Rational the e-development company™

Using Rational
QualityArchitect

VERSION 2001A.04.00

PART NUMBER 800-024534-000

support@rational.com
http:/ /www.rational.com

Rational

the e-development company™

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2001, Rational Software Corporation. All rights reserved.

Part Number: 800-024534-000

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL’) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO
PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, ClearCase,
ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational PerformanceArchitect,
Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational Visual Test, Requisite,
RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational Watch are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only, and are trademarks or registered trademarks of their respective
companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C+ +, Visual Basic,
Windows, the Windows CE logo, the Windows logo, Windows N'T, the Windows Start logo, and XENIX are
trademarks or registered trademarks of Microsoft Corporation in the United States and

other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United

States and other countries.

FLEXIm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee
shall not incorporate any GLOBEtrotter software (FLEXIm libraries and utilities) into any product or application
the primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness
for a particular purpose or arising from a course of dealing, usage, or trade practice.

Contents

Prefaceo i e iX
AUdIENCE. . . . iX
Other RESOUICESo e e e e iX
Contacting Rational Technical Publications X
Contacting Rational Technical Support X
1 Introduction......... ..o i i eaanannn s 1
What You Needto Get Started. i 1
Supported Environments 2
If You Are Testing Enterprise JavaBeans 2

If You Are Testing COM, DCOM, and COM+ Components 2
Installing Rational QualityArchitect., 2
Quick Start e 2
Step 1: Working in the Rational Administrator 2
Step 2: Working in ROSE.o oo e 3
Step 3: Workingin Your IDE e 3
Working in VisualAge forJava (VAJ)o 3
Workingin Visual Cafe. e 4

Working In Visual BasiC e 4

2 BasicConcepts....... ..ottt annnnnnnnnrnnnnnnns 5
TestScriptBasics. e 5
TesSt TYPES. . oo 5
Storing Your Tests Scripts.o 6
Templates. 7
Scenario TestSo e 8
Support for Performance Testing i i 10
Support for Verification Points 10
Templates for Scenario Test Generation. 11

Message Signatures and Data Correlation. 11

Signature OptioNSot e 12
MeESSage SYNtaX . . . o\ ot 13

Editing Message Signatures 14

How Message Signatures Correlate to Datapool Fields 14
Message Signature Examples 15

StUDS . . e 16
Templates for Stub Generation. i 19
EUB . o e 19
COM/VB . .o e 20

Test Script Services 21
Datapoolso e 21
Datapoolsin Scenario Tests oo it e 21
Datapoolsin Unit Tests 22

Data TYPes . . .o e 23
Verification Points 23
How Datals Verified 23

Static, Dynamic, and Manual Verification Points. 24
Database Verification Point. 25

The Query BUilder. e 26
Extensibilityo e 26

3 Testing EnterpriseJavaBeanscciiiinnnnnnn 27
OVBIVIBW . . o e 27
EJB TestSCripts e 28
Package Requirements e 28
RequirementsforEJB Testing 29
Supported Environments 29
Rational TestManager Playback Requirements 31

Visual Age/WebSphere Requirements. 31
Visual Cafe/WebLogic Requirements., 31
Visual Cafe/WebSphere Requirements 32
EJB Session Recorder Requirements i, 32
The Rational Bank Account Sample Application 32
Setting Up the Sample Application for VAJ/WebSphere. 33
Importing the Sample into VAJ 33
Creatingthe Databaset e 34
Configuring VAJ to Use the New Sample Database 35

Adding EJB SUPPOIt . . .ot 35
Deploying the Sample Application in the VAJ Test Environment. 36
Importing Swing and the Rational SupportClasses 39

Deploying the Sample Application in WebLogic. 40

Deploying the Sample Application to the Sun J2EE Reference Server. 42
Configuring Visual Cafe to Run the Sample Application 43
Adding Account Information to the Rational Bank Account Sample 44
Reverse Engineering a Deployed EJBintoRose. 45
Generating Test Assets 45
Generating EJB Test Scriptso 46
Generating Unit Test Scripts froma Rose Model. 46
Generating Test Scripts with the EJB Session Recorder. 48
Creating a Datapool forthe Unit Test. 49
Generating Stubs forthe Unit Test. o i i 51
CreatingLookup Tables i e 52
Importing Test Assets into VAJ. 52
Importing Unit Tests Into VAJ.. 53
Importing Stubs into VAJ e 53
Executing Test Scriptso 55
Executing Test Scripts from VAJ 55
Executing Test Scripts from VisualCafe 56
Executing Test Scripts from TestManager 56
Using EJB Scenario Tests to Test Transactions. 57
Using the Java Query Builder to Add Verification Points 59
Connecting to the Database viaJDBC. 60
IDBEC DriVET . . . ottt e 60

UDBC URL . . 61

User Name. e 61
PassWord 61
Designing a Custom Query Statement, 62
Using the Query Design Wizard i 62

Viewing and Verifying the SQL Query Results 65

Using the EJB Session Recorder.t 66
EJB Session Recorder Requirements i .. 67
Setting Up the Classpath for the EJB Session Recorder. 68

Setting Up the Java Runtime Environment JRE) 69
Starting the EJB Session Recorder i 69
Starting the EJB Session Recorder fromthe Console. 69

Starting the EJB Session Recorder from VisualCafe 70

Starting the EJB Session Recorder from Visual Age fordJava 3.0x 71

Starting the EJB Session Recorder from Visual Agefordava3.5............... 74

vi

Using the EJB Session Recorder with the Sample Application 75

Starting a Recording Session 76
Connectingto an EJB 76
Interacting with the Home Interface 79
Interacting with the Remote Interface L. 80
Inserting a Verification Point 85
Viewingthe XML LOgot 86
Generating a Test Script fromthe XMLLog 86

4 TestingCOMComponents.cciiiiinnneennnrnrnns 87
OVBIVIBW . .ot 87
Testing Existing Objects 87
Testing with Iterative Development. 88
Programmingin Visual Basic 88
Requirements for Testing COM Components 88
Working with the Sample Model. 89
Understanding the Component View, 89
Understanding the Logical View. i 90
Generating Test ASsets 90
Generating Unit Test Scripts froma Rose Model 90
Creatinga Datapool e 93
Generating Stubs forthe Unit Test i 94
Creating Lookup Tables 95
Executing Test Scripts 96
Using COM Scenario Tests to Test Transactions. 96
Using the OLE DB Query Builder to Add Verification Points 99
Connecting to the Database viaOLEDB 100
Designing a Custom SQL Statement 102
Using the Query Design Wizard i 102
Reviewingthe Record Set 105
Acceptingthe Query. 105
DatabaseVP Advanced Optionsottt 106
Template Replacement Variables 107
Replacement Variables for Unit Test Generation Templates 107
Variables Used in All Unit Test Generation Templates 108
Variables Used Only with the COM/Visual Basic Templates 111
Variables Used Only with the EJB Templates. 112

B

Replacement Variables for Scenario Test Generation Templates 114

Variables Used in Both the COM/VB and EJB Templates 115
Variables Used Only in the COM/VB Scenario Test Templates 117
Variables Used Only in the EJB Scenario Test Templates. 118
Replacement Variables for Stub Generation Templates. 119
Replacement Variables for the COM/VB Stub Templates 119
Replacement Variables for the EJB Stub Templates 121
Troubleshootingiiiiiiiii i iiinnnnns 125
Resource File Not Found 125
SYMPIOM . . e e e 125
Explanation 125
EJB Class or Interface Not Found Messages 125
GloSSary. ... ittt i e a e 127
L o (= 131

vii

viii

Preface

This manual provides conceptual information and task-oriented guidelines for using
Rational QualityArchitect. Quality Architect is a collection of integrated tools for
testing middleware components built with technologies such as Enterprise JavaBeans
and COM.

Audience

This guide is intended for all members of the development team who design, write,
or edit test scripts to be used for testing Enterprise JavaBeans and COM components.
A solid foundation in the target test script language is assumed.

Other Resources

This guide is available as a printed manual and in electronic form as HTML and PDF
files.

To access the HTML version:
» Start Rose and click Tools > QualityArchitect > Online Manual.

The PDF version of this manual is available on the Rational Solutions for Windows
Online Documentation CD.

Context-sensitive Help is available for Quality Architect from within Rose.
To access the online Help:

1 Click Tools > QualityArchitect > Toolbar.

2 When the toolbar is displayed, press F1.

The Help will appear after several seconds.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Your Location Telephone Facsimile E-mail

North America (800) 433-5444 (781) 676-2460 support@rational.com
(toll free) Lexington, MA
(408) 863-4000

Cupertino, CA

Europe, Middle +31 (0) 20-4546-200 |+31 (0) 20-4545-201 |support@europe.rational.com

East, Africa Netherlands Netherlands
Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Australia Australia

When you contact Rational Technical Support, please be prepared to supply the
following information:

* Your name, telephone number, and company name
* Your computer’s make and model

* Your operating system and version number

* Product release number and serial number

= Your case ID number (if you are following up on a previously-reported problem)

x Preface

Introduction

Rational QualityArchitect is a powerful collection of integrated tools for testing
middleware components built with technologies such as Enterprise JavaBeans (E]B)
and COM.

QualityArchitect, in conjunction with Rational Rose, generates test scripts for
components and interactions in your Rose model. Once generated, the test scripts can
be edited and run from your development environment or from Rational
TestManager.

With Quality Architect, you can:

» Generate test scripts that unit test individual methods or functions in a
component-under-test.

» Generate test scripts that drive the business logic in a set of integrated
components. Scripts can be generated directly from Rose interaction diagrams or,
in the case of EJBs, from live components using the EJB Session Recorder.

» Generate stubs that allow you to test components in isolation, apart from other
components called by the component-under-test.

= Track code coverage through Rational PureCoverage and model-level coverage
through Rational TestManager.

What You Need to Get Started

To develop tests with QualityArchitect, you need:

» A workstation running Microsoft NT 4.0, Windows 2000,
Windows 98, or Windows ME.

= Rational Rose

» A project for storing your test assets (created with Rational Administrator)

Supported Environments

Quality Architect supports the environments listed in the following sections:

If You Are Testing Enterprise JavaBeans
» Version 1.1.x and later of the Sun Java Developer Kit (JDK)

» Version 3.02 or later of IBM Visual Age for Java, or Version 3.1 or later of Visual
Cafe, Enterprise Edition

» Version 3.02 or later of IBM WebSphere, Advanced Edition, or Version 4.5.2 or later
of BEA WebLogic

If You Are Testing COM, DCOM, and COM+ Components

Quality Architect can test components in any language that realizes COM interfaces.
Microsoft Visual Basic 6.0 is required to compile and run test scripts.

Installing Rational QualityArchitect

Rational Quality Architect can be installed as part of Rational Suite
DevelopmentStudio, Rational Suite Enterprise, or Rational Rose Enterprise. For
information about the Rational Suite installations, see the Installing Rational Suite
manual. For information about the Rose installation, see the Installing Rational Rose
manual.

The installation process adds a Quality Architect subdirectory to your Rational Test
directory.

Quick Start

Use the procedures in this section to get started with Rational Quality Architect.

Step 1: Working in the Rational Administrator

Before you generate test scripts, use the Rational Administrator to create a project.
Each project contains a datastore for storing test assets, such as datapools, lookup
tables, and log files.

For details, see the Using the Rational Administrator manual or the Administrator Help.

2 Chapter 1 - Introduction

Step 2: Working in Rose

1

If you have an existing component, reverse engineer it into your Rose model. (Skip
this step if you are already modeling your system and components in Rose.)

For E]Bs, a good way to do this is with the Rose/Java Add-in. Simply make a jar
file and drop the jar file on a class diagram. Be sure to include only the source

(. java) files for the Remote interface, the Home interface, and the Bean itself. Do
not import any . class files compiled from the source files because these will not
be properly reverse-engineered with parameter names.

For more information, see Reverse Engineering Java Source in your Rose J online
Help.

Choose a template for the test generation process. This template contains
replacement variables that get populated when you generate the test script.
(A template will be provided for you by default.) For more information, see
Templates on page 7 and Template Replacement Variables on page 107.

In Rose, right-click a model element to test and click QualityArchitect > Select Unit
Test Template.

To create a unit test, right-click the item to test and click QualityArchitect > Generate
Unit Test.

For information about testing your business logic, see Using EJB Scenario Tests to
Test Transactions on page 57 or Using COM Scenario Tests to Test Transactions on
page 96. For information about generating EJB test scripts with the Session
Recorder, see Using the E|B Session Recorder on page 66.

If this is your first time generating a test script, you will be prompted to select a
source script directory in which to store your scripts. For more information, see
Storing Your Tests Scripts on page 6.

Step 3: Working in Your IDE

After you generate your test assets, you must add them to a project in your IDE,
where you can run the tests.

This section includes the basic steps for working in your IDE.

Working in VisualAge for Java (VAJ)

If you are using IBM Visual Age for Java (VA]), you need to import test assets into the
VA] repository. For details, see Importing Test Assets into VA] on page 52.

Quick Start 3

Working in Visual Cafe
In Visual Cafe:
1 Open a project.

2 Add the test scripts to the project. See Adding an existing file to a project in the Visual
Cafe Help.

3 Update the CLASSPATH in Visual Cafe, adding references to rttseajava.jar,
rttssjava.jar, and rational_ct.jar. (See Requirements for E|B Testing on page 29.)

4 Start the WebLogic server.

5 Click Project > Execute to run the test.

Working In Visual Basic

Every generated test of a COM component results in the creation of a Visual Basic
project and several other files. For a list and description of these generated files, see
Programming in Visual Basic on page 88.

To run your test in Visual Basic:

1 Open the Visual Basic project file.
2 Edit the .cls file as needed.

3 Click Run > Start with Full Compile.

4 Chapter 1 - Introduction

Basic Concepts

This chapter discusses several basic concepts that will help you take advantage of the
features provided with Rational Quality Architect. Topics include:

Test script basics
Templates
Scenario tests
Stubs

Test script services

For information about concepts that apply to specific component models, see the
chapters that describe each particular model.

Test Script Basics

Quality Architect generates test scripts that drive and validate the component-
under-test. Test scripts are generated in various languages, depending on the type of
component you are testing. The following table lists the test script languages for each
component type:

Component Type Language

Enterprise JavaBeans Java

COM components Visual Basic
Test Types

There are two types of test scripts that QualityArchitect can generate from Rose:

Unit tests

Scenario tests

A unit test tests the behavior of an individual method or operation.

A scenario test tests the behavior of components as specified in an interaction diagram.
These tests are intended to replicate the sequence of events in a transaction, and as
such, test the implementation of the transaction. You can use interaction diagrams to
construct simple scenario tests involving a single component or complex tests
involving multiple components.

In addition, there is another kind of test script that you can generate with the EJB
Session Recorder. For details, see Using the E|B Session Recorder on page 66.

Storing Your Tests Scripts

Projects for storing test assets are created in the Rational Administrator. Each project
can contain several datastores—for example, a datastore for test assets, a datastore for
requirements, and a datastore for change requests.

Certain test assets for Quality Architect, such as datapools, lookup tables, and log files
are stored in the test datastore. Test scripts, however, can be stored independently of
the test datastore, in a location of your choice, where they can be placed under source
control. When you generate your first test script, you will be prompted to log in to a
project and to select a directory for storing your test scripts. Quality Architect
maintains an association between this directory and the project’s test datastore.

Note: If you want to share your test scripts with a team, be sure to use a UNC path
(\\server-nameldirectory-path) to create the project and a UNC path to specify your script
source directory. Failure to do both of these will result in a project and script source
that cannot be used in a group environment.

To create a new project with the Rational Administrator:

1 Click Start > Programs <Rational ...> Rational Test > Rational QualityArchitect
Console.

where <Rational ...> is the name of the Rational product you have installed—
for example, Rational Suite DevelopmentStudio.

2 When the Rational Quality Architect console appears, click the Administrator icon
on the console.

?i- Rational QualityArchitect Conzole [_]

2| e

R epositary Connection

Click to open the Administrator.

6 Chapter 2 - Basic Concepts

3 Click File > New Project.

For more details, see the Using the Rational Administrator manual.

Templates

Quality Architect uses templates to provide structure and common code to generated
scripts and stubs. Templates are simply ASCII text files with replacement variables.
The code generators supplied with QualityArchitect replace the variables in the
templates with real code derived from Rose model elements.

All of the Rational templates can be customized. To create your own template, simply
copy one of the supplied templates and edit it as needed. For example, to provide
more logging information in your scripts, copy one of the supplied templates, add
logging code, and generate tests with the new template.

Templates also provide a means for supporting additional environments, such as
application servers. Generally, to add support for a new environment, you adjust a
standard template, primarily in the initialization code, and then generate your test
scripts using the new templates.

Rational has included several templates for your use. These templates can be logically
grouped into the following general categories:

» Templates for unit test generation
» Templates for scenario test generation
» Templates for stub generation

Within each general category there are several templates for the various component
models. You can browse through the Rational Test\QualityArchitect\Template directory to
view the list of templates that are installed.

The following table lists the templates Quality Architect uses for unit test generation:

Template Description

weblogic_home.template Template for testing the methods in the home interface of EJBs
on a WebLogic server. Use this template:

= To ensure that the remote interface can be created
successfully

* As a check before writing or running method-level tests

weblogic_remote.template Template for testing the methods in the remote interface of
EJBs on a WebLogic server.

Templates 7

Template Description

websphere_home.template | Template for testing the methods in the home interface of EJBs
in the WebSphere environment.

websphere_remote.template | Template for testing the methods in the remote interface of
EJBs in the WebSphere environment.

sunj2ee_home.template Template for testing the methods in the home interface of E]Bs
in the Sun J2EE environment.

sunj2ee_remote.template Template for testing the methods in the remote interface of
EJBs in the Sun J2EE environment.

TestNameScript.cls Template for the Visual Basic .cls file that is generated to test a
COM component. The .cls file is the template for the actual test
program.

TestName.vbp Template for the Visual Basic project file that is generated to
test a COM component.

TestNameMain.bas Template for the main program that calls the test program in
the .cls file. Visual Basic requires a main program to begin
execution.

TestName.res Template for the resource file that is created to support
datapools.

For more information about templates, see Templates for Scenario Test Generation on
page 11, Templates for Stub Generation on page 19, and Template Replacement Variables on
page 107.

Scenario Tests

Scenario tests use Rose interaction diagrams—that is, sequence and collaboration
diagrams—to test transactions. Quality Architect interprets the messages in the
interaction diagram and generates test scripts for one or more receiver objects in the
diagram. (The receiver object is the object that receives the message.)

Each message in a diagram corresponds to an operation of a class, either by direct
linkage through the diagram or by name. Each argument in a message maps to a
corresponding parameter object attached to the operation object of the class.

As it generates the test script, Quality Architect allows you to insert an optional
verification point for each message in the diagram. (A verification point is a functional
testing construct used by a test script to verify specific behavior. For more
information, see Verification Points on page 23.)

8 Chapter 2 - Basic Concepts

Receiver object for openAcct message Receiver object for deposit message

[]

¥ Sequence Diagram: Use Case ¥iew / MultipleCorrelated

: Client | : ManageActountsBean | : ExecufeTranzactionBean |

A

: Client

:ManageAccountsBean : ExecuteTransactionBean

0penChe:ckingAcct(accountlD Jlong = 0001, customerlD : String = James, ?ransactionID dlong=1, openBIaIance : java.math.BigD

|

o

d

imsit(accountlD Jlong = 0001, acctType : String = Checking, amoLint java.math.BigDecimal = SE:ID)

/

-

Al | » [

Scenario test scripts include support for datapools, logging, and verification points.
(A datapool is a set of records that you can use to drive a test script. For details, see
Datapools on page 21.) The scenario test templates provide automatic support for
datapools and logging, while verification points can be added during script
generation.

The basic steps for creating a scenario test are as follows:

1 Create a sequence or collaboration diagram in Rose.

2 Select the objects involved in the transaction and add them to the diagram.
3 Add messages for the operations that implement the transaction.

4 Add parameter names and data to the messages (optional).

In this step, you can modify message syntax to permit automated data correlation.
For more information, see Message Signatures and Data Correlation on page 11.

5 Select a scenario test template.
6 Generate the scenario test and insert verification points.

For more information, see Using the Java Query Builder to Add Verification Points on
page 59 and Using the OLE DB Query Builder to Add Verification Points on page 99.

7 Edit datapool data.

Scenario Tests 9

For more information, see Datapools in Scenario Tests on page 21. For information
about creating datapools for EJB unit tests, see Creating a Datapool for the Unit Test
on page 49. For information about creating datapools for COM unit tests, see
Creating a Datapool on page 93.

Support for Performance Testing

In addition to using scenario test scripts for functional testing, you can use them for
performance testing—that is, to measure how long a transaction takes to complete.
Quality Architect includes scenario testing templates that have been designed
specifically for this purpose. Simply uncomment the line in the template for the
TSSMeasure class, which is used to measure performance, as shown in the following
EJB example.

public void testMain(Stringl[] args)
boolean fRetval = false;
TSSMeasure tss = new TSSMeasure(); // used for measuring performance
TSSDataPool dp = new TSSDataPool () ;
int iDPCount = 0;

For more information, see the documentation for the TSSMeasure class in the
Rational Test Script Services for Java manual and the Rational Test Script Services for Visual
Basic manual.

Support for Verification Points

Typically, components tested with Quality Architect are transactional, and as such
they make updates to a database. Therefore, verification must include a way to verify
these database transactions. Because scenario tests specifically test these transactions,
QualityArchitect provides database verification points to verify any changes to the
underlying database. When you generate a scenario test, Quality Architect prompts
you to insert a database verification point for each message in your interaction
diagram.

For overview information about verification points, see Verification Points on page 23.
For more detailed information, see the documentation for the VerificationPoint
class in the Rational Test Script Services for Java manual and the Rational Test Script
Services for Visual Basic manual.

For detailed information about database verification points, see the documentation
for the DatabaseVP class in the Rational Test Script Services for Java manual and the
Rational Test Script Services for Visual Basic manual.

10 Chapter 2 - Basic Concepts

Templates for Scenario Test Generation

Quality Architect includes several templates that are used to generate scenario tests
for each supported component model or application server. The templates shown in
the first row in the following table are the ones you can select for test script
generation. The other templates are called by the template that you select. The
following templates are included with QualityArchitect:

Template

Description

websphere_scenario.template
weblogic_scenario.template
sunj2ee_scenario.template
com_scenario_script.template

Top-level templates for testing the sequence of methods
specified in an interaction diagram.

Each top-level template contains substitution variables
for the method calls listed in the interaction diagram.

websphere_scenario_constructor.template
weblogic_scenario_constructor.template
sunj2ee_scenario_constructor.template
com_scenario_constructor.template

Templates for building the constructor. For E]JBs, the
constructor builds the remote interface. For COM, the
constructor builds the COM object.

scenario_java_method1.template
scenario_java_method2.template
com_scenario_operation.template

Templates for generating the method calls. These
templates include functions for calling individual
methods within the sequence and for calling functions
such as tssCommandStart and tssCommandEnd,
which are used for performance testing.

com_scenario_project

Template for the Visual Basic project file that is generated
to test a COM scenario.

com_scenario_basmain.template

Template for the main Visual Basic program that calls the
test program in the .cls file. Visual Basic requires a main
program to begin execution.

Message Signatures and Data Correlation

Message signatures include all of the message text that appears in parentheses in a Rose

interaction diagram.

In the following message, for example, the message signature is shown in bold:

openCheckingAcct (accountID :
java.math.BigDecimal)

long, openBalance :

long, customerID : String, transactionID

Scenario Tests 11

Signature Options

Rose supports the following options for displaying message signatures:
* Type Only

* Name Only

* Name and Type

= None

You set these options in Rose by clicking Tools > Options > Diagram and clicking one of
the check boxes inside the Message Signatures box.

CORBA | Java | Owmcle® | Ce | MswC | cOM
VisuslBasic | #MLDTD | A4de83 | Adads
General Diagram Browser I Notation I Taolbars
— Compartment: — Display

¥ Show wisibility

V¥ Show stereotypes

[~ Show operation sighatures
V¥ Show all attibutes

V¥ Show all operations

™ Suppress attributes

™ Suppress operations

W Urnresolved adomments
™ Urit adormmerits

V¥ Callaboration numbering
™ Sequence numbering
[T Hierarchical Messages
V¥ Focus of contral

™ ThieeTier Diagram

— Mezzage Signature

 Type Only
" Mame Only
— Miscellaneou Grid
¥ Double-click to diagram V¥ Snap to gid

V¥ Automatic resizing
¥ Clazs Mame Completion

V¥ Aggregation whole to part

Grid zize: |5

— Stereotype display
" MNone " Label

V¥ Show labels on relations and associations

" Decaoration & |con

QK I Cancel Apply Help

12 Chapter 2 - Basic Concepts

Set message signatures here.

You can use message signatures for several purposes. For example, you can:

* Change parameter names to force the correlation results that you want.

» Add assignments to give initial values to parameters.

» Add assignments to give names to function results correlated with parameters.

Warning: If you change message signature options from one style to another in
Rose—for example, from Name and Type to Type Only—every modification made to
a manually edited message name is erased. Therefore, decide early on how you want
message signatures displayed and do not change the options after you have modified
the messages.

Message Syntax

When you generate a scenario test, Quality Architect parses the diagram to determine
the name, type, and initial data for each parameter (argument) in a message signature.

» Parameter name. For each parameter in the message signature, Quality Architect
uses the name from the message signature in the diagram. If no name is included
in the message, Quality Architect uses the name property of the associated
parameter.

» Parameter type. For each parameter in the message signature, Quality Architect
uses the type from the associated parameter object, regardless of what is in the
diagram.

* Parameter’s initial data. For each parameter in the message signature,
Quality Architect uses the value to the right of the equals sign. If no initial data is
included in the signature, Quality Architect uses the Initial Data property of the
associated parameter. If no Initial Data property is set and no initial data is
specified in the diagram, then NULL or some other suitable value for the data type
is used. Thus, you can select the None option in the Message Signatures box and
still get a valid test script.

Note: When only the name or type of a parameter is present in the message,

Quality Architect compares this name or type to the actual type in the corresponding
parameter object. If they are the same, Quality Architect uses the name from the
parameter object as the script variable name for the parameter. If they are different,
QualityArchitect uses the name used in the message and takes the type from the
parameter object.

Scenario Tests 13

Message syntax for the Name and Type option is as follows:

Result = operation([parameter : type; = value;, parameter,, : type, = value,,, etc])

Item Description

Result The value (if any) returned by the operation. It is used by Quality Architect for
correlation with parameters of the same name later in the transaction. Result
is optional.

Operation The name of the operation as defined in a UML class.

Parameter Parameter, type, and value define a parameter of the operation and its initial
Type value. Parameter and type are both optional, because Quality Architect

Value examines the parameter object. The syntax that separates them with a colon is

the UML syntax for separating parameter name and type. In Quality Architect,
you can add the assignment syntax (= value) to allow the initial value of a
parameter to be specified in the sequence diagram.

Editing Message Signatures

You edit message signatures to tell Quality Architect three things, all of which are
optional:

» Parameter names that are different from their parameter specification
» Initial data
* The name and type of the return value

Quality Architect generates a variable in the test script to hold the return value (result)
if you do not supply one.

How Message Signatures Correlate to Datapool Fields

When you generate a scenario test, QualityArchitect also generates a corresponding
datapool (see Datapools in Scenario Tests on page 21). Quality Architect first examines
the arguments in the message signatures to determine how many datapool fields to
create. If no argument names are included in the signature, Quality Architect supplies
the names by searching the parameter (object) of the corresponding operation of the
class.

For example, if QualityArchitect finds an argument named account ID in multiple
messages, it creates a single datapool field for account ID. If you want to have
multiple datapool fields for accountID, you need to assign account ID different
names in the diagram, regardless of the Rose Message Signature Option that you have
picked.

14 Chapter 2 - Basic Concepts

Message Signature Examples

This section provides several samples of message signatures.

Example 1 — the Name-Only Option

In this example, there is a getBalance operation in the ExecuteTransaction
class. This operation takes one argument—accountID. If you want to generate a test
script with two calls to this operation, with each call operating on different
accountIDs, you need to code your message signatures as follows:

getBalance (accountID1)

getBalance (accountID2)

In this example, two datapool fields will be created—one for accountID1 and one
for accountID2.

If you want these operations to go against the same account, driven from a datapool,
you need to code your message signatures as follows:

getBalance (accountID)

getBalance (accountID)

The fact that both operations use the same argument name ensures that they are
assigned to the same datapool field.

If you want to initialize these operations with data and assign them different names,
code the message signatures as follows:

1)
5)

getBalance (accountID1l

getBalance (accountID2

Example 2 — the Type-Only Option

If you use the Type-Only option, code your message signatures as follows to get the
same datapool field for both calls:

getBalance(: Long)

getBalance (: Long)

In this case, the name of the datapool field will be taken from the parameter name of
the parameter object.

If you want different datapool fields for each call, you must add the name to the
signature, as in the following example, even if you have set Rose Options to
Type-Only.

getBalance (accountIDl : long = 1)

getBalance (accountID2 : long 5)

Scenario Tests 15

Example 3 — Name and Type

This example shows the message signature when you display name and type without
including parameter values or assignment statements.

getBalance (acctountID : long, acctType : java.lang.String, amount
java.mathBigDecimal)

Example 4 — Name and Type with Parameter Values

This example shows the message signature after you add the initial data assigned to
each parameter.

getBalance (acctountID : long = 1, acctType : java.lang.String =
"checking", amount : java.mathBigDecimal = 50)

Example 5 — Name and Type with Assignment Statement

Finally, if the message returns a value and you want to establish a variable in the test
script to hold this value, possibly for use as a parameter of data in a subsequent
message, you need to convert the message name into an assignment statement. In this
example, the variable named result is declared and used in the test script to hold
the value returned by the getBalance () function.

result = getBalance(acctID : long = 1, acctType : java.lang.String =
"checking", amount : java.mathBigDecimal = 50)

Stubs

Stubs are components that can be used for testing purposes in place of actual
components. A stub can be either a pure “dummy” component that just returns some
predefined value, or it can simulate more complex behavior. With Quality Architect,
the simulated behavior for stubbed operations is specified in a lookup table. Through
the use of stubs, you can control the results returned from components that interact
with the component-under-test and create a simulated, controlled test environment.

Consider the sample E]B application that is described in the chapter on Testing
Enterprise JavaBeans. In this chapter, you create a test script to test the getBalance
method that is included with the ExecuteTransaction interface. Because the
getBalance method calls several methods in the ManageAccount EJB, such as
getSavingsBalance and getSavingsCustomerID, you would need to control
access to the ManageAccount EJB to thoroughly test the getBalance method. As an
alternative, you can create a stub for the ManageAccount EJB and control the results
returned when getBalance calls the methods in the ManageAccount EJB.

16 Chapter 2 - Basic Concepts

Sample Application

ExecuteTransaction EJB

getCustomerSavingsID method

component-under-test

|

delete AllAccounts method ManageAccounts EJB
deposit()
ge{)Balance() calls p getSavingsBalance method
withdraw/()
Test Environment

tests ExecuteTransaction]Ji]B

getBalance Test Script
L

getBalance method

Siied yoiym

Lookup Table

ManageAccounts E]JB Stub

iets data from

getSavingsBalance
getCustomerSavingsID

In a stub, any method that is called by the component-under-test requires a lookup
table consisting of rows and columns of expected results and exceptions for the
method, as in the following example:

Generate the table and columns

with Stubs > Create Look-up
table.

Use the Datapool Manager to

AccountID expectedReturn | expectedException

012 34 5678 012 34 5678

123 45 6789 123 45 67891

234 56 7890 java.rmi.RemoteException

populate the table.

Stubs

17

The lookup table contains one or more columns for each parameter of the operation
being stubbed. QualityArchitect uses the values in the columns to determine how the
operation should behave. If the operation is supposed to return a value, the value is
shown in the expectedReturn column. If the operation is supposed to throw an
exception, the type of exception is shown in the expectedException column.

The stub looks up the row containing the inputs matching the parameter values
passed in by the component-under-test—that is the caller of the stub—and either
returns the value in the expectedReturn column or throws the exception in the
expectedException column.

To generate stubs:

1 In the Rose browser, right-click the implementation class you are testing and click
QualityArchitect > Generate Stubs.

2 Select a directory for storing the stubs.

For more information about stubs for E]Bs, see Generating Stubs for the Unit Test on
page 51. For more information about stubs for COM components, see Generating
Stubs for the Unit Test on page 94.

To generate a lookup table:
1 Select a method called by the method that you are testing.
2 C(Click Tools > QualityArchitect > Stubs > Create Look-up table.

The lookup table is created with the name ClassName_OperationName_L—for
example ExecuteTransaction getBalance L.

3 Use the datapool manager to populate the lookup table with data.

For information about populating datapools for EJBs, see Creating a Datapool for the
Unit Test on page 49. For information about populating datapools for COM
components, see Creating a Datapool on page 93.

For more information about lookup tables for testing E]Bs, see Creating Lookup
Tables on page 52. For more information about lookup tables for testing COM
components, see Creating Lookup Tables on page 95.

Note: Stubs must be deployed on the same computer as the test script. Otherwise,
playback will fail.

18 Chapter 2 - Basic Concepts

Templates for Stub Generation

EJB

The following tables list the templates that are used for EJB stub generation. The first
table lists the templates used to generate stubs for the home interface, the remote

interface, and the implementation class. The second table lists the templates used to
build the method body in the EJB’s implementation class. The template that is used

depends on the particular method.

Template

Description

Session_Home.template

Template used to generate the stub for an EJB
home interface.

Session_Remote.template

Template used to generate the stub for an EJB
remote interface.

Session_Bean.template

Template used to generate the stub for an EJB
implementation class.

Template

Description

MethodBodyWithoutLookUp.template

Template used when lookup code cannot be
generated, either because:

= The method has no parameters

= The method has no return value or
exceptions

parameter and lookup code cannot be
generated automatically.

= The method contains at least one complex

MethodBodyWithoutExceptions.template

Template used when the method throws no
exceptions.

MethodBodyWithoutReturnValue.template

value (for example, returns void).

Template used when the method has no return

MethodBody.template

Template used for all other methods.

Stubs

19

CcOomM/vVB

The following tables list the templates that are used for COM/VB stub generation.
The first table lists the template used to generate the code that defines the Visual Basic
class. The second table lists the templates that are used to create the method bodies for
the COM/ VB stub. Different templates are used depending on the type of method

being stubbed.
Template Description
VBCOMClass.template Template used in all cases to generate the code
that defines the Visual Basic class.
Template Description
FunctionBody.template Template used for functions. (Functions are
methods that have return values.)
FunctionBodyWithoutLookUp.template Template used for functions without parameters.
(No look up code is generated when a method
has no parameters.)
PropertyGetBody.template Template used for "Property Get" methods.

PropertyGetBodyWithoutLookUp.template | Template used for "Property Get" methods
without parameters. (No lookup code is
generated when a method has no parameters.)

PropertyLetBody.template Template used for "Property Let" methods.

SubBody.template Template used for subroutines. (Subroutines are
methods that have no return value.)

SubBodyWithoutLookUp.template Template used for subroutines without
parameters. (No lookup code is generated when
a method has no parameters.)

20 Chapter 2 - Basic Concepts

Test Script Services

Rational Test Script Services provide datapool, logging, verification, synchronization,
measurement, and monitoring capabilities to various Rational applications, including
Quality Architect.

Datapools

A datapool is a set of records that you can use to drive a test script. Typically, each
record in the datapool represents a test case and includes either the test inputs, the
expected results, or both. With a datapool, a single script can iterate through multiple
test cases. If you want to add a new test case, such as the result of invalid input, you
only need to add another record to the datapool.

For example, suppose you want to test an add () operation that takes two integers as
parameters. If you want to test what happens when you pass it two negative integers,
you can simply add another record to the datapool. Include negative integer values in
each of the two parameter columns, and populate the expected result or expected
exception columns accordingly.

Datapools greatly reduce the number of test scripts that are required and minimize
script maintenance.

Datapools in Scenario Tests

When you generate a scenario test, Quality Architect creates a datapool automatically.
It examines each message in an interaction diagram and populates one datapool row
with data based on the parameter values in the messages. If no parameter values are
found in the messages, QualityArchitect attempts to populate the row with initial
values found in the paramete