
support@rational.com
http://www.rational.com

Rational the e-development company™

VU Language
Reference

VERSION 2001A.04.00

PART NUMBER 800-024527-000

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1999-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-024527-000

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO
PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, ClearCase,
ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational PerformanceArchitect,
Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational Visual Test, Requisite,
RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational Watch are trademarks
or registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only, and are trademarks or registered trademarks of their respective
companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C++, Visual Basic,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee
shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application
the primary purpose of which is software license management.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness
for a particular purpose or arising from a course of dealing, usage, or trade practice.

Contents
Preface .xv
Audience. xv
Other Resources . xv
Using the VU Help . xv
Contacting Rational Technical Publications . xvi
Contacting Rational Technical Support . xvi

What Is VU? .3
Automated Script Generation . 3

Working with Scripts . 4
Your Work Environment . 4

Source and Runtime Files . 5

VU Additions to the C Language . 5

SQABasic Scripting Language . 6

Functional List .7
HTTP Emulation Commands and Functions . 7

HTTP Send Emulation Commands . 7
HTTP Receive Emulation Commands . 7
HTTP Emulation Functions . 7

SQL Emulation Commands and Functions . 8
SQL Send Emulation Commands . 8
SQL Receive Emulation Commands . 8
SQL Emulation Functions. 9

VU Toolkit Functions. 10
VU Toolkit Functions: Data . 10
VU Toolkit Functions: File I/O . 10

TUXEDO Emulation Commands and Functions. 10
TUXEDO Send Emulation Commands. 10
TUXEDO Receive Emulation Commands . 11
TUXEDO Emulation Functions. 11
iii

IIOP Emulation Commands and Functions .13
IIOP Send Emulation Commands .13
IIOP Emulation Functions .13

Socket Emulation Commands and Functions .13
Socket Send Emulation Commands .13
Socket Receive Emulation Commands .13
Socket Emulation Functions .13

Emulation Commands That Can Be Used with Any Protocol 14
Send Emulation Commands .14
Other Emulation Commands. .14

Flow Control Statements .14

I/O Routines .15

Conversion Routines .15

String Routines .16

Random Number Routines .17

Timing Routines .17

Miscellaneous Routines .17

Synchronization Statements .18

Datapool Functions .18

Environment Control Commands .18

Statements. .19

VU Fundamentals . 23
Data Types .23

Integer . 24
String . 24
Bank . 24

Language Elements .25
Identifiers . 25
Constants . 25

Integer Constants .25
Character Constants .25
String Constants .26
Examples of Constants .26
iv

Operators . 28
Binary Arithmetic Operators. 28
Binary Bitwise Operators . 29
Assignment Operators . 30
Unary Operators . 31
Relational Operators . 32
Other Operators . 34

Operator Precedence and Associativity . 35

Expressions .35

Statements .36

Comments .38

Arrays. .39
Array Constants . 39
Declaring an Array . 40
Initializing an Array . 41

Example of Array Initialization . 41

Array Subscripts. 43
Array Operators . 43

Binary Concatenation Operator for Arrays. 43
Assignment Operators for Arrays. 43
Unary limitof Operator for Arrays . 44
Arrays as Subroutine Arguments . 44

Flow Control .44
Loops . 45
Break and Continue . 45

Scope of Variables .45
Shared Variables . 46
Persistent Variables . 47
Examples . 47

Script A . 48
Script B . 48
Script C . 48

Initial Values of Variables .48

VU Regular Expressions .49
General Rules . 49
Single-Character Regular Expression Operators. 49
Other Regular Expression Operators. 50
Regular Expression Examples . 51
Regular Expression Errors . 52
v

How a VU Script Represents Unprintable Data .54
Unprintable String and Character Constants . 54
Unprintable HTTP or Socket Data . 55

Scripts, Subroutines, and C Libraries . 57
Program Structure .57

Header Files. .58
VU.h . 58
VU_tux.h. 59
sme/data.h . 59
sme/file.h . 59

Preprocessor Features. .59
Token Replacement . 59

Example .60

Creating a Script That Has More than One Source File 60
Compiling Parts of a Script . 60

Defining Your Own Subroutines .61
Defining a Function. 62
Calling a Function. 63
Example . 63
Defining a Procedure . 63
Calling a Procedure . 64
Example . 64

Accessing External C Data and Functions. .64
External C Variables . 65
Declaring External C Subroutines . 66
Accessing Values Returned from C Functions . 66
Passing Arguments to External C Functions . 67

Integers .68
Strings. .68
Arrays .68

Memory Management of VU Data . 68
Memory Management of C Data . 69
Specifying External C Libraries . 69
Creating a Dynamic-Link Library on Windows NT . 69
vi

Creating a Shared Library on UNIX . 70
Examples . 71

User Emulation . 75
Emulation Commands .75

HTTP Emulation Commands . 76
HTTP Commands that You Insert Manually. 76
Monitoring Computer Resources . 76
Example. 77

SQL Emulation Commands . 78
Processing Data from SQL Queries . 79
SQL Error Conditions. 79

VU Toolkit Functions: File I/O. 80
TUXEDO Emulation Commands . 81

How VU Represents TUXEDO Pointers . 81
TUXEDO Error Conditions. 85

IIOP Emulation Commands . 85
Interfaces, Interface Implementations and Operations . 85
Request Contexts and Result Sets . 86
VU/IIOP Pseudo-Objects . 86
Parameter Expressions . 87
Interface Definition Language (IDL) . 88
Exceptions and Errors . 89

Socket Emulation Commands . 91

Emulation Functions. .92

VU Environment Variables .92
Changing Environment Variables Within a Script. 94
Initializing Environment Variables through a Suite . 95
Client/Server Environment Variables . 95

Column_headers . 95
CS_blocksize . 96
Cursor_id . 96
Server_connection. 96
Sqlexec_control variables . 97
Sqlnrecv_long . 98
Statement_id . 98
Table_boundaries. 99

Connect Environment Variables . 100
Connect_retries . 100
Connect_retry_interval. 100

Exit Sequence Environment Variables . 100
vii

HTTP-Related. 102
Http_control. .103
Line_speed .103

IIOP-Related. 104
Iiop_bind_modi .104

Private Environment Variables . 104
Mystack, Mybstack, and Mysstack .104

Reporting Environment Variables . 105
Check_unread. .106
Max_nrecv_saved .106
Log_level .107
Record_level .112
Suspend_check. .113

Response Timeout Environment Variables. 113
Timeout_act .114
Timeout_scale. .115
Timeout_val. .115

Think Time Variables . 115
Delay_dly_scale .116
Think_avg .116
Think_cpu_dly_scale .117
Think_cpu_threshold. .117
Think_def .118
Think_dist .119
Think_dly_scale .120
Think_max .120
Think_sd .120
Examples of Think Time Variables .121

Read-Only Variables .121
Initialization of Read-Only Variables . 125
Example . 126

Supplying a Script with Meaningful Data .126
Datapools . 126
Dynamic Data Correlation . 127

Command Reference . 131
abs . 132
AppendData . 133
atoi . 135
bank . 136
break . 137
viii

cindex . 139
base64_decode() . 140
base64_encode() . 140
close . 141
continue . 143
COOKIE_CACHE . 144
ctos . 146
datapool_close . 146
DATAPOOL_CONFIG . 147
datapool_fetch . 155
datapool_open . 156
datapool_rewind . 158
datapool_value . 159
delay . 160
display. 161
do-while . 162
else-if . 163
emulate. 164
eval . 167
expire_cookie . 168
feof . 169
fflush . 170
fgetc . 171
for . 172
fputc, fputs . 173
FreeAllData. 174
FreeData. 175
fseek . 177
ftell . 178
GetData . 179
GetData1 . 180
getenv. 182
hex2mixedstring . 183
http_disconnect . 184
http_find_values . 185
http_header_info. 187
http_header_recv . 188
http_nrecv. 191
ix

http_recv . 192
http_request . 193
http_url_encode . 196
if-else. 197
iiop_bind . 198
iiop_invoke . 200
iiop_release. 202
IndexedField . 203
IndexedSubField . 206
itoa . 208
lcindex . 209
log_msg. 210
lsindex . 211
match . 212
mixed2hexstring . 213
mkprintable . 214
negexp . 216
NextField . 217
NextSubField. 219
open . 221
pop . 223
print . 225
printf, fprintf, sprintf . 226
push . 227
putenv . 229
rand . 230
ReadLine. 231
reset . 233
restore . 235
save. 236
SaveData . 237
scanf, fscanf, sscanf . 238
script_exit . 240
send . 241
set . 243
set_cookie . 244
SHARED_READ . 245
show . 247
x

sindex . 248
sock_connect . 249
sock_create . 251
sock_disconnect . 252
sock_fdopen . 253
sock_isinput . 254
sock_nrecv . 255
sock_open . 256
sock_recv . 257
sock_send. 259
sqlalloc_cursor . 260
sqlalloc_statement . 261
sqlclose_cursor. 262
sqlcommit . 264
sqlconnect . 265
sqlcursor_rowtag . 267
sqlcursor_setoption . 268
sqldeclare_cursor . 270
sqldelete_cursor . 271
sqldisconnect . 273
sqlexec . 274

Format for Specifying sqlexec Arguments . 275
How sqlexec Processes Statements . 280

sqlfetch_cursor . 282
sqlfree_cursor. 284
sqlfree_statement . 285
sqlinsert_cursor . 287
sqllongrecv . 288
sqlnrecv . 290
sqlopen_cursor . 292
sqlposition_cursor. 294
sqlprepare. 296
sqlrefresh_cursor . 297
sqlrollback. 299
sqlsetoption . 300
sqlsysteminfo . 301

List of Operations. 302
List of Operation Arguments . 303

sqlupdate_cursor . 304
xi

sqtrans . 306
srand . 307
start_time . 308
stoc . 311
stop_time. 312
strlen . 313
strneg . 314
strrep . 315
strset . 316
strspan . 317
strstr . 319
subfield . 320
substr . 321
sync_point . 322
system. 323
tempnam . 324
testcase. 326
time . 327
tod . 328
trans . 329
tux_allocbuf . 330
tux_allocbuf_typed . 331
tux_bq . 332
tux_freebuf . 333
tux_getbuf_ascii . 334
tux_getbuf_int . 335
tux_getbuf_string. 336
tux_reallocbuf . 337
tux_setbuf_ascii . 338
tux_setbuf_int . 338
tux_setbuf_string. 339
tux_sizeofbuf . 340
tux_tpabort . 341
tux_tpacall . 342
tux_tpalloc . 344
tux_tpbegin . 345
tux_tpbroadcast. 346
tux_tpcall . 347
xii

tux_tpcancel . 348
tux_tpchkauth . 349
tux_tpcommit . 350
tux_tpconnect . 351
tux_tpdequeue . 352
tux_tpdiscon . 353
tux_tpenqueue . 354
tux_tpfree . 355
tux_tpgetrply . 356
tux_tpinit . 358
tux_tpnotify . 359
tux_tppost . 360
tux_tprealloc . 361
tux_tprecv . 362
tux_tpresume . 364
tux_tpscmt . 365
tux_tpsend . 365
tux_tpsprio . 367
tux_tpsubscribe . 368
tux_tpsuspend . 369
tux_tpterm. 370
tux_tptypes . 371
tux_tpunsubscribe . 372
tux_typeofbuf . 373
tux_userlog . 373
ungetc. 374
uniform . 375
unlink . 377
user_exit . 378
usergroup_member . 379
usergroup_size . 380
wait . 381
while . 385
xiii

Jolt-Specific VU Functions . 389
Jolt Overview .389

TestManager/Jolt Function Overview .390
Request Construction Functions . 390
Message Construction Functions . 390
Response Query Functions . 391

Response Header Query Functions .391

 Message Query Functions. 391
Session Control Functions . 391
Application Service Functions . 392
Request Construction . 393

Associating Construction Functions .393
Building Requests .394
Building Attribute Lists and Parameter Lists .395

Response Query. 395

TestManager/Jolt Function Reference .396
Request Construction Functions . 396
Message Construction Functions . 396
Attribute List Construction Functions . 397
Parameter List Construction Functions. 399
Response Query Functions . 399

int jolt_response_header () .400
int jolt_response_body (). .400

Message Query Functions . 400
Response Attribute Query Functions . 400
Response Parameter Query Functions . 402

SAP-Specific VU Functions. 403
Event Manipulation and Communication .403

Functions . 404

Event Structure Access .406
Functions . 406

Utilities .407
Functions . 407

Index . 411
xiv

Preface
This manual describes the statements and conventions of the VU scripting language.
VU includes most of the syntax rules and core statements found in the C language.

Audience

This manual is intended to help application developers and system testers read
and customize virtual tester scripts generated with Rational Robot. Familiarity with
Robot and other Rational Suite software is assumed. Familiarity with programming
language practices is also assumed.

Other Resources

■ This product contains online Help. From the main toolbar, choose an option from
the Help menu.

■ All manuals are available online, either in HTML or PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

■ For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.
xv

Using the VU Help
Using the VU Help

You can access the VU Help in a variety of ways:

■ From the Start menu, click VU Language Reference in the installation directory of
your Rational product (typically, Rational Test).

■ From within Robot, click Help > VU Language Reference.

■ While you are editing a script in Robot, you can display context-sensitive
information about a particular VU command. To do so:

1 Place the insertion point immediately before, after, or anywhere within the
command name.

2 Press F1.

If a single Help topic is associated with the command name, reference information
about that command appears immediately.

If multiple Help topics are associated with the command, the topics are listed
in the Topics Found dialog box. Select the topic you want and click Display.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs@rational.com.
xvi Preface

Contacting Rational Technical Support
Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Preface xvii

Contacting Rational Technical Support
xviii Preface

Part 1: Introducing VU

1What Is VU?
The VU language is the Rational Software corporation language for building virtual
tester scripts.

The VU language is based on the C programming language. In addition to supporting
many C language features, VU includes commands and environment variables
specifically designed for use in Rational Performance Studio scripts.

Automated Script Generation

When you record client/server conversations, Rational Robot automatically generates
a script for you in the VU language. You can either play back the script as it was
generated, or you can make modifications in Robot.

During virtual tester recording, Robot “listens in” on the client/server conversation.
Robot translates the raw conversation into a series of VU commands and stores them
in the script.

SELECT * FROM PRODUCTS WHERE . . .

 stmt_2_2 = sqlprepare ["CD ORDE013"] "SELECT * FROM PRODUCTS
WHERE "...

Rational
Robot

Client Server
3

Working with Scripts
Working with Scripts

Although Robot generates complete, executable scripts, sometimes you may want to
edit a recorded script — for example, to:

■ Add for, while, and do-while loops to simplify repetitive actions.

■ Add conditional branching.

■ Modify think time variables.

■ Respond to runtime errors.

Your Work Environment

With VU as your scripting language, you view, edit, and compile scripts in Robot.

You play back virtual tester scripts through a Rational TestManager suite. To play back a script
from Robot, click File > Playback. Robot automatically creates a suite for you and invokes
TestManager to play back the script.
4 Chapter 1

Source and Runtime Files
Source and Runtime Files

The VU language supports the following kinds of files:

VU Additions to the C Language

The VU language contains a number of commands in addition to standard C
programming language commands. The following categories of commands are
provided to help you test your applications and analyze the results:

Environment control commands – Enable you to control a virtual tester’s environment by
changing the VU environment variables. For example, you can set the level of detail
logged or the number of times to try a connection.

Flow control statements – Enable you to add conditional execution structures and
looping structures to your virtual tester script. The flow control statements behave
like their C counterparts, with enhancements added to break and continue.

Library routines – Provide your virtual tester script with predefined functions that
handle file I/O, string manipulation, and conversion of data types and formats.

Send and receive emulation commands – Emulate client activity and evaluate the server’s
responses, as well as performing communication and timing operations. You can log
emulation commands in a log file.

Emulation functions – Like emulation commands, emulation functions emulate client
activity and evaluate the server’s responses. However, emulation functions do not
perform communication and timing operations, and they are not logged in a log file.

File type Extension Location

Script files .s The Script directory of your project.

Watch files (also
called session
files)

 .wch The Session directory of your project.

Header files .h The VU.h file shipped with Rational Suite TestStudio is
located in \Rational\Rational Test\Include by default.
What Is VU? 5

SQABasic Scripting Language
Datapool functions – Retrieve data from a datapool. A datapool is a source of data that
you can use to access variable data from a script. This enables a script that is executed
more than once to use different values for each execution. You create the datapool
with Robot or TestManager.

VU toolkit functions – These functions, which come with TestManager, enable you to
parse data returned by sqlnrecv into rows and columns.

SQABasic Scripting Language

Because the VU scripting language lets you capture client/server conversations, it is
the language to use for testing how your client/server system performs.

But for testing GUI objects, you need to record a user’s keyboard and mouse actions.
You also need to insert verification points into the script to compare the way GUI
objects look and work across successive builds of the application. The SQABasic
scripting language is required for testing GUI objects.

For more information about the SQABasic scripting language, see the SQABasic
Language Reference.
6 Chapter 1

2Functional List
Below, the VU commands are listed in functional categories. For information on the
VU commands pertaining to Jolt and SAP, see Appendixes A and B.

HTTP Emulation Commands and Functions

HTTP Send Emulation Commands

HTTP Receive Emulation Commands

HTTP Emulation Functions

http_request Sends an HTTP request to a Web server.

http_header_recv Receives header metadata from a Web server.

http_nrecv Receives a user-specified number of bytes from a Web
server.

http_recv Receives data from a Web server until the specified text
string occurs.

http_disconnect Closes the connection to a Web server.

http_find_values Searches for the specified values on the current
connection.

http_header_info Gets individual header values from header metadata.

http_url_encode Prepares strings for inclusion in an HTTP request.

expire_cookie Expires a cookie in the cookie cache.

set_cookie Adds a cookie to the cookie cache.
7

SQL Emulation Commands and Functions
SQL Emulation Commands and Functions

SQL Send Emulation Commands

SQL Receive Emulation Commands

sqlclose_cursor Closes the indicated cursor.

sqldeclare_cursor Associates a SQL statement with a cursor ID, which is
required to open the cursor.

sqldelete_cursor Deletes the current row using the indicated cursor.

sqlexec Executes SQL statements.

sqlopen_cursor Opens the specified cursor.

sqlposition_cursor Positions a cursor within a result set.

sqlprepare Prepares a SQL statement for execution.

sqlrefresh_cursor Refreshes the result set of a cursor.

sqlupdate_cursor Updates the current row of the indicated cursor.

sqlsysteminfo Queries the server for system information.

sqlfetch_cursor Fetches the requested rows from the cursor indicated.

sqllongrecv Retrieves longbinary and longchar results.

sqlnrecv Retrieves row results after sqlexec is executed.
8 Chapter 2

SQL Emulation Commands and Functions
SQL Emulation Functions

Note: See “VU Toolkit Functions: Data” for additional SQL emulation functions.

sqlalloc_cursor Allocates a cursor for use in cursor-oriented SQL
emulation commands and functions.

sqlalloc_statement Allocates a cursor data area for Oracle playback.

sqlcommit Commits the current transaction.

sqlconnect Logs on to a SQL database server.

sqlcursor_rowtag Returns the tag of the last row fetched.

sqlcursor_setoption Sets a SQL cursor option.

sqldisconnect Closes the specified connection.

sqlfree_cursor Frees a cursor.

sqlfree_statement Frees all of the client and server resources for a prepared
statement.

sqlinsert_cursor Inserts rows via a cursor.

sqlrollback Rolls back the current transaction.

sqlsetoption Sets a SQL database server option.
Functional List 9

VU Toolkit Functions
VU Toolkit Functions

VU Toolkit Functions: Data

VU Toolkit Functions: File I/O

AppendData Adds the data returned by sqlnrecv to the specified
data set.

FreeAllData Frees all data sets saved with SaveData and
AppendData.

FreeData Frees specified data sets saved with SaveData and
AppendData.

GetData Retrieves a specific row from the data set created with
SaveData or AppendData.

GetData1 Retrieves a value in the first row of a data set created
with SaveData or AppendData.

SaveData Stores the data returned by the most recent sqlnrecv
command into a data set.

IndexedField Parses the line read by the ReadLine function and
returns the field designated by index.

IndexedSubField Parses the field set by the NextField or
IndexedField function and returns the subfield
designated by index.

NextField Parses the line read by the ReadLine function.

NextSubField Parses the field returned by the most recent call to
NextField or IndexedField.

ReadLine Reads a line from the open file designated by
file_descriptor.

SHARED_READ Allows multiple virtual testers to share a file.
10 Chapter 2

TUXEDO Emulation Commands and Functions
TUXEDO Emulation Commands and Functions

TUXEDO Send Emulation Commands

TUXEDO Receive Emulation Commands

tux_bq Queues a UNIX command for background processing.

tux_tpabort Aborts the current transaction.

tux_tpacall Sends a service request.

tux_tpbroadcast Broadcasts notification by name.

tux_tpcall Sends a service request and awaits its reply.

tux_tpcommit Commits the current transaction.

tux_tpconnect Establishes a conversational service connection.

tux_tpdequeue Removes a message from a queue.

tux_tpdiscon Takes down a conversational service connection.

tux_tpenqueue Queues a message.

tux_tpgetrply Gets a reply from a previous request.

tux_tpinit Joins an application.

tux_tpnotify Sends notification by client identifier.

tux_tppost Posts an event.

tux_tprecv Receives a message in a conversational service
connection.

tux_tpresume Resumes a global transaction.

tux_tpsend Sends a message in a conversational service connection.

tux_tpsubscribe Subscribes to an event.

tux_tpsuspend Suspends a global transaction.

tux_tpterm Leaves an application.

tux_tpunsubscribe Unsubscribes to an event.

None.
Functional List 11

TUXEDO Emulation Commands and Functions
TUXEDO Emulation Functions

tux_allocbuf Allocates a free buffer.

tux_allocbuf_typed Allocates a TUXEDO-typed buffer.

tux_freebuf Deallocates a free buffer.

tux_getbuf_ascii Gets a free buffer or buffer member and converts it into
a string.

tux_getbuf_int Gets a free buffer or buffer member and converts it into
an VU integer.

tux_getbuf_string Gets a free buffer or buffer member and converts it into
a string without converting nonprintable characters.

tux_reallocbuf Resizes a free buffer.

tux_setbuf_ascii Writes a string value into a buffer or buffer member.

tux_setbuf_int Sets a free buffer or buffer member with an VU integer
value.

tux_setbuf_string Sets a free buffer or buffer member with an VU string
value, without converting nonprintable characters.

tux_sizeofbuf Returns the size of a buffer.

tux_tpalloc Allocates TUXEDO-typed buffers.

tux_tpbegin Begins a transaction.

tux_tpcancel Cancels a call descriptor for an outstanding reply.

tux_tpchkauth Checks whether authentication is required to join an
application.

tux_tpfree Frees a typed buffer.

tux_tprealloc Changes the size of a typed buffer.

tux_tpscmt Sets when tpcommit() should return.

tux_tpsprio Sets the service request priority.

tux_tptypes Provides information about a typed buffer.

tux_typeofbuf Returns the type of a buffer.

tux_userlog Writes a message to the TUXEDO central event log.
12 Chapter 2

IIOP Emulation Commands and Functions
IIOP Emulation Commands and Functions

IIOP Send Emulation Commands

IIOP Emulation Functions

Socket Emulation Commands and Functions

Socket Send Emulation Commands

Socket Receive Emulation Commands

iiop_bind Binds an interface name to an Object Reference
pseudo-object.

iiop_invoke Initiates a synchronous IIOP request to an interface
implementation.

iiop_release Releases storage associated with a pseudo-object.

sock_send Sends data to the server.

sock_nrecv Receives n bytes from the server.

sock_recv Receives data until the specified delimiter string is
found.
Functional List 13

Emulation Commands That Can Be Used with Any Protocol
Socket Emulation Functions

Emulation Commands That Can Be Used with Any Protocol

Send Emulation Commands

Other Emulation Commands

sock_connect Opens a socket connection.

sock_create Creates a socket to which another process may connect.

sock_disconnect Disconnects a socket connection.

sock_fdopen Associates a file descriptor with a socket connection.

sock_isinput Checks for available input on a socket connection.

sock_open Waits for a socket connection from another process.

emulate Provides generic emulation command services to
support a proprietary protocol.

start_time Marks the start of a block of actions to be timed.

stop_time Marks the end of a block of actions being timed.

testcase Checks a response for specific results, and reports and
logs them.
14 Chapter 2

Flow Control Statements
Flow Control Statements

break Stops execution of for, while, and do-while
statements.

continue Skips remaining statements in a loop and continues with
the next iteration of the loop.

do-while Repeatedly executes a VU statement while a condition is
true.

else-if Conditionally executes a VU statement.

for Repeatedly executes a VU statement.

if-else Conditionally executes a VU statement.

script_exit Exits from a script.

user_exit Exits an entire virtual tester emulation from within any
point in a virtual tester script.

while Repeatedly executes a VU statement.
Functional List 15

I/O Routines
I/O Routines

Conversion Routines

close Writes out buffered data to a file and then closes the file.

feof Returns a value indicating whether or not the end of a
file has been encountered.

fflush Causes any buffered data for a file to be written to that
file.

fgetc Provides unformatted character input capability.

printf, fprintf,
sprintf

Writes specified output to a file, standard output, or a
string variable.

fputc, fputs Write unformatted output for characters or strings.

fseek Repositions the file pointer.

ftell Returns the file pointer’s offset in the specified file.

open Opens a file for reading or writing.

scanf, fscanf, sscanf Reads specified input from standard input, a file, or a
string expression.

tempnam Generates unique temporary file names.

ungetc Provides unformatted character input capability.

unlink Removes files.

atoi Converts strings to integers.

base64_decode Decodes a base 64–encoded string.

base64_encode Encodes a string using base-64 encoding.

ctos Converts characters to strings.

hex2mixedstring Returns a mixed ascii/hex version of a VU string.

itoa Converts integers to strings.

mixed2hexstring Returns a pure hex version of a VU string.

stoc Returns a selected character from a string argument.
16 Chapter 2

String Routines
String Routines

cindex Returns the position within str of the first occurrence
of the character char.

lcindex Returns the position of the last occurrence of a
user-supplied character.

match Determines whether a subject string matches a specified
pattern.

mkprintable Creates printable versions of strings that contain
nonprintable characters.

sindex Returns the position of the first occurrence of any
character from a specified set.

sqtrans Creates string expressions based on character
translations of string expressions, squeezing out any
repeated characters.

strlen Returns the length of a string expression.

strneg Creates a string expression based on character set
negation (complements).

strrep Creates a string expression based on character
repetition.

strset Creates a string expression based on user-supplied
characters.

strstr Searches for one string within another.

strspan Returns the length of the initial segment within a string
expression, beginning at the specified position.

subfield Extracts substrings from string expressions based on
field position.

substr Extracts substrings from string expressions based on
character position.

trans Substitutes or deletes selected characters in a string
expression.
Functional List 17

Random Number Routines
Random Number Routines

Timing Routines

Miscellaneous Routines

negexp Returns a random integer from a negative exponential
distribution with the specified mean.

rand Returns a random integer in the range 0 to 32767.

srand Reseeds the random number generator, essentially
resetting it to a specific starting place.

uniform Returns a random integer uniformly distributed in the
specified range.

delay Delays script execution for a specified time period.

time Returns the current time in integer format.

tod Returns the current time in string format.

abs Returns the absolute value of its argument as an integer.

bank Creates bank expressions for assignments to the bank
environment variables Escape_seq and Logout_seq.

display Provides a string to the monitor for display in message
view.

getenv Obtains the values of Windows NT or UNIX
environment variables from within a virtual tester
script.

log_msg Writes messages to the log file with a standard header
format.

putenv Sets the values of Windows NT or UNIX environment
variables from within a virtual tester script.

system Allows an escape mechanism to the UNIX shell from
within a virtual tester script running on a UNIX system.
18 Chapter 2

Synchronization Statements
Synchronization Statements

Datapool Functions

usergroup_member Returns the position of a virtual tester within a user
group

usergroup_size Returns the number of members in a user group.

wait Blocks a virtual tester from further execution until a
user-defined global event occurs.

sync_point Waits for virtual testers in a TestManager suite to
synchronize.

datapool_close Closes an open datapool.

datapool_fetch Moves the datapool cursor to the next record.

datapool_open Opens a datapool.

datapool_rewind Resets the cursor for the datapool.

datapool_value Retrieves the value of a specified column.
Functional List 19

Environment Control Commands
Environment Control Commands

Statements

eval Returns the value and data type at the top of a VU
environment variable’s stack.

pop Removes the value of a VU environment variable from
the top of the stack.

push Pushes the value of a VU environment variable to the
top of the stack.

reset Changes the current value of a VU environment variable
to its default value, and discards all other values in the
stack.

restore Makes the saved value of a VU environment variable the
current value.

save Saves the value of a VU environment variable.

set Sets a VU environment variable to the specified
expression.

show Writes the current values of the specified VU
environment variables to standard output.

COOKIE_CACHE Indicates the state of the cookie cache at the beginning of
a session.

DATAPOOL_CONFIG Provides configuration information about a datapool.

print Writes to standard output when the formatting
capability of printf is not required.
20 Chapter 2

Part 2: Using VU

3VU Fundamentals
The fundamentals of the VU scripting language are similar to the C programming
language. These features of VU program scripting are described:

■ Data types

■ Language elements

■ Expressions

■ Statements

■ Comments

■ Arrays

■ Flow control

■ Scope of variables

■ Initial values of variables

■ VU regular expressions

■ How a VU script represents unprintable data

Data Types

The VU language supports the following data types:

■ Integer

■ String

■ Bank

Mixing different data types in a single expression is generally not allowed. For
example, an integer expression cannot be compared to a string expression, nor can a
character constant be assigned to a string expression. Expressions formed with the
comma (,) and conditional (?:) operators, however, do allow you to mix data types.
23

Data Types
The data type of a variable or function can be declared or is an integer by default. The
data type of an expression is predefined in the VU language or depends on its own
operators and operands.

Integer

An integer can be of any class, but only integers can be shared. Characters and shared
variables are special cases of the integer data type. Integer expressions, including
character constants, have 32-bit integer values. Although the default type of a variable
is integer, a variable can be explicitly declared integer for clarity.

int int_name_1, int_name2;

String

The string data type is a basic VU data type, just like int. In the C language, a string
is an array of characters, but the VU programmer need not allocate or deallocate
storage. The value of a string expression is a set of characters. The following statement
declares two variables as the string data type:

string string_name_1, string_name_2;

Bank

A bank is a nonscalar (composite) data type that consists of a collection of zero or
more scalar data items (integers, strings, or both). The position of data items within a
bank is significant only within data items of the same data type; the position is
insignificant within data items of different data types. Bank expressions are used with
the environment variables Escape_seq, Logout_seq, and Mybstack. The VU
language does not allow you to define bank variables or bank functions.

Bank expressions can be created in the following ways:

■ With the built-in function bank.

■ By evaluating the value of a bank environment variable with the eval
environment control command.

■ By creating a union of two bank expressions with the + operator.

Information about the contents of a bank expression can be determined as follows:

■ bank_exp[int] returns the number of integer data items in bank_exp.

■ bank_exp[string] returns the number of string data items in bank_exp.
24 Chapter 3

Language Elements
■ bank_exp[int][n] returns the nth integer data item in bank_exp, where n is an
integer expression such that 0 < n ≤ bank_exp[int]. If n is outside this range, a
VU runtime error is generated.

■ bank_exp[string][n] returns the nth string data item in bank_exp, where n is
an integer expression such that 0 < n ≤ bank_exp[string]. If n is outside this
range, a VU runtime error is generated.

Language Elements

A VU script contains identifiers, constants, operators, and keywords.

Identifiers

Identifiers are named by the programmer. An identifier must begin with an alphabetic
character, and it consists of any combination of alphabetic characters, underscores (_),
and digits. Uppercase and lowercase alphabetic characters are differentiated, so, for
example, RATIONAL and rational are both unique identifiers.

Identifiers are used to represent:

■ Variables

■ Names of functions and procedures

■ Arguments of functions or procedures

■ Datapools

Constants

The VU language supports integer, character, string, and array constants. For
information about arrays and array constants, see Arrays on page 39.

Integer Constants

Integer constants can be specified in decimal, octal, or hexadecimal format. A leading
0 (zero) on an integer constant means octal; a leading 0x or 0X means hexadecimal;
otherwise, the integer constant is considered decimal. For example, decimal 63
written as 63 in decimal, 077 in octal, or 0x3F, 0X3F, 0x3f, or 0X3f in hexadecimal
format. All integer constants are treated as 32-bit integers. Negative numbers are
obtained by prefacing the integer constant with the unary negation operator (-).
VU Fundamentals 25

Language Elements
Character Constants

Character constants are specified by enclosing the constant in single quotation marks.
A character constant always represents a single character.

String Constants

The VU language allows two types of string constants: standard and pattern. The
difference between standard and pattern string constants is in how they treat the
backslash character. Pattern string constants allow you to use the backslash character
to specify patterns.

To specify a standard string constant, enclose the constant in double quotation marks
(""). To specify a pattern string constant, enclose the constant in single quotation
marks (’’). If a null character (\0) is placed in a string constant, the null character
and all remaining characters in the string constant are ignored. A double quotation
mark can be included in a standard string constant by prefacing the quotation mark
with a backslash (\).

For standard string and character constants, the backslash character is represented by
two backslashes (\\). A single backslash is ignored unless it occurs in a sequence. For
pattern string constants, the backslash character is never ignored. If it is part of a
sequence, the escape sequence (including the backslash itself) represents the
corresponding ASCII character. If it precedes the single quotation mark, it indicates
that the quotation mark is part of the string instead of the final string delimiter. For
example, the backslash and single quotation mark represent a single quotation mark.
Otherwise, the backslash and the character that follow it have no special
interpretation.

Since both pattern string constants and character constants are delimited by single
quotation marks, the characters inside the quotation marks determine whether the
constant is a character constant or a pattern string constant. If the characters enclosed
by the quotation marks can be interpreted as representing a single character, the
constant is a character constant. Otherwise, it is a pattern string constant.

Adjacent string constants are concatenated at compile time as in ANSI C.

For example, "good-bye," "cruel world" is equivalent to "good-bye, cruel
world". This is useful for splitting long string constants across multiple lines, and
applies to both standard and pattern string constants, or to any combination of the
two types.
26 Chapter 3

Language Elements
Examples of Constants

The following table lists examples of character constants, standard string constants,
and pattern string constants:

Constant Type Description

’a’ character Simplest form of character constant.

’\’’ character Represents a single quotation mark. It is
preceded by a backslash.

’ab’ pattern string Simple two-character pattern string constant.

’\7’ character Represents the character constant with ASCII
value 7 (bell). There is no way to specify the
two-character pattern string \7. A string
containing these characters can be specified with
the standard string constant "\\7".

’\9’ character Represents the character 9 since the backslash is
ignored.

’7\\’ pattern string The pattern string constant contains the three
characters 7\\.

’\\’ character Represents the backslash character.

’\141’ character Equivalent to ’a’ since the ASCII value of a is
141.

’\148’ pattern string The pattern string contains two characters: form
feed (ASCII 014) and 8. This is not interpreted as
a character constant as the previous example
because 148 is not an octal number.

’a\r\8\b’ pattern string The pattern string constant contains five
characters: a, carriage return, backslash, 8, and
backspace.

"\a\r\\8\b" standard string Equivalent to the pattern string constant of the
previous example.

"\a\r" ’\8\b’ concatenated
string

Also equivalent to the previous example, using
string constant concatenation of a standard string
constant and a pattern string constant.

’\\\n’ pattern string The pattern string constant contains three
characters: backslash, backslash, and newline.
VU Fundamentals 27

Language Elements
Operators

The VU language offers a full range of operators for integer, string, and bank
expressions. Not all operators are valid with all expressions. When used with
expressions whose data type is integer, the VU operators generally perform the same
as operators in C, except that VU integers are always 32 bits in size. To simplify
common string operations, the VU language also defines operators on string
expressions that are not provided in C.

For information about operators that work with arrays, see Array Operators on
page 43. The following conventions are used in this section:

■ int1, int2, and int3 refer to arbitrary integer expressions.

■ str1, str2, and str3 refer to arbitrary string expressions.

■ exp1, exp2, exp3, and exp4 refer to arbitrary expressions of either integer or
string type.

■ bank_exp1 and bank_exp2 refer to arbitrary bank expressions.

■ any_exp1 and any_exp2 refer to arbitrary expressions of any type such as:

❑ integer

❑ string

❑ array

❑ bank

Binary Arithmetic Operators

The binary arithmetic operators are +, -, *, /, and %. The data type of an expression
containing a binary arithmetic operator is the same as the type of the operands. None
of these operators change the values of their operands. Binary arithmetic operators
require two operands of the same data type.

’\\n’ pattern string The pattern string constant contains three
characters: backslash, backslash, and n. This is
not interpreted as a backslash followed by
newline, since — processing left to right — the
second backslash is associated with the first
backslash, and not the n.

Constant Type Description
28 Chapter 3

Language Elements
Operators for Integers

The binary arithmetic operators +, -, *, /, % support integer operands. They provide
32-bit addition, subtraction, multiplication, integer division, and modulus (int1 %
int2 = the remainder of int1 divided by int2).

Operators for Strings

The only binary arithmetic operator to support string operands is the concatenation
operator +. The string expression str1 + str2 returns str2 concatenated to str1.
The string expression str3 = str1 + str2 is equivalent to the C statement
strcat(strcpy(str3,str1),str2).

Operators for Bank Expressions

The only binary arithmetic operator to support bank operands is the union operator,
+. The bank expression bank_exp1 + bank_exp2 returns a bank containing all of the
integer and string data items of both bank_exp1 and bank_exp2. For example, if
bank_exp1 is equivalent to bank(1, "ab",2,"xy") and bank_exp2 is
equivalent to bank("def",3,4,"ghi"), then bank_exp1 + bank_exp2 is
equivalent to bank(1,2,3,4,"ab","xy","def","ghi").

Ordering among data items of the same type is retained; therefore, the + operator is
not commutative for the bank operands.

Binary Bitwise Operators

The binary bitwise operators require two integer operands and always operate on all
32 bits of each operand. The operations are identical to that of their C language
counterparts when operating on unsigned 32-bit quantities. The data type of an
expression containing a binary bitwise operator is integer. None of these operators
change the values of their operands.

The following table shows the binary bitwise operators:

Operator Description

& bitwise AND
int1 & int2 has bits set to 1 that are set to 1 in both int1 and
int2; the remaining bits are set to 0.

| bitwise OR
int1 | int2 has bits set to 1 that are set to 1 in either int1 or
int2; the remaining bits are set to 0.
VU Fundamentals 29

Language Elements
Assignment Operators

Assignment operators require two operands of the same type. The first operand of an
assignment operator must be a variable. The type and value of an expression
containing an assignment operator is always equivalent to the type and value of its
second (rightmost) operand.

The value on the left of the operator (int1) changes to the value specified; the value
on the right of the operator (int2) does not change.

If you are reading and updating a shared variable, your read-and-update operation is
mutually exclusive of any other virtual tester’s update of that variable.

The following table shows the assignment operators:

^ bitwise exclusive OR
int1 ^ int2 has bits set to 1 in each bit position where int1
and int2 have different bits; the remaining bits are set to 0.

<< left shift
int1 << int2 has the value of int1 shifted left by int2 bit
positions, filling vacated bits with 0; int2 must be positive.

>> right shift
int1 >> int2 has the value of int1 shifted right by int2 bit
positions, filling vacated bits with 0; int2 must be positive.

Operator Description

= int1=int2 changes the value of int1 to that of int2.

+= int1 += int2 changes the value of int1 to that of int1 +
int2.

-= int1 -= int2 changes the value of int1 to that of int1 - int2.

*= int1 *= int2 changes the value of int1 to that of int1 * int2.

/= int1 /= int2 changes the value of int1 to that of int1 /
int2.

%= int1 %= int2 changes the value of int1 to that of int1 %
int2.

&= int1 &= int2 changes the value of int1 to that of int1 &
int2.

Operator Description
30 Chapter 3

Language Elements
Unary Operators

Unary operators require one integer or string operand. The type of an expression
containing a unary operator is the type of the operand.

The following table describes the unary operators:

|= int1 |= int2 changes the value of int1 to that of int1 |
int2.

^= int1 ^= int2 changes the value of int1 to that of int1 ^
int2.

<<= int1 <<= int2 changes the value of int1 to that of int1<<
int2.

>>= int1 >>= int2 changes the value of int1 to that of int1>>
int2.

= str1=str2 changes the value of str1 to that of str2; str2 is
unchanged.

+= str1+=str2 changes the value of str1 to the concatenation of
str1 and str2; str2 is unchanged.

Operator Description

! logical negation

If the value of int1 is nonzero, !int1 equals 0; if the value of
int1 is 0, !int1 equals 1. In either case, int1 is unchanged.

Operator Description
VU Fundamentals 31

Language Elements
& address of

The & operator is valid in an external C function expecting the
passed address of a variable and in the following function calls:
■ fscanf

■ scanf

■ sscanf

■ match

■ wait

■ sprintf

For integer operands, &int1 equals the address of int1; int1 is
unchanged. The operand of & must be an integer variable or integer
array element. Semantically, the integer operand of & must be a
normal integer variable (or array element) or a shared integer
variable, depending on the associated function definition.

For string operands, &str1 equals the address of str1; str1 is
unchanged. The operand of & must be a string variable or string
array element.

++ increment

(++int1) equals int1+1 when evaluated in an expression;
(int1++) equals int1 when evaluated, and is incremented after
evaluation. The operand must be a variable or integer array
element.

If you are reading and incrementing a shared variable, your
read-and-update operation is mutually exclusive of any other
virtual tester's update of that variable.

-- decrement

(--int1) equals int1-1 when evaluated in an expression; (int1--)
equals int1 when evaluated, and is decremented after evaluation.
The operand must be a variable or integer array element.

If you are reading and decrementing a shared variable, your
read-and-update operation is mutually exclusive of any other
virtual tester’s update of that variable.

- negation

-int1 equals the additive inverse of int1. int1 is unchanged.

~ bitwise one’s complement

sets bits to one that are zero in int1; the remaining bits are set to
zero. int1 is unchanged.

Operator Description
32 Chapter 3

Language Elements
Relational Operators

The relational operators consist of &&, ||, >, <, >=, <=, ==, and !=. The data type of an
expression containing a relational operator is always integer. None of the relational
operators change their operands. Relational operators require two operands of the
same data type.

As in C, the implementations of && and || guarantee left-to-right evaluation and do
not perform unnecessary operand evaluation. In other words, the second operand of
&& is not evaluated if the first operand has the value 0; likewise, the second operand
of || is not evaluated if the first operand has a nonzero value.

The following table shows the relational operators for integer operands:

Operator Description

&& logical AND

int1 && int2 equals 1 if both int1 and int2 have nonzero
values. Otherwise, it equals 0.

|| logical OR

int1 || int2 equals 0 if both int1 and int2 have the value 0.
Otherwise, it equals 1.

> greater than

int1>int2 equals 1 if int1 is greater than int2. Otherwise, it
equals 0.

< less than

int1 < int2 equals 1 if int1 is less than int2. Otherwise, it
equals 0.

>= greater than or equal to

int1 >= int2 equals 1 if int1 is not less than int2. Otherwise,
it equals 0.

<= less than or equal to

int1 <= int2 equals 1 if int1 is not greater than int2.
Otherwise, it equals 0.

== equality

int1 == int2 equals 1 if int1 and int2 have the same value.
Otherwise, it equals 0.

!= inequality

int1 != int2 equals 0 if int1 and int2 have the same value.
Otherwise, it equals 1.
VU Fundamentals 33

Language Elements
The following table shows the relational operators for string operands:

Operator Description

> greater than

str1 > str2 equals 1 if str1 is greater (based on the machine’s
collating sequence) than str2. Otherwise, it equals 0. Equivalent to
the C expression (1 == strcmp(str1,str2)).

< less than

str1 < str2 equals 1 if str1 is less (based on the machine’s
collating sequence) than str2. Otherwise, it equals 0. Equivalent to
the C expression (-1 == strcmp(str1,str2)).

>= greater than or equal to

str1 >= str2 equals 1 if str1 is not less than str2. Otherwise,
it equals 0. Equivalent to the C expression (-1 !=
strcmp(str1,str2)).

<= less than or equal to

str1 <= str2 equals 1 if str1 is not greater than str2.
Otherwise, it equals 0. Equivalent to the C expression (1 !=
strcmp(str1,str2)).

== equality

str1 == str2 equals 1 if str1 and str2 have the same value.
Otherwise, it equals 0. Equivalent to the C expression
(!strcmp(str1,str2)).

!= inequality

str1 != str2 equals 0 if str1 and str2 have the same value.
Otherwise, it equals 1. Equivalent to the C expression
(strcmp(str1,str2)).
34 Chapter 3

Language Elements
Other Operators

The VU language offers two additional operators — the comma operator (,) and the
conditional operator (?:). The following table describes these operators:

Operator Precedence and Associativity

The following table shows the operator precedence and associativity of each VU
operator. (“Associativity” is the order in which operators of the same precedence are
evaluated.) Operators in the same row have the same precedence. The precedence
decreases with each row.

Use parentheses to change the order of evaluation of an expression. An expression
inside parentheses is always evaluated first, and the extra parentheses are ignored.

Operator Description

, comma

The comma operator allows operands of different types. For any two
expressions exp1 and exp2, the resulting value of the "exp1, exp2"
is the value of exp2, and the resulting type is the type of exp2. The
operands of the comma operator are not changed. The comma
operator is used only in the for statement, as in for (exp1; exp2;
exp3,exp4) and cannot have bank expressions as its operand. The
comma is also used as a grammatical symbol in other places in the VU
language — for example, to separate arguments in a function call.

?: The conditional operator requires three operands. The expression
int1 ? any_exp1 : any_exp2 has the value and type of
any_exp1 if int1 is nonzero. Otherwise, the expression has the
value and type of any_exp2. any_exp1 and any_exp2 must
have the same type. None of any_exp1, any_exp2, or int1 are
changed.

Operator Associativity

() [] left-to-right

- (unary) ! ~ & (address of) ++ -- right-to-left

* / % left-to-right

+ - (binary) left-to-right

>> << left-to-right

> >= < <= left-to-right
VU Fundamentals 35

Expressions
Expressions

An expression contains one or more VU identifiers, constants, keywords, and
operators. Every expression has a data type and a value. The data type of an
expression determines how its value is interpreted. Each of the following VU
language constructs is an expression:

■ Constant

■ Variable

■ Argument

■ Read-only variable

■ eval environment_variable

■ unary_operator expression

■ expression unary_operator

■ expression binary_operator expression

■ expression ? expression : expression

■ bank_expression[int]

■ bank_expression[string]

■ bank_expression[int][int_expression]

■ bank_expression[string][int_expression]

== != left-to-right

& (bitwise AND) left-to-right

^ left-to-right

| left-to-right

&& left-to-right

|| left-to-right

?: right-to-left

= += -= *= /= %= &= |=^=<<=>>= right-to-left

, left-to-right

Operator Associativity
36 Chapter 3

Statements
■ array_variable[int_expression]

■ array_variable[int_expression][int_expression]

■ array_variable[int_expression][int_expression] [int_expression]

■ Function (a function invocation or call)

■ Emulation command

■ limitof array

Statements

Statements contain one or more VU expressions. Not all statements are valid
everywhere in a VU script. For example, argument assignments and return
statements are invalid outside of function or procedures, and the break and
continue statements are invalid outside of loops.

The following table shows the VU statements:

Statement Description

; Null statement.

variable asgn_op exp; Variable assignment.
asgn_op is any assignment operator;
exp is an integer or string expression.

int_exp; int_exp is an integer expression, which
includes integer function calls and
emulation commands. (String function calls
cannot be used as VU statements by
themselves, but only as a part of a VU
expression.)

environment_control_comman
d
env_var;

push, pop, etc.
env_var is any VU environment variable.

environment_control_comman
d
[env_var_list];

push, pop, etc.
env_var_list is a comma-separated
list of one or more environment variables.

break; Break.

break integer_constant; Multilevel break.

continue; Continue.
VU Fundamentals 37

Statements
continue integer_constant; Multilevel continue.

DATAPOOL_CONFIG See DATAPOOL_CONFIG on page 147 for
detailed syntax.

COOKIE_CACHE See COOKIE_CACHE on page 144 for
detailed syntax.

if (int_exp) statement int_exp is an integer expression;
statement is any valid statement form,
defined recursively.

if (int_exp) statement
else statement

int_exp is an integer expression;
statement is any valid statement form,
defined recursively.

procedure_name (exp_list); Procedure call.
exp_list is a comma-separated list of 0
or more expressions.

print exp_list; exp_list is a comma-separated list of
one or more expressions.

return; Return

return exp; exp is an integer, array, or string
expression that is returned to the calling
function or procedure.

sync_point string_const string_const is the name of a
synchronization point.

while (int_exp) statement int_exp is an integer expression;
statement is any valid statement form,
defined recursively.

do statement while (int_exp); statement is any valid statement form,
defined recursively;
int_exp is an integer expression.

for (exp_list ; int_exp;
exp_list)
statement

exp_list is a comma-separated list of
zero or more expressions;
int_exp is an optional integer
expression;
statement is any valid statement form,
defined recursively.

{ declaration_list
statement_list }

declaration_list contains 0 or more
declarations.
statement_list contains 0 or more
statements.

Statement Description
38 Chapter 3

Statements
declaration class type name_list:
■ class (optional) can be: shared,
persistent, or external_C. Only
type int may be shared.

■ type may be int or string. type
may be omitted for integer declarations.

■ name_list is a comma-separated list
of one or more identifiers; each identifier
is optionally followed by the initializer
= constant, where constant is the
same type as the identifier.

Statement Description
VU Fundamentals 39

Comments
Comments

Comments are delimited by the characters /* and */. The following example shows a
one-line comment and a two-line comment:

/* This is the main body of the script */

/* This comment contains
more than one line */

Comments cannot include other comments.

Arrays

The VU language supports arrays of up to three dimensions of all scalar data types,
such as integer and string.

Array elements are referenced by integer expression subscripts enclosed in brackets ([
]). Array indexing is zero based. The first element of an array is referenced by index 0.
Multidimensional arrays are subscripted by multiple pairs of brackets. Arrays are
declared as a fixed size or as expandable. Expandable arrays grow as necessary up to
an optional maximum size.

Array Constants

Array constants are specified as a list of scalar constants enclosed in braces. All scalar
constants in the list must be of the same type. For example, { 1, 2, 3, 4 } is an
array constant of four integers. A multidimensional array constant is specified as a list
of array constants enclosed in braces:

{ { "this", "is" },
 { "a", "two", "dimensional", "array" },
 { "of", "strings" } }

All arrays in a multidimensional array constant must be of the same type but not
necessarily the same size.

You can use the repeat operator (:) to specify repetition of a constant element array.
The array constant:

{ 1:5, 2:3, 3:4 }

contains 12 elements and is the same as the constant:

{1,1,1,1,1,2,2,2,3,3,3,3}

The repeat operator is also used to repeat array constants:

{ { { 1:3, 2:2 }, { 5:6 }:3 }:2 }
40 Chapter 3

Arrays
is the same as:

{ { { 1, 1, 1, 2, 2 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 } },
 { { 1, 1, 1, 2, 2 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 } } }

Array constants are allowed only as the right-hand side of an array assignment or in
an array initialization.

Declaring an Array

An array declaration has the form:

class type name [m..M,g];
class type name [m..M,g] [m..M,g];
class type name [m..M,g] [m..M,g] [m..M,g];

The declaration has these parts:

■ class is optional (only persistent and external_C are allowed).

■ type is the scalar type, which can be int or string.

■ name is the name of the array.

■ [m..M,g] is a dimension specification. It indicates the minimum and maximum
number of elements the array can contain, and a growth size.

❑ m is an integer constant that specifies the minimum (initial) size of the array.
The minimum initial size of a dimension is useful when combined with
initialization as described below.

❑ M is an integer constant that specifies the maximum size of the array.

❑ g is an integer constant that specifies the growth size of the array. For efficiency,
declare a expandable array with a growth size, which specifies the number of
elements by which to grow the array.

m,M,g can be combined in the following ways:

Combination Meaning

[M] fixed size

[] no limit, growth determined at runtime

[m..M] initial size m, limit M, growth determined at runtime
VU Fundamentals 41

Arrays
In all cases, up to three independent sets of [m..M,g] are allowed, one per dimension.

Arrays can be declared persistent:

persistent type name [m..M,g]...;

Arrays cannot be declared shared.

Initializing an Array

Arrays of all types can be initialized by specifying an array constant of the
appropriate type and number of dimensions in the declaration.

int a[5] = { 1, 2, 3, 4, 5 };

If the initializer has fewer elements than the array variable, the remaining elements
are undefined.

Initialized arrays with a non-fixed size are created at least large enough to hold all of
the elements in the initializer.

If array initializers are too large to fit in the declared array, a fatal compilation error
results.

An array initializer constant can contain one or more occurrences of the colon (:)
repeat operator. The repeat operator specifies repetition of a constant element. It is a
binary operator with the following form:

constant_element : n_reps

The operator has these parts:

■ constant_element is a scalar or array constant of the same type as the array
initialized.

■ n_reps is an integer constant specifying the number of times
constant_element is repeated.

[M,g] no minimum, first access allocates a minimum of g
elements

[m..M,g] initial size m, limit M, grow by g elements

[g] no limit, grow by g elements

[m..] initial size m, no limit, growth determined at runtime

[m..,g] initial size m, no limit, grow by g elements

Combination Meaning
42 Chapter 3

Arrays
If n_reps is an asterisk (*), constant_element is repeated as many times as
necessary until the rest of the array has been initialized. With arrays of non-fixed size,
constant_element is repeated until the rest of the minimum size of the array is
initialized. If the minimum size of the array is already initialized, :* has no effect.

Example of Array Initialization

The following declaration initializes the first 5 elements of a to the values 1 through 5
and the next 95 elements (the rest of the array) to 0.

int a[100] = { 1, 2, 3, 4, 5, 0:95 };

The following declarations initialize all elements of the arrays to 0.

int a[100] = { 0:* };
int b[10..50] = { 0:* };

Note that b[10..50] declares b with a minimum size of 10 and a maximum of 50
elements. The initialization sets elements 0–9 of b to 0. All other elements of b are
undefined.

In the following example, array aa above is initialized such that aa[x][0] == 1 and
aa[x][1] == 0 for all 0 <= x <= 4. All other elements of aa are undefined.

All types of array initializers can use the repeat operator, including array constants.

string sa[10] = { "hello", "world", "":* };
int aa[10][3] = { {1, 0}:5 };

The following array initialization:

int a[10] = { 1, 2, 0:* };

is the same as:

int a[10] = { 1, 2, 0, 0, 0, 0, 0, 0, 0, 0 };

The following two-dimensional array initialization:

int aa[7][] = { { 1, 2, 3, 4 }:3, { 0 }:* };

is the same as:

int aa[7][] = { { 1, 2, 3, 4},
 { 1, 2, 3, 4},
 { 1, 2, 3, 4},
 { 0 },
 { 0 },
 { 0 },
 { 0 } };

The following three-dimensional array initialization initializes all 1000 elements of
aaa to 0:

int aaa[10][10][10] = { { { 0:* }:* }:* };
VU Fundamentals 43

Arrays
The following string array initializations:

string sa[10] = { "abc", "123", "":* };
string saa[7][] = { { "one", "two", "three", "four" }:3, { "" }:* };

are the same as:

string sa[10] = { "abc", "123", "", "", "", "", "", "", "", "" };
string saa[7][] =
 { { "one", "two", "three", "four"},
 { "one", "two", "three", "four"},
 { "one", "two", "three", "four"},
 { "" },
 { "" },
 { "" },
 { "" } };

This declaration initializes all 1000 elements of saaa to "":

string saaa[10][10][10] = { { { "":* }:* }:* };

Array Subscripts

Array elements are selected by enclosing an integer expression in brackets ([]). The
first element is selected by subscript 0. Multidimensional arrays can be subscripted by
adjacent subscripts, each enclosed in brackets.

string saa[7][] = { { "one", "two", "three", "four" }:3, { "" }:* };

saa[0] is a one-dimensional array of strings with value { "one", "two", "three",
"four" }.

saa[4][0] is a string with value "".

saa[4][1] is an undefined string.

Array Operators

In this section, ary1 and ary2 are arbitrary arrays of any type and any number of
dimensions.

Binary Concatenation Operator for Arrays

The only binary arithmetic operator to support array operands is the concatenation
operator +. The array expression ary1 + ary2 returns an array containing all of the
elements of ary1 followed by all of the elements of ary2. The elements of ary1 and
ary2 are not changed. ary1 and ary2 must be array expressions of the same number
of dimensions and same base type.
44 Chapter 3

Arrays
Assignment Operators for Arrays

The assignment operators that support array operands are = and +=.

ary1 = ary2 changes the value all elements in ary1 to the values of the
corresponding elements in ary2, including any undefined elements. The elements of
ary2 are not changed.

ary1 += ary2 is equivalent to ary1 = ary1 + (ary2).

Unary limitof Operator for Arrays

limitof is the only unary operator with an array operand. It returns the value of the
highest subscript of any defined element in the operand. For multidimensional arrays,
limitof returns the maximum defined subscript of the outermost (first) dimension.
When used on a subarray, limitof returns the maximum subscript for the subarray.
If all elements of an array are undefined, limitof returns -1.

The maximum defined subscript returned by limitof means that no larger subscript
has a defined value, not that all smaller subscripts of the same array have defined
values. This VU script clarifies the use of limitof:

{
 int a[25];
 int b[][];
 a[10] = 1;
 a[8] = 2;
 b[3][20] = 5;
 b[2][15] = 7;
 printf("limitof a is %d\n", limitof a);
 printf("limitof b is %d\n", limitof b);
 printf("limitof b[3] subarray= %d\n", limitof b[3]);
 printf("limitof b[2] subarray= %d\n", limitof b[2]);
 printf("limitof b[1] subarray= %d\n", limitof b[1]);
}

The output is:

limitof a is 10
limitof b is 3
limitof b[3] subarray= 20
limitof b[2] subarray= 15
limitof b[1] subarray= -1

Arrays as Subroutine Arguments

User-defined functions and procedures can have array arguments. An array argument
is declared the same as an array variable. Array arguments are always passed by
address, not by value. Functions and procedures can freely modify the elements of
any array argument.
VU Fundamentals 45

Flow Control
Flow Control

The VU language offers two types of flow control: conditional execution (the
if-else and else-if structures) and looping (for, while, and do-while
structures). The VU language also features break and continue statements to allow
for controlled exit from a loop. Except for enhancements added to break and
continue, the VU control structures behave like their C counterparts.

Loops

VU loops allow VU statements to be executed repeatedly. Loops include for, while,
and do-while.

Break and Continue

The VU break and continue statements allow for more flexible control over the
execution of for, while, and do-while loops. As in C, if the break statement is
encountered as one of the statements in a for, while, or do-while loop, execution
of that loop stops immediately. Also, as in C, if the continue statement is
encountered as one of the statements in a while or do-while loop, the remaining
statements in the loop are skipped, and execution continues with the evaluation step
of the loop.

Unlike C, however, the VU break and continue statements have an optional
argument, which specifies the nested loop level where the break or continue
statement is executed.

Scope of Variables

By default, the scope of a variable is limited to one runtime instance of a script for one
virtual tester. However, you can declare a variable as shared or persistent.

The following table lists the differences between shared variables and persistent
variables:

Shared Variable Persistent Variable

One copy for all virtual testers to access. Each virtual tester has its own copy.

Maintains its value across all scripts. Maintains its value across scripts of that
virtual tester only.

Data type must be integer. Data type is an integer or string, or is an
array of integers and strings.
46 Chapter 3

Scope of Variables
Other VU variables and functions are global in scope within a runtime instance of a
script but private to each virtual tester. Subroutine arguments are local to that
subroutine and are unknown to the rest of the script.

Shared Variables

A shared variable is an integer variable. Any discussion of integer variables also
applies to shared variables, and you can use a shared variable anywhere you can use
an integer variable except as the operand for the address-of operator (&).

You can use a shared variable to:

■ Set loop maximums when you repeat operations, to set transaction rates, and to set
average delay times.

■ Block a virtual tester from further execution until a global event occurs. For
example, if you are re-indexing a SQL table, you would want to block access to
that table until the indexing is complete. You can use the wait library function
with a shared variable to do this.

■ Pause a script’s execution until a specified number of virtual testers arrive at that
point. However, it is simpler to use the sync_point statement and wait library
routine to do this.

You create a shared variable within a VU script.

To declare shared variables, use the shared keyword. You do not need to declare the
shared variable as integer because all shared variables are integer variables. The
following two examples declare both first_shared and second_shared as
shared variables, but the second example includes the keyword int for
documentation:

shared first_shared, second_shared;
shared int first_shared, second_shared;

Shared variables have an initial value of 0 for a run. You can set a different initial
value in the suite, and you can modify the initial value anywhere in a VU script.

The following example modifies the value of first_shared to 17:

shared first_shared;
first_shared = 17;

Once you have started playing back the script, you can change the value of a shared
variable when you monitor the suite.

A variable that is not declared shared is local to both the script and the virtual tester,
and is unrelated to any shared variable of the same name in other scripts.
VU Fundamentals 47

Scope of Variables
Updating a shared variable takes more time than updating a normal integer variable.
This is because if two virtual testers try to update a shared variable, extra
communication is necessary to make sure that the variable is locked from the second
user until the first user’s update completes. If the suite run involves Agent computers,
further communication is necessary to coordinate access among multiple computers.

Reading a shared variable generally takes the same amount of time as reading a
normal integer variable if the suite is run only on the Master computer. However, if
the suite run involves Agent computers, extra communication is necessary to
coordinate access among multiple computers, and thus reading a shared variable will
take more time.

Persistent Variables

Persistent variables are useful when you want to retain the value of a variable
between scripts. For example:

■ You have opened a file in persistent mode, and you want subsequent scripts to
access the file without reopening it. You could use a persistent integer variable to
hold the return value from open.

■ You want a virtual tester to randomly choose a record from a file. You could
declare a persistent array of integers, and load the keys into that array.

The initial value of a persistent variable in a script is determined as follows:

1 If a persistent variable has the same name (and type) in a previously executed
script in the session (by that virtual tester), the initial value of the persistent
variable in the current script is inherited from the final value of that persistent
variable in the most recently executed script in which it was declared. Otherwise:

2 If the declaration of the persistent variable included an initializer, then the initial
value is taken from the initializer. Otherwise:

3 The initial value is undefined (like any non-persistent variable).

A persistent variable must be declared persistent in any script that accesses it.

A non-shared variable declared persistent without a type is integer by default.

A variable that is not declared persistent is local to that script and is unrelated to any
persistent variables of the same name in other scripts.

Shared variables and function or procedure arguments cannot be declared persistent.

If a persistent variable has a type conflict with a persistent variable of the same name
but in a previous instance of the same script, a fatal error occurs.
48 Chapter 3

Initial Values of Variables
Examples

The comments in the following examples illustrate many of the points made in the
preceding section. These examples are based on the assumption that the scripts are
run in the order A, B, C.

Script A
persistent fd;
persistent string user_nickname, s1, s2;
persistent int where_am_i;
{

fd = open("foo", "pw+"); /* open persistent */
user_nickname = "Slick";
s1 = "hello world";

}

Script B
persistent fd;
persistent string user_nickname, s2;
persistent p1=10;
string s1; /* not persistent */
/* fd contains the file descriptor returned by
* script A's open call. user_nickname == "Slick"
* s2 is undefined. p1==10;
* s1 is not persistent and therefore does not
* inherit the final value of s1 from the
* previous script, thus it is undefined.
*/

{
s1 = "good-bye world";

}

Script C
persistent string s1= "ignored_value";
int where_am_i;
/* s1 == "hello world" (from script A)
* int where_am_i is undefined and unrelated
* to int where_am_i from script A.
*/

{ ... }

Initial Values of Variables

You set the initial values for unshared variables in a script. There is no default value
for unshared variables.

You can initialize a variable when you declare it. In this example, i is 5, s1 and, s2
are "hello", s3 is "there", and first_shared is 0:

int i = 5;
string s1, s2 = "hello", s3 = "there";
shared first_shared;
VU Fundamentals 49

VU Regular Expressions
You can set the initial values for shared variables when you run a suite. However, if
you do not declare a value for a shared variable, its value is 0.

You get a runtime error if an expression contains an undefined variable or an
uninitialized, declared variable.

For information about initializing an array variable, see Initializing an Array on
page 41.

VU Regular Expressions

A regular expression is a string that specifies a pattern of characters. The match
library routine, for example, accepts strings that are interpreted as regular
expressions.

VU regular expressions are like UNIX regular expressions. VU, however, offers two
additional operators: ? and |. In addition, VU regular expressions can include ASCII
control characters in the range 0 to 7F hex (0 to 127 decimal).

General Rules

VU regular expressions have the following characteristics:

■ The concatenation of single-character operators matches the concatenation of the
characters individually matched by each of the single-character operators.

■ Parentheses () can be used within a regular expression for grouping
single-character operators. A group of single-character operators can be used
anywhere one single-character operator can be used — for example, as the
operand of the * operator.

■ Parentheses and the following non-ordinary operators have special meanings in
regular expressions. They must be preceded by a backslash if they are to represent
themselves:

❑ The ^ operator must be preceded by a backslash when it is the first operator of
a regular expression or the first character inside brackets.

❑ The $ operator must be proceeded by a backslash when it is the last operator of
a regular expression or it immediately follows a right parenthesis.

❑ Operators inside brackets do not need to be preceded by a backslash.
50 Chapter 3

VU Regular Expressions
Single-Character Regular Expression Operators

The following rules apply to single-character regular expression operators, which
match at most a single character:

■ Any ordinary character (any character not described below) is a single-character
operator that matches itself.

■ The \ (backslash) operator and any following character match that character.

■ The brackets operator [str], where str is a non-empty string, matches any single
character contained in str, unless the first character of str is ^ (circumflex), in
which case the operator matches any single character except those in str.

A range of characters can be represented in str using a dash character (-)— for
example, [a-z] matches all lowercase alphabetic characters. If - occurs either as the
first (or after an initial ^) or last character of str, it specifies itself rather than a range.
If] occurs as the first (or after an initial ^) character in str, it specifies itself rather
than ending the brackets operator. The characters . (period), * (asterisk), \ (backslash),
? (question mark), | (pipe), () (parentheses), [(left bracket), and + (plus) lose their
special meanings in str and therefore are not preceded by a backslash.

■ The . (period) operator matches any single character.

Other Regular Expression Operators

The following rules apply to all other regular expression operators, which operate on
single-character operators or groups of single-character operators:

■ The ^ (circumflex) operator, only when it is the first operator, indicates that the
next operator must match the first character of the string matched.

■ The $ (dollar sign) operator, only when it is the last operator, indicates that the
preceding operator must match the last character of the string matched.

■ The * (asterisk) operator and a preceding single-character operator match zero or
more occurrences of any character matched by that operator.

■ The + (plus) operator and a preceding single-character operator match one or more
occurrences of any character matched by that operator.

■ The {m,n} (braces) operator, where m <= n <= 254, and a preceding single-character
operator match from m to n occurrences of any character matched by that operator.
Matching exactly m occurrences of the operators specified by {m}. {m,} indicates m or
more occurrences.
VU Fundamentals 51

VU Regular Expressions
■ The ? (question mark) operator and a preceding single-character operator match
zero or one occurrence of any character matched by that operator. Therefore, ? is
equivalent to {0,1}.

■ The | (pipe) operator indicates alternation. When placed between n groups of
operators, it matches the characters matched by the left group of operators that
matches a non-empty set of characters.

Regular Expression Examples

The following examples show the use of VU regular expressions:

VU Regular Expression Matches

"ab?c" The strings "abc" and "ac", as well as
the strings "defabcghi" and
"123acc", since the regular expression
need not specify the entire string to match.
However, the strings "ab" and "abbc"
do not match.

"^ab?c$" Only the strings "abc" and "ac".

" [A-Za-z]{1,5}ly " Any blank-surrounded word of three to
seven characters ending with ly.

"^[^aeiouAEIOU]+$" Any sequence of characters that does not
contain a vowel.

"[0-9]+" Any integer.

"^[dr]etract$" Only the words detract and retract.

"((Mon)|(Tues)|(Wednes)|(Thurs)
|(Fri)|(Satur)|(Sun))day"

Any day of the week.

"(abc\\(){1,2}" One or two occurrences of the string
"abc(". Because the pattern is specified
as a standard string constant, two
backslashes must be used to escape the
special meaning of (. The pattern could
also be specified as ‘(abc\(){1,2}’
using a pattern string constant.
52 Chapter 3

VU Regular Expressions
"((abbcc)|(a+b+c)|(abc+))0" If the string matched is "abc", the second
alternative ("a+b+c") is matched and
the string "abc" is returned. If the string
matched is "aabbcc", the first
alternative is matched, and the string
"abbcc" is returned. If the string
matched is "abcccc", the third
alternative is matched and the string
"abcccc" is returned. If the string
matched is "abbbcc", none of the
alternatives match.

"(to+ chea[pt].*){2}" The strings "We would rather sell
too cheap than to cheat" and
"Expect one to cheat who is too
cheap", as well as "‘too cheat’
makes no more sense than ‘to
cheap’".

"^$(([0-9]{200}){50}){100,}" Any sequence of a million or more digits
starting with $.

"[a-fA-F0-9]{1,4}" Any hexadecimal number with a decimal
value in the range 0 to 65535.

"[ACF-IK-PR-W][a-y]{2,4}
[a-y][CDIJMVY]?[a-z]{0,7}"

The name of any state in the United States.

"((K[a-zA-Z]*)$0
(D[a-zA-Z]*)$1
(S[a-zA-Z]*)$2)
|((S[a-zA-Z]*)$0
(J[a-zA-Z]*)$1
(D[a-zA-Z]*)$2)"

The full name (first, middle, and last
names) of anyone with the initials KDS or
SJD, provided the name contains only
alphabetic characters. Strings matching
the first, middle, and last names are
returned.

"^(([a-zA-Z]+)|([0-9]+))$" Any string containing only alphabetic or
only numeric characters. The outermost
set of parentheses is necessary because the
$ operator has precedence over the |
operator.

VU Regular Expression Matches
VU Fundamentals 53

VU Regular Expressions
Regular Expression Errors

If a VU regular expression contains an error, when you run a suite, TestManager
writes the message to stderr output prefixed with the following header:
sqa7vui#xxx: fatal orig type error: tname: sname, line lineno

where #xxx identifies the user ID (not present if 0), fatal signifies that error
recovery is not possible (otherwise not present), orig specifies the error origination
(user, system, server, or program), and type specifies the general error category
(initialization, argument parsing, script initialization, or runtime).

If the error occurred during execution of a script (run-time category), tname specifies
the name of the script being executed when the error occurred, sname specifies the
name of the VU source file that contains the VU statement causing the error, and
lineno specifies the line number of this VU statement in the source file. Note that the
source file information will not be available if the script’s source cross-reference
section has been stripped.

If a run-time error occurs due to an improper regular expression pattern in the match
library function, a diagnostic message of the following form follows the header:
Regular Expression Error = errno

where errno is an error code which indicates the type of regular expression error.
The following table lists the possible errno values and explains each.

errno Explanation

2 Illegal assignment form. Character after)$ must be a digit.
Example: "([0-9]+)$x"

3 Illegal character inside braces. Expecting a digit.
Example: "x{1,z}"

11 Exceeded maximum allowable assignments. Only $0 through $9 are
valid.
Example: "([0-9]+)$10"

30 Missing operand to a range operator (? {m,n} + *).
Example: "?a"

31 Range operators (? {m,n} + *) must not immediately follow a left
parenthesis.
Example: "(?b)"

32 Two consecutive range operators (? {m,n} + *) are not allowed.
Example: "[0-9]+?"
54 Chapter 3

How a VU Script Represents Unprintable Data
How a VU Script Represents Unprintable Data

A VU script can contain unprintable data. For example, you can include a carriage
return in a string or character constant. A session that recorded HTTP or socket traffic
can generate scripts that contain binary data. The following sections describe how
unprintable data is represented within a VU script.

34 Range operators (? {m,n} + *) must not immediately follow an
assignment operation.
Example: "([0-9]+)$0{1-4}"
Correction: "(([0-9]+)$0){1-4}"

36 Range level exceeds 254.
Example: "[0-9]{1-255}"

39 Range nesting depth exceeded maximum of 18 during matching of
subject string.

41 Pattern must have non-zero length.
Example: ""

42 Call nesting depth exceeded 80 during matching of subject string.

44 Extra comma not allowed within braces.
Example: "[0-9]{3,4,}"

46 Lower range parameter exceeds upper range parameter.
Example: "[0-9]{4,3}"

49 ‘\0’ not allowed within brackets, or missing right bracket.
Example: "[\0] or [0-9"

55 Parenthesis nesting depth exceeds maximum of 18.
Example: "(((((((((((((((((((x)))))))))))))))))))"

56 Unbalanced parentheses. More right parentheses than left parentheses.
Example: "([0-9]+)$1)"

57 Program error. Please report.

70 Program error. Please report.

90 Unbalanced parentheses. More left parentheses than right parentheses.
Example: "(([0-9]+)$1"

91 Program error. Please report.

100 Program error. Please report.

errno Explanation
VU Fundamentals 55

How a VU Script Represents Unprintable Data
Unprintable String and Character Constants

The following table shows how you represent unprintable characters in a string or
character constant. The VU compiler interprets the character sequence as a single
character:

Unprintable HTTP or Socket Data

If you are working with HTTP data or raw socket data, in addition to carriage returns
and form feeds, you can send or receive binary data — images, sounds, and so on.
With string arguments in the following HTTP and socket emulation commands,
binary data can be represented within the string data through embedded hex strings:

■ http_request, http_recv, and http_nrecv

■ sock_send, sock_recv, and sock_nrecv

An embedded hex string represents binary characters by their two-character
hexadecimal values. The entire hexadecimal string is delimited by grave accent (‘)
characters.

Similarly, if you are coding a VU script by hand, you can represent binary characters
by using a two-character hex format and delimiting the string with a grave accent.
The string can contain these characters: 0123456789ABCDEFabcdef. To represent a
grave accent, use \\‘ or ‘60‘.

Character
Sequence

Description ASCII value (octal)

\r A single character representing a carriage
return.

ASCII 015

\f A single character representing a form feed. ASCII 014

\n A single character representing a newline. ASCII 012

\t A single character representing a horizontal
tab.

ASCII 011

\b A single character representing a backspace. ASCII 010

\0 The null character (the character with value 0).

\ddd A single character representing the character
ddd.

ddd represents 1, 2, or
3 digits; for example,
\141 represents the
character a
56 Chapter 3

4Scripts, Subroutines, and
C Libraries
This chapter describes the script and header files that Robot compiles after recording
or editing. It also describes the external library files that you can create and maintain
outside of the Robot environment, as well as the subroutines that you can add to
scripts and external files. The chapter includes the following topics:

■ Program structure

■ Header files

■ Preprocessor features

■ Defining your own subroutines

■ Accessing external C data and functions

Program Structure

VU program structure is similar to the structure of the C programming language.

The following sample of code shows the structure of a VU script. Your script is not
required to have all of the elements in the sample. For example, if your script does not
include another source file, it would not use the #include file name directives. If
your script does not contain any user-defined procedures, it would not include the
proc section.

#include <VU.h>
#include <VU_tux.h>
/* Use either of these forms to include another source file */
#include <filename>
#include "filename"
#define orig_ident new_token
/* Any user-defined procedures would be here*/
proc proc_name()
{ /* body of procedure */ }
/* Any user-defined functions would be here*/
func function_name()
{ /* body of function */ }
/* additional procedures and functions */
/* main body of script follows: */
{
string declarations;
57

Header Files
shared declarations;
/* VU code goes here*/
}

You must define all subroutines before they are referenced; otherwise, you will
get a syntax error. Subroutines included after the main body of the script are not
referenced. They are ignored if they are syntactically correct.

Header Files

VU header files contain a collection of definitions and macros. VU.h is automatically
included in scripts generated from recording HTTP, SQL, and socket sessions.
VU_tux.h is automatically included in scripts generated from recording a TUXEDO
session.

If you are manually writing a script, include the following preprocessor statement:

#include <VU.h>

If you are manually writing a script that accesses a TUXEDO application, include both
VU_tux.h and VU.h as preprocessor statements:

#include <VU.h>
#include <VU_tux.h>

VU.h

The VU.h file includes definitions for:

■ The EOF value returned by various VU functions.

■ The file descriptors for the standard files.

■ ENV_VARS, which lets you operate on the environment variables as a unit.

■ The HOURS, MINUTES, and SECONDS macros, which enable you to specify time
units other than milliseconds.

❑ HOURS(A) returns the milliseconds in A hours.

❑ MINUTES(A) returns the milliseconds in A minutes.

❑ SECONDS(A) returns the milliseconds in A seconds.

The value A must be an integer expression.

■ All error codes (_error) that are not provided by the SQL database server.

■ All options recognized by sqlsetoption().
58 Chapter 4

Preprocessor Features
Some constants defined in VU.h are vendor-specific. For example, the names of
Oracle-specific values begin with ORA_; the names of Sybase-specific values begin
with SYB_.

VU_tux.h

The VU_tux.h file includes definitions for symbolic constants and flag values used
with TUXEDO emulation commands and functions.

sme/data.h

The sme/data.h file includes definitions for functions that come with Rational
TestManager. These functions let you parse data returned by sqlnrecv into rows and
columns. Typically, this is useful in dynamic data correlation for SQL, where you
extract data from queries and use that data in subsequent statements.

sme/file.h

The sme/file.h file includes definitions for functions that read a line of data from a
file, parse the line that was read, and then reset the pointer to the next line of data, so
that each emulated user can parse a line. Typically, this is useful as an alternative to
datapools.

Preprocessor Features

TestStudio comes with the GNU C preprocessor. The preprocessor commands enable
you to:

■ Replace tokens.

■ Include more than one source file in a script.

■ Compile parts of a script.

Token Replacement

Token replacement and macro substitution can be specified with the #define
preprocessor command. To indicate simple replacement throughout the entire script,
use a command of the form:

#define orig_ident new_token

This replaces all occurrences of the identifier orig_ident with the token
new_token.
Scripts, Subroutines, and C Libraries 59

Preprocessor Features
To specify a macro definition with arguments, use a command of the form:

#define macro_name (arg1,arg2,...) macro_defn

Subsequent occurrences of macro_name(var1,var2,...) are replaced by
macro_defn, and occurrences of arg1,arg2,... inside the macro definition are
replaced by the corresponding varx. To continue a definition on the next line, put a
backslash (\) at the end of the line.

Example

This example substitutes var1 for x, var2 for y, and assigns var3 the greater of
var1 and var2:

#define greater(x,y) (((x)>(y))?(x):(y))
#define lesser(x,y) (((x)<(y))?(x):(y))
...
var3 = greater(var1,var2);

Creating a Script That Has More than One Source File

The #include preprocessor command lets you include another source file in your
script at compile time. This command has two forms:

#include <filename>
#include "filename"

The first form looks only in a standard location for filename. The standard location
is not specified in the VU language; it is the same set of directories used by the C
preprocessor. The second form checks the current directory for filename before
searching the standard location. In both cases, the contents of filename are inserted
into the script at the point where the #include appears.

Compiling Parts of a Script

Conditional compilation commands allow you to conditionally compile parts of a
script. There are three ways to specify conditional compilation:

■ #if-#else-#endif

■ #ifdef-#else-#endif

■ #ifndef-#else-#endif

The first has the form:

#if const1
t_stmnt1
...
t_stmntn
#else
f_stmnt1
60 Chapter 4

Preprocessor Features
...
f_stmntm
#endif

where const1 must be a constant (or an expression which has a value at compile
time), and t_stmnt1 through t_stmntn and f_stmnt1 through f_stmntm are any
VU statements or preprocessor commands. If the value of const1 is nonzero,
t_stmnt1 through t_stmntn are compiled; otherwise: f_stmnt1 through
f_stmntn are compiled. You can omit the #else and f_stmnt1 through f_stmntn
if no compilation is desired when const1 has the value 0.

The other two forms compile a portion of code if the token has been set through a
#define or through TestManager’s Tools > Options. Click the VU Compilation tab and
enter the name of the tokens under Defines. They are:

#ifdef token1
d_stmnt1
...
d_stmntn
#else
n_stmnt1
...
n_stmntm
#endif

and
#ifndef token1
n_stmnt1
...
n_stmntn
#else
d_stmnt1
...
d_stmntm
#endif

token1 must be an identifier and d_stmnt1 through d_stmntn and n_stmnt1
through n_stmntn are any VU statements or preprocessor commands.

If the #ifdef format is used, d_stmnt1 through d_stmntn are compiled if token1
was defined; otherwise, n_stmnt1 through n_stmntm are compiled.

If the #ifndef format is used, n_stmnt1 through n_stmntn are compiled if
token1 has not been defined; otherwise, d_stmnt1 through d_stmntm are
compiled.

As in the #if command, you can omit the #else portion in either of these forms.
Scripts, Subroutines, and C Libraries 61

Defining Your Own Subroutines
Defining Your Own Subroutines

The VU language lets you define the following kinds of subroutines:

■ Functions – Subroutines that return a value through a return statement.
You define functions with the func keyword.

■ Procedures – Subroutines that do not return a value. You define procedures with
the proc keyword.

Defining a Function

You can declare an integer function, which returns an integer value, or a string
function, which returns a string value. An array function can return a value which is
an array of integers or strings.

To define a function, use the following format:

[type] func fname [array_spec] (arg_list)
arg_declar;
{
 stmnt1;
 stmnt2;
 ...
 stmntn;
 return ret_exp;
}

You can define type as int or string. The default is int, so you can omit it if you
are declaring an integer function.

fname is the name of the function you want to define.

array_spec, used only in array functions, is a list of integer constants that specify
the size of the first, second, and third dimensions of the array. Each integer constant is
enclosed in brackets. A one-dimensional array is [c1], a two-dimensional array is [c1]
[c2], and a three-dimensional array is [c1] [c2] [c3].

arg_list lists the function’s arguments. If the function has more than one argument,
separate them by commas. If the function has no arguments, follow the name of the
function with a pair of empty parentheses, such as func1().

arg_declar is the declaration of the arguments. Arguments whose data type is not
integer must be declared before the opening brace of the function.

stmnt1, stmnt2, stmntn are the VU language statements in the function. If the
function contains only one statement, you can omit the braces.
62 Chapter 4

Defining Your Own Subroutines
A function must have at least one return statement. If a function has more than one
return statement, only one is executed per call. The return is executed before the
function completes execution.

ret_exp is an expression whose type matches the type of the function. If you have
defined an array function, the number of dimensions of ret_exp must match the
number of dimensions of the function. Use a null ret_exp (return "";) to return a
null string from a string function.

The order and data type of the arguments in the function call must coincide with the
order and data type of the arguments in the function definition. If they do not
coincide, a compilation error results.

You might get a warning message if the number of arguments in the function call and
function definition do not match. If you have extra arguments in the function
definition, you are not able to reference them while the function is executing. If there
are extra arguments in the function call, they are ignored.

The value returned by a function must match the type of the function. For example,
the expression following the return must have an integer value if the function is an
integer function and a string value if the function is a string function.

Calling a Function

To call a function, simply use the function name and the argument list:

fname (arg_list)

where fname specifies the name of the function, and arg_list lists the arguments of
the function call.

Example

The following example defines a function with more than one return statement. The
function, called intcomp, compares two strings:

func intcomp(int1, int2)
string int1, int2;
{
 if (int1 == int2)
 return 0;
 else if (int1 < int2)
 return -1;
 else
 return 1;
}

Scripts, Subroutines, and C Libraries 63

Defining Your Own Subroutines
Defining a Procedure

To define a procedure, use the following format:

proc pname (arg_list)
arg_declar;
{
 stmnt1;
 stmnt2;
 ...
 stmntn;
)

pname is the name of the procedure you want to define.

arg_list is a list of the procedure’s arguments. If the procedure has more than one
argument, separate them by commas. If the procedure has no arguments, follow the
name of the procedure with a pair of empty parentheses, such as proced1().

arg_declar is the declaration of the arguments. Arguments whose data type is not
integer must be declared before the opening brace of the procedure.

stmnt1, stmnt2, stmntn are the VU language statements in the procedure. If the
procedure contains only one statement, you can omit the braces.

Although procedures do not return values, you can include the statement return; to
return control to the caller.

Calling a Procedure

To call a procedure, simply use the procedure name and the argument list:

pname (arg_list)

Example

The following example defines the procedure dis_time, which displays the time and
sounds a tone (ASCII 007). The procedure then returns control to the calling program:

proc dis_time(time_str)
string time_str;
{
 printf("At the tone%c, the time will be %s", ’\007’, time_str);
 return;
}

64 Chapter 4

Accessing External C Data and Functions
Accessing External C Data and Functions

The VU language supports access to external C data and functions. A VU script can
call functions written in C and pass values as arguments to the C functions.

 C functions can return values to VU scripts. External C objects are declared in VU
using the keyword external_C.

VU integers are signed 32-bit integers. These are usually declared in C as int or long
(this section refers to them as C type int). VU strings have no exact C counterpart but
are accessed as C character pointers (char *). VU arrays are accessed in C as a
pointer to a block of data of the appropriate type. Multidimensional arrays are passed
as a pointer to a block of contiguous memory containing the data in row-major
(normal C) order.

External C Variables

A C pointer can access a VU array of 1, 2, or 3 dimensions.

The following table shows the C data types that can be accessed by VU. Other data
types are not supported and give unpredictable results.

An external C char *, or array of char, must be null terminated. VU interprets these
as strings. VU does not perform memory management on external C strings or
external C string arrays.

In a script an external C string is read-only unless its VU declaration includes its
maximum size. The C code must allocate space for the string greater than or equal to
maxsize bytes. The maximum size must include room for the C null-terminator
character ’\0’; it is specified with a colon and an integer constant, as in:

external_C string:81 extc_line;

Space for the string might be declared in C as:

char extc_space[81];
char *extc_line = extc_space;

C Variable Type VU Variable Type

int int

char * string /* read only */

char * string:maxsize /* writable */

int * int [], int[][], int[][][]

char ** string [], string [][], string [][][]
Scripts, Subroutines, and C Libraries 65

Accessing External C Data and Functions
In the preceding example, VU could write up to 80 characters to extc_line. An
attempt to write more than 80 characters causes a runtime error.

VU declarations of C variables that are pointers to int or char * must be declared as
VU arrays with a fixed size and must have no more than 3 dimensions. The data
pointed to by the C variable is interpreted as a VU array of the declared type. VU does
not perform memory management on the C pointers.

External C data cannot be declared persistent or shared. Values of external C
variables persist for the duration of the run.

Declaring External C Subroutines

An external C subroutine is declared the same way as a VU function or procedure,
with an empty statement block for the body.

The following VU declarations:

external_C func foo(i, s)
string s;
{}
external_C proc bar(limit, ia)
int limit;
int ia[];
{}
external_C int func[10][20] afunc()
{}

are used for the C functions whose prototypes are:

int foo(int, char *);
void bar(int, int *);
int *afunc(void);

The VU compiler performs type and number checking for argument variables
between their declaration and their use.

An external C function is called in the same way that a VU function or procedure is
called. Any VU data type can be passed to an external C subroutine.
66 Chapter 4

Accessing External C Data and Functions
Accessing Values Returned from C Functions

A C function returns a pointer accessed as a VU array of 1, 2, or 3 dimensions.

The following table shows the only C data types that can be returned from an external
C function. Other data types are explicitly not supported, and give unpredictable
results.

A char * returned by a C function must point to a null terminated block of
characters. VU interprets this as a string and does not attempt to perform memory
management on strings returned from C functions.

VU declarations of C functions that return pointers to int or char * must be declared
as VU functions that return arrays with a fixed size, and have no more than three
dimensions. The data pointed to by the actual return value is interpreted as a VU
array of the declared type. VU does not attempt to perform any memory management
on the returned pointers.

Passing Arguments to External C Functions

Arguments are passed to external C functions by value or by reference. The default is
to pass arguments by value. Arguments declared with the keyword reference are
passed by reference (address). Reference arguments are passed as pointers to the
appropriate types. Arrays are always passed as a pointer to a block of data of the
appropriate type. Arguments declared reference are passed with the & operator,
allowing the VU compiler to type-check the arguments.

Arrays are always passed by reference; you should not use the reference keyword
and the & operator with array arguments.

When passing VU arguments to external C functions, the data type of the
corresponding C argument must match this list. Other data types are not supported,
and yield unpredictable results.

C Return Type VU Return Type

void proc

int int func

char * string func

int * int func[], int func[][], int func[][][]

char ** string func[], string func[][],
string func[][][]
Scripts, Subroutines, and C Libraries 67

Accessing External C Data and Functions
The following table shows how VU arguments are passed:

Integers

Integer arguments behave exactly as in C, except for integer arrays.

Strings

The nearest equivalent C type to a VU string is a char *.

A nonreference string argument is passed as a pointer to a copy of the null-terminated
string data. The external C function can locally change characters in this copy, but
these changes do not affect the original string value upon return to the VU script. In
addition, the external C function must not attempt to modify storage beyond the end
of the string, including the null terminator.

A reference string argument allows the C function to change the VU string’s
characters and also to reassign the actual pointer. If you want the external C function
to modify the contents of the VU string, you must pass the string by reference. You
must also pass a string by reference if the C function reassigns the string’s pointer in
order to cause a VU string to become longer. For more information, see Memory
Management of VU Data on page 68.

An array of strings is passed as a pointer to a block of character pointers.

VU Data Type Is Passed as C Data Type

int int

string char *

reference int s32 *

reference string char **

int [] s32 *

string [] char **

int [][] s32 *

string [][] char **

int [][][] s32 *

string [][][] char **
68 Chapter 4

Accessing External C Data and Functions
Arrays

An array is passed as a pointer to a block of data of the appropriate type (int,
char *) just as C programmers expect to pass arrays.

A multidimensional array is passed as a pointer to a block of contiguous memory
containing the data in row-major (normal C) order.

Memory Management of VU Data

Data created in VU is “owned” by VU. VU performs memory management on all of
its data.

Strings that VU creates point to malloc’ed data, and VU can free them at any time. C
functions that use VU strings as arguments must not save the value of a VU string in
static (global) C variables, or unpredictable results occur. In addition, a C function
modifying a reference argument originating from a string created by VU should free
or reallocate the original pointer, and the new value must be the result of a call to
realloc or malloc.

The same is true for pointers to VU array data. The storage is managed by VU,
and C functions must not save the values of such pointers in static variables. The
elements of a VU array are essentially passed by reference, and may be treated as
such. String array elements may be treated as reference strings.

All VU variables and scalar array elements are created in an undefined state and have
no value. When passed to C functions as reference arguments, these values are
converted to default values. Undefined strings are passed as NULL, integers as 0.
Upon return from the C function, strings with value NULL are again considered
undefined. Upon return from the C function, all integers are considered defined. If the
C function did not assign a value to such an argument, it retains the default value of 0.

Memory Management of C Data

Data created in C modules, and all pointer values returned from C functions or
external C variables, are “owned” by C. VU does not perform any memory
management on this data — all memory management must be performed by C
modules.

Specifying External C Libraries

You can specify external C libraries for use by all VU scripts in a TestManager project.
In TestManager, select Tools > Options, and then click the VU Compilation tab. Under
External C Libraries, select the libraries you want to add and click >.
Scripts, Subroutines, and C Libraries 69

Accessing External C Data and Functions
To make a library available to a particular script, modify the script properties for that
script. You can modify script properties using TestManager or Robot. In TestManager,
open a suite that includes the script, right-click on the script, and then select Script
Properties from the menu. Click the VU Compilation tab. Under External C Libraries, click
Add, and then enter the name of the library you want to add.

It is recommended that you enter the name of the library without the .DLL extension.
This way the script can be run on UNIX Agent computers by posting the library to the
Agent.

Creating a Dynamic-Link Library on Windows NT

To access C code and data from a VU script, compile the C code into a dynamic-link
library (DLL).

Note: On Windows NT systems, in order for VU scripts to access data items defined
in .DLLs, you must provide a function that returns the address of the data item. The
function must be named the same as the data item with addr_ added to the
beginning of the function name.

There are three steps involved in creating a DLL:

1 Write and compile the C source code to be called from your VU script.

2 Examine the VU script, and note which functions and variables the script needs to
access.

3 Create the DLL, and export the necessary symbols.

The following are the general steps you take to create the external library file c_prog
and make it available to a script:

1 Write c_prog.c, which contains code that you want to call from your script,
script.s. Invoke the Microsoft C compiler to compile c_prog.c and produce
c_prog.obj:

cl /c c_prog.c

2 Examine your VU script script.s. The example script on page 71 uses external
C notation to indicate that the symbols s_func, afunc, and addr_message are
defined in a C module.

3 Issue the link command to create a DLL and export the external C symbols. The
following command produces c_prog.lib, c_prog.exp and c_prog.dll, and
exports s_func, afunc, and addr_message:

link c_prog.obj /dll /export:s_func /export:afunc
/export:addr_message
70 Chapter 4

Accessing External C Data and Functions
4 Once you have created the DLL, copy it to each project that needs to access it. The
directory location is:

 Project\project_name...\Script\externC

For more detailed information on creating a DLL, consult the documentation for a
Microsoft C development tool such as Microsoft Visual Studio.

Creating a Shared Library on UNIX

To access C code and data from a VU script, compile the C code into a shared library
or shared object. C source (.c) files are compiled into object (.o) files by cc(1), then
one or more object files are combined into a shared library (.so) by ld(1). The cc and
ld options are system-dependent; see cc(1) and ld(1) for more information. The
following example shows how to compile a program and create a shared library:

$ cc -Kpic -O -c foo.c
$ cc -Kpic -O -c bar.c
$ ld -dy -G -Bsymbolic foo.o bar.o -o foo.so -lc
$

Or, equivalently (on most systems),

$ cc -KPIC -O -dy -G -Bsymbolic foo.c bar.c -o foo.so -lc
$

The -c option specifies that cc generates an .o file, and the -KPIC option requests
position-independent code. The -dy option of ld specifies dynamic linking; the
-G option specifies that ld should produce a shared object; the -Bsymbolic option
binds references to global symbols to their definitions within the object; and the -lc
option is needed in conjunction with the -Bsymbolic option to resolve references to
the C library.

Once you have created the shared library, copy it to each UNIX Agent that needs to
access it. The default directory location is /tmp/externC. You can change the
directory through TestManager. Open a suite, click the Computers button, and change
the Local Directory name. You must create an externC subdirectory under the local
directory name.

Libraries can be shared only across the same UNIX operating system vendor’s agents.
You must create a shared library version for each distinct UNIX operating system
type.

Note: DLLs on Windows NT systems cannot print directly to the virtual tester’s
stdout or stderr files. Therefore, the following script produces different output on
UNIX Agents than on Windows NT Agents.
Scripts, Subroutines, and C Libraries 71

Accessing External C Data and Functions
Examples

C module: lib/c_script.c

include <stdlib.h>
static int table[10][20];
char msg_data[100];
char *message = msg_data;
char **addr_message()
{
return &message;
}
int foo(int i, char **s)
{
*s = *s? realloc(*s, 18): malloc(18);
strcpy(*s, "hello from C land");
return 10 * i;
}

void bar(int max, int *a)
{
int i;
printf("message in bar(): [%s]\n", message);
for (i = 0; i <= max; i++)
 a[i] = i;
}

char *s_func(char *s)
{
printf("C output: [%s]\n", s);
return "s_func return value";
}

int *afunc(void)
{
return &(table[0][0]);
}

VU module: script.s

external_C string:100 message;
external_C func foo(i, s)
reference string s;
{}

external_C proc bar(limit, ia)
int limit;
int ia[];
{}

external_C int func[10][20] afunc()
{}

external_C string func s_func(s)
72 Chapter 4

Accessing External C Data and Functions
string s;
{}

string vs, s;
int ary[10][100];

{
vs = "hello world";
s = s_func(vs);

message = s + ", this is a test.";

ary = afunc();

foo_res = foo(5, &vs);
printf("result of foo: %d\n", foo_res);
printf("message = [%s]\n", message);

size = limitof ary[5];
bar(size, ary[5]);

for (i = 0; i <= size; i++)
printf("ary[5][%d] = %d\n", i, ary[5][i]);
}

Create the shared library:

$ cd lib
$ cc -KPIC -O -dy -G -Bsymbolic c_script.c -o c_script.so -lc
$ cd ..

Run the suite.

Contents of user output on UNIX Agents:

C output: [hello world]
result of foo: 50
message = [s_func return value, this is a test.]
message in bar(): [hello world, this is a test.]
ary[5][0] = 0
ary[5][1] = 1
ary[5][2] = 2
ary[5][3] = 3
ary[5][4] = 4
ary[5][5] = 5
ary[5][6] = 6
ary[5][7] = 7
ary[5][8] = 8
ary[5][9] = 9
ary[5][10] = 10
ary[5][11] = 11
ary[5][12] = 12
ary[5][13] = 13
ary[5][14] = 14
ary[5][15] = 15
Scripts, Subroutines, and C Libraries 73

Accessing External C Data and Functions
ary[5][16] = 16
ary[5][17] = 17
ary[5][18] = 18
ary[5][19] = 19

Contents of user output on NT Agents:

result of foo: 50
message = [s_func return value, this is a test.]
ary[5][0] = 0
ary[5][1] = 1
ary[5][2] = 2
ary[5][3] = 3
ary[5][4] = 4
ary[5][5] = 5
ary[5][6] = 6
ary[5][7] = 7
ary[5][8] = 8
ary[5][9] = 9
ary[5][10] = 10
ary[5][11] = 11
ary[5][12] = 12
ary[5][13] = 13
ary[5][14] = 14
ary[5][15] = 15
ary[5][16] = 16
ary[5][17] = 17
ary[5][18] = 18
ary[5][19] = 19
74 Chapter 4

5User Emulation
In addition to its C-like features, VU provides features designed to emulate actual
testers running client applications and sending requests to a server. This chapter
describes these features in the following topics:

■ Emulation commands

■ Emulation functions

■ VU environment variables

■ Read-only variables

■ Supplying a script with meaningful data

Emulation Commands

An emulation command allows a test script to communicate with a server in the same
manner that an actual client application does. Send and receive emulation commands
send communications to a server, or receive and evaluate the server’s responses. They
are specific to the recording option you select on the Generator Filtering tab of the
Session Record Options dialog. The supported protocols are:

The scripts that are generated contain the send or receive emulation commands
appropriate to the protocol selected. You can play back the generated scripts with or
without manual editing.

Protocol Records

HTTP Web browser interactions with a Web server.

SQL Interactions with an SQL database server.

TUXEDO Interactions with a TUXEDO transaction server.

IIOP Interactions with CORBA application objects.

Socket Interactions with a raw socket (undefined protocol).
75

Emulation Commands
Other emulation commands are independent of the selected protocol. You add them
to generated scripts to provide measurement timers, customize test cases, or call
external C programs. The protocol-independent emulation commands are:

■ The start_time and stop_time commands. You can insert these commands
during recording through the Robot Insert menu. With these commands, you can
time a block of user actions, typically for a single user level transaction.

■ The testcase command. This command lets you customize your own test cases.
For example, you can check a response for specific results and have the success or
failure logged in the TestManager report output.

■ The emulate command. This command lets you use external C linkage to support
a proprietary protocol or interface. You can wrap VU or external C function calls
with the emulate command, and thus obtain the full set of services normally
associated with the standard emulation commands, including time stamping and
reporting on success or failure.

Emulation commands that succeed return a value of 1 or greater. Emulation
commands that fail return a value of 0 or less.

HTTP Emulation Commands

If you have recorded Web traffic, your resulting script will contain VU emulation
commands and functions pertaining to HTTP. These commands and functions have
the prefix http.

In general, you will not have to alter an HTTP script extensively; it should typically
run without errors.

HTTP Commands that You Insert Manually

TestManager also provides HTTP emulation commands and functions that you can
insert manually into your script. These are:

■ http_header_info. This function lets you retrieve the values of the header
information. For example, you can retrieve the content length of the page or when
the page was last modified.

■ http_recv. This command enables the script to receive data until a specified
string appears in the data. At the end of the specified string, the script stops
reading data.
76 Chapter 5

Emulation Commands
Monitoring Computer Resources

To monitor computer resources for HTTP servers, you must add an INFO SERVER
declaration for that computer in at least one VU script in the test suite.

The syntax for this statement is as follows:

INFO SERVER label=addr [, label=addr]

label is a string that gives the logical name of the server. This is the name you see
associated with the resource data in TestManager reports and graphs.

addr is a string that gives the network name or IP address of the Web server.

Although you can add this line in the script anywhere you can declare a VU variable,
you should generally add it at the start of the script (after the opening brace) or
immediately before the first http_request that communicates to that server. If you
add it before the first http_request, enclose the INFO SERVER declaration in
braces.

You need to add a declaration for each different HTTP server you want to monitor.
You can declare the same INFO SERVER in different scripts; however the definitions
must be consistent for all scripts included in a TestManager suite. There is no
requirement that the INFO SERVER declaration occur in each HTTP script, or for that
matter in an HTTP script at all (as long as it occurs in at least one VU script included
in the test suite). In fact, you could create a special “servers” script just for this
purpose, and assign that “declaration-only” script to any (or all) user groups in the
suite. However, the advantage of putting the appropriate INFO SERVER declarations
in each HTTP script is that less maintenance is involved when creating test suites
since you don’t have to be concerned with which scripts access which HTTP servers.

Example

The following example shows a portion of an HTTP script, with comments and two
INFO SERVER declarations added. One INFO SERVER declaration is at the start of
the script and one is before the first http_request (enclosed in braces).

Each server makes two requests — one for each page of data received. Only the first
request contains the connection parameters. The second request uses the existing
connection specified by the Server_connection environment variable.

{
INFO SERVER "CAPRICORN_WEB" = "capricorn-web";
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80", "",
HTTP_CONN_DIRECT,

"GET / HTTP/1.0\r\n"
"Accept: application/vnd.ms-excel, application/mswo"
"rd, application/vnd.ms-powerpoint, image/gif, imag"
User Emulation 77

Emulation Commands
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
"Accept-Language: en\r\n"
"UA-pixels: 1152x864\r\n"
"UA-color: color8\r\n"
"UA-OS: Windows NT\r\n"
"UA-CPU: x86\r\n"
"User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
"Host: capricorn-web\r\n” “Connection: Keep-Alive\r\n\r\n";

set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
{
INFO SERVER "GEMINI_WEB" = "gemini-web";
}
GEMINI_WEB_80 = http_request "GEMINI-WEB:80", "",
HTTP_CONN_DIRECT,

"GET / HTTP/1.0\r\n"
"Accept: application/vnd.ms-excel, application/mswo"
"rd, application/vnd.ms-powerpoint, image/gif, imag"
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
"Accept-Language: en\r\n"
"UA-pixels: 1152x864\r\n"
"UA-color: color8\r\n"
"UA-OS: Windows NT\r\n"
"UA-CPU: x86\r\n"
"User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
"Host: capricorn-web\r\n” “Connection: Keep-Alive\r\n\r\n";

set Server_connection = GEMINI_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(GEMINI_WEB_80);
}

SQL Emulation Commands

If you have recorded a SQL application, your resulting script contains VU emulation
commands and functions pertaining to SQL. These commands and functions have the
prefix sql.

A script that simply reads records will probably play back without errors. However, if
you read the same record from the database over and over, your script technically
“works,” but may not reflect a realistic workload. This is because the database will
cache the record, which may or may not be desirable, depending on whether or not
cached records reflect the workload you are emulating.
78 Chapter 5

Emulation Commands
You probably need to alter a script that inserts records into or deletes records from a
database before it plays back as intended. This is because if one virtual tester deletes a
record and does not restore the database, the second virtual tester’s delete fails
because the record is already deleted.

Processing Data from SQL Queries

The sqlnrecv command reads the data returned from the database, but it does not
parse it into rows and columns. The following VU toolkit functions, which come with
Rational TestManager, enable you parse data returned by sqlnrecv into rows and
columns.

■ proc SaveData(data_name)

■ proc AppendData(data_name)

■ proc FreeData(data_name)

■ proc FreeAllData()

■ string func GetData(data_name, row, column)

■ string func GetData1(data_name, column)

SaveData stores the data returned by the most recent sqlnrecv command, tagging it
with the value of the data_name argument.

AppendData adds data to an existing named data set. FreeData and FreeAllData
release the data and associated storage for the named set of data or for all sets of data
respectively. GetData retrieves the specified row and column from the data
associated with data_name.

GetData1 is similar to GetData, but GetData1 always retrieves the specified
column from the first data row.

SQL Error Conditions

SQL emulation commands return a value of >=1 if execution was normal, or <=0 if
an error occurred (that is, Timeout_val expired or _error has a nonzero value).
SQL emulation commands set _error and _error_text to indicate the status of the
emulated SQL statements. If _error has a nonzero value and Log_level is set to
"ALL" or "ERROR," the log file entry indicates that the command failed, and the
values of _error and _error_text are logged.
User Emulation 79

Emulation Commands
You can also set the SQL emulation commands to “expect” certain errors. The
EXPECT_ERROR clause causes the emulation command to “pass” (match the expected
response) if the expected error occurs. Conversely, if the SQL statement produces no
error, but an error is expected, the emulation command “fails” (does not match the
expected response), and is logged and recorded accordingly.

VU Toolkit Functions: File I/O

A common task in performance testing is to read a set of data from a file, parse the
line read, and then use the fields of data as send parameters. The VU toolbar functions
provide a set of routines and variables to implement this process, and include the
capability of processing comments in the input file. The variables are:

■ string Last_Line

■ string Last_Field

■ string Last_Subfield

These contain the most recently read line, field, and subfield as produced by the
following functions:

■ func ReadLine(file_descriptor)

■ string func NextField()

■ string func IndexedField(index)

■ string func NextSubField()

■ string func IndexedSubField(index)

■ SHARED_READ(filename, prefix)

The ReadLine function reads a line from the currently open file designated by file
descriptor. The function has many options to define comment lines, field
delimiters, and end-of-file behavior.

The NextField function parses the line read by ReadLine. Each successive call
returns the next field on the line. The variable Last_Field contains the string
returned by the most recent call to this function.

The IndexedField function parses the line read by ReadLine and returns the field
indicated by the index argument. A call to IndexedField resets the field pointer so
that a subsequent call to NextField returns the field following the index. The
variable Last_Field contains the string returned by the most recent call to this
function.
80 Chapter 5

Emulation Commands
The NextSubField function parses the field returned by the most recent call to
NextField or IndexedField. Each successive call returns the next subfield within
the field. The variable Last_Subfield contains the string returned by the most
recent call to this function.

The IndexedSubField function parses the field returned by the most recent call to
NextField or IndexedField, returning the subfield indicated by index. A call to
IndexedSubField resets the field pointer so that a subsequent call to NextField
returns the field following the index. The variable Last_Subfield contains the
string returned by the most recent call to this function.

SHARED_READ allows multiple virtual testers to share filename, so that no two
virtual testers read the same line. It depends on two externally defined shared
variables named prefix_lock and prefix_offset.

TUXEDO Emulation Commands

If you recorded a TUXEDO application, your resulting script contains VU emulation
commands and functions pertaining to TUXEDO.

The names for VU emulation commands follow the names of the TUXEDO API calls,
but they have the preface tux_. So, for example, the VU emulation command
tux_tpacall corresponds to the TUXEDO API call tpacall.

There are two basic types of commands:

■ Commands that return a pass/fail indicator. These commands return 1 (logical
true) if the commands succeeds, and 0 (logical false) if it fails.

■ The commands that return a value that other commands use later. If these
commands fail, they return -1.

How VU Represents TUXEDO Pointers

Some TUXEDO API calls use pointers. However, pointers are not supported in the VU
language. Therefore, the VU language uses free buffers to represent pointers.

A free buffer can be simple, representing a single buffer member, or composite,
containing many individually named buffer members. Within VU and TUXEDO, free
buffers can represent simple data types, such as pass-by-reference long integers, as
well as composite data types, such as nested C structures and TUXEDO typed buffers.

Since simple buffers have no members, you should use an empty string ("")
whenever a simple buffer member name is required.
User Emulation 81

Emulation Commands
For composite buffers, use the following syntax to specify a member:

name ["." name ["." name] ...] [":" instance]

where name is the name string given to the member, and instance is an integer
value representing the cardinal occurrence of a multiply defined member name.
Instance numbers begin with zero.

The following example loads the "msgid" string of the "qctl" member of a
BUFTYP_TPEVCTL buffer for tux_tpsubscribe:

tpevctl = tux_allocbuf(BUFTYP_TPEVCTL);
tux_setbuf_string(tpevctl, "qctl.msgid", "somevalue");
...

The following example loads the fourth occurrence of the field named "QUANTITY"
(converting value to an integer) from an FML buffer named odata_ populated by
tux_tpcall:

quantity = tux_getbuf_int(odata_, "QUANTITY:3");

With FML buffers, omitting instance implies the first occurrence of that member
name. For example, "QUANTITY:0" and "QUANTITY" are equivalent.

The free buffer types, their member names, and the corresponding VU data types are
as follows:

Buffer Type/Member Names VU Data Type Equivalent

BUFTYP_CARRAY string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_CLIENTID
"clientdata0"
"clientdata1"
"clientdata2"
"clientdata3"

(composite)
int
int
int
int

BUFTYP_FML
User-defined field names and values

(composite)

BUFTYP_FML32
User-defined field names and values

(composite)

BUFTYP_REVENT int

BUFTYP_STRING string (user-defined maximum length)

BUFTYP_SUBTYPE string (maximum length = 15)
82 Chapter 5

Emulation Commands
BUFTYP_TPEVCTL
"flags"
"name1"
"name2"
"qctl"

"qctl.flags"
"qctl.deq_time"
"qctl.priority"
"qctl.diagnostic"
"qctl.msgid"
"qctl.corrid"
"qctl.replyqueue"
"qctl.failurequeue"
"qctl.cltid"

"qctl.cltid.clientdata0"
"qctl.cltid.clientdata1"
"qctl.cltid.clientdata2"
"qctl.cltid.clientdata3"
"qctl.urcode"
"qctl.appkey"

(composite)
int
string (maximum length = 31)
string (maximum length = 31)
string. Nonprintable characters are
converted to hexadecimal strings
delimited by grave accent characters.
int
int
int
int
string (maximum length = 31)
string (maximum length = 31)
string (maximum length = 15)
string (maximum length = 15)
string. Nonprintable characters are
converted to hexadecimal strings
delimited by grave accent characters.
int
int
int
int
int
int

BUFTYP_TPINIT
"usrname"
"cltname"
"passwd"
"grpname"
"flags"
"datalen"
"data"

(composite)
string (maximum length = 30)
string (maximum length = 30)
string (maximum length = 30)
string (maximum length = 30)
int
int
string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

Buffer Type/Member Names VU Data Type Equivalent
User Emulation 83

Emulation Commands
BUFTYP_TPQCTL
"flags"
"deq_time"
"priority"
"diagnostic"
"msgid"
"corrid"
"replyqueue"
"failurequeue"
"cltid"

"cltid.clientdata0"
"cltid.clientdata1"
"cltid.clientdata2"
"cltid.clientdata3"
"urcode"
"appkey"

(composite)
int
int
int
int
string (maximum length = 31)
string (maximum length = 31)
string (maximum length = 15)
string (maximum length = 15)
string. Nonprintable characters are
converted to hexadecimal strings
delimited by grave accent characters.
int
int
int
int
int
int

BUFTYP_TPTRANID
"info0"
"info1"
"info2"
"info3"
"info4"
"info5"

(composite)
int
int
int
int
int
int

BUFTYP_TYPE string (maximum length = 7)

BUFTYP_VIEW string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_VIEW32 string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_X_C_COMMON string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_X_C_TYPE string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

Buffer Type/Member Names VU Data Type Equivalent
84 Chapter 5

Emulation Commands
Free buffers are allocated with the tux_allocbuf and tux_allocbuf_typed
functions, which return a buffer handle that can be used to reference the allocation by
other API calls. Once a free buffer is no longer needed, deallocate it with the
tux_freebuf function. Functions for loading, unloading, resizing, and describing
buffers and buffer members also are available.

TUXEDO Error Conditions

Error conditions differ slightly between TUXEDO and the VU language. Consistent
with the VU language, TUXEDO emulation commands set the _error and
_error_text read-only variables. They also set _error_type, a variable used only
with TUXEDO. Although you need to check the value of _error or the return value
to determine whether an error occurred, you should then check the _error_type,
which indicates how to interpret the value in _error. For example, _error_type
tells you if the value in _error is a TUXEDO system error code or an FML error code.
To see the actual message, you read _error_text, just as with any other VU
emulation command.

Four VU emulation commands (tux_tpcall, tux_tpgetrply, tux_tprecv, and
tux_tpsend) update the read-only variable _tux_tpurcode. This variable contains
the same information as the TUXEDO global variable tpurcode, and will help
diagnose playback errors related to a failure in the server.

IIOP Emulation Commands

This section describes how the VU language emulates Internet Inter-ORB Protocol
(IIOP) activity. VU’s IIOP emulation commands and functions currently support the
CORBA model.

Interfaces, Interface Implementations and Operations

CORBA (Common Object Request Broker Architecture) defines an architecture for
remote method invocation between distributed objects. The methods of an object in
the CORBA model are exposed to other objects via its IDL interface definition, or
interface. Once a reference to an object is obtained, operations (methods) may be
invoked on that object. Remote invocation occurs via IIOP request messages.

BUFTYP_X_OCTET string (user-defined maximum length).
Nonprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

Buffer Type/Member Names VU Data Type Equivalent
User Emulation 85

Emulation Commands
Within this section the terms object and interface implementation may be used
interchangeably. Likewise the terms method and operation are equivalent. However,
VU/IIOP is concerned only with the CORBA/IIOP interface model and not the larger
CORBA object model. Therefore object model terminology is only used when it serves
to clarify a subject.

Request Contexts and Result Sets

Within VU/IIOP, every operation invocation is associated with a request context that
encapsulates all of the information required to perform the operation. This includes
all of the information needed to construct an IIOP Request message (object key,
operation name, parameters, service context, requesting principal, and so on) as well
as the information required to retrieve the response (request ID, and so on).

The operation’s response data, known as the result set, is also encapsulated within its
associated request context. This includes any operation out parameters, the return
value and any exception information that may have been returned in the response.

Therefore all interactions with an interface implementation are done through a
request context. VU/IIOP implements request contexts via Request pseudo-objects.

VU/IIOP Pseudo-Objects

VU uses a number of abstract data types to represent collections of data that cannot be
represented by the native VU language scalars (such as ints and strings). These types,
called pseudo-objects, are referenced by their pseudo-object handles.

Handles are integer values that uniquely identify pseudo-objects and their associated
variables.

Two pseudo-objects supporting IIOP messaging are:

■ Object Reference

■ Request

Object Reference Pseudo-Objects

An Object Reference pseudo-object represents a reference to an interface
implementation that implements the operations of a specific interface. Once an
interface specification is bound to an active interface implementation by the
iiop_bind emulation command, a pseudo-object representing this binding is
created and assigned a unique handle. The handle may then be used by the emulation
commands to send operation requests to the interface implementation.
86 Chapter 5

Emulation Commands
When an interface binding is no longer needed, that Object Reference pseudo-object
may then be released by the iiop_release emulation function. Once released, the
binding to the object implementation is destroyed.

Request Pseudo-Objects

A Request pseudo-object represents an active request context. They are created by the
iiop_invoke emulation command.

Once created a Request pseudo-object persists until it is explicitly destroyed by a call
to iiop_release, after which all request context information associated with that
pseudo-object is destroyed and its handle becomes invalid.

Parameter Expressions

A parameter expression is a string expression used to specify the names, input values
and output binding variables for an operation's argument list and corresponding
result set members (collectively known as the operation’s parameters). Parameter
expressions are used by all emulation commands that invoke operations on an
interface implementation.

The syntax for a parameter expression is:

parameter-name-expr ":" [input-bind-expr] [":" &output-bind-var]

where

parameter-name-expr is a string naming the parameter to be bound.

input-bind-expr is an optional VU language expression specifying the input value
to the named parameter, which must be an IDL “in” or “inout” parameter.

output-bind-var is an optional VU variable that will contain the output value of
the named parameter, which must be an IDL “inout” or “out” parameter.

Parameter Name Expressions

Parameters that represent single data values are known as scalar parameters.
Parameters that represent data structures containing multiple data values are known
as aggregate parameters. VU/IIOP can address any IDL basic data type, or any IDL
basic data type member of any IDL constructed data type, used as a scalar or
aggregate operation argument, result value or exception when identified with a
parameter name expression.

The parameter name expression form for a scalar operation argument or exception
member is simply:

parameter-name
User Emulation 87

Emulation Commands
where parameter-name is the IDL operation argument or exception member name.
The name for an operation result value is the empty string ("").

There are four aggregate IDL constructed data types: struct, union, array, and
sequence. The expression form for identifying an aggregate parameter's member is:

member-expr[member-expr...]

where member-expr has four possible forms:

■ For IDL basic types the form is:

member-name

where member-name is the name of the member, which may be the name of the
parameter if it is the topmost node.

■ For struct types the form for identifying struct members is:

struct-name"."member-expr

where struct-name is the name of the struct, which may be the name of the
parameter if it is the topmost node or the name of a member if it is embedded.

■ For union types the expression form for identifying union members is:

union-name":"discriminator-value"."member-expr

where union-name is the name of the union, which may be the name of the
parameter if it is the topmost node or the name of a member if it is embedded, and
discriminator-value is the value of the IDL union switch_type_spec for the
member being referenced.

■ For array and sequence types the member expression form for identifying array
and sequence members is:

member-expr"["element-id"]"

where element-id is an integer identifying the ordinal position of the member
within the array or sequence, starting at 0.

Interface Definition Language (IDL)

You must provide access to the IDL for your application to TestManager. The IDL for
an application usually consists of several files with a .idl extension. These files
describe the operations and parameters that the objects of your application support.
Developers can create the IDL manually using a text editor. The IDL can also be
generated from a modeling tool such as Rational Rose.
88 Chapter 5

Emulation Commands
Without access to the IDL, TestManager can create only opaque scripts. An opaque
script shows the names of the operations, but it does not show parameter names. For
example, the command below specifies that the deposit operation is to be invoked,
but it does so opaquely:

iiop_invoke ["deposit"] "deposit", objref_2,
"IIOP_RETURN" : : &iiop_return,
"*" : "‘010000007d000000‘";

If you load the IDL by clicking Tools <Arrow> Æ <Geometr 415 Md>Interfaces in
Robot, before recording a script, Robot will create more meaningful scripts. The
following is an example of an operation created with an IDL available:

iiop_invoke ["deposit"] "deposit", objref_2,
"account_number" : "2938845",
"amount" : "125";

If explicit path information is not provided within #include directives in IDL files,
not all IDL may be loaded. To ensure that all IDL files are loaded, create a user
environment variable called IDLINCLUDE. Set IDLINCLUDE to the path for IDL files
accessed by #include. For example:

d:\idl; d:\sysidl

Exceptions and Errors

Any operation may return an exception instead of its normal result set.

Error reporting takes advantage of the three error-related VU read-only variables:
_error, _error_type and _error_text:

_error contains the status code of the most recent VU/IIOP emulation command. If
the command completes successfully, _error is set to IIOP_OK. If the command
fails, _error contains a value greater than 0.The exact interpretation of _error is then
determined by the value of _error_type. _error_text contains a textual
definition of a non-zero _error code.

The VU language recognizes three types of errors:

■ server-reported CORBA system exceptions.

CORBA defines a set of standard exception definitions used by ORBs to report
system-level error events.

■ server-reported CORBA user exceptions.

■ TestManager-reported errors. These errors are in the _error read-only variable,.

TestManager reports error conditions that do not fall under the classification of
CORBA exceptions.
User Emulation 89

Emulation Commands
The following table lists the server-reported CORBA system exceptions.

if _error_type is 1 and _error is then _error_text is

1 IIOP_BAD_PARAM an invalid parameter was passed

2 IIOP_NO_MEMORY dynamic memory allocation failure

3 IIOP_IMP_LIMIT violated implementation limit

4 IIOP_COMM_FAILURE communication failure

5 IIOP_INV_OBJREF invalid object reference

6 IIOP_NO_PERMISSION no permission for attempted operation

7 IIOP_INTERNAL ORB Internal error

8 IIOP_MARSHAL error marshalling parameter/result

9 IIOP_INITIALIZE ORB initialization failure

10 IIOP_NO_IMPLEMENT operation implementation unavailable

11 IIOP_BAD_TYPECODE1 bad typecode

12 IIOP_BAD_OPERATION invalid operation

13 IIOP_NO_RESOURCES insufficient resources for request

14 IIOP_NO_RESPONSE response to request not yet available

15 IIOP_PERSIST_STORE persistent storage failure

16 IIOP_BAD_INV_ORDER routine invocations out of order

17 IIOP_TRANSIENT transient failure, reissue request

18 IIOP_FREE_MEM cannot free memory

19 IIOP_INV_IDENT invalid identifier syntax

20 IIOP_INV_FLAG invalid flag was specified

21 IIOP_INTF_REPOS error accessing interface project

22 IIOP_BAD_CONTEXT error processing context object

23 IIOP_OBJ_ADAPTER failure detected by object adapter

24 IIOP_DATA_CONVERSION data conversion error

25 IIOP_OBJECT_NOT_EXIST nonexistent object, delete reference

26 IIOP_TRANSACTION_REQUIRED transaction required
90 Chapter 5

Emulation Commands
The following table lists the server-reported CORBA user exceptions:

The following table lists the TestManager-reported errors:

Socket Emulation Commands

If you have recorded an unsupported protocol as a stream of bytes, your resulting
script will contain VU emulation commands and functions pertaining to raw socket
data. These commands and functions have the prefix sock.

Although socket recording will capture network traffic, you need to be familiar with
the network protocol to obtain a script you can work with and understand. If the
protocol is clear text, the process is fairly straightforward. If the protocol is not clear
text, you must understand the structure of the protocol messages.

Note: VU supports the Jolt protocol by using macros and user-defined VU functions
that call socket emulation commands. For information about the Jolt protocol, see
Appendix A.

27 IIOP_TRANSACTION_ROLLEDBACK transaction rolled back

28 IIOP_INVALID_TRANSACTION invalid transaction

29 IIOP_UNKNOWN unknown exception

if _error_type is 2 and _error is then _error_text is

1 IIOP_USER_EXCEPTION user exception

if _error_type is 3 and _error is then _error_text is

1 IIOP_TIMEOUT command timed out

2 IIOP_BINDFAIL unable to bind with any modus

3 IIOP_OP_UNKNOWN operation not found in IDL information

if _error_type is 1 and _error is then _error_text is
User Emulation 91

Emulation Functions
Emulation Functions

Like emulation commands, the VU emulation functions are related to virtual tester
emulation. However, emulation functions differ from emulation commands in the
following ways:

■ Emulation functions do not increment the emulation command count (_cmdcnt).

■ Emulation functions are neither logged in the standard log file nor recorded in the
standard result files; hence they are not available to TestManager reports.

■ Emulation functions do not generate think time delays nor do they time out.

VU Environment Variables

Environment variables specify the virtual testers’ environments. For example, you can
use an environment variable to specify:

■ A virtual tester’s average think time, the maximum think time, and how the think
time is mathematically distributed around a mean value.

■ How long to wait for a response from the server before timing out.

■ The level of information that is logged and is available to reports.

The following table summarizes the VU environment variables:

Environment Variable Category Values Default

CS_blocksize client/server integer 1 - 32767 1

Check_unread reporting string
"FIRST_INPUT_CMD"
"OFF"
"EVERY_INPUT_CMD"

"FIRST_INPUT_CMD
"

Column_headers client/server string "ON" "OFF" "ON"

Connect_retries connect integer 0-2000000000 100

Connect_retry_interv
al

connect integer 0-2000000000 ms 200

Cursor_id client/server integer: a value returned by
sqldeclare_cursor,
sqlopen_cursor, or
sqlalloc_cursor

0

Delay_dly_scale think time integer 0-2000000000 percent 100
92 Chapter 5

VU Environment Variables
Escape_seq exit sequence any bank expression; two
optional integer expressions

null bank expression

Http_control HTTP-related integer indicating 0 or more
of:
0 (exact match)
HTTP_PARTIAL_OK
HTTP_PERM_REDIRECT_
OK
HTTP_TEMP_REDIRECT_
OK
HTTP_REDIRECT_OK
HTTP_CACHE_OK

0

Iiop_bind_modi IIOP-related colon-separated list of one or
more of the following
strings: "File"
"Nameservice" "IOR"
"Visibroker"

null string

Line_speed HTTP-related integer indicating bits per
second: 0-2000000000

0 (no delay)

Log_level reporting string "ALL" "TIMEOUT"
"OFF" "ERROR"
"UNEXPECTED"

"TIMEOUT"

Logout_seq exit sequence any bank expression; two
optional integer expressions

null bank expression

Max_nrecv_saved reporting integer 0-2000000000 2000000000

Mybstack private a bank expression NULL (empty)

Mysstack private a string expression ""

Mystack private an integer expression 0

Record_level reporting "MINIMAL" "TIMER"
"FAILURE" "COMMAND"
"ALL"

"COMMAND"

Server_connection client/server A value returned by
sqlconnect

1

Sqlexec_control_orac
le

client/server string ""
"STATIC_BIND"

""

Sqlexec_control_
sqlserver

client/server string "LANGUAGE"
"RPC"

"LANGUAGE"

Environment Variable Category Values Default
User Emulation 93

VU Environment Variables
Changing Environment Variables Within a Script

Environment control commands allow a VU script to control a virtual tester’s
environment by operating on the environment variables. The environment control
commands are eval, pop, push, reset, restore, save, set, and show.

Every environment variable has, instead of a single value, a group of values: a default
value, a saved value, and a current value.

Sqlexec_control_syba
se

client/server string "LANGUAGE"
"RPC" "IMMEDIATE"

"LANGUAGE"

Sqlnrecv_long client/server integer 0-2000000000 20

Statement_id client/server integer 0, or a value returned
by sqlprepare or
sqlalloc_statement

0

Suspend_check reporting string "ON" "OFF" "ON"

Table_boundaries client/server string "ON" "OFF" "OFF"

Think_avg think time integer 0-2000000000 ms 5000

Think_cpu_threshold think time integer 0-2000000000 ms 0

Think_cpu_dly_scale think time integer 0-2000000000 ms 100

Think_def think time string "FS" "LS" "FR"
"LR" "FC" "LC"

"LR"

Think_dist think time string "CONSTANT"
"UNIFORM" "NEGEXP"

"CONSTANT"

Think_dly_scale think time integer 0-2000000000 ms 100

Think_max think time integer 0-2000000000 ms 2000000000

Think_sd think time integer 0-2000000000 ms 0

Timeout_act response timeout string "IGNORE"
"FATAL"

"IGNORE"

Timeout_scale response timeout integer 0-2000000000 ms 100

Timeout_val response timeout integer 0-2000000000 ms 120000 ms

Environment Variable Category Values Default
94 Chapter 5

VU Environment Variables
■ default – The value of an environment variable before any commands are applied to
it. Environment variables are automatically initialized to a default value, and, like
persistent variables, retain their values across scripts. The reset command resets
the default value, as listed in the previous table.

■ saved – The saved value of an environment variable can be used as one way to
retain the present value of the environment variable for later use. The save and
restore commands manipulate the saved value.

■ current – The VU language supports a last-in-first-out “value stack” for each
environment variable. The current value of an environment variable is simply the
top element of that stack. The current value is used by all of the commands. The
push and pop commands manipulate the stack.

Initializing Environment Variables through a Suite

You can set an initial value for the most commonly used environment variables for all
scripts in a suite. See the "Designing Suites" chapter of Using Rational TestManager for
details. Script settings take precedence. If you want a script setting to affect only the
script, set the value inside a push/pop block. Otherwise, the script setting will
change the environment variable setting for all subsequently executed scripts in a
suite.

Client/Server Environment Variables

The most commonly used client/server environment variables can be initialized for
all scripts executed in a suite from the Client/Server tab on the VU Environment
Variables dialog. The following table matches VU client/server environment variables
with corresponding names for them on the Client/Server tab.

Column_headers

This string environment variable, used by sqlnrecv and sqlfetch_cursor,
indicates whether column headers should be included with the retrieved data. Values
are "ON" (the default) or "OFF." When the value is "ON," sqlnrecv or
sqlfetch_cursor includes column names in _alltext and in the log file.
_response never includes column headers.

Variable GUI reference

Column_headers Column headers

Sqlnrecv_long Number of bytes to include in response

Table_boundaries Stop row retrievals at end of table
User Emulation 95

VU Environment Variables
CS_blocksize

This integer environment variable, used by sqlnrecv and sqlfetch_cursor,
specifies the maximum number of rows to receive with a single SQL database request.
If sqlnrecv or sqlfetch_cursor must retrieve more than the number of rows
specified by CS_blocksize, the rows are retrieved by multiple requests.

The minimum and default value is 1 row. Although the maximum value is 32767
rows, your system resources or database server may limit you to a considerably
smaller maximum value.

This environment variable affects system performance and response time
measurements. You should set it to the same value that the client application uses.
This may vary from one command to another.

If you set CS_blocksize too small, your system performs too many fetch
commands. If you set it too large, your system performs too few fetch commands.

You can initialize this environment variable only by editing a script.

Cursor_id

This integer environment variable has a default value of 0 and may contain any value
returned by sqldeclare_cursor, sqlopen_cursor, or sqlalloc_cursor.

If the value of Cursor_id is zero, then sqldeclare_cursor allocates new
resources for a cursor and returns the cursor id associated with those resources. If the
value of Cursor_id is non-zero, sqldeclare_cursor does not allocate new
resources, and instead reuses the resources associated with that cursor.

The sqlopen_cursor command behaves the same way when it is given a SQL
statement. If sqlopen_cursor is given a Cursor_id argument, Cursor_id has no
effect.

Server_connection

This integer environment variable identifies the current server connection over which
emulation commands operate. Values are integer expressions obtained by the
emulation functions sqlconnect, http_request, or sock_connect.

If Record_level is "COMMAND" or "ALL," Server_connection is recorded. This
is to inform TestManager reports which Server_connection an emulation
command uses.

You can initialize this environment variable only by editing a script.
96 Chapter 5

VU Environment Variables
Sqlexec_control variables

These string environment variables, used by sqlexec, control the method used to
transmit the SQL statement to the SQL database server.

The Sqlexec_control variables are as follows:

You can initialize this environment variable only by editing a script.

Variable Description

Sqlexec_control_sybase Values can be:

■ LANGUAGE. Default. Commands are sent
as regular SQL text.

■ RPC. Commands are initiated and
executed as a remote procedure call.
Arguments are optional.

■ IMMEDIATE. Commands are executed
as dynamically prepared statements,
with or without arguments.

Sqlexec_control_sqlserv
er

Values can be:

■ LANGUAGE. Default. Commands are sent
as regular SQL text.

■ RPC. Commands are initiated and
executed as a remote procedure call.
Arguments are optional.

Sqlexec_control_oracle Values can be:

■ "". Default. Arguments are bound for
each call to sqlexec.

■ STATIC_BIND. Arguments are bound
to a static memory location, and
argument values are copied to that
location for execution by sqlexec.
User Emulation 97

VU Environment Variables
Sqlnrecv_long

This integer environment variable, which is used by sqlnrecv and
sqlfetch_cursor, specifies the number of bytes of longbinary and longchar
columns to be fetched from the server, and included in the _response read-only
variable and logged.

Statement_id

Statement_id allows you to reuse cursor structures. You can allocate it once (using
sqlalloc_statement) and then prepare different SQL statements on the same
structure, by setting the Statement_id environment variable to the value returned
from sqlalloc_cursor. This improves performance on the database by taking up
fewer resources.

Statement_id holds the statement IDs returned by sqlprepare and
sqlalloc_statement. These IDs can be used by sqlexec, as well as the sqlcursor
commands, in place of a string representation of a SQL statement. Statement_id is
also used by sqlfree_statement, and affects sqlnrecv and sqllongrecv.

Example 1

stmtid_1 = sqlalloc_statement();
set Statment_id = stmtid_1;
/* since we set Statement_id = stmtid_1, sqlprepare will operate on
that id
instead of creating a
new one */
sqlprepare "select * from employees";
sqlexec stmtid_1;
/* this statement will also operate on the stmtid_1 instead of creating
a
new structure since Statement_id is still set */
sqlprepare "select * from users";
sqlexec stmtid_1;

Example 2

The Statement_id also allows you to interleave sqlexec and sqlnrecv
commands. Up until now, it has always been a requirement that sqlnrecv
commands immediately follow sqlexec commands. If you use the Statement_id
environment variable, you can do an exec on one statement (stmtid_1), do a
prepare, exec, and fetch on another statement (stmtid_2),
and then go back and do a fetch on stmtid_1.
98 Chapter 5

VU Environment Variables
For example:

stmtid_1 = sqlalloc_statement();

stmtid_2 = sqlalloc_statement();

set Statement_id = stmtid_1;

/* this operates on stmtid_1 */

sqlprepare "select * from employees";

sqlexec stmtid_1;

set Statement_id = stmtid_2;

/* this operates on stmtid_2 */

sqlprepare "select * from users";

sqlexec stmtid_2;

/* this operates on stmtid_2 since that is what Statement_id is set

to */

sqlnrecv ALL_ROWS;

set Statement_id = stmtid_1;

/* this operates on stmtid_1 since that is what Statement_id is now

set to

*/

sqlnrecv ALL_ROWS;

Table_boundaries

This string environment variable, used by sqlnrecv and sqlfetch_cursor, halts
data retrieval at table boundaries. Values are "ON" or "OFF."

When the value is "ON":

■ sqlnrecv halts at the end of the current table, even if fewer than n rows were
retrieved. The next call to sqlnrecv retrieves the next table.

■ sqlfetch_cursor does not cross table boundaries when fetching from a
multitable result set.
User Emulation 99

VU Environment Variables
Connect Environment Variables

The following table matches those VU connect environment variables that can be set
from the TestManager GUI with corresponding items on the Connect tab of the VU
Environment Variables dialog. These variables apply to the http_request and
sock_connect emulation commands.

Connect_retries

Connect_retries is the number of retries before giving up the connection. Its
values are 0–2000000000; the default is 100.

Connect_retry_interval

Connect_retry_interval is the delay (in milliseconds) after a connection failure
before the next connection attempt. Its values are 0–2000000000; the default is 200.

Exit Sequence Environment Variables

The following table matches the VU exit sequence environment variables with
corresponding items on the TestManager Termination Settings dialog.

The VU environment variables Escape_seq and Logout_seq are provided to allow
a graceful exit from a test suite containing SQL scripts. These variables contain bank
expressions of the format

bank ("string",[integer1, [integer2]])

where:

■ string is an SQL statement(s) that may be sent by sqlexec at the termination of
an SQL script.

Variable GUI reference

Connect_retries Retries

Connect_retry_interval Retry interval

Variable GUI reference

Escape_seq Terminate after completion of next emulation command

Logout_seq Terminate after completion of the script
100 Chapter 5

VU Environment Variables
■ integer1 may specify a value that temporarily overrides Think_avg.

■ integer2 may specify a value that overrides Server_connection, specifying
the number of concurrent open connections allowed, in an SQL script.

Escape_seq and Logout_seq both have a default of bank ("").

Example

This SQL example begins a database transaction and then pushes an escape sequence
of "rollback work" using a think time value of 0 seconds. After the transaction is
complete, the escape sequence is restored to its original value by pop.

#include <VU.h>
. . .
sqlexec "begin transaction";
push Escape_seq = bank("rollback work", 0);
. . .
sqlexec "commit work";
pop Escape_seq;

When Exit Sequence Variables Are Sent

A test suite may terminate abnormally (at user request) or upon expiration of a
specified interval of time. The conditions determining whether Escape_seq and
Logout_seq are sent at suite termination are described below.

■ Both Escape_seq and Logout_seq are sent if:

❑ A script is executing at the time a test suite terminates, and this test suite was
built with the TestManager option Terminate after completion of next emulation
command.

❑ The library routine user_exit is called with a negative status value.

■ Only Logout_seq is sent if:

❑ The virtual tester terminates normally after completing his last assigned script.

❑ A script is executing at the time a test suite terminates, and this test suite was
built with the TestManager option Terminate after completion of the script.

❑ The library routine user_exit is called with a zero status value.

■ Neither Escape_seq nor Logout_seq are sent if:

❑ Emulation has not started before the termination is triggered; that is, an
initialization error occurred before the first instruction in the first script was
executed.

❑ No emulation commands have yet been run.
User Emulation 101

VU Environment Variables
❑ A fatal runtime error, other than a fatal receive command time-out, occurs.

❑ The library routine user_exit is called with a positive status value.

■ Escape_seq or Logout_seq may be sent partially or not at all if the Cleanup-time
specified for a test suite expires while the suite is terminating and a script is
executing. To avoid this, increase the Cleanup-time.

Given that either or both of the sequences are sent, the following conditions apply:

■ If both Escape_seq and Logout_seq are sent, Escape_seq is sent first.

■ Escape_seq is executed via sqlexec for the connection indicated by each
Server_connection if a non-null Escape_seq string is defined. The current
value of Escape_seq is executed first, followed by each successive Escape_seq
string on the stack until the Escape_seq environment stack is empty.

■ Logout_seq is executed via sqlexec for each connection for which a non-null
Logout_seq string is defined. The current value of Logout_seq is executed first,
followed by each successive Logout_seq string on the stack until that
Logout_seq environment stack is empty.

■ The SQL sqlexec command uses the current environment variables
(Think_avg, Think_dist, Think_def, Think_sd, Think_dly_scale,
Think_max, Log_level, and Record_level) with submitted sequences,
except:

❑ If an optional Think_avg override value was provided with the sequence, it
temporarily replaces the current Think_avg value and enforces a
Think_dist of "CONSTANT" (for the specific sequence only).

❑ No attempt is made to receive or evaluate any responses. Thus, if Think_def
is "LR" or "FR," it is changed to "CONSTANT" after the very first string is sent
of either Escape_seq or Logout_seq.

HTTP-Related

The following table matches those HTTP environment variables which may be set
from the TestManager GUI with corresponding items on the HTTP tab of the VU
Environment Variables dialog.

Variable GUI reference

Http_control HTTP control

Line_speed Line speed
102 Chapter 5

VU Environment Variables
Http_control

This integer environment variable controls which status values are acceptable when a
virtual tester script is played back. A value of 0, the default, indicates that only exact
matches are accepted. However, you can set this variable so that a script plays back
successfully even if

■ The response was cached during record or playback.

■ The server responds with partial or full page data during record or playback.

■ The script was redirected to another http server during playback.

Http_control can have one or more of the following values:

You can set Http_control to accept multiple values — for example:
Http_control = HTTP_REDIRECT_OK | HTTP_CACHE_OK;

For information on how to set this option before you record, see “Controlling the
Values Accepted When an HTTP Script Is Played Back” in chapter 6 of Using Rational
Robot.

Line_speed

When you play back an HTTP script, the data is sent and received at network speed,
with no delays. This integer environment variable enables you to emulate a user who
is sending and receiving data through a modem.

Different virtual testers can use different line speeds; in fact different connections can
be set up with different line speeds. This variable is useful to gauge the effect of
dial-up versus direct network connection line speeds on user response times.

You can set Line_speed to any integer from 0 to 2000000000 bits per second.
A value of 0 means that the data is sent and received at network speed.

A value of Indicates that playback script will accept

0 exact matches only

HTTP_PARTIAL_OK 206 for 200 and 200 for 206

HTTP_PERM_REDIRECT_OK 301 for 200 and 200 for 301

HTTP_TEMP_REDIRECT_OK 302 for 200 and 200 for 302

HTTP_REDIRECT_OK 301 and 302 for 200, and 200 for 301 and 302

HTTP_CACHE_OK 304 for 200 and 200 for 304
User Emulation 103

VU Environment Variables
IIOP-Related

This section discusses the IIOP-related environment variables.

Iiop_bind_modi

To send requests to an interface implementation, it must be bound to the requestor.
The VU emulation command iiop_bind establishes a binding method, called a bind
modus, for all subsequent emulation commands. The default bind modus for
iiop_bind is IOR (Interoperable Object Reference), which depends on the optional
argument ior.

The string environment variable Iiop_bind_modi contains a list of bind modi to be
used. Each item in the list is separated with a vertical bar. Each modus is tried in the
order given. If a mapping is found, it is used and the search ends.

The following table lists the values of Iiop_bind_modi:

Private Environment Variables

This section describes the private environment variables.

Mystack, Mybstack, and Mysstack

The environment variables Mystack, Mybstack, and Mysstack are private stack
variables for each of the three VU data types (integer, bank, and string). These three
variables are not used by any of the emulation commands, allowing you complete
freedom in their use. These variables can be manipulated and accessed by the
environment control commands in a manner identical to the other environment
variables.

Value Description

File (Filename) A CSV-formatted file of interface name/IOR pairs.

IOR An IOR specification (that is, a string representation of
an object reference).

NameService (IOR) A CORBA-compliant Name Service interface
implementation.

Visibroker Visibroker osagent locator service (vendor-specific).

VisibrokerNameService Uses the Visibroker osagent location service to access
the NameService.
104 Chapter 5

VU Environment Variables
Like persistent variables, private stack variables are an effective means to preserve
data values for a virtual tester across scripts, since environment variables are
maintained across scripts for the duration of the emulation. This example measures a
turn-around time that spans multiple scripts:

/* start time of EV1 is recorded & saved on stack */
set Mystack = start_time ["EV1"];
... /* one or more script executions elapse */ ...
endtime = time(); /* actual end time of "EV1": */
/* start time re-recorded from stack to satisfy
 "same script" requirement: */
start_time eval Mystack;
/* "EV1" start/end times recorded: */
stop_time ["EV1"] endtime;

Although arrays are recommended as more convenient and efficient, a potential use
of Mybstack is for quick access to small tables of integer or string data. For example,
the following code fragment sets up a table of 20 user names:

/* initialize table; preserve Mybstack with push*/
push Mybstack = bank("RUSSELL", "EADIE", "BRIGGS", "RYAN", "COUNTS",
"KWOR", "ALLAN", "BROWN", "WALTON", "HARDING");

/* prepare query */
sqlprepare "select * from Student where Surname = ?";
for (i = 1; i <= 10; i++)
{

/* run the query with the selected name */
sqlexec _statement_id, eval Mybstack[string][i];

}

/* return to old environment */
pop Mybstack;

As indicated in this example, you can initialize and access one table in a given
environment. By using the save and restore environment control commands, you
can initialize, maintain, and access two tables per environment. However, you cannot
access data from more than two tables per environment.

Reporting Environment Variables

The following table matches those reporting environment variables which may be set
from the TestManager GUI with their GUI names.

Variable GUI reference

Check_unread Check for unread row results

Max_nrecv_saved Maximum bytes or rows saved
User Emulation 105

VU Environment Variables
Check_unread

Check_unread controls when the sqlexec command checks for unread row results
from the previous sqlexec.

The value of Check_unread is one of three string expressions:

■ "OFF" – Do not check for unread results.

■ "FIRST_INPUT_CMD" (default) – The first sqlexec following a SQL receive
command checks for unread results from the previous sqlexec.

■ "EVERY_INPUT_CMD" – Every sqlexec checks for unread results from the previous
sqlexec.

Max_nrecv_saved

Max_nrecv_saved lets you control the maximum number of rows (SQL) or bytes
(HTTP and socket) saved by the receive emulation commands.

Max_nrecv_saved is an integer environment variable that affects the behavior of the
sqlnrecv, sqllongrecv, sqlfetch_cursor, http_header_recv, http_recv,
http_nrecv, sock_recv, and sock_nrecv emulation commands.

Its default value is 2000000000; the range is 0–2000000000.

The typical reason for using Max_nrecv_saved is to save memory and disk space by
not having to store and log the results of a very large database query — for example,
one that returns thousands of rows.

Max_nrecv_saved does not affect the data actually retrieved from the server.
Therefore:

■ The _nrecv read-only variable still contains the number of rows or bytes
processed by the last receive emulation command

■ _total_rows still contains the total number of rows actually received

■ _total_nrecv still holds the total number of bytes actually received.

If the number of rows or bytes you receive exceeds Max_nrecv_saved:

■ The emulation command does not necessarily fail.

Log_level Log level

Record_level Record level

Variable GUI reference
106 Chapter 5

VU Environment Variables
■ If your Log_level is ALL, the log file entry will note both the number of rows or
bytes received and the number of rows or bytes logged.

■ Any excess rows are discarded instead of being saved in _response.

Log_level

The value of Log_level determines what information is written to the standard log
file, in the log’s perfdata directory. The log file is called lxxx, where xxx is a user
ID.

The values of Log_level are as follows:

■ "OFF" – Nothing is logged. Log_level can also be given the value "OFF" during
a portion of the emulation so that no log entries are made for that portion.

■ "TIMEOUT" (default) – Logs emulation command timeouts. If a receive emulation
command fails due to a timeout, the preceding sqlexec, http_request, or
sock_send command is logged, followed by an entry for the failed receive
emulation command. If the Log_level is "TIMEOUT" and if the scripts for a
virtual tester contain no emulation commands that timed out, no log file is created.

For the testcase and emulate commands, fail_string is logged. If there is no
fail_string, log_string is logged.

■ "UNEXPECTED" – Logs timeouts and unexpected responses from SQL emulation
commands.

For all other emulation commands, "UNEXPECTED" is equivalent to "TIMEOUT."

■ "ERROR" – Logs all SQL emulation commands that set _error to a nonzero value.
All timeouts also are logged, as described in TIMEOUT. All log entries include
_error and _error_text. Their values typically are supplied by the SQL
database server.

For all other emulation commands, "ERROR" is equivalent to "TIMEOUT."

■ "ALL" – Signifies that complete logging is to be done. A log entry is made for every
emulation command. This log entry contains the following:

❑ The type of emulation command and any command ID associated with it.

❑ Identification of the VU script and source file containing the command.
User Emulation 107

VU Environment Variables
❑ The line number of the command in the source file and the emulation
command count of the VU script. The emulation command count is
incremented for every emulation command. When you monitor a test suite, it is
useful to distinguish between executions of the same command on different
loop iterations, since the script line number would be identical for each
iteration.

❑ The command-specific information listed in the following table. If the scripts
for a virtual tester contain no emulation commands, no log file is created.

 Command Specific Information Logged

http_nrecv The response from the server. If response is unexpected,
the number of EXPECTED characters and the number of
RECEIVED characters are both logged.

http_recv The response from the server. If response is unexpected,
the number of EXPECTED characters and the number of
RECEIVED characters are both logged.

http_request One line after the header indicating the success or failure
of the connection, and one line containing the request data
transmitted to the server.

http_header_recv One line containing the status from the HTTP header.

iiop_bind The project id string, the instance id string, the IOR string
if present, and the modus actually used to create the
binding.

iiop_invoke Connection information if a connection was established for
this operation, followed by the operation, all input (or
input/output) parameter values, and either the values of
all output (or input/output) parameters, or the values of
all exception parameters.

Jolt-related VU
commands

Jolt emulation is implemented by the emulation
commands sock_send and sock_nrecv.

SAP-related VU
commands

SAP emulation is implemented by external C functions
and the emulate command.

sock_send The characters submitted to the server. Any data that is not
printable and cannot be represented by a standard C
escape sequence (graphic images, for example) is
represented as an embedded hex string.
108 Chapter 5

VU Environment Variables
sock_nrecv The response from the server. If a response is unexpected,
the number of EXPECTED characters and the number of
RECEIVED characters are both logged. Any data that is
not printable and cannot be represented by a standard C
escape sequence (graphic images, for example) is
represented as an embedded hex string.

sock_recv The response from the server. If a response is unexpected,
the expected characters (in standard string constant
format) are preceded by EXPECT=, and the actual
response is preceded by ACTUAL=. Any data that is not
printable and cannot be represented by a standard C
escape sequence (graphic images, for example) is
represented as an embedded hex string.

sqlprepare The statement ID returned and the SQL statements that
were prepared.

sqlclose_cursor The cursor ID and the SQL statements (including the
statement ID for prepared statements).

sqldeclare_cursor

sqldelete_cursor

The SQL statements (including the statement ID for
prepared statements), any arguments supplied, the
number of rows processed (_total_rows), and the
cursor ID.

sqlexec The SQL statements (including the statement ID for
prepared statements), any arguments supplied, and the
number of rows processed (_total_rows). If present,
the arguments are logged as a comma-separated list of
values enclosed in brackets []. String arguments are
enclosed in single quotation marks (’value’) and
integer arguments are shown in decimal without quotation
marks (12345). The values of named arguments are
preceded by their names; positional argument values are
logged without any prefix.

sqlfetch_cursor The SQL statements (including the statement ID for
prepared statements), any arguments supplied, the
number of rows processed (_total_rows), the cursor
ID, the number of rows received, the number of rows
logged if different from the number received, and the
number of tables read to fetch the requested number of
rows.

sqlinsert_cursor The SQL statements (including the statement ID for
prepared statements), any argument supplied, the
argument values, the number of rows processed
(_total_rows), and the cursor ID.

 Command Specific Information Logged
User Emulation 109

VU Environment Variables
sqlopen_cursor The SQL statements (including the statement ID for
prepared statements), any arguments supplied, the
argument values, the number of rows processed
(_total_rows), the cursor ID, and the number of rows
received.

sqlnrecv The number of rows received, a two-line column header
(_column_headers) if the value of the environment
variable Column_headers is "ON," and a character
representation of the rows received (_response).

If the number of rows received (_nrows) exceeds the
value of Max_nrecv_saved, the log file entry notes
both the number of rows received and the number of rows
logged. For example:

10439 rows received (1000 logged) from 1
table

sqlposition_cursor The SQL statements (including the statement ID for
prepared statements), the number of rows processed
(_total_rows), and the cursor ID.

sqlrefresh_cursor The SQL statements (including the statement ID for
prepared statements), the number of rows processed
(_total_rows), and the cursor ID.

sqlsysteminfo The operation, all the argument values given for that
operation, the number of rows processed
(_total_rows), and the cursor ID.

sqlupdate_cursor The SQL statements (including the statement ID for
prepared statements), any arguments supplied, the
argument values, the number of rows processed
(_total_rows), and the cursor ID.

TUXEDO commands Any arguments supplied and their argument values.

TUXEDO buffer commands include the type and value of
the buffer.

start_time

stop_time

No logging done.

testcase

emulate

If no log_string is specified, nothing is logged. If
log_string but no fail_string is specified,
log_string is logged. If both are specified,
log_string is logged if the command succeeds;
otherwise, fail_string is logged.

 Command Specific Information Logged
110 Chapter 5

VU Environment Variables
Example

The sample VU script for sqlexec (page 280) produces the following log file. In this
example, the log file entries are designed to be easily accessible. The script is doc and
the source file is doc.s. When the value of _error is not zero, <<< and >>> are
replaced by ***, so that these occurrences are quickly located. The command ID (if
any) is shown in brackets after the command. The numbers in parentheses after the
script and script names are the emulation command count and the source line
number. In this example, the first emulation command began on source line 22.
<<< sqlexec[school]: script = doc(1), source = doc.s(22) >>>
use school
0 rows processed
<<< sqlexec[]: script = doc(2), source = doc.s(24) >>>
select Empnum, Empname, Roomnum from Employee where Rank='TUTOR'
0 rows processed
<<< sqlnrecv[Tutors]: script = doc(3), source = doc.s(28) >>>
10 rows received from 1 table
Empnum Empname Roomnum
----------- -------------------- -------
78062 CRESSMAN 2005
79069 PEARSON 2220
80075 BOSTMAN 2220
80079 ROWLANDS 2005
80166 WOODLEY 1307
81494 DIXON 1180
81931 CAMPBELL 2111
82631 FESSERMAN 2111
83418 PORTER 1307
84229 KRAEMER 1307
*** sqlnrecv[Tutors]: script = doc(4), source = doc.s(28) ***
5 rows received from 1 table
EXPECTED 10 rows
ERROR 40012: End of results
Empnum Empname Roomnum
----------- -------------------- -------
84555 SEARLE 2005
85082 NORRIS 2111
85609 O'DONNELL 1180
85718 ASHE 1180
86080 PALMER 2220
<<< sqlexec[]: script = doc(5), source = doc.s(35) >>>
select * from Dept
0 rows processed
<<< sqlnrecv[dept (a)]: script = doc(6), source = doc.s(36) >>>
4 rows received from 1 table
DEPTNO DNAME LOC
------ -------------- -------------

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

<<< sqlprepare[prep inser]: script = doc(7), source = doc.s(39) >>>
1= insert into Dept values (:no, :name, :place)
<<< sqlexec[]: script = doc(8), source = doc.s(42) >>>
(1) insert into Dept values (:no, :name, :place) [:no='50', :name='testing',
:place='Raleigh']
1 row processed
<<< sqlexec[]: script = doc(9), source = doc.s(42) >>>
(1) insert into Dept values (:no, :name, :place) [:no='60', :name='shipping',
:place='Durham']
1 row processed
<<< sqlexec[]: script = doc(10), source = doc.s(42) >>>
User Emulation 111

VU Environment Variables
(1) insert into Dept values (:no, :name, :place) [:no='70', :name='receiving',
:place='Chapel Hill']
1 row processed
<<< sqlexec[]: script = doc(11), source = doc.s(45) >>>
select * from Dept
0 rows processed
<<< sqlnrecv[dept (b)]: script = doc(12), source = doc.s(46) >>>
7 rows received from 1 table
DEPTNO DNAME LOC
------ -------------- -------------

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
50 testing Raleigh
60 shipping Durham
70 receiving Chapel Hill

<<< sqlexec[]: script = doc(13), source = doc.s(49) >>>
delete from Dept where deptno >= 50
3 rows processed
<<< sqlexec[]: script = doc(14), source = doc.s(51) >>>
select * from Dept
0 rows processed
<<< sqlnrecv[dept (c)]: script = doc(15), source = doc.s(52) >>>
4 rows received from 1 table
DEPTNO DNAME LOC
------ -------------- -------------

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Record_level

The value of Record_level determines what information is written to the standard
result file, in the log’s perfdata directory. The result file is called rxxx, where xxx is
a user ID. Since the result file is in binary form, it is not directly readable; instead, it is
input to TestManager reports.

Record_level can be set to one of the following strings:

■ "MINIMAL" – Record only items necessary for reports to run. However, the
reports will contain no real data. Use this value when you do not want the user’s
activity included in the reports.

■ "TIMER" – MINIMAL plus start_time and stop_time emulation commands.
Your reports will not contain response times for each emulation command, and an
emulation command failure will not show up as a a failure. In addition, the result
file for each virtual tester will be small. A small result file means that disk
consumption and CPU overhead for each virtual tester is less, results are retrieved
quickly from Agent computers, and you can run reports in a relatively short time.
Set Record_level to this value if you are not concerned with the response times
or pass/fail status of an individual emulation command.
112 Chapter 5

VU Environment Variables
■ "FAILURE" – TIMER plus emulation command failures and some environment
variable changes. Set Record_level to this value if you want the advantages of a
small result file but you also want to make sure that no emulation command failed.

■ "COMMAND" – FAILURE plus emulation command successes and some
environment variable changes (default).

■ "ALL" – COMMAND plus all environment variable changes. Complete recording is
done. A binary entry is written to the result file for every emulation command and
for the set, reset, restore, push, and pop environment control commands.
You can view these entries in Trace report output.

Note: Most report output is the same with "ALL" or "COMMAND." The exception is the
Trace report output. With "ALL," the Trace report output includes every emulation
command as well as the set, reset, restore, push, and pop environment control
commands. With "COMMAND," the Trace report output includes every emulation
command but includes the set, reset, restore, push, and pop environment
control commands only when they affect the Server_connection environment
variable.

Suspend_check

The string environment variable Suspend_check controls whether you can suspend
a virtual tester from a Monitor view. The value of Suspend_check must be one of the
following strings:

■ "ON" (default) – Normal suspend checking is performed (A suspend request is
checked before beginning the think time interval by each send emulation
command.)

■ "OFF" – Disables suspend checking. Checking resumes only after the value of
Suspend_check is changed to "ON," and the next think time interval is
encountered.

You can use Suspend_check to encapsulate a critical portion of the script where you
do not want it to stop. You can also use Suspend_check on a script run by a single
virtual tester and then suspend all virtual testers through the Monitor. The single
virtual tester is not suspended.

Use Suspend_check carefully. In particular, be careful to pair push and pop
operations, and to set Suspend_check back to "ON" after temporarily changing it to
"OFF."
User Emulation 113

VU Environment Variables
Response Timeout Environment Variables

The response timeout environment variables may be set inside scripts or from the
TestManager GUI. The following table matches them with corresponding items on the
Response tab of the VU Environment Variables dialog.

This group of environment variables applies to the following commands:

■ HTTP send emulation commands: http_request

■ HTTP receive emulation commands: http_header_recv, http_recv,
http_nrecv

■ SQL send emulation commands: sqlprepare, sqlexec, sqldeclare_cursor,
sqlopen_cursor, sqldelete_cursor, sqlupdate_cursor,
sqlclose_cursor, sqlposition_cursor, sqlrefresh_cursor,
sqlinsert_cursor.

■ SQL receive emulation commands: sqlnrecv, sqllongrecv,
sqlfetch_cursor

■ IIOP send emulation commands: iiop_bind, iiop_invoke

■ Socket receive emulation commands: sock_recv, sock_nrecv

■ Other send emulation commands: emulate

Note: The socket send emulation command, sock_send, does not wait for a server
response, and therefore the response timeout environment variables do not affect it.

An emulation command generally waits for a response from the server. If a response
is received, the appropriate logging and recording is done, and the emulation
continues with the execution of the next statement. On the other hand, if the elapsed
time an emulation command has been waiting exceeds the value of Timeout_val
(subject to scaling by Timeout_scale), the emulation command times out. In this
case, after appropriate logging and recording is done, the value of Timeout_act is
examined to determine whether this timeout is ignored and emulation continued
normally, or whether this timeout is considered a fatal error, resulting in steps taken to
end the emulation.

Variable GUI reference

Timeout_act Timeout action

Timeout_scale Scale timeout by

Timeout_val Timeout
114 Chapter 5

VU Environment Variables
Timeout_act

The values for Timeout_act are the strings "IGNORE" and "FATAL."

If the value of Timeout_act is "IGNORE," the emulation continues normally, after
the appropriate logging and recording, when a timeout occurs. Recall that an
emulation command that returns 0 signals that a timeout has occurred, allowing the
script to dynamically react as appropriate to an unexpected response.

If the value of Timeout_act is "FATAL," the time out of an emulation command is
considered a fatal runtime error. The appropriate logging and recording is done,
followed by termination of the virtual tester.

Timeout_scale

This integer environment variable controls the percentage multiplier applied to the
time-out delay (Timeout_val). The default value of 100% represents no change. A
value of 50% means one-half the delay, which is twice as fast; 200% means twice the
delay, which is half as fast as the original.

Timeout_val

The value of Timeout_val can be any integer in the range 0 to15000000. This value
specifies in milliseconds, starting from when the emulation command begins
communication with the server, the time an emulation command waits for a server
response before it times out. The default value of Timeout_val is 120000
milliseconds (2 minutes).

Choose the value of Timeout_val with care. If it is too small, commands requesting
large amounts of data or complex operations time out, even though the server may
respond correctly.

Think Time Variables

The following table lists those think time environment variables which may be
changed from the GUI and matches them with corresponding items on the Think time
tab of the VU Environment Variables dialog.

Variable GUI reference

Delay_dly_scale Scale delays by

Think_avg Average think time

Think_cpu_dly_scale Scale CPU think time by
User Emulation 115

VU Environment Variables
The think time environment variables control the virtual tester’s “think time”
behavior. This is simply the time that a typical user would delay, or think, between
submitting commands.

In a virtual tester script, the Think_avg is usually set before each http_request
emulation command, each sqlexec and sqlprepare emulation command, all
TUXEDO emulation commands, and each sock_send emulation command. You
need to decide whether to preserve the think times as is, or vary the think times. To
preserve the think times, simply run the script.

You can truncate think times that are too long. For example, you might examine a
script and see a few very long settings of Think_avg. To truncate these think times,
set the value of Think_max to your maximum acceptable think time.

If you are using the script for a multiuser run, you may also want to set the
Think_dist environment variable to "NEGEXP" rather than "CONSTANT" so that
each virtual tester does not pause the same amount of time between each command.

You may decide to further refine your script by dividing the think time into user think
time and CPU think time. To do this, set the cpu_threshold environment variable.

Delay_dly_scale

This integer environment variable globally scales the delay times of all delay library
routines by applying a percentage multiplier. A value of 100%, which is the default,
means no change. A value of 50% means one-half the delay, which is twice as fast as
the original, 200% means twice the delay, which is half as fast. A value of zero means
no delay.

Think_cpu_threshold CPU/user threshold

Think_def Starting point of think time

Think_dist Think time distribution

Think_dly_scale Scale user think time by

Think_max Maximum think time

Think_sd Standard deviation of think time

Variable GUI reference
116 Chapter 5

VU Environment Variables
Think_avg

Specifies the duration, in milliseconds, of the “average” think time interval. The value
of Think_avg can be any integer in the range 0-2000000000. The default value is 5000
milliseconds.

Think_cpu_dly_scale

This integer environment variable enables you “change” from a slower computer to a
faster computer, and vice versa by multiplying the CPU think time value by a
percentage. A value of 100%, which is the default, means no change. A value of 50%
means one-half the delay, which is twice as fast as the original; 200% means twice the
delay, which is half as fast. A value of zero means no delay. Delay scaling is performed
before truncation (if any) by Think_max.

For user think times (Think_avg is greater that or equal to
Think_cpu_threshold), Think_dly_scale is used instead.

Think_cpu_threshold

There are actually two kinds of delays — user think time and CPU processing time.

User think time is the time a typical user delays, or thinks, between submitting
commands. CPU processing time is the time it takes for the application to generate
internal commands from the user’s data.

For example, an actual user may pause to think before selecting a student name from
a SQL database. This is recorded as user think time. Once the user clicks on the
student name, the time spent generating the SQL command and accessing the
database is a CPU delay.

Similarly, when a user thinks about which Web page to access, this delay is user think
time. Once the user provides the URL for the desired Web page, the CPU must issue
commands to get that Web page and display it to the user. This delay is a CPU
processing delay.

The environment variable Think_cpu_threshold lets you to divide delay time into
user think time delays and CPU processing time delays. You then scale each time
individually with the environment variables Think_cpu_delay_scale and
Think_dly_scale.

If the value of Think_avg is greater than Think_cpu_threshold, the delay is
considered user think time. The value of Think_dly_scale is used to calculate the
think time.
User Emulation 117

VU Environment Variables
If the value of Think_avg is less than Think_cpu_threshold, the delay is
considered CPU think time. With CPU think time:

■ The value of Think_cpu_dly_scale is used to calculate the delay. This allows
CPU processing delays to be scaled differently from user think time delays. For
example, typical usage would be to “change” the CPU from a 486 to a Pentium by
scaling the CPU processing delays downward.

■ The value of Think_dist is ignored. All application CPU processing delays are
assumed to be "CONSTANT." This allows user think time distributions to be used
without affecting the calculation of CPU processing delays.

Think_def

Specifies the starting point of the think time interval. The values for Think_def can
be the following string expressions:

■ "FS" – The think time interval for the current send emulation command begins at
the time the previous send emulation command is submitted.

■ "LS" – The think time interval for the current send emulation command begins at
the time the previous send emulation command is completed.

■ "FR" – The think time interval for the current send emulation command begins at
the time the first data of the previous receive emulation command is received. If
there was no intervening receive emulation command, the think time interval
begins when the previous send emulation command is completed.

■ "LR" – The think time interval for the current send emulation command begins at
the time the last data of the previous receive emulation command is received. If
there was no intervening receive emulation command, the think time interval
begins when the previous send emulation command is completed.

■ "FC" – The think time interval for the current send emulation command begins at
the time the previous HTTP connection (http_request with address
information) or socket connection (sock_connect) is submitted. "FC" (“first
connect”) uses the _fc_ts integer read-only variable.

■ "LC" – The think time interval for the current send emulation command begins at
the time the previous HTTP connection (http_request with address
information) or socket connection (sock_connect) is completed. "LC" (“last
connect”) uses the _lc_ts integer read-only variable.

If you are running SQL-based script, you will probably not want to change the default
value of Think_def. This is because the values FS, LS, and FR for sqlexec and
sqlprepare are usually almost equivalent.
118 Chapter 5

VU Environment Variables
The following figure shows how the different starting points produce a longer or
shorter think time interval:

Think_dist

Specifies think time distribution for virtual tester think times. It has no effect for CPU
think times. The Think_dist environment variable can have the following values:

■ "CONSTANT" – Sets a constant think time interval equal to the value of Think_avg.
This is the default value.

■ "UNIFORM" – Sets a random think time interval distributed uniformly in the range:
[Think_avg - Think_sd, Think_avg + Think_sd]

■ "NEGEXP" – This is the recommended setting for multiuser runs. It provides a
random think time interval and approximates a bell curve around the think
average that you have set. The average think time and standard deviation are
equal. In mathematical terms, this setting supplies a random think time interval
from a negative exponential distribution with a mean equal to the value of
Think_avg.

The random number generator used to generate think times for the "UNIFORM" and
"NEGEXP" think time distributions is not reseeded by default at each script invocation
with an identical seed for each virtual tester. To modify default behavior of the
random number generator, set the Seed and Seed Flags options in the suite. By default,
Seed generates the same sequence of random numbers. However, it sets unique seeds
for each virtual tester so that each virtual tester will have a different random number
sequence.

First Sent Last Sent First Recv Last Recv First Sent

"FS"

"LS"

"FR"

"LR" (default)
User Emulation 119

VU Environment Variables
Think_dly_scale

This integer environment variable controls the percentage multiplier to be applied to
the user think time value. A value of 100%, which is the default, means no change. A
value of 50% means one-half the delay, which is twice as fast as the original; 200%
means twice the delay, which is half as fast. A value of zero means no delay. Delay
scaling is performed before truncation (if any) by Think_max.

For CPU think times (Think_avg is less than Think_cpu_threshold),
Think_cpu_dly_scale is used instead.

Think_max

Provides a maximum threshold for think times. Think_max specifies, in milliseconds,
the maximum value that a generated think time can have. If the normally generated
think time value (as defined by Think_avg, Think_dist, Think_dly_scale, and
optionally Think_sd) exceeds Think_max, it is set to the value of Think_max. The
default value of Think_max is 2,000,000,000 milliseconds, which effectively disables
the truncation.

Think_max is useful with scripts that mimic the actual user think times. You can
truncate longer-than-desired think times, which speeds up playback, without having
to search for and edit each long think time. Think_max has the additional benefit of
keeping the original think times. To restore these times, simply remove or comment
out the lines that modified the default value of Think_max.

Think_max is also useful with the Think_dist value of "NEGEXP" (which
ordinarily produces negative exponentially generated think times) to instead produce
truncated negative exponentially generated think times.

Think_sd

Specifies the think time standard deviation. Think_sd has meaning only when the
value of Think_dist is "UNIFORM." Otherwise, Think_sd has no effect.

The value of Think_sd is an integer in the range 0-2000000000. The default value is 0.
This value specifies a range around the mean think time interval (Think_avg). The
actual think time intervals are distributed uniformly throughout this range.

If the value of Think_dist is "UNIFORM" and the value of Think_sd is greater than
the value of Think_avg, then the think time intervals are still distributed uniformly
throughout the range, and any resulting negative think time intervals are treated as
having a zero value (no delay).
120 Chapter 5

VU Environment Variables
Examples of Think Time Variables

The following examples further describe the use of the think time variables.

sqlexec "select * from publishers";
sqlnrecv ALL_ROWS;
set Think_avg = 3000;
set Think_def = "LS";
set Think_dist = "CONSTANT";
sqlexec "select * from authors";
sqlnrecv ALL_ROWS;

Assume that the sqlexec "select * from publishers" command was
completed at time 12000 and that the sqlexec "select * from authors"
command was invoked at time 13750. Therefore, the second sqlexec would wait
approximately 1250 milliseconds (that is, 3000 - (13750 - 12000)) before submitting the
select * from authors command.

The following example uses the macros SECONDS and MINUTES defined in the VU.h
header file. SECONDS converts its argument from seconds to milliseconds; MINUTES
converts its argument from minutes to milliseconds. For details, see VU.h on page 58.

#include <VU.h>

sqlexec "select * from publishers";
sqlnrecv ALL_ROWS;
set Think_avg = MINUTES(2);
set Think_dist = "UNIFORM";
set Think_sd = SECONDS(30);
sqlexec "select * from authors";
sqlnrecv ALL_ROWS;
sqlexec "select * from titles";
sqlnrecv ALL_ROWS;

The think time intervals for the select * from authors and select * from
titles commands is uniformly distributed in the range [90000,150000] milliseconds
(90000 = 120000 - 30000, 150000 = 120000 + 30000). Since the default value of "LR" is
used for Think_def, the think time intervals for these two commands begin when
the end of the result set is received by the previous sqlnrecv command.
User Emulation 121

Read-Only Variables
Read-Only Variables

The VU read-only variables provide access to data items collected during the suite
run. These data items provide information about the commands and responses
submitted and received during the emulation, plus information about the progress of
the emulation. In fact, all of the log file information in stdlog and most of the result
file information in stdrec is maintainable directly from the read-only variables.
Therefore, by using the read-only variables, you can customize log or result files to
perform detailed logging and recording.

All read-only variables begin with the underscore character (_). They can be used in
expressions in the same way a variable of the same type could be used, except that
they cannot be used as the first operand of any assignment operator, nor as the
operand of the &, ++, or -- operators.

The following table shows the string-valued read-only variables:

Variable Contains

_alltext The same as _response.

_cmd_id The ID of the most recent emulation command.

_command The text of the most recent:

■ http_request

■ sqlprepare, sqlexec, sqldeclare_cursor,
sqlfetch_cursor, sqlopen_cursor,
sqldelete_cursor, sqlupdate_cursor,
sqlclose_cursor

■ tux_bq, tux_tpabort, tux_tpacall,
tux_tpbroadcast, tux_tpcall,
tux_tpconnect, tux_tpdequeue,
tux_tpenqueue, tux_tppost,
tux_tpsubscribe

■ sock_send

■ The operation of the most recent iiop_invoke

_column_header
s

The two-line column header if Column_headers is ON;
otherwise, it contains "".
122 Chapter 5

Read-Only Variables
The following table shows the integer-valued read-only variables:

_error_text The full text of the error from the last emulation command. If
_error is 0, _error_text returns "". For an SQL
database or TUXEDO error, the text is provided by the server.

_host The host name of the computer on which the script is
running.

_reference_URI In an HTTP script, stores the fully-qualified URL accessed by
the last GET or POST request.

_response The text of up to the value of Max_nrecv_saved

■ rows received in the most recent sqlnrecv,
sqllongrecv, or sqlfetch_cursor

■ bytes received in the most recent
http_header_recv, http_recv, http_nrecv

■ bytes received in the most recent sock_nrecv or
sock_recv

This read-only variable is the same as _alltext.

_script The name of the VU script currently being executed.

_source_file The name of the file that was the source for the portion of the
VU script being executed.

_user_group The name of the user group (from the suite) of the user
running the script.

_version The full version string of TestManager (for example
7.5.0.1045).

Variable Contains

_cmdcnt A running count of the number of emulation commands the
script has executed.

_cursor_id The last cursor declared by sqldeclare_cursor or
opened by sqlopen_cursor.

_error The status of the last emulation command. Most values for
_error are supplied by the server.

Variable Contains
User Emulation 123

Read-Only Variables
_error_type If you are emulating a TUXEDO session and _error is
nonzero, _error_type contains one of the following values:

0 (no error)

1 VU/TUX Usage Error

2 TUXEDO System/T Error

3 TUXEDO FML Error

4 TUXEDO FML32 Error

5 SUT Error

6 VU/TUX Internal Error

If you are emulating an IIOP session and _error is nonzero,
_error_type contains one of the following values:

0 (no error)

1 IIOP_EXCEPTION_SYSTEM

2 IIOP_EXCEPTION_USER

3 IIOP_ERROR

_fc_ts The “first connect” timestamp for http_request and
sock_connect.

_fr_ts The timestamp of the first received data of sqlnrecv,
http_nrecv, http_recv, http_header_recv,
sock_nrecv, or sock_recv. For sqlexec and
sqlprepare, _fr_ts is set to the time the SQL database
server responded to the SQL statement.

_fs_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time when the first data
was submitted to the server by http_request or
sock_send.

_lc_ts The “last connect” timestamp for http_request and
sock_connect.

_lineno The line number in _source_file of the previously
executed emulation command.

_lr_ts The timestamp of the last received data for sqlnrecv,
http_nrecv, http_recv, http_header_recv,
sock_nrecv, or sock_recv. For sqlexec and
sqlprepare, _lr_ts is set to the time the SQL database
server responded to the SQL statement.

_ls_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time the last data was
submitted to the server by http_request or sock_send.

Variable Contains
124 Chapter 5

Read-Only Variables
Initialization of Read-Only Variables

At the beginning of a test suite run, before the execution of the first script:

■ The timestamp variables, _fs_ts, _ls_ts, _fr_ts, _lr_ts, _fc_ts, and
_lc_ts, are initialized to the current time.

■ _uid is initialized to the correct user ID. All other integer read-only variables are
initialized to 0.

■ All string read-only variables are initialized to null strings.

After a script executes, read-only variables are reinitialized, except for the timestamp
variables. By default, timestamp variables carry over their values from the previous
script. However, the timestamp variables are reinitialized if you open a suite, click the
Runtime button, and check Initialize timestamps for each script.

_nrecv The number of rows processed by the last sqlnrecv, or the
number of bytes received by the last http_nrecv,
http_recv, sock_nrecv, or sock_recv.

_nusers The number of total virtual testers in the current TestManager
session.

_nxmit The total number of characters contained in the SQL statements
transmitted to the server in the last sqlexec or
sqlprepare command, or the number of bytes transmitted
by the last http_request or sock_send.

_statement_id The value assigned as the prepared statement ID, which is
returned by sqlprepare and sqlalloc_statement.

_total_nrecv The total number of bytes received for all HTTP and socket
receive emulation commands issued on a particular
connection.

_total_rows Set to the number of rows processed by the SQL statements. If
the SQL statements do not affect any rows, _total_rows is
set to 0. If the SQL statements return row results,
_total_rows is set to 0 by sqlexec, then incremented by
sqlnrecv as the row results are retrieved.

_tux_tpurcode TUXEDO user return code, which mirrors the TUXEDO API
global variable tpurcode. It can be set only by the
tux_tpcall, tux_tpgetrply, tux_tprecv, and
tux_tpsend emulation commands.

_uid The numeric ID of the current virtual tester.

Variable Contains
User Emulation 125

Supplying a Script with Meaningful Data
Example

Besides supporting customized logging and recording, the read-only variables serve
other purposes within a script. For example, a particularly useful application of _uid
is to create a common script with commands and responses tailored to specific virtual
testers. The following example shows a common login script, which is identical for
each user except for SQL database user IDs and passwords:

string name;
name = "usr"+itoa(_uid);
con=sqlconnect ("", name, "pswd" +itoa(_uid),"","");
set Server_connection = con;
...
sqlexec "insert into sales values ("+name +", 12, 10.00)";

In this segment, it is assumed that usrxxx and pswdxxx are the SQL database server
ID and password strings for user xxx. For example, the login ID and password of
virtual tester 12 would be usr12 and pswd12.

Supplying a Script with Meaningful Data

When you play back a script, the script uses the exact values that you recorded.
Assume, for example, that you record a script that adds a record with a primary key of
John Doe to a database. When you play back the script, to emulate thousands of
virtual testers, you will get errors after the first John Doe is added. To correct this
situation, you use datapools, which supply unique test values to the server.

Although varying test values may work for those transactions that depend on the
result of an earlier transaction, other transactions may depend on values received
from the server. If a script contains these transactions, you must manually edit the
script to replace some of the missing client logic so that the values correlate
dynamically. This is called dynamic data correlation.

Datapools

A datapool is a convenient way to supply variable data values to a script. Typically,
you use a datapool with a script so that:

■ Each virtual tester that runs the script can send realistic values, including unique
values, to the server.

■ A single virtual tester that performs the same transaction multiple times can send
realistic values to the server in each transaction.
126 Chapter 5

Supplying a Script with Meaningful Data
If you do not use a datapool with a script, each virtual tester sends the same values to
the server (which are the values you provided when you recorded the script).

Usually, you create a datapool immediately after you record a virtual tester script,
using the datapool capability in Rational Robot.

For more information about creating and managing datapools, see Using Rational
TestManager.

Dynamic Data Correlation

Dynamic data correlation is a technique to supply variable data values to a script
when the transactions in a script depend on values supplied from the server.

For example, when you record an http script, the Web server may send back a unique
string, or session ID, to your browser. The next time your browser makes a request, it
must send back the same session ID to authenticate itself with the server.

The session ID can be stored in three places:

■ In the Cookie field of the HTTP header.

■ In an arbitrarily named field of the HTTP header.

■ In an arbitrary hidden field in an actual HTML page.

Rational TestManager finds the session IDs (and other correlated variables) and, when
you run the suite, automatically generates the proper script commands to extract their
actual values.

Before you record a script, you can choose whether TestManager correlates all
possible values (the default), does not correlate any values, or correlates only a
specific list of variables that you provide.
User Emulation 127

Supplying a Script with Meaningful Data
128 Chapter 5

Part 3: Command
Reference

6Command Reference
This command reference contains the following categories of information:

■ Environment control commands– Enable you to control a virtual tester’s environment by
changing the VU environment variables. For example, you can set the level of detail logged
or the number of times to try a connection.

■ Flow control statements – Enable you to add conditional execution structures and looping
structures to your virtual tester script. The flow control statements behave like their C
counterparts, with enhancements added to break and continue.

■ Library routines – Provide your virtual tester script with predefined functions that handle:

❑ File I/O

❑ string manipulation

❑ conversion of data types and formats

❑ random number generation

❑ timing

❑ miscellaneous functions

■ Send and receive emulation commands – Emulate client activity and evaluate the server’s
responses for different protocols:

❑ HTTP

❑ SQL

❑ TUXEDO

❑ IIOP

❑ Socket

❑ Generic

These commands also perform communication and timing operations. You can log emulation
commands in a log file.
131

abs
■ Emulation functions – Like emulation commands, emulation functions emulate client
activity and evaluate the server’s responses. However, emulation functions do not perform
communication and timing operations, and they are not logged in a log file. There are
separate emulation functions for these protocols:

❑ HTTP

❑ SQL

❑ TUXEDO

❑ IIOP

❑ Socket

■ Synchronization statement – Causes a script to pause execution until all participating
virtual testers rendezvous. Generally, you control synchronization points through a
TestManager suite, but you can use the VU sync_point statement to insert a
synchronization point anywhere in a script.

■ Datapool functions – Retrieve data from a datapool and assign the individual values to
script variables. This enables a script that is executed more than once to use different
values in each execution.

■ VU toolkit functions – These functions, which come with Rational TestManager, enable you
to parse data returned by sqlnrecv into rows and columns.

abs

Returns the absolute value of its argument.

Category

Library Routine

Syntax

int abs (int)

Syntax Element Description

int The integer expression for which to return an absolute
value.
132 Chapter 6

AppendData
Example

This example prints the absolute values of the integers 34 and -10:

int var1 = 34;
int var2 = -10;
int result;
result = abs(var1)
printf ("The absolute value of %d is %d\n", var1, result);
result = abs(var2)
printf ("The absolute value of %d is %d\n", var1, result);

See Also

None.

AppendData

Adds the data returned by sqlnrecv to the specified data set.

Category

VU Toolkit Function: Data

Syntax

#include <sme/data.h>
string func AppendData(data_name)
string data_name;

Comments

The AppendData function adds the data returned by the most recent sqlnrecv command to
the data set specified by the data_name argument. Before data can be added to a set, the set
must be created with a call to SaveData. No check is made to ensure that the data to be added
has the same structure as the existing data stored under that name. If they do not match, a
valid return is generated, but subsequent results are undefined.

Syntax Element Description

data_name The name of the data set to receive the data from
sqlnreceive.
Command Reference 133

AppendData
If the specified data set does not exist, the function calls SaveData to create a data set with
the matching characteristics. In either case, it returns the length of the data set including the
data just appended.

Because data is stored using only the results of the most recent sqlnrecv command, any VU
environment variables that affect the data returned also affect this function. In particular, it
assumes that only one table was fetched. If Table_boundaries is set to "OFF" and multiple
tables are retrieved, the results of this function and subsequent data commands on the stored
data have undefined results.

Example

This example first frees any previously saved data from the “parts” text buffer. A loop is
started to query the database five times. The script then obtains the next record from a file
being shared by all virtual testers that execute this script. The record is parsed by selection of
the first field and direct selection of the third field, skipping the second field. The third field is
composed of four or more subfields. Parsing of the third field continues by selection of the
first subfield, which provides a count of the number of remaining subfields. One of the
remaining subfields is selected at random to form a part of the query. After the query is
performed, the returned rows are saved. If this is the first iteration of the loop, the rows are
saved to the “parts” text buffer. Subsequent iterations of the loop append the data from the
returned rows to the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3; ... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
134 Chapter 6

atoi
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product='"+product_id+"' "
 "and subassembly='"+subassm_id+"'";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also

FreeAllData, FreeData, GetData, GetData1, SaveData

atoi

Converts strings to integers.

Category

Library Routine

Syntax

int atoi (str)

Comments

The atoi routine behaves like the C atoi function, returning an integer corresponding to a
sequence of ASCII digits (0 to 9).

Syntax Element Description

str A string expression of digits to convert.
Command Reference 135

bank
The atoi routine begins the conversion with the first character in str and continues
converting until it encounters the end of the string str or until a non-digit is found. If the first
character is a negative sign, atoi returns a negative integer. Leading tabs, spaces, and zeros in
str are ignored. If the first character of str is not a digit, space, tab, or negative sign, atoi
returns the integer value 0. In all other cases it returns the integer corresponding to the digit
string.

The atoi routine is also useful for stripping leading zeros from a string. Execute atoi on the
string, and then run itoa on the value returned.

Example

This example returns the integer value 9302:

atoi(" 9302");

This example returns the integer value 32:

atoi("32.1");

This example returns the integer value 1023:

atoi("102" + "3yz");

See Also

itoa

bank

Creates bank expressions for assignments to the bank environment variables Escape_seq
and Logout_seq.

Category

Library Routine

Syntax

bank bank (expr1, expr2,... exprN)

Syntax Element Description

expr1, expr2, exprN A collection of zero or more integer expressions, string
expressions, or both.
136 Chapter 6

break
Comments

The bank routine returns a bank expression consisting of the collection of its arguments. The
position of arguments is important only within the same expression type (that is, integer or
string). For example, in the following three calls to bank, the first two calls return equivalent
bank expressions; the third call does not:

bank(int1, int2, str1, str2)
bank(str1, int1, int2, str2)
bank(int1, int2, str2, str1)

A single call to bank is limited by the maximum number of arguments per VU subroutine.
Use the arithmetic operator (+) to create a union of bank expressions.

Example

These two examples return a bank expression containing the three strings "ab", "cd", and
"ef" (in that specific order) and the single integer 4:

bank("ab", 4, "cd", "ef");
bank("ab") + bank (4) + bank ("cd", "ef");

This example returns an empty (null) bank expression:

bank();

This example returns a bank expression containing no strings and the integer
149:

bank(atoi("149"));

See Also

None.

break

Stops execution of for, while, and do-while statements.

Category

Flow Control Statement
Command Reference 137

break
Syntax

break [level_constant]

Comments

The break statement enables you to control the execution of for, while, and
do-while loops. As in C, if the break statement is encountered as one of the statements in a
for, while, or do-while loop, execution of that loop stops immediately.

Unlike C, however, break can be specified with an optional argument, which allows it to
affect a specified level of nested looping structures. Without this argument, or if the argument
is 1, it behaves like its counterpart in C.

Example

In this example, if the value of level_constant is 1, execution of the break statement
causes the do-while loop to end, and the next statement executed is print "Completed
do-while." If the value of level_constant is 2, execution of both the do-while and
while loops stops and the next statement executed is the printf statement. If the value of
level_constant is 3 or greater, execution of the do-while, while, and for loops stops
and the next statement executed is cnt *= 7.

cnt = inner_cnt = 0;
for (i = 0; i < 10; i++) {

cnt++;
j = 0;
while (j < cnt) {

j++;
inner_cnt = j;
do {

inner_cnt++;
break level_constant;

} while (inner_cnt <= 4);
print "Completed do-while";

}
printf ("Now on iteration %d", i);

}
cnt *= 7;

See Also

continue, do-while, for, while

Syntax Element Description

level_constant An optional integer that specifies the number of nested
loop levels to break out of.
138 Chapter 6

cindex
cindex

Returns the position within str of the first occurrence of the character char.

Category

Library Routine

Syntax

int cindex (str, char)

Comments

The cindex (character index) routine returns the integer zero if no occurrences of char are
found.

The cindex, lcindex, sindex, and lsindex routines return positional information about
either the first or last occurrence of a specified character or set of characters within a string
expression. The strspan routine returns distance information about the span length of a set
of characters within a string expression.

 Example

This example returns the integer value 1, because a is the first letter in the string aardvark:

cindex("aardvark", ’a’);

This example returns the integer value 0, because the letter b does not occur in the string
aardvark:

cindex("aardvark", ’b’);

See Also

lcindex, lsindex, sindex, strspan, strstr

Syntax Element Description

str The string to search.

char The character to search for within str.
Command Reference 139

base64_decode()
base64_decode()

Decodes a base 64–encoded string.

Category

Library Routine

Syntax

string base64_decode(str)

Comments

The base64_decode() function returns the clear text string equivalent of the given
base64–encoded string. If base64_decode() fails, it returns an empty string, "".

Example

This example uses base64_decode() to extract the login ID and password contained in the
given request text.

string auth_str, key, log_pass, request_text;
int start, end;

key = "Authorization:Basic";
start = strstr(request_text, key);
start += strlen(key);
auth_str = substr(request_text, start, 10000);
end = strstr(auth_str, "\r\n");
auth_str = substr(auth_str, 1, end – 1);
log_pass = base64_decode(auth_str);

See Also

base64_encode()

base64_encode()

Encodes a string using base-64 encoding.

Syntax Element Description

str1 A string expression containing the encoded text.
140 Chapter 6

close
Category

Library Routine

Syntax

string base64_encode(str)

Comments

The base64_encode() function returns the base 64–encoded string equivalent of the given
string. If base64_encode() fails, it returns an empty string, "".

This function allows you to parameterize http login IDs and passwords.

Example

This example uses base64_encode() to build an authorization string for a login ID and
password and then incorporates the result into an http_request.

string auth_str;
auth_str = base64_encode("mylog" +":"+ "mypass");
if (auth_str == “”)
{

user_exit(1,"Can’t convert login/password\n");
}
rational_com_80 = http_request["HTTP_lo~004"]
"rational.com:80", HTTP_CON_DIRECT,
"GET/HTTP/1.0\r\n",
. . .
"Authorization:Basic" + auth_str + "\r\n"
"\r\n";

See Also

base64_decode()

close

Writes out buffered data to a file and then closes the file.

Syntax Element Description

str A string expression containing the clear text.
Command Reference 141

close
Category

Library Routine

Syntax

int close(file_des)

Comments

The close routine returns 0 when it closes a file successfully; otherwise, a runtime error is
generated. Specifying an arbitrary integer not corresponding to a file descriptor as file_des
causes close to generate a runtime error.

Any non-persistent open files not closed by close are automatically closed when the virtual
tester script completes. All open files, including persistent files, are closed at the end of a run.
Your script cannot close standard input, output, error, record, and log files; any attempt to
close one of them generates a runtime error.

Example

This example declares the variable theline as a string. It then does the following:

■ Opens data_file for reading and assigns it the file descriptor file1.

■ Positions the character pointer so that each user reads a different line. File pointer for user
1 is 80 (_uid*80) bytes from the beginning of the file, file pointer for user 2 is 160 bytes
from the beginning of the file, and so on.

■ Reads an entire line (anything but a new line followed by a new line) and stores it in
theline.

string theline;

file1=open("data_file","r");

fseek(file1, (_uid*80),0);

fscanf(file1, "%[^\n]\n", &theline);

close(file1);

See Also

open

Syntax Element Description

file_des An integer expression specifying the file to close.
file_des is the file descriptor returned by open.
142 Chapter 6

continue
continue

Skips remaining statements in a loop and continues with the next iteration of the loop.

Category

Flow Control Statement

Syntax

continue [level_constant]

Comments

The continue statement enables you to control the execution of for, while, and do-while
loops.

As in C, if the continue statement is encountered in a while or do-while loop, the
remaining statements in the loop are skipped, and execution continues with the evaluation
step of the loop. If the continue statement is encountered in a for loop, the remaining
statements in the loop are skipped, and execution continues with the increment step.

Unlike C, however, continue is specified with an optional argument, which allows it to
affect a specified level of nested looping structures. Without this argument, or if the argument
is 1, it behaves like its counterpart in C.

Example

In this example, if the value of level_constant is 1, the continue statement causes the
program execution to skip execution of loop_cnt = inner_cnt. Execution continues at
inner_cnt <= 4.

If the value of level_constant is 2, the do-while loop ends, the print "Completed
do-while" statement is skipped, and execution continues at j < cnt.

If the value of level_constant is 3, both the do-while and while loops stop, the printf
statement is skipped, and execution continues at i++.

cnt = inner_cnt = 0;
for (i = 0; i < 10; i++) {

cnt++;

Syntax Element Description

level_constant An optional integer that specifies how many nested loop
levels to break out of.
Command Reference 143

COOKIE_CACHE
j = 0;
while (j < cnt) {

j++;
inner_cnt = j;
do {

inner_cnt++;
continue level_constant;
loop_cnt = inner_cnt;

} while (inner_cnt <= 4);
print "Completed do-while";

}
printf ("Now on iteration %d", i);

}
cnt *= 7;

See Also

break, do-while, for, while

COOKIE_CACHE

Indicates the state of the cookie cache at the beginning of a session.

Category

Statement

Syntax

COOKIE_CACHE
{
 name = value, domain, path [, secure];
 ...
}

Syntax Element Description

name A string constant giving the name of the cookie.

value A string constant giving the value of the cookie.

domain A string constant giving the domain for which the
cookie is valid.

path A string constant giving the path for which the cookie is
valid.
144 Chapter 6

COOKIE_CACHE
Comments

When you begin recording an http session, TestManager queries your browser for any cookies
that it has stored. These cookies are loaded into memory during script playback, thus making
playback more accurate with respect to initial cookie values. This occurs automatically, but
your VU script will contain a COOKIE_CACHE section.

This COOKIE_CACHE section reflects the state of the cookie cache at the beginning of a
recording session. Automatically generated scripts have this section at the end of the script,
but it may appear anywhere outside the main body of the script.

The cookies in the COOKIE_CACHE section are added to the user's cookie cache automatically
before any commands in the script are executed. Cookies are created with expiration dates
sufficiently in the future to ensure that they do not expire when you play back the script.

Example

A cookie with the following data:

 Name: <AA002>
 Value: <00932743683-101023411/933952959>
 Path: <avenuea.com/>
 Secure: <0>
Comment: <*>
 Expire: <Monday, 20-Jul-2009 00:00:00 GMT>
 Create: <Friday, 23-Jul-1999 15:27:31 GMT>

Appears in the COOKIE_CACHE as:

COOKIE_CACHE
{
 "AA002" = "00932743683-101023411/933952959",

"avenuea.com", "/";
}

See Also

expire_cookie, set_cookie

secure An optional string expression that, if given, provides the
secure modifier for the cookie. The value of this
parameter should be "secure".

Syntax Element Description
Command Reference 145

ctos
ctos

Converts characters to strings.

Category

Library Routine

Syntax

string ctos (char)

Comments

The ctos (character to string) routine returns a string of length one, containing the character
char if char is nonzero; otherwise, ctos returns a string of length zero ("").

The stoc routine is the converse of ctos; stoc converts strings to characters.

Example

These examples return the string "a":

ctos("a");
ctos(256 + ‘a’);

This example returns the string "\n":

ctos(’\n’);

These examples return the string "":

ctos(’\0’);
ctos(0);

See Also

stoc

datapool_close

Closes an open datapool.

Syntax Element Description

char An integer expression representing the character to
convert.
146 Chapter 6

DATAPOOL_CONFIG
Category

Datapool Function

Syntax

int datapool_close(datapool_id)

Comments

If datapool_close completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0.

Example

This example opens repo_pool in the project and then closes it:

DP1 = datapool_open ("repo_pool");
datapool_close (DP1);

See Also

datapool_open

DATAPOOL_CONFIG

Controls datapool creation and datapool access.

Category

Statement

Syntax

DATAPOOL_CONFIG datapool_name flags
{
 directive, "col_name" [,"data_type" [,"data_value"]];
 ...

Syntax Element Description

datapool_id An integer expression returned by datapool_open
specifying the datapool to close.
Command Reference 147

DATAPOOL_CONFIG
 directive, "col_name" [,"data_type" [,"data_value"]];
}

Syntax Element Description

datapool_name A string constant specifying the datapool name.

flags Values that define the datapool access method. Choose
at most one value from each of the following four
groups:

DP_WRAP or DP_NOWRAP

Specifies what happens after the last row in the datapool
row access order is reached:
■ DP_NOWRAP – End access to the datapool. This is

the default.
■ If you attempt to retrieve a datapool value after the

end of the datapool is reached, a runtime error
occurs.

■ DP_WRAP – Resume at the beginning of the access
order.

To ensure that unique datapool rows are fetched, specify
DP_NOWRAP, and make sure that the datapool has at
least as many rows as the number of virtual testers (and
user iterations) that will request rows at runtime.

DP_SHARED or DP_PRIVATE

Specifies whether the datapool cursor is shared by all
virtual testers accessing the datapool (DP_SHARED) or
is unique to each user (DP_PRIVATE):
■ DP_SHARED – With a shared cursor, all virtual

testers work from the same access order. For example,
if the access order for a Colors column is Red, Blue,
and Green, the first user to request a value is assigned
Red, the second is assigned Blue, and the third is
assigned Green. This is the default.

■ A shared cursor can also be persistent across suite
runs. Use the DP_PERSISTENT flag to make a
shared cursor persistent.

■ DP_PRIVATE – With a private cursor, each user
starts at the top of its access order. With DP_RANDOM
or DP_SHUFFLE, the access order is unique for each
user and operates independently of the others. With
DP_SEQUENTIAL, the access order is the same for
each user (ranging from the first row in the file to the
last).
148 Chapter 6

DATAPOOL_CONFIG
■ DP_SEQUENTIAL, DP_RANDOM, or
DP_SHUFFLE

■ Determines datapool row access order (the sequence
in which datapool rows are accessed):

■ DP_SEQUENTIAL – Rows are accessed in the order
in which they are physically stored in the datapool
file, beginning with the first row in the file and
ending with the last. This is the default.

■ DP_RANDOM – Rows are accessed in any order, and
any given row can be accessed multiple times or not
at all.

■ DP_SHUFFLE – Each time TestManager rearranges,
or “shuffles,” the access order of all datapool rows, a
unique sequence results. Each row is referenced in a
shuffled sequence only once.

DP_PERSISTENT

Specifies that the datapool cursor is persistent across
suite runs. For example, if both the DP_PERSISTENT
and DP_SEQUENTIAL flags are set, and datapool row
number 100 was the last row accessed in the last suite
run, the first row accessed in the next suite run is 101.

A persistent cursor resumes row access based on the last
time the cursor was accessed as a persistent cursor. For
example, suppose a cursor is persistent, and the last row
accessed for that cursor in a suite run is 100. Then, the
same suite is run again, but the cursor is now private.
Row access ends at 50. If the cursor is set back to
persistent the next time the suite is run, row access
resumes with row 101, not 51.

DP_PERSISTENT is only valid when the
DP_SHARED flag exists and when either the
DP_SEQUENTIAL or DP_SHUFFLE flag exists.

Syntax Element Description
Command Reference 149

DATAPOOL_CONFIG
OVERRIDE or EXCLUDE

Specifies whether you want to use an optional global
directive to override the individual directives specified
in directive:
■ OVERRIDE – The OVERRIDE directive is applied

globally to all datapool columns. This is the default.
■ EXCLUDE – The EXCLUDE directive is applied

globally to all datapool columns.

These values allow the script to ignore
datapool_open and datapool_fetch calls. As a
result, these values let you run the script even if the
datapool file is missing.

See the directive argument for more information
about these values.

Syntax Element Description
150 Chapter 6

DATAPOOL_CONFIG
directive A keyword that specifies the columns to add to the
datapool as well as the source of values returned by the
function datapool_value:
■ INCLUDE

❑ During datapool creation, creates a datapool
column for col_name. The column is assigned
the same name.

❑ During suite runtime, datapool_value
returns a value for col_name from the
corresponding datapool column.

■ EXCLUDE

❑ During datapool creation, does not create a
datapool column for col_name.

❑ When the flags value contains EXCLUDE, no
datapool is created.

❑ During suite runtime, datapool_value
returns a value for col_name from the recorded
value in data_value, not from the datapool.

■ OVERRIDE
❑ During datapool creation, creates a datapool

column for col_name. The column is assigned
the same name.

❑ During suite runtime, datapool_value
returns a value for col_name from the recorded
value in data_value, not from the datapool.

You can override all of the directives in this column by
specifying the flags value OVERRIDE or EXCLUDE.
These global values treat all columns in the
configuration section as either OVERRIDE or
EXCLUDE.

col_name The name of the datapool item. If a datapool column is
created for this item (if directive is either INCLUDE
or OVERRIDE), the datapool column is assigned the
same name.

data_type The data type of the value in data_value column.
The value is always string.

data_value A value that was provided during recording. The
function datapool_value supplies col_name
with a recorded value rather than a datapool value if the
directive OVERRIDE or EXCLUDE is specified.

Syntax Element Description
Command Reference 151

DATAPOOL_CONFIG
Comments

If you select Use datapools on the Generator tab of the Session Record Options dialog box, Robot
automatically includes a DATAPOOL_CONFIG statement in the script that it generates after
recording.

To edit a DATAPOOL_CONFIG statement through the Robot user interface, click Edit → Datapool
Information.

Think of non-sequential access order (DP_SHUFFLE and DP_RANDOM) as being like a shuffled
deck of cards. With DP_SHUFFLE, each time you pick a card (access a row), you place the card
at the bottom of the pack. But with DP_RANDOM, the selected card is returned anywhere in the
pack — which means that one card might be selected multiple times before another is selected
once.

Also, with DP_SHUFFLE, after each card has been selected once, you either resume selecting
from the top of the same access order (DP_WRAP), or no more selections are made
(DP_NOWRAP).

With DP_RANDOM, you never reach the end of the pack (there is no end-of-file condition, so
DP_WRAP and DP_NOWRAP are ignored).

In a private cursor with DP_SEQUENTIAL access order, you typically have each user run
multiple instances of the script. If each user runs a single iteration of the script, each would
access the same datapool row (the first row in the datapool).

The following are the possible flags combinations that affect datapool access. These
combinations include all flags values except OVERRIDE and EXCLUDE.

■ DP_SHARED DP_SHUFFLE DP_WRAP

TestManager calculates a unique row access order for all virtual testers to share. After a
user reaches the last row in the access order, the next user resumes access with the first row.

■ DP_SHARED DP_SHUFFLE DP_WRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across suite runs. For example, suppose
row number 14 immediately follows row number 128 in the shuffled access order. If the
last row accessed in the current suite run is row 128, the first row accessed in the next suite
run is 14.

■ DP_SHARED DP_SHUFFLE DP_NOWRAP

TestManager calculates a unique row access order for all virtual testers to share. After the
last row in the access order is reached, access to the datapool ends.

■ DP_SHARED DP_SHUFFLE DP_NOWRAP DP_PERSISTENT
152 Chapter 6

DATAPOOL_CONFIG
Same as above, but the cursor is also persistent across suite runs. For example, suppose
row number 14 immediately follows row number 128 in the shuffled access order. If the
last row accessed in the current suite run is row 128, the first row accessed in the next suite
run is 14.

■ DP_PRIVATE DP_SHUFFLE DP_WRAP

TestManager calculates a unique row access order for each user. After a user reaches the
last row in its access order, it resumes access with the first row.

■ DP_PRIVATE DP_SHUFFLE DP_NOWRAP

TestManager calculates a unique row access order for each user. After a user reaches the
last row in its access order, access to the datapool ends.

■ DP_SHARED DP_RANDOM

TestManager calculates a random access order that all virtual testers share. A given row
can appear in the access order multiple times. Because no end-of-file condition is possible,
DP_WRAP and DP_NOWRAP are ignored.

■ DP_PRIVATE DP_RANDOM

TestManager calculates a unique random access order for each user. A given row can
appear in the access order multiple times. Because no end-of-file condition is possible,
DP_WRAP and DP_NOWRAP are ignored.

■ DP_SHARED DP_SEQUENTIAL DP_WRAP

TestManager provides all virtual testers with the same sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After a user reaches
the last row in the datapool, the next user resumes access with the first row.

■ DP_SHARED DP_SEQUENTIAL DP_WRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across suite runs. For example, if the last
row accessed in the current suite run is row 128, the first row accessed in the next suite run
is 129.

■ DP_SHARED DP_SEQUENTIAL DP_NOWRAP

TestManager provides all virtual testers with the same sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After the last row in
the sequence is reached, access to the datapool ends.

■ DP_SHARED DP_SEQUENTIAL DP_NOWRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across suite runs. For example, if the last
row accessed in the current suite run is row 128, the first row accessed in the next suite run
is 129.
Command Reference 153

DATAPOOL_CONFIG
■ DP_PRIVATE DP_SEQUENTIAL DP_WRAP

TestManager provides each user with individual sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After a user
accesses the last row in the sequence, it resumes access with the first row in the sequence.

■ DP_PRIVATE DP_SEQUENTIAL DP_NOWRAP

TestManager provides each user with individual sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After a user
accesses the last row in the sequence, the user’s access to the datapool ends.

Comments are not allowed in the DATAPOOL_CONFIG section of a script.

Commas (,) double-quotes ("), and carriage return and line feed characters cannot be used in
keywords, names, or recorded values in the DATAPOOL_CONFIG section of a script.

Example

This example shows a DATAPOOL_CONFIG statement for a datapool named CD_ORDER. The
datapool is accessed by an application that lets a customer order CDs from a music retailer.

This first line of the example contains the datapool name and the flags that define how the
datapool is accessed when the script is played back in TestManager.

Each subsequent line has four columns of information, separated by commas. These lines
serve as a datapool blueprint, giving Robot the information it needs to create the datapool.
During script playback, these lines also tell TestManager where to look for values to assign the
variables in the script.

In this example, a datapool column is generated for every variable listed except the last one,
xV010. Also, during script playback, TestManager assigns a datapool value to each variable
listed except for xV006 and xV010. These two variables are assigned the values 12/31/99
and Order Initiated, respectively, each time the script is executed.

DATAPOOL_CONFIG "CD ORDER" DP_NOWRAP DP_SEQUENTIAL DP_SHARED
{

INCLUDE, "CUSTID", "string", "329781";
INCLUDE, "PRODUCTS_COMPOSER", "string", "Bach";
INCLUDE, "PRODUCTS_COMPOSER_4", "string", "Schubert";
INCLUDE, "PRODUCTS_COMPOSER_3", "string", "Mozart";
INCLUDE, "PRODUCTS_COMPOSER_2", "string", "Haydn";
INCLUDE, "PRODUCTS_COMPOSER_1", "string", "Beethoven";
INCLUDE, "xV001", "string", "33822";
INCLUDE, "xV001_2", "string", "87";
INCLUDE, "xV001_1", "string", "99383";
INCLUDE, "xV002", "string", "2";
INCLUDE, "xV003", "string", "10-APR-1998";
INCLUDE, "xV004", "string", "MasterCard";
INCLUDE, "xV005", "string", "1234567890000";
154 Chapter 6

datapool_fetch
OVERRIDE, "xV006", "string", "12/31/99";
INCLUDE, "xV007", "string", "99383";
INCLUDE, "xV008", "string", "2";
INCLUDE, "xV009", "string", "$35.98";
EXCLUDE, "xV010", "string", "Order Initiated";

}

See Also

datapool_open

datapool_fetch

Moves the datapool cursor to the next row.

Category

Datapool Function

Syntax

int datapool_fetch(datapool_id)

Comments

If datapool_fetch completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0.

datapool_fetch retrieves the next row in the datapool. The “next row” in the datapool is
determined by the flags you set in the DATAPOOL_CONFIG section of the script or in the
datapool_open command.

If cursor wrapping is disabled, and the last row of the datapool has been retrieved, a call to
datapool_fetch returns an error. If datapool_value is then called, a runtime error
occurs. (Cursor wrapping is disabled when the flags argument of DATAPOOL_CONFIG or
datapool_open includes DP_NOWRAP.)

Syntax Element Description

datapool_id An integer expression returned by datapool_open
and representing an open datapool.
Command Reference 155

datapool_open
Example

This example opens a datapool, fetches the next record in the datapool, and then closes the
datapool:

DP1 = datapool_open ("repo_pool");
datapool_fetch(DP1);
datapool_close (DP1);

See Also

datapool_open, datapool_rewind, datapool_value

datapool_open

Opens the specified datapool and defines the datapool’s row access order.

Category

Datapool Function

Syntax

int datapool_open (datapool_name [, flags])

Syntax Element Description

datapool_name The name of the datapool to open.

flags Flags that define how the datapool is accessed when the
script is played back in a TestManager suite.

If you do not specify any values for flags, row access
order is determined by the flags value of
DATAPOOL_CONFIG. This is the preferred method for
providing flags values.

If you do define flags in datapool_open, it cannot
contradict the values set in DATAPOOL_CONFIG.

For example, if DATAPOOL_CONFIG does not specify
the datapool access method (DP_SEQUENTIAL or
DP_RANDOM), you can specify it as DP_SHUFFLE in
the datapool_open. However, if
DATAPOOL_CONFIG declares a datapool cursor as
DR_PRIVATE, you cannot open it with DP_SHARED.

For details about flags values, see the description of
this argument in the DATAPOOL_CONFIG statement.
156 Chapter 6

datapool_open
Comments

datapool_open returns a datapool identifier that other datapool functions use to perform
operations on the datapool. Upon failure, the function returns 0.

The cursor for a datapool opened for shared access (DP_SHARED) is initialized by TestManager
once for an entire suite run. When initializing a datapool cursor opened for both shared and
persistent access (DP_SHARED and DP_PERSISTENT), TestManager sets the row pointer to the
next row in the row access order — that is, to the row that immediately follows the last row
accessed in the last suite run where the cursor was persistent.

The cursor for a datapool opened for private access (DP_PRIVATE) is initialized by each user
once for an entire suite run. When initializing a datapool cursor opened for private access,
TestManager sets the row-pointer to the first datapool row in the row access order.

With a private-access datapool, closing the datapool with datapool_close, and then
reopening the same datapool with another call to datapool_open with the same flags and in
the same or a subsequent script, resumes access to the datapool as if it had never been closed.

If multiple virtual testers (GUI users and/or virtual testers) access the same datapool in a
TestManager suite, the datapool cursor is managed as follows:

■ For shared cursors, the first call to datapool_open initializes the cursor. In the same suite
run (and, with the DP_PERSISTENT flag, in subsequent suite runs), virtual testers that
subsequently call datapool_open to open the same datapool share the initialized cursor.

■ For private cursors, the first call to datapool_open initializes the user’s private cursor. In
the user’s subsequent calls to datapool_open in the same suite run, the cursor is set to
the last row accessed by that user.

Example

This example declares a datapool from the customer file. At declaration, access to the datapool
is sequential, and DP_WRAP or DP_NOWRAP is unspecified. The datapool is opened to reuse
records:

DATAPOOL_CONFIG "repo_pool" DP_SHARED DP_SEQUENTIAL
{
 INCLUDE, "column1", "string";
 INCLUDE, "column2", "string";
 INCLUDE, "column3", "string";
}
DP1 = datapool_open ("repo_pool", DP_WRAP);

See Also

datapool_close, DATAPOOL_CONFIG, datapool_fetch, datapool_value,
datapool_rewind
Command Reference 157

datapool_rewind
datapool_rewind

Resets the datapool cursor to the start of the datapool access order.

Category

Datapool Function

Syntax

int datapool_rewind(datapool_id)

Comments

This command rewinds the private cursor for the datapool referenced by the datapool_id.
If datapool_rewind completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0.

The datapool is rewound as follows:

■ For datapools opened DP_SEQUENTIAL, datapool_rewind resets the cursor to the first
record in the datapool file.

■ For datapools opened DP_RANDOM or DP_SHUFFLE, datapool_rewind restarts the
random number sequence.

■ For datapools opened DP_SHARED, datapool_rewind has no effect.

At the start of a suite, datapool cursors always point to the first row.

If you rewind the datapool during a suite run, previously accessed rows are fetched again.

Example

This example shows a datapool configured with the defaults, opened for private access, and
then rewound.

DATAPOOL_CONFIG "repo_pool" DP_NOWRAP DP_SEQUENTIAL
{
 INCLUDE, "column1", "string";
 INCLUDE, "column2", "string";
 INCLUDE, "column3", "string";
}

Syntax Element Description

datapool_id An integer expression returned by datapool_open
and representing an open datapool.
158 Chapter 6

datapool_value
DP1 = datapool_open ("repo_pool", DP_PRIVATE);
datapool_rewind (DP1);

See Also

datapool_fetch

datapool_value

Retrieves the value of the specified datapool column.

Category

Datapool Function

Syntax

string datapool_value(datapool_id, column)

Comments

datapool_value returns the string value of the specified column.

If cursor wrapping is disabled, and the last row of the datapool has been retrieved, a call to
datapool_fetch returns an error. If datapool_value is then called, a runtime error
occurs. (Cursor wrapping is disabled when the flags argument of DATAPOOL_CONFIG or
datapool_open includes DP_NOWRAP.)

You can retrieve a value even if the datapool column has been excluded from the datapool
(through the EXCLUDE directive in DATAPOOL_CONFIG). In this case, the value retrieved is the
recorded value contained in the data_value argument of the DATAPOOL_CONFIG statement.

Example

This example retrieves the value of "column3" and stores it in dp_value:

Syntax Element Description

datapool_id An integer expression returned by datapool_open
and representing an open datapool.

column A string that specifies the name of the datapool column
to retrieve. The name must match a datapool column
name listed in the TestManager Datapool Specification
dialog box. Column names are case sensitive.
Command Reference 159

delay
DATAPOOL_CONFIG "repo_pool" DP_NOWRAP DP_SHARED DP_SEQUENTIAL
{
 INCLUDE, "column1", "string";
 INCLUDE, "column2", "string";
 INCLUDE, "column3", "string";
}
DP1 = datapool_open ("repo_pool" DP_WRAP);
datapool_fetch(DP1);
dp_value = datapool_value(DP1, "column3");

See Also

datapool_fetch

delay

Delays script execution for a specified time period.

Category

Library Routine

Syntax

int delay (m_time)

Comments

The delay routine returns, as an integer, the number of milliseconds actually delayed. If
m_time is ≤ 0, delay returns 0 immediately.

The delay routine delays script execution for a specified time period before continuing.
When this time period has elapsed, execution continues with the next statement.

Your system may round the delay to a lower resolution, typically in the range of 10 to 20
milliseconds.

Syntax Element Description

m_time An integer expression specifying the delay in
milliseconds. This is subject to scaling by the
environment variable Delay_dly_scale.
160 Chapter 6

display
Example

This example sets a random delay. It first defines a maximum delay of 10 seconds, and then
delays a random amount of time from 0 to 10 seconds:

#define MaxDelay 10

(
delay_time = rand() % (MaxDelay + 1);
delay(delay_time * 1000);

}

See Also

None.

display

Provides a string to the monitor for display in message view.

Category

Library Routine

Syntax

int display (str)

Comments

The display routine always returns 1 for success. display accepts any string expression,
but the length of the string is truncated to 20 characters when monitoring a suite.

This function is most useful as a script debugging tool because it allows a short message to be
easily viewed in real time.

Example

display ("beginning transaction");

Syntax Element Description

str A string expression to be displayed by monitor.
Command Reference 161

do-while
See Also

None.

do-while

Repeatedly executes a VU statement while a condition is true.

Category

Flow Control Statement

Syntax

do
statement1;
while (exp1);

Comments

 The do-while loop is executed in the following steps:

1 statement1 is executed.

2 exp1 is evaluated.

3 If the value of exp1 is not 0, steps 1 and 2 are repeated. If the value of exp1 is 0, execution
of the while loop ends.

Example

This example reads and prints a string from a file whose file descriptor is file_des.
Execution continues until the end of the file is reached.

do
{
 if (fscanf(file_des, "%s", &key)==1)
 printf("Key is <%s>\n" key);
}
while (!feof(file_des))

Syntax Element Description

statement1 One or more VU language statements enclosed in
braces.

exp1 The integer expression to evaluate.
162 Chapter 6

else-if
See Also

for, while

else-if

Conditionally executes a VU statement.

Category

Flow Control Statement

Syntax

if (exp1)
 statement1;

else if (exp2)
 statement2;
...

else if (expn)
statementn;

else
statementx;

Comments

The else-if structure follows these conventions:

■ If the value of exp1 is not 0, only statement1 is executed.

■ If exp1 is 0 and the value of exp2 is not 0, only statement2 is executed.

■ If exp1, exp2 ... expn-1 are 0 and the value of expn is not 0, only statementn is
executed.

Syntax Element Description

exp1, exp2, expn An integer expression whose value determines whether
the corresponding statement is executed. If the value is
0, the statement is not executed.

statement1,
statement2,
statementn,
statementx

VU language statements that are executed conditionally.
Command Reference 163

emulate
■ If all of exp1, exp2 ... expn are 0, then only statementx is executed. The final else
is omitted if no action is required when all of exp1, exp2 ... expn are 0.

As with the if-else structure, if a statement is replaced by multiple VU language
statements, all statements are enclosed in braces.

The indentation is optional but recommended.

Example

In this example, one of three options are possible. If x is less then target, the string “too
small” is printed. If x is greater than target, the string “too large” is printed; otherwise, the
string “just right!” is printed.

if (x < target)
 printf("too small\n");

else if (x > target)
 printf("too large\n");

else
 printf("just right!\n");

See Also

if-else

emulate

Provides generic emulation command services to support a proprietary protocol.

Category

Send Emulation Command

Syntax

int emulate [cmd_id] condition [, log_string [, fail_string]]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
164 Chapter 6

emulate
Comments

The emulate command returns the value of condition.

The emulate command provides generic emulation command services to VU
or external C function calls. This extends VU emulation support to proprietary protocols or
interfaces. You can use the emulate command as a wrapper for external C function calls, and
thus obtain the full set of services associated with the standard emulation commands.

Note: VU supports the SAP protocol by using external C functions and the emulate command.
For information about the SAP protocol, see Appendix B.

The external C dynamic-link library (shared library on UNIX Agents) contains the C functions
to perform the desired client-side API functions that access the server. These C functions are
wrapped in the emulate command, so that the results and timing of the API functions are
paced, recorded, logged, and made available for analysis by TestManager reports.

The C code generally performs response verification and error detection, and passes an
integer return code to emulate.

condition An integer expression. If the value of condition is >
0, the emulate command passes; otherwise, it fails.
emulate returns the value of condition.

Typically, condition is a VU function or an external
C function.

condition is executed before evaluation of
log_string and fail_string. Therefore, either
string could contain variables set during execution of
condition.

log_string An optional string expression used when logging a
passed emulate command, or a failed, emulate
command if fail_string is not provided. If
log_string is not specified, no log entry is generated
for emulate.

Either log_string or fail_string is evaluated,
but not both.

fail_string An optional string expression used when logging a
failed emulate command. If fail_string is not
specified, log_string is used for both pass and fail
cases.

Either log_string or fail_string is evaluated,
but not both.

Syntax Element Description
Command Reference 165

emulate
The emulate command is affected by the following VU environment variables: the think time
variables, Log_level, Record_level, Suspend_check, Timeout_val,
Timeout_scale, and Timeout_act.

For more information, see Accessing External C Data and Functions on page 65.

Example

In this simple example, api_x is called with two string constants and an integer constant. No
logging is performed, but if api_x returns a value > 0, the command is recorded as passed in
the virtual tester’s record file; otherwise, it is recorded as failed. The label associated with the
command is action 1. The response time is the time from calling api_x until it returns.

emulate["action 1"] api_x("John Doe", "$100.43", 4);

In this more complete example, an API has been linked into a dynamic-link library. The virtual
tester script calls the API with an emulate wrapper.

The API is a simple interface to a school database. The API consists of:

■ An open function, which takes a student’s name and returns a handle to that student’s
record.

■ A cmd function, which performs operations on the records.

■ A close function, which releases the record handle.

The actual C code for the shared library includes a wrapper C function for each API call; each
call has the prefix my. The dynamic-link library creates the log message for each API call.

The header file, myAPI.h, is included in the virtual tester script. The header file defines three
constants that are used by the API, and makes the C string api_logmsg, and functions
myapi_open, myapi_cmd, and myapi_close available to the virtual tester script:

#define REGISTER_CLASS1
#define ASSIGN_GRADE2
#define REVISE_GRADE3

external_c string api_logmsg;

external_c func myapi_open(name, student_handle)
string name;
reference int student_handle;

{}

external_C func myapi_cmd(student_handle, command, sval, ival)
int student_handle;
int command;
string sval;
int val;

{}
166 Chapter 6

eval
external_C func myapi_close(student_handle)
int student_handle;

{}

The virtual tester script has an emulate command for each API call, and references the
shared external C string api_logmsg to log the results. The script opens the record for Joe
Smith, returns the handle needed by subsequent calls (handle_1), assigns two grades, and
closes the record. A think time has been added to simulate user processing:

#include <VU.h>
#include <myAPI.h>

{
set Think_avg = 3000;
emulate ["step001"] myapi_open("Joe Smith", &handle_1), api_logmsg;
emulate ["step002"] myapi_cmd(handle_1, ASSIGN_GRADE, "Biology", 94),
api_logmsg;
emulate ["step003"] myapi_cmd(handle_1, ASSIGN_GRADE, "Chemistry", 82),
api_logmsg;
emulate ["step004"] myapi_close(handle_1), api_logmsg;
}

See Also

testcase

eval

Returns the value and data type at the top of a VU environment variable’s stack.

Category

Environment Control Command

Syntax

type eval env_var;

Syntax Element Description

type int, string, or bank depending on type of
env_var.

env_var Any VU environment variable defined as a integer,
string, or bank.
Command Reference 167

expire_cookie
Comments

The eval command returns an expression having the same type as env_var (integer, string,
or bank) and the current value of env_var. The value of env_var is not altered.

Example

In this example, values for Timeout_val and Log_level are set. The integer value 2000 is
assigned to the variable t. Then, the integer value 1 is assigned to the variable e, because the
expression (eval Log_level == "ALL") is true. The value of Timeout_val and
Log_level remain unchanged.

set [Timeout_val = 2000, Log_level="ALL"];
t = eval Timeout_val;
e=(eval Log_level=="ALL");

See Also

None.

expire_cookie

Expires a cookie in the cookie cache.

Category

Emulation Function

Syntax

expire_cookie(name, domain, path)

Syntax Element Description

name A string expression that specifies the name of the cookie.

domain A string expression that specifies the domain for which
this cookie is valid.

path A string expression that specifies the path for which this
cookie is valid.
168 Chapter 6

feof
Comments

The expire_cookie function causes the named cookie to no longer be valid for the given
domain and path. This effectively removes the cookie from the cache.

Example

This example expires the cookie named AA002 for domain avenuea.com and path /.

expire_cookie("AA002", ".avenuea.com", "/");

See Also

COOKIE_CACHE, set_cookie

feof

Determines if the end of a file was encountered.

Category

Library Routine

Syntax

int feof (file_des)

Comments

The feof routine returns a nonzero value if the end of file has previously been detected
reading the named input file; otherwise, feof returns zero.

The related routines fseek repositions the file pointer and ftell returns information on the
file pointer.

Syntax Element Description

file_des The integer file descriptor of the file to check. The file
descriptor was returned from open.
Command Reference 169

fflush
Example

In this example, if the file with the descriptor infile_des contains the characters abcde,
then the characters abcde are written to the file whose descriptor is outfile_des ten times.
At the end of the example, the variables copies and total have values of 10 and 50,
respectively:

fseek(file_des, 0, 2);
for (copies = total = 0; copies < 10; copies++)
{
 while (1)
 {
 c = fgetc(infile_des);
 if (feof(infile_des))
 {
 total += ftell(infile_des);
 fseek(infile_des, 0, 0); /* rewind */
 break;
 }
 else
 fputc(c, outfile_des);
 }
}

See Also

fseek, ftell

fflush

Causes any buffered data for a file to be written to that file.

Category

Library Routine

Syntax

int fflush (file_des)

Syntax Element Description

file_des The integer file descriptor, obtained from the open, the
file to flush.
170 Chapter 6

fgetc
Comments

The fflush routine returns zero for success, or EOF (as defined in the standard VU header
file) upon encountering an error. All VU files except standard error are buffered for efficiency.

fflush temporarily overrides the buffering mechanism by writing the buffered data to the
named file. This is particularly useful for ensuring timely output of status messages, as shown
in the following example.

Example

This example writes the strings "Processing Phase 1", "2 ", "3 ",
"4 ", "5 ", and "DONE\n" to be successively written to the standard output file
immediately as each respective phase is processed, instead of waiting until the file is closed or
the current output buffer is filled.

for (phase_no = 1; phase_no <= 5; phase_no++)
{

if (phase_no == 1)
printf("Processing Phase ");

printf("%d ", phase_no);
fflush(stdout);
do_phase(phase_no);

}
printf("DONE\n");
fflush(stdout);

See Also

None.

fgetc

Provides unformatted character input capability.

Category

Library Routine
Command Reference 171

for
Syntax

int fgetc (file_des)

Comments

The fgetc routine returns the next character, as an integer, from the named file. This provides
a shortened, more efficient alternative to the fscanf routine for the case where only a single
character needs input. fgetc returns EOF (as defined in the standard VU header file) at
end-of-file or upon an error.

Example

In this example, assume the file with the descriptor infile_des contains the characters
ABZ14. The characters ABZ are written to the file whose descriptor is outfile_des, and the
character 1 is returned to the input buffer associated with infile_des.

#include <VU.h>
while ((c = fgetc(infile_des)) != EOF)
if (c >= ‘A’ && c <= ‘Z’)

fputc(c, outfile_des);
else
{

ungetc(c, infile_des);
break;

}

See Also

ungetc

for

Repeatedly executes a VU statement.

Category

Flow Control Statement

Syntax Element Description

file_des The integer file descriptor, obtained from open, that
refers to the file to read.
172 Chapter 6

fputc, fputs
Syntax

for (exp1; exp2; exp3)
statement1;

Comments

The execution of the for loop occurs in the following steps:

1 exp1 is evaluated.

2 exp2 is evaluated and if its value is not 0, statement1 is executed. If its value is 0,
execution of the for loop ends.

3 If the execution of the for loop has not ended, exp3 is evaluated.

4 Steps 2 and 3 are repeated until execution of the for loop ends.

Example

This example prints out a line 10 times:

for (i=0; i<10; i++)
printf ("this line is displayed 10 times\n");

See Also

do-while, while

fputc, fputs

Writes unformatted output for characters or strings.

Category

Library Routine

Syntax Element Description

exp1, exp3 A VU language expression.

exp2 An integer expression to evaluate.

statement1 A VU language statement. You can include multiple VU
language statements if all of the statements are enclosed
in braces and terminated by semicolons.
Command Reference 173

FreeAllData
Syntax

int fputc (out_char, file_des)
int fputs (out_str, file_des)

Comments

The fputc and fputs routines provide a shortened, more efficient alternative to the
fprintf routine when only a single character or string needs to be output.

Example

In this example, assume that the value of char1 is M. Therefore, the character M is written to
the file whose descriptor is outfile_des.

fputc(char1, outfile_des);

In this example, assume that the value of the string expression str1 is xyz. Therefore, the
characters xyz are written to the file whose descriptor is outfile_des.

fputs(str1, outfile_des);

See Also

fprintf

FreeAllData

Frees all data sets saved with SaveData and AppendData.

Category

VU Toolkit Function: Data

Syntax Element Description

out_char An integer expression (interpreted as a character) that
specifies the character to write.

out_str A string expression that specifies the string to write.

file_des The integer file descriptor, obtained from open, of the
file to receive the output.
174 Chapter 6

FreeData
Syntax

#include <sme/data.h>
proc FreeAllData()

Comments

The FreeAllData procedure frees all data sets saved using SaveData and AppendData.

Example

This example saves the data in the tmp_results buffer, stores the second field in
accessprofile_id, then frees all the data.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id = GetData1("tmp_results", 2);
 FreeAllData ();

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also

AppendData, FreeData, GetData, GetData1, SaveData

FreeData

Frees specified data sets saved with SaveData and AppendData.

Category

VU Toolkit Function: Data
Command Reference 175

FreeData
Syntax

#include <sme/data.h>
proc FreeData(data_name)
string data_name;

Comments

The FreeData function frees the data set associated with data_name, where the named data
set was created using the SaveData or AppendData functions.

Example

This example saves the data in the tmp_results buffer, stores the second field in
accessprofile_id, then frees tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id = GetData1("tmp_results", 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also

AppendData, FreeAllData, GetData, GetData1, SaveData

Syntax Element Description

data_name The name of the data set to free.
176 Chapter 6

fseek
fseek

Repositions the file pointer.

Category

Library Routine

Syntax

int fseek (file_des, offset, position)

Comments

The fseek routine returns zero for successful seeks, and nonzero for unsuccessful seeks.

The related routines feof and ftell return information about the file pointer.

Example

In this example, fseek repositions the file pointer of the file whose descriptor is file_des
to the beginning of the file:

fseek(file_des, 0, 0);

In this example, if the current file pointer offset is 45, fseek repositions the file pointer of the
file whose descriptor is file_des to an offset of 35:

fseek(file_des, -10, 1);

In this example, fseek repositions the file pointer of the file whose descriptor is file_des to
the end of the file:

fseek(file_des, 0, 2);

Syntax Element Description

file_des The integer file descriptor, obtained from open, of the
file whose pointer you want to reposition.

offset An integer expression that indicates the number of bytes
that the file pointer is to move. The offset can be a
negative number.

position An integer expression that indicates whether the offset
is from the beginning of the file (if position equals 0),
from the current position (if position equals 1), or
from the end of the file (if position equals 2).
Command Reference 177

ftell
See Also

feof, ftell

ftell

Returns the file pointer’s offset in the specified file.

Category

Library Routine

Syntax

int ftell (file_des)

Comments

The ftell routine returns the current byte’s offset on the named file. This offset is relative to
the beginning of the file.

The related routines fseek repositions the file pointer and feof returns information on the
file pointer.

Example

In this example, if the file with the descriptor infile_des contains the characters abcde,
then the characters abcde are written to the file whose descriptor is outfile_des ten times.
At the end of the example, the variables copies and total have values of 10 and 50,
respectively:

fseek(file_des, 0, 2);
for (copies = total = 0; copies < 10; copies++)
{

while (1)
{

c = fgetc(infile_des);
if (feof(infile_des))
{

total += ftell(infile_des);
fseek(infile_des, 0, 0); /* rewind */

Syntax Element Description

file_des The integer file descriptor, obtained from open, of the
file whose pointer you want to obtain.
178 Chapter 6

GetData
break;
}
else

fputc(c, outfile_des);
}

}

See Also

feof, fseek

GetData

Retrieves a specific row from the dataset created with SaveData or AppendData.

Category

VU Toolkit Function: Data

Syntax

#include <sme/data.h>
string func GetData(data_name, row, column)
string data_name;
int row;
int column;

Comments

The GetData function retrieves a data value from a specific row and column of a data set
created with the SaveData or AppendData functions. Regardless of the database definition
of the column, the returned value is a string. Returned values are of variable length, with any
trailing white space trimmed from the end of the value.

A null string is returned if no data is saved under this name, or if the row or column values
exceed the limits of the stored data.

Syntax Element Description

data_name The name of the data set to retrieve.

row The row of data_name to retrieve.

column The column of data_name to retrieve.
Command Reference 179

GetData1
Example

This example saves the data in the tmp_results buffer, and gets the second field in the first
row of tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id - GetData("tmp_results", 1, 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also

AppendData, FreeAllData, FreeData, GetData1, SaveData

GetData1

Retrieves a value in the first row of a data set created with SaveData or AppendData.

Category

VU Toolkit Function: Data

Syntax

#include <sme/data.h>
string func GetData1(data_name, column)
string data_name;
int column;

Syntax Element Description

data_name The name of the data set to retrieve.
180 Chapter 6

GetData1
Comments

The GetData1 function retrieves a data value from a specific column of the first row of a data
set created with the SaveData or AppendData functions. To retrieve data from a different
row, use the GetData function. Regardless of the database definition of the column, the
returned value is a string. Returned values are of variable length, with any trailing white
space trimmed from the end of the value.

A null string is returned if no data is saved under this name, or if the row or column values
exceed the limits of the stored data.

Example

This example saves the data in the tmp_results buffer, and gets the second field in the first
row of tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id - GetData1("tmp_results", 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also

AppendData, FreeAllData, FreeData, GetData, SaveData

column The column of data_name to retrieve.

Syntax Element Description
Command Reference 181

getenv
getenv

Obtains the values of Windows NT or UNIX environment variables from within a virtual
tester script.

Category

Library Routine

Syntax

string getenv (name)

Comments

The getenv routine behaves like the C routine of the same name.

If a string of the form name=value is not found in the virtual tester’s environment list or if
value is null (zero-length), getenv returns a string of zero length.

Example

This example prints a random number in the range 1 to limit, where limit is the value
(after conversion to an integer) of the LIMIT environment variable if defined; otherwise,
limit equals 100:

string value;

if ((value = getenv("LIMIT")) == "")
/* set default value if LIMIT is undefined */
limit = 100;

else
limit = atoi(value);

print uniform(1, limit);

See Also

putenv

Syntax Element Description

name A string expression specifying the environment variable
whose value is returned as a string.
182 Chapter 6

hex2mixedstring
hex2mixedstring

Returns a mixed ASCII/hexadecimal version of a VU string.

Category

Library Routine

Syntax

string hex2mixedstring(str)

Comments

The returned string consists of printable ASCII characters mixed with hexadecimal characters
where a string of consecutive hexadecimal characters are surrounded by grave accent (`)
characters. Strings used (and returned) by VU with socket and HTTP emulation commands
are in mixed ASCII and hexadecimal format.

Example

#include <VU.h>

string func build_new_request(s)
 string s;
 {

 /* code to create a request out of an earlier response */
 }
{
 string hexstr;
 string mixstr;
 calvin_700 = http_request ["cal001"] "calvin:700", "", 2,

"GET / HTTP/1.0\r\n"
"Connection: Keep-Alive\r\n"
"User-Agent: Mozilla/4.03 [en] (X11; I; SunOS 5.5.1 sun4u)\r\n"
"Pragma: no-cache\r\n"
"Host: calvin:700\r\n"
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

/\r\n"
"Accept-Language: en\r\n"
"Accept-Charset: iso-8859-1,*,utf-8\r\n"
"\r\n";

Syntax Element Description

str VU string expression
Command Reference 183

http_disconnect
 set Server_connection = calvin_700;
 http_header_recv ["cal002"] 200;/* OK */
 http_nrecv ["cal003"] 100 %% ; /* 1316 bytes */
 hexstr = mixed2hexstring(_response);
 hexstr = build_new_request(hexstr);
 mixstr = hex2mixedstring(hexstr);
 calvin_700 = http_request ["cal011"] "calvin:700", "", 2, mixstr;
 set Server_connection = calvin_700;
 http_header_recv ["cal012"] 200;/* OK */
 http_nrecv ["cal013"] 100 %% ;
 http_disconnect(calvin_700);
}

See Also

http_nrecv, http_recv, http_request, mixed2hexstring

http_disconnect

Closes the connection to a Web server.

Category

Emulation Function

Syntax

int http_disconnect (connection_id)

Comments

The http_disconnect function returns 1 for success and 0 for failure. If connection_id is
invalid, http_disconnect generates a fatal runtime error.

Example

This example connects to a Web server, sets the server connection, and then closes the
connection:

Syntax Element Description

connection_id An integer expression specifying a connection number
returned by http_request, and not previously
disconnected with http_disconnect().
184 Chapter 6

http_find_values
#include <VU.h>
{
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80",
 HTTP_CONN_DIRECT,
 "GET / HTTP/1.0\r\n"
 "Accept: application/vnd.ms-excel, application/mswo"
 "rd, application/vnd.ms-powerpoint, image/gif, imag"
 "e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
 "Accept-Language: en\r\n"
 "UA-pixels: 1152x864\r\n"
 "UA-color: color8\r\n"
 "UA-OS: Windows NT\r\n"
 "UA-CPU: x86\r\n"
 "User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
 "Host: capricorn-web\r\n"
 "Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
}

See Also

None.

http_find_values

Searches for the specified values on the current connection.

Category

Emulation Function

Syntax

string[] http_find_values(name, type, tag
[, name, type, tag ...])

Syntax Element Description

name A string expression that specifies the name of the
desired value.
Command Reference 185

http_find_values
Comments

The http_find_values() function may occur in a VU script if you have told Robot to
correlate all or some of your http data. You typically will not need to program this function
yourself.

This function returns an array of strings containing the values specified. Each set of name,
type and tag specifies a single requested value. Up to 21 values may be requested in a call to
http_find_values(). If any of the requested values cannot be found, the corresponding
element of the results array is "". The macro CHECK_FIND_RESULT validates returned
values and supplies a default for returned values of NULL.

The http_find_values() function can be used to extract FORM, HREF, or Set-Cookie
values.

FORM data appears in the response as:

<INPUT TYPE=xxx [xxx]NAME=yyy [xxx]VALUE=zzz[xxxxxxxx]>

Given the above data in the response, http_find_values("yyy", HTTP_FORM_DATA,
1) returns {"zzz"}.

HREF data appears in the response as:

Given the above data in the response, http_find_values("yyy", HTTP_HREF_DATA,
1, "y1y1", HTTP_HREF_DATA, 1) returns {"zzz","z1z1"}.

Set-Cookie data appears in the response as:

Set-Cookie: yyy=zzz[; y1y1=z1z1]\r\n

Given the above data in the response, http_find_values("yyy", HTTP_COOKIE_DATA,
1, "y1y1", HTTP_COOKIE_DATA, 1)returns {"zzz","z1z1"}.

All available data for the current connection (specified by the Server_connection VU
environment variable) is searched regardless of whether or not that data has been processed
by an http receive command.

type An integer expression that specifies the type of the
value. The value of type should be one of:
HTTP_FORM_DATA, HTTP_HREF_DATA, or
HTTP_COOKIE_DATA. These values are defined in
VU.h

tag An integer expression that specifies which instance of
the value is requested.

Syntax Element Description
186 Chapter 6

http_header_info
Example

This example finds the first occurrence of the FORM data identified by foo and the second
occurrence of the HREF data identified by homepage. Assuming that the response data for the
current connection contains:

<INPUT TYPE=xxx NAME=foo VALUE=John>

. . .
A HREF=\"xxxx?nnnnn=&homepage=www.myhome2.com\">

 The following call returns an array of strings equal to {"John", "www.myhome2.com"}
and assigns it to the array SgenRes_001.

string SgenRes_001[];
SgenRes_001 = http_find_values("foo", HTTP_FORM_DATA, 1,
"homepage", HTTP_HREF_DATA, 2);

See Also

http_recv, http_request

http_header_info

Gets individual header values from header metadata.

Category

Emulation Function

Syntax

string http_header_info "header_var_name"

Comments

The http_header_info function scans the headers received by http_header_recv to
locate lines beginning with the requested attribute, and returns a string containing the value
of this attribute. It returns an empty string ("") on error.

If an attribute is listed more than once, only one value is returned.

Syntax Element Description

header_var_name A string that is the name of a header metadata field. This
string is case-insensitive.
Command Reference 187

http_header_recv
Example

Assume that http_header_recv reads the following header information:

HTTP/1.1 200 OK
Date: Mon, 24 Nov 1997 22:57:44 GMT
Server: Apache/1.2.4
Last-Modified: Fri, 21 Nov 1997 20:45:11 GMT
ETag: "7a398-cf1-3475f2d7"
Content-Length: 3313
Accept-Ranges: bytes
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

The following call returns 3313:

http_header_info ("Content-Length")

See Also

http_header_recv

http_header_recv

Receives header metadata from a Web server.

Category

Receive Emulation Command

Syntax

int http_header_recv [cmd_id] status_code

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
188 Chapter 6

http_header_recv
Comments

If http_header_recv completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0.

This command occurs in response to an http_request command.

status_code The expected HTTP status code for this response. You
can use either the code number or the equivalent text
string. The status codes are defined as follows:

100 "Continue"
101 "Switching Protocols"
200 "OK"
201 "Created
202 "Accepted"
203 "Non-Authoritative Information"
204 "No Content"
205 "Reset Content"
206 "Partial Content"
300 "Multiple Choices"
301 "Moved Permanently"
302 "Moved Temporarily"
303 "See Other"
304 "Not Modified"
305 "Use Proxy"
307 "Temporary Redirect"
400 "Bad Request"
401 "Unauthorized"
402 "Payment Required"
403 "Forbidden"
404 "Not Found"
405 "Method Not Allowed"
406 "Not Acceptable"
407 "Proxy Authentication Required"
408 "Request Time-out"
409 "Conflict"
410 "Gone"
411 "Length Required"
412 "Precondition Failed"
413 "Request Entity Too Large"
414 "Request-URI Too Large"
415 "Unsupported Media Type"
500 "Internal Server Error"
501 "Not Implemented"
502 "Bad Gateway"
503 "Service Unavailable"
504 "Gateway Time-out"
505 "HTTP Version not supported"

Syntax Element Description
Command Reference 189

http_header_recv
The metadata is sent from the Web server when a client requests a page. For example,
metadata might contain protocol; type; URL address; size of page; date created, date last
modified, and date last updated; as well as an indication of the security status of your
connection.

The metadata received is stored in the read-only variable _response and is overwritten
when you issue other receive emulation commands.

The http_header_recv emulation command is affected by the following VU environment
variables: Http_control, Timeout_act, Timeout_val, Timeout_scale, Log_level,
Record_level, and Server_connection.

The Http_control environment variable can affect how the http_header_recv
emulation command interprets the received status. For more information, see Http_control on
page 103.

Example

This example connects to a Web server, sets the server connection, receives the header
information, and then receives a complete page of data (100 percent of the page, as indicated
by 100 %%).

#include <VU.h>
{
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80",
 HTTP_CONN_DIRECT,
 "GET / HTTP/1.0\r\n"
 "Accept: application/vnd.ms-excel, application/mswo"
 "rd, application/vnd.ms-powerpoint, image/gif, imag"
 "e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
 "Accept-Language: en\r\n"
 "UA-pixels: 1152x864\r\n"
 "UA-color: color8\r\n"
 "UA-OS: Windows NT\r\n"
 "UA-CPU: x86\r\n"
 "User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
 "Host: capricorn-web\r\n"
 "Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
}

The header information received looks like the following:

HTTP/1.1 200 OK
Date: Mon, 24 Nov 1997 22:57:44 GMT
Server: Apache/1.2.4
Last-Modified: Fri, 21 Nov 1997 20:45:11 GMT
190 Chapter 6

http_nrecv
ETag: "7a398-cf1-3475f2d7"
Content-Length: 3313
Accept-Ranges: bytes
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

See Also

http_request

http_nrecv

Receives a user-specified number of bytes from a Web server.

Category

Receive Emulation Command

Syntax

int http_nrecv [cmd_id] {count | count %%}

Comments

If http_nrecv completes successfully, it returns a value of 1. Otherwise, it returns a value of
0.

The http_nrecv emulation command succeeds when it receives count bytes from the
server. Binary data is translated into embedded hexadecimal strings. See Unprintable HTTP or
Socket Data on page 56.

The http_nrecv command sets the “first received” (_fr_ts) and “last received” (_lr_ts)
read-only variables.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

count The number of bytes to receive from the connection.

count %% The number of bytes to receive as a percentage of the
size of the last page processed. The size is calculated
from the information in the last header processed for the
connection.
Command Reference 191

http_recv
The data received is stored in the read-only variable _response and is overwritten when you
issue another receive emulation command.

If Timeout_val (subject to scaling) milliseconds elapses before the http_nrecv is satisfied,
http_nrecv fails and returns 0. Otherwise, http_nrecv passes and returns 1.

The http_nrecv emulation command is affected by the following VU environment
variables: Timeout_act, Timeout_val, Timeout_scale, Log_level, Record_level,
Max_nrecv_saved, and Server_connection. Max_nrecv_saved applies to the actual
data received, before any binary data is translated into embedded hexadecimal strings.

Example

This example sets the server connection, receives the header metadata, and then receives a
complete page of data (100 percent of the page, as indicated by 100 %%).

set Server_connection = CONN1;
http_header_recv 200;
http_nrecv 100 %%;

See Also

http_recv

http_recv

Receives data from a Web server until the specified text string occurs.

Category

Receive Emulation Command

Syntax

int http_recv [cmd_id] recv_str

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

recv_str A string that marks the point at which to stop retrieving
data.
192 Chapter 6

http_request
Comments

The data received is stored in the read-only variable _response and is overwritten when you
issue other receive emulation commands.

If Timeout_val (subject to scaling) milliseconds elapses before the http_nrecv is satisfied,
http_recv fails and returns 0. Otherwise, http_nrecv passes and returns 1.

The http_nrecv command sets the “first received” (_fr_ts) and “last received” (_lr_ts)
read-only variables.

The http_recv emulation command is affected by the following VU environment variables:
Timeout_act, Timeout_val, Timeout_scale, Log_level, Record_level,
Max_nrecv_saved, and Server_connection. Max_nrecv_saved applies to the actual
data received, before any binary data is translated into embedded hexadecimal strings.

Example

This example reads until the end of the connection or a timeout.

http_recv ["cmd003r"] "$";

This example matches as soon as EXCEL Home Page</title>\r\n is found anywhere
within the response:

Set Server_connection = conn1;
http_recv ["cmd001r"] "EXCEL Home Page</title>\r\n";

This example reads until the end of the connection, and passes only if _response is exactly
equal to "EXCEL Home Page</title>\r\n". This is because the ^ forces the comparison
to begin at the start of _response, and the $ forces the comparison to begin at the start of
_response.

http_recv ["cmd002r"] "^EXCEL Home Page</title>\r\n$";

This example matches only if the first 5 characters of _response =="EXCEL". If the first 5
characters do not match, http_recv continues to read until the end of the connection or a
timeout.

http_recv ["cmd003r"] "^EXCEL";

See Also

http_nrecv

http_request

Sends an HTTP request to a Web server.
Command Reference 193

http_request
Category

Send Emulation Command

Syntax

int http_request [cmd_id] primary_addr [, secondary_addr] [, flags],
text

Comments

The http_request command returns a connection ID that is used as a reference for
subsequent interactions with the Web server until the http_disconnect is issued. It returns
an integer value: 0 or less for failure, or a unique connection number greater than or equal to 1
for success.

This command emulates all HTTP protocol request primitives: GET, HEAD, POST, PUT, TRACE,
LINK, UNLINK, DELETE, OPTIONS, COPY.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

primary_addr A string expression that contains the host computer
name and port number of the Web server to which you
are connecting.

secondary_addr A string expression that contains the host computer
name and port number of the Web server. If flag is
HTTP_CONN_DIRECT, this field is not used.

flags An integer expression that indicates:
■ The type of connection (HTTP_CONN_DIRECT,

HTTP_CONN_PROXY, HTTP_CONN_GATEWAY,
HTTP_CONN_TUNNEL). HTTP_CONN_GATEWAY and
HTTP_CONN_TUNNEL are currently unused.

■ Whether or not the connection is secure and the
strength of the encryption (HTTP_CONN_SECURE,
HTTP_CONN_SECURE_40, HTTP_CONN_SECURE_56,
HTTP_CONN_SECURE_128)

These connection flags are defined in the VU.h file.

text A string that contains the request headers. If you are
sending information, this string also contains the
request body. For example, if you fill in a form, the
information you provide in the form is the request body.
194 Chapter 6

http_request
Binary data is translated into embedded hexadecimal strings. See Unprintable HTTP or Socket
Data on page 56.

The http_request command sets the “first connect” (_fc_ts), “last connect” (_lc_ts),
“first sent” (_fs_ts), and “last sent” (_ls_ts) read-only variables.

The http_request command is affected by the following VU environment variables:
Connect_retries, Connect_retry_interval, the think time variables, Timeout_val,
Timeout_scale, Timeout_act, Log_level, Record_level, and Suspend_check. The
think time is applied before the connect, and suspend checking is done (as normal) after the
think time delay.

The http_request command automatically parameterizes cookie information during script
playback. When dynamic cookie information is available from a server, that cookie value
replaces the values in the VU script. Otherwise, the scripted value is used.

Example

This example connects to a Web server. The variable CAPRICORN_WEB_80 holds the returned
ID for the connection.

#include <VU.h>
{
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80",
 HTTP_CONN_DIRECT,
 "GET / HTTP/1.0\r\n"
 "Accept: application/vnd.ms-excel, application/mswo"
 "rd, application/vnd.ms-powerpoint, image/gif, imag"
 "e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
 "Accept-Language: en\r\n"
 "UA-pixels: 1152x864\r\n"
 "UA-color: color8\r\n"
 "UA-OS: Windows NT\r\n"
 "UA-CPU: x86\r\n"
 "User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
 "Host: capricorn-web\r\n"
 "Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
http_nrecv 100 %% ; /* 4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
}

See Also

None.
Command Reference 195

http_url_encode
http_url_encode

Prepares a VU string for inclusion in http_request data.

Category

Emulation Function

Syntax

string http_url_encode(str)

Comments

The returned string consists of the original VU string expression with all HTTP special
characters in the proper escape sequence format.

If your recording contains HTTP traffic, and datapooling is enabled, then your script contains
a call to the http_url_encode function for every call to the datapool_value function to
ensure that the data sent to the Web server is in the correct format.

Example

This example script fragment sends a POST request containing datapool values to a previously
established connection, and then closes the connection.

set Server_connection = bonnie
_rational_com_80
http_request ["NewHttp058"] /* Keep-Alive request */

"POST /cgi-bin/www/prcat.cgi HTTP/1.1\r\n"
"Accept: application/vnd.ms-excel, application/msword"
"application/vnd.ms-powerpoint, image/gif, imag"
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
"Referer: http://www.rational.com/world/press/releases/\r\n"
"Accept-Language: en-us\r\n"
"User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows NT) \r\n"
Host: www.rational.com\r\n"
Content-Length: 28\r\n"
"\r\n"
"financials="
+http_url_encode(datapool_value(DP1, "financial")) +
"&chapter="
+http_url_encode(datapool_value(DP1, "chapter")) +

Syntax Element Description

str VU string expression.
196 Chapter 6

if-else
"";
http_disconnect (bonnie_rational_com_80);

See Also

http_request, datapool_value

if-else

Conditionally executes a VU statement.

Category

Flow Control Statement

Syntax

if (exp1)
statement1;
else
statement2;

Comments

Multiple statements can appear in braces, such as:

if (exp1) {
 statement3;
 statement4;
 statement5;

} else {
 statement6;
 statement7;
 statement8;

}

It is advisable to indent statements for readability.

Syntax Element Description

exp1 An integer expression to be evaluated.

statement1 A VU language statement that is executed if the value of
exp1 is not 0.

statement2 A VU language statement that is executed if the value of
exp1 is 0.
Command Reference 197

iiop_bind
Example

This example aborts script execution if the string is ERROR. If the string is not ERROR, the
script continues processing and writes a message to the log file:

if (string1=="ERROR")
user_exit(-1, "Fatal Error - Aborting");

else
log_msg("Emulation proceeding normally");

See Also

else-if

iiop_bind

Binds an interface name to an Object Reference pseudo-object.

Category

Send Emulation Command

Syntax

int iiop_bind [cmd_id] project_id, instance_id [,ior]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
198 Chapter 6

iiop_bind
Comments

If iiop_bind completes successfully, it returns a handle to the Object Reference
pseudo-object bound to the interface implementation specified by the project_id.
Otherwise it returns NULL_HANDLE.

The iiop_bind command binds an interface implementation, identified by project_id, to
an Object Reference pseudo-object. The result of binding is a handle to an Object Reference
pseudo-object which contains (among other things) an IIOP object key used in later IIOP
requests to the implementation.

The actual mechanism used by the playback engine to execute the bind is ORB
vendor-dependent.

project_id A string constant specifying the name of the interface to
bind to. It is invalid to pass the empty string ("") if ior is
not specified. The only interface specification format
supported is the CORBA IDL projectId format.

The project_id consists of three components,
separated by colons:
■ The first component is the format name, “IDL.”
■ The second component is a list of identifiers,

separated by “/” characters. These identifiers are
arbitrarily long sequences of alphabetic, digit,
underscore (“_”), hyphen (“-”), and period (“.”)
characters. Typically, the first identifier is a unique
prefix, and the rest are the OMG IDL Identifiers that
make up the scoped name of the definition.

■ The third component is made up of major and minor
version numbers, in decimal format, separated by a
“.”. When two interfaces have project_ids differing
only in minor version number, you can assume that
the definition with the higher version number is
upwardly compatible with the one with the lower
minor version number.

instance_id A string expression identifying a particular instance of
an interface implementation. Some ORBs require this
string to identify persistent implementations. An empty
string ("") means any instance is acceptable.

ior An optional string expression specifying an IIOP
Interoperable Object Reference (IOR) to be used by the
IOR bind modus.

Syntax Element Description
Command Reference 199

iiop_invoke
The iiop_bind command sets the first sent (_fs_ts), last sent (_ls_ts), first received
(_fr_ts), last received (_ls_ts), and error information (_error_type, _error, and
_error_text) read-only variables.

The iiop_bind command is affected by the following VU environment variables:
Timeout_val, Timeout_scale, Timeout_act, Log_level, Record_level, and
Suspend_check.

Example

This example binds an interface name to an Object Reference pseudo-object. Object references
are the only way for a client to reach target objects. The iiop_bind command takes
information about an object and uses it to try and obtain a reference to the object for use in
invoking methods on the object.

objref = iiop_bind ["bind001"]
"IDL:Bank/BranchManager:1.0", "Branch15", " ";

See Also

None.

iiop_invoke

Initiates a synchronous IIOP request to an interface implementation

Category

Send Emulation Command

Syntax

Form 1: initialize and invoke a Request pseudo-object

int iiop_invoke [cmd_id] [&request,]
object_ref, operation,
[parameter_expr,...]

Form 2: reuse a Request pseudo-object
200 Chapter 6

iiop_invoke
int iiop_invoke [cmd_id] request
[,parameter_expr,...]

Comments

The iiop_invoke emulation command has two forms. The first form constructs an IIOP
Request message by creating and initializing a new Request pseudo-object. The second form
constructs an IIOP Request message by overriding an existing Request pseudo-object with a
new set of parameters.

In the first form, specifying the optional request argument causes the handle of the new
Request pseudo-object to be stored in the VU integer variable referenced by request. The
pseudo-object referenced by the handle persists until it is released by a call to iiop_release.
If the request argument is not supplied, then a temporary internal Request pseudo-object is
created to store the request context and is automatically released before the command returns.

In the second form, the request argument is the handle to the Request pseudo-object to be
reused for storing the request context.

After the message is constructed, it is sent to the interface implementation and the command
then awaits its reply. After successful completion, the associated INOUT, OUT, and RETURN
parameter variables are loaded with the results of the operation invocation.

This command is equivalent to the CORBA::Object::_create_request() and
CORBA::Request::invoke() function pairs.

The iiop_invoke command sets the first sent (_fs_ts), last sent (_ls_ts), first received
(_fr_ts), last received (_ls_ts), and error information (_error_type, _error, and
_error_text) read-only variables.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

request An integer variable for the handle of the created request.

object_ref An integer handle to the Object Reference pseudo-object
bound to the interface implementation to be invoked.

object_ref cannot be NULL_HANDLE.

operation A string expression containing the name of the interface
operation to be invoked.

parameter_expr An optional list of one or more parameter binding
expressions for the IN, INOUT, and OUT arguments and
return value of the invoked operation.
Command Reference 201

iiop_release
The iiop_invoke command is affected by the following VU environment variables: the
think time variables, Timeout_val, Timeout_scale, Timeout_act, Log_level,
Record_level, and Suspend_check.

Example

This example initiates a synchronous IIOP request to an interface implementation. The
iiop_invoke command is used to invoke methods on an object.

/* bind to the Branch15 instance of the BranchManager interface */
bm_ref = iiop_bind ["bind001"]

"IDL:Bank/BranchManager/1.0", "Branch15";

/* fetch account balance, using global request context */
{ string Balance; }
iiop_invoke ["Balance001"] "Balance", bm_ref,

"Account":Account, "Balance"::&Balance;

/* log the balance query to the transaction log, preserving
the request context in a new Request pseudo-object
referenced by log_req */

iiop_invoke ["LogTransaction001"] &log_req, "Log Transaction", bm_ref,
"LogTransaction", "Account":Account,
"TransactionType":"Balance";

/* withdraw all funds from account, again using the global
request context but re-initializing it */

iiop_invoke ["Withdraw001"] "Withdraw", bm_ref,
"Account":Account, "Amount":Balance;

/* log the withdraw transaction to the log, reusing the
previous LogTransaction request context */

iiop_invoke ["LogTransaction002"] log_req,
"TransactionType":"Withdraw";

/* release log_req Request pseudo-object */
iiop_release(log_req);

See Also

iiop_bind

iiop_release

Releases storage associated with a pseudo-object.
202 Chapter 6

IndexedField
Category

Emulation Function

Syntax

int iiop_release (handle[, ...])

Comments

The iiop_release function deletes and releases the storage associated with one or more
pseudo-objects. When a handle is released, it becomes invalid and cannot be used again.

Upon success the function returns 1, else it returns 0 indicating an error.

Example

This example releases storage associated with a pseudo-object. You can use
iiop_release to free memory used for storing requests or object
references.

iiop_release(objref);

See Also

None.

IndexedField

Parses the line read by the ReadLine function and returns the field designated by index.

Category

VU Toolkit Function: File I/O

Syntax

#define _PV_FILEIO_FIELD "delimiter characters"
#include <sme/fileio.h>

Syntax Element Description

handle A list of integer handles to pseudo-objects of any type.
At least one handle argument must be supplied.
Command Reference 203

IndexedField
string func IndexedField(index)
int index;

Comments

The IndexedField function parses the data returned by the most recent call to the
ReadLine function. A null string is returned when index is greater than the number of fields
in the line. Multiple contiguous occurrences of the delimiter are considered a single delimiter.

The IndexedField function affects the order of the results returned by NextField. Either
functions modify the field pointer, which is the starting point for the next invocation of this
function.

If IndexedField is called before the first call to ReadLine, the return value is undefined.
The SHARED_READ macro uses the ReadLine function to read from the file, so it also may be
used to retrieve the data to be parsed.

The string variable Last_Field contains the value returned by the most recent use of the
IndexedField or NextField function.

The list of characters to be considered as field delimiters is contained in the macro definition
_PV_FILEIO_FIELD. Define this macro constant (#define) before the inclusion of the
header file fileio.h.

Example

This example first frees any previously saved data from the “parts” text buffer. A loop is
started to query the database five times. The script then obtains the next record from a file
being shared by all virtual testers that execute this script. The record is parsed by selection of
the first field and direct selection of the third field, skipping the second field. The third field is
composed of four or more subfields. Parsing of the third field continues by selection of the
first subfield, which provides a count of the number of remaining subfields. One of the
remaining subfields is selected at random to form a part of the query. After the query is
performed, the returned rows are saved. If this is the first iteration of the loop, the rows are
saved to the “parts” text buffer. Subsequent iterations of the loop append the data from the
returned rows to the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>

Syntax Element Description

delimiter
characters

The characters that delimit the fields in the index. The
default field delimiter is a vertical bar (|).

index The number of the field to be retrieved (begins with 1).
204 Chapter 6

IndexedField
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3; ... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product='"+product_id+"' "
 "and subassembly='"+subassm_id+"'";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also

IndexedSubField, NextField, NextSubField, ReadLine, SHARED_READ
Command Reference 205

IndexedSubField
IndexedSubField

Parses the field set by the NextField or IndexedField function and returns the subfield
designated by index.

Category

VU Toolkit Function: File I/O

Syntax

#define _PV_FILEIO_SUBFIELD "delimiter characters"
#include <sme/fileio.h>
string func IndexedSubField(index)
int index;

Comments

The IndexedSubField function parses the field returned by the most recent call to the
NextField or IndexedField function. The index argument, which begins at 1, is the
number of the field to be retrieved. A null string is returned when index is greater than the
number of fields in the line.

The IndexedSubField function affects the order of the results returned by NextSubField.
Either functions modifies the subfield pointer, which is the starting point for the next
invocation of this function.

If IndexedSubField is called before the first call to NextField or IndexedField, the
return value is undefined.

The string variable Last_SubField contains the value returned by the most recent use of
IndexedSubField or NextSubField function.

The list of characters to be considered as subfield delimiters is contained in the macro
definition _PV_FILEIO_SUBFIELD. Define this macro constant (#define) before the
inclusion of the header file fileio.h.

Syntax Element Description

delimiter
characters

The characters that delimit the subfields in the index.
The default delimiter is a colon (:). Do not separate
delimiter characters with white space or any other
character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter.

index The number of the field to be retrieved (begins with 1).
206 Chapter 6

IndexedSubField
Example

This example first frees any previously saved data from the "parts" text buffer. A loop is
started to query the database five times. The script then obtains the next record from a file
being shared by all virtual testers that execute this script. The record is parsed by selection of
the first field and direct selection of the third field, skipping the second field. The third field is
composed of four or more subfields. Parsing of the third field continues by selection of the
first subfield, which provides a count of the number of remaining subfields. One of the
remaining subfields is selected at random to form a part of the query. After the query is
performed, the returned rows are saved. If this is the first iteration of the loop, the rows are
saved to the “parts” text buffer. Subsequent iterations of the loop append the data from the
returned rows to the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3; ... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
Command Reference 207

itoa
 "where product='"+product_id+"' "
 "and subassembly='"+subassm_id+"'";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also

IndexedField, NextField, NextSubField, ReadLine, SHARED_READ

itoa

Converts integers to strings.

Category

Library Routine

Syntax

string itoa(int)

Comments

The itoa routine returns a string expression, the ASCII form of the integer. If int is negative,
then the returned string expression is prefixed with a negative sign.

The itoa routine is the converse of atoi. It takes an integer argument and returns a string
expression made up of digits representing the integer in ASCII.

Example

This example returns the string "93":

itoa(93);

This example returns the string "30":

Syntax Element Description

int The integer expression to convert to a string.
208 Chapter 6

lcindex
itoa(21 + 9);

This example returns the string "23":

itoa(atoi("23"));

See also

atoi

lcindex

Returns the position of the last occurrence of a user-supplied character.

Category

Library Routine

Syntax

int lcindex (str, char)

Comments

The lcindex (last character index) routine returns the position within str of the last
occurrence of the character char. If no occurrences are found, lcindex returns the integer
zero.

The routines cindex, lcindex, sindex, and lsindex return positional information about
either the first or last occurrence of a specified character or set of characters within a string
expression. strspan returns distance information about the span length of a set of characters
within a string expression.

Example

This example returns the integer value 6, which is the position of the last occurrence of the
letter a in the string aardvark:

lcindex("aardvark", ’a’);

Syntax Element Description

str The string to search.

char The character to search for within str.
Command Reference 209

log_msg
See Also

cindex, sindex, lsindex, strspan, strstr

log_msg

Writes messages to the log file with a standard header format.

Category

Library Routine

Syntax

int log_msg (msg_str)

Comments

The log_msg routine returns an integer expression equal to the value of T.

log_msg writes msg_str to the standard log file, preceded by the following explanatory text:

<<< log_msg(): script = script_name, time = T >>>

script_name is replaced by the script name (corresponding to the read-only variable
_script). T is replaced by the current time, in milliseconds format. The text of msg_str is
printed in a manner consistent with other logged information — for example, unprintable
characters are replaced by their VU-style escape sequences as described in How a VU Script
Represents Unprintable Data on page 55.

Example

In this example, assume the current script’s name is db2, the value of trans_no before the
log_msg statement is executed is 3, and the current time is 29130:

log_msg("Beginning Transaction " + (itoa(++trans)));

The following is message is logged:

<<< log_msg(): script = db2, time = 29130 >>>
Beginning Transaction 4

Syntax Element Description

msg_str A string expression containing the message to write to
the log file.
210 Chapter 6

lsindex
See Also

None.

lsindex

Returns the position of the last occurrence of any character from a specified set.

Category

Library Routine

Syntax

int lsindex (str, char_set)

Comments

The lsindex (last string index) routine returns the position within str of the last occurrence
of any character from char_set. If no occurrences are found, lsindex returns an integer
value of 0.

The routines cindex, lcindex, sindex, and lsindex return positional information about
either the first or last occurrence of a specified character or set of characters within a string
expression. strspan returns distance information about the span length of a set of characters
within a string expression.

Example

This example returns the integer value 14, because a is the last vowel in the string "moo goo
gai pan" and it is the 14th character.

lsindex("moo goo gai pan", "aeiou");

See Also

cindex, lcindex, sindex, strspan, strstr

Syntax Element Description

str The string expression to search.

char_set The characters to search for within str.
Command Reference 211

match
match

Description

Determines whether a subject string matches a specified pattern.

Category

Library Routine

Syntax

int match (pattern, subject [, &arg] ...)

Comments

The match routine returns the integer value 1 if the subject string matches pattern;
Otherwise it returns a value of 0.

In making assignments to argn variables, match follows these rules:

■ Assignments are made unconditionally.

Syntax Element Description

pattern A string expression specifying the pattern to match, as
expressed in VU regular expression notation. (The
section VU Regular Expressions on page 50 discusses
regular expression notation.)

To assign the results of the match to &arg, place the
regular expression portion of the pattern in the format
(regular_exp)$n, where n is an integer representing
the position of the argument.

For example, (regular_exp)$0 places the results in
arg1, (regular_exp)$1 places the results in arg2,
and so on.

subject A string expression specifying the string to match.
subject is often the read-only variable _response,
because you may want to match a certain pattern in
your response.

argn The optional string output variable that contains the
results of the match. The number of argn variables must
be equal to or greater than the number of
(regular_exp)$n, even if some variables are left
unassigned.
212 Chapter 6

mixed2hexstring
■ The value of recursive assignments are undefined.

■ If an assignment is not made, the original values of argn variables are unchanged.

Example

This example uses match to check whether the database contains Smith A.E., and, if not,
adds his name and relevant data:

sqlexec "SELECT * FROM dbo.Student WHERE Studid < 5000";
sqlnrecv ["test001"] ALL_ROWS;
if (!match(’Smith *A\.E.\’, _response))
{

sqlexec "INSERT dbo.Student VALUES"

 "1005, ’Smith", "A.E.’, "215 Charles St.’, ’050263", ’M");

}

In this example, match returns a 1, "4" is assigned to str1, and "def" is assigned to str2:

match("abc([0-9]+)$0 ([A-Za-z]+)$1", "abc4 def", &str1, &str2);

See Also

None.

mixed2hexstring

Returns a pure hexadecimal version of a VU string.

Category

Library Routine

Syntax

string mixed2hexstring(str)

Syntax Element Description

str VU string expression.
Command Reference 213

mkprintable
Comments

The returned string consists of a leading grave accent (`), the hexadecimal representation of
the string expression, and a trailing grave accent (`). Strings used (and returned) by VU with
socket and HTTP emulation commands are in mixed ASCII and hexadecimal format.

Example

#include <VU.h>
{
 string hexstr;
 calvin_700 = http_request ["cal001"] "calvin:700", "", 2,
 "GET / HTTP/1.0\r\n"
 "Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/4.03 [en] (X11; I; SunOS 5.5.1 sun4u)\r\n"
 "Pragma: no-cache\r\n"
 "Host: calvin:700\r\n"
 "Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
 /\r\n"
 "Accept-Language: en\r\n"
 "Accept-Charset: iso-8859-1,*,utf-8\r\n"
 "\r\n";
 set Server_connection = calvin_700;
 http_header_recv ["cal002"] 200;/* OK */
 http_nrecv ["cal003"] 100 %% ; /* 1316 bytes */
 hexstr = mixed2hexstring(_response);
 http_disconnect(calvin_700);
}

See Also

hex2mixedhexstring, http_nrecv, http_recv, http_request

mkprintable

Creates printable versions of strings that contain nonprintable characters.

Category

Library Routine
214 Chapter 6

mkprintable
Syntax

string mkprintable (str)

Comments

The mkprintable routine returns a printable version of str by replacing all unprintable
characters with their corresponding VU-style escape sequences, as follows:

Example

This example returns a string equivalent to the string constant "\\033". Although the strings
look similar, they are quite different; the length of the subject string is 1 character and the
length of the returned string is 4 characters.

mkprintable ("\033");

This example returns a string equivalent to the string constant "\\t\\t\\t", escaping each
tab character with the two-character combination \t.

mkprintable("\t\t\t");

See Also

print

Syntax Element Description

str A string expression that serves as the subject string.

\r A single character representing a carriage return.

\f A single character representing a formfeed.

\n A single character representing a newline.

\t A single character representing a horizontal tab.

\b A single character representing a backspace.

\0 The null character (the character with value 0).

\ddd A single character representing the character ddd.
Command Reference 215

negexp
negexp

Returns a random integer from a negative exponential distribution with the specified mean.

Category

Library Routine

Syntax

int negexp (mean_value)

Comments

The rand, srand, uniform, and negexp routines enable the VU language to generate
random numbers. The behavior of these random number routines is affected by the way you
set the Seed and Seed Flags options in a TestManager suite. By default, the Seed generates the
same sequence of random numbers but sets unique seeds for each virtual tester, so that each
virtual tester has a different random number sequence. For more information about setting the
seed and seed flags in a suite, see Using Rational TestManager.

srand uses the argument seed as a seed for a new sequence of random numbers returned by
subsequent calls to negexp. If srand is then called with the same seed value, the sequence of
random numbers is repeated. If negexp is called before any calls are made to srand, the
same sequence is generated as when srand is first called with a seed value of 1.

Example

In this example, seeds the random number generator with the current time and prints the first
10 random numbers with a mean of 10.

srand(time());
for (i = 0; i < 10; i++)
printf("random number (%d): %d\n", i, negexp(10));

See Also

rand, srand, uniform

Syntax Element Description

mean_value An integer expression whose value specifies the mean of
the negative exponentially distributed random integers
returned by negexp. The value of mean_value must
be non-negative.
216 Chapter 6

NextField
NextField

Parses the line read by the ReadLine function.

Category

VU Toolkit Function: File I/O

Syntax

#define _PV_FILEIO_FIELD "delimiter characters"
#include <sme/fileio.h>
string func NextField()

Comments

The NextField function retrieves the next available field from the data returned by the most
recent call to the ReadLine function. The null string is returned when the fields in the line
have been exhausted.

The IndexedField function affects the order of the results returned by NextField. Either
function modifies the field pointer, which is the starting point for the next invocation of this
function.

If NextField is called before the first call to ReadLine the return value is undefined. The
SHARED_READ macro uses the ReadLine function to perform the read from the file, so it also
may be used to retrieve the data to be parsed.

The string variable Last_Field contains the value returned by the most recent use of
IndexedField or NextField function.

The list of characters to be considered as field delimiters is contained in the macro definition
_PV_FILEIO_FIELD. Define this macro constant (#define) before the inclusion of the
header file fileio.h.

Syntax Element Description

delimiter character The characters that delimit the fields in the index. The
default delimiter is a vertical bar (|). Do not separate
delimiter characters with white space or any other
character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter.
Command Reference 217

NextField
Example

This example first frees any previously saved data from the “parts” text buffer. A loop is
started to query the database five times. The script then obtains the next record from a file
being shared by all virtual testers that execute this script. The record is parsed by selection of
the first field and direct selection of the third field, skipping the second field. The third field is
composed of four or more subfields. Parsing of the third field continues by selection of the
first subfield, which provides a count of the number of remaining subfields.

One of the remaining subfields is selected at random to form a part of the query. After the
query is performed, the returned rows are saved. If this is the first iteration of the loop, the
rows are saved to the “parts” text buffer. Subsequent iterations of the loop append the data
from the returned rows to the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3; ... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
218 Chapter 6

NextSubField
 "where product='"+product_id+"' "
 "and subassembly='"+subassm_id+"'";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also

IndexedField, IndexedSubField, NextSubField, ReadLine, SHARED_READ

NextSubField

Parses the field returned by the most recent call to NextField or IndexedField.

Category

VU Toolkit Function: File I/O

Syntax

#define _PV_FILEIO_SUBFIELD "delimiter characters"
string func NextSubField()

Comments

The NextSubField function retrieves the next available subfield returned by the most recent
call to the NextField or IndexedField function. The null string is returned when the
subfields within the field have been exhausted.

The IndexedSubField function affects the order of the results returned by NextSubField.
Either function modifies the subfield pointer, which is the starting point for the next
invocation of this function.

Syntax Element Description

delimiters The characters that delimit the subfields in the index.
The default delimiter is a colon (:). Do not separate
delimiter characters with white space or any other
character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter.
Command Reference 219

NextSubField
If NextSubField is called before the first call to NextField or IndexedField, the return
value is undefined.

The string variable Last_SubField contains the value returned by the most recent use of
IndexedSubField or NextSubField function.

The list of characters to be considered as subfield delimiters is contained in the macro
definition _PV_FILEIO_SUBFIELD. Define this macro constant (#define) before the inclusion
of the header file fileio.h.

Example

This example first frees any previously saved data from the “parts” text buffer. A loop is
started to query the database five times. The script then obtains the next record from a file
being shared by all virtual testers that execute this script. The record is parsed by selection of
the first field and direct selection of the third field, skipping the second field. The third field is
composed of four or more subfields. Parsing of the third field continues by selection of the
first subfield, which provides a count of the number of remaining subfields.

One of the remaining subfields is selected at random to form a part of the query. After the
query is performed, the returned rows are saved. If this is the first iteration of the loop, the
rows are saved to the “parts” text buffer. Subsequent iterations of the loop append the data
from the returned rows to the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3; ... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
220 Chapter 6

open
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product='"+product_id+"' "
 "and subassembly='"+subassm_id+"'";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also

IndexedField, IndexedSubField, NextField, ReadLine, SHARED_READ

open

Opens a file for reading or writing.

Category

Library Routine

Syntax

int open (filename, mode)

Syntax Element Description

filename A string expression specifying the file to be opened.
Command Reference 221

open
Comments

If open can successfully open the file, it returns an integer file descriptor. You use this file
descriptor to make subsequent references to the file. If open cannot open the file as specified,
open generates a runtime error.

The open routine specifies a file to open for reading or writing. A file must be opened before it
is used. You do not have to open the standard input, output, error, log, or record files,
however, because they are automatically opened by the system.

mode A string expression specifying how the file is to open.
Valid values:
■ "r" opens the file for reading. If the file does not

exist, a runtime error is generated.
■ "w" opens the file for writing. If the file exists, its

contents are discarded. If it does not exist, it is
created.

■ "a" opens the file for appending. If the file exists, its
contents are retained and any new output to the file is
appended to what is already in the file. If the file does
not exist, it is created. Information already in the file
is never overwritten. If multiple processes open the
same file for appending, their output is intermixed in
the file in the order in which it is written.

■ "r+" opens the file for update. You can read or write
to a file for update. If the file does not exist, a runtime
error is generated. If the file does exist and new
output is written to it, the new output is written at the
beginning of the file, overwriting what is already
there.

■ "w+" opens the file for update and create or truncate.
You can read or write to a file for update in this mode.
If the file does not exist, it is created. If the file exists,
its current contents are discarded.

■ "a+" opens the file for update and append. You can
read or write to a file for update in this mode. If the
file does not exist, it is created. If the file does exist,
data written to it is appended.

■ "p" opens the file in persistent mode. "p" can
accompany any other mode (the mode string for
open() can include a"p" anywhere in the string). A
persistent file remains open across scripts in a single
run.

Syntax Element Description
222 Chapter 6

pop
The VU language open routine corresponds to the C language fopen library routine. The
options on your computer determine the maximum number of open files. The number of
reserved files for VU is seven.

To enable subsequent scripts to access a persistent file without reopening the file, use a
persistent integer variable to hold the file descriptor returned from open.

Example

This example declares the variable theline as a string. It then:

■ Opens data_file for reading and assigns it the file descriptor file1.

■ Positions the character pointer so that each user reads a different line (file pointer for user1
is 80 (_uid*80) bytes from the beginning of the file, file pointer for user 2 is 160 bytes from
the beginning of the file, and so on).

■ Reads an entire line (anything but a new line followed by a new line) and stores it in
theline.

■ Closes the file after reading 10 lines.

string theline;

for (i=0; i<10; I++) {

file1=open("data_file","r");

fseek(file1, (_uid*80),0);

fscanf(file1, "%[^\n]\n", &theline);

}

close(file1);

See Also

close

pop

Removes the value of a VU environment variable from the top of the stack.

Category

Environment Control Command
Command Reference 223

pop
Syntax

pop [env_var_list];

Comments

The pop command removes and discards the element at the top of the stack of each variable in
env_var_list. Thus, the next-to-top element of each stack moves to the top of that stack
and becomes the current value of that variable. A runtime error occurs if you attempt to pop a
stack that contains only one element.

Example

This example sets the value for Timeout_val to 120000 ms, pushes the value of 30000 to the
top of the Timeout_val stack (so that 30000 is now the current value and 120000 is the
second element on the stack), and then removes 30000 from the stack (so that 120000 is the
only element left on the stack).

/* Set values for Timeout_val and Log_level. */
set [Timeout_val = 120000, Log_level = TIMEOUT];
push Timeout_val = 30000;
pop Log_level;

This example disables the normal checking for any queued suspend requests, and
encapsulates this disabling within the push and pop commands:

push Suspend_check off;
/* code that performs input emulation commands where you do not want suspend
or step operations to stop */
pop Suspend_check;

See Also

eval, push, set

Syntax Element Description

env_var_list Use one of the following for env_var_list:
■ A list of one or more environment variables,

separated by commas and optionally by white space.
If env_var_list contains one item, the brackets
are optional. If env_var_list contains more
than one item, pop operates on the items from left to
right.

■ ENV_VARS. This specifies all the environment
variables.
224 Chapter 6

print
print

Writes to standard output when the formatting capability of printf is not required.

Category

Statement

Syntax

print exp_list;

Comments

The print routine writes the values of each expression to standard output, each followed by
a single blank, in the order in which they are specified in exp_list. Specifically, the printf
format equivalents for print output are "%d " for integer expressions and "%s " for string
expressions. Because it does not return a value, print cannot be used as an expression.

Example

This example writes the string The square of 7 is 49 \n to standard output. The
newline is added to the print output because it was explicitly requested:

print "The square of", 7, "is", 7*7, "\n";

This example writes the string 0 1 2 3 4 to standard output. Recall that the srand routine
always returns the integer value 1.

i = 4;

j = 2;

print i<j, j<i, j, srand(i+j) + j, i;

See Also

fprintf, mkprintable, printf, sprintf

Syntax Element Description

exp_list One or more expressions separated by commas, and
optionally by white space. The expressions can have
string or integer values; print automatically handles
the conversion of integer values to ASCII.
Command Reference 225

printf, fprintf, sprintf
printf, fprintf, sprintf

Writes specified output to standard output, to a file, or to a string variable.

Category

Library Routine

Syntax

int printf (format_str [, arg_list])
int fprintf (file_des, format_str [, arg_list])
int sprintf (location, format_str [, arg_list])

Comments

If printf, fprintf, or sprintf successfully writes the requested output, it returns the
number of characters written. If the routine is unable to write the output as requested, it
generates a runtime error.

The printf, fprintf, and sprintf routines are closely related; the difference among them
is where they write the specified output: a file, standard output, or a string variable.

format_str and arg_list are like the output format and arguments in the C library
routines printf, fprintf, and sprintf, with the following exceptions:

■ Floating-point conversion characters (e, E, f, F, g, G) are not allowed. They are unnecessary
because the VU language does not have floating-point values.

■ The use of * to specify a field width or precision taken from the corresponding argument is
not supported.

Syntax Element Description

format_str A string expression that specifies the format in which
the output is written.

arg_list The output to be written. Separate multiple arguments
with a comma.

file_des The integer file descriptor, obtained from open, of the
file to which the output is written

location The address of the string variable (&str1) to which the
output is written. Additional space is allocated if the
output exceeds the size of the current string.
226 Chapter 6

push
■ Integer conversion characters (d, o, u, x, X) are automatically prefixed by the character ‘l’ in
keeping with the VU language treatment of all integers as 32 bits. This is transparent; if you
explicitly specify the ‘l’, no change is made.

■ format_str and arg_list are checked at runtime to ensure that their syntax is correct,
that every conversion specification has an argument, and that each argument is the correct
type for the corresponding conversion specification. As in C, extra arguments are ignored.

Example

In this example, assume that the value of the dividend is 3 and the value of the divisor is 9:

printf("%d is %d%% of %d",
dividend, (100*dividend)/divisor, divisor);

The following line is printed on standard output:

 3 is 33% of 9

In this example, assume that the value of arg1 is 12 and the value of arg2 is 6:

fprintf(outfile_des,
"%X (HEX) is %s than %d (decimal)", arg1,
arg1 > arg2 ? "greater" : "equal to or less", arg2);

The following line is written to the file whose descriptor is outfile_des:

C (HEX) is greater than 6 (decimal)

If arg1 is 63 and arg2 is 64, the line written to the file is:

3F (HEX) is equal to or less than 64 (decimal)

In this example, if the value of char_arg is the character $, then data_str is assigned the
value \044:

sprintf(&data_str, "\%.3o", char_arg);

See Also

mkprintable, print

push

Pushes the value of a VU environment variable to the top of the stack.
Command Reference 227

push
Category

Environment Control Command

Syntax

push [env_assign_list];

Comments

For each env_var in env_assign_list, the corresponding value of expr is pushed to the
top of that env_var ’s stack. Thus, expr becomes the current value of that env_var and the
previous value becomes the next-to-top element of that env_var’s stack.

Example

This example disables the normal checking for any queued suspend requests, and
encapsulates this disabling within the push and pop commands:

push Suspend_check off;
/* code that performs input emulation commands where you do not want suspend
or step operations to stop */
pop Suspend_check;

This example shows how to change the values in the stack:

/* Set values for Timeout_val and Log_level. */

set [Timeout_val = 120000, Log_level = TIMEOUT];

/* Set the current values of Timeout_val to 60000, and save the value. The

current and saved values of are 60000. */

set Timeout_val = 60000;

save Timeout_val;

/* Push 30000 to the top of the Timeout_val stack, making it the current

value. 60000 is now the second element on the stack. */

push Timeout_val = 30000;

Syntax Element Description

env_assign_list A list of one or more environment variable assignments,
of the form env_var = expr, where env_var is any
VU environment variable and expr is an expression
separated by commas and optionally by white space. If
env_assign_list contains one item, the brackets are
optional. If env_assign_list contains more than
one item, push operates on them from left to right.
228 Chapter 6

putenv
/* Write values to standard output. */

show [Timeout_val, Log_level];

Timeout_val = 30000

Log_level = TIMEOUT

/* Set the current value of Timeout_val to 20000. The Timeout_val stack now

contains 20000 and 60000. */

set Timeout_val = 20000;

/* Push ALL to the top of the Log_level stack, making it the current value.

TIMEOUT is now the second element on that stack. */

push Log_level = "ALL";

See Also

eval, pop, set

putenv

Sets the values of Windows NT or UNIX environment variables from within a virtual tester
script.

Category

Library Routine

Syntax

int putenv (string)

Comments

The putenv routine, like the C routine of the same name, sets the values of Windows NT or
UNIX environment variables from within a virtual tester script.

If putenv completes successfully, it returns a value of 0. Otherwise, it returns a nonzero value.

Syntax Element Description

string A string expression of the form name=value specifying
the environment variable name and value.
Command Reference 229

rand
Example

This example sets LIMIT to 100:

string name;
string value;

name = "LIMIT";
value = "100";

putenv (name + "=" + value);

See Also

getenv

rand

Returns a random integer in the range 0 to 32767.

Category

Library Routine

Syntax

int rand ()

Comments

The rand routine is similar to its corresponding C library routine but does a better job of
generating random numbers.

The rand, srand, uniform, and negexp routines enable the VU language to generate
random numbers. The behavior of these random number routines is affected by the way you
set the Seed and Seed Flags options in a TestManager suite. By default, the Seed generates the
same sequence of random numbers but sets unique seeds for each virtual tester, so that each
virtual tester has a different random number sequence. For more information about setting the
seed and seed flags in a suite, see Using Rational TestManager.

srand uses the argument seed as a seed for a new sequence of random numbers to be
returned by subsequent calls to the rand routine. If srand is then called with the same seed
value, the sequence of random numbers is repeated. If rand is called before any calls are
made to srand, the same sequence is generated as when srand is first called with a seed
value of 1.
230 Chapter 6

ReadLine
Example

This example sets a random delay. It first defines a maximum delay of 10 seconds, and then
uses the rand routine to delay a random amount of time from 0 to 10 seconds:

#define MaxDelay 10

(
delay_time = rand() % (MaxDelay + 1);
delay(delay_time * 1000);

}

See Also

negexp, uniform, srand

ReadLine

Reads a line from the open file designated by file_descriptor.

Category

VU Toolkit Function: File I/O

Syntax

#define _PV__FILEIO_NOWRAP
#define _PV_FILEIO_COMMENT "delimiter characters"
#define _PV_FILEIO_WHITESPACE "whitespace characters"
#define _PV_FILEIO_BLANKLINE
#include <sme/fileio.h>
func ReadLine(file_descriptor)
int file_descriptor;

Syntax Element Description

delimiter
characters

The characters that delimit comments. The default
delimiter is a #. All text following a comment delimiter,
up to end of line, is removed.

Do not separate delimiter characters with white space or
any other character. Multiple contiguous occurrences of
the delimiter are considered as a single delimiter. All
text following a comment delimiter, up to end of line, is
removed.
Command Reference 231

ReadLine
Comments

The ReadLine function returns a single line of data from the open file identified by
file_descriptor. In processing the file, the following actions occur:

■ Lines beginning with a comment delimiter are skipped.

■ Trailing comments are removed from the line.

■ All white space is removed from the end of the line (trimming occurs after comments have
been removed).

■ Blank lines (after trimming comments and white space) are skipped.

■ A line consisting only of the tilde character (~) results in a blank line being read.

■ ReadLine returns 1 if successful, and –1 if no data is read.

By default, ReadLine skips any line that is only white space, and wraps back to the top of the
file when the end of file is reached. The function returns 1 on success, and –1 on failure. The
string variable Last_Line contains the line read by the most recent successful invocation of
ReadLine.

When the macro constant _PV_FILEIO_NOWRAP is defined, ReadLine returns failure after
reaching the end of the file. The default behavior is to wrap back to the top of the file.

The macro constant _PV_FILEIO_COMMENT allows you to redefine the characters that are
considered as comment delimiters.

The macro constant _PV_FILEIO_WHITESPACE defines the characters that are considered as
white space for trimming the line read. The default is the tab character (\t).

The macro constant _PV_FILEIO_BLANKLINE defines a string that, when read as the only
item in a line, returns a blank line. The default string is "~". Setting this string to null ("")
disables skipping of blank lines, and returns a blank line if the input contains only white
space, or white space followed by a comment.

whitespace
characters

The characters that are considered as white space for
trimming the line read. The default is the tab character
(\t).

Do not separate delimiter characters with white space or
any other character. Multiple contiguous occurrences of
the delimiter are considered as a single delimiter.

file_descriptor The open file that you want to read.

Syntax Element Description
232 Chapter 6

reset
Example

This example opens a file and inserts data until the end of the file:

#include <VU.h>
#define _PV_FILEIO_NOWRAP 1
#define _PV_FILEIO_FIELD ","
#include <sme/fileio.h>

#define IDX_STUDENT 1 /* STUDENT is 1st field */
#define IDX_CLASS 2 /* CLASS is 2nd field */
#define IDX_GRADE 3 /* GRADE is 3rd field */

{
 /* open input data file for transaction A */
 transA_fd = open ("transA_input_file", "r");

 /* loop until input data is exhausted */
 while (ReadLine(transA_fd) != -1)
 {
 sqlexec ["Insert A"]
 "INSERT INTO REPORTCARD (STUDENT, CLASS, GRADE) VALUES ("
 + IndexedField(IDX_STUDENT) + ", "
 + IndexedField(IDX_CLASS) + ", "
 + IndexedField(IDX_GRADE) + ") ";
 }
}

See Also

IndexedField, IndexedSubField, NextField, NextSubField, SHARED_READ

reset

Changes the current value of a VU environment variable to its default value, and discards all
other values in the stack.

Category

Environment Control Command
Command Reference 233

reset
Syntax

reset [env_var_list];

Comments

The current value of each variable in env_var_list is set to that variable’s default value. All
other values on that variable’s stack are discarded. The default and saved values of the
variables in env_var_list are unchanged.

Example

This example changes the values for Timeout_val and Log_level, clears the stack, and
then sets the values to their default values.

/* Set values for Timeout_val and Log_level. */
set [Timeout_val = 120000, Log_level = TIMEOUT];

/* Set the current values of Timeout_val to 60000, and save the value. The
current and saved values of are 60000. */
set Timeout_val = 60000;
save Timeout_val;

/* Push 30000 to the top of the Timeout_val stack, making it the current
value. 60000 is now the second element on the stack. */
push Timeout_val = 30000;

/* Reset the Timeout_val and Log_level */
reset [Timeout_val, Log_level];
show [Timeout_val, Log_level];
Timeout_val = 120000
Log_level = TIMEOUT

See Also

set

Syntax Element Description

env_var_list Use one of the following for env_var_list:
■ A list of one or more environment variables,

separated by commas and optionally by white space.
If env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, reset operates on them from left to right.

■ ENV_VARS. This specifies all of the environment
variables.
234 Chapter 6

restore
restore

Makes the saved value of a VU environment variable the current value.

Category

Environment Control Command

Syntax

restore [env_var_list];

Comments

The current value of each variable in env_var_list is set to that variable’s saved value. The
saved values of the variables in env_var_list are unchanged. This is the inverse of the
save command.

Example

This example sets Timeout_val to 60000 ms, saves this value to the stack, sets
Timeout_val to 30000 ms, and then restores the value to 60000 ms:

set Timeout_val = 60000;
save Timeout_val;
set Timeout_val = 30000;
restore Timeout_val;
show Timeout_val;

See Also

save, reset

Syntax Element Description

env_var_list Use one of the following for env_var_list:
■ A list of one or more environment variables,

separated by commas and optionally by white space.
If env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, restore operates on them from left to right.

■ ENV_VARS. This specifies all of the environment
variables.
Command Reference 235

save
save

Saves the value of a VU environment variable.

Category

Environment Control Command

Syntax

save [env_var_list];

Comments

The saved value of each variable in env_var_list is set to that variable’s current value. The
current values of the variables in env_var_list are unchanged. This is the inverse of the
restore command.

Example

This example sets Timeout_val to 60000 ms, saves this value to the stack, sets
Timeout_val to 30000 ms, and then restores the value to 60000 ms:

set Timeout_val = 60000;
save Timeout_val;
set Timeout_val = 30000;
restore Timeout_val;
show Timeout_val;
Timeout_val = 60000

See Also

restore

Syntax Element Description

env_var_list Use one of the following for env_var_list:
■ A list of one or more environment variables,

separated by commas and optionally by white space.
If env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, save operates on them from left to right.

■ ENV_VARS. This specifies all of the environment
variables.
236 Chapter 6

SaveData
SaveData

Stores the data returned by the most recent sqlnrecv command into a data set.

Category

VU Toolkit Function: Data

Syntax

#define _PV_FILEIO_REBUILD
#include <sme/data.h>
proc SaveData(data_name)
string data_name;

Comments

This procedure stores the data retrieved by the most recent sqlnrecv command. Once saved,
the data can be referenced using the name given in the string argument data_name.

After the data is stored, the column headers are examined to determine the number and size of
the columns. This information is stored for use by the functions that parse the data based on
rows and columns. Because this is an expensive operation, it is performed only the first time a
data set is created using this name, or when the name has been cleared using the FreeData
command.

If a data set already exists with the given name, the data is replaced but the field definitions
are retained. If the new data does not have the same structure as the original, the results of
subsequent attempts to parse the fields are undefined. To avoid this problem, you can create
different data sets for different sets of queries, or you can explicitly clear the data set with
FreeData before doing the next SaveData.

The stored data sets and their field definitions persist across script boundaries.

The macro constant _PV_DATA_REBUILD, when defined, forces SaveData to re-compute
field counts and sizes for every call, even if the data set already exists with this name. While it
provides an extra degree of protection from using the same name for different types of data
sets, if also increases the amount of processing required in the script.

Syntax Element Description

data_name A string that names the data that is saved.
Command Reference 237

scanf, fscanf, sscanf
Because data is stored using only the results of the most recent sqlnrecv command, any VU
environment variables that affect the data returned also affect this function. In particular, it
assumes that only one table was fetched. If Table_boundaries is set to "OFF" and multiple
tables are retrieved, the results of this function and subsequent data commands on the stored
data have undefined results.

Example

This example saves the data retrieved in the tmp_results buffer, stores the second field in
accessprofile_id, then frees tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id = GetData1("tmp_results", 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also

AppendData, FreeAllData, FreeData, GetData, GetData1

scanf, fscanf, sscanf

Reads specified input from standard input, a file, or a string expression.

Category

Library Routine
238 Chapter 6

scanf, fscanf, sscanf
Syntax

int scanf (control_str [, ptr_list])
int fscanf (file_des, control_str [, ptr_list])
int sscanf (str, control_str [, ptr_list])

Comments

The scanf, fscanf, and sscanf routines return the number of input items successfully read
and assigned even if this is less than the requested number. Each returns EOF (as defined in
the standard VU header file) if the input ends before the first attempt to match the format
control string.

The scanf, fscanf, and sscanf routines are closely related, the difference among them is
where they read the specified input.

Specify control_str and ptr_list like the format control string and pointer arguments
in the C library routines scanf, fscanf, and sscanf, with the following exceptions:

■ If a maximum field width is not given for a string conversion specification (for example as
in %s or %[a-z]), a width of 100 is inserted. Therefore, if you expect a string exceeding 100
characters, specify an appropriately large field width. Unused space is freed after the
assignment is made, so a large field width does not waste space.

■ Floating-point conversion characters (e, E, f, F, g, G) are not allowed. They are unnecessary,
because the VU language does not have floating-point values.

■ Integer conversion characters (d, o, u, x) are transparently changed to uppercase to indicate
that their corresponding pointer arguments are addresses of 32-bit (non-shared) integer
variables.

Syntax Element Description

control_str A string expression that specifies how to interpret the
input that is read.

ptr_list Specifies where the input is placed after it is read.

file_des The integer file descriptor, obtained from open, of the
file from which the input is read.

str A string expression from which the input is taken.
Command Reference 239

script_exit
■ control_str and ptr_list are checked at runtime to ensure that their syntax is correct,
that every conversion specification has a pointer argument, and that each pointer
argument is an address of the correct variable type (non-shared integer or string) for the
corresponding conversion specification. Pointers to arguments are not allowed. As in C,
extra pointer arguments are ignored.

These routines stop reading input if they encounter the end of the file, after they have handled
the entire control_str, or if input data conflicts with the format control string. The
conflicting data is left unread.

Example

In this example, if the string abcdefg is supplied on standard input, then the string abc is
assigned to part1 and the string defg is assigned to part2.

scanf("%3s%s", &part1, &part2);

In this example, if the file with file descriptor infile_des contains the characters abcde
12345, then the string abcde is assigned to str1 and num is assigned the integer 12345.

fscanf(infile_des, "%[a-zA-Z]%d", &str1, &num);

In this example, if the value of the string data_str is \044, then the character $ (or
equivalently the decimal value 36) is assigned to char_arg:

sscanf(data_str, "\%3o", &char_arg);

See Also

None.

script_exit

Exits from a script.

Category

Library Routine
240 Chapter 6

send
Syntax

int script_exit (msg_str)

Comments

The script_exit routine causes the current script to exit immediately. If msg_str is not of
zero length, it is written (before exiting the script) to standard error, preceded by the following
explanatory line of text:

Script script_name exited at user’s request with message:

script_name is replaced by the appropriate script name (corresponding to the read-only
variable _script). virtual tester execution continues with the next scheduled script, just as if
the current script had completed normally. Therefore, script_exit never returns, although
for syntactical purposes its return value is considered to be an integer.

Example

This example causes the current script to exit. No message is written to standard error.
Emulation proceeds with the next scheduled script, if any:

script_exit("");

See Also

user_exit

send

Sends a string to the system under test.

Category

Send Emulation Command

Syntax Element Description

msg_str A string expression specifying an optional message to
be written to the standard error file.
Command Reference 241

send
Syntax

int send[send_id] send_str;

Comments

The send command submits the send_str to the system under test (SUT). If you want post
analysis reports showing the time required to submit commands, include optional send_ids.

The rate at which characters are submitted depends not only on the specified baud rate of the
current line, but also on the settings of environment variables such as Typing_dly and
Think_avg, which affect the emulated typing speed and think time.

After delaying for required think time, but before submitting characters to the SUT, send
checks whether the SUT has returned any characters over the current line which have not
already been read or examined by a previous receive command. This could happen, for
example, if a send command triggering a SUT response on the current line was immediately
followed by another send command, with no intervening receive command. If unread data is
found by a send command, a message like the following appears on stderr (typically e001),
followed by the actual unread data.

*** send[send_id]:task=tname(tcmdcnt),source=sname(sline)

*** Unread data remaining at invocation of send command: ...

where send_id is the command id of the send command, tname is the name of the task
being executed, tcmdcnt identifies the emulation command count of the send command in
the task, sname is the name of the VU script file containing the send command, and sline is
the line number of the line in the script file sname containing the send command. Unread
data checking and logging can be disabled with the Check_unread environment variable.

The send command always returns the integer value 1. After every send command is
executed, any required logging and recording will be done and the read-only variables
associated with the send command will be set to new values.

Example

This following command sends the UNIX pwd command to the SUT. The \r is the VU
language representation of a carriage return.

send "pwd\r";

Syntax Element Description

send_id An optional name used by the reporting system.

send_str A string expression specifying a string to send to the
system under test.
242 Chapter 6

set
The following example submits instances of the UNIX ls and pr commands:

string part1, part2;

part1 = "ls -li ";
part2 = " | pr -4 -t -h \"File List\"\r";
send part1 + "????.c" + part2;

See Also

msend, grecv, nrecv, precv, recv

set

Sets a VU environment variable to the specified expression.

Category

Environment Control Command

Syntax

set [env_assign_list];

Comments

The current value of each env_var in env_assign_list is replaced by the value of the
corresponding expr.

Example

This example sets the Timeout_val and Log_level values and writes them to standard
output.

Syntax Element Description

env_assign_list A list of one or more environment variable assignments,
of the form env_var = expr, where env_var is
any VU environment variable and expr is an
expression separated by commas and optionally by
white space. If env_assign_list contains one item,
the brackets are optional. If env_assign_list
contains more than one item, set operates on them
from left to right.
Command Reference 243

set_cookie
set [Timeout_val = 60000, Log_level= ALL];
show [Timeout_val, Log_level];

See Also

None.

set_cookie

Adds a cookie to the cookie cache.

Category

Emulation Function

Syntax

set_cookie(name, value, domain, path [, secure])

Comments

The set_cookie function creates the named cookie with the given value. If a cookie already
exists with this name for the given domain and path then set_cookie() sets the value of that
cookie to value.

The expiration date of the cookie is set sufficiently in the future that it will not expire during
the run.

Syntax Element Description

name A string expression that specifies the name of the cookie.

value A string expression that specifies the value for the
cookie.

domain A string expression that specifies the domain for which
this cookie is valid.

path A string expression that specifies the path for which this
cookie is valid.

secure An optional string expression that, if given, provides the
secure modifier for the cookie. The value of this
parameter should be "secure".
244 Chapter 6

SHARED_READ
Example

This example adds a secure cookie named AA002 for domain avenuea.com and path /.

set_cookie("AA002", "00932743683-
101023411/933952959", ".avenuea.com", "/",
"secure");

See Also

COOKIE_CACHE, expire_cookie

SHARED_READ

Allows multiple virtual testers to share a file.

Category

VU Toolkit Function: File I/O

Syntax

#define _PV__FILEIO_NOWRAP
#define _PV_FILEIO_COMMENT "delimiter characters"
#define _PV_FILEIO_WHITESPACE "whitespace characters"
#define _PV_FILEIO_BLANKLINE
#include <sme/fileio.h>
shared prefix_lock, prefix_offset;
SHARED_READ(filename, prefix)

Syntax Element Description

delimiter
characters

The characters that delimit comments. The default
delimiter is a #. All text following a comment delimiter,
up to end of line, is removed.

Do not separate delimiter characters with white space or
any other character. Multiple contiguous occurrences of
the delimiter are considered as a single delimiter. All
text following a comment delimiter, up to end of line, is
removed.

whitespace
characters

The characters that are considered as white space for
trimming the line read. The default is the tab character
(\t).

Do not separate delimiter characters with white space or
any other character. Multiple contiguous occurrences of
the delimiter are considered as a single delimiter.
Command Reference 245

SHARED_READ
Comments

SHARED_READ provides coordinated access by multiple virtual testers to the file specified by
the filename argument, such that no two virtual testers retrieve the same line of data.

Two shared variables are used to coordinate the reads. These must be defined in your script
with the names matching the format prefix_lock and prefix_offset.

SHARED_READ opens the file and closes it again upon exiting. SHARED_READ uses the
ReadLine function to perform the actual file I/O, therefore all of the comments and white
space processing described under ReadLine apply to SHARED_READ. The NextField and
IndexedField functions can also be used after a SHARED_READ.

The string variable Last_Line contains the line of data returned by the most recent call to
SHARED_READ.

When the macro constant _PV_FILEIO_NOWRAP is defined, SHARED_READ returns failure
after reaching the end of the file. The default behavior is to wrap back to the top of the file.

The macro constant _PV_FILEIO_COMMENT allows you to redefine the characters that are
considered as comment delimiters. All text following a comment delimiter, up to end of line, is
removed.

The macro constant _PV_FILEIO_WHITESPACE defines the characters that are considered as
white space for trimming the line read. The default is the tab character (\t).

The macro constant _PV_FILEIO_BLANKLINE defines a string that, when read as the only
item in a line, returns a blank line. The default string is "~". Setting this string to null ("")
disables skipping of blank lines, and returns a blank line if the input contains only white
space, or white space followed by a comment.

prefix_lock A variable to ensure that only one user at a time accesses
the file.

prefix_offset A variable to keep track of the next location to be read.

filename The name of the shared file.

prefix Any string constant (for example, myfile_lock and
myfile_offset). prefix is not a string constant, but is
a tag the precompiler uses to create the actual variable
name; do not enclose the prefix tags in quotes.

Syntax Element Description
246 Chapter 6

show
Example

#include <VU.h>
#define _PV_FILEIO_NOWRAP 1
#define _PV_FILEIO_FIELD ","
#include <sme/fileio.h>

#define IDX_STUDENT 1 /* STUDENT is 1st field */
#define IDX_CLASS 2 /* CLASS is 2nd field */
#define IDX_GRADE 3 /* GRADE is 3rd field */
{
 shared transA_lock, transA_offset;

 while (1)
 {
 SHARED_READ("transA_input_file", transA);
 if (Last_line == "")
 break;
 sqlexec [Insert A"]
 "INSERT INTO REPORTCARD (STUDENT, CLASS, GRADE) VALUES ("
 + IndexedField(IDX_STUDENT) + ", "
 + IndexedField(IDX_CLASS) + ", "
 + IndexedField(IDX_GRADE) + ") ";
 }
}

See Also

IndexedField, IndexedSubField, NextField, NextSubField, ReadLine

show

Category

Environment Control Command

Description

Writes the current values of the specified variables to standard output.
Command Reference 247

sindex
Syntax

show [env_var_list];

Comments

The show command does not alter any values of environment variables. show does not escape
unprintable characters when printing string expression values. For bank variables, strings are
listed first (enclosed in double quotation marks), followed by integers.

Example

This example writes the values of Timeout_val and Log_level to standard output:

show [Timeout_val,Log_level];
Timeout_val = 120000
Log_level = TIMEOUT

See Also

None.

sindex

Returns the position of the first occurrence of any character from a specified set.

Category

Library Routine

Syntax Element Description

env_var_list Use one of the following for env_var_list:
■ A list of one or more environment variables,

separated by commas and optionally by white space.
If env_var_list contains one item, the brackets
are optional. If env_var_list contains more
than one item, show operates on them from left to
right.

■ ENV_VARS. This specifies all of the environment
variables.
248 Chapter 6

sock_connect
Syntax

int sindex (str, char_set)

Comments

The sindex (string index) routine returns the ordinal position within str of the first
occurrence of any character from char_set. If no occurrences are found, sindex returns an
integer value of 0.

The routines cindex, lcindex, sindex, and lsindex return positional information about
either the first or last occurrence of a specified character or set of characters within a string
expression. strspan returns distance information about the span length of a set of characters
within a string expression.

Example

This example returns the integer value 2, because 2 is the position of the first vowel in the
string "moo goo gai pan":

sindex("moo goo gai pan", "aeiou");

See Also

cindex, lcindex, sindex, strspan, strstr

sock_connect

Opens a socket connection.

Category

Emulation Function

Syntax Element Description

str The string expression to search.

char_set The characters to search for within str.
Command Reference 249

sock_connect
Syntax

int sock_connect (label, address)

Comments

The sock_connect function returns an integer value: 0 or less for failure, or a unique
connection number greater than or equal to 1 for success. If sock_connect fails, an entry is
written to _error and error_text.

The sock_connect function makes a connection to the server defined by address, and
identifies the name of this connection as label (for the Trace report output). Supply a
descriptive name to make it easier to identify the connection when you examine the outputs.

The sock_connect function sets the “first connect” (_fc_ts) and “last connect” (_lc_ts)
read-only variables.

The sock_connect function is affected by the following VU environment variables:
Record_level, Timeout_val, Timeout_scale, Timeout_act, Connect_retries, and
Connect_retry_interval.

Example

This example connects to a computer named calvin. The connection number is returned in the
variable conn1:

int conn1
conn1 = sock_connect("calvin", "152.52.110.86:25");

See Also

sock_disconnect

Syntax Element Description

label A string expression that identifies the name of the
connection.

address A string expression of the form host:port. port is
required. host is a symbolic host name or an IP
address in dotted-decimal form. Equivalent examples:
"calvin:80" and "152.52.110.86:80"
(Assuming calvin’s IP address is 152.52.110.86).
250 Chapter 6

sock_create
sock_create

Creates a socket to which another process may connect.

Category

Emulation Function

Syntax

int sock_create ([service | port [, type [, backlog]]])

Comments

TestManager automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your socket
script: sock_create, sock_fdopen, sock_isinput, and sock_open.

The sock_create function creates an Internet socket and prepares for incoming connections.
It returns the port of the created socket.

The desired port for the created socket may be specified by either a service name or by a port
number. If the port is not specified or is given as 0, the socket uses a system-assigned port.

Example

This example creates a socket on port 80 and then waits for a connection to be made on that
socket:

int port, con;

port = sock_create(80);

Syntax Element Description

service A string expression that names the service whose port is
to be used.

port An integer expression specifying the port to use.

type An integer specifying the type of socket to create The
only currently supported type is
SOCK_TYPE_STREAM, defined in VU.h.

backlog An integer specifying the maximum number of pending
incoming connections. The default is 1.
Command Reference 251

sock_disconnect
/* do something here to let other process know that
 socket is ready for connections. */

con = sock_open(“sock_open”, port);
set Server_connection = con;
sock_nrecv 1;

See Also

sock_connect, sock_fdopen, sock_open

sock_disconnect

Disconnects a socket connection.

Category

Emulation Function

Syntax

int sock_disconnect (connection)

Comments

The sock_disconnect function returns 1 for success and 0 for failure.

Example

This example disconnects the connection conn1:

sock_disconnect(conn1);

See Also

sock_connect

Syntax Element Description

connection An integer expression specifying a connection number
that has been returned by sock_connect and has not
been disconnected. If connection is invalid,
sock_disconnect generates a fatal runtime error.
252 Chapter 6

sock_fdopen
sock_fdopen

Associates a file descriptor with a socket connection.

Category

Emulation Function

Syntax

int sock_fdopen (label, fd)

Comments

TestManager automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your socket
script: sock_create, sock_fdopen, sock_isinput, and sock_open.

The sock_fdopen function returns an integer value: 0 or less for failure, or a unique
connection number greater than or equal to 1 for success. The sock_fdopen function assigns
the given file descriptor to a connection and identifies the name of this connection as label (for
the Trace report output). The fd parameter must be a file descriptor for a socket connection
created by an external C function.

The sock_fdopen function is affected by the Record_level VU environment variable.

Example

This example creates a specialized socket via the external C function and then uses that socket
as the current Server_connection.

external_C int func make_socket()
{}

int fd, con;

fd = make_socket();

con = sock_fdopen(“sock_fdopen”, fd);

Syntax Element Description

label A string expression that identifies the name of the
connection.

fd An integer expression that identifies the file descriptor
of a socket created by external C code.
Command Reference 253

sock_isinput
set Server_connection = con;

sock_nrecv 1;

See Also

sock_connect, sock_create, sock_open

sock_isinput

Checks for available input on a socket connection.

Category

Emulation Function

Syntax

int sock_isinput ()

Comments

TestManager automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your socket
script: sock_create, sock_fdopen, sock_isinput, and sock_open.

The sock_isinput function returns an integer value equal to the number of characters
currently available on the socket connection that have not been read by any of the socket
receive commands. This function does not process the incoming data. Incoming data is still
available for processing by a socket receive emulation command.

The sock_isinput function is affected by the Server_connection VU environment
variable.

Example

This example conditionally reads the data from the socket until no more data exists. This
example is useful as a substitute for a sock_nrecv [cmd_id]$ command. Although the $
tells TestManager to read until the end of file, the command does not terminate if the socket is
not closed by the server.

Set Server_connection = conn1;
if (n = sock_isinput())

sock_nrecv n;
254 Chapter 6

sock_nrecv
See Also

sock_nrecv

sock_nrecv

Receives n bytes from the server.

Category

Receive Emulation Command

Syntax

int sock_nrecv [cmd_id] n_bytes

Comments

The sock_nrecv command receives n_bytes from the server specified by the VU
environment variable Server_connection. Binary data is translated into embedded
hexadecimal strings. See Unprintable HTTP or Socket Data on page 56.

If Timeout_val (subject to scaling) milliseconds elapses before sock_nrecv is satisfied, it
fails and returns 0. Otherwise, it passes and returns 1.

The sock_nrecv command is affected by the following VU environment variables:
Timeout_act, Timeout_val, Timeout_scale, Log_level, Record_level,
Max_nrecv_saved, and Server_connection.

Max_nrecv_saved applies to the actual data received, before expanding any binary data into
embedded hexadecimal strings.

Example

This example receives 1355 bytes from the server conn1:

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

n_bytes An integer expression, specifying the number of bytes to
read from the connection identified by
Server_connection.
Command Reference 255

sock_open
Set Server_connection = conn1;
sock_nrecv ["cmd001"] 1355;

See Also

sock_isinput, sock_recv, sock_send

sock_open

Waits for a socket connection from another process.

Category

Emulation Function

Syntax

int sock_open (label, port)

Comments

TestManager automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your socket
script: sock_create, sock_fdopen, sock_isinput, and sock_open.

The sock_open function returns an integer value: 0 or less for failure, or a unique connection
number greater than or equal to 1 for success. If sock_open fails, an entry is written to
_error and _error_text.

The sock_open function waits for a connection from another process and identifies the name
of this connection as label (for the Trace report output). The port parameter must be a port
returned by sock_create.

 The sock_open function sets the “first connect” (_fc_ts) and “last connect” (_lc_ts)
read-only variables.

Syntax Element Description

label A string expression that identifies the name of the
connection

port An integer expression that identifies the port of a socket
created by sock_create.
256 Chapter 6

sock_recv
The sock_open function is affected by the following VU environment variables:
Record_level, Timeout_val, Timeout_scale, and Timeout_act.

Example

This example creates a socket on port 80 and then waits for a connection to be made on that
socket:

int port, con;

port = sock_create(80);
/* do something here to let other process know that
 socket is ready for connections */

con = sock_open("sock_open", port);
set Server_connection = con;
sock_nrecv 1;

See Also

sock_connect, sock_create, sock_fdopen

sock_recv

Receives data until the specified delimiter string is found.

Category

Receive Emulation Command

Syntax

int sock_recv [cmd_id] reply

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
Command Reference 257

sock_recv
Comments

This command returns data until the specified pattern appears. Binary data is translated into
embedded hexadecimal strings. See Unprintable HTTP or Socket Data on page 56.

If Timeout_val (subject to scaling) milliseconds elapses before sock_recv is satisfied, it
fails and return 0. Otherwise, it passes and returns 1.

The sock_recv command is affected by the following VU environment variables:
Timeout_act, Timeout_val, Timeout_scale, Log_level, Record_level,
Max_nrecv_saved, and Server_connection.

Max_nrecv_saved applies to the actual data received, before expanding any binary data into
embedded hexadecimal strings.

Example

This example matches as soon as the string "This is an extremely small file\r\n" is
found anywhere within the response:

sock_recv ["cmd001r"] "This is an extremely small file\r\n";

reply A string expression specifying the desired reply from
the server. Data is received from the connection
identified by Server_connection until reply is
encountered.

reply can contain the following special characters:
■ ^ (carat). As the first character in reply, the carat

signifies binding to the beginning of the response,
such as that used in VU regular expressions for the
match() built-in function. It is considered an error if
no characters follow the ^.

■ $ (dollar sign). As the last character in reply, the
dollar sign signifies binding to the end of the
response (for example, the end of the connection)
such as that used in VU regular expressions for the
match() built-in function. If no characters precede the
$, sock_recv reads until the end of connection, thus
matching any combination of 0 or more received
characters.

To override the special meaning of ^ and $, escape
them with a backslash or use embedded hex string
notation (5e for the carat and 24 for the dollar sign).
When used anywhere else within reply, the carat and
dollar sign have no special meaning.

Syntax Element Description
258 Chapter 6

sock_send
This example reads until the end of the connection, and passes only if _response ends with
"This is an extremely small file\r\n":

sock_recv ["cmd002r"] "This is an extremely small file\r\n$";

This example matches only if the first 20 characters of _response =="This is an
extremely". If the first 20 characters do not match, sock_recv continues to read until the
end of the connection or a timeout.

sock_recv ["cmd003r"] "^This is an extremely";

This example reads until the end of the connection. It fails only if Timeout_val (subject to
scaling) milliseconds expires before reaching the end of the connection:

sock_recv ["cmd003r"] "$";

See Also

sock_nrecv, sock_recv

sock_send

Sends data to the server.

Category

Send Emulation Command

Syntax

int sock_send [cmd_id] data

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

data A string expression that is parsed for embedded
hexadecimal strings delimited by grave accent (‘)
characters. See Unprintable HTTP or Socket Data on
page 56.
Command Reference 259

sqlalloc_cursor
Comments

The sock_send command sends data to the connection specified by the VU environment
variable Server_connection. The sock_send command returns an integer value — 0 for
failure, and 1 for success.

The sock_send command is affected by the following VU environment variables: the think
time variables, Log_level, Record_level, Server_connection, Suspend_check,
Timeout_val, and Timeout_scale.

Example

This example sends "data to send" to the server conn1:

set Server_connection = conn1;
set Think_avg = 27;
sock_send ["cmd001"] "data to send";

See Also

sock_nrecv, sock_recv

sqlalloc_cursor

Allocates a cursor for use in cursor oriented SQL emulation commands and functions.

Category

Emulation Function

Syntax

int sqlalloc_cursor()

Comments

The sqlalloc_cursor function allocates a cursor for use by sqldeclare_cursor,
sqlopen_cursor, sqlcursor_setoption, or sqlsysteminfo. The returned cursor ID is
placed in the read-only variable_cursor_id.

Example

This example allocates a cursor with sqlalloc_cursor and then uses that cursor to execute
a query.
260 Chapter 6

sqlalloc_statement
stmt_2_1_id = sqlalloc_cursor();

sqlcursor_setoption(stmt_2_1_id, ODBC_CURSOR_TYPE,
 ODBC_CURSOR_KEYSET_DRIVEN);

sqlcursor_setoption(stmt_2_1_id, ODBC_CONCURRENCY,
 ODBC_CONCUR_VALUES);

set Cursor_id = stmt_2_1_id;
sqlopen_cursor ["val_6001"] "", "select @@servername";

push CS_blocksize = 100;

sqlfetch_cursor ["val_6002"] stmt_2_1_id, ALL_ROWS;
set Cursor_id = 0;

sqlfree_cursor(stmt_2_1_id);

See Also

sqlcursor_setoption, sqldeclare_cursor, sqlfree_cursor, sqlopen_cursor

sqlalloc_statement

Allocates a cursor data area for Oracle playback.

Category

Emulation Function

Syntax

int sqlalloc_statement ();

Comments

The sqlalloc_statement function allocates a cursor data area (CDA) for Oracle
playback. The returned statement ID is placed in the read-only variable _statement_id.

Example

This example does a select on stmtid_1 and fetches one row, then it does a select on
stmtid_2 and fetches all rows. It then returns to stmtid_1 and fetches the remaining rows.

stmtid_1=sqlalloc_statement();
set Statement_id = stmtid_1;
sqlprepare "select * from customers";

sqlexec stmtid_1;
Command Reference 261

sqlclose_cursor
sqlnrecv 1;
stmtid_2=sqlalloc_statement();
set Statement_id = stmtid_2;
sqlprepare "select distinct composer from products";
sqlexec stmtid_2;
sqlnrecv ALL_ROWS;
set Statement_id=stmtid_1;
sqlnrecv ALL_ROWS;

See Also

sqlfree_statement

sqlclose_cursor

Closes the indicated cursor.

Category

Send Emulation Command

Syntax

int sqlclose_cursor [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,] csr_id

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that assigns the of rows this command
affects. The default is -1, which indicates any number of
rows. If n is >=0, and the number of rows the SQL
command processes does not equal n, the response is
unexpected.

csr_id The integer cursor identifier of an opened cursor.
262 Chapter 6

sqlclose_cursor
Comments

If the cursor ID is not valid for the connection indicated by the value of Server_connection
or if the cursor is not open, an error is reported to both the error file and the log file.

After a cursor is closed, all cursor commands will fail except for sqlopen_cursor and
sqlfree_cursor.The cursor is reopened by sqlopen_cursor.

sqlclose_cursor is affected by the VU environment variable Server_connection.

Example

This example declares and opens the cursor, manipulates the rows in the table, and then closes
the cursor:

/* sqlopen_cursor implicitly declares and then opens the cursor */
cursor_65537 = sqlopen_cursor ["hand002"] "cur",

"SELECT * FROM Room \tFOR UPDATE OF Roomnum, Type, Capacity"
UPDATE_CURSOR;

/* CS_blocksize is set to 1 to control the fetch api calls */
set CS_blocksize = 1;

/* 4 TDS_CURFETCH NEXT packets of 1 row each are combined
 * into a single sqlfetch_cursor command. */
sqlfetch_cursor ["hand003"] cursor_65537 FETCH_NEXT, 4;

sqldelete_cursor ["hand004"] cursor_65537, "Room",
 "Roomnum=’2017 ’ Type=’OFF ’ Capacity=’2’";
sqlfetch_cursor ["hand005"] cursor_65537 FETCH_NEXT;
sqlupdate_cursor ["hand006"] cursor_65537, "Room",
 "UPDATE Room Set Roomnum = @sql0_num , Type = @slq1_type ,"
 " Capacity = @sql2_cap ","Roomnum=’2065 ’ Type=’OFF ’"
 "Capacity=’2’","2056", "lab", 4;
sqlfetch_cursor ["hand007"] cursor_65537 FETCH_NEXT;
sqldelete_cursor ["hand008"] cursor_65537, "Room",
 "Roomnum=’2111 ’ Type=’OFF ’ Capacity=’3’";
sqlfetch_cursor ["hand009"] cursor_65537 FETCH_NEXT;
sqlupdate_cursor ["hand010"] cursor_65537, "Room",
 "UPDATE Room Set Roomnum = @sql0_num , Type = @slq1_type ,"
 "Capacity = @sql2_cap ","Roomnum=’2220 ’ Type=’OFF ’"
 "Capacity=’3’","1111", "off", 3;
sqlfetch_cursor ["hand011"] cursor_65537 FETCH_NEXT, 2;
sqlclose_cursor ["hand012"] cursor_65537;

See Also

sqlopen_cursor
Command Reference 263

sqlcommit
sqlcommit

Commits the current transaction.

Category

Emulation Function

Syntax

int sqlcommit()

Comments

The sqlcommit function is not supported for Sybase and Microsoft SQL Server databases.
For Sybase and Microsoft SQL Server databases, use:

sqlexec "commit transaction";

Using sqlcommit on Sybase or Microsoft SQL Server database produces a fatal runtime error.

sqlcommit is affected by the VU environment variable Server_connection.

Example

In this example, a connection is made to the t:calvin:PAC server. The sqlexec expects
commands to modify data in an Oracle database. The data is committed to the database and,
then the connection is disconnected.

#include <VU.h>
{
t_calvin_PAC = sqlconnect("t_calvin_PAC", "scott", "tiger",
 "t:calvin:PAC", "oracle7.3");
set Server_connection = t_calvin_PAC;
sqlexec ["school001"] "alter session set nls_language= 'AMERICAN' "
 "nls_te"rritory= 'AMERICA'";
sqlexec ["school002"] "select * from student";
sqlnrecv ["school003"] ALL_ROWS;

sqlexec ["school004"] "insert into student VALUES (1,'LAURA', "
 "'L.L.R.', '63 Greenwood Drive, TORONTO ONT', "
 "'12-Jun-95', 'F')";
sqlcommit();
sqldisconnect(t_calvin_PAC);
}

See Also

sqlrollback
264 Chapter 6

sqlconnect
sqlconnect

Logs on to a SQL database server.

Category

Emulation Function

Syntax

int sqlconnect (label,database_login,pwd,
server,server_info [, connection_opts])

Comments

The sqlconnect function connects database_login to server with password pwd. If the
connection is successful, sqlconnect returns a connection ID, which is an integer for use
with the Server_connection environment variable. If the connection is not successful,
sqlconnect returns 0 and sets _error and _error_text.

Syntax Element Description

label A string expression that is used as the label for this
server connection in TestManager report output. If
label has the value "", database_login and
server arguments are combined into the default label
"database_login@server".

database_login A string expression that specifies the database login ID
for the connection.

pwd A string expression that specifies the password of the
database login ID.

server A string expression that specifies the server.

server_info A string expression that specifies a product ID that is
used to locate the correct API library for playback.

connection_opts An optional string expression that contains one or more
name='value' pairs which give vendor-specific
connection-oriented options. All connection_opts in
automatically generated scripts are taken from the
recorded session. The supported names are described
below.
Command Reference 265

sqlconnect
Supported connection options are as follows:

The sqlconnect function is affected by the VU environment variables Timeout_val,
Timeout_scale, and Record_level.

Example

This example connects to a Sybase server, sets the server connection, and then disconnects:

SYBASE=sqlconnect("SERVER","ron","rondo","SYBASEC","sybase",
 "TDS_VERSION=’5.0.0.0’ APP_NAME=’Sample App’");
set Server_connection = SYBASE;
/* emulation functions */
sqldisconnect (SYBASE);

Name Value

TDS_VERSION (‘n.n.n.n.‘). For Sybase and Microsoft SQL Server
databases only, a sequence of integer digits that indicate
the TDS version used to communicate with the server.
The default is 5.0.0.0. If the server cannot support the
requested TDS version, a lower version is negotiated.

APP_NAME (’a.b.c.d.e.f.’). For Sybase and Microsoft SQL Server
databases only, an optional string that indicates the
application name. The value of APP_NAME is taken from
the client login request, if present in the session.
Otherwise, it does not appear in the connection option
string.

PACKET_SIZE (’x’). For Sybase only, an optional integer that indicates
the size of the network packet used to communicate with
the server.

DRIVER_INFO (’value’). For ODBC only, a string that contains various
ODBC related information such as 'UID=DEFAULT;
PWD=DEFAULT' which causes the connect box to use
the default username and password that were set up
with the ODBC driver. To use the database login and
password instead, remove the UID and PWD from the
DRIVER_INFO value.

SQL_ODBC_CURSORS (’value’). For ODBC only, controls what type of cursors to
use for playback. The value can be set to any of the
following:

SQL_CUR_USE_IF_NEEDED
SQL_CUR_USE_ODBC

SQL_CUR_USE_DRIVER
266 Chapter 6

sqlcursor_rowtag
See Also

sqldisconnect

sqlcursor_rowtag

Returns the tag of the last row fetched.

Category

Emulation Function

Syntax

string sqlcursor_rowtag(csr_id)

Comments

The sqlcursor_rowtag function returns a string that contains a tag, or bookmark, for the
last row fetched from a cursor. In custom scripts, you can use this tag later in
sqlcursor_update and sqlcursor_delete statements to update or delete the specific
row identified by the tag value.

The returned string is used as an argument to the emulation commands sqldelete_cursor
and sqlupdate_cursor.

If you capture a SQL Server application that uses embedded SQL cursors, your script includes
the sqlcursor_rowtag emulation function.

If you capture a Sybase application session that uses SQL cursors, this emulation function is
not included in generated scripts. This is because the current row tag is always the last row
fetched. Any updates or deletes are always applied to the last row fetched.

If an error occurs, sqlcursor_rowtag returns an empty string.

Example

In this example, a cursor is opened, five rows are fetched, the current row position is saved in
the rowtag_cursor_a_id string. The next three rows are fetched, and then the row
identified by the rowtag_cursor_a_id value is updated.

Syntax Element Description

csr_id The integer cursor identifier of an opened cursor.
Command Reference 267

sqlcursor_setoption
#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuserid", "mypassword",
 "SYBASE_SERVER", "sybase11", "TDS_VERSION='5.0.0.0',
 APP_NAME='csr_disp'");

set Server_connection = SYBASE;

sqlexec ["csrforu001"] "use pubs2";

push CS_blocksize = 5;

cursor_a_id = sqlopen_cursor ["csr002"] "cursor_a", "select * from "
 "titles where title_id in ('TC7777', "
 'TC3218','TC4203')",UPDATE_CURSOR;

sqlfetch_cursor ["csr003"] cursor_a_id, 5;

{string rowtag_cursor_a_id;}
rowtag_cursor_a_id = sqlcursor_rowtag(cursor_a_id);

sqlfetch_cursor ["csr003"] cursor_a_id, 3;

sqlcursor_update ["csr004"] cursor_a_id, "titles","update "
 "titles set total_sales = 9999", rowtag_cursor_a_id;

sqlfree_cursor(cursor_a_id);

sqldisconnect(SYBASE);

pop CS_blocksize;
}

See Also

sqldelete_cursor, sqlupdate_cursor

sqlcursor_setoption

Sets a SQL cursor option.

Category

Emulation Function
268 Chapter 6

sqlcursor_setoption
Syntax

int sqlcursor_setoption(csr_id, optioncode [, optarg …])

Comments

The sqlcursor_setoption function returns 1 for success and 0 for failure. The function
sets _error and _error_text, and prints an appropriate message to standard error when
_error is nonzero.

The sqlcursor_setoption function is affected by the VU environment variable
Server_connection.

If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

Example

This example allocates a cursor with sqlalloc_cursor and then uses
sqlcursor_setoption to set two ODBC cursor attributes before using that cursor to
execute a query.

stmt_2_1_id = sqlalloc_cursor();

sqlcursor_setoption(stmt_2_1_id, ODBC_CURSOR_TYPE,
 ODBC_CURSOR_KEYSET_DRIVEN);

sqlcursor_setoption(stmt_2_1_id, ODBC_CONCURRENCY,
 ODBC_CONCUR_VALUES);

set Cursor_id = stmt_2_1_id;
sqlopen_cursor ["val_6001"] "", "select @@servername";

Syntax Element Description

csr_id The integer cursor identifier of an opened cursor.

optioncode The integer that indicates the cursor option you want to
set. The values for optioncode are vendor-specific.
The recognized values for optioncode and any
symbolic constants for optarg are defined in the file
VU.h. Comments accompany each optioncode, giving
the number and type of optargs expected.

optarg The value that you want to supply to the cursor option.
The number and type of optargs depend on the value
of optioncode. The number and type of optargs are
checked at runtime; mismatches result in a fatal runtime
error.
Command Reference 269

sqldeclare_cursor
push CS_blocksize = 100;

sqlfetch_cursor ["val_6002"] stmt_2_1_id, ALL_ROWS;
set Cursor_id = 0;

sqlfree_cursor(stmt_2_1_id);

See Also

None.

sqldeclare_cursor

Associates a SQL statement with a cursor ID, which is required to open the cursor.

Category

Send Emulation Command

Syntax

int sqldeclare_cursor [cmd_id] [EXPECT_ERROR ary,]
csr_name, sqlstmt
[READ_ONLY_CURSOR | UPDATE_CURSOR [col_ary]]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

csr_name A string expression giving the name of the cursor.

sqlstmt A previously prepared statement ID or a SQL statement
string expression associated with the cursor.

col_ary An array of strings whose values are the updatable
column names. The default is all columns are updatable.
270 Chapter 6

sqldelete_cursor
Comments

The sqldeclare_cursor command returns an integer cursor ID for future reference by
other sql*_cursor commands and functions. The returned cursor ID is placed in the
read-only variable _cursor_id.

The READ_ONLY_CURSOR keyword indicates that the cursor is read-only. The
UPDATE_CURSOR keyword indicates that the cursor is updatable. If neither type of cursor is
specified, the text of sqlstmt determines whether the cursor is updatable.

The sqldeclare_cursor command is affected by the VU environment variables
Cursor_id and Server_connection.

Example

In this example, a connection is made to the Sybase database and a SQL statement is prepared
for a SQL execution command. A cursor is then declared for the prepared SQL statement.

SYBASE = sqlconnect("SYBASE", "prevue", "prevue", "SYBASEC",
 "sybase", "TDS_VERSION='5.0.0.0'");
set Server_connection = SYBASE;
sqlexec ["csrdyne001"] "USE pubs2";
stmt = sqlprepare ["csrdyne002"] "SELECT\tau_id, au_lname, au_fname,"
 "\t\t\tphone, address, city, state, \t\t\tpostalcode\t\tFROM
 \tauthors";
authors_id = sqldeclare_cursor["csrdyne003"] "authors", stmt;
sqlopen_cursor ["csrdyne004"] authors_id;
sqlfetch_cursor ["csrdyne005"] EXPECT_ROWS 5, authors_id FETCH_NEXT, 5;

See Also

sqlopen_cursor

sqldelete_cursor

Deletes the a row using the indicated cursor.

Category

Send Emulation Command
Command Reference 271

sqldelete_cursor
Syntax

int sqldelete_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n,] csr_id, tbl_name, rowtag

Comments

If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

The sqldelete_cursor command is affected by the VU environment variable
Server_connection.

Example

This example opens and fetches 4 rows from a cursor, and then deletes a row and closes the
cursor:

/* sqlopen_cursor implicitly declares and then opens the cursor */
cursor_65537 = sqlopen_cursor ["hand002"] "cur",
 "SELECT * FROM Room \tFOR UPDATE OF Roomnum, Type, Capacity"
 UPDATE_CURSOR;

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of
rows. If n is >=0, and the number of rows the SQL
command processes does not equal n, the response is
unexpected.

csr_id The integer cursor identifier of an opened cursor.

tbl_name A string expression containing the name of the table
from which to delete.

rowtag A string expression identifying the row to delete. The
format of the string is SQL database vendor-specific. A
valid rowtag can be obtained by calling
sqlcursor_rowtag(). If rowtag is "", no row
identification is used and the current row is deleted.
272 Chapter 6

sqldisconnect
/* CS_blocksize is set to 1 to control the fetch api calls */
set CS_blocksize = 1;

/* 4 TDS_CURFETCH NEXT packets of 1 row each are combined
 * into a single sqlfetch_cursor command. */
sqlfetch_cursor ["hand003"] cursor_65537 FETCH_NEXT, 4;
sqldelete_cursor ["hand004"] cursor_65537, "Room",
 "Roomnum=’2017 ’ Type=’OFF ’ Capacity=’2’";
sqlclose_cursor ["hand012"] cursor_65537;

See Also

sqlcursor_rowtag

sqldisconnect

Closes the specified connection.

Category

Emulation Function

Syntax

int sqldisconnect (connection_id)

Comments

The sqldisconnect function returns 1 upon success, and 0 upon failure. The
sqldisconnect function sets _error and _error_text.

The sqldisconnect function is affected by the VU environment variable Record_level.

Example

This example connects to a Sybase server, sets the server connection, and then disconnects:

SYBASE=sqlconnect("SERVER","ron","rondo","SYBASEC","sybase11",
 "TDS_VERSION=’5.0.0.0’ APP_NAME=’Sample App’");
set Server_connection = SYBASE;

Syntax Element Description

connection_id An integer expression, returned by sqlconnect, which
specifies the connection to close.
Command Reference 273

sqlexec
/* emulation functions */
sqldisconnect (SYBASE);

See Also

sqlconnect

sqlexec

Executes SQL statements.

Category

Send Emulation Command

Syntax

int sqlexec [cmd_id] [EXPECT_ERROR ary,] [EXPECT_ROWS n,]
stmt, arg_spec1, arg_spec2...

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of
rows. If n is >=0, and the number of rows the SQL
command processes does not equal n, the response is
unexpected.

stmt A string expression containing a SQL statement or an
integer expression indicating a prepared statement ID.

arg_specN One or more optional argument specifications used
when executing stmt. Use these argument
specifications for dynamic SQL placeholders (?’s) or
stored procedure arguments.
274 Chapter 6

sqlexec
Format for Specifying sqlexec Arguments

An argument specification has the form:

expr [: &VUvar [: &VUind]]

expr is required and is either a string or an integer expression.

If expr is a string expression, its value is interpreted at runtime as:

 name=’value’ <type:(p,s)[c]: I | O | IO >

The syntax has these elements:

■ name= indicates the name of the argument as it occurs in the SQL statement that is
executed.

name= is required for Oracle and is optional for Sybase and SQLServer. With Sybase and
SQLServer, if the name is omitted, the argument is associated with the next SQL placeholder
from the beginning of the SQL statement.

■ value is the string representation of the argument value. If name= indicates a scalar
argument, enclose the value portion of the string in single quotation marks for clarity.
These quotation marks are not part of the argument value.

If name= indicates an array argument, the value portion of the string has the form:

 { ’v1’, ’v2’, ... ’vN’ }

where ’v1’ through ’vN’ are string values for the array elements. You can specify a NULL
array element as SQL_NULL as in:

 { ’v1’, ’v2’, SQL_NULL, ’v4’ }

■ type is the optional VU language database type of the argument. The default type is
varchar.

■ (p,s) are optional integer constants that represent the precision and scale. Generally,
precision indicates the length (in bytes) of the internal format of the data. If present, this
information is used in the conversion to the SQL database vendor-specific SQL database
type as appropriate for that type.

The value portion of a binary, varbinary, or longbinary argument is represented as pairs of
hexadecimal characters.

For Oracle, the presence of a scale value for a character data type (char or varchar) indicates a
null conversion character. Any character equal to the scale is converted to a null (\0) character
internally before transmission to the SQL database server.
Command Reference 275

sqlexec
■ [c] specifies the number of elements in an array argument. [c] is not specified for scalar
arguments.

For output array arguments, the array size is required.

For input array arguments, the array size is optional, for example, you can specify empty [].
If not specified, the number of elements in the array value is transmitted. If specified, the
number of elements transmitted is:

MAX(actual values, c)

Example of array arguments:

sqlexec "proc(:a, :b, :c)",
 ":a=4<numeric(21):I>",
 ":b= {1, 2, 3, 4} <numeric(21)[]:I>",
 ":c= {’one’, ’two’, SQL_NULL, ’four’}
 <varchar(10)[]:I>”;

In the example:

❑ :a is an input scalar argument, type numeric, value 4 with precision length of 21.

❑ :b is an input array of 4 numerics, values 1, 2, 3, and 4 with precision length of 21.

❑ :c is an input array of 4 varchars (maximum length 10 characters each), the third of
which is SQL_NULL.

■ I, O, or IO indicates whether the argument is input (default), output, or input/output.

If an argument is output (O) or input/output (IO), the output parameter value is not valid
until the next receive emulation command is executed.

White space characters within a string expression are optional, surrounding each portion of
the string and between the name and =.

The following are some names, data types, and values obtained from Oracle arguments:

String Name Type Value

":spid=50<int4>" :spid O_VARNUM 50

":logname=’george’" :logname O_VARCHAR2 "george"

":c1=’random=text’" :c1 O_VARCHAR2 "random=text"

":c2=’01/17/96’<date>" :c2 O_DATE "01/17/96"

":foo=’hi\377pat’<char(6,0377):I>" :foo O_VARCHAR2 "hi\0pat"

":bin=’00010203’<binary(4):I>" :bin O_BINARY "\000\001\002\003"
276 Chapter 6

sqlexec
The following are some names, data types, and values obtained from Sybase and SQL Server
arguments:

If expr is an integer, its value is the value of the integer. It has no name and it represents an
input argument with the VU language database type is int4. Note that Oracle expressions
require a name.

You get a syntax error if you use a type specification with an integer expression. To specify a
type for an integer expression, use a string expression containing the value and type. For
example:

sqlexec ["exec001"] stmt_id, "50 <int1>";

The following list shows the data type conversions performed by the VU playback libraries for
each VU language data type. The SQL database server could perform further conversions.

String Name Type Value

"@spid=50<int4>" @spid CS_INT_TYPE 50

"@logname=’george’" @logname CS_CHAR_TYPE "george"

"’random=text’" CS_CHAR_TYPE "random=text"

"01/17/96’<datetime4>" CS_DATETIME4_TYPE "01/17/96"

VU
Sybase, SQL Server
(ct-lib)

Oracle ODBC

default CS_CHAR_TYPE O_VARCHAR2 SQL_C_CHAR

binary CS_BINARY_TYPE O_BINARY SQL_C_BINARY

bit CS_BIT_TYPE O_VARCHAR2 SQL_C_CHAR

char CS_CHAR_TYPE O_VARCHAR2 SQL_C_CHAR

datetime4 CS_DATETIME4_TYPE O_DATE SQL_C_CHAR

datetime8 CS_DATETIME_TYPE O_DATE SQL_C_TIMESTAMP

decimal CS_DECIMAL_TYPE O_VARNUM SQL_C_CHAR

float4 CS_REAL_TYPE O_FLOAT SQL_C_CHAR

float8 CS_FLOAT_TYPE O_FLOAT SQL_C_CHAR
Command Reference 277

sqlexec
You can specify any numeric argument as a string. Non-integer numeric arguments (such as
floating point) must be specified as strings.

The sqlexec command accepts both named and positional arguments in the same command,
and passes them on to the server. Any restrictions regarding mixing of named and positional
arguments are enforced by the SQL server.

:&VUvar and :&VUind indicate VU language variable bindings. When VUvar and VUind are
arrays, the & is not required. If present, a warning is generated.

The optional VUvar is a string, integer, array variable, or array element that indicates that the
corresponding SQL argument is bound to this VU variable. If the SQL argument is a scalar, the
VU variable must be a scalar. If the SQL argument is an array, the VU variable must be an
array.

int1 CS_TINYINT_TYPE O_VARNUM SQL_C_SLONG

int2 CS_SMALLINT_TYPE O_VARNUM SQL_C_SLONG

int4 CS_INT_TYPE O_VARNUM SQL_C_SLONG

money4 CS_MONEY4_TYPE O_VARCHAR2 SQL_C_CHAR

money8 CS_MONEY_TYPE O_VARCHAR2 SQL_C_CHAR

numeric CS_NUMERIC_TYPE O_VARNUM SQL_C_CHAR

varchar CS_VARCHAR_TYPE O_VARCHAR2 SQL_C_CHAR

text CS_TEXT_TYPE O_VARCHAR2 SQL_C_CHAR

image CS_IMAGE_TYPE O_VARCHAR2 SQL_C_CHAR

void not supported O_VARCHAR2 SQL_C_CHAR

varbinary CS_VARBINARY_TYPE O_BINARY SQL_C_BINARY

longbinary not supported O_LONGBIN SQL_C_BINARY

longchar not supported O_LONG SQL_C_CHAR

sensitivity not supported O_VARCHAR2 SQL_C_CHAR

boundary not supported O_VARCHAR2 SQL_C_CHAR

date not supported O_DATE SQL_C_DATE

VU
Sybase, SQL Server
(ct-lib)

Oracle ODBC
278 Chapter 6

sqlexec
These bindings are interpreted as in the following table, depending on whether the SQL
argument is input, output, or input/output:

The optional VUind is an integer VU variable for scalar arguments and an array of integers for
array arguments. VUind represents the SQL NULL indicator or array of SQL NULL indicators,
as follows:

To specify a SQL NULL input value, use any of the following formats:

■ SQL_NULL

■ "SQL_NULL"

SQL Argument How VUvar Is Bound

input If expr has no value component, the value of VUvar is used as
the input value. If VUvar is not set, a runtime error occurs
(unless VUind is present and has value -1). If expr has a value
component, the value of VUvar is ignored.

output VUvar receives the value of the SQL arguments after execution
of the SQL statement. If VUvar is omitted, the SQL result is
returned into an internal temporary space and discarded.

input/output Same as input and output, above.

SQL Argument How VUind Is Bound

input If expr has no value component, the value of VUind has the
following meaning:
■ -1. The input value used is SQL_NULL
■ >=0. The input value is the value of VUvar

If VUind is unset, it is a runtime error.

output VUind receives the value assigned by the SQL server. Possible
values for VUind are:
■ -2. The return value (in VUvar) has been truncated and the

actual length is greater than 65535.
■ -1. The return value is SQL_NULL (VUvar is unchanged).
■ 0. The return value is intact and stored in VUvar.
■ >0. The return value has been truncated and VUind contains

the length before truncation.

input/output Same as input and output, above.
Command Reference 279

sqlexec
■ "name=SQL_NULL<type:I>"

■ "name=<type:I>" : &VUvar : &VUind /* where VUind == -1 */

How sqlexec Processes Statements

The sqlexec command executes any SQL statement. It does not return until the SQL
statement has completed, or until Timeout_val elapses. sqlexec returns 1 indicating success,
and returns 0 indicating an error. When sqlexec returns 0, _error and _error_text are
set appropriately. If stmt is a prepared statement ID that is invalid for the current value of
Server_connection, sqlexec fails. Zero is never a valid statement ID. The values of
arg_spec1 ... arg_specN are passed to the statement (stmt), prepared or not, as values
for placeholders (?’s) or stored procedure arguments.

The sqlexec command can be used to execute statements using Oracle's array interface. If
sqlsetoption() is used to set ORA_EXECCOUNT to a value greater than 1, then each input
parameter to sqlexec must be an array containing the same number of elements as the value
of ORA_EXECCOUNT. The sqlexec command then executes the statement using the array
interface which performs the specified SQL statement multiple times with a single call to the
SQL database server.

The sqlexec command delays execution of the SQL statement for the duration of a think
time interval controlled by the think time variables. For more information, see Think Time
Variables on page 115.

The read-only variable _fs_ts is set to the time the SQL statement is submitted to the server.
The read-only variables _ls_ts, _fr_ts, and _lr_ts are set to the time the server has
completed execution of the SQL statement.

The sqlexec command is affected by the following VU environment variables: Log_level,
Record_level, Server_connection, Sqlexec_control_oracle,
Sqlexec_control_sybase, Sqlexec_control_sqlserver, Statement_id, the think
time variables, Timeout_act, Timeout_val, Timeout_scale, and Suspend_check.

Sqlexec_control_* controls precisely how sqlexec executes the SQL statement. See
Client/Server Environment Variables on page 95.

Example

In this example, assume two SQL database servers: SYBORG (a Sybase 11.0 server) and ORCA
(an Oracle 7.3 server). The following script accesses both servers and generates a log file
(shown on page 111).

#include <VU.h>
{
 /* connection variables */
 int syborg, syberspace, orca;
280 Chapter 6

sqlexec
 int deptno[] = { 50, 60, 70 };
 string deptname[] = { "testing", "shipping", "receiving" };
 string deptloc[] = { "Raleigh", "Durham", "Chapel Hill" };
 set Log_level = "ALL";

 /* connect to both servers */

 /* sybase connection, use all defaults */
 syborg = sqlconnect("", "hugh", "3ofFive", "sybserver",
 "sybase11");

 /* oracle connection, override defaults */
 orca = sqlconnect("", "willy", "wonka", "SEA.world", "oracle7.3");

 /* access syborg */
 set Server_connection = syborg;
 sqlexec ["school"] "use school";

 sqlexec"select Empnum, Empname, Roomnum from Employee where
 Rank=’TUTOR’";

 set CS_blocksize = 3;
 while (_error == 0)
 sglnrecv ["Tutors"] 10;

 /* switch to orca */
 set Server_connection = orca;

 sqlsetoption(ORA_AUTOCOMMIT, 1);

 sqlexec "select * from Dept";
 sqlnrecv ["dept (a)"] ALL_ROWS;
 /* insert some rows */
 sqlprepare ["prep insert"]
 "insert into Dept values (:no, :name, :place)";

 for (i = 0; i <= limitof deptno; i++)
 sqlexec _statement_id, ":no="+itoa(deptno[i]),

 ":name="+deptname[i], ":place="+deptloc[i];

 sqlexec "select * from Dept";
 sqlnrecv ["dept (b)"] ALL_ROWS;

 /* now delete rows */
 sqlexec "delete from Dept where deptno >= "+itoa(deptno[0]);

 sqlexec "select * from Dept";
 sqlnrecv ["dept (c)"] ALL_ROWS;

 /* done with orca */
 sqldisconnect(orca);

 /* done with syborg */
Command Reference 281

sqlfetch_cursor
 sqldisconnect(syborg);
}

See Also

None.

sqlfetch_cursor

Fetches the requested rows from the specified cursor.

Category

Receive Emulation Command

Syntax

int sqlfetch_cursor [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,]
csr_id [row] [, count]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of
rows. If n is >=0, and the number of rows the SQL
command processes does not equal n, the response is
unexpected.

csr_id The cursor identifier returned by
sqldeclare_cursor (or sqlopen_cursor) and
opened by sqlopen_cursor.

row Can be FETCH_NEXT (default), FETCH_FIRST,
FETCH_LAST, FETCH_PREV, FETCH_RELATIVE x,
or FETCH_ABSOLUTE x, where x is an integer that
specifies the row to fetch.

count Specifies the number of rows to fetch or ALL_ROWS.
The default is 1.
282 Chapter 6

sqlfetch_cursor
Comments

The first call to sqlfetch_cursor retrieves the column header information if
Column_headers is "ON." The column headers are stored in the read-only variable
_column_headers in two lines.

The rows returned by the SQL database server are stored in the read-only variable
_response. A maximum of Max_nrecv_saved rows are stored. If more than
Max_nrecv_saved rows are requested, the excess rows are fetched but not returned in
_response and not logged.

If the cursor ID is not valid for the connection indicated by the value of Server_connection
or if the cursor is not open, an error is reported to both the error file and the log file.

Rows are fetched in groups of CS_blocksize until the requested number of rows is returned
or the end of the results is encountered. If ALL_ROWS are requested, then rows are fetched
until the end of the result set (or table if Table_boundaries is "ON") is reached. If fewer
than count rows are retrieved, an error is logged.

The sqlfetch_cursor command is affected by the following VU environment variables:
CS_blocksize, Max_nrecv_saved, Column_headers, Table_boundaries,
Server_connection, and Sqlnrecv_long.

Example

This example prepares a statement, declares and opens a cursor on the prepared statement,
and fetches five rows from the cursor result set. The last row fetched is updated using a
parameterized update statement, and the next four rows from the cursor set are fetched for a
total of nine rows fetched:

#include <VU.h>
{

SYBASE = sqlconnect("SYBASE", "prevue", "prevue", "PROXYC",
"sybase11sybase11", "TDS_VERSION='5.0.0.0'");

set Server_connection = SYBASE;

sqlexec ["csrdyne001"] "USE pubs2";
stmt = sqlprepare ["csrdyne002"] "SELECT au_id, au_lname, au_fname,"
 "phone, address, city, state, postalcode FROM authors";

authors_id = sqldeclare_cursor["csrdyne003"] "authors", stmt;

sqlopen_cursor ["csr004"] authors_id;

sqlfetch_cursor ["csr005"] EXPECT_ROWS 5, authors_id FETCH_NEXT, 5;
sqlupdate_cursor ["csr006"] EXPECT_ROWS 1, authors_id, "authors",
 "UPDATE "
Command Reference 283

sqlfree_cursor
 "authors SET au_lname = @sql0_m_au_lname , au_fname = "
 "@sql1_m_au_fname , phone = @sql2_m_phone , "
 "address = @sql3_m_address , city = @sql4_m_city ,"
 " state = @sql5_m_state , postalcode = "
 "@sql6_m_zip ", "",
 "'Smith '",
 "'Meander '",
 "913 843-0462",
 "'10 Mississippi Dr. '",
 "'Lawrence '"
 "KS", "'66044 '";

sqlfetch_cursor ["csr007"] EXPECT_ROWS 9, authors_id FETCH_NEXT, 4;

sqlclose_cursor ["csr008"] authors_id ;

sqldisconnect(SYBASE);
}

See Also

sqlconnect

sqlfree_cursor

Frees a cursor.

Category

Emulation Function

Syntax

int sqlfree_cursor(csr_id)

Syntax Element Description

csr_id The identifier of the cursor to free. If csr_id is not
declared by either sqldeclare_cursor or
sqlopen_cursor, or allocated by sqlalloc_cursor,
a nonfatal error is reported in the error file.
284 Chapter 6

sqlfree_statement
Comments

After a cursor ID is freed, any cursor emulation command or function that attempts to use that
cursor ID produces a nonfatal error, which is reported in the error file.

If you are emulating a Sybase, ODBC, or Microsoft SQL Server application that uses
embedded SQL cursors, your script includes the sqlfree_cursor emulation function. This
function closes (if necessary), then deallocates the cursor ID declared with the emulation
commands sqldeclare_cursor or sqlopen_cursor.

Example

In this example, a cursor is opened, some cursor rows are fetched, and the cursor is freed.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuid", "mypasswrd","SYBASE_SERVER",
 "sybase11", "TDS_VERSION='5.0.0.0', APP_NAME='csr_disp'");

set Server_connection = SYBASE;

sqlexec ["csr_upd001"] "use pubs2";

push CS_blocksize = 5;

cursor_a_id = sqldeclare_cursor ["csr_upd002"] "cursor_a",
 "select * from titles" UPDATE_CURSOR{"total_sales","type"};
sqlopen_cursor cursor_a_id;

sqlfetch_cursor ["csr_upd003"] cursor_a_id FETCH_NEXT, 1;

sqlfree_cursor(cursor_a_id);

sqldisconnect(SYBASE);

pop CS_blocksize;
}

See Also

sqldeclare_cursor, sqlopen_cursor, sqlopen_cursor

sqlfree_statement

Frees all of the client and server resources for a prepared statement.

Category

Emulation Function
Command Reference 285

sqlfree_statement
Syntax

int sqlfree_statement(stmt_id)

Comments

The sqlfree_statement function is affected by the VU environment variable
Server_connection.

Example

In this example, a SQL SELECT statement is prepared, for which the statement ID stmt is
returned. A cursor is declared for stmt, and the cursor is opened on the prepared statement
with an argument of 2. The server processes the prepared statement and returns a cursor
result set. The cursor rows are fetched, and the prepared statement is freed.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuserid", "mypassword",
 "SYBASE_SERVER", "sybase11", "TDS_VERSION='5.0.0.0'");
set Server_connection = SYBASE;

sqlexec ["csrsimp001"] "USE pubs2";

stmt = sqlprepare ["csrsimp002"] "SELECT * FROM mytable where id = ?";

simple_id = sqldeclare_cursor["csrsimp003"] "simple", stmt;

sqlopen_cursor ["csrsimp004"] simple_id, 2;

sqlfetch_cursor ["csrsimp005"] simple_id FETCH_NEXT, 1;

sqlfree_statement(stmt);

sqlclose_cursor ["csrsimp008"] simple_id ;

sqldisconnect(SYBASE);
}

Syntax Element Description

stmt_id An integer value returned by the sqlprepare
emulation command. If stmt_id is not the result of the
sqlprepare emulation command or stmt_id has
already been freed by sqlfree_statement, an error
message is printed and _error and _error_text are
set.
286 Chapter 6

sqlinsert_cursor
See Also

None.

sqlinsert_cursor

Inserts rows via a cursor.

Category

Send Emulation Command

Syntax

int sqlinsert_cursor [cmd_id] [EXPECT_ERROR ary,] [EXPECT_ROWS n,
] [CURSOR_LOCK | CURSOR_UNLOCK ,] csr_id, tbl_name, rowtag [,
values]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows this command
should affect. The default is –1, which indicates any
number of rows. If n is >= 0, and the number of rows the
SQL command processes does not equal n, then
response is unexpected.

csr_id The integer cursor identifier of an opened cursor.

tbl_name A string expression containing the name of the table
affected by the insert.

rowtag A string expression identifying the row to position the
cursor. The format of the string is SQL database
vendor-specific. A valid rowtag can be obtained by
calling sqlcursor_rowtag().
Command Reference 287

sqllongrecv
Comments

If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlinsert_cursor command locks the inserted rows. If
CURSOR_UNLOCK is specified, sqlinsert_cursor unlocks the inserted rows.

The sqlinsert_cursor command is affected by the VU environment variable
Server_connection.

Example

This example inserts the row Dodsworth, Anne into the employees table.

stmt_2_1_id=sqlalloc_cursor();

set Cursor_id = stmt_2_1_id;
sqlopen_cursor "C1", "select lastname, firstname from employees";

sqlfetch_cursor stmt_2_1_id, 8;

sqlinsert_cursor stmt_2_1_id, "", "1", "'Dodsworth'<varchar(21):I>",
"'Anne'<varchar(16):I>";

sqlfree_cursor(stmt_2_1_id);

See Also

sqlcursor_rowtag, sqlexec

sqllongrecv

Retrieves longbinary and longchar results.

Category

Receive Emulation Command

values A list of string values, integer values, or both to insert
into the table via the cursor. Values may include type
specifiers. Each value is the string representation of the
argument value as described for the sqlexec
emulation command.

Syntax Element Description
288 Chapter 6

sqllongrecv
Syntax

int sqllongrecv [cmd_id] [EXPECT_ERROR ary,]
column, offset, size, count

Comments

The sqllongrecv command retrieves count * size bytes from a column of type longbinary
or longchar. If fewer than count * size bytes are retrieved, _error and _error_text are
set to indicate the reason.

The sqllongrecv command operates on the last row retrieved by sqlnrecv or
sqlfetch_cursor, and thus can be called after sqlnrecv or sqlfetch_cursor was
called.

The sqllongrecv command is affected by the following VU environment variables:
Timeout_val, Timeout_scale, Timeout_act, Log_level, Record_level,
Max_nrecv_saved, and Server_connection.

The sqllongrecv command is also affected by Statement_id if Statement_id is not
zero. Otherwise sqllongrecv operates on the last sqlexec command.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

column An integer expression indicating the column that
contains the long data type. The first column in the row
is 1.

offset An integer expression indicating the beginning offset
within the column.

size An integer expression indicating the number of bytes to
retrieve from the column at one time.

count An integer expression indicating the number of blocks
of size bytes to retrieve.
Command Reference 289

sqlnrecv
Example

In this example, sqlnrecv fetches the first 100 bytes of column 3. The next sqllongrecv
fetches 3 blocks, each 65536 bytes in size, of column 3. The last sqllongrecv fetches the last
3392 bytes of column 3, starting at offset 199608.

sqlprepare "select msg_id, msg_len, msg from voicemail"
"where msg_id=100";

push CS_blocksize = 1;
set sqlnrecv_long=100;
sqlnrecv 1;
sqllongrecv 3, 65536, 3;
sqllongrecv 3, 196608, 3392, 1;

See Also

None.

sqlnrecv

Retrieves row results after sqlexec is executed.

Category

Receive Emulation Command

Syntax

int sqlnrecv [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,] m

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows that this
command affects. The default is -1, which indicates any
number of rows. If n is >=0, and the number of rows the
SQL command processes does not equal n, the response
is unexpected.
290 Chapter 6

sqlnrecv
Comments

The sqlnrecv command retrieves m rows from the last command processed by sqlexec.
sqlnrecv repeatedly requests CS_blocksize rows from the SQL database server until m
rows have been retrieved, an error occurs, or it reaches the end of the table and
Table_boundaries is ON.

If fewer than m rows are retrieved, _error is set to indicate the reason. If m is not ALL_ROWS,
and if the end of the row results (or the end of the table) is reached, _error and
_error_text are set to indicate the condition that terminated the command. If there are no
more row results, sqlnrecv returns immediately, setting _error and _error_text
appropriately.

The sqlnrecv command processes the first Sqlnrecv_long bytes of columns of type
longbinary or longchar. Any remaining data in these columns must be processed by
sqllongrecv.

The sqlnrecv command is affected by the following VU environment variables:
CS_blocksize, Column_headers, Timeout_val, Timeout_scale, Log_level,
Record_level, Max_nrecv_saved, Server_connection, Timeout_act,
Table_boundaries, Sqlnrecv_long. It is also affected by Statement_id if
Statement_id is not zero. Otherwise sqlnrecv operates on the last sqlexec command.

Example

This example issues a select query. The sqlnrecv fetches and processes all rows returned
by the query. The same select query is issued, and the first twenty-five rows are fetched and
process. The next sqlnrecv fetches and processes the remaining rows held in the fetch
buffer.

#include <VU.h>
{
SERVER = sqlconnect("SERVER", "myuserid", "mypassword",
 "NTSQL_SERVER","sqlserver", "TDS_VERSION='4.2.0.0',"
 "APP_NAME='isql'");
set Server_connection = SERVER;

sqlexec ["sql_1001"] "use school";

sqlexec ["sql_1002"] "select * from Assignment";

m An integer that gives the number of rows requested or
ALL_ROWS, which receives all remaining rows. The
default is 1.

Syntax Element Description
Command Reference 291

sqlopen_cursor
/* Get all rows returned */
sqlnrecv ["sql_1003"] EXPECT_ROWS 50, ALL_ROWS;
sqlexec ["sql_1004"] "select * from Assignment";

/* Get first twenty-five rows returned */
sqlnrecv ["sql_1005"] EXPECT_ROWS 25, 25;

/* Get rest of rows returned */
sqlnrecv ["sql_1005"] EXPECT_ROWS 25, ALL_ROWS;

sqldisconnect(SERVER);
}

See Also

sqllongrecv

sqlopen_cursor

Opens the specified cursor.

Category

Send Emulation Command

Syntax

int sqlopen_cursor [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,]
 csr_spec [, values]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows that this
command affects. The default is -1, which indicates any
number of rows. If n is >=0, and the number of rows the
SQL command processes does not equal n, the response
is unexpected.
292 Chapter 6

sqlopen_cursor
Comments

The sqlopen_cursor command returns an integer cursor ID for future reference by other
sql*_cursor command and functions. The returned cursor ID is placed in the read-only
variable _cursor_id.

If csr_spec is a cursor ID and is not a valid declared cursor (with sqldeclare_cursor) for
the connection indicated by the value of Server_connection, then an error is reported to
both the error file and the log file.

csr_spec Choose one of the following:
■ A cursor ID returned by sqldeclare_cursor
■ csr_name, sqlstmt [,{ READ_ONLY_CURSOR
| UPDATE_CURSOR [col_ary] }]

csr_name is a string expression giving the name of the
cursor.

sqlstmt is either a previously prepared statement ID
or a SQL statement string expression associated with the
cursor. sqlopen_cursor implicitly declares a cursor
for that statement and then opens that cursor.

READ_ONLY_CURSOR indicates that the cursor is
read-only.

UPDATE_CURSOR indicates that the cursor is updatable.
If neither type of cursor is specified, the text of
sqlstmt determines whether the cursor is updatable.

col_ary is an array of strings whose values are the
updatable column names. The default is all columns are
updatable.

values A list of string values, integer values, or both to use for
opening the cursor. values could include type
specifiers.

Each value is the string representation of the
argument value. If name= indicates a scalar argument,
enclose the value portion of the string in single
quotation marks for clarity. These quotation marks are
not part of the argument value. If name= indicates an
array argument, the value portion of the string has the
form:

{ ’v1’, ’v2’, ... ’vN’’}

where ’v1’ through ’vN’ are string values for the
array elements. You can specify a NULL array element
as SQL_NULL, as in:

{ ’v1’, ’v2’, SQL_NULL, ’v4’ }

Syntax Element Description
Command Reference 293

sqlposition_cursor
The sqlopen_cursor command is affected by the VU environment variables Cursor_id,
Sqlexec_control_*, and Server_connection.

Example

This example opens a cursor, fetches the results, and closes the cursor. Note that the cursor
was not freed and deallocated. The cursor is reopened at a later point in the script without
redeclaring it.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuserid", "mypassword",
 "SYBASE_SERVER","sybase11", "TDS_VERSION='5.0.0.0',
APP_NAME='csr_disp'");
set Server_connection = SYBASE;
sqlexec ["csr_upd001"] "use pubs2";
push CS_blocksize = 5;
cursor_a_id = sqldeclare_cursor ["csr_upd002"] "cursor_a",
 "select * from titles" UPDATE_CURSOR {"total_sales","type"};
sqlopen_cursor cursor_a_id;
sqlfetch_cursor ["csr_upd003"] cursor_a_id FETCH_NEXT, 1;
sqlclose_cursor(cursor_a_id);
sqlexec ["csr_upd004"] "select * from authors";
sqlopen_cursor cursor_a_id;
sqlfetch_cursor ["csr_upd003"] cursor_a_id FETCH_NEXT, 1;
sqlclose_cursor(cursor_a_id);
sqlfree_cursor(cursor_a_id);
sqldisconnect(SYBASE);
pop CS_blocksize;
}

See Also

sqlclose_cursor, sqldeclare_cursor, sqlexec, sqlfree_cursor

sqlposition_cursor

Positions a cursor within a result set.

Category

Send Emulation Command
294 Chapter 6

sqlposition_cursor
Syntax

int sqlposition_cursor [cmd_id] [EXPECT_ERROR ary,]
[CURSOR_LOCK | CURSOR_UNLOCK ,] csr_id, rowtag

Comments

If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlposition_cursor command locks the inserted rows.
If CURSOR_UNLOCK is specified, sqlposition_cursor unlocks the inserted rows.

The sqlposition_cursor command is affected by the VU environment variable
Server_connection.

Example

This example sets the current row position to row 1 in the result set.

sqlopen_cursor "C1", "select lastname, firstname from employees";
sqlfetch_cursor stmt_2_1_id, 8;
sqlposition_cursor stmt_2_1_id, "1";

See Also

sqlcursor_rowtag

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

csr_id The integer cursor identifier of an opened cursor.

rowtag A string expression identifying the row to position the
cursor. The format of the string is SQL database
vendor-specific. A valid rowtag can be obtained by
calling sqlcursor_rowtag().
Command Reference 295

sqlprepare
sqlprepare

Prepares a SQL statement for execution.

Category

Send Emulation Command

Syntax

int sqlprepare [cmd_id] [EXPECT_ERROR ary,] stmt

Comments

The sqlprepare command prepares SQL statements. It does not return until the server has
parsed the SQL statement, or until Timeout_val elapses. Upon success, sqlprepare
returns the value assigned as the prepared statement ID, and sets _statement_id to the
value. Upon failure, sqlprepare sets _statement_id to a negative value, returns the value
of _statement_id, and sets _error and _error_text. The sqlprepare command
associates the statement ID with the connection indicated by Server_connection. Because
sqlprepare sets and returns the value of _statement_id, the statement ID is saved in an
integer variable, either by:

stmt_id = sqlprepare ...

or

sqlprepare ...

stmt_id = _statement_id;

The sqlprepare command delays submitting the SQL statement to the server for the
duration of a think time interval controlled by the think time environment variables.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

stmt A string expression containing a SQL statement.
296 Chapter 6

sqlrefresh_cursor
The read-only variable _fs_ts is set to the time the SQL statement is submitted to the server.
The read-only variables _ls_ts, _fr_ts, and _lr_ts are set to the time the server has
completed parsing the SQL statement.

The sqlprepare command is affected by the following VU environment variables: the think
time variables, Timeout_val, Timeout_scale, Log_level, Record_level,
Server_connection, Statement_id, and Suspend_check.

Example

This example shows a script that prepares a select statement and assigns the statement ID to
stmtid_1. The prepared statement stmtid_1 is executed with a runtime parameter of
:id='12345'. Any rows returned are fetched and processed. Statement stmtid_1 is freed
and deallocated. The same variable stmtid_1 is reused for another sqlprepare on a
different select statement. The prepared statement is executed and any rows returned are
fetched and processed. The statement ID stopped in stmtid_1 is freed and deallocated.

#include <VU.h>
{
t_calvin_PAC = sqlconnect("t_calvin_PAC", "oracle", "oracle",
 "t:calvin:PAC", "oracle7.3");

push Sqlexec_control_oracle = "STATIC_BIND";
set Server_connection = t_calvin_PAC;
stmtid_1 = sqlprepare ["oraclee016"] "select * from Student where id"
 "= :id";
sqlexec ["oraclee017"] stmtid_1,":id='12345'";
sqlnrecv ["oraclee018"] EXPECT_ROWS 1, ALL_ROWS;
sqlfree_statement(stmtid_1);
stmtid_1 = sqlprepare ["oraclee019"] "select * from Course";
sqlexec ["oraclee020"] stmtid_1;
sqlnrecv ["oraclee021"] EXPECT_ROWS 14, ALL_ROWS;
sqlfree_statement(stmtid_1);
sqldisconnect(t_calvin_PAC);
pop CS_blocksize;
}

See Also

sqlexec

sqlrefresh_cursor

Refreshes the result set of a cursor.
Command Reference 297

sqlrefresh_cursor
Category

Send Emulation Command

Syntax

int sqlrefresh_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n ,][CURSOR_LOCK | CURSOR_UNLOCK ,] csr_id, rowtag

Comments

If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlrefresh_cursor command locks the inserted rows. If
CURSOR_UNLOCK is specified, sqlrefresh_cursor unlocks the inserted rows.

The sqlrefresh_cursor command is affected by the VU environment variable
Server_connection.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is
{0}, which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.

n An integer that gives the number of rows this command
should affect. The default is –1, which indicates any
number of rows. If n is >= 0, and the number of rows the
SQL command processes does not equal n, then
response is unexpected.

csr_id The integer cursor identifier of an opened cursor.

rowtag A string expression identifying the row to position the
cursor. The format of the string is SQL database
vendor-specific. A valid rowtag can be obtained by
calling sqlcursor_rowtag().
298 Chapter 6

sqlrollback
Example

This example refreshes row 2 in the rowset. This is done, because the update on row 2
invalidated the row currently stored in the rowset.

stmt_2_1_id=sqlalloc_cursor();

set Cursor_id = stmt_2_1_id;
sqlopen_cursor "C1", "select lastname, firstname from employees";

sqlfetch_cursor stmt_2_1_id, 8;

sqlupdate_cursor stmt_2_1_id, "", "", "2", "'Buchanan'<varchar(21):I>",
"'Anne'<varchar(16):I>";

sqlrefresh_cursor stmt_2_1_id, "2";

sqlfree_cursor(stmt_2_1_id);

See Also

sqlcursor_rowtag

sqlrollback

Rolls back the current transaction.

Category

Emulation Function

Syntax

int sqlrollback()

Comments

The sqlrollback function is not supported for Sybase and Microsoft SQL server, and
produces a fatal runtime error. For Sybase and Microsoft SQL server databases, use the
following:

sqlexec "rollback transaction";

The sqlrollback function is affected by the VU environment variable
Server_connection.
Command Reference 299

sqlsetoption
Example

In this example, an update statement is sent to the server. The sqlrollback function restores
the affected rows of the updated table to their original value.

#include <VU.h>
{
t_calvin_PAC = sqlconnect("t_calvin_PAC", "oracle", "oracle",
 "t:calvin:PAC", "oracle7.3");

set Server_connection = t_calvin_PAC;

sqlexec ["oracle003"] "INSERT INTO voice_mail (msg_id, msg_len, msg)"
"VALUES (100, 5, Hello";

sqlrollback();

sqldisconnect(t_calvin_PAC);

pop CS_blocksize;
}

See Also

sqlcommit

sqlsetoption

Sets a SQL database server option.

Category

Emulation Function

Syntax

int sqlsetoption(optioncode [, optarg ...])

Syntax Element Description

optioncode The integer that indicates the server option you want to
set. The values for optioncode are vendor-specific.
The recognized values for optioncode and any
symbolic constants for optarg are defined in the file
VU.h. Comments accompany each optioncode,
giving the number and types of optarg’s expected. All
definitions for Sybase options are prefixed by SYB_; all
definitions for Oracle options are prefixed by ORA_.
300 Chapter 6

sqlsysteminfo
Comments

The sqlsetoption function returns 1 for success and 0 for failure. sqlsetoption sets
_error and _error_text, and prints an appropriate message to standard error when
_error is nonzero.

The sqlsetoption function sets the server option indicated by the integer optioncode to
the value given by optarg for the server indicated by the current value of
Server_connection.

The sqlsetoption function is affected by the VU environment variable
Server_connection.

Example

This example sets options for a Sybase server:

SYBASE = sqlconnect("", "sybase", "sybase", "", "sybase11");
set Server_connection = SYBASE;
/* assorted options */
sqlsetoption(SYB_OPT_ANSINULL, 1);
sqlsetoption(SYB_OPT_STR_RTRUNC, 1);
sqlsetoption(SYB_OPT_ARITHABORT, 0);
sqlsetoption(SYB_OPT_TRUNCIGNORE, 1);
sqlsetoption(SYB_OPT_ARITHIGNORE, 0);
sqlsetoption(SYB_OPT_ISOLATION, SYB_OPT_LEVEL3);
sqlsetoption(SYB_OPT_CHAINXACTS, 1);
sqlsetoption(SYB_OPT_CURCLOSEONXACT, 1);
sqlsetoption(SYB_OPT_QUOTED_IDENT, 1);

See Also

None.

sqlsysteminfo

Queries the server for various types of system information.

optarg The value that you want to supply to the server option.
All options require at least one optarg. The number and
type of optarg’s depends on the value of optioncode.
The number and type of optarg’s are checked at
runtime; mismatches result in a fatal runtime error.

Syntax Element Description
Command Reference 301

sqlsysteminfo
Category

Send Emulation Command

Syntax

sqlsysteminfo [cmd_id] [EXPECT_ERROR ary ,]
 [EXPECT_ROWS n ,] operation , arglist ...

Comments

The sqlsysteminfo command performs any of several specific system information requests
depending on the value of operation.

List of Operations

The valid values for operation and their purpose are shown in the following table:

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

operation A string expression specifying what type of information
to retrieve.

arglist A comma-seperated list of string or integer expressions.
The interpretation of each argument depends on the
value of operation.

Operation Purpose

Tables Retrieves a list of table names stored in a specific data
source's system catalog.

TablePrivileges Retrieves a list of table names stored and privileges
associated with them.

Columns Retrieves a list of column names associated with a
specified table.

ColumnPrivileges Retrieves a list of column names and privileges for a
specified table.

SpecialColumns Retrieves a unique row ID for a specified table.

Statistics Retrieves statistical information about a specified table
and its associated indexes.
302 Chapter 6

sqlsysteminfo
List of Operation Arguments

The valid values for arglist for each operation are shown in the following table. All
arguments are strings unless marked with a (*).

PrimaryKeys Retrieves the list of column names that make up the
primary key for a specified table.

ForeignKeys Retrieves information about the foreign keys defined for
a specified table and what primary keys in other tables
they access.

Procedures Retrieves a list of stored procedure names that have been
registered in a specified data source.

ProcedureColumns Retrieves a list of I/O parameters to a stored procedure.

Operation arglist

Tables catalogName, schemaName, tableName,
tableType

TablePrivileges catalogName, schemaName, tableName

Columns catalogName, schemaName, tableName,
columnName

ColumnPrivileges catalogName, schemaName, tableName,
columnName

SpecialColumns rowid(*), catalogName, schemaName,
tableName, columnName, scope(*),
nullable(*)

Statistics catalogName, schemaName, tableName,
indexType(*), accuracy(*)

PrimaryKeys catalogName, schemaName, tableName

ForeignKeys PKcatalogName, PKschemaName, PKtableName,
FKcatalogName, FKschemaName, FKtableName

(PK = primary key, FK = foreign key)

Procedures catalogName, schemaName, procedureName

ProcedureColumns catalogName, schemaName, procedureName
columnName

Operation Purpose
Command Reference 303

sqlupdate_cursor
If Cursor_id is non-zero, sqlsysteminfo will perform the operation using the cursor
specified by Cursor_id. Otherwise, sqlsysteminfo will allocate a new cursor (and set
_cursor_id) for the operation. sqlsysteminfo returns the cursor ID used for the
operation.

The sqlsysteminfo command is affected by the VU environment variables Cursor_id,
Server_connection, the think time variables, Timeout_val, Timeout_scale,
Timeout_act, Log_level, Record_level, and Suspend_check.

Example

x = sqlalloc_cursor();
set Cursor_id = x;

sqlsysteminfo ["info001"] "Tables", "catalog_1",
"schema_1", "Cities", "user";

sqlfetch_cursor x, ALL_ROWS;

sqlupdate_cursor

Updates the current row of the indicated cursor.

Category

Send Emulation Command

Syntax

int sqlupdate_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n,] [CURSOR_LOCK | CURSOR_UNLOCK]
csr_id, tbl_name, set_clause, rowtag [, values]

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error
numbers for this SQL command. The default value is {0},
which indicates that no error is acceptable. If a SQL
command sets _error to a value not in ary, the
response is unexpected.
304 Chapter 6

sqlupdate_cursor
Comments

If the cursor ID is not valid for the connection indicated by the value of Server_connection
or if the cursor is not open, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlupdate_cursor command locks the updated rows. If
CURSOR_UNLOCK is specified sqlupdate_cursor unlocks the updated rows.

The sqlupdate_cursor command is affected by the VU environment variable
Server_connection.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of
rows. If n is >=0, and the number of rows the SQL
command processes does not equal n, the response is
unexpected.

csr_id The integer cursor identifier of an opened cursor.

tbl_name A string expression containing the name of the table to
update.

set_clause A string expression containing the SET clause of that
SQL update statement.

rowtag A string expression identifying the row to update and
which is obtained by calling sqlcursor_rowtag().
The format of the string is vendor-specific. If rowtag is
"", no row identification is used and the current row is
updated.

values A list of string values, integer values, or both to use for
updating the current row of the cursor. values may
include type specifiers.

Each value is the string representation of the argument
value. If name= indicates a scalar argument, enclose the
value portion of the string in single quotation marks for
clarity. These quotation marks are not part of the
argument value. If name= indicates an array argument,
the value portion of the string has the form:

{ ’v1’, ’v2’, ... ’vN’}

where ’v1’ through ’vN’are string values for the
array elements. You can specify a NULL array as
SQL_NULL as in:

{ ’v1’, ’v2’, SQL_NULL, ’v4’ }

Syntax Element Description
Command Reference 305

sqtrans
Example

This example positions the cursor at the next row and updates that row:

sqlfetch_cursor ["hand009"] cursor_65537 FETCH_NEXT;
sqlupdate_cursor ["hand010"] cursor_65537, "Room",
 "UPDATE Room Set Roomnum = @sql0_num , Type = @slq1_type ,"
 "Capacity = @sql2_cap ","Roomnum=’2220 ’ Type=’OFF ’"
 "Capacity=’3’","1111", "off", 3;

See Also

sqlcursor_rowtag

sqtrans

Creates string expressions based on character translations of string expressions, squeezing out
any repeated characters.

Category

Library Routine

Syntax

string sqtrans (str, in_str, out_str)

Comments

The sqtrans routine returns a translated version of str by substituting or deleting selected
characters and then squeezing all strings of repeated characters in the returned string that
occur in out_str to single characters. Any character in str not found in in_str is copied
unmodified to the returned string. Characters found in in_str are substituted by the

Syntax Element Description

str The subject string expression.

in_str A string expression that specifies the set of characters
within str that is translated or deleted.

out_str A string expression that specifies the corresponding set
of characters to which the characters in in_str are
translated.
306 Chapter 6

srand
corresponding character in out_str (based on character position). If there is not a
corresponding character in out_str, the character is deleted (not copied to the returned
string).

A special convention is useful for padding out_str. If out_str has at least two characters
and ends in an asterisk (*), out_str is automatically padded with the character preceding
the * until the length of out_str is the same as the length of in_str. For example, if
out_str is "abc*" and the length of in_str is 10, out_str is converted to abcccccccc
before the translation begins. If this action is undesirable, the ordering of the characters in
in_str and out_str must be changed such that out_str does not end in *.

The trans routine also translates string expressions, except that it does not perform the
“squeeze” translation.

Example

This example removes each tab in the input string and replaces it with a space, and then
squeezes the repeated spaces so that the result has only one space around each word:

sqtrans("\t\tHello,\t\tworld\t\t" "\t", " ");

See Also

trans

srand

Reseeds the random number generator, essentially resetting it to a specific starting place.

Category

Library Routine

Syntax

int srand (seed)

Syntax Element Description

seed The integer expression used to seed the random number
generator. Its value must be non-negative.
Command Reference 307

start_time
Comments

The srand routine is similar to its corresponding C library routine but generates random
numbers with better “randomness.”

The rand, srand, uniform, and negexp routines enable the VU language to generate
random numbers. The behavior of these random number routines is affected by the way you
set the Seed and Seed Flags options in a TestManager suite. By default, the Seed generates the
same sequence of random numbers but sets unique seeds for each virtual tester, so that each
virtual tester has a different random number sequence. For more information about setting the
seed and seed flags in a suite, see Using Rational TestManager.

The srand routine uses the argument seed as a seed for a new sequence of random numbers
to be returned by subsequent calls to the rand routine. If srand is then called with the same
seed value, the sequence of random numbers is repeated. If rand is called before any calls are
made to srand, the same sequence is generated as when srand is first called with a seed
value of 1.

Example

This example seeds the random number generator with the current time and then prints the
first 10 random numbers:

srand(time());
for (i = 0; i < 10; i++)
printf("random number (%d): %d\n", i, rand());

See Also

negexp, rand, uniform

start_time

Marks the start of a block of actions to be timed.

Category

Emulation Command
308 Chapter 6

start_time
Syntax

int start_time [time];
int start_time [time_id];
int start_time [time_id] time;

Comments

The start_time command associates a starting timestamp with time_id for later reference
by stop_time, and returns an integer expression equal to the starting timestamp.

VU automatically timestamps the time that any send emulation command is sent to the SQL
database server as _fs_ts, and the time that the command returns as _ls_ts. VU also
timestamps the time of the first and last results received by any receive emulation command,
allowing six possible “response time” definition choices with TestManager reports. If these are
not sufficient, use start_time and stop_time when generating report output.

The start_time and stop_time commands can span multiple emulation commands in the
same script, such as the elapsed time for a logical transaction that consists of several
commands.

Example

This example shows how IDs are used with start_time to measure nested transactions. The
ID T2.x on the second start_time is not necessary, but it is recommended for clarity:

start_time ["T2"];/* beginning of entire T2 */
...
start_time ["T2.x"];/* beginning of subset of T2 */
...
stop_time ["T2.x"];/* ending of subset of T2 */
...
stop_time ["T2"];/* ending of entire T2 */

This example shows how IDs can be used with start_time to measure overlapping
transactions:

start_time ["T3"];/* beginning of T3 */
...
start_time ["T4"];/* beginning of T4 */

Syntax Element Description

time An integer expression specifying a timestamp that
overrides the current time.

time_id An optional ID, similar to a command ID, that has the
form [string_exp]. If time_id is not specified, the
starting timestamp is saved internally.
Command Reference 309

start_time
...
stop_time ["T3"];/* ending of transaction T3 */
...
stop_time ["T4"];/* ending of transaction T4 */

This example shows how transactions can easily share the same starting time. The example
would not work correctly if a previous start_time in the script had been given an ID T1,
T2, or T3, because stop_time selects prev_time as the starting time only if a matching ID is
not found:

start_time;/* beginning of T1, T2 & T3*/
...
stop_time ["T1"];/* ending of transaction T1 */
...
stop_time ["T2"];/* ending of transaction T2 */
...
stop_time ["T3"];/* ending of transaction T3 */

This alternative example removes the potential problem by providing separately labeled start
times for T1, T2, and T3, all using a common starting timestamp.

beg = start_time ["T1"];/* beginning of T1, T2 & T3*/

start_time ["T2"] beg;/* associate time with ID T2 */

start_time ["T3"] beg;/* associate this with ID T3 */

...

stop_time ["T1"];/* ending of transaction T1 */

...

stop_time ["T2"];/* ending of transaction T2 */

...

stop_time ["T3"];/* ending of transaction T3 */

Because the starting timestamps for T2 and T3 were user-defined, their associated
start_time commands could have been executed at any time before their respective
stop_time command. However, because the Trace report output displays all emulation
commands in order of execution, you execute the start_time as close to the actual starting
time as possible, as shown in the previous example.

With the creative use of start_time and stop_time, emulation commands, and the
read-only timestamp variables _fs_ts, _ls_ts, _fr_ts, and _lr_ts, you can measure a
complex transaction using any statement submitted to the server or data received from the
server as end points. Avoid measuring very short transactions; your operating system could
restrict timing resolution.
310 Chapter 6

stoc
This example splits a response into arbitrary units, each measured as separate transactions.

Note: The use of multiple sqlnrecv commands per sqlexec lets Performance reports
automatically calculate separate response times for individual parts of a response. However,
each sqlnrecv command’s response time must share the same starting time, namely that of
the common sqlexec command. This restriction does not apply to
start_time/stop_time.

sqlexec "select * from Student";

start_time ["p1_wait"] _lr_ts;

sqlnrecv 10/* fetch the first 10 rows */

/* wait for phase 1 ends and output for phase 1 begins*/

stop_time ["p1_wait"] _fr_ts;

start_time ["p1_out"] _fr_ts;

/* output for phase 1 ends and wait for phase 2 begins*/

stop_time ["p1_out"] _lr_ts;

start_time ["p2_wait"] _lr_ts;

sqlnrecv ALL_ROWS/* fetch rest of results */

/* wait for phase2 ends; output for phase2 begins*/

stop_time ["p2_wait"] _fr_ts;

start_time ["p2_out"] _fr_ts;

/* output for phase 2 ends: */

stop_time ["p2_out"] _lr_ts;

time_ids are truncated to 40 characters during command recording.

See Also

stop_time

stoc

Returns a selected character from a string argument.
Command Reference 311

stop_time
Category

Library Routine

Syntax

int stoc (str, n)

Comments

The stoc routine returns the nth character (as an integer) of the string str. If n is less than 1
or exceeds the length of str, stoc returns the integer 0.

The ctos routine is the converse of stoc; ctos converts characters to strings.

Example

This example returns the character ’n’:

stoc("manual", 3);

These examples both return the character ’\0’ (zero):

stoc("guide", 6);
stoc("guide", 0);

See Also

ctos

stop_time

Marks the end of a block of actions being timed.

Category

Emulation Command

Syntax Element Description

str The string expression to search.

n An integer expression used to specify the position of one
character to extract.
312 Chapter 6

strlen
Syntax

int stop_time time_id ;
int stop_time time_id time;

Comments

The stop_time command returns an integer expression equal to the ending timestamp.

The stop_time command associates an ending timestamp with the time_id, and records
both the starting time and ending time for use by TestManager reports.

One stop_time command is normally used with each start_time command. However,
multiple stop_time commands per start_time command are allowed.

Example

This example shows a simple use of start_time and stop_time:

start_time; /* beginning of T1 */
. . . /* T1 commands & responses */
stop_time ["T1"]; /* ending of transaction T1 */

See Also

start_time

strlen

Returns the length of a string expression.

Category

Library Routine

Syntax Element Description

time_id A required ID, similar to a command ID, that has the
form [string_exp]. If time_id has not been specified
in a previous start_time in the current script, the
most recent start time without a label is used instead.

time An integer expression specifying a timestamp that
overrides the current time. If time is not specified, the
current time is used.
Command Reference 313

strneg
Syntax

int strlen (str)

Comments

The strlen routine, equivalent to the C library routine of the same name, returns an integer
specifying the number of characters in its argument.

Example

In this example, the integer returned has the value 26; note that ’\n’ is a single character.

strlen("A string of 26 characters\n");

In this example, strlen returns the number of characters in the read-only variable
_response and assigns them to var.

var = strlen(_response);

See Also

strneg, strspan

strneg

Creates a string expression based on character set negation (complements).

Category

Library Routine

Syntax

string strneg (str)

Syntax Element Description

str The string expression whose length you want to obtain.

Syntax Element Description

str The string expression to negate.
314 Chapter 6

strrep
Comments

The strneg routine returns a string consisting of the negation of string str with respect to
the 255-character native character set on the computer on which TestManager is installed.
Every character, numerical values 1–255, not occurring in str is included once in the returned
string, sorted numerically. This routine is useful with several others, such as strspan and
strlen.

The strrep, strset, and strneg routines create string expressions based on character
repetition, character sets, or character negation.

Example

In this example, the integer value 8 is assigned to unique, equivalent to the number of unique
characters in polyethylene:

unique = 255 - strlen(strneg("polyethylene"));

In this example, strneg returns the string abcd, which lists each of the unique characters in
ddccbbaa in alphabetical order:

strneg(strneg("ddccbbaa"));

In this example, strspan returns 22 (the number of consecutive nondigit characters
beginning with the first character of the string "up to the first digit 0 - 9").

strspan("up to the first digit 0 - 9", strneg(strset(’0’,’9’)), 1);

In this example, strneg returns the string "".

strneg(strset(’\1’, ’\377’));

See Also

strlen, strset, strspan

strrep

Creates a string expression based on character repetition.

Category

Library Routine
Command Reference 315

strset
Syntax

string strrep (rep_char, len)

Comments

The strrep routine returns a string of length len consisting of len repetitions of the
character rep_char. If rep_char or len is less than 1, or if rep_char is greater than 255
(’\377’), strrep returns a string of length zero ("").

The strrep, strset, and strneg routines create string expressions based on character
repetition, character sets, or character negation.

Example

This example returns the string "aaaaa":

strrep(’a’, 5);

These examples both return the string "":

strrep(’a’, 0);
strrep(256, 5);

See Also

strset, strneg

strset

Creates a string expression based on user-supplied characters.

Category

Library Routine

Syntax Element Description

rep_char An integer expression specifying the character to repeat.

len An integer expression specifying the desired length.
316 Chapter 6

strspan
Syntax

string strset (beg_char, end_char)

Comments

The strset routine returns a string consisting of the set of characters between (and
including) the characters beg_char and end_char.

The strrep, strset, and strneg routines create string expressions based on character
repetition, character sets, or character negation.

Example

This example returns the string "abcdefghijklmnopqrstuvwxyz":

strset(’a’, ’z’);

This example returns the string "":

strset(’B’, ’A’);

This example returns the set of characters between temp1 and temp2, and stores the returned
string in var:

var = strset(temp1, temp2);

See Also

strrep, strneg

strspan

Returns the length of the initial segment within a string expression, beginning at the specified
position.

Syntax Element Description

beg_char An integer expression (interpreted as a character) that
indicates the first character in the expression. If
beg_char is less than 1 or exceeds the value of
end_char, strset returns a string of length zero ("").

end_char An integer expression (interpreted as a character) that
indicates the last character in the expression. If
end_char is greater than 255 (’\377’), its value is
silently changed to 255.
Command Reference 317

strspan
Category

Library Routine

Syntax

int strspan (str, char_set, pos)

Comments

The strspan routine returns distance information about the span length of a set of characters
within a string expression. Specifically, it returns the length of the initial segment within str,
beginning at the ordinal position pos, which consists entirely of characters from char_set. If
pos is less than 1 or exceeds the length of str, strspan returns an integer value of 0.

The cindex, lcindex, sindex, and lsindex routines return positional information about
either the first or last occurrence of a specified character or set of characters within a string
expression.

Example

This example returns the fifth field in the read-only variable _response and stores the value
in var:

var= strspan(_response ",", 5);

This example returns the integer value 2:

strspan("moo goo gai pan", "aeiou", 2);

This example returns the integer value 3:

strspan("aeiou", "eieio", 3);

This example returns the integer value 0:

strspan("had a farm", "eieio", 11);

In this example, strspan returns 22 (the number of consecutive nondigit characters
beginning with the first character of the string "up to the first digit 0 - 9").

strspan("up to the first digit 0 - 9", strneg(strset(’0’,’9’)), 1);

Syntax Element Description

str The string to search.

char_set A set of characters to search for within str.

pos An integer expression that specifies the position within
str where the search should begin.
318 Chapter 6

strstr
See Also

cindex, lcindex, sindex, lsindex, strstr

strstr

Searches for one string within another.

Category

Library Routine

Syntax

int strstr(str1, str2)

Comments

The strstr() function returns the ordinal position within str1 of the first occurrence of
str2. If str2 is not found in str1, strstr() returns 0. This function is equivalent to the
standard C library function of the same name.

Example

This example uses strstr() to find the base64–encoded login ID and password contained in
the given request text.

string auth_str, key, log_pass, request_text;
int start, end;

key = "Authorization:Basic";
start = strstr(request_text, key);
start += strlen(key);
auth_str = substr(request_text, start, 10000);
end = strstr(auth_str, "\r\n");
auth_str = substr(auth_str, 1, end – 1);

See Also

cindex, lcindex, lsindex, sindex, strspan

Syntax Element Description

str1 The string expression to search.

str2 The string expression to find.
Command Reference 319

subfield
subfield

Extracts substrings from string expressions based on field position.

Category

Library Routine

Syntax

string subfield (str, field_sep, n)

Comments

The subfield routine returns a string representing the nth field within the string str, where
fields are delimited within str by one or more consecutive separator characters contained in
the string field_sep. If n is less than 1, or if str contains fewer than n fields, or if n equals 1
and str begins with a separator character, subfield returns a string of zero length ("").

Example

This example returns the fifth field in the read-only variable _response and stores the value
in var:

var= subfield(_response ",", 5);

This example returns the string "b":

subfield("a,b,c,d", ",", 2);

This example returns the string "104":

subfield("104.13", ".", 1);

This example returns the string "9":

subfield("1,000.9", ",.", 3);

This example returns the string (""):

Syntax Element Description

str The string to search.

field_sep A string expression containing a set of field separator
characters.

n An integer expression indicating the desired field to
search within str.
320 Chapter 6

substr
subfield("xxyzxxx", "xyz", 1);

This example returns the string "3":

subfield(",1,2,3"", ",", 4);

See Also

substr

substr

Extracts substrings from string expressions based on character position.

Category

Library Routine

Syntax

string substr (str, pos, len)

Comments

The substr routine returns the substring within the string str, beginning at the ordinal
position pos with (maximum) length len. If either len or pos is less than 1 or if pos exceeds
the length of str, substr returns a string of zero length ("").

Example

This example returns the first five characters in the read-only variable _response and stores
the value in var:

var = substr(_response, 1, 5);

This example returns the string "knack":

Syntax Element Description

str The string to search.

pos An integer expression specifying the position of the first
character of the substring.

len An integer expression specifying the maximum length
of the returned substring.
Command Reference 321

sync_point
substr("knackwurst", 1, 5);

This example returns the string "wurst":

substr("knackwurst", 6, 100);

This example returns the string (""):

substr("knackwurst", 11, 1);

See Also

subfield

sync_point

Waits for virtual testers in a TestManager suite to synchronize.

Category

Statement

Syntax

sync_point sync_point_name;

Comments

A script pauses at a synchronization point until the release criteria specified by the suite have
been met. At that time, the script delays a random time specified in the suite, and then
resumes execution.

Typically, you will want to insert synchronization points into a TestManager suite rather than
inserting the sync_point command into a script.

If you insert a synchronization point through a suite, synchronization occurs at the beginning
of the script. If you insert a synchronization point into a script through the sync_point
command, synchronization occurs at that point in the script where you inserted the command.
You can insert the command anywhere in the script.

For more information about inserting synchronization points in a suite, see Using Rational
TestManager.

Syntax Element Description

sync_point_name A string constant that names the synchronization point.
The name can have from 1 to 40 characters.
322 Chapter 6

system
Example

In this example, a user makes a database connection and then synchronizes with other virtual
testers before proceeding.

t_calvin_PAC = sqlconnect("t_calvin_PAC", "scott", "tiger",
 "t:calvin:PAC", "oracle7.3");
set Server_connection = t_calvin_PAC;
sync_point "logon";
sqlexec ["school001"] "alter session set nls_language= 'AMERICAN' "
 "nls_te"rritory= 'AMERICA'";
sqlexec ["school002"] "select * from student";
sqlnrecv ["school003"] ALL_ROWS;

See Also

wait

system

Allows an escape mechanism to the UNIX shell from within a virtual tester script running on
a UNIX system.

Category

Library Routine

Syntax

system (cmd_str)

Comments

The system routine behaves like the C routine of the same name.

system causes cmd_str given to the UNIX shell /bin/sh(1) as input, as if the string had
been typed as a command at a terminal. system waits until the shell has completed execution
of cmd_str, and then returns the exit status of the shell (as an integer expression). cmd_str
must be accessible from the PATH environment variable and must have execute permissions
set. The standard input, standard output, and standard error files used by the shell correspond

Syntax Element Description

cmd_str A string expression specifying the UNIX command to
execute.
Command Reference 323

tempnam
to the same files used by VU. If standard output, or any other user-specified file opened for
writing, is accessed by both the virtual tester script and the invoked system command, all
previous buffered output by VU is written out with fflush before the call to system to
ensure correct file I/O operation.

The UNIX process environment available to cmd_str is identical to the environment of the
virtual tester, as described under getenv on page 182. Therefore, if cmd_str requires values of
certain predetermined environment variables to be different from those in the virtual testers
environment, they should be explicitly mentioned on the system command line, as shown in
the second example below.

Example

In this example, if the virtual tester’s ID has the value 1, then the current working directory is
output to the file dir1, and system returns an integer expression equal to the shell’s exit
status. After completion of system, the VU I/O library routines are used to access dir1, and
then used to incorporate the result of the pwd command in further processing.

system("pwd > dir" + itoa(_uid));

This example defines the environment variables HOME and MAIL to the script read_my_mail;
executes read_my_mail; and then returns its exit status.

system("HOME=/u/tester1 MAIL=/u/tester1/mail read_my_mail");

See Also

None.

tempnam

Generates unique temporary file names.

Category

Library Routine

Syntax

string tempnam (dir, prefix)
324 Chapter 6

tempnam
Comments

The unlink routine, which deletes files, and tempnam are often used together because
temporary files are removed as soon as their usefulness has expired.

Example

If the Windows NT or UNIX environment variable TMPDIR is undefined, tempnam returns a
temporary file name in the current (.) directory, such as ./AAAa02179. The actual file name of
the temporary file returned by tempnam will vary.

tempnam(".", "");

If the Windows NT or UNIX environment variable TMPDIR has the value /tmp, tempnam
returns a temporary file name in the /tmp directory, prefixed by mine, such as
/tmp/mineBAAa02179:

tempnam(".", "mine");

If the Windows NT or UNIX environment variable TMPDIR is undefined, and P_tmpdir is
defined in <stdio.h> to have the value /usr/tmp, tempnam returns a temporary file name
in the /usr/tmp directory, such as /usr/tmp/CAAa02179. After the file has been opened,
processed, and closed, unlink removes it:

string temp_filename;

temp_filename = tempnam("", "");
tmpfile_des = open(temp_filename, "w");

/* do file processing on the temporary file */

Syntax Element Description

dir A string expression that qualifies the pathname. The
directory part of the pathname is chosen as the first
accessible directory name from the following four
sources (in the order shown):
■ The Windows NT or UNIX environment variable
TMPDIR (the getenv library routine discusses the
UNIX process environment available to virtual tester
scripts)

■ dir

■ P_tmpdir as defined in <stdio.h>
■ /tmp

prefix A string expression that indicates the prefix added to the
temporary file name.
Command Reference 325

testcase
close(tmpfile_des);
unlink(temp_filename);

See Also

unlink, getenv

testcase

Checks a response for specific results, and reports and logs them.

Category

Emulation Command

Syntax

int testcase [cmd_id] condition [, log_string [, fail_string]]

Comments

The testcase command enables you to check a response for specific results, and to record or
log a pass or fail status based on conditions that you specify.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

condition An integer expression. If the value of condition is > 0,
the testcase command passes; otherwise, it fails.
testcase returns the value of condition.

log_string An optional string expression used when logging a
passed testcase (or a failed testcase if
fail_string is not specified). If log_string is not
specified, no log entry is generated for testcase.

fail_string An optional string expression used when logging a
failed testcase. If fail_string is not specified,
log_string is used for both pass and fail cases.
326 Chapter 6

time
Like emulate, the arguments (condition, log_string, and fail_string) are not
evaluated before calling the command. Instead, testcase operates much like the conditional
operator (?:). condition is evaluated, and based on the result of condition, either
log_string or fail_string is evaluated.

Another difference between testcase and most other emulation commands is that
testcase does not “think” before evaluating the condition.

The testcase command is affected by the following VU environment variables: Log_level
and Record_level.

Example

In this example, test001 is not logged, but test002 and test003 are logged, depending
on the value of Log_level.

testcase ["test001"] match ("XYZ", _response);
testcase ["test002"] match ("XYZ", _response), "XYZ test";
testcase ["test003"] match ("XYZ", _response), "Found XYZ",
"Could not find XYZ";

See Also

emulate

time

Returns the current time in integer format.

Category

Library Routine

Syntax

int time ()

Comments

The time routine returns an integer representing the current time in milliseconds. time uses
the same time source and format used by the emulation commands when timestamping input
and output. This time source is reset to zero during initialization.

A related routine, tod, returns the current time in string format.
Command Reference 327

tod
Example

This example prints the current time and then prints the time that has elapsed. The _lr_ts
read-only variable contains the timestamp of the last received data.

printf ("The time of day is %s.", tod());
printf ("%d milliseconds have elapsed since the \
last rows received from the server",
time() - _lr_ts);

See Also

tod

tod

Returns the current time in string format.

Category

Library Routine

Syntax

string tod ()

Comments

The tod routine returns a 24-character string representing the current time in time-of-day
format (such as “Fri Apr 11 15:29:02 1997”).

A related routine, time, returns the current time in integer format.

Example

This example prints the current time and then prints the time that has elapsed. The _lr_ts
read-only variable contains the timestamp of the last received data.

printf ("The time of day is %s.", tod());
printf ("%d milliseconds have elapsed since the \
last rows received from the server",
time() - _lr_ts);

See Also

time
328 Chapter 6

trans
trans

Substitutes or deletes selected characters in a string expression.

Category

Library Routine

Syntax

string trans (str, in_str, out_str)

Comments

The trans routine returns a translated version of str by substituting or deleting selected
characters. Any character in str not found in in_str is copied unmodified to the returned
string. Characters found in in_str are substituted by the corresponding character in
out_str (based on character position). If there is not a corresponding character in out_str,
the character is deleted (not copied to the returned string).

A special abbreviated convention is useful for padding out_str. If out_str has at least two
characters and ends in an asterisk (*), out_str is automatically padded with the character
preceding the asterisk until the length of out_str is the same as the length of in_str. For
example, if out_str is "abc*" and the length of in_str is 10, out_str is converted to
abcccccccc before the translation begins. If this action is undesirable, change the order of
the characters in in_str and out_str so that out_str does not end in an asterisk.

The sqtrans routine is the same as trans, except that it “squeezes” all strings of repeated
characters in the returned string that occur in out_str to single characters.

Example

This example takes the string rational and translates each letter into uppercase. The
strset routine specifies a range of letters.

trans("rational", strset(’a’,’z’), strset(’A’,’Z’));

Syntax Element Description

str The subject string expression.

in_str A string expression that specifies the set of characters
within str that should be translated or deleted.

out_str A string expression that specifies the set of characters to
which the characters in in_str are translated.
Command Reference 329

tux_allocbuf
This example produces the string "Spanish." When trans finds the letter g, it substitutes
a; when it finds the letter l it substitutes n, and so on:

trans("English", "glnE", "anpS");

This example produces the string "rmv my vwls." When trans finds the letter a, e, i, o, or
u, it deletes it (substitutes nothing).

trans("remove my vowels", "aeiou", "");

These two examples are equivalent and produce the string "$XXX.XX":

trans("$141.19", strset(’0’,’9’), "X*");
trans("$141.19", "0123456789", "XXXXXXXX");

This example, without the asterisk, produces the string "$.":

trans("$141.19", strset(’0’,’9’), "X");
trans("$141.19", "0123456789", "X");

This example removes each tab in the input string and replaces it with a space, so two spaces
surround each word:

trans("\t\tHello,\t\tworld\t\t" "\t", " ");

See Also

sqtrans

tux_allocbuf

Allocates a free buffer.

Category

Emulation Function

Syntax

int tux_allocbuf (buftype)

Syntax Element Description

buftype Must be one of the following buffer types:
BUFTYP_CLIENTID, BUFTYP_REVENT,
BUFTYP_SUBTYPE, BUFTYP_TPEVCTL,
BUFTYP_TPQCTL, BUFTYP_TPTRANID,
BUFTYP_TYPE.
330 Chapter 6

tux_allocbuf_typed
Comments

Buffers allocated by tux_allocbuf are freed with tux_freebuf.

If tux_allocbuf completes successfully, it returns a buffer handle. Otherwise, it returns a
value of NUM_BUF and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates a buffer of type TPQCTL (queue control) and sets an integer field.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_int(tpqctl, "flags", TPQCORRID | TPQFAILUREQ | TPQREPLYQ |

TPQGETBYCORRID | TPQMSGID);

See Also

tux_freebuf

tux_allocbuf_typed

Allocates a TUXEDO-typed buffer.

Category

Emulation Function

Syntax

int tux_allocbuf_typed (buftype, subtype, size)

Syntax Element Description

buftype Must be one of the following buffer types:
BUFTYP_CARRAY, BUFTYP_FML, BUFTYP_FML32,
BUFTYP_STRING, BUFTYP_TPINIT,
BUFTYP_X_OCTET, BUFTYP_VIEW, BUFTYP_VIEW32,
BUFTYP_X_C_TYPE, or BUFTYP_X_COMMON.

subtype A string expression that identifies the user-defined
structure contained within the VIEW, VIEW32,
X_C_TYPE, or X_COMMON typed buffer. You must have
defined the UNIX environment variables VIEWFILES
and VIEWDIR. Otherwise, subtype is an empty string.

size The requested buffer size, in bytes.
Command Reference 331

tux_bq
Comments

If tux_allocbuf_typed completes successfully, it returns a buffer handle. Otherwise, it
returns a value of NULL_BUF and sets _error, _error_type, and _error_text to indicate
the error condition.

This function is equivalent to the function tux_tpalloc. When you record TUXEDO traffic,
the resulting script contains tux_tpalloc, not tux_allocbuf_typed.

Example

This example allocates string-typed buffer of 30 bytes and then sets the string "Jake Brake" to
the buffer.

name = tux_allocbuf_typed(BUFTYP_STRING, "", 30);
tux_setbuf_string(name, "", "Jake Brake");

See Also

tux_tpalloc, tux_freebuf

tux_bq

Queues a UNIX command for background processing.

Category

Send Emulation Command

Syntax

int tux_bq [cmd_id] cmd

Comments

If tux_bq completes successfully, it returns a value of 1. Otherwise, it returns a value of 0 and
sets _error, _error_type, and _error_text to indicate the error condition.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cmd A string expression that contains the UNIX command
executed.
332 Chapter 6

tux_freebuf
tux_bq is affected by the think time, Log_level, and Record_level VU environment
variables.

Example

This example queues a UNIX command for background printing of a file.

tux_bq ["tbq_001"] "lp -d hp5mp /home/tuxedo/tux.env";

See Also

None.

tux_freebuf

Deallocates a free buffer.

Category

Emulation Function

Syntax

int tux_freebuf (bufhnd)

Comments

If tux_freebuf completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

Example

This example deallocates the buffer tpqctl.

/* tux_allocbuf ... */

tux_freebuf(tpqctl);

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.
Command Reference 333

tux_getbuf_ascii
See Also

tux_allocbuf, tux_allocbuf_typed

tux_getbuf_ascii

Gets a free buffer or buffer member and converts it to a string.

Category

Emulation Function

Syntax

string tux_getbuf_ascii (bufhnd, mbrspec)

Comments

If tux_getbuf_ascii completes successfully, it returns a string representation of the buffer
or buffer member. Nonprintable characters are converted to hex or backslash format. (See How
a VU Script Represents Unprintable Data on page 55.) Otherwise, tux_getbuf_ascii returns
an empty string and sets _error, _error_type, and _error_text to indicate the error
condition.

You should check _error explicitly after every call to tux_getbuf_ascii.

Example

This example gets the buffer odata and returns an ASCII representation.

idata = tux_tpalloc("CARRAY", "", 16);
tux_setbuf_ascii(idata, "", "@S8`b42fff48ba`@R`13e2228114`E");
odata = tux_tpalloc("CARRAY", "", 8);
tux_tpcall ["k1_cnx020"] "math::mul", idata, odata, (TPSIGRSTRT);

{ string asciified_result; }
asciified_result = tux_getbuf_ascii(odata, "");

if (_error)
... /* asciified_result is invalid */

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.
334 Chapter 6

tux_getbuf_int
See Also

None.

tux_getbuf_int

Gets a free buffer or buffer member and converts it to a VU integer.

Category

Emulation Function

Syntax

int tux_getbuf_int (bufhnd, mbrspec)

Comments

If tux_getbuf_int completes successfully, it returns an integer representation of the buffer
or buffer member. Otherwise, it returns a 0 and sets _error, _error_type, and
_error_text to indicate the error condition.

You must check _error explicitly after every call to tux_getbuf_int.

Example

This example gets the buffer result_buf and returns an integer representation.

args_buf = tux_tpalloc("FML32", "", 0);
tux_setbuf_int(args_buf, ".FLD_LONG:0", 123);
tux_setbuf_int(args_buf, ".FLD_LONG:1", 456);
tux_tpcall "Add", args_buf, result_buf, TPNOFLAGS;

result = tux_getbuf_int(result_buf, ".FLD_LONG:2");
if (_error)

... /* result is invalid */

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.
Command Reference 335

tux_getbuf_string
See Also

tux_setbuf_int

tux_getbuf_string

Gets a free buffer or buffer member and converts it to a string without converting
nonprintable characters.

Category

Emulation Function

Syntax

string tux_getbuf_string (bufhnd, mbrspec)

Comments

If tux_getbuf_string completes successfully, it returns a string representation of the
buffer or buffer member. Otherwise, it returns an empty string and sets _error,
_error_type, and _error_text to indicate the error condition.

You must check _error explicitly after every call to tux_getbuf_string.

Example

This example gets the buffer result_buf and returns a string representation.

args_buf = tux_tpalloc("FML32", "", 0);
tux_setbuf_int(args_buf, ".FLD_LONG:0", 123);
tux_setbuf_int(args_buf, ".FLD_LONG:1", 456);
tux_tpcall "Add", args_buf, result_buf, TPNOFLAGS;

{ string result_str; }
result_str = tux_getbuf_string(result_buf, ".FLD_LONG:2");
if (_error)

... /* result_str is invalid */

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.
336 Chapter 6

tux_reallocbuf
See Also

tux_setbuf_string

tux_reallocbuf

Resizes a free buffer.

Category

Emulation Function

Syntax

int tux_reallocbuf (bufhnd, size)

Comments

If tux_reallocbuf completes successfully, it returns a buffer handle. Otherwise, it returns a
value of NULL_BUF and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates the string-type buffer msgbuf, checks the length of a message string,
and then resizes msgbuf to the length of msglen.

msgbuf = tux_allocbuf_typed(BUFTYP_STRING, "", 0);

/* ... */

msglen = strlen(message) + 1;
if (tux_sizeofbuf(msgbuf) < msglen)

msgbuf = tux_reallocbuf(msgbuf, msglen);

See Also

tux_allocbuf

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

size The requested buffer size, in bytes.
Command Reference 337

tux_setbuf_ascii
tux_setbuf_ascii

Writes a string value into a buffer or buffer member.

Category

Emulation Function

Syntax

int tux_setbuf_ascii (bufhnd, mbrspec, ascval)

Comments

If tux_setbuf_ascii completes successfully, it returns a value of 1. Otherwise it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates the buffer idata and then writes a string value to the buffer.

idata = tux_tpalloc("CARRAY", "", 16);
tux_setbuf_ascii(idata, "", "@S8`b42fff48ba`@R`13e2228114`E");

See Also

tux_getbuf_ascii

tux_setbuf_int

Sets a free buffer or buffer member with a VU integer value.

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.

ascval A string expression with nonprintable characters in
hexadecimal format or backslash format. (See How a VU
Script Represents Unprintable Data on page 55.)
338 Chapter 6

tux_setbuf_string
Category

Emulation Function

Syntax

int tux_setbuf_int (bufhnd, mbrspec, intval)

Comments

If tux_setbuf_int completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates the buffer data and then writes an integer value to the buffer.

data = tux_tpalloc("FML", "", 0);
tux_setbuf_int(data, "XA_TYPE", 5);

See Also

tux_getbuf_int

tux_setbuf_string

Sets a free buffer or buffer member with a VU string value, without converting nonprintable
characters.

Category

Emulation Function

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.

ascval An integer expression.
Command Reference 339

tux_sizeofbuf
Syntax

int tux_setbuf_string (bufhnd, mbrspec, strval)

Comments

If tux_setbuf_string completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates the buffer tpqctl and then writes a string value to the buffer.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_string(tpqctl, "corrid", "req302");

See Also

tux_getbuf_string

tux_sizeofbuf

Returns the size of a buffer.

Category

Emulation Function

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.

strval A string expression. Do not convert nonprintable
characters into hexadecimal or backslash format. If you
do, they are loaded into bufhnd unmodified.
340 Chapter 6

tux_tpabort
Syntax

int tux_sizeofbuf (bufhnd)

Comments

If tux_sizeofbuf completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates the sting-type buffer msgbuf, checks the length of a message string,
and then resizes msgbuf if the size of msglen is greater than msgbuf.

msgbuf = tux_allocbuf_typed(BUFTYP_STRING, "", 0);

/* ... */

msglen = strlen(message) + 1;
if (tux_sizeofbuf(msgbuf) < msglen)

msgbuf = tux_reallocbuf(msgbuf, msglen);

See Also

None.

tux_tpabort

Aborts the current transaction.

Category

Send Emulation Command

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.
Command Reference 341

tux_tpacall
Syntax

int tux_tpabort [cmd_id] flags

Comments

If tux_tpabort completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpabort command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example aborts a TUXEDO transaction in progress:

/* begin transaction, 180-sec timeout */
tux_tpbegin (180, TPNOFLAGS);

/* abort current transaction */
tux_tpabort ["tabo013"] TPNOFLAGS;

See Also

tux_tpbegin

tux_tpacall

Sends a service request.

Category

Send Emulation Command

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

flags An integer expression whose value must be
TPNOFLAGS. The values of flags are defined in the
TUXEDO header file.
342 Chapter 6

tux_tpacall
Syntax

int tux_tpacall [cmd_id] svc, data, flags

Comments

If tux_tpacall completes successfully, it returns a value of 1. Otherwise it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpacall command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example allocates the buffer data, populates the buffer with transaction information,
and then sends a service request to the OPEN_ACCT service.

data = tux_tpalloc("FML", "", 0);
tux_setbuf_int(data, "XA_TYPE", 5);
tux_setbuf_int(data, "8194", 41162);
tux_setbuf_int(data, "8195", 0);
tux_setbuf_int(data, "BRANCH_ID", 1);
tux_setbuf_ascii(data, "ACCT_TYPE", "C");
tux_setbuf_ascii(data, "MID_INIT", "Q");
tux_setbuf_string(data, "40964", "F11");
tux_setbuf_string(data, "40966", "OPEN");
tux_setbuf_string(data, "40968", "OPEN_ACCT");
tux_setbuf_string(data, "PHONE", "919-870-8800");
tux_setbuf_string(data, "ADDRESS", "100 Happy Trail");
tux_setbuf_string(data, "SSN", "123-45-6789");
tux_setbuf_string(data, "LAST_NAME", "John");
tux_setbuf_string(data, "FIRST_NAME", "Customer");
tux_setbuf_string(data, "SAMOUNT", "1000");
tux_setbuf_ascii(data, "49170",

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

svc A string expression that identifies the service.

data A string expression that must reference a buffer
allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOREPLY,
TPNOTIME, TPNOTRAN, or TPSIGRSTRT (ignored).
The values of flags are defined in the TUXEDO
header file.
Command Reference 343

tux_tpalloc
 "`a071910800000000000091e8a072910800000000000091e8`@s`91080000000000009"
 "1e8a06f910800000000000091e8a06d910800000000000091e8a06c910800000000000"
 "091e8` h`910800000000000091e8a0ca910800000000000091e8`"
);
call_1 = tux_tpacall ["bankap002"] "OPEN_ACCT", data, (TPNOBLOCK |
TPSIGRSTRT);
call_1_fs_ts = _fs_ts;
tux_tpfree(data);

See Also

tux_tpgetrply

tux_tpalloc

Allocates TUXEDO-typed buffers.

Category

Emulation Function

Syntax

int tux_tpalloc (type, subtype, size)

Comments

If tux_tpalloc completes successfully, it returns a buffer handle. Otherwise, it returns a
value of NULL_BUF and sets _error, _error_type, and _error_text to indicate the error
condition.

Syntax Element Description

type A string expression that evaluates to CARRAY, FML,
FML32, STRING, TPINIT, X_OCTET, VIEW,
VIEW32, X_C_TYPE, or X_COMMON.

subtype A string expression that identifies the user-defined
structure contained within the VIEW, VIEW32,
X_C_TYPE, or X_COMMON typed buffer. You must
have defined the UNIX environment variables
VIEWFILES and VIEWDIR. Otherwise, subtype is an
empty string.

size The requested buffer size, in bytes.
344 Chapter 6

tux_tpbegin
The tux_tpalloc function is equivalent to the function tux_tpalloc, except that it is an
ATMI call.

Example

This example allocates a buffer of 9 bytes that evaluates to STRING.

data = tux_tpalloc("STRING", "", 9);
tux_tpgetrply ["tget006"] call_6, data, TPNOFLAGS;

See Also

tux_tpfree

tux_tpbegin

Begins a transaction.

Category

Emulation Function

Syntax

int tux_tpbegin (timeout, flags)

Comments

If tux_tpbegin completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

Example

This example begins a TUXEDO transaction with a 60-second timeout.

tux_tpbegin(60, TPNOFLAGS);

Syntax Element Description

timeout The transaction timeout threshold, in seconds.

flags An integer expression whose value must be
TPNOFLAGS. The values of flags are defined in the
TUXEDO header file.
Command Reference 345

tux_tpbroadcast
See Also

tux_tpabort, tux_tpcommit

tux_tpbroadcast

Broadcasts notification by name.

Category

Send Emulation Command

Syntax

int tux_tpbroadcast [cmd_id] lmid, usrname, cltname,
data, flags

Comments

If tux_tpbroadcast completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpbroadcast command is affected by the think time, Log_level, and
Record_level VU environment variables.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

lmid A string expression that evaluates to a logical computer
ID.

usrname A string expression that selects the user name.

cltname A string expression that selects the target client set.

data Typed buffer data that must reference a buffer allocated
by tux_tpalloc()

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or
TPSIGRSTRT (ignored). The values of flags are
defined in the TUXEDO header file.
346 Chapter 6

tux_tpcall
Example

This example allocated the buffer data, sets the string “Wake Up” in the buffer, and then
broadcasts the string to Jack on SERVER3.

data = tux_tpalloc("STRING", "", 0);
tux_setbuf_string(data, "", "Wake Up!");
tux_tpbroadcast ["tbro002"] "SERVER3", "Jack", "PCAE05", data,

TPNOFLAGS;
tux_tpfree(data);

See Also

None.

tux_tpcall

Sends a service request and awaits its reply.

Category

Send Emulation Command

Syntax

int tux_tpcall [cmd_id] svc, idata, odata, flags

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

svc A string expression that identifies the service.

idata A buffer handle that must reference a buffer allocated by
tux_tpalloc().

odata A buffer handle that must reference a buffer allocated by
tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE,
TPNOTIME, TPNOTRAN, or TPSIGRSTRT (ignored).
The values of flags are defined in the TUXEDO
header file.
Command Reference 347

tux_tpcancel
Comments

If tux_tpcall completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpcall command updates _tux_tpurcode.

The tux_tpcall command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example allocates the buffers idata and odata, and then sends a service request to the
"math::exp" service.

idata = tux_tpalloc("CARRAY", "", 16);
tux_setbuf_ascii(idata, "", "@S8`b42fff48ba`@R`13e2228114`E");
odata = tux_tpalloc("CARRAY", "", 8);
set Think_avg = 12;
tux_tpcall ["k1_cnx020"] "math::exp", idata, odata, (TPSIGRSTRT);
tux_tpfree(idata);
tux_tpfree(odata);

See Also

None.

tux_tpcancel

Cancels a call descriptor for an outstanding reply.

Category

Emulation Function

Syntax

int tux_tpcancel (cd)

Syntax Element Description

cd The canceled call descriptor.
348 Chapter 6

tux_tpchkauth
Comments

If tux_tpcancel completes successfully, it returns a value of 1. Otherwise, it returns a value
of 0 and sets _error, _error_type, and _error_text to indicate the error condition.

Example

This example cancels the tux_tpacall represented by call_23.

call_23 = tux_tpacall "EDI-SENDJOB", jobdesc, TPNOFLAGS;

/* ... */

tux_tpcancel(call_23);

See Also

tux_tpacall

tux_tpchkauth

Checks whether authentication is required to join an application.

Category

Emulation Function

Syntax

int tux_tpchkauth ()

Comments

If tux_tpchkauth completes successfully, it returns a valid authorization level. Otherwise, it
returns a value of -1 and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example checks if authentication is required, and if so, prints a message indicating the
script requires authentication.

if (tux_tpchkauth() != TPNOAUTH)
print "Script requires authentication info!";
Command Reference 349

tux_tpcommit
See Also

None.

tux_tpcommit

Commits the current transaction.

Category

Send Emulation Command

Syntax

int tux_tpcommit [cmd_id] flags

Comments

If tux_tpcommit completes successfully, it returns a value of 1. Otherwise, it returns a value
of 0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpcommit command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example

This example commits the current transaction.

/* tux_tpbegin ... */

tux_tpcommit ["tcom007"] TPNOFLAGS;

See Also

tux_tpbegin

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

flags An integer expression whose value must be
TPNOFLAGS. The values of flags are defined in the
TUXEDO header file.
350 Chapter 6

tux_tpconnect
tux_tpconnect

Establishes a conversational service connection.

Category

Send Emulation Command

Syntax

int tux_tpconnect [cmd_id] svc, data, flags

Comments

If tux_tpconnect completes successfully, it returns a connection descriptor. Otherwise, it
returns a value of -1 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpconnect command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example

This example establishes a conversational connection with the service AUDITC.

conn_1 = tux_tpconnect ["demo1.002"] "AUDITC", NULL_BUF, TPSENDONLY;

See Also

tux_tpdiscon

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

svc A string expression that identifies the service.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, TPNOTRAN,
TPRECVONLY, TPSENDONLY, or TPSIGRSTRT (ignored).
The values of flags are defined in the TUXEDO header
file.
Command Reference 351

tux_tpdequeue
tux_tpdequeue

Removes a message from a queue.

Category

Send Emulation Command

Syntax

int tux_tpdequeue [cmd_id] qspace, qname, ctl, data, flags

Comments

If tux_tpdequeue completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpdequeue command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example

This example removes the message represented by the buffer tpqctl from the queue space
TMQUEUE.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_int(tpqctl, "flags", TPQCORRID | TPQFAILUREQ | TPQREPLYQ |

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

qspace A string expression that identifies the queue space.

qname A string expression that identifies the queue.

ctl Must reference a buffer of type BUFTYP_TPQCTL or
BUFTYP_NULL.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE,
TPNOTIME, TPNOTRAN, or TPSIGRSTRT (ignored).
The values of flags are defined in the TUXEDO
header file.
352 Chapter 6

tux_tpdiscon
TPQGETBYCORRID | TPQMSGID);
tux_setbuf_string(tpqctl, "corrid", "req302");
odata = tux_tpalloc("STRING", "", 9);
tux_tpdequeue ["yang003"] "TMQUEUE", "APP_REPLY", tpqctl, odata,

TPNOFLAGS;
tux_freebuf(tpqctl);
tux_tpfree(odata);

See Also

tux_tpenqueue

tux_tpdiscon

Category

Send Emulation Command

Description

Takes down a conversational service connection.

Syntax

int tux_tpdiscon [cmd_id] cd

Comments

If tux_tpdiscon completes successfully, it returns a value of 1. Otherwise, it returns a value
of 0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpdiscon command is affected by the VU environment variables think time,
Log_level, and Record_level.

Example

This example takes down the service connection conn_1.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor indicating the connection taken down.
It must be returned by tux_tpconnect().
Command Reference 353

tux_tpenqueue
/* tux_tpconnect ... */

tux_tpdiscon ["demo1.002"] conn_1;

See Also

tux_tpconnect

tux_tpenqueue

Category

Send Emulation Command

Description

Queues a message.

Syntax

int tux_tpenqueue [cmd_id] qspace, qname, ctl, data, flags

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

qspace A string expression that identifies the queue space.

qname A string expression that identifies the queue.

ctl Must reference a buffer of type BUFTYP_TPQCTL or
BUFTYP_NULL.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE,
TPNOTIME, TPNOTRAN, or TPSIGRSTRT (ignored).
The values of flags are defined in the TUXEDO header
file.
354 Chapter 6

tux_tpfree
Comments

If tux_tpenqueue completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpenqueue command is affected by the VU environment variables think time,
Log_level, and Record_level.

Example

This example queues the message represented by tpqctl (queue control) to the queue space
TMQUEUE.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_int(tpqctl, "flags", TPQCORRID | TPQFAILUREQ | TPQREPLYQ |

TPQMSGID);
tux_setbuf_string(tpqctl, "corrid", "req302");
tux_setbuf_string(tpqctl, "failurequeue", "APP_FAILURE");
tux_setbuf_string(tpqctl, "replyqueue", "APP_REPLY");
data = tux_tpalloc("STRING", "", 8);
tux_setbuf_string(data, "", "NC WAKE 302.82");
tux_tpenqueue ["yin002"] "TMQUEUE", "CalcSalesTax", tpqctl, data,

TPNOFLAGS;
tux_freebuf(tpqctl);
tux_tpfree(data);

See Also

tux_tpdequeue

tux_tpfree

Category

Emulation Function

Description

Frees a typed buffer.
Command Reference 355

tux_tpgetrply
Syntax

int tux_tpfree (ptr)

Comments

If tux_freebuf completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

Example

This example frees the buffer allocated as astring.

astring = tux_tpalloc("STRING", "", 0);

 /* ... */

tux_tpfree(astring);

See Also

tux_tpalloc

tux_tpgetrply

Category

Send Emulation Command

Description

Gets a reply from a previous request.

Syntax Element Description

ptr A buffer handle allocated with tux_tpalloc.
356 Chapter 6

tux_tpgetrply
Syntax

int tux_tpgetrply [cmd_id] cd, data, flags

Comments

If tux_tpgetrply completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpgetrply command updates _tux_tpurcode.

Unlike the other emulation commands, the order of the tux_tpgetrply emulation
commands in your VU script could differ from the TUXEDO tpgetrply calls in your
original client program. This is due to limitations of TUXEDO workstation protocol decoding.
Although the order of the commands are different, they are scripted in a manner consistent
with how tpgetrply is used by the original client program based on information recorded
during the capture.

In addition, a scripted tux_tpgetrply blocks waiting for specific asynchronous request
responses — for example, specific call descriptors — regardless of how asynchronous
responses were gathered by the original client program. It is possible that reported response
times for asynchronous calls are skewed when more than one is outstanding.

The tux_tpgetrply command is affected by the VU environment variables think time,
Log_level, and Record_level.

Example

This example gets the reply from a previous tux_tpacall represented by call_6.

/* tux_tpacall ... */

data = tux_tpalloc("STRING", "", 9);

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor returned by tux_tpacall().

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE,
TPNOTIME, or TPSIGRSTRT (ignored). The values of
flags are defined in the TUXEDO header file.
Command Reference 357

tux_tpinit
tux_tpgetrply ["tget006"] call_6, data, TPNOFLAGS;
start_time ["t15003"] call_6_fs_ts;
stop_time ["t15003"] _lr_ts;
tux_tpfree(data);

See Also

tux_tpacall

tux_tpinit

Category

Send Emulation Command

Description

Joins an application.

Syntax

int tux_tpinit [cmd_id] tpinfo

Comments

In order for tux_tpinit to operate correctly, a TUXEDO-defined system environment
variable named WSNADDR must be present. This variable is used by the TUXEDO client
library to determine which TUXEDO Workstation Listener (WSL) to connect to.

The WSLHOST and WSLPORT system environment variables are optional. If they are defined,
they will be used by tux_tpinit to generate a valid WSNADDR. If they are not defined,
then tux_tpinit uses the value of WSNADDR. If WSNADDR is not defined, then
tux_tpinit fails, reporting a playback error message indicating that none of the three
variables were set.

If WSLHOST and WSLPORT are set, the resulting WSNADDR value overrides any previous
WSNADDR value.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

tpinfo Must reference a buffer of type TPINIT allocated by
tux_tpalloc().
358 Chapter 6

tux_tpnotify
WSLHOST and WSLPORT can be set in the script, which is the default recorded script action,
or they may be set in a TestManager suite. If they are set in a script and a suite, the script
values override the suite values.

If tux_tpinit completes successfully, it returns a value of 1. Otherwise it returns a value of 0
and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpinit command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example connects to the TUXEDO Workstation Listener in the environment variables
WSLHOST and WSLPORT using the data set in the buffer tpinfo.

putenv("WSLHOST=hp715.nc.rational.com");
putenv("WSLPORT=36001");
tpinfo = tux_tpalloc("TPINIT", "", TPINITNEED(10));
tux_setbuf_string(tpinfo, "usrname", "dhinson");
tux_setbuf_string(tpinfo, "cltname", "rocinante");
tux_setbuf_int(tpinfo, "flags", TPNOFLAGS);
tux_setbuf_int(tpinfo, "datalen", 10);
tux_setbuf_ascii(tpinfo, "data", "GL`0201`AL`0102`NP");
tux_tpinit ["cx1001"] tpinfo;
tux_tpfree(tpinfo);

/* or */

tux_tpinit ["cx1001"] NULL_BUF;

See Also

tux_tpterm

tux_tpnotify

Category

Send Emulation Command

Description

Sends notification by client identifier.
Command Reference 359

tux_tppost
Syntax

int tux_tpnotify [cmd_id] clientid, data, flags

Comments

If tux_tpnotify completes successfully, it returns a value of 1. Otherwise, it returns a value
of 0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpnotify command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example

This example sends the notification represented in the clientid_ typed-buffer.

clientid_ = tux_allocbuf(BUFTYP_CLIENTID);
tux_setbuf_ascii(clientid_, "", "`3383`F&`000000000000001c00000000`");
set Think_avg = 1;
tux_tpnotify ["tnot006"] clientid_, NULL_BUF, TPNOFLAGS;
tux_freebuf(clientid_);

See Also

None.

tux_tppost

Posts an event.

Category

Send Emulation Command

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

clientid Must reference a buffer of type BUFTYP_CLIENTID.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or
TPSIGRSTRT (ignored). The values of flags are
defined in the TUXEDO header file.
360 Chapter 6

tux_tprealloc
Syntax

int tux_tppost [cmd_id] eventname, data, flags

Comments

If tux_tppost completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tppost command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example posts "Switch Power Failure" to an event previously subscribed to by
tux_tpsubscribe.

data = tux_tpalloc("STRING", "", 7);
tux_setbuf_string(data, "", "03-019");
tux_tppost ["swmon023"] "Switch_Power_Failure", data, TPNOFLAGS;
tux_tpfree(data);

See Also

tux_tpsubscribe, tux_tpunsubscribe

tux_tprealloc

Changes the size of a typed buffer.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

eventname A string expression that identifies the name of the event.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOREPLY,
TPNOTIME, TPNOTRAN, or TPSIGRSTRT (ignored).
The values of flags are defined in the TUXEDO
header file.
Command Reference 361

tux_tprecv
Category

Emulation Function

Syntax

int tux_tprealloc (ptr, size)

Comments

If tux_tprealloc completes successfully, it returns a buffer handle. Otherwise, it returns a
value of NULL_BUF and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example allocates the string-type buffer idata, checks the length of a message string,
and then resizes idata to the length of msglen.

idata = tux_tpalloc("STRING", "", 0);

/* ... */

msglen = strlen(message) + 1;
if (tux_tptypes(idata, NULL_BUF, NULL_BUF) < msglen)

idata = tux_tprealloc(idata, msglen);

See Also

tux_tpalloc

tux_tprecv

Receives a message in a conversational service connection.

Category

Send Emulation Command

Syntax Element Description

ptr Must be a buffer handle allocated by tux_tpalloc().

size The requested buffer size, in bytes.
362 Chapter 6

tux_tprecv
Syntax

int tux_tprecv [cmd_id] cd, data, flags, revent

Comments

If tux_tprecv completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tprecv command updates _tux_tpurcode.

The tux_tprecv command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example receives a message from the previously established conversational service
connection conn_1.

revent_ = tux_allocbuf(BUFTYP_REVENT);
data = tux_tpalloc("STRING", "", 47);
set Think_avg = 1;
tux_tprecv ["bankap004"] conn_1, data, (TPNOCHANGE), revent_;
tux_freebuf(revent_);
tux_tpfree(data);

See Also

tux_tpconnect

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor indicating the conversation in which to
receive data. It must be returned by
tux_tpconnect().

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE,
TPNOTIME, or TPSIGRSTRT (ignored). The values of
flags are defined in the TUXEDO header file.

revent Must reference a buffer of type BUFTYP_REVENT.
Command Reference 363

tux_tpresume
tux_tpresume

Resumes a global transaction.

Category

Send Emulation Command

Syntax

int tux_tpresume [cmd_id] tranid, flags

Comments

If tux_tpresume completes successfully, it returns a value of 1. Otherwise, it returns a value
of 0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpresume command is affected by the think time, Log_level, and
Record_level VU environment variables.

tux_tpresume resumes the currently suspended transaction. It must be preceded by
tux_tpbegin, 0 or more transacaction suboperations, and tux_tpsuspend. The data
argument to tux_tpresume must be created using tux_allocbuf, and it must have been
used in the call to tux_tpsuspend.

Example

This example resumes a suspended transaction represented as tranid_40.

/* tux_tpsuspend ... */
set Think_avg = 3;
tux_tpresume tranid_40, TPNOFLAGS;
tux_freebuf(tranid_40);

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

tranid Must reference a buffer of type BUFTYP_TRANID that
was suspended by tux_tpsuspend().

flags An integer expression whose value must be
TPNOFLAGS. The values of flags are defined in the
TUXEDO header file.
364 Chapter 6

tux_tpscmt
See Also

tux_tpsuspend, tux_tpbegin

tux_tpscmt

Sets when tux_tpcommit() returns.

Category

Emulation Function

Syntax

int tux_tpscmt (flags)

Comments

If tux_tpscmt completes successfully, it returns the previous value of
TP__COMMIT_CONTROL. Otherwise, it returns a value of -1 and sets _error, _error_type,
and _error_text to indicate the error condition.

Example

This example sets the return instance for the following tux_tpcommit.

tux_tpscmt(TP_CMT_COMPLETE);

/* tux_tpcommit ... */

See Also

tux_tpcommit

tux_tpsend

Sends a message in a conversational service connection.

Syntax Element Description

flags An integer expression with one of the following values:
TP_CMT_LOGGED or TP_CMT_COMPLETE. The
values of flags are defined in the TUXEDO header
file.
Command Reference 365

tux_tpsend
Category

Send Emulation Command

Syntax

int tux_tpsend [cmd_id] cd, data, flags, revent

Comments

If tux_tpsend completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpsend command updates _tux_tpurcode.

The tux_tpsend command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example sends message to the previously established conversational service connection
conn_1.

/* Must be preceded by tux_tpconnect to start the conversation.*/
revent_ = tux_allocbuf(BUFTYP_REVENT);
data = tux_tpalloc("STRING", "", 2);
tux_setbuf_string(data, "", "t");
set Think_avg = 5043;
tux_tpsend ["bankap003"] conn_1, data, (TPRECVONLY), revent_;
tux_freebuf(revent_);
tux_tpfree(data);
/* Part of conversation between client and server in Bankapp application.
Send a message during conversation. */

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor indicating the conversation in which to send
data. It must be returned by tux_tpconnect().

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, TPRECVONLY, or
TPSIGRSTRT (ignored). The values of flags are defined in
the TUXEDO header file.

revent Must reference a buffer of type BUFTYP_REVENT.
366 Chapter 6

tux_tpsprio
tux_tpsend ["tsen.003"] conn_1, data_, (TPRECVONLY), revent_;
tux_freebuf(revent_);
tux_tpfree(data);

See Also

tux_tpconnect

tux_tpsprio

Sets the service request priority.

Category

Emulation Function

Syntax

int tux_tpsprio (prio, flags)

Comments

If tux_tpsprio completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

Example

This example sets the service request priority for the following tux_tpcall.

tux_tpsprio(99, TPABSOLUTE);
/* tux_tpcall ... */

See Also

tux_tpacall, tux_tpcall

Syntax Element Description

prio An integer expression that increments or decrements the service
request priority.

flags An integer expression with one of the following values:
TPABSOLUTE or TPNOFLAGS. The values of flags are
defined in the TUXEDO header file.
Command Reference 367

tux_tpsubscribe
tux_tpsubscribe

Subscribes to an event.

Category

Send Emulation Command

Syntax

int tux_tpsubscribe [cmd_id] eventexpr, filter, ctl, flags

Comments

If tux_tpsubscribe completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpsubscribe command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example

This example subscribes to the event "Switch_Power_Failure".

tpevctl_ = tux_allocbuf(BUFTYP_TPEVCTL);
tux_setbuf_int(tpevctl_, "flags", TPEVSERVICE);
tux_setbuf_string(tpevctl_, "name1", "Panic");
subs_1 = tux_tpsubscribe ["tsub001"] "Switch_Power_Failure", "",

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

eventexpr A string expression that identifies the event the caller
wants to subscribe to.

filter A string expression that contains the Boolean file rule
associated with eventexpr.

ctl Must reference a buffer of type BUFTYP_TPEVCTL or
BUFTYP_NULL.

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or
TPSIGRSTRT (ignored). The values of flags are
defined in the TUXEDO header file.
368 Chapter 6

tux_tpsuspend
tpevctl_, TPNOFLAGS;
tux_freebuf(tpevctl_);

See Also

tux_tpunsubscribe

tux_tpsuspend

Suspends a global transaction.

Category

Send Emulation Command

Syntax

int tux_tpsuspend [cmd_id] tranid, flags

Comments

If tux_tpsuspend completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpsuspend command is affected by the think time, Log_level, and
Record_level VU environment variables.

tux_tpsuspend suspends the current transaction. It must be preceded by a call to
tux_tpbegin, which began the transaction.

Example

This example suspends the previously established transaction tranid_40.

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

tranid Must reference a buffer of type BUFTYP_TRANID.

flags An integer expression whose value must be
TPNOFLAGS. The values of flags are defined in the
TUXEDO header file.
Command Reference 369

tux_tpterm
tranid_40 = tux_allocbuf(BUFTYP_TPTRANID);
set Think_avg = 11;
tux_tpsuspend tranid_40, TPNOFLAGS;

/* tux_tpresume ... */

See Also

tux_tpbegin, tux_tpresume

tux_tpterm

Leaves an application.

Category

Send Emulation Command

Syntax

int tux_tpterm [cmd_id]

Comments

If tux_tpterm completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

The tux_tpterm command is affected by the think time, Log_level, and Record_level
VU environment variables.

Example

This example exits the application represented by command ID tter002.

/* tux_tpinit ... */

tux_tpterm ["tter002"];}

See Also

tux_tpinit

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
370 Chapter 6

tux_tptypes
tux_tptypes

Provides information about a typed buffer.

Category

Emulation Function

Syntax

int tux_tptypes (ptr, type, subtype)

Comments

If tux_tptypes completes successfully, it returns the buffer size. Otherwise, it returns a
value of -1, and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example gets information about the typed buffer odata and checks if is a string-typed
buffer.

/* tpcall ... */

type = tux_allocbuf(BUFTYP_TYPE);
tux_tptypes(odata, type, NULL_BUF);
{ string type_str; }
type_str = tux_getbuf_string(type, "");
if (type_str != "FML")

print "Invalid odata buffer type!";

See Also

None.

Syntax Element Description

ptr A buffer allocated with tux_tpalloc.

type Must reference a buffer of type BUFTYP_TYPE.

subtype Must reference a buffer of type BUFTYP_SUBTYPE.
Command Reference 371

tux_tpunsubscribe
tux_tpunsubscribe

Unsubscribes to an event.

Category

Send Emulation Command

Syntax

int tux_tpunsubscribe [cmd_id] subscription, flags

Comments

If tux_tpunsubscribe completes successfully, it returns a value of 1. Otherwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the error
condition.

The tux_tpunsubscribe command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example

This examples unsubscribes to previously subscribed to event services.

/* tux_tpsubscribe ... */

tux_tpunsubscribe ["tuns001"] -1, TPNOFLAGS;

See Also

tux_tpsubscribe

Syntax Element Description

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

subscription An event subscription handle returned by
tux_tpsubscribe.

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or
TPSIGRSTRT (ignored). The values of flags are
defined in the TUXEDO header file.
372 Chapter 6

tux_typeofbuf
tux_typeofbuf

Returns the type of a buffer.

Category

Emulation Function

Syntax

int tux_typeofbuf (bufhnd)

Comments

If tux_typeofbuf completes successfully, it returns a valid buffer type. Otherwise, it returns
a value of -1 and sets _error, _error_type, and _error_text to indicate the error
condition.

Example

This example check if the odata buffer is of type BUFTYP_FML.

/* tpcall ... */

if (tux_typeofbuf(odata) != BUFTYP_FML)
print "Invalid odata buffer type!";

See Also

None.

tux_userlog

Writes a message to the TUXEDO central event log.

Category

Emulation Function

Syntax Element Description

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.
Command Reference 373

ungetc
Syntax

int tux_userlog (message)

Comments

If tux_userlog completes successfully, it returns a value of 1. Otherwise, it returns a value of
0 and sets _error, _error_type, and _error_text to indicate the error condition.

Example

This example writes the User...completed message to the TUXEDO central event log.

tux_userlog("User " + itoa(_uid) + " completed run.");

See Also

None.

ungetc

Provides unformatted character input capability.

Category

Library Routine

Syntax

int ungetc (ret_char, file_des)

Syntax Element Description

message The string you want to write.

Syntax Element Description

ret_char An integer expression (interpreted as a character) that
specifies the character to be returned to the input buffer.

file_des The integer file descriptor, obtained from open, of the
file associated with the input buffer.
374 Chapter 6

uniform
Comments

The ungetc routine replaces the character ret_char in the input buffer associated with the
named file, thus providing an “undo” mechanism for fgetc. This character is returned by the
next fgetc (or other file input) call. The file contents remain unchanged.

The ungetc routine returns EOF (as defined in the standard VU header file) if it cannot return
the character — for example, if:

■ ret_char equals EOF

■ No input has yet been read from the named file

■ More than one character of push back is attempted (via successive calls to ungetc with no
intervening file input routine call)

Example

In this example, if the file with the descriptor infile_des contains the characters ABZ14,
then the characters ABZ are written to the file whose descriptor is outfile_des, and the
character 1 is returned to the input buffer associated with infile_des.

#include <VU.h>
while ((c = fgetc(infile_des)) != EOF)
if (c >= ’A’ && c <= ’Z’)

fputc(c, outfile_des);
else
{

ungetc(c, infile_des);
break;

}

See Also

fgetc

uniform

Returns a random integer uniformly distributed in the specified range.

Category

Library Routine
Command Reference 375

uniform
Syntax

int uniform (min_value, max_value)

Comments

The uniform routine returns a random integer uniformly distributed in the specified range.

The values of min_value and max_value can be negative as well as positive. Although
unconventional, min_value can exceed max_value. However, the absolute value of the
difference min_value - max_value must be less than 2147483647.

The rand, srand, uniform, and negexp routines enable the VU language to generate
random numbers. The behavior of these random number routines is affected by the way you
set the Seed and Seed Flags options in a TestManager suite. By default, the Seed generates the
same sequence of random numbers but sets unique seeds for each virtual tester, so that each
virtual tester has a different random number sequence. For more information about setting the
seed and seed flags in a suite, see Using Rational TestManager.

The srand routine uses the argument seed as a seed for a new sequence of random numbers
returned by subsequent calls to the function uniform. If srand is then called with the same
seed value, the sequence of random numbers is repeated. If uniform is called before any calls
are made to srand, the same sequence is generated as when srand is first called with a seed
value of 1.

Example

In this example, srand seeds the random number generator with the current time and then
prints the first 10 random numbers between -10 and 10.

srand(time());
for (i = 0; i < 10; i++)
printf("random number (%d): %d\n", i, srand(-10, 10));

See Also

negexp, rand, uniform

Syntax Element Description

min_value An integer expression whose value generally specifies
the minimum random integer to be returned.

max_value An integer expression whose value generally specifies
the maximum random integer to be returned.
376 Chapter 6

unlink
unlink

Removes files.

Category

Library Routine

Syntax

int unlink (filename)

Comments

The unlink routine removes (unlinks) the directory entry named by filename. When all
links to a file have been removed, space occupied by the file is freed and the file ceases to exist;
however, this action is postponed if one or more processes still have the file opened until all
references to the file have been closed. unlink returns 0 upon successful completion;
otherwise, a VU runtime error is generated.

The tempnam and unlink routines are often used together because you should remove
temporary files as soon as their usefulness has expired.

Example

If the Windows NT or UNIX environment variable TMPDIR is undefined, and P_tmpdir is
defined in <stdio.h> to have the value /usr/tmp, tempnam returns a temporary file name
in the /usr/tmp directory, such as /usr/tmp/CAAa02179. After the file has been opened,
processed, and closed, unlink removes it.

string temp_filename;

temp_filename = tempnam("", "");
tmpfile_des = open(temp_filename, "w");

/* do file processing on the temporary file */

close(tmpfile_des);
unlink(temp_filename);

Syntax Element Description

filename A string expression specifying the name of the file to be
removed.
Command Reference 377

user_exit
See Also

tempnam

user_exit

Exits an entire virtual tester emulation from within any point in a virtual tester script.

Category

Library Routine

Syntax

int user_exit (status, msg_str)

Comments

The user_exit routine causes the current script to exit immediately followed by one of three
user termination sequences (see the following example). Although user_exit never returns,
its return value is considered an integer type for syntactical purposes. If msg_str is not of
zero length, it is written (before exiting the script) to standard error, preceded by the following
explanatory line of text:

User exited from script script_name with status=N and message:

script_name is replaced by the appropriate script name (corresponding to the read-only
variable _script), and N is replaced by the value of status. After termination of the current
script, user termination is controlled according to the value of status.

■ If status is greater than 0, no escape or logout sequences are executed, and the user exit
status reported to TestManager is Normal.

■ If status is equal to 0, any logout sequences are executed, and the user exit status
reported to TestManager is Normal.

■ If status is less than 0, any escape and logout sequences if any are executed, and the user
exit status reported to TestManager is Abnormal.

Syntax Element Description

status An integer expression specifying the target virtual
tester’s exit status.

msg_str A string expression specifying an optional message to
be written to the standard error file.
378 Chapter 6

usergroup_member
Example

In this example, assume that the script’s name is database4. If the value of string1 is
error, the script is exited; the error message is written to standard error; all defined escape or
logout sequences are executed, and the user terminates the emulation session with an
Abnormal exit status:

if (string1 = "ERROR")
 user_exit(-1, "Fatal Error - Aborting");

See Also

script_exit

usergroup_member

Returns the position of a virtual tester within a user group.

Category

Library Routine

Syntax

int usergroup_member(group_name)

Comments

The usergroup_member routine returns the position of a virtual tester within a user group.
The first position is 1.

Example

In this example, five user groups are defined. The example prints out the position of each
virtual tester in the group.

#define MAX_GROUPS 5
{
 string groups[MAX_GROUPS] = {"Accountants", "Engineers",
 "DB Entry","Administration", "Operations"};

Syntax Element Description

group_name A string expression whose value is the name of the user
group.
Command Reference 379

usergroup_size
 int index, size;

 for (i = 0; i < MAX_GROUPS; i++)
 {
 index = usergroup_member(groups[i]);
 if (index)
 {
 size = usergroup_size(groups[i]);
 printf ("I am tester number: %d in group: %s which has %d

testers", index, groups[i], size);
 break;
 }
 }
}

See Also

usergroup_size

usergroup_size

Returns the number of members in a user group.

Category

Library Routine

Syntax

int usergroup_size(group_name)

Comments

The usergroup_size routine returns the number of members in a user group.

Syntax Element Description

group_name A string expression whose value is the name of the user
group.
380 Chapter 6

wait
Example

In this example, five user groups are defined. The example prints out the number of members
in each group.

#define MAX_GROUPS 5
{
 string groups[MAX_GROUPS] = {"Accountants", "Engineers",
 "DB Entry","Administration", "Operations"};
 int index, size;

 for (i = 0; i < MAX_GROUPS; i++)
 {
 index = usergroup_member(groups[i]);
 if (index)
 {
 size = usergroup_size(groups[i]);
 printf ("I am tester number: %d in group: %s which has %d

testers", index, groups[i], size);,
index, groups[i], size);

 break;
 }
 }
}

See Also

usergroup_member

wait

Blocks a virtual tester from further execution until a user-defined global event occurs.

Category

Library Routine

Syntax

int wait (&sv, min [, max, adj, tmout, &retval])

Syntax Element Description

sv A shared variable. wait considers an event to have
occurred if the value of sv is greater than or equal to min
and less than or equal to max. If max is not specified, max
is assumed to equal min.
Command Reference 381

wait
Comments

The wait routine is an efficient method of blocking a virtual tester until a user-defined global
event occurs. wait returns 1 when the event has occurred; it returns 0 if the event has not yet
occurred when the time specified by tmout has expired.

If virtual testers are blocked on an event utilizing the same shared variable, and if the value of
that shared variable is set to TRUE simultaneously, VU guarantees that the virtual testers are
unblocked in the same order in which they were blocked. Although this alone does not ensure
a deterministic multi-user timing order in which VU statements following a wait is
executed,1 the additional proper use of the wait arguments min, max, and adj allows control
over the order in which multiuser operations occur.

min An integer expression that specifies the minimum value
that the shared variable can have.

max An integer expression. If omitted, it is assumed to equal
min.

adj An integer expression. The value of adj is added to the
value of sv, if and when the event occurs. The
adjustment is performed with the “unblocking” of the
associated virtual tester as a single atomic event. If you
do not require an adjustment, but do need a placeholder
argument because additional arguments need to be
specified, set adj to 0.

tmout An integer expression that controls the number of
milliseconds wait waits for the event to occur. By
default, wait does not return until the event occurs. If
tmout equals zero, wait is nonblocking, and returns
the value zero immediately if the event is false. If tmout
is greater than zero, wait enforces a time out of tmout
milliseconds, at which time if the event has not occurred,
wait returns zero. If no time-out is desired, but tmout is
required as a placeholder, set tmout to a negative value.

retval A non-shared integer variable. If retval is specified,
wait sets retval to the value of sv as follows: if wait
returns 1, retval is set to the value of sv before the
optional adjustment; if wait returns 0, retval is set to
the value of sv when the timeout occurs.

1. UNIX or Windows NT determines the order of the scheduling algorithms. For example, if two virtual
testers are unblocked from a wait in a given order, the user unblocked last may be allowed to execute
its next VU statement before the user who unblocked first.

Syntax Element Description
382 Chapter 6

wait
If a shared variable’s value is modified (by a VU assignment statement, autoincrement
[sv++] operation, and so on), any subsequent attempt to modify this value — other than
through wait — blocks execution until all virtual testers already blocked on an event defined
by sv have had an opportunity to unblock. This ensures that events cannot appear and then
quickly disappear before a blocked virtual tester is unblocked. For example, if two virtual
testers were blocked waiting for sv to equal or exceed N, and if another virtual tester assigned
the value N to sv, then VU guarantees both virtual testers the opportunity to unblock before
any other virtual tester is allowed to modify sv.

Offering the opportunity for all virtual testers to unblock does not guarantee that all virtual
testers actually unblock, because if wait had been called with a nonzero value of adj by one
or more of the blocked virtual testers, the shared variable value would change during the
unblocking script. In the previous example, if the first user to unblock had called wait with a
negative adj value, the event waited on by the second user would no longer be true after the
first user unblocked. With proper choice of adj values, you can control the order of events.

Example

This example blocks until the value of the shared variable ev equals 2, 3, or 4, and returns 1:

wait(&ev, 2, 4);

This example blocks until the value of the shared variable ev equals 0, and before returning
the integer value 1, adjusts the value of ev to 1 (by adding 1 to its value
of 0):

wait(&ev, 0, 0, 1);

This example blocks until the value of the shared variable ev is 1 (returning the integer 1), or
until 10 seconds have elapsed (returning the integer 0):

wait(&ev, 1, 1, 0, 10000);

This example blocks until the value of the shared variable ev is 2, 3, 4, or 5, and before
returning the integer value 1, assigns the value (2, 3, 4, or 5) to ret, and subtracts 10 from ev:

wait(&ev, 2, 5, -10, -1, &ret);

This example allows only one user to access a critical section of code. The wait routine blocks
until inuse equals 0 (the initial value for all shared variables), and upon obtaining access,
uses an adj value of 1 to lock out all other virtual testers. Upon completion of the critical
section, inuse is reset to zero to allow access to other virtual testers (who are executing
identical code segments). Recall that if virtual testers are blocked concurrently, access is
granted on a first-come, first-served basis.

shared inuse;
wait(&inuse, 0, 0, 1);
/* critical section of code */
inuse = 0;
Command Reference 383

wait
Assume that an application is licensed for five virtual testers. This example sets the variable
inuse so that no more than five people can log on at one time. As a user logs on, the value of
inuse is decremented:

shared inuse;
wait(&inuse, 0, 4, 1);
/* critical section of code */
--inuse

Suppose that for stress testing purposes, all virtual testers must submit a certain transaction
sequence at once. In this example, each virtual tester increments nready and proceeds when
all virtual testers are ready (_nusers contains the number of virtual testers in the emulation
session).

shared nready;
nready++;
wait(&nready, _nusers, _nusers);
/* Synchronized activity takes place here */

This example resynchronizes so that the same condition can be tested repeatedly:

shared ready_cnt, control;
for (attempts = 0; attempts < 100; attempts++) {
 ready_cnt++;
 if (_uid == 1) {
 wait(&ready_cnt, _nusers, _nusers, -(_nusers));
 control = 2;
 }
 else
 wait(&control, _uid, _uid, 1);
 /* Synchronized activity takes place here */
}

Suppose that all virtual testers are required to take turns at executing a certain transaction in
round-robin fashion, with no specific execution order. This example successively grants access
to the critical section of code to virtual testers 1 through n in ascending order of user ID
(_uid). After the last virtual tester has taken his turn, he resets turn to 0, allowing the next
iteration to begin anew with user 1:

shared turn;
for (attempts = 1; attempts < 100; attempts++) {
 wait(&turn, _uid-1, _uid-1);
 /* critical section of code */
 if (_uid == _nusers)
 turn = 0;
 else
 turn++;
}

384 Chapter 6

while
In the following example, you need to execute code in a specific order, but it is unrelated to
ascending or descending order of user IDs. Ten virtual testers are to perform a certain
transaction repeatedly in the following arbitrary order: 5, 1, 2, 6, 3, 10, 4, 7, 9, 8. Stated in a
different way, user 1 is second, user 2 is third, user 3 is fifth, user 4 is seventh, ... and user 10 is
sixth.

The example successively grants access to the critical section of code to virtual testers 5, 1, 2, 6,
3, 10, 4, 7, 9, and 8 successively. After the last user (user 8) has taken his turn, he resets turn to
0, allowing the next iteration to begin anew with the first virtual tester (user 5).

shared turn;
int exec_order[10] = {2,3,5,7,1,4,8,10,9,6};
myturn = exec_order[_uid - 1];
lastturn = limitof(exec_order) + 1;

for (attempts = 0; attempts < 100; attempts++) {
 wait(&turn, myturn - 1, myturn - 1);

 /* Critical section of code */
 if (myturn == lastturn)
 turn = 0;
 else
 turn++;
}

See Also

sync_point

while

Repeatedly executes a VU statement.

Category

Flow Control Statement
Command Reference 385

while
Syntax

while (exp1)
statement1;

Comments

The execution of the while loop occurs in the following steps:

1 exp1 is evaluated.

2 If the value of exp1 is not 0, statement1 is executed. If the value of exp1 is 0, execution
of the while loop ends.

3 If the while loop execution has not ended, steps 1 and 2 are repeated.

Example

In this example, the statements within the while loop execute until the while condition is
false.

#include <VU.h>
while ((c = fgetc(infile_des)) != EOF)

if (c >= ‘A’ && c <= ‘Z’)
fputc(c, outfile_des);

else
 {

ungetc(c, infile_des);
break;

}

See Also

do-while, for

Syntax Element Description

exp1 The integer expression to evaluate.

statement1 A VU language statement or, if enclosed in braces,
multiple VU language statements.
386 Chapter 6

Part 4: Appendixes

AJolt-Specific VU
Functions
This chapter provides a general introduction to the Jolt protocol. It includes the
following topics:

■ Jolt overview

■ TestManager/Jolt function overview

■ TestManager/Jolt function reference

Jolt Overview

The following sections describe how TestManager supports the Jolt protocol.

BEA Jolt is a product that extends the BEA TUXEDO middleware framework to
provide pure Java-based clients access to TUXEDO application services. This
enhanced functionality is provided by a combination of a new set of Jolt classes on the
client and some new Jolt system processes on the server.

Jolt clients (pure Java applications or applets) communicate with the Jolt system
processes via the Jolt protocol. TestManager emulates Jolt client activity by
reproducing the recorded native Jolt protocol messages originating from the client,
effectively becoming a Jolt client from the Jolt server’s perspective.

Jolt support is implemented with sock_send and sock_nrecv emulation
commands. Therefore, it uses the same set of VU environment variables, timeouts,
and so on, that the socket protocols use. Jolt, in effect, sits on top of socket.

TestManager models seven message types within the Jolt protocol:

Jolt Message Type Usage

 Authenticate/Challenge session management

 Authenticate/Ticket session management

 Check Authorization Level session management

 Close Connection session management
389

TestManager/Jolt Function Overview
The Data Transfer message is the primary means of exchanging application data
between the Jolt client and the Jolt server, hence it is called an application service
message. The other messages, called session control messages, establish and maintain Jolt
sessions. TestManager provides emulation functions that let you construct request
messages and extract information from response messages of these types.

TestManager/Jolt Function Overview

TestManager provides a number of emulation functions that, with the sock_send
and sock_recv emulation commands, can create virtual tester scripts that
communicate directly with Jolt application services using the native Jolt protocol.

The following sections describe the main classes of Jolt emulation functions.

Request Construction Functions

The request construction function class contains only one function,
jolt_request(). This function builds a complete Jolt request that can then be sent
to a Jolt server via sock_send. It requires the assistance of a Message Construction
function to supply the body of the request.

Message Construction Functions

Message construction functions build the body of a Jolt request as required by
jolt_request(). Each Jolt message type has a message construction function.
Some of the functions require message parameters, others do not. Message
construction functions contain two special subclasses:

■ Attribute construction functions, which build attribute lists used by Application
Service functions.

■ Parameter construction functions, which build parameter lists that may
accompany certain attributes.

 Data Transfer application service

 Establish Connection session management

 Reconnect session management

Jolt Message Type Usage
390 Appendix A

TestManager/Jolt Function Overview
Response Query Functions

The two primary response query functions are jolt_response_header() and
jolt_response_body(). These functions interface with the sock_recv emulation
command to retrieve response messages from the Jolt servers. A special subclass of
response query functions extracts information from the received Jolt header.

Response Header Query Functions

Response Header Query functions extract specific Jolt message header variables from
a Jolt response.

 Message Query Functions

These functions, which complement the message construction functions, extract
specific information from the body of Jolt responses. The two special subclasses of
message query functions are:

■ Attribute query functions, which extract specific attributes from a Jolt response.

■ Parameter query functions, which extract specific parameters from an attribute.

In addition to the function classes listed above, the Jolt emulation functions are
further classified into two functional areas, Jolt Session Control functions and Jolt
Application Service functions. In general, for automatically generated virtual tester
scripts, you should be concerned only with Jolt Application Service functions. Jolt
Session Control functions set up the environment in which the Application Service
functions operate.

Session Control Functions

TestManager provides seven categories of session control functions. These establish
and maintain working sessions between TestManager and Jolt Server Handlers (JSHs)
during script playback. The following table lists each category and its corresponding
VU function prefix:

Category VU Function Prefix

 Authenticate/Challenge jolt_challenge

 Check Authorization Level jolt_checkauth

 Close Connection jolt_close

 Establish Connection jolt_estcon

 Reconnect jolt_reconnect
Jolt-Specific VU Functions 391

TestManager/Jolt Function Overview
TestManager uses a number of session control functions to manage Jolt sessions.
However since proper use of these functions is critical to the correct Jolt script
playback, do not modify any TestManager-scripted session control function calls.
Improper use of session control functions may result in fatal Jolt server failures.

Application Service Functions

Once a session is established, TestManager uses application service functions to
communicate application data with the Jolt services. There are five categories of
Application Service functions:

The Data Transfer messages are the primary means of communicating with the Jolt
server. A Data Transfer request message encapsulates all of the data that a specific Jolt
service requires to execute. Likewise, a Data Transfer response message contains all of
the result data that a Jolt service produces. The Data Transfer functions manage both
message types.

A Data Transfer message may contain a list of name-value data components called
attributes. In general, attributes have predefined meanings and supply information
required by the Jolt system. Each attribute has a specific data type and a
corresponding value. The attribute construction functions build attribute lists when
constructing a request. The attribute query functions locate and extract specific
attributes from messages.

 Authenticate/Ticket jolt_ticket

 Header Information jolt_header

Category VU Function Prefix

Category VU Function Prefix

Data Transfer jolt_dataxfer

Attribute Construction jolt_setatt

Attribute Query jolt_getatt

Parameter Construction jolt_setpar

Parameter Query jolt_getpar
392 Appendix A

TestManager/Jolt Function Overview
One attribute, the data attribute, may also contain a list of name-value data
components called parameters. Unlike attributes, parameters are user-defined and
encapsulate data required by the Jolt services themselves. Like their attribute
equivalents, the Parameter Construction functions build parameter lists for request
construction, and the attribute query functions extract specific parameters from
messages.

For details about the functions in each Application Service category, see
TestManager/Jolt Function Reference on page 396.

Request Construction

Building a Jolt request involves associating a number of construction functions
together to create the correct raw octet sequence of the request message. The octet
sequence is then passed to the sock_send emulation command, which, in turn,
sends it to the Jolt server.

Associating Construction Functions

Construction functions are associated by passing the result of a construction producer
function as an input parameter to a construction consumer function. Each
construction consumer capable of associating a construction producer has an
association parameter of a specific construction type. Only a construction producer
function of the same construction type should be associated with a given association
parameter construction type. The three construction types are Message, Attribute List,
and Parameter List. The construction functions related to each type are described
below.

The following table lists the construction consumer functions:

Construction Consumer
Function

Association Parameter Construction Type

jolt_request() message Message

jolt_dataxfer() attribute_list Attribute List

jolt_setatt_data() parameter_list Parameter List
Jolt-Specific VU Functions 393

TestManager/Jolt Function Overview
The following table lists the construction producer functions:

Building Requests

The following steps show how to build a Jolt request:

1 Construct a message by calling one of the message construction functions. Each
Jolt message type has its own construction function and may require one or more
parameters. If you are constructing a data transfer request you may also need to
call and associate the results of one or more attribute or parameter construction
functions.

string msg;

..msg = jolt_dataxfer(sessionid, JOLT_CALL_RQST, attlst));

/* see 2.3.2.1. example for attlst construction */

2 Construct a Jolt request by associating the result of a message construction
function with the request construction function jolt_request().

string req;

...

req = jolt_request(0, sessionid, handlerid, 1, msg);

3 Pass the result of jolt_request() to the sock_send emulation function.

sock_send ["request1"] req;

You can combine these steps into one statement as follows:

sock_send
jolt_request(0, sessionid, handlerid, 1,

jolt_dataxfer(sessionid, JOLT_CALL_RQST,
jolt_setatt_name("TRANSFER") +
jolt_setatt_data(

Construction Type Construction Producer Function

Message jolt_challenge()
jolt_checkauth()
jolt_close()
jolt_dataxfer()
jolt_estcon()
jolt_reconnect()
jolt_ticket

 Attribute List See the Attribute List Construction
functions.

 Parameter List See the Parameter List Construction
functions.
394 Appendix A

TestManager/Jolt Function Overview
jolt_setpar_long(1, 309270) +
jolt_setpar_long(2, 202463) +
jolt_setpar_double("9500.00"))));

Building Attribute Lists and Parameter Lists

Attribute lists and parameter lists are built by combining the results of individual
Attribute Construction and Parameter Construction functions with the VU string
concatenation operator (+). For example:

string attlst;
string parlst;
...
/* create parameter list with two longs and a double */
parlst = jolt_setpar_long(1, 309270) +/* from account */

jolt_setpar_long(2, 202463) +/* to account */
jolt_setpar_double("9500.00");/* transfer amount */

/* create attribute list with the NAME and DATA attributes set */
attlst = jolt_setatt_name("TRANSFER") +/* TRANSFER service */

jolt_setatt_data(parlst);/* parameter list */

Note that attributes can be placed within an attribute list in any order.

Likewise, the order of parameters within a list is not significant.

Response Query

Once a Jolt request has been successfully constructed and sent to the Jolt server,
receiving and extracting information from the Jolt server response requires the use of
the response query functions.

These functions operate in conjunction with the sock_nrecv emulation command to
access the response data. Receiving the complete Jolt response is a two-stage process.
First the Jolt header must be received using a
sock_nrecv/jolt_response_header() combination statement. For example:

sock_nrecv ["rsphdr1"] jolt_response_header();

Once this is successfully executed, the contents of the Jolt header may be accessed
using the appropriate query functions. The second step is to receive the body of the
Jolt response. This is done using a sock_nrecv/jolt_response_body()
combination statement. For example:

sock_nrecv ["rspbod1"] jolt_response_body();

Once this is successfully executed, the contents of the response message, including
attributes and parameters, may be accessed using the message query functions.
Jolt-Specific VU Functions 395

TestManager/Jolt Function Reference
TestManager/Jolt Function Reference

You should not modify TestManager-scripted Session Control function calls.
Therefore, only the Application Service functions of each function class are described
below.

The format is:

<functional area and category (when applicable)>

<VU function prototype>

<function description>

Request Construction Functions
string jolt_request (int flags, int sessionid, int handlerid, int
msgid, string message)

jolt_request() is the top-level Jolt request construction function. The result is an
asciified string containing a complete Jolt request that may be passed to the
sock_send emulation command.

flag contains protocol mode information (usually 0).

sessionid is the JSH-assigned identifier of the current Jolt session. handlerid is the
JSL-assigned handler identifier for the current session.

msgid is the incrementing per-session message sequence number of the current
request.

message is the association parameter for the Message construction.

Message Construction Functions

Application Service (Data Transfer)

string jolt_dataxfer (int sessionid, int opcode, string
attribute_list)

This is the construction function for Data Transfer messages. sessionid is the
WSH-assigned identifier of the current Jolt session. opcode specifies the mode of
operation of the current Data Transfer request operation. Valid opcodes are:

Opcode Description

JOLT_CALL_RQST TUXEDO tpcall primitive

JOLT_DEQUEUE_RQST TUXEDO tpdequeue primitive
396 Appendix A

TestManager/Jolt Function Reference
attribute_list is the association parameter for the Attribute List construction.

Attribute List Construction Functions

These functions construct the attribute list associated with the Data Transfer
application service function jolt_dataxfer(). There is one construction function
per attribute. The results of the functions may be tied together using the VU string
concatenation operator (+) to form a complex attribute list.

The naming convention for the functions is jolt_setatt_attribute-name,
where attribute-name is the name of the Jolt attribute constructed. The value
argument, a VU language data type, will be mapped to the appropriate Jolt attribute
data representation by the function.

Application Service (Attribute Construction)

string jolt_setatt_appasswd (string value)

string jolt_setatt_authlevel (int value)

JOLT_CONNECT_RQST TUXEDO tpconnect primitive

JOLT_SEND_RQST TUXEDO tpsend primitive

JOLT_RECV_RQST TUXEDO tprecv primitive

JOLT_DISCONNECT_RQST TUXEDO tpdiscon primitive

JOLT_SUBSCRIBE_RQST TUXEDO tpsubscribe primitive

JOLT_UNSUBSCRIBE_RQST TUXEDO tpunsubscribe primitive

JOLT_NOTIFY_RQST TUXEDO tpnotify primitive

JOLT_POST_RQST TUXEDO tppost primitive

JOLT_UNSOL_RQST n/a

JOLT_CHKUNSOL_RQST n/a

JOLT_GETCONFIG_RQST n/a

JOLT_LOGON_RQST Jolt server logon

JOLT_LOGOFF_RQST Jolt server logoff

JOLT_GETDEF_RQST get Jolt Repository service definition

JOLT_GETDEFX_RQST get Jolt Repository service definition

Opcode Description
Jolt-Specific VU Functions 397

TestManager/Jolt Function Reference
string jolt_setatt_clientdata (int value)

string jolt_setatt_corrid (string value)

string jolt_setatt_data (string parameter_list)*

string jolt_setatt_e_errno (int value)

string jolt_setatt_e_reason (string value)

string jolt_setatt_errno (int value)

string jolt_setatt_errorq (string value)

string jolt_setatt_event (string value)

string jolt_setatt_filter (string value)

string jolt_setatt_flags (int value)

string jolt_setatt_groupnm (string value)

string jolt_setatt_idle (int value)

string jolt_setatt_joltvers (int value)

string jolt_setatt_msgid (string value)

string jolt_setatt_name (string value)

string jolt_setatt_netmsgid (int value)

string jolt_setatt_numevents (int value)

string jolt_setatt_passwd (string value)

string jolt_setatt_priority (int value)

string jolt_setatt_reason (string value)

string jolt_setatt_replyq (string value)

string jolt_setatt_repname (string value)

string jolt_setatt_repnrecs (int value)

string jolt_setatt_reppattern (string value)

string jolt_setatt_repvalue (string value)

string jolt_setatt_sid (int value)

string jolt_setatt_timeout (int value)

string jolt_setatt_tuxvers (int value)
398 Appendix A

TestManager/Jolt Function Reference
string jolt_setatt_type (int value)

string jolt_setatt_username (string value)

string jolt_setatt_userrole (string value)

string jolt_setatt_version (int value)

string jolt_setatt_xid (int value)

Note: The special attribute list construction function jolt_setatt_data() accepts
a single parameter list construction (see below) in place of a VU scalar value as an
argument.

Parameter List Construction Functions

These functions construct the parameter list associated with the Attribute List
construction function jolt_setatt_data(). There is one construction function per
parameter. The results of the functions may be tied together using the VU string
concatenation operator (+) to form a complex parameter list.

The naming convention for the functions is jolt_setpar_parameter-name,
where parameter-name is the name of the Jolt parameter constructed. fieldid is
an identifier that uniquely identifies the parameter among other parameters within a
list. The value argument, a VU language data type, will be mapped to the
appropriate Jolt parameter data representation by the function. asciified-value is
the asciified form of the parameter value. text-value is the textual representation of
the floating point value (for example, “1.23”).

Application Service (Parameter Construction)

string jolt_setpar_carray (int fieldid, string asciified-value)

string jolt_setpar_char (int fieldid, int value)

string jolt_setpar_double (int fieldid, string text-value)

string jolt_setpar_float (int fieldid, string text-value)

string jolt_setpar_long (int fieldid, int value)

string jolt_setpar_short (int fieldid, int value)

string jolt_setpar_string (int fieldid, string value)
Jolt-Specific VU Functions 399

TestManager/Jolt Function Reference
Response Query Functions

The Response Query functions extract information from Jolt responses received by the
client. All of the query functions, except the Parameter Query group, accept no
arguments. They work implicitly with the VU _response read-only variable, which
is set by the sock_nrecv emulation command. Therefore, within a script the
Response Query functions must follow the sock_nrecv commands on which they
operate.

There are two main functions in this class:

int jolt_response_header ()

This function must be passed as an argument to the sock_nrecv emulation
command to prepare it to receive the header portion of a Jolt response. For example:

sock_nrecv ["header_1"] jolt_response_header();

This function must always precede its jolt_response_body() complement.

int jolt_response_body ()

This function must be passed as an argument to the sock_nrecv emulation
command to prepare it to receive the body portion of a Jolt response.

sock_nrecv ["body_1"] jolt_response_body();

This function must always follow its jolt_response_header() complement.

Message Query Functions

These functions extract specific field values from the message body portion of the Jolt
responses. The naming convention used for these functions is
jolt_message-name_field-name, where message-name is the name of the
message to be examined and field-name is the name of the field to be extracted.

Application Service (Data Transfer)

string jolt_dataxfer_attribute_list ()
400 Appendix A

TestManager/Jolt Function Reference
Response Attribute Query Functions

These functions extract specific attribute values from Jolt Data Transfer response
messages. The actual attribute value is mapped to an appropriate VU language data
type as necessary. The naming convention for these functions is
jolt_getatt_attribute-name, where attribute-name is the name of the
attribute to extract.

Application Service (Attribute Query)

string jolt_getatt_appasswd ()

int jolt_getatt_authlevel ()

int jolt_getatt_clientdata ()

string jolt_getatt_corrid ()

string jolt_getatt_data ()

int jolt_getatt_e_errno ()

string jolt_getatt_e_reason ()

int jolt_getatt_errno ()

string jolt_getatt_errorq ()

string jolt_getatt_event ()

string jolt_getatt_filter ()

int jolt_getatt_flags ()

string jolt_getatt_groupnm ()

int jolt_getatt_idle ()

int jolt_getatt_joltvers ()

string jolt_getatt_msgid ()

string jolt_getatt_name ()

int jolt_getatt_netmsgid ()

int jolt_getatt_numevents ()

string jolt_getatt_passwd ()

int jolt_getatt_priority ()

string jolt_getatt_reason ()

string jolt_getatt_replyq ()
Jolt-Specific VU Functions 401

TestManager/Jolt Function Reference
string jolt_getatt_repname ()

int jolt_getatt_repnrecs ()

string jolt_getatt_reppattern ()

string jolt_getatt_repvalue ()

int jolt_getatt_sid ()

int jolt_getatt_timeout ()

int jolt_getatt_tuxvers ()

int jolt_getatt_type ()

string jolt_getatt_username ()

string jolt_getatt_userrole ()

int jolt_getatt_version ()

int jolt_getatt_xid ()

Response Parameter Query Functions

These functions extract specific parameter values from Jolt Data Transfer response
messages. The actual parameter value will be mapped to an appropriate VU language
data type as necessary. The naming convention for these functions is
jolt_getpar_parameter-name, where parameter-name is the name of the
parameter to extract. fieldid is the application-assigned identifier used to
distinguish a particular parameter from a list of parameters.

Application Service (Parameter Query)

string jolt_getpar_carray (int fieldid)

int jolt_getpar_char (int fieldid)

string jolt_getpar_double (int fieldid)

string jolt_getpar_float (int fieldid)

int jolt_getpar_long (int fieldid)

int jolt_getpar_short (int fieldid)

string jolt_getpar_string (int fieldid)
402 Appendix A

BSAP-Specific VU
Functions
If you have purchased a license to play back SAP protocol, and you record a session
that accesses a SAP R/3 server, the script that you generate will contain VU functions
that emulate SAP clients. This appendix lists the functions that the VU script can
contain. The functions begin with the prefix VuERP.

This appendix divides SAP-specific VU functions into the following categories:

■ Event Manipulation and Communication

■ Event Structure Access

■ Utilities

Because the VU functions serve as wrappers to the SAP GULIB API, you need to be
familiar with the GUILIB API. For information on the GUILIB API, consult your SAP
documentation.

GUILIB uses the term event to mean a data representation of a particular SAP screen.
The event data structure contains a complete description and instructions necessary
for rendering the SAP screen. Therefore, in this appendix, the terms event and screen
are synonymous.

The functions, properties, and fields defined in the GUILIB documentation are shown
in bold italics.

For information on testing SAP applications, see the following on-line manuals on the
Documentation CD:

■ Rational TestManager Try it! for Performance Testing of SAP Applications

■ Rational Robot Try it! for GUI Testing of SAP Applications

Event Manipulation and Communication

Each function in this section is invoked via the VU emulate() command. Therefore,
all environment variables that affect the emulate() command also affect the
execution of the functions in this section. Those functions with Set in their name set
properties in the event or screen; those functions with Send in their name send the
screen, or event, information to the SAP R/3 server.
403

Event Manipulation and Communication
Functions
func VuErpSetHeight(Height) int Height; {}

Sets the screen.dimrow field of the event. If Height is greater than 255, it is set to
255. If the event is a modal screen 0, the function returns 0. Otherwise it returns 1.
A return of 0 indicates a failure since modal events/screens are not resizable.

func VuErpSetWidth(Width) int Width; {}

Sets the screen.dimcol field of the event. If Width is greater than 255, it is set to
255. If the event is a modal screen 0, the function returns 0. Otherwise it returns 1.

func VuErpSetHScroll(Pos) int Pos; {}

Sets the Pos field of the event and marks the event type with MES_HSCROLL mask.
This function always returns 1.

func VuErpSetVScroll(Pos) int Pos; {}

Sets the Pos field of the event and marks the event type with MES_VSCROLL mask.
This function always returns 1.

func VuErpSetCurPosByIndex(Index) int Index; {}

A wrapper for ItEv_SetCurPosByCtrl(). Returns 0 if ItEv_SetCurPosByCtrl
fails and 1 otherwise.

func VuErpSetCheck(Index,ck) int long, ck; {}

A wrapper for ItEv_SetCheck(). Returns 0 if ItEv_SetCheck fails and 1
otherwise.

func VuErpSetMenuId(id) int id; {}

A wrapper for ItEv_SetMenuID(). Returns 0 if ItEv_SetMenuID fails and 1
otherwise.

func VuErpSetOkCode(okCode) string okCode; {}

A wrapper for ItEv_SetOKCode(). Returns 0 if ItEv_SetOKCode fails and 1
otherwise.

func VuErpSetPfKey(KeyCode) int KeyCode; {}

A wrapper for ItEv_SetPFKey(). Returns 0 if ItEv_SetPFKey fails and 1
otherwise.

func VuErpSetValue(Index,value) int Index; string value; {}

A wrapper for ItEv_SetValue(). Returns 0 if ItEv_SetValue fails and 1
otherwise.

func VuErpSetValueDecrypt(Index,value) int Index; string value; {}
404 Appendix B

Event Manipulation and Communication
A wrapper for ItEv_SetValue() that decrypts the encrypted value. Returns 0 if
ItEv_SetValue fails and 1 otherwise. By default, the user name and password are
encrypted in a capture script and are decrypted with the VuErpSetValueDecrypt()
function before being passed to ItEv_SetValue().

Users wishing to datapool unencrypted user names and passwords should replace the
VuErpSetValueDecrypt() calls with VuErpSetValue(), i.e.:

Line from captured script (that uses a datapool with encrypted password):

emulate ["RatlErp_sun_exception_on001"] VuErpSetValueDecrypt(5,
datapool_value(VuErp_DP, "RSYST_BCODE")), VuErp_log_message;

Line from modified script (uses a datapool with unencrypted password):

emulate ["RatlErp_sun_exception_on001"] datapool_value(VuErp_DP,
"RSYST_BCODE"), VuErp_log_message;
func VuErpFreeConnection() {}

A wrapper for It_FreeConnection(). Returns 0 if It_FreeConnection fails and
1 otherwise.

func VuErpFreeEvent() {}

A wrapper for It_FreeEvent(). Returns 0 if It_FreeEvent fails and 1 otherwise.

func VuErpGetEventEx(long flags) {}

A wrapper for It_GetEventEx(). Returns 0 if It_GetEventEx fails and 1
otherwise.

func VuErpLogoff() {}

A wrapper for It_Logoff(). Returns 0 if It_Logoff fails and 1 otherwise.

func VuErpNewConnection(Host,SystemNo,flags)
string Host, SystemNo; int flags; {}

A wrapper for It_NewConnection(). Returns 0 if It_NewConnection fails and 1
otherwise.

func VuErpSendEvent() {}

A wrapper for It_SendEvent(). Returns 0 if It_SendEvent fails and 1 otherwise.

func VuErpSendReturn() {}

A wrapper for It_SendReturn(). Returns 0 if It_SendReturn fails and 1
otherwise.

func VuErpSetCtlVScroll(Index, pos) int Index, pos; {}

Set TabVerScrollbarStartRow field of the IT_TABLEINFO structure for the
control indexed by Index. Returns 1 if successful and 0 otherwise.
SAP-Specific VU Functions 405

Event Structure Access
Event Structure Access

Each function in this section is invoked via the VU Language emulate() command.
Therefore, all environment variables that affect the emulate() command also affect
the execution of the functions in this section. Each function attempts to get the value
of an event or screen returned from the server. If the value is not assigned, each
function continues to check the value until the value is assigned or Timeout_val is
reached. (This is true for any function called by emulate()).

Functions
func VuErpGetEventPtr() {}
}

Returns a pointer to the current event structure. Returns a NULL if there is no valid
event at the time of the call.

func VuErpGetCtrlCnt() {}

Returns screen.iCtrlCnt field of the event structure that indicates the number of
controls present in the current event.

string func VuErpGetCtrlName(Index) int Index; {}

Returns the name of the control indexed by Index. If Index is invalid, an empty
string is returned. The space allocated for the string is reused on each successive call.
To preserve the return value, assign it to another VU string variable before calling this
function again.

string func VuErpGetCtrlValue(Index) int Index; {}

Returns a value of the control indexed by Index. If Index is invalid, an empty string
is returned. The space allocated for the string is reused on each successive call. To
preserve the return value, assign it to another VU string variable before calling this
function again.

string func VuErpGetCtrlFieldName(Index) int Index; {}

Returns a field name of the control — a szFieldName field of the IT_CTRL structure
indexed by Index. If the field name is not available or Index is invalid, an empty
string is returned. The space allocated for the string is reused on each successive call.
To preserve the return value, assign it to another VU string variable before calling this
function again.

string func VuErpGetScrnName() {}

Returns a screen name of the event — a screen.szScreenName field of the event
structure. If the screen name is not available, an empty string is returned. The space
allocated for the string is reused on each successive call. To preserve the return value,
assign it to another VU string variable before calling this function again.
406 Appendix B

Utilities
string func VuErpGetProgName() {}

Returns a program name of the event — a screen.szProgramName field of the
event structure. If the program name is not available, an empty string is returned. The
space allocated for the string is reused on each successive call. To preserve the return
value, assign it to another VU string variable before calling this function again.

string func VuErpGetEventMsg() {}

Returns a status message of the event — a szMessage field of the event structure. If
the status message is not available, an empty string is returned. The space allocated
for the string is reused on each successive call. To preserve the return value, assign it
to another VU string variable before calling this function again.

string func VuErpGetTitle() {}

Returns a title of the event — a szNormTitle field of the event structure. If the title is
not available, an empty string is returned. The space allocated for the string is reused
on each successive call. To preserve the return value, assign it to another VU string
variable before calling this function again.

Utilities

Each function in this section, except for VuErp_VerifyEvent(), is invoked via the
VU emulate() command. Therefore,, all VU environment variables that affect the
emulate() command also affect the execution of the functions in this section. Each
function, except the last two functions (VuErpDecrypt and
VuErpEncrypt), verifies that the value of a property of an event screen is the
expected value. The last two functions either encrypt or decrypt a text string.

Functions
int func
VuErp_VerifyEvent(scrn,prog,title,msg,ctrlCnt,verifyScrn,verifyMsg,ver
ifyCnt)()string scrn,prog,title,msg;
int ctrlCnt,verifyScrn,verifyMsg,verifyCnt;

This function verifies that the screen (event) returned from the SAP server is the
expected screen.

The verification is done by comparing the following five parameters of the
VuErp_VerifyEvent function call with the corresponding event properties actually
returned by the server:

scrn: Internal screen name as defined in Advanced Business Application
Programming (ABAP).

prog: Internal program name as defined in ABAP
SAP-Specific VU Functions 407

Utilities
title: Screen title (caption)

msg: Message appearing in the status bar of the screen

ctrlCnt: Number of controls on the screen

Comparison of attributes can be turned off with the last three parameters of
VuErp_VerifyEvent, as follows:

verifyScrn: If, and only if, the value of verifyScrn is 0, then scrn, prog, and
title are not compared with the actual values returned by the server.

verifyMsg: If, and only if, the value of verifyMsg is 0, then msg are not compared
with the actual value returned by the server.

verifyCnt: If, and only if, the value of verifyCnt is 0, then verifyCnt are not
compared with the actual value returned by the server.

The default values for verifyScrn, verifyMsg, and verifyCnt (the variables,
VuErp_VerifyScreenInfo, VuErp_VerifyMessageLine, and
VuErp_VerifyCtrlCount) are defined as 1 by default. You can change the values
of these variables or substitute another integer for the parameters verifyScrn,
verifyMsg, and verifyCnt.

VuErp_VerifyEvent returns 1 if all compared parameters of the event returned
from the server match all compared parameters of the expected event. If one or more
compared parameters do not match, this function returns 0.

This function is added at capture time by the exception handler or by the user during
script editing.

VuErp_VerifyEvent() is written in the VU Language and is contained in the file
~Program Files\Rational\Rational Test 7\include\vuerp1.h.

func VuErpCompareScreenName(in) string in; {}

Compares the in string against the screen name of the event. The function returns 1 if
strings are equal and 0 otherwise. If in is NULL, the function always returns 1.

func VuErpCompareProgramName(in) string in; {}

Compares the in string against the program name of the event. The function returns 1
if strings are equal and 0 otherwise. If in is NULL, the function always returns 1.

func VuErpCompareTitle(in) string in; {}

Compares the in string against the title of the event. The function returns 1 if strings
are equal and 0 otherwise. If in is NULL, the function always returns 1.

func VuErpCompareMessage(in) string in; {}
408 Appendix B

Utilities
Compares the in string against the status message of the event. The function returns 1
if strings are equal and 0 otherwise. If in is NULL, the function always returns 1.

func VuErpCompareEvent(title,scrn,prog,msg,ctrlCnt)
string title,scrn,prog,msg; long ctrlCnt; {}

This function combines the functionality of the previous four and also compares the
number of controls. Just as for the previous functions, passing NULL for any string
parameter causes the comparison of that parameter to always succeed. If ctrlCnt is
-1, the controls count comparison always succeeds.

string func VuErpCrypt(char *str)

Returns an encrypted version of str. The space allocated for the string is reused on
each successive call. To preserve the return value, assign it to another VU string
variable before calling this function again.

string func VuErpDecrypt(char *str)

Returns a decrypted version of str. The space allocated for the string is reused on
each successive call. To preserve the return value, assign it to another VU string
variable before calling this function again.
SAP-Specific VU Functions 409

Utilities
410 Appendix B

Index
A
abs library routine 132
absolute values of numbers 132
address of operator 31
_alltext read-only variable 95, 122, 123
AppendData function 79, 133
arguments

arrays 44
integer 68
string 68

arithmetic operators 28
bank 29
integers 28
strings 29

arrays 39
arguments 44, 68
assignment operators 43
functions 62
initialization 41
limitof operator 44
operators 43
subroutine arguments 44
subscripts 43

ASCII to integer conversion 135
assignment operators 30, 43
associativity of operators (table) 35
asterisk operator 50
atoi library routine 135

B
bank

data type 24
library routine 136
union of expressions 29

base64_decode library routine 140
base64_encode library routine 141

bitwise operators 29
AND 29
exclusive OR 29
left shift 29
OR 29
right shift 30

braces operator 50
break statement 44, 45, 137
buffer (TUXEDO)

returning type of 373

C
C language, VU additions to 5
calling

procedures 64
character constants 25, 26
characters

input 171
nonprinting 54, 214
returning position of 209
string conversions 146
unformatted 374
writing unformatted output 173

CHECK_FIND_RESULT 186
Check_unread environment variable 92, 106
cindex library routine 139, 209, 211, 249, 318
circumflex operator 50
Cleanup_time argument

effect on Escape_seq and Logout_seq 102
client/server environment variables 95

Columh_headers 92
Column_headers 92, 95, 96, 110, 122
CS_blocksize 92, 96, 291
Cursor_id 92
Server_connection 93, 96, 101
Sqlexec_control_oracle 93, 97
Sqlexec_control_sqlserver 93, 97
Sqlexec_control_sybase 94, 97
Sqlnrecv_long 94, 98, 291
Index 411

Statement_id 94
Table_boundaries 94, 99, 134, 238, 291

close library routine 142
close server connection 184
closing a connection 273
closing an open datapool 147
_cmd_id read-only variable 122
_cmdcnt read-only variable 123, 92
Column_headers environment variable 92, 95,

96, 110, 122
_column_headers read-only variable 122
comma operator 34
command IDs

logging 107, 110
read-only variable 122

_command read-only variable 122
comments 38
compiling portions of a script 60
computer resouces

monitoring 76
computers

read-only variable containing names of 122
concatenation operator 43
conditional operator 34
connect environment variables 100

Connect_retries 92, 100
Connect_retry_interval 92, 100

Connect_retries environment variable 92, 100
Connect_retry_interval environment

variable 92, 100
connection

closing 273
constants 25

character 25
integer 25
string 26

continue statement 44, 45, 143
conversion routines 15
COOKIE_CACHE statement 144
CORBA model 85
CPU think time 117
creating a string expression 306, 315
CS_blocksize environment variable 92, 96, 291
ctos library routine 146
Cursor_id environment variable 92

_cursor_id read-only variable 123
cursors 284

allocating 260
closing 262
declaring 270
inserting 287
opening 292
persistent 149
positioning 294
private vs. shared 149
refreshing 298
setting options 268

customer support xvi

D
data correlation 127

http function for 185
data types 23

bank 24
integer 24
string 24

datapool functions 18, 132
datapool_close datapool function 147
DATAPOOL_CONFIG datapool function 147
datapool_fetch datapool function 155
datapool_open datapool function 156
datapool_value datapool function 159
datapools 5, 126

closing 147
configuration information 147
DP_NOWRAP 148
DP_PRIVATE 148
DP_SHARED 148
DP_WRAP 148
persistent cursors 149
private user access to 149
retrieve value 159
shared user access to 149

decrement operator 32
defining

functions 62
procedures 62, 63
subroutines 61
412 Index

delay library routine 160, 161
scaling time of 116

Delay_dly_scale environment variable 24, 92,
116, 136, 160

deleting a row 271
dollar sign operator 50
do-while statement 45, 162
dynamic data correlation 127

header file for 59

E
else-if statement 163
emulate emulation command 76, 164

and SAP protocol 108
logging 110

emulation commands 75
expected and unexpected responses 79
HTTP 76

receive 7, 114
send 7, 114

http_recv 76
IIOP 85

send 13, 114
number executed 123
read-only variable containing 122
send 114
socket 91

receive 114
SQL 78

receive 8, 114
send 8, 114

TUXEDO 81
send 10

emulation functions 92, 132
command count not incremented by 92
HTTP 7
IIOP 13
SQL 9
TUXEDO 11

environment control commands 94, 131
eval 94, 167
pop 94, 223
push 94, 228
reset 94, 233

restore 94, 235
save 94, 236
set 94, 243
show 94, 247

environment variables 58, 92
client/server 95

Column_headers 92, 95, 96, 110, 122
CS_blocksize 92, 96, 291
Cursor_id 92
Server_connection 77, 93, 96, 101
Sqlexec_control_oracle 93, 97
Sqlexec_control_sqlserver 93, 97
Sqlexec_control_sybase 94, 97
Sqlnrecv_long 94, 98, 291
Statement_id 94
Table_boundaries 94, 99, 134, 238, 291

connect 100
Connect_retries 92, 100
Connect_retry_interval 92, 100

current 95
default 95
displaying values of 247
exit sequence

Escape_seq 93
Escapet_seq 100
Logout_seq 24, 93, 100, 136

getting values of 182
HTTP 102

Http_control 93
Line_speed 93

IIOP 104
Iiop_bind_modi 93

initializing 95
private 104

Mybstack 24, 93, 104
Mysstack 93, 104
Mystack 93, 104

reporting 105
Check_unread 92, 106
Log_level 79, 93, 107
Max_nrecv_saved 93, 106, 110, 123
Record_level 93, 96, 112
Suspend_check 94, 113

response timeout
Timeout_act 94, 114
Timeout_scale 94, 114, 115
Timeout_val 79, 94, 114, 115, 280, 296
Index 413

saved 95
setting to default value 233
setting values of 94, 95, 229, 243
think time 116

Delay_dly_scale 24, 92, 116, 136, 160
Think_avg 94, 101, 116, 119, 120
Think_cpu_dly_scale 94, 117
Think_cpu_threshold 94, 117
Think_def 94, 102, 118
Think_dist 94, 102, 118, 119, 120
Think_dly_scale 94, 120
Think_max 94, 120
Think_sd 94, 119, 120

equality operator 33, 34
error messages

read-only variable containing 79, 122
_error read-only variable 79, 85, 123
_error_text read-only variable 79, 85, 122
_error_type read-only variable 85, 124
Escape_seq environment variable 93, 100, 101
eval environment control command 94, 167
exit sequence environment variables

Escape_seq 93, 100
Logout_seq 24, 93, 100, 136

exiting from an emulation session 101
expected responses 79
expire_cookie emulation function 168
expressions 35
external C

arrays 68
shared library 70

external C functions 66
and SAP protocol 108
declaring 66
linkage 64
memory management 68
passing arguments 67
variables 38, 65

F
_fc_ts read-only variable 124
feof library routine 169

fflush library routine 170
fgetc library routine 171
files

closing 142
generating temporary name 324
multiple source 60
opening 221
pointer 169
reading input from 238
removing 377
repositioning pointer 177
returning pointer 178
sharing 245
temporary names 324
writing buffered data to 170
writing data to 226

flow control 14, 44
break statement 137
continue statement 143
do-while statement 162
else-if statement 163
for statement 172
if-else statement 197
loops 45
statements 131
while statement 385

for statement 45, 172
fprintf library routine 226
fputc library routine 173
fputs library routine 173
_fr_ts read-only variable 124
FreeAllData function 79, 174
FreeData function 79, 175
_fs_ts read-only variable 124
fscanf library routine 238
fseek library routine 177
ftell library routine 178
functions 62

arguments 62
defining 62
VU file I/O 10
VU toolkit 6, 10, 132
414 Index

G
get header values 187
GetData function 79, 179
GetData1 function 79, 180
getenv library routine 182
greater than operator 33
greater than or equal to operator 33, 34

H
header files 5, 58

sme/data.h 59
sme/file.h 59
VU_tux.h 59
VU.h 58, 171, 172, 239, 375
with emulate command 166

help desk xvi
hex2mixedstring library routine 183
_host read-only variable 122
hotline support xvi
HOURS macro 58
HTTP

monitoring computer resources 76
http

dynamic data correlation 127
HTTP emulation commands 7, 76

setting retries 100
HTTP emulation functions 7
HTTP environment variables 102

Http_control 93
Line_speed 93

Http_control environment variable 93
http_disconnect emulation function 184
http_find_values emulation function 185
http_header_info emulation function 187
http_header_recv emulation command 106, 188

bytes received 125
logging 108

http_nrecv emulation command 191
and Max_nrecv_saved 106
bytes processed by 125
bytes received 125
logging 108

http_recv emulation command 76, 192
and Max_nrecv_saved 106
bytes processed by 125
bytes received 125
logging 108

http_request emulation command 194
bytes sent to server 125
logging 108
setting retries 100
Think_avg set before each 116

http_url_encode emulation function 196

I
identifier 25
if-else statement 197
IIOP emulation commands 13, 85
IIOP emulation functions 13
IIOP environment variables 104

Iiop_bind_modi 93
Iiop_bind_modii environment variable 93
increment operator 32
IndexedField function 80, 203
IndexedSubField function 81, 206
inequality operator 33, 34
INFO SERVER statement

location in virtual user script 76
initializing environment variables 95
initializing read-only variables 125
integer

constants 25
converting to string 135, 208

integer data type 24
integer-valued read-only variables 123
i/o routines 15
itoa library routine 208

J
Java 389
Jolt protocol 389

and socket emulation commands 91, 108,
389

building attribute and parameter lists 395
Index 415

extracting attribute values from
responses 400

extracting field values from responses 400
response query functions 395, 399

Jolt Server Handlers 391

L
_lc_ts read-only variable 124
lcindex library routine 139, 209, 211, 249, 318
less than operator 33
less than or equal to operator 33, 34
library routines 131
limitof operator 44
Line_speed environment variable 93
_lineno read-only variable 124
linkage to external C 64
LoadTest

read-only variable containing version 123
log files 111

writing messages to 210
Log_level environment variable 79, 93, 107

ALL 107
ERROR 107
OFF 107
TIMEOUT 107
UNEXPECTED 107

log_msg library routine 210
logical

AND 32
negation 31
OR 33

logical negation operator 31
Logout_seq environment variable 24, 93, 100,

136
longbinary results

retrieving 288
longchar results

longbinary and longchar 288
loops 45
_lr_ts read-only variable 124
_ls_ts read-only variable 124
lsindex library routine 139, 209, 211, 249, 318

M
match library routine 212
Max_nrecv_saved environment variable 93,

106, 110, 123
Microsoft SQL Server 266
MINUTES macro 58
mixed2hexstring library routine 213
mkprintable library routine 214
monitoring computer resources 76
move cursor to next datapool record 155
Mybstack environment variable 24, 93, 104
Mysstack environment variable 93, 104
Mystack environment variable 93, 104

N
negation operator 32
negexp library routine 216
NextField function 80, 217
NextSubField function 80, 219
nonprintable characters

representing in scripts 54, 214
_nrecv read-only variable 106, 125
null statement 36
numbers

absolute value 132
_nusers read-only variable 125
_nxmit read-only variable 125

O
one’s complement operator 32
open library routine 221
opening datapools 156
opening files 221
operators 28

address of 31
arithmetic 28
assignment 30, 43
associativity 35
asterisk 50
bitwise 29
bitwise AND 29
416 Index

bitwise left shift 29
bitwise OR 29
braces 50
circumflex 50
comma 34
concatenation 43
conditional 34
decrement 32
dollar sign 50
equality 33
exclusive OR 29
greater than 33
greater than or equal to 33, 34
increment 32
inequality 33, 34
less than 33
less than or equal to 33, 34
limitof 44
logical AND 32
logical negation 31
logical OR 33
one’s complement 32
pipe 50
plus 50
precedence 35
question mark 50
relational 32
right shift 30
unary 31
unary negation 32

Oracle
arguments 276
environment variables 93, 97
prefixes 59, 300

P
passing arguments

arrays 68
integers 68
strings 68

pattern matching 212
pattern string constants 26, 27
persistent datapool cursors 149

persistent variables 47, 223
in declarations 38
initial values 47

pipe operator 50
plus operator 50
pointer 169

repositioning 177
returning offset of 178

pop environment control command 94, 223
preprocessor 59

conditional compilation 60
features 59
file inclusion 60
for VU 59
token replacement 59

preVueCS_tux.h. See VU_tux.h header file
preVueCS.h. See VU.h header file
preVue.h. See VU.h header file
print statement 225
printf library routine 226
private datapool cursors 149
private environment variables 104

Mybstack 24, 93, 104
Mysstack 93, 104
Mystack 93, 104

procedures
calling 64
defining 62, 63
examples 64

program structure 57
push environment control command 94, 228
putenv library routine 229

Q
question mark operator 50

R
rand library routine 230
random numbers 216, 307, 375

rand library routine 230
routines 17

Rational technical support xvi
Index 417

ReadLine function 80, 231
read-only variables 121

_alltext 95, 122, 123
_cmd_id 122
_cmdcnt 92, 123
_column_headers 122
_command 122
_error 79, 85, 123
_error_text 79, 85, 122
_error_type 85, 124
_fc_ts 124
_fr_ts 124
_fs_ts 124
_host 122
_lc_ts 124
_lineno 124
_lr_ts 124
_ls_ts 124
_nrecv 106, 125
_nusers 125
_nxmit 125
_reference_URI 122
_response 123, 190, 192, 193
_script 123
_source_file 123
_statement_id 125
_total_nrecv 106, 125
_total_rows 106, 125
_tux_tpurcode 125
_uid 125, 126
_user_group 123
_version 123
cursor_id 123
initialization 125
integer-valued 123

receive emulation commands 131
receives

bytes from server 191
server header metadata 188
string data 257

Record_level environment variable 93, 96, 112
values 112

_reference_URI read-only variable 122

regular expressions 49, 51
errors 52
rules 49
single-character operators 49

relational operators 32
integer operands (table) 32
string operands 33

reporting environment variables 105
Check_unread 92, 106
Max_nrecv_saved 93, 106, 110, 123
Suspend_check 94, 113

reset environment control command 94, 233
reset random number generator 307
response

checking for specific results 326
_response read-only variable 123, 190, 192,

193
response timeout environment variables

Timeout_act 94, 114
Timeout_scale 94, 114, 115
Timeout_val 79, 94, 114, 115, 280, 296

restore environment control command 94, 235
retrieve datapool value 159
return statements 62
returns

character data 211
random integers 216
rowtag 267

rows
deleting 271
fetching 282
number processed 106, 125
retrieving 290
updating 304

S
SAP protocol

and emulate emulation command 108
save environment control command 94, 236
SaveData function 79, 237
saving environment variables 236
_script read-only variable 123
script_exit library routine 240
418 Index

scripts
delaying execution of 160, 161
exiting from 240
read-only variable containing 123
representing nonprintable characters 54,

214
SECONDS macro 58
seed 119
seed flags 119
send emulation command 241, 242
send emulation commands 131

send 241
send HTTP request 194
server

close connection 184
connection 249
receive header metadata 188

Server_connection environment variable 77, 93,
96, 101

session files 5
session ID 127

where stored 127
set environment control command 94, 243
set_cookie emulation function 244
shared datapool cursors 149
shared library 70
shared variables 46, 383

atomic read and update 30, 32
in declarations 38
initialization 46, 48
reading 47
scope 45
unary operators and 31
updating 46

SHARED_READ function 81, 245
shell, escaping to 323
show environment control command 94, 247
sindex library routine 139, 209, 211, 248, 249,

318
sme/data.h header file 59
sme/file.h header file 59
sock_connect emulation function 249

setting retries 100
sock_create emulation function 251
sock_disconnect emulation function 252, 256

sock_fdopen emulation function 253
sock_isinput emulation function 254
sock_nrecv emulation command 106, 255

and Max_nrecv_saved 106
bytes processed by 125
Jolt protocol and 395, 400
logging 108

sock_recv emulation command 257
and Max_nrecv_saved 106
bytes processed by 125
Jolt protocol and 390
logging 109

sock_send emulation command 259
bytes sent to server 125
Jolt protocol and 390, 393
logging 108
Think_avg set before each 116

socket emulation commands 91
and Jolt protocol 91, 108, 389

sockets
checking for input 254
creating 251
disconnect 252, 256
sending data 259
setting retries 100

_source_file read-only variable 123
sprintf library routine 226
SQL

alloc_cursor 260
commit 264
connect 265
declare 270
delete cursor 271
disconnect 273
executing statements 274
fetch_cursor 282
free_cursor 284
open_cursor 292
prepare 296
retrieves row results 290
rollback 299
rowtag 267
set database server 300
update current row 304
Index 419

SQL emulation commands 78
receive 8
send 8

SQL emulation functions 9
SQL Server

arguments 277
committing transactions 264
environment variables 93, 97
rolling back transactions 299
TDS protocol version 266

SQL VU file I/O functions 10
SQL VU toolkit functions 6, 10, 132
SQL_NULL

specifying 279
sqlalloc_cursor emulation function 260
sqlalloc_statement emulation function 261

_statement_id returned by 125
sqlclose_cursor emulation command 262

logging 109
sqlcommit emulation function 264
sqlconnect emulation function 265

example 281
sqlcursor_rowtag emulation function 267, 272
sqlcursor_setoption emulation function 268
sqldeclare_cursor emulation command 270

logging 109
sqldelete_cursor emulation command 271

logging 109
sqldisconnect emulation function 273

example 281
sqlexec emulation command 274

example 281
logging 109
number of characters sent to server 125
sets rows processed to 0 125
Think_avg set before each 116

Sqlexec_control_oracle environment variable 93,
97

Sqlexec_control_sqlserver environment
variable 93, 97

Sqlexec_control_sybase environment
variable 94, 97

sqlfetch_cursor emulation command 282
and Max_nrecv_saved 106
and sqllongrecv 289

logging 109
sqlfree_cursor emulation function 284
sqlfree_statement emulation function 285
sqlinsert_cursor emulation command 287
sqllongrecv emulation command 106, 288
sqlnrecv emulation command 290

and Max_nrecv_saved 106
and sqllongrecv 289
increments total rows processed 125
logging 110
rows processed by 125

Sqlnrecv_long environment variable 94, 98,
291

sqlopen_cursor emulation command 292
logging 109

sqlposition_cursor emulation command 294
sqlprepare emulation command 296

_statement_id returned by 125
example 281
logging 109
number of characters sent to server 125
Think_avg set before each 116

sqlrefresh_cursor emulation command 298
sqlrollback emulation function 299
sqlsetoption emulation function 300

example 281
sqlsysteminfo send emulation command 301
sqlupdate_cursor emulation command 304

logging 110
sqtrans library routine 306
srand library routine 307
sscanf library routine 238
standard input

reading data from 238
start_time emulation command 76, 308

logging not done 110
Statement_id environment variable 94
_statement_id read-only variable 125
statements 36

executing SQL 274
freeing client and server resources 285
preparing SQL 296
SQL free_statement 285

stoc library routine 312
420 Index

stop_time emulation command 76, 312
logging not done 110

string
concatenating 29
constants 26
conversion to character 312
converting characters to 146
converting integer to 208
converting to hexadecimal 183, 213
create string expression 316
creating expressions 306, 315
data type 24
decoding 140
deleting characters in 329
extracting substring from 320, 321
operands 33
return 314
returning length of 313
returns

length 318
position of character within 139

substituting characters in 329
writing unformatted output for 173

strings 16
encoding 141

strlen library routine 313
strneg library routine 314
strrep library routine 315, 316
strspan library routine 139, 209, 211, 249, 318
subfield library routine 320
subroutines, defining 61
substr library routine 321
support, technical xvi
Suspend_check environment variable 94, 113
Sybase 266

arguments 277
committing transactions 264
environment variables 94, 97
prefixes 59, 300
rolling back transactions 299
TDS protocol version 266

sync_point statement 132, 322
synchronization points

setting 132, 322
system library routine 323

T
Table_boundaries environment variable 94, 99,

134, 238, 291
sqlfetch_cursor 99
sqlnrecv 99

_task_file. See scripts
task. See scripts
task_exit. See script_exit library routine
technical support xvi
tempnam library routine 324
testcase emulation command 76, 326

logging 110
testers. See virtual testers
think time

Think_dly_scale 120
think time environment variables 116

Delay_dly_scale 24, 92, 116, 136, 160
examples 121
Think_avg 94, 101, 116, 119, 120
Think_cpu_dly_scale 94, 117
Think_cpu_threshold 94, 117
Think_def 94, 102, 118
Think_dist 94, 102, 118, 119, 120
Think_dly_scale 94, 120
Think_max 94, 120
Think_sd 94, 119, 120

Think_avg environment variable 94, 101, 116,
119, 120

Think_cpu_dly_scale environment variable 94,
117

Think_cpu_threshold environment variable 94,
117

Think_def environment variable 94, 102, 118
values 118

Think_dist environment variable 94, 102, 118,
119, 120

constant 119
negexp 119
uniform 119

Think_dly_scale environment variable 94, 120
Think_max environment variable 94, 120
Think_sd environment variable 94, 119, 120
Index 421

time
converting to hours 58
converting to minutes 58
converting to seconds 58
defining start 308
returning current 327, 328
setting delay 160, 161
setting stop 312

time library routine 327
Timeout_act environment variable 94, 114
Timeout_scale environment variable 94, 114,

115
Timeout_val environment variable 79, 94, 114,

115, 280, 296
timestamps 124
tod library routine 328
tokens

replacing 59
_total_rows read-only variable 106, 125
_total_nrecv read-only variable 106, 125
trans library routine 329
transactions

aborting (TUXEDO) 341
committing 264
committing (TUXEDO) 350
datapools 126
rolling back 299
suspending (TUXEDO) 369

tux_allocbuf emulation function 330
tux_allocbuf_typed emulation function 331
tux_bq emulation command 332
tux_freebuf emulation function 333
tux_getbuf_ascii emulation function 334
tux_getbuf_int emulation function 335
tux_getbuf_string emulation function 336
tux_reallocbuf emulation function 337
tux_setbuf_ascii emulation function 338
tux_setbuf_int emulation function 339
tux_setbuf_string emulation function 339
tux_sizeofbuf emulation function 340
tux_tpabort emulation command 341
tux_tpacall emulation command 342
tux_tpalloc emulation function 344

tux_tpbegin emulation function
transactions 345

tux_tpbroadcast emulation command 346
tux_tpcall emulation command 347

sets TUXEDO user return code 125
updating _tux_tpurcode 85

tux_tpcancel emulation function 348
tux_tpchkauth emulation function 349
tux_tpcommit emulation command 350
tux_tpconnect emulation command 351
tux_tpdequeue emulation command 352
tux_tpdiscon emulation command 353
tux_tpenqueue emulation command 354
tux_tpfree emulation function 355
tux_tpgetrply emulation command 356

sets TUXEDO user return code 125
updating _tux_tpurcode 85

tux_tpinit emulation command 358
tux_tpnotify emulation command 359
tux_tppost emulation command 360
tux_tprealloc emulation function 362
tux_tprecv emulation command 362

sets TUXEDO user return code 125
updating _tux_tpurcode 85

tux_tpresume emulation command 364
tux_tpscmt emulation function 365
tux_tpsend emulation command 366

sets TUXEDO user return code 125
updating _tux_tpurcode 85

tux_tpsprio emulation function 367
tux_tpsubscribe emulation command 368
tux_tpsuspend emulation command 369
tux_tpterm emulation command 370
tux_tptypes emulation function 371
tux_tpunsubscribe emulation command 372
_tux_tpurcode read-only variable 125
tux_typeofbuf emulation function 373
tux_userlog emulation function 373
TUXEDO

interaction with Jolt 389
TUXEDO emulation commands 10, 81

logging 110
TUXEDO emulation functions 11
422 Index

U
_uid read-only variable 125

usage 126
unary negation operator 32
unary operators 31
unexpected responses 79
ungetc library routine 374
uniform library routine 375
union, bank expressions 29
unlink library routine 377
unprintable data 54
unprintable string and character constants 54
user think time 117
user_exit library routine 101, 102, 378
_user group read-only variable 123
usergroup_member library routine 379
usergroup_size library routine 380
userlist_length. See usergroup_size library rou-

tine
userlist_member. See usergroup_member library

routine

V
values

absolute 132
variables

assignment 37
default data type 24

initial values of 48
naming rules 25
persistent 47
Sqlexec_control 97
See also shared variables, persistent variables

_version read-only variable 123
virtual testers

blocking 381
datapools 126
ID of 125
number of, in TestManager session 125
terminating emulations 101, 102, 378

VU file I/O functions 10
VU scripts 57
VU toolkit functions 6, 10, 132

AppendData 133
FreeAllData 174
FreeData 175
GetData 179
GetData1 180
SaveData 237

VU_tux.h header file 59
VU.h header file 5, 58, 171, 172, 239, 375

W
wait library routine 381, 382
watch files 5
while statement 45, 385
Index 423

424 Index

	VU Language Reference
	Version 2001A.04.00
	Part Number 800-024527-000

	COPYRIGHT
	Contents
	Preface xv
	What Is VU? 3
	Functional List 7
	VU Fundamentals 23
	Scripts, Subroutines, and C Libraries 57
	User Emulation 75
	Command Reference 131
	Jolt-Specific VU Functions 389
	SAP-Specific VU Functions 403
	Index 411

	Preface
	Audience
	Other Resources
	Using the VU Help
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	What Is VU?
	Automated Script Generation
	Working with Scripts
	Your Work Environment

	Source and Runtime Files
	VU Additions to the C Language
	SQABasic Scripting Language

	Functional List
	HTTP Emulation Commands and Functions
	HTTP Send Emulation Commands
	HTTP Receive Emulation Commands
	HTTP Emulation Functions

	SQL Emulation Commands and Functions
	SQL Send Emulation Commands
	SQL Receive Emulation Commands
	SQL Emulation Functions

	VU Toolkit Functions
	VU Toolkit Functions: Data
	VU Toolkit Functions: File I/O

	TUXEDO Emulation Commands and Functions
	TUXEDO Send Emulation Commands
	TUXEDO Receive Emulation Commands
	TUXEDO Emulation Functions

	IIOP Emulation Commands and Functions
	IIOP Send Emulation Commands
	IIOP Emulation Functions

	Socket Emulation Commands and Functions
	Socket Send Emulation Commands
	Socket Receive Emulation Commands
	Socket Emulation Functions

	Emulation Commands That Can Be Used with Any Protocol
	Send Emulation Commands
	Other Emulation Commands

	Flow Control Statements
	I/O Routines
	Conversion Routines
	String Routines
	Random Number Routines
	Timing Routines
	Miscellaneous Routines
	Synchronization Statements
	Datapool Functions
	Environment Control Commands
	Statements

	VU Fundamentals
	Data Types
	Integer
	String
	Bank

	Language Elements
	Identifiers
	Constants
	Integer Constants
	Character Constants
	String Constants
	Examples of Constants

	Operators
	Binary Arithmetic Operators
	Binary Bitwise Operators
	Assignment Operators
	Unary Operators
	Relational Operators
	Other Operators

	Operator Precedence and Associativity

	Expressions
	Statements
	Comments
	Arrays
	Array Constants
	Declaring an Array
	Initializing an Array
	Example of Array Initialization

	Array Subscripts
	Array Operators
	Binary Concatenation Operator for Arrays
	Assignment Operators for Arrays
	Unary limitof Operator for Arrays
	Arrays as Subroutine Arguments

	Flow Control
	Loops
	Break and Continue

	Scope of Variables
	Shared Variables
	Persistent Variables
	Examples
	Script A
	Script B
	Script C

	Initial Values of Variables
	VU Regular Expressions
	General Rules
	Single-Character Regular Expression Operators
	Other Regular Expression Operators
	Regular Expression Examples
	Regular Expression Errors

	How a VU Script Represents Unprintable Data
	Unprintable String and Character Constants
	Unprintable HTTP or Socket Data

	Scripts, Subroutines, and C Libraries
	Program Structure
	Header Files
	VU.h
	VU_tux.h
	sme/data.h
	sme/file.h

	Preprocessor Features
	Token Replacement
	Example

	Creating a Script That Has More than One Source File
	Compiling Parts of a Script

	Defining Your Own Subroutines
	Defining a Function
	Calling a Function
	Example
	Defining a Procedure
	Calling a Procedure
	Example

	Accessing External C Data and Functions
	External C Variables
	Declaring External C Subroutines
	Accessing Values Returned from C Functions
	Passing Arguments to External C Functions
	Integers
	Strings
	Arrays

	Memory Management of VU Data
	Memory Management of C Data
	Specifying External C Libraries
	Creating a Dynamic-Link Library on Windows NT
	Creating a Shared Library on UNIX
	Examples

	User Emulation
	Emulation Commands
	HTTP Emulation Commands
	HTTP Commands that You Insert Manually
	Monitoring Computer Resources
	Example

	SQL Emulation Commands
	Processing Data from SQL Queries
	SQL Error Conditions

	VU Toolkit Functions: File I/O
	TUXEDO Emulation Commands
	How VU Represents TUXEDO Pointers
	TUXEDO Error Conditions

	IIOP Emulation Commands
	Interfaces, Interface Implementations and Operations
	Request Contexts and Result Sets
	VU/IIOP Pseudo-Objects
	Parameter Expressions
	Interface Definition Language (IDL)
	Exceptions and Errors

	Socket Emulation Commands

	Emulation Functions
	VU Environment Variables
	Changing Environment Variables Within a Script
	Initializing Environment Variables through a Suite
	Client/Server Environment Variables
	Column_headers
	CS_blocksize
	Cursor_id
	Server_connection
	Sqlexec_control variables
	Sqlnrecv_long
	Statement_id
	Table_boundaries

	Connect Environment Variables
	Connect_retries
	Connect_retry_interval

	Exit Sequence Environment Variables
	HTTP-Related
	Http_control
	Line_speed

	IIOP-Related
	Iiop_bind_modi

	Private Environment Variables
	Mystack, Mybstack, and Mysstack

	Reporting Environment Variables
	Check_unread
	Max_nrecv_saved
	Log_level
	Record_level
	Suspend_check

	Response Timeout Environment Variables
	Timeout_act
	Timeout_scale
	Timeout_val

	Think Time Variables
	Delay_dly_scale
	Think_avg
	Think_cpu_dly_scale
	Think_cpu_threshold
	Think_def
	Think_dist
	Think_dly_scale
	Think_max
	Think_sd
	Examples of Think Time Variables

	Read-Only Variables
	Initialization of Read-Only Variables
	Example

	Supplying a Script with Meaningful Data
	Datapools
	Dynamic Data Correlation

	Command Reference
	Format for Specifying sqlexec Arguments
	How sqlexec Processes Statements
	List of Operations
	List of Operation Arguments

	Jolt-Specific VU Functions
	Jolt Overview
	TestManager/Jolt Function Overview
	Request Construction Functions
	Message Construction Functions
	Response Query Functions
	Response Header Query Functions

	Message Query Functions
	Session Control Functions
	Application Service Functions
	Request Construction
	Associating Construction Functions
	Building Requests
	Building Attribute Lists and Parameter Lists

	Response Query

	TestManager/Jolt Function Reference
	Request Construction Functions
	Message Construction Functions
	Attribute List Construction Functions
	Parameter List Construction Functions
	Response Query Functions
	int jolt_response_header ()
	int jolt_response_body ()

	Message Query Functions
	Response Attribute Query Functions
	Response Parameter Query Functions

	SAP-Specific VU Functions
	Event Manipulation and Communication
	Functions

	Event Structure Access
	Functions�

	Utilities
	Functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

