
Getting Ahead with Purify
support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT NOTICE
Copyright  1996, 1998 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS
INFORMATION PROPRIETARY TO RATIONAL. ANY COPYING,
ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION
OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN
PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

U.S. GOVERMENT RIGHTS NOTICE
U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARK NOTICE
Rational, the Rational logo, Purify, ClearQuest, and Rational Visual Test are
trademarks or registered trademarks of Rational Software Corporation in the
United States and in other countries.

Visual C++, Windows NT, Developer Studio, and Microsoft are trademarks or
registered trademarks of the Microsoft Corporation. All other names are used
for identification purposes only and are trademarks or registered trademarks
of their respective companies.

U.S. PATENT NOTICE
U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed
under Sun Microsystems Inc.’s U.S. Pat. No. 5,404,499. Other U.S. and foreign
patents pending.

Printed in the U.S.A.

G E T T I N G A H E A D W I T H P U R I F Y
Contents
Welcome to Purify. .5

Check every component in your program .5

Find errors before they occur .6

Don’t wait—use Purify early and often .6

Getting started .7

Running a program with Purify .7

Seeing all your errors at a glance .9

Focusing on critical errors first .11

Analyzing messages .13

Correcting errors .14

Comparing program runs .15

Saving error data .16

Using Purify’s power features .17

Customizing error detection .17

Using just-in-time debugging .18

Extending error checking with Purify API functions19

Using Purify standalone .19

Testing with Purify’s command-line interface 21

Using Purify in a highly integrated environment 22

Index .25
3

4

G E T T I N G A H E A D W I T H P U R I F Y
Welcome to Purify
Today’s competitive software development is component based.
To deliver quality applications on time, you not only need to make
sure your own code is error free, you also need a way to check the
components your software uses—even when you don’t have the
source code.

That’s where Purify® can help you get ahead. Purify provides the
fastest and most comprehensive run-time error detection available
for Visual C++ programs. Purify automatically integrates into
Microsoft Developer Studio 97 and later, and requires no special
builds, so you can use Purify without changing the way you work.

Check every component in your program

Purify thoroughly checks every component in your program, even
in complex multi-threaded, multi-process applications, including:

■ COM-enabled applications using OLE and ActiveX controls
■ DLLs, including Windows DLLs and Microsoft Foundation Class

Library DLLs
■ Visual C/C++ components embedded within Visual Basic

applications, Internet Explorer, Netscape Navigator, or any
Microsoft Office application

■ Microsoft Excel and Microsoft Word plug-ins
■ Applications running in Windows CE Emulation Mode on

Windows NT

Purify also checks calls to Windows API functions, validating
parameters such as memory handles and pointers. Included are
GDI, Internet services, system registry, and COM and OLE
interface API functions.
5

Find errors before they occur

Run-time errors and memory leaks are among the most difficult
errors to locate and the most important to correct. The symptoms
of incorrect memory use are unpredictable, and typically appear
far from the cause of the error. The errors often remain undetected
until triggered by some random event, so that a program can seem
to work correctly when in fact it’s only working by accident.

Purify detects the following kinds of memory errors, and many
others, before they actually occur, so you can resolve them before
they do any damage:
■ Array bounds errors
■ Accesses through dangling pointers
■ Uninitialized memory reads
■ Memory allocation errors
■ Memory leaks

More information? For a complete list of the errors Purify detects,
select Purify Messages from the Purify Help menu.

Don’t wait—use Purify early and often

For maximum benefit, start using Purify as soon as your code is
ready to run and continue using it regularly throughout your
development cycle, especially for:

Acceptance tests: Validate third-party code or code from other
development groups before incorporating it into your application.

Code check-in: Reduce the risk that bugs in your code might
impact other code modules.

Nightly builds: Incorporate Purify into your test harness to
verify that modules work together and to expose code
dependencies and collisions.

By using Purify early and often, you’ll release clean, reliable
products—on time.
6 Getting Ahead with Purify

G E T T I N G A H E A D W I T H P U R I F Y
Getting started
With Purify, you can deliver cleaner code in a few easy steps:

1 Run your program with Purify in Microsoft Developer
Studio 97 or later.

2 Analyze error messages.

3 Correct your source code.

4 Rerun the program to verify your corrections.

You can also use Purify independently of Developer Studio. Read
“Using Purify standalone” on page 19 of this guide, and “Testing
with Purify’s command-line interface” on page 21.

Running a program with Purify

Open your project in Developer Studio, then engage Purify from
the Purify toolbar.

Build and execute your program using commands from the
Developer Studio Build menu. (To get the maximum level of detail
in Purify error reports, build your program with debug and
relocation data. For more information, look up debug data,
locating in the Purify online Help index.)

Purify copies the program and each library it calls, then
instruments the copies using Object Code Insertion (OCI)
technology. The instrumentation process inserts instructions that
validate every read, write, and allocation and deallocation of
memory.

Click to engage Purify
7

You can follow Purify’s progress as it instruments each module.

You can customize Purify’s instrumentation level to provide more
or less detail for special cases. For more information, read
“Customizing error detection” on page 17 of this guide.

Purify caches the instrumented modules. When you rerun a
program, Purify saves time and resources by using the cached
modules, re-instrumenting only those that have changed since the
previous run.

As you exercise your program, Purify detects run-time errors and
memory leaks and displays them in an error view in the Purify
Main Window.

The instrumentation
level for each module

The module that Purify is
currently instrumenting

 Purify Main Window
error view
8 Getting Ahead with Purify

Seeing all your errors at a glance

Purify displays informational messages about the state of your
program’s execution, as well as messages about run-time errors
and memory leaks.

When you exit the program, Purify reports memory leaks. In
addition to memory leaks, you can set Purify to report memory in
use at exit and handles in use at exit.

More information? Look up error and leak settings in the online
Help index.

Color-coded icons show message severity:

informational warning error

Acronyms like ABW
identify message type

For a description of a
message, right-click the

message, then select
Describe
Getting started 9

When identical errors repeat

An error often repeats many times in a program, particularly if it
occurs inside a loop. To provide a succinct overview of a program’s
errors, Purify by default displays each error message only once,
the first time an error occurs, and then updates a counter
whenever the error repeats.

More information? If you want Purify to display each occurrence
of a message individually, instead of reporting counts, you can
change the default setting. Look up error and leak settings in the
online Help index.

This Uninitialized memory
read (UMR) occurred 14 times
10 Getting Ahead with Purify

Focusing on critical errors first

A large program can generate hundreds of messages. To focus on
the most critical error messages quickly, create filters to hide all
other messages from the display.

You can filter messages individually, or you can filter them based
on their type and source. Consider hiding all informational
messages, for example, or all messages originating from a specific
file.

Once created, filters apply to the current run and to all future
runs of the program until you disable them. Disabling a filter
causes hidden messages to be redisplayed in the error view.

An unfiltered error view displays all the
messages from the program

A filtered error view displays only
the messages you want to see

Right-click a
message and

select QuickFilter
to hide the message

automatically

Or select Create Filter
to define a set

of filtering criteria
Getting started 11

Working with filters

Purify filters are very flexible. Click the Filter Manager tool to
create individual filters or groups of filters, and to apply them to
specific programs or modules. You can also create global filters
that apply to all programs and modules. And you can share filters,
which Purify saves as .pft files, with other members of your
team.

More information? Look up filters, about in the online Help index.

In addition to filtering, Purify offers another way of focusing on
the errors in specific modules and simultaneously minimizing
instrumentation time—the PowerCheck feature, which allows you
to optimize the level of error detection for each module. For more
information, read “Customizing error detection” on page 17 of this
guide.

Click to enable or
disable filters

The Filter Manager
creates a filter group for

each program you run

The checked filters apply to the selected
program until disabled or deleted

Drag and drop filters to
move or copy them
12 Getting Ahead with Purify

Analyzing messages

You can expand Purify’s messages to pinpoint where errors occur
and to obtain diagnostic information for understanding why they
occur.

Here’s an example of an expanded ABW (Array Bounds Write)
error message:

The level of detail provided in call stacks depends on the
availability of debug and relocation data. Even if you build your
program in release mode, you can still get the highest possible
level of detail. For more information, look up debug data, for
release builds in the online Help index.

You can customize the format of Purify’s messages. For example,
you can increase the number of lines of source code that are
displayed, or include instruction pointers and offsets to make
locating errors easier. For more information, look up preferences,
source code in the online Help index.

The location in memory
where the error occurs

Call stack showing
the function calls

leading to the error

Call stack showing the
function calls leading to

the allocation of the
memory block

associated with the error

Flag indicating the line
where the error occurs
Getting started 13

Correcting errors

Purify makes it easy to correct errors.

After correcting the errors, rebuild your program. Then rerun the
program with Purify engaged.

Double-click
the line where

the error occurs

Purify opens the
source code in the

editor, positioned at
the exact location

of the error
14 Getting Ahead with Purify

Comparing program runs

After rerunning your corrected program, you can easily compare
runs to verify your corrections. Purify’s Navigator window, which
you can display from the Purify View menu, helps you keep track of
multiple runs and multiple programs.

More information? You can customize the information displayed
in the Navigator window. Look up navigator window in the online
Help index.

Checking multi-process applications

If you’re debugging client/server and multi-process applications,
you can debug several processes and see the error reports for each
running application simultaneously. To do this, run each process
in a separate instance of Developer Studio with Purify engaged.
Alternatively, you can use the standalone Purify user interface.
See “Using Purify standalone” on page 19.

A color-coded icon
indicates the maximum

message severity
displayed in the

error view for the run

The Navigator window groups runs by program
Getting started 15

Saving error data

You can save Purify error data from a run in order to analyze it
later, share it with other members of your team, or include it in
reports. You can save Purify error data in two formats:

■ Purify data files (.pfy), with or without any messages you
filtered out. Later, you can open the saved file to analyze it or to
compare it to future program runs.

■ ASCII text files (.txt), for use in spreadsheet and
word-processing programs.

More information? Look up error view data, saving in the online
Help index.
16 Getting Ahead with Purify

G E T T I N G A H E A D W I T H P U R I F Y
Using Purify’s power features
Customizing error detection

You can control the level of error detection for each module in a
program by selecting one of Purify’s two instrumentation levels:
■ Precise instrumentation provides full run-time error detection,

to pinpoint problems in any component in your program.
■ Minimal instrumentation improves Purify’s performance while

providing a basic level of error detection.

Purify sets a default level for each module based on module size
and the availability of debug and relocation data. However, you
can override the default and specify instrumentation levels for
each module to meet your own requirements.

Click to set
the level of
instrumentation
for individual
modules

Specify the
instrumentation

level for all
selected
modules

Use the PowerCheck
tab in the settings

dialogs to customize
error detection
17

Try using the precise setting for the most critical modules in your
program and the minimal setting for the others. Later, you can
change the minimal settings to precise for a thorough check of the
other modules.

More information? Look up powercheck in the online Help index.
For information about how to provide debug and relocation data
when you are using Purify on release builds, look up debug data,
for release builds.

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to
your debugger when you need to solve tough problems. Click
to enable Break on Error, so that Purify stops your program just
before an error executes and lets you start your debugger if you’re
not already running Purify inside Microsoft Developer Studio 97
or later. You can also run a Purify’d program directly under the
debugger.

To quickly debug only the most critical errors in your program, use
Break on Error together with Purify filters. First, filter out all the
less critical messages, then enable Break on Error. Purify breaks
only for the unfiltered messages. When you’re ready to debug the
remaining errors, just disable the filters.

More information? Look up break on error tool and filters in the
online Help index.

With just-in-time
debugging, Purify raises

a breakpoint exception
when it detects an

error or warning

Click Cancel to explore
the error in your debugger
18 Getting Ahead with Purify

Extending error checking with Purify API functions

Purify includes a set of API functions that extend Purify’s error
checking capabilities and give you greater control over tracking
errors.

Using Purify’s API functions, you can set and test memory state,
and search for memory and handle leaks. For example, by default
Purify reports memory leaks only when you exit your program.
However, if you call the API function PurifyNewLeaks at key
points throughout your program, Purify reports any new memory
leaks it has detected since the last time the function was called.
This periodic checking enables you to track memory leaks more
closely.

You can call Purify API functions from your program or from the
QuickWatch dialog in the Developer Studio debugger.

More information? Look up api functions, list and api functions,
using in the online Help index.

Using Purify standalone

When you don’t need all of Microsoft Developer Studio’s resources,
you can use Purify standalone. Purify’s independent user interface
provides the same intuitive, efficient error-detection capabilities
as when you use Purify integrated with Developer Studio.

Note: You can also use Purify’s independent user interface while
continuing to work integrated with Developer Studio by
deselecting Embed Error Views in the Purify Settings menu.
Using Purify’s power features 19

To start Purify as a standalone application, double-click

Purify instruments your code and opens an Error View window to
display the results.

More information? For information about a user interface
item such as a tool or menu command, click and then click
the item.

Click Run to begin

Then click Run
Specify the

program you
want to check
20 Getting Ahead with Purify

Testing with Purify’s command-line interface

Using Purify’s command-line interface, you can use Purify with
existing makefiles, batch files, and Perl scripts. For example, if
you have a test script that runs a program, you can easily modify
the script to instrument and run the program. To do this, change
the line that runs Exename.exe to:

purify Exename.exe

Alternatively, to run the instrumented version of Exename.exe
consistently throughout your tests, add this line to the beginning
of your test script:

purify /Replace /Run=no Exename.exe

This line instructs Purify to save the original Exename.exe to
a .bak file, and to instrument Exename.exe but not to run it at
this time. Now, whenever your test script runs Exename.exe, it
runs the instrumented version of the program, providing Purify’s
detailed diagnostics.

You can run Purify without the graphical interface by using
the /SaveTextData option. This option saves Purify’s diagnostic
messages to a text output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the online Help
index.
Using Purify’s power features 21

Using Purify in a highly integrated environment

Rational Software tools integrate into your working environment
to help you do your job more effectively and efficiently. Without
leaving Purify or Developer Studio, you can make full use of:

■ ClearQuest™, Rational’s change request management tool
■ Rational Visual Test®, Rational’s automated test scripting tool

Using Purify with ClearQuest

If you have ClearQuest installed, you can submit a defect as soon
as Purify detects an error or warning.

Purify automatically supplies entries for a number of fields in the
submit form and specifies the category of error. You can easily
attach Purify data files (.pfy) to further document the error.

Using Purify with Visual Test

If you have Rational Visual Test 6.0 installed, you can easily
Purify the program that Visual Test is exercising. To do this,
you must include the file TOOLS.INC in your Visual Test script

Right-click on an error
message and select

Submit ClearQuest Defect
22 Getting Ahead with Purify

file (.mst), select Purify > Run Visual Test Scripts with Purify,
and run your script as usual in the Developer Studio interface.

If you are using a test harness to run Visual Test scripts, you can
easily modify it to run Purify automatically as it exercises the
program.

More information? Look up clearquest and visual test in the online
Help index, and refer to the ClearQuest and Visual Test
documentation.

Now you’re ready to put Purify to work.
Remember that Purify’s online Help contains
detailed information to assist you.

Update your Visual Test
script, then select

Run Visual Test Scripts
with Purify

Then run your script
in Visual Test
Using Purify’s power features 23

24

G E T T I N G A H E A D W I T H P U R I F Y
Index
A
ABW (Array Bounds Write) error 13
API

Purify functions 19
Windows API checking 5

B
batch files 21
Break on Error tool 18

C
cache files 8
call stack 13
ClearQuest, integrated with

Purify 22
client/server applications 15
code, editing 14
COM support 5
command-line interface 21
components

See modules
Create Filter command 11
customizing error detection 17

D
data, saving 16
debug data, and instrumentation 7,

17
debugging, just-in-time 18
Developer Studio, integration with

Purify 7
displaying filtered messages 12

E
Embed Error Views command 19
error detection, customizing 17
error view 8, 15, 16
errors
breaking on 18
correcting 14
See also messages

exit messages 9

F
files

caching after instrumentation 8
.mst 23
.pft 12
.pfy 16
.txt 16

filters
filter groups 12
Filter Manager 12
overview 11
saved in .pft files 12
sharing 12

functions, Purify API 19

G
groups, filter 12

H
handles

in use at exit 9
leaks 19

hiding messages
See filters

I
instrumentation

customizing 17
defined 7
minimal 17
precise 17
25

26 Getting Ahead with Purify
integration
ClearQuest 22
Microsoft Developer Studio 97 or

later 7–16
Rational Visual Test 22–23

J
just-in-time debugging 18

L
leaks

See memory

M
Main window 8
makefiles 21
memory

leaks reported at exit 9
PurifyNewLeaks API function 19

menu, shortcut 9
messages

analyzing 13
expanding 13
filtering 11
redisplaying filtered 12
See also errors

Microsoft Developer Studio, integra-
tion with Purify 7

minimal instrumentation 17
modules

custom error detection for 17
support for 5

multi-process applications 15

N
Navigator, overview 15

P
Perl scripts 21
.pft files 12
.pfy files 16
PowerCheck feature 17
precise instrumentation 17
programs

rerunning 14
running from command line 21
running under debugger 18

Q
QuickFilter command 11

R
Rational Visual Test, integrated

with Purify 22–23
relocation data, and

instrumentation 7, 17
rerunning a program 14
runs, comparing multiple 15

S
saving data

from an error view 16
/SaveTextData option 21

sharing filters 12
shortcut menu 9
source code, editing 14
stack, call 13
standalone use of Purify 19

T
tests, using Purify in 21, 22
threaded application support 5
.txt file 16

U
unembedding the Purify interface

from Developer Studio 19

V
Visual Test, integrated with

Purify 22–23

W
windows

Error View 8, 15, 16
Main 8
Navigator 15

Windows API checking 5

	Title Page
	Notice
	Contents
	Welcome to Purify
	Check every component in your program
	Find errors before they occur
	Don’t wait—use Purify early and often

	Getting started
	Running a program with Purify
	Seeing all your errors at a glance
	When identical errors repeat

	Focusing on critical errors first
	Working with filters

	Analyzing messages
	Correcting errors
	Comparing program runs
	Checking multi-process applications

	Saving error data

	Using Purify’s power features
	Customizing error detection
	Using just-in-time debugging
	Extending error checking with Purify API functions...
	Using Purify standalone
	Testing with Purify’s command-line interface
	Using Purify in a highly integrated environment
	Using Purify with ClearQuest
	Using Purify with Visual Test

	Index

