Rational the e-development company™

Using
Rational TestFactory

VERSION 2001A.04.00

PART NUMBER 800-024555-000

support@rational.com
http:/ /www.rational.com

Rational

the e-development company™

IMPORTANT NOTICE

COPYRIGHT
Copyright ©1998-2001, Rational Software Corporation. All rights reserved.
Part Number: 800-024555-000

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL’) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO
PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, ClearCase,
ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational PerformanceArchitect,
Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational Visual Test, Requisite,
RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational Watch are trademarks

or registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only, and are trademarks or registered trademarks of their respective
companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C+ +, Visual Basic,
Windows, the Windows CE logo, the Windows logo, Windows N'T, the Windows Start logo, and XENIX are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United

States and other countries.

FLEXIm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee
shall not incorporate any GLOBEtrotter software (FLEXIm libraries and utilities) into any product or application
the primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.
Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness
for a particular purpose or arising from a course of dealing, usage, or trade practice.

>

4

Contents

Preface
Audience ix
Other Resourcesot e X
Contacting Rational Technical Publications X
Contacting Rational Technical Support b'e

Introduction

About Rational TestFactory.......... o i i i 1-1

Key TestFactory Concepts.oouiiniiii i 1-3
The Application Map 1-3
The ULLibraryt e 1-3
ULODJECtS . « o vt ettt e e e e e e e e e 1-3
Pilots and Automatic Script Generation 1-3
Script Segments. 1-4
The Best Script . ..ot 1-4
Defect SCripts . ..o oottt 1- 4
UAW SCIIPES .« . o ee e e e 1- 4
The ULSCript . ..o oottt e 1- 4
Code Coverage and Ul Coverageooviinniinao.. 1-5
TestSuiteso 1-5
The AutoPilot 1-5
The Test Datastoreottt e 1-5

Testing Software with TestFactory......... o ... 1-6
Preparing for Automated Testing. 1-7
Before You Map the AUT i 1-7
AfterYouMapthe AUT. ... 1-8
Testingthe AUT i 1- 8

Using Rational TestFactory

Preparing to Work with the Application-Under-Test in TestFactory 1-9
Enabling Java and C++ Applications. 1-9
Selecting the IDE Extensions to Load for the AUT. 1-10
Working with C+ + Applications in TestFactory and Robot 1- 11

2 The TestFactory Interface

Starting TestFactory. 2-1
Starting TestFactory from the Command Line 2-2

Using the New Project Wizard. o 2-3

Using the Project ASsiStantuuuttitinet e 2-7

The TestFactory Workspace 2-9
TestFactory Toolbars i, 2-10
The LeftPane 2-16
The RightPane.o 2-17
ProgressBars. 2-18
The Status Bar 2-18

3 Instrumenting the Application-Under-Test
About Instrumentationouiiii i 3-1
Adding the Rational Test Enablers to the AUT Before Instrumenting 3-2

Requirements for Instrumentingthe AUT, 3-2
Java Applications and Applets i 3-3
CH+ Applications oottt 3-3
Visual Basic Applications 3-4

Instrumenting C+ +, Visual Basic, and Java Object Code 3-4
Setting the Compiler Option for a Visual Basic 6 Application 3-4
Setting the Compiler Option for a C++ Application.............. 3-5
Instrumenting Object Code. o ... 3-5

Instrumenting Visual Basic Source Code. 3-7
The Coverage Dictionary. 3-10

Using the Stand-Alone Instrumentor to Instrument Visual Basic
Source Code Files. i i i 3-11

Contents

4 Developing and Working with the Application Map

About TrueMap Technology 4-2
Mapping the AUT for the First Time 4-2
Setting Up the Mapping Environment 4-3
Using the Application Mapper Wizard to Map the AUT for the
First Time 4-5
Stopping the Mapping Process. 4-9
Viewing and Evaluating the Mapping Summary Report and the Application
Map . 4-10
Viewing the Mapping Summary Report 4-10
Expanding and Navigating the Application Map 4- 11
Application Map Objects and Their Properties 4-13
Properties of Objects in the Application Map.................... 4-15
Finding Objects in the Application Map........................ 4-19
Excluding Specific Functions in the AUT from Mapping and Testing . . . 4- 22
Improving the Application Map 4-23
Using Interaction Objects to Guide the Application Mapper through
the AUT .. 4-23
Interaction Objects and Interaction Object Components 4-24
Setting Up an Interaction Object., 4-24
Setting the Properties for a UI Object Component. 4-29
Excluding an Interaction Object from Mapping. 4-36

Using Interaction Objects to Map Alternative Paths in the AUT 4- 36
Using UI Object Properties to Specify Input and Interaction Order

fOr Mapping oottt 4-41
Specifying Actions to Use for Mapping a Ul Object 4- 42
Specifying a Required String Case for Mapping. 4- 42
Controlling the Interaction Order for Ul Objects................ 4- 44
Restoring the Default Values for UI Object Properties............ 4- 46
Creating and Mapping a Region Object for an Unmapped Control 4- 47
Creating a Region Object.t 4- 48
Changing the Size or Position of a Region Object. 4- 49
Setting the Action or Input for a Region Object. 4-50
Adjusting the Hot Spot for a Region (or Other UI) Object 4-51
Deleting a Region Object. 4-51

Using Rational TestFactory

vi

Mapping Similar Windows o 4-52
Timing Events During Mapping 4- 60
Specifying a Maximum Wait-For-Idle Time for All Controls 4- 60
Timing Events for a Class or Subclass of Controls During Mapping. 4- 61
Timing Events for a Single Control During Mapping. 4- 62
Reclassifying a Generic Objectt 4- 63
Handling Error Messages and Crash Transition Objects in the
Application Map. 4- 65
Mapping New Builds 4- 66

Mapping a Changed Region of the AUT Using the Map It! Shortcut 4- 66
Mapping a Changed Region of the AUT Using the

Application Mapper Wizard 4- 67

Deleting UI Objects Mapped for Controls that Have Been Removed
fromthe AUT. 4- 67
Running the Application Mapper from the Command Line. 4- 68
Mapping Secondary Applicationst i 4- 69
Inserting TestFactory Objects in the Application Map 4-71
Creating a Marker in the Application Map................... ... 4-71
Creating and Working with TestFactory Reports 4-72
Contiguring a Hierarchy Report. 4-73
Configuring a Listing Report. 4-73
Contiguring a UI Checking Report 4-74
Modifyinga Report i 4-75
Rerunning a Report After Changing the Application Map 4-76
Exporting a Reportasa Text File. o oo L. 4-76
Printinga Report 4-76

5 Automatically Generating Scripts

About Pilots 5-1
Setting Up and Running Pilots., 5-3
Eftective Pilot Placement. oL 5-3
Insertinga Pilot.o 5-4
Setting Up and Startinga PilotRun, 5-4
On-Screen Events Duringa PilotRun.............. 5-9
StoppingaPilotRun o 5-10

Contents

Examining Pilot Run Results oo o 5-12
Pilot Run Folder Contents.oo.... 5-12
Viewing the Script Outline. 5-13
Viewing Coverage Results fora Script. 5-14
Viewing the Log for a Defect Script. 5-17
Reportinga Defect 5-18
Viewinga UAW Script......... .. i 5-19
Using Pilot Scenarios to Simulate User Action Sequences 5-23
Using Pilot Mix-Ins to Test Random Interactions. 5-25
Additional Adjustments for Pilot Runs 5-28

Changing Default Settings for Pilots 5-29

Opening and Editing a Best Scriptin Robot 5-30
Obtaining Code Coverage for Robot Scripts 5-30

Creating a Custom TestFactory Script.......... 5-32

Checking for Memory Errors in Visual Basic and C+ + Applications
(Windows NT) 5-34
Preparing to Test for Memory Errorsin the AUT................ 5-35
Running a Pilot to Check for Memory Errors 5-36
Running Scripts to Check for Memory Errors. 5-38

Testing Controls in the AUT During Pilot Runs 5-39
Selecting a Style and Modifying Data Entry Settings for UI Objects

and UI Object Components., 5-39
Managing Data Entry Styles. L 5- 46
Modifying Properties to Control TestFactory Actions During Pilot

Runs. 5- 46
Specitying the Entry Data Used to Test Input Controls 5-52
Excluding Controls from Testing 5-55

Restoring the Default Property Values for UI Objects and
COmMPONENLS ..ottt 5-57

Developing and Running a Test Suite

Opverview of Test Suite Functionality. 6-1
CreatingaTestSuite 6-2
Creating a Test Suite Using the Find Objects Window. 6-2
RunningaTestSuite....... 6-5
Running a Test Suite on Your Local Machine 6-5

vii

Using Rational TestFactory

viii

Viewing the Results of a Test Suite Run 6-6
Viewing Test Suite Run Results in the Status Tab................. 6-6
Viewing Test Suite Run Results in the Coverage Tab.............. 6- 6

7 Using the AutoPilot

About the AutoPilot. 7-1

Using the AutoPilot to Run Pilots, Test Suites, and Scripts. 7-2
Running Tests on Your Local Machine 7-2

Testing Code Changes in Visual Studio

Opverview of the TestCodeChanges Add-In for Visual Studio. 8-1
Setting Up the TestCodeChanges Add-In. 8-2
Preparing to Test Code Changes i, 8-3
Using the TestCodeChanges Add-In. 8-4
Starting the TestCodeChanges Add-In. 8-4
Viewing Information in the Test Code Changes Window 8-4
Creating and Running a Regression Suite to Test Code Changes 8- 6

Using TestFactory Command-Line Arguments

TestFactory Command-Line Arguments. Appendix- 1
Logon Arguments. ...t Appendix- 1
Run Argumentsot Appendix- 2
Application Mapper Argumentsoo...... Appendix- 2
Coverage Dictionary Arguments. Appendix- 3
Control Argument:. i Appendix- 3

Command-Line Argument Format Appendix- 3

Rules for Using TestFactory Command-Line Arguments.. Appendix- 4

Index

»»> Preface

Audience

Rational TestFactory® is the next-generation software quality tool that automatically
generates scripts for testing applications written in Microsoft Visual Basic, C+ +, and
Java, as well as Java applets. TestFactory amplifies the productivity of developers and
testers by reducing the manual effort required to test software. Because it models an
application, builds regression test suites, and finds defects, TestFactory is easily
adopted at any phase in the development cycle. Scripts that flush out defects and
provide extensive product coverage can be generated as soon as a user interface is
available to test.

TestFactory builds on Rational Robot’s capabilities to develop and run regression
tests that validate specific paths through an application. TestFactory generates

tests that cover the entire application. It takes advantage of the advanced object
recognition and playback features of Robot, and measures the product coverage that
Robot’s scripts provide. TestFactory also provides detailed coverage data on scripts
created in Robot.

This manual explains how to use Rational TestFactory and create, analyze, and
manage automated test procedures.

This manual is intended for application developers, quality assurance managers, and
quality assurance testers.

Other Resources

» This product contains online Help. From the main toolbar, choose an option
from the Help menu.

» All manuals are available online, either in HTML or PDF format. These
manuals are on the Rational Solutions for Windows Online Documentation CD.

» For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.

Preface

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product,
contact Rational Technical Support as follows:

Your Location Telephone Facsimile E-mail
North America (800) 433-5444 (781) 676-2460 support@rational.com
(toll-free) Lexington, MA
(408) 863-4000
Cupertino, CA
Europe, Middle +31 (0) 20-4546-200 +31 (0) 20-4545-201 support@europe.rational.com
East, Africa Netherlands Netherlands
Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Australia Australia

When you contact Rational Technical Support, please be prepared to supply the
following information:

4

4

Your name, telephone number, and company name
Your computer’s make and model

Your operating system and version number
Product release number and serial number

Your case ID number (if you are following up on a previously reported problem)

»»» CHAPTER 1

Introduction

This chapter provides an overview of Rational TestFactory. It introduces some key
concepts, describes the tasks that you can use TestFactory to perform, and provides
information about what to do before you start working with your Java, C+ +, or
Visual Basic application, or your Java applet in TestFactory. This chapter includes the
following topics:

» About Rational TestFactory
» Key TestFactory concepts
» Testing software with TestFactory

» Preparing to work with the application-under-test in TestFactory

About Rational TestFactory

Rational TestFactory automates software quality testing to an unprecedented
extent. By substantially reducing the manual intervention required to create and
maintain testing assets, TestFactory significantly shortens the product development
cycle. TestFactory maps the application-under-test, uncovers severe defects, and
creates scripts that provide extensive source code coverage. In addition to its
automatic mapping and scripting capabilities, TestFactory provides a flexible
interface with tools that help you organize and manage project test assets. The test
assets include the scripts, Test Suites, folders, reports, and so on, that you add to your
project.

TestFactory handles much of the drudgery involved in software testing so you can
focus on planning, development, and requirements testing. The high level of
automation that TestFactory provides lets you incorporate automation early in the
testing cycle; you do not have to wait until the application-under-test stabilizes.

Introduction

TestFactory is integrated with the following Rational Suite TestStudio™

components:

» Rational Robot

» Rational TestManager

» Rational Administrator

» Rational ClearQuest

» Rational TestCodeChanges add-in for Visual Studio

Together, these products provide a full array of tools for team testing within
Windows® NT®, Windows 95®, Windows 98%®, and Windows 2000® environments.

TestFactory offers the following features:

4

Automatically creates and maintains a detailed map of controls and actions in the
user interface of the application-under-test.

Lets you map and test multiple paths in a functional area of an application.
Automatically generates scripts that provide maximized product coverage.
Tracks executed and unexecuted source code and reports its findings.

Automatically generates regression Test Suites containing scripts that uncover
serious defects in the application-under-test.

Simplifies maintenance of test assets, which means that testing new builds
requires minimal supervision.

Lets you organize scripts into Test Suites and run them as batch jobs.

Lets you compose scripts that simulate user action sequences to increase the
validity of your test assets.

Provides code coverage data for Robot-recorded scripts, which you can include
in TestFactory Test Suites.

Together with the TestCodeChanges add-in for Visual Studio, lets you run
scripts that test changed source code files from within the Visual Basic or
Visual C++ development environment.

Key TestFactory Concepts

Key TestFactory Concepts

The Application Map

One of the first tasks that you perform in a new TestFactory project is to map the
application-under-test (the AUT) using the Application Mapper. The Application
Mapper explores the AUT to produce a detailed, hierarchical application map that
graphically depicts all of the controls in the user interface and the actions used to
exercise them. The application map models all possible states of the AUT and the
transitions between those states.

As it remaps new builds, the Application Mapper looks for, flags, and resolves
changes in the AUT. For information about application mapping and application
map components, see Chapter 4, Developing and Working with the Application Map.

The Ul Library

Ul Objects

The Ul library is an archive that contains all classes and subclasses of objects that
commonly occur in the user interface of an application. When you open a project in
TestFactory for the first time, TestFactory builds the UI library and places it in the
UI Library folder. TestFactory uses the UI library to identify and reconcile objects
in the AUT interface during the mapping process. Controls identified in the AUT
are represented in the application map by user interface objects, or Ul objects.

Ul objects are the objects in the application map that represent the controls in the
user interface of the AUT. Each UI object is an instance of a UT object class in the
Ul library. UT objects and their properties are described in Chapter 4, Developing and
Working with the Application Map.

Pilots and Automatic Script Generation

In TestFactory, you use Pilots to automatically generate scripts. A Pilot uses the
application map to build scripts that test the AUT. You can drop a Pilot at any
functional area of the application map. From there, the Pilot generates scripts that go
progressively deeper into the source code for the area of the AUT to which you give
it access.

After a script is generated, it is independent of the Pilot that generated it. You can
move or copy the script into a folder and include it in Test Suites. For information
about using Pilots to automatically generate scripts, see Chapter 5, Automatically
Generating Scripts. For information about Test Suites, see Test Suites on page 1-5.

Introduction

Script Segments

A Pilot uses the application map to create script segments, which are the building
blocks for scripts. A script segment consists of a sequence of operations that
TestFactory performs in the AUT.

The Best Script

Each Pilot run produces, at most, one best script. To generate the best script, the
Pilot first creates and runs a large number of script segments. The Pilot then
evaluates every script segment based on the amount of user interface coverage and
source code coverage each provides. The resulting best script provides high coverage
of the AUT source code and user interface using the smallest possible amount of
nonredundant script code.

Defect Scripts

The script segments that a Pilot creates sometimes uncover severe defects such as
AUT crashes, run-time errors, assertion failures, as well as defects related to memory
access. If a script segment uncovers a defect, the Pilot retains it as a single-segment
defect script in the Pilot run results.

UAW Scripts

During a Pilot run, if script segments exposed controls in the user interface that are
not represented in the application map, TestFactory saves the script segments in a
single UAW (unexpected active window) script. After a Pilot run, you can use the
UAW script to trace the steps that the Pilot took to reach unmapped controls, and
use that information to improve the application map.

The Ul Script

Each Pilot run generates one Ul script that “attempts” to touch every control in the
tested area once. The Ul script serves as a simple smoke test that you can run to
check the controls in a region of the AUT user interface. You can run a Pilot to
quickly generate just a UT script.

Key TestFactory Concepts

Code Coverage and Ul Coverage

TestFactory calculates code coverage and Ul coverage metrics for the best script,
defect scripts, and Robot scripts that you run against an instrumented AUT. The
coverage values indicate how well a script exercises the AUT and help you determine
which features to test next. Code coverage is an indirect indicator of the quality of
the generated scripts. A Pilot calculates code coverage as it creates and runs new
script segments. At the same time, it identifies and discards redundant script
segments that do not increase code coverage. For information about
instrumentation, see Chapter 3, Instrumenting the Application-Under-Test.

Test Suites

A Test Suite is a container object that you can insert in the application map to group
scripts and other Test Suites to run as a batch job. A Test Suite is also a convenient
tool for organizing and tracking scripts. For information about creating and running
a Test Suite, see Chapter 6, Developing and Running a Test Suite.

The AutoPilot

The AutoPilot is the TestFactory tool that automatically runs multiple Pilots,
Test Suites, and scripts as a batch job. You can use the AutoPilot to run batch tests
on your local machine. For information about using the AutoPilot, see Chapter 7,
Using the AutoPilot.

The Test Datastore

All TestFactory project data is contained in the test datastore—which stores
application testing information. After you create a new project in the Rational
Administrator, you can see and access the project from all TestStudio programs.
For information about working with projects and the test datastore, see the Using
the Rational Administrator manual.

Introduction

Testing Software with TestFactory

How you use TestFactory depends on whether you are the sole engineer on a project
or a member of a QA team, as well as the testing practices you have in place. How
you use TestFactory also depends on where you are in the testing cycle. For instance,
in the early phases of the product development cycle, you can use TestFactory to
automatically find defects in the AUT. As the AUT matures and stabilizes, you can
use TestFactory to build regression suites. The tasks that you might perform in a

typical TestFactory project are as follows:

Task

Manual Chapter

Instrument the AUT so that TestFactory can
calculate code coverage for scripts.

Chapter 3: Instrumenting the
Application-Under-Test

Use the Application Mapper to map the AUT.

Chapter 4: Developing and Working
with the Application Map

Run several Pilots in functional areas of the AUT to
generate best scripts and defect scripts that test those
areas.

Chapter 5: Automatically Generating
Scripts

Chapter 7: Using the AutoPilot

Examine failures uncovered by the defect scripts.

Chapter 5: Automatically Generating
Scripts

Examine the outlined steps and detailed code
coverage results for best scripts.

Chapter 5: Automatically Generating
Scripts

Create a Test Suite that contains pointers to all of
the best scripts and defect scripts and run the Test
Suite against future builds of the AUT.

Chapter 6: Developing and Running a
Test Suite

Create customized TestFactory scripts to augment
the coverage your Test Suites provide.

Chapter 5: Automatically Generating
Scripts

Use the TestCodeChanges add-in for Visual Studio
to access and run scripts that test changes to the
source code of the AUT.

Chapter 9: Testing Code Changes in
Visual Studio

Run Pilots to test the AUT for defects related to
memory access.

Chapter 5: Automatically Generating
Scripts

With each new build, you instrument the AUT, update the application map, run
scripts (regression Test Suites) from the previous build, track and resolve defects,
create and run new scripts, and reorganize test material.

Testing Software with TestFactory

Preparing for Automated Testing

To optimize the use of TestFactory, it is a good idea to begin by organizing the
following information:

4

Assess the AUT thoroughly. Understand the various system states it assumes, as
well as the transitions between the states.

Determine which areas of the AUT are the most stable and focus your testing
efforts on these early in the development cycle. Identify functional areas that do
not work and exclude them from initial testing.

Plan the order in which functional areas are to be tested based on feature
availability, stability, and risk.

Make sure that you fully understand how functional areas of the AUT are
designed to interact.

Detine data entry types (zip codes, phone numbers) and specific values (for
example, passwords) for key controls and try to anticipate how they might affect
the AUT during testing,.

Define typical user scenarios that you can simulate in TestFactory by creating
Pilot scenarios.

Devise a scheme for naming the test assets (scripts, Pilots, Test Suites, folders,
and so on) you develop in TestFactory.

Break down your testing product into manageable units or modules and assign
these to appropriate team members.

Make sure that you have standard methods in place for organizing project
material.

Before You Map the AUT

Decide whether to map the AUT fully in one pass, or incrementally. Several factors
can influence your decision, including the size and complexity of the AUT and the
presence of unstable source code. For most applications, we recommend that you
map incrementally. Incremental mapping makes it easier for you to control the
direction and actions the Application Mapper takes through different functional
areas of the AUT. For information about incremental mapping, see Chapter 4,
Developing and Working with the Application Map.

Introduction

After You Map the AUT

After a mapping session, start the AUT and compare it to the application map. Take
steps to correct inaccuracies before you begin generating scripts. The quality of the
scripts you generate is directly related to the quality of the application map. For
information about analyzing and preparing the application map for testing, see
Chapter 4, Developing and Working with the Application Map.

Testing the AUT

After you create and fine-tune the application map, you can:

4

4

4

Insert and run Pilots in functional areas of the AUT to uncover severe defects.
Compose Pilot scenarios that simulate user action sequences in the AUT.

Compose Pilot mix-ins to test the random interaction of different functional
areas in the AUT.

Create Test Suites to organize and track the scripts that your Pilots generate.

Use the AutoPilot to automatically run multiple Pilots, Test Suites and scripts
as a batch job — on your local machine.

If the AUT is written in Visual Basic or Visual C+ +, use the TestCodeChanges
add-in for Visual Studio to run scripts that test the changes that you have made
to the AUT source code files.

Preparing to Work with the Application-Under-Test in TestFactory

Preparing to Work with the Application-Under-Test
in TestFactory

Before you begin working with the AUT in TestFactory or Robot, you must first
“enable” the AUT, and then specity the correct IDE (integrated development
environment) extensions to load for it in Robot. This section describes what
enabling does for Java applications and applets and C+ + applications, and provides
instructions on how to specify the IDE extensions to load in Robot.

Enabling Java and C+ + Applications

Rational Test Enablers provide specialized support for mapping and testing
controls in Java and C+ + applications and in Java applets. To successfully map and
test controls, you must do the following before you start working with the AUT in
TestFactory.

» Install the Rational Test Enabler for your IDE. The following table shows the
correct Rational Test Enabler to install for each IDE.

IDE Rational Test Enabler to Install
Java Rational Test Java Enabler
C++ Rational ActiveX Test Control

» Open the AUT in the development environment and add the ActiveX Test
Control to the forms.

You can install the Rational Test Enablers from the Rational Software Setup
program. For information about how to install the Rational Test Enablers, see the
Rational Suite Installation Guide.

Enabling Java Applications and Applets

Before you work with a Java application or applet in TestFactory, run the Java
Enabler to have it search your hard drive for Java environments such as Web
browsers and Sun JDK installations that Robot supports. The Java Enabler only
enables environments that are currently installed. For more information, see the
Using Rational Robot manual.

Introduction

If you are using Sun or IBM Java Virtual Machines (JVM), each time you install a
new Java environment on a test machine, you must run the Rational PureCoverage
cstart utility with a Java application.

NOTE: If you do not run the cstart utility with a Java application, you will not be
able to run TestFactory pilots to gather code coverage information on Java
applications in the new Java environment.

To set up a new Java environment, do the following:

The cstart utility is located in: C:\Program Files\Rational\Coverage\cstart.exe or
the directory where you installed your Rational software.

At the command line prompt, type:
C:\> cstart java <name of Java_ app>

For example:
C:\> cstart java -jar HelloWorld.jar

Enabling C+ + Applications

To test the properties and data of ActiveX controls in C+ + applications, manually
add the ActiveX Test Control to each OLE container (Window) in your application.
For information about how to add the ActiveX Test Control, see the documentation
that comes with your C/C+ + development environment.

Selecting the IDE Extensions to Load for the AUT

Before you can work with a Visual Basic application, Java application, or Java applet
in TestFactory or Robot, you must start Robot and select the IDE extensions to load
for the programming language. (IDE extension support for C+ + is always loaded.)
This ensures that the correct extensions are loaded for mapping and testing

the AUT.

To select the IDE extension to load:
1. Click Start > Programs > Rational Suite TestStudio > Rational Robot.
2. Logon to the project.

3. Click Tools > Extension Manager.

5.
6.
7.

Preparing to Work with the Application-Under-Test in TestFactory

Extension Manager

i [Place a check mark next
to each environment you
antto suppo.

HTMLMSIE

W HThL-Mevigator
V] Jawa

[WOracle Forms
[wiFeopleTools
[VIPowerBuilder
[vW'isual Basic

o]

Leave the Visual Basic or Java check box selected. To improve performance,
clear the remaining check boxes.

Click OK.

Cancel | Help |

To close the message box, click OK.

Quit Robot.

Once you enable your application and specify the IDE extensions to load, you can
starting working with it in TestFactory.

Working with C++ Applications in TestFactory and Robot

If you are working with an application written in C+ +, we recommend that you
change the default object recognition method order setting in Robot before you
start to work with the application in TestStudio. The default recognition method
order that is set in Robot optimizes control recognition in Visual Basic applications.
You can change this setting to optimize control recognition in C+ +. This improves
the quality and stability of the scripts you generate to test the C+ + application as
changes are made to the user interface of the AUT during development.

To change the object recognition method order setting in Robot:

1.
2.

Click Start > Programs > Rational Suite TestStudio > Rational Robot.
Log on to the project.

Click Tools > GUI Record Options, and then click the Object Recognition
Order tab.

In the Object order preference list, click C++ Recognition Order.
Click OK.
Quit Robot.

Introduction

For information about Robot recognition methods, see Selecting an Object Order
Preference in the Using Rational Robot manual.

»»» CHAPTER 2

The TestFactory Interface

This chapter explains how to start TestFactory and describes the basic elements of
the user interface. This chapter includes the following topics:

» Starting TestFactory
» Using the New Project Wizard
» Using the Project Assistant

» The TestFactory workspace

Starting TestFactory

Before you start TestFactory for the first time, you must start the Rational
Administrator, and create a project. For information about creating a project, see the
Using the Rational Administrator manual.

Before you start TestFactory, quit all applications on the desktop. During mapping
and testing, TestFactory actively explores the AUT. Other programs that are running
can interfere with these processes.

2-1

The TestFactory Interface

To start TestFactory:

1. Click Start > Programs > Rational Suite TestStudio > Rational
TestFactory.

Rational Test Login

Uzer Name

Iadmin

Pazsword

Froject

I Myproject j Browse |

Laocation
IF:\Ploiects\Myproiect304\Myploiect.rsp

oK I Cancel |

In the User Name and Password boxes, type your user name and password.
In the Project list, select the project.

In the Location box, check to make sure that is the correct location.

Click OK.

v A W N

TestFactory initializes the project, builds a UT library of object classes, and places the
Application Map folder, and the UI Library folder in the left pane of the window.

Starting TestFactory from the Command Line

You can start TestFactory from the command line by typing a command in the Run
dialog box, or by adding the command-line argument in the Properties dialog box of
Windows Explorer. If you start TestFactory from the command line, you can specify
arguments to control the behavior of the program on start-up. You can also specify
command-line arguments in the Properties dialog box for a TestFactory shortcut.
For a list of command-line arguments supported by TestFactory and for information
about using them, see the Appendix Using TestFactory Command-Line Arguments in
this manual.

Using the New Project Wizard

Using the New Project Wizard

After you open a project in TestFactory for the first time, the New Project Wizard
prompts you for basic information about the application and project.

Hew Project Wizard - Step 1 of 4

Welcome to Rational TestFactoryl

*f'ou are about to discover how TestFactory brings a new level of
adwanced autamation bo software quality testing.

Before you can begin working on a new project, TestFacton needs
information about the application-under-test [AUT). Thiz wizard will
guide you through the steps ta provide the neceszany information.

< Back

Cancel |

1. Read the information in step 1 of the New Project Wizard, and then click Next.

Hew Project Wizard - Step 2 of 4

Enter the path to the executable file of the application-under-test [AUT). IF the AUT iz a Java
application, specify the main clazs file ag the “executable” file. The Point feature iz available for C++
and Yisual Basic applications only.

If you want command line arguments pazsed to the AUT when it iz started. type them in. Be sure to
specify the arguments in the spntax required by the AUT.

If the AUT uses files that are not located in the AUT directary, use the "Start in'' box to enter the path
to these files.

Application-under-test

Executable: || B_rowse...l Fuoint... |

LCommand line: I

Start in: I Erowse... |

< Back I i [Cancel

The TestFactory Interface

2.

6.

In the Executable box in step 2, enter the path to the executable file for the
AUT. (You can specify an executable file that has an .exe , .class, jar, .htm, .html,
or .bat extension.)

To pass one or more command-line arguments to the AUT when it is started
from TestFactory, type the argument in the Command line box. Be sure to
specify the command-line argument in the syntax that the AUT requires.

In the Start in box, enter the full path to the working directory. If you do not
enter a start path, TestFactory uses the AUT executable path.

Click Next.

Hew Project Wizard - Step 3 of 4

For a¥izual Bagic application, gelect the instrumentation method. [f you have access to the
source files, source code instrumentation provides more accurate code coverage values on
zcripts.

If the AUT iz written in Jawa, either gelect the options for a known provider, or specify the path
to the executable file of the virtual machine or applet viewer that you want to use.
Also, specify the appropriate command line options fo rthe vitual machine or applet viewer.

— Programming language— [~ Java environment
0] i provider:
F e Hmsts Y Eror:
Gt . . .
= % Yirtial mashine % | hirasats
C Java) Lpplet viewer) 5un
B

— Instrumentation method — .
) [ther providen

" Object code I Erowee.. |

& Source code (0 i s:

< Back I Mest > I Cancel |

Under Programming language, check to see that the correct programming
language for the AUT is selected. If it is not, click the correct programming

language.

Using the New Project Wizard

If the AUT is a Visual Basic application and you plan to instrument its source
code files, then under Instrumentation method, leave Source code selected. If
you plan to instrument the object code instead, click Object code.

Instrumenting the AUT gives TestFactory the information it needs to
determine how well your scripts exercise the AUT source code during testing.
If the AUT is a Visual Basic application, and you have access to source code, you
can instrument it using either the object code method or the source code
method. If the AUT is written in Java or C+ +, you must instrument it using
the object code method.

If the AUT is a Visual Basic application and you have access to its source code
files, we recommend that you select Source code. For information about the
differences between object code and source code instrumentation, see
Chapter 3, Instrumenting the Application-Under-Test.

If the AUT is a Java application or applet, then under Java environment, do the
following:

— If the AUT is a Java application, then under Runtime host, leave Virtual
machine selected.

— Ifthe AUT is a Java applet, then under Runtime host, click Applet viewer.

— Ifyou plan to run a Java application or applet using a Microsoft virtual
machine or applet viewer, then under Vendor, leave Microsoft selected.

— If'you plan to run a Java application or applet on a Sun virtual machine or
applet viewer, then under Vendor, click Sun.

— Ifyou plan to run a Java application or applet on an IBM virtual machine or
applet viewer, then under Vendor, click IBM.

— Ifyou are running a Java AUT on a virtual machine or applet viewer from
a provider other than Microsoft, Sun, or IBM, click Other provider, and
then browse to find and select the virtual machine or applet viewer.

If the AUT is a Java application or applet, then in the Options box, type
arguments to pass to the Java virtual machine or applet viewer.

The TestFactory Interface

10. Click Next.

Hew Project Wizard - Step 4 of 4

After you click. Finish, you can begin using T estFactory for your new
project.

If yau are nat Familiar with TestFactary, review the information in the
Project Azsistant. Wou will zee how ta perfarm the three basic steps to
instrument ahd map the AUT, and then generate scripts that test the
AUT.

If you da not want ko see this wizard for new projects, clear itz check
box on the General tab in the Optionz dialog box.

< Back

Cancel |

11. To complete project initialization and close the wizard, click Finish.

Using the Project Assistant

Using the Project Assistant

After the New Project Wizard closes, the Project Assistant opens on top of the
TestFactory window. You can use the Project Assistant to get information about how
to instrument the AUT, map the user interface, and run a Pilot.

Click here to collapse the
Project Assistant window.

Click here to learn how to
instrument an application.

Click here to learn how to
map an application.

B Project Assistant =]
g"é ! \,@ I - Click here to learn how to
Instrument Map Admd & Bun insert and run a Pilot.
Buil Application Filat

N

Wel

Tz Project Assistant will help you get
started using TestFactory. In just three easy
steps you can have TestFactory start
generating scripts for the spplicstion that you
weart to test.

1. Instrument “ou instrument the
application-under-test (AUT) =0 you can

me to Rational TestFactory!

N

The following table shows how to use the buttons in the Project Assistant window.

Click

To

Instrument

Build

Learn how to instrument the AUT

\.@ 2

Map

Application

Learn how to map the AUT

‘ . 2
.
Add & Run
Filat

Learn how to insert and run a Pilot in the application map

Display just the toolbar of the Project Assistant window

Restore the full Project Assistant window

2-7

The TestFactory Interface

Every time you start TestFactory, the Project Assistant opens by default. To prevent
the Project Assistant from opening after you start TestFactory:

1. Click Tools > Options.

Pt
[EREE

2. On the General tab, under Global options, clear the Open Project Assistant
on startup check box.

3. Click OK.

The TestFactory Workspace

The TestFactory Workspace

Insert toolbar — 1

TestFactory features an intuitive, easy-to-navigate user interface. The following
figure shows the TestFactory window for an open project.

Menu bar

©, CLASSICS - Rational TestFactory

Fila Edt Miew Inssh Tools Image Help

Standard toolbar

Tools toolbar

=[] Application Map
LR

)]
[
[LeftClick
o= SR =i
-9 LefClick
-3 Close
Classics Online
ta Tree
~pr StatusBar
B4 TabContral
£ Album
-E5) Details
=33 Order It
- LefClick
-] Make &n Order

3 Place Order
1% Payment Information
B *Your Informatian

B Fie
B &0rder

~ B kAdmin

~ B tHelp

- = CloseButton

B[] Account Info

-2 Mapping Reports

-2 Ul Library

For Help, press F1

S &L TR A=« TR PAEL (O PEBRD

Fropetties of Classics Login [admin

Mame | Walug ‘ Inherit |;|
ObjectPath Clagsics Login ‘Yes
“windowClassh ame ThunderRTSForm e
WindowStyle 351EA1EE Mo
Windowl D 0 Mo .
WindowFlectangle 356,265 569,464 Mo Properties
WindowT est Classics Login Mo i
Enabled Tes Mo view
Recogritiontethod “Mame=frmExistingLogin® Mo
Style: 0x00000000 Yes
Styletdask (0x00000000 Yes
UlLibramSubclass WBSF ormwindow Mo
Accessiey Mo _
WolatileWw/indow Yes Mo -
Image
k5 kT | @ & @ el T
[» toolbar
Account Info
Full Name; Trent Culpito
Password: /mage
™ Remember Password T view

|
Left pane

This section describes the components of the TestFactory window.

[
Right pane

The TestFactory Interface

TestFactory Toolbars

The TestFactory window has seven separate toolbars. This section describes each
toolbar.

To toggle the display of a toolbar:

» Click View, point to Toolbars, and then click the toolbar name.

NOTE: The Insert toolbar is always visible; you cannot toggle its display.

The Standard Toolbar

B &S R+ =-«r» PR 2 XEL » &

The Standard toolbar is displayed under the menu bar. A Standard toolbar button
is available only after you select an appropriate object in the TestFactory window.
For example, Play Back Script is available only after you select a script object in the
application map.

Use the Standard toolbar buttons to do the following:

Click To

Close the open project and open a different project.

Print the properties of a selected object in the application map or print
information displayed in the right pane.

M |6

Remove a selected object from the application map.

Copy the selected object in the application map.

Paste a copied object to a selected location in the application map.

Find objects in the application map.

Fully expand the branch under the object selected in the application map.

+ 2 @ |F |=

Fully collapse the branch under the object selected in the
application map.

The TestFactory Workspace

Click | To
p Jump to the object previously selected in the application map.
Jump to the next object in a sequence of selected objects in the
» application map.

Jump to a marker that you inserted higher up in the application map
hierarchy.

Jump to a marker that you inserted lower in the application map
hierarchy.

Open the Application Mapper Wizard.

Open the AutoPilot window.

Open the Instrument Source Code or Instrument Object Code
dialog box.

Start the application-under-test.

Play back a selected script in Robot.

Access TestFactory Help.

The TestFactory Interface

2-12

The Insert Toolbar

The Insert toolbar is on the left side of the TestFactory window. It provides buttons
that you can use to insert several types of TestFactory objects in the application
map. Except for Select, each button corresponds to a command on the Insert menu.

Use the Insert toolbar buttons to do the following:

Click

To

Restore the pointer to the Select Item mode.

IS

Insert a folder to organize project material. After TestFactory initiates a
project, it inserts the Application Map folder, and the UI Library folder
in the left pane. A Pilot run inserts a run results folder. You can insert
folders to hold best scripts, defect scripts, Test Suites, or TestFactory
reports.

Insert a Pilot to generate scripts for a functional area of the AUT. A Pilot
proactively explores the UT objects to which it has access, automatically
detects severe defects in the AUT, and generates defect scripts and a
coverage-optimized best script. For information about setting up and
running a Pilot, see Chapter 5, Automatically Generating Scripts.

Insert a Test Suite to group scripts and other Test Suites to run as a batch
job. For details on creating and running a Test Suite, see Chapter 6,
Developing and Running a Test Suite.

Insert a script to create a customized TestFactory script in the application
map that you can then record or write manually in Robot. Although
TestFactory gives you access to scripts created in Robot, the customized
TestFactory script is useful if you want to place the script in a
TestFactory folder.

Insert a report to create a TestFactory report.

Insert a marker as a place-holder in the application map or to capture
comments on a specific area of the application map.

Insert an interaction object to control the path that TestFactory takes
through the AUT during mapping and testing.

The TestFactory Workspace

The Tools Toolbar

Use the Tools toolbar to start other Rational TestStudio programs. Buttons on the

Tools toolbar correspond to commands in the Rational Test submenu of the Tools
menu.

ol - R

Use the Tools toolbar buttons to do the following:

Click To

Start Rational Robot.

=

Start Rational TestManager.

i

? Start the Rational Administrator.
1]

£ Start Rational ClearQuest.

The Report Toolbar

TestFactory displays the Report toolbar after you click a report object in the left
pane. Buttons on the Report toolbar correspond to commands in the Report menu.

BB R

Use the Report toolbar buttons to do the following:

Click To

= Edit the report parameters before rerunning the report.
EE]

Run the selected report.
B

B Export the selected report as a text file.

The TestFactory Interface

The Image Toolbar

TestFactory displays the Image toolbar in the Image view after you select a Ul
object in the application map.

kR QB (o] kel § ¥

Use the Image toolbar buttons to do the following:

Click

To

k

Select, resize, or reposition a region tracker in the Image view.

Draw the area for a region object in the Image view.

Reposition the responsive region, or hot spot, of a region object or other
UI object.

Move the image in the Image view.

Increase the magnification of the displayed image.

Decrease the magnification of the displayed image.

g |e e [| |

Toggle between sizing the image to fit in the Image view and viewing the
image at the currently selected magnification.

I'IEIEI?:;'I

Display the image in the Image view at a selected magnification.

g

Expand the region object tracker horizontally.

Shrink the region object tracker horizontally.

Expand the region object tracker vertically.

A |kl || F

Shrink the region object tracker vertically.

The TestFactory Workspace

The Interaction Object Toolbar

TestFactory displays the Interaction Object toolbar in the top right pane after you
insert or click an interaction object in the application map.

Use the Interaction Object toolbar buttons to do the following:

Click

To

Move the selected component up in the list to change its
interaction order.

Move the selected component down in the list to change its
interaction order.

Insert a component in the interaction object.

Delete the selected component from the interaction object.

Make a component unavailable for mapping and testing in the interaction
object.

Edit the data entry style for the selected interaction object component.

The Style Toolbar

After you click an edit box, combo box, or region object in the left pane, TestFactory
displays the Style toolbar in the top right pane.

Baze

Use the Style toolbar to do the following:

Click

To

’—St_l,'\

Select an existing data entry style for the selected object.

Open the Edit Data Entry Style dialog box to edit an existing entry style
or to create a new entry style for the selected object.

The TestFactory Interface

The Left Pane

The left pane is the primary workspace in TestFactory. TestFactory places the
Application Map folder, and the Ul Library folder in the left pane after you open a
project for the first time.

A pplication Map
-3 Ul Library

Until you map the AUT, the Application Map folder is empty. After you map the
application, the folder contains all of the AUT components, including various UI
objects, user actions, and transition elements.

The UI Library folder contains all of the object classes and subclasses known to
occur in graphical user interfaces. TestFactory uses it to reconcile and classify the
controls it encounters as it maps the AUT and creates scripts. The types of objects
found in the Application Map and UI Library folders are described in Chapter 4,
Developing and Working with the Application Map.

From the left pane of the TestFactory window, you can:
» Start mapping the AUT.

» Click a UI object to display its UI object properties and bitmap image in the
right pane.

» Start the AUT and drive to a selected control.

» Create folders and organize your work.

» Select scripts to add to a Test Suite.

» Create a new Ul object subclass.

» Reclassify a generic object.

» Change the subclass of a UI object.

» Access Robot scripts for the open project.

» Click a script to display its coverage data and steps in the right pane.

» Open or run a script in Robot.

» Open the Test Log window of TestManager to see the log for a script run.

» Insert TestFactory objects in the application map.

The TestFactory Workspace

The Right Pane

The
obje

right pane of the TestFactory window displays information about the current
ct of focus in the left pane. The following figure shows the right pane after the

Classics Login window object is clicked in the application map. The Properties view
displays the UI object properties for the selected object. The Image view displays a
bitmap of the selected UI object.

MHame | Walue | Inherit | 2]
= Application Mapper

Erercizelluringhd apping YYes YYes

DoLeftClick Mo es

DoleftDoubleClick Mo es

DoRightClick, YYes YYes

Windowhd atchThreshold - 80 ez . .

Usetd aitForl dle s es T Propertles view
= Pilot [—

ExercizeluringT esting Sometimes ez
E Shared

i aitlnteryal 1.00 es

InteractionOrder 1000 Mo
= Dbject

ObjectPath Clazzics Login ez

ufimcdnalagshl s T by wadaeE TR e e =l
Wﬁ%@ QQ@IWDZv M*I%|— Image toolbar
-

Account Info

Full Name: Trent Culpito
Password: l— __ lmage view
I Remember Password
oK. I Esit |

4] | LlJ

From the right pane, you can:

>

>

View and edit the UT object properties of UI objects.
See where a mapped control is located in the AUT user interface.

Double-click a region of the bitmap to jump to the corresponding object in the
application map.

Configure and run a Pilot.

Add UI object components to an interaction object and configure the object.
View the outlined steps and coverage results for a script.

Create and run a Test Suite and view the results.

View report results.

Create and modify a region object.

View marker information.

The TestFactory Interface

Progress Bars

TestFactory has five progress bars, each of which opens at the bottom of the screen
after TestFactory begins a specific task. The progress bars display status information
about the process underway. Each contains a Stop button that you can use to stop the
active process.

The Application Mapper progress bar opens after you start mapping the AUT.
Application | 15 Elapsed: Status: Tew: Modified:
E;“:‘p["‘“t":'z]l 00,0009 | [Searching For active window [i23 [a2 H

The Pilot progress bar opens after you start a Pilot run.

Sop[AF | CEPEd Sttus Defects: Ul couerage: Code coverage: Segments run:
top (ANFR) | ez |82arcking map 2 100 [32 1z

The Script progress bar opens after you start a script or Test Suite run.
ser | 8

The AutoPilot progress bar opens after you start the AutoPilot to run multiple
scripts, Test Suites, and Pilots.

cton(ainpiz | s Saus:
op (UF12) | (o632 [Searchingmap

Auto stop (g | ERPSEd Stas: Machine groups Progress
Pilot VR (ARFE) | ponz | [Seacking map [LocaLs

The Go To Control progress bar opens after you right-click a UT object and select
Go To “Control” in AUT on the shortcut menu.

Go To
Conirol

s | Eeest Staus
<P (RPN (0 0003 | [waking for dle..

The Status Bar

The status bar at the bottom of the TestFactory window displays information about
the activity in progress, the current object of focus, and the name of the user who is
logged on. To toggle the status bar display, click View > Status Bar.

»»» CHAPTER 3

Instrumenting the Application-Under-Test

This chapter addresses the first task you perform in TestFactory—instrumenting the
AUT so that you can obtain code coverage information for your scripts when you
start testing. This chapter describes what is required to instrument the AUT, how to
instrument the AUT, and how to use the stand-alone instrumentor to instrument
the source files of a Visual Basic application before build time. This chapter includes
the following topics:

» About instrumentation

» Adding the Rational Test Enablers to the AUT before instrumenting
» Requirements for instrumenting the AUT

» Instrumenting C+ +, Visual Basic, and Java object code

» Instrumenting Visual Basic source code

About Instrumentation

If you want to obtain code coverage values for the scripts that you generate in testing,
then you first need to instrument the AUT. TestFactory uses information in the
instrumented files to calculate code coverage values for the best scripts that your
Pilots generate, as well as for the Robot scripts that you run from TestFactory.

TestFactory calculates a code coverage value and a Ul coverage value for a best
script. The code coverage value represents the percentage of all AUT source code
that the script exercises. The Ul coverage value represents the percentage of unique
UI objects that the script touches. Without instrumentation, TestFactory can use
only UI coverage as a metric to generate a best script. Because instrumentation
significantly improves testing results, we highly recommend that you instrument the
AUT before you map it.

3-1

Instrumenting the Application-Under-Test

To instrument an application in TestFactory, you use either object code
instrumentation or source code instrumentation. The object code method
instruments the executable file using debug information. The source code method
instruments the source code files of the AUT.

You can instrument the object code of an AUT written in C++, Java, and Visual
Basic 5 and 6. If the AUT is written in Visual Basic and you have access to the source
code files, you can instrument the source code files. If the AUT is written in Visual
Basic 4, you can only instrument the source code files. Regardless of the
instrumentation method you use, TestFactory maintains the integrity of your
original source files or executable file.

Adding the Rational Test Enablers to the AUT
Before Instrumenting

If you installed the Rational Test Enablers, you can add the ActiveX Test Control to
the files of your AUT. The ActiveX Test Control enhances the control-recognition
capabilities of TestFactory and Robot.

If you have not already done so, we highly recommend that you do the following:
» Install the Rational Test Enabler appropriate for your IDE.

» Openthe AUT in its IDE and add the ActiveX Test Control to your application
files before you instrument.

For information about installing the Rational Test Enablers, see the Rational Suite
Installation Guide. For information about adding the ActiveX Test Control to your
application, see the Using Rational Robot manual.

Requirements for Instrumenting the AUT

This section describes which instrumentation method (object code or source code)
to use with Java, C+ +, and Visual Basic applications and what is required for
instrumentation.

The method you use to instrument the AUT depends on the following:
» The IDE used to develop the AUT
» For Visual Basic applications only:

— The version of Visual Basic used to develop the AUT

- Access to source code

Requirements for Instrumenting the AUT

The following table lists the requirements for instrumenting the AUT using the
source code and object code methods:

Requirements for instrumenting Requirements for instrumenting
source code object code
VB 4.0 A wvbp file and all source files N/A
needed to build the .exe (can be
read-only)
VB 5.0 A wvbp file and all source files An .exe file and a .pdb file (with
and needed to build the .exe (can be debug information) located in the
VB 6.0 read-only) same directory
C++ N/A An .exe file and a .pdb file (with
debug information) located in the
same directory
Java N/A None

NOTE: Regardless of how you instrument the AUT, you need access to source
code if you want to view source code coverage details in the Coverage Browser
for a C++ or Visual Basic application after you create scripts. For information

about the Coverage Browser, see Chapter 5, Automatically Generating Scripts.

Java Applications and Applets
You can only instrument a Java application or applet using the object code method.
There are no other specific requirements for instrumenting a Java AUT.

C++ Applications

You can only instrument a C+ + application using the object code method. To do
this, you must have the .exe file for the AUT and an associated .pdb file (containing
debug information) located in the same directory.

3-3

Instrumenting the Application-Under-Test

Visual Basic Applications

If the AUT is written in Visual Basic 4, you can only instrument its source code files.
If the AUT is written in Visual Basic 5 or 6, you can instrument either the source
code files or the executable file.

If you have access to source code files for the AUT, we recommend that you
instrument these files instead of the executable file. TestFactory instruments Visual
Basic source code at the branch level, and instruments an executable file at the
statement level. Because TestFactory takes into account the if, then, and else
conditions in instrumented source code, it displays more detailed code coverage
values for instrumented source files. You can also instrument the source files of
secondary applications that the main application calls and executes. This lets you get
coverage information for scripts that exercise the secondary applications.

Instrumenting C+ +, Visual Basic, and Java Object Code

If you want to instrument the object code of an AUT written in C+ + or Visual Basic
5 or 6, you must first make an .exe file and a .pdb file that is located in the same
directory as the .exe file. There are no specific requirements for instrumenting the
object code of a Java application or applet.

Setting the Compiler Option for a Visual Basic 6 Application

If the AUT is written in Visual Basic 6, and you did not install Rational PureCoverage
as a Visual Basic add-in, you need to set the compiler option before you make the
.exe and .pdb files.

To set the compiler option for an AUT written in Visual Basic 6:
1. Open the .vbp file in Notepad.
2. Add the following lines at the end of the .vpb file:

[VBCompiler]

LinkSwitches=-Fixed:no

3. Save the .vbp file and quit Notepad.

Instrumenting C++, Visual Basic, and Java Object Code

Setting the Compiler Option for a C++ Application

Before you make the .exe and .pdb files for an AUT written in C+ +, you need to
set the compiler option.

To set the compiler option in Visual C+ +:

1. Open the project file in Visual C++.

2. Click Project > Settings, and then click the Link tab.

3. In the Project options box, scroll to the end and add /fixed:no to the options.

If you are working with the C+ + application in an IDE other that Visual C+ +,
make sure that you set the equivalent option to indicate that there are relocations in
the executable file before you compile.

Instrumenting Object Code
To instrument the object code for the AUT:

@ 1. Click Tools > Instrument, or click Instrument on the Standard toolbar.

Instrument Object Code

— Project selection

|

Instrurment

Files b instrument: Add.. | Hemove | Stop

File Cancel
[V D:\Program Files\Flational\R ational Test 745 3gple Applicatiol

LClose

il

Help
Add button

d | ol

Date instrurnented:

— Source file directory [overide setting in coverage dictionary]

I Browse... |

If the AUT has dependent .dll files, and you want to get coverage information
on the code written in these files, you must add them to the Files to instrument
list. If you specified the executable file for the AUT on step 2 of the New Project
Wizard, then the Files to instrument list already contains the path of the
executable file, as well as any dependent .dll files that TestFactory found in the
same directory. If you did not specity the executable file for the AUT in the
New Project Wizard, then add it to the Files to instrument list now.

Instrumenting the Application-Under-Test

© N o u

To add the .exe file and dependent .dll files, or the .class or .jar file to the
Files to instrument list, click Add, and then browse to and select the files for
the AUT.

TestFactory lists the selected file and the dependent .dll files that it can detect.
Make sure that all of the files that you want to instrument are listed.

If the AUT has a dependent .dll file that is not in the same directory as the
executable file, and you want to instrument the .dll file, click Add, and then
browse to and select the file.

Leave the check box next to the .exe or .class file path selected. If the AUT is a
C+ + or Visual Basic application, select the check boxes for all of the .dll files
that you want to instrument.

To leave a file uninstrumented, clear its check box.
To remove a file from the list, click the file path, and then click Remove.
Click Instrument.

After instrumentation is completed, click Close.

Instrumenting Visual Basic Source Code

Instrumenting Visual Basic Source Code

To instrument Visual Basic source code files:

% 1. Click Tools > Instrument, or click Instrument on the Standard toolbar.

Ingtrument Source Code
Add button

— Project zelection

|

Inetrumert

‘Wizual Basic project files [*.»bp]: Add... | femoye | Stop

File: | Sitatus [e WETIRES

Cancel

LCloze

duil

Help

D ate instrumnented:

— Options for rebuild

¥ Fiebuild after instrumerting source Gtart WE

Path ta Visual Bagic; |D':\Frogram Files\Microsoft Visual Studioky Browse...

— Source file directom [overide setting in coverage dictionary)

polk

I Browse...

3-7

Instrumenting the Application-Under-Test

If you did not specify the source code method in step 3 of the New Project
Wizard, then the Instrument Object Code dialog box opens instead of the
Instrument Source Code dialog box. If this happens, close the Instrument
Object Code dialog box, and then do the following:

a. Click Tools > Options, and then click the Project tab.

Options 2]
Property Lists | Coverage Browser I Uzer-Defined Properties I
General Application Mapper I Pilots

— Application-under-test

Executable: ID:\F‘rogramFiIes\HationaI'\FlationalTest Browse... | Paint... |

LCommand line: I
Start in: ID:\Program Files*R ationalsFational Test Browse... |
— Programming language— [Java environment

8 Kt proiter:

& Wizual Basic -
Fuarsfiie: frost: Y e
Ll (& yirta| machine & Wicrasaft
" Java) Bnplet viewer) 50n
0 [Bh

— Ingtrumentation method — .
) WHfen provider

¢ Object code I Bravse,.. |

" Sowce code I tifris:

ak. | Cancel | Help |

b. Under Instrumentation method, click Source code.
c. Click OK.

d. To open the Instrument Source Code dialog box, click
Tools > Instrument, or click Instrument on the Standard toolbar.

To list the main project file for the AUT in the Visual Basic project files box,
click Add, and then browse to and select the .vbp file. Leave the check box next
to the file path selected.

An AUT can consist of a main application and a set of secondary applications
that the main application loads and executes. A secondary application can be one
that is developed as part of the application, or it can be a third-party application.

Instrumenting Visual Basic Source Code

To instrument a secondary application in addition to the main application, click
Add and select its .vbp file. Leave the check box next to the file path selected.

If you add secondary files to instrument, be sure to add the .vbp file for the main
application first, so it is at the top of the Visual Basic project files list.

NOTE: If you specify a secondary application to instrument, TestFactory
automatically adds its executable file to the list of executable files to map. For
information about mapping secondary applications, see Mapping Secondary
Applications on page 4-69.

To leave a listed .vbp file uninstrumented, clear its check box.

After you instrument the source files, you must rebuild the executable file. To
rebuild the executable file automatically from instrumented source files, leave
the Rebuild after instrumenting source check box selected.

NOTE: We strongly recommend that you use the automatic rebuild option.
If you clear the Rebuild after instrumenting source check box, you must
rebuild the .exe file in Visual Basic while the Instrument Source Code dialog
box is open. Otherwise, TestFactory does not save the instrumentation.

If the path shown in the Path to Visual Basic box is incorrect, enter the correct
path to your Visual Basic executable file.

To remove a .vbp file for a secondary application from the Visual Basic project
files list, click the file path, and then click Remove.

Make sure that all of the files that you want to instrument, and no others, are
listed and checked, and then click Instrument.

If Visual Basic cannot rebuild the executable file, do the following:
Clear the Rebuild after instrumenting source check box.

a.
b. Click Start VB.

o

Determine and correct the cause of the problem.
d. Rebuild the executable file manually.

e. Save the project, and then quit Visual Basic.

NOTE: If you still have problems making the executable file, make sure that
you can build the project using just Visual Basic.

After instrumentation is completed and the executable file is rebuilt, click Close.

Instrumenting the Application-Under-Test

The Coverage Dictionary

3-10

As TestFactory instruments code, it creates a coverage dictionary that it uses to
calculate code coverage for scripts. If every member of your testing team shares the
same build of the AUT, and saves test data to the same project, then each has access
to the coverage dictionary after the AUT is instrumented.

If team members share the same build of the AUT, but have independent projects
and save test data to separate repositories, then they can move the coverage dictionary
between repositories to share it. A developer can instrument AUT source files and
export the coverage dictionary for use by testers who only have access to AUT
executable files. A tester can then import the coverage dictionary and use it to obtain
code coverage data on scripts (as long as the scripts run against the executable file
made from the same instrumented AUT). To move a coverage dictionary between
projects, you must export it from one project and import it to another project.

NOTE: The coverage dictionary is visible only after you instrument source files
or preinstrument the Visual Basic AUT using the stand-alone instrumentor.

Exporting and Importing the Coverage Dictionary
To export the coverage dictionary after you instrument source files:
1. Click Tools > Import/Export Dictionary.

Import/Expornt Coverage Dictionary HE

Impart coverage dictionary from:
port G g ¥ oK I
Impart - - - Canecel |
@ B ID:'\F'rogram Files'R ational\Rational Test \Sample 4p Browse. .. |

Help |

Action

2. Under Action, click Export.

In the Export coverage dictionary to box, enter the path for the exported
dictionary file, including the .vcd file name extension.

4. Click OK.

Importing the Coverage Dictionary
To import the coverage dictionary:
1. Click Tools > Import/Export Dictionary.

2. In the Import coverage dictionary from box, enter the path of the file
to import, including the .vcd file name extension.

Instrumenting Visual Basic Source Code

3. Click OK.

After you import the coverage dictionary, TestFactory can calculate code coverage
metrics for the scripts that you generate and run.

Specifying the Source File Directory for Browsing Coverage Data

If you import a coverage dictionary so that you can view coverage details in the
Coverage Browser, you must specify the directory for the instrumented source files
for the project.

To specity the instrumented source files path:
1. Click Tools > Instrument.
2. In the Source file directory box, enter the source file directory.

3. Click OK.

Using the Stand-Alone Instrumentor to Instrument Visual Basic
Source Code Files
If you have access to the Visual Basic source files for the AUT, you can instrument
them at build time using the TestFactory stand-alone instrumentor. Every developer
and tester who installs the new build can use TestFactory to get code coverage data

without having to instrument the source files. The TestFactory stand-alone
instrumentor is intended for use in a makefile.

To instrument the AUT outside of the main TestFactory program, type the
following command in the makefile:

sga7sci ...\<AUT name>.vbp
where ...\ <AUT name> is the full path of the project.

To instrument a secondary Visual Basic application that the AUT calls, add the full
path of its .vbp file to the command-line argument, as shown in the following
example:

sga7sci ...\<Main AUT name>.vbp <Secondary app names.vbp

TestFactory creates just one coverage dictionary, regardless of whether you
instrument just the main project file for the AUT or instrument multiple files.

After you instrument the AUT, you can proceed to the next task—mapping
the AUT.

Instrumenting the Application-Under-Test

3-12

»»» CHAPTER 4

Developing and Working with the

Application Map

This chapter describes how to develop an application map for the AUT. It includes
guidelines on how to prepare for mapping, procedures for mapping and evaluating
the application map, and methods you can use to fine-tune the application map. This
chapter includes the following topics:

4

4

4

About TrueMap Technology

Mapping the AUT for the first time

Viewing and evaluating the Mapping Summary report and the application map
Application map objects and their properties

Excluding specific functions in the AUT from mapping and testing
Improving the application map

Using interaction objects to guide the Application Mapper through the AUT
Using UI object properties to specify input and interaction order for mapping
Creating and mapping a region object for an unmapped control

Mapping similar windows

Timing events during mapping

Reclassitying a generic object

Handling error message and crash transition objects in the application map
Mapping new builds

Mapping secondary applications

Inserting TestFactory objects in the application map

Creating and working with TestFactory reports

4-1

Developing and Working with the Application Map

About TrueMap Technology

The application map is the foundation for automatic script generation in
TestFactory. To create the application map, TestFactory uses its TrueMap
technology to thoroughly explore the user interface of the AUT and exercise every
control it finds. The Application Mapper tool uses the UI library of object classes
to identify and reconcile the controls it finds to build a detailed, hierarchical
application map that models the graphical user interface of the AUT. The application
map gives you access to all user interface objects, scripts, reports, object properties,
and coverage data for a TestFactory project.

The Pilots that you insert use the application map to generate scripts that test the
AUT. Itis important that you run Pilots in areas of the application map that are fully
developed and accurately represent the user interface of the AUT. With a well-
developed application map, your Pilots can generate scripts that thoroughly test
your product.

Mapping the AUT for the First Time

Before you map the AUT for the first time, consider the functional areas it contains,
whether those areas have stabilized, and the complexity of the interactions between
the functional areas.

The time it takes to create a full application map can vary from minutes to hours,
depending on the size and complexity of the AUT. If your AUT is large and
complicated, consider mapping just the first level of controls on the first pass, and
then focus your mapping efforts on individual regions. For information about depth
of mapping, see Using the Application Mapper Wizard to Map the AUT for the First Time
on page 4-5.

Mapping the AUT for the First Time

Setting Up the Mapping Environment

During the mapping process in TestFactory, the more closely the working
environment resembles that of an actual use situation, the more complete and
accurate the resulting application map. A real person using an application changes the
system environment to provide appropriate input and to otherwise get the
application to function as it is designed to function. The user might change certain
system settings, import a bitmap file to edit, or populate a form with data from a
spreadsheet program. Without this input, the application cannot perform all of the
functions it is capable of performing.

A user also determines the best time to exercise a control in an application. For
example, a user clicks a specific command button only when it is enabled, and not
while the application is responding to a previous event. If an action is not properly
timed, the application cannot respond correctly.

The Application Mapper tab in TestFactory contains controls that you can use to
set up a realistic use environment before you map the AUT. This section describes
how to specitfy support scripts for TestFactory to run before and after mapping, and
how to set the maximum amount of time the Application Mapper waits to perform
the next action after it exercises a control.

NOTE: In addition to the main application, you can map secondary applications

that the AUT loads and executes. For information about mapping secondary
executable files, see Mapping Secondary Applications on page 4-69.

4.3

Developing and Working with the Application Map

Froperty Liztz I Coverage Browser | Lzer-D efined Properties
General | Praject Application apper | Pilats
Application Mapper — List of executable files to map
tab File I
Hemave |
— Support script
Startup: I Browse. .. | Clear I
Startup box T Cleanup: I Browse... | Clear I
Cleanup box
b ximum wait for idle: I 2000 seconds
StartAUT W aitlnterval: I 4.00 seconds

Specifying Support Scripts

To set up the system environment before mapping and then restore the system
environment after mapping is completed, you can use support scripts. For example,
if you want to configure a database and give the AUT access to it during mapping,
you can create a Robot script that configures the database, and then specify the script
as a startup script for mapping. To restore the system to its previous state after
mapping, you can create and specify another Robot script as a cleanup script.

To specity support scripts for mapping:

1. Click Tools > Options, and then click the Application Mapper tab.

QK Cancel Help

To specify a startup script, use the Browse button next to the Startup box.
To specify a cleanup script, use the Browse button next to the Cleanup box.

4. To remove a script from the Startup box or Cleanup box, click the adjacent
Clear button.

5. After you specify support scripts, click OK.

Mapping the AUT for the First Time

Using the Application Mapper Wizard to Map the AUT for the

First Time

If you specified the path to the executable file in step 2 of the New Project Wizard,
then you can use the Application Mapper Wizard to start the Application Mapper
for the first time. (For information about the New Project Wizard, see Using the New
Project Wizard on page 2-3.) Otherwise, you must first enter the executable file path
in the Executable box on the Project tab.

To enter the path to the executable file on the Project tab:

1. Click Tools > Options, and then click the Project tab.

Options 2]
Property Lists | Coverage Browser I Uzer-Defined Properties I
General Application Mapper I Pilots

— Application-under-test
Executable: ID:\F‘rogram Files\F ational\R ational Test Browse... | Paint... |
LCommand line: I
Start in: ID:\Program Files*R ationalsFational Test Browse... |

— Programming language —

—Java envirohment

8 Kt proiter:

& Wizual Basic -
e Fuarsfiie: frost: Y e
x* (& yirta| machine & Wicrasaft

" Java) Bnplet viewer) 50n

0 [Bh

— Ingtrumentation method —) ier provider
¢ Object code | BTOWEEL: |
' Source code [ptiais:
ak. | Cancel | Help |

2. Under Application-under-test, enter the path to the .exe, .class, or jar file for
the AUT in the Executable box.

3. To pass one or more command-line arguments to the AUT when it is started
from TestFactory, type the argument in the Command line box. Be sure to
specify the command-line argument in the syntax that the AUT requires.

4. In the Start in box, enter the full path to the working directory. If you do not
enter a start path, TestFactory uses the AUT executable path.

5. Under Programming language, click the programming language for the AUT.

Developing and Working with the Application Map

4-6

6.

9.

If the AUT is written in Visual Basic, and you want to instrument the executable
file (object code) instead of source code, under Instrumentation method, click
Object code.

If the AUT is written in Java, then under Java environment, click the option for
the Java virtual machine or applet viewer on which you plan to run the AUT.

If the AUT is written in Java, then under Java environment, type command-
line arguments that you want to pass to the Java virtual machine or applet viewer
in the Options box.

To save your settings and close the Options dialog box, click OK.

NOTE: We strongly recommend that you instrument the AUT before you begin
to map it.

To map the AUT for the first time using the Application Mapper Wizard:

1.

Click Tools > Application Mapper, or click Application Mapper on the
Standard toolbar.

Apy on Mapper Wizard - Step 1 of 3

The Application Mapper iz used ta both create and update a map of the user
interface of the application-under-test [&T).

AUT and any facility that iz acceszible through the AUT. It is important
that you congider the capabilities of the AUT and the impact they might
have in the mapping process.

o The Application Mapper exhaustively explares the uzer interface of the

If there are controls that you do not want the Application Mapper to
exercize, it iz strongly recommended that you map only a zingle level of the
AUT. Specify thiz option in step 3 of the wizard.

Alternatively, you can exit the Application Mapper wizard and restrict the
uze of specific control: before mapping the AT, Pres: Cancel and then
uze the classes and properties in the Ul Library to specify the restictions.

< Back Cancel

Mapping the AUT for the First Time

2. Click Next.

Application Mapper Wizard - Step 2 of 3

The Application Mapper will use the following information while mapping the
application-under-test.

If you want ko change any of the information, cancel the wizard, and then provide the
new information on the Project tab in the Options dialog box [T ools -> Options].

Application to map

AUT executable:

LCommand line: I

Start it ID: “Program Files\Rational\F ational Test \S ample Applications:

< Back I MHest » I Cancel |

3. [Ifany of the project information displayed under Application to map is
incorrect, click Cancel, and then do the following:

a. Click Tools > Options, and then click the Project tab.
b. Under Application-under-test, modify the incorrect value(s).
c. Click OK.
d. Repeatsteps 1 and 2.
4. Click Next.

Application Mapper Wizard - Step 3 of 3

Specify the object in the AUT where the mapping process should begin. If the
Application Map folder iz empty, mapping starts at the entry point to the application.
Otherwize, pou can specify any object in the exizting application map az the starting
paint.

Mext, indicate the extent of the mapping process. Full-depth mapping maps and
exercises every | object encountered. Single-level mapping exercizes the starting
objgct, and then maps the first level of available contralz, but does not exercize them. |f
there are controls that should not be exercized. select the single-level option.

Begin where and go how far

Starting ohject: [<<Roots> Browse... |

Depth: & Full
© Single level

< Back Cancel

Developing and Working with the Application Map

5.
6.

The Application Mapper uses the starting object as its base for exploring the
AUT user interface. On the first mapping of the AUT, the default <<Root>>
is the appropriate starting point. After you map the AUT the first time, you can
choose any Ul object in the map as the starting object.

You can map the AUT to full depth or single-level depth. To map the AUT to
full depth, the Application Mapper begins at the starting object and explores all
levels of the AUT, exercising every control it encounters until it has taken every
path available. To map the AUT to single-level depth, the Application Mapper
drives to the starting object, and then exercises the control it represents.
TestFactory then maps the controls that are exposed, but does not exercise them.
Before you choose the depth of mapping, consider the size, complexity, and
stability of the AUT.

NOTE: If the AUT is large or complex, or contains controls that you do not
want TestFactory to exercise, map to single-level depth on the first pass. You
can then select a starting object in the area of the application map where you
want to start testing and map to full depth from that object. For instructions,
see Mapping New Builds on page 4-66.

To select the depth of mapping, click Full or Single level.

To start mapping, click Finish.

NOTE: Be sure you do not use the computer while mapping is in progress.

On-Screen Events During Mapping

After you start mapping, the following events occur:

>

>

The TestFactory window closes.
The Application Mapper progress bar appears at the bottom of the screen and
displays information about the mapping process.
Busy Mapping # of new
indicator timer objects
A jeation Elapsed: Status: ew: Modified:
é Step [A't'HZ]I |ou:§u:us [Searching for active windaw [te3 a2 ‘ |
Stop Mapping # of modified
button status objects
A mask darkens the screen and displays the message Running Application Mapper.
TestFactory starts Robot, and then minimizes the Robot window.

Mapping the AUT for the First Time

» TestFactory starts the AUT and maps it.

» After the mapping session is completed, the TestFactory window is restored.

Stopping the Mapping Process

If mapping takes longer than you expected, or you need access to something on your
computer, you can stop mapping at any time.

To stop mapping:
» Press ALT+F12 or click Stop (Alt+F12) on the Application Mapper progress bar.
After you stop the mapping process, allow TestFactory time to stop Robot activity,

quit the AUT, and restore its own window. This can take a few minutes.

NOTE: If you stop mapping, then the next time you map, use the same
starting object that you used before you stopped mapping. Mapping will pick
up where it left oft.

Developing and Working with the Application Map

Viewing and Evaluating the Mapping Summary Report and
the Application Map

After TestFactory completes a mapping session, it displays the resulting application
map in the left pane. TestFactory displays the contents of the Mapping Summary
report in the right pane.

Viewing the Mapping Summary Report

4-10

Every time you map the AUT, TestFactory creates 2 Mapping Summary -
<date time> report and places it in the Mapping Reports folder. The Mapping
Summary contains information that you can use to evaluate and improve the
application map.

ED Mapping Reports

&% 1= Fapping Summary - Moy 10, 03-40 P Mapping Summary report object in the left pane
Name | ObjectPath

Statistics:

Depth Single Lewel

Starting object path «<Foaot>>

Cormpletion status Completed MGPPIHQ $ummafy report contents

Elapsed time 00-00:19 displayed in the right pane

Crash objects 1]

Mew ohjects 12

Mew window objects 1

Mew child objects 1]

hodified ohjects 1]

Frevioushy mapped objects .. 0

Warnings 0 Double-click here to jump to the Classics
New /‘4 dow objects: Path Login window object in the application map.

Classics Login Classics Login

The Mapping Summary report lists the starting object for mapping, the depth of
mapping, the number of new and modified objects found, executable files that were
excluded from mapping, deleted objects, new windows mapped, and more.

To jump to a Ul object listed in the Mapping Summary report, double-click the
object name. TestFactory places the focus on the selected Ul object in the
application map.

To return to the Mapping Summary report contents in the right pane, click
Previous Object on the Standard toolbar.

Viewing and Evaluating the Mapping Summary Report and the Application Map

Expanding and Navigating the Application Map

B

TestFactory provides several ways for you to view the entire application map or
selected areas of the application map.

To view sections of the completed application map:

» To expand an individual object in the application map just one level:
— Click the plus character (+) next to the object.
— Double-click the object.

» Tojump to and expand objects in the map, use the up, down, and right arrow
keys on your keyboard.

» To fully expand an object in the application map:
— Click the object, and then click Expand on the Standard toolbar.
— Right-click the object, and then click Expand All on the shortcut menu.

NOTE: If the AUT is large, complete expansion of the entire application map
can take several minutes.

As long as you click objects in the application map, TestFactory keeps track of where
you click. This means that if you are comparing different regions of the application
map, and lose track of the objects you previously selected, you can retrace your steps.

To jump to objects that you have recently selected in the application map:

» Tojump to the last object you selected, click Previous Object on the
Standard toolbar.

» Tojump to the next object in a series of objects you selected, click Next Object
on the Standard toolbar.

After mapping is completed, you must check the results for completeness and
accuracy. Look for unmapped controls, replicate windows, and other discrepancies
between the AUT user interface and the application map. To help you compare the
application map with the AUT, you can use the StartAUT feature, or you can use the
Go To “Control” feature.

To use the StartAUT feature to start the AUT from TestFactory:
» Click StartAUT on the Standard toolbar.

Developing and Working with the Application Map

To use the Go To “Control” feature to start the AUT and go to a specific control in
the user interface:

» In the application map, right-click the UI object mapped for the control you
want to access, and then click Go To “Control” in AUT on the shortcut menu.

...|:| QK
= Account Info

)

Capy
Mapping Reports. =281E
hat Scripts

| 3

Likrary Map 1t

GoTo"ComboBox" in AUT

Change Subclass...
Expand All

After you click Go To “Control” in AUT:

» The TestFactory window closes.
» The Go To Control progress bar opens at the bottom of the screen.

Busy indicator Time elapsed

o To Elapsed: Status:
. Stop [AIF12 e
é [00:00:08 | [waiting For idle...

Stop (Alt+F12) button Status

» A mask darkens the screen and displays the message Go To Control.
» TestFactory starts the AUT and drives to the selected control.
» After TestFactory drives to the control, the Go To Control progress bar closes

and the TestFactory window is restored. The AUT stays open on the screen.

NOTE: Be sure to wait until TestFactory restores its window before you
exercise controls in the AUT.

Application Map Objects and Their Properties

Application Map Objects and Their Properties

The application map includes objects that represent all of the controls that

TestFactory found in the AUT user interface, the actions that exposed additional
user interface, and the transitional states encountered, such as a window closing.
The following figure shows part of the application map for the “Classics” sample

application.
= Application Map .
o b StataUT StartAUT object
E| Claszics Login— Ul objects
=0 Edsie— . ! .
B9 LeftDlick action object
" it transition object
E-f3 LeftClick
i3 Close

E|;i TabContral
-] Album
B Details
-3 Order It
2 LeftClick

The application map contains Ul objects, action objects, shortcuts, and transition
objects. Except for shortcuts, each object in the application map is an instance of an
object class found in the UI library. The basic object types are described below.

TestFactory displays the following five types of objects in the application map
hierarchy under StartAUT:

» Known Ul objects represent the various controls that the Application Mapper
identified in the user interface. These include check boxes, list boxes, command
buttons, combo boxes, grid controls, and so on. Each is an instance of a
UI object class in the UI library.

NOTE: TestFactory maps some control types, such as grid controls and
calendars, that TestFactory does not currently test. TestFactory maps a grid
control as a grid UI object, but Pilots cannot exercise the cells in the grid
unless you first create region objects for them. For information about
creating region objects, see Creating and Mapping a Region Object for an
Unmapped Control on page 4-47.

4-13

Developing and Working with the Application Map

)

=

EQO

i

» Generic Ul objects represent controls that the Application Mapper encounters
but cannot recognize. Although the Application Mapper queries the control for
recognition properties such as class name, style, and text, it cannot match these
properties with those of a known class in the UI library. Generic objects are
often custom controls.

» Action objects represent the actions to which controls in the AUT respond
during mapping. Action objects include LeftClick, RightClick,
LeftDoubleClick, SelectTab, SetState, and ClearState.

An application map contains a single StartAUT action object that represents the
action to start the AUT executable file. The StartAUT object is always the top-
level action object in the application map hierarchy. The Application Mapper
and Pilots use it to start the AUT.

» Transition objects indicate where a window closed, where the AUT
terminated, or where the AUT crashed.

— Crash transition objects show where the AUT failed during mapping.

— Close transition objects show where an action caused a window to close.
- Exit transition objects show where an action caused the AUT to terminate
normally.

» Shortcut objects show where the Application Mapper encountered a window
that was already mapped on a different path through the user interface. The
shortcut points to the window object originally mapped. To display the
properties of the window a shortcut points to, click the shortcut. To jump to the
mapped window object that a shortcut points to, double-click the shortcut.

Renaming Ul Objects in the Application Map

As TestFactory maps input controls such as text boxes and combo boxes in the AUT,
it assigns general names such as “TextBox1” and “TextBox2” to the UI objects it
maps for them. To make an input Ul object in the application map easier to identify,
you can rename it.

To rename an object in the application map:
1. Click the object.
2. Press F2, and then type a new name in the active text box.

3. Press ENTER.

Application Map Objects and Their Properties

Properties of Objects in the Application Map

Objects in the application map have two kinds of properties— Ul object properties
and user properties. This section describes Ul object properties and user properties
and how to view them.

Ul Object Properties

Every object in the application map has UI object properties. These are the
behavioral and physical attributes of the UI object (and the Ul object class to which
it belongs).

To display the UT object properties for an object:
» Click the object in the application map.
The UI Object properties are displayed in the Properties view in the top right pane.

An object has four groups of Ul object properties: Application Mapper, Pilot,
Shared, and Object properties.

To expand a properties group and view the properties it contains:

» In the Properties view, click the properties group name.

Properties groups displayed in the

Mame | Walue | Inherit P . .

Application Mapper roperties view

Pilot Click here to expand the Application
Shared Mapper properties grouy,

Object pper prop p-

Application Mapper properties determine whether and how the Application Mapper
interacts with an object. The following figure shows the Application Mapper
properties of a window UI object.

Marne | Walue | Inherit
E Application Mapper
ExerciseDuringMapping “Yes Yes

DoleftClick MNo Yes

DoleftDoubleClick No Yes Application Mapper properties
DoRightClick Yes Yes of a window object
Windowhdatch Thrashold 80 Yes

UsevaitForldle Yes Yes

4-15

Developing and Working with the Application Map

Pilot properties determine whether and how TestFactory exercises an object during
testing. Pilot properties also establish the format and content of input passed to the
AUT during testing. The following figure shows some of the Pilot properties of a
text object.

[For controls that accept
| text as input, the

| <rine>

Name Value Inherit Properties view includes
SRPiot the Style toolbar.
ExercizeDuringT esting Sometimes es
Dodccessk evSelaction Ma Yes
DokdouseSelection Yes Yes
UseStingCases ‘Yes Yes Pilot properties
StingCaszes CMULL, L 0.1, 41,4128, 129,127,128, . Wes of a text object
UsetaskCazes es es
MaskCases [[0-9)12 212 2H0-912.20, (0922102 Yes
Uzelntegeryalues Yes Yes
b . M ATARIEAT Yae

liAl

Shared properties affect both mapping and testing. You can use them to specify a
required string case to use as input for a control, to specify the order in which
TestFactory exercises controls, and to make TestFactory wait a specified amount of
time for the AUT to respond after exercising a control. The following figure shows
the Shared properties of a text object.

I LNone:

M arme: Ikkerit

Application Mapper
Filot
H Shared

Waitlnterval 1.00 “Yes) .
RequiredStingCase e :li Shared properties of a text object
InteractionDrder 1000 Mo

Object

Application Map Objects and Their Properties

Object properties are intrinsic to the UI object. They include such properties as
ObjectPath (in the application map), RecognitionMethod, and Style. The
following figure shows the Object properties of a window object.

Marme | Walue | Inherit

B Object
OhjectFath Classics Online ez ——
WindowClassMName ThunderForm Yes
WindowStyle 382664704 o
WindowlD 3704 Mo
WindowRectangle 53.123,970,645 Mo
WindowText Classics Online Mo
Enabled Yas Mo —— Object properties of a window object
Recognitiontethod "MName=frrmkain" Mo
Style 0x00000000 Yes
Stylehdask 0x00000000 Yes
UlLibrar/Subclass YBFormiWindow Mo
Accessiey Mo
waolatileWyindow Mo es —

Application Mapper, Shared, and Pilot properties are modifiable. Except for the
RecognitionMethod and VolatileWindow properties, Object properties are purely
descriptive and cannot be modified.

To learn the function of a UI object property, right-click its name in the Properties
view, and then click What's this? on the shortcut menu.

Printing Ul Object Properties
To print a bitmap image of a UI object and all of its UI object properties:

1. Click the UI object in the application map.
2. Click File > Print or click Print on the Standard toolbar.

In addition to the UI object image and UI object properties, TestFactory prints the
project name, the date and time that you printed the image, and the path to the object
in the application map.

User Properties

In addition to UT object properties, every object in the application map has user
properties. User properties provide information about an object in the context of the
project. They consist of the read-only properties Created and Last modified,
modifiable properties such as Name and Description, and user-defined properties
that you create for the object. You can specify user properties as search filters for
objects that you want to include in a report, for scripts to include in a Test Suite, or
for Pilots to add to a user scenario or mix-in.

4-17

Developing and Working with the Application Map

Viewing User Properties

To open the User Properties dialog box and view the user properties for an object,
do one of the following:

» Click the object, and then click Edit > User Properties.

» Right-click the object, and then click User Properties on the shortcut menu.

User Properties H
— Object —hzsighed engineers
Mame: b Cove
Description: Dev: I
—Dates

Created: I'I 0 Movember 133
Last modified: I‘I 0 Movember 133

— User-defined field

Test Cycle: I

Defining a New User Property

To define a new user property for all objects in the application map:
1. Click Tools > Options, and then click the User-Defined Properties tab.
Options ﬂm

General | Project | Application Mapper | Filots |
Praperty Lists I Coverage Browser UserDefined Fropertias

Field label: Display?

<Userfield label 1> I~ ¥isible
<l Uszerfield label 2> ™ ¥isihle

Type a name for a new user property in a Field label box.

If you want to display the property in the User Properties dialog box, select the
Visible check box. If you prefer not to display the property in the User
Properties dialog box, leave the Visible check box cleared.

4. Click OK.

4-18

Application Map Objects and Their Properties

5. Toview a new user property (that you have made visible) for an object, click the
object in the application map, and then click Edit > User Properties.

Uszer Properties HE
— Object — Assigned engineers
Mame:]
Description: Dev: l—

—Diat

Created 10 Movember 199
Lastmodiect [10November 159 User-defined field

Uszer-defined figld:
’7Test Cycle: /‘/

Finding Objects in the Application Map

If you need to find scripts, Pilots, or a particular type of Ul object in the application
map, or if you want to locate all UI objects that have a specific user property value,
use the Find Objects window.

To locate objects based on UI object name, type, or user property values:

1. Click Edit > Find Objects, or click Find Objects on the Standard toolbar.

" Find Objects [_ (O] x|
| Find Objects
Name | Date Modified | window
Mamed: I Eirvel 1 o
Tupe Stap
[~ Pilat " Repart I Any Ul object Mew Search...

I™ Script ™ Marker Ul object class:

[T TestSuite [Interaction object I vl . I
User Properties. .. |

Lreate Suite

Help

LI

4-19

Developing and Working with the Application Map

2. To specify an object or objects to find, do one of the following:

C.

4-20

In the Named box, type part or all of an object name using the
following syntax:

Type To find

abc Objects named abc

abc* Every object with a name that starts with abc

abc Every object with the string abc in its name

abc? Every object with a 4-character name that starts with abc

If you specify a name to search for an object, and the object name includes
a mnemonic, be sure to type the ampersand character (&).

Select check boxes for one or more object types to find.
Alternatively:

Click ... next to the Ul object class list.

Select Objects [7]
. Filtered objects: Selected window class:
[Havigation -] vEstDindon = [Name [Objest Path | K
Selectable WESFarmiindon
objects are in WESMOIWindow Cancel
beld VE#Formuindan
YEMDIMindow il
Erst Genetic
- odalivindow
2 Dialaghindow
E—— WEEFarmidindon
WESFarmiindon
Last] vBsFormuindow
B Meruiindow
Standardhlenytindow
YBMDIFrameWindow
FileList =l
Select-» <- FBemove.

Fiker: ID biectClass

Scroll through the Filtered objects list or click First, Next, Previous, and
Last to jump to selectable objects in the list.

To select a window class or subclass in the Filtered objects list, click the
window class item in the Filtered objects list, and then click Add.

To close the Select Objects dialog box, click OK.

Application Map Objects and Their Properties

To refine the search based on the user properties of UI objects:

In the Find Objects window, click User Properties.

To specify a time interval:

% Find Objects

Name Date Modified |

v Find all objectz created or modified

& Bebween

Start date: |1?-May-1999 YI

Enddate: [|

FEitvd M

b. Type information in one or more of the available boxes in the Filter User
Properties dialog box, and then click OK.

To filter objects based on the date created or last modified, click the Date
Modified tab, select the Find all objects created or modified check box, and
then do one of the following:

May 1333 k [N

Sun Mon Tue ‘Wed Thu

Fri

25 2% 27 28 29
2 3 4 5 E
9 10 1 12 13
16 @i 18 13 20
23 24 %/ ® X
W 3! 123
A Today: 5/17/99

a0
7

Stop
Mew Search...
Lreate Suite

Help

L

Leave Between selected.

b. Tosetatime interval start date, click the down arrow in the Start date
box, and then click a calendar date.

c. To seta time interval end date, click the down arrow in the End date
box, and then click a calendar date.

Alternatively, to specify a number of previous days up to and including the
current day, click During the previous, and then type a number in the

day(s) box.

5. Click Find Now.

To jump to one of the found objects listed:

2. Close the Find Objects window.

The object is selected in the application map.

Double-click the object name in the Find Objects window.

After the Find Objects window displays a list of objects found, you can jump directly
to a listed object in the application map.

4-21

Developing and Working with the Application Map

Excluding Specific Functions in the AUT from Mapping
and Testing

4-22

The AUT can include functions that you do not necessarily want it to perform
during mapping and testing. During mapping, a control such as a “Save as” menu
command could create unwanted files. A “Clear database” or “Delete record” button
could delete data that you want to keep for testing purposes. To prevent the AUT
from performing functions such as these during mapping and testing, you can either
modify Ul object properties to exclude the controls involved from full mapping and
testing, or use an alternative strategy outside of TestFactory. The following example
shows how you can manage a print function during mapping and testing,

If you fully map or test an area of the AUT that includes the print function, you can
generate unwanted printed material. To work around this problem, do one of the
following:

» Map the first level of controls on the print dialog box, and then change the
ExerciseDuringMapping and ExerciseDuringTesting properties for the
UTI object mapped for the print control.

» Set the Windows printer driver to hold the print job(s), and then delete the
spooled jobs.

To change the ExerciseDuringMapping and ExerciseDuringTesting properties for
the print control object:

—

Map the first level of controls on the print dialog box.

2. In the application map, click the UI object mapped for the print control.

3. In the Properties view in the top right pane, click Application Mapper.

4. Double-click the Value field for ExerciseDuringMapping, and then click No.
5. In the Properties view, click Pilot.

6. Double-click the Value field for ExerciseDuringTesting, and then click Never.

For information about how to set the Windows printer driver to hold the print
job(s), and then delete the spooled jobs, see Help for your Windows
operating system.

Improving the Application Map

Improving the Application Map

The time and eftort that you invest in analyzing and refining the application map is
important. With a complete and accurate map, the Pilots that you run later can
generate scripts that correctly test the AUT.

Some applications have features that TestFactory can fail to map initially. These
features fall into the following categories:

» Multiple alternative paths in the same functional area of the AUT.
» A control that requires specific data as input.

» A control that must be exercised using a specific action.

» A control that requires a character string as input.

» Controls that must be exercised in a precise order.

» A control that the Application Mapper did not map.

» A control that the Application Mapper could not classify.

The following sections describe how to resolve these issues after a mapping session.

Using Interaction Objects to Guide the Application Mapper
through the AUT

Although the Application Mapper is very good at automatically exploring and
mapping an application, it cannot exercise the AUT the same way that an
experienced user can. Even simple applications contain controls that are active or
inactive based on certain conditions. Examples are a toolbar button such as Copy that
is only available after the user selects a list box item, or a dialog box that opens only
after the user performs a complex series of steps. To become active, a control can
require a specific mouse action, string case, or text format. In addition, functional
areas of an application can require that users exercise controls in a precise order.

An experienced user can perform all of the steps needed to take a particular path in
an area of an application that has special requirements. The Application Mapper,
however, can require your input to bring the AUT to the same state.

4-23

Developing and Working with the Application Map

Interaction Objects and Interaction Object Components

You can provide the Application Mapper with the input it needs to navigate areas of
the AUT by inserting and setting up interaction objects in the application map.
Interaction objects guide TestFactory to specific areas of the AUT that it might not
expose automatically. They do this by supplying specific input for, and defining an
ordered sequence of interactions through, specific controls in the AUT.

You can use interaction objects to map and test multiple alternative paths in a
functional area of the AUT. Without interaction objects, you can only map a single
path in a given area of the AUT.

An interaction object is a container to which you add one or more UI object
components that represent controls in the AUT. An interaction object must contain
components for all of the controls that a user must exercise to take the path that you
want TestFactory to take in the AUT.

When you add a UI object component to an interaction object, you essentially add a
copy of the UI object mapped for a control. Once you add a component to an
interaction object, that component is independent of the UI object on which it is
based. It has its own properties that you can modify to control the way in which
TestFactory exercises the corresponding control during mapping and testing.

Although TestFactory creates just one Ul object in the application map for a control
in the AUT, you can add UI object components for the same control to multiple
interaction objects. Because you can modify the properties for each independent
component, you can set up two interaction objects that contain components for the
same controls to guide TestFactory through two different paths in the AUT.

This section describes how to set up interaction objects and provides examples of
how you can use them to develop a complete and accurate application map.

Setting Up an Interaction Object

4-24

To set up an interaction object, you must:

» Insertan interaction object in the application map.
» Add the necessary components for the interaction.
» Set the properties for each component.

» Set the interaction order for the components.

This section provides instructions on how to insert and set up an interaction object
to control the direction and activity of the Application Mapper as it navigates
the AUT user interface.

Using Interaction Objects to Guide the Application Mapper through the AUT

Inserting an Interaction Object

To map an unmapped area of the AUT, you start by inserting an interaction object
in the application map at the UI object mapped for the last control that must be
exercised to expose the unmapped area. For example, on a purchase order form, a
user must enter data in several boxes, and then click a command button to submit
the order and receive a confirmation message. To map the path that includes the
confirmation message box, you would insert an interaction object at the UT object
mapped for the command button.

You must insert an interaction object at a UI object that corresponds to a control that
responds to a user action. For example, you can insert an interaction object at a menu
command, but not on a menu name.

To insert an interaction object, do one of the following:

1. In the application map, expand the top-level window that contains all of the
controls involved in the navigational path that you want TestFactory to take.

2. Click the UT object mapped for the last control involved in the navigational path
to expose more of the user interface.

3. Click Insert > Interaction Object.
Alternatively,

1. In the application map, expand the top-level window that contains all of the
controls involved in the navigational path that you want TestFactory to take.

2. On the Insert toolbar, click Interaction Object.

In the application map, click the UT object mapped for the last control involved
in the navigational path to expose more of the user interface.

TestFactory inserts an interaction object under the selected (parent) UI object.

To name the interaction object, type 2 name in the active text box, and then
press ENTER.

Type a name for the interaction object here.

4-25

Developing and Working with the Application Map

4-26

After you insert an interaction object in the application map, the Interaction Object
view in the top right pane lists the parent component that you selected in the
application map.

. 5 The Interaction Object view lists the
*+ ¥ X QB parent of the interaction object as the
Component | Irteraction Method first component.
3 Place Order LeftClick.

You cannot move the parent component that you select for the interaction object.
The parent component is always the last component listed and the last component
that TestFactory exercises as it maps and tests the interaction object.

Adding Ul Object Components to an Interaction Object

The components that you add to an interaction object must meet the following two
requirements:

» A UIobject that you add as a component to an interaction object must be located
in the same window as the parent UT object for the interaction object.

» Ul object components within the same interaction object must not lead to
different paths in the AUT. If you add two UI object components that represent
controls that lead to different areas of the AUT, an error occurs after you start
mapping the interaction object, and mapping stops.

The following figure illustrates part of the application map for the Classics sample
application. The interaction object inserted at the Place Order button object can
include components for any of the controls mapped under the Make an Order
window object on this branch of the map.

EII:I Order It
= LefiClick
=] Make &n Order ———— Make An Order window object

The Place Order button object is the parent of the
teraction interaction object.
teraction
=[] Payment Information —— Possible interaction object components
i o-Ef ComboBox
X TextBox
X TextBoxl
9 vour Infarmation

----- B #Fim
To add a Ul object component to an interaction object, do one of the following:
1. To add a component from the Image view in the bottom right portion of the

window, use the scroll bars in the Image view to display the image of the
component that you want to insert.

2. In the Interaction Object view, click the component above which you want to
add a new component.

Using Interaction Objects to Guide the Application Mapper through the AUT

3. Press INSERT, or click Insert Item on the Interaction Object toolbar.
Insert Item button Interaction Object toolbar
+ ¥ X @
Carnpanett Interaction Method
O Place Order LeftClick
4. In the Image view, point to the image of the component that you want to insert,
and then, after TestFactory outlines the image in red, click the image.
- Payment [nformation i
TestFactory outlines the
Card Mumber [include the spaces): I component you point to with
Card Tupe: IVisa -I Expirahion Lrate: a red box.
TestFactory lists the UI object component in the Interaction Object view.
tFOXQAE
Component Interaction Method
[ERECard Mumber
O Place Order LeftClick
Alternatively,
» Toadd a component from the application map, drag a UI object from the

application map to the Interaction Object view.

TestFactory places a Ul object component above the parent component in the
Interaction Object view.

NOTE: Be sure that you drag, and do not click, the UT object. If you click
the Ul object in the application map, the Properties view for the UI object
replaces the Interaction Object view in the top right pane.

To point to multiple controls in the Image view and insert them as components in
the interaction object:

1.
2.

Press sHIFT and click Insert Item on the Interaction Object toolbar.

In the Image view, point to the image of a control for which you want to insert
a component, and then click the image after TestFactory outlines the image
in red.

4-27

Developing and Working with the Application Map

4-28

3. Point to and click the image of the next control for which you want to insert a
component. Continue to point and click until you have added all of the
components necessary for the interaction.

4. To end the multiple selection process, click inside the Interaction Objects view,
or press ESC as you move the pointer.

Adding Support Script Components to an Interaction Object

If the operations needed to bring the AUT to a given state cannot be accomplished
using UI object components in an interaction object, you can add a support script
component to the interaction object to help drive the AUT to the target state. For
example, if a grid control (which TestFactory cannot currently exercise) leads to
unexposed user interface, you can record the required actions in a Robot script, and
then add that script to the interaction object.

To add a support script to an interaction object:
1. In the application map, click the interaction object.
2. Drag the support script object from the left pane to the Interaction Object view.

During mapping and testing, TestFactory exercises the script in the order that you
list it in the Interaction Object view.

Copying and Pasting Interaction Objects

If you want to insert an interaction object that includes the same components as an
existing interaction object, you can copy the existing interaction object, and then
paste the copy in the map.

To insert a copy of an existing interaction object in the application map:

1. Right-click the existing interaction object, and then click Copy on the
shortcut menu.

2. Right-click the UT object mapped for the last control involved in the
navigational path that leads to the state you want to map, and then click Paste
on the shortcut menu.

NOTE: You can only paste a copy of an interaction object within the same top
level window that contains the original interaction object. If you insert the copy at
a different UT object than the original interaction object, then TestFactory
replaces the last component in the interaction object with a component for the
new parent UI object.

Using Interaction Objects to Guide the Application Mapper through the AUT

Add all of the components required for the interaction to the Interaction Object
view. After you add all of the components, you can select interaction methods for
those that require a specific action to become available, and select styles and specify
required string cases for those that require specific text as input.

Copying and Pasting Interaction Object Components

If you want more than one instance of the same component in an interaction object,
you can place a copy of the original component at another position in the
interaction object.

To copy a component and paste it at another position in the interaction object:
1. Press CTRL, and then click the component that you want to copy.
2. Drag the component to another position in the interaction object.

TestFactory places a copy of the original component in the new position.

Setting the Properties for a Ul Object Component

Like the UI object on which it is based, a UT object component has properties that
determine how TestFactory exercises the control in the AUT during mapping and
testing. These properties are parallel to the UT object properties displayed in the
Properties view for a Ul object.

Setting an Interaction Method for a Component

The interaction method that you specify for an interaction object component
determines the action or style that TestFactory uses to exercise the corresponding
control in the AUT.

To specity an action method for a component:

» In the Interaction Object view, double-click the Interaction Method ficld for
the component, and then click the appropriate interaction method.

X AS

Cornponent

Interaction Method Interaction Method field for

| the ComboBox component

Faze
[

00K

ILaftClick
LeftD aubleClick

If you select an action method for an input-type of component to which you have
assigned a style, the selected interaction method overrides the style.

4-29

Developing and Working with the Application Map

4-30

Assigning a Style to an Input-Type Component

TestFactory provides many styles that you can assign to Ul objects and components
that represent input-type controls such as text boxes and combo boxes. A style
consists of a combination of data entry settings that TestFactory uses to test controls
during Pilot runs. Although none of the existing styles has a required string case, you
can specify a required string case for any style. If you do, the Application Mapper uses
the required string case for mapping.

We recommend that you assign a style to all of the input-type UI objects and
components in the application map. If no existing style has the combination of data
entry settings that you want TestFactory to apply to a control, you can override an
existing style with modified settings, or create a new style. Assigning and modifying
a data entry style is the most efticient way to determine how TestFactory exercises
an input control.

After you add an input Ul object component to an interaction object, TestFactory
assigns the component the Base style. A UT object or component with the default
Base style is tested using a random combination of integers, floating point values, and
string values as entry data. You can assign the component a style that has a more
appropriate mix of data entry settings for the control in the AUT.

To assign a style to an input component:
1. Click the input component in the interaction object view.

2. To open the Edit Data Entry Style dialog box, click Style Properties on the
Interaction Object toolbar.

Using Interaction Objects to Guide the Application Mapper through the AUT

The Edit Data Entry style dialog box displays the data entry settings used to test
a component (or UI object) with the default Base style.

Edit Data Entry Style

Mame:

Editing made: & Apply to this object only
€ Redefine custom stle

" Create custom style

i~ Test characteristic:

Thig shows the composition of data entries based
on the chozen settings.

Integer values

Float values

String values

- Setling:

Bequired string case: I

¥ Use random entries: 100 _I %
¥ Integer values
¥ Floating paint values

¥ Sting values

it I
Impaort... |
Export |

Cancel |
Help |

] K [

™ Use mask cases

™ Use string cases

3. Toview other available styles, under Style, click the Name box, and then click a

style name.

Style

Manme:

E diting mode: Citioe
Companies
Countries
Credit Cards
B Test characteriq[)ates

List of existing data entry styles

-

1

4. Under Test characteristics and Settings, examine the data entry composition
for the selected style, and then do the same for other styles in the Name list.

5. Inthe Name list, select the style with the data entry composition that most
closely matches the combination of data you want to use to test the control.

4-31

Developing and Working with the Application Map

6. To specify a required string case for mapping, under Settings, type a string case

in the Required string case box.

— Settings

Bequired sting case: I

¥ Use 1andom entries; |1EIEI _I? 3

v Integer values
¥ Eloating point walues
¥ Sting values

[Use mask cazes:

[Use string cases:

Type a required string
case here.

1] Bresiew.. |] ¥
I

The Application Mapper uses only the Required string case setting to exercise
the control. During testing, a Pilot uses the Required string case setting to
reach the base state for testing, and then applies the other data entry settings.

7. Before you close the dialog box, you can edit the style for your Pilot runs. For
information about changing a setting, click Help, or right-click the setting, and
then click What's This? on the shortcut menu.

If you plan to use the modified settings only for the selected component, you can
apply them as overrides of the selected style, or you can create a new style based

on these settings.

8. To apply the modified settings as overrides of the selected style, click OK.

Alternatively,

To create a custom style based on the modified settings:

Style

Hame: I"Base

Editing mode: " Apply to this object only

) Bedefine custom stile

-

To create a new style, click here.

ol Create custom shyle

a. Under Style, click Create custom style.

Mew Style Mame
Manme:

ak. I Cancel

——1 Type a style name here.

4-32

Using Interaction Objects to Guide the Application Mapper through the AUT

b. Type a name for the style in the Name box.
c. Click OK.
d. To close the Edit Data Entry Style dialog box, click OK.

TestFactory assigns the new style to the selected component and adds the style name
to the Name list and to the Select style list on the Style toolbar in the Properties
view (for UI objects).

Specifying a Required String Case for a Component Using the
Property List

An alternative way to specify a required string case for a component is to use the
Property List dialog box. The properties that you can modify in the Property List for
a component are the same as the Ul object properties that you can modify for a

UI object. The difference is that TestFactory applies the settings in the Property List
only to the component as it maps and tests the interaction object that contains the
component. Changing the property settings of a UI object component does not
affect the UI object or its UI object properties.

NOTE: We recommend that you use the Edit Data Entry Style dialog box to
specity the required string case for a component. The Edit Data Entry Style dialog
box lets you designate a style for the component, which TestFactory can then
apply later when you run Pilots to test the mapped path.

To specity a required string case in the Property List dialog box:

1. In the Interaction Object view, double-click the component name.

[Property List - ComboBox
Mame Yalue | Inherit
Application Mapper
Pilot Property List dialog
Shared box for the
Object ComboBox
component

2. In the Property List dialog box, expand the Shared properties.

[Property List - ComboBox E3

Mame Inherit
Application Mapper

Pilot

E Shared

Wwaitlnterval 200 es

RequiredStringCaze Ho Click here.
El Object =l

4-33

Developing and Working with the Application Map

3. Click the Value field for RequiredStringCase, and then type the required text
in the active edit box.

4. Close the Property List dialog box.
NOTE: Although many of the properties listed in the Property List dialog box for
UI object components are the same as those listed in the Properties view for

UI objects, the settings in this dialog box are applied only to the component.
These settings do not change the Ul object property settings of the Ul object.

Setting the Interaction Order for Components

The Application Mapper exercises controls in the AUT based on the listed order of
the corresponding components in the Interaction Object view, starting with the
component at the top of the list.

To change the interaction order of a listed component:
+ ¥ » Click the component name, and then do one of the following:
- — Use Move Up and Move Down on the Interaction Object toolbar.
— Press CTRL, and then press the up arrow and down arrow keys.

NOTE: The parent component of the interaction object is always listed last.
You cannot change its interaction order.

TestFactory observes the specified interaction order while mapping or testing the
interaction object. For information about setting the interaction order for Ul objects,
see Controlling the Interaction Order for UI Objects on page 4-44.

Excluding a Component from Mapping

If an interaction object contains a component that you want to exclude from a
mapping session, do the following:

@l » Click the component name in the Interaction Object view, and then click
Make Unavailable on the Interaction Object toolbar.

To remove a component from the interaction object:

» Click the component name in the Interaction Object view, and then do one of
the following:

|£| — Click Delete Item on the Interaction Object toolbar.

— Press DELETE.

4-34

Using Interaction Objects to Guide the Application Mapper through the AUT

Mapping the Path Set by an Interaction Object

After you finish setting up the interaction object, you can map the path it sets out in
the AUT.

To map the path for which you set up an interaction object, do one of the following:

» In the application map, right-click the interaction object, point to Map It!, and
then click Full or Single Level on the shortcut menu.

E|I:| ok
- Account | Cut
Copy

M apping Feports
ﬂ Mapping Sum =27 Easie

‘at Seripts Eul
dbrary
E wpand Al

User Properties...

Alternatively,

» Use the Application Mapper Wizard, and specify the interaction object as the
starting object for mapping.

As it maps an interaction object, the Application Mapper maps the last component to
full depth, and maps all of the other components to single-level depth.

You can use any Ul object that lies above an interaction object on the same branch
of the application map as the starting object for mapping. It a branch of the
application map contains two or more interaction objects at the same level in the map
hierarchy, the Application Mapper maps them in the order they occur in the map,
starting with the one inserted highest on the branch.

If an error occurs while the Application Mapper is exercising a component in an
interaction object, TestFactory excludes the interaction object from further mapping
and testing and displays the component name in the Interaction Object view in

red text.

4-35

Developing and Working with the Application Map

Excluding an Interaction Object from Mapping

Because interaction objects are TestFactory objects, and not UI objects, you cannot
exclude one from mapping by modifying properties. If you want to exclude an
interaction object from mapping, you must use its shortcut menu.

To exclude an interaction object from mapping:

» In the application map, right-click the interaction object, and then click
Exercise During Mapping on the shortcut menu.

5@
-] Invali Cut
% Papment Infor - Sopy
™ Your Informat) Baste
i Filat

Map It *
Click. Expand Al
Menul User Properties...
B &logindsMNe pajate
B Ebsit uring Mappin
=) uring Mapping
E‘B LeftClick uring T esting

- " v Use D
~ [l Exi Advanced 3

wihat's Thiz?

The Exercise During Mapping command toggles the mapping availability status of
the interaction object.

If you want to include the interaction object in mapping sessions later, be sure to
reset its active status.

Using Interaction Objects to Map Alternative Paths in the AUT

4-36

A functional area of an application can lead to multiple states, depending on how a
user exercises the controls it contains. During application development, it is
important that you map each available path in the AUT.

If you run a Pilot to test a region of the AUT that is not fully mapped, the Pilot can
encounter controls it does not “expect” to see. If this happens, the Pilot generates
UAW (unexpected active window) scripts and can fail to generate a code-coverage
optimized best script. (For information about UAW scripts, see Examining Pilot Run
Results on page 5-12 and Viewing a UAW Script on page 5-19.)

You can use interaction objects to map all of the available paths in an area of the AUT.
Without interaction objects, you can only map one of the available paths in an area
of the user interface.

Using Interaction Objects to Guide the Application Mapper through the AUT

Using an Interaction Object to Map Beyond a Logon Dialog Box

If the AUT contains a logon dialog box that requires input such as a password or user
ID, then you must perform additional steps after the first mapping session so that the
Application Mapper can access more of the user interface. The following figure
shows the Classics Login dialog box and the resulting application map after mapping
to single-level depth for the first time.

Classics Login

I Classics Login dialog box

Account Info
To open the Classics window, a
user must first enter a user

= d: name and a password, and
sssword: | then click OK.

Full Nams: rent Culpito

[T Remember Passward

OK | Exit

- Application Map

o} StartalT

=] Classics Login
-5 Efxit

Single-level depth application map of Classics

El{f] Account Infa

Ul object mapped for the Full Name combo box = ComboBox
----- ¥ Remember Password
Ul object mapped for the Password text box 7] TextBox

To get from the logon box to the Classics window, a user must enter a user name in
the Full Name combo box, type a password in the Password text box, and then click
OK. Because TestFactory did not have the required string cases to pass to the combo
box and text box, the Classics window did not open after the Application Mapper
exercised the OK button. To map beyond a login dialog box such as this, you must
supply TestFactory with the necessary input to pass to the AUT, and specify the
correct order for exercising the controls involved. The most efficient way to do this
is to set up an interaction object.

To map beyond a login dialog box using an interaction object:
1. Map the AUT to single-level depth.

After mapping is completed, the application map contains the StartAUT object,
and the UI objects mapped for the logon dialog box and its child controls.

2. On the Insert toolbar, click Interaction Object.

4-37

Developing and Working with the Application Map

3. In the application map, click the UT object mapped for the last control involved
in the navigational path to expose more user interface. (In the Classics Login
application map, the OK button object is the appropriate selection.)

B3 Application Map
2B StaralT

. 2] Classics Lagin
-0 E&xit

@ oK
=73 Account Info

ComboBox

¥ FRemember Passward
: TextBox

OK button

4. Type a name for the interaction object in the active text box.

=3 0K
Type a name for the interaction object here.

teraction]

5. Add all of the components necessary for the interaction to the interaction object.

4+ ¥ i1 XK 2=
Caomponent | Interaction Method
ComboBox Faze
TextBox Eare
= 0K LeftClick.

6. Set the interaction method for each component that requires a specific action.

Specify a required string case for the styles of each input-type component. (In
the Classics example, you would specify required string cases for the Base style
assigned to the ComboBox and TextBox components.)

7. To set the interaction order for a component, click the component name, and
then use Move Up and Move Down on the Interaction Object toolbar to change
its order in the list.

8. Remap the AUT from the <<Root>> object.

TestFactory passes the required string cases to the AUT. Supplied with the necessary
logon information, the Application Mapper can access and map more of the
user interface.

Although using an interaction object is the most convenient and flexible way to map
beyond a logon dialog box, you can also do it by modifying the UI object properties
for UT objects in the application map. For information about modifying UI object
properties to direct mapping, see Using UI Object Properties to Specify Input and
Interaction Order for Mapping on page 4-41.

4-38

Using Interaction Objects to Guide the Application Mapper through the AUT

Mapping Alternative Paths in an AUT

The following figure shows the Make An Order dialog box in the Classics sample
application. To order a selected album, a user types a credit card number in the Card
Number box, types the expiration date for the card in the Expiration Date box, and
then clicks Place Order.

Make An Order

Item: Bach - Brandenburg Sub-Tatal: $16.99

Concertos Nos. 1 3 S4H: $2.00

Quantity: |17 Total: $18.99

— Payment Infarmation To place an order
for a selected

Card Number (include the spaces): ||

item, a user must
Card Type: IViSa vl Expiration Date: Ii typt‘; Info;rr:t:on
in these te
boxes, and then

—Your Information click Place Order.

Narme IDatabase Admin

Streetl1 8880 Homesfead Drive

City, State Zip |Cupertindg, CA 95014

Telephone |408,863-9900

Flace Order | Cancel |

After a user correctly submits an order, Classics displays the Order Confirmation
message. If the user clicks Place Order without first completing the Card Number
and Expiration Date boxes, Classics displays the Incomplete Order message. To test
this area of Classics, you must first map both of these paths in the user interface.

To map alternative paths in an area of the AU'T, start by mapping the default path that
the Application Mapper takes if you do not specify input for controls in the AUT.
Next, insert and set up an interaction object for each alternative path that a user can
take, starting from a specific control (the last control involved in an interaction that
exposes unmapped user interface).

4-39

Developing and Working with the Application Map

4-40

To map the path to the Incomplete Order message box in Classics, the Place Order

button object in the application map was mapped to full depth. The following figure
shows the mapping results.

SRS Flce Order

=~ LefClick .
-] Incomplete Drder Ul object mapped for the
5.2 0K Incomplete Order message box
B LeftClick
¥ Closs

be: ol must complete the order form before you can make vour purchase.

- ¥ ClossButton
To map the path to the Order Confirmation message box in Classics, an interaction
object was inserted in the application map at the Place Order button (the last control
involved in the interaction). The following figure shows the Confirm Order
interaction object and the corresponding Interaction Object view in the right pane.

£l Place Order Interaction Order view for the

= LeftClick Confirm Order interaction object
- Inzamplete Order

-9 LeftClick.

ke 'ou must complete the order form bef + $iOK AR
5 CloseButton Object | Interaction Method
f TestBox Lt Nemder
TextBoxl Eapaiivr Pads
3 Place Order LeftClhick

The Confirm Order interaction object contains the Place Order parent component,
as well as the TextBox and TextBox 1 components (for the Card Number and
Expiration Date text boxes, respectively).

TestFactory assigned the Left Click default interaction method to the Place Order
component. Card Number and Expiration Date data entry styles were created for the

TextBox and TextBox 1 components. A required string case was specified for both
new styles.

Using Ul Object Properties to Specify Input and Interaction Order for Mapping

The following figure shows the results of remapping the Place Order button to

full depth.
EII:I Place Order
= LefiClick
E|-- Incomplete Order
L Bex
i B LefClick .
L& Close The application map now contains the
-k You must complete the order formbe | complete paths to the Incomplete Order message
=

| ClassButton box and to the Order Confirmation message box.

Order Confirmation

=03 Ok

B3 LeftClick
€3 Close

Using Ul Object Properties to Specify Input and Interaction
Order for Mapping

If you map an interaction object, TestFactory uses the interaction methods and
required string cases that you specified for its components to exercise the
corresponding controls in the AUT. If you map a UI object, TestFactory uses
defaults to exercise the corresponding control, regardless of whether you added the
UI object as a component to an interaction object and specified an interaction
method or required string case for it.

If you want TestFactory to exercise a control in a specific way when the Application
Mapper is not mapping an interaction object that contains the control as a
component, you must first modify the Ul object properties for the UI object that
TestFactory mapped for it. This section describes how to specify mouse actions,
required string cases, and interaction order to use for mapping UI objects.

We recommend that you specify input for controls in the AUT by representing the
controls as components in interaction objects. You can use an unlimited number of
data entry types to exercise a given control by inserting components for it in different
interaction objects. This approach to mapping and testing lets you completely
control input without having to modify the UT object mapped for the control.

4-4]

Developing and Working with the Application Map

Specifying Actions to Use for Mapping a Ul Object

If the application map contains a U object for a control that responds to mouse
actions such as double-left-click or right-click, you can use the Application Mapper
properties for the UI object to specify the mouse action(s) used during mapping.

To use the Application Mapper properties to set the correct action(s) for exercising
a control:

1. In the application map, click the UI object mapped for the control.

2. In the Properties view in the top right pane, expand the Application Mapper
properties group.

3. Double-click the Value field for the correct property (such as
DolLeftDoubleClick), and then click Yes.

4. For actions that you do not want the Application Mapper to use, click the Value
field for the corresponding property, and then click No.

The next time you map this UI object, TestFactory uses only the actions you
specified to exercise it.

Specifying a Required String Case for Mapping

4-42

If a UI object is mapped for an input control that requires specific text as input, you
can assign the UT object a data entry style, and then specify the required string case.

To assign a style to a UI object mapped for an input control:
1. In the application map, click the UI object mapped for the input control.
The default data entry style setting for an input-type Ul object is “<none>".

2. In the Properties view, click the Select Style box, and then click a style name.

|<r'u:|ne> j &j
-

g — alue | Inherit

Baze

Cities
Companies
Countries hd

Select Style list

Using Ul Object Properties to Specify Input and Interaction Order for Mapping

3. To open the Edit Data Entry Style dialog box, do one of the following:

— Click Style Properties.

— Right-click the UI object, and then click Edit Style on the shortcut menu.

Edit Data Entry Style
~Siyle

e [ECTETG -

Editing mode: ¢ pply to this object only
£ Redefine custom stile

" Create custom style

~ Test characteristic:

This shows the composition of data entries based
oh the chogen settings.

Integer values
Float values
String values

\\\M ask cases

— Setting

Bequired sting case I

¥ Use random entriess |3 _I;‘ %

¥ Integer values
[V Eloating point values
¥ Shiing walues

¥ Use mask cases I™ Use sting cases

i ¥ Brevien... | 1]

[4-9N0-9H3,3H [0-904,411{3.3}
[4-9N0-9H3, 3410904, 43,3}

oK I
Impaort...
Export...

Cancel
Help

4. Under Settings, type the required string case in the Required string case box.

NOTE: TestFactory applies the other data entry settings in the Edit Data
Entry Style dialog box only during testing. The Application Mapper applies
only the required string case you specify, and ignores the other settings.

The required string case you specify overrides the selected style. If you specify a
data entry setting that overrides the current style, TestFactory places an asterisk
character (*) next to the style name in the Name box.

5. Click OK.

The next time you map the control represented by this UT object, the Application
Mapper uses only the specified required string case as input for the control.

4-43

Developing and Working with the Application Map

You can specify a required string case for a UI object without assigning a style by
modifying a Shared property.

To specify a required string case using the Shared properties:

1. In the Properties view, expand the Shared properties group.

|<nnne> j El

Marme | Walue | Inkerit

Application Mapper

Pilot

B Shared Value field for the RequiredStringCase property
W aitlnteryal 1.007 “es
RequiredStingCaze es
InteractionJrder 1000 Ma

Object

2. Click the Value field for RequiredStringCase, and then type the required text
in the active text box.

The next time you map this Ul object, TestFactory uses only the required string case
you specified as input.

NOTE: If a required string case that you specify for a UI object will expose
unmapped regions of the AUT, then be sure to remap the affected area before you
run Pilots to test the area. Otherwise, a Pilot run in that region encounters
unexpected active windows and generates UAW scripts. For information about
UAW scripts, see Examining Pilot Run Results on page 5-12 and Viewing a UAW
Script on page 5-19.

Controlling the Interaction Order for Ul Objects

4-44

If a window in the AUT contains controls that a user must exercise in an exact order,

you can set the interaction order used during mapping and testing by doing one of
the following:

» Set up an interaction object that contains components for the controls, and
arrange the components in the correct order for mapping and testing
(recommended). For information about setting the interaction order for

interaction object components, see Setting the Interaction Order for Components on
page 4-34.

» Specify an InteractionOrder property value for the UI objects mapped for the

controls involved in the sequence.

Using Ul Object Properties to Specify Input and Interaction Order for Mapping

Setting the InteractionOrder Property for Ul Objects

All UI objects in the application map have a shared InteractionOrder property with
a default value of 1000. Because they have the same InteractionOrder value,
TestFactory exercises controls in the same window in random order during mapping
and testing,.

If you change the InteractionOrder values of UI objects mapped for controls in the
same window in the AUT, TestFactory exercises the controls based on the ascending
order of their InteractionOrder values. For example, the Application Mapper
exercises a Ul object that has an InteractionOrder value of 900 before it exercises a
UI object that has an InteractionOrder value of 1000.

If you set the value of the InteractionOrder property of a UI object to less than 1000,
TestFactory maps the corresponding control to single-level depth only. During

mapping, if a UI object that has an InteractionOrder value of less than 1000 leads to
an unmapped area of the AUT, or closes the window that contains it, mapping stops.

If you set the InteractionOrder of a UI object to a value greater than 1000, TestFactory
maps the corresponding control to the depth you specify (single-level or full depth).
If the last control in an interaction sequence exposes an unmapped area of the AUT,
and you want to map that area, be sure to set the InteractionOrder of the
corresponding UI object to a value equal to or greater than 1000.

To set the interaction order for controls using the InteractionOrder property:

1. Inthe application map, click the UI object mapped for the control that you want
the Application Mapper to exercise first.

2. In the Properties view, expand the Shared properties group.

[<nore> -
MHame | Yalue | Inherit
Application Mapper
Pilot
= Shared
Wwaitlnterval 100 Yes
RequiredStringCase Yes . .
InteractionOrder 1000 —dg——— Value field for the InteractionOrder property
Dbject

3. Replace the default value (1000) for InteractionOrder with a value that is
greater than 0 and less than 1000.

4. In the application map, click the next UT object in the interaction sequence.

In the Properties view, type a value for InteractionOrder that is greater than the
value you set for the previous Ul object in the interaction sequence and less
than 1000.

4-45

Developing and Working with the Application Map

6. Repeat steps 3 through 5 for the remaining UI objects in the interaction
sequence.

After you start mapping, the Application Mapper exercises the controls in ascending
interaction order (starting with the UT object that has the lowest InteractionOrder
value).

Restoring the Default Values for Ul Object Properties

4-46

If you have modified the UI object properties of an object in the application map,
and you want to restore the default property values for that object, you can do so at
any time.

To restore the default property values for an object:

» In the application map, right-click the object, and then click
Restore Ul Properties on the shortcut menu.

| =+150.
TextBox -

“our Informe Capy

Paste

tap I 3
Go To "TestBox" in AUT

Change Subclass. ..
Expand Al

Go To Ul Library
User Properhies. ..

Bestare Ul Properties

Delete
Style.

What's This?

TestFactory restores all of the original default values of the UI object properties.

Creating and Mapping a Region Object for an Unmapped Control

Creating and Mapping a Region Object for an
Unmapped Control

In some instances, the Application Mapper fails to detect a control in the user
interface of the AUT. The following figure shows the TestFactory window with the
project for the Classics sample application open. In the application map, the Album
tab object is selected, and the Image view displays a bitmap of the Album tab control.
The Album tab contains an image control that a user can double-click to order the
album selected. The Application Mapper did not detect or map the image control.

@, CLASSICS0724 - Rational TestFactory

File Edit “iew Inseit Tools Image Help
(S L ERM -« AR NS (@ PN
,T ED Application Map = Wame | Valuel Inherit
E‘E‘ StaralUT Application Mapper
(] | Classics Login Pilot
o Shared
Object
o
=] Classics Online
= B i Tre R T
o = StatusBar =
EE] =-20 TabControl M IDetallsl
2 Sy
& Detailz Bach
EI.EEl--ngLrelf[tIE\ick Brandenburg Concertos Mos. 1 _3
—|-2] Make &n Order
J. S. Bach
Confirmn Order
_Unmapped =] Incomplete Order
image control ayment Information
CombioB o
TemtBox
- TestBoxl
129 *Your Information
e-fig Orcler Pilot
-8 &File .
8 ik o

For Help, press F1 Froperties of Album |admin 2

4-47

Developing and Working with the Application Map

Creating a Region Object

4-48

To force the Application Mapper to detect and map an unmapped control, you must
create a region object for it in the application map. After you create a region object
that leads to unmapped areas of the user interface, remap the area of the AUT that
contains the region object.

To insert a region object in the application map, use one of the following
three methods:

Method 1 (recommended)

1.

In the application map, click the UI object mapped for the parent of the
unmapped control.

-1 frametvent
-] TabControl

In the Classics application, the Album control is the parent of an

’ image control that TestFactory did not map.
-~ Detail

Click inside the Image view in the lower right pane.

Click Draw Region on the Image toolbar, or click Image — Draw Region, and
then drag the pointer diagonally across the unmapped region of the
parent image.

Album | Details |

Bach

Brandenburg Concertos Nos. 1 3

Region object tracker drawn on the
album image in the Image view

Method 2

1.

In the application map, click the UI object mapped for the parent of the
unmapped control.

Click inside the Image view.

Click Image > Insert Region.

Creating and Mapping a Region Object for an Unmapped Control

Method 3

1. In the application map, click the UI object mapped for the parent of the
unmapped control.

2. In the Image view, right-click the parent control image, and then click
Insert Region on the shortcut menu.

TestFactory places a region object tracker on the parent image and inserts a region
object under the parent Ul object in the application map. The new region object is
given a default name “RegionN,” where N represents the number of region objects
created so far.

EI Classics Online

b StatusBar
E;i TabCaontral

5 o

..l PRegionl——— New region object

To rename the region object in the application map, click it, press F2, type a name,
and then press RETURN.

Changing the Size or Position of a Region Object

You can use the region tracker that TestFactory places in the Image view to change
the size and location of the region object.

w ko @A E o] ek E £

Album | Dietails I

Bach

Brandenburg Concertos Nos. 1 3

Region object tracker

i
£
i
£
i
£
b
b
b
b
b
b
b
b
b
b
7
:

7
e
b
e
b
e
b
e
b
e
b
b
b

To make the tracker modifiable, click it.

4-49

Developing and Working with the Application Map

To change the size of the region object tracker, do one of the following:
» Drag the tracker handles.

» Use the expand and shrink buttons on the Image toolbar.

» Press CTRL and then click the arrow keys on your keyboard.

To move the tracker, do one of the following:

» Drag the tracker to a different location in the Image view.

» Use the arrow keys on your keyboard.

For more information about changing the size and location of the region object, see
the topic Defining undetected controls in TestFactory Help.

Setting the Action or Input for a Region Object

4-50

After you create a region object, you must make sure that TestFactory correctly
exercises the control it represents. If the control requires a specific action or actions,
you can specify these by modifying the Ul object properties for the region object.If
the control accepts text or requires a specific text string as input, you can select a data
entry style for the region object.

To specify the correct way to exercise a region object using the UT object properties:
1. In the application map, click the region object.
2. Ifyou created the region object for a control that requires a specific action:

a. In the Properties view, expand the Application Mapper group.

b. Double-click the Value field for the correct action (such as
DolLeftDoubleClick), and then click Yes.

You can use region objects to supply input for controls that TestFactory does not
fully map. For example, if you create region objects for the cells in a grid control
and specify input for the region objects, you can run Pilots that test the control.

3. Ifyou created the region object for an input control, you can assign it a style and,
if necessary, specify a required string case to pass to the control. If you assign a
style, select one that has an entry data composition that best matches the mix of
entry data you want to apply to the control during Pilot runs. For information
about how to assign a style, see Specifying a Required String Case for Mapping on
page 4-42.

4. Ifyou created the region object for a control that leads to an unmapped part of
the AUT, then remap the area of the AUT that contains the control.

Creating and Mapping a Region Object for an Unmapped Control

Adjusting the Hot Spot for a Region (or Other Ul) Object

Every Ul object has a hot spot, defined by x,y coordinates, that TestFactory clicks to
exercise the control. By default, the hot spot lies at the center of a UI object. If
necessary, you can reposition the hot spot on a UI object in the application map.

To display and move the hot spot for a UI object:

1.

2.

5.

Click the Ul object in the application map.
Click Image > Move Hot Spot or click Move Hot Spot on the Image toolbar.

[h % & & @ [e § 2

Drag the hot spot to a different location on the bitmap image.

Gk Qad

To make the hot spot invisible, do one of the following:

— PressEScC.

— Click Image > Move Hot Spot.

— Click Move Hot Spot on the Image toolbar.
Remap the part of the AUT that contains the UI object.

Deleting a Region Object

To delete a region object:

1.

In the application map, click the region object, and then press DELETE.
Click Yes to confirm that you want to delete the selected item.

If you have added the region object to one or more interaction objects, then you
must manually remove the region object components and remap the affected
areas of the AUT.

4-51

Developing and Working with the Application Map

Mapping Similar Windows

4-52

As it maps the AUT, the Application Mapper compares each new window it finds
with the windows it has already mapped to determine whether the window is a
unique new object or a duplicate of a window that is already mapped. The
Application Mapper bases its comparison decision on the extent of the differences it
finds between the window object instances it encounters. If the difference between
two windows is small, the Application Mapper “decides” that the new window is a
duplicate of a window already mapped, and maps it as a shortcut that points to the
original instance of the window. If the difference is large, the Application Mapper
maps the window as a unique window object.

The application map fragment in the following figure illustrates the correct mapping
of the “Make An Order” window and the “To Make An Order” shortcut that
references the first occurrence of the window in the application map. The
Application Mapper first encountered the window after exercising the “Order It!”
command button. The Application Mapper encountered the window again after
exercising the “Place New Order” command on the Order menu.

-0 Oidder It
=~ LeftClick
-] Make An Order Make An Order window object
----- B &File
= B &0rder

E| E EPlace Mew Order..

¢ B LeftClick

" ToMake an Order ————— Shortcut to the Make An Order window object
B #view Existing Order Status...

The Application Mapper can make incorrect window comparison decisions. If two
unique windows are very similar, the Application Mapper can map the windows as a
single window object. If a window assumes states that look very different, the
Application Mapper can map two states of the same window as two separate window
objects. To correct such errors, you can either directly override the Application
Mapper decision, or you can adjust the Application Mapper sensitivity threshold to
differences between windows.

The examples in the next three sections show how to do the following:

» Merge two window objects (after the Application Mapper incorrectly maps two
states of the same window as two unique window objects).

» Split two unique windows (after the Application Mapper incorrectly maps two
unique windows as a single window and a shortcut).

» Redirect a shortcut that references the wrong window.

Mapping Similar Windows

Merging Window Objects
To override the mapping of a single window as two unique window objects:

1. Right-click the duplicate window object that should be mapped as a shortcut,
and then click Merge Windows on the shortcut menu.

[Cuit
Copy
Paste

m Account I

Map It 3
Go To "Clagsics Logi.." inaUT

Change Subclass...
Expand Al

Go To Ul Library
User Properties..
FRestore Ul Properties
Delete

wihat's This? |

To replace a window object with a shortcut, TestFactory first deletes the
window object and all of its children. Test Factory prompts you to confirm that
you want it to do this.

Rational TestFactory

& Al children of the zelected window will be destroyed. Continue?

Cancel |

NOTE: If the branch of the application map you are about to change
contains scripts, reports, or other TestFactory objects that you want to keep,
move them to another location before you merge the windows. To move an
object to a different location in the application map:

1. Right-click the object, and then select Cut or Copy on the shortcut menu.

2. Right-click an object in a different branch of the application map that you
want as the new parent for the object you are moving, and then click
Paste on the shortcut menu.

4-53

Developing and Working with the Application Map

3. To delete the window object and all of its children, click OK.

Select Objects

Filtered objects:

Selected ModelessWindow:

2 Etwit
B O

; [accountinga

B1-[Z3 Mapping Fisports

First |

Frevious |
Last |

Select-> |

Filter: JLi0bject

M i
avigation = D Epplication Map Mame ‘ Object Path | [k |
Selectable B R sunaur
objects are in =
bald. H

Cancel |
Help |

- Bemove |

first, and then click Select.
5. Click OK.

Merge Windows

To finigh merging. you heed to remap the AUT.
To have TestFactory do this for you, click Map
[N

b apping options

| will map later

Cancel |
Help |

%]

In the Filtered objects list, locate and click the window object that was mapped

To finish merging the windows, you must remap the regions of the AUT that
are affected by the change. After you do, TestFactory replaces the duplicate
window object with a shortcut that points to the original window object.

Mapping Similar Windows

6. To have TestFactory remap the affected portions of the AUT immediately, click
Map now. If you prefer to make additional changes to the application map before
remapping, click | will map later.

NOTE: If you choose to map later, be sure to map the affected area to full
depth. The correct starting object you use for mapping later depends on
whether you make additional changes that also require remapping, such as
splitting windows or redirecting a shortcut. For important information about
selecting the correct starting object for mapping, see the topic Merge two states
of a dynamic window in TestFactory Help.

7. Click OK.

Repeat these steps wherever multiple states of a single window are mismapped as
unique windows.

Splitting Window Objects

The figure below shows two sections of the application map for the Classics sample
application. The Suppliers and Purchase Order windows in Classics both contain a
Report button, each of which leads to a dialog box used to create a report. Although
the dialog boxes are very similar, they are different windows.

E‘ Suppliers Window BB Purchase Orders
El-fig PictursBox
=3 &Repart
- B[Lefipbk
B Create Supplier Report

Shortcut to window

[% CloseButton

Because the dialog boxes are so similar, the Application Mapper merges them. It
maps the first Report dialog it encounters as the Create Supplier Report window
object, and it maps the second Report dialog box as a shortcut that points to the
Create Supplier Report window object. To properly test the Create Purchase Orders
Report dialog box, you must split the windows and then remap the area that
contained the shortcut.

4-55

Developing and Working with the Application Map

To override the incorrect mapping of two unique windows as a window object and
a shortcut:

1. Right-click the shortcut, and then click Split Window on the shortcut menu.
l—.’l LEMLICE,
ECloge
BEdi

tUpdate
EDelrte

2. To complete this procedure, you must remap the AUT. To have TestFactory
remap immediately, click Map now. If you prefer to make additional changes to
the application map before you remap, click | will map later.

Split Window H
T finish splitting the window, you need to
remap the AUT.

To have TestFactory do this for pou, click Map - |
niow.
Mapping options—————————————————— Help |

| will map later

NOTE: If you choose to map later, be sure to map the affected area to full
depth. The correct starting object you use for mapping later depends on
whether you make additional changes that also require remapping, such as
splitting windows or redirecting a shortcut. For important information about
selecting the correct starting object for mapping, see the topic Split two merged
windows in TestFactory Help.

3. Click OK.

4-56

Mapping Similar Windows

Redirecting a Shortcut

In the application map fragment shown below, the “T'oObjects 2” shortcut
references the wrong window object. If a shortcut object references the wrong

window, you must redirect the shortcut before you test the corresponding area of
the AUT.

To change the referenced window for a shortcut:
1. Right-click the shortcut object, and then click Redirect Shortcut.

E|[:| Application Map

= b StartAUT
=1 MergeSplit
3 Exit
3 12 objects
3 11 objects
—.3 20 objects
2 LeftClick
-] Objects1
-3 15 objects
[+~ 14 objects
=3 13 objects
= LeftClick
miEm
-3 10 objects Split Window. ..
----- =l MinButton i ut... k
----- O MaxButton wihat's This? i
- % ClogeButton

2. In the Filtered objects list, click the correct window object.

Select Dbjects
n Filtered objects: Selected kModelesswindow:
r t ’
R B) stanalt = [Hame | Dbject Path [oK |
Selectable - Classics Login
objects are in =) Eiic Cancel |
bold. o=

B9 LeitClick Help |

Previous |
Last | (2D Order !

49 TabContral

g uFile
B #Order
B wadmin

&

iHelp

CloseButton

R

Select-> | < Bemove |

Filter: L0 biect

3. Click Select, and then click OK.

Developing and Working with the Application Map

4-58

4. To complete the change, remap the AUT. To have TestFactory remap
immediately, click Map now. If you prefer to make additional changes to the
application map before you remap, click | will map later.

NOTE: If you choose to map later, be sure to map the affected area to full
depth. The correct starting object you use for mapping later depends on
whether you make additional changes that also require remapping, such as
splitting windows or redirecting a shortcut. For important information about
selecting the correct starting object for mapping, see the topic Redirect a
shortcut in TestFactory Help.

Adjusting Sensitivity to Differences in Window Objects

If you find the Application Mapper is too sensitive or is not sensitive enough to
differences between windows in the AUT, you can change the
WindowMatchThreshold property value that the Application Mapper uses to make
its window comparison decision. If you change the WindowMatchThreshold value
for a window class in the UT library, the threshold setting affects all subsequent
comparisons of windows belonging to that class. If you change the value for a specific
window object in the application map, the threshold setting affects only that
window object.

The WindowMatchThreshold property has a default percent value of 80. This
setting affects mapping in the following way:

» If the Application Mapper compares two windows and finds that at least 80
percent of their characteristics match, then it merges them and maps the
windows as a single instance of the MainWindow UT object class. The first
instance encountered is mapped as a window UI object. A subsequent instance
is mapped as a shortcut that points to the original window object.

E Window object
E Shortcut object
» Ifless than 80 percent of the characteristics in two windows match, then the

Application Mapper places two separate window Ul objects in the
application map.

To adjust Application Mapper sensitivity globally for all subsequent mappings of
window controls belonging to a window Ul object class:

1. Expand the UI Library folder.

2. Click the window UI object class for which you want to adjust the comparison
threshold.

3.

4.

Mapping Similar Windows

In the Properties view, click Application Mapper.

MNarne | Yalue | Inherit o .

B Application Mapper Appllcatlon Mapper properties for
ExerciseDuringtapping es b= a window object class
DoleftClick MNo Yes
DoleftDoukleClick Mo Yes
DoRightClick. Yes Yes
windowhdatchThreshold 80 Yes—— WindowMatchThreshold property
UseWWaitFaorldle Yes Yes

M Pilat

In the Value field for WindowMatchThreshold, type a new percentage value.

A value greater than 80 makes the Application Mapper more sensitive to
differences between the window objects it compares and increases the chance
that two states of the same window are mapped as two unique window objects.

A value of less than 80 makes the Application Mapper less sensitive to the
differences in the windows and increases the chance that two unique windows
are mapped as a single window object.

To adjust Application Mapper sensitivity locally for the next mapping of a
specific window:

1.

Click the window Ul object in the application map that the Application Mapper
incorrectly merged or split.

In the Properties view, click Application Mapper.
In the Value field for WindowMatchThreshold, type a new percentage value.

Remap the affected portion of the AUT. Use the window object for which you
changed the WindowMatchThreshold property as the starting object
for mapping.

4-59

Developing and Working with the Application Map

Timing Events During Mapping

An AUT can contain controls that require time to respond after they are exercised.
If the Application Mapper does not allow enough time for a control to respond, it
fails to map beyond that control. To solve this timing problem, you can impose a wait
interval that forces the Application Mapper to wait for the AUT to respond.

You can use several different methods to adjust the timing TestFactory uses to
exercise controls in the AUT. You can adjust timing for all controls in the
application, for an entire class or subclass of controls, or for just a single control.

Specifying a Maximum Wait-For-ldle Time for All Controls

4-60

During mapping, TestFactory uses an idle detection routine to determine the active
status of the AUT. After TestFactory exercises a control, it waits up to 20 seconds
(the default maximum wait-for-idle time) for the AUT to become idle before it
exercises the next control. If the AUT requires more than 20 seconds to perform
most operations, you can reset the maximum wait for idle value for mapping.

To specify a new maximum wait-for-idle time:

1. Click Tools > Options, and then click the Application Mapper tab.

Froperty Lists I Coverage Browser | User-Defined Properties I
General I Praject Application Mapper il Pilats

r— Ligt of executable files to map

File | Add..

Eemoyve |

— Support script
Startup: I Browse... | Clear |
LCleanup: I Browse... | Clear |

b axinum wait for idle: I 20,00 seconds

StartAUT 'waitlnterval: I 4.00) seconds

QK Cancel Help

Timing Events During Mapping

In the Maximum wait for idle box, type a new value, in seconds.

NOTE: If the AUT is a Java application or applet, the Application Mapper
tab displays the Extended WaitInterval box, which contains a 0.50-second
default value. The StartAUT Waitlnterval box displays a 20.00-second
default value. TestFactory changes these values so that mapping does not time
out waiting for the JVM to become idle.

Timing Events for a Class or Subclass of Controls During Mapping

To control the timing of events for an entire class or subclass of controls during
mapping, you can sct the Waitlnterval property for the object class or subclass.

To specity a value for the WaitInterval property for an object class or subclass:

1.

In the application map, right-click a UI object that belongs to the object class or
subclass for which you want to adjust timing, and then click Go To Ul Library
on the shortcut menu.

In the Properties view, click Shared.

Marme | Walue | Irherit

Application Mapper

Pilot i

o Shored Waitinterval property
‘waitinterval 1.00 ez
RequiredStingCase Yes
Intrrartinerdre nnn Mn

Click the Value field for Waitlnterval, and then type in the number of seconds
for TestFactory to wait after it exercises a control that belongs to this object class.

NOTE: Because WaitInterval is a Shared property, TestFactory also imposes
the WaitInterval value that you specify during Pilot runs.

During mapping, TestFactory waits the specified number of seconds after
exercising a control before it continues to map.

To use the WaitInterval value as the absolute wait time, instead of the minimum
wait time, click Application Mapper in the Properties view, and then change the
UseWaitForldle property value to No.

Marme | “alue | Inherit
B Application Mapper
ExercizeDuringMapping Yes “es

DoLeftClick Mo ES
DolLeftDoubleClick Mo Yes
DoRightClick Wes Yes
WmdowMatchThreshold a0 YES UseWaitForldle property
UsewaitFarldle Yes Yes

4-61

Developing and Working with the Application Map

Timing Events for a Single Control During Mapping

4-62

To control the timing of events for a single control in the AUT during mapping,
you can set the WaitInterval property for the corresponding Ul object in the
application map.

To set the WaitInterval property for a single control in the AUT:
1. In the application map, click the UI object mapped for the control in the AUT.
2. In the Properties view, click Shared.

Click the Value field for Waitlnterval, and then type in the number of seconds
for TestFactory to wait after it exercises the control.

4. To use the WaitInterval value as the absolute wait time, instead of the minimum
wait time, click Application Mapper in the Properties view, and then change the
UseWaitForldle property value to No.

You can also change the timing of events for a single control by setting a WaitInterval
value for the action used to exercise the control. For example, after a user left-clicks
a command button in the AUT, a dialog box opens, but only after a 15-second delay.
To adjust the timing for this delay during mapping, you could either set a
WaitInterval value for the control button UT object, or you could set a WaitInterval
value for the LeftClick action object mapped just above the dialog box object.

The following table shows how TestFactory imposes the wait interval based on
whether you set the value for a UT object or action object in the application map, or
for an object class or action class in the Ul library.

WaitInterval property value set for Affects
A UI object in the application map Only the specific UI object
An action object in the application map The specific action object and its top-level

child UT object in the application map

A UI object class in the UT library All UT objects in the application map that
belong to the object class

An action object class in the UI library All top-level child UI objects in the application
map that respond to the action

Reclassifying a Generic Object

Reclassifying a Generic Object

)

Although TestFactory has an extensive library of object classes, it cannot recognize
every control that it encounters. Software developers create control types that are not
represented in the Ul library. If the Application Mapper encounters a control that it
does not recognize, it classifies the control as a generic object and creates a unique
generic object subclass for it.

The following figure shows a portion of the application map for the Classics sample
application. The Create Supplier Report window in Classics contains two owner-
created check box controls that TestFactory cannot find among the existing object
classes in the UI library. These are mapped as generic objects.

E| Suppliers
EIE PFictureB o=
-3 &Report
B LeftClick
EEI Create Supplier Report
E g:::::; ——————— Generic objects
B Sort By
G. State
{# City
- {® Supplisr Mams
-3 Cancel
-3 0K
- & ClozeButton

If you run a Pilot against an area of an application map that contains a generic object,
the Pilot fails to recognize the generic object and excludes it, and all of its child
objects, from the scripts it creates. To solve this problem, you must reclassify the
generic object before you test it.

To reclassity a generic object:

1. In the application map, right-click the generic object, and then click Reclassify
on the shortcut menu.
-2 &Report

B LeftClick
=l Create Supplier Report

& Generi Lub

{9 Sert B LCopy
=3 Cance EESE
D 0K

G- %l Clossf Maplt -
-3 #Cloze Go Tao "Generic” in AUT

-3 #Edit
'O e M

hange Subclass...
-3 &Delete

4-63

Developing and Working with the Application Map

2. In the Filtered objects list, locate and click the appropriate UT object class for
the unrecognized control.

Select Objects HE
Filtered objects: Selected window clazs:
~ Navigation - "

g WEEMDIWindow =l [Hame |_Object Path | K |
Selectable WESFormwindow

objects are in WESMDIwWindow Cancel |
bold. VEAFarmiindan

- VESRDIWindow Help |

Eirst | Generic

odalindow

EHE

Dislagiindon
VEEFormwindow
VESFormwindow
VB4Formwindow

T Menuiindon
StandardMenuiindon

Frevious |
Last |

¥BMDIFrameWindow
eList

Select-> | < Bemove |

Filter: IDbiectCIass

3. Click Select, and then click OK.

Rational TestFactory

& 2 instances of thiz object type will be reclassified. The process iz imeversible. Are you sure you want to do this?

4. Click Yes to confirm that you want to reclassify the object(s).

E| Suppliers
EIE PictureBox
¢ E-O &Report
- B9 LeftClick
- Create Supplier Report

l})]7 Rename the reclassified objects.

5. In the application map, rename the now reclassified Ul objects.

[i =Ty =

After you reclassify the generic objects, TestFactory recognizes them as known
UI objects during all subsequent mapping and testing sessions and can better test the
objects they represent.

4-64

Handling Error Messages and Crash Transition Objects in the Application Map

Handling Error Messages and Crash Transition Objects in
the Application Map

If the Application Mapper encounters an error message during mapping,
TestFactory places a window object that represents the error message dialog box in
the application map. If the AUT crashes during mapping, TestFactory places a crash
transition object that shows where the AUT crashed in the application map. In either
case, you can make adjustments so that the Application Mapper maps all of the
available paths in the AUT.

If the application map contains a window that represents an error message dialog
box, then do the following:

1. Determine what led to the error message. The error message could have been
activated if TestFactory did not pass required input to controls in the AUT, or if
it did not exercise controls in a specific order.

2. In the application map, leave the path mapped to the error message.

Set up an interaction object that guides the Application Mapper through the
unmapped path in the user interface.

4. To map the path that does not lead to the error message, map the area for which
you set up the interaction object.

5. Run a Pilot to test the new mapped path.
If the application map contains a crash transition object:
1. Leave the crash transition object in the application map until the defect that

caused the crash is fixed.

NOTE: If you run a Pilot in an area of the application map that contains a
crash transition object, the Pilot run automatically excludes the controls that
caused the AUT to crash.

2. After the defect that caused the crash is fixed, right-click the crash transition
object in the application map, and then click Delete on the shortcut menu.

3. After TestFactory prompts you to confirm that you want to delete the object,
click Yes.

Remap the affected portion of the AUT.

Run a Pilot to test the affected area of the AUT.

4-65

Developing and Working with the Application Map

Mapping New Builds

We recommend that you map each new build of the AUT if the user interface of the
AUT has changed. This ensures that the application map reflects changes made since
the previous build and improves the quality of the scripts that Pilots generate.

NOTE: Be sure to instrument and rebuild the executable file for each new build
of the AUT before you map it. If you added the ActiveX Test Control to the
previous build of the AUT, be sure to add it to all subsequent builds before you
instrument.

If several regions of the AUT have changed since you last mapped it, remap it using
StartAUT as the starting object. If only a small region of the AUT has changed, you
can remap just the changed region using the Application Mapper Wizard or the
Map It! shortcut.

Mapping a Changed Region of the AUT Using the Map It! Shortcut

4-66

To map a changed region of the AUT using the Map It! shortcut:

1. In the application map, right-click the top UT object in the branch that
corresponds to the changed region of the AUT. For example, if a group box
control contains options that have changed, right-click the group box object in
the application map. This is the starting object for mapping.

2. To start mapping, point to Map It! on the shortcut menu, and then click Full or
Single Level to indicate depth of mapping.

Cut

Interaction Copy
count Info Paste
Reports

Map it
Go Tao "Help" in AUT Single Level

Change Subclass...
Expand All

Go To Ul Librany
UserProperties...
Bestore Ul Properties
Lelete

What's This?

Mapping New Builds

Mapping a Changed Region of the AUT Using the
Application Mapper Wizard

To map a changed region of the AUT using the Application Mapper Wizard:
1. Click Tools > Application Mapper.
2. Insteps 1 and 2 of the wizard, click Next.

To select the starting object for mapping, click Browse in step 3.

Select Dbjects EHE
Filtered objects: Selected Ul object:
M |
R -2 Application Map Name [Object Path I K.
Selectable - B
obiects are in (Z3 Mapping Fiepons Cancel
bold
Help
Eirst
Mext
Previous
Last
Select-> <- Bemove
Filker: II_”DhiEc[

4. Scroll through the Filtered objects list, or click First, Next, Previous, and Last
to jump to selectable objects in the list.

Click an object in the Filtered objects list, and then click Select.

Click OK.

To start mapping, click Finish.

Deleting Ul Objects Mapped for Controls that Have Been Removed
from the AUT

If a mapped control is removed from the user interface of the AUT, the UI object
for that control persists in the application map until you remove it. The Summary
Report lists controls that were mapped in previous builds, but were not encountered
in the last mapping session. After you map a new build of the AUT, check the
Summary Report for missing objects.

After you determine that a missing control was intentionally removed from the user
interface, you must delete the Ul object mapped for it in the application map. If you
run a Pilot to test the affected area of the AUT, the Pilot “expects to see” the mapped
control. If the application map still contains a UI object for the missing control, the

4-67

Developing and Working with the Application Map

Pilot creates a UAW script to indicate that it encountered an unexpected active
window. (For information about UAW scripts, see Viewing a UAW Script on page
5-19.)

Deleting Ul Object Components Associated with a Deleted
Ul Object

If you try to delete a UI object that has been added as a component to one or more
interaction objects, you must also delete the interaction object components.

To delete a UT object that has been added to one or more interaction objects:

1. In the application map, click the UI object to delete, and then press DELETE.

Rational TestFactory

Do you want to delete the selected item?
This object iz included az a component in the following Interaction Object(s]:

Claszics Login. OK.LeftClick.Claz ... Order. Place Order.|nvalid Humber
Claszics Login OK.LeftClick.Claz ... Order.Place Order. Confirm Order

e |

If you have left the Prompt on object deletion check box selected on the
General tab of the Options dialog box, TestFactory displays a message listing up
to ten interaction objects in the application map that contain the component.

2. To delete the IU object and all of the components derived from it, click Yes.

In each interaction object that contained the component, the name of the deleted
component is displayed in gray text and Strikethrough font style. The Interaction
Method value is set to Deleted. The location of a deleted component is marked in
this way so that you can easily find it and, if necessary, replace it with a different
component. Leaving the name of a deleted component in an interaction object does
not affect mapping or testing.

If deleting a component changes the user interface exposed by an interaction object,
be sure to remap the interaction object after the deletion and before you test the
affected area of the AUT.

Running the Application Mapper from the Command Line

4-68

You can run the Application Mapper from the command line. TestFactory accepts
Application Mapper command-line arguments that let you specify the path to the
AUT, the starting object for mapping, single-level or full-depth mapping, arguments
to pass to the AUT, and the working directory for the AUT. For information about
how to run the Application Mapper from the command line, see the Appendix, Using
TestFactory Command-Line Arguments or see the topic Mapping command line arguments
in TestFactory Help.

Mapping Secondary Applications

Mapping Secondary Applications

An AUT can consist of a main application and one or more secondary applications
that the main application loads and executes. A secondary application can be one that
is developed as part of the application, or it can be a third-party application. If the
AUT calls secondary executable files, you can map these in addition to the main
executable file.

If you specified a secondary Visual Basic application to instrument before mapping,
TestFactory automatically lists its executable file on the Application Mapper tab.
This gives the Application Mapper access to all of the controls in the secondary
executable file.

To prevent the Application Mapper from mapping an instrumented secondary
application to full depth during subsequent mapping sessions:

1. Click Tools > Options, and then click the Application Mapper tab.

Options
Froperty Lists I Coverage Browser | User-Defined Properties I
Gereral | Projest Appiication Mapper | Plots |

Ligt of executable files to map

File: H
¥ C:Program Files'R ational\Rational TestySample ApplicationsyClas

2. To exclude a listed executable file from mapping, do one of the following:

— In the List of executable files to map box, clear the check box to the left
of the listed executable file.

— Click the file path, and then click Remove.
3. Click OK.

After you next map the AUT, the Mapping Summary report displays the secondary
executable files that were excluded from full-depth mapping.

If you did not instrument a secondary application (Visual Basic only), the Application
Mapper maps just the main application and the first level of controls in the secondary
application. If you plan to fully map and test a secondary application written in Visual
Basic, we recommend that you instrument it before mapping. For information about
instrumenting a secondary Visual Basic application, see Instrumenting Visual Basic
Source Code on page 3-7.

4-69

Developing and Working with the Application Map

To fully map an uninstrumented secondary application that you do not plan to test:

1. Click Tools > Options, and then click the Application Mapper tab.

2. Click Add, and then browse to find and select the executable file for the
secondary application.

Leave the check box next to the file name selected.

Click OK.

4-70

Inserting TestFactory Objects in the Application Map

Inserting TestFactory Objects in the Application Map

The Insert toolbar along the left side of the TestFactory window provides buttons
that you can use to insert several types of TestFactory objects in the application
map. TestFactory objects include folders, Pilots, Test Suites, scripts, reports,
markers, and interaction objects. For a description of each insertable TestFactory
object, see The Insert Toolbar on page 2-11. The correct use of each TestFactory object
type is addressed separately in different sections of this manual.

To insert a TestFactory object in the application map, do one of the following:

» Click a button for a TestFactory object on the Insert toolbar, and then click a
destination for the object in the application map.

» Draga TestFactory object from the Insert toolbar to a destination in the
application map.

» Click a destination in the application map, and then click Insert > Folder (or
another TestFactory object).

To insert multiple instances of a TestFactory object in the application map, press
SHIFT, and then click a button on the Insert toolbar. The icon for the object attaches
to the pointer. You can continue to click and insert the object at multiple locations
in the application map. To restore the pointer to the select mode, click Select on the
Insert toolbar or press EsC.

Creating a Marker in the Application Map

You can insert a marker in the application map to use as a bookmark or to enter notes.
The markers are for your use only. They do not affect application mapping or testing,.

To create a marker:

1. Insert a marker at a destination in the application map.

Ingert Marker

tMeszage: oK I
Cancel |
Help |

4-71

Developing and Working with the Application Map

2. Type anote to append to the marker in the Message box, and then click OK.

Date/Time Modified | Entered by | Meszzage
€ 0417798 14:46 ADMIN Cancel button added 4/16/798

— Marker view in the right pane

The Marker view in the right pane displays the date and time the marker was
inserted or last modified, the user who created it, and the message text.

3. Torename a marker object, click it in the application map, press F2, and then type
a name.

4. To edit the marker message, double-click the Message ficld in the Marker view,
and then type a new message.

bl

To move through marker objects in the application map in sequence, use
Previous Marker and Next Marker on the Standard toolbar.

Creating and Working with TestFactory Reports

You can insert a TestFactory report object to create a report on objects in the
application map. Later, you can edit the report parameters, rerun the report, print it,
and export it as a text file.

To create a TestFactory report:

» Inserta report object in the application map.

NOTE: The location in the application map does not affect the report
contents. You can create a “Reports” folder to hold all of your reports.

Edit Report Parameters HE
| IHietarc:h_l,l ok I
Hierarchy Cancel |
Q Show: IAII objects 'I Help |
Listing
Print Opti
E ™ Ul ohject properties ™ window bitrmaps
ul
Checking
™ User properties

4-72

Creating and Working with TestFactory Reports

The box on the left side of the Edit Report Parameters dialog box displays icons
for Hierarchy, Listing, and Ul Checking reports. A Hierarchy report includes
data on all UI objects in the application map. A Listing report can include data
on Ul objects, Pilots, Test Suites, and scripts. A UI Checking report provides
information on mnemonics conflicts, improper alignment of controls, and other
possible problems detected in the graphical user interface of the AUT.

Configuring a Hierarchy Report

To configure a Hierarchy report:

1.

5.

To include all objects in the application map in the Hierarchy report, leave All
objects displayed in the Show list. To include all window UI objects and their
immediate child objects in the report, click Windows in the Show list.

To include UT object properties in the printed version of the report, under Print
Options, select the Ul object properties check box.

To include user properties in the printed version of the report, under Print
Options, sclect the User properties check box.

To include bitmap images of the window objects in the printed version of the
report, under Print Options, sclect the Window bitmaps check box.

To run the report, click OK.

Configuring a Listing Report

To configure a Listing report:

1.

Click the Listing report icon.

HE

Edit Report Parameters

| IListing ok I
Hierarchy o ol |

H| [V TestSuites I Pilats Help |

Listing vV Scripts ¥ Ul objects
— D ate:

ﬁ Begin End

Checking Cieated: [Jw8/6/99 |~ ||7 8 /1399 -|
Modified [[(2 /12/99 = : August 1999

Sun Mon TueWed Thu Fri Sat

EilterUserProperties...l 25 26 27 2 23 30 3
12 3 4 5 6 7

g 3 1w 1 12 14
15 16 17 18 13 20021
22 023 24 25 2% & 28
29 W N 1 oz 3 4

Today: 8/13/993

4-73

Developing and Working with the Application Map

6.

Under Show, select the check boxes for the types of objects that you want to
include in the report.

To filter objects created during a specific time interval, under Dates, click the
arrow in the Begin box for Created, and then click a begin date for the interval.
Click the End box arrow, and then click an end date for the interval.

To filter objects modified during a specific time interval, under Dates, click the

Begin box arrow for Modified, and then click a begin date for the interval. Click

the End box arrow, and then click an end date for the interval.

To filter objects based on user property values, click Filter User Properties, and
then specify values in the Filter User Properties dialog box.

To run the report, click OK.

Configuring a Ul Checking Report

To configure a report about possible problems TestFactory detects in the graphical
user interface of the AUT:

1.

Click the Ul Checking report icon.

Edit Report Parameters

K

[7]x]

)

Hierarchy

3

Listing

|L|| Checking

— Mnemanics
¥ Conflict in menu tree

¥ Carflict in window
¥ Consistent uge in menu tree

¥ Consistent use on command buttons

Alignment
v Command buttons

¥ Dption buttons
v Check boxes

¥ Labels controls

— Mizcellansou:
¥ Overlapping controls

¥ Capitalization

¥ Close button in litle bar

oK
Cancel

Help

i

2. Clear the check boxes for features that you do not want to use to generate the
UI Checking report.

3. To run the report, click OK.

4-74

4

Creating and Working with TestFactory Reports

The following figure shows the contents of a UI checking report that was run for the
Classics sample application.

MNarme I Object Path I
Abe Mnemonics

@O ERROR: Mremanics mizsing. Clazzsics Online. Order 11

OO ERROR: Mriemanics missing. Make An Order Place Order

OO ERROR: Mremonics missing. ‘Wiew Exigting Orders.Cancel Selected Order
OO ERROR: Mremonics missing. ‘Wi Exigting Orderz. Cloze

OO ERROR: Mremonics missing. Clazgics Online Administration - CUSTOMERS ...
OO ERROR: Mremonics missing. Classics Online Administration - CUSTOMERS ...

Miscellaneous
WARMING: Owerlapping GUI contrals. About Classics Ornline C.RichE dit
WARMING: Owerlapping GUI contrals. About Classics Orline C.RichE dit1
WARMING: Missing "CLOSE" button. Clazsics Login
WARMING: Missing "CLOSE" button. Make An Order
WARMING: Miszing "CLOSE" buttan, Order Confirmation

WARMING: Miszing "CLOSE" buttan, Clazzics Logind

Total found: 6 errors. b Warnings.

The Name column shows a bitmap of the UT object mapped for the control and a
description of the problem that was detected. The Object Path column displays the
final path of the UI object mapped for the control in the application map. For
example, the value Make An Order.Place Order indicates that a problem was
detected for the Place Order button in the Make An Order window.

To jump from an object listed in a report to the corresponding object in the
application map:

» Double-click the object listed in the report.
To return to the report contents:

» Click Previous Object on the Standard toolbar.

Modifying a Report

To modify a report:
1. Click the report object in the application map, and then click Report > Edit.

Alternatively, click the report object in the application map, and then click
Edit Parameters on the Report toolbar.

2. Change the report parameters, and then click OK to rerun the report.

4-75

Developing and Working with the Application Map

Rerunning a Report After Changing the Application Map
To rerun a report after you change the application map, do one of the following:
» Click the report object in the application map, and then click Report > Run.

El » Click the report object in the application map, and then click Run Report on the
Report toolbar.

Exporting a Report as a Text File
To export a report as a text file, do one of the following:
1. Click the report object in the application map, and then click Report > Export.

Alternatively, click a report object in the application map, and then click Export
on the Report toolbar.

2. Specify a report file name and a destination directory, and then click Save.

Printing a Report
To print a report:
1. Click the report object in the application map.

2. Click File > Print, or click Print on the Standard toolbar.

4-76

»»» CHAPTER 5

Automatically Generating Scripts

This chapter describes how to use TestFactory to automatically generate scripts that
test the AUT. It provides instructions on how to insert, set up, and run a Pilot, as well
as how to analyze the results of a Pilot run. The final sections describe how to create
custom TestFactory scripts and how to record new user actions in Pilot-generated
scripts. This chapter includes the following topics:

» About Pilots

» Setting up and running Pilots

» Examining Pilot run results

» Changing default settings for new Pilots

» Opening and editing a best script in Robot
» Creating a custom TestFactory script

» Checking for memory defects in Visual Basic and C+ + applications
(Windows NT)

» Improving Pilot-generated scripts

» Testing controls in the AUT during Pilot runs

About Pilots

The Pilot is the workhorse of TestFactory. Its automatic scripting capability
mechanizes the writing of script code necessary for regression testing. You can drop
a Pilot at any location in the application map. From there, the Pilot automatically
generates scripts that focus on specific functional areas of the AUT.

During a Pilot run, a Pilot goes progressively deeper into the code of the AUT and
uses the script segments it generates to build a script that gives maximum coverage
of the AUT with a minimum number of script segments. The result is an optimized
best script that provides extensive code coverage and contains a minimum of
redundant script code.

5-1

Automatically Generating Scripts

Your objectives for creating test scripts depend on what phase of development the
AUT is in. Early in the development process, and during phases of rapid change in
the AUT, it is more important to flush out severe defects than to create scripts that
provide high coverage and have longevity.

Traditionally, engineers did not bother to automate testing at the beginning stages of
product development because of the high cost of maintaining scripts. With
TestFactory, the cost of script maintenance is so low that you can incorporate
automation in your development cycle as soon as you have a user interface. Early in
product development, you can run Pilots as a smoke test to flush out defects quickly.

The Pilot results include defect scripts that uncover severe bugs such as AUT
crashes, Visual Basic run-time errors, and assertions. You can use Pilot runs early in
the development cycle and against each new build of the AUT to spot areas of code
instability. You can run Pilots after fixing severe defects to uncover new defects and
to ensure that the AUT has not regressed.

The Pilot run results can also include UAW (unexpected active window) scripts. If
an unexpected active window opens during a Pilot run, TestFactory pulls the
running script segment and saves it as a UAW script. You can examine a UAW script
to determine what steps a Pilot performed to activate an unexpected window, and
use the information to improve the application map.

Although you continue to look for defects as the AUT matures and stabilizes, at
some point you become more concerned with how completely your scripts test the
product and how well the AUT meets functional requirements. As functional areas
of the AUT stabilize, you can begin running Pilot scenarios to simulate action
sequences that users are likely to perform. You can also compose Pilot mix-ins to test
the interaction of several different functions or to occasionally introduce a new
functional element to an otherwise ordered Pilot scenario.

Late in the development cycle, once the AUT is free of severe defects and has been
proven to meet its functional requirements, you can set up and run Pilots that check
for memory-related defects in the AUT. Pilots can generate defect scripts that
uncover memory and resource leaks, invalid memory access errors, memory
overwrites, uninitialized memory reads, and memory access beyond the bounds of
an array.

Setting Up and Running Pilots

Setting Up and Running Pilots

In addition to providing information about setting up and running a Pilot, this
section describes several issues to consider as you insert Pilots in the application map.

Effective Pilot Placement

Pilot placement in the application map determines how useful the test results will be.
Keep the following factors in mind as you insert Pilots in the application map:

>

Pilots are most effective if you insert them at UI objects that lead to major
functional areas of the AUT.

A Pilot uses the application map, and not the AUT, to build scripts. Place Pilots
in regions of the application map that you have mapped to full depth and that
include all of the paths available in the part of the AUT you want to test.

Inserting a Pilot too low on a branch of the application map (so that it includes
too few Ul objects) can result in small code coverage values.

As you combine multiple Pilots in scenarios and mix-ins, be sure to place each
Pilot so that it has exclusive access to the controls in its region of the application
map. In other words, combine Pilots with access to functional areas that do
not overlap.

If your goal is to obtain an optimized best script to test a region of the AUT,
insert Pilots at map locations that correspond to stable areas of the AUT. If you
just want to run Pilots to find defects, stability is not as important a factor.

If you want to run a Pilot to test an area of the AUT that includes a control that
you do not want to test, do one of the following:

— Set the ExerciseDuringTesting property for the UI object mapped for the
control to Never (see Managing Data Entry Styles on page 5-46).

— Exclude the control from testing by adding the UI object mapped for the
control to the Pilot Exclude tab.

— If'the control is represented as a component of an interaction object, make
the component unavailable in the Interaction Object view.

Automatically Generating Scripts

Inserting a Pilot
1. To insert a Pilot, do one of the following:

— Click a destination in the application map, and then click
Insert > Pilot.

— Click Pilot on the Insert toolbar, and then click a destination in the
Ak application map.

— Draga Pilot from the Insert toolbar to a destination in the application map.

2. Name the Pilot, and then press ENTER.

Setting Up and Starting a Pilot Run

The tabs on the Pilot properties page in the right pane contain settings that you can
modify to set the parameters of a Pilot run. The following procedures describe how
to modify the settings on each tab for a simple Pilot run on your local machine, how
to restore default Pilot settings, and how to start the Pilot run.

Modifying Settings on the Setup Tab

The settings on the Setup tab let you set general parameters for the Pilot run.

To modify Setup tab settings:

1. After you insert a Pilot, click the Setup tab in the right pane.

Summary Setup |St0p Eriterial Scenariol MiH-InsI EHcIudeI

— Test depth Option: Lze Test Lab

& Full Boute number: I‘I tachine group:

" Single level [~ Generate Ul seript anly |<An_l,l I achine: 'l
— Support script:

Startup: I Browsze... | LClear I

Cleanup: I Browse... | Clear |
— Script comment

5-4

Setting Up and Running Pilots

Just as you can map the AUT in increments, you can also test the AUT in
increments. In full-depth testing, the Pilot drives to the base state (the UT object
at which you inserted the Pilot) and from there, exercises every control it
encounters at all levels of the AUT. In single-level depth testing, the Pilot drives
to the base state and exercises the control it represents, but does not exercise
other controls that are exposed.

To let the Pilot explore its area of the application map to full depth, under
Test depth, leave Full selected. To limit Pilot exploration to the top level of
UTI objects that it encounters in the application map, click Single level.

TestFactory passes the value specified in the Route number box to the random
number generator to determine the starting path that the Pilot takes to
generate scripts.

If you have run this Pilot before, and you want it to take a different starting path
on the next run, under Options, type a new number between 1 and 99 in the
Route number box. The route number you specify to change the run path is not
important, as long as it is different than the previous one.

To generate just a Ul script, and prevent the Pilot from generating other kinds
of scripts:

a. Under Options, sclect the Generate Ul script only check box.

After you select the check box, the Ul Script button replaces the Start
button at the bottom of the Pilot properties page.

b. To start the Pilot run and quickly generate a UT script, click Ul Script.
If the Use Test Lab check box is selected, clear it.

To make external resources available to the AUT during testing, use the boxes
under Support scripts. For example, to initialize a database of customer names
and give the AUT access to it, you can create a Robot script that initializes the
database, and then specify that script as a startup script for the Pilot run. You can
also create a Robot support script that sets persistent defaults in the AUT. To
restore the system to its previous state after testing, create a cleanup script in
Robot, and then specify it as a cleanup script in the Setup tab.

To specity support scripts for a Pilot run:

a. Under Support scripts, click Browse next to the Startup box, and then
locate and select a Robot script that brings the system to the state
appropriate for the Pilot run.

3-5

Automatically Generating Scripts

b. Under Support scripts, click Browse next to the Cleanup box, and then
locate and select a Robot cleanup script.

7. Type comments about the current Pilot run in the Script comments box. The
Pilot inserts the text as a comment at the top of the scripts that it generates.
Modifying Settings on the Stop Criteria Tab

The settings on the Stop Criteria tab let you specify the criteria that must be met to
complete the Pilot run. Testing stops after the Pilot run reaches any one of the criteria
that you set on this tab.

NOTE: If you run a Pilot to generate just a UT script, TestFactory ignores the
Stop Criteria tab settings.

To modity the stop criteria:

1. Click the Stop Criteria tab.

Summar}ll Setup Stop Crikeria |Scenali0| Mix-lnsl Excludel

— Time
ot Jmooo = b
€ R until 11 27 84 ﬂ
— Stop after
|Z V¥ Defects found: 25 il
¥ Code coverage: l@ %
V¥ Ul coverage: l@ 4

2. You must specify a time-related stop criterion for a Pilot run. You can either
specify a run duration, or specify a clock time for the run to stop.

— To specify the duration of the Pilot run in hours and minutes, under Time,
leave Run for selected, and then enter a time limit in the hh:mm box. The
minimum run duration you can set is five minutes (00:05).

— Tospecify a clock time for the run to stop, under Time, click Run until, and
then, in the adjacent box, enter the clock time for the run to stop. The latest
clock time you can set is 23 hours and 59 minutes from the current time.

Setting Up and Running Pilots

3. Tostop a Pilot run after a specified number of defects are detected, leave the
Defects found check box selected and enter a target number in the adjacent box.

4. To change the code coverage target value, leave the Code Coverage check box
selected and enter a new value in the adjacent box.

5. To change the UI coverage target value, leave the Ul Coverage check box
selected and enter a new value in the adjacent box.

If the goal of the Pilot run is to achieve high code coverage, consider excluding
UI coverage as a stop criterion. If the Pilot has access to only a small region of
the AUT, its scripts can achieve 100% UI coverage long before they achieve the
maximum code coverage possible.

NOTE: To specify default stop criteria settings for all new Pilots, use the
Pilots tab in the Options dialog box. For instructions, see Changing Default
Settings for Pilots on page 5-29.

Modifying Settings on the Exclude Tab

If you run the Pilot in an area of the AUT that contains a control that you do not
want to test, you can use the Exclude tab to prevent TestFactory from exercising it
during the Pilot run.

To exclude a control in the AUT from testing:

1. Click the Exclude tab.

Summal_l,ll Setup I Stop Cliterial Scenario | Mixdns Exclude |

LI Object Mame | Object Path |

Automatically Generating Scripts

5-8

2. Click Add.
Select Dbjects 2]
n Filtered objects: Selected Ul objects to exclude:
r it
S -0 #eplication Mep Name | Dbject Paith [
Selectable El E startalT
objects are in E|-

bold.
First | [_‘I Account Info
- A BEEUY
B1-[Z3 Mapping Fisports

Previous |
Last |

Add Al -> | Add > | <-Bemove| <-HgmoveAII|

Filter: IUIDbiecl

[| Cancel | Help |

3. Inthe Filtered objects list, select the UI object mapped for the control that you
do not want to test.

4. Click Add.
5. Click OK.

NOTE: To exclude a UT object from all testing, change the value of its
ExerciseDuringTesting property to Never. A UI object listed on the Exclude
tab is only excluded from runs of the selected Pilot.

To exclude an interaction object from all testing, right-click the interaction
object in the application map, and then click Use During Testing on the
shortcut menu.

Restoring Default Pilot Settings

If you want to restore the default settings for a Pilot, you can do so at any time.
To restore the default settings for a Pilot:

» Click Reset at the bottom of the Pilot properties page.

TestFactory restores the Pilot settings to their default values, some of which are
specified on the Pilots tab on the Options dialog box. For information about default
settings on the Pilots tab, see Changing Default Settings for Pilots on page 5-29.

On-Screen

Setting Up and Running Pilots

Making Best Script Verification Unavailable

After a Pilot generates a best script, TestFactory runs the script to verify that it
contains no script segments that uncover defects or unexpected active windows, and
to calculate more accurate code coverage results for the best script. Script verification
can significantly increase the duration of a Pilot run. You can shorten Pilot runs by
making the best script verification feature unavailable.

To make the best script verification feature unavailable:

1. Click Tools > Options, and then click the Pilots tab.
2. Under Options, clear the Verify best scripts check box.

3. Click OK.

After you make best script verification unavailable, your Pilots will take less time to
run. However, without verification, you run the risk of generating best scripts that
uncover defects or unexpected active windows when you run them later.

Starting the Pilot Run

Once you have modified the settings for the Pilot run, you can start it on your local
machine.

To start the Pilot run:

» Click Start at the bottom of the Pilot properties page.

Events During a Pilot Run

After you start a Pilot run, the TestFactory window closes, a mask dims the screen
and displays the Running Pilot message. The following figure shows the Pilot progress
bar that opens at the bottom of the screen.

NOTE: After the run starts, do not try to use the keyboard or mouse unless you
want to stop the Pilot run.

Elapsed: Status: Detects: Ul coverage: Code coverage: Segments run:
Stap [AltF12]
[p0:15:32 |Searching map 12 100 32 iz

5-9

Automatically Generating Scripts

Stopping a

During the Pilot run, the Pilot progress bar displays the following information:
» A busy indicator in motion shows that the Pilot is running.

» The Elapsed box displays the duration of the Pilot run so far.

» The Status box displays the Pilot activity underway.

» The Defects box displays the number of defects detected in the AUT so far.

» The Ul coverage box displays the percentage of unique Ul objects available to
the Pilot that the best script has touched.

» The Code coverage box displays the code coverage value for the best script.

» The Segments run box displays the number of script segments created and run
so far.

During a Pilot run, TestFactory builds a navigational map for the Pilot, plots a path
through the AUT, and creates and runs script segments. TestFactory then generates
the best script, calculates code coverage, and organizes the Ul script, defect scripts (if
any), and UAW script (if an unexpected active window was activated) that it
generated.

Pilot Run

To stop the Pilot run at any time, click Stop on the Pilot progress bar or press
ALT+ F12. TestFactory prompts you to indicate whether you want to save an
optimized best script. To save a best script, click Yes. Bear in mind that if you
stopped the Pilot run immediately after you started it, TestFactory will probably not
have generated enough data to produce an optimized best script.

NOTE: To specify a shortcut key combination other than the default ALT+ F12 to
stop a Pilot run, click Tools > Options, and then, on the General tab, select a
different key combination from the Stop shortcut key list.

Setting Up and Running Pilots

After a completed Pilot run, the Summary tab displays the following information in
the restored TestFactory window:

Ul coverage Percentage of unique Ul objects available to the Pilot that the best
script touched.

Code coverage Percentage of all source code in the AUT that the best script
touched.

Defects found Total number of defects detected.
Elapsed time Duration of the Pilot run.

Stopped due to The stop criterion (or the user) that ended the run.

Summary |Setup I Stop Criterial Scenariol Mix-lnsl Excludel

Summary tab

Ul coverage: 23%

Code coverage: 10%

Time Defects found: 2
Li it

Elapsed time: oo F1 0 ‘-I 9
Stopped due to: :‘3 Tirne Lirnit

Automatically Generating Scripts

Examining Pilot Run Results

The most important Pilot run results are the scripts that your Pilot generates. This
section describes the kinds of scripts a Pilot can generate and how to view all of the
information that they provide.

Pilot Run Folder Contents

After a Pilot run is completed, TestFactory inserts a <Pilot name>-Run-<date time>
folder under the Pilot object in the application map.

B BIG GUY run - 02411, 02:42 P
-[_1 Defects Found
=l U Script - 02-11, 02-54 PM
=l BestScrpt - 02-11, 02-56 P
-9l Ul Script - 02-11, 02-58 P4

The <Pilot name>-Run-<date time> folder can include the following items:
» Asingle best script.

» Ifyou specified support scripts for the Pilot run, TestFactory places the support
scripts and the best script in a Test Suite object.

» If the Pilot generated script segments that uncovered severe defects, the results
include a Defects Found folder that contains one or more single-segment
defect scripts.

» Ifan unexpected window opens during the Pilot run, the results also include a
UAW (unexpected active window) script.

» Asingle Ul script.
NOTE: To keep detailed information about Pilots and scripts, you can take
advantage of the User Properties dialog box. To open the User Properties

dialog box, right-click a Pilot or script object, and then click User Properties
on the shortcut menu.

5-12

Examining Pilot Run Results

Renaming Generated Scripts

If you prefer your own script-naming scheme to the one TestFactory uses, you can
rename the scripts that your Pilots generate.

To rename a generated script in the application map.
1. Click the script object.
2. PressF2

3. Type a name in the active text box, and then press ENTER.

Viewing the Script Outline

The script Outline tab displays the steps that a script performed in an easy-to-read
format. To view the Outline tab in the right pane, click the script object in the
application map.

Outline | Covelagel

- Script Mame: BestScript - 02-11, 02-56 Pk
- Created By: BIG GUY
- Created On: 0211, 02-56 PM
: This subroutine drives the AUT to the base state
-0.1: Mote: |f an emor occurs, restart the app and go to next test case.
: TestSegment]
1: Tupe Databaze Admin' into Full Mame
: Click on Ok
.3 Select tabbed page
.4 Click on Order [H
B Type YHOMEMEMDY into Mame
: Click on Place Order
: Click the cloge button
: Type {HOME MEND Y an-10" inta Quantity

To print the outline, click File > Print.

NOTE: You can copy the outline text for a defect script directly to a defect report
in ClearQuest.

5-13

Automatically Generating Scripts

Viewing Coverage Results for a Script

The Coverage tab displays the Ul Coverage and Code Coverage values for the
script. TestFactory calculates the UI coverage percent value (for all generated scripts)
based on the number of unique Ul objects that the Pilot has access to from its
location in the application map. TestFactory calculates the code coverage percent
value (for the best script and the Ul script) based on the source code that the script
touched relative to all source code in the AUT.

To view coverage results for a script:

1. Click the script object in the application map, and then click the Coverage tab
in the right pane.

Outine Coverage |

2. To view the coverage values for every source file in the AUT, expand the
Code Coverage item.

Outine Coverage |

-4 Cods Coverage = 14% =

-4 : 0% - D:MApplication D ata'\Classics OnlineClassics Sc
: 0% - D:MApplication D ata'\Classics OnlineClassics St
: 0% - D:MApplication D ata'\Classics OnlineClassics St
s 44% - Dvpplication D atasClazsics OnlinghClassics S
: 0% - D:\application D ata\Classic: OnlineClassics Sc
- 100% - D:\application D ata\Clazsics OnlinehClassics
: B0% - D:\vspplication D atasClazsics OnlinghClassics £
- 6% - Do\vpplication D atasClassics OnlingtClassics £

. AUT source files

3. To see coverage values for the individual procedures in a source file, expand the
source file item.

Outine Coverage |

-4 Cods Coverage = 14% =
. P2 Coverage: 0% - D:\Application D atahClassics OrlinesClassics S¢
M| Coverage: 0% - D:\Application Data\Classics OnlinebClassics Se
W) Coverage: 0% - D:\application Data\Classics OnlinetClassics St

5-14

M| Coverage
5| Coverage
W) Coverage
=% Coverage

s 44% - Dovdpplication D ata\Clazsics OnlinehClassics ©
: 0% - D:vpplication D atabClazzics OnlinehClassics Sc
- 100% - DoMvdpplication Datab\Clagsics OnlinedClazsics
: BO% - D:vApplication D ata\Clazsice OnlinetClassics ©

. ?‘..f e, %

. AdminLoginLET - Coverage: 0%
F, AdminLoginGET - Coverage: 0%
. LatestLoginLET - Coverage: 100%
. LatestLoginGET - Coverage: 100%
. LatestRememberPasswordLET - Coverage: 100%
. LatestRememberPasswordGET - Coverage: 1002
. LatestPasswordLET - Coverage: 100%
. LatestPasswordGET - Coverage: 0%

e SubmitPazsword - Coverage: 60%

Source file procedures

Examining Pilot Run Results

Viewing Code Coverage Information for Scripts Generated for
Java Applications and Applets

The code coverage information calculated for scripts generated for Java applications
and applets differs from code coverage information for scripts generated for C++
and Visual Basic applications. If the AUT is written in Java, TestFactory builds the
coverage dictionary during the testing process rather than during instrumentation.
Java .class files reveal themselves to TestFactory only after a script touches the code
contained in the .class file.

If the AUT is a C+ + or Visual Basic application, the code coverage value for a best
script represents the percentage of all source code in the AUT that the script touched.
TestFactory “knows” the total amount of source code in the AUT before you run a
Pilot. If the AUT is a Java application or applet, TestFactory finds out about the total
amount of source code incrementally, through testing. As a result, the code coverage
values for best scripts run against an AUT written inJava are calculated relative to the
.class files exposed so far. This means that code coverage values can be artificially
high, especially for the first few Pilots you run. As you run more Pilots to test
different functional areas of a Java AUT, the coverage dictionary becomes more
complete, and code coverage values for scripts become more realistic.

Instrumenting a new build of a Java AUT deletes the current coverage dictionary. To
rebuild the coverage dictionary, you must rerun the scripts that expose the Java
.class files.

The Coverage Browser (C+ + and Visual Basic Applications)

If the AUT is written in Visual Basic or C++ and you instrumented it before you
ran a Pilot (or you have a coverage dictionary and access to the instrumented Visual
Basic source files), then you can open the Coverage Browser and view the source
code that a script exercised.

NOTE: TestFactory does not open Java .class files in the Coverage Browser.

5-15

Automatically Generating Scripts

To view source code coverage details:

1.

5-16

To see the source code for a procedure in the Coverage Browser, double-click
the procedure on the Coverage tab. The following figure illustrates
instrumented source code displayed in the Coverage Browser.

Coverage Browser: Coverage = 14% - Filename = D:\Application Data\Clas._. =] B3

L] 1 5 =

Fublic Sub SubmitP: yord(sourceForn Az Form) =l
‘checlk for correct password
Dim newPassword As String
Din newCustID A= Long

newPassword = sourceForm. tzxtPasswvord. Text
' 1f password protection is turned and the entered passwc
i= not blank or "wrong" then put up an "invalid passwor
' dialog
If (frmOption=.chlkEnablePasswvord = wbCheclked) And (newPas
Latestlogin = colHologin
M=gBox "Invalid Password. Try againl!'. . "Classics Or
sourcelorn. txtPassword SetFocus
SendkKeys " {Home}+{End}"
El== ' otherwi=ze login the user
new_ustID = sourceForn. lstUserNamne. ItemData(sourcelor

To jump to a specified line of code in the Coverage Browser, type the line
number in the first text box, and then click the Go To Line button.

To jump to the first instance of a text string, type the text string in the second
text box, and then click the Find Text button.

NOTE: TestFactory does not support partial word matches. Be sure to type
an entire word or text string in the text box.

To jump to the next line of source code that was not covered, click the Next Not
Covered button.
You can also scroll through the source code file.

The Coverage Browser displays color-coded coverage results. To view the
current color settings for displayed text, click the Coverage Text Color button.

Examining Pilot Run Results

Changing the Appearance of Text In the Coverage Browser
To change the appearance of text in the Coverage Browser:

1. Click Tools > Options, and then click the Coverage Browser tab.

General I Project | Application kapper I PFilots I
Froperty Lists Coverage Browser 1 User-Defined Properties
— Fant

Name: ICourier Sanple Change... |
Style: IHeguIar
Size: Im

— Test color:

Executed text: Select...

Executed FALSE test: Select...
Executed TRUE text: Select...
Executed BOTH text: Select...
Mot executed text: Select...

Select...

T
FIE

Mon-gource code text:

2. To change the font used to display text, under Font, click Change, and then use
the Font dialog box to change the text font.

3. To change the color used to display a source code segment, under Text color,
click Select adjacent to the source code segment color, and then use the color
palette to change the setting.

4. Click OK.

Viewing the Log for a Defect Script

After a Pilot run, you can view the log for a defect script in the Test Log window of
Rational TestManager.

5-17

Automatically Generating Scripts

To view the log for a defect script:

» Click the defect script object in the application map, and then do one of the
following:

— Click Script > View Log.

— Click Tools > Rational Test > Rational TestManager, and then click
File > Open Test Log.

Alternatively, right-click the script object, and then click View Log on the shortcut
menu.

&k Myproject - Rational TestManager
Fie Edi View Repos Took Window Help

DSBS HF im0
EILN IS EE)

HE Test Log - Notepad

ssr||rana| 1| e g8

BEE
| Fesut] Dsicilime | FahucResson | Compuicitame | Defect]
Fail 10,

Suite:

Build

10/09/2000 02:13.02.

Buid & Veilication Point [Qbijeet
Unespected Active Wind.. | Waring | 10/09/2000 02:20.07...

Mt Unespected Active Wind... | Waing | 10/03/2000022112...
nove Secrit End (Notepad) 10/08/2000 02:21:12..
teration: Computer End 10/08/2000 02:21.12..
[Finha

Start Date/Time:

10/03/2000 02:15:30 FM

End D ate/Time:

10/09/2000 02:18:30 PM

| I

Test Caze Resulls Details

Eon

[Currently Selected Filter 4

[Ready

Reporting a Defect

TestFactory uses ClearQuest as its defect tracking system. Before you can use
ClearQuest from TestFactory, you must first set up the database for the AUT in
ClearQuest. For information about specifying the AUT database, see the Getting
Started with Rational Robot manual.

From TestFactory, you can link to ClearQuest to report new defects. To start
ClearQuest and report a new defect, do one of the following:

» Click Tools > Rational ClearQuest.

| e | » On the Tools toolbar, click Start ClearQuest.

For detailed information about reporting a defect in ClearQuest, see ClearQuest
Help. For a complete description of methods for tracking script defects, see the Using
Rational TestManager manual.

5-18

Examining Pilot Run Results

NOTE: You can click a defect script and copy the steps on the Outline tab to the
description section of your defect form in ClearQuest.

Viewing a UAW Script

]

During a Pilot run, if a window that TestFactory expects to see does not open, or if
an unmapped window such as an error message box opens instead, then TestFactory
retains the running script segment as a UAW (unexpected active window) script. You
can use 2 UAW script to trace the steps a Pilot took in the AUT before losing its way,
and then map the unmapped path.

If you are satisfied with the Pilot results, there is no need to review the UAW script.
If you want to analyze a UAW script, click the script object, and then examine the
steps displayed in the Outline tab in the right pane.

If the script steps do not provide the information you need, you can analyze the
UAW script further in Robot. To examine a UAW script in Robot, you must open it
in Robot, set the Robot GUI playback options, play back the script, and then view
the log for the script in the Test Log window of TestManager .

To open a UAW script in Robot:

» In the application map, right-click the UAW script object, and then click Open
on the shortcut menu.

To set the GUI playback options and play back the script in Robot:
1. Click Playback Script on the Robot toolbar.

7 Playback EHE

Mame: IUAW’ Script - 0211, 01-47 PM

Query: [l (Name)

Mame |
QUANTIFY

RELY

REMOVE

[BR U Script - 0211, 01-47 PM J
Ui Script - 02-11, 02-54 P

Ui Script - 02-23, 04-17 PM

Ui Script - 02-23, 04-33 PM =l

QK I Cancel GUI Options...| Properties... | Help |

2. Click GUI Options.

5-19

Automatically Generating Scripts

3. Click the Log tab.

GUI Playback Options HE
Unexpected Active Windaw I Error Recovery
Trap | Diagnostic Tools I ‘wieb Browser
Flapback. Log | Caption katching I Wwiait State

— Log management
W Output playback results ba log
W iew Ing after playhack

—Log data

[~ Prompt before ovenwite log

" Specify log infarmation at playback
& Use default lng information

4. Under Log management, select the Output playback results to log and the
View log after playback check boxes.

Under Log data, click Use default log information.

Click the Unexpected Active Window tab.

GUI Playback Dptions

Trap I Diagnostic Toolz I wieh Browser I
Flavback | Log | Caption b atching I wiait State I
Unexpected Active Windaw | Ermor Rlecovery

[V Detect unexpected active windows
¥ Capture screen image
— Playback rezponse

& Send I{ESE.-’-‘«F'E} vl key

€ Select pushbutton with focus
" Send'wh_CLOSE to window

— On failure ta remove unexpected window—
€ Conlinue unning scriph
¢ Skip cumrert seript

€ abort playback,

oK | Cancel |

7. Seclect the Detect unexpected active windows and the Capture screen image
check boxes.

5-20

Examining Pilot Run Results

8. Under On failure to remove unexpected window, click Skip current script.

NOTE: After you finish examining the UAW script, be sure to select the
Continue running script option. Leaving Skip current script selected
interferes with Pilot and script runs in TestFactory.

9. To close the GUI Playback Options dialog box, click OK.
10. To play back the UAW script, click OK.

Robot plays back the script until the UAW opens. After the script playback ends, the
Test Log window of TestManager displays the log for the UAW script.

0 Myproject - Rational TestManager M= E
File Edit Yiew Repois Took Window Help

DR HF :wa|la

ssr||rana| 1| e g8

EDO TR

HE Test Log - Notepad

l‘“— Event Type

Build Soipt Star (Natepad] 10/05/2000 02: 18 30.
T — Verficaion Faint (0 10/09/2000 0213.02...

Unespected Active wind... | Waning | 10/09/2000 02.20.407...
e[Unexpected Active Wind...

10/09/2000 02:21:12...
novp Seript End (Notepad)

10/09/2000 02:21:12...
Iteration: Computer End

10/09/2000 02:21.12...
&lpha

Start Date/Time:

10/03/2000 02:1%:30 PM

End Date/Time:

10/03/2000 02:18:30 P

4l |»

Test Caze Resulls Details

|Ready |admin [Currently Selected Filter 4

To open the Image Comparator and view a screen capture that includes the UAW:

>

Double-click the Unexpected Active Window item in the Event Type column.

To view the properties of the unexpected active window:

1.

Click Tools > Rational Test > Rational TestManager, and then click File >
Open Test Log.

Click the Details tab.

Right-click the Unexpected Active Window item in the Event Type column,
and then click Properties on the shortcut menu.

To view the script line number associated with the UAW, click the General tab.

5-21

Automatically Generating Scripts

5-22

Log Event - Unexpected Active Window E
General | Configuration I
Event Type Unexpected Active YWindow
Start Date/Time 10/M09/2000 2:20:07 P
Stop Date/Time 10M972000 2:20:07 P
Result ErTING

Failure Reason

Failure De=cription

Caption=Run
Scriph Class=#32770

Seript Line Humber

12

Seript Hame Motepad
Actual Results File |Motepad I0TG.img
Defects

.|

To view additional properties of the unexpected active window, click the
Configuration tab.

Log Event - Unexpected Active Window

General Configuration I

Memory Size 126

05 Service Pack Service Pack 5
05 Version T

Operating System inciowys
Processor Pentium

Processor Humber

1

|

5. Close the Log Event dialog box, and then quit TestManager.

If you have finished viewing UAW scripts for now, do the following before you start
to work in TestFactory again:

1. InRobot, click Tools > GUI Playback Options, and then click the Unexpected
Active Windows tab.

2. Under On failure to remove unexpected window, click Continue
running script.

3. Click OK.

If your Pilots frequently generate UAW scripts, consider doing the following:

» Set up interaction objects to map unmapped paths in the area of the AUT you

are testing.

Examining Pilot Run Results

» Check to sce if the UAW script is generated as a result of a timing problem. If it
is, set a delay interval for the appropriate action object in the application map.
For information about setting delay intervals for Pilot runs, see Specifying a Delay
Interval to Include in Generated Scripts on page 5-49.

Using Pilot Scenarios to Simulate User Action Sequences

After the AUT stabilizes, you can use Pilots to test interactions involving multiple
functional areas of the AUT. Among other things, you can test how the AUT
responds when functional areas are exercised in a sequence that a user is likely to
follow. A Pilot scenario lets you simulate and test a user action sequence in

the AUT.

To create a scenario, you combine Pilots inserted at different functional regions of
the application map and arrange them in an ordered sequence. Each Pilot in the
sequence contributes a few steps to each script segment that the lead scenario Pilot
generates. The lead Pilot then builds the best script from the pool of script segments,
each of which contains steps in the sequence that you specity.

Creating a Pilot Scenario
To create a Pilot scenario:

1. Determine the first functional area of the AUT that you want the scenario to
test, and insert a Pilot at the corresponding location in the application map. This
is the lead Pilot in the scenario.

NOTE: If a Pilot already exists at a map location where you want to begin a
scenario, insert a new lead Pilot anyway. Segregating Pilots helps to limit
confusion regarding the function of each.

2. Name the lead Pilot object in the application map, and then change settings on
the Setup, Stop Criteria, and Exclude tabs on the Pilot properties page.

3. Insert additional Pilots at application map locations corresponding to the other
functional areas that you want to add to the test sequence. To ensure that
TestFactory calculates accurate code coverage values for generated scripts, do
not combine Pilots that have access to any of the same controls.

NOTE: To avoid making the scenario too complicated, we recommend that
you include non-lead Pilots that are fairly simple. Avoid adding Pilots that
contain their own scenarios.

5-23

Automatically Generating Scripts

4. Adjust the settings on the Setup and Exclude tabs for each non-lead Pilot.

NOTE: In a scenario run, TestFactory applies the stop criteria specified for
the lead Pilot and ignores the stop criteria specified for non-lead Pilots.

5. Click the lead Pilot, and then click the Scenario tab.

Summalyl Setup I Stop Criteria ~ Scenario | Mi:-c-lnsl Excludel

Filct Mame | Object Path [Add... |
[elete |

Q Ace Clazsics LoginAce

6. Click Add.

% Find Objects

Name | Date Modified

fipoept
= TestSuite 1T Interaction objsst I 'I |

Help

Type Stop |
™ Pilat I Beport ™| Sy U] object Mew Search... |
[~ Seript ™ arker Wl object clazs: |

N

User Properties... |

5-24

Examining Pilot Run Results

7. To locate Pilots to add to the scenario, select the Pilot check box, and then click
Find Now.

%3 Find Dbjects [_ (O] x|

Name | Date Modiied |
Mamed: I

Type Stop |
v Bilat I~ Beport ™ fry Ul abiect New Search... |

I~ Seript = Marker Ul cbject class:
Accept |
= TestSuite 7| Interaction ohject I 'l I
Help |
Uszer Properties.. |

Mame | Object Path | Typel Created | b odified |

Incomplete Filot Incomplete OrderIncomplete Pilot Pilot 07/30/93 07/30/99
§ Helper Claszicz Online. &Help Helper Pilot 07/30/33 0F/31/99
Orderer Classics Online. Orderer Filot 07/31/93 07/31/33
ﬁ Image Tester Classics Online.&lbum. mage Tester Filot 07/31/33 07/31/39
bt bce Classics Logindce Filat 07/31/33 07/31/99

8. To add all of the Pilots found, click Accept. To add a subset of the Pilots found,
press CTRL or SHIFT, select the Pilots to add, and then click Accept.

NOTE: To achieve results that are easy to track and analyze, we recommend
that you include no more than five to eight Pilots in a scenario.

9. To specify the order of steps in the script segments that the lead Pilot generates,
select each Pilot listed, and then use the Up and Down buttons.

10. To run the Pilot scenario on your local machine, click the lead Pilot in the
application map, and then click Start at the bottom of the Pilot properties page.

Using Pilot Mix-Ins to Test Random Interactions

A Pilot mix-in is useful for testing how functional areas of the AUT interact when
you combine them randomly. For example, if the AUT is a word processing
application, and you want to test how the AUT responds when the spell checker is
used occasionally during an editing session, you can insert Pilots that access the
functional areas that you want to test, and combine them in a mix-in.

You can also add a mix-in Pilot to a scenario. As part of a scenario, a mix-in is a useful
way to include a step that a user might occasionally perform in the course of an
otherwise predictable action sequence. For instance, if you created a scenario Pilot
for the customer tracking AUT, you could mix in a Pilot for a Delete Customer
Record dialog box that a user would only open infrequently.

5-25

Automatically Generating Scripts

5-26

The Mix-Ins tab is similar to the Scenario tab in that you can use it to combine Pilots
from different functional regions in the application map. Each mix-in Pilot
contributes a few steps to a specified percentage of the script segments generated.

A mix-in includes the Setup tab and Exclude tab settings of the Pilots that you add
to it. For example, if you specify a control to exclude from a mix-in Pilot, that
exclusion remains in effect for the steps that the Pilot contributes during the run.

NOTE: Although you can add any number of mix-in Pilots to a scenario, we
recommend that you include just one or two.

Creating a Pilot Mix-In
To create a mix-in Pilot to run with a Pilot scenario:

1. Insert a Pilot at the branch of the application map that corresponds to the
functional area that you want to randomly mix in to the scenario.

Name the mix-in Pilot.
Specity settings for the mix-in Pilot on the Setup and Exclude tabs.

4. Click the lead Pilot for the existing scenario, and then click the Mix-Ins tab.

Summar_l,ll Setup I Stop Eriterial Scenaio Misins I EHcIudel

Filot Name | Object Path |

] Delete |

LChance used

o3

5. Click Add.

% Find Objects

Mame | Date Madiied

Accemt

= TestSuite [T Interaction object I 'I |
Uszer Properties... |

Mamed: IHeIper
Type Stap |
' Bt I~ Feport I= Ay Ul object Mew Search... |
= Script ™ Marker I object class: |

s

Help

6.
7.
8.

10.

11.

Examining Pilot Run Results

Type the name of the mix-in Pilot in the Named box.
Select the Pilot check box.
Click Find Now.

2 Find Objects

Name | Date Modified
Hamed: IHeIper Eind Now
Type Stop

v Bilat I~ Beport ™| farp U] object Mew Search...
I~ | Seript = Marker Wl object class:

= TestSuite [T Interaction ohject I 'l |

Accept

Help

il

Mame | Object Fath | Type | Created | I odified
Ga) Helper Classics Online. 8Help Helper Pilot 07/30/33 07731439

Click Accept.

To specity the probability with which TestFactory mixes in steps from the mix-
in Pilot, enter a percent value in the Chance used box. For example, to have
TestFactory exercise the functional area for the mix-in Pilot approximately once
in every 20 action sequences, change the value in the Chance used box to 5.

To run the scenario Pilot that now includes a mix-in Pilot on your local
machine, click the lead Pilot, and then click Start on the Pilot properties page.

5-27

Automatically Generating Scripts

Additional Adjustments for Pilot Runs

You can improve a Pilot run by doing one or more of the following:

5-28

4

Specity values for StringCases and MaskCases properties of UT objects and
interaction object components that represent input controls (such as text boxes
and combo boxes) that require user input of a particular type or in a

particular format.

Before you rerun a Pilot, change the route number on the Setup tab to refresh
the Pilot. Changing the route number ensures that the Pilot takes a new path
through the AUT and increases the chances that the next run uncovers

new defects.

TestFactory does not support the automatic testing of some types of controls.
For example, TestFactory does not exercise individual cells contained in grid
controls and calendar controls during mapping and testing. TestFactory can,
however, test these cells if you create region objects for them in the
application map.

Changing Default Settings for Pilots

Changing Default Settings for Pilots

A Pilot gets some of its default settings from the Pilots tab in the Options dialog box.
You can change these settings globally from within the Pilots tab.

To change the default settings for new Pilots:
1. Click Tools > Options.
2. Click the Pilots tab.

Options H
Property Listz I Coverage Browser I Uzer-Defined Properties |
General I Project I Application Mapper

— Optian: Stop after

¥ ‘erify best scripts W Defects found: I j

— Time ¥ Code coverage: I‘IDD j *

Ll

L

Biun far: |U1 oo hh mm ¥ Ul coverage: I _|j %

— Support script
Startup: I Browse... | Clear |
Cleanup: I Browsze... | Clear |

— Script comment

Ok | Cancel | Help |

3. Except for the Verify best scripts check box, the options on the Pilots tab
correspond to options on the Pilot Setup and Stop Criteria tabs. Change these
options as you would change them on the other tabs.

4. To make these settings your defaults for new Pilots, click OK.

All new Pilots that you insert and run use the new default settings. If you want to run
an existing Pilot using the new default settings, click the Pilot object in the
application map, and then click Reset at the bottom of the Pilot properties page. The
next time you run the Pilot, TestFactory applies the new default settings.

5-29

Automatically Generating Scripts

Opening and Editing a Best Script in Robot

Z

If you want to insert a verification point in a best script, or if you want to record new
actions in it, you can open the script and edit it in Robot.

Opening a Best Script in Robot from TestFactory

To open a best script in Robot, do one of the following:

» Right-click the script object in the application map, and then click Open on the
shortcut menu.

» Click the script object in the application map, and then click Script > Open.

» Click the script object in the application map, and then click Tools, point to
Rational Test, and then click Rational Robot.

» Click the script object, and then click Start Robot on the Tools toolbar.

For information about inserting verification points and recording user actions, see
Robot Help or the Using Rational Robot manual.

Obtaining Code Coverage for Robot Scripts

5-30

If a project contains Robot scripts, you can run these scripts from TestFactory to get
code coverage values for them. To obtain code coverage values for a Robot script, the
script must satisfy the following requirements:

» The Robot script must start the AUT.

» The script code used to start the AUT must be recorded using the Robot Insert
menu or the GUI Insert toolbar, and not using the Start — Programs menu or
a shortcut on the desktop. For information about starting the AUT using the
GUI Insert toolbar or the Insert menu, see the topic Starting an Application in a
GUI Script in Robot Help.

» The Robot script must quit the AUT. The script can use any method that the
AUT provides to quit the application (for example, the Close button on the title
bar, or the Exit command on the File menu).

If you used the object code method to instrument the AUT, and you want to run a
Robot script from TestFactory to get code coverage information for the script, you
must first replace the StartApplication statement in the script with the
SQAShellExecute statement.

Opening and Editing a Best Script in Robot

To replace the StartApplication statement in a Robot script with the
SQAShellExecute statement:

1. Start Robot and open the script that you want to run from TestFactory.

Sub Main StartApplication statement
Dim Result As Integer in a recorded Robot script

'Initially Recorded: 8/12/99 3:86:41 PH
'Script Mame: ClassicsC Order
Startapplication D:\Sample ApplicationsiClassics Online\ClassicsC.exe'™ "

Window SetContext, "Mame=frmExistingLogin™, "
InputKeys "D
PushButton Glick, "Hame=cmdOK"
2. Find and delete the “StartApplication” statement near the beginning of the
script.

3. On the line that contained the StartApplication statement, type the following
SQAShellExecute statement:

SQAShellExecute "LaunchAUT.exe",
"<path to folder where TestFactory is installed>",

"<project name>\:ExeName:<path to AUT>"

Sub Main
Dim Result As Integer SQAShellExecute statement

‘Initially Recorded: B8/12/99 3:86:41 PH

'Script Hame: GlassicsC Order

SQAShellExecute “LaunchAlUT.exe*, _

"C:\Program Files\Rational\Rational Test 7", _

"CLASSICS| :ExeMame:D:\Sample ApplicationsiClassics Online\ClassicsC.exe”

Window SetContext, "Mame=frmExistingLogin™, "

NOTE: The underscore character at the end of the first two lines is a line
continuation character that makes the statement more readable. If you want
to keep the statement all on one line, delete the underscore characters.

To get code coverage information for a Robot script, run it from TestFactory.
NOTE: The SQAShellExecute statement starts the AUT when you play back the

script again from Robot. It is not necessary to restore the StartApplication
statement after you run the script from TestFactory.

5-31

Automatically Generating Scripts

Creating a Custom TestFactory Script

5-32

The TestFactory script object provides another way to create a script. You can use the
script object to record a TestFactory script in Robot and keep it with the scripts that
you created automatically in TestFactory. This customizable script is a template,
written in SQABasic™, that contains essential header files, the basic steps that
TestFactory displays on the Outline tab for the script, and comments that tell you
where to insert script code.

If you instrumented the AUT, you can run the custom script from TestFactory to
get a code coverage value for it. TestFactory displays the code coverage value on the
Coverage tab after the script is run. You can view and run all of your Pilot-generated
scripts in Robot.

Creating and Opening a Custom TestFactory Script
To create a custom TestFactory script and open it in Robot:

1. Clickafolder or other object in the application map as a destination for the script
object, and then click Insert > Script.

Alternatively, drag a script object from the Insert toolbar to a destination in the
application map.

Rename the script object, and then press ENTER.

To open the script in Robot, do one of the following:

— Click Script > Open.

— Click Tools, point to Rational Test, and then click Rational Robot.
— Click Start Robot on the Tools toolbar.

— Right-click the script object, and then click Open on the shortcut menu.

Recording Actions in a Custom TestFactory Script

Recording a custom TestFactory script in Robot is a two-part process. In the first
part, you record the actions TestFactory performs to drive the AUT to the base state
for testing. In the second part, you perform and record the actions that you want to
include in the test case.

To record as TestFactory drives the AUT to the base state for the script:

1. The custom TestFactory script contains code that starts and quits the AUT, and
comments that tell you where to place your code. In the shell script, click the
cursor after the comment ' Step: <Add code here to drive the AUT
to base states.

Creating a Custom TestFactory Script

Click Record > Insert At Cursor.

After Robot minimizes its window, click Pause Recording on the GUI Record
toolbar.

GUI Record EX

GUI Record toolbar

5
Pause Recording

To bring the AUT to the appropriate state for recording new actions, right-click
the Ul object in the application map that you want to represent the base state for
the script, and then click Go To “Control” in AUT on the shortcut menu.

Immediately after the TestFactory window closes, click Pause Recording to
begin recording as TestFactory drives toward the selected control in the AUT.

Wait until the TestFactory window is restored, and then click Pause Recording
on the GUI Record toolbar.

Minimize the TestFactory window, and then click Stop Recording on the GUI
Record toolbar.

To record a test case:

1.

v A W N

In the shell script, click the cursor after the comment 'Step: <Add your
test case code heres.

Click Record > Insert At Cursor.

Perform the actions in the AUT that you want to record as the test case.
Quit the AUT.

On the GUI Record toolbar, click Stop Recording.

To display additional steps for the custom script on the Outline tab, insert

them in the script manually as comments, using the format in the following
example:

'Step: 1: This step starts the AUT.
'Step: 2: Type 'quick brown log' into Sample text.
'Step: 3: Turn on italic.

Save the script in Robot.

5-33

Automatically Generating Scripts

You can play back the script immediately in Robot, or you can quit Robot. To obtain
code coverage for the script, right-click the script object in the application map, and
then click Play Back on the shortcut menu.

NOTE: Ifyou prefer not to use the Go To “Control” feature to record the actions
that drive the AUT to the base state for testing, you can record all of the actions as
you perform them manually in Robot.

Checking for Memory Errors in Visual Basic and C+ +
Applications (Windows NT)

5-34

Late in the development cycle, you can run Pilots and scripts to check for memory-
related defects in an AUT written in C+ +, Visual Basic 5, or Visual Basic 6. To test
for memory errors, you must be running TestFactory in Windows NT.

NOTE: If the AUT is written in Visual Basic 4, you cannot run a Pilot to check
for memory errors.

TestFactory can check for the following kinds of memory errors:

» Memory and resource leaks

» Invalid memory access

» Memory overwrites

» Uninitialized memory reads

» Memory access beyond the bounds of an array

TestFactory detects these memory-related defects in addition to the other types of
defects it detects during a normal Pilot run.

Checking for Memory Errors in Visual Basic and C++ Applications (Windows NT)

Preparing to Test for Memory Errors in the AUT
To prepare to test for memory errors in the AUT:
1. Click Tools > Options.

Optionsg

Froperty Lists I Coverage Browser I User-Defined Properties I
Froject I Application Mapper I Filots

— Setting

Current build: IBU“d 1 Manage... |
Stop shortcut kew: I,!.\It+F1 2 vl

— Global optiong—————————— temany error detection

V¥ Open Project Assistant on startup [~ Detect memony erors for this session

F Frompt an objest deletion Set Up AUT For Memony Detection

v Show New Project “Wizard

T Use Test Lab machines

™| Bvpass instrumentation check for this session

Testtecelerator imeout: |15 =1 minutes

Ok | Cancel | Help |

2. Under Memory error detection on the General tab, select the Detect memory
errors for this session check box.

Before you can test for memory errors, you must set up the AUT for memory
error detection. Because this can take several minutes, we recommend that you
set up the AUT before you start a Pilot or script run. If you do not, TestFactory
sets up the AUT after the run starts. This can potentially cause timing problems.

temary ermor detection———————————————

¥ ‘Detect memony erors for this sessior

Set Up &UT For Memary Detection _I__ Click here to set up the AUT for memory testing.

3. Toset up the AUT now, click Set Up AUT For Memory Detection.
4. After the AUT is set up, click OK.

5-35

Automatically Generating Scripts

After you set up the AUT, memory checking remains in effect for all Pilots and
scripts until you clear the Detect memory errors for this session check box, change
projects and then reopen the original project, or quit TestFactory.

To make memory checking unavailable:

1. Click Tools > Options.

2. Under Memory error detection on the General tab, clear the Detect memory
errors for this session check box.

3. Click OK.

Running a Pilot to Check for Memory Errors

5-36

You can run an existing Pilot, or insert a new one to check for memory errors. The
steps for setting up a memory-checking Pilot run are the same as those for other Pilot
runs. A memory-checking Pilot differs from other Pilot runs in that it can only be
run on your local machine, and TestFactory does not calculate code coverage values
for the scripts that are generated. (TestFactory ignores the value set for

Code coverage on the Stop Criteria tab.)

A Pilot that you run to check memory errors runs much more slowly and uses
significantly more memory than it would otherwise. If you start a Pilot run and you
see a system error message indicating that the machine has insufficient resources to
run the Pilot, consider increasing your system resources before you test for
MEemory errors.

Checking the Timing of a Pilot Run

If you start a Pilot run without first setting up the AUT for memory checking, do
the following:

» After you start the run, monitor the Pilot progress bar until you see running
scripts displayed in the Status box. If the AUT starts within five minutes, you
can stop monitoring the Pilot run. If the AUT has not started after five minutes,
do the following:

To stop the Pilot run, click Stop on the Pilot progress bar.
b. After the TestFactory window is restored, click Tools > Options.

c. Under Memory error detection on the General tab, click Set Up AUT For
Memory Detection.

d. After the AUT is set up, click OK. (Setup can take several minutes.)

Checking for Memory Errors in Visual Basic and C++ Applications (Windows NT)

e. In the application map, click the Pilot.
f. Restart the Pilot run.

Setting up the AUT before you restart the Pilot run should solve timing problems
during the run.

Viewing the Results of a Pilot Run to Detect Memory Errors
The Best Script

If you run a Pilot to check for memory errors, TestFactory does not calculate code
coverage for the best script. Instead, it optimizes the best script based on Ul coverage.
To get a code coverage value for a best script that was generated during memory
checking, clear the Detect memory errors for this session check box on the
General tab, and then run the script from TestFactory.

Defect Scripts

The Defect Found folder for a memory-checking Pilot can include defect scripts that
uncover memory-related defects, as well as defect scripts that uncover other kinds of
defects (AUT crashes, Visual Basic run-time errors, and assertions). To determine
whether a defect script is associated with a memory error or other kind of defect, you
must view its log in the Test Log window of Rational TestManager. For information
about viewing a script log, see Viewing the Log for a Defect Script on page 5-17. For
information about the kinds of memory errors uncovered by defect scripts, see the
topic Using Purify Messages: Message Types in Rational Purify Help.

If you run a Pilot in an area of the AUT that contains an error unrelated to memory,
the Pilot generates a single defect script for that defect, regardless of how many times
the defect turns up during the run. However, if you run a Pilot in an area of the AUT
that contains a memory error, the Pilot generates a new defect script each time the
error shows up during the run. If this happens, the Pilot results include a Defects
Found folder that contains multiple defect scripts for a single memory error.
Although there is no way to completely avoid generating redundant memory defect
scripts, you can reduce the number of these that a Pilot generates.

If a Pilot generates many defect scripts for a single memory error, do the following:

1. To modify the Pilot stop criteria so that a Pilot run generates fewer defect scripts
(for any kind of defect):

a. Click the Pilot in the application map.
b. Click the Stop Criteria tab, and then do one of the following:
— Enter alow target value (between 5 and 10) for the Defects found criterion.

— Enter a short run time (such as 00:10) in the hh:mm box for the Run for
criterion.

5-37

Automatically Generating Scripts

2. Rerun the Pilot.

If the Pilot run generated defect scripts, view their logs until you find one or two
that are associated with memory errors.

4. Fix the memory errors in the AUT, and then rerun the Pilot.

If the Pilot encountered the same memory error repeatedly during the previous run,
then tracking down and fixing the first occurrence of a memory error should reduce
the number of redundant defect scripts generated.

If your memory-checking Pilots are generating large numbers of non-duplicate
defect scripts for relatively small functional areas of the AUT, it could indicate that
you started checking for memory errors too early in the development cycle.
Consider waiting until the AUT is further developed before you check for
Memory errors.

Running Scripts to Check for Memory Errors

5-38

In addition to running Pilots that check for memory errors in the AUT, you can run
existing scripts from TestFactory to check for memory errors.

To run scripts to test for memory errors in the AUT:

1. Click Tools > Options.

2. Under Memory error detection on the General tab, select the Detect memory
errors for this session check box.

To set up the AUT now, click Set Up AUT For Memory Detection.
After the AUT is set up, click OK.

In the application map, right-click the script that you want to run for memory-
checking, and then click Play Back on the shortcut menu.

You can also run multiple scripts in a Test Suite to check for memory errors. For
information about running Test Suites, see Chapter 6, Developing and Running a
Test Suite.

Testing Controls in the AUT During Pilot Runs

Testing Controls in the AUT During Pilot Runs

Before you run a Pilot to test a functional area of the AUT, you can modity the
testing environment to ensure that your Pilots generate robust, stable scripts. This
section provides information about how to improve test results by selecting and
modifying the data entry styles used to test input controls, and by modifying the
properties of UI objects and interaction object components.

TestFactory exercises controls in the AUT differently during mapping than it does
during Pilot runs. The two major ways in which TestFactory behaves different
during mapping and testing are as follows:

» The Application Mapper exercises controls in a systematic fashion, while a Pilot
exercises controls in a more unpredictable fashion. For example, after mapping
starts, the Application Mapper exercises any interaction objects it finds before it
exercises Ul objects located at the same level of the application map hierarchy.
After a Pilot run starts, TestFactory randomly exercises the objects it encounters.
It does not necessarily exercise an interaction object before it exercises
UI objects located at the same level of the application map hierarchy.

» TestFactory uses a wider variety of data entry types to test an input control in the
AUT than it uses to map it. For example, to exercise an input control during
mapping, the Application Mapper can use a required string case that you have
specified, or mouse actions such as double-left-click or right-click. To test the
same control, a Pilot can use several difterent types of entry data, including
required string cases, mask cases, as well as randomly-generated string cases,
integer values, and floating point values.

Without some direction from you, a Pilot can spend much of its run time testing
negative cases. To introduce more focus to your Pilots runs, you can assign data entry
styles to and modify the properties of Ul objects and UI object components in the
application map. This section describes how to provide some direction to
TestFactory behavior during testing so that your Pilots generate rich scripts that
touch as much of the AUT source code and uncover as many defects as possible.

Selecting a Style and Modifying Data Entry Settings for Ul Objects
and Ul Object Components

If you run a Pilot to test an area of the AUT that contains an input control, the Pilot
uses a set of default entry data to exercise the control. The default entry data consists
of randomly-generated integers, float values, and string values. You can view the
default test data by clicking an input UI object in the application map and expanding
the Pilot properties in the Properties view.

5-39

Automatically Generating Scripts

5-40

You can provide an input control in the AUT with entry data that is more valid than
the default entry data by assigning a style to the UT object and components that
represent the control in the application map. If you assigned a style to a UI object or
interaction object component before mapping, you can always adjust the data entry
settings for testing. If you did not assign a style to an input UI object or interaction
object component before mapping, we recommend that you do so before testing.

NOTE: If you choose not to assign a style to an input-type Ul object or
component, you can specify entry data by modifying the UI object properties of
UI objects in the Properties view and modifying the component properties in the
Property List dialog box. For information about modifying properties, see
Modifying Properties to Control IestFactory Actions During Pilot Runs on page 5-46.

This section describes how to:

» Assign a style to a UT object or to a UI object component that represents an
input-type control in the AUT.

» Specify a required string case for the style.

» Modify the data entry settings for a style.

» Create a custom style.

To assign a data entry style to an input-type Ul object and view its data entry settings:
1. In the application map, click the UT object.

2. On the Style toolbar at the top of the Properties view, click the Select Style
arrow, and then click a style name.

| ___ Style toolbar
Qms Inherit

Addreszes
Baze

Cities o
Companies Existing data entry styles.
Countries hd

Select Style arrow

3. To open the Edit Data Entry Style dialog box and view the settings for the
selected style, do one of the following:

— Click Style Properties on the Style toolbar.
- Right-click the UT object, and then click Edit Style on the shortcut menu.

Testing Controls in the AUT During Pilot Runs

After you add an input UI object component to an interaction object, TestFactory
assigns the component the Base style.

To select a different style for a UI object component and view its data entry settings:
1. In the Interaction Object view, click the component name.

2. To open the Edit Data Entry Style dialog box, click Style Properties on the
Interaction Object toolbar.

3. Under Style, click the Name box, and then click a different style name.

The following figure shows the Edit Data Entry Style dialog box. The histogram
under Test characteristics shows the data entry composition that TestFactory uses
during testing.

Edit Data Entry Style HE
— Style ~ Setting T
e TN | Desicdoroce | ;1
_ ¥ Use random entii 100 = i
i e random entries 3
Editing mode: Apply to this object anly - = Export... |
7 Fedefine custam sl ¥ Integer values =
" Create custom style ' Eloating paint values —ICance\
— ¥ Gtiing values Help |
 Test characteristic: r r
Use mazsk cases: Use string cazes:
Thiz shows the composition of data entiez bazed - HIE
on the chosen settings. i) Breview. | i)

Integer values

Float values

String values

Specifying a Required String Case for a Style

Although none of the existing styles in the Name list has a required string case, you
can add one to a style by typing it in the Required string case box under Settings.

If you specified a required string case for a style you assigned to a UI object or
component before mapping, the Application Mapper used only that string case to
exercise the corresponding control. If you run a Pilot to test this control, the Pilot
includes the required string case in the mix of entry data it uses to test the control.
To test the control using only the required string case, you must modify the data
entry settings for the style.

5-41

Automatically Generating Scripts

5-42

To limit the entry data to the specified string case during testing:

1. Under Settings, clear the Use random entries, Use mask cases, and Use
string cases check boxes.

2. To save your style changes and close the Edit Data Entry Style dialog box,
click OK.

Specifying a Mix of Random Entries for a Style

All of the data entry styles that TestFactory provides specify random data entry for
testing controls. The random data used to test controls can include integer values,
float values, and string values.

In the Base style that TestFactory assigns to input-type components in interaction
objects, Use random entries is the only data entry setting selected. If you keep this
style for a component, 100% of the data entry used to test the input control is
randomly generated, with integer values, float values, and string values equally
represented in the mix.

If you use a style other than the Base style, or you create a new style for a Ul object
or component, we recommend that you set the percent for Use random entries to
a low value such as 3% as you start running Pilots to test the control. This approach
allows TestFactory to generate a small number of negative test cases during a Pilot
run, but limits the number of defects that script segments are likely to encounter.
Later, you can increase the percent value to uncover more defects.

To modify the mix of random entries for the style, do one or more of the following:

» To set the percentage of data entry that is represented by randomly-generated
integer values, float values, and string cases:

— Under Settings, enter a percent value in the % box next to
Use random entries.

» To exclude a specific type of randomly-generated value from the mix of random
entries, clear the corresponding Integer values, Floating point values, or
String values check box.

» To remove random entries from the data entry style entirely, clear the
Use random entries check box.

&

=]

X

Testing Controls in the AUT During Pilot Runs

Specifying or Modifying Mask Cases for a Style

Styles such as Credit Cards, Dates, and Dollars include a list of mask cases that you
can use to test controls that require input in a specific format. The following figure
shows the mask cases specified for the Credit Card style.

v Use mask cazes

il W Preview button

[4-SN0-H3 3 0-SH4H33 . Mask cases for the Credit Card style
[4-9110-9H2.3H-0-9H4.41H3.3}

To view the sample data that TestFactory generates for a listed mask case:

» Under Settings, click a listed mask case, and then click Preview.

: Preview Mask Case Yalues HE
Mazk caze:

Hegenerate

Generated values:

Fiestore

4355 8054 0819 0414 Carcel
4385 6331 0172 9187
4447 5093 1494 7351 Help
4466 5313 5818 3590

4470 1034 3752 2200

4052 3574 0246 5405 j

ol

Sample data generated for
the selected mask case

From the Preview Mask Case Values dialog box, you can edit a mask case and view
the resulting sample data that TestFactory generates. For information about how to

edit a mask case and view the sample data that TestFactory generates for it,
click Help.

To save changes that you make to a mask case and close the Preview Mask Case
Values dialog box, click OK.

To add a new mask case to the list:
» Click Insert mask case, and then type a mask case in the active box.
To edit a mask case in the list:

» Click the mask case you want to edit, click Edit mask case, and then make
changes in the active box.

To remove a mask case from the selected style:
» Click the mask case, and then click Delete.
To remove all mask cases from the selected style:

» Press SHIFT, select all of the mask cases, and then click Delete.

5-43

Automatically Generating Scripts

To make mask cases unavailable for testing:

» Clear the Use mask cases check box.

Specifying or Modifying String Cases for a Style

Styles such as Cities, Countries, and Web Sites include a list of string cases for testing
input controls. The following figure shows the string cases specified for the
Cities style.

¥ Use string cases:

1 2 [

SanJose o
Campbel
San Francizo
Bala-Cyrvwyd ____ String cases for the Cities style
Reno
Wild Roze
Alliance
B

To add a new string case to the list:
ﬁl » Click Insert string case, and then type a string case in the active text box.
To edit a string case in the list:

» Click the string case you want to edit, click Edit string case, and then make
changes in the active box.

To remove a string case from the list:
|£| » Click the string case that you want to remove, and then click Delete.
To remove all string cases from the selected style:
» Press SHIFT, select all of the string cases, and then click Delete.
To make string cases unavailable for testing:

» Clear the Use string cases check box.

5-44

Testing Controls in the AUT During Pilot Runs

Creating a Custom Data Entry Style

After you change the style settings, you can save the changes as overrides to the
selected style, or you can create a custom style that has the modified settings.

To save the style settings as overrides of the selected style and close the Edit Data
Entry Style dialog box, click OK.

To create a custom data entry style after you finish making changes to the data
entry settings:

Style
Nare: “Base -

Editing made: & Apply ta this object only

| Fedefine custom stile

™ Create custom style

1. Under Style, click Create custom style.

New Style Name EHE3

Q. I Cancel |

2. Type a name for the custom style in the Name box.
3. Click OK.

TestFactory adds the custom style name to the Name list in the Edit Data Entry Style
dialog box, and to the Select Style list on the Style toolbar.

5-45

Automatically Generating Scripts

Managing Data Entry Styles

TestFactory provides a Manage Data Entry Styles dialog box that you can use to
manage the data entry styles that you apply to input-type UI objects and interaction
object components. You can use this dialog box to create new styles, edit or delete
existing styles, and to import styles from or export styles to another project.

To open the Manage Data Entry Styles dialog box, do one of the following:
» Click Tools > Manage Styles.

» In the application map, right-click an input-type of UI object, and then click
Style on the shortcut menu.

-]
%]

Manage Data Entry Styles
| The Manage Data Entry Styles dialog box

Hew...

Cities Edit...
Companies

Countries DelEte
Credit Cards

Dates

Dates and Times Impart. .

D ates-Alpha Month

D ates-Julian Ezpart...
Dollars

Dollars and Cents o
Gender L

P e L

International Characters |
International Dates

Names-First

Mames-First and Last
Hames-Last

Mumbers-Floating Point
Numbers-Hexadecimal
Numbers-Inteaer

Humb Scientific Notati |

Help

For information about working with a listed style or creating a new style, click Help.

Modifying Properties to Control TestFactory Actions During

Pilot Runs

5-46

You can control some aspects of TestFactory behavior during a Pilot run by adjusting
the properties of action objects and the UI objects and components you are testing.
This section describes how to change property values to improve Pilot run results.

To see the Ul object properties of a UT object or action object, click the object in the
application map. The Properties view displays the UI object properties in the top
right pane. To open the Property List dialog box and see the properties of a
component, double-click the component in the Interaction Object view.

Testing Controls in the AUT During Pilot Runs

Excluding a Control from All Testing

To exclude a control from all testing, you can modify the ExerciseDuringTesting
property value of the Ul object and components that represent the control.

To exclude a control from all testing:

1. In the application map, click the UI object mapped for the control that you do
not want to test.

2. In the Properties view, click the Value field for ExerciseDuringTesting, and
then click Never.

3. Ifthe Ul object mapped for the control that you want to exclude from testing
has been added as a component to one or more interaction objects, do the
following for every added component:

a. Double-click the component.
b. In the Property List dialog box, expand the Pilot properties group.
c. Click the Value field for ExerciseDuringTesting, and then click Never.

If a project contains a Ul script or best script that touches a control that you exclude
from testing, and you run the script while the exclusion is in effect, the run will fail.
We recommend that you do not run scripts such as these as long as the control is
excluded from testing. If you plan to permanently exclude a control from testing,
then delete or edit the scripts that exercise the control.

Setting the Interaction Order for Controls During Testing

NOTE: The following information about setting the interaction order for
controls pertains to UI objects only. TestFactory exercises interaction object
components based on their listed order in the Interaction Object view during
both mapping and testing,

After you map the AUT the first time, you can specify the order in which
TestFactory exercises Ul objects during a Pilot run by changing the values of their
InteractionOrder and ExerciseDuringTesting properties. During the mapping
process, the Application Mapper exercises all of the controls in the AUT and follows
the interaction order values that you have specified for objects in the application
map. A Pilot, on the other hand, randomly exercises the controls to which you give
it access. For example, if you insert the Pilot at a dialog box, TestFactory uses the
mapped path to navigate directly through the user interface to the dialog box, which
is the base state for the Pilot run. After reaching the base state, the Pilot exercises the
controls in the dialog box randomly, touching some controls and ignoring others.

5-47

Automatically Generating Scripts

5-48

If you have set an interaction order for UI objects that a Pilot can access, and you
want the Pilot to follow that specified order, then you must change the value of the
ExerciseDuringTesting property for those objects to Always. This guarantees that
those objects are tested in the correct sequence during the Pilot run.

To control the order in which TestFactory exercises the child objects of a UT object:

1.

Click the UI object that you want TestFactory to exercise first.
NOTE: Ifyou specify the interaction order for objects for mapping the AUT,
then you do not need to do it again before you test the objects. However, you

must set the ExerciseDuringTesting property for the objects.

In the Properties view, click Pilot.

MNarne | Walue | Iikierit
Application Mapper
El Pilot
ExercizeluningT esting Sometimes Yeg
Dodccelerator3election Mo e

Double-click the Value field for ExerciseDuringTesting, and then
click Always.

In the Properties view, click Shared.

MName | Walue | Inherit

Application Mapper

Pilot

Bl Shared
‘waitinterval 1.00 ez
RequiredStingCase Yes
InteractionOrder 1000 Mo

Click the Value field for InteractionOrder and replace the default value of 1000
with a value greater than 0.

Click the next Ul object for the interaction sequence.

In the Properties view, click the Value field for ExerciseDuringTesting, and
then click Always.

Double-click the Value field for InteractionOrder and replace the default value
of 1000 with a value that is greater than the value that you set for the first
UI object.

Repeat steps 6 through 8 for the remaining Ul objects in the
interaction sequence.

During the Pilot run, TestFactory exercises Ul objects in ascending order of the
InteractionOrder property values.

Testing Controls in the AUT During Pilot Runs

Specifying a Delay Interval to Include in Generated Scripts

If a functional area of the AUT requires some lag time to respond to an action such
as a left click, you can specify a delay interval to apply each time the action is used
during testing. The delay interval value that you set forces Robot to wait the specified
number of seconds before performing the next action during Pilot runs. TestFactory
automatically adds code for the delay interval to the Pilot-generated scripts that
include the action object.

To specity a delay interval for an action:

1. In the application map, click the action object for which you want to set a
delay interval.

2. In the Properties view, expand the Pilot properties group.

Mame | Walue | Inherit
Application Mapper
E Pilot
UzeliuringT esting Sometimez ez
Delaylnterval 0.00 Yes
Shared DelaylInterval property

F Nhiack

3. Click the Value field for Delaylnterval, and then type a value, in seconds, to set
the duration of the delay.

When Robot encounters a delay value in a script, it waits for the specified amount of
time before continuing playback. A delay value is useful if the action takes more time
than that specified in the Delay between commands box in Robot. (For
information about the Delay between commands box, sce the topic Setting GUI
Playback Options in Robot Help.

Because the delay interval is encoded in Pilot-generated scripts, and is independent
of Pilot property settings in TestFactory, the delay is imposed whether you open and
play back the script in TestFactory or in Robot.

5-49

Automatically Generating Scripts

5-50

Specifying a Wait Interval to Apply to an Object During Testing

If a functional area of the AUT requires some lag time to respond after a control is
exercised, you can use the Waitlnterval property to force TestFactory to wait a
specified number of seconds after exercising the control before it continues testing.

To force a wait interval after a Pilot exercises a control in the AUT:

1. In the Properties view or Property list dialog box, expand the Shared
properties group.

Name | Walue | Inherit
Application Mapper

Pilot
B Shared /
W aitlnterval 1.0 A=

RequiredStingCase Yes
InteractionOrder 1000 Mo

Value field for the Waitlnterval property

2. Click the Value field for Waitlnterval, and then type a value, in seconds, for
Pilots to wait after exercising the control before continuing to test.

After a Pilot exercises a control, TestFactory waits until the number of seconds
specified for the WaitInterval property elapses, or until the Timeout after value set
in Robot elapses—whichever is greater—before it continues. If you specify a
WaitInterval value that is higher than the 30-second default Timeout after value in
Robot, then TestFactory sets the Robot Timeout after value to the higher value
when a script that exercises the object is played back. Otherwise, the default
Timeout after value is used.

NOTE: Unlike the DelayInterval value, the WaitInterval value is not encoded in
Pilot-generated scripts. If you start Robot and open and play back a script that
includes UT objects for which you have specified a WaitInterval, Robot cannot
apply the wait interval.For information about specifying a wait interval value for
an object in the application map, see TestFactory Help.

Testing Controls in the AUT During Pilot Runs

Specifying a Required String Case

If you did not assign a data entry style to an input UI object or component, but you
want to specify a required string case to pass to the corresponding input control
during Pilot runs, you can do so by entering a value for the RequiredStringCase

property.
To enter a value for the RequiredStringCase property:

1. In the Properties view or Property List dialog box, expand the Shared
properties group.

Name | Walue | Inherit

Application Mapper

Pilot

Bl Shared Value field for the RequiredStringCase property
W aitlnterval 1.00 / A=
RequiredStingCase Yes
InteractionOrder 1000 Mo

2. Click the Value field for RequiredStringCase, and then type a required string
case in the active text box.

A Pilot that has access to the UI object or component includes the specified required
string case in the mix of entry data it uses to exercise the control in the AUT. If you
want Pilots to use only the required string case as entry data, you must modify the
Pilot properties of the UI object or component.

To limit the entry data to the specified required string case:

1. In the Properties view or Property List dialog box, expand the Pilot

properties group.

I <none: j :

MName | Walue | Inherit |

Application Mapper

=]
ExercizeliunngT esting Sometimes ez
DodcceszkeyS election Mo ez
Dok ouseSelection Ves Ve
UzeStringCazes Yes Yex
StringCases CHULL, . 0,1,-1,-128, 129, .. Yes
UsebaskCazes Ves Ve
M azkCazes [[0-912 2002 2092 20 ([0, “es
Uselntegery alues Yes Yes
b amimury alidlnteger 2147483647 ez
Minirmurny' alidinteger 2147483648 Yes
UseFloafalues Ves Ve
b aimur alidFloat 3 de+033 ez
Minirnurn alidFloat 1.2e-038 Yesx
M aximumGeneratedStingl... 40 ez
UzeStringvfalues Yes ex

5-51

Automatically Generating Scripts

2. Change the values for the following Pilot properties to No:
— UseStringCases
- UseMaskCases
— UselntegerValues
— UseFloatValues

— UseStringValues

Specifying the Entry Data Used to Test Input Controls

5-52

In addition to the RequiredStringCase property, UI objects and components that
represent input controls have several Pilot properties that you can modity to specify
the entry data used to test an input control. These Pilot properties parallel the data
entry settings in the Edit Data Entry Style dialog box.

If you change the Pilot properties values for a UT object to which you have assigned
a data entry style, the changes are applied as overrides of the selected style. If you
open the Edit Data Entry Style dialog box after you change the Pilot properties in the
Property List dialog box, you can see that the data entry settings reflect the changes
you made to the Pilot properties.

If you change the values of Pilot properties for a UT object that has no data entry style,
and you later assign a style to that UT object, the data entry settings of the assigned
style override the changes that you made to the Pilot properties.

If you change data entry settings for a component by changing the values of Pilot
properties in the Property List dialog box, the changes are applied as overrides of the
selected style for the component. If you open the Edit Data Entry Style dialog box
after you change the Pilot properties in the Property List dialog box, you can see that
the data entry settings reflect the changes to the Pilot properties.

Specifying String Cases to Use During Testing

To specify string cases used to test an input control, you can use the StringCases
property. During a Pilot run, TestFactory randomly enters one of the string cases in
the input control.

To specify string cases for a Ul object or component:

1. In the Properties view or Property List dialog box, expand the Pilot
properties group.

2. If the value for UseStringCases is set to No, change the value to Yes.

To open the StringCases dialog box, double-click the Value field for
StringCases.

Testing Controls in the AUT During Pilot Runs

The following figure shows the StringCases dialog box for an input UT object

that has no data entry style assigned to it.

StringCases

MULL

128
129

127

128

2655

256

-32767

-32768

32767

276G

EE535

BE536

1

1.0 |

StringCases dialog box for an
input Ul object that has no data
entry style assigned to it

To change the StringCases list, do one or more of the following;:

— Toadd avalue to the list, click Add, and then type a value in the active box.

— Todelete a listed value, click the value, and then click Delete.

— Todelete all listed values, click Clear.

— To edit a value, click the value, and then modify or replace it.

To import a text file that you created in another program, and use the text strings
it contains as string cases for testing, click Import, and then use the Import From

dialog box to locate and load the file.

NOTE: TestFactory uses line breaks to distinguish between separate string
cases. Be sure to use line breaks between text strings in the text files you

create to import in TestFactory.

To export listed values to a text file, click Export, and then use the Export To
dialog box to name and save the file. You do not need to specify a file type.

To save your changes and close the StringCases dialog box, click OK.

5-53

Automatically Generating Scripts

Specifying Mask Cases to Use During Testing

TestFactory can use entry data generated from mask cases to test input controls. To
specify mask cases used to generate test data for an input control, you can change the
MaskCases property of the UT object and components that represent the control.

To modify the MaskCases property for a UI object or component.

1. In the Properties view or Property List dialog box, expand the Pilot
properties group.

If the value for UseMaskCases is set to No, change the value to Yes.

To open the MaskCases dialog box, double-click the Value field for
MaskCases.

MaszkCases

MaskCases dialog box for an
input Ul object that has no data
entry style assigned to it

0512, 2112, 2H0-aH2.24 -
(10-912.21/1{2.2}10-914,4}

0-912, 2112, 2)910-41

(10-912, 2112, 21 910-912.2}

I0-912, 2112, 2}00-91

M0-GH2. 2112 212000-502.2)

Jan{0-G12, 2{0-9H4,4}

Jan [0-912.2), 10-9H4,4} Import...

EEEN
_ Cea |
Januan [0-9H2,2), [0-9Y4.4} —I
Janioanzz ’ Esport... |
o |
_ Coredl |
_ te |

Jan 109122}

Januany [0-912,2} K
Feb-[0-9H2.2}H0-914.4}

Feb [0-312.2}, [0-91{4.4} Cancel
February [0-912 .2}, [0-914.4}

Feb-[0-912.2} Help
Feb [0-91{2,2}

February [0-9H2.2}

tar-[0-9H2 2}-H0-91{4. 4}

Mar [0-9H2.2), [0-91d.4}

Parch [0-912.2}, 10-91{4 4} =l

4. To change the MaskCases list, do one or more of the following:
— Toadd avalue to the list, click Add, and then type a value in the active box.
— Todelete a listed value, click the value, and then click Delete.
— Todelete all listed values, click Clear.
— To edit a value, double-click the value, and then modify or replace it.

5. To import a text file, click Import, and then use the Import From dialog box to
locate and load the file.

6. To export listed values to a text file, click Export, and then use the Export To
dialog box to name and save the file. You do not need to specify a file type.

7. o save your changes and close the MaskCases dialog box, click OK.

5-54

Testing Controls in the AUT During Pilot Runs

Specifying Random Entry Data to Use During Testing

The UselntegerValues, UseFloatValues, and UseStringValues properties in the
Pilot properties group correspond to the Use random entries suboptions in the Edit
Data Entry Style dialog box.

To keep a random data entry type as part of the mix of entry data used to test
a control:

» Lecave the Value field for the random entry data property set to Yes.
To exclude a random data entry type from the mix of entry data used to test a control:

» Double-click the Value field for the random entry data property, and then
click No.

Excluding Controls from Testing

If the AUT contains a print control, a control that is unstable, or a control that could
delete data that you want to keep, you probably want to exclude it from testing.

To exclude a control from testing by an individual Pilot, you can add the UI object
mapped for the control to the Exclude tab. If the UI object that you add to the
Exclude tab has been added as a component to an interaction object to which the
Pilot has access, then you must also exclude the accessible UI object components
from testing.

To exclude just the component from testing:
1. Inthe application map, click the interaction object that contains the component.

2. In the Interaction Object view, click the component name, and then click
Make Unavailable on the Interaction Object toolbar.

To exclude the interaction object that contains the component from testing:

1. In the application map, right-click the interaction object that contains
the component.

2. IfUse During Testing on the shortcut menu is checked, click the command. If
the command is not checked, click outside the shortcut menu to close it.

If a project contains a Ul script or best script that touches a control you have
excluded from testing, and you run the script while the exclusion is in effect, the run
will fail. We recommend that you do not run scripts such as these as long as the
control is excluded from testing.

5-55

Automatically Generating Scripts

5-56

To exclude a control from testing during all Pilot runs, you can modify the value of
the ExerciseDuringTesting property for the UI object mapped for the control.

To exclude a control from all testing:

1. In the application map, click the UI object mapped for the control that you do
not want to test.

In the Properties view, click Pilot.
Click the Value field for ExerciseDuringTesting, and then select Never.

4. If the Ul object mapped for the control that you want to exclude from testing
has been added as a component to one or more interaction objects, do one of the
following for every interaction object that contains the component:

— Exclude the component from testing.
— Exclude the interaction object that contains the component from testing.

If the project contains a Ul script or best script that touches a control that you
exclude from testing, and you run the script while the exclusion is in eftect, the run
will fail. We recommend that you do not run scripts such as these as long as the
control is excluded from testing. If you plan to permanently exclude a control from
testing, then delete or edit the scripts that exercise the control.

Testing Controls in the AUT During Pilot Runs

Restoring the Default Property Values for Ul Objects
and Components

If you have modified the UI object properties of a Ul object in the application map,

and you want to restore the default property values for that object, you can do so at
any time.

To restore the default property values for a Ul object:

» In the application map, right-click the object, and then click
Restore Ul Properties on the shortcut menu.
extB o

TextBox
“our Informe E

tap It 3
GoTo'"TestBox" in AT

Change Subclazs..
Expand Al

Go To Ul Library
Uzer Properties...
Bestore Ul Properties
Delete
Style..

Wwhat's This?

TestFactory restores the original default values of all of the UI object properties.

If you have modified the properties of a component, and you want to restore the
original property values, you can do so by reassigning the Base style to the
component.

1. In the Interaction Object view, click the component name.

2. To open the Edit Data Entry Style dialog box, click Style Properties on the
Interaction Object toolbar.

3. Under Style, click the Name box, and then click Base.

5-57

Automatically Generating Scripts

5-58

»»» CHAPTER 6

Developing and Running a Test Suite

This chapter describes Test Suites and how to use them to run scripts on your local
machine. This chapter includes the following topics:

» Overview of Test Suite functionality
» Creating a Test Suite
» Running a Test Suite

» Viewing the results of a Test Suite run

Overview of Test Suite Functionality

You can insert a Test Suite object in the application map to organize and track scripts
and to run them in batches. Test Suites are useful for organizing and running groups
of best scripts, defect scripts, and scripts created against a specific build of the AUT.

In addition to Pilot-generated scripts, a Test Suite can include other Test Suites,
customized TestFactory scripts, and Robot scripts. Because a Test Suite contains
pointers to the scripts that you insert in it, you can include a specific script or
Test Suite in several different Test Suites.

If you run a Test Suite on your local machine, TestFactory runs the scripts in the
order that you specify. The sequence in which you arrange them depends mostly on
which script run results you want to see first. However, a particular script run
sequence can affect the AUT in unexpected ways. You can use Test Suites to explore
such possibilities.

The Test Suite Coverage tab provides an aggregate code coverage value for all of the
scripts that it contains. You can use the results to determine how much code was
exercised during a Test Suite run.

The Test Suite is a convenient tool for organizing groups of scripts for regression
testing. You can drop Pilots into several functional areas of the application map, run
them to obtain best scripts and defect scripts, and then place the scripts in

Test Suites.

6-1

Developing and Running a Test Suite

Create Test Suites for the following:

» Best scripts, so that you can run them against subsequent builds of the AUT
» Scripts that exercise a specific functional area of the AUT

» All defect scripts, or defect scripts to run against a particular build

» All of your scripts

Use a Test Suite to organize best scripts for functional testing after you have
debugged them, inserted verification points, and successfully run the scripts against
the AUT.

Creating a Test Suite

You can create a Test Suite using the Find Objects window or by directly inserting a
Test Suite object in the application map. This section provides instructions for using
both methods.

Creating a Test Suite Using the Find Objects Window
To create a Test Suite using the Find Objects window:

1. Click Edit > Find Obijects, or click Find Objects on the Standard toolbar.

& Find Objects

Mame | Date Modified

Lreate Suite

[~ TestSute [Interaction object I vI |
Uzer Properties. .. |

Help

Mamed: I ﬂl
Tupe Stop |
™ Pilat ™ Repart ™ any I object Mew Search... |
I™ Seript ™ Marker Ul object class: |

[]

Creating a Test Suite

2. To locate scripts and Test Suites to add to the Test Suite, under Type, select the

3.

appropriate check boxes, and then click Find Now.

%3 Find Dbjects [_ (O] x|

Name | Date Modiied |

Mamed: I ;.
Tupe Stap |
™ Filot " Report ™ Any Ul object Mew Search... |

V' Seript I Marker Ul object class: Create Suite |
[T TestSute [|nkeraction object I vl
'—I Help |

User Properties.. |

Mame | Object Path | Type | Created | fdodified I;
DefectSeript - 100 - 08-26, .. Make &n Order ORDERER.OR... Script 08426/33 08/26/93
LA Script - 08-26, 02-48 .. Make &n Order ORDERER.OR... Script 08/26/33 08/26/33
BestSorpt - 08-26. 02-43 P Make &n Order ORDERER.OR... Script 08/26/33 08/26/33
e dh TN Serint 2 R 2R. N5 LM ks An Didec AR RER R L Seript, o I347R099..L ISR,

To add all of the found test objects to the Test Suite, click Create Suite. To add
a subset of the objects listed to the Test Suite, press CTRL or SHIFT, select the test
objects, and then click Create Suite.

Select Objects B
Filtered ohiects: Selected Ul object or clazs:
— Navigatio — :
igation ED Application Map Name | Obiect Path |
Selectable =1 B staneur I Pt
objects are in Y

bold

Eirat: |

] Account Info
£ BIGEY
{23 Mapping Feports

Previous |
Last |

Select-» | <= Hemove |

Filter: |l Dbject

[

=

Cancel | Help |

In the Filtered objects box, click a parent object for the Test Suite, and then
click Select.

NOTE: The parent object that you select does not limit what you can
include in the Test Suite. We recommend that you select a parent object such
as a folder that makes sense in terms of project organization.

Developing and Running a Test Suite

5. Click OK, and then close the Find Objects window.

Status | Coverage I

Script Mame | Status | Date Run | Find Objects... I
Hﬂ BestSorpt - 08-26. 02-43 PM Mew

qil, BestSoript - 08-26. 0309 PM Hew g, |
q?:l, BestScrpt - 08-27. 11-41 AWM Mew Delete |
qi, BestScrpt - 08-27, 1185 AM Mew =

ii, BestScnpt - 08-27, 1157 &AM Mew Clear |

6. To change the order in which TestFactory runs a script or Test Suite, click its

name, and then use the Up and Down buttons. If the Test Suite includes startup
and cleanup support scripts, then place them at the top and bottom of the
list, respectively.

To remove one or more items from the list, select the item(s), and then

click Delete.

NOTE: Ifyou delete a test object name in the Status tab, you delete only the
pointer to the object, and not the test object itself.

Inserting a Test Suite Object in the Application Map

To create a Test Suite by directly inserting a Test Suite object in the application map:

Insert a Test Suite object in the application map, and then name it.

2. To add a script or another Test Suite to the Test Suite, do one of the following:

— Dragascript or Test Suite object from the application map or a script from
the Robot Scripts folder to the Status tab list box.

Alternatively:
a. On the Status tab, click Find Objects.

To find scripts or other Test Suites to add to the Test Suite, select the
appropriate check boxes, and then click Find Now.

c. To add all of the found objects to the Test Suite, click Accept. To add a
subset of the objects listed to the Test Suite, press CTRL or SHIFT, select the
objects, and then click Accept.

To change the order in which TestFactory runs a script or Test Suite, click the
test object name in the Script Name column, and then use the Up and Down
buttons. If the Test Suite includes startup and cleanup support scripts, then place
them at the top and bottom of the list, respectively.

Running a Test Suite

4. To remove a script or Test Suite from the run sequence, click its name in the
Script Name column, and then click Delete.

NOTE: Ifyou delete a test object in the Status tab, you delete only the
pointer to the object, and not the test object itself.

Running a Test Suite

You can start a Test Suite run from the Test Suite Status tab or from the AutoPilot
dialog box. This section describes how to use the Status tab to start a Test Suite run
locally. For information about running a Test Suite using the AutoPilot, see Chapter
7, Using the AutoPilot.

NOTE: In order for TestFactory to calculate code coverage for every script in a
Test Suite, each script must start and quit the AUT. For example, if the first script
in a Test Suite starts the AUT but does not quit it, and the next script exercises a
dialog box and then quits the AUT, TestFactory only calculates code coverage for
the first script.

If you run a Test Suite against an object code-instrumented AUT, TestFactory does
not automatically calculate code coverage values for the Robot scripts included in the
Test Suite. To get code coverage values for a Robot script, you must first insert the
Robot script in a customized TestFactory script, and then remove the script code that
was recorded in Robot to start the AUT.

Running a Test Suite on Your Local Machine
To start a local Test Suite run from the Status tab:
1. In the application map, click the Test Suite object.
2. In the Status tab, click Start.

3. To stop the Test Suite run before it finishes, click Stop in the Script progress bar,
or press ALT + F12.

After the Test Suite run ends, the Status tab displays summary run results for
individual scripts and Test Suites.

Status | Coverage I

Seript Mame | Status | Date Run | Find Objects.. |

TEL BestScript - 09-26, 0249 PM Completed 8/27/99 12:02:58 PM

T2] BestScipt-09.26, 0309 PM Completed B/27/99 12:03:36 PM _ et |
T2] Bestoipt-08:27, 1141 AM Completed 8/27/99 12.04:33 PM bk |
T2 Bestoipt -08.27, 1155AM Completed 8/27/99 12.05.02 PM =

BestScrpt - 08-27, 1157 AM - Completed 8/27/3312:05:24 PM Clear |

Developing and Running a Test Suite

Viewing the Results of a Test Suite Run

After a Test Suite run is completed, TestFactory displays the results on the Status
and Coverage tabs in the right pane. This section describes how to examine
these results.

Viewing Test Suite Run Results in the Status Tab

Statuz | Coverage I

Script Mame

| Status

| Date Run

[Find Obijects...

Hﬂ BestScript -
q?:l, BestScript -
qi, BestScript -
qi, BestScrpt -
g

BestScript -

05-26, 02-43 P
05-26, 03-03 P
08-27,11-41 M
08-27,11-55 &M
08-27, 11-57 AM

Completed
Completed
Completed
Completed
Completed

8/27/3312:02:58 PM
8/27/3312:03:36 PM
8/27/9312:04:39 PM
8/27/3312:0%:02 P
8/27/9912:05:24 PM

Inzert...
Delete

After a Test Suite run is completed, the Status tab displays the following:

» Script Name — The name of the script or nested Test Suite.

» Status — The completion status for the script or nested Test Suite.

» Date Run — The date and time the script run was completed.

If a script fails, double-click the script name to jump to the script object in the
application map, and then follow the steps for debugging a script that are provided
in Chapter 5, Automatically Generating Scripts.

Viewing Test Suite Run Results in the Coverage Tab

The Coverage tab displays detailed coverage information on the Test Suite run.

To view the code coverage details for a Test Suite run:

1. Click the Test Suite object in the application map, and then click the Coverage
tab. TestFactory calculates the Code Coverage value shown based on what the
scripts touched relative to all source code in the application. The values
displayed reflect the aggregate code coverage for all of the scripts in the
Test Suite.

Statyz Coverage |

Viewing the Results of a Test Suite Run

2. To see code coverage for the source files, expand the Code Coverage item. The
tree lists every source file in the AUT and the aggregate code coverage values for
the scripts that touched them.

Statuz Coverage |

M3 1002 - D:vFrogram Files'R ational\R ational Test 74Sample ApplicationssClassics Onlinesclassics
M3 B4% - D:MProgram Files'RationalhR ational Test 745 ample ApplicationsiClassics Orlinehclassics
M3 B3% - D:MProgram Files\RationalhRational Test 745 ample ApplicationstClassics Orlinehclassics
ML) 0% - D:\Program Files\Rational\R ational Test 74Sample ApplicationshClassics Onlinehclassics s
ML) B0% - D:\Program Files\RationalRational Test 7.5 ample ApplicationstClazsics Online’classics
M) 41% - D:\Program Filez\RationalvRational Test 7.5 ample ApplicationstClazsics Online’classics
0% - D:\Program FilezF ational\R ational Test 74Sample Applications\Clazzics Onlinghclassics
M) 100% - D:\Program FileshR ational\Rational Test 7\5ample ApplicationshClagsics Onlinedclassics
] 0% - D:\Proaram Files\R ationalhR ational Test 745 ample AoolicationshClassics Online\classics £

3. To sce the coverage values for individual procedures within a source file, expand

the source file.

Statyg Coverage |

100% - D\F‘rogram FileshR ationalsR ational Test 7\S ample ApplicationstClazsics Onlinehclassics
= B4% - D:\Program Files\H ational‘\R ational Test P45 ample Applications\Classics Onlineclassics

----- . 100% - Form_Load
----- e 0% - mnuLogin_Click

----- 0% - mnuAdminChoice_Click

'
----- e % - mnuR estore_Click,

----- Fe 100% - mnuTip_Click

----- . 100% - pictalbumimage_DbiClick
----- . 100% - retain_Expand

----- F. 100% - tretdain_ModeClick

----- F. B6% - crndOrder_Click,

----- e 100% - Form_Quennload

----- F. BB% - Form_Resize

.. 100% - mnuFileCloze_Click

4. Ifyou instrumented the source files for the AUT, then you can view the source
code for a procedure in the Coverage Browser. To open the Coverage Browser,

double-click the procedure.

Viewing Logs for Scripts in a Test Suite

You can access the logs for every script run in the Test Suite through the individual
script objects in the application map. For information about viewing logs, see
Viewing the Log for a Defect Script on page 5-17.

Developing and Running a Test Suite

Viewing Code Coverage Values for Previously Run Scripts

If you have several scripts that were generated for the same instrumented build of the
AUT, you can quickly obtain an aggregate code coverage value for the scripts just by
inserting them in a Test Suite.

To see aggregate code coverage for previously run scripts:
1. Inserta Test Suite in the application map.
2. Add the previously run scripts to the Test Suite.

Click the Coverage tab and then view the code coverage details as you would
for a completed Test Suite run.

»»» CHAPTER 7

Using the AutoPilot

This chapter describes the AutoPilot and provides instructions on how to queue
Pilots, Test Suites, and scripts in the AutoPilot window and run them on your local
machine. This chapter includes the following topics:

» About the AutoPilot

» Using the AutoPilot to run Pilots, Test Suites, and scripts

About the AutoPilot

The AutoPilot automatically runs multiple Pilots, Test Suites and scripts as a batch
job. You can use the AutoPilot to run batch tests on your local machine.

7-1

Using the AutoPilot

Using the AutoPilot to Run Pilots, Test Suites, and Scripts

Running Tests on Your Local Machine

To run multiple Pilots, Test Suites, and scripts on your local machine using
the AutoPilot:

1. Click Tools > AutoPilot, or click AutoPilot on the Standard toolbar.
W

i AutoPilot M=l E3
Component | Status | Started | Finished | Find Objects... |

Inzert...

[elete

i

[Elear

2. To queue Test Suites, Pilots, and scripts to run from the AutoPilot window:

a. Click Find Objects.

% Find Dbjects [_ (O]

Name | Diate Modified |

Mamed: I
Type Stop |
" Bilet ™ | Beport = Arpll] objest Mew Search... |
™ Scipt I= i arker 1] abject class: Aecept |
[~ TestSute [[rteraction ohisct I vl _I

Help |

User Properties... |

Using the AutoPilot to Run Pilots, Test Suites, and Scripts

b. To locate Test Suites, Pilots, or scripts, under Type, sclect the appropriate
check box(es), and then click Find Now.

Find Objects

Name | Date Modified

Agcept

[V TestSuite I [nteraction object I vI |
User Properties... |

Help

Mamed: I

Type St |

[V Pilat ™| Beport = Ay Ul abject Mew Search.. |

v Script I= | Marker Ul object class: |
I

MHame | Object Path | Type | Created | Modified
Q ORDERER Make &n Order ORDERER Pilat 08/26/99 08/26/99
DefectScript - 100 - 08-26... Make &n Order ORDERER.O... Script 08/26/99 08/26/99
Tl Ush Script - 08-26, 02-4... Make An Order ORDERER.OL.. Script 08/26/99 03/26/99

Tl BestScript - 08-26, 02-49 ... Make An Order ORDERER.OL.. Script 08/26/99 03/26/99
. Ul Script - 08-26, 0250 PM Make An Order ORDERER.O... Script 08/26/99 08/25/99

c. Toadd all of the objects listed to the AutoPilot window, click Accept. To
add a subset of the objects, select the objects, and then click Accept.

Alternatively, do the following to queue Test Suites, Pilots, and scripts to run
from the AutoPilot window:

a. On the AutoPilot window, click Insert.

Select Dbjects [7] %]
Filtered ohiects: Selected Pilots, Test Suites, and/or scripts:
i~ Mavigatior .
e Clase =] [Name [Object Path [
Selectable Classics Dnline
ohjects are in Eg Tree
binld BE StatusBar
24 TabCantal
First |)
Previous |
Last | () Place Order
£ Payment Informa
£7 vaur Information
.
E-[Z3 PLACERFu
4| 1 »
Al | adis | | CEeore || CREmEAl
Filter to apply: S cript; TestGuite; Pilot =l
)i | Cancel | Help

7-3

Using the AutoPilot

b. Toaddall of the selectable objects in the Filtered objects list, click Add All.
Otherwise, select an individual object to add, and then click Add. Do this
for all of the objects you want to add to the AutoPilot queue.

c. After you finish adding test objects to the list of selected objects, click OK.
To change the order of a test object in the AutoPilot queue, click the object, and
then use the Up and Down buttons.

NOTE: If the objects listed include a combination of Pilots, Test Suites, and
scripts, group the Pilots either at the top or at the bottom of the list.

Click Start.

»»» CHAPTER 8

Testing Code Changes in Visual Studio

This chapter describes the TestCodeChanges add-in for Microsoft Visual Studio and
includes the following topics:

4

4

4

4

Opverview of the TestCodeChanges add-in for Visual Studio
Setting up the TestCodeChanges add-in
Preparing to test code changes

Using the TestCodeChanges add-in

Overview of the TestCodeChanges Add-In for Visual Studio

The TestCodeChanges add-in for Microsoft Visual Studio lets you access scripts
that test changes you have just made to the source code of a Visual Basic or
Visual C++ AUT from within Visual Studio.

After you set it up and load it in your Visual Studio development environment,
TestCodeChanges does the following:

4

4

4

Tracks all changes that you make to the source code of the AUT.
Gives you access to all of the scripts in the project that exercise the changed code.

Displays the code coverage values for scripts that touch changed source
code files.

Lets you filter changed code files based on the calendar dates that the source code
was changed.

Lets you create a regression suite of scripts, which you can then run from your
Visual Studio development environment to test changed files.

After testing, automatically displays script run results.

8-1

Testing Code Changes in Visual Studio

Setting Up the TestCodeChanges Add-In

To set up the TestCodeChanges add-in, you must have Rational TestFactory
installed on your system.

To set up the TestCodeChanges add-in:

1. Click Start > Programs > Rational Suite TestStudio > Rational Test > Set
Up Rational TestCodeChanges.

Information

These Microzoft(c] environments have been found,

Visual Basic 5.0 =]
M5 C++ 6.0

o o

< Black

Cancel |

The Information dialog box lists the Microsoft development environments
detected on your system.

Preparing to Test Code Changes

2. To continue with the setup, click Next.

Setup Complete

Setup has finished ingtaling TestCodechanges Add-in on your
computer

Click Finish to complete Setup.

< Back

3. To complete the setup, click Finish.

After you set it up, the TestCodeChanges add-in is loaded in your Visual Studio
development environment and automatically tracks changes made to the source code
files of the open project.

Preparing to Test Code Changes

8-3

The requirements for testing changes that you have made to the AUT source files
are as follows:

» The AUT must be instrumented.
» You must first recompile the executable file for the open project.

» Ifyou are working in Visual Basic, you must save the changed source files after
you recompile the executable file.

» Ifyou plan to run Robot scripts to test code changes, you must first run the
scripts from TestFactory so that TestFactory can calculate code coverage values
for them.

The add-in automatically displays all of the scripts that exercise the changed files and
that have code coverage values. You can select some or all of these scripts to include
in a regression suite that you can then run to test changed files. You can add scripts
that do not exercise changed files to the regression suite. For example, you may want
to include a support script that brings the system to a state necessary for testing.

Testing Code Changes in Visual Studio

Using the TestCodeChanges Add-In

After you recompile the executable file and save the changed source files for the
AUT, you can start the TestCodeChanges add-in, log on to a Rational project, and
view the scripts that exercise the changed source code files in the Test Code Changes
window.

Starting the TestCodeChanges Add-In
To start the TestCodeChanges add-in:
e 1. Click TestCodeChanges on the toolbar of your Visual Studio application.
2. After the Rational Login dialog box opens, log on to the project for the AUT.

% Test Code Changes: ClassicsC
Path to ALIT: Project Properties.. |
i Changed fil — Scripts that exercize changed fil
File Mame | Date Modified I Script Name | Peicent |
. ¥ trrnchrnin. Frm 02/19/33 ¥ Ul Script - 09-03, 04-14 PM 2%
A” chonged pl’.O/eCt I frmbdai fren 08/19/33 ¥ BestSeript - 0903, 04-12 PM 32%
files are listed in the I trralrder.frm 08/19/99 ¥ BestSeript - 09-03, 0343 PM 18%
left pane. ¥ frmésbout fim 01315/33
¥ trmnDrdesélburn,frrn 02/19/33
Scripts that exercise
the changed files
(and that have code
coverage values) are
listed in the right
pane.
Start date: End date:
[Fravems G| [T as6sms o seket A\Il [4 U | #oon | ShowanSeips.. |
Bun... Close | Help |

Viewing Information in the Test Code Changes Window

This section describes the information displayed in the Test Code Changes window.

Viewing and Modifying the Path to the Executable File to Test

The Path to AUT box displays the full path to the executable file to be tested from
the add-in window. You can specify a different executable file to test by modifying
the project properties.

8-4

Using the TestCodeChanges Add-In

To specity a different executable file to test:

1. Click Project Properties.

Project Properties

41T executable; ID:\F‘roglam Filez"R ationalsFational TesthSample Browse... |

Lommand line: I

Start i ID:\F‘roglam Filez"R ationalsFational TesthSample Browse... |

Cancel |

2. Inthe AUT executable box, enter the path to a different executable file.

To pass one or more command-line arguments to the AUT when it is started,
type the argument in the Command line box. Be sure to specify the command-
line argument in the syntax that the AUT requires.

4. In the Start in box, enter the full path to the working directory. If you do not
enter a start path, TestCodeChanges uses the AUT executable path.

5. Click OK.

Viewing Changed Files and the Scripts that Exercise Them

The Changed files list displays the names of all of the changed source code files and
the date on which each was changed. Changed files are listed in descending order of
the date they were changed, with the most recently changed file listed at the top.

To toggle the sort order of the displayed source code files:
» Click the Date Modified column heading,.

If the Changed files list displays more than one source file, and you want to
determine which of the listed scripts exercises one of the files, leave the check box
next to the file name selected and clear the check boxes next to all of the other

file names.

The Scripts that exercise changed files list displays all of the project scripts that
exercise the files listed on the left, and for which TestFactory calculated code
coverage. The value displayed in the Percent column indicates the percent of source
code in the changed file that the script exercises. If a listed script exercises two or
more of the changed source files, then its Percent value represents an average percent
of code that the script exercises in all of the changed files it touches.

Testing Code Changes in Visual Studio

The order of a script in the list is based on the amount of code coverage it provides
for the changed file relative to the other scripts. The script that provides the highest
code coverage is listed first.

To reverse the listed order of the scripts:

>

Click the Percent column heading.

Creating and Running a Regression Suite to Test Code Changes

To create a regression suite to test code changes, select the listed scripts that you want
to include in the regression suite, use the Available Scripts dialog box to add other
scripts from the project, and then set the run order of the scripts.

To select scripts to add to the regression suite:

1.

To filter the changed files displayed based on the date interval during which the
code was changed:

To set an interval start date, click the down arrow in the Start date box, and
then click a calendar date.

To set an interval end date, click the down arrow in the End date box, and
then click a calendar date.

To exclude a changed file from testing, under Changed files, do one of
the following:

Clear the check box next to the file name.

Click the file name, click Remove, and then click Yes in the message box.
The next time you open the Test Code Changes window, the file is not
listed (unless it is subsequently changed).

Right-click the file name, click Remove on the shortcut menu, and then
click Yes in the message box. The next time you open the Test Code
Changes window, the file is not listed (unless it is subsequently changed).

To exclude a script from testing, do one of the following:

To exclude a script from the current testing session, under Scripts that
exercise changed files, clear the check box next to the script name.

To exclude a script from testing and remove it from the window, right-click
its name, click Remove on the shortcut menu, and then click Yes in the
message box. The next time you open the Test Code Changes window, the
script is not listed (unless you select it manually or a file that it exercises is
subsequently changed).

Using the TestCodeChanges Add-In

To exclude all of the scripts that exercise a changed file from the current testing
session, under Changed files, clear the check box next to the file name.

If you want to run a support script before a listed script is run, but the setup
script does not exercise changed code (and is not included in the Script Name
column), you can still add it to the regression suite.

To add a script that does not exercise a changed file, or does not have a code
coverage value, to the regression suite:

a. To view all available scripts, do one of the following:
— Click Show All Scripts.
Alternatively,

— Under Scripts that exercise changed files, right-click anywhere on
the list, and then click Show All Scripts on the shortcut menu.

The Available Scripts dialog box lists all of the scripts that you can add to the
regression suite.

Available Scripts
Script Mame |
s/ Script - 03-03, 03-43 Ph All of the scripts that you can add to the
BestSoipt - 0303, 03-43 Phd — regression suite are listed in the
Ul Seript - 03-03, 03-44 PM . . N
LIAW Seript - 0903, 0257 PM Available Scripts dialog box.

U/ Seript - 09-03, 0412 PM
BestScript - 09-03, 04-12 Phd
Ul Script - 03-03, 04-14 PM

Cancel |

b. To add alisted script to the suite, click the script name, and then click Add.

c. Toadd amultiple scripts, hold down the CTRL or SHIFT key, select multiple
script names, and then click Add.

Testing Code Changes in Visual Studio

6. Toaddacopyofalisted script to the bottom of the Script Name list, right-click
the script name, and then click Duplicate on the shortcut menu.

The add-in runs scripts in their listed order. If the Script Name column lists a
support script that must be run before another listed script, you can change its
order in the list.

7. To change the run order for a script, click its name, and then use Up and Down
to change its position in the list.

8. To start testing your code changes, click Run.

After you start to test code changes, the add-in window closes, Robot starts, the AUT
starts, and the Script progress bar displays testing status at the bottom of the screen.

Run Results for the Regression Suite

After the regression suite run is completed, TestCodeChanges displays the run status
for each script in the Status column of the Status Report dialog box. A Completed
status indicates that the run completed and that the script encountered no defects. A
Failed status indicates that the script encountered one or more defects, or that the
script run was interrupted).

5| Status Report
Script Mame | Statug |
Ul Seript - 0903, 04-14 PM Completed . . X .
BestScript - D303, 04-12 P Completed L Run results for scripts in the regression suite
BestScript - 09-03, 03-43 PM Completed

If the run results for scripts that exercise a changed file were successtully completed,
you can check in the modified code. If a run result failed, examine the logs, make
necessary changes to the source code, and then rerun the regression suite.

To close the Status Report dialog box and quit TestCodeChanges, click OK.

»»» APPENDI X A

Using TestFactory Command-Line

Arguments

TestFactory Command-Line Arguments

You can start TestFactory from the command line and include arguments to control
its behavior on start-up. TestFactory command-line arguments can be specified in
the Run dialog box, or in a TestFactory shortcut Properties dialog box.

TestFactory accepts the following arguments:

Logon Arguments

Use With To

-u user_name Enter a user name for TestFactory.
-w password Enter a password for TestFactory.
-p project path Open a project.

Appendix-1

Using TestFactory Command-Line Arguments

Run Arguments

Use With To

-o object path Select a UT object in the
application map.

-o parent object path.TFobject name Select a TestFactory object
in the application map.

-1 pilot name Run a full-depth Pilot.

-q pilot name Run a single-level
depth Pilot.

-s script name Run a script.

-t test suite name Run a Test Suite.

Application Mapper Arguments

Use With To

-g object_path Map the AUT to full depth from a specified
starting object.

-n object_path Map the AUT to single-level depth from a
specified starting object.

-a AUT path Specify a complete path to the AUT.

-c AUT arguments Specify command-line arguments to pass to
the AUT.

-y startup_dir Specity a start-up or working directory for
the AUT.

Appendix-2

Command-Line Argument Format

Coverage Dictionary Arguments

Use With To

-i dictionary path Import the instrumented coverage
dictionary from the specified location.

-e dictionary_path Export the instrumented coverage dictionary
to the specified location.

NOTE: Be sure to specify the full path to the coverage dictionary, including the
.ved file name extension.

Control Argument:

Use ‘ With ‘ To

-xX ‘ <nones> ‘ Exit TestFactory.

NOTE: TestFactory executes the exit argument only after it executes all run and
Application Mapper arguments.

Command-Line Argument Format

Begin each command-line argument with the minus (-) or the slash (/) character,
followed by a single letter. Place the argument itself immediately after the argument
letter.

To use any of the command-line arguments, you must specify the user name,
project, and, if set, a password, as in the following example:

rtfact.exe -u"user name" -p'"project path" -wPassword

TestFactory executes multiple run arguments in the order in which you list them in
the command line.

Appendix-3

Using TestFactory Command-Line Arguments

Rules for Using TestFactory Command-Line Arguments

Appendix-4

You can use logon arguments by themselves to bypass the logon dialog box of the
AUT. However, you must use run and Application Mapper arguments in
conjunction with logon arguments.

If you enter the -g or the -n Application Mapper argument without specifying a
starting object path, the Application Mapper will start mapping from the
“Application Map.StartAUT” object path.

The Application Mapper arguments -a, -c, and -y are not required to run the
Application Mapper. If you do not use the -g or the -n argument, then TestFactory
ignores other Application Mapper arguments.

If you use the -o command-line argument to select a UT object in the application
map, use the application map path for the UI object. Be sure to use an ampersand for
mnemonics in the object path name. To find the correct object path to use, do the
following:

1. In TestFactory, click Edit > Find.
2. Select the check box for the object type to find, and then click Find Now.

3. In the list of objects found, check the value in the Object Path column for the
object that you want to select. Use this value in the command-line argument.

If you use the -o command-line argument to select a TestFactory object such as a
Test Suite or folder, use the object path for the parent Ul object of the TestFactory
object, followed by the TestFactory object name. Be sure to use an ampersand for
mnemonics in the object path name.

> > > |ndex

A Application Mapper properties 4- 15
for region objects 4- 50
WaitInterval 4- 61, 4- 62

Application Mapper Wizard 4- 5

AUT
starting from TestFactory 4- 11

action objects 4- 14

specifying delay intervals for 5- 49
ActiveX Test Control 4- 66

adding to C++ applications 1- 10

adding to Visual Basic forms 3- 2 AutoPilot
App Ma.pper progress bar 2- 18, 4- 12 arranging the run sequence for test objects 7- 4
applet viewer AutoPilot progress bar 2- 18
described 1- 5

functionality 7- 1

command-line arguments for 2- 5
specifying in the New Project Wizard 2- 5
licati
apphcation map running test objects on a local machine 7- 2
crash transition objects in 4- 65

described 1-3

error message windows in 4- 65 B

evaluating 4- 11 best scripts 5- 1

finding objects in 4- 19 generated during memory checking 5- 37
function of 4- 2 making script verification unavailable 5- 9
improving 4- 23, 4- 65 opening and editing 5- 30

navigating 4- 11 viewing coverage information for 5- 14

refreshing after new builds 4- 66
viewing 4- 11 C
Application Map folder 2- 16

Application Mapper 4- 2
described 1- 3 changing the recognition method order for 1- 11

C+ + applications

starting from the command line Appendix- 2 enabling 1- 10

tab 4-3. 4- 4 requirements for instrumenting 3- 3
2

window comparisons 4- 58 Chance used setting for Pilot mix-ins 5- 27

Application Mapper progress bar 4- 8 cleanup scripts
for mapping 4- 4

for testing 5- 6

Index-1

close transition objects 4- 14
code coverage 1-5, 3-1
aggregate values for Test Suite scripts 6- 7
Coverage Browser 5- 15
for Java applications and applets 5- 15
for Test Suite scripts 6- 1
setting a target value for a Pilot 5- 7
command line
starting TestFactory from 2- 2
command-line arguments
for TestFactory Appendix- 1
for the applet viewer 2- 5
for the Application Mapper Appendix- 4
for the Java virtual machine 2- 5
format for Appendix- 3
specifying for the AUT in the New Project
Wizard 2- 4, 4- 5
specifying the AUT in the TestCodeChanges
add-in 8- 5

context-sensitive Help 4- 17

control argument for starting TestFactory from the

command line Appendix- 3
controls
excluding from testing 5- 55
interaction order for testing 5- 47
unmapped 4- 1, 4- 47
Coverage Browser 5- 15
changing the appearance of text in 5- 17
coverage dictionary 3- 10

arguments for starting TestFactory from the
command line Appendix- 3

exporting 3- 10
importing 3- 10
Coverage tab
for scripts 5- 14
for Test Suites 6- 1
Test Suite run results 6- 6

Coverage tab for scripts 5- 14

Index-2

crash transition objects 4- 14, 4- 65
custom data entry styles, creating 5- 45
custom TestFactory scripts, creating 5- 32

customer support 1-x

D

data entry for input-type controls 5- 39
data entry styles
assigning 5- 40
assigning to components 4- 30
creating 4- 32, 5- 45
editing for testing 4- 30
for testing 5- 39
default settings for Pilots 5- 8
defect scripts 5- 2
copying steps to ClearQuest 5- 13
described 1- 4
for memory checking 5- 2
in the Defects Found folder 5- 12
viewing logs for 5- 17
Defects Found folder 5- 12
defects found, setting a target value for a Pilot 5- 7
defects, reporting 5- 18
delay intervals, including in generated scripts 5- 49
depth of mapping 5- 5
depth of testing for Pilots, setting 5- 5

dynamic windows, mapping 4- 52

Exclude tab for Pilots 5- 7

excluding an interaction object from mapping 4- 36
excluding an object from testing 5- 47, 5- 56
excluding secondary applications from mapping 4- 69
executable files

specifying in the New Project Wizard 2- 4

ExerciseDuringTesting property 5- 8
and interaction order for Ul objects 5- 47
using to set interaction order during testing 5- 48
exit transition objects 4- 14
exporting
string cases 5- 53
exporting a TestFactory report 4- 76
Extension Manager in Robot 1- 10

F

Find Objects window

using to create a Test Suite 6- 2
finding objects

to run in the AutoPilot 7- 2
finding objects in the application map 4- 19
folders

Application Map 2- 16

Defects Found folder 5- 12

for Pilot run results 5- 12

in Test Pilot run results 5- 12

UI Library 2- 16

format for TestFactory command-line arguments
Appendix- 3
full-depth mapping 4- 8

G

generic objects 4- 63
Go To Control 4- 12
using to create a custom TestFactory script 5- 33

Go To Control progress bar 2- 18

H

help desk 1-x

hierarchy reports, creating 4- 73

hot spot, repositioning on Ul objects 4- 51
hotline support 1- x

Index

IDE
extensions to load in Robot 1- 9
specifying in the New Project Wizard 2- 4, 4- 5
Image Comparator, viewing a UAW script in 5- 21
Image toolbar 2- 14
importing string cases 5- 53
Insert toolbar 2- 12
inserting TestFactory objects 4- 71
instrumentation and code coverage 3- 1
Instrumentation dialog box 3- 5, 3- 7, 3-8
instrumentation method
for C+ + applications 3- 4
for Java and applets 3- 4
for Visual Basic applications 3- 4
specifying in the New Project Wizard 2- 5
instrumenting the AUT 3- 1, 3- 11
C+ + applications 3-3
from the command line 3- 11
instrumenting a secondary application 3- 9
instrumenting object code 3- 2
instrumenting source code 3- 2
object code 3- 4
requirements for 3- 2
source code files 3-7
stand-alone instrumentor 3- 11
instrumenting Visual Basic source files 3- 9
Interaction object toolbar 2- 15
interaction objects
components 4- 29
excluding from mapping and testing 4- 36
inserting in the application map 4- 25
interaction methods for components 4- 29
mapping 4- 35
Property List dialog box for components 4- 33
setting up 4- 24

Index-3

InteractionOrder property
changing 5- 47
setting for mapping and testing 4- 44

J

Java applications
enabling 1- 9
getting code coverage information 3- 3
Rational Test Enabler for 1- 9
Java applications and applets
viewing code coverage values for scripts 5- 15
Java virtual machine
command-line arguments for 2- 5

specifying on the Application Mapper tab 4- 6

K

known Ul objects 4- 13

L

left pane of the TestFactory window 2- 16

Listing reports, creating 4- 73

logon arguments for starting TestFactory from the
command line Appendix- 1

logon dialog boxes, mapping 4- 37

M

Mapping Summary report 4- 10, 4- 69
mapping the AUT
depth of 5- 5
dynamic window states 4- 52
first mapping 4- 2, 4- 6
for an AUT that has a logon dialog
box 4- 23, 4- 65

Index-4

logon dialog boxes 4- 37

mapping alternative paths 4- 39

new builds of the AUT 4- 66

preparations for 4- 3

redirecting shortcuts 4- 57

secondary applications 4- 69

setting an interaction order for controls 4- 44
splitting window objects 4- 55

starting object for 4- 8

support scripts for 4- 3

timing events during 4- 60

to stop 4- 9

unmapped controls 4- 1, 4- 47

using the Application Mapper Wizard 4- 5, 4- 67

using the shortcut menu 4- 66

mapping, comparing windows for 4- 58

markers

creating 4- 71
jumping between 4- 72

mask cases

for data entry styles 5- 43
specifying for a Pilot run 5- 28

memory defect checking

best scripts 5- 37

merging windows 4- 52, 4- 53

Microsoft Visual Studio

TestCodeChanges add-in for 8- 1

mix-ins

N

Chance used setting 5- 27
creating for a Pilot 5- 26

New Project Wizard 2- 3
Next Object button 4- 11

o

object code instrumentation, making the .exe and .pdb
files 3- 4

Object properties 4- 17
object recognition method
for C+ + applications 1- 11
objects
types of in the application map 4- 13
Outline tab for scripts 5- 13

P

Pilot progress bar 2- 18, 5- 9, 5- 10
Pilot properties 4- 16, 5- 54
Pilot run results
defect scripts 5- 2, 5- 12
UAW scripts 5- 2, 5- 12
Pilots
adding Pilots for scenarios 5- 25
adding script comments 5- 6
analyzing run results 5- 12
changing default settings 5- 29
changing the route number for 5- 28
cleanup scripts for 5- 6
creating a mix-in 5- 26
creating scenarios 5- 23
depth of testing for 5- 5
described 1-3, 5- 1
effective placement 5- 3
Exclude tab 5-7
improving results 5- 28
inserting 5- 4
mix-ins 5- 25
restoring default settings 5- 8
setting stop criteria for 5- 6
setting up 5- 3, 5- 4
startup scripts for 5- 5

stopping a run 5- 10
support scripts for 5- 5
the route number for 5- 5

preinstrumenting a Visual Basic AUT before
time 3- 11

Previous Object button 4- 11
printed reports 4- 73
printing
bitmaps of UI objects 4- 17
TestFactory reports 4- 76

programming language

Index

build

specifying in the New Project Wizard 2- 4, 4- 5

progress bar
Pilot progress bar 5- 9, 5- 36
progress bars 2- 18
App Mapper progress bar 4- 12
Application Mapper progress bar 4- 8
Project Assistant 2- 7
properties
user-defined 4- 18
Properties view 4- 15
Property 4- 33
Property List dialog box

for interaction object components 4- 33

R

Rational Administrator 2- 1

Rational ClearQuest

copying the steps for a defect script to 5- 13

using to report a defect 5- 18
Rational PureCoverage 3- 4
Rational Robot
opening a script in 5- 30, 5- 32
recording custom scripts in 5- 32
Rational Suite TestStudio, components 1- 2

Rational technical support 1- x

Index-5

Rational Test Enablers
for different IDEs 1- 9
overview 3- 2
Rational Test Java Enabler 1- 9
Rational TestFactory
described 1-1
features 1- 2
key concepts 1-3
Properties view 4- 15
Rational TestManager, Test Log window
viewing the log for a defect script 5- 17
viewing the log for a UAW script 5- 21
rebuilding an .exe after instrumentation 3- 9

rebuilding the executable file after instrumentation 3-
9

reclassifying generic objects 4- 63
redirecting a shortcut 4- 52
region objects 4- 1, 4- 47
checking properties for 4- 50
creating 4- 48
deleting 4- 51
mapping 4- 50

regression suite, running from the TestCodeChanges
add-in 8- 6

Report toolbar 2- 13
reporting defects 5- 18
required string cases
adding to a data entry style 4- 32, 5- 41
specifying 4- 44
right pane of the TestFactory window 2- 17
route number
for a Pilot run 5- 28
setting a value for Pilots 5- 5

run arguments for starting TestFactory from the
command line Appendix- 2

Index-6

S

Scenarios 5- 23
scenarios
adding mix-ins to 5- 25
Script progress bar 2- 18
script segments 1- 4, 5- 1
scripts
best script 1- 4
coverage results 5- 14
custom 5- 32
defect scripts 1- 4
entering comments in 5- 6
in Test Suites 6- 1
Outline tab for 5- 13
removing from a Test Suite 6- 5
renaming 5- 13
running from the TestCodeChanges add-in 8- 6
running to check for memory errors 5- 38
steps in 5- 13
UAW scripts 1- 4
Ul script 1- 4
secondary applications
excluding from mapping 4- 69
instrumenting 3- 9
mapping 4- 3, 4- 69
Shared properties 4- 44
for mapping and testing 4- 16
shortcut keys, for stopping mapping and testing 5- 10
shortcut menu, for mapping the AUT 4- 66
shortcut objects 4- 14
shortcuts 4- 53, 4- 55
redirecting 4- 52
redirecting to the correct window object 4- 57
single level depth mapping 4- 8
source code instrumentation 3- 7

source files, specifying for browsing coverage results
3-11

splitting window objects 4- 52, 4- 55
SQABEasic scripting language 5- 32
stand-alone instrumentor 3- 11
Standard toolbar 2- 10
StartAUTobject 4- 14
starting
AUT from Rational TestFactory 4- 11
object for mapping 4- 8
object for mapping new builds of the AUT 4- 66
TestFactory 2- 1
startup scripts
for Pilots 5- 5
specifying for mapping 4- 4
status bar 2- 18
Status tab for Test Suites 6- 4, 6- 5, 6- 6
stop criteria
for a Pilot scenario 5- 24
setting for a Pilot 5- 6
stop criteria for Test Pilots 5- 6
Stop Criteria tab 5- 6
stopping a Pilot run 5- 10
string cases
for data entry styles 5- 44
specifying for a Pilot run 5- 28
Style toolbar 2- 15
support scripts
cleanup scripts 4- 4
for mapping 4- 3
for Pilot runs 5- 5
in Test Suites 6- 4
startup scripts 4- 4

support, technical 1-x

Index

T

tear-off bar, TestFactory objects 4- 71
technical support 1- x
Test Code Changes add-in for Visual Studio 8- 1
test datastore 1- 5
Test Log window of Rational TestManager
viewing the log for a defect script 5- 17
viewing the log for a UAW script 5- 21
test scripts
best script 1- 4
outlines for 5- 12
steps in 5- 12
Test Suites 6- 1
code coverage values for previously-run scripts
6-8
creating 6- 2
defined 1-5
developing 6- 1
functionality 6- 1
inserting in the application map 6- 4
logs for 6-7
removing scripts from 6- 5
run results 6- 6
running on your local machine 6- 5
Status tab 6- 4, 6-5, 6- 6
support scripts in 6- 4
TestCodeChanges add-in for Visual Studio 8- 1
running regression suites from 8- 6
setting up 8- 2
specifying the working directory in 8- 5
starting 8- 4

Index-7

TestFactory Tools 2- 13

and the TestCodeChanges add-in for Visual Tools toolbar 2- 13
Studio 8- 1

starting 2- 1

transition objects in the application map 4- 14

starting from the command line 2- 2 U
toolbars in 2- 10
user interface 2- 1 UAW scripts 4- 68, 5- 2, 5- 12
window components 2- 9 described 1- 4

TestFactory objects viewing 5- 19
inserting 4- 71 UI Checking reports, creating 4- 74
inserting in the application map 4- 71 UI coverage 1-5, 3-1
markers 4- 71 setting a target value for a Pilot 5- 7
reports 4- 72 UI Library folder 2- 16

TestFactory reports UI library, described 1-3
creating 4- 72 UI object components, excluding from testing 5- 47,

5-56
UI object properties 4- 16

exporting 4- 76
hierarchy reports 4- 73
modifying 4- 75
printing 4- 76

MaskCases property 5- 54
Object properties 4- 17
Pilot properties 5- 54

UI objects 1- 3
action 4- 14

running after modifying 4- 76
UI checking reports 4- 74

TestFactory scripts, creating custom 5- 32

testing application map 4- 13

excluding objects from 5-7 close ransition 4- 14

preparations for 1- 7 crash transition 4- 14

support scripts for 5- 5 excluding from testing 5- 47, 5- 56

testing code changes in Visual Studio 8- 1 exit transition 4- 14

for removed controls 4- 67
known 4- 13

timing events in the AUT during mapping 4- 60

toolbars
Image 2- 14 moving the hot spot on 4- 51
Insert 2- 12 shortcuts 4- 14
Interaction object 2- 15 StartAUT 4- 14
Report 2- 13 UI script, described 1- 4
Standard 2- 10 unexpected active windows 1- 4, 5- 2
Style 2- 15

Index-8

User properties
defining new 4- 18
using for a Pilot 5- 12
viewing 4- 19
viewing and editing 4- 17
user-defined properties
creating 4- 18

making visible in the User Properties dialog box
4-18

\4

verifying best scripts during Pilot runs 5- 9
Visual Basic applications

instrumenting source files 3- 7

using the TestCodeChanges add-in 8- 1
Visual C++

using the TestCodeChanges add-in 8- 1

Index

w

WaitInterval property 4- 61, 4- 62
window objects

matching threshold for 4- 58

merging 4- 52, 4- 53

redirecting shortcuts to 4- 57

shortcuts pointing to 4- 52

splitting 4- 52, 4- 55
WindowMatchThreshold property, changing the

value for 4- 58

working directory
specifying in the New Project Wizard 2- 4, 4- 5
specifying in the TestCodeChanges add-in 8- 5

Index-9

Index-10

	Using Rational TestFactory
	Version 2001A.04.00
	Part Number 800-024555-000

	COPYRIGHT
	Contents
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction
	About Rational TestFactory
	Key TestFactory Concepts
	The Application Map
	The UI Library
	UI Objects
	Pilots and Automatic Script Generation
	Script Segments
	The Best Script
	Defect Scripts
	UAW Scripts
	The UI Script
	Code Coverage and UI Coverage
	Test Suites
	The AutoPilot
	The Test Datastore

	Testing Software with TestFactory
	Preparing for Automated Testing
	Before You Map the AUT
	After You Map the AUT
	Testing the AUT

	Preparing to Work with the Application-Under-Test in�TestFactory
	Enabling Java and C++ Applications
	Enabling Java Applications and Applets
	Enabling C++ Applications

	Selecting the IDE Extensions to Load for the AUT
	Working with C++ Applications in TestFactory and Robot

	The TestFactory Interface
	Starting TestFactory
	Starting TestFactory from the Command Line

	Using the New Project Wizard
	Using the Project Assistant
	The TestFactory Workspace
	TestFactory Toolbars
	The Standard Toolbar
	The Insert Toolbar
	The Tools Toolbar
	The Report Toolbar
	The Image Toolbar
	The Interaction Object Toolbar
	The Style Toolbar

	The Left Pane
	The Right Pane
	Progress Bars
	The Status Bar

	Instrumenting the Application-Under-Test
	About Instrumentation
	Adding the Rational Test Enablers to the AUT Before�Instrumenting
	Requirements for Instrumenting the AUT
	Java Applications and Applets
	C++ Applications
	Visual Basic Applications

	Instrumenting C++, Visual Basic, and Java Object Code
	Setting the Compiler Option for a Visual Basic 6 Application
	Setting the Compiler Option for a C++ Application
	Instrumenting Object Code

	Instrumenting Visual Basic Source Code
	The Coverage Dictionary
	Exporting and Importing the Coverage Dictionary
	Importing the Coverage Dictionary
	Specifying the Source File Directory for Browsing Coverage Data

	Using the Stand-Alone Instrumentor to Instrument Visual Basic Source Code Files

	Developing and Working with the Application Map
	About TrueMap Technology
	Mapping the AUT for the First Time
	Setting Up the Mapping Environment
	Specifying Support Scripts

	Using the Application Mapper Wizard to Map the AUT for the First Time
	On-Screen Events During Mapping

	Stopping the Mapping Process

	Viewing and Evaluating the Mapping Summary Report and the Application Map
	Viewing the Mapping Summary Report
	Expanding and Navigating the Application Map

	Application Map Objects and Their Properties
	Renaming UI Objects in the Application Map
	Properties of Objects in the Application Map
	UI Object Properties
	User Properties

	Finding Objects in the Application Map

	Excluding Specific Functions in the AUT from Mapping and�Testing
	Improving the Application Map
	Using Interaction Objects to Guide the Application Mapper through the AUT
	Interaction Objects and Interaction Object Components
	Setting Up an Interaction Object
	Inserting an Interaction Object
	Copying and Pasting Interaction Objects
	Copying and Pasting Interaction Object Components

	Setting the Properties for a UI Object Component
	Setting an Interaction Method for a Component
	Assigning a Style to an Input-Type Component
	Specifying a Required String Case for a Component Using the Property List
	Setting the Interaction Order for Components
	Excluding a Component from Mapping
	Mapping the Path Set by an Interaction Object

	Excluding an Interaction Object from Mapping
	Using Interaction Objects to Map Alternative Paths in the�AUT
	Using an Interaction Object to Map Beyond a Logon Dialog Box
	Mapping Alternative Paths in an AUT

	Using UI Object Properties to Specify Input and Interaction Order for Mapping
	Specifying Actions to Use for Mapping a UI Object
	Specifying a Required String Case for�Mapping
	Controlling the Interaction Order for UI Objects
	Setting the InteractionOrder Property for UI Objects

	Restoring the Default Values for UI Object Properties

	Creating and Mapping a Region Object for an Unmapped�Control
	Creating a Region Object
	Method 1 (recommended)
	Method 2
	Method 3

	Changing the Size or Position of a Region Object
	Setting the Action or Input for a Region Object
	Adjusting the Hot Spot for a Region (or Other UI) Object
	Deleting a Region Object

	Mapping Similar Windows
	Merging Window Objects
	Splitting Window Objects
	Redirecting a Shortcut
	Adjusting Sensitivity to Differences in Window Objects

	Timing Events During Mapping
	Specifying a Maximum Wait-For-Idle Time for All Controls
	Timing Events for a Class or Subclass of Controls During Mapping
	Timing Events for a Single Control During Mapping

	Reclassifying a Generic Object
	Handling Error Messages and Crash Transition Objects in the Application Map
	Mapping New Builds
	Mapping a Changed Region of the AUT Using the Map It! Shortcut
	Mapping a Changed Region of the AUT Using the Application Mapper Wizard
	Deleting UI Objects Mapped for Controls that Have Been Removed from the AUT
	Deleting UI Object Components Associated with a Deleted UI�Object

	Running the Application Mapper from the Command Line

	Mapping Secondary Applications
	Inserting TestFactory Objects in the Application Map
	Creating a Marker in the Application Map

	Creating and Working with TestFactory Reports
	Configuring a Hierarchy Report
	Configuring a Listing Report
	Configuring a UI Checking Report
	Modifying a Report
	Rerunning a Report After Changing the Application Map
	Exporting a Report as a Text File
	Printing a Report

	Automatically Generating Scripts
	About Pilots
	Setting Up and Running Pilots
	Effective Pilot Placement
	Inserting a Pilot
	Setting Up and Starting a Pilot Run
	Modifying Settings on the Setup Tab
	Modifying Settings on the Stop Criteria Tab
	Modifying Settings on the Exclude Tab
	Restoring Default Pilot Settings
	Making Best Script Verification Unavailable
	Starting the Pilot Run

	On-Screen Events During a Pilot Run
	Stopping a Pilot Run

	Examining Pilot Run Results
	Pilot Run Folder Contents
	Renaming Generated Scripts

	Viewing the Script Outline
	Viewing Coverage Results for a Script
	Viewing Code Coverage Information for Scripts Generated for Java Applications and Applets
	The Coverage Browser (C++ and Visual Basic Applications)
	Changing the Appearance of Text In the Coverage Browser

	Viewing the Log for a Defect Script
	Reporting a Defect
	Viewing a UAW Script
	Using Pilot Scenarios to Simulate User Action Sequences
	Creating a Pilot Scenario

	Using Pilot Mix-Ins to Test Random Interactions
	Creating a Pilot Mix-In

	Additional Adjustments for Pilot Runs

	Changing Default Settings for Pilots
	Opening and Editing a Best Script in Robot
	Opening a Best Script in Robot from TestFactory
	Obtaining Code Coverage for Robot Scripts

	Creating a Custom TestFactory Script
	Creating and Opening a Custom TestFactory Script
	Recording Actions in a Custom TestFactory Script

	Checking for Memory Errors in Visual Basic and C++ Applications (Windows NT)
	Preparing to Test for Memory Errors in the AUT
	Running a Pilot to Check for Memory Errors
	Checking the Timing of a Pilot Run
	Viewing the Results of a Pilot Run to Detect Memory Errors

	Running Scripts to Check for Memory Errors

	Testing Controls in the AUT During Pilot Runs
	Selecting a Style and Modifying Data Entry Settings for UI Objects and UI Object Components
	Specifying a Required String Case for a Style
	Specifying a Mix of Random Entries for a Style
	Specifying or Modifying Mask Cases for a Style
	Specifying or Modifying String Cases for a Style
	Creating a Custom Data Entry Style

	Managing Data Entry Styles
	Modifying Properties to Control TestFactory Actions During Pilot�Runs
	Excluding a Control from All Testing
	Setting the Interaction Order for Controls During Testing
	Specifying a Delay Interval to Include in Generated�Scripts
	Specifying a Wait Interval to Apply to an Object During Testing
	Specifying a Required String Case

	Specifying the Entry Data Used to Test Input Controls
	Specifying String Cases to Use During Testing
	Specifying Mask Cases to Use During Testing
	Specifying Random Entry Data to Use During Testing

	Excluding Controls from Testing
	Restoring the Default Property Values for UI Objects and�Components

	Developing and Running a Test Suite
	Overview of Test Suite Functionality
	Creating a Test Suite
	Creating a Test Suite Using the Find Objects Window

	Running a Test Suite
	Running a Test Suite on Your Local Machine

	Viewing the Results of a Test Suite Run
	Viewing Test Suite Run Results in the Status Tab
	Viewing Test Suite Run Results in the Coverage Tab
	Viewing Logs for Scripts in a Test Suite
	Viewing Code Coverage Values for Previously Run Scripts

	Using the AutoPilot
	About the AutoPilot
	Using the AutoPilot to Run Pilots, Test Suites, and Scripts
	Running Tests on Your Local Machine

	Testing Code Changes in Visual Studio
	Overview of the TestCodeChanges Add-In for Visual�Studio
	Setting Up the TestCodeChanges Add-In
	Preparing to Test Code Changes
	Using the TestCodeChanges Add-In
	Starting the TestCodeChanges Add-In
	Viewing Information in the Test Code Changes Window
	Viewing and Modifying the Path to the Executable File to Test
	Viewing Changed Files and the Scripts that Exercise Them

	Creating and Running a Regression Suite to Test Code Changes
	Run Results for the Regression Suite

	Using TestFactory Command-Line Arguments
	TestFactory Command-Line Arguments
	Logon Arguments
	Run Arguments
	Application Mapper Arguments
	Coverage Dictionary Arguments
	Control Argument:

	Command-Line Argument Format
	Rules for Using TestFactory Command-Line Arguments

	Index

