developing a Model Architecture
added to the appropriate component(s). If multiple developers are
creating classes that are referenced by the same component, then the
component can become a source of contention.

The contention for a component can sometimes be avoided, or at least
reduced, when the component references logical packages instead of
classes themselves. Remember that referencing a package from a
component is equivalent to referencing all the classes in that package.

The added benefit is that the component does not need to be updated
when a new class is added to the package as long as that class belongs
in that component. The risk is that a component may end up
containing classes that it does not require.

Providing Support for Unit Testing

While working within a subsystem model, a developer may find it
useful to create a component for use in unit testing changes. If this
component has lasting value, then it should be created as part of the
subsystem model so that it can be reused. To support the organized
storage of unit testing components, an Architect may find it useful to
create component packages that can be used for grouping these
components.

If many developers are creating components in the same package, then
this package can become a source of contention. If your development
process requires the creation and version control of unit testing
components, then you may wish to create several component packages
that are used for this.

Using Property Sets for Build Settings

Using property sets for common build settings is a suggested method
for maintaining and reusing project level configuration information for
building components.

Tasks:

� Builder or architect defines custom sets of component properties
which are specific to a project. For example, you can have debug
and release build settings. Custom properties are stored in the .prp
file for this model.
Rational Rose Guide to Team Development 107

Chapter 5 Establishing a Model Architecture and Process for Team Development
� A component should be based on the appropriate property sets by
modifying the Default set field in appropriate property tabs of the
component Specification dialog. Any local overrides should also be
added.

Creating Processors and Component Instances

Project Level Processors

For each project, there is usually a known set of processors where
component instances execute. Since all the subsystems in the model
are intended to execute on this set of processors, these project level
processors should be defined in a deployment package that is shared
between the various subsystem models.

The builder should set up a deployment package that contains these
project level processors. For example, the builder could configure
processors for the labs that are available for the development teams.
These deployment package(s) can then be shared in each subsystem
model. Each package should be owned by one of the models so that
modifications can be made to it in a controlled manner.

The processors in these project level deployment packages will not
typically contain any component instances. If they did contain a
component instance, then sharing them would also require the
corresponding component packages which contain the required
components. In turn, these components would require the referenced
classes and logical packages. Unless these elements are present in all
subsystem models, these processors should only be used as templates
in the subsystem models.

Subsystem Level Processors

A development team may choose to create additional processors for
their own use, either by copying the project level processors or by
creating new processors for platforms that are not shared with other
teams.

The subsystem level processors can contain component instances
based on the components present in the subsystem. Typically, this
would include component instances for regression testing the
subsystem and for unit testing major classes in the subsystem.
108 Rational Rose Guide to Team Development

Developing a Model Architecture
Component Instances

Component instances indicate the ability to run a specified executable
component on a specified processor. A component instance is
controlled with the processor. As mentioned above, project level
processors usually won’t have any component instances so they will
are typically copied before they can be used to execute/test a
component.

Subsystem level processors will often contain component instances
that execute/test the entire subsystem. Developers working on the
subsystem can use these component instances but they may find it
easier to create specific unit testing components and corresponding
component instances.

Tasks

� A set of deployment packages can be created to hold processors
that are available in-house for testing. The processors will contain
IP addresses, host names, and other configuration information that
can be reused by all developers.

� Subsystem processors can be created by copying project level
processors and creating the component instances desired for
executing/testing the subsystem.

Preparing and Releasing Subsystems

In a model composed of multiple subsystems, there should be policies
in place that describe how new versions of the subsystems will be made
available to other models.

Subsystem Supplier

When a team is ready to release a new version of a subsystem, they
must ensure that the correct version of all the necessary elements of
the subsystem are made available. This includes:

� Logical packages containing the classes in the subsystem

� Component packages containing the library components and/or
external library components for the subsystem

� Any other required Rose elements

� Any other required external (non-Rose) elements for external
library components
Rational Rose Guide to Team Development 109

Chapter 5 Establishing a Model Architecture and Process for Team Development
The team releasing the subsystem will typically prepare the required
elements using one of the following mechanisms:

1. Label Subsystem Elements. If the model is under version control,
then a label can be applied to the elements in the subsystem.

2. Copy Subsystem Elements. The elements in the subsystem can be
copied to a known location.

Subsystem Consumer

The architect for a model that requires this subsystem must then
ensure that the model includes the new version of the subsystem. The
mechanism for this depends on how the subsystem elements were
made available.

If the subsystem elements have been copied to a known location, the
architect must ensure that this location is referenced by the model. If
the location is the same as the previous version of the subsystem, then
no changes should be necessary. If the location has changed, then the
architect may have to recreate the model by loading the shared
packages from the new locations and adding in the packages that are
owned by this model.

If the subsystem has been packaged using a version control label, then
the architect must ensure that this label is used for getting the new
lineup for the model.

If there are changes to the subsystem interface, then the architect of a
model which uses this subsystem must ensure that the corresponding
changes are made within their model.

Splitting a Model into Subsystem Models

Splitting a large model into smaller subsystem models can improve
team development. A developer can then work on the appropriate
model for his or her particular subsystem. Working on this smaller
model should reduce the Rose footprint and improve the performance
of several operations such as opening a model.

It is possible to split a model before or after it has been placed under
version control. If a model has not been controlled, it is recommended
that you split the model first, then add the resulting controlled units to
version control.
110 Rational Rose Guide to Team Development

Developing a Model Architecture
Before a model is split into subsystem models, you must ensure that
the dependencies between the subsystems will support this
partitioning. Specifically, you must ensure that the subsystems form a
layered architecture that will allow each subsystem to exist in a model
that does not contain any of the 'higher level' subsystems. See
Checking Package Dependencies for Completeness.

Should you split the model before adding to version control?

If your model is not already in version control then it is best to split the
model before adding it to version control. If your model is already in
version control, then it is still possible to split it into separate models
but the process is a bit different.

Splitting a Model not in Version Control

At this point we assume that you have a base model (in this example
we will call it Base) and that the model is not yet in version control. We
also assume that you will be creating separate models for each of your
subsystems.

Lastly, this description also assumes that you will want to keep the
controlled units for each subsystem model together so they will be
moved into the subsystem directory tree. Moving the files is optional
but it can make it much easier to manage the files that make up each
model.

See Chapter 2 for more information on loading and importing
controlled units.

Tasks

1. Ensure that the base model has defined the initial controlled units,
at least at the package level corresponding to the subsystem
partitioning.

The base model (Base) directory hierarchy for the sample model
would look something like:

Base.mdl
<Base>
UseCaseView.cat
<UseCaseView>

LogicalView.cat
<LogicalView>

SubSystem1.cat
Rational Rose Guide to Team Development 111

Chapter 5 Establishing a Model Architecture and Process for Team Development
<SubSystem1> SubSystem2.cat
<SubSystem2>

ComponentView.sub
<ComponentView>

SubSystem1.sub
<SubSystem1>
SubSystem2.sub
<SubSystem2>

DeploymentView.prc
<DeploymentView>

2. Use File > Edit Path Map to create a Virtual Path Map variable for
each top level package in the model (i.e., each subsystem package).
In our example, we could create path map variables
SubSystem1LogicalPkg, SubSystem1ComponentPkg,
SubSystem2LogicalPackage, SubSystem2ComponentPkg, etc.

3. Save the Base model units that will be affected by the new path
map variable.

4. If the Base model makes use of custom property sets, then these
must be made available to the subsystem models. Use Tools >

Model Properties > Export to create a file that can be imported to
the subsystem models.

5. Create a new model by selecting File > New. This model will be used
for the first subsystem. Ensure that the path map variables are
still defined correctly.

6. If the Base model makes use of custom property sets, then ensure
that these are available in the subsystem model. Use Tools > Model

Properties > Replace to import the file containing the property sets.

7. Control all the elements in the new model by using File > Units >

Control.

8. Save the model (.mdl) into an appropriate directory using File >

Save As. We suggest that you create a dedicated directory for each
subsystem. For example, we could name the subsystem model
SubSystem1 and store it in a directory called SubSystem1.

9. Next, you can optionally move the packages that make up your
subsystem from the base model directory hierarchy into the
subsystem model directory hierarchy that was created when you
saved the new model.
112 Rational Rose Guide to Team Development

Developing a Model Architecture
For each package that will be part of the subsystem, move the
package controlled units into the corresponding directory level in
the new model, and then move the directories for each package to
the corresponding location. The resulting directory hierarchy for
the new model should look something like:

SubSystem1.mdl
<SubSystem1>

UseCaseView.cat
<UseCaseView>

LogicalView.cat
<LogicalView>

SubSystem1.cat
<SubSystem1>

ComponentView.sub
<ComponentView>

SubSystem1.sub
<SubSystem1>

DeploymentView.prc
<DeploymentView>

If you move the files, then edit the associated path maps to reflect
the new file locations.

10. Next you will have to add the subsystem packages into the
subsystem model using File > Units > Load. These packages should
be added in at the same location in the subsystem model hierarchy
as they were in the base model. In our example, SubSystem1.cat
should be added to the Logical View and SubSystem1.sub should
be added to the Component View.

11. Save the subsystem model.

Steps 5 - 11 should be repeated for each remaining subsystem with the
following addition.

Before adding the subsystem packages to the new subsystem model
(step 8), you must load the packages from the other subsystems that
are required by this subsystem.

After splitting the original model, you will typically not use that model
for any further development. You may choose to create an equivalent
model that shares in all the subsystems. For example, in our example
we could create a new model called NewBase which shares in the
Rational Rose Guide to Team Development 113

Chapter 5 Establishing a Model Architecture and Process for Team Development
packages in SubSystem1 and SubSystem2. This model cannot be used
to edit any of the subsystems but it might be useful for building and/or
testing.

Splitting a Model Under Version Control

At this point we assume that you have a base model (in this example
we will call it Base) and that the model is under version control. We also
assume that you will be creating separate models for each of your
subsystems.

Lastly, this description also assumes that you will want to keep the
controlled units for each subsystem model together and so they will be
moved into the subsystem directory tree. Moving the files is optional
but it can make it easier to much manage the files that make up each
model.

See Chapter 2 for background information that should be understood
before proceeding with this task.

Tasks

1. 1. Ensure that the base model has defined the initial controlled
units, at least at the package level that corresponds to the
subsystem partitioning.

The base model (Base) directory hierarchy for the sample model
would look something like:

Base.mdl
<Base>

UseCaseView.cat
<UseCaseView>
LogicalView.cat
<LogicalView>

SubSystem1.cat
<SubSystem1>
SubSystem2.cat
<SubSystem2>

ComponentView.sub
<ComponentView>

SubSystem1.sub
<SubSystem1>
SubSystem2.sub
114 Rational Rose Guide to Team Development

Developing a Model Architecture
<SubSystem2>
DeploymentView.prc
<DeploymentView>

2. Use File > Edit Path Map to create a Virtual Path Map for each top
level package in the model (i.e., each subsystem package). In our
example, we could create path map variables
SubSystem1LogicalPkg, SubSystem1ComponentPkg,
SubSystem2LogicalPackage, SubSystem2ComponentPkg, etc.

3. Check out the root packages in the Base model.

4. Explicitly save the Base model units that will be affected by the
new path map.

5. Check in the root packages in the Base model in order to save the
modified file path information under version control.

6. If the Base model makes use of custom property sets, then these
must be made available to the subsystem models. Use Tools >

Model Properties > Export to create a file that can be imported to
the subsystem models.

7. Create a new model by using File > New. This model will be used for
the first subsystem. Enable version control for this model by using
Version Control from the Tools menu. Ensure that the path map
variables are still defined correctly.

8. If the Base model makes use of custom property sets, then ensure
that these are available in the subsystem model. Use Tools > Model

Properties > Replace to import the file containing the property sets.

9. Control all the elements in the new model by right-clicking on the
Model in the browser and choosing File > Units > Control.

10. Save the model in the appropriate local working directory for your
version control system using File > Save As (e.g.
/vob/SubSystem1). We suggest that you create a dedicated
directory for each subsystem.

For example, we could name the subsystem model SubSystem1
and store it in a directory called SubSystem1.

If you choose, you may add the subsystem model to version control
at this stage. Use Tools > Version Control > Add to Version Control

to ensure that all the controllable units are added.

11. Next you can optionally move the packages that make up your
subsystem from the base model directory hierarchy into the
subsystem model directory hierarchy that was created when you
saved the new model.
Rational Rose Guide to Team Development 115

Chapter 5 Establishing a Model Architecture and Process for Team Development
The actual steps involved in moving the files and directories within
version control depend on the version control tool.

For each package that will be part of the subsystem, move the
package controlled units into the corresponding directory level in
the new model, and then move the directories for each package to
the corresponding location. The resulting directory hierarchy for
the new model should look something like:

SubSystem1.mdl
<SubSystem1>
UseCaseView.cat
<Use Case View>
LogicalView.cat
<Logical View>

SubSystem1.cat
<SubSystem1>

ComponentView.sub
<Component View>

SubSystem1.sub
<SubSystem1>

DeploymentView.prc
<Deployment View> I

If you move the files, then edit the associated path maps to reflect
the new file locations.

12. Next you will have to add the subsystem packages into the
subsystem model using File > Units > Load. These packages should
be added in at the same location in the subsystem model hierarchy
as they were in the base model.

If you previously added the subsystem model to version control,
then you will be prompted to check out the root packages that are
affected.

13. Save the subsystem model.

14. Now, enter the changes for this subsystem model into version
control.

15. It is recommended that you create a default workspace for each
subsystem model.

After splitting the original model, you will typically not use that model
for any further development. You may choose to create an equivalent
model that shares in all the subsystems. For example, in our example
we could create a new model called NewBase which shares in the
116 Rational Rose Guide to Team Development

Managing/Administering a Model
packages in SubSystem1 and SubSystem2. This model cannot be used
to edit any of the subsystems but it might be useful for building and/or
testing.

Managing/Administering a Model

The Rose manager/administrator is responsible for providing the
overall version control infrastructure and environment for the
development team.

Before starting team development work, the following tasks must be
completed:

� Setting up Compatible Workspaces

� Setting up version control system and repository

� Partitioning the model into controlled units

� Adding the model to version control

Once these steps are completed, development can start. However, you
should consider these additional responsibilities:

� Defining developer work areas

� Creating labels and lineups

� Manipulating version control repository

Setting Up Compatible Workspaces

In order to work as a team, each team member should have a
consistent workspace for working in a model. The starting point is the
model structure created by the model Architect.

The tasks for managing a model include:

� Defining Rose model defaults. All team members working in the
same model should adhere to the same rules and should use the
same model properties, including those settings that affect diagram
layout, style, format, etc.

� Defining the physical storage structure for model elements. In
this task, you determine how the various model elements
(specifically the controlled units) will be organized.

� Defining virtual path maps. Defining the root of the hierarchy as
a symbolic name is the first step in setting up a multiuser
environment. (See Chapter 2 for information about virtual path
Rational Rose Guide to Team Development 117

Chapter 5 Establishing a Model Architecture and Process for Team Development
maps.) Each team member controls the definition of these symbolic
names in his or her own workspace. Path maps are essential for
working in a team since members often cannot work in the same
directory on their local machines. By using path maps, you can
distribute and relocated physical files.

Setting Up Version Control System and Repository

Before placing Rose models under version control, there are setup
steps that must be followed to configure the version control system to
allow proper integration with Rose. Most of these tasks are performed
outside of Rose and require knowledge of the version control tools you
will be using. If you are unsure about the procedures, please see your
version control tools documentation.

Before continuing, please review the tool-specific documentation in
Chapter 4.

After reviewing this material, ensure that a repository is properly set
up for integration with Rose.

Partitioning the Model into Controlled Units

Controlled units are the smallest Rose model elements that you control
via a version control system. Therefore, the packages that are
controlled should be selected carefully. For example, it is not always
correct to control all the packages. Packages that are controlled units
may contain packages that are not controlled units and vice versa.
Control the units that provide sufficiently low level of granularity to
allow project members to do their work without preventing other
project members doing theirs. Ownership of packages and controlled
units is very important for effectively working in a team.

For complete details on Controlled Units, see Chapter 2.

Because controlled units correspond to files in your file system, only
one team member should be allowed to work on a given controlled unit
at any one time. While this works well in most cases, there are
situations when it is necessary to allow multiple team members to
work simultaneously on the same controlled unit. The following
procedure can be used to that effect:

1. The current owner of the package of interest creates subpackages
for each team member who needs to get involved in the work. These
packages can even be named after the team members.
118 Rational Rose Guide to Team Development

Managing/Administering a Model
2. Within each package, relocate the elements of the parent package
that you want to assign to the different team members.

3. Control the new packages and assign them to their intended
owners.

When the work is complete, simply uncontrol the temporary packages,
relocate all elements in them to the original package, and delete the
temporary packages now empty. This is a tactical solution to a
controlled unit access problem that can be used as required so that
package structures and controlled units are not permanently created
on an arbitrary or expedient basis, but for sound architectural reasons.

Save Model to Local Work Area

Before placing the model under version control, it must be saved to the
local work area. Save the model to the directory you have associated
with your version control repository.

Adding the Model to Version Control

The simplest way to add all applicable units to version control is to use
Tools > Version Control.

Defining Developer Work Areas

At this point, the model manager should think about how each worker
(developer, integrator, etc.) will work individually and access specific
versions (lineups) of a model. This usually involves defining labeling
policies.

The model manager should provide guidelines to the rest of the team
as to how work areas should be created for each developer. In some
cases the manager may need to actually create the work areas.

Defining work areas is tool dependent, and the steps required for
setting up a work area for single stream and parallel stream
development can be quite different. See Chapter 4 for more
information.
Rational Rose Guide to Team Development 119

Chapter 5 Establishing a Model Architecture and Process for Team Development
Creating Labels and Lineups

Labels, and the use of labels to create lineups, are crucial to any
successful development strategy. There are many ways to use labels
and lineups, though, and the specifics of each are highly specific to
each organizations development environment and version control
tools.

For an example of an effective labeling and lineup strategy, see Chapter
6, Parallel Development Sample Using ClearCase.

Manipulating the Version Control Repository

From time to time it may be necessary to move or rename files in the
repository. This should only be performed by someone who is familiar
with the version control tool being used. In many development
environments, moving and renaming is always carried out by the
version control administrator, who will be able to carry out the task
most effectively.

Developing/Implementing a Model

Developers will be working day-to-day with a subsystem model under
version control. Therefore, each developer should be familiar with the
material in Chapter 4.

Setting up Version Control

Before using Rational Rose with your version control system, you must
perform any tool-specific configuration as described in Section 4.

If you have customized Rose to work with another version control tool,
then you should ensure that tool is correctly installed on each
developer workstation.

Setting up Developer Work Areas

Before working on a version controlled model, you first have to get a
specific lineup of controlled units onto your local disk. From there you
can start working on the model. Your Version Control Administrator or
Integrator will know how to determine the specific label or
configuration that should be used to create a local work area. Next, it’s
a matter of setting up a local work area before running Rose.
120 Rational Rose Guide to Team Development

Developing/Implementing a Model
Getting a Specific Lineup of a Model

When a developer begins a development task, he or she must start with
the correct version of the model files. The steps involved vary
depending on your team development process and the underlying
version control tool. For Rational ClearCase, the developer should be
using a config spec that defines the view to include the correct versions
of the model elements. For Microsoft Visual SourceSafe, your team may
be using labels to mark the correct versions and the developer should
perform a Get based on that label by using the "Label" field available
from the "Parameters..." button in the Get dialog. Similar labeling
strategies can be used with RCS/SCCS.

Opening a Model Under Version Control

Opening a model under version control is no different than opening a
non-version controlled model. In either case, opening the associated
workspace file is the recommended way to load the model into Rose.
Default property settings will typically be made available by the Version
Control Administrator, see Make default property set available to project
members later in this chapter.

Working under Version Control

Once your model has been placed under version control, you will use
the following procedures:

� Check Out Parent Package. When a new controlled unit is added to
a version controlled model, you will have to check out the package
in which the new unit will be placed. If there is excessive
contention for parent packages, then you may wish to partition the
package into several smaller packages.

� Checking Controlled Units In and Out of Version Control. Once
you have a model under version control, you should check out
elements before you edit them. Depending on the version control
settings, Rose may force you to check out before editing.

� Undoing a Check Out. After you have checked out a controlled
unit, you may choose to undo the check out and not submit a new
version.

Comparing and Merging Model Elements

See Chapter 3 for details.
Rational Rose Guide to Team Development 121

Chapter 5 Establishing a Model Architecture and Process for Team Development
Promoting Changes for Integration

When working in a single stream development process, there is no
explicit integration step. Instead, submitting changes to the version
control repository effectively integrates them with the existing file
versions. For an example of integration with a parallel stream
development process, see Chapter 6, Parallel Development Sample
Using ClearCase.

Building and Integrating

The Integrator combines the changes from multiple developers to
produce a lineup that can be used as a basis for the next set of
development activities. The Integrator is typically responsible for the
automated building process.

Among the tasks involved in building and integrating are:

� Building using Automated Scripts

� Building within a Larger Build Procedure

� Reusing Build Artifacts

� Integrating Changes

� Automating Model Validation

Building using Automated Scripts

Starting with a valid model, it is possible to initiate a build from a clean
directory using the following two steps.These are effectively the same
steps used by Rose.

Note: The '\' character in the following command syntax represents the
command line continuation character. This may be different on your
system.

1. Build the makefiles:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \
-f $ROSE_HOME/codegen/bootstrap/${CodeGenMakeType}.mk \
"HOME=${TargetServicesLibrary}" \
"MODEL=${ModelFile}" "COMPONENT=${QualifiedName}" \
Rmakefiles
122 Rational Rose Guide to Team Development

Building and Integrating
where CodeGenMakeCommand, CodeGenMakeArguments,
CodeGenMakeType, and TargetServicesLibrary are replaced by the
corresponding value in the component; QualifiedName is replaced by
the fully qualified name for the component; and ModelFile is replaced
by the file name for the model (.mdl) file.

2. Generate the code and compile using:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \
-f Makefile Rcompile

For example, if the following substitutions are made:

The resulting commands are:

clearmake -k -J4 \ -f
$ROSE_HOME/codegen/bootstrap/ClearCase_clearmake.mk \
"RTS_HOME=$ROSE_HOME/C++/TargetRTS" \
"MODEL=/my/path/MyModel.mdl" \
"COMPONENT=Component View::MyComponent" \
Rmakefiles clearmake -k -J4 -f Makefile Rcompile

Note that automated builds are not restricted to clearmake.

Building within a Larger Build Procedure

For integration into a larger build procedure, automated builds can
generate the code and compile the code in two separate steps. This
involves a slight change to the steps listed above:

1. Build the Makefiles using the same command as above.

Argument Sample Value

${CodeGenMakeCommand} clearmake

${CodeGenMakeArguments} -k -J4

${CodeGenMakeType} ClearCase_clearmake

${TargetServicesLibrary} $ROSE_HOME/C++/TargetRTS

${ModelFIle} /my/path/MyModel.mdl

${QualifiedName} Component View::MyComponent
Rational Rose Guide to Team Development 123

Chapter 5 Establishing a Model Architecture and Process for Team Development
2. Generate the code (without compiling it) by replacing "Rcompile"
above with "Rgenerate":

$CodeGenMakeCommand} ${CodeGenMakeArguments} \
-f Makefile Rgenerate

3. Compilation of the generated code (without regenerating it) uses
"Rmycompile":

${CodeGenMakeCommand} ${CodeGenMakeArguments} \
-f Makefile Rmycompile

Note: The '\' character in the command syntax represents the
command line continuation character. This may be different on your
system.

If we use the same example substitutions as above, then the resulting
commands are:

clearmake -k -J4 \
-f $ROSE_HOME/codegen/bootstrap/ClearCase_clearmake.mk \
"RTS_HOME=$ROSE_HOME/C++/TargetRTS" \
"MODEL=/my/path/MyModel.mdl" \
"COMPONENT=Component View::MyComponent" \
Rmakefiles

clearmake -k -J4 -f Makefile Rgenerate

clearmake -k -J4 -f Makefile Rtmycompile

Reusing Build Artifacts

A Rational ClearCase environment supports build artifact reuse by
using the ClearCase "wink-in" feature. Both "clearmake" (Unix and
Windows NT) and "omake" (NT only) provide the wink-in mechanism.

Creating Reusable Build Artifacts

In order for build artifacts to be able to be winked in, the following
criteria must be met:

� The component's OutputDirectory must be in a view.

� All controlled units within the model must be version controlled in
a ClearCase VOB.

� All controlled units must not be checked out to the view performing
the build.
124 Rational Rose Guide to Team Development

Building and Integrating
� The build must be performed from a clean directory. If a build is
unsuccessful, the OutputDirectory must be completely cleaned in
order to guarantee wink-in.

� In the component, the CodeGenMakeType and
CompilationMakeType properties must both be set to either
"ClearCase_clearmake" or "ClearCase_omake" as appropriate.
Similarly, the CodeGenMakeCommand and
CompilationMakeCommand properties must be set to something
appropriate, typically either "clearmake" or "omake".

The OutputDirectory can be a view-private directory, but that requires
that every developer create that directory in their view first. A
recommended practice is to use a directory element that is stored in a
VOB.

The following are encouraged practices:

� All external include files should be version-controlled in a
ClearCase VOB.

� The TargetServicesLibrary should be version-controlled in a
ClearCase VOB.

� Other linked libraries should be version-controlled in a ClearCase
VOB.

� Optionally, $ROSE_HOME should be version-controlled in a
ClearCase VOB.

Using Build Artifacts

A developer wishing to reuse the artifacts from a build should:

� Assign his or her environment variables (such as $ROSE_HOME
and $PATH) appropriately,

� Use the same versions of elements that the build used,

� Create in his or her view, if it does not already exist, the same
OutputDirectory used by the builder

� Perform the same activity that the builder performed (a compile or
a generate, from within the toolset or from the command-line).

See Chapter 6, Parallel Development Sample Using ClearCase, for a
description of a development process that provides significant build
artifact reuse.
Rational Rose Guide to Team Development 125

Chapter 5 Establishing a Model Architecture and Process for Team Development
Integrating Changes

Integrating developer changes is highly dependent on the development
process being used. The primary goal of the Integrator is to produce an
updated lineup of model elements that can be used as a basis for
subsequent development activities. This will often involve merging
changes from multiple developers (using the Model Integrator) and
performing local builds to verify sanity. For an example of how
integration can be performed in a parallel development environment
with ClearCase, see Chapter 6, Parallel Development Sample Using
ClearCase.

Automating Model Validation

Rose provides an automated way to determine if a model is valid. These
steps can be incorporated into an automated build process to
determine if the code generation and compilation steps of the build
should be performed.

Using the Rose Extensibility Interface (REI), you can write a script that:

1. Opens a specified model (using the Application.OpenModel
method).

2. Saves the log to a specified file (using the Application.SaveLogAs
method).

3. Closes Rose (using the Application.Exit method)

For more information on the REI, see the Extensibility Interface
documentation. This script could be invoked as part of an automated
build. The automated build script can then search (e.g., grep) the log
file to determine if any errors/warnings were encountered when the
model was opened. If problems were encountered, then the build script
can email the log file to the builder. If no problems were encountered,
then the build script can continue with the code generation and
compilation steps.
126 Rational Rose Guide to Team Development

Chapter 6

Parallel Development Sample Using
ClearCase

This chapter details how a parallel development process can be set up
to use Rational Rose with Rational ClearCase. The process presented
here is an example meant to explain parallel development and is not in
any way a definitive guide for working with ClearCase. Feel free to use
this process as is, or to modify and customize it as necessary to fit your
project's needs.

Many of the techniques presented in this example are not specific to
either ClearCase or parallel development, although the details certainly
are.

Note: Throughout this example, the prefix TC is used to indicate an
identifier that is unique to the project being worked on. Using distinct
labels for each project will help keep development progress self-
contained and more manageable.

Overview

The benefits of a proper parallel development process are:

� Reduced contention for checkouts

� Private version streams for development activities

� Shared build results to reduce incremental development times

� Stable and controlled evolution of the system being developed
Rational Rose Guide to Team Development

Chapter 6 Parallel Development Sample Using ClearCase
As explained in Parallel stream versioning in Chapter 4, the integration
branch plays a central role in most parallel development strategies. In
this example, "/main" is used as the integration branch. All automated
builds are generated from the integration branch, all lineups are
created from elements on the integration branch, and all development
is based off of the integration branch.

Automated builds are performed on the contents of the integration
branch. To ensure reproducible builds (and provide wink-in of build
artifacts), the latest version of each file and directory on the integration
branch is labeled with an identifier such as TC_BUILDFILES. Using a
label instead of a timestamp or whatever happens to be in view insures
that a build is completely reproducible. If the version of a file labeled
with TC_BUILDFILES causes compile problems, then a previous
version of the file can be used simply by applying TC_BUILDFILES to
the appropriate version and re-building incrementally.

When the build is successful, a new label is generated of the form
TC_BASELINE_NNN. The label is then applied to the exact version of
each file that was included in the build (i.e., every version that was
labeled with TC_BUILDFILES is now labeled with TC_BUILD_NNN).

As far as development is concerned, no actual development occurs on
the integration branch. All development is carried out on private
branches, one per development activity. Each private branch is based
off of a lineup on the integration branch, conveniently labeled by the
automated build process. Since the file versions used in the build are
also used by developers, wink-in of build artifacts comes for free.

Once a development activity is finished, an integrator is given the
branch name and will then merge the changes for that activity onto the
integration branch when time permits.

The following diagram illustrates a typical version tree for an element
in this process:
128 Rational Rose Guide to Team Development

Using View Templates
Using View Templates

To ensure that developers use a common base for their view's config
spec, and to make it easier to work on private branches, view templates
are used. A view template specifies the integration branch to work
Rational Rose Guide to Team Development 129

Chapter 6 Parallel Development Sample Using ClearCase
from, lists labeled checkpoints that can be used to base a private
branch on, and includes a config spec template that can be filled in
with additional config spec rules.

� Windows NT. This functionality is provided with ClearCase 3.2.1
for NT through View Profiles.

� Unix. ClearCase for Unix does not include support for View
Profiles.

Every developer will need access to a common location from which the
view templates will be accessed. The view template scripts look for the
view templates in the directory named by the CCVIEWTEMPLATES
environment variable.

Each view template consists of the following parts:

� A list of labels that indicate integration branch lineups

� A config spec for browsing any specific integration branch lineup

� A config spec for performing a development activity on a private
branch

� A config spec that will be used by the integrator

� A config spec that will be used by the builder

Since the config specs for each project will be different, a view template
must be generated for each project.

See View Template Script Usage for complete details on how to use the
view template scripts.

ClearCase Entities

This development process will require the creation and usage of the
following ClearCase entities.

Views

A separate view will be needed for the integrator, for the builder, and
for each developer.

View Template

A view template will be needed to provide a standard config spec for
each developer.
130 Rational Rose Guide to Team Development

Initial Setup
Labels

Labels will be used to define various lineups. Significant labels include:

� TC_BASELINE_0: This represents the initial state of the project.

� TC_BUILDFILES: This label will indicate what element versions
should be included in the next automated build. Only the builder
should use this label.

� TC_LATEST_STABLE: This label will be applied to the most recent
stable lineup on the integration branch. Note that this label is not
fixed - the elements it refers to will change whenever a new stable
lineup is established.

Initial Setup

Before starting with the parallel development process outlined here, it
is assumed that the model is already under version control in a VOB.

Create the Integrator View

All project setup can occur from the integrator view. The integrator
view will see the latest versions of elements on the integration branch,
which in this case is "/main". The config spec should look like this:

element * CHECKEDOUT
element * /main/LATEST

Views are created with this config spec by default, so create a view with
the name tc_int. If the integrator role will be played by multiple team
members, be sure to choose a storage location for the view that will
provide suitable performance for all. As always, integrators should not
share views and so no two integrators should use this view at the same
time.

Create Project Labels

The standard project labels mentioned above should now be created.
These labels include TC_BASELINE_0, TC_BUILDFILES, and
TC_LATEST_STABLE.

Each of these labels should be created before starting work on the
project. A label type can be created with the following cleartool syntax:
Rational Rose Guide to Team Development 131

Chapter 6 Parallel Development Sample Using ClearCase
[x:\dev]cleartool mklbtype -c "Initial Project State"
TC_BASELINE_0

Created label type "TC_BASELINE_0".

Create Initial Lineup

After the labels have been created, the initial lineup label should be
applied to the VOB (\dev is the VOB being used in this example):

[x:\dev]cleartool mklabel -recurse TC_BASELINE_0 \dev

The initial model should be a valid stable model, so the
TC_LATEST_STABLE label should be applied to all versions that are
covered by the initial lineup:

[x:\dev]cleartool mklabel -recurse -version TC_BASELINE_0
-
replace TC_LATEST_STABLE \dev

Creating the Developer View Template

To ensure consistent and controlled access to the model, and to ease
the use of lineups and private branches, all developers should derive
their config specs from a common base. There are two primary
functions that developers will be performing, and each requires a
different config spec:

� Browsing. Allows the view to see the latest stable lineup on the
integration branch.

� Development. This sees a snapshot of the integration branch based
on a labeled stable lineup, and branches files to a developer-private
branch when files are checked out.

The rules for the browsing config spec are as follows:

element * TC_LATEST_STABLE
element * /main/LATEST

The TC_LATEST_STABLE label in the rule above can be changed to a
different label if a developer wishes to view a lineup other than the
latest. Optionally, the -nocheckout modifier can be added to the above
rules so that checkouts can not occur accidentally while browsing.

For the development config spec, the rules should be:

element * CHECKEDOUT
132 Rational Rose Guide to Team Development

Initial Setup
element * ...\paulr_timing\LATEST
mkbranch paulr_timing

element * TC_BASELINE_5
element * \main\LATEST

In these rules, "paulr_timing" is the name of the private branch on
which the development is taking place and TC_BASELINE_5 is the
stable lineup that the development is based on. The rules have the
following meaning:

� All versions checked out to the view will be seen.

� If there is no checked out version, then the latest version on the
private branch will be seen.

� If there is no version on the private branch, then take the version
labeled by the lineup.

� If an element from the lineup is checked out, immediately branch it
to the private branch, and check out the newly branched version.

� If an element does not exist on the private branch and does not
have the lineup label applied to it, simply choose the latest version
on the main branch.

Windows NT

The developer view template can be implemented using view profiles by
creating and maintaining a view profile, and having each developer
associate their view with the view profile. Using the ClearCase View
Profiles tool, create a new view profile using the supplied wizard,
entering the following details:

� Name: tc_dev_profile

� Include the storage VOB for the model

� The work will take place on the LATEST versions of the integration
branch

� Give the label for the initial lineup, TC_BASELINE_0, as the
checkpoint label for creating private branches. This is not used for
the default config spec, but instead marks TC_BASELINE_0 as a
possible branching point.

� The diagram annotation can be modified as appropriate.

The default browsing config spec produced will look similar to the
following:
Rational Rose Guide to Team Development 133

Chapter 6 Parallel Development Sample Using ClearCase
[CC_PROJECT - Checked Out Rule
element * CHECKEDOUT
#
Any modifications to the Profile config spec should
be made following this comment.

CC_PROJECT]

[CC_PROJECT - Profile Config Spec
Do not directly modify the text below, it has been
automatically generated by the ClearCase View Profile
Tool. To change the Profile config spec, use the
ClearCase View Profile Wizard to update the Profile
status as needed.

element * \main\LATEST
CC_PROJECT]

Unfortunately, this config spec will let developers see changes that
have been merged to the integration branch but that have not yet been
built and tested. What is wanted instead is a config spec that shows
the latest stable build at any point in the development process. The
change required is shown below:

[CC_PROJECT - Checked Out Rule
element * CHECKEDOUT
#
Any modifications to the Profile config spec should
be made following this comment.
CC_PROJECT]

element * TC_LATEST_STABLE
[CC_PROJECT - Profile Config Spec
Do not directly modify the text below, it has been
automatically generated by the ClearCase View Profile
Tool. To change the Profile config spec, use the
ClearCase View Profile Wizard to update the Profile
status as needed.
element * \main\LATEST

CC_PROJECT]

The view profile is now ready for developers to use.
134 Rational Rose Guide to Team Development

Automated builds
Unix

Use the supplied vtadmin script to create a new template. The following
command syntax can be used:

vtadmin -mktemplate -template tc -lateststable
TC_LATEST_STABLE
-buildlabel TC_BUILDFILES -integrationbranch /main

After the command finishes, a template with the supplied parameters
will have been created in the $CCVIEWTEMPLATES directory, and is
now ready for use in the project.

To add the initial lineup label as a supported branching point, use the
following call to vtadmin:

vtadmin -addlineup -template tc -baselinelabel
TC_BASELINE_0

Automated builds

To provide the ability to selectively choose the versions of files that go
into the build, the builder will select all versions that are labeled with
the build label TC_BUILDFILES. This allows flexibility in changing the
exact versions that go into the build should it be needed (i.e., if the
most recent version of a file contains code that does not compile, then
the previous version can be labeled instead).

There are several steps involved in the build:

� Label Build Files

� Perform Build

� When the Build Completes Successfully

❑ Create a new lineup label and apply to build file versions

❑ Apply TC_LATEST_STABLE to build file versions

❑ Make New Lineup Available to Developers

Before any of this can occur, though, the build view must first be
created.
Rational Rose Guide to Team Development 135

Chapter 6 Parallel Development Sample Using ClearCase
Create the Build View

The build view is similar to the integrator view in that it selects files
from the integration branch, but different in that it needs to select
labeled versions when performing the build.

When performing the labeling, the latest version of files on the
integration branch need to be in view for the labeling to select the
correct file versions. This config spec is identical to the one presented
above for the integrator.

When performing a build, the build view must see the labeled version
of all files that are contained in the build. For files and directories that
are not labeled, it suffices to select the latest version on the main
branch. The following config spec rules capture these requirements:

element * TC_BUILDFILES
element * \main\LATEST

For the build view to be used for both labeling and building, the config
spec for the view must be switched back and forth. This can be done
by having text files that contain the two config specs and using
cleartool setcs to invoke the appropriate config spec.

Depending on your development environment, it may be possible to
use the integrator view for labeling and leave the build view always
configured to pick up the TC_BUILDFILES labeled files.

A typical name for the build view is "tc_build".

Unix

The view template scripts produce a text version of the build and
integrator config spec rules indicated above. Use the vtsetview script to
select the appropriate config spec rules into the build view.

Label Build Files

After ensuring that the current view has the integrator config spec,
apply the TC_BUILDFILES label to the latest version of each element
on the integration branch. The following command will do this:

cleartool mklabel -recurse -replace -version \main\LATEST
TC_BUILDFILES \dev
136 Rational Rose Guide to Team Development

Automated builds
Perform Build

After ensuring that the current view has the builder config spec,
perform the build.

If the build does not complete successfully, or if the produced build
does not pass sanity testing, determine if it is possible to fix the
problem simply by backing up the version of a file used. If so, apply the
TC_BUILDFILES label to the earlier version of the file and restart the
build. Continue until a successful build is produced.

If there are build problems that cannot be resolved in the above
manner, then ensure that the developers responsible for the problem
are notified so that the next build will be successful.

When the Build Completes Successfully

Create a new lineup label and apply to build file versions

Create a label that will encompass all versions used in the build just
completed. This should be a unique label in a regular form, such as
TC_BASELINE_NNN, where N is an integer preferably generated
automatically in an incremental manner from the previous lineup
label.

Apply the label to all versions that were used in the build:

cleartool mklabel -recurse -replace -version
TC_BUILDFILES
TC_BASELINE_NNN \dev

If you wish to prevent the lineup contents from being changed in the
future, you may wish to lock the TC_BASELINE_NNN build label at this
point.

Apply TC_LATEST_STABLE to build file versions

As a convenience, the TC_LATEST_STABLE label is used to show the
most recent successful stable build. To update the versions that
TC_LATEST_STABLE applies to, use a similar mklabel invocation to
the one presented above.
Rational Rose Guide to Team Development 137

Chapter 6 Parallel Development Sample Using ClearCase
Make New Lineup Available to Developers

The newly labeled lineup should now be exposed for developers to use
as a branching point for private branches. This is done by adding the
TC_BASELINE_NNN label to the view template.

Although it may seem that TC_LATEST_STABLE could be added as a
potential branching point label, this is not the case. Branching points
are intended to be unchanging specifications of a lineup of versions.

However, TC_LATEST_STABLE will change with every build, and is
therefore not appropriate for use as a branching point.

Windows NT

Using view profiles, the build label should be added to the
tc_dev_profile view profile. This is done in the ClearCase View Profiles
editor by using the context menu on the tc_dev_profile profile.

Unix

Use vtsetadmin to add the build label to the view template:

vtadmin -addlineup -template tc -baselinelabel
TC_BASELINE_NNN

Developer Process

Each development activity is completed by a single developer and is
performed on a private branch specific to that activity. Again, each
developer requires their own view. The view is based on a branching
point on the integration branch identified by a build label.

A unique branch name must be chosen that identifies the work being
performed (such as paulr_timing). The view's config spec rules are set
up to automatically check out and branch files from the branching
point to the private branch. As well, new elements created during the
development activity are immediately branched to the private branch.

Because the branch is hidden from other developers, the user may
check in incremental changes to the branch. When the developer is
satisfied that changes are completed and ready to be integrated, the
developer informs the integrator that all changes on the private branch
are ready for integration.
138 Rational Rose Guide to Team Development

Developer Process
By basing developer private branches off of labels that correspond to
the versions used by automated builds, each developer will be able to
reuse most of the build results in the form of winked-in derived objects.

This significantly reduces the amount of building that is required by
each developer when they make changes.

Creating a Developer View

It is important to note that each developer needs a view. Under no
circumstances should multiple users work from the same view.

Windows NT

After creating the view, associate the view with the tc_dev_profile View
Profile. The view will be set up for browsing as per the description in
Creating the Developer View Template.

Unix

After creating the view, use the vtsetview script to set the view config
spec to the default browsing config spec using the following command:

vtsetview -setview browse -template tc

The view will now show the latest stable build of the model.

Starting a Development Activity

Each development activity is performed on a private branch. The name
of the private branch should be appropriate to the activity being
worked on. One strategy for avoiding branch name clashes is to start
each branch name with the user id of the developer doing the work
(e.g., paulr_timing).

Windows NT

To start an activity, use the Set Up Private Branch wizard that is
available from ClearCase HomeBase. Rather than base the branch on
the elements currently in view, choose to use a different branch point.
On the version selection page, choose "by View Profile checkpoint", and
select the integration branch label you wish to work from, which is
likely the most recent label in the list.
Rational Rose Guide to Team Development 139

Chapter 6 Parallel Development Sample Using ClearCase
Unix

Use the vtsetview script with the -listbaselines option to see what
lineups are available for basing the private branch on. To start the
private branch, use the following invocation of vtsetview:

vtsetview -startbranch -template tc
-brname paulr_timing -brpoint TC_BASELINE_4

Working on a Development Activity

After the view has been set up like this, the model should be loaded into
Rose. Work now proceeds until the entire development activity is
complete. The developer may check in intermediate results, as they will
not be seen by other developers since the changes will all occur on the
private branch.

Finishing a Development Activity

When all development is complete on the activity and everything
submitted to source control, the changes are ready to be propagated to
the integration branch. The propagation is performed by the integrator,
so the only task remaining for the developer is to end the private
branch and notify the integrator that the changes on the completed
branch are ready for integration.

Windows NT

Use the Finish Private Branch wizard in ClearCase HomeBase. Since
integration of the changes made onto the integration branch will be
done by the integrator, choose to leave the changes on the branch.

Unix

Use the following call to vtsetview to finish the private branch:

vtsetview -endbranch -template tc -brname paulr_timing
140 Rational Rose Guide to Team Development

Integration process
Integration process

Each development activity must eventually be merged into the
integration branch. ClearCase has several tools available for
performing such a merge. The "cleartool findmerge" command can be
used to merge all changes from a branch onto another branch. From
the integrator view, the following command syntax can be used:

cleartool findmerge \dev -all -fversion
.../paulr_timing/LATEST
-merge

Alternately, Windows NT users can use the ClearCase Merge Manager
to perform the same merge.

Both of these methods will merge directory versions and also use Model
Integrator to merge changes in model files. After performing the merge,
the integrator should load the model into Rose and verify that no merge
errors have occurred. If the model loads correctly, the changes should
be checked in using the Tools > Version Control.

The following sequence of steps is quite efficient when integrating a
series of development activities:

1. Load the model in the integrator view using the workspace.

2. Perform the merge as detailed above.

3. Reload all files that have changed in the merge.

4. Make sure that the merged differences are as desired.

5. Check changes into version control.

6. Repeat steps 2 through 5 for each activity that needs integration.

View Template Script Usage

vtadmin

The vtadmin script is used to list, create, delete, and update view
templates. Each usage of vtadmin is detailed below:

vtadmin -lstemplates

This invocation lists the available view templates.
Rational Rose Guide to Team Development 141

Chapter 6 Parallel Development Sample Using ClearCase
vtadmin -mktemplate -template <templatename>
-lateststable <stablelabel> -buildlabel <buildlabel>
[-integrationbranch <intbranch>]

This invocation creates a new template with the specified name, latest
stable label, build label and integration branch. If the integration
branch is not supplied, then /main is assumed. Note that creating a
view template does not create the labels and branches indicated - they
are assumed to already exist.

vtadmin -lslineups -template <templatename>

This invocation lists the lineup labels associated with the specified view
template.

vtadmin -addlineup -template <templatename>
-lineuplabel <lineuplabel>

This invocation adds a lineup label to the specified view template.

vtadmin -rmlineup -template <templatename>
-lineuplabel <lineuplabel>

This invocation removes the indicated lineup label from the specified
view template.

When invoked with no parameters the script will output usage help.

vtsetview

The vtsetview script is used to configure config spec and perform
common developer queries. Each usage of vtsetview is detailed below:

vtsetview -startbranch -template <templatename>
-brname <branchname> -brpoint <labelname>

This invocation attempts to start a private branch using the supplied
parameters.

vtsetview -endbranch -template <templatename>
-brname <branchname>

This invocation is used to end the indicated private branch.

vtsetview -setview (integrate | build | browse)
-template <templatename>

This invocation is used to set a specific config spec into the current
view.
142 Rational Rose Guide to Team Development

View Template Script Usage
vtsetview -lslineups -template <templatename>

This invocation lists the available lineups for the specified view
template.

When invoked with no parameters, the script will output usage help.
Rational Rose Guide to Team Development 143

Index
Symbols
$CURDIR 26
$UNNAMED$ 38

A
access violations 27, 28, 103
activating a Version Control Add-In 79
adding controlled units to a model 13
adding controlled units to version

control 86
adornments on diagrams 14
Architect 96
architecture, model 95
artifacts, and virtual path maps 26
Auto Advance 55
automated builds 135
automatic merge 35
automating model validation 126
AutoMerge 50

B
base model 34
baseline 77
basic objects 36
browser view (Model Integrator) 32
build view 136
building using automated scripts 122
Rational Rose Guide to Team Development
C
cat files 8
Check Merge 39, 62
Check Model 27
checking in controlled units 87
checking out controlled units 88
ClearCase

about 80
add-in 79
and Model Integrator 42, 82
config spec 82
setting up 82
views 82

comand line access to Model Integrator
67

compare mode 31
comparing models

about 31, 34
conflicts 36
differences 36
loading controlled units 45

component instances 109
config spec 82
conflicts 35, 36

Auto Advance 55
viewing 54

context field (Model Integrator) 49
contributors 31, 50

about 34
145

Index
accepting changes from 58
disabled by semantic checking 62
selecting 44

controlled units
about 7
access violations 27
adding to a model 13, 19
adornments 14
and version control 7
cat files 8
checking into version control 87
checking out of version control 88
contents 9
creating 12
getting latest from version control 89
icons 13
importing 19
loading 12, 45
logical packages 8
merging 19
organizing 29
partitioning a model 118
prc files 8
protecting 17
reloading 13
removing from version control 90
sharing 10
splitting 18
sub files 8
uncontrolling 20
undoing check out 89
unloading 14, 45
unresolved references 27
virtual path maps 21
write-enabling 18
write-protecting 17

correcting merge errors 63
creating

build view 136
controlled units 12
developer view template 132
initial lineup 132
146
integrator view 131
labels and lineups 120
model workspace 17
processors and component instances

108
project labels 131
reusable build artifacts 124
virtual path maps 23

D
defining subsystem interfaces 105
deployment view 8
diagram objects 36
differences 35, 36

Auto Advance 55
changing nodes 60
viewing 54

E
element type 82
export control 28

G
getting latest version of controlled units

89

I
icons, controlled units 13
import relationship and access

violations 28
importing controlled units 19
integrating change 126
integration 73
Integrator 98
interfaces, and subsystems 105

L
labels 120, 131
Guide to Team Development

Index
creating 131
for build files 136

lineups 120, 121
about 73
creating initial 132

loading a model workspace 17
loading controlled units 12, 45

M
manually loading controlled units 13
mdl file 7
mechanism 37
merge mode 31
merging controlled units 19
merging models

about 31, 35
accepting changes from contributors

58
automatic merge 35
AutoMerge 50
Check Merge 62
Check Merge function 39
conflicts 35, 36
correcting merge errors 63
differences 35, 36
loading controlled units 45
partial merge 65
preparing for 44
selective merge 35
semantic checking 39
using subtree mode 61
whole models 42
without a base model 66

Microsoft Visual SourceSafe 84
Model Architect 96
model architecture

about 95
Model Integrator

about 31
accepting changes from contributors

58
Rational Rose Guide to Team Development
and ClearCase 42, 82
Auto Advance 55
automatic merge 35
AutoMerge 50
base model 34
basic objects 36
browser view 32
changing nodes with differences 60
Check Merge 62
Check Merge function 39
comparing models 34
conflicts 35, 36
contributors 34
correcting merge errors 63
diagram objects 36
differences 35, 36
mechanism 37
merging models 35
merging models without a base

model 66
partial merges 65
property view 33
quids 37
references 37
resolving subunit loading errors 48
searching for nodes 53
selecting contributors 44
selective merge 35
semantic checking 38
semantic checking on-the-fly 62
setting a new context for subunits 49
starting 44
subtree mode 61
text views 33
unnamed objects 38
user interface 32
using from a command line 67
view objects 37
viewing a parent node 56
viewing a single model 67
viewing conflicts 54
viewing differences 54
147

Index
viewing references to nodes 57
virtual path maps 48

Model Manager 96
model properties

controlled units 8
using virtual path maps 26

model validation 126
model workspaces

about 14
creating 17
loading 17
loading controlled units 13
saving 17

Modeler/Developer 98
moving the contents of a controlled unit

19

N
nodes

about 35
changing, with differences 60
searching for 53
viewing a parent 56
viewing references to 57

O
on-the-fly semantic checking 40
opening a model 12
organizing controlled units 29

P
packages

access violations 103
as subsystems 99
component 8
logical 8
partitioning a model 118
sharing 10

parallel stream versioning 75
148
partial merges 65
partitioning a model 10, 29, 95, 118
path maps, See virtual path maps
performing a build 137
petal file format 11
petal files 38
prc files 8
project level processors 108
property view (Model Integrator) 33
protecting controlled units 17
prp files 8
ptl files 11

Q
quids 37
quidu 37

R
RCS 91
read only controlled units 17
references

checking 27
in Model Integrator 37
unresolved 14, 20

releasing subsystems 109
reloading controlled units 13
removing controlled units from version

control 90
repository mapping files 92
resolving subunit loading errors 48
reuse

creating build artifacts 124
rmf files 92

S
saving a model workspace 14, 17
SCC version control systems 78
SCCS 91
searching for nodes 53
Guide to Team Development

Index
selective merge 35
semantic checking 38

on-the-fly 62
setting a new context for subunits 49
setting ClearCase up to work with Rose

82
setting up compatible workspaces 117
setting up Microsoft Visual SourceSafe

to work with Rose 84
Show Access Violations 28, 103
single stream versioning 74
splitting a controlled unit 18
splitting a model into subsystems 110
starting Model Integrator 44
sub files 8
subsystem level processors 108
subsystems

components in 105
defining interfaces 105
releasing 109
splitting a model 110

Subtree Mode 61
subunits 12

T
text views (Model Integrator) 33

U
uncontrolling controlled units 20
undoing check out 89
unit testing 107
unloading controlled units 14, 45
unnamed objects 38
unresolved references 14, 20

checking for 27
URLs 26
using Model Integrator form a command

line 67
using view templates 129
Rational Rose Guide to Team Development
V
validating a model 126
version control

about 71
activating 79
adding controlled units 86
checking in controlled units 87
checking out controlled units 88
controlled units 12
getting latest controlled units 89
removing controlled units 90
setting up 118
uncontrolling controlled units 20
undoing check out 89
write-protecting controlled units 18

Version Control Add-In 78
versioned object base, see VOB
view

version control system 72
view objects 37
viewing a parent node 56
viewing a single model file (Model

Integrator) 67
viewing conflicts and differences 54
viewing model elements that have moved

56
viewing references to nodes 57
views

ClearCase 82
views (Model Integrator) 32
virtual path maps

about 21
creating 23
for artifacts 26
for model properties 26
how stored 27
in Model Integrator 48
using another path map 25
using wildcards 25

VOB
about 81
149

Index
VSS 84
vtadmin 141
vtsetview 142

W
workspaces, model

about 14
write enabling a controlled unit 18
write protecting controlled units 17
wsp files 17
150
 Guide to Team Development

	Contents
	Preface
	How This Manual Is Organized
	Related Documentation
	Understanding Team Development
	Planning for Team Development
	Developing a Strategy
	Current Projects
	Developing for reuse

	How Rational Rose Supports Team Development
	Using this Guide

	Breaking a Model into Controlled Units
	What is a Controlled Unit?
	What Can be a Controlled Unit
	How Controlled Units are Related and What They Contain

	Working with Controlled Units
	Creating Controlled Units
	Loading, Reloading and Unloading Controlled Units
	Creating and Using Model Workspaces
	Understanding Workspaces
	How a Saved Model Differs from a Model Workspace
	Workspace Example
	Creating and Saving a Model Workspace
	Loading a Model Workspace

	Protecting Controlled Units
	To Write-Protect a Controlled Unit
	To Write-Enable a Controlled Unit

	Splitting a Controlled Unit
	Merging Controlled Units
	Adding Controlled Units to a Model (Importing/Loading)
	Uncontrolling Controlled Units

	Creating Virtual Paths to Controlled Units
	Understanding Virtual Path Maps
	How Virtual Paths Work
	How to Create Virtual Path Maps
	Defining a Path Map Relative to the Location of the Model File
	Defining a New Path Map Using Another Path Map Symbol
	Defining a Path Map with Wildcards
	Using Virtual Paths for the Value of a Model Property
	Using Path Maps for other Artifacts
	Where Virtual Path Maps are Stored

	Checking References and Access Violations
	Check Model
	Show Access Violations

	Organizing Controlled Units for Teams
	Suggested Strategies

	Comparing and Merging Models
	About the Model Integrator
	About the Model Integrator Interface
	Browser view
	Property view
	Text views
	Other Interface Features

	About Contributors
	About the Base Model
	Comparing Models
	Merging Models
	About Differences and Conflicts
	About Model Files and Model Integrator
	Understanding Semantic Checking
	Limitations of Semantic Checking

	About Memory Requirements and Performance

	About Model Integrator and ClearCase
	Merging Whole Models with Controlled Subunits
	Starting Model Integrator in a ClearCase Integration

	Comparing and Merging Models
	Starting Model Integrator
	Preparing Models for Merging
	Selecting the Contributors
	Loading or Unloading Controlled Units
	Subunit Status
	Loading Subunits
	Saving Subunits
	Subunit File and Path Names
	How to Resolve Subunit Loading Errors
	Setting a New Context for Subunits

	Using Compare Mode
	Using Merge Mode
	AutoMerge

	Interpreting Compare and Merge Results
	Navigating through a model
	Searching for a Model Element
	Viewing Conflicts and Differences
	Viewing Conflicts and Differences with Auto Advance
	Viewing Model Elements that have Moved
	Viewing the Parent of a Node
	View Nodes Referenced by this Node

	Accepting Changes from Contributors
	Deciding Which Contributor to Select
	Two Ways to Accept Changes

	Changing Nodes with Differences
	Reversing Changes to Nodes
	Using Subtree Mode
	Using Semantic Checking On-the-Fly
	When a Contributor is Disabled by Semantic Checking

	Checking Merged Model for Consistency
	Correcting Merge Errors
	Saving the Results

	Performing a Partial Merge
	Merging Models Without a Base Model
	Viewing a Single Model File
	Using Model Integrator from the Command Line

	Working with a Version Control System
	Understanding Version Control
	Types of Version Control Systems
	File Based Version Control Systems
	View Based Version Control Systems

	Version Control Development Concepts
	Development Activity
	Integration
	Lineup
	Working in Isolation

	Versioning Strategies
	Single Stream Versioning
	Parallel Stream Versioning

	Using Rose’s Integration with Version Control Systems
	Version Control Add-In
	ClearCase Add-In
	Choosing and Activating a Version Control Add-In

	Using Rational ClearCase
	About ClearCase
	Versioned Object Bases (VOBs)
	ClearCase Views
	Setting ClearCase Up to Work with Rose
	Steps for Setup

	Using Microsoft Visual SourceSafe
	Setting Up Microsoft Visual SourceSafe to Work with Rose
	Steps for Setup

	Using Version Control Features From Rose
	Using the Version Control Add-In on a Previously Controlled Model
	Adding Controlled Units to Version Control
	Checking in Controlled Units
	Checking Out Controlled Units
	Undoing the Check-Out of Controlled Units
	Getting the Latest Version of Controlled Units
	Removing Controlled Units from Version Control

	Working with Non-SCC Version Control Systems
	Repository Mapping Files (.rmf)
	Version Control Operation Behavior with SCCS
	RCS/SCCS Repository Setup
	RCS/SCCS Workstation Setup
	Command Line Access to the Source Control Tool
	Create an RMF File
	Set RMF Environment Variable

	Establishing a Model Architecture and Process for Team Development
	About Model Architecture and Process
	Establishing Roles and Responsibilities
	Model Architect
	Model Manager
	Modeler/Developer
	Integrator

	Developing a Model Architecture
	Understanding Subsystems
	One Model versus Multiple Models
	Mapping the Architecture to Subsystems
	Checking Package Dependencies for Completeness
	Show Access Violations
	Determine the External Dependencies for a Package

	Checking if a Subsystem is Self-Contained
	Defining Subsystem Interfaces
	Setting Up Subsystem Components
	Components in Subsystems

	Providing Support for Unit Testing
	Using Property Sets for Build Settings
	Creating Processors and Component Instances
	Project Level Processors
	Subsystem Level Processors
	Component Instances

	Preparing and Releasing Subsystems
	Splitting a Model into Subsystem Models
	Should you split the model before adding to version control?
	Splitting a Model not in Version Control

	Splitting a Model Under Version Control

	Managing/Administering a Model
	Setting Up Compatible Workspaces
	Setting Up Version Control System and Repository
	Partitioning the Model into Controlled Units
	Save Model to Local Work Area
	Adding the Model to Version Control
	Defining Developer Work Areas
	Creating Labels and Lineups
	Manipulating the Version Control Repository

	Developing/Implementing a Model
	Setting up Version Control
	Setting up Developer Work Areas
	Getting a Specific Lineup of a Model
	Opening a Model Under Version Control
	Working under Version Control
	Comparing and Merging Model Elements
	Promoting Changes for Integration

	Building and Integrating
	Building using Automated Scripts
	Building within a Larger Build Procedure
	Reusing Build Artifacts
	Creating Reusable Build Artifacts
	Using Build Artifacts

	Integrating Changes
	Automating Model Validation

	Parallel Development Sample Using ClearCase
	Overview
	Using View Templates
	ClearCase Entities
	Initial Setup
	Create the Integrator View
	Create Project Labels
	Create Initial Lineup
	Creating the Developer View Template
	Windows NT
	Unix

	Automated builds
	Create the Build View
	Unix

	Label Build Files
	Perform Build
	When the Build Completes Successfully
	Create a new lineup label and apply to build file versions
	Apply TC_LATEST_STABLE to build file versions
	Make New Lineup Available to Developers

	Developer Process
	Creating a Developer View
	Windows NT
	Unix

	Starting a Development Activity
	Windows NT
	Unix

	Working on a Development Activity
	Finishing a Development Activity
	Windows NT
	Unix

	Integration process
	View Template Script Usage
	vtadmin
	vtsetview

	Index

