Getting Ahead with Purify

support@rational.com
http://www.rational.com

RATIONAL

IMPORTANT NOTICE

COPYRIGHT NOTICE
Copyright 00 1996, 1998 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS
INFORMATION PROPRIETARY TO RATIONAL. ANY COPYING,
ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION
OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN
PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

U.S. GOVERMENT RIGHTS NOTICE

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Purify, ClearQuest, and Rational Visual Test are
trademarks or registered trademarks of Rational Software Corporation in the
United States and in other countries.

Visual C++, Windows NT, Developer Studio, and Microsoft are trademarks or
registered trademarks of the Microsoft Corporation. All other names are used
for identification purposes only and are trademarks or registered trademarks
of their respective companies.

U.S. PATENT NOTICE

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed
under Sun Microsystems Inc.’s U.S. Pat. No. 5,404,499. Other U.S. and foreign
patents pending.

Printed in the U.S.A.

GETTING AHEAD WITH PURIFY

Contents
Welcome to Purify.o 5
Check every component in your program 5
Find errors before theyoccur 6
Don’'t wait—use Purify early and often 6
Getting started 7
Running a program with Purify 7
Seeing all your errorsataglance, 9
Focusing on critical errorsfirst 11
ANalyzZing MESSATES . . . oottt e e 13
COorrecting errorsot e 14
Comparing program rUNS v v v ettt it e 15
Savingerrordata 16
Using Purify’s power features. i 17
Customizing error detection 17
Using just-in-time debugging 18
Extending error checking with Purify API functions 19
Using Purify standalone 19
Testing with Purify’s command-line interface 21
Using Purify in a highly integrated environment 22
INdEX .. 25

GETTING AHEAD WITH PURIFY

Welcome to Purify

Today’s competitive software development is component based.

To deliver quality applications on time, you not only need to make
sure your own code is error free, you also need a way to check the
components your software uses—even when you don’'t have the
source code.

That's where Purify® can help you get ahead. Purify provides the
fastest and most comprehensive run-time error detection available
for Visual C++ programs. Purify automatically integrates into
Microsoft Developer Studio 97 and later, and requires no special
builds, so you can use Purify without changing the way you work.

Check every component in your program

Purify thoroughly checks every component in your program, even
in complex multi-threaded, multi-process applications, including:

= COM-enabled applications using OLE and ActiveX controls

= DLLs, including Windows DLLs and Microsoft Foundation Class
Library DLLs

= Visual C/C++ components embedded within Visual Basic
applications, Internet Explorer, Netscape Navigator, or any
Microsoft Office application

= Microsoft Excel and Microsoft Word plug-ins

= Applications running in Windows CE Emulation Mode on
Windows NT

Purify also checks calls to Windows API functions, validating
parameters such as memory handles and pointers. Included are
GDI, Internet services, system registry, and COM and OLE
interface API functions.

Find errors before they occur

Run-time errors and memory leaks are among the most difficult
errors to locate and the most important to correct. The symptoms
of incorrect memory use are unpredictable, and typically appear
far from the cause of the error. The errors often remain undetected
until triggered by some random event, so that a program can seem
to work correctly when in fact it's only working by accident.

Purify detects the following kinds of memory errors, and many
others, before they actually occur, so you can resolve them before
they do any damage:

= Array bounds errors

= Accesses through dangling pointers
= Uninitialized memory reads

= Memory allocation errors

= Memory leaks

More information? For a complete list of the errors Purify detects,
select Purify Messages from the Purify Help menu.

Don’t wait—use Purify early and often

6 Getting Ahead with Purify

For maximum benefit, start using Purify as soon as your code is
ready to run and continue using it regularly throughout your
development cycle, especially for:

Acceptance tests: Validate third-party code or code from other
development groups before incorporating it into your application.

Code check-in: Reduce the risk that bugs in your code might
impact other code modules.

Nightly builds: Incorporate Purify into your test harness to
verify that modules work together and to expose code
dependencies and collisions.

By using Purify early and often, you'll release clean, reliable
products—on time.

GETTING AHEAD WITH PURIFY

Getting started

With Purify, you can deliver cleaner code in a few easy steps:

1 Runyour program with Purify in Microsoft Developer
Studio 97 or later.

2 Analyze error messages.

3 Correct your source code.

4 Rerun the program to verify your corrections.

You can also use Purify independently of Developer Studio. Read

“Using Purify standalone” on page 19 of this guide, and “Testing
with Purify’s command-line interface” on page 21.

Running a program with Purify

Open your project in Developer Studio, then engage Purify from
the Purify toolbar.

Puity ____________H
Click to engage Purify——Q Bl 4 kY ="

Build and execute your program using commands from the
Developer Studio Build menu. (To get the maximum level of detail
in Purify error reports, build your program with debug and
relocation data. For more information, look up debug data,
locating in the Purify online Help index.)

Purify copies the program and each library it calls, then
instruments the copies using Object Code Insertion (OCI)
technology. The instrumentation process inserts instructions that
validate every read, write, and allocation and deallocation of
memory.

You can follow Purify’s progress as it instruments each module.

Purify Instrumenting MFC42D DLL . [_ O]

The module that Purify is stockveBexe B1491 Precize (I —
currently instrumenting ——| = MFC420.DLL 929344 Precise mmmmm
MSVCRTD.DLL 385100 Precise

The instrumentation
level for each module

Lancel Instrumentation | Help |

You can customize Purify’s instrumentation level to provide more
or less detail for special cases. For more information, read
“Customizing error detection” on page 17 of this guide.

Purify caches the instrumented modules. When you rerun a
program, Purify saves time and resources by using the cached
modules, re-instrumenting only those that have changed since the

previous run.

As you exercise your program, Purify detects run-time errors and
memory leaks and displays them in an error view in the Purify
Main Window.

B | Fem peesi Fupes fuid lep lek Py Joedy Sl e Heiy
= = - | i - - mme =1 e Tl BT
IFPOAEBE L8 Me BE & 3 51 Elal

=5

dign da o)
A v
EFp—

I
arae

L ipanm,
iy oRa: Was
LA

Purify Main Window

error view e | | DR
- & B EUE Onis ri memmy read in snrs IT srrmmereres
R ik oo ¥ & HEE ir ¢ Emey CEEd LS FerbEnk 414 SLCE
g - LR ENNE Omimibbalised sy vesd in Bl o Bpie Told b0 wr
i B & NYF1 Drviniriolives sy resd in Bl i sTeid
.I I i A BEE e | | e — — - e — - -
®al |ﬂ 13ja |
i- Tevicasanti o T o AT Tty p i ocbest o =]
|
PR o [Py (el Vi | P mimy | e [BA] 4] '
Eeaty

8 Getting Ahead with Purify

Seeing all your errors at a glance

Purify displays informational messages about the state of your
program’s execution, as well as messages about run-time errors
and memory leaks.

Acronyms like ABW —
identify message type

For a description of a —
message, right-click the
message, then select
Describe

Color-coded icons show message severity:
@ informational ™ warning @ error

H lﬂEl.:l.l.'.nu Put LE{"d SEpclensd . enk ak 087
@ Acarting main

e lﬂl\.llf Vabnifgi hd SEaPed mEnld DM dobd

i nl'-ll: TArniteyi no shared msnu for doow Rop

) UAFE: Toinitimlized rewery cesd in St

13 ¥, ITHF ALAITIALLIES] pEmDI'F CE80 LH SC=

il 4 PAR: Owerlapging block copy ey procio "Hld

i@ ABY: kccmy bBoundr woibe ino sprisef (3 Egewacd frarch

=) ABFI AEpay bound=s Fead 18 Lscoleak (T

i f PAR: Overlagging block copy may prodo Juckfim

- ﬂ.il:lll' ircay bounds woibe fn spristf 01 0 Bl Ml

5 op Hid Eandle 0xDDO0001 ds invslid in ¢

1 HiS: Emndls O<IZfffffZ ix imvrmlid in *
lﬂElr:u.:l.ll..l [EE hEd pEpdi ¥ LEGES. ..

@ Lesk sesrch omwpless
- -ﬂE:-:ll:'.:q witk code O (De0O00FEESN]
ﬂl"l. giffin TECmlAAlSN aF DB L35 Laj YEElks

e}

|
JEREH ||
1
EN-H|
1
|

When you exit the program, Purify reports memory leaks. In
addition to memory leaks, you can set Purify to report memory in
use at exit and handles in use at exit.

More information? Look up error and leak settings in the online
Help index.

Getting started 9

When identical errors repeat

An error often repeats many times in a program, particularly if it
occurs inside a loop. To provide a succinct overview of a program’s
errors, Purify by default displays each error message only once,
the first time an error occurs, and then updates a counter
whenever the error repeats.

This Uninitialized memory
read (UMR) occurred 14 times

W Murily B aan 'Wimidos

= ﬂlﬂv:'. Ligg FUCiCy'd stockycboode ab 0/ 11598 18438100
B Frarcing min

- ﬂi.l'l: krray bounds wriza in COcockizpp: :fSctockippivoid] |l|ooceccmnos

- n'.lu"".'l HARLELnft 8 Shaisl e L0 SCumenl LEaplife §10L
[n-'l!:'l: Harwing: o ahared ssne for dooussnt cewplace Eilf,

BERNUE:: Unizicislized memocy rasd in Sselir uT
S UER UnIELCLSLIESd PoidlY D[940 1o STCDEp | 1Y SSCurDEmiad)
o 8 FiR:! (werlepping hlock copy may produces msxpscted resulcm:z... (] =

- ﬂi.l'l: drray bourda write in sgcintf |3 ocourcenceal
o G AR Array Doundd Coad 1b 1StElEnlk |79 QocuErERGEs)

r % FiR: Overlmpping hlock copy may produces mmaxpscted ressulcm: ... §1 of
- ﬂi.l'l: krray bousds write in sgcinkl |¥ Socurcerceal
= 4 HAN) Haredle DeQQoDDO0E 1 dnvalid im Gecobieot® |1 0w Cerses)

= FHIN: Hurdle OeffffF09f im dnvmlid o Getlbjmct¥ |1 coourcmrcw]
n?:d:!.'llll.-ﬂ' TOE fEE mEiedfif |SA%S. .
n.l.i-ﬁk peaToh podep | ECs

- ﬂEl:'.r.l.r.; vich code O |CxODICOO00)
nlr'n.l.u.'n IEEwirated G UEM 110598 1leedai5E

L] P

More information? If you want Purify to display each occurrence
of a message individually, instead of reporting counts, you can
change the default setting. Look up error and leak settings in the
online Help index.

10 Getting Ahead with Purify

Focusing on critical errors first

Right-click a
message and

select QuickFilter

to hide the message

automatically —f-=—diimu: pasiss AUF 03 GOEuTEanEs|

+ § [ES: | e Eile i in Carifhiscerld §F nerare
. T T F Fuadyp Hon ks
Or select Create FlltEF——owl G AN LEER BIRAD EALE b SOVESEkEPi P GAEGERADS 1V 1d] 11 Bt
to define a set oY Lmsk: R U5 Uinicinliond mseccy oedd Lb detEissorTaici (34 cooud
of fiItering criteria 1] & 8 MF: Minacimlzzesd peeecy cawd in scoomp 117 cocurcececssid

o anki Lyrap Dededs Gy iLe LR Spiianr [} TRl]

g AF: Azcap bousde writs inoapriact () coourcancesl
s i

A large program can generate hundreds of messages. To focus on
the most critical error messages quickly, create filters to hide all
other messages from the display.

You can filter messages individually, or you can filter them based
on their type and source. Consider hiding all informational
messages, for example, or all messages originating from a specific
file.

An unfiltered error view displays all the A filtered error view displays only
messages from the program the messages you want to see

il rraciing Meifyrd otockyes, ems ab OB 139 LE3R 00
P iarting main
Sl A8Y: drrwy bousds write &n CStockkppr cC9tocklpn fvaddi 11

Dprorts (18 (ol

= o | r doomssar cEmplaca #3FE.
= o apy 1) e in SeuFiadorTortl (14 oo
W of, AR | Lk arrawy |17 COSUTEEROSRE]

= X FEE: i produce wmaxpactel carals
S TLL] E ppard Al N EeEEEeiEs
w o ABE: . [opered Qrwnch rd P aroErTeads
= 4 FRF: i praduce wmaxpEccesl ceruls

Once created, filters apply to the current run and to all future
runs of the program until you disable them. Disabling a filter
causes hidden messages to be redisplayed in the error view.

Getting started 11

The Filter Manager — -][l stockvok exe

creates a filter group for
each program you run

Drag and drop filters to
move or copy them

12 Getting Ahead with Purify

Working with filters

Purify filters are very flexible. Click the Filter Manager tool to
create individual filters or groups of filters, and to apply them to
specific programs or modules. You can also create global filters
that apply to all programs and modules. And you can share filters,
which Purify saves as . pf t files, with other members of your
team.

Click to enable or The checked filters apply to the selected
disable filters ~ program until disabled or deleted

- Purify Filter Manager - stockvch.exe

Filter Edit “iew Help
=) WIS AN Fikers

Type | Enabledl D ate | Comment |
Filker ~ Yes 08/13/98 16:56...

Fiker Yes 08/13/98 16:56...

[ZAMy Filkers Group ‘es 08/13/98 16:59...

[1#}, P4R: Overla.. Fiter Mo 08/13/39817:00... QuickFiler

1%} UMR: Uniniti.. Fiter Mo 08/13/39817:00... QuickFiler

Mesza...

0k I Cancel | Apply | Help |

More information? Look up filters, about in the online Help index.

In addition to filtering, Purify offers another way of focusing on
the errors in specific modules and simultaneously minimizing
instrumentation time—the PowerCheck feature, which allows you
to optimize the level of error detection for each module. For more
information, read “Customizing error detection” on page 17 of this
guide.

Analyzing messages

. A = i hEE; difay Bdubds GEL0e in COLOCEAPD1 i CENEIHARpIVELIl (1 Gémifiemiel 2
The location in memory Foitieg L byte io Oe0013%aX8 |1 byie ot OxDIL23a78 Llicgall
where the error occurs — Iddsrae Oxi013%a38 iz 1 bybe past the and of = 00 byte bBlock at DeODIS29ed
iddzmsy 0xl0]19%a%S pointe oo = Hmpilloc'd bleck in the defsole bamp
Thrasd 13: Oxllld
Call stack showing —f— = Irrar Lecsriza
the function calls Clzookigp: i fOcacckhppivaid) [rrock.cpp: 154]
leading to the error Recahbay | acHTankion [
B TIERET = |GhaT =0 BEARA] L0 (OEr FeoaesabEaRcl, O, TICEER S[IE) |
Flag indicating the line — - n Ticker [TICKEM_RIIE) = 0u
where the error occurs
§1 FELER |C4+ czorfdzor) [axtcck.cpp: i41] g
FELRZ |C#s coorfdzor) [acookomsh. mam]
f] LnlcTarm [ezrclidez .ot 524
i HisRsirnSRTScartup |orcses, o1 74|
Call stack showing the —f— = &liapacian boastios
Heapiiio | EEFRELAT .l

function calls leading to
the allocation of the
memory block
associated with the error

You can expand Purify’s messages to pinpoint where errors occur
and to obtain diagnostic information for understanding why they
occur.

Here's an example of an expanded ABW (Array Bounds Write)
error message:

3 CER RSP i CALGGERpE T¥aldl [SLGER.Sppi 13| -
o | i §

The level of detail provided in call stacks depends on the
availability of debug and relocation data. Even if you build your
program in release mode, you can still get the highest possible
level of detail. For more information, look up debug data, for
release builds in the online Help index.

You can customize the format of Purify’s messages. For example,
you can increase the number of lines of source code that are
displayed, or include instruction pointers and offsets to make
locating errors easier. For more information, look up preferences,
source code in the online Help index.

Getting started 13

Correcting errors

Purify makes it easy to correct errors.

Double-click —
the line where
the error occurs

= Ecaac locarine

CHencRhp:

= Tisksi =

AP R PR PR PR
Pl] |i'r- ey i |

[P ——

A A

= o T i
B

Purify opens the
source code in the
editor, positioned at
the exact location
of the error

= {§ i) jrcuy bowsss write in CleockippnCfrockippleridi (1 soourreocei
Britirg § brva co JeifiiiZal) (i bhyew ar DodDd25adf L1isguil
dddress JeiliiSiald 15 ¢ yma parr che oo af & 30 bpre black ar Ceodl4Sidai
Agdcess SEIOLEERIE FOLECE 50 & BSARLLEED'd EASAE iG Ché SEEWMLE IseEf
Thisad [Hi WEEI]

cirechipp: rifmacklpp byeidl |roeck.cppi LI
[Zeociclpy |

[iteai TyMEapl] bee (05 Fiasfialaapi], B, TICEER_EDIN
m_Ticker [TITEER_EIEL] - @Or

L O
al i, iE83
e

LA, |FEF SV (LR RREL L
.|ﬂb—“h—HEﬂMHHMHH—h—-I—*—M Ea
-0 RTS8 L — | wl@ =y nia
rﬂliiﬁli :

1 1 E
"r ' ““._ID FL I__r"PIi T Ricdpp WllilsfriniSssaps

L

CRtackdpp. CElcChipE |
) imher = Igpher #]lenphl Lise] i Fromeunleap] | 0 TICEEN W0E3K)]

After correcting the errors, rebuild your program. Then rerun the
program with Purify engaged.

14 Getting Ahead with Purify

Comparing program runs

A color-coded icon
indicates the maximum
message severity
displayed in the

error view for the run

After rerunning your corrected program, you can easily compare
runs to verify your corrections. Purify’'s Navigator window, which
you can display from the Purify View menu, helps you keep track of
multiple runs and multiple programs.

The Navigator window groups runs by program

B Fudyp b ow Fenke

i Py 'd wecback s [5] =]
[FIETT I Ui AER: keoay bourds write anl|® 8 R Poinitialiced sswocy
D Pan B 0L 5 UEE:r Upimdiksslived meeecy |38 GRS ERnATIA LR eIy
6 JF HERI BRI ERLIESE Fsnna)
« i AER: krosy bourds erite in
i kP¥; krpay boipds wriie din
L B A |lal | 3| F X | |

More information? You can customize the information displayed
in the Navigator window. Look up navigator window in the online
Help index.

Checking multi-process applications

If you're debugging client/server and multi-process applications,
you can debug several processes and see the error reports for each
running application simultaneously. To do this, run each process
in a separate instance of Developer Studio with Purify engaged.
Alternatively, you can use the standalone Purify user interface.
See “Using Purify standalone” on page 19.

Getting started 15

Saving error data

16 Getting Ahead with Purify

You can save Purify error data from a run in order to analyze it
later, share it with other members of your team, or include it in
reports. You can save Purify error data in two formats:

= Purify data files (. pf y), with or without any messages you
filtered out. Later, you can open the saved file to analyze it or to
compare it to future program runs.

= ASCII text files (. t xt), for use in spreadsheet and
word-processing programs.

More information? Look up error view data, saving in the online
Help index.

GETTING AHEAD WITH PURIFY

Using Purify’s power features

Customizing error detection

Use the PowerCheck
tab in the settings
dialogs to customize
error detection

You can control the level of error detection for each module in a
program by selecting one of Purify’s two instrumentation levels:

= Precise instrumentation provides full run-time error detection,
to pinpoint problems in any component in your program.

= Minimal instrumentation improves Purify’s performance while
providing a basic level of error detection.

Purify sets a default level for each module based on module size
and the availability of debug and relocation data. However, you
can override the default and specify instrumentation levels for
each module to meet your own requirements.

Purify Settings for D:\appz\StockNTADebughstockvch. exe =

Erors and Leaks PowerCheck | Files |

Drefault instrurnentation

Usze minimal instrurmentation when

™ iThe module doesn't contain debuaging informatiors

I The module is Jarger than [1200 KE

o
[hoewrs T _serlpsbg] =]
[T SRS Ha l .
P LR tModules. - | Click to set
4K & IR Ha
p:-:. o Advanced... | .the level of .
Prthii AL e instrumentation
i m o for individual
- T T Ha Help
Freoie i e - J 4' modules
. T Gt Fuill pusdly masrmsst
Specify the
instrumentation —
level for all P I fdd E
selected
modules [| [o= I Careal I Heke F

17

Try using the precise setting for the most critical modules in your
program and the minimal setting for the others. Later, you can
change the minimal settings to precise for a thorough check of the
other modules.

More information? Look up powercheck in the online Help index.
For information about how to provide debug and relocation data
when you are using Purify on release builds, look up debug data,
for release builds.

Using just-in-time debugging

With just-in-time —

debugging, Purify raises
a breakpoint exception
when it detects an

error or warning

Click Cancel to explore
the error in your debugger

18 Getting Ahead with Purify

Purify’s just-in-time debugging support provides instant access to
your debugger when you need to solve tough problems. Click
to enable Break on Error, so that Purify stops your program just
before an error executes and lets you start your debugger if you're
not already running Purify inside Microsoft Developer Studio 97
or later. You can also run a Purify’'d program directly under the
debugger.

T

= G aavi lriny bhuads wriks Ln GF Hdopi i THL Rk Cwn i P 11]

A
Lk oy CEHTER b by o gy e

=E

=%

To quickly debug only the most critical errors in your program, use
Break on Error together with Purify filters. First, filter out all the
less critical messages, then enable Break on Error. Purify breaks
only for the unfiltered messages. When you're ready to debug the
remaining errors, just disable the filters.

More information? Look up break on error tool and filters in the
online Help index.

Extending error checking with Purify API functions

Purify includes a set of API functions that extend Purify’s error
checking capabilities and give you greater control over tracking
errors.

Using Purify’s API functions, you can set and test memory state,
and search for memory and handle leaks. For example, by default
Purify reports memory leaks only when you exit your program.
However, if you call the API function Puri f yNewLeaks at key
points throughout your program, Purify reports any new memory
leaks it has detected since the last time the function was called.
This periodic checking enables you to track memory leaks more
closely.

You can call Purify API functions from your program or from the
QuickWatch dialog in the Developer Studio debugger.

More information? Look up api functions, list and api functions,
using in the online Help index.

Using Purify standalone

When you don’t need all of Microsoft Developer Studio’s resources,
you can use Purify standalone. Purify’s independent user interface
provides the same intuitive, efficient error-detection capabilities
as when you use Purify integrated with Developer Studio.

Note: You can also use Purify’s independent user interface while
continuing to work integrated with Developer Studio by
deselecting Embed Error Views in the Purify Settings menu.

Using Purify’s power features 19

To start Purify as a standalone application, double-click 5;'

‘arknme §rsme

Welcomeito]

(Piaana Relectpour Aret s tepe
Click Run to begin " BTl = roir progrem aneg Panty
}'l—/ |.;= et & Pty i e
i [[

=

el o & P o Pt g i v A =
chegbprari poeen e p ohe b bghae el
B i e

s EEE RATIOMNAL

Bt S

Eragu s e E——Then click Run
Specify the I S ST sk s s = =l —
program you i g Joirs o
want to check | =1 - |
kg oy |
rl.':"-mr:l-:-:-ur-.qm =11 =)
I Fum paogr e e g

Purify instruments your code and opens an Error View window to
display the results.

More information? For information about a user interface
item such as a tool or menu command, click and then click
the item.

20 Getting Ahead with Purify

Testing with Purify’s command-line interface

Using Purify’'s command-line interface, you can use Purify with
existing makefiles, batch files, and Perl scripts. For example, if
you have a test script that runs a program, you can easily modify
the script to instrument and run the program. To do this, change
the line that runs Exenane. exe to:

purify Exenane. exe

Alternatively, to run the instrumented version of Exenane. exe
consistently throughout your tests, add this line to the beginning
of your test script:

purify /Replace / Run=no Exenane. exe

This line instructs Purify to save the original Exenane. exe to

a . bak file, and to instrument Exenane. exe but not to run it at
this time. Now, whenever your test script runs Exenane. exe, it
runs the instrumented version of the program, providing Purify’s
detailed diagnostics.

You can run Purify without the graphical interface by using

the / SaveText Dat a option. This option saves Purify’s diagnostic
messages to a text output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the online Help
index.

Using Purify’s power features 21

Using Purify in a highly integrated environment

Rational Software tools integrate into your working environment

to help you do your job more effectively and efficiently. Without
leaving Purify or Developer Studio, you can make full use of:

= ClearQuest™, Rational’s change request management tool

» Rational Visual Test®, Rational's automated test scripting tool

Using Purify with ClearQuest

If you have ClearQuest installed, you can submit a defect as soon

as Purify detects an error or warning.

Right-click on an error
message and select

Submit ClearQuest Defect —— -
v i AEF:
v I AR
O 1 BY Y
O 1 RT

Tnin
Tnzn
ansn
Tnzn
Arrmt
Lrrat
krra|
EETH]

|
£l Cwncabs AW A2 my Dcams "wirka

F A UAR
F i TR
UAE:

EHipdowTestdk |14 cocurrencesd
ceep |17 sooacrereEr|
leiByeaToPidaChar |] cccurcancam)
pletBycaTofidecChar {1 cocurcancam
} OCCUCTECCER]

wnzd {1§ cocurrancEm)

Entd |4 corurreErmEn)

T ST |

Purify automatically supplies entries for a number of fields in the

submit form and specifies the category of error. You can easily
attach Purify data files (. pf y) to further document the error.

Using Purify with Visual Test

If you have Rational Visual Test 6.0 installed, you can easily
Purify the program that Visual Test is exercising. To do this,
you must include the file TOOLS. | NCin your Visual Test script

22 Getting Ahead with Purify

file (. nst), select Purify > Run Visual Test Scripts with Purify,
and run your script as usual in the Developer Studio interface.

o pinckvok - Messsoll Vausl L
_iﬂlllhbﬂhﬂlﬂfdilﬂ|ﬁbmmmh
Update your Visual Test 1 - S | Deergage Pusiy e ﬁ % i
script, then select uﬁ ﬂ_u o '._ e F _ﬂ_ = I;fg---.-'..;-'-.T.-. 3
Run Visual Test Scripts
with Purify

Then run your script
in Visual Test

Y] 4 | o
P, sisbaress o sl sl Lo Pusy [CnTA T e [E0L [ir [5

If you are using a test harness to run Visual Test scripts, you can
easily modify it to run Purify automatically as it exercises the
program.

More information? Look up clearquest and visual test in the online
Help index, and refer to the ClearQuest and Visual Test
documentation.

Now you're ready to put Purify to work.
Remember that Purify’s online Help contains
detailed information to assist you.

Using Purify’s power features 23

24

GETTING AHEAD WITH PURIFY

Index

A

ABW (Array Bounds Write) error 13
API

Purify functions 19

Windows API checking 5

B

batch files 21
Break on Error tool 18

C

cache files 8
call stack 13
ClearQuest, integrated with
Purify 22

client/server applications 15
code, editing 14
COM support 5
command-line interface 21
components

See modules
Create Filter command 11
customizing error detection 17

D

data, saving 16

debug data, and instrumentation 7,
17

debugging, just-in-time 18

Developer Studio, integration with
Purify 7

displaying filtered messages 12

E

Embed Error Views command 19
error detection, customizing 17
error view 8, 15, 16

errors
breaking on 18
correcting 14
See also messages
exit messages 9

F

files
caching after instrumentation 8
.mst 23
pft 12
pfy 16
xt 16
filters
filter groups 12
Filter Manager 12
overview 11
saved in .pft files 12
sharing 12
functions, Purify APl 19

G
groups, filter 12

H

handles
in use at exit 9
leaks 19
hiding messages
See filters

instrumentation
customizing 17
defined 7
minimal 17
precise 17

25

26 Getting Ahead with Purify

integration
ClearQuest 22
Microsoft Developer Studio 97 or
later 7-16
Rational Visual Test 22-23

J
just-in-time debugging 18

L

leaks
See memory

M

Main window 8
makefiles 21
memory
leaks reported at exit 9
PurifyNewLeaks API function 19
menu, shortcut 9
messages
analyzing 13
expanding 13
filtering 11
redisplaying filtered 12
See also errors
Microsoft Developer Studio, integra-
tion with Purify 7
minimal instrumentation 17
modules
custom error detection for 17
support for 5
multi-process applications 15

N
Navigator, overview 15

P

Perl scripts 21
.pft files 12
.pfy files 16
PowerCheck feature 17
precise instrumentation 17
programs
rerunning 14
running from command line 21

running under debugger 18

Q

QuickFilter command 11

R

Rational Visual Test, integrated
with Purify 22-23

relocation data, and
instrumentation 7, 17

rerunning a program 14

runs, comparing multiple 15

S

saving data
from an error view 16
/SaveTextData option 21
sharing filters 12
shortcut menu 9
source code, editing 14
stack, call 13
standalone use of Purify 19

T

tests, using Purify in 21, 22
threaded application support 5
txt file 16

U

unembedding the Purify interface
from Developer Studio 19

\%

Visual Test, integrated with
Purify 22-23

w

windows
Error View 8, 15, 16
Main 8
Navigator 15
Windows API checking 5

	Title Page
	Notice
	Contents
	Welcome to Purify
	Check every component in your program
	Find errors before they occur
	Don’t wait—use Purify early and often

	Getting started
	Running a program with Purify
	Seeing all your errors at a glance
	When identical errors repeat

	Focusing on critical errors first
	Working with filters

	Analyzing messages
	Correcting errors
	Comparing program runs
	Checking multi-process applications

	Saving error data

	Using Purify’s power features
	Customizing error detection
	Using just-in-time debugging
	Extending error checking with Purify API functions...
	Using Purify standalone
	Testing with Purify’s command-line interface
	Using Purify in a highly integrated environment
	Using Purify with ClearQuest
	Using Purify with Visual Test

	Index

