
support@rational.com
http://www.rational.com

Rational the e-development company™

Rational Test Script Services
for Java

VERSION 2001A.04.00

PART NUMBER 800-024529-000

IMPORTANT NOTICE

COPYRIGHT

Copyright ©2000, 2001, Rational Software Corporation. All rights reserved.

Part Number: 800-024529-000

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO
PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, the Rational logo, Rational the e-development company,
ClearCase, ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio,
PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational
PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational
Visual Test, Requisite, RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational
Watch are trademarks or registered trademarks of Rational Software Corporation in the United States and
in other countries. All other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C++, Visual
Basic, Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and
XENIX are trademarks or registered trademarks of Microsoft Corporation in the United States and
other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc.
Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product
or application the primary purpose of which is software license management.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and
277.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license agreement.
Rational Software Corporation expressly disclaims all other warranties, express or implied, with respect to
the media and software product and its documentation, including without limitation, the warranties of
merchantability or fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface . xi
About This Manual . xi
Audience . xi
Other Resources. xi
Contacting Rational Technical Publications .xii
Contacting Rational Technical Support .xii

1 Introduction .1
About Java Test Script Services . 1

Using Test Script Services With Rational TestManager . 1
Using Test Script Services With Rational QualityArchitect 2
Summary of Services . 2

2 Working with Test Scripts. .5
About Java Test Scripts. 5
Creating Test Scripts. 5

Entry Points . 6
Registering Test Script Source Folders . 6

Editing and Storing Test Scripts . 7
Storing Scripts in Java Packages . 8
Test Script Names . 8

Compiling Test Scripts . 8
Running Test Scripts . 8

Running Test Scripts in a TestManager Suite. 10
Adding a Source Folder for Java Scripts . 10
Adding a Script Contained in a Java Package . 11
Running Test Scripts Outside TestManager . 11

Returning Information from Test Scripts . 12
Test Log . 13
Error File and Output File . 14
TestManager Shared Memory . 14

Catching Exceptions . 15

3 Test Script Services Reference .17
About Test Script Services . 17
Datapool Class . 18
Contents iii

Summary . 18
TSSDatapool.close() . 19
TSSDatapool.columnCount() . 20
TSSDatapool.columnName() . 20
TSSDatapool.fetch() . 21
TSSDatapool.open() . 22
TSSDatapool.rewind() . 25
TSSDatapool.rowCount() . 26
TSSDatapool.search() . 27
TSSDatapool.seek() . 29
TSSDatapool.value() . 30

Logging Class . 32
Summary . 32
TSSLog.event(). 33
TSSLog.message(). 34
TSSLog.testCaseResult() . 36

Measurement Class . 38
Summary . 38
TSSMeasure.commandEnd() . 38
TSSMeasure.commandStart() . 40
TSSMeasure.environmentOp(). 42
TSSMeasure.getTime() . 51
TSSMeasure.internalVarGet() . 52
TSSMeasure.think() . 56
TSSMeasure.timerStart() . 57
TSSMeasure.timerStop() . 58

Utility Class . 60
Summary . 60
TSSUtility.delay() . 61
TSSUtility.errorDetail() . 61
TSSUtility.getScriptOption() . 63
TSSUtility.getTestCaseConfigurationName() . 64
TSSUtility.getTestCaseName() . 64
TSSUtility.negExp(). 65
TSSUtility.rand() . 66
TSSUtility.seedRand() . 67
TSSUtility.stdErrPrint() . 68
TSSUtility.stdOutPrint(). 69
iv Contents

TSSUtility.uniform() . 70
Monitor Class . 72

Summary . 72
TSSMonitor.display() . 72
TSSMonitor.positionGet(). 73
TSSMonitor.positionSet() . 74
TSSMonitor.reportCommandStatus(). 76
TSSMonitor.runStateGet() . 77
TSSMonitor.runStateSet() . 77

Synchronization Class . 82
Summary . 82
TSSSync.sharedVarAssign() . 83
TSSSync.sharedVarEval() . 84
TSSSync.sharedVarWait() . 86
TSSSync.syncPoint() . 88

Session Class. 90
Summary . 90
TSSSession.connect() . 91
TSSSession.context() . 92
TSSSession.disconnect(). 93
TSSSession.serverStart() . 94
TSSSession.serverStop(). 95
TSSSession.shutdown(). 96

Advanced Class . 97
Summary . 97
TSSAdvanced.internalVarSet() . 98
TSSAdvanced.logCommand() . 99
TSSAdvanced.thinkTime() . 101

4 Extended Test Script Services Reference 103
About the Extensions . 103

Requirements for Using the Test Script Services Extensions 103
LookUpTable Class. 104

Summary . 107
Constructor. 107
LookUpTable.close(). 107
LookUpTable.find() . 108
LookUpTable.getExpectedException() . 109
LookUpTable.getReturnValue() . 109
Contents v

LookUpTable.getValue() . 110
LookUpTable.open() . 111

TestLog Class . 112
Summary . 115
Constructor . 115
TestLog.writeException() . 115
TestLog.writeStubException(). 116
TestLog.writeStubMessage() . 117

5 Verification Services . 119
Introduction to Verification Points . 119
About Verification Points . 119

Roles in Working with Verification Points . 120
How Data Is Verified . 121
Types of Verification Points . 122

Static Verification Points . 123
Dynamic Verification Points . 123
Manual Verification Points . 124

Verification Point Framework. 124
Verification Point Classes . 125

Setting Up Verification Points in Test Scripts. 127
Setting Up a Static Verification Point . 127

Step 1. Specify the Metadata for the Verification Point 127
Step 2. Execute the Verification Point . 128

Setting Up a Dynamic Verification Point . 129
Setting Up a Manual Verification Point . 129

6 Database Verification Point Reference. 131
About the Database Verification Point. 131

Requirements for Using the Database Verification Point 131
Components of the Database Verification Point . 131
Examples . 132

Example of a Static Database Verification Point . 132
Example of a Dynamic Database Verification Point 133

DatabaseVP Class . 134
Summary . 135
Constructor . 137
DatabaseVP.getCon() . 138
DatabaseVP.getJDBCdriver() . 139
DatabaseVP.getJDBCpassword() . 139
vi Contents

DatabaseVP.getJDBCurl() . 139
DatabaseVP.getJDBCuser(). 140
DatabaseVP.getSQL() . 140
DatabaseVP.getStmt() . 140
DatabaseVP.readFile() . 141
DatabaseVP.setCon(). 141
DatabaseVP.setJDBCdriver() . 142
DatabaseVP.setJDBCpassword(). 142
DatabaseVP.setJDBCurl() . 142
DatabaseVP.setJDBCuser() . 143
DatabaseVP.setSQL() . 143
DatabaseVP.setStmt() . 143
DatabaseVP.writeFile(). 144

DatabaseVPComparator Class . 145
Summary . 145
Constructor. 146
DatabaseVPComparator.compare(). 146

DatabaseVPData Class . 147
Summary . 147
Constructor. 148
DatabaseVPData.getColumns(). 148
DatabaseVPData.getData() . 149
DatabaseVPData.getFileExtension() . 149
DatabaseVPData.getNumCols() . 150
DatabaseVPData.getNumRows() . 150
DatabaseVPData.readFile() . 150
DatabaseVPData.setColumns() . 151
DatabaseVPData.setData() . 151
DatabaseVPData.writeFile(). 152

DatabaseVPDataProvider Class. 153
Summary . 153
Constructor. 154
DatabaseVPDataProvider.captureData() . 154

DatabaseVPDataRenderer Class. 155
Summary . 155
Constructor. 156
DatabaseVPDataRenderer.displayAndValidateData() 156

DataTable Interface. 157
Contents vii

Summary . 157
DataTable.getColumns() . 158
DataTable.getData() . 158
DataTable.getNumCols() . 158
DataTable.getNumRows(). 159
DataTable.setColumns() . 159
DataTable.setData() . 159

7 Implementing a New Verification Point. 161
Introduction to Verification Point Implementation . 161
Fundamentals for Implementing a Verification Point . 161

Implementing the Verification Point Class . 162
Step 1. Define and Maintain the Metadata. 162
Step 2. Supply a UI to Prompt for the Metadata . 163
Step 3. Implement the Constructors. 163
Step 4. Implement the Code Factory Methods to Generate Code 165
Step 5. Provide Serialization Services for the Metadata 168

Implementing the Verification Point Data Class . 169
Step 1. Encapsulate the Data Being Compared . 170
Step 2. Serialize the Data to a Data File . 171
Step 3. Provide the Extension for the Data File . 173

Implementing the Verification Point Data Comparator Class 174
Implementing the Verification Point Data Provider Class 176
Implementing the Verification Point Data Renderer Class 179

Integrating a Verification Point with QualityArchitect . 180

8 Verification Point Framework Reference 181
About the Verification Point Framework . 181

Requirements for Using the Verification Point Framework 181
Components of the Verification Point Framework . 181

VerificationPoint Class. 182
Summary . 183
Constructor . 186
VerificationPoint.codeFactory_getConstructorInvocation() 187
VerificationPoint.codeFactory_getExternalizedInputDecl() 188
VerificationPoint.codeFactory_getNumExternalizedInputs(). 188
VerificationPoint.codeFactory_getPrefix(). 189
VerificationPoint.codeFactory_setPrefix() . 190
VerificationPoint.defineVPcallback() . 190
VerificationPoint.getIsDefined() . 191
VerificationPoint.getOptions() . 192
viii Contents

VerificationPoint.getVPname() . 192
VerificationPoint.performTest() . 193
VerificationPoint.performTest() . 194
VerificationPoint.performTest() . 195
VerificationPoint.readFile() . 196
VerificationPoint.setIsDefined() . 197
VerificationPoint.setOptions() . 198
VerificationPoint.setVPname() . 198
VerificationPoint.writeFile(). 199

VerificationPointComparator Interface . 199
VerificationPointComparator.compare() . 200

VerificationPointData Interface . 201
VerificationPointData.getFileExtension() . 201
VerificationPointData.readFile() . 202
VerificationPointData.writeFile() . 202

VerificationPointDataProvider Interface . 203
VerificationPointDataProvider.captureData() . 204

VerificationPointDataRenderer Interface. 205
VerificationPointDataRenderer.displayAndValidateData() 205

A Configuring Datapools, Synchronization Points, and Shared
Variables . 207

About Script Configuration . 207
Datapool Configuration . 207
Synchronization Point Configuration. 210
Shared Variable Configuration . 213

B Java Support Classes. 217
TSSNamedValue . 217
DatapoolValue . 218
TSSConstants . 224
TSSInteger . 232
TSSException. 233

C CTutil Class Source Code. 235

Index
Contents ix

x Contents

Preface
About This Manual

This manual is a reference of the methods that you call to add a variety of testing
services to your test scripts — services such as datapool, logging, monitoring,
synchronization, and verification point capabilities, as well as stub services for testing
EJB components.

The Test Script Services described in this manual are designed to be used with
Rational TestManager and Rational QualityArchitect.

Audience

This manual is intended for test designers who write or edit test scripts in Java. Your
Java test scripts can be used for both performance and functional testing.

Other Resources

■ To access an HTML version of this manual, click TSS for Java in the following
default installation path (ProductName is the name of the Rational product you
installed, such as Rational TestStudio):

Start > Programs > Rational ProductName > Rational Test > API

■ All manuals for this product are available online in PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

■ For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.
xi

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xii Preface

1Introduction
About Java Test Script Services

Rational Test Script Services are testing services that you can add to your Java test
scripts through the methods described in this reference. For example, you can add
logging, synchronization, timing, and datapool services to your test scripts. You can
also add verification services to validate the behavior of Java components, such as
Enterprise Java Beans (EJBs).

Test Script Services can be used with either or both of the following products:

■ Rational TestManager

■ Rational QualityArchitect

Note: This product does not include the Java Development Kit (JDK). You must
ensure that a version of the JDK exists on the master or agent computers prior to
playback.

Using Test Script Services With Rational TestManager

Rational TestManager is a product that lets you plan, design, implement, execute,
and analyze tests, including system-level and component tests of functionality and
performance.

TestManager fully supports Java test scripts enhanced with Test Script Services
functionality — for example:

■ TestManager will adhere to any synchronization and delay functionality in your
script when it plays back (executes) the script within a suite of scripts.

■ During script playback, a tester can monitor script runtime states through the
script monitoring methods.

■ TestManager reports display the results of timed operations.

■ TestManager test cases can be associated with Java scripts that contain
measurement inputs, such as verification methods for validating the behavior
of objects.
1

About Java Test Script Services
■ TestManager can run your Java scripts with scripts of other types, such as Visual
Basic, GUI, and VU scripts.

The Test Script Services used with TestManager are documented in Test Script Services
Reference on page 17.

Using Test Script Services With Rational QualityArchitect

Rational QualityArchitect is a product that lets you test objects such as EJB and
COM/DCOM components. You can test, or verify, the behavior of EJB components
using the verification services documented in the following sections:

■ Verification Services on page 119

■ Database Verification Point Reference on page 131

■ Implementing a New Verification Point on page 161

■ Verification Point Framework Reference on page 181

Note: This document is primarily a reference document. For information on how to
use Rational QualityArchitect, see the Using Rational QualityArchitect manual.

Summary of Services

The following table describes the categories of Test Script Services that are available
with TestManager and QualityArchitect. It also specifies the product(s) that the
categories of services are commonly used with.

Category Description Commonly Used With

Datapool Provide variable data to test scripts during
playback, allowing virtual testers to send
different data to the server with each
transaction.

TestManager,
QualityArchitect

Logging Log messages for reporting and analysis. TestManager,
QualityArchitect

Measurement Provide the means of fine tuning and
controlling your tests through operations such
as timing actions, setting think time delays, and
setting environment variables.

TestManager

Utility Perform common test script operations such as
retrieving error information, controlling the
generation of random numbers, and printing
messages.

TestManager,
QualityArchitect
2 Chapter 1

About Java Test Script Services
As indicated at the end of the preface, an HTML version of this manual is available
from the Start menu and a PDF version from the Rational documentation CD.

Monitor Monitor test script playback progress. TestManager,
QualityArchitect

Synchronization Synchronize multiple virtual testers running on
a single computer or across multiple computers.

TestManager

Session Manage test script session execution and
playback.

TestManager,
QualityArchitect

Advanced Perform advanced logging and timing
operations.

TestManager

Verification Point Validate the behavior of objects such as EJB
components.

QualityArchitect

Category Description Commonly Used With
Introduction 3

About Java Test Script Services
4 Chapter 1

2Working with Test Scripts
About Java Test Scripts

A Java test script is a Java source file used for testing applications and components
within the Rational test environment.

Java test scripts can be used in functional, performance, and component testing, and
they typically include calls to Test Script Services. Compiled Java test scripts can be
run either standalone or within a TestManager suite.

You work with test scripts by using both TestManager and your Java IDE, as
described in this chapter.

Creating Test Scripts

You can create a Java test script in any of these ways:

■ Generate a script with the Rational QualityArchitect Session Recorder.

The Session Recorder records your interactions with the EJB object you are testing,
and then automatically generates a script that can reproduce your actions exactly
as you recorded them.

■ Generate a script from a Rational Rose model. If you create test scripts by this
method, you can begin testing components that are still in the design stage and not
yet fully implemented.

This type of script generation requires both Rational Rose and Rational
QualityArchitect.

■ Manually write a Java script using a supported Java IDE. See the Release Notes for
supported IDEs.

If you are not using Rational QualityArchitect and Rational Rose, this is the only
way to produce a Java test script.
5

Creating Test Scripts
Entry Points

A Java test script must extend the following base class:

com.rational.test.tss.TestScript

The entry point that you need to include in your test scripts varies, depending on
whether you intend to run the script inside or outside of TestManager. For more
information, see Running Test Scripts on page 8.

Registering Test Script Source Folders

If you create a test script in your IDE and manually code it, you must inform
TestManager of the root test script source folder where the script is stored. To do so:

1 Click Tools > Manage > Test Script Types.

2 Select Java Script, and then click Edit.

3 Click the Sources tab, and then click Insert.

4 On the General tab, type a name for the test script source folder.

This name will be added to TestManager’s File menus. for You select this name
when creating, editing, and running test scripts stored in the source folder.

5 Click the Connect Info tab, and then type the full path of the test script source folder
in the Data path boxThis will be the name of a project folder that you have created
using your IDE.

6 Type the following values, exactly as shown, into the Option name and Option value
columns:

7 Click OK. The new source folder name appears in the Sources list.

Option name Option value

Type Java

Default datastore 0
6 Chapter 2

Editing and Storing Test Scripts
Editing and Storing Test Scripts

All of your test script editing is done inside of your IDE. You can open a test script
directly from your IDE or from TestManager.

To open a test script in TestManager, click File > Open Test Script > type, where type is the
Java source folder that you created in section Registering Test Script Source Folders on
page 6. Then select the script you want to open. TestManager checks the Windows
Registry to find the IDE associated with the test script. If TestManager doesn’t find an
IDE associated with the test script, it opens Windows Notepad.

When you save a test script, you must store the script outside of any Rational projects
and datastores. You store the scripts in a Java test script source folder that you create.

You specify the location of the test script source folder in different ways, depending
on how you created the script:

■ If you manually code a test script and you have not yet created a test script source
folder for the current project, do the following:

1 Create the folder where you want to store the test script source file.

2 Register the test script source folder using the instructions in the section
Registering Test Script Source Folders on page 6.

■ If you auto-generate a script with Rational QualityArchitect (using the Session
Recorder or through a Rose model) and you have not yet created a test script
source folder for the current project, do the following:

1 Create the folder where you want to store the test script source file.

2 At script-generation time, you are prompted to specify the folder where you
want to store the test script being generated. Be sure to select a location that
everyone on the project can access.

Note: When specifying the folder, use a Universal Naming Convention (UNC)
path — for example: \\server-name\directory-path.

Any future scripts that you create for this project are stored in the same test
script source folder. This location cannot be changed once it is defined.

Only script files are stored outside of the Rational project. TestManager stores other
related files, such as any datapool and log files, as well as references to the script files,
within the current Rational project.

For information about how TestManager stores compiled scripts at test runtime, see
Returning Information from Test Scripts on page 12.
Working with Test Scripts 7

Compiling Test Scripts
Storing Scripts in Java Packages

If a script is part of a Java package, the script must be stored in a path that consists of
the test script source folder path plus the name of the package. For example, if the
path is D:\TestScripts and the test script you are storing is included in the package
com.rational.test, store the script in the following location:

D:\TestScripts\com\rational\test

Test Script Names

Java test script names follow standard Java naming conventions.

The maximum name length of scripts stored outside of the Rational datastore is
limited only by the constraints of the operating system.

Compiling Test Scripts

When running a test script, TestManager checks the timestamp of the compiled script.
If the compiled script is out of date, TestManager compiles the script before running
it.

To compile a script, TestManager locates the compiler javac.exe on your computer’s
system path. If TestManager can’t find a compiler, it generates an error.

For information about running scripts with TestManager, see the Using Rational
TestManager manual.

A Java script is compiled to a .class file. By default, the file is stored in the test script
source folder.

The .class file is assigned the same root name as the .java file.

If a script contains inner classes (classes declared within classes), each class is
compiled to its own file.

Running Test Scripts

You can run test scripts either from within or outside of TestManager. Test scripts that
you execute from within TestManager can run on the local host or on an agent host.

Where you run a test script depends, in part, upon your reason for running it:

■ To run a test. With TestManager, you can run a single test script by itself (File > Run
Test Script), from within a test case (File > Run Test Case), or you can add the script to
a TestManager suite and run the suite.
8 Chapter 2

Running Test Scripts
Performance tests are typically run within TestManager. Component tests
conducted with QualityArchitect can be run either within TestManager or your
IDE.

■ To debug a test script. If you are debugging a test script, run the script from your
IDE rather than from TestManager.

In order to run a test script from TestManager that was generated by QualityArchitect,
you must include in your CLASSPATH the full paths for:

■ Any client .jar files referenced by EJBs, either in the recording or in the
component-under-test

■ When testing in an environment such as WebLogic or WebSphere, any .jar files
required by the Application Server

■ For generated scripts that include verification points, the JavaHelp (jh.jar) file

For other test scripts containing only Rational classes that are run from TestManager,
you do not need to modify your CLASSPATH. This is true whether the test script
executes on the local host or on an agent. You do not have to copy any files to the
agent or modify its CLASSPATH.

For test scripts containing Rational classes that are run outside TestManager, their full
pathnames must be specified in your CLASSPATH. The following table lists the relevant
.jar files, their default paths, and product(s) that use them.

For test scripts containing private classes (classes that are unknown to TestManager or
QualityArchitect), the full pathnames of these must be specified in your CLASSPATH.
This is true whether the test scripts execute within or outside TestManager. In
addition, for test scripts executed from TestManager that run on an agent, the .jar files
must be present on the agent, and their full paths must be specified in the agent’s
CLASSPATH.

File Installed Location Required for

rational_ct.jar Rational Test\QualityArchitect QualityArchitect

rttseajava.jar Rational Test\tsea QualityArchitect
TestManager

rttssjava.jar Rational Test QualityArchitect
TestManager

swingall.jar Rational Test\QualityArchitect QualityArchitect
Working with Test Scripts 9

Running Test Scripts
Running Test Scripts in a TestManager Suite

A TestManager suite is a collection of test scripts. In TestManager, you typically run
tests by running a single script or a number of scripts in a suite.

You can combine scripts of different types in the same suite — for example, you can
add your Java scripts to a suite that also contains Visual Basic, GUI, and VU scripts,
and even scripts of a custom test type.

For information about adding scripts to a TestManager suite, see the Using Rational
TestManager manual.

A .java test script that you want to run inside a suite must implement the
testMain() method. This method is the entry point for the class.

The following is an example of a skeletal .java test script that includes the
testMain() method, shown in bold type, that TestManager needs in order to run the
script:

import java.io.*;
import com.rational.test.tss.*;

public class Hello extends com.rational.test.tss.TestScript {

public void testMain(String[] args) {

// Your test script code goes here
}

}

Adding a Source Folder for Java Scripts

For TestManager to run a Java script, you must create a Java test script source folder
(if one doesn’t already exist for the current folder) and place the script into it. At suite
runtime, TestManager compiles the script, places the resulting .class file in the same
folder, and then executes the .class file.

For example, suppose you want to manually create and code a script named
Script1.java and run it from a folder named D:\TestScripts, which doesn’t exist.
You would do the following:

1 Create the folder D:\TestScripts.

2 Create the script Script1.java and save it to D:\TestScripts.

3 Register the test script source folder D:\TestScripts with TestManager. For
information, see Registering Test Script Source Folders on page 6.

4 Add Script1.java to a TestManager suite and run the suite.
10 Chapter 2

Running Test Scripts
When the suite is run, TestManager compiles Script1.java, places the resulting .class
file in D:\TestScripts, and executes Script1.

Adding a Script Contained in a Java Package

In Java, a package lets you assign a single name to a group of related classes.

If you want TestManager to run a Java test script that is part of a package, the source
and the .class runtime must both be located in an appropriate folder below the test
script source folder. The folder’s path name is determined by the name of the test
script source folder plus the name of the package.

For example, suppose you want to manually create and run a script named Script1,
which is located in the package com.rational.test. You want to run the script from a
folder named D:\TestScripts, which doesn’t exist. You would do the following:

1 Create the folder D:\TestScripts.

2 Create the folders \com\rational\test below the test script source folder
D:\TestScripts.

3 Place the script Script1.java in D:\TestScripts\com\rational\test.

4 Register the test script source folder D:\TestScripts with TestManager. For
information, see Registering Test Script Source Folders on page 6.

5 Add Script1.java to a TestManager suite and run the suite.

When you run the suite, TestManager compiles Script1.java, places the resulting
.class file in D:\TestScripts\com\rational\test, and executes Script1 using the class
name com.rational.test.Script1.

Running Test Scripts Outside TestManager

A test script that you want to run from your IDE must include a main() entry point
as well as a testMain() entry point.

The following example extends the previous example on page 10 by including the
code, shown in bold type, required for running and debugging the script in your IDE:

import java.io.*;
import com.rational.test.tss.*;

public class Hello extends com.rational.test.tss.TestScript {

public static void main(String[] args) {
Hello h = new Hello();
h.testMain(args);

}

public void testMain(String[] args) {
Working with Test Scripts 11

Returning Information from Test Scripts
// Your test script code goes here
}

}

The following example further extends the skeletal test script shown above. This
example illustrates the inclusion of Test Script Services calls and the creation of a
debug file usable from your IDE.

import java.io.*;
import com.rational.test.tss.*;

public class Hello extends com.rational.test.tss.TestScript {
public static void main(String[] args) {

Hello h = new Hello();
h.testMain(args);

}
public void testMain(String[] args) {

try {
FileOutputStream debugfile = new
FileOutputStream("Hello.dat",true);
PrintStream deb = new PrintStream(debugFile);
deb.println("Hello World");
System.out.println("Hello World");
System.out.println("Starting first sleep for 5 seconds");
TSSMeasure.commandStart("string1", "string1", 0);
Thread.sleep(5000);
com.rational.test.tss.TSSNamedValue[] a = null;
TSSMeasure.commandEnd((short) 0,"string1",0,0,"string2",a);
TSSMeasure.think();
System.out.println("Starting first sleep for 1 second");
Thread.sleep(1000);
System.out.println("Hello World done");
}

}
}

Returning Information from Test Scripts

Test Script Services calls can deposit information in any of these locations:

■ Test log

■ Error and output files

■ TestManager shared memory

The following sections describe these locations.
12 Chapter 2

Returning Information from Test Scripts
Test Log

TestManager uses the test log (or log) to list the test cases that have been run and
record whether they pass or fail. TestManager generates reports based on the logged
information.

You can also write pass/fail results to the log as well as log messages and report
errors.

The following are the Test Script Services logging methods:

■ TSSLog.event() on page 33

■ TSSLog.message() on page 34

■ TSSLog.testCaseResult() on page 36

■ TSSMeasure.commandEnd() on page 38

■ TSSMeasure.commandStart() on page 40

■ TSSAdvanced.logCommand() on page 99

■ TestLog.writeException() on page 115

■ TestLog.writeStubException() on page 116

■ TestLog.writeStubMessage() on page 117

For additional information about logging exceptions, see Catching Exceptions on
page 15.

TestManager determines the location of the log file as follows:

■ If the test script is running within TestManager, or if it is running outside of
TestManager but against a TSS Server through rttssee.exe, the location is
determined by the parent process, not by the test script.

■ If the test script is a Rational QualityArchitect test script running in the IDE, the
location is again determined by the parent process.

■ If the test script is running outside TestManager and the TSS Server is not running,
the location, by default, is relative to the current directory and is referenced as
./u000. Use TSSSession.context() to control the location of the log file.
Working with Test Scripts 13

Returning Information from Test Scripts
Error File and Output File

As a development and debugging aid, you can write information to an error file and
an output file.

Use the utility methods stdErrPrint() and stdOutPrint() to write to the error
and output files.

TestManager determines the location of the error and output files as follows:

■ If the test script is running within TestManager, the location is determined by the
parent process, not by the test script.

■ If the test script is running outside TestManager but against a TSS Server through
rttssee.exe, the location is determined by command-line options you set:

❑ With no command-line options used, the error file is the system standard error
file, and the output file is the system standard output file.

❑ With the -r option, the error and output files are stored in the working directory.
The working directory is the system’s current working directory, unless a
different location is specified through the -d option.

Set the error file name with e<usernumber> and the output file name with
o<usernumber>. The variable <usernumber> defaults to 0 and is set by the -u
command-line option.

■ If the test script is running outside TestManager and the TSS Server is not running,
the error file is the system standard error file, and the output file is the system
standard output file.

TestManager Shared Memory

Shared memory is used to provide data for TestManager’s runtime console. Shared
memory is also used to pass information between test scripts.

To write data to shared memory, use the methods described in the following sections:

■ Monitor Class on page 72. Use the TSSMonitor methods to provide data that is
used during TestManager’s monitoring operations.

■ Synchronization Class on page 82. Use the TSSSync methods to allow concurrently
running scripts to share data.

These methods work only in test scripts that are run from TestManager.
14 Chapter 2

Catching Exceptions
Catching Exceptions

If you catch exceptions in your test script, you are intercepting the exceptions before
TestManager can become aware of them. If you handle the exception and take no
other action, the script continues to run, and TestManager could log a Pass result for
the script.

If an exception occurs and the script does not contain exception handling logic, the
test script stops running, the next script in the suite is run, and TestManager logs a
Fail result for the script and a description of the exception.

If you want to catch certain exceptions, but you want the log to reflect a Fail result
for the test script, use one of the Test Script Services logging methods to log the
Fail result.

Alternatively, consider catching the exception, logging an informative error message
(that says, for instance, what you were trying to do in the script when the exception
was thrown), and then re-throwing the exception to pop out of the script.

The following is an example of a catch block that re-throws an exception:

catch(Exception e {
System.err.println("Exception handled in method");

throw e; // Re-throw for further processing

}

Working with Test Scripts 15

Catching Exceptions
16 Chapter 2

3Test Script Services
Reference
About Test Script Services

This chapter describes the Rational Test Script Services (TSS). It explains the methods
you use to give test scripts access to services such as datapools, measurement, virtual tester
synchronization, and monitoring. The methods are divided into the following functional
categories.

Category Description

Datapool Provide variable data to test scripts during playback.

Logging Log messages for reporting and analysis.

Measurement Manage timers and test variables.

Utility Perform common test script functions.

Monitor Monitor test script playback progress.

Synchronization Synchronize virtual testers in multi-computer runtime environments.

Session Manage the test suite runtime environment.

Advanced Perform advanced logging and measurement functions.
17

Datapool Class
Datapool Class

During testing, it is often necessary to supply an application with a range of test data.
Thus, in the functional test of a data entry component, you may want to try out the
valid range of data, and also to test how the application responds to invalid data.
Similarly, in a performance test of the same component, you may want to test storage
and retrieval components in different combinations and under varying load
conditions.

A datapool is a source of data stored in a Rational project that a test script can draw
upon during playback, for the purpose of varying the test data. You create datapools
from TestManager, by clicking Tools > Manage > Datapools. For more information, see
the datapool chapter in the Using Rational TestManager manual. Optionally, you can
import manually-created datapool information stored in flat ASCII Comma Separated
Values (CSV) files, where a row is a newline-terminated line and columns are fields in
the line separated by commas (or some other field-delimiting character).

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

Use the datapool methods listed in the following table to access and manipulate
datapools within your scripts. These are static methods of class TSSDatapool.

Method Description

close() Closes a datapool.

columnCount() Returns the number of columns in a datapool.

columnName() Returns the name of the specified datapool column.

fetch() Moves the datapool cursor to the next row.

open() Opens the named datapool and sets the row access
order.

rewind() Resets the datapool cursor to the beginning of the
datapool access order.

rowCount() Returns the number of rows in a datapool.
18 Chapter 3

TSSDatapool.close()
TSSDatapool.close()

Closes a datapool.

Syntax–

int close()

Return Value

This exits with one of the following results:

■ TSS_OK. Success.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

Comments

Only one open datapool at a time is supported. A close() is thus required between
intervening Oopen() calls. For a script that opens only one datapool, close() is
optional.

Example

This example opens the datapool custdata with default row access and closes it.

TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
int retVal = dp.close();

See Also

open()

search() Searches a datapool for the named column with a
specified value.

seek() Moves the datapool cursor forward.

value() Retrieves the value of the specified datapool
column.

Method Description
Test Script Services Reference 19

TSSDatapool.columnCount()
TSSDatapool.columnCount()

Returns the number of columns in a datapool.

Syntax

int columnCount ()

Return Value

On success, this method returns the number of columns in the open datapool.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example opens the datapool custdata and gets the number of columns.

TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
int columns = dp.columnCount();

TSSDatapool.columnName()

Gets the name of the specified datapool column.

Syntax

String columnName (int columnNumber)

Element Description

columnNumber A positive number indicating the number of the column whose name you
want to retrieve. The first column is number 1.
20 Chapter 3

TSSDatapool.fetch()
Return Value

On success, this method returns the name of the specified datapool column.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier or column number is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example opens a three-column datapool and gets the name of the third column.

TSSDatapool dp = New TSSDatapool;
dp.open ("custdata");
if (dp.fetch())

String colName = dp.columnName(3);

TSSDatapool.fetch()

Moves the datapool cursor to the next row.

Syntax

boolean fetch()

Return Value

This method returns true (success) or false (end-of-file).

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.
Test Script Services Reference 21

TSSDatapool.open()
If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

This call positions the datapool cursor on the next row and loads the row into
memory. To access a column of data in the row, call value().

The “next row” is determined by the assessFlags passed with the open call. The
default is the next row in sequence. See open().

After a datapool is opened, a fetch() is required before the initial row can be
accessed.

An end-of-file (TSS_EOF) condition results if a script fetches past the end of the
datapool, which can occur only if access flag TSS_DP_NOWRAP was set on the open
call. If the end-of-file condition occurs, the next call to value() throws an exception.

Example

This example opens datapool custdata with default (sequential) access and
positions the curson to the first row.

TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
boolean retVal = dp.fetch();

See Also

open(), seek(), value()

TSSDatapool.open()

Opens the named datapool and sets the row access order.

Syntax

void open(String name, int accessFlags, TSSNamedValue[]
overrides)

void open(String name)
22 Chapter 3

TSSDatapool.open()
Element Description

name The name of the datapool to open. If accessFlags includes
TSS_DP_NO_OPEN, no CSV datapool is opened; instead, name will refer
to the contents of overrides specifying a one-row table. Otherwise, the
CSV file name in the Rational project is opened.

accessFlags Optional flags indicating how the datapool is accessed when a script is
played back. Specify at most one value from each of the following
categories:

1 Specify the sequence in which datapool rows are accessed:

TSS_DP_SEQUENTIAL – physical order (default)

TSS_DP_RANDOM – any order, including multiple access or no access

TSS_DP_SHUFFLE – access order is shuffled after each access

2 Specify what happens after the last datapool row is accessed:

TSS_DP_NOWRAP – end access to the datapool (default)

TSS_DP_WRAP – go back to the beginning

3 Specify whether the datapool cursor is shared by all virtual testers or
is unique to each:

TSS_DP_SHARED – all virtual testers work from the same access order
(default)

TSS_DP_PRIVATE – virtual testers each work from their own
sequential, random, or shuffle access order

4 TSS_DP_PERSIST specifies that the datapool cursor is persistent
across multiple script runs. For example, with a persistent cursor, if
the row number after a suite run is 100, the first row accessed in a
subsequent run will be numbered 101. Not valid with
TSS_DP_RANDOM or TSS_DP_PRIVATE.

5 TSS_DP_REWIND specifies that the datapool should be

rewound when opened. Can be used only with

TSS_DP_PRIVATE.

6 TSS_DP_NO_OPEN specifies that, instead of a CSV file, the opened
datapool will consist only of column/value pairs specified in a local
array overrides[].

overrides A local, two-dimensional array of column/value pairs, where
overrides[n].name is the column name and overrides[n].value is
the value returned by value() for that column name. See
TSSNamedValue on page 217 for the implementation of this argument’s
data type.
Test Script Services Reference 23

TSSDatapool.open()
Exceptions

 These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The accessFlags are or result in an invalid combination.

■ TSS_NOTFOUND. No datapool of the given name was found.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

If accessFlags are specified as 0 or are omitted, the rows are accessed in the default
order: sequentially, with no wrapping, and with a shared cursor. If multiple
accessFlags are specified, they must be valid combinations as explained in the
syntax table. AnyaccessFlags specified with open() override those specified with
the datapool configuration statements (see the example section).

If you close and then reopen a private-access datapool with the same accessFlags
and in the same or a subsequent script, access to the datapool is resumed as if it had
never been closed.

A test script that will be executed by TestManager can open only one datapool at a
time.

If multiple virtual testers access the same datapool in a suite, the datapool cursor is
managed as follows:

■ The first open that uses the TSS_DP_SHARED option initializes the cursor. In the
same suite run (and, with the TSS_DP_PERSIST flag, in subsequent suite runs),
virtual testers that subsequently use the same datapool opened with
TSS_DP_SHARED share the initialized cursor.

■ The first open that uses the TSS_DP_PRIVATE option initializes the private cursor
for a virtual tester. In the same suite run, a subsequent open that uses
TSS_DP_PRIVATE sets the cursor to the last row accessed by that virtual tester.

An exception will be thrown if open() is called more than once (for a given instance
of the class) without an intervening close() call. The exception message is "open
was called without closing the previously opened Datapool". A call to
TSSException.getReturnValue() in the catch block will identify the datapool
that was already open when the call was made.
24 Chapter 3

TSSDatapool.rewind()
Example

This example opens the datapool named custdata. The datapool configuration
statements, which may occur anywhere in the script, name the datapool and set the default
row access.

TSSDatapool dp = new TSSDatapool();
dp.open("custdata");
...
public static class DatapoolConfig extends DatapoolInfo {
 public DatapoolConfig() {
 setDatapoolName("custdata");
 setDatapoolAccessFlags(TSS_DP_WRAP |
 TSS_DP_SEQUENTIAL |
 TSS_DP_SHARED);
 }
 }

See Also

close()

TSSDatapool.rewind()

Resets the datapool cursor to the beginning of the datapool access order.

Syntax

void rewind()

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.
Test Script Services Reference 25

TSSDatapool.rowCount()
Comments

The datapool is rewound as follows:

■ For datapools opened DP_SEQUENTIAL, rewind() resets the cursor to the first
record in the datapool file.

■ For datapools opened DP_RANDOM or DP_SHUFFLE, rewind() restarts the
random number sequence.

■ For datapools opened DP_SHARED, rewind() has no effect.

At the start of a suite, datapool cursors always point to the first row.

If you rewind the datapool during a suite run, previously accessed rows are fetched
again.

Example

This example opens the datapool custdata with default (sequential) access, moves
the access to the second row, then resets access to the first row.

TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
dp.seek(2);
dp.rewind();

TSSDatapool.rowCount()

Returns the number of rows in a datapool.

Syntax

int rowCount()

Return Value

On success, this method returns the number of rows in the open datapool.
26 Chapter 3

TSSDatapool.search()
Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example opens the datapool custdata and gets the number of rows in the
datapool.

TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
int rows = dp.rowCount();

TSSDatapool.search()

Searches a datapool for a named column with a specified value.

Syntax

void search (TSSNamedValue[] keys)

Element Description

keys An array containing values to be searched for. See TSSNamedValue on
page 217 for the implementation of this argument’s data type.
Test Script Services Reference 27

TSSDatapool.search()
Exceptions

This method may throw an exception with one of the following values:

■ TSS_EOF. The end of the datapool was reached.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

When a row is found containing the specified values, the cursor is set to that row.

Example

This example searches the datapool custdata for a row containing the column
named Last with the value Doe:

TSSNamedValue[] toFind = new TSSNamedValue[1];
toFind[0] = new TSSNamedValue();
toFind[0].name = "Last";
toFind[0].value = "Doe";
TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
if (dp.fetch())

dp.search(toFind);
28 Chapter 3

TSSDatapool.seek()
TSSDatapool.seek()

Moves the datapool cursor forward.

Syntax

void seek(int count)

Return Value

Exceptions

This method may throw an exception with one of the following values:

■ TSS_EOF. The end of the datapool was reached.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

This call moves the datapool cursor forward count rows and loads that row into
memory. To access a column of data in the row, call value().

The meaning of “forward” depends on the accessFlags passed with the open call;
see open(). This call is functionally equivalent to calling fetch() count times.

In addition to throwing an exception on error, this method returns a boolean status
indicator where false indicates end-of-file (TSS_EOF). A script can check for this
condition.

If a script fetches past the end of the datapool (as a result of TSS_DP_NOWRAP being
set), the next call to TSSDatapool.value() will throw an exception.

Element Description

count A positive number indicating the number of rows to move forward in the
datapool.
Test Script Services Reference 29

TSSDatapool.value()
Example

This example opens the datapool custdata with the default (sequential) access and
moves the cursor forward two rows.

TSSDatapool dp = new TSSDatapool();
dp.open("custdata");
dp.seek(2);

See Also

fetch(), open(), value()

TSSDatapool.value()

Retrieves the value of the specified datapool column in the current row.

Syntax

DatapoolValue value(String columnName)

Return Value

On success, this method returns the value of the specified datapool column in the
current row.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_EOF. The end of the datapool was reached.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The specifiedcolumnName is not a valid column in the datapool.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Element Description

columnName The name of the column whose value you want to retrieve.
30 Chapter 3

TSSDatapool.value()
Comments

This call gets the value of the specified datapool column from the current datapool
row, which will have been loaded into memory either by fetch() or seek().

By default, the returned value will be a column from a CSV datapool file located in a
Rational datastore. If the datapool open call included the TSS_DP_NO_OPEN access
flag, the returned value will come from an override list provided with the open call.

Datapools store all data as strings. As a consequence, a retrieved value that is not
really a string must be converted. To facilitate conversions, the class DatapoolValue
wraps the value returned by TSSDatapool.value() and the following conversion
methods are provided:

See DatapoolValue on page 218 for the implementation of this class.

Example

This example retrieves the value of the column named Middle in the first row of the
datapool custdata.

TSSDatapool dp = new TSSDatapool();
dp.open("custdata");
if (dp.fetch()==true)

phonebook.queryPerson(dp.value("Middle").toString());
// queryPerson method expects a String parameter

See Also

fetch(), open(), seek()

This method Generates

booleanValue() The boolean representation of the datapool value.

byteValue() The byte representation of the datapool value.

charValue() The character representation of the datapool value.

floatValue() The float representation of the datapool value.

getBigDecimal() The BigDecimal representation of the datapool value.

intValue() The int representation of the datapool value.

longValue() The long representation of the datapool value.

shortValue() The short representation of the datapool value.

toString() The String representation of the datapool value.
Test Script Services Reference 31

Logging Class
Logging Class

Use the logging methods to build the log that TestManager uses for analysis and
reporting. You can log events, messages, or test case results.

A logged event is the record of something that happened. Use the environment
variable EVAR_LogEvent_control (page 44) to control whether or not an event is
logged.

An event that gets logged may have associated data (either returned by the server or
supplied with the call). Use the environment variable EVAR_LogData_control
(page 44) to control whether or not any data associated with an event is logged.

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

Use the methods listed in the following table to write to the TestManager log. They are
static methods of class TSSLog.

Method Description

event() Logs an event.

message() Logs a message event.

testCaseResult() Logs a test case event.
32 Chapter 3

TSSLog.event()
TSSLog.event()

Logs an event.

Syntax

void event (String eventType, short result, String
description, TSSNamedValue[] property)

void event (String eventType, short result)

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. An unknown result was specified.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Element Description

eventType Contains the description to be displayed in the log for this event.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Contains the string to be put in the entry’s failure description field.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value. See TSSNamedValue on page 217 for the implementation of this
argument’s data type.
Test Script Services Reference 33

TSSLog.message()
If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 44) or
EVAR_LogEvent_control (page 44) environment variables. Alternatively, the
logging preference can be set with the EVAR_Log_level (page 45) and
EVAR_Record_level (page 46) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

Example

This example logs the beginning of an event of type Login Dialog.

TSSNamedValue[] scriptProp = new TSSNamedValue[2];
scriptProp[0] = new TSSNamedValue();
scriptProp[0].name = "ScriptName";
scriptProp[0].value = "Login";
scriptProp[1] = new TSSNamedValue();
scriptProp[1].name = "LineNumber";
scriptProp[1].value = "1";
TSSLog.event("Login Dialog",0,"Login script failed",scriptProp);

TSSLog.message()

Logs a message.

Syntax

void message(String message, short result, String description)

void message(String message)
34 Chapter 3

TSSLog.message()
Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 44) or
EVAR_LogEvent_control (page 44) environment variables. Alternatively, the
logging preference can be set with the EVAR_Log_level (page 45) and
EVAR_Record_level (page 46) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

Element Description

message Specifies the string to log.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Specifies the string to be put in the entry’s failure description field.
Test Script Services Reference 35

TSSLog.testCaseResult()
Example

This example logs the following message: --Beginning of timed block T1--.

TSSLog.message ("--Beginning of timed block T1--");

TSSLog.testCaseResult()

Logs a test case result.

Syntax

void testCaseResult (String testcase, short result, String
description, TSSNamedValue[] property)

void testCaseResult (String testcase, short result)

Element Description

testcase Identifies the test case whose result is to be logged.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Contains the string to be displayed in the event of a log failure.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value. See TSSNamedValue on page 217 for the implementation of this
argument’s data type.
36 Chapter 3

TSSLog.testCaseResult()
Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

A test case is a condition, specified in a list of property name/value pairs, that you are
interested in. This method searches for the test case and logs the result of the search.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 44) or
EVAR_LogEvent_control (page 44) environment variables. Alternatively, the
logging preference may be set by the EVAR_Log_level (page 45) and
EVAR_Record_level (page 46) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

Example

This example logs the result of a testcase named Verify login.

TSSNamedValue[] loginResult = new TssNamedValue[1];
loginResult[0] = new TSSNamedValue();
loginResult[0].name = "Result";
loginResult[0].value = "OK";
TSSLog.testCaseResult("Verify login",0,null,loginResult);
Test Script Services Reference 37

Measurement Class
Measurement Class

Use the measurement methods to set timers and environment variables, and to get the
value of internal variables. Timers allow you to gauge how much time is required to
complete specific activities under varying load conditions. Environment variables
allow for the setting and passing of information to virtual testers during script
playback. Internal variables store information used by the TestManager to initialize
and reset virtual tester parameters during script playback.

Applicability

Commonly used with TestManager.

Summary

The following table lists the measurement methods. They are static methods of class
TSSMeasure.

TSSMeasure.commandEnd()

Marks the end of a timed command.

Method Description

commandEnd() Logs an end-command event.

commandStart() Logs a start-command event.

environmentOp() Sets an environment variable.

getTime() Gets the elapsed time of a run.

internalVarGet() Gets the value of an internal variable.

think() Sets a think-time delay.

timerStart() Marks the start of a block of actions to be timed.

timerStop() Marks the end of a block of timed actions.
38 Chapter 3

TSSMeasure.commandEnd()
Syntax

void commandEnd(short result, String description, int
starttime, int endtime, String logdata, TSSNamedValue []
property)

void commandEnd(short result)

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED.

0 specifies the default.

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a timestamp to override the timestamp set by
commandStart(). To use the timestamp set by commandStart(),
specify as 0.

endtime An integer indicating a timestamp to override the current time. To use the
current time, specify as 0.

logdata Text to be logged describing the ended command.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value. See TSSNamedValue on page 217 for the implementation of this
argument’s data type.
Test Script Services Reference 39

TSSMeasure.commandStart()
If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The command name and label entered with commandStart() are logged, and the
run state is restored to the value that existed before the commandStart() call.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 44) or
EVAR_LogEvent_control (page 44) environment variables. Alternatively, the
logging preference can be set with the EVAR_Log_level (page 45) and
EVAR_Record_level (page 46) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

Example

This example marks the end of the timed activity specified by the previous
commandStart() call.

TSSMeasure.commandEnd(TSS_LOG_RESULT_PASS,"Command timer failed", 0,
0, "Login command completed", null);

See Also

commandStart(), TSSAdvanced.logCommand()

TSSMeasure.commandStart()

Starts a timed command.

Syntax

void commandStart(String label, String name, int state)

Element Description

label The name of the timer to be started and logged, or NULL for an unlabeled
timer.

name The name of the command to time.
40 Chapter 3

TSSMeasure.commandStart()
Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

A command is a term or string, such as sock or deposit, that you expect to occur in
client/server conversations. By placing commandStart() and commandEnd() calls
around expected strings, you can record the time required to complete associated
actions.

During script playback, TestManager displays progress for different virtual testers.
What is displayed for a group of actions associated by commandStart() depends
on the run state argument. Run states are listed in the run state table starting on
page 78.

commandStart()increments IV_cmdcnt, sets the name, label and run state for
TestManager, and sets the beginning timestamp for the log entry. commandEnd()
restores the TestManager run state to the run state that was in effect immediately
before commandStart().

Example

This example starts timing the period associated with the string Login.

TSSMeasure.commandStart("initTimer", "Login", MST_WAITRESP);

See Also

commandEnd(), TSSAdvanced.logCommand()

state The run state to log with the timed command. See the run state table starting
on page 78.

Element Description
Test Script Services Reference 41

TSSMeasure.environmentOp()
TSSMeasure.environmentOp()

Sets a virtual tester environment variable.

Syntax

void environmentOpGetIntValue(int envVar, int envOp, TSSInteger
envInt)

void environmentOpGetStringValue(int envVar, int envOp,
StringBuffer envString)

void environmentOpSetIntValue(int envVar, int envOp, int
envVal)

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Element Description

envVar The environment variable to operate on. Valid values are described in the
environment variable table starting on page 43.

envOP The operation to perform. Valid values are described in the environment
operations table starting on page 50.

envInt The new value for an integer environment variable. See TSSInteger on
page 232 for the implementation of this argument’s data type.

envString The new value for a string environment variable.

envVal The array index of the value to set the variable to.
42 Chapter 3

TSSMeasure.environmentOp()
Comments

Environment variables define and control the enviromnent of virtual testers. Using
environment variables allows you to test different assumptions or runtime scenarios
without re-writing your test scripts. For example, you can use environment variables
to specify:

■ A virtual tester’s average think time, the maximum think time, and how the think
time is mathematically distributed around a mean value

■ How long to wait for a response from the server before timing out

■ The level of information that is logged and available to reports

Use the environmentOpGetIntValue() for integer environment variables,
environmentOpGetStringValue() for string environment variables, and
environmentOpSetIntValue() for environment variables that can be set to one of
a fixed number of values stored in an array.

The following table describes the valid values of argument envVar. Note the
following about EVAR_LogData_control and EVAR_LogEvent_control:

■ They correspond to the check boxes in TestManager’s TSS Environment Variables
dialog box. Use this dialog box to set logging and reporting options at the suite
rather than the script level.

■ They are more flexible alternatives to EVAR_Log_level and EVAR_Report_level.

Name Type/Values/(default) Contains

EVAR_Delay_dly_scale integer 0–2000000000
percent (100)

The scaling factor applied
globally to all timing
delays. A value of 100%,
which is the default, means
no change. A value of 50%
means one-half the delay,
which is twice as fast as the
original; 200% means twice
the delay, which is half as
fast. A value of zero means
no delay.
Test Script Services Reference 43

TSSMeasure.environmentOp()
EVAR_LogData_control NONE,
PASS,
FAIL,
WARNING,
STOPPED,
INFORMATIONAL,
COMPLETED,
UNEVALUATED
ANYRESULT

Flags indicating the level of
detail to log. Specify one or
more. These result flags
(except the last, which
specifies everything)
correspond to flags entered
with the event,
message,
testCaseResult,
commandEnd, and
logCommand . For
example, specifying FAIL
selects everything logged
by that specified flag FAIL.

EVAR_LogEvent_control NONE,
PASS,
FAIL,
WARNING,
STOPPED,
INFORMATIONAL,
COMPLETED,
UNEVALUATED,
TIMERS,
COMMANDS,
ENVIRON,
STUBS,
TSSERROR,
TSSPROXYERROR
ANYRESULT

Flags indicating the level of
detail to log for reports.
Specify one or more. The
first nine result flags
(NONE thru
UNEVALUATED)
correspond to flags
specified with the event,
message,
testCaseResult,
commandEnd, and
logCommand . The other
flags (TIMERS thru
TSSPROXYERROR)
indicate the event objects.
For example, FAIL plus
COMMANDS selects for
reporting all commands
that recorded a failed result.
ANYRESULTS selects
everything.

Name Type/Values/(default) Contains
44 Chapter 3

TSSMeasure.environmentOp()
EVAR_Log_level string "OFF" ("TIMEOUT")
"UNEXPECTED" "ERROR"
"ALL"

The level of detail to log:
■ OFF – Log nothing.
■ TIMEOUT – Log

emulation command
timeouts.

■ UNEXPECTED – Log
timeouts and unexpected
responses from
emulation commands.

■ ERROR – Log all
emulation commands
that set IV_error to a
non-zero value. Log
entries include
IV_error and
IV_error_text.

■ ALL – Log everything:
emulation command
types and IDs, script IDs,
source files, and line
numbers.

Name Type/Values/(default) Contains
Test Script Services Reference 45

TSSMeasure.environmentOp()
EVAR_Record_level "MINIMAL" "TIMER"
"FAILURE" ("COMMAND")
"ALL"

The level of detail to log for
reporting:
■ MINIMAL – Record only

items necessary for
reports to run. Use this
value when you do not
want user activity to be
reported.

■ TIMER – MINIMAL plus
start_time and
stop_time emulation
commands. Your reports
will not contain response
times for each emulation
command, emulation
command failure will not
show up, and the result
file for each virtual tester
will be small. Use this
setting if you are not
concerned with the
response times or
pass/fail status of
individual emulation
commands.

■ FAILURE – TIMER plus
emulation command
failures and some
environment variable
changes. Use this setting
if you want the
advantages of a small
result file but you also
want to make sure that
no emulation command
failed.

■ COMMAND – FAILURE
plus emulation
command successes and
some environment
variable changes.

■ ALL – COMMAND plus all
environment variable
changes. Complete
recording.

Name Type/Values/(default) Contains
46 Chapter 3

TSSMeasure.environmentOp()
EVAR_Suspend_check string ("ON") "OFF" Controls whether you can
suspend a virtual tester
from a Monitor view:
■ ON – A suspend request

is checked before
beginning the think time
interval by each send
emulation command.

■ OFF – Disable suspend
checking.

EVAR_Think_avg integer 0–2000000000 ms
(5000)

The average think-time
delay (the amount of time
that, on average, a user
delays before performing
an action).

EVAR_Think_cpu_dly_scale integer 0–2000000000 ms
(100)

The scaling factor applied
globally to CPU (processing
time) delays. Used instead
of
EVAR_Think_dly_scal
e if EVAR_Think_avg is
less than
EVAR_Think_cpu_thre
shold. Delay scaling is
performed before
truncation (if any) by
EVAR_Think_max.

EVAR_Think_cpu_threshold integer 0–2000000000 ms (0) The threshold value used to
distinguish CPU delays
from think-time delays.

Name Type/Values/(default) Contains
Test Script Services Reference 47

TSSMeasure.environmentOp()
EVAR_Think_def string "FS" "LS" "FR" ("LR") "FC"
"LC"

The starting point of the
think-time interval:
■ FS – the submission time

of the previous send
emulation command

■ LS – the completion time
of the previous send
emulation command

■ FR – the time the first
data of the previous
receive emulation
command was received

■ LR – the time the last
data of the previous
receive emulation
command was received,
or LS if there was no
intervening receive
emulation command

■ FC – the submission
time of the previous
connect emulation
command (uses the
IV_fc_ts internal
variable)

■ LC – the completion time
of the previous connect
emulation command
(uses the IV_lc_ts
internal variable)

Name Type/Values/(default) Contains
48 Chapter 3

TSSMeasure.environmentOp()
EVAR_Think_dist string ("CONSTANT")
"UNIFORM" "NEGEXP"

The think-time
distrubution:
■ CONSTANT – sets a

constant distribution
equal to Think_avg

■ UNIFORM – sets a
random think time
interval distributed
uniformly in the range:
[EVAR_Think_avg -
EVAR_Think_sd,
EVAR_Think_avg +
EVAR_Think_sd]

■ NEGEXP – sets a random
think time interval
approximating a bell
curve with
EVAR_Think_avg equal
to standard deviation

EVAR_Think_dly_scale integer 0 – 2000000000 ms
(100)

The scaling factor applied
globally to think-time
delays. Used instead of
EVAR_Think_cpu_dly_
scale if
EVAR_Think_avg is
greater than
EVAR_Think_cpu_thre
shold. Delay scaling is
performed before
truncation (if any) by
EVAR_Think_max.

EVAR_Think_max integer 0–2000000000 ms
(2000000000)

A maximum threshold
for think times that
replaces any larger
setting.

EVAR_Think_sd integer 0–2000000000 ms (0) Where
EVAR_Think_dist is set
to UNIFORM, specifies the
think time standard
deviation.

Name Type/Values/(default) Contains
Test Script Services Reference 49

TSSMeasure.environmentOp()
Environment control options allow a script to control a virtual tester’s environment
by operating on the environment variables. Every environment variable has, instead
of a single value, a group of values: a default value, a saved value, and a current
value.

■ default – The value of an environment variable before any commands are applied
to it. Environment variables are automatically initialized to a default value, and,
like persistent variables, retain their values across scripts. The reset command
resets the default value, as listed in the following table.

■ saved – The saved value of an environment variable can be used as one way to
retain the present value of the environment variable for later use. The save and
restore commands manipulate the saved value.

■ current – TSS supports a last-in-first-out “value stack” for each environment
variable. The current value of an environment variable is simply the top element of
that stack. The current value is used by all of the commands. The push and pop
commands manipulate the stack.

The following table describes the valid values of envOP.

Example

This example turns off EVAR_Suspend_check before the start of a block of code and
then turns it back on at the end of the block.

TSSMeasure.environmentOP (EVAR_Suspend_check, EVOP_push, "OFF");
//input emulation code //
TSSMeasure.evnironmentOP (EVAR_Suspend_check, EVOP_pop, "ON");

Operation Description

EVOP_eval Operate on the value at the top of the variable’s stack.

EVOP_pop Remove the variable value at the top of the stack.

EVOP_push Push a value to the top of a variable’s stack.

EVOP_reset Set the value of a variable to the default and discard any other values in the
stack.

EVOP_restore Set the saved value to the current value.

EVOP_save Save the value of a variable.

EVOP_set Set a variable to the specified value.
50 Chapter 3

TSSMeasure.getTime()
TSSMeasure.getTime()

Gets the elapsed time since the beginning of a suite run.

Syntax

int getTime()

Return Value

On success, this method returns the number of milliseconds elapsed in a suite run.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

For execution within TestManager, this call retrieves the time elapsed since the start
time shared by all virtual testers in all test scripts in a suite.

For a test script executed outside TestManager, the time returned is the milliseconds
elapsed since the call to TSSSession.connect(), or since the value of
CTXT_timeZero set by TSSSession.context().

Example

This example stores the elapsed time in etime.

int etime = TSSMeasure.getTime();
Test Script Services Reference 51

TSSMeasure.internalVarGet()
TSSMeasure.internalVarGet()

Gets the value of an internal variable.

Syntax

void internalVarGetInt(int internVar, TSSInteger iVal)

void internalVarGetString(int internVar, StringBuffer sVal)

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

Internal variables contain detailed information that is logged during script playback
and used for performance analysis reporting. This function allows you to customize
logging and reporting detail.

The following table lists the string-valued internal variables that can be entered as
argument sVal.

Element Description

internVar The internal variable to operate on. Valid values are described in the string
internal variables tableon page 52 and the integer internal variables table
starting on page 53.

iVal OUTPUT. The returned value of the specified integer internal variable. For the
implementation of this argument’s data type, see TSSInteger on page 232.

sVal OUTPUT. The returned value of the specified string internal variable.
52 Chapter 3

TSSMeasure.internalVarGet()
:

The following table lists the integer-valued internal variables that can be entered as
argument iVal.

Variable Contains

IV_alltext The text of up to the value of Max_nrecv_saved. The same as
IV_response.

IV_cmd_id The ID of the most recent emulation command.

IV_column_headers The two-line column header if IV_Column_headers is ON;
otherwise, it contains "".

IV_command The text of the most recent emulation command.

IV_error_text The full text of the error from the last emulation command. If
IV_error is 0, IV_error_text returns "". For an SQL database
or TUXEDO error, the text is provided by the server.

IV_host The host name of the computer on which the script is running.

IV_mcommand The actual (mapped) sequence of characters submitted to the
application by the most recent send or msend command. For send
commands, IV_mcommand is always equivalent to IV_command.

IV_response Same as IV_alltext.

IV_script The name of the script currently being executed.

IV_source_file The name of the file that was the source for the portion of the script
being executed.

IV_user_group The name of the user group (from the suite) of the user running the
script.

IV_version The full version string of TestManager (for example, 7.5.0.1045).

Variable Contains

IV_cmdcnt A running count of the number of emulation commands the
script has executed.

IV_cursor_id The last cursor declared by sqldeclare_cursor or opened
by sqlopen_cursor.

IV_error The status of the last emulation command. Most values for
IV_error are supplied by the server.
Test Script Services Reference 53

TSSMeasure.internalVarGet()
IV_error_type If you are emulating a TUXEDO session and IV_error is
nonzero, IV_error_type contains one of the following
values:

0 (no error)

1 VU/TUX Usage Error

2 TUXEDO System/T Error

3 TUXEDO FML Error

4 TUXEDO FML32 Error

5 application Error

6 Internal Error

If you are emulating an IIOP session and IV_error is
nonzero, IV_error_type contains one of the following
values:

0 (no error)

1 IIOP_EXCEPTION_SYSTEM

2 IIOP_EXCEPTION_USER

3 IIOP_ERROR

IV_fc_ts The “first connect” timestamp for http_request and
sock_connect.

IV_fr_ts The timestamp of the first received data of sqlnrecv,
http_nrecv, http_recv, http_header_recv,
sock_nrecv, or sock_recv. For sqlexec and sqlprepare,
IV_fr_ts is set to the time the SQL database server responded
to the SQL statement.

IV_fs_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time when the first data was
submitted to the server by http_request or sock_send.

IV_lc_ts The “last connect” timestamp for http_request and
sock_connect.

IV_lineno The line number in IV_source_file of the previously
executed emulation command.

IV_lr_ts The timestamp of the last received data for sqlnrecv,
http_nrecv, http_recv, http_header_recv,
sock_nrecv, or sock_recv. For sqlexec and sqlprepare,
IV_lr_ts is set to the time the SQL database server responded
to the SQL statement.

IV_ls_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time the last data was
submitted to the server by http_request or sock_send.

Variable Contains
54 Chapter 3

TSSMeasure.internalVarGet()
Example

This example stores the current value of the IVerror internal variable in IVVal.

TSSMeasure.internalVarGet(IV_error,IVVal);

IV_nrecv The number of rows processed by the last sqlnrecv, or the
number of bytes received by the last http_nrecv,
http_recv, sock_nrecv, or sock_recv.

IV_nusers The total number of virtual testers in the current TestManager
session.

IV_nxmit The total number of characters contained in the SQL statements
transmitted to the server in the last sqlexec or sqlprepare
command, or the number of bytes transmitted by the last
http_request or sock_send.

IV_statement_id The value assigned as the prepared statement ID, which is
returned by sqlprepare and sqlalloc_statement.

IV_total_nrecv The total number of bytes received for all HTTP and socket
receive emulation commands issued on a particular
connection.

IV_total_rows Set to the number of rows processed by the SQL statements. If
the SQL statements do not affect any rows, IV_total_rows
is set to 0. If the SQL statements return row results,
IV_total_rows is set to 0 by sqlexec, then incremented by
sqlnrecv as the row results are retrieved.

IV_tux_tpurcode TUXEDO user return code, which mirrors the TUXEDO API
global variable tpurcode. It can be set only by the
tux_tpcall, tux_tpgetrply, tux_tprecv, and
tux_tpsend emulation commands.

IV_uid The numeric ID of the current virtual tester.

Variable Contains
Test Script Services Reference 55

TSSMeasure.think()
TSSMeasure.think()

Puts a time delay in a script that emulates a pause for thinking.

Syntax

void think(int thinkAverage)

void think()

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

A think-time delay is a pause inserted in a performance test script in order to emulate
the behavior of actual application users.

For a description of environment variables, see environmentOp() on page 42.

Example

This example calculates a pause based on the value stored in the environment variable
EVAR_Think_avg, and inserts the pause into the script.

TSSMeasure.think();

See Also

TSSAdvanced.thinkTime()

Element Description

thinkAverage If specified as 0 or omitted, the number of milliseconds stored in the
EVAR_Think_avg environment variable is used as the basis of the
calculation. Otherwise, the calculation is based on the value specified.
56 Chapter 3

TSSMeasure.timerStart()
TSSMeasure.timerStart()

Marks the start of a block of actions to be timed.

Syntax

void timerStart(String label, int timeStamp)

void timerStart(String label)

void timerStart()

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

This call associates a starting timestamp with label for later reference by
timerStop(). The TestManager reporting system uses captured timing information
for performance analysis reports.

Example

This example times actions designated event1, logging the current time.

TSSMeasure.timerStart ("event1");
// actions to be timed //
TSSMeasure.timerStop("event1");

Element Description

label The name of the timer to be inserted into the log. If specified as null, an
unlabeled timer is created. Only one unlabeled timer is supported at a time.

timeStamp An integer specifying a timestamp to override the current time. If specified as
0, the current time is logged.
Test Script Services Reference 57

TSSMeasure.timerStop()
See Also

timerStop()

TSSMeasure.timerStop()

Marks the end of a block of timed actions.

Syntax

void timerStop(String label, int timeStamp, boolean rmFlag)

void timerStop(String label)

void timerStop()

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Element Description

label The name of the timer to be stopped and logged, or NULL for an unlabeled
timer.

timeStamp If specified as 0, the current time is recorded.

rmFlag Specify as false (default) to stop the timer without removing it; otherwise,
specify as true. A timer that is not removed can be stopped multiple times in
order to measure intervals comprising this timed event.
58 Chapter 3

TSSMeasure.timerStop()
Comments

Normally, this call associates an ending timestamp with a label specified with
timerStart(). If the specifiedlabel was not set by a previous timerStart() but an
unlabeled timer exists, this call uses the start time specified with timerStart() for
the unlabeled timer. If rmFlag is specified as 0, multiple invocations of timerStop()
are allowed against a single timerStart(). This usage (see the example) allows you
to subdivide a timed event into separate timed intervals.

Example

This example stops an unlabeled timer without removing it.

TSSMeasure.timerStart();
// actions to be timed //
TSSMeasure.timerStop("event1");
// other actions to be timed //
TSSMeasure.timerStop("event2");

See Also

timerStart()
Test Script Services Reference 59

Utility Class
Utility Class

Use the utility methods to perform actions common to many test scripts.

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

The following table lists the utility methods. They are static methods of class
TSSUtility.

Method Description

delay() Delays the specified number of milliseconds.

errorDetail() Retrieves error information about a failure.

getScriptOption() Gets the value of a script playback option.

getTestCaseConfigurationName() Gets the name of the configuration (if any)
associated with the current test case.

getTestCaseName() Gets the name of the test case in use.

negExp() Gets the next negative exponentially
distributed random number with the specified
mean.

rand() Gets the next random number.

seedRand() Seeds the random number generator.

stdErrPrint() Prints a message to the virtual tester’s error
file.

stdOutPrint() Prints a message to the virtual tester’s output
file.

uniform() Gets the next uniformly distributed random
number in the specified range.
60 Chapter 3

TSSUtility.delay()
TSSUtility.delay()

Delays script execution for the specified number of milliseconds.

Syntax

void delay (int msecs)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The delay is scaled as indicated by the contents of the EVAR_Delay_dly_scale
environment variable. The accuracy of the time delayed is subject to operating system
limitations.

Example

This example delays execution for 10 milliseconds.

TSSUtility.delay(10);

TSSUtility.errorDetail()

Retrieves error information about a failure.

Syntax

int errorDetail(StringBuffer errorText)

Element Description

msecs The number of milliseconds to delay script execution.
Test Script Services Reference 61

TSSUtility.errorDetail()
Return Value

This method returns TSS_OK if the previous call succeeded. If the previous call failed,
TSSUtility.errorDetail() returns one of the error codes listed below and corresponding
errorText.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

 Comments

This method is called internally by Java methods, which throw TSSException on
error. Get the error code by calling TSSException.getErrorCode(). You can use
TSSUtility.errorDetail(), but there is no need to do so. For implementation
details, see TSSException on page 233.

Example

This example opens a datapool and, if there is an error, displays the associated error
message text.

TSSDatapool dp = new TSSDatapool();
dp.open ("custdata");
StringBuffer errorText;
boolean fetchRet = dp.fetch();
if (fetchRet==false)

// fetch failed, get detail
int errorRet = TSSUtility.errorDetail (errorText);
System.out.print (errorText);

Element Description

errorText OUTPUT. Returned explanatory error message about the previous TSS call,
or an empty string ("") if the previous TSS call did not fail.
62 Chapter 3

TSSUtility.getScriptOption()
TSSUtility.getScriptOption()

Gets the value of a script playback option.

Syntax

String getScriptOption(String optionName)

Return Value

On success, this method returns the value of the specified script option.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example gets the value of the script option repeat_count.

String optVal = TSSUtility.getScriptOption("repeat_count");

Element Description

optionName The name of the script option whose value is returned.
Test Script Services Reference 63

TSSUtility.getTestCaseConfigurationName()
TSSUtility.getTestCaseConfigurationName()

Gets the name of the configuration (if any) associated with the current test case.

Syntax

String getTestCaseConfigurationName (void)

 Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

A test case specifies the pass criteria for something that needs to be tested. A
configured test case is one that TestManager can execute and resolve as pass or fail.

Example

This example retrieves the name of a test case configuration.

String tcConfig = TSSUtility.getTestCaseConfigurationName();

TSSUtility.getTestCaseName()

Gets the name of the test case in use.

Syntax

String getTestCaseName()

Return Value

On success, this method returns the name of the current test case.
64 Chapter 3

TSSUtility.negExp()
Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

Created from TestManager, a test case specifies the pass criteria for something that
needs to be tested.

Example

This example stores the name of the test case in use in tcName.

String tcName = TSSUtility.getTestCaseName();

TSSUtility.negExp()

Gets the next negative exponentially distributed random number with the specified
mean.

Syntax

int negExp(int mean)

Return Value

This method returns the next negative exponentially distributed random number
with the specified mean.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

Element Description

mean The mean value for the distribution.
Test Script Services Reference 65

TSSUtility.rand()
■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

 Example

This example seeds the generator and gets a random number with a mean of 10.

TSSUtility.seedRand (10)
int next = TSSUtility.negExp(10);

See Also

rand(), seedRand(), uniform()

TSSUtility.rand()

Gets the next random number.

Syntax

int rand()

Return Value

This method returns the next random number in the range 0 to 32767.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.
66 Chapter 3

TSSUtility.seedRand()
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Example

This example gets the next random number.

int next = TSSUtility.rand();

See Also

seedRand(), negExp(), uniform()

TSSUtility.seedRand()

Seeds the random number generator.

Syntax

void SeedRand(int seed)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Element Description

seed The base integer.
Test Script Services Reference 67

TSSUtility.stdErrPrint()
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

seedRand() uses the argument seed as a seed for a new sequence of random
numbers to be returned by subsequent calls to the rand() routine. If seedRand() is
then called with the same seed value, the sequence of random numbers is repeated. If
rand() is called before any calls are made to seedRand(), the same sequence is
generated as when seedRand() is first called with a seed value of 1.

Example

This example seeds the random number generator with the number 10:

TSSUtility.seedRand(10);

See Also

rand(), negExp(), uniform()

TSSUtility.stdErrPrint()

Prints a message to the virtual tester’s error file.

Syntax

void stdErrPrint(String message)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Element Description

message The string to print.
68 Chapter 3

TSSUtility.stdOutPrint()
If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example prints to the error file the message Login failed.

TSSUtility.stdErrPrint("Login failed");

See Also

TSSUtility.stdErrPrint()

TSSUtility.stdOutPrint()

Prints a message to the virtual tester’s output file.

Syntax

void stdOutPrint(String message)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example prints the message Login successful.

TSSUtility.stdOutPrint("Login successful");

Element Description

message The string to print.
Test Script Services Reference 69

TSSUtility.uniform()
See Also

TSSUtility.stdErrPrint()

TSSUtility.uniform()

Gets the next uniformly distributed random number.

Syntax

int uniform(int low, int high)

Return Value

This method returns the next uniformly distributed random number in the specified
range, or –1 if there is an error.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Element Description

low The low end of the range.

high The high end of the range.
70 Chapter 3

TSSUtility.uniform()
Example

This example gets the next uniformly distriburted random number between –10 and
10.

int next = TSSUtility.uniform(-10,10);

See Also

rand(), seedRand(), negExp()
Test Script Services Reference 71

Monitor Class
Monitor Class

When a suite of test cases or test scripts is played back, TestManager monitors
execution progress and provides a number of monitoring options. The monitoring
methods support TestManager’s monitoring options.

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

The following table lists the monitoring methods. They are static methods of class
TSSMonitor.

TSSMonitor.display()

Sets a message to be displayed by the monitor.

Syntax

void display(String message)

Method Description

display() Sets a message to be displayed by the monitor.

positionGet() Gets the script source file name or line number
position.

positionSet() Sets the script source file name or line number
position.

reportCommandStatus() Gets the runtime status of a command.

runStateGet() Gets the run state.

runStateSet() Sets the run state.

Element Description

message The message to be displayed by the progress monitor.
72 Chapter 3

TSSMonitor.positionGet()
Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOOP. The TSS server is running proxy.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

This message will be displayed until overwritten by another call to display().

Example

This example sets the monitor display to Beginning transaction.

TSSMonitor.display("Beginning transactioin");

TSSMonitor.positionGet()

Gets the test script file name or line number position.

Syntax

void positionGet (StringBuffer srcFile, TSSInteger lineNumber)

Element Description

srcFile OUTPUT. The name of a source file. After a successful call, this variable will
contain the name of the source file that was specified with the most recent
positionSet() call.

lineNumber OUTPUT. The name of a local variable. After a successful call, this variable
will contain the current line position in srcFile . For the implementation
of this argument’s data type, see TSSInteger on page 232.
Test Script Services Reference 73

TSSMonitor.positionSet()
Exceptions

 This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. positionSet() and positionGet() partially support
this monitoring option for TSS scripts: if line numbers are reported, they will be
displayed during playback but not the contents of the lines.

The line number returned by this function is the most recent value that was set by
positionSet(). A return value of 0 for line number indicates that line numbers are
not being maintained.

Example

This example gets the name of the current script file and the number of the line that
will be accessed next.

StringBuffer scriptFile;
TSSInteger lineNumber;
TSSMonitor.positionGet(scriptFile,lineNumber);

See Also

positionSet()

TSSMonitor.positionSet()

Sets the test script file name or line number position.

Syntax

void positionSet(String srcFile, int lineNumber)

void positionSet(int lineNumber)
74 Chapter 3

TSSMonitor.positionSet()
Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. positionSet() and positionGet() partially support
this monitoring option for TSS scripts: if line numbers are reported, they will be
displayed during playback but not the contents of the lines.

Example

This example sets access to the beginning of test script checkLogin.

TSSMonitor.positionSet("checkLogin",0);

See Also

positionSet()

Element Description

srcFile The name of the test script, or NULL for the current test script.

lineNumber The number of the line in srcFile to set the cursor to, or 0 for the current
line.
Test Script Services Reference 75

TSSMonitor.reportCommandStatus()
TSSMonitor.reportCommandStatus()

Reports the runtime status of a command.

Syntax

void reportCommandStatus(int status)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOOP. The TSS server is running proxy.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The entered status is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Example

This example reports a failure command status.

TSSMonitor.reportCommandStatus(TSS_CMD_STAT_FAIL);

Element Description

status The status of a command. Can be one of the following:
■ TSS_CMD_STAT_FAIL

■ TSS_CMD_STAT_PASS

■ TSS_CMD_STAT_WARN

■ TSS_CMD_STAT_INFO.
76 Chapter 3

TSSMonitor.runStateGet()
TSSMonitor.runStateGet()

Gets the run state.

Syntax

int runStateGet()

Return Value

On success, this method returns one of the run state values listed in the run state table
starting on page 78.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

This call is useful for storing the current run state so you can change the state and then
subsequently do a reset to the original run state.

Example

This example gets the current run state.

int orig = TSSMonitor.runStateGet();

See Also

runStateSet()

TSSMonitor.runStateSet()

Sets the run state.
Test Script Services Reference 77

TSSMonitor.runStateSet()
Syntax

void runStateSet(int state)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. Invalid run state.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

TestManager includes the option to monitor script progress individually for different
virtual testers. The run states are the mechanism used by test scripts to communicate
their progress to TestManager. Run states can also be logged and can contribute to
performance analysis reports.

The following table lists the TestManager run states.

Element Description

state The run state to set. Enter one of the run state values listed in the run state
table starting on page 78.

 Run State Meaning

MST_BIND iiop_bind in progress

MST_BUTTON X button action

MST_CLEANUP cleaning up

MST_CPUDLY cpu delay

MST_DELAY user requested delay

MST_DSPLYRESP displaying response

MST_EXITED exited
78 Chapter 3

TSSMonitor.runStateSet()
MST_EXITSQABASIC exited SQABasic code

MST_EXTERN_C executing external C code

MST_FIND find_text find_point

MST_GETTASK waiting for task assignment

MST_HTTPCONN waiting on http connection

MST_HTTPDISC waiting on http disconnect

MST_IIOP_INVOKE iiop_invoke in progress

MST_INCL mask including above basic states

MST_INITTASK initializing task

MST_ITDLY inter-task delay

MST_MOTION X motion

MST_PMATCH matching response (precv)

MST_RECV_DELAY line_speed delay in recv

MST_SATEXEC executing satellite script

MST_SEND httpsocket send

MST_SEND_DELAY line_speed delay in send

MST_SHVBLCK blocked from shv access

MST_SHVREAD V_VP: reading shared variable

MST_SHVWAIT user requested shv wait

MST_SOCKCONN waiting on socket connection

MST_SOCKDISC waiting on socket disconnect

MST_SQABASIC_CODE running SQABasic code

MST_SQLCONN waiting on SQL client connection

MST_SQLDISC waiting on SQL client disconnect

MST_SQLEXEC executing SQL statements

MST_STARTAPP SQABasic: starting app

MST_SUSPENDED suspended

 Run State Meaning
Test Script Services Reference 79

TSSMonitor.runStateSet()
MST_EXITSQABASIC exited SQABasic code

MST_EXTERN_C executing external C code

MST_FIND find_text find_point

MST_GETTASK waiting for task assignment

MST_HTTPCONN waiting on http connection

MST_HTTPDISC waiting on http disconnect

MST_IIOP_INVOKE iiop_invoke in progress

MST_INCL mask including above basic states

MST_INITTASK initializing task

MST_ITDLY inter-task delay

MST_MOTION X motion

MST_PMATCH matching response (precv)

MST_RECV_DELAY line_speed delay in recv

MST_SATEXEC executing satellite script

MST_SEND httpsocket send

MST_SEND_DELAY line_speed delay in send

MST_SHVBLCK blocked from shv access

MST_SHVREAD V_VP: reading shared variable

MST_SHVWAIT user requested shv wait

MST_SOCKCONN waiting on socket connection

MST_SOCKDISC waiting on socket disconnect

MST_SQABASIC_CODE running SQABasic code

MST_SQLCONN waiting on SQL client connection

MST_SQLDISC waiting on SQL client disconnect

MST_SQLEXEC executing SQL statements

MST_STARTAPP SQABasic: starting app

MST_SUSPENDED suspended

 Run State Meaning
80 Chapter 3

TSSMonitor.runStateSet()
MST_TEST test case, emulate

MST_THINK thinking

MST_TRN_PACING transactor pacing delay

MST_TUXEDO Tuxedo execution

MST_TYPE typing

MST_USERCODE SQAVu user code

MST_INIT doing start-up initialization

MST_UNDEF user’s micro_state is undefined

MST_WAITOBJ SQABasic: waiting for object

MST_WAITRESP waiting for response

MST_WATCH interactive -W watch record

MST_XCLNTCONN waiting on http connection

MST_XCLNTCONN waiting on socket connection

MST_XCLNTCONN waiting on SQL client connection

MST_XCLNTCONN waiting on X client connection

MST_XCLNTDISC waiting on http disconnect

MST_XCLNTDISC waiting on socket disconnect

MST_XCLNTDISC waiting on SQL client disconnect

MST_XCLNTDISC waiting on X client disconnect

MST_XMOVEWIN X move window

MST_XQUERY X query function

MST_XSYNC X sync state during X query

MST_XWINCMP xwindow_diff comparing windows

MST_XWINDUMP xwindow_diff dumping window

N_MST_INCL number of above states

 Run State Meaning
Test Script Services Reference 81

Synchronization Class
Example

This example sets the run state to MST_WAITRESP.

TSSMonitor.runStateSet(MST_WAITRESP);

See Also

runStateGet()

Synchronization Class

Use the synchronization methods to sychronize virtual testers during script playback.
You can insert synchronization points and wait periods, and you can manage
variables shared among virtual testers.

Applicability

Commonly used with TestManager.

Summary

The following table lists the synchronization methods. They are static methods of
class TSSSync.

Method Description

sharedVarAssign() Performs a shared variable assignment operation.

sharedVarEval() Gets the value of a shared variable and operates on the
value as specified.

sharedVarWait() Waits for the value of a shared variable to match a specified
range.

syncPoint() Puts a synchronization point in a script.
82 Chapter 3

TSSSync.sharedVarAssign()
TSSSync.sharedVarAssign()

Performs a shared variable assignment operation.

Syntax

void sharedVarAssign(String name, int val, int op, TSSInteger
returnVal)

Exceptions

 These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The entered name is not a shared variable.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Element Description

name The name of the shared variable to operate on.

value The right-hand-side value of the assignment expression.

op Assignment operator. Can be one of the following:
■ SHVOP_assign
■ SHVOP_add

■ SHVOP_subtract

■ SHVOP_multliply

■ SHVOP_divide

■ SHVOP_modulo

■ SHVOP_and

■ SHVOP_or

■ SHVOP_xor

■ SHVOP_shiftleft

■ SHVOP_shiftright

returnVal OUTPUT. If not specified as NULL, the resulting value of name after
application of op value.
Test Script Services Reference 83

TSSSync.sharedVarEval()
Comments

Shared variables require configuration. For details, see the following example and
Appendix A.

Example

This example adds 5 to the value of the shared variable lineCounter, puts the new
value of lineCounter in returnval, and configures the variable by adding it to an
array naming all shared variables used in the script. This configuration code can occur
anywhere in the script.

TSSInteger returnVal = new TSSIngeger(0);
TSSSync.sharedVarAssign("lineCounter", 5, SHVOP_add, returnVal);
...
public static class SharedVarConfig extends SharedVarInfo {

public SharedVarConfig() {
String sv[] = {

"lineCounter",
....

}
setSharedVarNames(sv);

}
}

See Also

sharedVarEval(), sharedVarWait()

TSSSync.sharedVarEval()

Gets the value of a shared variable and operates on the value as specified.

Syntax

void sharedVarEval(String name, TSSInteger value, int op)

Element Description

name The name of the shared variable to operate on.

value OUTPUT. A local container into which the value of name is retrieved. For
the implementation of this argument’s data type, see TSSInteger on
page 232.
84 Chapter 3

TSSSync.sharedVarEval()
Exceptions

 This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The entered name is not a shared variable.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

Shared variables require configuration. For details, see Appendix A.

Example

This example post-decrements the value of shared variable lineCounter and stores
the result in val.

TSSInteger val = new TSSInteger(0);
TSSSync.sharedVarEval("lineCounter",val,SHVADJ_post_inc);

See Also

sharedVarAssign(), sharedVarWait()

op Increment/decrement operator for the returned value: Can be one of the
following:
■ SHVADJ_none SHVADJ_pre_inc
■ SHVADJ_post_inc

■ SHVADJ_pre_dec

■ SHVADJ_post_dec

Element Description
Test Script Services Reference 85

TSSSync.sharedVarWait()
TSSSync.sharedVarWait()

Waits for the value of a shared variable to match a specified range.

Syntax

int sharedVarWait(String name, int min, int max, int adjust,
int timeout, TSSInteger returnVal)

int sharedVarWait(String name, int min)

Return Value

On success, this method returns 1 (condition was met before timeout) or 0 (timeout
expired before the condition was met).

Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The entered name is not a shared variable.

Element Description

name The name of the shared variable to operate on.

min The low range for the value of name.

max The high range for the value of name.

adjust The value to increment/decrement the named shared variable by once it
meets the min – max range.

timeout The timeout preference (how long to wait for the condition to be met). Enter
one of the following:
■ A negative number for no timeout.
■ 0 to return immediately with an exit value of 1 (condition met) or 0 (not

met)
■ The number of milliseconds to wait for the value of name to meet the

criteria, before timing out with and returning an exit value of 1 (met) or 0
(not met).

returnVal OUTPUT. The value of name at the time of the return, before any possible
adjustment. If timeout expired before the return, the value is not adjusted.
Otherwise, returnVal is incremented/decremented by adjust. For the
implementation of this argument’s data type, see TSSInteger on page 232.
86 Chapter 3

TSSSync.sharedVarWait()
■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

This call provides a method of blocking a virtual tester until a user-defined global
event occurs.

If virtual testers are blocked on an event utilizing the same shared variable,
TestManager guarantees that the virtual testers are unblocked in the same order in
which they were blocked. Although this alone does not ensure an exact multi-user
timing order in which statements following a wait are executed, the additional
proper use of the arguments min, max, and adjust allows control over the order in
which multi-user operations occur. (UNIX or Windows NT determines the order of
the scheduling algorithms. For example, if two virtual testers are unblocked from a
wait in a given order, the tester that was unblocked last might be released before the
tester that was unblocked first.)

If a shared variable’s value is modified, any subsequent attempt to modify this
value — other than through sharedVarWait() — blocks execution until all virtual
testers already blocked have had an opportunity to unblock. This ensures that events
cannot appear and then quickly disappear before a blocked virtual tester is
unblocked. For example, if two virtual testers were blocked waiting for name to equal
or exceed N, and if another virtual tester assigned the value N to name, then
TestManager guarantees both virtual testers the opportunity to unblock before any
other virtual tester is allowed to modify name.

Offering the opportunity for all virtual testers to unblock does not guarantee that all
virtual testers actually unblock, because if sharedVarWait() is called with a
nonzero value of adjust by one or more of the blocked virtual testers, the shared
variable value changes during the unblocking script. In the previous example, if the
first user to unblock had called sharedVarWait() with a negative adjust value,
then the event waited on by the second user would no longer be true after the first
user unblocked. With proper choice of adjust values, you can control the order of
events.

Shared variables require configuration. For details, see Appendix A.
Test Script Services Reference 87

TSSSync.syncPoint()
Example

This example returns 1 if the shared variable inProgress reaches a value between
10 and 20 within 60000 milliseconds of the time of the call. Otherwise, it returns 0.
svVal contains the value of inProgress at the time of the return, before it is
adjusted. (In this case, the adjustment value is 0 so the value of the shared variable is
not adjusted.)

TSSInteger svVal = new TSSInteger(0);
int retVal= TSSSync.sharedVarWait("inProgress",10,20,0,60000,svVal);

See Also

sharedVarAssign(), sharedVarEval()

TSSSync.syncPoint()

Puts a synchronization point in a script.

Syntax

void syncPoint(String label)

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOOP. The TSS server is running proxy.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The synchronication point label is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Element Description

label The name of the synchronization point.
88 Chapter 3

TSSSync.syncPoint()
Comments

A script pauses at a synchronization point until the release criteria specified by the
suite have been met. If the criteria are met, the script delays a random time specified
in the suite and then resumes execution.

Typically, you will want to insert synchronization points into a TestManager suite
rather than inserting the syncPoint() call into a script.

If you insert a synchronization point into a suite, synchronization occurs at the
beginning of the script. If you insert a synchronization point into a script with
syncPoint(), synchronization occurs at the point of insertion. You can insert the
command anywhere in the script.

Shared variables require configuration. For details, see the following example and
Appendix A.

Example

This example creates a sync point named BlockUntilSaveCompleteand
configures the sync point. The configuration statement may appear anywhere inside
the script.

TSSSync.syncPoint("BlockUntilSaveComplete");
...
public static class SyncPointConfig extends SyncPointInfo {
 public SyncPointConfig() {
 String points[] = {
 "BlockUntilSaveComplete"};
 setSyncPointNames(points);

}
}

Test Script Services Reference 89

Session Class
Session Class

A suite can contain multiple test scripts of different types. When TestManager
executes a suite, a separate session is started for each type of script in the suite. Each
session lasts until all scripts of the type have finished executing. Thus, if a suite
contains three Visual Basic test scripts and six VU test scripts, two sessions will be
started and each will remain active until all scripts of the respective types finish.

In a given suite run, a session can be run directly (inside TestManager’s process space)
or by a separate TSS server process (proxy). The latter will happen only if the
following two conditions are met:

■ The test script(s) is executed stand-alone (outside of TestManager) and is linked
with the link library rttssremote.lib.

■ The first script of a given type in a suite that can be executed by a TSS proxy server
calls serverStart().

Unlike most TSS methods, the Session methods do not generate error codes or throw
exceptions. Instead, they return status values indicating success or the cause of failure.

Applicability

Commonly used with TestManager.

Summary

Use the session methods listed in the following table to manage proxy TSS servers
and sessions. These methods are not needed for sessions that are directly executed by
TestManager. These are static methods of class TSSSession.

Method Description

connect() Connects to a TSS proxy server.

context() Passes context information to a TSS server.

disconnect() Disconnects from a TSS proxy server.

serverStart() Starts a TSS proxy server.

serverStop() Stops a TSS proxy server.

shutdown() Stops logging and initializes TSS.
90 Chapter 3

TSSSession.connect()
TSSSession.connect()

Connects to a TSS proxy server.

Syntax

int connect(String host, int port, int id)

Return Value
■ TSS_OK. Success.

■ TSS_NOOP. A connection and ID had already been established for this execution
thread.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. No TSS server was listening on port.

■ TSS_SYSERROR. A system error occurred.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

For scripts that are executed by a proxy process rather than directly by the TSEE, this
function must be called before any other TSS functions. This function is also required
when a script starts a new thread of execution.

The direct TSS DLL ignores host and port, and associates the id with the current
execution thread. If the thread already had an ID, then id is ignored. (You cannot
change id.)

Element Description

host The name (or IP address in quad dot notation) of the host on which the
proxy TSS server process is running.

port The listening port for the TSS server on host, or 0 (recommended) to let
TestManager select the port.

id The connection identifier.
Test Script Services Reference 91

TSSSession.context()
Example

This example connects to a TSS server running on host 192.36.25.107. The port is
defined in the example for serverStart().

TSSInteger port = new TSSInteger(0);
int retval = TSSSession.connect ("192.36.25.107",port.getValue(),0);

See Also

serverStart()

TSSSession.context()

Passes context information to a TSS server.

Syntax

int context (int ctx, String value)

Element Description

ctx The type of context information to pass: Can be one of the following:
■ CTXT_workingDir
■ CTXT_datapoolDir
■ CTXT_timeZero
■ CTXT_todZero
■ CTXT_logDir
■ CTXT_logFile
■ CTXT_logData
■ CTXT_testScript
■ CTXT_style
■ CTXT_sourceUID

value The information of type ctx to pass.
92 Chapter 3

TSSSession.disconnect()
Return Value
■ TSS_OK. Success.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The specified ctx is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call is useful for test scripts that are executed stand-alone — outside the
TestManager framework — and that also make TSS calls. The call passes information,
such as the log file name, that would be passed through shared memory if the script
were executed by TestManager.

Test scripts that are executed stand-alone and also by a proxy TSS server should make
this call immediately after TSSSession.connect(), before accessing any other TSS
services. Otherwise, inconsistent results can occur.

Example

This example passes a working directory to the current proxy TSS server.

int retVal = TSSSession.context(CTXT_workingDir,"C:\temp");

TSSSession.disconnect()

Disconnects from a TSS proxy server.

Syntax

void disconnect()

Return Value

None.

Comments

This call closes the connection established by TSSSession.Cconnect() and
performs any required cleanup operations.
Test Script Services Reference 93

TSSSession.serverStart()
Example

This example disconnects from the TSS server.

TSSSession.disconnect ();

TSSSession.serverStart()

Starts a TSS proxy server.

Syntax

int serverStart(TSSInteger port)

Return Value

 This method does not throw an exception on error. A script may check for one of the
following return values.

■ TSS_OK. Success.

■ TSS_NOOP. A TSS server was already listening on port.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_NOSERVER. Start failure.

■ TSS_SYSERROR. A system error occurred.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

No TSS server is started if one is already running. A test script that is to be executed
by a proxy server and that might be the first to execute, should make this call.

Element Description

port The listening port for the TSS server. If specified as 0 (recommended), the
system chooses the port and returns its number to port. See TSSInteger on
page 232 for the implementation of this argument’s type.
94 Chapter 3

TSSSession.serverStop()
Example

This example starts a proxy TSS server on a system-designated port, whose number is
returned to port.

TSSInteger port = new TSSInteger(0);
int retVal = TSSSession.serverStart (port);

See Also

serverStop()

TSSSession.serverStop()

Stops a TSS proxy server.

Syntax

int serverStop(int port)

Return Value
■ TSS_OK. Success.

■ TSS_NOOP. No TSS server was listening on port.

Exceptions

This method may throw an exception with one of the following values:

■ TSS_INVALID. No proxy TSS server was found or stopped.

■ TSS_SYSERROR. A system error occurred.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

In a test suite with multiple scripts, only the last executed script should make this call.

Element Description

port The port number that the TSS server to be stopped is listening on.
Test Script Services Reference 95

TSSSession.shutdown()
Example

This example stops a proxy TSS server that was started by the example for
serverStart().

int retVal = TSSSession.serverStop (port.getValue());

See Also

serverStart()

TSSSession.shutdown()

Stops logging and initializes TSS.

Syntax

void shutdown(void)

Return Value

This method exits with one of the following results:

■ TSS_OK. Success.

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The specified ctx is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call stops logging functions, pauses a playback session, and initializes TSS to
resume logging and executing the next task.

Example

This example shuts down logging during session execution so that logging can be
restarted for the next task.

int retVal = TSSSession.shutdown ();
96 Chapter 3

Advanced Class
Advanced Class

You can use the advanced methods to perform timing calculations, logging
operations, and internal variable initialization functions. TestManager performs these
operations on behalf of scripts in a safe and efficient manner. As a result, the functions
need not and usually should not be performed by individual test scripts.

Applicability

Commonly used with TestManager.

Summary

The following table lists the advanced methods. They are static methods of class
TSSAdvanced.

Method Description

internalVarSet() Sets the value of an internal variable.

logCommand() Logs a command event.

thinkTime() Calculates a think-time average.
Test Script Services Reference 97

TSSAdvanced.internalVarSet()
TSSAdvanced.internalVarSet()

Sets the value of an internal variable.

Syntax

void internalVarSetInt(int internVar, int iVal)

void internalVarSetString(int internVar, StringBuffer sVal)

Exceptions

 These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The values of some internal variables affect think-time calculations and the contents
of log events. Setting a value incorrectly could cause serious misbehavior in a script.

Example

This example sets IV_cmdcnt to 0.

TSSAdvanced.internalVarSetInt (IV_cmdcnt,0);

See Also

TSSMeasure.internalVarGet()

Element Description

internVar The internal variable to operate on. Internal variables and their values are
listed in the tables starting on page 52 and page 53.

iVal The new integer value for internVar. For the implementation of this
argument’s data type, see TSSInteger on page 232.

sVal The new string internal value for internVar.
98 Chapter 3

TSSAdvanced.logCommand()
TSSAdvanced.logCommand()

Logs a command event.

Syntax

void logCommand(String name, String label, short result, String
description, int starttime, int endtime, String logdata,
TSSNamedValue [] property)

void logCommand(String name, String label, short result)

Element Description

name The command name.

label The event label.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a timestamp. If specified as 0, the logged timestamp
will be the later of the values contained in internal variables IV_fcs_ts
and IV_fcr_ts.

endtime An integer indicating a timestamp. If specified as 0, the time set by
commandEnd() is logged.

logdata Text to be logged describing the ended command.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value. For the implementation of this argument’s data type, see
TSSNamedValue on page 217.
Test Script Services Reference 99

TSSAdvanced.logCommand()
Exceptions

These methods may throw an exception with one of the following values:

■ TSS_NOSERVER. No previous successful call to TSSSession.connect().

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these exceptions and do not log it, TestManager will not be aware
of the exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass result for the script.

Comments

The value of IV_cmdcnt is logged with the event.

The command name and label entered with TSSMeasure.commandStart() are
logged, and the run state is restored to the value that existed prior to the
TSSMeasure.commandStart() call.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 44) or
EVAR_LogEvent_control (page 44) environment variables. Alternatively, the
logging preference may be set with the EVAR_Log_level (page 45) and
EVAR_Record_level (page 46) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

Example

This example logs a message for a login script.

TSSAdvanced.logCommand("Login", "initTimer", TSS_LOG_RESULT_PASS,
"Command timer failed", 0, 0, "Login command completed", null);

See Also

TSSMeasure.commandStart(), TSSMeasure.commandEnd()
100 Chapter 3

TSSAdvanced.thinkTime()
TSSAdvanced.thinkTime()

Calculates a think-time average.

Syntax

int thinkTime(int thinkAverage)

int thinkTime()

Return Value

On success, these methods return a calculated think-time average.

Comments

This call calculates and returns a think time using the same algorithm as
TSSMeasure.think(). But unlike TSSMeasure.think(), this call inserts no pause
into a script.

This function could be useful in a situation where a test script calls another program
that, as a matter of policy, does not allow a calling program to set a delay in execution.
In this case, the called program would use TSSMeasure.thinkTime() to recalculate
the delay requested by TSSMeasure.think() before deciding whether to honor the
request.

Element Description

thinkAverage If specified as 0, the number of milliseconds stored in the ThinkAvg
environment variable is entered. Otherwise, the value specified overrides
ThinkAvg.
Test Script Services Reference 101

TSSAdvanced.thinkTime()
Example

This example calculates a pause based on a think-time average of 5000 milliseconds.

ctime = ‘tsscmd GetTime‘
int iv = TSSMeasure.getTime();
TSSAdvanced.internalVarSetInt(IV_fcs_ts, iv);
TSSAdvanced.internalVarSetInt(IV_lcs_ts, iv);
TSSAdvanced.internalVarSetInt(IV_fcr_ts, iv);
TSSAdvanced.internalVarSetInt(IV_lcr_ts, iv);
int pause = TSSAdvanced.thinkTime(5000);

See Also

TSSMeasure.think()
102 Chapter 3

4Extended Test Script
Services Reference
About the Extensions

This chapter describes two classes that extend some of the functionality of the
Rational Test Script Services (TSS):

■ LookUpTable Class on page 104

The LookUpTable class is designed for use with Rational QualityArchitect stubs.

■ TestLog Class on page 112

This class extends TSSLog. It is designed to let you log information from Rational
QualityArchitect test scripts and stubs. However, you can use this class to log
information from any program.

Requirements for Using the Test Script Services Extensions

The Test Script Services extensions described in this chapter require Rational Quality
Architect.

In addition, the CLASSPATH must reference a number of .jar files. For a list of the
required .jar files, see Running Test Scripts on page 8.
103

LookUpTable Class
LookUpTable Class

This class lets a method in a stub access a lookup table.

A lookup table lets you test a component whose operation depends upon an associated
component that is still in the development stages. To test the component, you first
provide a stub of the unfinished component that contains that component's methods.
When the component-under-test calls a method in the stub, the method simulates
operation by retrieving information from the lookup table — information that would
otherwise be generated during normal execution in the completed component. The
method then presents the retrieved information to the calling component-under-test.

The information that a stub's method retrieves from the lookup table depends upon
the values that the component-under-test passes to the method. In other words, a
method finds the lookup-table row that contains the parameter values that the
component-under-test passed to it, and then retrieves the appropriate value (return
value or exception) from that same lookup-table row.

A lookup table typically has multiple rows, with each row representing a different set
of inputs and outputs. This allows a method in the component-under-test to be
executed multiple times against the stub, supplying different input values and
retrieving different output values each time.

In the following example of a lookup table for a mortgage calculation method,
amount, interest, and months are input values, while expectedReturn and
expectedException are the corresponding output values:

Typically, you create a lookup table for each stub method that is called during testing
of the component-under-test.

The underlying files used for both lookup tables and datapools are the same. As a
result, when it is time to replace the stub with the completed component, you can use
the lookup table as a datapool when you test the associated component-under-test.

Note: A stub is not a test script. Consequently, it does not require a testMain()
method.

amount interest months expectedReturn expectedException

100000 0.0700 240 775.30

125000 00725 300 bank.BadRateException

150000 0.0750 360 1048.83
104 Chapter 4

LookUpTable Class
Overview

public class LookUpTable extends java.lang.Object

java.lang.Object
|
+--com.rational.test.ct.LookUpTable

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.

LookUpTable Example

The following sample code opens and retrieves values from the lookup table
ManageAccountsBean_getSavingsBalance_L. The code contains examples of
both LookUpTable methods and TestLog methods. TestLog methods are
described in TestLog Class on page 112.

public java.math.BigDecimal getSavingsBalance(long accountID) throws
java.rmi.RemoteException,javax.naming.NamingException,
javax.ejb.EJBException {

String[] ParamNames = new String[1];
ParamNames[0] = "accountID";
return getSavingsBalance_lookup(ParamNames, accountID);

}

private java.math.BigDecimal getSavingsBalance_lookup(
String[] ParamNames,long accountID) throws
java.rmi.RemoteException,javax.naming.NamingException,
javax.ejb.EJBException{

java.math.BigDecimal retval = null;
TestLog log = new TestLog();
LookUpTable lookup = new LookUpTable();
String sRetval = null;
try
{

lookup.open("ManageAccountsBean_getSavingsBalance_L");
String[] values = new String[1];
values[0] = Long.toString(accountID);
log.writeStubMessage(

"ManageAccounts stub, getSavingsBalance method. ",
"Entered with following values: " + values[0] + " " + " ");

if (lookup.find(ParamNames, values))
{

Exception eExpected = lookup.getExpectedException();
if (eExpected != null)
{

log.writeStubMessage(
"ManageAccounts stub, getSavingsBalance method. ",
Extended Test Script Services Reference 105

LookUpTable Class
"Throwing exception: " +
eExpected.getClass().getName());

throw eExpected;
}
else
{

sRetval = lookup.getReturnValue();
if (sRetval != null)

retval = new java.math.BigDecimal(sRetval);
;

}
}
else
{

Exception ex = new Exception("Entry could not be found in the
lookup table for ManageAccounts stub, getSavingsBalance
method.");

log.writeStubException("Lookup table entry not found error: ",
ex);

}
lookup.close();

}
catch (java.rmi.RemoteException e)
{

throw e;
}
catch (javax.naming.NamingException e)
{

throw e;
}
catch (Exception e)
{

log.writeStubException("Lookup table Error in ManageAccounts
stub,getSavingsBalance method: ", e);

}
log.writeStubMessage("ManageAccounts stub, getSavingsBalance

method. ", "Returning " + sRetval);
return retval;

}

106 Chapter 4

Summary
Summary

This class contains the following methods:

Constructor

Syntax

public LookUpTable()

LookUpTable.close()

Closes the current lookup table (that is, the lookup table associated with this instance
of the LookUpTable class).

Syntax

public void close()

Example

For an example of this method, see LookUpTable Example on page 105.

Method Description

close() Closes the current lookup table (that is, the lookup table
associated with this instance of the LookUpTable class).

find() Sets the cursor to the row in the current lookup table that
contains the column value(s) passed to it.

getExpectedException() Returns the contents of the expectedException column in the
current lookup table row.

getReturnValue() Returns the contents of the expectedReturn column in the
current lookup table row.

getValue() Returns the contents of the specified column in the current
lookup table row.

open() Opens the specified lookup table.
Extended Test Script Services Reference 107

LookUpTable.find()
LookUpTable.find()

Sets the cursor to the row in the current lookup table that contains the column value(s)
passed to it.

Syntax

public boolean find(java.lang.String[] names,
java.lang.String[] values)

Return Value

If true, the cursor was successfully set to the row that matched the specified criteria.
If false, a row could not be found that matched the specified criteria.

Exceptions

This method throws the following exception:

■ java.lang.Exception. Reports problems attempting to set the cursor to a row
in the lookup table.

If you handle this exception and do not log it, TestManager will not be aware of the
exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass Result for the script.

Comments

Subsequent value-retrieval methods act upon the row with the cursor.

If multiple rows contain the passed value(s), this method throws an exception.

Example

For an example of this method, see LookUpTable Example on page 105.

Element Description

names An array containing one or more lookup-table column names.

values An array containing a value for each corresponding column
name passed to the method.
108 Chapter 4

LookUpTable.getExpectedException()
LookUpTable.getExpectedException()

Returns the contents of the expectedException column in the current lookup table
row.

Syntax

public java.lang.Exception getExpectedException()

Return Value

The contents of the Exception column in the current lookup table row.

Exceptions

This method throws the following exception:

■ java.lang.Exception. Reports problems attempting to retrieve the contents of
the Exception column.

If you handle this exception and do not log it, TestManager will not be aware of the
exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass Result for the script.

Example

For an example of this method, see LookUpTable Example on page 105.

LookUpTable.getReturnValue()

Returns the contents of the expectedReturn column in the current lookup table row.

Syntax

public java.lang.String getReturnValue()

Return Value

The contents of the Return Value column in the current lookup table row.
Extended Test Script Services Reference 109

LookUpTable.getValue()
Exceptions

This method throws the following exception:

■ java.lang.Exception. Reports problems attempting to retrieve the contents of
the Return Value column.

If you handle this exception and do not log it, TestManager will not be aware of the
exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass Result for the script.

Example

For an example of this method, see LookUpTable Example on page 105.

LookUpTable.getValue()

Returns the contents of the specified column in the current lookup table row.

Syntax

public java.lang.String getValue(java.lang.String colName)

Return Value

The contents of the specified column in the current lookup table row.

An auto-generated lookup table contains an input column for each parameter and
two output columns — expectedReturn and expectedException. If you use additional
output columns in a lookup table, you can use getValue() to retrieve values from
those additional output columns.

Element Description

colName The name of the column containing the value to retrieve.
110 Chapter 4

LookUpTable.open()
Exceptions

This method throws the following exception:

■ java.lang.Exception. Reports problems attempting to retrieve the contents of
the specified column.

If you handle this exception and do not log it, TestManager will not be aware of the
exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass Result for the script.

LookUpTable.open()

Opens the specified lookup table.

Syntax

public void open(java.lang.String tablename)

Exceptions

This method throws the following exception:

■ java.lang.Exception. Reports problems attempting to open the specified
lookup table.

If you handle this exception and do not log it, TestManager will not be aware of the
exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass Result for the script.

Comments

Only one lookup table can exist for a given instance of the LookUpTable class.

Example

For an example of this method, see LookUpTable Example on page 105.

Element Description

tablename The name of the lookup table to open.
Extended Test Script Services Reference 111

TestLog Class
TestLog Class

This class lets you log information from test scripts and stubs.

The TestLog class extends the class com.rational.test.tss.TSSLog.

Overview

public class TestLog

com.rational.test.ct.TestLog

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this class.

TestLog Example

The following sample code uses the writeException() method to report an
exception with a datapool operation. The example also uses the message() method
from the extended TssLog class to log a number of status messages at various stages
of the datapool operation. You can find examples of other TestLog methods in the
section LookUpTable Example on page 105.

public void testMain(String[] args) {
boolean fRetval = false;
TSSDatapool dp = new TSSDatapool();
int iDPCount = 0;
try
{

// Initialize test services
tms.startTestServices();

// Initialize arguments, to java.math.BigDecimal
// getBalance(longaccountID, java.lang.StringacctType) method
long accountID = 0;
java.lang.String acctType = null;
java.math.BigDecimal expectedReturn = null;

String sExpectedException = "";

// Contact the bean home through JNDI
InitialContext initContext = getInitialContext();
Object o = initContext.lookup("ExecuteTransaction");
ExecuteTransactionHome home = (ExecuteTransactionHome)

PortableRemoteObject.narrow(o, ExecuteTransactionHome.class);
112 Chapter 4

TestLog Class
// Declare arguments to the create method

// Initialize arguments for the create method

// Invoke the create method.
ExecuteTransaction remote = home.create();

/**
// Modify below to use a finder method and comment out the above
// remote creation code.
<keyvalue_declaration: Error>
<createparam_init: Error>
ExecuteTransactionKey key = new

ExecuteTransactionKey(<create_params: Error>)
ExecuteTransaction remote = home.findByPrimaryKey(key);

**/

String sDPName = "ExecuteTransaction_getBalance_D";
dp.open(sDPName);
fRetval = dp.fetch();
while (fRetval)
{

iDPCount = iDPCount + 1;

// Retrieve values from Datapool for datatypes that
// we understand.

accountID = dp.value("accountID").longValue();
acctType = dp.value("acctType").toString();
expectedReturn = dp.value("expectedReturn").getBigDecimal();

sExpectedException = dp.value("expectedException").toString();
try
{

// Test java.math.BigDecimal getBalance(longaccountID,
// java.lang.StringacctType)
// java.math.BigDecimal actualReturn =
// remote.getBalance(accountID, acctType);
java.math.BigDecimal actualReturn = null;
actualReturn = remote.getBalance(accountID, acctType);

if (sExpectedException.equals(""))
{

if (expectedReturn.equals(actualReturn))
TestLog.message("Expected result",

TSS_LOG_RESULT_PASS,
"Call to getBalance returned expected value");

else
TestLog.message("Unexpected result",

TSS_LOG_RESULT_FAIL,
"Call to getBalance returned unexpected value, " +
((actualReturn)).toString() + ".");

}
else
{

Extended Test Script Services Reference 113

TestLog Class
TestLog.message("Unexpected result",
TSS_LOG_RESULT_FAIL, "Expected exception,
" + sExpectedException + " was not thrown.");

}
}
catch (Exception e)
{

if (e.getClass().getName().equals(sExpectedException))
{

// Expected exception occurred. Log success.
TestLog.message("Expected result", TSS_LOG_RESULT_PASS,

"Expected exception, " + sExpectedException
+ " was thrown.");

}
else
{

TestLog.message("Unexpected result",TSS_LOG_RESULT_FAIL,
"Unexpected exception, " + e.getClass().getName()
+ " was thrown.");

}
}
fRetval = dp.fetch();

}

if (iDPCount == 0)
{

// Datapool did not contain any rows. Log a warning.
TestLog.message("Empty Datapool", TSS_LOG_RESULT_WARN,

"Datapool, " + sDPName + "is empty.");
}

}
catch (Exception e)
{

TestLog.writeException(e);
}
finally
{

dp.close();
tms.endTestServices();

}
}
}

114 Chapter 4

Summary
Summary

This class contains the following methods:

Note: In addition to these methods, you can also use the methods in the TSSLog class,
as summarized in section Logging Class on page 32.

Constructor

Syntax

public TestLog()

TestLog.writeException()

Lets you log an exception that was thrown in a test script.

Syntax

public static boolean writeException(java.lang.Exception e)

Return Value

true if the log attempt was successful, and false if the log attempt failed.

Method Description

writeException() Lets you log an exception that was thrown in a test script.

writeStubException() Lets you log information about an exception that was thrown
during the execution of a Rational QualityArchitect stub.

writeStubMessage() Lets you log a message relating to the execution of a Rational
QualityArchitect stub.

Element Description

e The exception to log.
Extended Test Script Services Reference 115

TestLog.writeStubException()
Comments

This method logs a Fail result for the test script.

Example

For an example of this method, see TestLog Example on page 112.

TestLog.writeStubException()

Lets you log information about an exception that was thrown during the execution of
a Rational QualityArchitect stub.

Syntax

public static void writeStubException(java.lang.String
description, java.lang.Exception e)

Exceptions

This method throws the following exception:

■ java.lang.Exception. Reports problems attempting to write a stub exception
to the log.

If you handle this exception and do not log it, TestManager will not be aware of the
exception and will not log a Fail result for it. The script will continue to run, and
TestManager could log a Pass Result for the script.

Comments

The description appears in the Description field of the Log Event Properties dialog box.

Example

For examples of this method, see LookUpTable Example on page 105.

Element Description

description A description of the exception.

e The exception to log.
116 Chapter 4

TestLog.writeStubMessage()
TestLog.writeStubMessage()

Lets you log a message relating to the execution of a Rational QualityArchitect stub,
and also a description of the message.

Syntax

public static void writeStubMessage(java.lang.String message,
java.lang.String description)

Comments

The message appears in the Log Event column of the LogViewer. The description
appears in the Description field of the Log Event Properties dialog box.

Example

For examples of this method, see LookUpTable Example on page 105.

Element Description

message The message to insert into the log.

description A description of the message. The description lets you expand
upon the logged message.
Extended Test Script Services Reference 117

TestLog.writeStubMessage()
118 Chapter 4

5Verification Services
Introduction to Verification Points

This chapter describes verification points and provides the basic concepts involved in
adding verification points to test scripts. The chapter contains the following topics:

■ About Verification Points on page 119

■ How Data Is Verified on page 121

■ Types of Verification Points on page 122

■ Verification Point Framework on page 124

■ Setting Up Verification Points in Test Scripts on page 127

For information about creating a new verification point type, see Implementing a New
Verification Point on page 161.

About Verification Points

A verification point is a mechanism for testing, or verifying, the behavior of the
component-under-test.

Using Rational QualityArchitect, you can verify return values, the values of
input/output parameters, and side effects — that is, how the behavior of the
component-under-test affects the component itself as well as other objects. For
example, in a banking application, you might want to verify that a component
correctly calculates a monthly mortgage payment for a given set of inputs such as
loan amount, interest rate, and life of loan.

You establish verification points in your test scripts using the classes and interfaces
provided in the com.rational.test.vp package. You can use the contents of
this package in two ways:

■ To verify data in a JDBC datasource, use the Database... classes. These are the
classes you typically use when recording or writing scripts for EJB testing.

For details, see Database Verification Point Reference on page 131.
119

About Verification Points
■ To perform any other type of automated verification, you must first implement a
new verification point type. For example, if you want to verify the properties of an
object, you must first implement classes that capture, encapsulate, and compare
the object’s properties. A verification point implementer implements verification
point classes based on the abstract verification point framework provided in the
com.rational.test.vp package.

For details, see Verification Point Framework Reference on page 181.

Roles in Working with Verification Points

The following testing team members use the com.rational.test.vp package and
its documentation. Depending upon the requirements of your site, the same person or
different persons perform the different tasks.

■ The verification point implementer implements new verification points based on
the verification point framework described in Verification Point Framework Reference
on page 181.

■ The test designer writes the scripts used for testing a component-under-test. In
component testing, test designers incorporate existing verification point types into
their test scripts — that is, the database verification point provided with Rational
QualityArchitect plus any verification point types created by the verification point
implementer.

■ The tester runs the test scripts that the test designer writes.
120 Chapter 5

How Data Is Verified
The following diagram illustrates the different roles of the test team:

How Data Is Verified

A verification point operates on two different types of data:

■ Data that is known to be correct.

For example, this data might be captured when the component is known to be
functioning correctly, or from a source that is known to contain the correct data.
Data that is known to be correct is called the expected data.

Expected data can be data that is explicitly specified (for example, a person’s
name, social security number, or account number), or data that is the result of
some calculation (for example, a monthly mortgage payment resulting from inputs
of loan amount, interest rate, and number of payments).

Standard verification point
(Database Verification Point)
ships with QualityArchitect Creates custom verification points

Verification point implementer

Test designer
Adds standard verification points

and / or one or more custom verification points
to test scripts

Tester
Runs test scripts
Verification Services 121

Types of Verification Points
■ Data whose validity is unknown and must be verified.

This data is always captured at test runtime and is called the actual data. A
verification point compares expected data and actual data. If the data matches (or,
optionally, satisfies some other condition, such as falling within an accepted
range), the verification point passes. Otherwise, the verification point fails.
Verification point results are logged automatically.

Note: If the test script sets the OPTION_EXPECT_FAILURE option through the
constructor or through the setOptions() method of the specialized Verification
Point class, the verification point passes only if the data comparison fails.

In the following figure, the account balance 935.49 is the expected data for a given
input (an account number). In three subsequent tests, the stored expected data is
compared against the actual data captured during each test. In this example, the
verification point passes if the expected data matches the actual data:

Types of Verification Points

The verification point framework provides for three types of verification points:

■ Static

■ Dynamic

■ Manual

acctBal = 935.49

Expected Data Actual Data Verification Point

Test 1:
acctBal = 935.49

Result

Test 2:
acctBal = 35.49

Test 3:
acctBal = 935.49

Pass

Pass

Fail

 (Stored) (Current Test)
122 Chapter 5

Types of Verification Points
The following table summarizes the differences between verification point types:

Static Verification Points

Static verification points are regression-style tests — in other words, the successful
operation of the component-under-test is implicitly defined by the component's state
during an earlier running of the test script, when the captured data was known to be
correct.

With static verification points, the expected data object is captured during the first
execution of the test script and is saved in the datastore as the baseline for subsequent
executions of the test script. The expected data remains persistent unless and until it is
explicitly replaced with new expected data. (To insert new expected data, click File >
Replace Baseline with Actual in the Grid Comparator.)

Each subsequent time the test script is run, an actual data object is captured from the
component-under-test. The expected data object is retrieved from the datastore and
compared with the actual data captured in the current test run. The results are logged
automatically.

Dynamic Verification Points

Dynamic verification points differ from static verification points in that, with dynamic
verification points, you, the test script author, explicitly define the successful
operation of the component-under-test, rather than implicitly defining it by a
previous state of the component-under-test.

With dynamic verification points, the expected data object is passed to the verification
point at test runtime. The expected data object is not retrieved from the datastore after
having been captured in an earlier execution of the test script, nor is it managed in any
way by the verification point framework, as is the case with static verification points.

Expected Data Object Actual Data Object

Static Verification Point Captured when script is
first run.

Captured at subsequent script
runs.

Dynamic Verification Point Test script passes to
verification point.

Captured at script runtime.

Manual Verification Point Test script passes to
verification point.

Test script passes to
verification point.
Verification Services 123

Verification Point Framework
How the expected data is passed to a verification point is up to you as the author of
the test script. For example, you might hard-code the data into the script, supply the
data through a datapool, or read the data from a Java properties file.

When a dynamic verification point is executed, the expected data object is passed as a
parameter to the verification point's performTest() method. The verification point
then captures the actual data object from the component-under-test, compares the
expected and actual data objects, and automatically logs the results.

Manual Verification Points

With manual verification points, both the expected and actual data objects are passed
to the verification point's performTest() method at test runtime. Expected and
actual data objects are not provided by the verification point framework, as is the case
with static verification points (where the framework provides both expected and
actual data objects) and dynamic verification points (where the framework provides
actual data objects only).

In other words, with manual verification points, you as the test designer are
responsible for providing both the expected and the actual data objects. This frees you
from relying on the framework's VerificationPointDataProvider class to
construct objects, allowing you to construct your own objects. The framework simply
compares the data objects you provide and logs the results.

Verification Point Framework

The com.rational.test.vp package includes the pre-defined database
verification point for verifying data in a JDBC database. This is typically the
verification point you use in writing scripts for EJB testing.

If you need to use other kinds of verification points, the verification point
implementer must first extend and implement the class and interfaces in the
verification point framework provided in the com.rational.test.vp package.

The verification point framework contains the following class and interfaces:

■ VerificationPoint class

■ VerificationPointData interface

■ VerificationPointDataProvider interface

■ VerificationPointDataRenderer interface

■ VerificationPointComparator interface

For details about the framework, see Chapter 8, Verification Point Framework Reference.
124 Chapter 5

Verification Point Framework
Verification Point Classes

Conceptually, a verification point is made up of the following five classes:

■ A Verification Point class, which extends the framework's VerificationPoint
abstract class.

This class contains the verification point's metadata — that is, the information that
determines the data to capture for this verification point. Examples of verification
point metadata include the list of properties for a user-defined object properties
verification point, or connection information and SELECT statements for the JDBC
database verification point that is included in this package. This class is also
responsible for implementing its own serialization. By requiring your specific
verification point implementations to perform their own serialization, you can
support all file formats (such as INI, XML, and standard Java serialization).

■ A Verification Point Data class, which implements the framework's
VerificationPointData interface.

This class encapsulates and serializes a single snapshot of either expected or actual
data. An instance of this class can be populated by the captureData() method
of a VerificationPointDataProvider class, or it can be populated manually
in the test script — for example, by literal values or by values from a datapool.
Each implementation of the VerificationPointData interface is required to
provide its own serialization methods, once again for support of all possible file
formats.

Note: For the current Rational QualityArchitect release, Verification Point Data
classes must serialize to a .CSV file format. This restriction will be removed in a
future release of Rational QualityArchitect.

■ A Verification Point Data Provider class, which implements the framework's
VerificationPointDataProvider interface.

This class is a pluggable link between a Verification Point class (which defines a
verification point’s metadata) and a Verification Point Data class (which stores
data for a verification point). Specifically, this class implements the
captureData() method to populate a Verification Point Data object for a given
Verification Point object.

■ A Verification Point Data Renderer class, which implements the framework's
VerificationPointDataRenderer interface.
Verification Services 125

Verification Point Framework
This class provides the capability of displaying the data stored in the Verification
Point Data class, allowing the tester to interactively accept or reject that data as a
baseline for a static verification point. To enable this capability, the test designer
specifies the OPTION_USER_ACKNOWLEDGE_BASELINE option in the
setOptions() method of the Verification Point class being implemented.

■ A Verification Point Comparator class, which implements the framework's
VerificationPointComparator interface.

This class provides a method to compare two VerificationPointData objects
and determine if the comparison succeeds or fails. The comparison can test for
equality between the expected and actual data, or it can test for some other
condition (for example, that the actual data falls within a given range).

The following figure summarizes the verification point classes:
126 Chapter 5

Setting Up Verification Points in Test Scripts
Setting Up Verification Points in Test Scripts

This section outlines the actions that you, the test designer, need to take to set up a
verification point in a test script.

Use the following actions outlined as a guideline for setting up a verification point.
You may need to perform other actions to accommodate the requirements of a
particular verification point implementation.

Note that the verification point framework does much of the work that is required to
perform a verification.

Setting Up a Static Verification Point

To set up a static verification point:

1 Specify the metadata for the verification point.

2 Execute the verification point.

The following sections provide information to help you perform these steps.

Step 1. Specify the Metadata for the Verification Point

The specialized VerificationPoint class encapsulates a verification point’s
metadata. Metadata includes the following kinds of information:

■ Information that defines the kind of data that you want to capture and test. Here
are two examples of this type of metadata:

❑ With the pre-defined database verification point, the SQL statement that
retrieves data from a JDBC data source. (For information about the database
verification point, see Chapter 6, Database Verification Point Reference.)

❑ If you are testing the properties of a component, the names of the particular
properties to capture.

■ Information needed to access the source of the data to capture (such as information
used to connect to a JDBC data source).

■ Possibly, one or more verification point options, such as whether to require
case-sensitive matches of string data.

Verification point metadata can be specified either explicitly or implicitly:

■ Metadata that is specified explicitly in the test script is either passed in as
parameters to the constructor of the specialized VerificationPoint class,
or it is specified through user-defined set... methods in the specialized
VerificationPoint class.
Verification Services 127

Setting Up Verification Points in Test Scripts
Verification points that you record using the Rational QualityArchitect Session
Recorder or that you generate through a Rational Rose model are explicitly
defined — that is, the metadata is automatically hard-coded to the constructor.

Note: Because explicitly provided metadata can be assigned to test script
variables, you can use datapools to supply metadata information to your test
scripts.

■ Implicitly defined metadata is specified in either of the following ways:

❑ If a verification point’s metadata is not fully specified when the verification
point is executed for the first time, the framework invokes the
defineVPcallback() method. This method runs a user-defined UI that
prompts the tester for the metadata information. (The UI is typically developed
by the verification point implementer.) After the metadata is captured, the
framework writes the metadata to the datastore.

❑ In subsequent executions of the verification point, the framework retrieves the
metadata from the datastore and uses it as the metadata for the verification
point.

Note: Because implicitly provided metadata is retrieved from the datastore rather
than being assigned to test script variables, you cannot use datapools with this
type of metadata.

For more information about how to provide verification point metadata, see
VerificationPoint Class on page 182.

Step 2. Execute the Verification Point

To execute a verification point, call the performTest() method in the specialized
VerificationPoint class, as follows:

■ If the verification point operates on a component within your test script’s scope,
pass that object to the performTest() method.

■ If the verification point operates on an external object (such as a deployed EJB or a
recordset in a database), pass null to the performTest() method.

Using the metadata in the specialized VerificationPoint class, the framework
captures the actual data for the test. The framework also checks the datastore for an
expected (baseline) data object to compare against the actual data:

■ If the expected data object exists, the framework compares the expected data object
with the actual data object, and then logs the result.

■ If no expected data object exists, the framework attempts to store the captured data
as a baseline for future executions of the verification point.
128 Chapter 5

Setting Up Verification Points in Test Scripts
However, if no expected data object exists and you have included the
OPTION_USER_ACKNOWLEDGE_BASELINE option in the setOptions() method,
the framework first invokes an implementer-defined UI that prompts the tester to
verify that the captured data is correct.

If the tester accepts the displayed data as being correct, the framework stores the
data object in the datastore as the expected data for subsequent tests. If the tester
rejects the displayed data, the framework logs an error, and verification point
execution ends. No expected data object is stored.

For an example of a static verification point setup in a test script, see Example of a Static
Database Verification Point on page 132.

Setting Up a Dynamic Verification Point

Setting up a dynamic verification point is similar to setting up a static verification
point. However, before the test script executes the verification point, the test script
must create the expected data object. The framework is responsible for capturing and
building the actual data object, just as it does for a static verification point.

You create the expected data object using the appropriate implementation of the
VerificationPointData interface.

After the expected data object is created, you can pass it to the performTest()
method when you execute the verification point.

For an example of a dynamic verification point setup in a test script, see Example of a
Dynamic Database Verification Point on page 133.

Setting Up a Manual Verification Point

Setting up a manual verification point is similar to setting up a static verification
point. However, before the test script executes the verification point, the test script
must create both the expected and actual data objects.

You create the expected and actual data objects using the appropriate implementation
of the VerificationPointData interface.

After the expected and actual data objects are created, you can pass them to the
performTest() method when you execute the verification point.
Verification Services 129

Setting Up Verification Points in Test Scripts
130 Chapter 5

6Database Verification
Point Reference
About the Database Verification Point

A database verification point is a pre-constructed verification point used to verify data
in a JDBC accessible data source. This is the verification point that you typically use
in EJB testing.

You can use this verification point within a test script to ensure that the changes that
the component-under-test makes to the data source are correct.

Requirements for Using the Database Verification Point

The database verification point requires Rational QualityArchitect.

In addition, the CLASSPATH must reference a number of .JAR files. For a list of the
required .JAR files, see Running Test Scripts on page 8.

Components of the Database Verification Point

The database verification point contains the following classes and interface:

■ DatabaseVP Class on page 134

■ DatabaseVPComparator Class on page 145

■ DatabaseVPData Class on page 147

■ DatabaseVPDataProvider Class on page 153

■ DatabaseVPDataRenderer Class on page 155

■ DataTable Interface on page 157

These classes are included in the package com.rational.test.vp.
131

About the Database Verification Point
Examples

This section contains examples of how you can insert a static and a dynamic database
verification point into a test script.

Note that the verification point framework does much of the work for you. The test
script defines the verification point’s metadata and calls the performTest() method
in the specialized Verification Point class. Depending on whether you are inserting a
static, dynamic, or manual verification point, the test script might also build the
expected data object and the actual data object.

For an overview of the steps required to insert a verification point into a script, see
Setting Up Verification Points in Test Scripts on page 127.

Example of a Static Database Verification Point

In a static verification point, the performTest() method does not pass data objects
to the verification point . As a result, the framework must provide both the expected
(baseline) and actual data objects.

String sJDBCdriver = "sun.jdbc.odbc.JdbcOdbcDriver";
String sJDBCurl = "jdbc:odbc:COFFEEBREAK";
String sJDBCuser = "";
String sJDBCpassword = "";

DatabaseVP regressionVP = new DatabaseVP("RegressionVP1",
"SELECT * FROM COFFEES",sJDBCuser, sJDBCpassword,
sJDBCdriver, sJDBCurl);

regressionVP.performTest(null);
132 Chapter 6

About the Database Verification Point
Example of a Dynamic Database Verification Point

In a dynamic verification point, the test script creates a DatabaseVPData object for
the expected data and passes the expected data object to the verification point through
the performTest() method. As a result, the framework encapsulates only the actual
data object.

String sJDBCdriver = "sun.jdbc.odbc.JdbcOdbcDriver";
String sJDBCurl = "jdbc:odbc:COFFEEBREAK";
String sJDBCuser = "";
String sJDBCpassword = "";
String sFilter = "1";

DatabaseVPData vpdExpected = new DatabaseVPData();
String[] asColumns = new String[2];
asColumns[0] = "Brand";
asColumns[1] = "Price";
vpdExpected.setColumns(asColumns);

Vector vData = new Vector();
String[] asData = new String[2];
asData[0] = "Peets";
asData[1] = "5.5";
vData.add(asData);
vpdExpected.setData(vData);

String sSQL = "SELECT Brand, Price FROM COFFEES WHERE ID = " + sFilter;
DatabaseVP VP1 = new DatabaseVP("CoffeeVp1", sSQL, sJDBCuser,

sJDBCpassword, sJDBCdriver, sJDBCurl);

// Perform the test
VP1.performTest(null, vpdExpected);
Database Verification Point Reference 133

DatabaseVP Class
DatabaseVP Class

This class implements a database verification point.

The DatabaseVP object contains the metadata needed for encapsulating data in a
DatabaseVPData object — namely:

■ The SELECT statement for retrieving data from the target data source.

■ A valid JDBC user name (if none, an empty string).

■ The valid JDBC password for the user name (if none, an empty string).

■ The JDBC driver for the target data source.

■ The JDBC URL for the target data source.

In addition, the DatabaseVP object contains the database verification point name. It
also contains options for affecting the behavior of the verification point.

To execute the database verification point, call the performTest() method in this
class (inherited from the VerificationPoint class).

Overview

public class DatabaseVP
extends com.rational.test.vp.VerificationPoint

java.lang.Object
|
+--com.rational.test.vp.VerificationPoint

|
+--com.rational.test.vp.DatabaseVP

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.
134 Chapter 6

Summary
Summary

This class contains the following field:

Note: To turn on multiple options, use the OR (|) operator. To remove an option after
you have set it, but leave all other options unchanged, use the AND (&) and NOT (~)
operators. The following are examples of turning options on and off:

■ Turn two options on:

MyVP.setOptions(OPTION_TRIM | OPTION_EXPECT_FAILURE);

■ Turn off the OPTION_TRIM option, but leaves all other options unchanged:

MyVP.setOptions(MyVP.Options & (~OPTION_TRIM));

This class contains the following methods:

Field Description

OPTION_TRIM static int. Specifies that values captured from the
DatabaseVP should have whitespace trimmed from the right
and left sides.

Fields Inherited from the VerificationPoint Class

bIsDefined, bIsValid, COMPARE_CASEINSENSITIVE, COMPARE_CASESENSITIVE,
OPTION_EXPECT_FAILURE, OPTION_USER_ACKNOWLEDGE_BASELINE,
sFailureDescription, VERIFICATION_ERROR, VERIFICATION_FAILED,
VERIFICATION_NO_RESULT, VERIFICATION_SUCCEEDED

Method Description

getCon() Retrieves the current connection object used to connect to the
JDBC data source.

getJDBCdriver() Retrieves the current driver used in the connection to the JDBC
data source.

getJDBCpassword() Retrieves the current password for connecting to the JDBC data
source.

getJDBCurl() Retrieves the current URL used to connect to the JDBC data
source.

getJDBCuser() Retrieves the current user ID for connecting to the JDBC data
source.
Database Verification Point Reference 135

Summary
getSQL() Retrieves the current SQL statement used to capture data from
the JDBC data source.

getStmt() Retrieves the current JDBC statement.

readFile() Deserializes a verification point object from the specified
InputStream.

setCon() Sets the connection object for the JDBC data source.

setJDBCdriver() Sets the JDBC driver used to connect to the JDBC data source.

setJDBCpassword() Sets the password for the connection to the JDBC data source.

setJDBCurl() Sets the JDBC URL used in the connection to the JDBC data
source.

setJDBCuser() Sets the user ID for the connection to the JDBC data source.

setSQL() Sets the SQL statement to use in capturing data from the JDBC
data source.

setStmt() Sets the JDBC statement.

writeFile() Serializes the verification point object to the specified
OutputStream.

Methods Inherited from the VerificationPoint Class

codeFactory_getPrefix, codeFactory_setPrefix, getIsDefined, getLog,
getLogActualFile, getLogBaselineFile, getLogMetaFile,
getMasterBaselineFile, getMasterMetaFile, getOptions, getVPname,
initializeVP, performTest, performTest, performTest, setIsDefined,
setOptions, setVPname

Method Description
136 Chapter 6

Constructor
Constructor

The constructor takes one of three forms, depending on the parameters passed to it:

Syntax 1

This constructor specifies only the name of the verification point. If you execute the
verification point before specifying its metadata, the tester is prompted to specify the
verification point’s metadata. The metadata includes JDBC connection information
and a SQL statement to capture the data to test.

public DatabaseVP(java.lang.String sVPname)

Syntax 2

This constructor specifies the name of the verification point plus the verification
point’s metadata.

public DatabaseVP(java.lang.String sVPname, java.lang.String
sSQL, java.lang.String sJDBCuser, java.lang.String
sJDBCpassword, java.lang.String sJDBCdriver,
java.lang.String sJDBCurl)

Element Description

sVPname The name of the verification point (40 characters maximum).

Element Description

sVPname The name of the verification point (40 characters maximum).

sSQL The select statement that this DatabaseVP uses to capture data from
the data source.

sJDBCVuser The JDBC user name.

sJDBCpassword The JDBC password for the user.

sJDBCdriver The Java class for the JDBC driver for this data source.

sJDBCurl The URL specifying the target JDBC data source.
Database Verification Point Reference 137

DatabaseVP.getCon()
Syntax 3

This constructor specifies the name of the verification point, the verification point’s
metadata, and any options that customize the behavior of the verification point.

public DatabaseVP(java.lang.String sVPname, java.lang.String
sSQL, java.lang.String sJDBCuser, java.lang.String
sJDBCpassword, java.lang.String sJDBCdriver,
java.lang.String sJDBCurl, int iOptions)

DatabaseVP.getCon()

Retrieves the current connection object used to connect to the JDBC data source.

Syntax

public java.sql.Connection getCon()

Element Description

sVPname The name of the verification point (40 characters maximum).

sSql The select statement that this DatabaseVP uses to capture data from
the data source.

sJDBCuser The JDBC user name.

sJDBCpassword The JDBC password for the user.

sJDBCdriver The Java class for the JDBC driver for this data source.

sJDBCurl The URL specifying the target JDBC data source.

iOptions A bitfield of options that customize the behavior of this verification
point. Options can include the following pre-defined options and any
user-defined options:
■ OPTION_TRIM

■ The following options inherited from VerificationPoint:
❑ COMPARE_CASESENSITIVE

❑ COMPARE_CASEINSENSITIVE

❑ OPTION_USER_ACKNOWLEDGE_BASELINE

❑ OPTION_EXPECT_FAILURE

COMPARE_CASESENSITIVE is the default.
138 Chapter 6

DatabaseVP.getJDBCdriver()
Return Value

The current connection object.

DatabaseVP.getJDBCdriver()

Retrieves the current driver used in the connection to the JDBC data source.

Syntax

public java.lang.String getJDBCdriver()

Return Value

The current JDBC driver.

DatabaseVP.getJDBCpassword()

Retrieves the current password for connecting to the JDBC data source.

Syntax

public java.lang.String getJDBCpassword()

Returns Value

The current password.

DatabaseVP.getJDBCurl()

Retrieves the current URL used to connect to the JDBC data source.

Syntax

public java.lang.String getJDBCurl()

Return Value

The current URL.
Database Verification Point Reference 139

DatabaseVP.getJDBCuser()
DatabaseVP.getJDBCuser()

Retrieves the current user ID for connecting to the JDBC data source.

Syntax

public java.lang.String getJDBCuser()

Return Value

The current user ID.

DatabaseVP.getSQL()

Retrieves the current SQL statement used to capture data from the JDBC data source.

Syntax

public java.lang.String getSQL()

Return Value

The current SQL statement.

DatabaseVP.getStmt()

Retrieves the current JDBC statement.

Syntax

public java.sql.Statement getStmt()

Return Value

The current JDBC statement.
140 Chapter 6

DatabaseVP.readFile()
DatabaseVP.readFile()

Deserializes a verification point object from the specified InputStream.

Syntax

public void readFile(java.io.InputStream in)

Exceptions

This method throws the following exception:

■ java.io.IOException. An error has occurred in attempting to read from the
InputStream.

Comments

This method implements readFile() in the VerificationPoint class.

DatabaseVP.setCon()

Sets the connection object for the JDBC data source.

Syntax

public void setCon(java.sql.Connection con)

Comments

If con is not provided, a new object is created by the database verification point, as
necessary.

Element Description

in The InputStream from which the object is read.

Element Description

con The connection object to use in connecting to the JDBC data source.
Database Verification Point Reference 141

DatabaseVP.setJDBCdriver()
DatabaseVP.setJDBCdriver()

Sets the JDBC driver used to connect to the JDBC data source.

Syntax

public void setJDBCdriver(java.lang.String sJDBCdriver)

DatabaseVP.setJDBCpassword()

Sets the password for the connection to the JDBC data source.

Syntax

public void setJDBCpassword(java.lang.String sJDBCpassword)

DatabaseVP.setJDBCurl()

Sets the JDBC URL used in the connection to the JDBC data source.

Syntax

public void setJDBCurl(java.lang.String sJDBCurl)

Element Description

sJDBCdriver The driver used to connect to the JDBC data source.

Element Description

sJDBCpassword The password for connecting to the JDBC data source.

Element Description

sJDBCurl The URL used in the connection to the JDBC data source.
142 Chapter 6

DatabaseVP.setJDBCuser()
DatabaseVP.setJDBCuser()

Sets the user ID for the connection to the JDBC data source.

Syntax

public void setJDBCuser(java.lang.String sJDBCuser)

DatabaseVP.setSQL()

Sets the SQL statement to use in capturing data from the JDBC data source.

Syntax

public void setSQL(java.lang.String sSQL)

DatabaseVP.setStmt()

Sets the JDBC statement.

Syntax

public void setStmt(java.sql.Statement stmt)

Comments

If stmt is not provided, a new object is created by the database verification point, as
necessary.

Element Description

sJDBCuser The user ID for connecting to the JDBC data source.

Element Description

sSQL The SQL statement to use.

Element Description

stmt The JDBC statement.
Database Verification Point Reference 143

DatabaseVP.writeFile()
DatabaseVP.writeFile()

Serializes the verification point object to the specified OutputStream.

Syntax

public void writeFile(java.io.OutputStream out)

Exceptions

This method throws the following exception:

■ java.io.IOException. An error has occurred in attempting to write to the
OutputStream.

Comments

Metafile format is used so that the Rational comparators can read the file. For
information, see Step 5. Provide Serialization Services for the Metadata on page 168.

This method implements writeFile() in the VerificationPoint class.

Element Description

out The OutputStream to which the object is written.
144 Chapter 6

DatabaseVPComparator Class
DatabaseVPComparator Class

The verification point framework calls the compare() method in this class to
compare two DatabaseVPData objects. The comparison is for either case-sensitive
equality or case-insensitive equality, depending on the options set in the DatabaseVP
object that is driving the comparison.

Overview

public class DatabaseVPComparator
extends java.lang.Object
implements com.rational.test.vp.VerificationPointComparator

java.lang.Object
|
+--com.rational.test.vp.DatabaseVPComparator

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.

Summary

This class contains the following method:

Method Description

compare() Compares an expected data object and an actual data object,
both of type VerificationPointData, and determines
whether the test succeeds or fails.

Methods Inherited from Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait
Database Verification Point Reference 145

Constructor
Constructor

Syntax

public DatabaseVPComparator()

DatabaseVPComparator.compare()

Compares an expected data object and an actual data object and determines whether
the test succeeds or fails.

Syntax

public boolean compare(VerificationPointData vpdExpected,
VerificationPointData vpdActual, java.lang.Object
objOptions, java.lang.StringBuffer sFailureDescription)

Return Value

A boolean value indicating whether the test passed or failed.

Comments

The expected and the actual data objects are DatabaseVPData implementations of
VerificationPointData.

This method is specified by the compare() method in the interface
VerificationPointComparator.

Element Description

vpdExpected The expected data object.

vpdActual The actual data object.

objOptions Options that are passed from the DatabaseVP class to
qualify the comparison. Options can include the following
pre-defined options, plus any user-defined options.

OPTION_TRIM, OPTION_EXPECT_FAILURE,
COMPARE_CASESENSITIVE, and
COMPARE_CASEINSENSITIVE .

sFailureDescription An output parameter that contains the differences between the
expected and actual data objects in a failed verification point.
The failure description is written to the log.
146 Chapter 6

DatabaseVPData Class
DatabaseVPData Class

This class encapsulates and serializes the data being verified by the database
verification point.

The data that this class stores is conceptually just a recordset. The data is stored in two
data constructs represented in the DataTable interface:

■ Columns — An array of strings representing the column names in the recordset.

■ Data — A vector of arrays of strings, with each array representing one row of
data from the recordset.

If you want to build a DatabaseVPData object by hand in order to run a dynamic or
manual verification point, you can do so by populating the Columns and Data
objects using the get... and set... methods provided in this class.

You can find an example of a hand-built DatabaseVPData object in the section
Example of a Dynamic Database Verification Point on page 133.

Overview

public class DatabaseVPData
extends java.lang.Object
implements com.rational.test.vp.VerificationPointData,
com.rational.test.vp.DataTable

java.lang.Object
|
+--com.rational.test.vp.DatabaseVPData

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.

Summary

This class contains the following methods:

Method Description

getColumns() Retrieves the column names in the table.
Database Verification Point Reference 147

Constructor
Constructor

Syntax

public DatabaseVPData()

DatabaseVPData.getColumns()

Retrieves the column names in the table.

Syntax

public java.lang.String[] getColumns()

Comments

This method is specified by getColumns() in interface DataTable.

getData() Retrieves data from the table

getFileExtension() Returns the extension of the file used to store the data object

getNumCols() Retrieves the number of columns in the table.

getNumRows() Retrieves the number of rows in the table.

readFile() Reads the expected or actual data object from the specified
InputStream.

setColumns() Specifies the column names in the table.

setData() Specifies the data in the table.

writeFile() Writes the expected or actual data object to the specified
OutputStream.

Methods Inherited from Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Method Description
148 Chapter 6

DatabaseVPData.getData()
DatabaseVPData.getData()

Retrieves data from the table. Each array contains one row of data.

Syntax

public java.util.Vector getData()

Return Value

A Vector of arrays of strings, with each array representing one row of data from the
recordset.

Comments

This method is specified by getData() in the DataTable interface.

DatabaseVPData.getFileExtension()

Returns the extension of the file used to store the data object.

Note: In the current release, CSV is the only supported file format. Other formats will
be supported in future releases.

Syntax

public java.lang.String getFileExtension()

Return Value

The extension of the file used to store the data object.

Comments

The verification point framework uses the file extension to determine the format to
use when it serializes files (for example, a CSV extension indicates a
comma-separated-value text file).

This method is specified by getFileExtension() in the
VerificationPointData interface.
Database Verification Point Reference 149

DatabaseVPData.getNumCols()
DatabaseVPData.getNumCols()

Retrieves the number of columns in the table.

Syntax

public int getNumCols()

Return Value

The number of columns in the table.

Comments

This method is specified by getNumCols() in the DataTable interface.

DatabaseVPData.getNumRows()

Retrieves the number of rows in the table.

Syntax

public int getNumRows()

Return Value

The number of rows in the table.

Comments

This method is specified by getNumRows() in the DataTable interface.

DatabaseVPData.readFile()

Reads the expected or actual data object from the specified InputStream.

Syntax

public void readFile(java.io.InputStream in)

Element Description

in The InputStream from which the data is read.
150 Chapter 6

DatabaseVPData.setColumns()
Exceptions

This method throws the following exception:

■ java.io.IOException. An input/output error has occurred.

Comments

This method is specified by readFile() in the VerificationPointData
interface.

DatabaseVPData.setColumns()

Specifies the column names in the table.

Syntax

public void setColumns(java.lang.String[] asColumns)

Comments

This method is specified by setColumns() in the DataTable interface.

Example

For an example of this method, see Example of a Dynamic Database Verification Point on
page 133.

DatabaseVPData.setData()

Specifies the data in the table. Each element in the Vector is an array of strings
containing one row of data.

Element Description

asColumns The array of the column names in the table.
Database Verification Point Reference 151

DatabaseVPData.writeFile()
Syntax

public void setData(java.util.Vector vData)

Comments

This method is specified by setData() in the DataTable interface.

Example

For an example of this method, see Example of a Dynamic Database Verification Point on
page 133.

DatabaseVPData.writeFile()

Writes the expected or actual data object to the specified OutputStream.

Syntax

public void writeFile(java.io.OutputStream out)

Exceptions

This method throws the following exception:

■ java.io.IOException. An input/output error has occurred.

Comments

This method is specified by writeFile() in the VerificationPointData
interface.

Element Description

vData The data in the table.

Element Description

out The OutputStream to which the object is written.
152 Chapter 6

DatabaseVPDataProvider Class
DatabaseVPDataProvider Class

This class provides the link between the DatabaseVP class and the
DatabaseVPData class.

The DatabaseVPDataProvider class can create and populate a DatabaseVPData
object based on the metadata in the DatabaseVP object. It does so by:

■ Connecting to the database

■ Creating a statement and connection (if necessary)

■ Executing the specified SQL statement

■ Building the DatabaseVPData object from the resulting recordset

This class is used with static verification points (for building expected and actual data
objects) and with dynamic verification points (for building actual data objects only).

Overview

public class DatabaseVPDataProvider
extends java.lang.Object
implements com.rational.test.vp.VerificationPointDataProvider

java.lang.Object
|
+--com.rational.test.vp.DatabaseVPDataProvider

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.

Summary

This class contains the following method:

Method Description

captureData() Builds an expected or actual data object of type
VerificationPointData.
Database Verification Point Reference 153

Constructor
Constructor

Syntax

public DatabaseVPDataProvider()

DatabaseVPDataProvider.captureData()

iThis method builds a VerificationPointData object according to the metadata
in the VerificationPoint class.

Syntax

public VerificationPointData captureData(java.lang.Object
theObject, VerificationPoint VP)

Return Value

An expected or actual data object.

Comments

This method is specified by captureData() in the interface
VerificationPointDataProvider.

Methods Inherited from Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Element Description

theObject For database verification points, pass null in this parameter.

VP The Verification Point object that contains the verification point’s
metadata.
154 Chapter 6

DatabaseVPDataRenderer Class
DatabaseVPDataRenderer Class

This class implements a renderer for any class that implements the DataTable
interface.

The renderer creates a JDialog containing a scrollable JTable with the data from the
supplied DatabaseVPData object.

If no expected data object exists in the datastore and the
OPTION_USER_ACKNOWLEDGE_BASELINE option is set in the test script, the
verification point framework invokes the displayAndValidateData() method in
this class. This method lets the tester interactively accept or reject the displayed data
as the baseline (expected) data for a static verification point.

Overview

public class DatabaseVPDataRenderer
extends java.lang.Object
implements com.rational.test.vp.VerificationPointDataRenderer

java.lang.Object
|
+--com.rational.test.vp.DatabaseVPDataRenderer

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.

Summary

This class contains the following method:

Method Description

displayAndValidateData() Presents the tester with a visual representation of the data
object as it exists before the expected (baseline) data is
stored for this static verification point.
Database Verification Point Reference 155

Constructor
Constructor

Syntax

public DatabaseVPDataRenderer()

DatabaseVPDataRenderer.displayAndValidateData()

Presents the tester with a visual representation of the data object as it exists before the
expected (baseline) data is stored for this static verification point.

Syntax

public boolean displayAndValidateData(VerificationPointData
vpdData)

Return Value

true if the tester accepts the displayed data, or false if the tester rejects the data.

Comments

This method is specified by displayAndValidateData() in the
VerificationPointDataRenderer interface .

The verification point framework invokes this method when the following conditions
exist:

■ You have set the OPTION_USER_ACKNOWLEDGE_BASELINE option in the
setOptions() method of the Verification Point class.

■ No expected data object exists in the datastore when the test script calls the
performTest() method of the Verification Point class for a static verification
point.

Methods Inherited from Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Element Description

vpdData The data to present to the tester for confirmation.
156 Chapter 6

DataTable Interface
When the method is invoked, it presents the tester with a visual representation of the
data, and allows the tester to accept or reject the data:

■ If the tester accepts the data, the framework adds the data to the datastore as the
expected data for subsequent test runs.

■ If the tester rejects the data, the framework logs the failure, and no expected data is
stored for the verification point. The next time the tester runs the script, the
framework again prompts the tester to accept the data.

DataTable Interface

This interface is implemented by a class that encapsulates a table of string data.

Overview

public interface DataTable

Applicability

Commonly used with Rational QualityArchitect.

This interface requires Rational QualityArchitect.

Summary

This class contains the following methods:

Method Description

getColumns() Retrieves the column names in the table.

getData() Retrieves data from the table.

getNumCols() Retrieves the number of columns in the table.

getNumRows() Retrieves the number of rows in the table.

setColumns() Specifies the column names in the table.

setData() Specifies the data in the table.
Database Verification Point Reference 157

DataTable.getColumns()
DataTable.getColumns()

Retrieves the column names in the table.

Syntax

public java.lang.String[] getColumns()

Return Value

An array of the column names in the table.

DataTable.getData()

Retrieves data from the table.

Syntax

public java.util.Vector getData()

Return Value

A vector of arrays of data in the table. Each array represents one row of data from
the recordset.

DataTable.getNumCols()

Retrieves the number of columns in the table.

Syntax

public int getNumCols()

Return Value

The number of columns in the table.
158 Chapter 6

DataTable.getNumRows()
DataTable.getNumRows()

Retrieves the number of rows in the table.

Syntax

public int getNumRows()

Return Value

The number of rows in the table.

DataTable.setColumns()

Specifies the column names in the table.

Syntax

public void setColumns(java.lang.String[] asColumns)

DataTable.setData()

Specifies the data in the table. Each element in the vector is an array of strings
containing one row of data.

Syntax

public void setData(java.util.Vector vData)

Element Description

asColumns An array of the column names in the table.

Element Description

vData The data in the table.
Database Verification Point Reference 159

DataTable.setData()
160 Chapter 6

7Implementing a New
Verification Point
Introduction to Verification Point Implementation

The verification point framework is an open architecture that you can use to
implement your own verification point types and execute them within the verification
point framework.

This chapter describes the steps necessary to implement a new verification point type.
It has the following topics:

■ Fundamentals for Implementing a Verification Point on page 161 describes the
components you must implement.

■ Integrating a Verification Point with QualityArchitect on page 180 explains how your
implemented components interact with the verification point framework and with
the Rational QualityArchitect code generators to provide complete verification
point services.

This chapter is intended only for implementers of new verification point types. If you
are a test designer who is adding existing verification points to your scripts, you can
skip this chapter. This chapter assumes a sound working knowledge of Java as well as
an understanding of verification points.

Note: Some of the examples in this chapter use the CTutil class to retrieve values
from an .ini file. If you want to refer to the CTutil class code for greater
understanding of the examples, you can find the code in Appendix C, CTutil Class
Source Code.

Fundamentals for Implementing a Verification Point

To implement a new verification point, you must implement the following classes:

■ Verification Point (see page 162)

■ Verification Point Data (see page 169)

■ Verification Point Data Comparator (see page 174)
161

Fundamentals for Implementing a Verification Point
■ Verification Point Data Provider (see page 176)

■ Verification Point Data Renderer class (see page 179)

The following sections describe these classes.

Implementing the Verification Point Class

Your specialized Verification Point class must extend the
com.rational.test.vp.VerificationPoint abstract class and implement all
the abstract methods within it. For example, if you are implementing a verification
point DatabaseVP, use the following code:

public class DatabaseVP extends com.rational.test.vp.VerificationPoint

Further, your Verification Point class inherits the framework’s entire behavior from
this abstract base class. For details about this inherited behavior, see Integrating a
Verification Point with QualityArchitect on page 180.

Your specialized Verification Point class must perform the following tasks:

1 Define and maintain the metadata that describes the verification to be performed.

2 Supply a UI that allows a tester to specify the metadata.

3 Implement constructors that provide the new verification point’s name and
metadata.

4 Implement the Rational code factory methods. These framework methods
automatically generate source code into a test script and are capable of creating
instances of your verification point.

5 Provide serialization services for the verification point’s metadata.

Step 1. Define and Maintain the Metadata

Your verification point must contain member variables and corresponding get/set
methods for all attributes necessary to describe the verification point’s metadata.

The following example illustrates the use of get/set methods for retrieving and
assigning metadata such as a JDBC user ID, password, url, and a SQL statement:

private String sSQL = "";
private String sJDBCuser = "";
private String sJDBCpassword = "";
private String sJDBCdriver = "";
private String sJDBCurl = "";

public String getSQL() { return sSQL; }
public String getJDBCuser() { return sJDBCuser; }
public String getJDBCpassword() { return sJDBCpassword; }
162 Chapter 7

Fundamentals for Implementing a Verification Point
public String getJDBCdriver() { return sJDBCdriver; }
public String getJDBCurl() { return sJDBCurl; }

public void setSQL(String sSQL) { this.sSQL = sSQL; }
public void setJDBCuser(String sJDBCuser)

{ this.sJDBCuser = sJDBCuser; }
public void setJDBCpassword(String sJDBCpassword)

{ this.sJDBCpassword = sJDBCpassword; }
public void setJDBCdriver(String sJDBCdriver)

{ this.sJDBCdriver = sJDBCdriver; }
public void setJDBCurl(String sJDBCurl) { this.sJDBCurl = sJDBCurl; }

Step 2. Supply a UI to Prompt for the Metadata

If a test script executes your verification point, but the verification point’s metadata is
not completely defined in the datastore, the verification point must run a UI that
prompts the tester for the missing metadata. Specifically, you must provide the
following features:

■ The UI that prompts the user for the metadata.

■ An implemented defineVPcallback() method. (This is an abstract method of
the VerificationPoint base class.)

The defineVPcallback() method presents the tester with your UI that prompts
for the metadata. When the metadata is retrieved, the method populates the
verification point’s member variables with the metadata values — for example:

public boolean defineVPcallback()
{

// Invoke some UI and populate the class with the VP's definition.
}

Step 3. Implement the Constructors

Implement at least two constructors that use the super keyword to call the
constructor of the VerificationPoint base class, as follows:

■ One required constructor should have as its only parameter a string that specifies
the name of your verification point. The QualityArchitect code generators (the
Session Recorder and the Code Generator used with Rational Rose models) use
this constructor to create an instance of the verification point class at code
generation time.

■ One required constructor with the following parameters:

❑ A parameter that specifies the verification point name.

❑ A parameter for each variable that contains a metadata value.
Implementing a New Verification Point 163

Fundamentals for Implementing a Verification Point
One of the tasks that the code factory methods (described in the next two steps)
perform is to output code that invokes this constructor. As a result, this is the
constructor that appears in scripts generated by a QualityArchitect code generator.

Both constructors must pass class objects for the following classes that you have
implemented:

■ Verification Point Data

■ Verification Point Data Provider

■ Verification Point Data Renderer

■ Verification Point Data Comparator

The verification point framework can then create instances of these classes to store,
serialize, capture, display, and compare the data on which your verification point
operated. An example of creating instances of these classes to perform the above
methods is shown as follows:

public DatabaseVP(String sVPname)
{

super(sVPname, DatabaseVPData.class,
DatabaseVPDataProvider.class, DatabaseVPDataRenderer.class,
DatabaseVPComparator.class);

setIsDefined(false);
}

public DatabaseVP(String sVPname, String sSQL, String sJDBCuser,
String sJDBCpassword, String sJDBCdriver, String sJDBCurl)

{
super(sVPname, DatabaseVPData.class,

DatabaseVPDataProvider.class, DatabaseVPDataRenderer.class,
DatabaseVPComparator.class);

this.sSQL = sSQL;
this.sJDBCuser = sJDBCuser;
this.sJDBCpassword = sJDBCpassword;
this.sJDBCdriver = sJDBCdriver;
this.sJDBCurl = sJDBCurl;

if (sSQL != null && !sSQL.equals("") && sJDBCdriver != null &&
!sJDBCdriver.equals("") && sJDBCurl != null &&
!sJDBCurl.equals(""))

{
setIsDefined(true);

}
else
{

setIsDefined(false);
}

}

164 Chapter 7

Fundamentals for Implementing a Verification Point
Step 4. Implement the Code Factory Methods to Generate Code

The code factory methods are similar in function to Java Beans in that both provide
additional design-time behavior that is integrated with a Java development
environment.

If a QualityArchitect user wants to insert your verification point into a generated test
script, the QualityArchitect code generator takes the following actions:

1 Creates an instance of the verification point (by calling the consructor that specifies
just the verification point name).

2 Calls the defineVPcallback() method for the newly created verification point
object, presenting the tester with the UI you created to prompt for the verification
point’s metadata.

3 After the tester specifies the metadata through the UI, the code generator invokes
the code factory methods to produce Java source code. When inserted into the test
script, this source code creates a verification point based on the metadata that the
tester provided.

For information about how the code generators use the code factory methods, see
Integrating a Verification Point with QualityArchitect on page 180.

To enable the code generators to insert an instance of your verification point into a test
script, implement the following code factory methods:

■ codeFactory_getConstructorInvocation() returns a string of Java code
that calls the fully specified constructor of your verification point. Rather than
hard-coding the metadata into the constructor call, you should externalize any
variables that testers might want to supply with values from a datapool at test
runtime.

■ codeFactory_getNumExternalizedInputs(), called by the code generator,
determines how many externalized input variables are present in the constructor
call.

■ codeFactory_getExternalizedInputDecl(), called by the code generator,
retrieves each externalized metadata variable.

The code generators call the codeFactory_getPrefix() and
codeFactory_setPrefix() methods; you are not required to call them. However,
you must call codeFactory_getPrefix() when constructing the externalized
variables returned by the codeFactory_getConstructorInvocation() and
codeFactory_getExternalizedInputDecl() methods.
Implementing a New Verification Point 165

Fundamentals for Implementing a Verification Point
If the code generators set a prefix, prepend the prefix to each externalized variable
name used with the codeFactory_getConstructorInvocation() and
codeFactory_getExternalizedInputDecl() methods. Doing so ensures that
externalized variable names in different verification points within the same scope will
be unique.

The following example illustrates the use of code factory methods:

public int codeFactory_getNumExternalizedInputs()
{

int iLines = 0;

// At least 6 lines of code, 4 for JDBC connect info, 1 for VP name and
// 1 for SQL statement.
iLines += 6;

if (getOptions() != 0)
{

// If the user set any options, need to add another variable for that.
iLines++;

}

return iLines;
}

public String codeFactory_getExternalizedInputDecl(int nInput)
{

String sCode = "";
String sPrefix = this.codeFactory_getPrefix();

// Out of range request gets an empty string (still valid code...)
if (nInput < codeFactory_getNumExternalizedInputs())
{

switch (nInput)
{

case 0:
sCode = "String s" + sPrefix + "JDBCdriver = \"" + sJDBCdriver

+ "\";";
break;

case 1:
sCode = "String s" + sPrefix + "JDBCurl = \"" + sJDBCurl + "\";";
break;

case 2:
sCode = "String s" + sPrefix + "JDBCuser = \"" + sJDBCuser

+ "\";";
break;

case 3:
sCode = "String s" + sPrefix + "JDBCpassword = \""

+ sJDBCpassword + "\";";
break;

case 4:
sCode = "String s" + sPrefix + "SQL = \"" + sSQL + "\";";
166 Chapter 7

Fundamentals for Implementing a Verification Point
break;
case 5:

sCode = "String s" + sPrefix + "VPname = \"" + getVPname()
+ "\";";

break;
case 6:

sCode = "int i" + sPrefix + "Options = "
+ Integer.toString(getOptions()) + ";";

break;
default:

sCode = "";
break;

}
}

return sCode;
}

public String codeFactory_getConstructorInvocation()
{

StringBuffer sCode = new StringBuffer("");
String sPrefix = this.codeFactory_getPrefix();

sCode.append("DatabaseVP ");
sCode.append(sPrefix);
sCode.append(this.getVPname());
sCode.append(" = new DatabaseVP(\"");
sCode.append(this.getVPname());
sCode.append("\", s");
sCode.append(sPrefix);
sCode.append("SQL, s");
sCode.append(sPrefix);
sCode.append("JDBCuser, s");
sCode.append(sPrefix);
sCode.append("JDBCpassword, s");
sCode.append(sPrefix);
sCode.append("JDBCdriver, s");
sCode.append(sPrefix);
sCode.append("JDBCurl");

if (this.getOptions() != 0)
{

sCode.append(", i");
sCode.append(sPrefix);
sCode.append("Options);");

}
else

sCode.append(");");

return sCode.toString();

}

Implementing a New Verification Point 167

Fundamentals for Implementing a Verification Point
Step 5. Provide Serialization Services for the Metadata

Implement readFile() and writeFile() methods to serialize verification point
metadata.

The metadata file is read by both the Verification Point Data Comparator class and the
TestManager comparator software. Currently, the only supported metadata file
format is .ini file format.

A future release of Rational QualityArchitect will support custom-built comparators
in addition to the TestManager comparator. As a result, you will be able to use any
metadata (and data) file format that your custom comparator supports.

When reading and writing your metadata file, store all metadata for your
verification point, as well as properties for the additional [Definition] section in
the .ini file, as shown in the following example:

public void writeFile(OutputStream out) throws IOException
{

// If there's nothing to write -- don't write anything...
if (sJDBCdriver == "" || sJDBCurl == "" || sSQL == "")

return;

PrintWriter pwOut = new PrintWriter (new BufferedWriter (
new OutputStreamWriter (out)));

// Write out the [Definition] section
pwOut.println("[Definition]");

// Write the VP name
pwOut.println("Case ID=" + this.getVPname());

// Write the VP type
pwOut.println("Type=Object Data");

// Write the data test
pwOut.println("Data Test=Contents");

// Write the verification method
if ((getOptions() & COMPARE_CASEINSENSITIVE) != 0)

pwOut.println("Verification Method=CaseInsensitive");
else

pwOut.println("Verification Method=CaseSensitive");

// Write out the DatabaseVP specific section.
pwOut.println("");
pwOut.println("[Database VP]");

// Write out the JDBC connect info
pwOut.println("JDBCdriver=" + sJDBCdriver);
pwOut.println("JDBCurl=" + sJDBCurl);
pwOut.println("JDBCuser=" + sJDBCuser);
168 Chapter 7

Fundamentals for Implementing a Verification Point
pwOut.println("JDBCpassword=" + sJDBCpassword);

// Write out the Select statement
pwOut.println("SQL=" + sSQL);

// Flush the output, and close the file.
pwOut.flush();

}

public void readFile(InputStream in) throws IOException
{

try
{

Hashtable tblINI = CTutil.mapINIfile(in);
if (tblINI != null)
{

String sDef = "Definition";
String sDBVP = "Database VP";

// Read out all the entries we care about.
String sVerMethod = CTutil.readPrivateProfileString(tblINI, sDef,

"Verification Method");
if (sVerMethod.equals("CaseInsensitive"))

setOptions(getOptions()|COMPARE_CASEINSENSITIVE);

sJDBCdriver = CTutil.readPrivateProfileString(tblINI, sDBVP,
"JDBCdriver");

sJDBCurl = CTutil.readPrivateProfileString(tblINI, sDBVP,
"JDBCurl");

sJDBCuser = CTutil.readPrivateProfileString(tblINI, sDBVP,
"JDBCuser");

sJDBCpassword = CTutil.readPrivateProfileString(tblINI, sDBVP,
"JDBCpassword");

sSQL = CTutil.readPrivateProfileString(tblINI, sDBVP, "SQL");
}

}
catch (IOException exc) { }
return;

}

Implementing the Verification Point Data Class

Your specialized Verification Point Data class must implement the
com.rational.test.vp.VerificationPointData interface and perform the
following high-level tasks:

1 Create member variables that encapsulate the data that the verification point is
comparing.

2 Implement readFile() and writeFile() methods to serializethe data to a
verification point data file.

3 Implement the getFileExtension() method.
Implementing a New Verification Point 169

Fundamentals for Implementing a Verification Point
Step 1. Encapsulate the Data Being Compared

Create member variables that encapsulate the data that the verification point is
comparing. The data encapsulated in these member variables should be exposed
through public get and set methods that you implement. Doing so allows a test
script to create and populate an instance of the class for use in dynamic and manual
verification points.

The following example uses the public getData() and setData() methods to
encapsulate the data objects being compared:

private String[] asColumns = null;
private Vector vData = null;

public int getNumCols()
{

if (asColumns != null)
return asColumns.length;

else
return 0;

}

public int getNumRows()
{

if (vData != null)
return vData.size();

else
return 0;

}

public String[] getColumns()
{

return asColumns;
}

public void setColumns(String[] asColumns)
{

this.asColumns = asColumns;
}

public Vector getData()
{

return vData;
}

public void setData(Vector vData)
{

this.vData = vData;
}

170 Chapter 7

Fundamentals for Implementing a Verification Point
Step 2. Serialize the Data to a Data File

Implement readFile() and writeFile() methods to serialize verification point
data.

The data file is read by both the Verification Point Data Comparator class and the
TestManager comparator software. Currently, the only supported data file format is
.csv file format.

A future release of Rational QualityArchitect will support custom-built comparators
in addition to the TestManager comparator. As a result, you will be able to use any
data (and metadata) file format that your custom comparator supports.

The following example illustrates reading from and writing to a .csv file:

public void writeFile(OutputStream out) throws IOException
{

// If there's nothing to write -- don't write anything...
if (asColumns == null || vData == null || asColumns.length == 0)

return;

PrintWriter pwOut = new PrintWriter (new BufferedWriter (
new OutputStreamWriter (out)));

// First print out a line with all the column names.
String csvColumns = "";
int numCols = getNumCols();
for (int i=0; i < numCols; i++)
{

if (i > 0)
csvColumns = csvColumns + "," + "\"" + asColumns[i] + "\"";

else
csvColumns = "\"" + asColumns[i] + "\"";

}
pwOut.println(csvColumns);

// Next print out a line for each element in our vector of data.
int numRows = getNumRows();
for (int i=0; i < numRows; i++)
{

Object obj = vData.elementAt(i);
if (obj != null)
{

// Verify that obj is an array of strings

String[] asData = (String[]) obj;
if (asData.length != numCols)
{

// Don't write out this row, and write an error message
// to the log about the format of this object.

// Log warning message here.
}

Implementing a New Verification Point 171

Fundamentals for Implementing a Verification Point
else
{

String csvRow = "";
for (int j=0; j < numCols; j++)
{

if (j > 0)
csvRow = csvRow + "," + "\"" + asData[j] + "\"";

else
csvRow = "\"" + asData[j] + "\"";

}
pwOut.println(csvRow);

}
}

}

// Flush the output.
pwOut.flush();

}

public void readFile(InputStream in) throws IOException,
ClassNotFoundException

{
BufferedReader brIn = new BufferedReader (

new InputStreamReader (in));

// Read in the array of column names
String sColumns = brIn.readLine();

// If the file is empty, we're done.
if (sColumns == null || sColumns.length() == 0)

return;

StringBuffer bufCSV = new StringBuffer(sColumns);
StringBuffer bufElement = new StringBuffer("");
int numCols = 0;
boolean bMore = true;
Vector vColumns = new Vector();

while (bMore == true)
{

bMore = CTutil.csvGetNextElement(bufCSV, bufElement);
String sElement = bufElement.toString();

// Remove quotes around string if they are present.
if (sElement.startsWith("\"") && sElement.endsWith("\""))
{

sElement = sElement.substring(1, sElement.length() - 1);
}
vColumns.addElement(sElement);
numCols++;

}

// Turn the vector into an array of strings.
172 Chapter 7

Fundamentals for Implementing a Verification Point
asColumns = (String[])CTutil.toArray(vColumns, new String[1]);

// Now read in all the data lines.
String sData = "";
Vector vRow = new Vector();
vData = new Vector();

for (sData = brIn.readLine(); sData != null; sData = brIn.readLine())
{

bufCSV = new StringBuffer(sData);
bufElement.setLength(0);
int numElements = 0;
bMore = true;
vRow.removeAllElements();

while (bMore == true)
{

bMore = CTutil.csvGetNextElement(bufCSV, bufElement);
String sElement = bufElement.toString();

// Remove quotes around string if they are present.
if (sElement.startsWith("\"") && sElement.endsWith("\""))
{

sElement = sElement.substring(1, sElement.length() - 1);
}
vRow.addElement(sElement);
numElements++;

}

if (numElements == numCols)
{

vData.addElement(CTutil.toArray(vRow, new String[1]));
}
else
{

// Handle the exception.
}

}
}

Step 3. Provide the Extension for the Data File

Call getFileExtension() to provide the extension of the data file to the test script.

In this release of QualityArchitect, this method always returns csv. In a future release,
the method will return the file extension used by whatever data file format (for
example, .csv, .dat, .xml) that you select for the data in your Verification Point Data
class.
Implementing a New Verification Point 173

Fundamentals for Implementing a Verification Point
The verification point framework creates the unique file name and data file passed to
the writeFile() and readFile() methods. The getFileExtension() method
tells the framework what file extension to use, as shown in the following example:

public String getFileExtension()

{

return "csv";

}

Implementing the Verification Point Data Comparator Class

Your specialized Verification Point Data Comparator class must implement the
com.rational.test.vp.VerificationPointDataComparator interface.

The only method in this interface is compare(). This method compares an expected
data object with an actual data object (both of type VerificationPointData) and
determines whether the test passes or fails.

The following example illustrates a comparison of two data objects:

public boolean compare(VerificationPointData vpdExpected,
VerificationPointData vpdActual,
Object objOptions,
StringBuffer sFailureDescription)

{
boolean bIdentical = true;
StringBuffer bufActual = new StringBuffer();
StringBuffer bufExpected = new StringBuffer();
StringBuffer bufFailIndex = new StringBuffer();
Integer iOptions;

if (objOptions != null)
iOptions = (Integer) objOptions;

else
iOptions = new Integer(0);

boolean bCaseInsensitive = (iOptions.intValue() &
VerificationPoint.COMPARE_CASEINSENSITIVE) != 0;

DatabaseVPData expected = (DatabaseVPData) vpdExpected;
DatabaseVPData actual = (DatabaseVPData) vpdActual;

if (expected.getNumCols() != actual.getNumCols())
{

String sText;
if (expected.getNumCols() == 0 || actual.getNumCols() == 0)

sText = "No column titles";
else

sText = "Differing number of columns";

sFailureDescription.insert(0, sText);
174 Chapter 7

Fundamentals for Implementing a Verification Point
sFailureDescription.setLength(sText.length());
return false;

}
if (expected.getNumRows() != actual.getNumRows())
{

String sText = "Differing number of rows";
sFailureDescription.insert(0, sText);
sFailureDescription.setLength(sText.length());
return false;

}
if (compareStringArray(expected.getColumns(), actual.getColumns(),

bCaseInsensitive, bufExpected, bufActual,
bufFailIndex) == false)

{
String sText = "Column title[" + bufFailIndex.toString() +

"]: expected[";
sText += bufExpected.toString() + "], actual[" +

bufActual.toString() + "].";
sFailureDescription.insert(0, sText);
sFailureDescription.setLength(sText.length());
return false;

}

// Walk the vectors of data and compare each row.
int numRows = expected.getNumRows();
int numCols = expected.getNumCols();
Vector vExpected = expected.getData();
Vector vActual = actual.getData();
String[] asExpected;
String[] asActual;

for (int i=0; i < numRows; i++)
{

Object obj = vExpected.elementAt(i);
asExpected = (String[]) obj;

obj = vActual.elementAt(i);
asActual = (String[]) obj;

if (compareStringArray(asExpected, asActual, bCaseInsensitive,
bufExpected, bufActual, bufFailIndex) == false)

{
// Row + 2 -> 1 for the column titles (which show up as a row)
// and one for 0 index into vector vs. 1 index in grid comparator.
String sText = "Difference found in row[" + Integer.toString(i+2);
sText += "], column[" + bufFailIndex.toString() + "].";
sFailureDescription.insert(0, sText);
sFailureDescription.setLength(sText.length());
return false;

}
}

return true;
}

Implementing a New Verification Point 175

Fundamentals for Implementing a Verification Point
private boolean compareStringArray(String[] asX, String[] asY,
boolean bCaseInsensitive, StringBuffer bufFailX,
StringBuffer bufFailY, StringBuffer bufFailIndex)

{
if (asX.length != asY.length)

return false;

boolean bDifferent;

for (int i=0; i < asX.length; i++)
{

if (bCaseInsensitive)
bDifferent = !asX[i].equalsIgnoreCase(asY[i]);

else
bDifferent = !asX[i].equals(asY[i]);

if (bDifferent)
{

bufFailIndex.insert(0, Integer.toString(i+1));
bufFailIndex.setLength(Integer.toString(i).length());
bufFailX.insert(0, asX[i]);
bufFailX.setLength(asX[i].length());
bufFailY.insert(0, asY[i]);
bufFailY.setLength(asY[i].length());
return false;

}
}
return true;

}

Implementing the Verification Point Data Provider Class

Your specialized Verification Point Data Provider class must implement the
com.rational.test.vp.VerificationPointDataProvider interface.

The only method in this interface is captureData(). This method uses the
metadata in a VerificationPoint object to construct and populate a
VerificationPointData object.

The following example illustrates an implementation of the captureData()
method:

public VerificationPointData captureData(java.lang.Object theObject,
VerificationPoint VP)

{
DatabaseVP theVP = (DatabaseVP) VP;
String sSQL = theVP.getSQL();
String sJDBCuser = theVP.getJDBCuser();
String sJDBCpassword = theVP.getJDBCpassword();
String sJDBCdriver = theVP.getJDBCdriver();
String sJDBCurl = theVP.getJDBCurl();
int iOptions = theVP.getOptions();
176 Chapter 7

Fundamentals for Implementing a Verification Point
Connection con = theVP.getCon();
Statement stmt = theVP.getStmt();

DatabaseVPData vpsData = null;

// Capture the data!

if (con == null || stmt == null)
{

// Create a JDBC connection and statement
try {

Class.forName(sJDBCdriver);

}
catch(ClassNotFoundException e) {

theVP.sFailureDescription =
"Database VP Error: Unable to load driver \""
+ sJDBCdriver + "\"";

theVP.bIsValid = false;
return vpsData;

}
try {

con = DriverManager.getConnection(sJDBCurl, sJDBCuser,
sJDBCpassword);

}
catch(SQLException ex) {

theVP.sFailureDescription =
"Database VP Error: Unable to Connect, UID = "
+ sJDBCuser + ", PWD = " + sJDBCpassword + ", URL = "
+ sJDBCurl + ", Error = " + ex.getMessage();

theVP.bIsValid = false;
return vpsData;

}
try {

stmt = con.createStatement();
}
catch(SQLException ex) {

theVP.sFailureDescription =
"Database VP Error: Unable to create Statement: "
+ ex.getMessage();

theVP.bIsValid = false;
return vpsData;

}
}

// Execute the query.
try {

ResultSet rs = stmt.executeQuery(sSQL);
ResultSetMetaData rsmd = rs.getMetaData();

vpsData = new DatabaseVPData();
int numColumns = rsmd.getColumnCount();
String[] asColumns = new String[numColumns];
Implementing a New Verification Point 177

Fundamentals for Implementing a Verification Point
// Build a String array of the Column Names
if ((iOptions & DatabaseVP.OPTION_TRIM) != 0)
{

for (int i=0; i < numColumns; i++)
{

asColumns[i] = rsmd.getColumnName(i+1).trim();
}

}
else
{

for (int i=0; i < numColumns; i++)
{

asColumns[i] = rsmd.getColumnName(i+1);
}

}

// Put the column data into the VPdata object
vpsData.setColumns(asColumns);

// Build a Vector of the data elements
Vector vData = new Vector();
int numRows = 0;
try {

while(rs.next())
{

String[] asData = new String[numColumns];
if ((iOptions & DatabaseVP.OPTION_TRIM) != 0)
{

for (int j=0; j < numColumns; j++)
{

asData[j] = rs.getString(j+1).trim();
}

}
else
{

for (int j=0; j < numColumns; j++)
{

asData[j] = rs.getString(j+1);
}

}

// Put the array of strings into the vector at this row's
index.
vData.addElement((Object) asData);
numRows++;

}
}
catch(SQLException ex) {

theVP.sFailureDescription =
"Database VP Error: Unable to walk ResultSet. "
+ "Error = " + ex.getMessage();

theVP.bIsValid = false;
return null;
178 Chapter 7

Fundamentals for Implementing a Verification Point
}
vpsData.setData(vData);

}
catch(SQLException ex) {

theVP.sFailureDescription =
"Database VP Error: Unable to execute Query \""
+ sSQL + "\", Error = " + ex.getMessage();

theVP.bIsValid = false;
return vpsData;

}

return vpsData;
}

Implementing the Verification Point Data Renderer Class

Your specialized Verification Point Data Renderer class must implement the
com.rational.test.vp.VerificationPointDataRenderer interface.

The only method in this interface is displayAndValidateData(). This method:

■ Displays the data in a VerificationPointData object

■ Allows the user to accept or reject that data as being correct.

The verification point framework invokes displayAndValidateData() when
both of the following conditions apply:

■ You execute a static verification point for the first time (that is, when the baseline
data is first captured).

■ The test designer has specified the OPTION_USER_ACKNOWLEDGE_BASELINE
option in the setOptions() method of the specialized VerificationPoint
class.

When both of these conditions exist, the framework captures the baseline data object
and then invokes displayAndValidateData() to display the baseline data. The
tester accepts or rejects the data:

■ If the tester accepts the data as being correct, the framework stores the data as the
baseline for the static verification point.

■ If the tester rejects the data, the framework does not store the baseline data for the
verification point. The process repeats the next time you execute the verification
point.
Implementing a New Verification Point 179

Integrating a Verification Point with QualityArchitect
In the following example, displayAndValidateData() presents the baseline data
object vpdData to the tester for verification:

public boolean displayAndValidateData(VerificationPointData vpdData)
{

// Pop up some UI which displays the vpdData object and prompts the
// user to accept or reject.

if (bAccepted)
return true;

else
return false;

}

Integrating a Verification Point with QualityArchitect

Once you have implemented a verification point, integrate the verification point into
the QualityArchitect environment. After you do so, testers will be able to insert your
verification point into a test script when they generate a test script from a Rational
Rose model or when they record a test script with the Session Recorder.

To integrate your verification point with QualityArchitect, perform both of these
tasks:

■ Register the verification point in the rqalocvp.ini file. This file lists custom
verification point types in the section JAVA VP in the following format:

VpType = PackageSpecificationName

The following is an example of how the database verification point, which is part
of the com.rational.test.vp package provided with QualityArchitect, would
be registered in the .ini file:

[Java VP]
DatabaseVP = com.rational.test.vp.DatabaseVP

The rqalocvp.ini file is located in the Rational datastore in the folder
DefaultTestScriptDataStore.

■ Add the .jar file containing your new verification point classes to the CLASSPATH.
For more information about CLASSPATH settings, see Running Test Scripts on page 8.
180 Chapter 7

8Verification Point
Framework Reference
About the Verification Point Framework

The verification point framework is the underlying “machinery” that executes and
manages a verification point. The framework serves two purposes:

■ It provides the base class and interfaces that a verification point implementer uses
to create a new verification point.

■ In a fully implemented verification point, it performs much of the functionality of
a verification point “under the covers,” shielding the test designer and the
verification point implementer from having to code this functionality explicitly.

Requirements for Using the Verification Point Framework

Use of the verification point framework requires Rational QualityArchitect.

In addition, the CLASSPATH must reference a number of .jar files. For a list of the
required .jar files, see Running Test Scripts on page 8.

Components of the Verification Point Framework

The verification point framework contains the following class and interfaces:

■ VerificationPoint Class on page 182

■ VerificationPointComparator Interface on page 199

■ VerificationPointData Interface on page 201

■ VerificationPointDataProvider Interface on page 203

■ VerificationPointDataRenderer Interface on page 205

This class and the interfaces are included in the package com.rational.test.vp.
181

VerificationPoint Class
VerificationPoint Class

This class contains the verification point's metadata — that is, the information that
determines the data to capture for this verification point. Examples of verification
point metadata include the list of properties for a user-defined object properties
verification point, or connection information and SELECT statements for the JDBC
database verification point that is included in the com.rational.test.vp package.

Don’t confuse metadata with the data being verified. The data being verified is
encapsulated by an implementation of the interface VerificationPointData.

A verification point’s metadata can be defined in either of these ways:

■ Explicitly, through the constructor or through user-defined set... methods in
your specialized VerificationPoint class.

■ Implicitly, through metadata retrieved from the datastore.

If the metadata has not been explicitly specified and no metadata exists for this
verification point in the datastore, the framework calls the
defineVPcallback() method in your specialized VerificationPoint class.
Your implementation of this method should provide some means of retrieving the
verification point’s metadata— typically through some UI that prompts the tester
for the information. When the metadata is retrieved, the framework stores it in the
datastore.

For more information about specifying metadata, see Step 1. Specify the Metadata for the
Verification Point on page 127.

This class must also implement its own serialization. By requiring your specific
verification point implementations to perform their own serialization, you can
support all file formats (such as INI, XML, and standard Java serialization).

Note: The current release only supports the vpm and .ini formats.

This abstract class defines the metadata for and partially implements the behavior
of a verification point. Because the VerificationPoint class is abstract, it cannot
be instantiated. Rather, all verification point classes, including the classes you create,
extend from this class, implementing the abstract methods necessary to specialize
themselves, and inheriting the rest of their behavior from this class.

As the verification point implementer, you must implement all abstract methods.
182 Chapter 8

Summary
Overview

public abstract class VerificationPoint
extends java.lang.Object

java.lang.Object
|
+--com.rational.test.vp.VerificationPoint

Known subclass:
DatabaseVP

Applicability

Commonly used with Rational QualityArchitect.

This class requires Rational QualityArchitect.

Summary

This class contains the following fields:

Field Description

bIsDefined protected boolean. If true, indicates that the
verification point's metadata is fully specified. If false
when a performTest() method is invoked, the
framework will call the defineVPcallback()
method on behalf of the test script in an attempt to get a
full set of verification point metadata from the tester.

Note that this field applies to the verification point
metadata, not to the data itself that is captured in
accordance with the metadata.

bIsValid protected boolean. If true, indicates that the
verification point was correctly instantiated,
successfully captured, and is in a valid state; otherwise,
false.

COMPARE_CASEINSENSITIVE static int. Specifies that the verification should be
case insensitive.

COMPARE_CASESENSITIVE static int. Specifies that the verification should be
case sensitive (default).

OPTION_EXPECT_FAILURE Specifies that the Verification Point's expected result is
failure. If the comparison fails and this option is set, the
verification point succeeds.
Verification Point Framework Reference 183

Summary
OPTION_USER_
ACKNOWLEDGE_BASELINE

static int. Specifies that the first run of a static
verification point should display the captured data for
the tester to validate before storing it as the expected
(baseline) data object.

sFailureDescription protected java.lang.String. Specifies the
reason for a failure.

VERIFICATION_ERROR static int. Indicates that an error occurred, and the
verification point was not performed.

VERIFICATION_FAILED static int. Indicates that the verification point was
performed, and the comparison failed.

VERIFICATION_NO_RESULT static int. Indicates that the static verification point
was run for the first time, and a baseline (expected)
data object was successfully captured.

VERIFICATION_SUCCEEDED static int. Indicates that the verification point was
performed, and the comparison passed.

Field Description
184 Chapter 8

Summary
This class contains the following methods:
:

Method Description

codeFactory_
getConstructorInvocation()

Returns a parameterized constructor call.

codeFactory_
getExternalizedInputDecl()

Returns a variable declaration.

codeFactory_
getNumExternalizedInputs()

Returns the number of responses (inputs) that a tester
provided when defining verification point metadata
interactively through a UI.

codeFactory_getPrefix() Retrieves the user-defined prefix that is currently
available to prepend to a variable name to make the
name unique.

codeFactory_setPrefix() Specifies a user-defined prefix to prepend to the current
set of variable names. The names are created and
declared by the
codeFactory_getExternalizedInputDecl()
method.

defineVPcallback() Provides a way to capture the metadata for the
verification point — typically, by presenting the tester
with a UI device, such as the Query Builder tool
provided with Rational QualityArchitect (for use with
the database verification point).

getIsDefined() Retrieves the value of the bIsDefined field.

getOptions() Retrieves the options associated with the current
verification point.

getVPname() Retrieves the name of the current verification point.

performTest() Performs a static, dynamic, or manual verification
point, depending upon the parameters that are passed
to it.

readFile() Deserializes a verification point object from the
specified InputStream.

setIsDefined() Sets a value for the bIsDefined field.

setOptions() Sets the options for the current verification point.

setVPname() Sets the name of the current verification point.

writeFile() Serializes the verification point object to the specified
OutputStream.
Verification Point Framework Reference 185

Constructor
Note: For more information about these code factory methods, see Step 4. Implement
the Code Factory Methods to Generate Code on page 165.

Constructor

This constructor stores the name of the verification point and the classes that provide
serialization and comparison services for the verification point.

Syntax

public VerificationPoint(java.lang.String sVPname,
java.lang.Class cVPdataClass, java.lang.Class
cVPdataProviderClass, java.lang.Class cVPdataRendererClass,
java.lang.Class cVPcompClass)

Comments

The classes passed in the cVPdataClass, cVPdataProviderClass,
cVPdataRendererClass, and cVPcompClass parameters are passed to the
constructor to allow late-binding to the methods in the classes.

Methods Inherited from Class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Element Description

sVPname A user-defined name for the verification point (40 characters
maximum).

cVPdataClass The class responsible for serialization of one set of the
verification point's data.

cVPdataProviderClass The class responsible for capturing the verification point's data
and populating a VerificationPointData object with the
data.

cVPdataRendererClass The class responsible for visually rendering the data stored in an
object of this verification point's VerificationPointData
class.

cVPcompClass The class responsible for comparing two sets of this verification
point's data.
186 Chapter 8

VerificationPoint.codeFactory_getConstructorInvocation()
A test script can never call this constructor because the VerificationPoint class is
abstract. A specific verification point implementation (such as the pre-defined
database verification point or any custom verification points that you implement)
extends the VerificationPoint class and invokes this constructor from within its
own constructor using the super keyword — for example:

public MyVerificationPoint(String sVPname)

{

super(sVPname, MyVPData.class, MyVPDataProvider.class,
MyVPDataRenderer.class, MyVPComparator.class);

 . . .

}

VerificationPoint.codeFactory_getConstructorInvocation()

Returns a parameterized constructor call.

Syntax

public abstract java.lang.String
codeFactory_getConstructorInvocation()

Comments

The test script never calls this method. This method is called during the following
Rational code generation operations:

■ Rational QualityArchitect test script recording

■ Rational Rose scenario test generation

This method returns a parameterized constructor call. This call plus the variables
declared by codeFactory_getExternalizedInputDecl() allow these code
generators to create a fully specified verification point in the generated test script
code.

For more information, see Step 4. Implement the Code Factory Methods to Generate Code
on page 165.
Verification Point Framework Reference 187

VerificationPoint.codeFactory_getExternalizedInputDecl()
VerificationPoint.codeFactory_getExternalizedInputDecl()

Returns a variable declaration.

Syntax

public abstract java.lang.String
codeFactory_getExternalizedInputDecl(int nInput)

Return Value

A line of code that declares the specified variable.

Comments

The test script never calls this method. This method is called during the following
Rational code generation operations:

■ Rational QualityArchitect test script recording

■ Rational Rose scenario test generation

The Rational code generators (the Rational QualityArchitect Session Recorder and the
Rational Rose scenario test generator) call this method in a loop that iterates as many
times as there are variables to declare (that is, the number returned from
codeFactory_getNumExternalizedInputs()).

The code returned by codeFactory_getConstructorInvocation() uses the
variables declared with codeFactory_getExternalizedInputDecl().

VerificationPoint.codeFactory_getNumExternalizedInputs()

Returns the number of responses (inputs) that a tester provided when defining
verification point metadata interactively through a UI. The UI was presented to the
tester through the defineVPcallback() method.

Syntax

public abstract int codeFactory_getNumExternalizedInputs()

Element Description

nInput A number that indicates the current variable to declare. The
number should be initialized to 0 and incremented by 1 in a
loop.
188 Chapter 8

VerificationPoint.codeFactory_getPrefix()
Return Value

The number of inputs that require variable declarations.

Comments

The test script never calls this method. This method is called during the following
Rational code generation operations:

■ Rational QualityArchitect test script recording.

■ Rational Rose scenario test generation.

VerificationPoint.codeFactory_getPrefix()

Retrieves the user-defined prefix that is currently available to prepend to a variable
name to make the name unique.

Syntax

public java.lang.String codeFactory_getPrefix()

Return Value

A prefix for a variable name.

Comments

Call this method only if you are implementing a new verification point.

Use the prefix whenever you are constructing a set of variable names for use with the
codeFactory_getConstructorInvocation() and
codeFactory_getExternalizedInputDecl() methods.
Verification Point Framework Reference 189

VerificationPoint.codeFactory_setPrefix()
VerificationPoint.codeFactory_setPrefix()

Specifies a user-defined prefix to prepend to the current set of variable names created
and declared by the codeFactory_getExternalizedInputDecl() method.

Syntax

public void codeFactory_setPrefix(java.lang.String
sSelfDescribePrefix)

Comments

The variable-name prefix ensures that variable names are unique when the Rational
code generators (the Rational QualityArchitect Session Recorder and the Rational
Rose scenario test generator) insert more than one verification point into a given
scope.

Rational QualityArchitect code generators call this method.

VerificationPoint.defineVPcallback()

Provides a way to capture the metadata for the verification point — typically, by
presenting the tester with a UI device, such as the Query Builder tool provided with
Rational QualityArchitect (for use with the database verification point).

Syntax

public abstract boolean defineVPcallback()

Return Value

true if the verification point metadata was captured; otherwise, false. If the
metadata was not captured, the verification point will be in an invalid state, and it
will log an error if its performTest() method is called.

Comments

The verification point framework automatically invokes this method if the
verification point is not fully defined when you invoke the performTest() method.

Element Description

sSelfDescribedPrefix The prefix to prepend to the variable names.
190 Chapter 8

VerificationPoint.getIsDefined()
When you invoke defineVPcallback(), it should do the following (presumably
through a UI):

1 Capture any information necessary for fully defining the metadata for the
verification point

2 Populate the verification point's attributes with the captured metadata.

For example, the defineVPcallback() method included with the database
verification point provided with Rational QualityArchitect invokes the Query Builder
software. Query Builder captures JDBC connection information and a SQL statement,
and then populates the database verification point object with the captured metadata,
resulting in a fully defined verification point.

This method applies to the verification point metadata, not to the data itself that is
captured in accordance with the metadata. The specialized Verification Point Data
Provider class uses the metadata to determine which data to capture.

If Rational QualityArchitect Session Recorder is recording the verification point, or if a
Rational Rose model is generating it, this method will be invoked at script generation
time. The resulting verification point metadata will automatically be provided to the
test script. As a result, the defineVPcallback() method will not be invoked at
script playback time.

Implement this method only if you are implementing a new verification point.

VerificationPoint.getIsDefined()

Retrieves the value of the bIsDefined field.

Syntax

public boolean getIsDefined()

Return Value

If true, the verification point's metadata was fully specified in the constructor call. If
false, the metadata was not fully specified.

Comments

If the verification point metadata is not defined when performTest() is called, the
framework will call the defineVPcallback() method on behalf of the test script in
an attempt to get a complete set of verification point metadata from the tester.
Verification Point Framework Reference 191

VerificationPoint.getOptions()
See Also

getIsDefined()on page 191

VerificationPoint.getOptions()

Retrieves the options associated with the current verification point.

Syntax

public int getOptions()

Return Value

The options associated with the current verification point.

See Also

setOptions()on page 198

VerificationPoint.getVPname()

Retrieves the name of the current verification point.

Syntax

public java.lang.String getVPname()

Return Value

The name of the current verification point.

See Also

setVPname()on page 198
192 Chapter 8

VerificationPoint.performTest()
VerificationPoint.performTest()

Performs a static verification point.

Syntax

public int performTest(java.lang.Object objTarget)

Comments

In this implementation, performTest() performs and logs a regression-style
verification. It does so by checking the datastore for an expected (baseline) data object,
and then comparing the expected data object to the actual data object that is captured
in this call.

If there is no expected data object in the datastore, the framework creates one and the
method returns a VERIFICATION_NO_RESULT for this run of the verification point.

However, if there is no expected data, but the test script specifies the
OPTION_USER_ACKNOWLEDGE_BASELINE option in the setOptions() method,
the framework first invokes an implementer-defined UI that prompts the tester to
verify that the captured data is correct:

■ If the tester accepts the displayed data as being correct, the framework stores the
data object in the datastore as the expected data for subsequent tests, and the
method returns VERIFICATION _SUCCEEDED.

■ If the tester rejects the displayed data, the framework logs an error, and
verification point execution ends. The framework does not store an expected data
object.

Element Description

objTarget The object-under-test. If the verification point operates on an
object that is not directly accessible (for example, a remote object
or a database), the verification point object must contain the
information needed to find the object-under-test, and the value
of objTarget is ignored.

This parameter is passed to captureData() as its first
parameter.
Verification Point Framework Reference 193

VerificationPoint.performTest()
Return Value

This method returns one of the following values:

VerificationPoint.performTest()

Performs a dynamic verification point.

Syntax

public int performTest(java.lang.Object objTarget,
VerificationPointData vpsExpected)

Value Description

VERIFICATION_SUCCEEDED The verification point was performed, and the
comparison passed.

VERIFICATION_FAILED The verification point was performed, and the
comparison failed.

VERIFICATION_NO_RESULT The static verification point was run for the
first time, and a baseline (expected) data object
was successfully captured.

VERIFICATION_ERROR An error occurred, and the verification point
was not performed.

Element Description

objTarget The object-under-test. If the verification point operates on an
object that is not directly accessible (for example, a remote object
or a database), the verification point object must contain the
information needed to find the object-under-test, and the value
of objTarget is ignored.

This parameter is passed to captureData() as its first
parameter.

vpsExpected An expected data object. The test script can construct the
expected data object, or it can deserialize the expected data
object from a file that is not managed by the datastore.
194 Chapter 8

VerificationPoint.performTest()
Return Value

This method returns one of the following values:

Comments

In this implementation, performTest() captures an actual data object from the
component-under-test, compares the actual data object to the expected data object
that was passed to the call, and logs the results of the comparison.

VerificationPoint.performTest()

Performs a manual verification point.

Syntax

public int performTest(java.lang.Object objTarget,
VerificationPointData vpsExpected, VerificationPointData
vpsActual)

Value Description

VERIFICATION_SUCCEEDED The verification point was performed, and the
comparison passed.

VERIFICATION_ERROR An error occurred, and the verification point
was not performed.

VERIFICATION_FAILED The verification point was performed, and the
comparison failed.

Element Description

objTarget The object-under-test. If the verification point operates on an
object that is not directly accessible (for example, a remote object
or a database), the verification point object must contain the
information needed to find the object-under-test, and the value
of objTarget is ignored.

This parameter is passed to captureData() as its first
parameter.

vpsExpected An expected data object. The test script can construct the
expected data object, or it can deserialize the expected data
object from a file that is not managed by the datastore.
Verification Point Framework Reference 195

VerificationPoint.readFile()
Return Value

This method returns one of the following values:

Comments

In this implementation, performTest() specifies both the expected data object and
the actual data object. This allows a test script to capture or construct the actual data
object, rather than relying on the Verification Point Data Provider class to create the
actual data object.

This call simply compares the actual and expected data objects that are passed to it
and logs the results of the comparison.

VerificationPoint.readFile()

Deserializes a verification point object from the specified InputStream.

Syntax

public abstract void readFile(java.io.InputStream in)

vpsActual The actual data object. The code in the test script captured or
constructed this object.

Element Description

Value Description

VERIFICATION_SUCCEEDED The verification point was performed, and the
comparison passed.

VERIFICATION_ERROR An error occurred, and the verification point
was not performed.

VERIFICATION_FAILED The verification point was performed, and the
comparison failed.

Element Description

in The InputStream from which the object is read.
196 Chapter 8

VerificationPoint.setIsDefined()
Exceptions

This method throws the following exception:

■ java.io.IOException. An error has occurred in attempting to read from the
InputStream.

VerificationPoint.setIsDefined()

Assigns a value to the bIsDefined field.

Syntax

public void setIsDefined(boolean bIsDefined)

Comments

If the verification point metadata is not defined when performTest() is called, the
framework will call the defineVPcallback() method on behalf of the test script in
an attempt to get a complete set of verification point metadata from the tester.

See Also

getIsDefined()on page 191

Element Description

bIsDefined If true, the verification point's metadata is fully specified. If
false, the metadata is not fully specified.
Verification Point Framework Reference 197

VerificationPoint.setOptions()
VerificationPoint.setOptions()

Sets the options for the current verification point.

Syntax

public void setOptions(int iOptions)

See Also

getOptions()

VerificationPoint.setVPname()

Assigns a name to the current verification point.

Syntax

public void setVPname(java.lang.String sVPname)

See Also

getVPname()

Element Description

iOptions One or more options to assign to the verification point. Options
can be pre-defined, as in the following:

COMPARE_CASESENSITIVE

COMPARE_CASEINSENSITIVE

OPTION_EXPECT_FAILURE

Options can also be any user-defined options.

Element Description

sVPname The name to assign to the current verification point (40
characters maximum).
198 Chapter 8

VerificationPoint.writeFile()
VerificationPoint.writeFile()

Serializes the verification point object to the specified OutputStream.

Syntax

public abstract void writeFile(java.io.OutputStream out)

Exceptions

This method throws the following exception:

■ java.io.IOException. An error has occurred in attempting to write to the
OutputStream.

Comments

Metafile format is used so that the Rational comparators can read the file. For
information, see Step 5. Provide Serialization Services for the Metadata on page 168.

VerificationPointComparator Interface

For a class implementing this interface, the interface provides a method to compare
two VerificationPointData objects to determine if the comparison succeeds or
fails. The comparison can test for equality between the expected and actual data, or it
can test for some other condition (for example, that the actual data falls within a given
range).

This class is passed into the constructor of the abstract VerificationPoint class
and is used when that verification point needs to perform its comparison.

Overview

public interface VerificationPointComparator

Known implementing class:
DatabaseVPComparator

Element Description

out The OutputStream to which the object is written.
Verification Point Framework Reference 199

VerificationPointComparator.compare()
Applicability

Commonly used with Rational QualityArchitect.

This interface requires Rational QualityArchitect.

VerificationPointComparator.compare()

This method does the following:

■ Compares an expected data object and an actual data object, both of type
VerificationPointData

■ Determines whether the test succeeds or fails.

public boolean compare(VerificationPointData vpsExpected,
VerificationPointData vpsActual, java.lang.Object
objOptions, java.lang.StringBuffer sFailureDescription)

Return Value

A boolean value indicating whether the test passed or failed.

Element Description

vpsExpected The expected data object.

vpsActual The actual data object.

objOptions Options that are passed from the Verification Point class to
qualify the comparison. Options can include the pre-defined
COMPARE_CASESENSITIVE and
COMPARE_CASEINSENSITIVE options, plus any user-defined
options.

sFailureDescription An output parameter that contains the differences between the
expected and actual data objects in a failed verification point.
The failure description is written to the log.
200 Chapter 8

VerificationPointData Interface
VerificationPointData Interface

A class implementing this interface encapsulates and serializes a single snapshot of
either expected or actual data. It can be populated through the captureData
method of a Verification Point Data Provider class, or it can be populated manually in
the test script — for example, by literal values or by values from a datapool.

Each implementation of the VerificationPointData interface must provide its
own serialization methods in order to support all possible file formats. Use the
readFile() and writeFile() methods to implement serialization for the
encapsulated data.

Note: For the current Rational QualityArchitect release, Verification Point Data classes
must serialize to a .CSV file format. This restriction will be removed in a future release
of Rational QualityArchitect.

In addition to implementing the methods defined by this interface, all Verification
Point Data classes should create member variables that encapsulate the data being
compared by the verification point. The data encapsulated in these member variables
should be exposed through public get... and set... methods that you
implement, thereby allowing a test script to create and populate an instance of the
class for use in dynamic and manual verification points.

Overview

public interface VerificationPointData

Known implementing class:
DatabaseVPData

Applicability

Commonly used with Rational QualityArchitect.

This interface requires Rational QualityArchitect.

VerificationPointData.getFileExtension()

Returns the extension of the file used to store the data object.

Syntax

public java.lang.String getFileExtension()
Verification Point Framework Reference 201

VerificationPointData.readFile()
Return Value

The extension of the file used to store the data object.

Comments

The verification point framework uses the file extension to determine the format to
use when it serializes files (for example, a .CSV extension indicates a
comma-separated-value text file).

The current release only supports the .CSV file formatt. Future releases will support
other formats.

VerificationPointData.readFile()

Reads the expected or actual data object from the specified InputStream.

Syntax

public void readFile(java.io.InputStream in)

Exceptions

This method throws the following exception:

■ IOException. An input/output error has occurred.

VerificationPointData.writeFile()

Writes the expected or actual data object to the specified OutputStream.

Syntax

public void writeFile(java.io.OutputStream out)

Element Description

in The InputStream from which the object is read.

Element Description

out The OutputStream to which the object is written.
202 Chapter 8

VerificationPointDataProvider Interface
Exceptions

This method throws the following exception:

■ IOException. An input/output error has occurred.

VerificationPointDataProvider Interface

An implementation of this class creates a Verification Point Data object based on the
verification point metadata in the specialized Verification Point object.

A class implementing this interface is a pluggable link between a Verification Point
class, which defines a verification point’s metadata, and a Verification Point Data
class, which encapsulates and serializes the data for a verification point.

When you implement a Verification Point Data class from this interface, you
implement the captureData() method for populating a Verification Point Data
object for a given Verification Point object. The Verification Point Data Provider class
knows about the structure of both the Verification Point Data class, which it is
building, and the Verification Point class, which specifies the data to capture.

This is an important abstraction for general types of verification points (such as object
data or object properties) where many different objects may provide access to the
same type of data.

An implementation of this interface can be plugged into an existing verification point
implementation to provide verification point data from a new verification point data
source.

You can use an implementation of this interface with static verification points (for
building expected and actual data objects) and with dynamic verification points (for
building actual data objects only).

Overview

public interface VerificationPointDataProvider

Known implementing class:
DatabaseVPDataProvider

Applicability

Commonly used with Rational QualityArchitect.

This interface requires Rational QualityArchitect.
Verification Point Framework Reference 203

VerificationPointDataProvider.captureData()
VerificationPointDataProvider.captureData()

Builds a VerificationPointData object.

Syntax

public VerificationPointData captureData(java.lang.Object
theObject, VerificationPoint theVP)

Return Value

This method returns an instance of the specialized VerificationPointData class
populated with the captured data.

Comments

This method captures data according to the metadata in the VerificationPoint
class. The verification point framework can use the returned
VerificationPointData object as either an expected or an actual data object.

Element Description

theObject The object-under-test. The contents of this parameter are
provided by the first parameter of the performTest() method.

theVP The Verification Point object that contains the verification point’s
metadata.
204 Chapter 8

VerificationPointDataRenderer Interface
VerificationPointDataRenderer Interface

Using a class implementing this interface, you can display the data stored in the
Verification Point Data class. This enables the tester to interactively accept or reject
that data as the expected (baseline) data for a static verification point.

To enable the data display, the test script sets the
OPTION_USER_ACKNOWLEDGE_BASELINE option in the setOptions() method of
the specialized Verification Point class.

Overview

public interface VerificationPointDataRenderer

All Known implementing class:
DatabaseVPDataRenderer

Applicability

Commonly used with Rational QualityArchitect.

This interface requires Rational QualityArchitect.

VerificationPointDataRenderer.displayAndValidateData()

Presents the tester with a visual representation of the data object as it exists before
expected (baseline) data is stored for this static verification point.

Syntax

public boolean displayAndValidateData(VerificationPointData
vpdData)

Element Description

vpdData The data to present to the tester for confirmation.
Verification Point Framework Reference 205

VerificationPointDataRenderer.displayAndValidateData()
Return Value

true if the tester accepts the displayed data, false if the tester rejects the data.

Comments

The verification point framework invokes this method is invoked by the verification
point framework when the following conditions exist:

■ The test script sets the OPTION_USER_ACKNOWLEDGE_BASELINE option in the
setOptions() method of the Verification Point class.

■ No expected data object exists in the datastore when the test script calls the
performTest() method of the Verification Point class for a static verification
point.

When you invoke the method, it presents the tester with a visual representation of the
data, and allows the tester to accept or reject the data:

■ If the tester accepts the data, the verification point passes, and the framework adds
the data to the datastore as the expected data for subsequent test runs.

■ If the tester rejects the data, the framework logs the failure, and does not store the
expected data for the verification point. The next time the tester runs the script, the
tester is again prompted to accept the data.
206 Chapter 8

AConfiguring Datapools,
Synchronization Points,
and Shared Variables
About Script Configuration

During execution of a test script that uses datapools, synchronization points, or
shared variables, TestManager must be able to access and apply values at different
points in the script, for different virtual testers. In this manual, the procedures that
allow TestManager to do this efficiently are referred to as configuration. This appendix
describes the configuration procedures.

Datapool Configuration

A test script that uses a datapool must include, somewhere in its body, a block of code
such as the following:

public static class DatapoolConfig extends DatapoolInfo {
 public DatapoolConfig() {
 setDatapoolName(java.lang.String name);
 setDatapoolAccessFlags(int accessFlags);
 }
 }

The name argument of setDatapoolName() — a method of DatapoolInfo — is
the same as the name argument of TSSDatapool.open(), and should contain the
same value. Thus, if with open() you specify a datapool named custdata, specify
custdata with setDatapoolName() also.

The accessFlags argument of setDatapoolAccessFlags() — also a method of
DatapoolInfo — accepts the same values as argument accessFlags of the
datapool open() method. If open() specifies no accesss flags, then the values you
specify with setDatapoolAccessFlags() apply. If open() specifies access flags,
they are ORed to flags specified with setDatapoolAccessFlags(). If access flags
specified with open() contradict those specified with
setDatapoolAccessFlags(), a TSS_INVALID error occurs.

The following is an example of a Java program that opens and configures a datapool
named squaredp. Relevant lines apear in bold.

/*
* SquareClientTM demonstrates an EJB client that can be executed
207

Datapool Configuration
 * from Rational Suite TestStudio using TestManager.
*/

// EJB itself
import com.rational.square.Square;
import com.rational.square.SquareHome;

// Misc
import java.util.Properties;
import java.util.ResourceBundle;
import java.util.ListResourceBundle;
import java.rmi.RemoteException;

// JNDI-related
import javax.naming.Context;
import javax.naming.InitialContext;

// TestManager
import com.rational.test.tss.*;

// Java test scripts must extend the TestScript interface.

public class SquareClientTM_datapool extends
com.rational.test.tss.TestScript {

 public void testMain(String[] args) {
 try {

 // Create EJB
 TSSMeasure.commandStart("home001", "getHome",

MST_XCLNTCONN);
 Square square = getHome().create();
 TSSMeasure.commandEnd((short)TSS_CMD_STAT_PASS);

 // Call Square method
 long answer = 0;
 TSSDatapool dp = new TSSDatapool();
 dp.open("squaredp");
 boolean bret = dp.fetch();
 int dpnum = dp.value("Number").intValue();
 System.out.println("Getting square of " + dpnum);
 TSSMeasure.think(2000);
 TSSMeasure.commandStart("square001", "getSquare",

MST_WAITRESP);
 answer = square.getSquare(dpnum);
 TSSMeasure.commandEnd((short)TSS_CMD_STAT_PASS);
 System.out.println(answer);

 // Destroy EJB
 square.remove();
 }
 catch (RemoteException e) {
 System.err.println("remoteException" + e.getMessage());
208 Appendix A

Datapool Configuration
 e.printStackTrace();
 }
 catch (NullPointerException e) {
 if (getHome() == null)
 System.err.println("noHome" + e.getMessage());
 else
 e.printStackTrace();
 }
 catch (Exception e) {
 System.err.println("generalException" + e.getMessage());
 e.printStackTrace();
 }
 }

 // Constructor

 public SquareClientTM_datapool() {
 super();
 }

 // Helper method to get the EJB's home.

 private static SquareHome getHome() {

 // Specify the name of the server so we can find the Square EJB.

 String homeName = "com/rational/square/SquareHome";

 // Specify the name of the host machine with the name server.
 // This example is intended to run locally. Also, specify
 // the class name of the JNDI initial naming factory.

 Properties env = new Properties();
 env.put(Context.PROVIDER_URL, "iiop:///");
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejb.cb.runtime.CBCtxFactory");

 try {
 // The following is the simplest way to get the

//InitialContext.

 InitialContext ctx = new InitialContext(env);
 java.lang.Object obj=ctx.lookup(homeName);

 if (obj == null) {
 System.out.println("ctx.lookup returned null object");
 return null; // fail
 }
Configuring Datapools, Synchronization Points, and Shared Variables 209

Synchronization Point Configuration
 return ((SquareHome)
javax.rmi.PortableRemoteObject.narrow(obj,
com.rational.square.SquareHome.class));

 } catch (javax.naming.NamingException e) {
 e.printStackTrace();
 return null;
 }
 }

 public static class DatapoolConfig extends DatapoolInfo {
 public DatapoolConfig() {
 setDatapoolName("squaredp");
 setDatapoolAccessFlags(TSS_DP_WRAP |
 TSS_DP_SEQUENTIAL |
 TSS_DP_SHARED);
 }
 }

 public static void main(String args[]) {
 SquareClientTM_datapool sctm = new SquareClientTM_datapool();
 sctm.testMain(args);
 }
}

Synchronization Point Configuration

A test script that uses a synchronization point must include, somewhere in its body, a
block of code such as the following:

public static class SyncPointConfig extends SyncPointInfo {
 public SyncPointConfig() {
 setSyncPointNames(java.lang.String[] points);
 }
 }

The points argument of setSyncPointNames() — a method of SyncPointInfo
— is an array containing the names of one or more synchronization points. Add to
this array the name of each synchronization point in the script that you specified with
TSSSync.syncPoint().

The following is an example of a Java program that uses a synchronization point
named square_syncpoint. Relevant lines apear in bold.

/**
 * SquareClientTM demonstrates an EJB client that can be executed
 * from Rational Suite TestStudio using TestManager.
 *
 */

// EJB itself
210 Appendix A

Synchronization Point Configuration
import com.rational.square.Square;
import com.rational.square.SquareHome;

// Misc
import java.util.Properties;
import java.util.ResourceBundle;
import java.util.ListResourceBundle;
import java.rmi.RemoteException;

// JNDI-related
import javax.naming.Context;
import javax.naming.InitialContext;

// TestManager
import com.rational.test.tss.*;

// Java test scripts must extend the TestScript interface.

public class SquareClientTM_syncpoint
 extends com.rational.test.tss.TestScript {

 public void testMain(String[] args) {
 try {

 // Create EJB
 TSSMeasure.commandStart("home001", "getHome",

MST_XCLNTCONN);
 Square square = getHome().create();
 TSSMeasure.commandEnd((short)TSS_CMD_STAT_PASS);

 // Call Square method
 System.out.println("Getting square of 123");
 long answer = 0;
 TSSSync.syncPoint("square_syncpoint");
 TSSMeasure.think(2000);
 TSSMeasure.commandStart("square001", "getSquare",

MST_WAITRESP);
 answer = square.getSquare(123);
 TSSMeasure.commandEnd((short)TSS_CMD_STAT_PASS);
 System.out.println(answer);

 // Destroy EJB
 square.remove();
 }
 catch (RemoteException e) {
 System.err.println("remoteException" + e.getMessage());
 e.printStackTrace();
 }
 catch (NullPointerException e) {
 if (getHome() == null)
 System.err.println("noHome" + e.getMessage());
 else
 e.printStackTrace();
Configuring Datapools, Synchronization Points, and Shared Variables 211

Synchronization Point Configuration
 }
 catch (Exception e) {
 System.err.println("generalException" + e.getMessage());
 e.printStackTrace();
 }
 }

 // Constructor

 public SquareClientTM_syncpoint() {
 super();
 }

 // Helper method to get the EJB's home.

 private static SquareHome getHome() {

 // Specify the name of the server so we can find the Square EJB.

 String homeName = "com/rational/square/SquareHome";

 // Specify the name of the host machine with the name server.
 // This example is intended to run locally. Also, specify
 // the class name of the JNDI initial naming factory.

 Properties env = new Properties();
 env.put(Context.PROVIDER_URL, "iiop:///");
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejb.cb.runtime.CBCtxFactory");

 try {
 // The following is the simplest way to get the

//InitialContext.

 InitialContext ctx = new InitialContext(env);
 java.lang.Object obj=ctx.lookup(homeName);

 if (obj == null) {
 System.out.println("ctx.lookup returned null object");
 return null; // fail
 }

 return ((SquareHome)
javax.rmi.PortableRemoteObject.narrow(obj,

com.rational.square.SquareHome.class));

 } catch (javax.naming.NamingException e) {
 e.printStackTrace();
 return null;
212 Appendix A

Shared Variable Configuration
 }
 }

 public static class SyncPointConfig extends SyncPointInfo {
 public SyncPointConfig() {
 String points[] = {
 "square_syncpoint"};
 setSyncPointNames(points);
 }
 }

 public static void main(String args[]) {
 SquareClientTM_syncpoint sctm = new SquareClientTM_syncpoint();
 sctm.testMain(args);
 }
}

Shared Variable Configuration

A test script that uses a shared variable must include, somewhere in its body, a block
of code such as the following:

public static class SharedVarConfig extends SharedVarInfo {
public SharedVarConfig() {
setSharedVarNames(java.lang.String[] sv);

 }
 }

The sv argument of setSharedVarNames() — a method of SharedVarInfo — is
an array containing the names of one or more shared variables. Add to this array the
name of each shared variable in the script that you specified with one of the shared
variable methods.

The following is an example of a Java program that uses a shared variable named
square_number. Relevant lines apear in bold.

/**
* SquareClientTM demonstrates an EJB client that can be executed
 * from Rational Suite TestStudio using TestManager.
 *
 */

// EJB itself
import com.rational.square.Square;
import com.rational.square.SquareHome;

// Misc
import java.util.Properties;
import java.util.ResourceBundle;
import java.util.ListResourceBundle;
Configuring Datapools, Synchronization Points, and Shared Variables 213

Shared Variable Configuration
import java.rmi.RemoteException;

// JNDI-related
import javax.naming.Context;
import javax.naming.InitialContext;

// TestManager
import com.rational.test.tss.*;

// Java test scripts must extend the TestScript interface.

public class SquareClientTM_sharedvar
 extends com.rational.test.tss.TestScript {

 public void testMain(String[] args) {
 try {

 // Create EJB
 TSSMeasure.commandStart("home001", "getHome",

MST_XCLNTCONN);
 Square square = getHome().create();
 TSSMeasure.commandEnd((short)TSS_CMD_STAT_PASS);

 // Call Square method
 long answer = 0;

int retval;
 TSSInteger shval = new TSSInteger(0);

 try {
 retval = TSSSync.sharedVarWait("square_number",
 1,
 1000000,
 0,
 30000,
 shval);
 } catch(TSSException e) {
 System.err.print(e);
 throw e;
 }
 System.out.println("Getting square of " +

shval.getValue());
 TSSMeasure.think(2000);

TSSMeasure.think(2000);
 TSSMeasure.commandStart("square001", "getSquare",

MST_WAITRESP);
 answer = square.getSquare(shval.getValue());
 TSSMeasure.commandEnd((short)TSS_CMD_STAT_PASS);
 System.out.println(answer);

 // Destroy EJB
 square.remove();
 }
 catch (RemoteException e) {
 System.err.println("remoteException" + e.getMessage());
214 Appendix A

Shared Variable Configuration
 e.printStackTrace();
 }
 catch (NullPointerException e) {
 if (getHome() == null)
 System.err.println("noHome" + e.getMessage());
 else
 e.printStackTrace();
 }
 catch (Exception e) {
 System.err.println("generalException" + e.getMessage());
 e.printStackTrace();
 }
 }

 // Constructor

 public SquareClientTM_sharedvar() {
 super();
 }

 // Helper method to get the EJB's home.

 private static SquareHome getHome() {

 // Specify the name of the server so we can find the Square EJB.

 String homeName = "com/rational/square/SquareHome";

 // Specify the name of the host machine with the name server.
 // This example is intended to run locally. Also, specify
 // the class name of the JNDI initial naming factory.

 Properties env = new Properties();
 env.put(Context.PROVIDER_URL, "iiop:///");
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.ejb.cb.runtime.CBCtxFactory");

 try {
 // The following is the simplest way to get the

// InitialContext.

 InitialContext ctx = new InitialContext(env);
 java.lang.Object obj=ctx.lookup(homeName);

 if (obj == null) {
 System.out.println("ctx.lookup returned null object");
 return null; // fail
 }
Configuring Datapools, Synchronization Points, and Shared Variables 215

Shared Variable Configuration
 return ((SquareHome)
javax.rmi.PortableRemoteObject.narrow(obj,

com.rational.square.SquareHome.class));

 } catch (javax.naming.NamingException e) {
 e.printStackTrace();
 return null;
 }
 }

 public static class SharedVarConfig extends SharedVarInfo {
 public SharedVarConfig() {
 String sv[] = {
 "square_number"};
 setSharedVarNames(sv);
 }
 }

 public static void main(String args[]) {
 SquareClientTM_datapool sctm = new SquareClientTM_datapool();
 sctm.testMain(args);
 }
}

216 Appendix A

BJava Support Classes
This appendix shows the source code for some Java support classes. They are not
likely to be used directly or independently in test scripts, but they are used by several
methods documented in this manual.

TSSNamedValue

TSSNamedValue is defined as follows:

package com.rational.test.tss;
public class TSSNamedValue
{

public String name;
public String value;

}

217

DatapoolValue
DatapoolValue

Used by TSSDatapool.value() on page 30, the DatapoolValue support class converts
the data stored in datapools to an appropriate Java type.

package com.rational.test.tss;

/**
 *
 * DatapoolValue is returned from the TSSDatapool.value method.
 * Methods were copied from Component Test implementation.
 *
 * @author Sonny Pak
 * @version 1.0, 29-Jun-2000
 *
 * Modified:
 *
 * Copyright (C) Rational Software Corporation, 2000
 * ALL RIGHTS RESERVED
 *
 */

public class DatapoolValue {

 private String value;

 DatapoolValue(String v) {
 value = v;
 }
 /*
 *
 * getBigDecimal
 *
 * @return java.math.BigDecimal
 * @excpetion java.lang.Exception The specified exception occurred
during the conversion attempt.
 *
 */
 public java.math.BigDecimal getBigDecimal() throws
java.lang.Exception {

java.math.BigDecimal bigDecimalVal = null;
try {

 java.math.BigDecimal bigDecimal = new
java.math.BigDecimal(value);
 bigDecimalVal = bigDecimal;

}
catch (java.lang.NumberFormatException nfe) {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("getBigDecimal()");
 buf.append(" failed to convert the following value: ");
218 Appendix B

DatapoolValue
 buf.append(value);
 java.lang.NumberFormatException newExc = new

java.lang.NumberFormatException(buf.toString());
 throw newExc;
}
catch (Exception e) {

 throw e;
}
return bigDecimalVal;

 }
 /*
 *
 * booleanValue
 *
 * @return boolean
 * @exception java.lang.Exception This method throws
java.lang.Exception if the conversion attempt fails.
 *
 */
 public boolean booleanValue() throws java.lang.Exception {

boolean bVal = false;

// No special error handling because Boolean(string) constructor
can’t throw an exception.

try {
 Boolean b = new Boolean(value);
 bVal = b.booleanValue();
 } catch (Exception e) {
 throw e;

}
return bVal;

 }
 /*
 *
 * floatValue
 *
 * @return float
 * @exception java.lang.Exception This method throws an exception
if the conversion fails.
 * @exception java.lang.NumberFormatException This method throws an
exception if conversion fails.
 *
 */
 public float floatValue() throws java.lang.Exception,
 java.lang.NumberFormatException {

float fVal = 0;
try {

 Float f = new Float(value);
 fVal = f.floatValue();

}
catch (java.lang.NumberFormatException nfe) {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("floatValue()");
Java Support Classes 219

DatapoolValue
 buf.append(" failed to convert the following value: ");
 buf.append(value);
 java.lang.NumberFormatException newExc = new

java.lang.NumberFormatException(buf.toString());
 throw newExc;
}
catch (Exception e) {

 throw e;
}
return fVal;

 }
 /*
 *
 * intValue
 *
 * @return int
 * @exception java.lang.Exception This method throws an exception
if the conversion fails.
 * @exception java.lang.NumberFormatException This method throws an
exception if conversion fails.
 *
 */
 public int intValue() throws java.lang.Exception,
 java.lang.NumberFormatException {

int iVal = 0;
try {

 Integer i = new Integer(value);
 iVal = i.intValue();

}
catch (java.lang.NumberFormatException nfe) {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("intValue()");
 buf.append(" failed to convert the following value: ");
 buf.append(value);
 java.lang.NumberFormatException newExc = new

java.lang.NumberFormatException(buf.toString());
 throw newExc;
}
catch (Exception e) {

 throw e;
}
return iVal;

 }
 /*
 *
 * longValue
 *
 * @return long
 * @exception java.lang.Exception This method throws an exception
if the conversion fails.
 * @exception java.lang.NumberFormatException This method throws an
exception if conversion fails.
 *
220 Appendix B

DatapoolValue
 */
 public long longValue() throws java.lang.Exception,
 java.lang.NumberFormatException {

long lVal = 0;
try {

 Long l = new Long(value);
 lVal = l.longValue();

}
catch (java.lang.NumberFormatException nfe) {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("longValue()");
 buf.append(" failed to convert the following value: ");
 buf.append(value);
 java.lang.NumberFormatException newExc = new

java.lang.NumberFormatException(buf.toString());
 throw newExc;
}
catch (Exception e) {

 throw e;
}
return lVal;

 }
 /*
 *
 * byteValue
 *
 * @return byte
 * @exception java.lang.Exception This method throws an exception
if the conversion fails.
 *
 */
 public byte byteValue() throws java.lang.Exception {

byte bt;
try {

 Byte b = new Byte(value);
 bt = b.byteValue();

}
catch (java.lang.NumberFormatException nfe) {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("byteValue()");
 buf.append(" failed to convert the following value: ");
 buf.append(value);
 java.lang.NumberFormatException newExc = new

java.lang.NumberFormatException(buf.toString());
 throw newExc;
}
catch (Exception e) {

 throw e;
}
return bt;

 }
 /*
Java Support Classes 221

DatapoolValue
 *
 * charValue
 *
 * @return char
 * @exception java.lang.Exception This method throws an exception
if the conversion fails.
 *
 */
 public char charValue() throws java.lang.Exception {

char ch;
try {

 ch = value.charAt(0);
} catch (Exception e) {
 if (value == null || value.length() == 0)
 {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.”");
 buf.append("charValue()");
 buf.append(" failed to convert empty string to char.");
 java.lang.Exception newExc = new

java.lang.Exception(buf.toString());
 throw newExc;
 }
 else
 {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("charValue()");
 buf.append(" failed to convert.");
 java.lang.Exception newExc = new

java.lang.Exception(buf.toString());
 throw newExc;
 }
}
return ch;

 }
 /*
 *
 * shortValue
 *
 * @return short
 * @exception java.lang.Exception This method throws an exception
if the conversion fails.
 * @exception java.lang.NumberFormatException This method throws an
exception if conversion fails.
 *
 */
 public short shortValue() throws java.lang.Exception,
 java.lang.NumberFormatException {

short sVal = 0;
try {

 Short s = new Short(value);
 sVal = s.shortValue();

}
222 Appendix B

DatapoolValue
catch (java.lang.NumberFormatException nfe) {
 StringBuffer buf = new StringBuffer("");
 buf.append("DatapoolValue.");
 buf.append("shortValue()");
 buf.append(" failed to convert the following value: ");
 buf.append(value);
 java.lang.NumberFormatException newExc = new

java.lang.NumberFormatException(buf.toString());
 throw newExc;
}
catch (Exception e) {

 throw e;
}
return sVal;

 }
 /*
 *
 * toString
 *
 * @return String
 *
 */
 public String toString() {
 return value;
 }
}

Java Support Classes 223

TSSConstants
TSSConstants

The constants used as arguments in a number of TSS methods are defined in class
TSSConstants, which is shown below.

/*
 *
 * Java Test Script Services Constants class
 * Public constants for Test Script Services
 *
 * Interface is implemented in the TestScript class to inherit the
constants
 *
 * @author DuWayne Morris
 * @version 1.0, 20-June-2000
 *
 * Modified:
 *
 * Copyright (C) Rational Software Corporation, 2000
 * ALL RIGHTS RESERVED
 *
 */

package com.rational.test.tss;

public interface TSSConstants {
/*
 * return codes for TSS functions
 */

public static final int TSS_NOOP = 1;
public static final int TSS_OK = 0;
public static final int TSS_FAIL = -1;
public static final int TSS_EOF = -2;
public static final int TSS_NOSERVER = -3;
public static final int TSS_INVALID= -4;
public static final int TSS_SYSERROR = -5;
public static final int TSS_NOTFOUND = -6;
public static final int TSS_ABORT = -7;

/*
 * context keys
 */

public static final int CTXT_workingDir = 0;
public static final int CTXT_datapoolDir = 1;

 public static final int CTXT_timeZero = 2;
public static final int CTXT_todZero = 3;
public static final int CTXT_END = 4;

/*
 * datapool open flags
224 Appendix B

TSSConstants
 */
public static final int TSS_DP_RANDOM = 0x0001;

//#define TSS_DP_SEQUENTIAL(TSS_DP_RANDOM << 4)
public static final int TSS_DP_SEQUENTIAL = 0x0010;

//#define TSS_DP_SHUFFLE(TSS_DP_RANDOM << 8)
public static final int TSS_DP_SHUFFLE = 0x0100;

//#define TSS_DP_RANDOM_MASK(TSS_DP_RANDOM | TSS_DP_SEQUENTIAL |
TSS_DP_SHUFFLE)

public static final int TSS_DP_RANDOM_MASK = 0x0111;

//#define TSS_DP_WRAP0x0002
public static final int TSS_DP_WRAP = 0x0002;

///#define TSS_DP_NOWRAP(TSS_DP_WRAP << 4)
public static final int TSS_DP_NOWRAP = 0x0020;

//#define TSS_DP_WRAP_MASK(TSS_DP_WRAP | TSS_DP_NOWRAP)
public static final int TSS_DP_WRAP_MASK = 0x0022;

//#define TSS_DP_SHARED0x0004
public static final int TSS_DP_SHARED = 0x0004;

//#define TSS_DP_PRIVATE(TSS_DP_SHARED << 4)
public static final int TSS_DP_PRIVATE = 0x0040;

//#define TSS_DP_SHARED_MASK(TSS_DP_SHARED | TSS_DP_PRIVATE)
public static final int TSS_DP_SHARED_MASK = 0x0044;

//#define TSS_DP_PERSIST0x0008
public static final int TSS_DP_PERSIST = 0x0008;

//#define TSS_DP_NO_OPEN0x1000
public static final int TSS_DP_NO_OPEN = 0x1000;

//#define TSS_DP_OPEN0x2000
public static final int TSS_DP_OPEN = 0x2000;

/*
 * command_status flags
 */

public static final short TSS_CMD_STAT_FAIL =0x00;
public static final short TSS_CMD_STAT_PASS =0x01;
public static final short TSS_CMD_STAT_WARN =0x02;
public static final short TSS_CMD_STAT_INFO =0x04;

/*
 * log event result codes
 */

public static final short TSS_LOG_RESULT_NONE= 0;
public static final short TSS_LOG_RESULT_PASS= 1;
Java Support Classes 225

TSSConstants
public static final short TSS_LOG_RESULT_FAIL= 2;
public static final short TSS_LOG_RESULT_WARN= 3;
public static final short TSS_LOG_RESULT_STOPPED= 4;
public static final short TSS_LOG_RESULT_INFO = 5;
public static final short TSS_LOG_RESULT_COMPLETED = 6;
public static final short TSS_LOG_UNEVALUATED = 7;
public static final short TSS_LOG_RESULT_NOT_RUN = 8;

/*
 * timer flags (boolean)
 */

public static final int TSS_TIMER_KEEP = 0x00;
public static final int TSS_TIMER_REMOVE =0x01;

// EvarOp

public static final int EVOP_eval = 0;
public static final int EVOP_pop = 1;

 public static final int EVOP_push = 2;
 public static final int EVOP_reset = 3;

public static final int EVOP_restore = 4;
public static final int EVOP_save = 5;
public static final int EVOP_set = 6;
public static final int EVOP_END = 7;

// EvarKey

 public static final int EVAR_Think_avg =0;
public static final int EVAR_Think_sd=1;
public static final int EVAR_Think_dist =2;
public static final int EVAR_Think_def =3;
public static final int EVAR_Typing_dly =4;
public static final int EVAR_Line =5;
public static final int EVAR_Parity =6;
public static final int EVAR_Baud =7;
public static final int EVAR_Charsize =8;
public static final int EVAR_Stopbits =9;
public static final int EVAR_Timeout_val =10;
public static final int EVAR_Timeout_act =11;
public static final int EVAR_Escape_seq =12;
public static final int EVAR_Logout_seq =13;
public static final int EVAR_Log_level =14;
public static final int EVAR_Record_level =15;
public static final int EVAR_Key_map =16;
public static final int EVAR_Flow_control =17;
public static final int EVAR_Mystack =18;
public static final int EVAR_Modem_control =19;
public static final int EVAR_Mysstack =20;
public static final int EVAR_Mybstack =21;
public static final int EVAR_Emulation =22;
public static final int EVAR_Screen_mask =23;
public static final int EVAR_Screen_match =24;
226 Appendix B

TSSConstants
public static final int EVAR_Request_match =25;
public static final int EVAR_Think_max =26;
public static final int EVAR_Image_info =27;
public static final int EVAR_Image_path =28;
public static final int EVAR_Check_unread =29;
public static final int EVAR_Initial_dly_max =30;
public static final int EVAR_Think_dly_scale =31;
public static final int EVAR_Typing_dly_scale = 32;
public static final int EVAR_Delay_dly_scale =33;
public static final int EVAR_Timeout_scale =34;
public static final int EVAR_Suspend_check =35;
public static final int EVAR_Server_connection =36;
public static final int EVAR_CS_blocksize =37;
public static final int EVAR_Column_headers =38;
public static final int EVAR_Table_boundaries =39;
public static final int EVAR_Sqlexec_control =40;
public static final int EVAR_Max_nrecv_saved =41;
public static final int EVAR_Sqlexec_control_sybase = 42;
public static final int EVAR_Sqlexec_control_oracle = 43;
public static final int EVAR_Audit =44;
public static final int EVAR_Geom_polyfill =45;
public static final int EVAR_Think_cpu_threshold = 46;
public static final int EVAR_Think_cpu_dly_scale = 47;
public static final int EVAR_Sqlexec_control_sqlserver = 48;
public static final int EVAR_Connect_retries =49;

 public static final int EVAR_Connect_retry_interval = 50;
public static final int EVAR_Sqlnrecv_long =51;
public static final int EVAR_Statement_id =52;
public static final int EVAR_Http_control =53;
public static final int EVAR_Iiop_bind_modi =54;
public static final int EVAR_Iiop_principal =55;
public static final int EVAR_Line_speed =56;
public static final int EVAR_Cursor_id =57;
public static final int EVAR_Iiop_control =59;
public static final int EVAR_END =60;

// IVKey

public static final int IV_fcs_ts =0;
public static final int IV_lcs_ts =1;
public static final int IV_fcr_ts =2;
public static final int IV_lcr_ts =3;
public static final int IV_lineno =4;
public static final int IV_cmdcnt =5;
public static final int IV_uid =6;
public static final int IV_ncxmit =7;
public static final int IV_ncrecv =8;
public static final int IV_ncnull =9;
public static final int IV_nusers =10;
public static final int IV_nkxmit =11;
public static final int IV_nrows =12;
public static final int IV_ncols =13;
public static final int IV_row =14;
public static final int IV_col =15;
Java Support Classes 227

TSSConstants
public static final int IV_fs_ts =16;
public static final int IV_ls_ts =17;
public static final int IV_fr_ts =18;
public static final int IV_lr_ts =19;
public static final int IV_nxmit =20;
public static final int IV_nrecv =21;
public static final int IV_button_no =22;
public static final int IV_fuxe_ts =23;
public static final int IV_luxe_ts =24;
public static final int IV_uxe_cnt =25;
public static final int IV_ig_fs_ts =26;
public static final int IV_ig_ls_ts =27;
public static final int IV_ig_eot_ts =28;
public static final int IV_prev_ig_fs_ts =29;
public static final int IV_prev_ig_ls_ts =30;
public static final int IV_npixels_act =31;
public static final int IV_npixels_exp =32;
public static final int IV_npixels_diff =33;
public static final int IV_xwin_diff_level = 34;
public static final int IV_screen =35;
public static final int IV_error =36;
public static final int IV_total_rows =37;
public static final int IV_statement_id =38;
public static final int IV_error_logs =39;
public static final int IV_cursor_id =40;
public static final int IV_fc_ts =41;
public static final int IV_lc_ts =42;
public static final int IV_total_nrecv =43;
public static final int IV_error_type =44;
public static final int IV_tux_tpurcode =45;
public static final int IV_command =46;
public static final int IV_response =47;
public static final int IV_source_file =48;
public static final int IV_task_file =49;
public static final int IV_cmd_id =50;
public static final int IV_mcommand =51;
public static final int IV_alltext =52;
public static final int IV_error_text =53;
public static final int IV_column_headers =54;
public static final int IV_total_response =55;
public static final int IV_script =56;
public static final int IV_version =57;
public static final int IV_user_group =58;
public static final int IV_host =59;
public static final int IV_refURI =60;
public static final int IV_END =61;

/*
 * shvaradj
 */

public static final int SHVADJ_none = 0;
public static final int SHVADJ_pre_inc = ‘P’;
public static final int SHVADJ_post_inc = ‘p’;
228 Appendix B

TSSConstants
public static final int SHVADJ_pre_dec = ‘M’;
public static final int SHVADJ_post_dec = ‘m’;

/*
 * shvarops
 */

public static final int SHVOP_assign = ‘=’;
public static final int SHVOP_add = ‘+’;
public static final int SHVOP_subtract = ‘-’;
public static final int SHVOP_multiply = ‘*’;
public static final int SHVOP_divide = ‘/’;
public static final int SHVOP_modulo = ‘%’;
public static final int SHVOP_and = ‘&’;
public static final int SHVOP_or = ‘|’;
public static final int SHVOP_xor = ‘^’;
public static final int SHVOP_shiftleft = ‘<‘;
public static final int SHVOP_shiftright = ‘>’;

// RunState declarations
public static final int MST_UNDEF =0x0000; /* user’s
micro_state is undefined */
public static final int MST_INIT = 0x0001; /* ... doing
start-up initialization */
public static final int MST_GETTASK = 0x0002; /* ... waiting
for task assignment */
public static final int MST_ITDLY = 0x0003; /* ...
inter-task delay */
public static final int MST_INITTASK = 0x0004; /* ...
initializing task */
public static final int MST_USERCODE = 0x0005; /* ... SQAVu
user code */
public static final int MST_THINK = 0x0006; /* ... thinking
*/
public static final int MST_TYPE = 0x0007; /* ... typing
*/
public static final int MST_WAITRESP = 0x0008; /* ... waiting
for response */
public static final int MST_DSPLYRESP = 0x0009; /* ...
displaying response */
public static final int MST_PMATCH = 0x000A; /* ... matching
response (precv) */
public static final int MST_DELAY = 0x000B; /* ... user
requested delay() */
public static final int MST_SHVBLCK = 0x000C; /* ... blocked
from shv access */
public static final int MST_SHVWAIT = 0x000D; /* ... user
requested shv wait */
public static final int MST_SUSPENDED = 0x000E; /* ...
suspended */
public static final int MST_CLEANUP = 0x000F; /* ... cleaning
up */
public static final int MST_EXITED = 0x0010; /* ... exited
Java Support Classes 229

TSSConstants
*/
public static final int MST_XCLNTCONN = 0x0011; /* ... waiting
on X client connection */
public static final int MST_WATCH = 0x0012; /* ...
interactive -W watch/rerecord */
public static final int MST_SHVREAD = 0x0013; /* ... V_VP:
reading shared variable */
public static final int MST_XWINDUMP = 0x0014; /* ...
xwindow_diff dumping window */
public static final int MST_XWINCMP = 0x0015; /* ...
xwindow_diff comparing windows */
public static final int MST_BUTTON = 0x0016; /* ... X button
action */
public static final int MST_MOTION = 0x0017; /* ... X motion
*/
public static final int MST_XQUERY = 0x0018; /* ... X query
function */
public static final int MST_XSYNC = 0x0019; /* ... X sync
state during X query */
public static final int MST_XMOVEWIN = 0x001A; /* ... X move
window */
public static final int MST_XCLNTDISC = 0x001B; /* ... waiting
on X client disconnect */
public static final int MST_EXTERN_C = 0x001C; /* ...
executing external C code */
public static final int MST_SQLEXEC = 0x001D; /* ...
executing SQL statements */
public static final int MST_SATEXEC = 0x001E; /* ...
executing satellite script */
public static final int MST_CPUDLY = 0x001F; /* ... cpu
delay */
public static final int MST_FIND = 0x0020; /* ...
find_text / find_point */
public static final int MST_TEST = 0x0021; /* ...
testcase, emulate */
public static final int MST_SEND = 0x0022; /* ...
http/socket send */
public static final int MST_TUXEDO = 0x0023; /* ... Tuxedo
execution */
public static final int MST_SQABASIC_CODE = 0x0024; /* ... running
SQABasic code */
public static final int MST_EXITSQABASIC = 0x0025; /* ... exited
SQABasic code */
public static final int MST_WAITOBJ = 0x0026; /* ...
SQABasic: waiting for object */
public static final int MST_STARTAPP = 0x0027; /* ...
SQABasic: starting app */
public static final int MST_BIND = 0x0028; /* ...
iiop_bind in progress */
public static final int MST_IIOP_INVOKE = 0x0029; /* ...
iiop_invoke in progress */
public static final int MST_SEND_DELAY =0x002A; /* ...
line_speed delay in send */
public static final int MST_RECV_DELAY =0x002B; /* ...
230 Appendix B

TSSConstants
line_speed delay in recv */
public static final int MST_TRN_PACING =0x002C; /* ...
transactor pacing delay */
public static final int MST_INCL = 0x00FF; /* mask
including above basic states */
public static final int N_MST_INCL = 0x2D; /* number of
above basic states */

// same as MST_XCLNTCONN and MST_XCLNTDISC
public static final int MST_SQLCONN = 0x0011; /* ...waiting
on SQL client connection*/
public static final int MST_SQLDISC = 0x001B; /* ...waiting
on SQL client disconnect*/

// same as MST_XCLNTCONN and MST_XCLNTDISC
public static final int MST_HTTPCONN = 0x0011; /* ...waiting
on http connection */
public static final int MST_HTTPDISC = 0x001B; /* ...waiting
on http disconnect */

// same as MST_XCLNTCONN and
public static final int MST_SOCKCONN = 0x0011; /* ...waiting
on socket connection */
public static final int MST_SOCKDISC = 0x001B; /* ...waiting
on socket disconnect */

}

Java Support Classes 231

TSSInteger
TSSInteger

The TSSInteger class defines the Integer argument type used by a number of
methods.

/*
 *
 * Java Test Script Services Integer class
 * Public wrapper class for passing mutable integers in TSS calls
 *
 * @author DuWayne Morris
 * @version 1.0, 19-Oct-2000
 *
 * Modified:
 *
 * Copyright (C) Rational Software Corporation, 2000
 * ALL RIGHTS RESERVED
 *
 */

package com.rational.test.tss;

public class TSSInteger
{

private int internalValue;

public TSSInteger(int iValue){
internalValue = iValue;

}
public void setValue(int iValue)
{

internalValue = iValue;
}

public int getValue()
{

return internalValue;
}

}

232 Appendix B

TSSException
TSSException

On error, most methods throw TSSException. You call
TSSException.getErrorCode() to get the error code. This class is shown
below.

/*
 *
 * Java Test Script Services Exception class
 * Public methods correspond to published external TSS software C
interfaces.
 *
 * @author DuWayne Morris
 * @version 1.0, 29-June-2000
 *
 * Modified:
 *
 * Copyright (C) Rational Software Corporation, 2000
 * ALL RIGHTS RESERVED
 *
 */
package com.rational.test.tss;

import com.rational.test.tss.*;

public class TSSException extends java.lang.Exception
{

private int iErrRet;
private int iErrorCode;

private TSSException(int retCode, int errCode, String strError)
{

super(strError);
iErrRet = retCode;
iErrorCode = errCode;

}
// this is the “official” error
// from calling errorDetail
public int getErrorCode()
{

return iErrorCode;
}

// this is the return value from the original native
// method call
public int getReturnCode()
{

return iErrRet;
}

public static TSSException exception(int ret){
Java Support Classes 233

TSSException
StringBuffer strBuf = new StringBuffer(““);

int i = TSSUtility.errorDetail(strBuf);

if (i != 0)
{

TSSException e = new TSSException(ret, i, strBuf.toString());

return e;
}
return null;

}
public static TSSException exception(int ret, String str){

TSSException e = new TSSException(ret, ret, str);

return e;
}

}

234 Appendix B

CCTutil Class Source Code
The utility methods in the following sample code are called by several of the examples
in Implementing a New Verification Point on page 161. The code for the CTutil class is
included in this appendix.

The CTutil class is in rational_ct.jar.

public class CTutil
{

public static boolean csvGetNextElement(StringBuffer bufCSV,
StringBuffer bufElement)

{
String sCSV = bufCSV.toString();
int iCommaIndex = sCSV.indexOf(',');

if (iCommaIndex == -1)
{

bufElement.insert(0, sCSV);
bufElement.setLength(sCSV.length());
bufCSV.setLength(0);
return false;

}
else
{

bufElement.insert(0, sCSV.substring(0, iCommaIndex));
bufElement.setLength(iCommaIndex);
bufCSV.insert(0, sCSV.substring(iCommaIndex+1));
bufCSV.setLength(sCSV.length() - iCommaIndex - 1);
return true;

}
}

// This function reads an INI file and returns a hashtable. The
// hashtable maps strings (section names from the INI file) to
// hashtables of those sections. These section hastables map
// strings (keys from the section) to strings (values from those
// keys.) You can pass the hashtable constructed by this function
// to readPrivateProfileString(), which returns values from
// the .INI file.

public static Hashtable mapINIfile(InputStream in) throws IOException
{

BufferedReader brIn = new BufferedReader (
new InputStreamReader (in));

String sLine = "";
235

String sKey = "";
String sValue = "";
String sSection = "";

int iEquals = 0;

Hashtable tblINI = new Hashtable();
Hashtable tblSection = new Hashtable();

// Read the file one line at a time.
for (sLine = brIn.readLine(); sLine != null &&

sLine.trim() != null;
 sLine = brIn.readLine())

{
sLine = sLine.trim();
if (sLine.length() == 0)
{

continue;
}
else if (sLine.charAt(0) == '[')
{

// This is a new category. If this isn't the first one,
// write the previous one into the hashtable.
if (!tblSection.isEmpty())
{

tblINI.put(sSection, tblSection);
tblSection = new Hashtable();

}

// Store the new Section name.
sSection = sLine.substring(1, sLine.length()-1);

}
else
{

// Find the separator between the key and the value.
iEquals = sLine.indexOf('=');

if (iEquals < 0)
{

// The entry in the INI file doesn't match INI spec.
// ignore it and continue reading the file.
continue;

}
else if (iEquals == 0)
{

// There is no Key name. Invalid INI format.
// ignore and continue.
continue;

}
else if (iEquals == sLine.length()-1)
{

// Key with no Value. Set the Value to null.
sKey = sLine.substring(0, iEquals);
sValue = "";
236 Appendix C

tblSection.put(sKey, sValue);
}
else
{

// Parse the line.
sKey = sLine.substring(0, iEquals);
sValue = sLine.substring(iEquals+1);

// Add the entry to the table for this section.
tblSection.put(sKey, sValue);

}
}

}

if (!tblSection.isEmpty())
{

tblINI.put(sSection, tblSection);
}

if (!tblINI.isEmpty())
return tblINI;

else
return null;

}

public static String readPrivateProfileString(Hashtable tblMap,
String sSection, String sKey)

{
String sValue = "";
Hashtable tblSection = (Hashtable) tblMap.get(sSection);

if (tblSection != null)
{

sValue = (String) tblSection.get(sKey);
if (sValue == null)

sValue = "";
}
return sValue;

}
}

CTutil Class Source Code 237

238 Appendix C

Index
A
actual data

about 122
building objects for 153, 203
comparing 145, 200

advanced
list of class methods 97
Test Script Services 3

IV_alltext internal variable 53

B
baseline. See expected data
bIsDefined 183, 191, 197
bIsValid 183
block on shared variable 86
booleanValue 31
byteValue 31

C
calculate think-time 101
captureData 154, 176, 204
catching exceptions 15
charValue 31
class files 8
classpath 9, 180
close 19, 107

datapool 19
IV_cmd_id internal variable 53
IV_cmdcnt internal variable 53
code factory methods

about 162
code generation 164, 165
how used 165

code generators 163
codeFactory_getConstructorInvocation 138,

139, 165, 187, 188

codeFactory_getExternalizedInputDecl 165, 188
codeFactory_getNumExternalizedInputs 165,

188
codeFactory_getPrefix 165, 189
codeFactory_setPrefix 165, 190
IV_column_headers internal variable 53
columnCount 20
columnName 20
COM testing 2
command IDs

internal variable 53
IV_command internal variable 53
command runtime status, report 76
command timer

start 40
stop 38

command, log 99
commandEnd 39
commandStart 40
compare 146, 174, 200
COMPARE_CASEINSENSITIVE 183
COMPARE_CASESENSITIVE 183
comparing data 145, 174, 200
compiled scripts

files 8
storing 8

compiling test scripts 8
component tests 9
components, verifying 119
computers

internal variable containing names of 53
com.rational.test.vp package 119
configure

shared variable 213
synchronization point 210

configure a datapool 207
configuring the environment 9
connect 91
connecting to 138

TSS server 91
239

context 13, 92
context information, pass to TSS server 92
conversion methods, for datapool values 31
creating test scripts 5
IV_cursor_id internal variable 53

D
data

capturing 154, 176, 204
comparing 145, 174, 200
serializing 152, 169, 202
tester validation 205
verifying at runtime 155, 179, 205
See also metadata

data file extensions 173
database verification points

about 131
building data objects 153
comparing data 145
examples 133
managing data tables 157
metadata 134
verifying captured data at runtime 155

DatabaseVP class 134
DatabaseVPComparator class 145
DatabaseVPData class 147
DatabaseVPDataProvider class 153
DatabaseVPDataRenderer class 155
datapool

configure 207
datapools

access order during playback 23
close 19
get column name 20
get column value 30
get number of columns 20
get number of rows 26
list of class methods 18
list of conversion methods 31
lookup tables 104
open 22
overview 18

reset access 25, 29
rewind 25
search for column/value pair 27
set row access 21
Test Script Services 2

DatapoolValue 218
datastore 7, 128
DataTable interface 157
DCOM testing 2
debugging test scripts 9, 11
defineVPcallback 128, 163, 165, 190
delay 61
delay script execution 61
disconnect from TSS server 93
display 72
displayAndValidateData 156, 179, 205
dynamic verification points 194

about 123
example 133
setting up in scripts 129

E
editing test scripts 7
EJB testing 2, 131
emulation commands

internal variable containing 53
number executed 53

entry point
main 11
testMain 10

environment control commands 50
eval 50
pop 50
push 50
reset 50
restore 50
save 50
set 50

environment variables
current 50
default 50
list 43
240

operations, defined 50
reporting

Max_nrecv_saved 53
saved 50
set 42
setting values of 50

environmentOpGetIntValue 42
environmentOpGetStringValue 42
environmentOpSetIntValue 42
error file 14
error messages

internal variable containing 53
IV_error internal variable 53
IV_error_text internal variable 53
IV_error_type internal variable 54
errorDetail 61
errors

get details 61
print message 68

eval environment control command 50
EVAR_Delay_dly_scale 43, 44, 45, 47, 48, 49
EVAR_Log_level 45
EVAR_LogData_control 44
EVAR_LogEvent_control 44
EVAR_Record_level 46
EVAR_Suspend_check 47
EVAR_Think_avg 47
EVAR_Think_cpu_dly_scale 47
EVAR_Think_cpu_threshold 47
EVAR_Think_def 48
EVAR_Think_dist 49
EVAR_Think_dly_scale 49
EVAR_Think_max 49
EVAR_Think_sd 49
event 33
event log 33
exceptions

catching 15
logging 115
logging for stubs 116

executing scripts. See running
executing verification points 128

expected data 123, 145, 200
about 121
building objects for 153, 203
verifying at runtime 155, 205

explicit metadata 127

F
Fail result 15
IV_fc_ts internal variable 54
fetch 21
find 108
floatValue 31
folder. See test script source folder
IV_fr_ts internal variable 54
framework 124, 181
IV_fs_ts internal variable 54

G
generating test scripts 5
get

elapsed runtime 51
error details 61
exponentially distributed random

number 65
internal variable value 52
name of datapool column 20
number of datapool columns 20
number of datapool rows 26
random number 66
run state 77
script option 63
script source file position 73
test case configuration 64
test case name 64
uniformly distributed random number 70
value of datapool column 30
value of shared variable 84

getBigDecimal 31
getColumns 148, 158
getCon 138, 139
getData 149, 158
getErrorCode 233
241

getExpectedException 109
getFileExtension 149, 173, 201
getIsDefined 191
getJDBCdriver 139
getJDBCpassword 139
getJDBCurl 139
getJDBCuser 140
getNumCols 150, 158
getNumRows 150, 159
getOptions 192
getReturnValue 109
getScriptOption 63
getSQL 140
getStmt 140
getTestCaseConfiguration 64
getTestCaseName 64
getTime 51
getValue 110, 232
getVPname 192

H
handling errors 15
IV_host internal variable 53
http_header_recv emulation command

bytes received 55
http_nrecv emulation command

bytes processed by 55
bytes received 55

http_recv emulation command
bytes processed by 55
bytes received 55

http_request emulation command
bytes sent to server 55

I
implementer 120
implementing

Verification Point class 162
verification points 161, 181
VerificationPointData interface 169
VerificationPointDataComparator

interface 174

VerificationPointDataProvider interface 176
VerificationPointDataRenderer interface 179

implicit metadata 128
integer class 232
integer-valued internal variables 53
integrating new verification points with

RQA 180
internal variables

_tux_tpurcode 55
get value of 52
integer-valued 53
IV_alltext 53
IV_cmd_id 53
IV_cmdcnt 53
IV_column_headers 53
IV_command 53
IV_cursor_id 53
IV_error 53
IV_error_text 53
IV_error_type 54
IV_fc_ts 54
IV_fr_ts 54
IV_fs_ts 54
IV_host 53
IV_lc_ts 54
IV_lineno 54
IV_lr_ts 54
IV_ls_ts 54
IV_mcommand 53
IV_nrecv 55
IV_nusers 55
IV_nxmit 55
IV_response 53
IV_script 53
IV_source_file 53
IV_statement_id 55
IV_total_nrecv 55
IV_total_rows 55
IV_uid 55
IV_user_group 53
IV_version 53
list 52
set value of 98

internalvarGetInt 52
internalvarGetString 52
242

internalvarSetInt 98
internalvarSetString 98
intValue 31

J
jar files 9
java files 8
Java scripts. See test scripts
JDBC data source 138

testing 131

L
IV_lc_ts internal variable 54
length of test script names 8
IV_lineno internal variable 54
LoadTest

internal variable containing version 53
log

about 13
command 99
event 33
file location 13
message 34
test case result 36
writing to 13

logCommand 99
logging

exceptions 115, 116
list of class methods 32
list of extensions 115
Test Script Services 2

LogViewer 112
longValue 31
lookup tables 104
LookUpTable class 104
IV_lr_ts internal variable 54
IV_ls_ts internal variable 54

M
main entry point 11
manual verification points 129, 195

about 124
Max_nrecv_saved environment variable 53
IV_mcommand internal variable 53
measurement

list of class methods 38
Test Script Services 2

message 34
log 34
print 69

messages
logging for stubs 117

metadata
about 182
capturing 163, 190
class where defined 162
database verification points 134
determining if defined 191
explicit and implicit 127
marking as defined 197
parameterizing 163
retrieving and assigning 162
serializing 144, 168, 199
specifying 127
supplying at runtime 137, 163, 190

monitor
list of class methods 72
Test Script Services 3

monitor display message, set 72

N
names

compiled scripts 8
test scripts 8
verification points 192, 198

negExp 65
IV_nrecv internal variable 55
IV_nusers internal variable 55
IV_nxmit internal variable 55
243

O
objects, verifying 119
open 22, 111

datapool 22
test scripts 7

OPTION_EXPECT_FAILURE 183
OPTION_TRIM 135
OPTION_USER_ACKNOWLEDGE_BASELINE

129, 184, 193
options

constants 135, 183
retrieving for verification points 135, 192
reversing a set option 135
setting for verification points 135, 198

output file 14

P
packages 8

adding scripts to suites 11
Pass/Fail result 15
performance tests 9
performTest 128, 193, 194, 195
playing back scripts. See running
pop environment control command 50
positionGet 73
positionSet 74
print

error message 68
message 69

proxy TSS server
start 94
stop 95

proxy TSS server process
pass context information to 92

push environment control command 50

Q
QualityArchitect. See Rational QualityArchitect

R
rand 66
random numbers

get 66
get (exponentially distributed) 65
get (uniform) 70
seed 67

Rational QualityArchitect
code generators 163
Session Recorder 5
Test Script Services and 2

Rational Rose 5
Rational TestManager

running scripts 8
shared memory 14
suites 10
Test Script Services and 1

readFile 141, 150, 196, 202
recording test scripts 5
registering the test script source folder 7
regression tests 123, 193
replacing 123
report, command runtime status 76
reportCommandStatus 76
reporting environment variables

Max_nrecv_saved 53
reset

datapool access 25, 29
reset environment control command 50
IV_response internal variable 53
restore environment control command 50
rewind 25

datapool 25
Rose. See Rational Rose
rowCount 26
rows

number processed 55
RQA. See Rational QualityArchitect
run states

get 77
list of 78
set 77
244

running
test scripts 8, 10
test scripts in a package 11
test scripts in TestManager 10
test scripts outside TestManager 11
verification points 128

runStateGet 77
runStateSet 78

S
save environment control command 50
script option, get 63
IV_script internal variable 53
script writer 120
scripts

internal variable containing 53
scripts. See test scripts
search 27

datapool 27
seed

random number generator 67
SeedRand 67
seek 29
serialization

data 169, 202
metadata 144, 152, 168, 199

serverStart 94
serverStop 93, 95
session

list of class methods 90
Test Script Services 3

Session Recorder 5, 163
set

command timer start point 40
command timer stop point 38
datapool row access 21
environment variable 42
monitor display message 72
run state 77
script execution delay 61
script source file position 74
synchronization point 88
think-time delay 56

timer end point 58
timer start point 57
value of internal variable 98
value of shared variable 83

set environment control command 50
set... methods 127
setColumns 151, 159
setCon 141
setData 151, 159
setDatapoolAccessFlags 207
setDatapoolName 207
setIsDefined 197
setJDBCdriver 142
setJDBCpassword 142
setJDBCurl 142
setJDBCuser 143
setOptions 129, 179, 193, 198
setSharedVarNames 213
setSQL 143
setStmt 143
setSyncPointNames 210
setting up in scripts 129
setVPname 198
sFailureDescription 184
shared memory 14
shared variable

configure 213
shared variables

assignment operations 83
block on 86
get value of 84
set value of 83

sharedVarAssign 83
sharedVarEval 84
sharedVarWait 86
shortValue 31
shutdown 96
sock_nrecv emulation command

bytes processed by 55
sock_recv emulation command

bytes processed by 55
sock_send emulation command

bytes sent to server 55
source folder. See test script source folder
IV_source_file internal variable 53
245

sqlalloc_statement emulation function
_statement_id returned by 55

sqlexec emulation command
number of characters sent to server 55
sets rows processed to 0 55

sqlnrecv emulation command
increments total rows processed 55
rows processed by 55

sqlprepare emulation command
_statement_id returned by 55
number of characters sent to server 55

stand-alone TSS server process
pass context information to 92
start 94
stop 95

standard input 14
standard output 14
start

command timer 40
timer 57
TSS server process 94

IV_statement_id internal variable 55
static verification points 193

about 123
example 132
setting up in scripts 127

stdErrPrint 68
stdOutPrint 69
stop

command timer 38
timer 58
TSS server process 95

storing
compiled scripts 8
test scripts 7

in packages 8
string-valued internal variables 52
stubs

logging exceptions for 116
logging messages for 117
lookup tables 104

suites 10
adding test scripts 10

synchronization
list of class methods 82
Test Script Services 3

synchronization point

set 88
configure 210

syncPoint 88

T
test case

get configuration 64
get name 64
log result 36

test designer 120
test log. See log
Test Script Services

about 1
extensions 103
summary of services 2

test script source folder
auto-generated scripts 7
compiled 8
Java packages 8, 11
location 7
manually coded scripts 7
registering 7
running scripts 10

test scripts
about 5
adding to suites 10
block on shared variable 86
compiling 8
creating 5
debugging 9, 11
editing 7
generating 5
get line position 73
get shared variable value 84
in packages 11
location 7, 8
maximum name length 8
names 8
246

opening 7
recording 5
requirements 6
running 8, 10
running in TestManager 10
running outside TestManager 11
set line position 74
set shared variable value 83
set synchronization point 88
source folder 7
storing 7
storing in packages 8
storing when compiled 8

TestCaseResult 36
tester 120

supplying metadata 137, 163, 190
verifying captured data 155, 179, 205

testing objects 119
TestInterface 6
TestLog class 112
testMain entry point 10
TestManager. See Rational TestManager
TestScript base class 6
think 56
think time

calculate 101
set 56

thinkTime 101
timer

calculate think-time 101
get elapsed runtime 51
set think time 56
start 40, 57
stop 38, 58

timerStart 57, 58
timerStop 58
timestamps 54
toString 31
IV_total_rows internal variable 55
IV_total_nrecv internal variable 55

TSS server process
connect to 91
disconnect from 93
pass context information to 92
start 94
stop 95

TSSAdvanced methods 97
TSSConstants, 224
TSSDatapool methods 18
TSSDatapool.value, conversion methods 31
TSSException 233
TSSInteger 232
TSSLog

extension of 112
TSSLog methods 32
TSSMeasure methods 38
TSSMonitor methods 72
TSSNamedValue 217
TSSSession methods 90
TSSSync methods 82
TSSUtility methods 60
tux_tpcall emulation command

sets TUXEDO user return code 55
tux_tpgetrply emulation command

sets TUXEDO user return code 55
tux_tprecv emulation command

sets TUXEDO user return code 55
tux_tpsend emulation command

sets TUXEDO user return code 55
_tux_tpurcode internal variable 55

U
IV_uid internal variable 55
uniform 70
Universal Naming Convention path 7
update, shared variable 83
IV_user group internal variable 53
utility

list of class methods 60
247

V
validating data 205
value 30
Verification Point class

implementing 162
verification points

about 119
actual data 122, 145, 200
baseline 123
building data objects 203
capturing metadata 190
classes, overview 125
comparing data 200
determining if defined 191
dynamic 123, 194
examples 133
executing 128
expected data 121, 145, 200
framework 124, 181
implementer 120
implementing 161, 181
integrating with Rational

QualityArchitect 180
manual 124, 195
marking as defined 197
metadata 127, 182
name 192, 198
performing 128
performing dynamic 194
performing manual 195
performing static 193
retrieving options 135, 192
running 128

setting options 135, 198
setting up in scripts 127
static 123, 193
Test Script Services 3
types 122
verifying captured data at runtime 205

VERIFICATION_ERROR 184
VERIFICATION_FAILED 184
VERIFICATION_NO_RESULT 184
VERIFICATION_SUCCEEDED 184
VerificationPoint class 182
VerificationPointComparator interface 199
VerificationPointData interface 201

implementing 169
VerificationPointDataComparator interface

implementing 174
VerificationPointDataProvider interface 203

implementing 176
VerificationPointDataRenderer interface 205

implementing 179
IV_version internal variable 53
virtual testers

ID of 55
virtual users

number of, in session 55

W
writeException 115
writeFile 144, 152, 199, 202
writeStubException 116
writeStubMessage 117
248

	Rational Test Script Services for Java
	COPYRIGHT
	Contents
	Preface
	About This Manual
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction
	About Java Test Script Services
	Using Test Script Services With Rational TestManager
	Using Test Script Services With Rational QualityArchitect
	Summary of Services

	Working with Test Scripts
	About Java Test Scripts
	Creating Test Scripts
	Entry Points
	Registering Test Script Source Folders

	Editing and Storing Test Scripts
	Storing Scripts in Java Packages
	Test Script Names

	Compiling Test Scripts
	Running Test Scripts
	Running Test Scripts in a TestManager Suite
	Adding a Source Folder for Java Scripts
	Adding a Script Contained in a Java Package
	Running Test Scripts Outside TestManager

	Returning Information from Test Scripts
	Test Log
	Error File and Output File
	TestManager Shared Memory

	Catching Exceptions

	Test Script Services Reference
	About Test Script Services
	Datapool Class
	Summary
	TSSDatapool.close()
	TSSDatapool.columnCount()
	TSSDatapool.columnName()
	TSSDatapool.fetch()
	TSSDatapool.open()
	TSSDatapool.rewind()
	TSSDatapool.rowCount()
	TSSDatapool.search()
	TSSDatapool.seek()
	TSSDatapool.value()

	Logging Class
	Summary
	TSSLog.event()
	TSSLog.message()
	TSSLog.testCaseResult()

	Measurement Class
	Summary
	TSSMeasure.commandEnd()
	TSSMeasure.commandStart()
	TSSMeasure.environmentOp()
	TSSMeasure.getTime()
	TSSMeasure.internalVarGet()
	TSSMeasure.think()
	TSSMeasure.timerStart()
	TSSMeasure.timerStop()

	Utility Class
	Summary
	TSSUtility.delay()
	TSSUtility.errorDetail()
	TSSUtility.getScriptOption()
	TSSUtility.getTestCaseConfigurationName()
	TSSUtility.getTestCaseName()
	TSSUtility.negExp()
	TSSUtility.rand()
	TSSUtility.seedRand()
	TSSUtility.stdErrPrint()
	TSSUtility.stdOutPrint()
	TSSUtility.uniform()

	Monitor Class
	Summary
	TSSMonitor.display()
	TSSMonitor.positionGet()
	TSSMonitor.positionSet()
	TSSMonitor.reportCommandStatus()
	TSSMonitor.runStateGet()
	TSSMonitor.runStateSet()

	Synchronization Class
	Summary
	TSSSync.sharedVarAssign()
	TSSSync.sharedVarEval()
	TSSSync.sharedVarWait()
	TSSSync.syncPoint()

	Session Class
	Summary
	TSSSession.connect()
	TSSSession.context()
	TSSSession.disconnect()
	TSSSession.serverStart()
	TSSSession.serverStop()
	TSSSession.shutdown()

	Advanced Class
	Summary
	TSSAdvanced.internalVarSet()
	TSSAdvanced.logCommand()
	TSSAdvanced.thinkTime()

	Extended Test Script Services Reference
	About the Extensions
	Requirements for Using the Test Script Services Extensions

	LookUpTable Class
	Summary
	Constructor
	LookUpTable.close()
	LookUpTable.find()
	LookUpTable.getExpectedException()
	LookUpTable.getReturnValue()
	LookUpTable.getValue()
	LookUpTable.open()

	TestLog Class
	Summary
	Constructor
	TestLog.writeException()
	TestLog.writeStubException()
	TestLog.writeStubMessage()

	Verification Services
	Introduction to Verification Points
	About Verification Points
	Roles in Working with Verification Points

	How Data Is Verified
	Types of Verification Points
	Static Verification Points
	Dynamic Verification Points
	Manual Verification Points

	Verification Point Framework
	Verification Point Classes

	Setting Up Verification Points in Test Scripts
	Setting Up a Static Verification Point
	Step 1. Specify the Metadata for the Verification Point
	Step 2. Execute the Verification Point

	Setting Up a Dynamic Verification Point
	Setting Up a Manual Verification Point

	Database Verification Point Reference
	About the Database Verification Point
	Requirements for Using the Database Verification Point
	Components of the Database Verification Point
	Examples
	Example of a Static Database Verification Point
	Example of a Dynamic Database Verification Point

	DatabaseVP Class
	Summary
	Constructor
	DatabaseVP.getCon()
	DatabaseVP.getJDBCdriver()
	DatabaseVP.getJDBCpassword()
	DatabaseVP.getJDBCurl()
	DatabaseVP.getJDBCuser()
	DatabaseVP.getSQL()
	DatabaseVP.getStmt()
	DatabaseVP.readFile()
	DatabaseVP.setCon()
	DatabaseVP.setJDBCdriver()
	DatabaseVP.setJDBCpassword()
	DatabaseVP.setJDBCurl()
	DatabaseVP.setJDBCuser()
	DatabaseVP.setSQL()
	DatabaseVP.setStmt()
	DatabaseVP.writeFile()

	DatabaseVPComparator Class
	Summary
	Constructor
	DatabaseVPComparator.compare()

	DatabaseVPData Class
	Summary
	Constructor
	DatabaseVPData.getColumns()
	DatabaseVPData.getData()
	DatabaseVPData.getFileExtension()
	DatabaseVPData.getNumCols()
	DatabaseVPData.getNumRows()
	DatabaseVPData.readFile()
	DatabaseVPData.setColumns()
	DatabaseVPData.setData()
	DatabaseVPData.writeFile()

	DatabaseVPDataProvider Class
	Summary
	Constructor
	DatabaseVPDataProvider.captureData()

	DatabaseVPDataRenderer Class
	Summary
	Constructor
	DatabaseVPDataRenderer.displayAndValidateData()

	DataTable Interface
	Summary
	DataTable.getColumns()
	DataTable.getData()
	DataTable.getNumCols()
	DataTable.getNumRows()
	DataTable.setColumns()
	DataTable.setData()

	Implementing a New Verification Point
	Introduction to Verification Point Implementation
	Fundamentals for Implementing a Verification Point
	Implementing the Verification Point Class
	Step 1. Define and Maintain the Metadata
	Step 2. Supply a UI to Prompt for the Metadata
	Step 3. Implement the Constructors
	Step 4. Implement the Code Factory Methods to Generate Code
	Step 5. Provide Serialization Services for the Metadata

	Implementing the Verification Point Data Class
	Step 1. Encapsulate the Data Being Compared
	Step 2. Serialize the Data to a Data File
	Step 3. Provide the Extension for the Data File

	Implementing the Verification Point Data Comparator Class
	Implementing the Verification Point Data Provider Class
	Implementing the Verification Point Data Renderer Class

	Integrating a Verification Point with QualityArchitect

	Verification Point Framework Reference
	About the Verification Point Framework
	Requirements for Using the Verification Point Framework
	Components of the Verification Point Framework

	VerificationPoint Class
	Summary
	Constructor
	VerificationPoint.codeFactory_getConstructorInvocation()
	VerificationPoint.codeFactory_getExternalizedInputDecl()
	VerificationPoint.codeFactory_getNumExternalizedInputs()
	VerificationPoint.codeFactory_getPrefix()
	VerificationPoint.codeFactory_setPrefix()
	VerificationPoint.defineVPcallback()
	VerificationPoint.getIsDefined()
	VerificationPoint.getOptions()
	VerificationPoint.getVPname()
	VerificationPoint.performTest()
	VerificationPoint.performTest()
	VerificationPoint.performTest()
	VerificationPoint.readFile()
	VerificationPoint.setIsDefined()
	VerificationPoint.setOptions()
	VerificationPoint.setVPname()
	VerificationPoint.writeFile()

	VerificationPointComparator Interface
	VerificationPointComparator.compare()

	VerificationPointData Interface
	VerificationPointData.getFileExtension()
	VerificationPointData.readFile()
	VerificationPointData.writeFile()

	VerificationPointDataProvider Interface
	VerificationPointDataProvider.captureData()

	VerificationPointDataRenderer Interface
	VerificationPointDataRenderer.displayAndValidateData()

	Configuring Datapools, Synchronization Points, and Shared Variables
	About Script Configuration
	Datapool Configuration
	Synchronization Point Configuration
	Shared Variable Configuration

	Java Support Classes
	TSSNamedValue
	DatapoolValue
	TSSConstants
	TSSInteger
	TSSException

	CTutil Class Source Code
	Index

