Installing and Getting Started
Rational® Purifye
Rationale PureCoverage®
Rationale Quantifye

support@rational.com
http://www.rational.com

Raticonal

the s-devslocpmant company™

IMPORTANT NOTICE

COPYRIGHT NOTICE
Copyright O 2000 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS
INFORMATION PROPRIETARY TO RATIONAL. ANY COPYING,
ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION
OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN
PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

U.S. GOVERNMENT RIGHTS NOTICE

U.S. GOVERNMENT RIGHTS. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Purify, PureCoverage, Quantify, and ClearQuest,
are trademarks or registered trademarks of Rational Software Corporation in
the United States and in other countries.

All other names are used for identification purposes only and are trademarks
or registered trademarks of their respective companies.

U.S. PATENT NOTICE

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed
under Sun Microsystems Inc.’s U.S. Pat. No. 5,404,499. Other U.S. and foreign
patents pending.

Part Number: 800-023699-000
Printed in the U.S.A.

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Contents

Preface

Other reSOUICES . ..ttt e e 7
Contacting Rational technical publications 8
Contacting Rational technical support 8

Installing the products

What you need before starting 9
Installing the products: rs_install 13
Answers to questions aboutrs_install 14
Installing the products: Post-installation 15
Maintaining the rational.opt options file 19
Modifying the listofuserIDs 20
Removing a previous productrelease 20
Requesting and installing the permanent license key 21
Requesting your permanent licensekey 21
Entering a permanent license key after initial installation 21
Supplemental notes: Creating an installation directory manually . . 22
Supplemental notes: Mounting the CD-ROM 23
Supplemental notes: Ejecting the CD-ROM 25
Supplemental notes: Using rs_install commands 25
Supplemental notes: Using the FLEXIm License Manager 26
The Rational licensefile 26
Verifying that FLEXImisworking 27
Using FLEXImcommandsc. i, 27
Learning more about FLEXIm 28

Using Purify

Finding errorsin HelloWorld 30
Instrumenting a program e 31
Compiling and linking in separate stages 31
Running the instrumented program 32
Seeing all your errorsataglance 33
Finding and correcting errors i 34
Understanding the cause oftheerror 35
Correctingthe ABR error 36
Finding leaked memory i 37
Correctingthe MLK error 38
Looking atthe heap analysis 39
Comparing program runS oo e 40
Suppressing Purifymessagesiiiiii.. 41
Saving Purify outputto aviewfile L 42
Saving a run to a view file from the Viewer 42
Openingaviewfile 42
Using your debuggerwith Purify 43
Using Purify with PureCoverage 43
Purify APl functions i 44
Build-time options e 45
Conversion characters for filenames 45
Run-time options 46
Purify messagest e a7
How Purify finds memory-accesserrors 48
How Purify checks statically allocated memory 50

Using PureCoverage

Finding untested areas of HelloWorld 52
Instrumenting a program e 53
Running the instrumented program 54
Displayingcoveragedata i, 55

Expanding the file-level detail 56

Examining function-level detail 57

Examining the annotated source 58
Improving Hello World’'s testcoverage 59
UsSiNg report SCHptS oot e 61
Build-time options 62
RUn-time options e 62
Analysis-time options 63
Analysis-time mode options 63

Using Quantify

How Quantify works 66
Building and running an instrumented program 67
Interpreting the program summaryc.c.. ... 68
Using Quantify’s data analysis windows 69
The Function Listwindow 70
Sorting the functionlist 70
Restricting functions 71
The Call Graphwindow 72
Using the pop-upmenu 73
Expanding and collapsing descendants 73
The Function Detail window 74
Changing the scale and precisionofdata 75
Saving function detaildata 75
The Annotated Sourcewindow, 76
Changing annotations 77
Saving performance dataonexit............... 77
Comparing program runs with gxdiff 78
Build-time options 79
gV run-time options 79
RUN-timMe optionNs e 80
APLfuNCtiONS 81
INAEX .o 83

Other resources

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Preface

This Getting Started guide is designed to help you get up and
running quickly with Rational® Purify®, PureCoverage®, and
Quantify®. It includes information about:

= Installing the products

= Using Purify to pinpoint run-time errors and memory leaks
everywhere in your application code

= Using PureCoverage to prevent untested application code from
reaching end users

= Using Quantify to improve the performance of your applications
by finding and eliminating bottlenecks

Purify, PureCoverage, and Quantify—the essential tools for
delivering high-performance UNIX applications—use patented
Object Code Insertion (OCI) technology to instrument your
program, inserting instructions into the program'’s object code.
This enables you to check your entire program, including
third-party code and shared libraries, even when you don’t have
the source code.

Note: Starting to use Purify, PureCoverage, and Quantify is as
easy as adding the product name (puri fy, pur ecov, or
guant i fy) to the front of your link command line. For example:

% purify cc -g hello_world.c

= README. | i censi ng in the product directory contains the latest
licensing information.

= Online Help is available for each application through the Help
menu. To get Help on a specific item in a window, select
Help > On Context.

= For complete product information, see the Purify, PureCoverage,
and Quantify user’s guides.

* For information about Rational Software and Rational Software
products, go to htt p: // www. r ati onal . com

Contacting Rational technical publications

Please send any feedback about this documentation to the
Rational technical publications department at
techpubs@ ati onal . com

Contacting Rational technical support

You can contact Rational technical support by e-mail at
support @ at i onal . com

You can also reach Rational technical support over the Web or by
telephone. For contact information, as well as for answers to
common questions about Purify, PureCoverage, and Quantify, go
tohttp://wwmv rational.conif support.

8 Rational Purify, PureCoverage, and Quantify

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Installing the products

This chapter tells you how to use thers_i nstal | program to
install Rational Purify, PureCoverage, and Quantify. It also
explains how to perform installation-related tasks outside of
rs_instal |, if any are necessary. The chapter also contains
information about post-installation tasks (such as uninstalling)
and administering the GLOBEtrotter FLEXIm® Software License
Manager that is included with your Rational Software product.

What you need before starting

You will need all the information in the following table to install

your Rational product.

Data

Notes

Your Entry

The full pathname to
the installation
location (referred to in
this chapter as

Rat i onal).

This is the directory where you install all Rational
Software products.

You must have 15 megabytes of free disk space for each
installation of Purify, Quantify, and PureCoverage.

The directory must be accessible from every machine on
which you plan to run the Rational products—both the
machines on which users instrument their applications,
and the machines on which users run their applications. It
must be the same for each machine, so you cannot use a
local automount path like /tnp_mmt/rati onal .

If Rat i onal does not already exist, the installation
program will create it when you enter the full pathname.

If you are installing on a read-only file system, or if you
want to create this directory manually, see “Supplemental
notes: Creating an installation directory manually” on
page 22. This section also shows you the structure of the
directory after installation.

Data

Notes

Your Entry

Rational account
number.

Source: your Rational license key certificate.

Contact information
for the person you
want to receive
license keys from
Rational Software.

Name and email address are required.

Contact information
for the person who
will be responsible for
renewing the license.

If different from the previous entry.

Host name or IP
address of the host
machine on which the
license server is to
run.

If this machine, the license server host, is different from
the installation machine, you must have remote shell
access from the installation machine to the license server
host.

In addition, the installation directory must be accessible
from the license server host.

License server port
number.

This is the port at which the license server listens for
license requests. Default is 27000.

You can use any port number that is not already in use.
The /etc/services file on the license host lists all ports in
use by most commonly used services, but other ports
may be in use on your system as well. FLEXIm reserves
ports 27000—-27004 for its use; these ports are ordinarily
available unless a different FLEXIm server on the license
host is using them.

Thers_instal |l program checks to make sure that the
license server port number does not conflict with entries in
the /etc/services file on the license server host, or with
NIS services.

10 Rational Purify, PureCoverage, and Quantify

Data

Notes

Your Entry

License key type.

Source: your Rational license key certificate or email from
Rational Software

p = permanent. Enter “p” if you already have your
permanent license key, or if you have email access from
the machine you are using for the installation. The
installation procedure allows you to request your
permanent key by email, and you should receive it by
return email within a few minutes. For additional
information, see “Requesting and installing the permanent
license key” on page 21.

s = startup. Rational provides a startup license key to get
you up and running as soon as you receive your Rational
product, but you don’t have to use it if you have a
permanent key or are willing to wait until you receive a
permanent key. If you use the startup key, you will have to
enter a permanent key later.

e = evaluation. Evaluation license keys are valid for a
limited time. You will have to enter a permanent key when
the evaluation key expires to ensure continued use of
your Rational product.

t =term license agreement (TLA). TLA keys allow the
use of the rational product for a specific period of time.

Note: To enter the permanent license key after you've
been using a startup or evaluation license, see “Entering
a permanent license key after initial installation” on page
21.

License quantity.

Source: your Rational license key certificate.

Enter “0” for “uncounted” if you have an evaluation
license.

Expiration date.

If you nave a permanent license, enter per manent .

Source for other license types: your Rational license key
certificate or email from Rational Software.

If you have a startup or evaluation license, enter the date
in the dd-mmm-yyyy format. (The field is not case
sensitive.)

Installing the products 11

Data

Notes

Your Entry

Note: If you are installing a permanent license, you must supply user IDs for each individual who will be using
the product. You must include the user ID you are using to perform the installation; otherwise the
post-installation step (which runs a simple test case to verify the installation) will fail. User IDs are recorded in
the FLEXIm options file, r at i onal . opt . For information about the options file, see “Maintaining the
rational.opt options file” on page 19.

To input User IDs, you need the data in A or B below, or the data in A supplemented with the data in B.

A. Path of the
PureLA directory
containing the file
users. purel a
(available only if
you licensed an
earlier version of
the product using
PureLA License

If you are currently running the product under a PureLA
license, you have the option of importing the IDs from the
PureLA database instead of entering them manually. The
PureLA directory is located in the same parent directory
as the previous product installation, which you can find
with the command <pr oduct > - pri nt hormedi r.

You can modify the list of imported user IDs, either while
you're running rs_i nst al | or afterwards. If the number

Advisor). of user IDs is not the same as the number of licenses you
bought, rs_i nst al I will help you correct the list.

B. User IDs (all You can enter all user IDs. The number of IDs you enter

IDs; or some or must match the number of licenses you purchased.

none, in

combination with You can enter some user IDs, and then enter - n to

an option to populate the rest of the options file with dummy names as

generate dummy placeholders that you can replace later.

names).
Or you can just enter - n to enter nothing but dummy
names, and update the options file later.

License file Thers_install program will suggest a default. If you

(<l'i cense server
host nane>. dat),
including full
pathname.

want to use an existing license file, enter its name,
including full pathname, instead of the default. The
rs_i nstall program makes a backup of the existing
license file before it processes the file. For information,
see “The Rational license file” on page 26.

License keys for each
product you are
installing

OR

full pathname of the
license file you
received by email
from Rational
Software.

If you do not already have license keys, the installation
program will help you request them from Rational
Software. If you request them by email, you can expect to
receive your license file by return email within minutes.

If you do not have the license keys or a license file, you
can enter this data later. See “Entering a permanent
license key after initial installation” on page 21.

12 Rational Purify, PureCoverage, and Quantify

Installing the products: rs_install

For information about specific product and operating system
versions, see the README file in the Devel oper Tool s. <ver si on>
directory. For information about rs_i nstal |, runrs_hel p, which
opens a Help file in an Adobe Acrobat viewer.

To install the products:

1 Make the product available for installation.

If you are installing the product from the Rational Software
product CD-ROM and need instructions, see “Supplemental notes:
Mounting the CD-ROM” on page 23.

2 Runthers_install program

The rs_instal | program is a complete installer that guides you
through the following processes:

= Setting up the license server

= Installing product licenses

= Installing the selected product

= Performing the post-installation tasks

Torunthers_install program, go to the directory where you
mounted the CD-ROM. (You should not be r oot when you run
rs_install.) For example:

exit

% cd /cdrom
% ./rs_install

The rs_instal |l program prompts you through the installation,
providing detailed instructions along with default settings. The
defaults appear in brackets, for example [2]. To accept the default,
press Enter.

Note: After you install your license key, the rs_i nstal | program
reminds you that you must configure your server to automatically

Installing the products 13

restart the license server when it reboots. Thers_instal |
program gives you instructions for doing this.

3 When installation is complete, go to “Installing the products:
Post-installation” on page 15 and perform any necessary
post-installation procedure.

Answers to questions about rs_install

Below are the answers to some common questions about the
rs_install program.

= Can | rerun parts of the installation? Yes. Thers_i nstal |
program provides commands that enable you to rerun specific
sections of the installation as needed. See “Supplemental notes:
Using rs_install commands” on page 25.

= Do | have to reenter my license server information each
time | install a product? No. You only need to enter this
information once. The rs_i nstal | program saves the
information you enter about yourself and about the machine to
be used as the license server for your Rational Software product
licenses in two text files: anrs_i nstal | . def aul t s file that
contains information about you and your license server, and a
file suchasrs_install. Devel oper Tool s. 5.2 that records
product-specific information. The rs_i nstal | program reports
the location of these files when you quit the program. The next
time you runrs_instal |, the program uses the saved
configuration information.

= Do I need to install all my licenses on one server? No. You
are not required to use all of your allowed licenses for a single
license server. You might want to install a product at another
site and configure a license server at that site to serve the
remaining licenses in your Rational Software account.

= Which type of product license key should I install? If you
already have your permanent license key, you can install it right
away. You can also request a permanent license key by email

14 Rational Purify, PureCoverage, and Quantify

during installation. Otherwise, select the startup or evaluation
license to get started using the product.

Note: To ensure uninterrupted use of your Rational Software
product, you should install your permanent license key as soon
as possible. You can request your permanent license key directly
from thers_i nstal | program. See “Requesting your permanent
license key” on page 21.

= Can | import existing users IDs from an earlier
installation of the product? Yes. If you installed the product
previously under FLEXIm, the user IDs are imported
automatically when you runrs_i nstal | . If you installed the
product under PureLA License Administrator, rs_i nst al | asks
you if you want to import the existing users. pur el a file, and
also permits you to edit the imported user IDs. You can also edit
the user IDs after installation; see “Maintaining the rational.opt
options file” on page 19.

Installing the products: Post-installation

The post-installation tasks depend on the individual products.
The rs_install program performs these tasks for you if possible,
or tells you how to perform them from outside of the installation
program. Post-installation tasks can include:

= Installing on a read-only file system
= Making the manual pages available
= Making the products available to all users

Note: You can rerun the post-installation at any time. See
“Supplemental notes: Using rs_install commands” on page 25.
Installing on a read-only file system

Purify, PureCoverage, and Quantify work by creating
and monitoring special instrumented versions of object files and
libraries. They must be able to write these instrumented

Installing the products 15

files to a cache directory, which by default is
Rat i onal / r el eases/ <pr oduct hone>/ cache.

For this reason, if you install any of the products on a file system
that is mounted read-only by client machines, you must create
symbolic links to a writable file system. The rs_i nst al | program
guides you through the process of selecting a shared directory that
is mounted read/write on client machines and linking the cache
directory to this publicly writable directory.

If there is no writable shared directory mounted on client
machines, have all users make a cache subdirectory in their home
directory and set the product’s - cache- di r option to this directory.
For example:

% nkdi r $HOVE/ cache
% echo $PUREOCPTI ONS

If the PURECPTI ONS environment variable is already set, have
users specify the - cache- di r option:

csh % set env PURECPTI ONS " - cache- di r =$HOVE/ cache $PUREOPTI ONS"

sh, ksh $ PURECPTI ONS="- cache- di r =$HOVE/ cache $PURECPTI ONS"; \
export PUREOPTI ONS

If the PURECOPTI ONS environment variable is not set, have users
specify:
csh % set env PUREOPTI ONS " - cache- di r =$HOVE/ cache"

sh, ksh $ PURECPTI ONS="- cache-di r =$HOVE/ cache"; export \
PUREOPTI ONS

Have all users add this same specification to their local or central
.cshrc file, or its equivalent.
Making the manual pages available

The rs_instal | program installs the product manual pages in
Rat i onal / r el eases/ <pr oduct honme>/ man. To make them
available, do one of the following:

= Set your MANPATH environment variable to include
Rat i onal / r el eases/ <pr oduct home>/ nan.

16 Rational Purify, PureCoverage, and Quantify

= Copy the manual pages for the product into your man directory.
If necessary, log in as r oot to do this.

Making the products available to all users

Note: Users must be listed in the rati onal . opt file in order to
use Purify, PureCoverage, and Quantify; to add users to the
options file, see “Maintaining the rational.opt options file” on page
19.

To make the products available to all users listed inrati onal . opt,
add the full Rati onal / r el eases/ <pr oduct hone> pathname to
each user’s PATH environment variable, or specify the full
pathname in makefiles.

As an alternative to modifying your PATH environment variable,
you can, create a symbolic link to <pr oduct hone>/ <pr oduct > from
a directory such as / usr /1 ocal / bi n. Make sure this is a symbolic
link, not a copy or a hard link. Create symbolic links for each
product you install, as in the following examples:

= For Purify:

% rm/usr/local/bin/purify
%Iln -s Rational/rel eases/\
<product hone>/ purify /usr/local/bin

= For PureCoverage:

% rm /usr/l ocal /bin/purecov
%Iln -s Rational/rel eases/\
<pr oduct hone>/ purecov /usr/|ocal /bin

For PureCoverage, you also need to create symbolic links to the
pc_* script files:

%rm-i /usr/local/bin/pc_*
%Iln -s Rational/rel eases/\
<pur ecovhone>/ scripts/pc_* /usr/local/bin

For more information on the pc_* scripts, see the PureCoverage
User’s Guide.

Installing the products 17

* For Quantify:

% rm/usr/local/bin/quantify
%I n -s Rational/rel eases/\
<product home>/ quantify /usr/local/bin

For Quantify, you also need to create symbolic links to the
gv program and to the gx script files:
% rm /usr/local/bin/qv
% rm-i /usr/local/bin/qgx*
%In -s Rational/rel eases/\
<quanti fyhome>/qv /usr/local/bin
%Iln -s Rational/rel eases/\
<quanti f yhome>/ qx* /usr/local/bin

For more information on the qv program and on the gx scripts,
see the Quantify User’s Guide.

= Create symbolic links for debugger scripts on HP-UX:

On HP-UX, Purify, PureCoverage, and Quantify include three
scripts that enable you to start instrumented programs under a
debugger. You need to create symbolic links to these scripts. For
example, for Purify:

% rm/usr/local/bin/purify_dde

% rm/usr/local/bin/purify_xdb
% rm/usr/local/bin/purify_softdebug

%I n -s <purifyhonme>/purify_dde /usr/local/bin
% 1In -s <purifyhonme>/purify_xdb /usr/local/bin
%I n -s <purifyhone>/purify_softdebug /usr/local/bin

For PureCoverage and Quantify, create the same symbolic links,
substituting pur ecov or quanti fy for puri fy.

The installation is now complete. To add names to the options file,
see “Maintaining the rational.opt options file” on page 19. To
remove previous versions of the products, see “Removing a
previous product release” on page 20.

18 Rational Purify, PureCoverage, and Quantify

Maintaining the rational.opt options file

Purify, PureCoverage, and Quantify use named-user licensing.
This means that the user IDs of all users who are authorized to
run Purify, PureCoverage, and Quantify must be listed in the
rational . opt options file. The number of users IDs in the file
must match the number of licenses you have installed.

Users who are identified in the file can use all features of the
product, including instrumenting applications, running
instrumented applications, and viewing saved data files in the
product’s user interface. A user can run as many concurrent
sessions as desired on a single host machine; this consumes a
single license. The same user can run the product on additional
host machines, but consumes another license for each additional
machine.

The options file is created when you run the rs_i nstal | program.
By default, this file is Rati onal / confi g/ rati onal . opt, but you
can choose any location you like. You can also relocate the file
yourself after installation, provided that you edit the license file
DAEMON line to specify the new path:

DAEMON rational /etc/rational /nydir/rational.opt

During installation, rs_i nst al | asks you to supply user IDs, one
for each license you purchased. You don’t have to enter all user IDs
during installation; rs_i nst al I will generate dummy names to
bring the total up to the number of licenses you purchased. Your
entries—real names, automatically generated dummy names, or
both—are recorded in the options file.

The user IDs are recorded in the options file in GROUP directives.
An | NCLUDE directive follows each GROUP directive. specifying one
product that the users in the group are authorized to use:

GROUP <group nane> <user1> <user2> . . . <usern>
| NCLUDE <pr oduct >: KEY=<l i cense key> GROUP <group nanme>

For example, in the following, alice, tom, and harry can use Purify,
but only alice and harry can use Quantify:

Installing the products 19

GROUP DevTool s1 alice tomharry

I NCLUDE purify: KEY=123456778982 GROUP DevTool s1
GROUP DevTool s2 alice harry

I NCLUDE quanti fy: KEY=12345778982 GROUP DevTool s2

Modifying the list of user IDs

You can add, change, or delete user I1Ds by running the
opt i ons_set up script. You can also add, change, or delete user 1Ds
in the options file using any text editor.

The number of users listed for each product must always match
the number of licenses that you purchased. The license server
must be restarted before the changes can take effect; the

opt i ons_set up script restarts the license server for you.

For additional information about the options file, refer to your
FLEXIm user’s manual.

Note: If you modify the options file while the license vendor
daemon is running, you must restart the license server.

Removing a previous product release
Note: Only the installer of the product can uninstall it.

After you install the latest version of Purify, PureCoverage, or
Quantify, and after all users have switched to the new version, you
can remove the old release to reclaim disk space.

To remove a previous release of Purify, PureCoverage, or Quantify,
go to the Rati onal directory and run the uni nstal | script:

% cd Rati onal
% confi g/ uni nstal |

Running the uni nst al | script with no command-line arguments
causes it to display the list of products in the r el eases directory.
The script prompts you for the product you want to remove.

20 Rational Purify, PureCoverage, and Quantify

Requesting and installing the permanent license key

When you purchase Purify, PureCoverage, or Quantify, you
purchase a specific number of licenses for each product. Rational
Software issues you a license key for the product that corresponds
to the type and number of licenses you purchased. You need this
license key to use the software.

Purify, PureCoverage, and Quantify come with a startup license
that you can use to get started using the product. You then request
and install a permanent license key to ensure continued use of the
product. The startup license key and other licensing information is
available from the Startup License Key Certificate included in the
product packaging.

Purify, PureCoverage, and Quantify use the FLEXIm Software
License Manager from GLOBEtrotter Software, Inc. to manage
product licenses. For more information on FLEXIm, see
“Supplemental notes: Using the FLEXIm Software License
Manager” on page 26.

Requesting your permanent license key

If you have email access to the Internet from the machine where
you are running rs_i nst al | , you can automatically send email to
Rational Software to request your permanent license key.

Rational uses your account number, product selection, and the
number of licenses you select to issue your license keys. You can
also save this information to a file which you can print and use to
telephone, fax, or mail Rational Software to request your license
keys. Thers_instal | program provides the Rational Software
telephone and fax numbers and mailing address.

Entering a permanent license key after initial installation

To enter your permanent license key after you have installed your
Rational Software product and exited thers_i nstal | program:

Installing the products 21

1 Gotothe Rational/rel eases/ Devel oper Tool s. <ver si on>
directory and run the | i cense_set up program. For instructions,
see “Supplemental notes: Using rs_install commands” on page 25.

2 For the license type, select Per manent .

Note: The program tells you how to update your license server
machine so that it restarts the license server when it reboots. You
need root permission to perform the update.

Supplemental notes: Creating an installation directory manually

You need a publicly readable directory for the installation of
Purify, PureCoverage, and Quantify. If one does not already exist,
you can create it when you run rs_i nst al | . You can also create it
manually before you startrs_i nstal | .

1 Log into a UNIX workstation that provides access to the CD-ROM
drive and that mounts the file system(s) into which you want to
load the products.

2 Create a Rati onal directory. For example:

% nmkdi r /opt/Rational
The Rat i onal directory must be visible on all machines that are to
run this product. The NFS name for Rati onal must be the same

on all machines. (If you are installing the product for your use
only, you can install it in your home directory.)

22 Rational Purify, PureCoverage, and Quantify

After the installation, the Rati onal directory is structured like
this:

The FLEXIm Software License Manager

— base/ cot s/ fl exI m 6. Oi

Rational license files
/ Rational/ —— config/)
rati onal . opt
uninstall script
defaults
purify-<version>-sol ari s2/
L el eases/ puri fy-<versi on>- hpux/

purify-<version>-irix6/
pur ecov- <ver si on>-<pl at f or >/
guanti fy-<versi on>-<pl at f or n»/

Contains the READVE file and —— Devel oper Tool s. <ver si on>/
thers_i nstall commands

The <pr oduct hone> directories —

Note: Purify, PureCoverage, and Quantify must be able to write
instrumented files to a cache subdirectory of the <pr oduct honme>
directory. If you install on a read-only file system, you must create
symbolic links to a writable file system. See “Installing on a
read-only file system” on page 15.

Supplemental notes: Mounting the CD-ROM

The following instructions refer to specific operating systems.
To determine your operating system, type:

% unane -a

Note: Before you begin, make sure you know the device name of
your CD-ROM drive. If you do not know the device name, consult
your system administrator.

On Solaris and IRIX systems with Volume Management, load the
CD-ROM and then go to step 5. (On these systems, the CD-ROM
automatically mounts on the / cdr omdirectory. To determine
whether you have Volume Management, check to see if the Solaris

Installing the products 23

vol d daemon or the IRIX medi ad daemon is running on your
system.)

To mount the CD-ROM:
1 Load the CD-ROM into the drive.

2 Login as root:
% su root

3 If you do not already have one, create a cdr omdirectory to be the
mount point for the CD-ROM drive:

nkdir /cdrom

4 Mount the CD-ROM:
On Solaris systems without Volume Management:

/etc/mount -r -F hsfs <cdrom devi ce-name> /cdrom

If your HP-UX system is configured to mount the CD-ROM at
/ cdrom

[etc/nmount /cdrom

If your HP-UX system is not configured to mount the CD-ROM at
/ cdr om use one of the following commands:

On HP-UX 9.x:

/etc/mount -r -t cdfs <cdromdevi ce-name> /cdrom

On HP-UX 10.x and later:

/etc/mount -r -F cdfs <cdromdevi ce-name> /cdrom

on IRIX 6.x:

/etc/nmount -r -t is09660 <cdrom devi ce-name> / CDROM

5 To verify that the CD-ROM is mounted, use the | s command to list
the files:

#1ls -R /cdrom

24 Rational Purify, PureCoverage, and Quantify

Supplemental notes: Ejecting the CD-ROM

After you complete the installation, eject the CD-ROM.
On Solaris with Volume Management, type:
% ej ect cdrom

On Solaris without Volume Management, type:

% su root

unount /cdrom
ej ect cdrom
exit

On HP-UX, type:

% su root
unount /cdrom
exit

Press the eject button on the CD-ROM drive.

On IRIX, type:
% ej ect / COROM

Supplemental notes: Using rs_install commands

The rs_instal | program includes four commands that you can
use to rerun specific sections of the rs_i nst al I program without
actually reinstalling any products: | i cense_set up,

| i cense_check, post _instal |, and opti ons_set up.

To use these commands, go to the Devel oper Tool s. <ver si on>
directory. For example:

% cd Rational/rel eases/ Devel oper Tool s. <ver si on>
% ./1icense_setup

= Use the | i cense_set up command to rerun the license setup
phase of the installation. Use | i cense_set up to add your
permanent license keys and whenever you want to change your
licensing information.

Installing the products 25

= Use the | i cense_check command to check your license server
and the license file to make sure your license information is
correct.

= Use the post _i nstal | command to rerun the post-installation
phase of the installation. For more information, see “Installing
the products: Post-installation” on page 15.

= Use opti ons_set up to modify the list of users allowed to use the
Rational Software product. For more information, see
“Modifying the list of user 1Ds” on page 20.

Supplemental notes: Using the FLEXIm Software License Manager

The FLEXIm Software License Manager monitors license access,
simultaneous usage, idle time, and so on. It includes the following
components:

= A vendor daemon named r ati onal that dispenses Purify,
PureCoverage, and Quantify licenses. The rati onal daemon is
used for all licensed Rational Software products. If you have
products from other vendors that also use FLEXIm, they will
include their own vendor daemons.

= A license manager daemon named | ngr d that is used by all
licensed products from all vendors that use FLEXIm. The | mgr d
daemon does not process requests on its own, but forwards
requests to the appropriate vendor daemon.

= A Rational license file that specifies your license servers, vendor
daemons, and product licenses.

The Rational license file

The Rational license file is a text file that is automatically created
when you run thers_instal |l orlicense_setup programs.

The file for startup licenses is:

Rati onal / confi g/ Tenpor ary. dat

26 Rational Purify, PureCoverage, and Quantify

The file for permanent licenses is:
Rat i onal / confi g/ server - name. dat

Note: For best results, use the Rational license file only for
Rational Software product licenses.

The rs_instal | program saves the license path to

<product hone>/. I m license_fil e. This is the path that Purify,
PureCoverage, and Quantify use to locate the license file. You can
override the location in . I m | i cense_fil e by setting the

LM LI CENSE_FI LE environment variable. The full path searched is
equivalent to $LM LI CENSE_FI LE: ‘cat.Im_license_file*

Verifying that FLEXIm is working

To verify that your FLEXIm License Manager is operational and
that the daemons are running, type the following commands on
your license server:

% ps axww | grep -v grep | egrep "lngrd|rational”

or

%ps -e | grep -v grep | egrep "lngrd|rational”

The output should include lines similar to the following (your
pathnames will vary):

538 ?? S 0:03.50 /rational/base/cots/flexIm®6.0i/platform|ngrd
-c /rational/config/servernane. dat
-1 /rational/config/servernane.| og

539 ?? | 0:00.90 rational -T servernane 6.0 3 -c ...

Using FLEXIm commands

The FLEXIm License Manager supports the following commands
for system administration:

Use this command To
| mdi ag Diagnose problems when you cannot check out a
license

Installing the products 27

Use this command To

| mdown Shut down the license and vendor daemons

| mhostid Report the license manager host ID of a workstation

| nTeread Reread the license file and start new vendor daemons
| mst at Report status on daemons and feature usage

exi nst al Report on licenses in the license file you specify on the

command line

Learning more about FLEXIm

For more information about the FLEXIm Software License
Manager, see the FLEXIm End User Manual that is included on
your Rational Software CD-ROM.

The FLEXIm End User Manual, along with answers to frequently
asked questions about FLEXIm, is also available at
http://ww. gl obetrotter.conf manual . ht m

28 Rational Purify, PureCoverage, and Quantify

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Using Purify

Purify is the most comprehensive run-time error detection tool
available. It checks all the code in your program, including any
application, system, and third-party libraries. Purify works with
complex software applications, including multi-threaded and
multi-process applications.

Purify checks every memory access operation, pinpointing where
errors occur and providing detailed diagnostic information to help
you analyze why the errors occur. Among the many errors that
Purify helps you locate and understand are:

= Reading or writing beyond the bounds of an array

= Using uninitialized memory

= Reading or writing freed memory

= Reading or writing beyond the stack pointer

= Reading or writing through null pointers

= Leaking memory and file descriptors

With Purify, you can develop clean code from the start, rather than
spending valuable time debugging problem code later.

This chapter introduces the basic concepts involved in using
Purify. For complete information, see the Purify User’s Guide.

29

Finding errors in Hello World

This chapter shows you how to use Purify to find memory errors in
an example Hello World program. If you run the example yourself,
you should expect minor platform-related differences in program
output from what is shown here.

Before you begin:

1 Create a new working directory. Go to the new directory and copy
the hel | o_wor | d. ¢ program and related files from the
<puri f yhome>/ exanpl e directory. For example:

% nmkdi r /usr/hone/ chri s/ pwork
% cd /usr/ home/ chri s/ pwork
% cp <purifyhonme>/ exanpl e/ hel | o*

2 Examine the code inhell o_worl d. c.

The version of hel | o_wor | d. ¢ provided with Purify is slightly
different from the traditional version.

1 /*
2 * Copyright (c) 1992-1997 Rational Software Corp.

9 * This is a test programused in Purifying Hello Wrld.
10 */

11

12 #include <stdio.h>

13 #include <nalloc. h>

14

15 static char *hellowrld = "Hello, World";
16

17 main()

18 {

19 char *mystr = malloc(strlen(helloWrld))
20

21 strncpy(nystr, helloWrld, 12);

22 printf("%\n", mystr);

23 }

At first glance there are no obvious errors, yet the program
actually contains a memory access error and leaked memory that
Purify will help you to identify.

30 Rational Purify, PureCoverage, and Quantify

Instrumenting a program

output

1

Compile and link the Hello World program, then run the program
to verify that it produces the expected output:

%cc -g hello_world.c

% a. out

Hello, World

Instrument the program by adding puri f y to the front of the

compile/link command line. To get the maximum amount of detail
in Purify messages, use the - g option:

% purify cc -g hello_world.c

On IRIX, you can add puri fy in front of the compile/link command
line, or you can Purify the executable:

% purify a.out

Note: On IRIX, Purify caches Dynamic Shared Objects (DSOs),
not object files. Ignore all references to linkers and link-line
options in this book. These do not apply to Purify on IRIX.
Compiling and linking in separate stages

If you compile and link your program in separate stages, specify
purify only on the link line. For example:

On the compile line, use:
%cc -c -g hello_world.c
On the link line, use:

% purify cc -g hello_world.o

Using Purify 31

Running the instrumented program

The Purify Viewer
displays messages
about the program,

including errors such
as this ABR error

For a description of a
message, right click the
message, then select
Explain message from
the pop-up menu

Run the instrumented Hello World program:
% a. out

On IRIX, if you use puri fy on the executable instead of on the
compile/link line, type:
% a. out . pure

This prints “Hello, World” in the current window and displays the
Purify Viewer.

Click for a list of Purify
error messages

Purify displays the number of access errors
and leaked bytes detected

1 1
= | Purify: #1.0ut o []
File View Actions Options Help

T B =
IRoEXe 7~ RBE
| Finizshed a,out ¢ 1error., 12 leaked bytes) A
b Purify instrumented a,out {pid 8701 at Med Jul 16 19;42:28 19397}
P | AER: Array bounds read
P | Current file descriptors in use: B
B | MHemory leaked: 12 bytes (100%3: potentially lesked: O bytes (0
¥ | Program exited with status code 1,
\
] =
1 1

Notice that the instrumented Hello World program starts, runs,
and exits normally. Purify does not stop the program when it finds
an error.

32 Rational Purify, PureCoverage, and Quantify

Seeing all your errors at a glance

The Purify Viewer displays the results of the run of the
instrumented Hello World program. You can expand each message
to see additional details.

Select one or more messages in the Viewer,
then click to expand the messages

| |
—-| Purify: a.out 3 _||
File View | Actions Options Help |
The configuration = @
message shows the l"_ @I
exeputlon process ,ID J Finished a,out 1 error, 12 leaked bytes} it
(pi d) and the Purify ¥| Purify instrumented a,out (Pld 1043 at Med Jul 17 20:38:43 19963
options used Purify 4,1 SunlS 4,1, Copyright ¢C1992-1397 Rational Software Corp, ALl rights rese
For contact information type:r "purify -help"
For TTY output, use the option "-windows=no"
Command-line: a,out
Options settingz: -purify -purify-home= usr/pure/purify-4,1-sunoz4
i Purify licensed to Furify Evalustion Uoe-
Click to eXp_and Purify checking enabled,
a message or item k| ABR: Array bounds read
B[Current file descriptors in use: B
k| Hemory leaked; 12 bytes ¢100%): potentially leaked; O bytes {0}
B| Program exited with status code 1,
You can use the
program controls to
run a debugging cycle. E
. i
To display them, select -
View > Program - =
Controls Make...| Run...| Debug...| x&.. @ Edit...
|)

Note: The Viewer displays messages for a single executable only.
It is specific to the name of the executable, the directory
containing the executable, and the user ID.

Using Purify 33

Finding and correcting errors

Click to expand the
ABR message

The function call chain
indicates an error
occurring in _dopr nt
called by printf,

in turn called

on line 22 of mai n

The exact location
of the error

The details of the
access error

The allocation call chain
shows that the memory
block is allocated

in the function mai n

on line 19

Purify reports an array bounds read (ABR) memory access error in

the Hello World program. You can expand the ABR message to see
the exact location of the error.

~| Purify: a.out

Fle View Actions

00 EFR GEKS 7 BB

| Finished a,out 1 error. 12 leaked bytes)
k| Purify instrumented a,out {pld 9334 at Wed Jul 16 19:42:26 1997
| ABR: Array bounds read
This is occurring while ing
_doprnt [libs,=2a,1,91
printf [libc,s0,1,91
=| nain [hello_world,ci22]
¢ #include <stdio,hi
#include <malloc,hi

Options

.1

-

static char *hellolorld = "Hello, World":
maint}
<

char #myztr = malloc{strlenthellolorldy»:

strncpyimystr, helloblorld, 1233
=] printfi"fzhn", mystrd:
¥

start [crto,ol

Reading 1 byte from 0x4423c in the heap,

Address 0x4423c iz 1 byte past end of a malloc’d block at Owxdd4230 of 12 bytes
This block was allocated from:

malloc [rtlib,ol
| nain [hello_world,c;19]
start [ertd,nl

P Current file descriptors in use: 5 -
k| Hemory leaked: 12 bytes (100E): potentially leaked: O bytes (0¥}
F| Program exited with status code 1. il

-~ I =

Note: To make debugging easier, Purify reports line numbers,
source filenames, and local variable names whenever possible if
you use the - g compiler option when you instrument the program.
If you do not use the - g option, Purify reports only function names
and object filenames.

On IRIX, system libraries retain their source file and line number
information; therefore, the » can appear next to a system library
function whose source file is not available. When you click the »

34 Rational Purify, PureCoverage, and Quantify

for such a line, Purify prompts you for the location of the source
file. Enter the location of the file if you know it, and then click OK
to expand the line.

Understanding the cause of the error

To understand the cause of the ABR error, look at the code in
hel I o_wor | d. c again.

15 static char *hellowrld = "Hello, Wrld";

16
17 main()
18 {
19 char *nmystr = malloc(strlen(helloWrld));
20
21 strncpy(nystr, hellowrld, 12);
Purify reports that the — 22 printf("%\n", nystr);

ABR error occurs here 23 }

On line 22, the program requests pri nt f to display nmyst r, which is
initialized by st r ncpy on line 21 for the 12 characters in “Hello,
World.” However, _dopr nt is accessing one byte more than it
should. It is looking for a NULL byte to terminate the string. The
extra byte for the string’s NULL terminating character has not been
allocated and initialized.

Start of the memory block Location accessed
(7x44230) (0x4423c)

[

Hiel|l [l o], Wlo (r |l |d

Accessing 1 byte past
the end of the block
|— Allocated block size (12) 7‘ causes an ABR error

For more information, see “How Purify finds memory-access
errors” on page 48.

Using Purify 35

Correcting the ABR error

To correct this ABR error:

1 Click the Edit tool IB to open an editor.

Click to edit the source code

I I
=| Purify: a.out =]
Fle View Actions | Options Help |
Do EE JJJJJJ@ 2
¥|Finizhed a,out 1 error, 12 leaked bytes} 2

k| Purify instrumented a,out (pld 9012 at MNed Jul 1B 19:42:26 1937
*| AER: Array boundz read
Thiz iz occurring while ing

_doprnt [libz,20,1,9]
printf [libc,=0,1,9]
| main [hello_world,ci2?]

& #include <stdio,h>
#include <malloc.h>

Or click here to edit
the source code
static char #%hellollorld = "Hello, World":

maini}
char *myztr = mallocistrlenthelloblorldias

stroopyimystr, hellolorld, 1233
=] printf{"Eshn", mystrl:
¥

start [crtl,aol
Reading 1 byte from 0x4423c in the heap,
fddress 0x4423c is 1 byte past end of a malloc’d block at (xd4230 of 12 by | F

-4 =]

Note: By default, Purify displays seven lines of the source code
file in the Viewer. You can change the number of lines of source
code displayed by setting an X resource.

2 Change lines 19 and 21 as follows:

19 char *nystr = nmalloc(strlen(helloWrld)+1);
20
21 strncpy(mystr, helloWwrld, 13);

36 Rational Purify, PureCoverage, and Quantify

Finding leaked memory

When a program exits, Purify searches for memory leaks and
reports all memory blocks that were allocated but for which no
pointers exist.

Note: When you run longer-running instrumented programs, you
can click the New Leaks tool to generate a new leaks summary
while the program is running.

1 Expand the memory-leaked summary for Hello World.

The memory-leaked summary shows the number of leaked bytes
as a percentage of the total heap size. If there is more than one
memory leak, Purify sorts them by the number of leaked bytes,
displaying the largest leaks first.

2 Expand the MLK message.

When you run your programs, click the New Leaks tool to
generate a new leaks summary while the program is running

| |
=| Purify: a.out 2 |
File View Actions Options Help |
=9 vV =
Bos¥e ? = RE
The memory-leaked *| Finished a.out { 1error, 12 leaked bytes? =
summary reports | Purify instrumented a,out {pid 9015 at Wed Jul 16 13:42326 1337}
12 b f leaked k| ABR: Array bounds read
ytes o M| Current file deszcriptors in use: O
memory ¥ Memory leaked: 12 bytes (100! potentially leaked: O bytes (OX3
| HLK: 12 bytes leaked at 0x44230
X Thiz memory waz allocated froms
The call chain shows malloc [rtlib,al
how the leaked] main [hello_world,c:19]
I d ztart [erti,ol
memory was allocate *| Purify Heap Analysis (combining suppressed and umsuppressed blocks)
. Blocks Bytes
Memory analysis by Leaked 1 12
Potentially Leaked i} il
category I-Use 0 0
Total Allocated 1 12
| Program exited with status code 1,
v
N =

Using Purify 37

Line 19 of
hell o_world.c
in mai n allocates

12 bytes of
leaked memory.
The start of this
memory block is

0x44230, the same
block with the array
bounds read error
in _doprnt

Correcting the MLK error

It is not immediately obvious why this memory was leaked. If you
look closer, however, you can see that this program does not have
an exi t statement at the end. Because of this omission, the mai n

function returns rather than calls exi t , thereby making nyst r —

the only reference to the allocated memory—go out of scope.

=| Purify: a.out
- (B

a

H]
Help |

View

i LH¥e ?

| Finished a,out 1 errar, 12 leaked bytes) 2
%PUHFH instrumented a,out (pld 9015 at Wed Jul 16 19:42:26 19973

¥ | AER: Array bounds read
k| Current. file descriptors in use: &
*| Hemory leaked: 12 bytes (100X} : potentially leaked: O bytes (0¥
| HLE: 12 bytes leaked at (44230
Thiz memory was allocated from:

malloc [rtlib,al
ﬂ main [hello_warld,c2191
start [crti,ol

¥| Purify Heap Analyziz {combining suppressed and unsuppressed blocks)

Blocks Bytes
Leaked 1 1z
Potentially Leaked i} i}
In-Use 0 0
Total Allocated 1 12
¥| Program exited with status code 1,
_f
] =

If mai n called exi t at the end, nystr would remain in scope at
program termination, retaining a valid pointer to the start of the
allocated memory block. Purify would then have reported it as
memory in use rather than memory leaked. Alternatively, mai n
could free nystr before returning, deallocating the memory so it
is no longer in use or leaked.

To correct this MLK error:

1 Click the Edit tool E to open an editor.

2 Add acall toexit(0) at the end of the Hello World program.

38 Rational Purify, PureCoverage, and Quantify

Looking at the heap analysis

Purify distinguishes between three memory states, reporting both
the number of blocks in each state and the sum of their sizes:

= Leaked memory

= Potentially leaked memory

= Memory in use

1 1
=| Purify: a.out a |
Fle View Actions Options Help |
T .ﬁh
DOEERLLX0 ? ~RB@
A true memory leak
(MLK) is memory to *|Finished a,out 1 &rror, 12 leaked bytes) g
i F| Purify instrumented a,out (pld 9015 at Wed Jul 16 19:42:26 1397
which your program »| AER: Array bounds read
has no pointer ¥| Current file descriptors in use: 9
. ¥ Memory leaked: 12 bytes (100E}: potentially leaked: O bytes (03
A potential memory *|HLE: 12 butes leaked at 0x44230
leak (PLK) is memory Thizs memory was allocated fromg
that does not have a EE;HE'ﬁin 2191
pointer to its beginning, [ert,ol
but does have one ap Analysis (combining suppressed and unsuppressed blocks)
to its interior Hlocks Bates
— Leaked 1 12
) I Potentially Leaked] 0
Memory in use In-Use] 0
(MIU) is memory to Total Allocated 1 12
which your program ¥| Program exited with status code 1,
has pointers o
(these are not leaks) [=

The exit status message provides information about:

= Basic memory usage containing statistics not easily available
from a single shell command. It includes program code and data
size, as well as maximum heap and stack memory usage in
bytes.

= Shared-library memory usage indicating which libraries were
dynamically linked and their sizes.

Using Purify 39

Comparing program runs

In the previous run,
Purify reported one error
and twelve leaked bytes

In the new run, Purify
reports no errors
and no memory leaks

To verify that you have corrected the ABR and MLK errors,
recompile the program with puri fy, and run it again.

Purify displays the results of the new run in the same Viewer as
the previous run so it’s easy to compare them. In this simple Hello
World program, you can quickly see that the new run no longer
contains the ABR and MLK errors.

=| Purify: a.out = | 0]
File View Actions Options Help
.ﬁh
JJJJJJJ@
| Finished a,out 12 leaked bytes =
¥ | Purify instrumented a.out (pld 11?3 at Ned Jul 16 19:42: 28 19973
k| AER: Array boundz read
k| Current file descriptors in usze: 5
P | Hemory leaked: 12 bytes (100¥): potentially leaked: O bytes (0E)
P | Program exited with status code 1,
| Finished a,out { 0 errors, 0 leaked bytes?
P | Purify instrumented a,out {pid 1204 at Med Jul 16 21:18:28 1357
k| Current file descriptors in usze: 5
P | Hemory leaked: O bytes €0¥): potentially leaked: © bytes (0X)
P | Program exited with status code O,
Xl
~ I ||

Congratulations! You have successfully Purify'd the Hello World
program.

40 Rational Purify, PureCoverage, and Quantify

Suppressing Purify messages

A large program can generate hundreds of error messages. To
quickly focus on the most critical ones, you can suppress the less
critical messages based on their type and source. For example, you
might want to hide all informational messages, or hide all
messages that originate in a specific file.

You can suppress messages in the Viewer either during or after a
run of your program. To suppress a message in the Viewer:

Select the message you want to suppress.

Select Options > Suppressions.

Purify displays the Suppressions dialog, containing information
about the selected message.

Fuasify] Saip pressiing

I.il.l.l..lh.l“:-.l.'lllll\'_'ﬂ.-'lh.t _-I—— Select a message to suppress
e o e ey Select where to suppress
Cnll chirc [l | the message

— [Control the depth of
the call-chain match

The suppression Purify_ savgls suppressions in
directive —} nseems ak & .purify files
Click to make a——j s persarwed | It i [ir _#siect e —1— You can save the suppression
suppression ity | s | ot | directive to another . puri f y file

permanent

You can also specify suppressions directly in a . puri fy file.
Suppressions created in the Viewer take precedence over
suppressions in . puri f y files; however, they apply only to the
current Purify session. Unless you click Make permanent, they do not
remain when you restart the Viewer.

Using Purify 41

Saving Purify output to a view file

A view file is a binary representation of all messages generated in
a Purify run that you can browse with the Viewer or use to
generate reports independent of a Purify run. You can save a run
to a view file to compare the results of one run with the results of
subsequent runs, or to share the file with other developers.
Saving a run to a view file from the Viewer

To save a program run to a view file from the Viewer:

1 Wait until the program finishes running, then click the run to
select it.

2 Select File > Save As.

3 Type a filename, using the . pv extension to identify the run as a
Purify view file.
Opening a view file

To open a view file from the Viewer:
1 Select File > Open.

2 Select the view file you want to open.

Purify displays the run from the view file in the Viewer. You can
work with the run just as you would if you had run the program
from the Viewer.

You can also use the - vi ewoption to open a view file. For example:
% purify -view <fil ename>. pv

This opens the <fi | ename>. pv view file in a new Viewer.

42 Rational Purify, PureCoverage, and Quantify

Using your debugger with Purify

You can run an instrumented program directly under your
debugger so that when Purify finds an error, you can investigate it
immediately.

Alternatively, you can enable Purify’s just-in-time (JIT) debugging
feature to have Purify start your debugger only when it
encounters an error—and you can specify which types of errors
trigger the debugger. JIT debugging is useful for errors that
appear only once in a while. When you enable JIT debugging,
Purify suspends execution of your program just before the error
occurs, making it easier to analyze the error.

Using Purify with PureCoverage

Purify is designed to work closely with PureCoverage, Rational
Software’s run-time test coverage tool. PureCoverage identifies
the parts of your program that have not yet been tested so you can
tell whether you're exercising your program sufficiently for Purify
to find all the memory errors in your code.

To use Purify with PureCoverage, add both product names to the
front of your link line. Include all options with the program to
which they refer. For example:

% purify <purifyoptions> purecov <purecovoptions> \
cc -g hello_world.c -0 hello_world

To start PureCoverage from the Purify Viewer, click the
PureCoverage icon [# in the toolbar.

For more information, see Chapter 3, Using PureCoverage.

Using Purify 43

Purify API functions

You can call Purify’s API functions from your source code or from
your debugger to gain more control over Purify’s error checking.
By calling Purify’'s API functions from your debugger, you get
additional control without modifying your source code. You can use
Purify’'s API functions to check memory state, and to search for
memory and file-descriptor leaks.

For example, by default Purify reports memory leaks only when
you exit your program. However, if you call the API function
purify_new | eaks at key points throughout your program, Purify
reports the memory leaks that have occurred since the last time
the function was called. This periodic checking enables you to
locate and track memory leaks more effectively.

To use Purify API functions, include <puri f yhone>/ purify. hin
your code and link with <puri f yhome>/ puri fy_st ubs. a.

Commonly used functions

Description

nt

purify_describe (char *addr)

Prints specific details about memory

nt

purify_is_running (void)

Returns " TRUE" if the program is instrumented

nt

purify_new_i nuse (void)

Prints a message on all memory newly in use

nt

purify_new_| eaks (void)

Prints a message on all new leaks

nt

purify_new fds_i nuse (void)

Lists the new open file descriptors

nt

purify_printf (char *format, ...)

Prints formatted text to the Viewer or log-file

nt

purify_watch (char *addr)

Watches for memory write, mal | oc,free

nt

purify_watch_n (char *addr, int size, char *type)

Watches memory: t ype ="r", "w', "r w'

nt

purify_watch_info (void)

Lists active watchpoints

nt

purify_watch_renmove (int watchno)

Removes a specified watchpoint

nt

purify_what _colors (char *addr, int size)

Prints the color coding of memory

44 Rational Purify, PureCoverage, and Quantify

Build-time options

Specify build-time options on the link line when you instrument a
program with Purify. For example:

% purify -cache-di r=$HOVE/ cache -al ways-use-cache-dir cc

Commonly used build-time options Default

- al ways- use- cache-dir no

Forces all instrumented object files to be written to the global cache directory

-cache-dir <puri f yhome>/ cache

Specifies the global directory where Purify caches instrumented object files

-coll ector none

Specifies the collect program to handle static constructors (for use with gcc, g++)

-ignore-runtime-environnent no

Prevents the run-time Purify environment from overriding the option values used in building the program

-1inker system-dependent

Sets the alternative linker to build the executables instead of the system default

-print-home-dir

Prints the name of the directory where Purify is installed, then exits

Conversion characters for filenames

Use these conversion characters when specifying filenames for
options such as-1og-fileand-viewfile.

Character Converts to

n/ Full pathname of program with “/” replaced by “ _”
%v Program name

%p Process id (pid)

qualified filenames (./%v.pv) Absolute or relative to current working directory
unqualified filenames (no /") Directory containing the program

Using Purify 45

Run-time options

Specify run-time options on the link line or by using the
PURI FYOPTI ONS environment variable. For example:

% setenv PURIFYOPTIONS "-log-file=mylog.%v.%p ‘printenv PURIFYOPTIONS"

Commonly used run-time options Default

-aut o- mount - prefi x / t mp_mt

Removes the prefix used by file system auto-mounters

-chain-1length 6

Sets the maximum number of stack frames to print in a report

-fds-in-use-at-exit yes

Specifies that the file descriptor in use message be displayed at program exit

-foll ow child-processes no

Controls whether Purify monitors child processes in an instrumented program

-jit-debug none

Enables just-in-time debugging

-l eaks-at-exit yes

Reports all leaked memory at program exit

T -log-file stderr

Writes Purify output to a log file instead of the Viewer window

- messages first
Controls display of repeated messages: "first","all",orina"bat ch" at program exit
- progr am nane ar gv[0]

Specifies the full pathname of the instrumented program if ar gv[0] contains an undesirable or incorrect value

-showdirectory no

Shows the directory path for each file in the call chain, if the information is available

- show pc no

Shows the full pc value in each frame of the call chain

-show pc- of f set no

Appends a pc-offset to each function name in the call chain

T viewfile none

Saves Purify output to a view file (. pv) instead of the Viewer.

-user-path none

Specifies a list of directories in which to search for programs and source code

-wi ndows none

Redirects Purify output to st der r instead of the Viewer if - wi ndows=no

t Can use the conversion characters listed on page 45.

46 Rational Purify, PureCoverage, and Quantify

Purify messages

Purify reports the following messages:

Message Description Severity* | Message Description Severity*
ABR Array Bounds Read w NPR Null Pointer Read F
ABW Array Bounds Write C NPW Null Pointer Write F
BRK Misuse of Brk or Sbrk C PAR Bad Parameter w
BSR Beyond Stack Read w PLK Potential Leak W
BSW Beyond Stack Write w SBR Stack Array Bounds Read w
COR Core Dump Imminent F SBW Stack Array Bounds Write C
FIU File Descriptors In Use | SIG Signal |
FMM Freeing Mismatched Memory C SOF Stack Overflow w
FMR Free Memory Read w umcC Uninitialized Memory Copy w
FMW Free Memory Write C UMR Uninitialized Memory Read W
FNH Freeing Non Heap Memory C WPF Watchpoint Free |
FUM Freeing Unallocated Memory C WPM Watchpoint Malloc |
IPR Invalid Pointer Read F WPN Watchpoint Entry |
IPW Invalid Pointer Write F WPR Watchpoint Read |
MAF Malloc Failure | WPW Watchpoint Write |
MIU Memory In-Use | WPX Watchpoint Exit |
MLK Memory Leak w ZPR Zero Page Read F
MRE Malloc Reentrancy Error C ZPW Zero Page Write F
MSE Memory Segment Error w

* Message severity: F=Fatal, C=Corrupting, W=Warning, I=Informational

Using Purify 47

How Purify finds memory-access errors

Purify monitors every memory operation in your program,
determining whether it is legal. It keeps track of memory that is
not allocated to your program, memory that is allocated but
uninitialized, memory that is both allocated and initialized, and
memory that has been freed after use but is still initialized.

Purify maintains a table to track the status of each byte of
memory used by your program. The table contains two bits that
represent each byte of memory. The first bit records whether the
corresponding byte has been allocated. The second bit records
whether the memory has been initialized. Purify uses these two
bits to describe four states of memory: red, yellow, green, and blue.

lllegal to read, write, or free
red and blue memory

uninitialized [freed but still
initialized

malloc

Yellow Green

Legal to write

or free, but memory memory
illegal to read allocated but allocated and
uninitialized initialized

Legal to read and write
(or free if allocated
by mal | oc)

48 Rational Purify, PureCoverage, and Quantify

Purify checks each memory operation against the color state of the
memory block to determine whether the operation is valid. If the
program accesses memory illegally, Purify reports an error.

Red: Purify labels heap memory and stack memory red initially.
This memory is unallocated and uninitialized. Either it has
never been allocated, or it has been allocated and subsequently
freed.

In addition, Purify inserts guard zones around each allocated
block and each statically allocated data item, in order to detect
array bounds errors. Purify colors these guard zones red and
refers to them as red zones. It is illegal to read, write, or free red
memory because it is not owned by the program.

Yellow: Memory returned by nmal | oc or newis yellow. This
memory has been allocated, so the program owns it, but it is
uninitialized. You can write yellow memory, or free it if it is
allocated by mal | oc, but itis illegal to read it because it is
uninitialized. Purify sets stack frames to yellow on function
entry.

Green: When you write to yellow memory, Purify labels it green.
This means that the memory is allocated and initialized. It is
legal to read or write green memory, or free it if it was allocated
by mal | oc or new Purify initializes the data and bss sections of
memory to green.

Blue: When you free memory after it is initialized and used,
Purify labels it blue. This means that the memory is initialized,
but is no longer valid for access. It is illegal to read, write, or free
blue memory.

Since Purify keeps track of memory at the byte level, it catches all
memory-access errors. For example, it reports an uninitialized
memory read (UMR) if ani nt or | ong (4 bytes) is read from a location
previously initialized by storing ashort (2 bytes).

Using Purify 49

How Purify checks statically allocated memory

In addition to detecting access errors in dynamic memory, Purify
detects references beyond the boundaries of data in global
variables and static variables; that is, data allocated statically at
link time as opposed to dynamically at run time.

Here is an example of data that is handled by the static checking
feature:

int array[10];
mai n() {

array[11] = 1;
}

In this example, Purify reports an array bounds write (ABW) error
at the assignment to array[11] because it is 4 bytes beyond the
end of the array.

Purify inserts red zones around each variable in your program’s
static-data area. If the program attempts to read from or write to
one of these red zones, Purify reports an array bounds error (ABR
or ABW).

Purify inserts red zones into the data section only if all data
references are to known data variables. If Purify finds a data
reference that is relative to the start of the data section as opposed
to a known data variable, Purify is unable to determine which
variable the reference involves. In this case, Purify inserts red
zones at the beginning and end of the data section only, not
between data variables.

Purify provides several command-line options and directives to aid
in maximizing the benefits of static checking.

50 Rational Purify, PureCoverage, and Quantify

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Using PureCoverage

During the development process, software changes daily,
sometimes hourly. Unfortunately, test suites do not always keep
pace. PureCoverage is a simple, easily deployed tool that identifies
the portions of your code that have not been exercised by testing.

Using PureCoverage, you can:

Identify the portions of your application that your tests have
not exercised

Accumulate coverage data over multiple runs and multiple
builds

Merge data from different programs sharing common
source code

Work closely with Purify to make sure that Purify finds errors
throughout your entire application

Automatically generate a wide variety of useful reports

Access the coverage data so you can write your own reports

PureCoverage provides the information you need to identify gaps
in testing quickly, saving precious time and effort.

This chapter introduces the basic concepts involved in using
PureCoverage. For complete information, see the PureCoverage
User’s Guide.

51

Finding untested areas of Hello World

This chapter shows you how to use PureCoverage to find the
untested parts of the hel | o_wor | d. ¢ program.

Before you begin:

1 Create a new working directory. Go to the new directory, and copy
the hel | o_wor | d. ¢ program and related files from the
<pur ecovhone>/ exanpl e directory:

% nkdi r /usr/hone/ pat/ exanpl e
% cd /usr/ hone/ pat/exanpl e
% cp <purecovhome>/ exanpl e/ hel | o* .

2 Examine the code inhell o_worl d. c.

The version of hel | o_wor | d. c provided with PureCoverage is
slightly more complicated than the usual textbook version.

#i ncl ude <stdio. h>

void display_hello_world();
void display_nessage();

mai n(argc, argv)
int argc;
char** argv;

if (argc == 1)
di splay_hell o_worl d();
el se
di spl ay_nessage(argv[1]);
exit(0);
}
voi d
di spl ay_hel I o_wor |l d()
{

}

printf("Hello, Wrld\n");

voi d
di spl ay_nessage(s)
char *s;
{
printf("%, World\n", s);

52 Rational Purify, PureCoverage, and Quantify

Instrumenting a program

output

1 Compile and link the Hello World program, then run the program

to verify that it produces the expected output:
%cc -g hello_world.c
% a. out

Hel l o, World

Instrument the program by adding pur ecov to the front of the
compile/link command line. To have PureCoverage report the
maximum amount of detail, use the - g option:

% purecov cc -g hello_world.c
Note: If you compile your code without the - g option,

PureCoverage provides only function-level data. It does not show
line-level data.

A message appears, indicating the version of PureCoverage that is
instrumenting the program:
PureCoverage 4. 4 Sol ari s 2, Copyright 1994-1999 Rati onal Software Corp.

Al rights reserved.
Instrumenting: hello_world.o Linking

Note: When you compile and link in separate stages, add pur ecov
only to the link line.

Using PureCoverage 53

Running the instrumented program

Run the instrumented Hello World program:

% a. out

PureCoverage displays the following:

Name of the instrumented executable You can use this command to display
technical support contact information

Start-up banner **** pyreCoverage i nstrumented a.out (pid 3466 at Wed Feb 3 10: 32: 40 1999)
* PureCoverage 4.4 Solaris 2, Copyright 1994-1999 Rati onal Software Corp.

* Al rights reserved.

* For contact information type: "purecov -help"

* Conmmand-|ine: a.out

* Options settings: -purecov \

- pur ecov- home=/ usr/ pur e/ pur ecov- 4. 4-sol ari s2
* PureCoverage |licensed to Rational Software Corp.
Normal * Coverage counting enabl ed.

program output ——Hel I o, World

% pyreCoverage instrunented a.out (pid 3466) *

PureCoverage saves * Saving coverage data to /usr/hone/ pat/exanpl e/ a. out. pcv.

coverage data to
a . pcv file

The a. out program produces its normal output, just as if it were
not instrumented. When the program completes execution,
PureCoverage writes coverage information for the session to the
file a. out . pcv. Each time the program runs, PureCoverage
updates this file with additional coverage data.

54 Rational Purify, PureCoverage, and Quantify

Displaying coverage data

1 I
U=l Furslirr i =]
File VW AcioeR Sjus e s Halp
0 O FE I
. . Sordirm arder! FLMCT i 1 i
Summary information B amked ureomd Lirse PFure: [alle uessd el uradl U urnd weadl batal
for the entire program — ™| Tokal Covmraga | L FI = E: E BEL q 2
1 r I J E WL L]

Information for the —

source directory

To display the coverage data for the program, use the command:

% purecov -view a.out.pcv &

This displays the PureCoverage Viewer.
These columns show This column shows the
statistics for function usage number of adjusted lines

These columns show
statistics for line usage

I e R S T

r -

In this example, there is only one source directory, so the
information displayed for the directory is identical to the Tot al
Cover age information.

Note: The default header for line statistics is ADJUSTED LI NES,
not just LI NES. This is because PureCoverage has an adjustment
feature that lets you adjust coverage statistics by excluding
specific lines. Under certain circumstances, the adjusted statistics
give you a more practical reflection of coverage status than the
actual coverage statistics. The ADJS column in this example
contains zeroes, indicating that it does not include adjustments.

Using PureCoverage 55

Expanding the file-level detail

Click » nextto.../exanpl e/ toexpand the file-level information
for the directory.

=i Fureliratr e =1
File VW AclanE SdjusTenis Help
b k%
0| oS
S i ey k! 1 ¥ c
Ad kel urened Dins Furm Calle uressd wmed . ureosd wmnd zeedl batal
% Tobad Comregs 1 P - 3 E BET i [
. . . b R R T 1 2 I E BRI L]
File-level information —& —— & | o [, 1 L 7 EEE T E Bl 0

includes the number
of runs for which
PureCoverage
collected data

_,1-4 T

You used only one file in the exanpl e directory to build a. out .
Therefore the FUNCTI ONS and ADJUSTED LI NES information for the
file is the same as for the directory. The number 1 in the Runs
column indicates that you ran the instrumented a. out only once.

Note: When you are examining data collected for multiple
executables, or for executables that have been rebuilt with some
changed files, the number of runs can be different for each file.

56 Rational Purify, PureCoverage, and Quantify

Examining function-level detail

Expand the hel | o_wor | d. ¢ line to show function-level
information.

The Viewer shows coverage information for the functions
di spl ay_nessage, mai n, and di spl ay_hel | o_wor| d.

The Calls column shows how many times The FUNCTI ONS columns tell
the program called each function at a glance whether each
function was used or unused
I I
=l Fur slirsy due 1= 1)
Pl Wiew Goioem Bdijusive i Halp
T==
00 S
i e FUMCTIONS GOUIETED LJWES WS
Ad ke urepeed iree Fure Cally uessd e el uremsd uzsd =esdl botal
™ Tokad Comraga L FI - ES E BET 1] [3
h T - S S R 1 A - = p: E BRI L]
= bt] i [, 1 L 7 HE [E BRL ']
i dizeley e 0| urmssd H4 [L 1]
Function-level —H —[wari v 1 e i [a
information includes the I cizpley blls world L = " o v
number of times
the program called
each function

e =]

PureCoverage does not list the pri ntf function or any functions
that it calls. The printf function is a part of the system library,
I'i bc. By default, PureCoverage excludes collection of data from
system libraries.

Using PureCoverage 57

Examining the annotated source

To see the source code for mai n annotated with coverage
information, click the Annotated Source tool Z| next tomain in
the Viewer. PureCoverage displays the Annotated Source window.

Number of times each line was executed

Adjustments Source code
Pt ey Brved wterd lmerre — bed o ueld o iBipmied coverage [Bead m b
. p [
| B LT | | i -
Source code —+— i T X
line numbers i il

| - i| e

Unused code

Unused code

H
b
=

: I |

—_ul|rnl-_.lu|b-t| Pt |

R O T R el

PureCoverage highlights code that was not used when you ran the
program. In this file only two pieces of code were not used:

* The di spl ay_nessage(ar gv[1]) ; statement in mai n

* The entire di spl ay_nessage function

A quick analysis of the code reveals the reason: the program was
invoked without arguments.

58 Rational Purify, PureCoverage, and Quantify

Improving Hello World’s test coverage

Reload the changed —#— < Reload changed pev files

a. out . pcv file

To improve the test coverage for Hello World:

Without exiting PureCoverage, run the program again, this time
with an argument. For example:

% a. out Goodbye

PureCoverage displays the following:

**** pyreCoverage i nstrumented a. out (pid17331 at Wed Feb 3 10: 38: 07 1999)
Pur eCoverage 4.4 Sol aris 2, Copyright (C) 1994-1999 Rati onal Software Corp.

* Al rights reserved.

* For contact information type: "purecov -help"

* Command-|ine: a.out Goodbye

* Options settings: -purecov \

- pur ecov- home=/ usr/ pur e/ pur ecov- 4. 4-sol ari s2

* PureCoverage |icensed to Rational Software Corp.

* Coverage counting enabl ed.
Coodbye, World

****% PureCoverage instrunented a.out (pid 17331) ****
* Saving coverage data to /usr/hone/pat/exanpl e/ a.out. pcv.
* To view results type: purecov -view /usr/hone/pat/exanpl e/ a.out.pcv

PureCoverage displays a dialog confirming that coverage data has
changed for this run. Select Reload changed .pcv files and click OK.

Some: PureEoveraﬁe data chanﬁed

Files which have changed since being loaded (and when):

07/10 10338 - a.out.pov =

=

~d I~

Please choose one of these options:

-~ Reload now; automatically reload in the future
-~ Don't reload, but inform me of future changes
-~ Don’t reload and don't inform me of future changes

ok

Note: This dialog appears only if the PureCoverage Viewer is
open when you run the program.

Using PureCoverage 59

PureCoverage updates the coverage information in the Viewer and
the Annotated Source window.

Function and line coverage is now 100%

The statement
di spl ay_nessage " Im:j-:llwll':ll

(argv[1]);... .I-llu-h.uu-pwi-f:l::n:
ey

Hl.-‘_hllq_-l.l:-

and the function] il aedewi

di spl ay_nessage are d
now shown as used

Note: If you still have untested lines, it is possible that your
compiler is generating unreachable code.

3 Select File > Exit.

60 Rational Purify, PureCoverage, and Quantify

Using report scripts

You can use PureCoverage report scripts to format and process
PureCoverage data. The report scripts are located in the
<pur ecovhone>/ scri pt s directory.

Select File > Run script to open the script dialog.

Select a script from the selection list Type arguments

| |

| - |
e v | AR

o | Cam|

You can also run report scripts from the command line.

Report scripts

pc_annot at e Produces an annotated source text file
% pc_annotate \
[-force-nerge] [-apply-adjustnents=no][-fil e=<basenane>...][-type=<type>][<prog>.pcv...]

pc_bel ow Reports low coverage

% pc_bel ow [-force-nerge] [-appl y-adj ust nent s=no] [- per cent =<pct >] [<pr og>. pcv. ..]

pc_build_diff Compares PureCoverage data from two builds of an application

% pc_build_diff [-apply-adjustnents=no][-prefix=XXXX....] old.pcv new. pcv

pc_covdi f f Annotates the output of di f f for modified source code Note: Cannot run from Viewer
% yourdi ff <nanme> | pc_covdiff [-context=<lines>] \
[-format ={di ff|side-by-side|newonly}][-Iines=<bool ean>][-tabs=<stops>] \
[-w dt h=<wi dt h>] [- f or ce- mer ge] [- appl y- adj ust ment s=no] - fi | e=<nanme> <prog>. pcv. ..

pc_diff Lists files for which coverage has changed

% pc_di ff [-apply-adjustnents=no] ol d.pcv new. pcv

pc_enai | Mails a report to the last person who modified insufficiently covered files

% pc_emui | [-force-nerge][-apply-adjustments=no][-percent=<pct>][<prog>. pcv...]

pc_sel ect Identifies the subset of tests required to exercise modified source code
% <list of changed files> | pc_select \
[-diff=<rul es>][-canonicalize=<rule>]testl. pcv test2.pcv...

pc_ssheet Produces a summary in spreadsheet format

% pc_ssheet [-force-nerge][-apply-adjustnents=no][<prog>. pcv...]

pc_summary Produces an overall summary in table format

% pc_summary [-file=<nane>...] [-force-nerge] [-apply-adjustments=no] [<prog>. pcv...]

Using PureCoverage 61

Build-time options

You can specify build-time options on the link line when you
instrument programs with PureCoverage. For example:

% pur ecov -cache-di r=$HOVE/ cache -al ways-use-cache-dir cc ...

Commonly used build-time options Default

- al ways- use-cache-dir no

Forces all PureCoverage instrumented object files to be written to the global cache directory

-aut o- nount - prefi x / t mp_mt

Removes the prefix used by file system auto-mounters

-cache-dir <pur ecovhonme>/ cache

Specifies the global directory where PureCoverage caches instrumented object files

-col l ector none

Specifies the collect program to handle static constructors (for use with gcc, g++)

-ignore-run-time-environnent no

Prevents the run-time PureCoverage environment from overriding the option values used in building the program

-1inker system-dependent

Specifies a linker other than the system default for building the executables

Run-time options

You can specify run-time options on the link line or by using the
PURECOVOPTI ONS environment variable. For example:

% set env. PURECOVOPTI ONS \
"-counts-file=./testl.pcv ‘printenv PURECOVOPTIONS™

Commonly used run-time options Default

T Tcounts-file % . pcv

Specifies an alternate file for writing coverage count data in binary format

-follow child-processes no

Controls whether PureCoverage is enabled in forked child processes

T -log-file stderr

Specifies a log file for PureCoverage run-time messages

- program nane ar gv[0]

Specifies the full pathname of the PureCoverage instrumented program

T “user- pat h none

Specifies a list of directories to search for source code

Tt Can use the conversion characters listed on page 45.

62 Rational Purify, PureCoverage, and Quantify

Analysis-time options

Use analysis-time options with analysis-time mode options. For
example:

% purecov -merge=result.pcv -force-merge filea.pcv fileb.pcv

Commonly used analysis-time options Default

-appl y- adj ust nent s yes

Applies all adjustments in the $HOME/ . pur ecov. adj ust file to exported coverage data

-force-nerge no

Forces the merging of coverage data files (. pcv) obtained from different versions of the same object file

Analysis-time mode options

Command-line syntax:

% purecov -<npde option> [anal ysis-time options] \
<filel.pcv file2.pcv ...>

Analysis-time mode options Compatible options

- export -appl y- adj ust nent s

Merges and writes coverage counts from multiple coverage data files (. pcv) in export format to a specified file
(- expor t =<f i | ename>) or to st dout

-extract none

Extracts adjustment data from source code files and writes it to $HOVE/ . pur ecov. adj ust

- mer ge=<fil enane. pcv> -force-nerge

Merges and writes coverage counts from multiple coverage data files (. pcv) in binary format

-vi ew -force-nmerge, -user-path
Opens the PureCoverage Viewer for analysis of one or more coverage data files (. pcv)

Using PureCoverage 63

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Using Quantify

Your application’s run-time performance—its speed—is one of its
most visible and critical characteristics. Developing
high-performance software that meets the expectations of
customers is not an easy task. Complex interactions between your
code, third-party libraries, the operating system, hardware,
networks, and other processes make identifying the causes of slow
performance difficult.

Quantify is a powerful tool that identifies the portions of your
application that dominate its execution time. Quantify gives you
the insight to quickly eliminate performance problems so that
your software runs faster. With Quantify, you can:

= Get accurate, repeatable performance data

= Control how data is collected, collecting data for a small portion
of your application’s execution or the entire run

= Compare before and after runs to see the impact of your changes
on performance

= Easily locate and fix only the problems with the highest
potential for improving performance

Unlike sampling-based profilers, Quantify’s reports do not include
any overhead. The numbers you see represent the time your
program would take without Quantify. Quantify instruments all
the code in your program, including system and third-party
libraries, shared libraries, and statically linked modules.

This chapter introduces the basic concepts involved in using
Quantify. For complete information, see the Quantify User’s
Guide.

65

How Quantify works

Quantify counts machine cycles: Quantify uses Object Code
Insertion (OCI) technology to count the instructions your program
executes and to compute how many cycles they require to execute.
Counting cycles means that the time Quantify records in your code
is identical from run to run, assuming that the input does not
change. This complete repeatability enables you to see precisely
the effects of algorithm and data-structure changes.

Since Quantify counts cycles, it gives you accurate data at any
scale. You do not need to create long runs or make numerous short
runs to get meaningful data as you must with sampling-based
profilers—one short run and you have the data. As soon as you can
run a test program, you can collect meaningful performance data
and establish a baseline for future comparison.

Quantify times system calls: Quantify measures the elapsed
(wall clock) time of each system call made by your program and
reports how long your program waited for those calls to complete.
You can immediately see the effects of improved file access or
reduced network delay on your program. You can optionally choose
to measure system calls by the amount of time the kernel recorded
for the process, much like the / bi n/ ti me UNIX utility records.

Quantify distributes time accurately: Quantify distributes
each function’s time to its callers so you can tell at a glance which
function calls were responsible for the majority of your program’s
time. Unlike gpr of , Quantify does not make assumptions about
the average cost per function. Quantify measures it directly.

66 Rational Purify, PureCoverage, and Quantify

Building and running an instrumented program

Program output —

Data transmission —

To instrument your program, add quant i fy to the front of the link
command line. For example:

% quantify cc -g hello_world.c -0 hello_world

Quantify 4.4 Solaris 2, Copyright 1993-1999 Rational Software Corp.
Instrunmenting: hello_world.o Linking

Run the instrumented program normally:

% hel | o_worl d

When the program starts, Quantify prints license and support
information, followed by the expected output from your program.

**xx Quantify instrunented hello_world (pid 20352 at Sat 5 08:41:27
1999)
Quantify 4.4 Solaris 2, Copyright 1993-1999 Rational Software Corp.
* For contact information type: “quantify -help”
* Quantify licensed to Quantify Evaluation User
* Quantify instruction counting enabled.
Hello, World.

Quantify: Sending data for 37 of 1324 functions
from hello_world (pid 20352)......... done.

When the program finishes execution, Quantify transmits the
performance data it collected to qv, Quantify’'s data-analysis
program.

Using Quantify 67

Interpreting the program summary

After each dataset is transmitted, Quantify prints a program
summary showing at a glance how the original, non-instrumented,
program is expected to perform.

Time Quantify expects the original program to take

Time spent executing
program functions Quanti fly: Resource Statistics for hello_world (pid 20352)

b d * cycles secs
(compute-bound) . 154 counted time: 16148821 0.323 (100.0%
* Time in your code: 2721 0.000 (0.0%
Time spent waiting for——*—— Tine in systemcalls: 843950 0.017 (5.29%
system calls to complete * Dynanmic library | oading: 15302150 0.306 (94.8%
S
*

Time spent loading——* |
dynamic libraries Not e: Data co! | ected assunming a‘ sparcstation_| x wit h. clock rate of 50 MHz.
* Note: These tines exclude Quantify overhead and possible nenory effects.

*

Time taken to collect——* El apsed data col | ection time: 0.336 secs

data includes Quantify’'s ~ *
. * . ; ; ;
counting overhead and Not e: Thi s neasurenent includes Quantify overhead.

any memory effects

68 Rational Purify, PureCoverage, and Quantify

Using Quantify’s data analysis windows

After transmitting the last dataset, Quantify displays the Control

Panel. From here, you can display Quantify’s data analysis
windows and begin analyzing your program’s performance.

CONTROL PANEL

ANNOTATED SOURCE
|."_'.'_';I_E!!I!!!|_| e New Sy g
e e g T
LEL maiLi 11
Fiatila]
Lallai L aimm
Ffiih This L P 4 0 0L
- in i wpvdas |l ST00R ol . weeh
miHxizeie e pillsy
S — e
i S i - i i i i a
ey Newm S—m— LR T
i i e e
AR 1Y RN - LR 1]
e [E—
el bbbl i il i il i e i
pvrh | S
-l e T L=
il mmr | Pemahiom die 12 sy | B BIOAN ik |
L cyries | 4 SR of e
- i i o hinaimsinsmen
i D | —————— A
i Shan Al e |
15 (M 1 qisa T
Pamtiim Lise LR RN R] =
R ! Prur inm v seander 1 vina Bl v | G Fh o raed :
Kibliis P Lis & L
T Frvelidied Binrcd e By || Brims feasis - "ol il wrwrisl [y LT)
o,
FUNCTION LIST

FUNCTION DETAIL ..—‘d.m-
q—.—-_#__‘-:}__ ""-\-.__\l'-*h-\-_'-
i
— ?.:-_ MR

(o] e e | e

gy b |

P |

1 el s P
CALL GRAPH

Using Quantify 69

The Function List window

The Function List window shows the functions that your program
executed. By default, it displays the top 20 most expensive
functions in your program, sorted by their function time. This is
the amount of time a function spent performing computations
(compute-bound) or waiting for system calls to complete.

=] s iy Fursiion Lii =]
Ais Uy Windceas ki
Function list description —— s 37 ferariies s
Fum b B (uisecs
0O5F sExvE
08 Lecaleesms
042 snwtiy
0 4E it
. . 0. 3E]
Click a function _b
; (] world
to select it B3F melle
0.3k mbmrk_Flamt
na ok
Find a function by name —+— i i fursc i st I

or filter by expression

S P labed Beurco Shvi Fumet Lios Dol | Lossale in Gragh

haila_wrmrid {pid 200857)

Sorting the function list

To sort the function list based on the various data Quantify
collects, select View > Display data.

View

Display data

T

4 Function time

Restrict functions
Function names...
Scale factors
Precision

Go back

& <> Function+descendants time
<> Descendants time

<> System call time

. <> Register window trap time

- <> Number of function calls
Number of callers

v

Locate in Graph

Show Annotated Source | (> Mumber of descendants
Show Function Detail <> Number of system calls

<> Number of register window traps

70 Rational Purify, PureCoverage, and Quantify

Restricting functions

To focus attention on specific types of functions, or to speed up the
preparation of the function list report in large programs, you can
restrict the functions shown in the report. Select View > Restrict
functions.

View

Display data B4

Restrict functions b |4 All functions
Function names... &> Top 20 functions

<> Top 100 functions

&> Contributing functions only

<> Annotated functions only

<> Compute—bound functions only

v

Scale factors

¥

Precision
Go back

v

Show Annotated Source
Show Function Detail
Locate in Graph

You can restrict the list to the top 20 or top 100 functions in the
list, to the functions that have annotated source, to functions that
are compute-bound (make no system calls), or to functions that
contribute non-zero time for a recorded data type.

Using Quantify 71

The Call Graph window

The Call Graph window presents a graph of the functions called
during the run. It uses lines of varying thickness to graphically
depict where your program spends its time. Thicker lines
correspond directly to larger amounts of time spent along a path.

The call graph helps you understand the calling structure of your
program and the major call paths that contributed to the total
time of the run. Using the call graph, you can quickly discover the
sources of bottlenecks.

Thicker lines mean more

expensive paths

Click and drag
anywhere in the

call graph to move to
a new location

Or click and drag the
Viewport to move
to a new location

The selected function

- —
1=

i

115 - JRLLNARG}
e T —

— _.'- e A—
—_— e —— ‘ o
Hai

Ilm_mlﬁmlnm thaw femaleted Seurce | Sherw Funclion Delail

1 e tod iksiribates lime miskls i sl el _woeldl (pai FISE)

By default, Quantify expands the call paths to the top 20 functions

contributing to the overall time of the program.

72 Rational Purify, PureCoverage, and Quantify

Using the pop-up menu

To display the pop-up menu, right-click any function in the call
graph.

Expand descendants

>
Locate callers B
Locate descendants &
Change focus i
Show Annotated Source
Show Function Detail

You can use the pop-up menu to:

= Expand and collapse the function’s subtree
= Locate individual caller and descendant functions
= Change the focus of the call graph to the selected function

= Display the annotated source code or the function detail for the
selected function
Expanding and collapsing descendants

Use the pop-up menu to expand or collapse the subtrees of
descendants for individual functions.

Select to expand —+ Expand descendants

or collapse | Locate callers

P | Collapse descendants

B
descendant subtrees | | gcate descendants &

B

Add immediate descendants
Expand top 20 descendants
Expand top 100 descendants
Show Annotated Source | Expand all descendants
Show Function Detail

Change focus

After expanding or collapsing subtrees, you can select
View > Redo layout to remove any gaps that your changes create in
the call graph.

Using Quantify 73

The Function Detail window

The Function Detail window presents detailed performance data
for a single function, showing its contribution to the overall
execution of the program.

For each function, Quantify reports both the time spent in the
function’s own code (its function time) and the time spent in all the
functions that it called (its descendants time). Quantify distributes
this accumulated function+descendants time to the function’s
immediate caller.

The immediate descendants of mal | oc, and how they contributed
to mal | oc’s function+descendants time

Canry. Funatios Damd
e Wew Windpan [
All the data collected =
formal l oc 47T -
Tilenans uars L'l L
Tmllad 1 time
Forction Tims B cpclea O 00k of | reot
. Tow L erndeacerslants Liae AGER pipelle=s o 0198 of | peed |
The minimum and — 4 gurames. fimzkaen Bame BE cpzlsn
maximum time NEwimus fumsbios Eims Ei cmelaa
spentin mal | oc
on any one call]
Ll Lot Lo i il ey L DS | Triedy b o wlaiils |
The functions that called —F+7 L tise _fisdbal 1 vime {59 BN macedre
a : 4 <
mal | oc 1 tama [LBNE L dnncte
|
P LTI T I
Ty Pl e S P ban Setal || LiCaks m Seaph
halla_worid (pad 70152

Double-click a caller or descendant function to display the detail
for that function.

The function time and the function+descendants time are shown
as a percentage of the total accumulated time for the entire run.
These percentages help you understand how this function’s
computation contributed to the overall time of the run. These
times correspond to the thickness of the lines in the call graph.

74 Rational Purify, PureCoverage, and Quantify

Changing the scale and precision of data

Quantify can display the recorded data in cycles (the number of
machine cycles) and in microseconds, milliseconds, or seconds.
To change the scale of data, select View > Scale factors.

View |

Function names...

Scale factors P | @ Cycles

Precision & 1> Microseconds

Go back & <> Milliseconds
> Seconds

Show Annotated Source
Show Function Detail

Locate in Graph

To change the precision of data, select View > Precision.

View |
Display data 5
Restrict functions B
Function names...
Scale factors B
Precision = 1< dd.dd
Go back 1> dd.ddd
Show Annotated Source %::::::d

Show Function Detail

Locate in Graph

Saving function detail data

To save the current function detail display to a file, select
File > Save current function detail as.

To append additional function detail displays to the same file,
select File > Append to current detail file.

Using Quantify 75

The Annotated Source window

Quantify’'s Annotated Source window presents line-by-line
performance data using the function’s source code.

Note: The Annotated Source window is available only for files
that you compile using the - g debugging option.

-| O rew e (Rpa e | e i T DA i e Il | ||
Fis ‘dow Windewy iy
Source file RESI0E oo fe e _wortaen_word o e oy §
iat Borldd =
. B A B R
Function summary — + Ferctian Wer Ld
+ Eallad 1 wiss
+ FPerelian Lims L1 epeles § 0 OOOLN of | pewt.)
* Feretisrsdescerdmbs Tims LEAILE ppeloy o 4 1170% o reat. |
+ Buanribreciss b Csllars
. 1 Eame mman
Annotations show how — 36 R |

function+descendants pristf{Wacld e

. o O D1Skj |
time was distributed
over its source lines e SRR R AR A
* Faratian i
* galled 1 Eimm
+ Ferctiian Tims LE copclnn f 0. OFILE e . cowt. |
v Faretianvdespenddmics tims TETLM opalea | o EIME of | foot |
* Dusfiribektion bo Galless
" L [1= a3
E e5ium|
Bllefd; T
81 &5 Harldi
||
Find text in —— fad in mswnu: |;
the source code Rela_ o (g AT

The numeric annotations in the margin reflect the time recorded
for that line or basic block over all calls to the function. By default,
Quantify shows the function time for each line, scaled as a
percentage of the total function time accumulated by the function.

76 Rational Purify, PureCoverage, and Quantify

Changing annotations

To change annotations, use the View menu. You can select both
function and function+descendants data, either in cycles or
seconds and as a percentage of the function+descendants time.

View

Annotations

7

<> Function time
Function summaries & <> Function time (% of function)
Multi-block lines & <> Function+descendant time

Function names... 4 Functiontdescendant time (% of frd)
Scale factors |-
Precision &
Go to function |-

Saving performance data on exit

To exit Quantify, select File > Exit Quantify. If you analyze a dataset
interactively, Quantify does not automatically save the last
dataset it receives. When you exit, you can save the dataset for
future analysis.

Gl i i

r Dmitimg Quercify Flasse candime

Ferew & Eall_ | Exl Canoil

By default, Quantify names dataset files to reflect the program
name and its run-time process identifier. You can analyze a saved

dataset at a later time by running qv, Quantify’s data analysis
program.

You can also save Quantify data in export format. This is a
clear-text version of the data suitable for processing by scripts.

Using Quantify 77

Comparing program runs with gxdiff

gxdi ff lists the
functions that have
changed . ..

The gxdi ff script compares two export data files from runs of an
instrumented program and reports any changes in performance.
To use the gxdi ff script:

Save baseline performance data to an export file. Select
File > Export Data As in any data analysis window.

Change the program and run Quantify on it again.

Select File > Export Data As to export the performance data for the
new run.

Use the gxdi f f script to compare the two export data files. For
example:

% gxdi ff -i testHash. pure.20790.0.gx inproved_testHash. pure.20854. 0. gx

You can use the -i option to ignore functions that make calls to
system calls.

Below is the output from this example.

Di fferences between:
program t est Hash. pure (pid 20790) and
program i nproved_t est Hash. pure (pid 20854)

Function nane Calls Cycl es % change
! strcnp -40822 -1198640 93.77% faster
! put Hash 0 - 32912 6.61% f aster
! get Hash 0 -28376 7.86% faster
! renmHash 0 -7856 5.91%faster
! hashl ndex 0 10000 1. 49% sl ower

and summarizes the—s5 differences; -1257784 cycles (-0.025 secs at 50 Miz)

differences for the
entire run

25.01% faster overall (ignoring systemcalls).

78 Rational Purify, PureCoverage, and Quantify

Build-time options

Specify build-time options on the link line when you instrument a
program with Quantify. For example:

% quantify -cache-di r=$HOVE/ cache -al ways-use-cache-dir cc ...

Commonly used build-time options Default

- al ways- use-cache-dir no
Specifies whether instrumented files are written to the global cache directory

-cache-dir <quant i fyhome>/ cache
Specifies the global cache directory

-col lection-granularity line
Specifies the level of collection granularity

-col l ector none
Specifies the collect program to handle static constructors in C++ code

-ignore-runtime-environnent no
Prevents the run-time Quantify environment from overriding option values
used in building the program

-1i nker system-dependent
Specifies an alternative linker to use instead of the system linker

- use- machi ne system-dependent
Specifies the build-time analysis of instruction times according to a particular machine

gv run-time options
To run qv, specify the option and the saved . qv file. For example:

%qv -wite-summary-file a.out.23.qv

gv options Default

-add- annot ati on none
Specifies a string to add to the binary file

-print-annotations no
Writes the annotations to st dout

- wi ndows yes
Controls whether Quantify runs with the graphical interface

-wite-export-file none
Writes the recorded data in the dataset to a file in export format

-wite-summary-file none
Writes the program summary for the dataset to a file

Using Quantify 79

Run-time options

Specify run-time options on the link line or by using the
QUANTI FYOPTI ONS environment variable. For example:

% set env QUANTI FYOPTI ONS "-wi ndows=no";

a. out

Commonly used run-time options

Default

-avoi d-recordi ng-systemcalls
Avoids recording specified system calls

system-dependent

-measure-timed-calls
Specifies measurement for timing system calls

el apsed-tinme

-record-chil d-process-data no
Records data for child processes created by f or k and vf or k

-record-systemcalls yes
Records system calls

-report-excluded-tine 0.5
Reports time that was excluded from the dataset

-run-at-exit none
Specifies a shell script to run when the program exits

-run-at-save none
Specifies a shell script to run each time the program saves counts

-save- dat a- on-si gnal s yes
Saves data on fatal signals

-save-thread-data conposite
Saves composite or per-stack thread data

-write-export-file none
Writes the dataset to an export file as ASCII text

-write-summary-file /dev/tty
Writes the program summary for the dataset to a file

- Wi ndows yes

Specifies whether Quantify runs with the graphical interface

80 Rational Purify, PureCoverage, and Quantify

API functions

To use Quantify API functions, include
<quanti f yhome>/ quant i fy. h in your code and link with
<quanti f yhome>/quanti fy_stubs. a

Commonly used functions

Description

quantify_hel p (void)

Prints description of Quantify API functions

quantify_is_running (void)

Returns t r ue if the executable is instrumented

quantify_print_recording_state (void)

Prints the recording state of the process

quantify_save_data (void)

Saves data from the start of the program or since
last call to quanti fy_cl ear _data

quantify_save_data_to_file (char * filenane)

Saves data to a file you specify

quantify_add_annotation (char * annotati on)

Adds the specified string to the next saved
dataset

quantify_cl ear_data (void)

Clears the performance data recorded to this
point

quantify_<action>_recordi ng_data (void)

Starts and stops recording of all data

quantify_<action>_recordi ng_dynam c_|ibrary_data (void)

Starts and stops recording dynamic library data

quantify_<action>_recordi ng_register_w ndow_traps (void)

Starts and stops recording register-window-trap
data

quantify_<action>_recordi ng_system cal |

(char *systemcall_string)

Starts and stops recording specific system-call
data

quantify_<action>_recording_systemcalls (void)

Starts and stops recording of all system-call data

T <action>isoneof:start, stop,is. Forexample: quantify_stop_recordi ng_system call

Using Quantify 81

RATIONAL PURIFY, PURECOVERAGE, AND QUANTIFY

Index

Symbols
%V, %v, %p 45

A

ABR, array bounds read error
correcting 36
in Hello World 34
access errors, how Purify finds 48
account number, Rational
Software 10
-add-annotation 79
adjusted lines 55
-always-use-cache-dir 79
analysis-time options 63
Annotated Source window
PureCoverage 58
Quantify 76, 77
a.out.pcv 54
API functions
Purify 44
Quantify 81
appending function detail 75
-avoid-recording-system-calls 80

B

blue memory color 49
building programs, see instrument-
ing a program
build-time options
PureCoverage 62
Purify 45
Quantify 79

C

cache subdirectory
creating in home directory 16
location of 23

-cache-dir 16, 79

caching dynamic shared objects on
IRIX 31

caching options

PureCoverage 62

Purify 45

Quantify 79
Call Graph window, Quantify 72,73
Calls column, PureCoverage 57
CD-ROM

ejecting 25

mounting 23
changing annotations, Quantify 77
characters, conversion 45
code, see source code
collapsing subtrees 73
-collection-granularity 79
-collector 79
color, see memory color
comparing program runs

with PureCoverage 59

with Purify 40

with Quantify gxdiff script 78
compiling and linking 31
compute-bound

functions 70, 71

time 68
configuration message 33
controls, Purify program 33
conversion characters for

filenames 45

coverage data

file level 56

function level 57

in PureCoverage Viewer 55
cycles

counted by Quantify 66

scale factor 75

D
daemons, and licensing 26

83

84

data
comparing export files 78
saving Quantify data 77
debugger(s)
JIT debugging 43
scripts on HP-UX 18
using with Purify 43
debugging option, see -g debugging
option
defaults file 14
deleting product releases 20
directories
cache 16
installation 9, 22
PureLA 12
Rational 22-23
disk space requirements 9
DSO caching on IRIX 31
dynamic library, timing 68
dynamic shared objects caching 31

E

editing source code 36, 38
ejecting CD-ROM 25
e-mail, requesting licenses by 21
environment variables
LM_LICENSE_FILE 27
MANPATH 16
PATH 17
PURECOVOPTIONS 62
PUREOPTIONS 16
PURIFYOPTIONS 46
QUANTIFYOPTIONS 80
evaluation license 11
executable, Purify’'ing on IRIX 31
expanding subtrees 73
expiration date, licenses 11
exporting Quantify data 77

F

file(s)
a.out.pcv 54
installing product 23
Purify view 42
Rational license 26
rational.opt 19
rs_install.defaults 14
users.purela 12

filename conversion characters 45

filesystems, installing on
read-only 15
FLEXIm
commands 27
End User Manual 28
GLOBEtrotter Web site 28
License Manager 26
Function Detail window 74
saving data 75
scale and precision of data 75
Function List window
finding top contributors 70
restricting functions 71
function+descendants time 74
functions
compute-bound 71
coverage detail 57
restricting display in Quantify 71
sorting in Quantify 70
See also API functions
Functions columns,
PureCoverage 57

G

-g debugging option

and PureCoverage 53

and Purify 34

and Quantify 67, 76
GLOBEtrotter Web site 28
graph, see Call Graph window
green memory color 49

H

heap analysis, Purify 39
Hello World example
PureCoverage 52
Purify 30
help, technical 7
hiding
functions in Quantify 71
messages in Purify 41
HP-UX debugger scripts 18

-ignore-runtime-environment 79
installation

directory 9, 22

evaluation license 11

installation (continued)
on read-only filesystems 15
permanent license 11, 21
requirements 9
rs_install commands 25
startup license 11, 15
term license agreement 11
user input 9
instrumenting a program
description of 7
with PureCoverage 53
with Purify 31
with Quantify 67
integration, Purify and
PureCoverage 43
IRIX
compile/link command 31
DSO caching 31
running a Purify instrumented
program 32

J
just-in-time debugging 43

K
keys, license 12, 14

L

leaks, see memory leaks
library

system and PureCoverage 57

time loading dynamic 68
license daemon, Imgrd 26
license file 12, 26
license keys 12, 14
License Manager, FLEXIm 26
license server 14

port number 10

requirements 10
license(s)

checking 26

evaluation 11

expiration date 11

key types 11

permanent 11,21

quantity 11

setting up 25

startup 11, 15, 21

term license agreement 11

user IDs 12, 19-20
license_check command 26
license_setup command 25
line numbers

-g option 31, 34

on IRIX 34
-linker 79
links, symbolic 17
LM_LICENSE_FILE environment

variable 27

Imgrd license daemon 26
local variable names, displaying 31

M

machine cycles 66
MANPATH environment
variable 16

manual pages 16
-measure-timed-calls 80
memory access errors

example 34

how Purify finds 48
memory color 48
memory in use message 39
memory leaks 44

definition 39

heap analysis 39

message 37

new leaks button 37

potential 39

purify_new_leaks 44
menu, Quantify pop-up 73
messages

Purify 47

suppressing Purify 41
MLK, memory leak 38

example 37
mounting CD-ROM 23

N
new memory leaks, Purify 37

0]

Object Code Insertion (OCI) 66
operating system, identifying 23
options

PureCoverage analysis-time 63

85

86

options (continued)
PureCoverage build-time 62
PureCoverage run-time 62
Purify build-time 45
Purify run-time 46
Quantify build-time 79
Quantify run-time 80
gv run-time 79

options (by name)
-add-annotation 79
-always-use-cache-dir 79
-avoid-recording-system-calls 80
-cache-dir 79
-collection-granularity 79
-collector 79
-ignore-runtime-environment 79
-linker 79
-measure-timed-calls 80
-print-annotations 79
-record-child-process-data 80
-record-system-calls 80
-report-excluded-time 80
-run-at-exit 80
-run-at-save 80
-save-data-on-signals 80
-save-thread-data 80
-use-machine 79
-view 55
-windows 79, 80
-write-export-file 79, 80
-write-summary-file 79, 80

options file 19

options_setup command 26

overhead, Quantify 68

P

PATH environment variable 17
performance data 67
saving 77
permanent licenses
defined 11
installing manually 21
requesting 21
pop-up menu, Quantify 73
port number, license server 10
post_install command 26
post-installation 15
potential memory leak 39
-print-annotations 79
product license keys 14

producthome directory 22
products, removing 20
program controls, Purify 33
program runs, comparing
Quantify gxdiff script 78
with PureCoverage 59
with Purify 40
program summary, Quantify 68
programs, running instrumented
PureCoverage 54
Purify 32
Quantify 67
PureCoverage
benefits 51
symbolic links for 17
using with Purify 43
Viewer 55
PURECOVOPTIONS environment
variable 62
PureLA directory 12
PUREOPTIONS environment
variable 16
Purify
API functions 44
instrumenting a program 31
messages 47
Viewer 32
PURIFYOPTIONS environment
variable 46

Q

Quantify
API functions 81

build-time options 79
Call Graph window 72, 73
overhead 68
repeatability of timing 66
run-time options 80
symbolic links for 18

QUANTIFYOPTIONS environment

variable 80

qv 67

qv script files 18

gx script files 18

gxdiff script 78

R

Rational account number 10
rational daemon 26

rational.opt options file 19
README file location 13
read-only filesystems 15
-record-child-process-data 80
-record-system-calls 80
red memory color 49
Redo layout, Quantify 73
removing previous releases 20
report(s)
program summary 68
PureCoverage scripts 61
-report-excluded-time 80
restricting functions in Quantify 71
rs_install
commands 25
program 9, 13
user input 9
rs_install.defaults file 14
-run-at-exit 80
-run-at-save 80
running an instrumented program
PureCoverage 54
Purify 32
Quantify 67
runs
column, PureCoverage 56
comparing with PureCoverage 59
comparing with Purify 40
comparing with Quantify 78
run-time options
PureCoverage 62
Purify 46
Quantify 80
qv 79

S

-save-data-on-signals 80
-save-thread-data 80
saving
function detail data 75
Purify run 42
Quantify data 77
scale factors 75
scripts
HP-UX debugger 18
PureCoverage 17
PureCoverage report 61
Quantify 18
gxdiff 78
server, license 13, 14
server-name.dat file 27

sorting function list 70
source code
annotated in PureCoverage 58
annotated in Quantify 76
displaying filenames 34
editing from Viewer 36, 38
line numbers, Purify 34
number of lines displayed 36
startup license 11, 15,21
statically allocated memory 50
subtrees, Quantify 73
summary, Quantify program 68
support, technical 7
suppressing Purify messages 41
symbolic links 17
for HP-UX debugger scripts 18
for PureCoverage 17
for Purify 17
for Quantify 18
system call timing 66
system libraries and
PureCoverage 57

T

technical support 7
Temporary.dat file 26
term license agreement (TLA) 11
time
compute-bound 68
function+descendants 74
in code 68
loading dynamic libraries 68
to collect the data 68
TLA 11
Total Coverage row,
PureCoverage 55

U

uname command 23

uninstall command 20
-use-machine 79

user IDs, for licensing 12, 19-20

\Y,

variable, see environment variable
-view 55
view file, Purify 42

87

88

Viewer 55
PureCoverage 55
Purify 32

viewport, call graph 72

w

-windows 79, 80
windows
PureCoverage viewer 55
Purify viewer 32
Quantify data analysis 69
World Wide Web sites
GLOBEtrotter 28
-write-export-file 79, 80
-write-summary-file 79, 80

Y
yellow memory color 49

	Title
	Notice
	Preface
	Other resources
	Contacting Rational technical publications
	Contacting Rational technical support

	Installing the products
	What you need before starting
	Installing the products: rs_install
	Answers to questions about rs_install

	Installing the products: Post-installation
	Maintaining the rational.opt options file
	Modifying the list of user IDs

	Removing a previous product release
	Requesting and installing the permanent license key
	Requesting your permanent license key
	Entering a permanent license key after initial installation

	Supplemental notes: Creating an installation directory manually
	Supplemental notes: Mounting the CD-ROM
	Supplemental notes: Ejecting the CD-ROM
	Supplemental notes: Using rs_install commands
	Supplemental notes: Using the FLEXlm Software License Manager
	The Rational license file
	Verifying that FLEXlm is working
	Using FLEXlm commands
	Learning more about FLEXlm

	Using Purify
	Finding errors in Hello World
	Instrumenting a program
	Compiling and linking in separate stages

	Running the instrumented program
	Seeing all your errors at a glance
	Finding and correcting errors
	Understanding the cause of the error
	Correcting the ABR error

	Finding leaked memory
	Correcting the MLK error
	Looking at the heap analysis

	Comparing program runs
	Suppressing Purify messages
	Saving Purify output to a view file
	Saving a run to a view file from the Viewer
	Opening a view file

	Using your debugger with Purify
	Using Purify with PureCoverage
	Purify API functions
	Build-time options
	Conversion characters for filenames
	Run-time options
	Purify messages
	How Purify finds memory-access errors
	How Purify checks statically allocated memory

	Using PureCoverage
	Finding untested areas of Hello World
	Instrumenting a program
	Running the instrumented program
	Displaying coverage data
	Expanding the file-level detail
	Examining function-level detail
	Examining the annotated source

	Improving Hello World’s test coverage
	Using report scripts
	Build-time options
	Run-time options
	Analysis-time options
	Analysis-time mode options

	Using Quantify
	How Quantify works
	Building and running an instrumented program
	Interpreting the program summary
	Using Quantify’s data analysis windows
	The Function List window
	Sorting the function list
	Restricting functions

	The Call Graph window
	Using the pop-up menu
	Expanding and collapsing descendants

	The Function Detail window
	Changing the scale and precision of data
	Saving function detail data

	The Annotated Source window
	Changing annotations

	Saving performance data on exit
	Comparing program runs with qxdiff
	Build-time options
	qv run-time options
	Run-time options
	API functions

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

