
support@rational.com
http://www.rational.com

Rational the e-development company™

Using Rational Robot

VERSION 2001A.04.00

PART NUMBER 800-024535-000

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1998-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-024535-000

Revised 1/2001, 4/2001

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO
PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, ClearCase,
ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational PerformanceArchitect,
Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational Visual Test, Requisite,
RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational Watch are trademarks
or registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only, and are trademarks or registered trademarks of their respective
companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C++, Visual Basic,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee
shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application
the primary purpose of which is software license management.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness
for a particular purpose or arising from a course of dealing, usage, or trade practice.

� � � Contents

Preface
Audience . xv

Other Resources . xv

Contacting Rational Technical Publications xv

Contacting Rational Technical Support xvi

Part I Introducing Rational Robot

1 Introduction to Rational Robot
What Is Rational Robot?. 1-1

Managing Rational Projects with the Administrator. 1-2

Developing Tests in Robot . 1-3

Creating Datapools . 1-5

Analyzing Results in the Log and Comparators 1-6

Managing Intranet and Web Sites with SiteCheck and Robot . 1-7

Using Robot with Other Rational Products 1-9

Planning and Managing Tests in TestManager. 1-9

Testing Applications with Rational TestFactory 1-10

Managing Defects with Rational ClearQuest 1-11

Collecting Diagnostic Information During Playback 1-11

Performance Testing with Rational TestManager 1-12

Managing Requirements with Rational RequisitePro. 1-12

Starting Robot and Its Components . 1-13

Logging in . 1-13

Opening Other Rational Products and Components 1-14

Tasks You Can Perform with Robot and Its Components 1-15
iii

Using Rational Robot
Part II Developing and Playing Back GUI Scripts

2 Recording GUI Scripts
The Recording Process .2-1

The Recording Workflow .2-2

Before You Begin Recording. .2-2

Establishing Predictable Start and End States for Scripts.2-3

Setting Up Your Test Environment .2-3

Creating Modular Scripts. .2-3

Enabling IDE Applications for Testing .2-4

Setting GUI Recording Options. .2-5

Naming Scripts Automatically. .2-6

Controlling How Robot Responds to Unknown Objects.2-7

Selecting an Object Order Preference. .2-9

Using Advanced Features Before Recording2-10

Customizing the Object Recognition Method Order2-11

Mapping Object Types and Classes Before Recording 2-13

Recording a New GUI Script .2-15

Restoring the Robot Main Window During Recording.2-18

Using the GUI Record and GUI Insert Toolbars2-19

Pausing and Resuming the Recording of a Script 2-19

Defining Unknown Objects During Recording 2-20

Switching to Low-Level Recording. .2-21

Ending the Recording of a GUI Script2-22

Defining Script Properties. .2-23

Coding a GUI Script Manually .2-23

Testing Your Recorded Script. .2-24

Playing Back the Script. .2-24

Editing and Compiling the Script .2-24

Debugging the Script .2-24

Creating Shell Scripts to Play Back Scripts in Sequence2-25

Creating a Shell Script .2-25

Playing Back a Shell Script. .2-26
iv

Contents
3 Adding Features to GUI Scripts
Starting an Application. 3-1

Starting Applications. 3-2

Starting Applications Under the Rational Diagnostic Tools . . 3-3

Inserting a Call to Another Script . 3-5

Inserting Verification Points . 3-6

Inserting Timers. 3-8

Uses for Timers . 3-9

Inserting a Timer . 3-10

Playing Back a Script that Includes Timers. 3-10

Inserting Comments . 3-11

Inserting Log Messages . 3-11

Inserting Delay Values . 3-12

Using the Insert Menu . 3-13

Customizing SQABasic Scripts. 3-14

Library Source Files . 3-14

SQABasic Header Files . 3-16

Header and Library Source File Examples 3-17

The Template File . 3-19

4 Creating Verification Points in GUI Scripts
About Verification Points . 4-1

Verification Points and Data Files . 4-1

Verification Points and Scripts . 4-2

Types of Verification Points . 4-3

Before You Create a Verification Point. 4-6

Tasks Associated with Creating a Verification Point 4-6

Starting to Create a Verification Point. 4-7

Setting a Wait State for a Verification Point 4-8

Setting the Expected Result for a Verification Point. 4-9

Selecting and Identifying the Object to Test. 4-10

Selecting a Verification Method. 4-14

Selecting an Identification Method . 4-15

Working with the Data in Data Grids . 4-19

Selecting the Data to Test in a Data Grid 4-19
v

Using Rational Robot
Testing Column Titles or Top Menus in a Data Grid.4-20

Editing Captured Data in a Data Grid.4-21

Changing a Column Width in a Data Grid.4-22

Transposing Columns and Rows in a Data Grid4-23

Editing a Verification Point .4-23

Viewing a Baseline File. .4-24

Renaming a Verification Point. .4-25

Copying a Verification Point .4-25

Deleting a Verification Point .4-26

5 Editing, Compiling, and Debugging Scripts
Editing the Text of a Script .5-1

Adding a User Action to an Existing GUI Script.5-2

Adding a Feature to an Existing GUI Script 5-2

Working with Low-Level Scripts .5-3

Viewing Low-Level Scripts .5-4

Renaming a Low-Level Script .5-4

Copying a Low-Level Script .5-5

Deleting a Low-Level Script .5-6

Saving Scripts and SQABasic Files .5-7

Printing a Script or SQABasic File .5-7

Compiling Scripts and SQABasic Library Source Files 5-7

Compiling One or All Scripts and Library Source Files 5-8

Batch Compiling Scripts and Library Source Files.5-8

Locating Compilation Errors .5-9

Debugging GUI Scripts. .5-9

Setting and Clearing Breakpoints .5-11

Executing to a Selected Line .5-13

Executing in Animation Mode .5-13

Examining Variable Values. .5-13

Deleting Scripts .5-15
vi

Contents
Part III Developing VU Scripts

6 Setting Recording Options
About Session Recording. 6-1

Setting the Recording Method . 6-2

API Recording. 6-4

How to Choose API Recording . 6-4

Network Recording . 6-4

How to Choose Network Recording . 6-4

Selecting a Client/Server Pair. 6-5

Selecting a Network Card . 6-5

Proxy Recording . 6-6

How to Choose Proxy Recording . 6-7

Proxy Recording Use Overview . 6-8

Creating a Proxy Computer . 6-9

Identifying Client/Server Pairs. 6-9

Setting Script Generation Options . 6-10

Modifying the Contents of a Script . 6-10

Setting Filtering Options . 6-17

Providing Protocol-Specific Information 6-22

Setting General Recording Options . 6-29

Autonaming Prefixes . 6-29

Start Application . 6-30

Setting the Recorder Window . 6-30

Defining a Client or Server Computer . 6-31

Removing a Computer or Port . 6-33

Authenticating Login . 6-33

When to Modify the Authentication Datapool 6-34

Modifying the Authentication Datapool with TestManager . 6-34

Modifying the Authentication Datapool During Recording . 6-35

Unique Features of the Authentication Datapool. 6-35

Managing Proxies . 6-36

Starting and Stopping Proxy Service . 6-36

Monitoring Proxy Activities . 6-38

Deleting Client/Server Pairs. 6-38
vii

Using Rational Robot
Deleting a Proxy .6-39

Re-Creating Proxies that Have Been Removed6-40

7 Recording Sessions
Recording a session .7-1

What You Can Record in a Session .7-2

Where Files Are Stored .7-2

Restoring Robot During Recording .7-2

Recording a Single Script in a Session .7-3

Stop Recording and Generating Scripts 7-4

Using the Floating Toolbars .7-5

If Problems Occur During Script Generation7-5

Providing a Missing Password .7-5

Getting Feedback During and After Recording7-7

The Session Recorder During Recording.7-8

The Session Recorder After Recording.7-9

Cancelling Scripts During Recording. .7-10

Cancelling a Script in a Single-Script Session 7-10

Cancelling the Current Script in a Multi-Script Session7-10

Cancelling All Scripts in a Multi-Script Session.7-11

Choosing the Protocols to Include in a Script7-11

Manually Filtering Protocols .7-11

Playing Back a Script Quickly .7-16

Working with Sessions .7-16

Splitting a Session into Multiple Scripts7-17

Importing a Session .7-18

Regenerating Scripts from a Session .7-18

Viewing Session Properties .7-20

Coding a Script Manually .7-21

Creating Library Files for VU Scripts .7-21

Defining Script Properties. .7-21

How to Define Script Properties in Robot7-22

Managing Scripts and Sessions .7-22

Finding the Session Associated with a Script 7-22

Removing a Script from a Session .7-23
viii

Contents
Re-Recording Sessions . 7-23

Re-Recording Scripts . 7-25

Copying Scripts. 7-26

Deleting Scripts and Sessions. 7-26

8 Adding Features to Scripts
Toolbars for Adding Features . 8-1

Timers. 8-2

How Timers Work . 8-2

Why Use Timers? . 8-3

Adding a Timer During Recording . 8-3

Adding a Timer During Editing. 8-3

Blocks . 8-4

Why Use Blocks? . 8-5

Adding a Block . 8-6

Nesting Blocks . 8-6

Synchronization Points . 8-8

How Synchronization Points Work. 8-8

Why Use Synchronization Points? . 8-9

Inserting Synchronization Points. 8-10

Scope of a Synchronization Point . 8-12

Comments . 8-13

Adding Comments During Recording 8-13

Adding Comments During Editing . 8-13

Using the Insert Menu . 8-14

Part IV Playing Back GUI Scripts

9 Playing Back GUI Scripts
Playback Phases . 9-1

Test Development Phase . 9-2

Regression Testing Phase . 9-2

Restoring the Test Environment Before Playback 9-3

Setting GUI Playback Options . 9-3

Acknowledging the Results of Verification Point Playback . . . 9-4

Setting Log Options for Playback . 9-5
ix

Using Rational Robot
Setting Wait State and Delay Options .9-6

Setting Error Recovery Options .9-8

Setting Unexpected Active Window Options.9-9

Setting Diagnostic Tools Options .9-11

Setting the Trap Options to Detect GPFs.9-16

Playing Back a GUI Script .9-18

Viewing Results in the TestManager Log .9-20

Analyzing Verification Point Results with the Comparators 9-21

10 Working with Datapools
What Is a Datapool? .10-1

Datapool Tools .10-2

Datapool Cursor .10-3

Datapool Limits .10-4

What Kinds of Problems Does a Datapool Solve? 10-4

Planning and Creating a Datapool .10-5

Data Types .10-8

Standard and User-Defined Data Types.10-8

Finding Out What Data Types You Need 10-9

Creating User-Defined Data Types .10-10

Generating Unique Values from User-Defined Data Types.10-11

Generating Multi-Byte Characters .10-12

Using Datapools with Sessions .10-12

Creating a Datapool with Robot .10-12

Editing Datapool Column Definitions with Robot10-21

Editing Datapool Values with Robot .10-22

Using Datapools with GUI Scripts .10-23

Accessing a Datapool from GUI and Session Scripts.10-24

Part V Testing IDE Applications

11 Testing Visual Basic Applications
About Robot Support for Visual Basic Applications11-1

Verifying that the Visual Basic Extension Is Loaded11-3
x

Contents
12 Testing Oracle Forms Applications
About Robot Support for Oracle Forms Applications 12-1
Making Oracle Forms Applications Testable 12-2

Installing the Rational Test Oracle Forms Enabler. 12-2
Running the Enabler on Your Application 12-2
Verifying that the Oracle Forms Extension Is Loaded 12-7

Recording Actions and Testing Objects. 12-7
Recording Actions . 12-7
Testing Objects . 12-8

Testing an Object’s Properties . 12-10
Object Properties Verification Point. 12-10
Object Scripting Commands. 12-13

Testing an Object’s Data . 12-14
Testing Base-Table Blocks and Base-Table Items 12-14
Testing LOVs and Record Groups . 12-15

13 Testing HTML Applications
About Robot Support for HTML Applications 13-1
Configuring Your Browser for Testing . 13-2

Disabling the Cookie Prompt . 13-2

Making HTML Applications Testable . 13-2

Verifying that the HTML Extension Is Loaded 13-3

Enabling HTML Testing in Robot . 13-3

Enabling Cache for Netscape Recording and Playback 13-4

Testing Data in HTML Elements . 13-5

Additional Examples . 13-7

How Robot Maps HTML Elements. 13-9

Supported Data Tests for HTML Testing 13-11

Testing Properties of HTML Elements . 13-12

Playing Back Scripts in Netscape Navigator. 13-13

Configuring Robot for Netscape Playback 13-13

Differences Between Internet Explorer and Navigator 13-14

Recording Tips . 13-15

Capturing the Properties of Java Applets in HTML Pages . 13-15

Synchronizing Pages . 13-16
xi

Using Rational Robot
Recording Mouse Movements .13-17

Ensuring Browser Compatibility. .13-17

Enhancing Object Recognition of HTML Elements 13-18

14 Testing Java Applets and Applications
About Robot Support for Java. .14-2

Robot Support for Testing Java Applets and Applications14-3

Supported Foundation Class Libraries14-3

Making Java Applets and Applications Testable.14-4

Running the Java Enabler. .14-5

Verifying that the Java Extension Is Loaded14-7

Setting Up the Sample Java Applet .14-7

Installing the Sample Java Applet .14-8

Installing the Swing Foundation Classes 14-8

Starting the Sample Java Applet .14-10

Testing Data in Java Components .14-10

Testing the Contents of a Java Panel.14-12

Support for Custom Java Components .14-13

For More Information About Java Support 14-14

Supported Data Tests for Java Testing .14-14

Testing Properties of Java Components .14-15

Enhancing Object Recognition of Java Components 14-17

15 Testing PowerBuilder Applications
About Robot Support for PowerBuilder Applications 15-1
Verifying that the PowerBuilder Extension Is Loaded15-2
Recording Actions on DataWindows .15-2

Parameters for a Mouse-Click Action .15-3
Value-Based Recording .15-3

Testing an Expression Value of a DataWindow Property.15-4
Testing DataStore Controls and Hidden DataWindows 15-5
Capturing Data in a DropDownDataWindow/ListBox15-6
Testing the Value of a DataWindow Computed Field 15-7
xii

Contents
16 Testing PeopleTools Applications
About Robot Support for PeopleTools Applications 16-1
Verifying that the PeopleTools Extension Is Loaded 16-2
Testing a Component’s Properties . 16-2
Testing a Component’s Data . 16-3
PeopleTools Commands . 16-3

17 Testing Delphi Applications
About Rational Robot Support for Delphi . 17-1
Making Delphi Applications Testable . 17-2

Installing the Rational Object Testing Library and Enabler . . . 17-2
Running the Rational Test Delphi Enabler 17-2

Testing a Component’s Properties . 17-5
Testing a Component’s Data . 17-6

Part VI Appendixes

A Working with Data Tests
About Data Tests . A-1

An Example of a Data Test . A-2

What the All Data Test Does . A-2

The Definition of the All Data Test . A-3

Changing a Data Test Definition. A-4

Creating or Editing a Custom Data Test . A-5

Copying, Renaming, or Deleting a Data Test A-8

B Rational Robot Command-line Options

Index
xiii

Using Rational Robot
xiv

� ��� �� Preface
Rational Robot is a complete set of tools for automating the testing of Microsoft
Windows client/server and Internet applications running under Windows NT 4.0,
Windows 2000, Windows 98, and Windows 95.

This manual describes how to use Rational Robot to test the quality of your
applications. The manual explains how to plan tests, develop automated scripts,
play back the scripts, and analyze the results.

Audience
This manual is intended for application developers, quality assurance managers,
and quality assurance engineers.

Other Resources
� This product contains online Help. From the main toolbar, choose an option

from the Help menu.

� All manuals are available online, either in HTML or PDF format. These
manuals are on the Rational Solutions for Windows Online Documentation CD.

� For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.

Contacting Rational Technical Publications
To send feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs@rational.com.
xv

Preface
Contacting Rational Technical Support
If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name

� Your computer’s make and model

� Your operating system and version number

� Product release number and serial number

� Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll-free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xvi

� ��� �� Part I

Introducing Rational Robot

� ��� �� C H A P T E R 1

Introduction to Rational Robot
This chapter introduces you to Rational Robot and its components. It includes the
following topics:

� What is Rational Robot?

� Using Robot with other Rational products

� Starting Robot and its components

� Tasks you can perform with Robot and its components

What Is Rational Robot?

Rational Robot is a complete set of components for automating the testing of
Microsoft Windows client/server and Internet applications running under
Windows NT 4.0, Windows 2000, Windows 98, and Windows 95.

The main component of Robot lets you start recording tests in as few as two mouse
clicks. After recording, Robot plays back the tests in a fraction of the time it would
take to repeat the actions manually.

Other components of Robot are:

� Rational Administrator – Use to create and manage Rational projects, which
store your testing information.

� Rational TestManager Log – Use to review and analyze test results.

� Object Properties, Text, Grid, and Image Comparators – Use to view and
analyze the results of verification point playback.

� Rational SiteCheck – Use to manage Internet and intranet Web sites.
1-1

Introduction to Rational Robot
Managing Rational Projects with the Administrator
You use the Rational Administrator to create and manage projects.

Rational projects store application testing information, such as scripts, verification
points, queries, and defects. Each project consists of a database and several directories
of files. All Rational Test components on your computer update and retrieve data
from the same active project.

Projects help you organize your testing information and resources for easy tracking.
Projects are created in the Rational Administrator, usually by someone with
administrator privileges.

Use the Administrator to:

� Create a project under configuration management.

� Create a project outside of configuration management.

� Connect to a project.

� See projects that are not on your machine (register a project).

� Delete a project.

� Create and manage users and groups for a Rational Test datastore.

� Create and manage projects containing Rational RequisitePro projects and
Rational Rose models.

� Manage security privileges for the entire Rational project.

� Configure a SQL Anywhere database server.

The following figure shows the main Rational Administrator window after you have
created some projects:
1-2

What Is Rational Robot?
For information about the Administrator and projects, see the Using the Rational
Administrator manual.

Developing Tests in Robot
You use Robot to develop two kinds of scripts: GUI scripts for functional testing and
sessions for performance testing.

Use Robot to:

� Perform full functional testing. Record and play back scripts that navigate
through your application and test the state of objects through verification points.

� Perform full performance testing. Use Robot and TestManager together to
record and play back sessions that help you determine whether a multi-client
system is performing within user-defined standards under varying loads.

� Create and edit scripts using the SQABasic and VU scripting environments.
The Robot editor provides color-coded commands with keyword Help for
powerful integrated programming during script development. (VU scripting is
used with sessions in performance testing.)

� Test applications developed with IDEs such as Java, HTML, Visual Basic,
Oracle Forms, Delphi, and PowerBuilder. You can test objects even if they are
not visible in the application’s interface.

� Collect diagnostic information about an application during script playback.
Robot is integrated with Rational Purify�, Rational Quantify�, and Rational
PureCoverage�. You can play back scripts under a diagnostic tool and see the
results in the log.

The Object-Oriented Recording� technology in Robot lets you generate scripts by
simply running and using the application-under-test. Robot uses Object-Oriented
Recording to identify objects by their internal object names, not by screen
coordinates. If objects change locations or their text changes, Robot still finds them
on playback.
1-3

Introduction to Rational Robot
The following figure shows the main Robot window after you have recorded a script.

The Object Testing� technology in Robot lets you test any object in the
application-under-test, including the object’s properties and data. You can test
standard Windows objects and IDE-specific objects, whether they are visible in the
interface or hidden.

In functional testing, Robot provides many types of verification points for testing the
state of the objects in your application. For example, you use the Object Properties
verification point to capture the properties of an object during recording, and to
compare these properties during playback.

Robot creates
a script as you
work.

Shows the
script assets

Shows compiler
messages

Click to start
recording a
GUI or VU
script.

Click a button to insert a verification
point to test the state of any object.
1-4

What Is Rational Robot?
The following figure shows the Object Properties Verification Point dialog box.

Creating Datapools
A datapool is a source of variable test data that scripts can draw from during playback.

If a script sends data to a server during playback, consider using a datapool as the
source of the data. By accessing a datapool, a script transaction that is executed
multiple times during playback can send realistic data and even unique data to the
server each time. If you do not use a datapool, the same data (the exact data you
recorded) is sent each time the transaction is executed.

TestManager is shipped with many commonly used data types, such as cities, states,
names, and telephone area codes. In addition, TestManager lets you create your own
data types.

When creating a datapool, you specify the kinds of data (called data types) that the
script will send — for example, customer names, addresses, and unique order
numbers or product names. When you finish defining the datapool, TestManager
automatically generates the number of rows of data that you specify.

Lists the names and values of all
properties for the selected object

You can change the
property values.

Highlights the
selected object and
lists its children

You can edit the
list of properties.
1-5

Introduction to Rational Robot
The following figure shows a datapool being defined. Note that most of the data
types in the Type column are standard data types shipped with TestManager. Two
data types, Product List and Color List, are user-defined data types.

Analyzing Results in the Log and Comparators
You use TestManager to view the logs that are created when you run scripts and
schedules.

Use the log to:

� View the results of running a script, including verification point failures,
procedural failures, aborts, and any additional playback information. Reviewing
the results in the log reveals whether each script and verification point passed or
failed.

Use the Comparators to:

� Analyze the results of verification points to determine why a script may have
failed. Robot includes four Comparators:

– Object Properties Comparator

– Text Comparator

– Grid Comparator

– Image Comparator

Data types that supply
data to datapool columns

Columns to generate
in the datapool file

Number of rows to generate
in the datapool file

Inserts new
datapool
columns
1-6

What Is Rational Robot?
The following figure shows a log file that contains a failed Object Properties
verification point.

When you select the line that contains the failed Object Properties verification point
and click View > Verification Point, the Object Properties Comparator opens, as
shown in the following figure. In the Comparator, the Baseline column shows the
original recording, and the Actual column shows the playback that failed. Compare
the two files to determine whether the difference is an intentional change in the
application or a defect.

Managing Intranet and Web Sites with SiteCheck and Robot
You use Rational SiteCheck to test the structural integrity of your intranet or World
Wide Web site. SiteCheck is designed to help you view, track, and maintain your
rapidly changing site.

Properties in the
baseline data file

Properties in the
actual data file

Shows the differences
between the baseline
and actual files. Click a
difference to highlight it
in the Properties list
above.
1-7

Introduction to Rational Robot
Use SiteCheck to:

� Visualize the structure of your Web site and display the relationship between
each page and the rest of the site.

� Identify and analyze Web pages with active content, such as forms, Java,
JavaScript, ActiveX, and Visual Basic Script (VBScript).

� Filter information so that you can inspect specific file types and defects,
including broken links.

� Examine and edit the source code for any Web page, with color-coded text.

� Update and repair files using the integrated editor, or configure your favorite
HTML editor to perform modifications to HTML files.

� Perform comprehensive testing of secure Web sites. SiteCheck provides
Secure Socket Layer (SSL) support, proxy server configuration, and support for
multiple password realms.

Robot has two verification points for use with Web sites:

� Use the Web Site Scan verification point to check the content of your Web site
with every revision and ensure that changes have not resulted in defects.

� Use the Web Site Compare verification point to capture a baseline of your Web
site and compare it to the Web site at another point in time.

The following figures show the types of defects you can scan for using a Web Site
verification point, and the list of defects displayed in SiteCheck.

During recording, insert a
Web Site Scan verification
point that checks for
defects on your Web site.
1-8

Using Robot with Other Rational Products
For more information about SiteCheck, see the SiteCheck Help. For more
information about the Web Site verification points, see the Robot Help.

Using Robot with Other Rational Products

Rational Robot is integrated with many other Rational products and components,
including TestManager, TestFactory, ClearQuest, Purify, Quantify, PureCoverage,
and RequisitePro. The products and components are available based on what you
have installed.

Planning and Managing Tests in TestManager
Rational TestManager is the one place to manage all testing activities--planning,
design, implementation, execution, and analysis. TestManager ties testing with the
rest of the development effort, joining your testing assets and tools to provide a single
point from which to understand the exact state of your project.

Test Manager supports five testing activities:

� Plan Test. The activity of test planning is primarily answering the question,
"What do I have to test?" When you complete your test planning, you end up
with a test plan that defines what you are going to test. In TestManager, a test
plan can contain test cases. The test cases can be organized based on test case
folders.

During playback,
SiteCheck lists all
the defects on
your Web site.
1-9

Introduction to Rational Robot
� Design Test. The activity of test designing is primarily answering the question,
"How am I going to do a test?" When you complete your test designing, you end
up with a test design that helps you understand how you are going to perform
the test case. In TestManager, you can design your test cases by indicating the
actual steps that need to occur in that test. You also specify the pre-conditions,
post-conditions, and acceptance criteria.

� Implement Test. The activity of implementing your tests is primarily creating
reusable scripts. In TestManager, you can implement your tests by creating
manual scripts. You can also implement automated tests by using Rational
Robot. You can extend TestManager through APIs so that you can access your
own implementation tools from TestManager. Because of this extensibility, you
can implement your tests by building scripts in whatever tools are appropriate in
your situation and organization.

� Execute Tests. The activity of executing your tests is primarily running your
scripts to make sure that the system functions correctly. In TestManager, you
can run any of the following: (1) an individual script, which runs a single
implementation; (2) one or more test cases, which run the implementations of
the test cases; (3) a suite, which runs test cases and their implementations across
multiple computers and users.

� Evaluate Tests. The activity of evaluating tests is determining the quality of the
system-under-test. In TestManager, you can evaluate tests by examining the
results of test execution in the test log, and by running various reports.

Planning and managing tests is only one part of Rational TestManager. You also use
TestManager to view the logs created by Robot. For information on using the log,
see Analyzing Results in the Log and Comparators on page 1-6. TestManager is also used
to do performance testing. See Performance Testing with Rational TestManager on page
1-12.

Testing Applications with Rational TestFactory
Rational TestFactory is a component-based testing tool that automatically generates
TestFactory scripts according to the application’s navigational structure.

TestFactory is integrated with Robot and its components to provide a full array of
tools for team testing under Windows NT 4.0, Windows 2000, Windows 98, and
Windows 95.

With TestFactory, you can:

� Automatically create and maintain a detailed map of the application-under-test.

� Automatically generate both scripts that provide extensive product coverage and
scripts that encounter defects, without recording.
1-10

Using Robot with Other Rational Products
� Track executed and unexecuted source code, and report its detailed findings.

� Shorten the product testing cycle by minimizing the time invested in writing
navigation code.

� Play back Robot scripts in TestFactory to see extended code coverage
information and to create regression suites; play back TestFactory scripts in
Robot to debug them.

For more information about TestFactory, see its manuals and Help.

Managing Defects with Rational ClearQuest
Rational ClearQuest is a change-request management tool that tracks and manages
defects and change requests throughout the development process. With ClearQuest,
you can manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.

With Robot and ClearQuest, you can:

� Submit defects directly from the TestManager log or SiteCheck.

� Modify and track defects and change requests.

� Analyze project progress by running queries, charts, and reports.

For information about using ClearQuest, see its manuals and Help.

Collecting Diagnostic Information During Playback
Use the Rational diagnostic tools to perform runtime error checking, profile
application performance, and analyze code coverage during playback of a Robot
script.

� Rational Purify is a comprehensive C/C++ run-time error checking tool that
automatically pinpoints run-time errors and memory leaks in all components of
an application, including third-party libraries, ensuring that code is reliable.

� Rational Quantify is an advanced performance profiler that provides
application performance analysis, enabling developers to quickly find, prioritize
and eliminate performance bottlenecks within an application.

� Rational PureCoverage is a customizable code coverage analysis tool that
provides detailed application analysis and ensures that all code has been
exercised, preventing untested code from reaching the end-user.

For information about playing back scripts under these products, see Setting
Diagnostic Tools Options on page 9-11. For information about using the diagnostic
tools, see their manuals and Help.
1-11

Introduction to Rational Robot
Performance Testing with Rational TestManager
Rational Testmanager is a sophisticated tool that can be used for automating
performance tests on client/server systems. A client/server system includes client
applications accessing a database or application server, and browsers accessing a Web
server.

Performance testing uses Rational Robot and Rational TestManager. Use Robot to
record client/server conversations and store them in scripts. Use TestManager to
schedule and play back the scripts. During playback, TestManager can emulate
hundreds, even thousands, of users placing heavy loads and stress on your database
and Web servers.

Doing performance testing with TestManager, you can:

� Find out if your system-under-test performs adequately.

� Monitor and analyze the response times that users actually experience under
different usage scenarios.

� Test the capacity, performance, and stability of your server under real-world
user loads.

� Discover your server’s break point and how to move beyond it.

For information about performance testing, see the TestManager manual and Help.

Managing Requirements with Rational RequisitePro
Rational RequisitePro is a requirements management tool that helps project teams
control the development process. RequisitePro organizes your requirements by
linking Microsoft Word to a requirements repository and providing traceability and
change management throughout the project lifecycle.

A baseline version of RequisitePro is included with Rational TestManager. When
you define a test requirement in RequisitePro, you can access it in TestManager.

With the full version of RequisitePro, you can:

� Customize the requirements database and manage multiple requirement types.

� Prioritize, sort, and assign requirements.

� Control feature creep and ensure software quality.

� Track what changes have been made, by whom, when, and why.

� Integrate with other tools, including Rose, ClearCase, Rational Unified Process,
and SoDA.
1-12

Starting Robot and Its Components
Starting Robot and Its Components

Before you start using Robot, you need to have:

� Rational Robot installed. For information, see the Installing Rational Testing
Products manual.

� A Rational project. For information, see the Using the Rational Administrator
manual.

Logging in
When you log into Robot or one of its components, you provide your user ID and
password, which are assigned by your administrator. You also specify the project to
log into.

To log in:

� From Start > Programs > Rational product name, start Rational Robot or
one of its components to open the Rational Login dialog box.

Type your user ID and password.
If you do not know these, see
your administrator.

Select a project. To change
projects later, exit all Robot
components and log in again.
(Projects are created in the
Rational Administrator.)

Displays the location of the
selected project.

Click OK to log in.
1-13

Introduction to Rational Robot
Opening Other Rational Products and Components
Once you are logged into a Robot component, you can start other products and
components from either:

Some components also start automatically when you perform certain functions in
another component.

The Tools menu

TestM
anager

TestFactory
SiteCheck
Adm

inistrator

ClearQ
uest

The Tools toolbar
1-14

Tasks You Can Perform with Robot and Its Components
Tasks You Can Perform with Robot and Its Components

The following table lists the tasks that you can perform, the component to use, and
where to find more information:

To Use this
component

See

Plan tests and manage test assets TestManager TestManager Help

Record GUI scripts Robot Chapter 2, Recording GUI Scripts
Chapter 3, Adding Features to GUI Scripts

Create verification points to test
the state of objects

Robot Chapter 4, Creating Verification Points in
GUI Scripts

Edit, compile, and debug scripts Robot Chapter 5, Editing, Compiling, and
Debugging Scripts

Supply data values to the
variables in a script during
playback

Robot
TestManager

Chapter 10, Working with Datapools

Play back GUI scripts Robot Chapter 9, Playing Back GUI Scripts

Review and analyze test results,
and enter defects

TestManager TestManager Help

View and analyze the results of
verification points

Object Properties
Comparator

Text Comparator
Grid Comparator
Image Comparator

Object Properties Comparator Help

Text Comparator Help

Grid Comparator Help

Image Comparator Help

Create and run queries to help
you manage information in your
projects

TestManager TestManager Help

Create and run reports to help
you manage your testing efforts

TestManager TestManager Help

Test Visual Basic applications Robot Chapter 11, Testing Visual Basic
Applications

Test Oracle Forms applications Robot Chapter 12, Testing Oracle Forms
Applications

Test HTML applications Robot Chapter 13, Testing HTML Applications
1-15

Introduction to Rational Robot
Test Java applications Robot Chapter 14, Testing Java Applets and
Applications

Test PowerBuilder applications Robot Chapter 15, Testing PowerBuilder
Applications

Test PeopleTools applications Robot Chapter 16, Testing PeopleTools
Applications

Test Delphi applications Robot Chapter 17, Testing Delphi Applications

Create and run manual and
external scripts

TestManager TestManager Help

Manage Internet and intranet
Web sites

SiteCheck Rational SiteCheck Help

To Use this
component

See
1-16

� ��� �� Part II

Developing and Playing Back GUI Scripts

� ��� �� C H A P T E R 2

Recording GUI Scripts
This chapter describes the recording process and tells you how to record GUI scripts
in Rational Robot. It includes the following topics:

� The recording process

� The recording workflow

� Before you begin recording

� Enabling IDE applications for testing

� Setting GUI recording options

� Using advanced features before recording

� Recording a new GUI script

� Defining script properties

� Coding a GUI script manually

� Testing your recorded script

� Creating shell scripts to play back scripts in sequence

The Recording Process

When you record a GUI script, Robot records:

� Your actions as you use the application-under-test. These user actions include
keystrokes and mouse clicks that help you navigate through the application.

� Verification points that you insert to capture and save information about specific
objects. A verification point is a point in a script that you create to confirm the
state of an object across builds. During recording, the verification point captures
object information and stores it as the baseline. During playback, the verification
point recaptures the object information and compares it to the baseline.
2-1

Recording GUI Scripts
The recorded GUI script establishes the baseline of expected behavior for the
application-under-test. When new builds of the application become available, you
can play back the script to test the builds against the established baseline in a fraction
of the time that it would take to perform the testing manually.

The Recording Workflow

Typically, when you record a GUI script, your goal is to:

� Record actions that an actual user might perform (for example, clicking a menu
command or selecting a check box).

� Create verification points to confirm the state of objects across builds of the
application-under-test (for example, the properties of an object or the text in an
entry field).

The following figure outlines the general process for recording a GUI
script.

Before You Begin Recording

You should plan to use Robot at the earliest stages of the application development
and testing process. If any Windows GUI objects such as menus and dialog boxes
exist within the initial builds of your application, you can use Robot to record the
corresponding verification points.

Consider the following guidelines before you begin recording:

Set up test environment

Set recording options

Perform user actions

End recordingStart recording

GUI Script Recording Workflow

Create verification points
2-2

Before You Begin Recording
� Establish predictable start and end states for your scripts.

� Set up your test environment.

� Create modular scripts.

These guidelines are described in more detail in the following sections.

Establishing Predictable Start and End States for Scripts
By starting and ending the recording at a common point, scripts can be played back
in any order, with no script being dependent on where another script ends. For
example, you can start and end each script at the Windows desktop or at the main
window of the application-under-test.

Setting Up Your Test Environment
Any windows that are open, active, or displayed when you begin recording should be
open, active, or displayed when you stop recording. This applies to all applications,
including Windows Explorer, e-mail, and so on.

Robot can record the sizes and positions of all open windows when you start
recording, based on the recording options settings. (For information about setting
the recording options, see Setting GUI Recording Options on page 2-5.) During
playback, Robot attempts to restore windows to their recorded states, and inserts a
warning in the log if it cannot find a recorded window.

In general, close any unnecessary applications before you start to record. For stress
testing, however, you may want to deliberately increase the load on the test
environment by having many applications open.

Creating Modular Scripts
Rather than defining a long sequence of actions in one GUI script, you should define
scripts that are short and modular. Keep your scripts focused on a specific area of
testing — for example, on one dialog box or on a related set of recurring actions.

When you need more comprehensive testing, modular scripts can easily be called
from or copied into other scripts. They can also be grouped into shell scripts, which
are top-level, ordered groups of scripts.

The benefits of modular scripts are:

� They can be called, copied, or combined into shell scripts.

� They can be easily modified or re-recorded if the developers make intentional
changes to the application-under-test.

� They are easier to debug.
2-3

Recording GUI Scripts
Enabling IDE Applications for Testing

Robot provides specialized support for testing the objects in applications that are
created in many integrated development environments (IDEs).

To successfully test the objects in Oracle Forms, HTML, Java, C++, Delphi, and
Visual Basic 4.0 applications, you need to enable the applications as follows before
you start recording your scripts:

� Oracle Forms – Install the Rational Test Enabler for Oracle Forms. Run the
Enabler to have it add the Rational Test Object Testing Library and three
triggers to the .fmb files of the application. For information, see Chapter 12,
Testing Oracle Forms Applications.

� HTML – While recording or editing a script, use the Start Browser toolbar
button to start Internet Explorer or Netscape Navigator from Robot. This loads
the Rational ActiveX Test Control, which lets Robot recognize Web-based
objects. For information, see Chapter 13, Testing HTML Applications.

� Java – Run the Java Enabler to have it scan your hard drive for Java
environments such as Web browsers and Sun JDK installations that Robot
supports. The Java Enabler only enables those environments that are currently
installed. For information, see Chapter 14, Testing Java Applets and Applications.

� C/C++ – To test the properties and data of ActiveX controls in your applications,
install the Rational ActiveX Test Control. This is a small, non-intrusive custom
control that acts as a gateway between Robot and your application. It has no
impact on the behavior or performance of your application and is not visible at
runtime. Manually add the ActiveX Test Control to each OLE container
(Window) in your application. For instructions, see the documentation that
comes with your C/C++ development environment.

� Visual Basic 4.0 – Install the Rational Test Enabler for Visual Basic. Attach the
Enabler to Visual Basic as an add-in. Have the Enabler add the Rational ActiveX
Test Control to every form in the application. This is a small, non-intrusive
custom control that acts as a gateway between Robot and your application. For
information, see Visual Basic support, making Visual Basic applications testable in the
Robot Help Index.

� Delphi – Install the Rational Object Testing Library for Delphi and the Rational
Test Delphi Enabler. Run the Enabler, then recompile your project to make it
Delphi testable. For information, see Chapter 17, Testing Delphi Applications.
2-4

Setting GUI Recording Options
You can install the Enablers and the ActiveX Test Control from the Rational
Software Setup wizard. For instructions, see the Installing Rational Testing Products
manual.

Setting GUI Recording Options

GUI recording options provide instructions to Robot about how to record and
generate GUI scripts. You can set these options either before you begin recording or
early in the recording process.

To set the GUI recording options:

1. Open the GUI Record Options dialog box by doing one of the following:

– Before you start recording, click Tools > GUI Record Options.

– Start recording by clicking the Record GUI Script button on the toolbar.
In the Record GUI dialog box, click Options.

NOTE: You do not need to enable applications created in Visual Basic 5.0 and
later, PowerBuilder, or PeopleTools.

For detailed information about
an item, click the question
mark, and then click the item.
2-5

Recording GUI Scripts
2. Set the options on each tab.

3. Click OK.

Naming Scripts Automatically
Robot can assist you in assigning names to scripts with its script autonaming feature.
Autonaming inserts your specified characters into the Name box of a new script and
appends a consecutive number to the prefix.

This is a useful feature if you are recording a series of related scripts and want to
identify their relationship through the prefix in their names. For example, if you are
testing the menus in a Visual Basic application, you might want to have every script
name start with VBMenu.

To turn on script autonaming:

1. Open the GUI Record Options dialog box. (See Setting GUI Recording Options
on page 2-5.)

2. In the General tab, type a prefix in the Prefix box.

Clear the box if you do not want a prefix. If the box is cleared, you will need to
type a name each time you record a new script.

3. Click OK or change other options.

The next time you record a new script, the prefix and a number appear in the Name
box of the Record GUI dialog box.

In the following figure, the autonaming prefix is Test. When you record a new script,
Test7 appears in the Name box because there are six other scripts that begin with Test.
2-6

Setting GUI Recording Options
If you change the script autonaming prefix by clicking Options in the Record GUI
dialog box, changing the prefix, and then clicking OK, the name in the Name box
changes immediately.

Controlling How Robot Responds to Unknown Objects
During recording, Robot recognizes all standard Windows GUI objects that you
click, such as check boxes and list boxes. Each of these objects is associated with one
of a fixed list of object types. The association of an object with an object type is
generally based on the class name of the window associated with the object.

Robot also recognizes many custom objects defined by IDEs that Robot supports,
such as Visual Basic, Oracle Forms, Java, and HTML. For example, if you click a
Visual Basic check box, Robot recognizes it as a standard Windows check box. This
mapping is based on the object’s Visual Basic assigned class name of
ThunderCheckBox.

These built-in object mappings are delivered with Robot and are available to all
users no matter which project they are using.

The prefix in the Script autonaming box appears
as the name of the new script. A consecutive
number is appended to the prefix.

Click to change the prefix
for script autonaming.
2-7

Recording GUI Scripts
During recording, you might click an object that Robot does not recognize. In this
case, Robot’s behavior is controlled by a recording option that you set. You can have
Robot either:

� Open the Define Object dialog box, so that you can map the object to a known
object type.

Mapping an object to an object type permanently associates the class name of the
object’s window with that object type, so that other objects of that type will be
recognized. For more information, see Defining Unknown Objects During
Recording on page 2-20.

� Automatically map unknown objects encountered while recording with the
Generic object type. This permanently associates the class name of the
unknown object’s window with the Generic object type.

This is a useful setting if you are testing an application that was written in an IDE
for which Robot does not have special support and which therefore might
contain many unknown objects. When an object is mapped to the Generic object
type, Robot can test a basic set of its properties, but it cannot test the special
properties associated with a specific object type. Robot also records the object’s
x,y coordinates instead of using the more reliable object recognition methods to
identify the object. (For information about the recognition methods, see the
following section, Selecting an Object Order Preference.)

These custom object mappings are stored in the project that was active when the
mappings were created.

To control how Robot behaves when it encounters an unknown object during
recording:

1. Open the GUI Record Options dialog box. (See Setting GUI Recording Options
on page 2-5.)

2. In the General tab, do one of the following:

– Select Define unknown objects as type “Generic” to have Robot
automatically associate unknown objects encountered while recording with
the Generic object type.

– Clear Define unknown objects as type “Generic” to have Robot suspend
recording and open the Define Object dialog box if it encounters an
unknown object during recording. Use this dialog box to associate the
object with an object type.

3. Click OK or change other options.
2-8

Setting GUI Recording Options
You can also map object types and classes before you start recording. For information,
see Mapping Object Types and Classes Before Recording on page 2-13.

Selecting an Object Order Preference
Robot uses a variety of object recognition methods to uniquely identify objects in
the application-under-test that are acted on during recording sessions. For example,
Robot can identify a check box in the application-under-test by its object name,
associated label or text string, index value, or ID value.

These recognition methods are saved as arguments in script commands so that
Robot can correctly identify the same objects during playback.

Robot has two predefined preferences for the recognition method order for each
standard object type. While recording an action on an object, Robot tries each
method within the selected preference in sequence until it finds a method that
uniquely identifies the object.

The following table describes the two predefined preferences.

The <Default> object order preference is the initial setting. If you plan to test C++
applications, change the preference to C++ Recognition Order.

NOTE: The custom mapping from class name to object type is stored in the
project and is shared among all users of the project.

Object order
preference

Recognition
method order

Comments

<Default> Object Name
Label and/or Text
Index
ID

Index comes before ID. In some
environments, such as PowerBuilder
and Visual Basic, the ID changes each
time the developer creates an
executable file and is therefore not a
good recognition method.

C++ Recognition
Order

Object Name
Label and/or Text
ID
Index

ID comes before index. In some
environments, such as C++, the ID
does not usually change and is
therefore a good recognition method.
2-9

Recording GUI Scripts
To change the object order preference:

1. Open the GUI Record Options dialog box. (See Setting GUI Recording Options
on page 2-5.)

2. Click the Object Recognition Order tab.

3. Select a preference in the Object order preference list.

4. Click OK or change other options.

For information about changing the order of the recognition methods within an
object order preference, see Customizing the Object Recognition Method Order on page
2-11.

Using Advanced Features Before Recording

In addition to setting the standard GUI recording options, you can take some
additional steps to refine your testing. You can:

� Customize the order of the object recognition methods to make the script more
readable and stable.

� Map object types and classes to identify custom objects during record and
playback.

Selecting C++
Recognition Order...

... sets the recognition
method order so that ID
comes before Index.

NOTE: The object order preference is specific to each user. For example, you can
record with C++ preferences while another user is recording with <Default>
preferences at the same time.
2-10

Using Advanced Features Before Recording
Customizing the Object Recognition Method Order
As explained in the previous section, Robot has two predefined preferences for the
recognition method order for each standard object type: <Default> and C++
Recognition Order. When you record an action on an object, Robot tries each
method within the selected preference in sequence until it finds one that uniquely
identifies the object.

You can redefine the order in which Robot tries recognition methods for each object
type. This order has an effect on both the readability and stability of script
commands. For example, when you read script files, it is easier to locate a command
on a specific object if that command uses the object name or label for identification.
However, if the object name or label is likely to change between builds, another
recognition method may provide more stability.

You should evaluate your own development and testing environment before you
change the default order of object recognition methods.

Important Notes
� Changes to the recognition method order affect scripts that are recorded after

the change. They do not affect the playback of scripts that have already been
recorded.

� Changes to the recognition method order are stored in the project. For example,
if you change the order for the CheckBox object, the new order is stored in the
project and affects all users of that project.

� Changes to the order for an object affect only the currently-selected preference.
For example, if you change the order for the CheckBox object in the <Default>
preference, the order is not changed in the C++ preference.

Changing the Order of Object Recognition Methods
To change the order of the object recognition methods for an object type:

1. Open the GUI Record Options dialog box. (See Setting GUI Recording Options
on page 2-5.)

2. Click the Object Recognition Order tab.
2-11

Recording GUI Scripts
3. Select a preference in the Object order preference list.

If you will be testing C++ applications, change the object order preference to
C++ Recognition Order.

4. From the Object type list, select the object type to modify.

The fixed set of recognition methods for the selected object type appears in the
Recognition method order list in its last saved order.

5. Select an object recognition method in the list, and then click Move Up or Move
Down.

Changes made to the recognition method order take place immediately, and
cannot be undone by the Cancel button. To restore the original default order,
click Default.

6. Click OK.

NOTE: Changes to the recognition method order are stored in the project. For
example, if you change the order for the CheckBox object, the new order is stored
in the project and affects all users of that project.
2-12

Using Advanced Features Before Recording
Creating a New Object Order Preference
Robot has two predefined object order preferences: <Default> and C++
Recognition Order. You can create additional preferences to handle special
situations.

To create a new object order preference:

1. In an ASCII editor, create an empty text file with the extension .ord.

2. Save the file in the Dat folder of the project.

3. Click Tools > GUI Record Options.

4. Click the Object Recognition Order tab.

5. From the Object order preferences list, select the name of the file you created.

6. Change the method order to customize your preferences.

Mapping Object Types and Classes Before Recording
As explained in Controlling How Robot Responds to Unknown Objects on page 2-7, Robot
recognizes all standard Windows GUI objects and many custom objects. You can
also set a recording option so that Robot either automatically maps unrecognized
objects to the Generic object type, or stops during recording so that you can map the
object to a standard object type.

If you know in advance that the application-under-test contains a custom object or
any object that Robot does not recognize, you can create a custom object mapping
before you start recording. You do this by adding the object’s class to the list of classes
that Robot recognizes, and then associating the class to a standard object type. Robot
saves this custom class/object-type mapping in the project and uses it to identify the
custom object during playback.

Defining an Object Class Mapping
To define an object class and map an object type to it:

1. Identify the class name of the window that corresponds to the object.

You can use the Spy++ utility in Visual C++ to identify the class name. You can
also use the Robot Inspector tool by clicking Tools > Inspector.

NOTE: The custom mapping from class name to object type is stored in the
project and is shared among all users of the project. Be careful about changing
existing mappings because this may cause already-recorded scripts to play back
incorrectly.
2-13

Recording GUI Scripts
2. In Robot, click Tools > General Options, and then click the Object Mapping
tab.

3. From the Object type list, select the standard object type to be associated with
the new object class name.

Robot displays the class names already available for that object type in the
Object classes list box.

4. Click Add.

5. Type the class name you identified in step 1 and click OK.

6. Click OK.

Modifying or Deleting a Custom Class Name
To modify or delete a custom class name:

1. Click Tools > General Options, and then click the Object Mapping tab.

2. From the Object type list, select the standard object type that is associated with
the object class name.

Robot displays the class names already available for that object type in the
Object classes list.

3. From the Object classes list, select the name to modify or delete.

NOTE: An object class can be mapped to only one object type. If you try to map
an object class to more than one object type, a message asks you to confirm that
you want to remap the class.
2-14

Recording a New GUI Script
4. Do one of the following:

– To modify the class name, click Modify. Change the name and click OK.

– To delete the object class mapping, click Delete. Click OK at the
confirmation prompt.

5. Click OK.

Recording a New GUI Script

To record a GUI script:

1. Prepare to record the script. (See Before You Begin Recording on page 2-2.)

2. If necessary, enable your application for testing. (See Enabling IDE Applications for
Testing on page 2-4.)

3. Make sure your recording options are set appropriately for the recording session.
(See Setting GUI Recording Options on page 2-5.)

4. Click the Record GUI Script button on the toolbar to open the Record GUI
dialog box.

NOTE: You cannot modify or delete a built-in class name.

Type a name or select
a script from the list.

Select a query to filter
the list of scripts.

Modify a query.

Show names of scripts.

Show details of scripts.

Lists scripts based on
the selected query.

Change recording options. Set properties for scripts.
2-15

Recording GUI Scripts
5. Type a name (40 characters maximum) or select a script from the list.

The listed scripts have already been recorded in Robot, or generated in
TestFactory. To change the list, select a query from the Query list. The query
lets you narrow down the displayed list, which is useful in projects with
hundreds of scripts. You create queries in TestManager, and you modify queries
in TestManager or Robot.

If a prefix has been defined for script autonaming, Robot displays the prefix in
the Name box. To edit this name, either type in the Name box, or click
Options, change the prefix in the Prefix box, and click OK. (For more
information, see Naming Scripts Automatically on page 2-6.)

6. To change the recording options, click Options. When finished, click OK.

7. If you selected a previously recorded script, you can change the properties by
clicking Properties. When finished, click OK.

To change the properties of a new script, record the script first. After recording,
click File > Properties. (For more information, see Defining Script Properties on
page 2-23.)

8. Click OK to start recording. The following events occur:

– If you selected a script that has already been recorded, Robot asks if you
want to overwrite it. Click Yes. (If you record over a previously-recorded
script, you overwrite the script file but any existing properties are applied to
the new script.)

– Robot is minimized by default. (For information, see Restoring the Robot
Main Window During Recording on page 2-18.)

– The floating GUI Record toolbar appears. You can use this toolbar to pause
or stop recording, display Robot, and insert features into a script. (For more
information, see Using the GUI Record and GUI Insert Toolbars on page 2-19.)

9. Start the application-under-test as follows:

a. Click the Display GUI Insert Toolbar button on the GUI Record toolbar.

b. Click the appropriate Start button on the GUI Insert toolbar.

c. Fill in the dialog box and click OK.

NOTE: It is essential that you start the application correctly, depending an
the type of application and how you plan to play it back. For information, see
Starting an Application on page 3-1.
2-16

Recording a New GUI Script
10. Perform actions as needed to navigate through the application.

11. Insert features as needed. You can insert features such as verification points,
comments, and timers. (For information, see Chapter 3, Adding Features to GUI
Scripts.)

12. If necessary, switch from Object-Oriented Recording to low-level recording.
(For information, see Switching to Low-Level Recording on page 2-21.)

Object-Oriented Recording examines Windows GUI objects and other objects
in the application-under-test without depending on precise timing or screen
coordinates. Low-level recording tracks detailed mouse movements and
keyboard actions by screen coordinates and exact timing.

13. When finished, click the Stop Recording button on the GUI Record toolbar.

The Robot main window appears as follows:

– The script that you recorded appears in a Script window within the Robot
main window.

– The verification points and low-level scripts in the script (if any) appear in
the Asset pane on the left.

– The text of the script appears in the Script pane on the right.

NOTE: The Build tab of the Output window shows compilation results
when you compile or play back a script. (For information, see Compiling
Scripts and SQABasic Library Source Files on page 5-7.) The Console tab of the
Output window is reserved for your messages. (For information, see the
SQABasic Language Reference.)

Asset pane

Output window

Script pane

Script window

Console tabBuild tab
2-17

Recording GUI Scripts
14. Optionally, change the script properties by clicking File > Properties. (For
information, see Defining Script Properties on page 2-23.)

Restoring the Robot Main Window During Recording
When you begin recording, the Robot main window becomes minimized by default,
allowing you unobstructed access to the application-under-test.

At any time during recording, you can restore the Robot window without affecting
the script you are recording. For example, you might want to restore the Robot
window to reset your recording options.

When Robot is minimized or is hidden behind other windows during recording, you
can bring it to the foreground in any of the following ways:

� Click the Open Robot Window button on the GUI Record toolbar.

� Click the Robot button on the Windows taskbar.

� Use the hot key combination CTRL+SHIFT+F to display the window and
CTRL+SHIFT+H to hide the window.

You can also use the standard Windows ALT+KEY combination.

To change the default behavior of the Robot main window and the default hot keys:

1. Open the GUI Record Options dialog box. (See Setting GUI Recording Options
on page 2-5.)

2. Click the Robot Window tab.

3. Select an option under During record.

4. Change the letter of a hot key under Hot keys.

5. Click OK.
2-18

Recording a New GUI Script
Using the GUI Record and GUI Insert Toolbars
When you begin to record a GUI script, Robot displays the floating GUI Record
toolbar. This toolbar gives you quick access to activities you might want to perform
during recording.

If you click the rightmost button on the GUI Record toolbar, the GUI Insert toolbar
appears. Use this toolbar to insert features (such as verification points, timers, and
comments) into the script.

Pausing and Resuming the Recording of a Script
During recording, if you click an enabled Robot toolbar button or menu command
(for example, Tools > GUI Record Options), Robot pauses the recording. After
Robot completes your action (for example, after you click OK in the dialog box),
recording resumes and you can continue working with the application-under-test.

You can also pause recording manually. For example, if you need to check your
e-mail, you can pause recording so that the mouse clicks and keystrokes are not
recorded as part of the script.

To pause recording:

� Click the Pause button on the GUI Record toolbar. Robot indicates a paused
state by:

– Depressing the Pause button.

– Displaying Recording Suspended in the status bar.

– Displaying a check mark next to the Record > Pause command.

To resume recording:

� Click Pause again.

Always resume recording with the application-under-test in the same state that
it was in when you paused.

Display the GUI insert toolbarPause recording

Stop recording Open the Robot window
2-19

Recording GUI Scripts
Defining Unknown Objects During Recording
As explained in Controlling How Robot Responds to Unknown Objects on page 2-7, Robot
recognizes all standard Windows GUI objects and many custom objects. You can
also set a recording option so Robot automatically associates unrecognized objects
with the Generic object type.

If you have not set this option, Robot displays the Define Object dialog box if you
click an object that Robot does not recognize. Use this dialog box to map the object
to a known object type.

To define an unknown object while recording:

1. From the Type list in the Define Object dialog box, select an object type to
associate with the unknown object.

If possible, select an object type that is appropriate for the object you are
defining. For example, if the unknown object is a custom toolbar that has the
same behavior as a standard Windows toolbar and supports the same
programmatic interface, select Toolbar from the Type list. By mapping the
object to a known object type, you will make your script more readable and
Robot will be able to test the special properties associated with that object type.
Also, Robot will be able to identify the object more accurately by using the
object recognition methods.

However, using an incorrect object mapping can cause problems during
playback. For example, an object might look and act like a standard toolbar but
might actually not respond correctly to the messages that are sent to a standard
toolbar. If you are not sure which type to use, select Generic. Robot will be able
to test the basic set of the object’s properties, and will use the object’s x,y
coordinates to locate the object.

This unknown object ...

... will be mapped to the
object type that you select ...

... based on the class name
of the window associated
with the object.
2-20

Recording a New GUI Script
2. Click OK to continue recording.

Robot stores the mapping between the window class name and the object type
in the project in case the same object type is captured again.

Important Notes
� If you want Robot to automatically define unknown objects as Generic during

recording, click Tools > GUI Record Options, click the General tab, and select
Define unknown objects as type "Generic". (For more information, see
Controlling How Robot Responds to Unknown Objects on page 2-7.)

� If you know in advance that the application-under-test contains an object that
Robot will not recognize, you can map the class name of the object’s window to
a standard object type before recording. Robot saves this custom class/object-type
mapping in the project and uses it to identify the custom object during playback.
(For more information, see Mapping Object Types and Classes Before Recording on
page 2-13.)

Switching to Low-Level Recording
Robot has two recording modes:

� Object-Oriented Recording mode – Examines objects in the
application-under-test at the Windows layer during recording and playback.
Robot uses internal object names to identify objects, instead of using mouse
movements or absolute screen coordinates. If objects in your application’s
graphical user interface (GUI) change locations, your tests still pass because the
scripts are not location dependent. As a result, Object-Oriented Recording
insulates the GUI script from minor user interface changes and simplifies GUI
script maintenance.

� Low-level recording mode – Tracks detailed mouse movements and keyboard
actions by screen coordinates and exact timing. Use low-level recording when
you are testing functionality that requires the tracking of detailed mouse actions,
such as in painting, drawing, or CAD applications.

To switch between the two modes during recording, do one of the following:

� Press CTRL+SHIFT+R.

� Click the Open Robot Window button on the GUI Record toolbar (or press
CTRL+SHIFT+F) to bring Robot to the foreground. Click Record > Turn
Low-Level Recording On/Off.

NOTE: To redefine hot keys, click Tools > GUI Record Options, click the
Robot Window tab, and type the letter for the hot key.
2-21

Recording GUI Scripts
When you switch to low-level recording mode, Robot does the following:

� Records low-level actions in a binary script file that cannot be edited, and stores
this file in the project.

� Adds a PlayJrnl command to your script that references the low-level script
file.

Robot gives each low-level script a consecutive number. These numbers appear in
the Asset pane in the Script window, under Low-Level Scripts.

To view the contents of the low-level binary file, double-click the file in the Asset
pane. This displays an ASCII version of the binary file in Notepad. The file lists the
actions that occurred during low-level recording. (For more information, see
Working with Low-Level Scripts on page 5-3.)

Ending the Recording of a GUI Script
You should finish recording by returning the application-under-test to the same state
it was in when recording began. This lets you play back the script without manually
resetting the environment.

If you started recording from the Windows desktop, stop recording at the desktop. If
you started recording from the main window of the application, stop recording at
the main window, making sure that the window is in the same state is was in when
you started recording. For example, if the application is an editor and it had no
documents open when you started recording, make sure that no documents are open
when you stop recording.

To end the recording of a script:

� Click the Stop Recording button on the GUI Record toolbar.

Low-level
script 001in
project

PlayJrnl command
referencing
low-level script 001
2-22

Defining Script Properties
Defining Script Properties

Script properties include:

� The script’s name, description, owner, purpose, and test environment.

� Related assets such as test requirements.

� Notes and specification files.

� Custom keywords.

You can define or edit script properties after you record the script.

To define script properties:

1. Do one of the following:

– If the script is open, click File > Properties.

– If the script is not open, click File > Open > Script. Select the script and
click the Properties button.

2. In the Script Properties dialog box, define the properties.

For detailed information about an item, click the question mark near the
upper-right corner of the dialog box, and then click the item.

3. Click OK.

If you record over an existing GUI script, you overwrite the script file, but any
existing properties are applied to the new script.

Coding a GUI Script Manually

By far, the fastest and easiest way to generate a GUI script is to let Robot record your
actions and generate the script automatically. However, you can also hand-code a
GUI script using the SQABasic scripting language.

To code a script manually:

1. In Robot, click File > New > Script.

2. Type a script name (40 characters maximum) and, optionally, a description of the
script.

3. Click GUI.

4. Click OK. Robot creates an empty script with the following lines:

Sub Main
Dim Result As Integer
'Initially Recorded: 01/17/00 14:55:53
2-23

Recording GUI Scripts
'Script Name: GUI Script
End Sub

5. Begin coding the GUI script.

For information about using the SQABasic scripting language, see the SQABasic
Language Reference. (In Robot, click Help > SQABasic Reference.)

Testing Your Recorded Script

After you record a script, you can:

� Play it back using the same version of the application-under-test.

� Edit and compile it.

� Debug it.

These steps are described briefly in the following sections.

Playing Back the Script
After you record a script, play it back to verify that it works as intended. Use the same
build of the application-under-test that you used to record the script. After you play
back the script, Robot writes the results to a log. Use Rational TestManager to view
the log. The results should validate the baseline of expected behavior for the
application-under-test.

For more information, see Chapter 9, Playing Back GUI Scripts.

Editing and Compiling the Script
After you play back a script, you may decide to edit the script to make it more usable.
For example, you may want to insert a new verification point or change some text of
the script. You may also want to print your script or compile changes.

For more information, see Chapter 5, Editing, Compiling, and Debugging Scripts.

Debugging the Script
You may need to debug your script to locate errors. Robot includes a complete,
built-in debugging environment to assist you during the development phase of your
GUI script.

For more information, see Debugging GUI Scripts on page 5-9.
2-24

Creating Shell Scripts to Play Back Scripts in Sequence
Creating Shell Scripts to Play Back Scripts in Sequence

After you have created each GUI script and verified that it performs as intended, you
may want to group the scripts into a shell script. A shell script is a script that plays
back other scripts in sequence.

For example, you could have:

� One script that starts your application.

� A second that searches for and opens a particular file.

� A third that modifies the file.

� A fourth that closes the application and returns to the starting point.

Combined into a single shell script, scripts can run in unattended mode and perform
comprehensive test coverage. The results from all scripts are stored in the same log,
which simplifies results analysis.

For unattended testing, each shell script should return to a common point in the
application-under-test. This common point could be a main menu, a specific
window or dialog box, or even the Windows desktop. This assures that script
playback remains synchronized with the application-under-test.

Before creating a shell script, you must have already recorded the individual scripts
that you intend to include.

Creating a Shell Script
To create a shell script:

1. Click File > New > GUI Shell Script.

2. Type a name (40 characters maximum).

3. Optionally, type a description.

4. Click OK.

5. To add scripts, select one or more scripts in the Available list and click > or >>.
Robot plays back scripts in the same order in which they appear in the Selected
list.

6. Click OK.

The shell script contains a CallScript command followed by the name of each
script that you included.
2-25

Recording GUI Scripts
Playing Back a Shell Script
You play back a shell script just like any other script. For information, see Chapter 9,
Playing Back GUI Scripts.

For unattended playback, however, do the following before you play back a shell
script:

1. Click Tools > GUI Playback Options.

2. In the Playback tab, clear the Acknowledge results check box.

This prevents a pass/fail result message box from appearing for each verification
point. You can still view the results in the log after playback.

3. Set the other options in the tabs as appropriate. For information, see Setting GUI
Playback Options on page 9-3.

4. Click OK.

When you play back the shell script, the results from all scripts are stored in the same
log, which simplifies results analysis.
2-26

� ��� �� C H A P T E R 3

Adding Features to GUI Scripts
This chapter describes the features that you can add to GUI scripts. It includes the
following topics:

� Starting an application

� Inserting a call to another script

� Inserting verification points

� Inserting timers

� Inserting comments

� Inserting log messages

� Inserting delay values

� Using the Insert menu

� Customizing SQABasic scripts

Starting an Application

While recording or editing a GUI script, you can start applications or other
executable programs by using one of the Start buttons on the GUI Insert toolbar, or
one of the Start commands on the Insert menu.

Start Application

Start Java Application

Start Browser
3-1

Adding Features to GUI Scripts
Starting Applications
The following steps list the basic information you need to know to start an
application:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

2. Do one of the following:

– To start most applications, click the Start Application button. You can
specify that you want the application to start under Rational Purify,
Quantify, or PureCoverage during playback. (For more information, see
the next section, Starting Applications Under the Rational Diagnostic Tools.)

– To start a Java application that you want to start under Quantify or
PureCoverage during playback, click the Start Java Application button.
(For more information, see the next section, Starting Applications Under the
Rational Diagnostic Tools.)

– To start an HTML application, click the Start Browser button. (For more
information, see Enabling HTML Testing in Robot on page 13-3.)

NOTE: To successfully test the objects in Oracle Forms, HTML, Java, Delphi,
C++, and Visual Basic 4.0 applications, you need to enable the applications
before you start recording your scripts. For information, see Enabling IDE
Applications for Testing on page 2-4.
3-2

Starting an Application
3. Fill in the dialog box and click OK.

For information about an item in the dialog box, click the question mark in the
upper-right corner and then click the item.

4. Continue recording or editing the script.

During playback, Rational Robot starts the specified application when it reaches that
command in the script.

Starting Applications Under the Rational Diagnostic Tools
When you play back a Robot script, you can have any applications specified in the
script start under the following Rational diagnostic tools:

Rational Purify – Detects and diagnoses memory access errors and memory leaks.
Robot with playback under Purify works with Visual C/C++ applications on
Windows NT 4.0 and Windows 2000.

Rational Quantify – Profiles the time spent in each module, function, line, and
block of code, and detects performance bottlenecks within an application. Robot
with playback under Quantify works with Visual C/C++, Visual Basic, and Java
applications on Windows NT 4.0 and Windows 2000.

Rational PureCoverage – A code coverage analyzer that reports which modules,
functions, and lines of code were and were not executed in any run or collection of
runs. Robot with playback under PureCoverage works with Visual C/C++, Visual
Basic, and Java applications on Windows NT 4.0 and Windows 2000.

For detailed information about the diagnostic tools and how they work with Robot,
see Setting Diagnostic Tools Options on page 9-11.

There are two ways to specify the diagnostic tool that an application should start
under:

� During recording, in the Start Application or Start Java Application dialog box.

� During playback, in the Diagnostic Tools tab of the GUI Playback Options
dialog box.

NOTE: Do not use the Windows desktop (such as the Start button on the
taskbar) to start an application.
3-3

Adding Features to GUI Scripts
Specifying the Diagnostic Tool During Recording
During recording, you start an application using the Start Application or Start Java
Application dialog box. In the dialog box, you can specify the diagnostic tool that the
application should start under during playback.

It is useful to set the diagnostic tool option during recording if you have several
applications in a script and you want to start each application under a different tool
during playback.

For example, suppose you have a shell script that calls three scripts. Each script starts
one application, and you want to start each one under a different tool. When you
started each application during recording, you would select the appropriate tool.
When you played back the script, the setting for each application would override the
setting in the GUI Playback Options dialog box.

The tools options are enabled in the dialog box if the tools are installed.

When you are ready to play back the script, you need to set some options in the GUI
Playback Options dialog box. For information, see Setting the Diagnostic Tools Options
on page 9-13.

Specifying the Diagnostic Tool During Playback
During playback, you can use the Diagnostic Tools tab of the GUI Playback Options
dialog box to specify the diagnostic tool that all applications in a script should start
under. (For more information, see Setting Diagnostic Tools Options on page 9-11.)

Overrides any tool
selected in the GUI
Playback Options
dialog box.

Starts application using
the tool selected in the
GUI Playback Options
dialog box.
3-4

Inserting a Call to Another Script
It is useful to set the diagnostic tool option during playback if you want all
applications in a script to start under the same tool. This is especially useful if you
want to run all the applications under a different tool each time you play back the
script.

For example, suppose you have a shell script that calls three scripts. Each script starts
one application, and you want to start them all under Purify. When you started each
application during recording, you would select Using settings from GUI Playback
Options dialog box. When you played back the script, you would select Rational
Purify in the GUI Playback Options dialog box.

The tools options are enabled in the dialog box if the tools are installed.

Robot uses Set timeout multiplier value to multiply wait state and delay values
during playback. For information, see Setting the Diagnostic Tools Options on page 9-13.

Inserting a Call to Another Script

While recording or editing a GUI script, you can insert a call to a previously recorded
GUI script. This lets you avoid repetitive actions in the application-under-test by
taking advantage of scripts that already exist.

To insert a call to a previously recorded script while recording or editing:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

Starts application under the
selected tool (or None), if Using
settings from GUI Playback
Options dialog box was selected
when the application was started
during recording.
3-5

Adding Features to GUI Scripts
2. Click the Call Script button on the GUI Insert toolbar.

3. Select a GUI script from the list.

4. Do one of the following:

– Select Run Now if the script being recorded depends on the state in which
the called script leaves the application-under-test. If this check box is
selected, Robot adds the script call to the recording script and immediately
plays back the called script when you click OK.

– Clear Run Now if the called script starts and ends at the same point in the
application-under-test, so that the script being recorded does not depend on
the called script. If this check box is cleared, Robot adds the script call to the
recording script but does not play back the called script when you click OK.

5. Click OK to continue recording or editing.

You can also group your scripts into a shell script. For information, see Creating Shell
Scripts to Play Back Scripts in Sequence on page 2-25.

Inserting Verification Points

A verification point is a point in a script that you create to confirm the state of an
object across builds. During recording, the verification point captures object
information and stores it as the baseline. During playback, the verification point
recaptures the object information and compares it with the baseline.

Select the
script to call.

Select to run the
called script when
you click OK.

NOTE: This section gives an overview of how to insert a verification point. For
detailed information about verification points, see Chapter 4, Creating Verification
Points in GUI Scripts.
3-6

Inserting Verification Points
To insert a verification point while recording or editing a script:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

2. Click a verification point button on the GUI Insert toolbar.

3. In the Verification Point Name dialog box, edit the name of the verification
point as appropriate.

Robot automatically names the verification point with the verification point
type, and adds a number if there is more than one of the same type in the script.

O
bject Properties

Alphanum
eric

M
enu

Clipboard
W

indow Existence

Region Im
age

W
indow Im

age

O
bject D

ata
W

eb Site Scan
W

eb Site Com
pare

NOTE: To insert a File Comparison, File Existence, or Module Existence
verification point, open the Robot window (click the Open Robot Window
button on the GUI Record toolbar). Click Insert > Verification Point and
the appropriate menu command.
3-7

Adding Features to GUI Scripts
4. Optionally, set the Wait state options.

The wait state specifies how often Robot should retry the verification point until
it passes or times out, and how long Robot should keep trying the verification
point before it times out. (For more information, see Setting a Wait State for a
Verification Point on page 4-8.)

5. Optionally, set the Expected result option.

When you create a verification point, the expected result is usually that the
verification point will pass — for example, that a window does exist during
playback. However, you can also indicate that you expect the verification point
to fail — for example, that a window does not exist during playback. (For more
information, see Setting the Expected Result for a Verification Point on page 4-9.)

6. Click OK.

Inserting Timers

Robot lets you insert start timer and stop timer commands to record and write to the
log the duration of events in a script. A timer measures the time it takes to perform
an activity. For example, you may want to record the time required to perform a
database transaction on a remote server, or how long it takes the same verification
point to execute on client machines with different hardware configurations.
3-8

Inserting Timers
You can insert any number of timers with different names into the same script to
measure a variety of separate tasks. You can nest timers within other timers (starting
and stopping the second timer before stopping the first timer), and you can overlap
timers (stopping the second timer after stopping the first timer). However, you
should stop a timer before starting that same timer over again. If you start the same
timer twice without stopping it, Robot terminates the first occurrence when it starts
the second.

If you do not explicitly stop a timer, the timer is stopped automatically at the end of
the transaction.

When you play back a script that includes timers, you can view the elapsed time in
the log. For more information, see Playing Back a Script that Includes Timers on page
3-10.

Uses for Timers
You can use timers to measure general application performance and specific task
performance.

Measuring General Application Performance
For general application performance, start a timer, perform a series of actions and
create verification points with the application-under-test, and then stop the timer.

When you play back the script, the timer measures the amount of time it took for the
application to complete all of the actions. The log shows the timing results.

Measuring Specific Task Performance
For specific task performance, you often use timers with verification points that have
wait state values. (For more information, see Setting a Wait State for a Verification Point
on page 4-8.) You use the wait state value to detect the completion of a task before
stopping the timer.

The following is an example of using timers for specific task performance testing:

1. During recording, start a timer.

2. Start an application task or transaction (for example, open an application or start
a database query).

3. Insert a verification point with a wait state.

For example, insert a Window Existence verification point that waits up to 30
seconds for a window that indicates the task is complete.
3-9

Adding Features to GUI Scripts
4. Stop the timer.

5. Continue recording other actions or stop the recording.

After you play back the script, the log shows the timing results.

Inserting a Timer
To insert a timer while recording or editing a script:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

2. Click the Start Timer button on the GUI Insert toolbar.

3. Type a timer name (40 characters maximum) and click OK. If you start more
than one timer, make sure you give each timer a different name.

4. Perform the timed activity.

5. Immediately after performing the timed activity, click the Stop Timer button on
the GUI Insert toolbar.

6. Select a timer name from the list of timers you started and click OK.

Playing Back a Script that Includes Timers
Do the following before you play back a script that include timers:

1. Click Tools > GUI Playback Options.

2. In the Playback tab, clear Acknowledge results.

This prevents a pass/fail result message box from appearing for each verification
point. You can still view the results in the log after playback.

3. In the Playback tab, set the Delay between commands value to 0.

This removes any extra Robot timing delays from the performance
measurement. If you need a delay before a single command, click Insert >
Delay and type a delay value.

4. Click OK.

When you play back the script and view the log, the elapsed time is displayed for each
Stop Timer event. For more information, see Chapter 9, Playing Back GUI Scripts.
3-10

Inserting Comments
Inserting Comments

During recording or editing, you can insert lines of comment text into a GUI script.
Comments are helpful for documenting and editing scripts. Robot ignores
comments at compile time.

To insert a comment into a script during recording or editing:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

2. Click the Comment button on the GUI Insert toolbar and then do the
following:

Robot inserts the comment into the script (in green by default) preceded by a
single quotation mark. For example:

'This is a comment in the script

To change lines of text into comments or to uncomment text:

1. Highlight the text.

2. Click Edit > Comment Line or Edit > Uncomment Line.

Inserting Log Messages

During recording or editing, you can insert a log message, description, and result
into a GUI script. During playback, Robot inserts this information into the log. You
can use log messages to document your script for the playback process.

Type a comment
(60 characters maximum).

Click OK to continue
recording or editing.
3-11

Adding Features to GUI Scripts
To insert a log message into a script during recording or editing:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

2. Click the Write to Log button on the GUI Insert toolbar and then do the
following:

After playback, you can view logs and messages using TestManager. The message
appears in the Log Event column. The result appears in the Result column.

To view the description, select the log event and click View > Properties. Click the
Result tab.

Inserting Delay Values

During playback of a GUI script, Robot adds a delay value between each user action
command and between each verification point command. You can set this value in
the Playback tab of the GUI Playback Options dialog box. (For more information,
see Setting Wait State and Delay Options on page 9-6.)

At times during playback, you may need to have Robot pause for a specific amount
of time before executing a particular command. For example, an additional delay
may be necessary if the application accesses a network server, printer, or other
remote system. In these cases, if script playback does not wait, it can become
out-of-sync with the application by executing script commands before the
application is ready for them.

When you insert a delay value into a script, the script waits for the amount of time
you specified before playback continues. This delay is useful when you can calculate
the amount of time needed for a process to finish before playback resumes.

Type a message
(60 characters maximum).

Optionally, type a description
(60 characters maximum).

Select a result.

Click OK to continue
recording or editing.
3-12

Using the Insert Menu
To insert a delay value into a script during recording or editing:

1. Do one of the following:

– If recording, click the Open Robot Window button on the GUI Record
toolbar.

– If editing, position the pointer in the script.

2. Click Insert > Delay and then do the following:

Using the Insert Menu

The preceding sections of this chapter describe how to use the GUI Insert toolbar to
add features to scripts. You can also use the Robot Insert menu to add these features.

If Robot is minimized while you are recording:

� Click the Open Robot Window button on the GUI Record toolbar. This button
restores the Robot window, letting you use the Insert menu.

NOTE: If you are testing an application in which time estimates are not
predictable, you can define a wait state for a verification point instead of inserting
a delay value. With a wait state, playback waits based on specific conditions rather
than on absolute time. For more information, see Setting a Wait State for a
Verification Point on page 4-8.

Type the delay interval in
milliseconds. For example:
1 second = 1000
1 minute = 60,000
1 hour = 3,600,000

Click OK to continue
recording or editing.
3-13

Adding Features to GUI Scripts
Customizing SQABasic Scripts

In addition to editing a recorded script, you can customize SQABasic scripts in the
following ways:

� By adding your own SQABasic sub procedures and functions either directly to
script files or to included library source files. The custom procedures you add
to library source files can be called from procedures in other files (scripts and
other library source files).

� By using SQABasic header files to declare custom procedures, constants, and
variables. Items declared in an SQABasic header file are available to multiple
script and library source files.

� By using a script template. The template contains information that you want to
appear in every new script and .rec library file that you create.

This section describes the basic information you need to know to use Robot to create
and edit library source files and SQABasic header files. For syntax and other detailed
information about using these files, see the SQABasic Language Reference.

Information about using the template appears at the end of this section.

Library Source Files
You can use Robot to create and edit two types of SQABasic library source files:

� .sbl – These have project-wide scope, but they do not support verification
points. They are stored in the SQABas32 folder of the project.

� .rec – These have project-wide scope, and they do support verification points.
They are stored in the Script folder of the project.

The .rec files are also used as GUI scripts.

Library source files are useful for storing custom procedures that multiple scripts
need to access. If a custom procedure needs to be accessed by just a single script,
consider adding the procedure to the script rather than to a library source file.

NOTE: You can also call procedures in .dll files from SQABasic scripts and
library files. However, you cannot use Robot to create and edit .dll files as you can
.sbl and .rec files.
3-14

Customizing SQABasic Scripts
Creating and Editing .sbl Library Source Files
To create a new .sbl library source file:

1. Click File > New > SQABasic File.

2. Click Library Source File, and then click OK.

You name the file (or accept the default name) the first time you save it.

A library file cannot have the same name as a script file that calls it. For instance,
Myscript.rec cannot call a function in Myscript.sbl.

To edit an existing .sbl library source file:

1. Click File > Open > SQABasic File.

2. In Files of type, select Library Source Files (*.sbl).

3. Click the file to edit, and then click Open.

Creating and Editing .rec Library Source Files
To create a new .rec library file:

1. Click File > New > Script.

2. Type the name of the file to create and optionally, a description.

3. Click the file type GUI if it is not already selected.

4. Click OK.

To edit an existing .rec library file:

1. Click File > Open > Script.

2. Click the name of the file to edit, and then click OK.

Adding Procedures to the Global Library Source File
For your convenience, Robot provides a blank library source file called Global.sbl.
You can add procedures to this library source file and/or create your own.

To open Global.sbl:

1. Click File > Open > SQABasic File.

2. Set the file type to Library Source Files (*.sbl).

3. Select global.sbl, and then click Open.
3-15

Adding Features to GUI Scripts
Using Library Source Files
To use an SQABasic library file at runtime, you must:

� Add custom procedures to the library source file.

� Compile the file. Both types of SQABasic library source files (extensions .sbl
and .rec) compile to a .sbx runtime file.

� Declare the file in an SQABasic header file or directly in a script or library file
that will call the custom procedures.

Here is an example of declaring the sub procedure myProc in the library file
Mylibrary.sbx:

Declare Sub myProc BasicLib "Mylibrary" (arg as Integer)

And here is an example of declaring the function myFunc in the .dll file
Mylibrary.dll:

Declare Function myFunc Lib "Mylibrary" (ByVal PassVar) as Integer

For information about adding custom procedures to SQABasic library files and
about declaring library files (including .dll files), see the SQABasic Language Reference.

For information about compiling SQABasic library source files, see Compiling Scripts
and SQABasic Library Source Files on page 5-7.

SQABasic Header Files
Header files let you declare custom procedures, constants, and variables that you
want to make available to multiple script and library source files.You can use Robot
to create and edit SQABasic header files. They can be accessed by all modules within
the project.

SQABasic files are stored in the SQABas32 folder of the project, unless you specify
another location. You can specify another location by clicking Tools > General
Options. Click the Preferences tab. Use the Browse button to find the location.
Robot will check this location first. If the file is not there, it will look in the
SQABas32 directory.

SQABasic header files have the extension .sbh.

Creating and Editing Header Files
To create a new header file that can be accessed by any module in the project:

1. Click File > New > SQABasic File.

2. Click Header File, and then click OK.

You name the file (or accept the default name) the first time you save it.
3-16

Customizing SQABasic Scripts
To edit an existing project-wide header file:

1. Click File > Open > SQABasic File.

2. In Files of type, select Header Files (*.sbh).

3. Click the file to edit, and then click Open.

Adding Declarations to the Global Header File
For your convenience, Robot provides a blank header file called Global.sbh.
Global.sbh is a project-wide header file stored in SQABas32 in the project. You can
add declarations to this global header file and/or create your own.

To open Global.sbh:

1. Click File > Open > SQABasic File.

2. Set the file type to Header Files (*.sbh).

3. Select global.sbh, and then click Open.

Using SQABasic Header Files
After you finish adding global declarations to an SQABasic header file, save the file
before you compile a script or library file that references the header file. Save the
header file by clicking the Save toolbar button.

You do not compile SQABasic header files.

Header and Library Source File Examples
The following examples show how a script can reference:

� Variables and constants declared in a header file.

� Procedures declared in the header file and defined in a library source file.

To run the example, type the contents of each example file into an empty .rec script
file, .sbh header file, and .sbl library source file. Before attempting to run the script,
save the .sbh file and compile the .sbl file.

NOTE: These examples are also provided in the Robot Help. (See header files in
the Help Index.) You can copy the examples from the Help into your own files.
3-17

Adding Features to GUI Scripts
The examples and the names you should assign the files are:

� Example Script – Assign any name to this script.

� Example Header File – Name the script tstHeader.sbh.

� Example Library Source File – Name the script tstLibrary.sbl.

Example Script
Run this example with the example library and header files:

'$Include "tstHeader.sbh"
Option Explicit
Sub Main
'Initially Recorded: 01/17/00 18:12:16

'Script Name: testscript
userInput = InputBox("Type a number: ")
Call compareNumbers(userInput,NMBR)

End Sub

Example Library Source File (Tstlibrary.sbl)
Run this example with the example script and header files. Be sure to compile the
library source file to an .sbx file before you run the script that calls the custom
procedure defined in the library file:

Sub compareNumbers(inputVal as Integer, constVal as Variant)
Dim txt as String
If inputVal > constVal then

txt="You typed a number greater than "
ElseIf inputVal < constVal then

txt="You typed a number less than "
Else

txt="The number you typed equals "
End If

MsgBox txt + constVal
End Sub

Example Header File (Tstheader.sbh)
Run this example with the example script and library files:

Global userInput as Integer
Global Const NMBR as Variant = 10
Declare Sub compareNumbers BasicLib "tstLibrary" (arg1 as Integer,
arg2 as Variant)
3-18

Customizing SQABasic Scripts
The Template File
Robot provides a template file, Testproc.tpl, that you can use to automatically add
comments or include statements in new GUI scripts. Any text that you add to
Testproc.tpl automatically appears in each newly recorded script.

To edit Testproc.tpl:

1. Click File > Open > SQABasic File.

2. Set the file type to Template Files (*.tpl).

3. Select testproc.tpl and click Open.

4. Type include statements, as in the following example:

'Include global declarations in all scripts
'$Include "global.sbh"

The $Include metacommand begins with a single quotation mark (').
Although this normally indicates a comment, when followed by a dollar sign ($)
it indicates a special SQABasic command.

5. Click File > Save.
3-19

Adding Features to GUI Scripts
3-20

� ��� �� C H A P T E R 4

Creating Verification Points in GUI Scripts
This chapter provides conceptual information about verification points and tells you
how to perform common operations associated with creating a verification point. It
includes the following topics:

� About verification points

� Types of verification points

� Before you create a verification point

� Tasks associated with creating a verification point

� Working with the data in data grids

� Editing a verification point

About Verification Points

A verification point is a point in a script that you create to confirm the state of an
object across builds of the application-under-test.

Verification Points and Data Files
During recording, a verification point captures object information (based on the
type of verification point) and stores it in a baseline data file. The information in
this file becomes the baseline of the expected state of the object during subsequent
builds.

NOTE: For detailed information about each verification point and how to create
it, see the Robot Help.
4-1

Creating Verification Points in GUI Scripts
When you play back the script against a new build, Rational Robot retrieves the
information in the baseline file for each verification point and compares it to the
state of the object in the new build. If the captured object does not match the
baseline, Robot creates an actual data file. The information in this file shows the
actual state of the object in the build.

After playback, the results of each verification point appear in the TestManager log.
If a verification point fails (the baseline and actual data do not match), you can select
the verification point in the log and click View > Verification Point to open the
appropriate Comparator. The Comparator displays the baseline and actual files so
that you can compare them.

Verification Points and Scripts
A verification point is stored in the project and is always associated with a script.
When you create a verification point, its name appears in the Asset (left) pane of the
Script window. The verification point script command, which always begins with
Result=, appears in the Script (right) pane.

Because verification points are assets of a script, if you delete a script, Robot also
deletes all of its associated verification points.

You can easily copy verification points to other scripts if you want to reuse them.
For information, see Copying a Verification Point on page 4-25.

NOTE: The following verification points are not stored in the project and do not
appear in the Asset pane: File Comparison, File Existence, Module Existence,
Window Existence, and Alphanumeric (if the verification method is Numeric
Equivalence or Numeric Range).

List of verification
points associated
with the script

Verification point
commands in the
script

NOTE: You cannot play back a verification point that you have copied or typed
into a .sbl library source file. The verification point must be in a script or a .rec
library source file. For information about types of library files, see Library Source
Files on page 3-14.
4-2

Types of Verification Points
Types of Verification Points

The following table summarizes each Robot verification point.

NOTE: For detailed information about each verification point and how to create
it, see the Robot Help.

Verification point type Example

Alphanumeric

Captures and tests alphanumeric data in Windows objects
that contain text, such as edit boxes, check boxes, group
boxes, labels, push buttons, radio buttons, toolbars, and
windows (captions). You can use the verification point to
verify that text has not changed, to catch spelling errors,
and to ensure that numeric values are accurate.

Clipboard

Captures and compares alphanumeric data that has been
copied to the Clipboard. To use this verification point, the
application must supply a Copy or Cut capability so that
you can place the data on the Clipboard. This verification
point is useful for capturing data from spreadsheet and
word processing applications as well as terminal emulators.

File Comparison

Compares two specified files during playback. The
comparison is based on the contents of the files and their
sizes, not on the file names or dates. When you create the
verification point, you specify the drive, directory, and file
names. During playback, Robot compares the files
byte-for-byte.

File Existence

Verifies the existence of a specified file during playback.
When you create the verification point, you specify the
drive, directory, and file name for the required file. During
playback, Robot checks to see if the file exists in the
specified location.

“Program”

“100”
4-3

Creating Verification Points in GUI Scripts
Menu

Captures and compares the menu title, menu items,
shortcut keys, and the state of selected menus. Robot
records information about the top menu and up to five
levels of sub-menus. Robot treats menu items as objects
within a menu and tests their content, state, and accelerator
keys regardless of the menu item’s location. (You can also
use the Object Data verification point to test a menu.)

Module Existence

Verifies whether a specified module is loaded into a
specified context (process), or is loaded anywhere in
memory. Each process has its own context, which includes
a set of loaded modules. When you create this verification
point, you select the name of the module. You can also
select the name of a context (process), in which case the
verification point tests whether the module is loaded into
that process. If no context is specified, the verification
point tests whether the module is loaded anywhere in
memory.

Object Data

Captures and compares the data inside standard Windows
objects. Also provides specialized support for
environment-specific objects such as Visual Basic Data
controls, ActiveX controls, HTML and Java objects,
PowerBuilder DataWindows, and Oracle Forms base-table
blocks.

Robot provides many data tests that are used with the
Object Data verification point. A data test is a mechanism
for capturing the data of objects. For information about
creating your own data tests, see Appendix A, Working with
Data Tests.

Object Properties

Captures and compares the properties of standard
Windows objects. Also provides specialized support for
environment-specific objects such as Visual Basic Data
controls, ActiveX controls, HTML and Java objects,
PowerBuilder DataWindows, and Oracle Forms base-table
blocks.

 (Continued)
Verification point type Example
4-4

Types of Verification Points
Region Image

Captures a region of the screen as a bitmap. The captured
region is a pixel-by-pixel representation that includes
colors, height, and width.

Web Site Compare

Captures a baseline of a Web site and compares it to the
Web site at another point in time.

Web Site Scan

Checks the contents of a Web site with every revision and
ensures that changes have not resulted in defects.

Window Existence

Verifies the existence and status of a specified window
during playback. The status can be normal, minimized,
maximized, or hidden.

Window Image

Captures a window as a bitmap. The captured window is a
pixel-by-pixel representation that includes colors, height,
and width.

NOTE: You can also verify objects through your own custom procedures. You
can then use the SQABasic verification point management commands to perform
the same kind of verification and logging tasks that Robot performs automatically.
For more information, see the SQABasic Language Reference.

 (Continued)
Verification point type Example
4-5

Creating Verification Points in GUI Scripts
Before You Create a Verification Point

Before you create a verification point, consider the following:

� What feature in the application do you want to test?

Example: You want to verify that the Cut command places selected data on the
Clipboard.

� To test the feature, what object or objects should you test?

Example: The objects that you should test are the Cut command on the Edit
menu and the data on the Clipboard.

� What kind of verification points do you want to create?

Example: You create verification points to test that 1) the Cut command exists
on the Edit menu and is enabled, and 2) the Clipboard contains the information
cut to it.

� What type of verification points do you create to accomplish the kind of object
testing that you want?

Example: You create a script that contains two verification points — an Object
Data verification point to test that the Cut command exists on the Edit menu and
that the state of the Cut command is enabled; a Clipboard verification point to
test that the selected information is actually placed on the Clipboard.

Tasks Associated with Creating a Verification Point

The following table provides an overview of the major tasks that you perform when
you create a verification point and where to look in this chapter for instructions. The
specific steps depend on the type of verification point that you create.

Task See

1. Start to create a verification point. The next section, Starting to Create a Verification
Point

2. Set a wait state. Setting a Wait State for a Verification Point on
page 4-8

3. Set the expected result. Setting the Expected Result for a Verification Point
on page 4-9

4. Select and identify the object to test. Selecting and Identifying the Object to Test on page
4-10

5. Select a verification method. Selecting a Verification Method on page 4-14
4-6

Tasks Associated with Creating a Verification Point
Starting to Create a Verification Point
The following is the basic procedure for starting to create a verification point:

1. Do one of the following:

– If recording, click the Display GUI Insert Toolbar button on the GUI
Record toolbar.

– If editing, position the pointer in the script and click the Display GUI Insert
Toolbar button on the Standard toolbar.

2. Click a verification point button on the GUI Insert toolbar.

6. Select an identification method. Selecting an Identification Method on page 4-15

7. Select the data or properties to test. Selecting the Data to Test in a Data Grid on page
4-19

8. Test column titles or menus (optional). Testing Column Titles or Top Menus in a Data
Grid on page 4-20

9. Edit the captured data (optional). Editing Captured Data in a Data Grid on page
4-21

Task See

O
bject Properties

Alphanum
eric

M
enu

Clipboard
W

indow Existence

Region Im
age

W
indow Im

age

O
bject D

ata
W

eb Site Scan
W

eb Site Com
pare

NOTE: To insert a File Comparison, File Existence, or Module Existence
verification point, open the Robot window (click the Open Robot Window
button on the GUI Record toolbar). Click Insert > Verification Point and
the appropriate menu command.
4-7

Creating Verification Points in GUI Scripts
3. In the Verification Point Name dialog box, edit the name as appropriate. The
name can be a maximum of 20 characters.

4. Optionally, set the Wait state options. For information, see the next section,
Setting a Wait State for a Verification Point.

5. Optionally, set the Expected result option. For information, see Setting the
Expected Result for a Verification Point on page 4-9.

6. Click OK.

The steps that you perform next depend on the type of verification point that you
are creating. For a list of verification points, see Types of Verification Points on page
4-3. For detailed information about each verification point and how to create it, see
the Robot Help.

Setting a Wait State for a Verification Point
When you create a verification point, you can add specific wait values to handle
time-dependent test activities. Wait values are useful when the application requires
an unknown amount of time to complete a task. Using a wait value keeps the
verification point from failing if the task is not completed immediately or if the data
is not accessible right away.

For example, suppose you create an Alphanumeric verification point that tests for a
specific string in a text box. When you play back the script, Robot first looks for the
text box. The verification point fails immediately if the box does not exist. If Robot
finds the box, it checks for the string in the box. However, the string might not be
in the box yet (your application might be running slowly and the box might not be
updated yet). To solve this, include wait values so that Robot retries the test (checks
for the string) every two seconds. If the content of the box does not match the string
within 30 seconds, the verification point returns a failure indication to the script.

Robot inserts the verification
point type and adds a number
if there is more than one of the
same type in the script.
4-8

Tasks Associated with Creating a Verification Point
For verification points that verify the properties or data of an object, Robot must
first find the specified object before it can perform the verification point. After it
finds the object, the following happens:

� If no wait state is specified, the verification point passes or fails immediately.

� If a wait state is specified, then Robot does the following, as shown in this
pseudo-code example:

loop until timeout period expires (as specified by Timeout After)
wait for retry period (as specified by Retry Every)
perform VP

if it passes, exit loop, else loop back
end loop

To add a wait state when creating a verification point:

1. Start to create the verification point. (See Starting to Create a Verification Point on
page 4-7.)

2. In the Verification Point Name dialog box, select Apply wait state to
verification point.

3. Type values for the following options:

Retry every – How often Robot retries the verification point during playback.
Robot retries until the verification point passes or until the timeout limit is
reached.

Timeout after – The maximum amount of time that Robot waits for the
verification point to pass before it times out. If the timeout limit is reached and
the verification point has not passed, Robot enters a failure in the log. The script
playback either continues or stops based on the setting in the Error Recovery tab
of the GUI Playback Options dialog box.

Setting the Expected Result for a Verification Point
When you create a verification point, the expected result is usually that the
verification point will pass. For example, if you create a Window Existence
verification point, you are usually expecting that the window will exist during
playback. If the window exists, the verification point passes.

However, suppose you want to test that a window does not exist during playback.
This is useful when you want a script to wait for a window to disappear before
continuing. In this example, you could create a Window Existence verification point
with the following values:

� A timeout wait state value of 30 seconds

� An expected result of Fail
4-9

Creating Verification Points in GUI Scripts
Because the expected result is a failure, you are telling Robot that you expect the
window to not exist within 30 seconds. When you play back this verification point,
if the window cannot be found at any time during the 30 seconds, the verification
point passes. If the window is found during the 30 seconds, the verification point
fails.

To set the expected result when creating a verification point:

1. Start to create a verification point. (See Starting to Create a Verification Point on page
4-7.)

2. In the Verification Point Name dialog box, click Pass or Fail.

You might also want to add wait state values to the verification point. (See Setting a
Wait State for a Verification Point on page 4-8.)

Selecting and Identifying the Object to Test
When you create certain verification points, you need to select the object to test.
You do this by pointing to the object with the Object Finder tool, or by selecting the
object from a list of all objects on the Windows desktop.

When you point to an object, you can use one of several methods to visually identify
the object before you actually select it.

Selecting the Object to Test
There are two ways to select the object to test:

� Point to it in the application. This is useful for selecting visible objects.

� Select it from a list of all objects on the desktop. This is useful for selecting
hidden objects.

To select the object to test:

1. Start creating the verification point. (See Starting to Create a Verification Point on
page 4-7.)
4-10

Tasks Associated with Creating a Verification Point
2. In the Verification Point Name dialog box, type a name and click OK to open the
Select Object dialog box.

3. Do one of the following:

– Select Automatically close dialog box after object selection to have the
Select Object dialog box close after you select the object to test.

– Clear Automatically close dialog box after object selection to have the
Select Object dialog box reappear after you select the object to test. You will
need to click OK to close the dialog box.

To select a visible object directly from the application, continue with step 4.
To select an object from a list of all objects on the desktop, skip to step 5.

4. To select a visible object directly from the application, drag the Object Finder
tool over the object and release the mouse button.

When you drag the Object Finder tool, the Select Object dialog box disappears.
When you release the mouse button, the Select Object dialog box reappears if
you have cleared the Automatically close dialog box after object selection
check box.

As you move the Object Finder tool over an object, the object type appears in a
yellow TestTip. (For information about how to identify the object to test, see
the next section, Identifying the Object to Test.)

Drag over an object and
release the mouse button.

Shows the type after
you select an object.

Select to have the
dialog box close after
you select an object.

Click to select
from a list of all
objects on the
desktop.
4-11

Creating Verification Points in GUI Scripts
5. To select a visible or hidden object from a list of all objects on the Windows
desktop, click Browse to open the Object List dialog box. Select the object from
the list and click OK.

The Object List dialog box includes hidden objects that you cannot point to
because they are not visible through the user interface, such as objects with the
Visible property set to False and objects with no GUI component. This dialog
box also includes objects that are direct children of the desktop, such as
PowerBuilder DataStore controls.

When you select an object in the list and click OK, it is equivalent to pointing to
the object with the Object Finder tool and releasing the mouse button.

Double-click
to expand
the object.

Double-click
to collapse
the object.

Shows hidden objects
on the desktop.

As you select an object,
inverts the object’s colors
in the application.

Returns the selection
method to the Object
Finder tool.

NOTE: If you first select an object with the Object Finder tool (in step 4)
and then click Browse, Robot highlights the selected object in the object list.
The object’s parent is expanded down to the level of the object. This is useful
if there are many objects on the desktop. In this case, you would want to clear
the Automatically close dialog box after object selection check box in the
Select Object dialog box, so that it reappeared after you selected the object.
4-12

Tasks Associated with Creating a Verification Point
Identifying the Object to Test
When you point to an object in the application-under-test with the Object Finder
tool, Robot displays a TestTip that identifies the object.

You can use one of several methods to visually identify an object. To set the
method:

1. If recording, click the Open Robot Window button on the GUI Record toolbar
to restore the Robot window.

2. Click Tools > General Options, and then click the Preferences tab.

TestTip identifies the object type
and development environment.

Inverts screen colors as you point to
an object.

Displays a TestTip that describes the
object type as you point to an object
(for example, PushButton).

Displays a TestTip that describes
both the object type and the object
recognition method as you point to
an object.

Displays the development
environment name (if known)
in the TestTip.

NOTE: To change the selection indicator temporarily while pointing to objects,
press CTRL or SHIFT.
4-13

Creating Verification Points in GUI Scripts
Selecting a Verification Method
When you create certain verification points, you can select a verification method.
The verification method specifies how Robot compares the baseline data captured
while recording with the data captured during playback.

The verification methods are:

Case-Sensitive – Verifies that the text captured during recording exactly matches
the captured text during playback. For example, if you capture Inches during
recording, the test fails during playback if the captured text is inches or if the text
contains any other characters.

Case-Insensitive – Verifies that the text captured during recording matches the
captured text during playback in content but not necessarily in case. For example, if
you capture Inches during recording, the test passes during playback if the captured
text is inches. If the text contains any other characters, the test fails.

Find Sub String Case-Sensitive – Verifies that the text captured during recording
exactly matches a subset of the captured text during playback. For example, if you
capture Inches during recording, the test passes during playback if the captured text
is Inches or Feet, because Inches exists within the text. The test fails if the captured text
contains inches, because the case is different.

Find Sub String Case-Insensitive – Verifies that the text captured during recording
matches a subset of the captured text during playback in content but not necessarily
in case. For example, if you capture Inches during recording, the test passes during
playback if the captured text is Inches or Feet, because Inches exists within the text.
The test also passes if the captured text contains inches, because the case does not
have to match.

Numeric Equivalence – Verifies that the values of the data captured during
recording exactly match the values captured during playback. For example, if you
select 24.25 during recording, the test passes during playback only if the captured
value is 24.25.

Select a verification
method to specify how
Robot compares the
data.
4-14

Tasks Associated with Creating a Verification Point
Numeric Range – Verifies that the values of the data captured during recording fall
within a specified range during playback. You specify the From and To values for
the numeric range. During playback, the verification point verifies that the numbers
are within that range. For example, you can capture a list containing a range of
salaries and then set the high and low values of the range. The test passes during
playback only if all of the salaries are within the set range.

User-Defined and Apply a User-Defined DLL test function – Passes text to a
function within a dynamic-link library (DLL) so that you can run your own custom
tests. You specify the path for the directory and name of the custom DLL and the
function. The verification point passes or fails based on the result that it receives
back from the DLL function. (Use the Apply a User-Defined DLL test function
method with the Alphanumeric verification point. Use the User-Defined method
with all other verification points.)

Verify that selected field is blank – Verifies that the selected field contains no
text or numeric data. If the field is blank, the verification point passes. If the field
contains any text or numeric value during playback, the verification point fails. You
can use this method on a list if you do not highlight any of the items in the list.
(This method is used only with the Alphanumeric verification point.)

Selecting an Identification Method
An identification method tells Robot how to identify the values to compare during
record and playback.

For example, suppose you want to test that the values of one row in a table remain
the same during record and playback. You could specify an identification method so
that Robot can identify the values regardless of the location of the row in the table.

When you create certain verification points, you can select an identification method
for data that appears in a data grid. A data grid shows data in rows and columns in a
Robot dialog box. Data grids are used when you create a Clipboard, Menu, or
Object Data verification point. You can also select an identification method for
properties that have a list or array value when you create an Object Properties
verification point.

If the data is displayed in a two-dimensional grid, you select two identification
methods — one for columns and one for rows. If the data is displayed in a
one-dimensional grid, you select only one identification method.

There are four identification methods: By Content, By Location, By Title, and By
Key/Value. (For a complete list of the identification methods, see List of Identification
Methods on page 4-18.)
4-15

Creating Verification Points in GUI Scripts
By Content
Use this method to verify that the recorded values exist during playback. This
method is location-independent. For example, if you record a value of 100, the
verification point passes as long as the value 100 exists during playback.

The following figure shows baseline data captured using Items By Content. During
playback, the verification point passes because the recorded value exists even though
its location changes.

By Location
Use this method to verify that the recorded values exist in the same locations during
playback. For example, when you test items in a menu, use By Location to verify
that the locations of the recorded menu items remain the same during playback.
You can also use By Location to verify that the locations of recorded column and
row values remain the same during playback.

The following figure shows baseline data captured using Columns By Location and
Rows by Location. During playback, the verification point passes because the
locations of the recorded values remain the same.

By Title
Use this method to verify that the recorded values remain with their titles (names
of menus or columns) during playback, even though the columns may have
changed locations.

Baseline Playback (Pass)

Baseline Playback (Pass)
4-16

Tasks Associated with Creating a Verification Point
The following figure shows baseline data captured using By Title. During playback,
the verification point passes because the recorded values under the menu title
remain the same even though the File and Edit menus have changed positions.

By Key/Value
Use this method to verify that the recorded values in a row remain the same during
playback. This method is location-independent. If rows are added or deleted, the
verification point passes as long as the recorded values in the row remain the same.

This method also lets you add up to eight keys to the columns in the data grid. The
keys function like a primary key in a database table. Each key uniquely identifies a
column so that Robot can easily locate and retrieve the records you select. If you
add a key to a column, Robot searches for the recorded values in the key column
during playback. After Robot locates the values in the key column, it then verifies
that the rest of the recorded values in each row have remained the same during
playback.

To add or remove a key from a column, position the pointer anywhere in the
column and click the right mouse button.

The following figure shows baseline data captured using Rows By Key/Value with
a key in the customerid column. During playback, Robot searches only for the
recorded value in the key column (for example, 2). After Robot locates the value in
the key column, it then compares the recorded values with the baseline values. The
verification point passes because the recorded values exist even though the row
location changes because a new record was added to the database.

Baseline Playback (Pass)

Playback (Pass)Baseline
4-17

Creating Verification Points in GUI Scripts
When you select Rows By Key/Value:

� Robot uses the Case-Sensitive verification method during playback to verify
values in the columns that contain keys. If you select another verification
method, it applies to the values in the non-key columns.

� If you select Numeric Range as the verification method, you must use at least
one key. The key tells Robot how to locate a record. Then, Robot compares the
data to the specified range of numbers.

� You can add or change a key in the baseline data file in the Grid Comparator and
then recompare the baseline and actual data files. For information, see the Grid
Comparator Help.

List of Identification Methods
The following tables lists the identification methods. The type of verification point
that you are creating determines the available identification methods.

Use this method To test on playback that

Columns By Location The locations of recorded column values have not changed.

Columns By Title The recorded values remain with their column titles even if
column locations change.

Rows By Location The locations of recorded row values have not changed.

Rows By Content The recorded values in a row have not changed.

Rows By Key/Value The recorded values in a row have not changed; the row may
have changed location.

Top Menus By Location The locations of recorded top menus have not changed.

Top Menus by Title The recorded values remain with their menu titles even if
menu locations change.

Menu Items By Location The locations of recorded menu items have not changed.

Menu Items by Content The values of recorded menu items have not changed.

Items by Location The locations of recorded list items have not changed.

Items by Content The values of selected list items have not changed.
4-18

Working with the Data in Data Grids
Working with the Data in Data Grids

When you create a Clipboard, Menu, or Object Data verification point and select an
object, you are actually testing the object's data. This data appears in a Robot data
grid, which shows data in rows and columns. You use the data grid to select and edit
the data to test.

Selecting the Data to Test in a Data Grid
After selecting an object but before saving the verification point, you can select the
data to test for the following verification points: Clipboard, Menu, and Object Data.

The values originally captured appear in a data grid.

Use the data grid to
select a subset of the
captured values.
4-19

Creating Verification Points in GUI Scripts
Use any of the following methods to select data in the columns, rows, or cells of the
data grid. The selected values become the baseline that Robot uses during playback
to test the current build of the application.

Testing Column Titles or Top Menus in a Data Grid
After you capture data using the Object Data, Menu, or Clipboard verification
point, you can select Move column titles to grid or Move top menus to grid in the
Verification Point dialog box.

If you select this check box, the titles move into the data grid and numbers replace
the titles above the grid.

To select Do this

Range Click and drag the pointer over a range of cells.
...or...
Click the first cell, hold down the SHIFT key, and click
the last cell in the range.
...or...
Hold down the SHIFT key while pressing one of the
arrow keys.

Non-contiguous cells Make sure the captured values are deselected. Then
press the CTRL key and click each cell. Clicking without
the CTRL key cancels previous selections.

Entire column Click a column title. Robot compares the data and the
number of items in the column.

Entire row Click a row number. Robot compares the data and the
number of items in the row.

All cells Click the box in the upper-left corner of the grid.

Column titles are moved
into the grid for testing.
4-20

Working with the Data in Data Grids
Use Move column titles to grid or Move top menus to grid to:

� Capture and test a title without its column data.

� Test the title like any of the other data in the grid.

� Edit a title by moving it to the grid, editing it, and moving it back to its position
as a title.

If a verification point captures only column titles, Robot selects the Move column
titles to grid check box. Titles are moved to the grid so that data exists in the grid
for testing. This check box is not available for list boxes, combo list boxes, and
combo boxes.

Editing Captured Data in a Data Grid
After selecting the data to test but before saving the verification point, you can edit
the data to test for the following verification points: Clipboard, Menu, and Object
Data.

You can edit the data in any cell of a data grid. Editing data is useful if you want
to change the baseline for a verification point based on a new specification or
anticipated changes to the application-under-test. By editing data before playback,
you can often avoid a verification point failure.

Editing Data for a Clipboard or Object Data Verification Point
To edit the data for a Clipboard or Object Data verification point:

1. Double-click a cell in the data grid. The pointer changes to a text cursor.

2. Edit the data in the cell.

3. To accept the changes, press ENTER. To cancel the changes, press ESC.

NOTE: To edit the titles in a data grid, select the Move column titles to grid or
Move top menus to grid check box.
4-21

Creating Verification Points in GUI Scripts
Editing Data for a Menu Verification Point
To edit the data for a Menu verification point:

� Double-click a cell in the data grid to open the Edit Menu Item dialog box.

Restrictions on Editing Data
When you edit data in a data grid:

� You cannot edit column, row, or menu titles unless you use the Move column
titles to grid or Move top menus to grid option.

� You cannot insert additional columns or rows.

� You cannot use the Numeric Range verification method, because this method
does not compare the data to the values in the grid. Instead, it compares the data
captured during script playback according to the From and To values that you
specify. Editing the data in the grid has no effect.

Changing a Column Width in a Data Grid
The column widths in the data grid default to fit the longest data string. You can
adjust the widths of any of the columns in the grid by dragging the lines between
the columns.

Change a menu command name by
editing its text. Type an ampersand
(&) before the letter to be used as the
mnemonic accelerator.

Change the menu state as needed.

Change the item type as needed.

Drag these lines to
change column widths.
4-22

Editing a Verification Point
Transposing Columns and Rows in a Data Grid
You can transpose the view of the data in the grid by selecting the Transpose view
check box in the Verification Point dialog box.

Transpose view is a display option only. It does not affect how Robot captures
information.

Transpose view is not available for a menu because Robot treats each menu as a
separate entity; rows of menu items are not recognized. For example, Robot does
not treat the fourth menu item in one menu and the fourth menu item in another
menu as though they were in the same row.

Editing a Verification Point

When you record a verification point in a script, the verification point is stored in
the project, along with any associated files. The verification point name appears in
the Asset pane of the Robot Script window.

You can view and edit the baseline file of a verification point in one of the
Comparators. You can rename, copy, or delete any verification point in a script.

When the view is not transposed,
data appears in standard rows
and columns. Column widths are
adjusted according to the
contents of each column.

When the view is transposed,
columns become rows and
rows become columns. Column
widths become the same size
— the maximum size needed.

NOTE: The following verification points are not stored in the project and do not
appear in the Asset pane in the Script window: File Comparison, File Existence,
Module Existence, Window Existence, and Alphanumeric (if the verification
method is Numeric Equivalence or Numeric Range). You can rename, copy, or
delete these verification points directly in the script.
4-23

Creating Verification Points in GUI Scripts
Viewing a Baseline File
To view the baseline file of a verification point in a Comparator:

� In the Asset (left) pane in Robot, right-click the verification point name and click
View Baseline, or double-click the name.

As the following figure shows, Robot opens the baseline file of an Object Properties
verification point in the Object Properties Comparator.

Once the baseline file opens in the appropriate Comparator, you can view and
edit the data. Editing data is useful if you want to change the baseline data for a
verification point based on a new specification or anticipated changes to the
application-under-test. By editing data before playback, you can often avoid a
verification point failure. For information about the four Comparators, see each
Comparator’s Help.

... click View
Baseline ...

... to view the baseline file in
the appropriate Comparator.

Right-click a
verification point
and ...

NOTE: To compare the baseline and actual files, you must open the Comparator
through the log. For information, see Analyzing Verification Point Results with the
Comparators on page 9-21.
4-24

Editing a Verification Point
Renaming a Verification Point
Renaming a verification point involves two tasks:

� Renaming the verification point in the Asset pane, which renames the
verification point and its associated files in the project.

� Renaming all references to that verification point in the script.

When you rename a verification point in the Asset pane, Robot does not
automatically rename references to it in the script. If you play back a script that
refers to a verification point with a name that is not in the Asset pane (and therefore
not in the project), the verification point and script will fail.

To rename a verification point and its associated files:

1. Right-click the verification point name in the Asset (left) pane and click
Rename.

2. Type the new name and press ENTER.

3. Click the top of the script in the Script (right) pane.

4. Click Edit > Replace.

5. Type the old name in the Find what box. Type the new name in the Replace
with box.

6. Click Replace All.

Copying a Verification Point
You can copy a verification point into the same script or into another script in the
same project. Copying a verification point involves two tasks:

� Copying the verification point name in the Asset pane in one script, and pasting
it into the Asset pane in the same script or a different script. This puts a copy of
the verification point and its associated files in the project.

� Copying the verification point command from the script and pasting it into the
same script or a different script.

If you rename
the verification
point in the
Asset pane ...

... you also need
to rename
references to it
in the script.
4-25

Creating Verification Points in GUI Scripts
To copy a verification point:

1. Right-click the verification point in the Asset (left) pane and click Copy.

2. In the same script or in a different script (in the same project), right-click
Verification Points in the Asset pane.

3. Click Paste to paste a copy of the verification point and its associated files into
the project.

If a verification point with that name already exists, Robot appends a unique
number to the name.

You can also copy and paste by dragging the verification point to Verification
Points in the Asset pane.

4. Click the top of the Script (right) pane of the original script.

5. Click Edit > Find and locate the line with the verification point name that you
just copied.

6. Select the entire line, which starts with Result=.

7. Click Edit > Copy.

8. Return to the script that you used in step 2. Click the location in the script where
you want to paste the line. Click Edit > Paste.

9. Change the name of the verification point to match the name in the Asset pane.

Deleting a Verification Point
Deleting a verification point involves two tasks:

� Deleting the verification point name from the Asset pane, which deletes the
verification point and its associated files from the project.

� Deleting the verification point command from the script.

When you delete a verification point from the Asset pane, Robot does not
automatically delete references to that verification point from the script. If you play
back a script that refers to a deleted verification point, the verification point and
script will fail.

To delete a verification point and its associated files:

1. Right-click the verification point name in the Asset (left) pane and click Delete.

2. Click the top of the script in the Script (right) pane.

3. Click Edit > Find.
4-26

Editing a Verification Point
4. Type the name of the deleted verification point in the Find what box.

5. Click Find Next.

6. Delete the entire line, which starts with Result=.

7. Repeat steps 5 and 6 until you have deleted all references.
4-27

Creating Verification Points in GUI Scripts
4-28

� ��� �� C H A P T E R 5

Editing, Compiling, and Debugging Scripts
This chapter explains how to edit, print, and compile GUI and virtual user scripts,
and how to debug GUI scripts. It includes the following topics:

� Editing the text of a script

� Adding a user action to an existing GUI script

� Adding a feature to an existing GUI script

� Working with low-level scripts

� Saving scripts and SQABasic files

� Printing a script or SQABasic file

� Compiling scripts and SQABasic library source files

� Debugging GUI scripts

� Deleting scripts

Editing the Text of a Script

You can edit the text of any open script. You might want to edit a script to change a
command argument or to add conditional logic using the SQABasic language (for
GUI scripts) or the VU language (for virtual user scripts). For information about
these languages, see the SQABasic Language Reference and the VU Language Reference.

The Rational Robot Edit menu commands use standard Windows mouse and
pointer techniques for selecting text. In addition, you can use standard Windows
shortcut keys instead of the mouse to select menu commands. Shortcut keys are
listed next to the corresponding Edit menu commands.
5-1

Editing, Compiling, and Debugging Scripts
Before starting to edit, you must have a script open. The script can be:

� A script you have just recorded.

� A script you have opened.

To edit the text of a script, use the Edit menu commands or toolbar buttons.

Some of the Edit menu commands are disabled if you are debugging. To stop
debugging, click Debug > Stop.

Adding a User Action to an Existing GUI Script

User actions are actions, such as keystrokes and mouse clicks, that help you navigate
around the application. After you record a script, you might decide to add new user
actions, such as selecting a menu command, to the script.

To add a new action to an existing script:

1. If necessary, open the script by clicking File > Open > Script.

2. If you are currently debugging, click Debug > Stop.

3. In the Script window, click where you want to insert the new actions. Make sure
that the application-under-test is in the appropriate state to begin recording at
the text cursor position.

4. Click the Insert Recording button on the Standard toolbar.

The Robot window minimizes by default, or behaves as specified in the GUI
Record Options dialog box.

5. Continue working with the application-under-test as you normally do when
recording a script.

Adding a Feature to an Existing GUI Script

Features you might want to add to an existing script include verification points,
timers, and comments. You can easily add these features while you are recording a
script or after you finish recording.

To add a feature to an existing GUI script:

1. If necessary, open the script by clicking File > Open > Script.

2. If you are currently debugging, click Debug > Stop.
5-2

Working with Low-Level Scripts
3. In the Script window, click where you want to insert the feature. Make sure that
the application-under-test is in the appropriate state to insert the feature at the
text cursor position.

4. Do one of the following:

– To add the feature without going into recording mode, click the Display
GUI Insert Toolbar button on the Standard toolbar. The Robot Script
window remains open.

– To start recording and add the feature, click the Insert Recording button
on the Standard toolbar. The Robot window minimizes by default, or
behaves as specified in the GUI Record Options dialog box. Click the
Display GUI Insert Toolbar button on the GUI Record toolbar.

5. Click the appropriate button on the GUI Insert toolbar.

6. Continue adding the feature as usual.

For more information about the features you can add, see Chapter 3, Adding Features
to GUI Scripts.

Working with Low-Level Scripts

As indicated in Switching to Low-Level Recording on page 2-21, Robot has two
recording modes:

� Object-Oriented Recording mode

� Low-level recording mode

If you turn on low-level recording, Robot tracks detailed mouse movements and
keyboard actions by screen coordinates and exact timing. Robot records these
low-level actions in a binary script file. You can view an ASCII version of this binary
file. You can also rename, copy, or delete the file.

A low-level script is stored in the project and is always associated with a Robot script.
When you create a low-level script, its name appears in the Asset pane of the Script
window. If you delete a Robot script, its associated low-level scripts are also deleted.

NOTE: The following features are not on the GUI Insert toolbar: File
Comparison, File Existence, Module Existence, and Delay. To add these
features to your script, open the Robot window if necessary (by clicking the
Open Robot Window button on the GUI Record toolbar). Click the Insert
menu, and then click the appropriate command.
5-3

Editing, Compiling, and Debugging Scripts
Viewing Low-Level Scripts
You cannot edit the low-level binary file, but you can use Notepad to view an ASCII
version of the binary file.

To view the low-level script file:

1. In the Asset (left) pane of the Script window, expand Low Level Scripts if
necessary by clicking the plus sign (+).

2. Double-click the number of the low-level script that you want to view in
Notepad.

The low-level ASCII file lists the actions that occurred during low-level recording.
For information about the contents of this file, see low-level recording in the Robot
Help Index.

Renaming a Low-Level Script
When you record a low-level script, it is stored in the project. You can rename the
low-level script if needed. Renaming a low-level script involves two tasks:

� Renaming the low-level script in the Asset pane, which renames it in the project.

� Renaming all references to that low-level script in the script.

Double-click the low-level
script in the Asset pane to
view an ASCII version of
the binary file.

If you rename the
low-level script in
the Asset pane ...

... you also
need to rename
references to it
in the script.
5-4

Working with Low-Level Scripts
When you rename a low-level script in the Asset pane, Robot does not automatically
rename references to it in the script. If you play back a script that refers to a low-level
script with a name that is not in the Asset pane (and therefore is not in the project),
the script will fail.

To rename a low-level script:

1. Right-click the low-level script name in the Asset (left) pane and click Rename.

2. Type the new name and press ENTER.

3. Click the top of the script in the Script (right) pane.

4. Click Edit > Replace.

5. Type the old name in the Find what box. Type the new name in the Replace
with box.

6. Click Replace All.

Copying a Low-Level Script
You can copy a low-level script to the same script or to a different script in the same
project. Copying a low-level script involves two tasks:

� Copying the low-level script name in the Asset pane in one script, and pasting it
into the Asset pane in the same script or a different script. This puts a copy of
the low-level script in the project.

� Copying the low-level script command from the script and pasting it into the
same script or a different script.

To copy a low-level script:

1. Right-click the low-level script in the Asset (left) pane and click Copy.

2. In the same script or in a different script (in the same project), right-click
Low-Level Scripts in the Asset pane.

3. Click Paste to paste a copy of the low-level script into the project.

If a low-level script with that name already exists, Robot appends a unique
number to the name.

You can also copy and paste by dragging the low-level script to Low Level
Scripts in the Asset pane.
5-5

Editing, Compiling, and Debugging Scripts
4. Click the top of the Script (right) pane of the original script.

5. Click Edit > Find and locate the line with the low-level script name that you
just copied.

6. Select the entire line, which starts with PlayJrnl. Click Edit > Copy.

7. Return to the script that you used in step 2. Click the location in the script where
you want to paste the line, and then click Edit > Paste.

8. Change the name of the low-level script to match the name in the Asset pane.

Deleting a Low-Level Script
If you no longer need a low-level script, you can delete it. Deleting a low-level script
involves two tasks:

� Deleting the low-level script name in the Asset pane (left pane), which deletes
the low-level script from the project.

� Deleting the low-level script command from the script.

When you delete a low-level script in the Asset pane, Robot does not automatically
delete references to it from the script. If you play back a script that refers to a deleted
low-level script, the script will fail.

To delete a low-level script:

1. Right-click the low-level script name in the Asset (left) pane and click Delete.

2. Click the top of the script in the Script (right) pane.

3. Click Edit > Find.

4. Type the name of the deleted low-level script in the Find what box.

5. Click Find Next.

6. Delete the entire line, which starts with PlayJrnl.

7. Repeat steps 5 and 6 until you have deleted all references.
5-6

Saving Scripts and SQABasic Files
Saving Scripts and SQABasic Files

Robot saves a script after you define it or record it. You can also save any open script
or SQABasic file manually.

To save open scripts or SQABasic files, do one of the following:

You can save only within the current project.

Printing a Script or SQABasic File

To print an open script or SQABasic file:

1. If necessary, click File > Page Setup to set up the format of printed output.

To add information to the page header or footer, you need to use print codes.
For a description of these codes, click the Help button in the Page Setup dialog
box.

2. Click File > Print.

3. Set the print options as needed and click OK.

Robot uses standard Windows Print Setup dialog boxes. For more information, see
your Windows documentation.

Compiling Scripts and SQABasic Library Source Files

When you play back a GUI script or virtual user script, or when you debug a GUI
script, Robot compiles the script if it has been modified since it last ran.

You can also compile scripts and SQABasic library source files manually.

To save Do this

The active script or file Click File > Save.

The active script or file with a new name Click File > Save As. Type the new name and
click OK.

All open scripts and files Click File > Save All.
5-7

Editing, Compiling, and Debugging Scripts
Compiling One or All Scripts and Library Source Files
You can compile the active script or file, or you can compile all scripts and files in the
current project.

Batch Compiling Scripts and Library Source Files
To batch compile scripts and library source files:

1. Click File > Batch Compile.

2. Select an option to filter the type of scripts or files you want to appear in the
Available list: GUI scripts, VU scripts, or SQABasic library source files.

3. Optionally, select List only modules that require compilation to display only
those files that have not yet been compiled or that have changed since they were
last compiled.

4. Select one or more files in the Available list and click > or >>. Robot compiles
the files in the same order in which they appear in the Selected list.

5. Click OK to compile the selected files.

To Do this

Compile the active script or library
source file

Click File > Compile.

Compile all scripts and library source
files in the current project

Click File > Compile All.

Use this if, for example, you have made changes to
global definitions that may affect all of your
SQABasic files.
5-8

Debugging GUI Scripts
Locating Compilation Errors
During compilation, the Build tab of the Output window displays compilation
results and error messages with line numbers for all scripts and library source files.

To locate compilation errors in the Script window, do one of the following:

� Double-click the error or warning in the Build tab. Robot moves the cursor to
the beginning of the line and inserts an X in the left margin or highlights the line.

� Click Edit > Next Error or Edit > Previous Error. Robot moves the cursor to
the beginning of the line and inserts an X in the left margin or highlights the line.

� Click Edit > Go to Line, type the line number, and click OK. Robot moves the
cursor to the beginning of the line.

Debugging GUI Scripts

Robot includes a complete, built-in debugging environment to assist you during the
development phase of your GUI scripts.

Before you start to debug, you must have an open GUI script. The script can be:

� A script that you have just recorded.

� A script that you have opened by clicking File > Open > Script.

Build tab shows
compilation results.

NOTE: Robot does not have a debugging environment for virtual user scripts.
5-9

Editing, Compiling, and Debugging Scripts
To debug a GUI script, use the Debug menu commands or toolbar buttons on the
Standard toolbar or Playback toolbar. When you start to debug, Robot automatically
compiles the script if it has changed since it last ran, and displays the Playback
toolbar.

The following table describes the commands on the Debug menu.

Debug command Description

Go Plays back the currently open script.

Executes until either the next breakpoint or the end of the
script, whichever comes first.

Go Until Cursor Plays back the currently open script, stopping at the text
cursor position.

Executes until either the next breakpoint or the end of the
script, whichever comes first.

Animate Plays back the currently open script, displaying a yellow
arrow in the left margin of each line (or highlighting the line)
as it executes.

Executes until either the next breakpoint or the end of the
script, whichever comes first.

Pause Pauses playback. To resume playback, click Debug > Pause.

Stop Stops playback.

Set or Clear Breakpoint Sets or clears a breakpoint at the cursor position.

If you set a breakpoint, Robot inserts a solid red circle in the
left margin or highlights the line.

If you clear a breakpoint, Robot removes the circle or
highlighting.
5-10

Debugging GUI Scripts
You can also use the Next Error and Previous Error commands on the Edit menu.
These commands move the text cursor to the line containing the next or previous
compiler error, and add an X in the left margin or highlight the line.

Setting and Clearing Breakpoints
Robot lets you set any number of breakpoints in a script. A breakpoint is a location
in a script where you want execution to stop.

When execution stops at a breakpoint, you can examine the value of a variable or
check the state of an object before it is modified by a subsequent command. You can
then resume execution until the next breakpoint or the end of the script.

Clear All Breakpoints Clears all breakpoints in the script.

Step Into Begins single-step execution. (The subprogram you initially
step into is Main.)

Executes one command at a time.

Step Over Enabled after you step into a script. Executes a single
command line within a script.

If the command calls another script, Robot executes the
called script as if it were a single instruction and moves to
the command immediately following the script call.

If the command is the last line in a called script, Robot
returns to the calling script and stops at the command
immediately following the script call.

Step Out Enabled after you step into a script. Steps out of the called
script and returns to the calling script. Execution stops at the
command immediately following the script call.

Step Out is equivalent to Go Until Cursor with the text
cursor placed in the calling script in the command line
immediately following the script call.

Debug command Description
5-11

Editing, Compiling, and Debugging Scripts
To set and clear breakpoints:

1. If necessary, open a script by clicking File > Open > Script.

2. Place the pointer on the line where you want to set a new breakpoint or clear an
existing breakpoint.

You can only place a breakpoint on a line where an SQABasic command is
executed. Breakpoints on comments, labels, and blank lines are not supported.
Also, there are a very few commands that do not support breakpoints (for
example, Dim and Sub).

3. Click once to insert a blinking text cursor. (You can also highlight the entire line
or any part of the line.)

4. Click Debug > Set or Clear Breakpoint.

If you set a breakpoint, Robot inserts a solid red circle in the left margin or
highlights the line. If you clear a breakpoint, Robot removes the circle or
highlighting.

5. If you set a breakpoint, click Debug > Go.

Robot executes as far as the breakpoint, and then displays a yellow arrow in the
left margin of that line or highlights the line.

If you attempt to assign a breakpoint to a line of code that does not support
breakpoints, Robot does the following:

� If you attempt an unsupported breakpoint assignment before you execute the
script, the assignment appears to be successful, and no warning message appears.
However, when script execution begins, Robot automatically removes invalid
breakpoint assignments.

Last line executed

Breakpoint not yet reached

Next line to be executed
5-12

Debugging GUI Scripts
� If you attempt an unsupported breakpoint assignment during the execution of
a script (for example, while execution is stopped at a breakpoint), the warning
message This is not an executable line of code appears in the status bar.

Executing to a Selected Line
To stop execution at a selected line in a script without setting a breakpoint:

1. If necessary, open a script by clicking File > Open > Script.

2. Place the cursor on the line where you want execution to stop.

3. Click once to insert a blinking text cursor. (You can also highlight the entire line,
or any part of the line.)

4. Click Debug > Go Until Cursor.

Robot executes as far as the line with the text cursor, and displays a yellow arrow
in the left margin of that line or highlights the line.

Executing in Animation Mode
To play back a script in animation mode, so you can see each line as it executes:

1. If necessary, open a script by clicking File > Open > Script.

2. Move and resize the Robot window so that it does not cover the
application-under-test but so that you can still see the Script window.

3. Click Debug > Animate.

As Robot plays back the script, it displays a yellow arrow in the left margin of the
currently executing line or highlights the line.

When playing back a script in animation mode, you may want to increase the delay
between commands. This slows down the execution of user action commands and
verification point commands so you can view line-by-line animation more clearly.
(For information, see Setting Delay Options for Commands and Keystrokes on page 9-8.)

Examining Variable Values
You can examine variable and constant values in the Variables window as you play
back scripts during debugging.

The Variables window appears in the lower-right corner of the Robot main window.
If the Variables window is not open, click View > Variables to open it.
5-13

Editing, Compiling, and Debugging Scripts
The Variables window contains lists of the variables that are assigned values during
playback and the constants that are referred to during playback.

Variable and constant values are updated each time execution pauses during playback
— for example, at a breakpoint, or as you step through the script line by line. Variable
and constant values are also updated during animation mode when each statement is
executed.

The data type of each variable and constant listed in the Variables window is
indicated by a type-declaration character at the end of the variable or constant name.

Variables window

Double-click the + or - sign to
expand or hide the variables list.

Next line
to execute
5-14

Deleting Scripts
Variables and constants are grouped according to scope. For example, in the previous
figure:

� The variables listed under Main are local variables that are visible only to the
Main sub procedure.

� The variables listed under CustomVP are module-level variables that are visible
to all the sub procedures in the script CustomVP.

Variables and constants that are visible to all modules are listed under the heading
Globals.

Deleting Scripts

To delete scripts from the project:

1. Click File > Delete.

2. Select one or more scripts from the list.

To change the list of scripts, select a query from the Query list.

3. Click Delete. Click OK to confirm the deletion.

4. Click Close.

Deleting a GUI script from the project also deletes its corresponding script file (.rec),
executable file (.sbx), verification points, and low-level scripts.

Deleting a virtual user script deletes the .s file and its properties, but not the
associated watch file (.wch).
5-15

Editing, Compiling, and Debugging Scripts
5-16

� ��� �� Part III

Developing VU Scripts

� ��� �� C H A P T E R 6

Setting Recording Options
This chapter describes how to set recording options, manage proxies, and provide
login information through the Authentication Datapool. It includes the following
topics:

� About session recording

� Setting the recording method

� Setting script generation options

� Setting general recording options

� Defining a client or server computer

� Removing a computer or port

� Authenticating login

� Managing proxies

About Session Recording

The following steps outline the general process for recording a script:

1. Set the session recording options.

Recording options tell Robot how to record and generate scripts. You set
recording options to specify:

– The type of recording you want to perform, such as API, network, or proxy.
The recording method you choose determines some of the other recording
options you need to set.

– Script generation options, such as specifying whether you want the script to
include datapool commands or think time delays, and whether you want to
filter out protocols to control the size of the script.
6-1

Setting Recording Options
– General recording options, such as the prefixes to assign to default script
and session names.

2. Start the recording session.

With the API recording method, you must start recording first, at which point
Robot prompts you for the name of the client. With the other recording
methods, network and proxy, you can start recording before or after you start the
client.

3. Start the client application.

4. Record the transactions. While you are recording the transactions, you can split
the session into multiple scripts, each representing a logical unit of work.

5. Optionally, insert timers, blocks, comments, and other features into the script
during recording.

6. Close the client application.

7. Stop recording.

8. Robot automatically generates scripts.

Setting the Recording Method

A recording methodrecording methodrecording methodrecording method defines the type of performance recording that you want to
perform. The choices are:

� API recording (the default)

� Network recording

� Proxy recording

In general, we recommend that you select API recording. However, the following
table lists certain situations in which a recording method is required or
recommended:

Situation API Network Proxy

The client application accesses secure
data from a Web server.

Required

The client application accesses data
from a Web server.

Recommended First alternate Second alternate

You are testing in a DCOM
environment.

Required
6-2

Setting the Recording Method
The client application accesses an
Oracle 8 database.

Required

The client application accesses an
Oracle database. (For network and
proxy recording, supply the name of
the Oracle database. For more
information, see Providing the Name of
an Oracle Database on page 6-26.)

Recommended First alternate Second alternate

The client application is not installed
on the Local computer.

Recommended Alternate

The client application is not running
on Windows NT 4 or Windows 2000.

Recommended Alternate

You want to record traffic from
multiple client applications that reside
on different computers.

Recommended Alternate

You want to record traffic between
multiple, specific client and server
computers.

Recommended

Neither the client nor the server
computer is on the same network
segment as the Local computer.

Required

An Ethernet switch controls network
traffic, and neither the client nor the
server application are installed on the
Local computer.

Required

The client application accesses a
TUXEDO server.

Recommended Alternate

A network connection is absent or not
functioning properly.

Recommended

API recording is not functioning
properly.

Recommended Alternate

“On-the-wire” recording support is
lacking.

Recommended

FDDI, ATM, or other high-speed
networks are used.

Recommended

Situation API Network Proxy
6-3

Setting Recording Options
API Recording
With API recording, Robot records API calls between the specific client application
and the server. Recording occurs on the client rather than on the wire, as with
network and proxy recording. Therefore, choose API recording if you are accessing
secure data from a Web server, because API recording captures the information
before it reaches the wire and is encrypted.

API recording is supported only on Windows NT and Windows 2000 clients. With
API recording, you do not have to specify the network names or IP addresses of the
client and server as you do with network and proxy recording.

How to Choose API Recording
To use the API recording method:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab, and click API recordingAPI recordingAPI recordingAPI recording.

Network Recording
With network recording, Robot records packet-level traffic at the OSI network
interface layer using the “promiscuous” mode of your network card. Network
recording is media-independent, supporting standards such as Ethernet, Token
Ring, and Fiber Distributed Data Interface (FDDI).

Network recording occurs on the wire rather than on the client (as with API
recording).

How to Choose Network Recording
To use the network recording method:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab, and click Network recordingNetwork recordingNetwork recordingNetwork recording.

3. Optionally, click the Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab, and select the client/server pair that
you will record. The default is to record all of the network traffic to and from
your computer. (For information, see Selecting a Client/Server Pair below.)

4. Optionally, click the Generator FilteringGenerator FilteringGenerator FilteringGenerator Filtering tab to specify the network protocols to
include in the script that Robot generates. (For information, see Setting Filtering
Options on page 6-17.)
6-4

Setting the Recording Method
Selecting a Client/Server Pair
The Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab contains the following lists of computer addresses. Select
one item in each list:

ClientClientClientClient – The client’s network name (or IP address) and, optionally, the port number.

ServerServerServerServer – The server’s network name (or IP address) and, optionally, the port number.

If a computer that you want to specify is not listed, define the computer as described
in Defining a Client or Server Computer on page 6-31.

You can choose AnyAnyAnyAny or Local machineLocal machineLocal machineLocal machine instead of a specific computer name:

� If you select AnyAnyAnyAny for either the client or the server, Robot records traffic for all
clients or all servers on the network.

� If you select Local machineLocal machineLocal machineLocal machine for the client (the default), Robot records traffic from
the Local computer. Robot determines the computer’s network name
automatically. You do not have to specify it.

Local machineLocal machineLocal machineLocal machine records traffic from all of the computer’s ports. To record traffic
from a particular port, click Manage Computers Manage Computers Manage Computers Manage Computers to define the computer network
name and port number of interest.

Selecting a Network Card
If you are using network recording and the Local computer has more than one
network interface card installed, you must identify the card to use, as follows
(Windows NT 4.0 operating system):

1. Click Start Start Start Start > Settings Settings Settings Settings > Control PanelControl PanelControl PanelControl Panel.

2. Double-click the NetworkNetworkNetworkNetwork icon.

3. Click the BindingsBindingsBindingsBindings tab.

4. Select all servicesall servicesall servicesall services in the Show Bindings forShow Bindings forShow Bindings forShow Bindings for box.

5. In the list of services, expand the Rational Test Network DriverRational Test Network DriverRational Test Network DriverRational Test Network Driver item by clicking
the + icon before it.

6. Click the network interface card that you want to use.

7. Click Move UpMove UpMove UpMove Up until the selected card is at the top of the list.

8. Click OKOKOKOK.

9. Reboot the computer.

Alternatively, instead of moving the name of the interface card that you want to use
to the top of the list, you can click DisableDisableDisableDisable to disable all of the other interface cards.
6-5

Setting Recording Options
Windows 2000 does not have a binding requirement. If you have more than one
network card installed in a Windows 2000 environment, you simply create a new
connection to the network card you want to use in Network and Dial-up
Connections. For more information, refer to the Windows 2000 Help.

Proxy Recording
With proxy recording, the client/server traffic is routed through a proxy computer.

Proxy recording occurs at the OSI application layer and involves receiving and
sending socket transactions. With proxy recording, you can record conversations
between multiple, specific clients and servers (that is, when the AnyAnyAnyAny choice in the
Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab for either clients or servers would be impractical).

The following examples show when you might need multiple clients and servers:

� You need multiple client computers if different user groups (such as order entry
clerks and customer service representatives) will issue requests to the server at
the same time during a single recording session.

� You need multiple servers if requests are being sent to different databases (such
as an Inventory database and a Human Resources database) located on different
computers.

The proxy computerproxy computerproxy computerproxy computer intercepts requests from clients and relays them to the server.
None of the client computers issuing requests to the servers need to have Robot
installed. Robot is required only on the proxy computer.

Note that this document uses the word “proxy” to refer to the computer that
performs proxy recording. It does not refer to a Web proxy server.
6-6

Setting the Recording Method
The following figure illustrates a proxy recording setup with multiple client
computers and one server. Each computer’s network name indicates its role in the
client/server traffic. Network names are followed by the computer’s port number:

How to Choose Proxy Recording
To use the proxy recording method:

1. Click Tools Tools Tools Tools > Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the MethodMethodMethodMethod tab, and click Proxy recordingProxy recordingProxy recordingProxy recording.

NOTE: The proxy can run on one of the client computers. To have one
computer serve as both the proxy and a client, assign different port numbers to
the proxy and client.

Client computers

Client2:30

Client3:30

Proxy:304

Rational
Proxy computer Server computer

Clients Proxy

Server1:30

Client1:30

Proxy:305
Proxy:306

Other mappings on proxy

(client/server pairs)

Client1:3010 ^
6-7

Setting Recording Options
3. Click the Method:Proxy Method:Proxy Method:Proxy Method:Proxy tab to:

– Create a proxy computer.

– Identify client/server pairs that will communicate through the proxy.

After you set up your system for proxy recording, you should record a trial script to
make sure the proxy recording yields the results you expect.

Proxy Recording Use Overview
When choosing proxy recording, you need to:

� identify and define the client/server pairs that will communicate through the
proxy

� create a proxy server, and

� specify network protocols to include in the script that Robot generates.

To set up and use proxy recording:

1. Start Robot on the proxy computer.

2. In the Proxy Administration dialog box, match up the proxy computer and port
with each server to be used in the test.

For details, see Creating a Proxy Computer on page 6-9.

3. In the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab of the Session Record Options dialog box, match up
each client with the server it will send requests to. Be sure to specify the actual
server and not the proxy computer.

For details, see Identifying Client/Server Pairs on page 6-9.

4. Configure each client to send requests to the proxy computer, not to the server.
For example, if the client will be sending requests to an Oracle database, use the
Oracle client configuration software to specify the proxy computer’s address and
port number, not the server’s.

5. On each client computer, a tester should start the client application and navigate
to the point where recording will begin.

6. On the proxy computer, enable recording (File File File File > Record SessionRecord SessionRecord SessionRecord Session).

7. With recording enabled, each tester at each client computer performs the
transactions to record.

NOTE: If you are proxy recording against an Oracle database, the server should
not be set up to redirect. Consult your Oracle documentation for information.
6-8

Setting the Recording Method
8. When all transactions are complete, stop recording on the proxy computer.

Creating a Proxy Computer
You create a proxy computer by mapping the proxy computer’s address to the
address of one or more servers.

Before you create a proxy computer, be sure that:

� The server’s network name (or IP address) and port number are defined. If they
are not defined, click Manage ComputersManage ComputersManage ComputersManage Computers to display the Manage Computers
dialog box. For information about how to define the server’s network name and
port number in this dialog box, see Defining a Client or Server Computer on page
6-31.

� Proxy service is running. For more information, see Starting and Stopping Proxy
Service on page 6-36.

To create a proxy computer:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab and make sure that Proxy recordingProxy recordingProxy recordingProxy recording is selected.

3. Click the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab.

4. Click Proxy AdminProxy AdminProxy AdminProxy Admin.

5. In Proxy:PortProxy:PortProxy:PortProxy:Port, specify the proxy computer’s port number. Note that Robot has
already detected and specified the proxy computer’s name.

You can specify any available port number. Avoid the “well-known” ports (those
below 1024). If you specify a port number that is unavailable, Robot prompts
you for a new port number.

6. In the Server:PortServer:PortServer:PortServer:Port list, select a server involved in the test.

7. Click Create ProxyCreate ProxyCreate ProxyCreate Proxy.

The proxy computer is added to the Existing ProxiesExisting ProxiesExisting ProxiesExisting Proxies list.

Identifying Client/Server Pairs
Clients and servers communicate through the proxy. A client and server that
communicates through a proxy is called a client/server pairclient/server pairclient/server pairclient/server pair.

Before you identify a client/server pair, be sure that the network names or IP
addresses of all the clients and servers in the test appear in the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab. If
any are not listed, click Manage ComputersManage ComputersManage ComputersManage Computers to define them. For information about
how to define a client or server computer, see Defining a Client or Server Computer on
page 6-31.
6-9

Setting Recording Options
To associate each client in the test with the server it will communicate with:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab and make sure that Proxy recordingProxy recordingProxy recordingProxy recording is selected.

3. Click the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab.

4. Select a client in the Client [:Port]Client [:Port]Client [:Port]Client [:Port] list.

The client port is optional.

5. Select the client’s server in the Server:PortServer:PortServer:PortServer:Port list.

The server port is required.

6. Click AddAddAddAdd.

The client/server pair that you have identified appears in the Client/Server pairs for Client/Server pairs for Client/Server pairs for Client/Server pairs for
recordingrecordingrecordingrecording list.

Setting Script Generation Options

Although you should set script generation options before you record a session, you
can also change these options after you record a session. After recording, you can
regenerate the script with new options, without recording the session again. The
script generation options enable you to:

� Modify the contents of the script—for example, by specifying whether the
script will include datapool commands or think time delays.

� Set filtering options to control the size of the script—for example, by selecting
certain protocols to be included, and excluding the other protocols.

� Modify a script that contains specific protocol requests—for example,
controlling settings for HTTP, Oracle, Tuxedo, or IIOP.

Modifying the Contents of a Script
To modify the contents of a script:

1. Click Tools Tools Tools Tools > Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator Generator Generator Generator tab.

The following figure illustrates the GeneratorGeneratorGeneratorGenerator tab:
6-10

Setting Script Generation Options
The GeneratorGeneratorGeneratorGenerator tab allows you to specify and modify the contents of generated scripts.
This tab lets you specify whether the script will:

� Use datapools.

� Contain prefixes for command IDs.

� Verify playback row counts (contain the data retrieved from the server as
comments).

� Verify playback return codes (contain the number of rows or bytes affected by
SQL statements or Web requests).

� Contain the return codes for SQL statements.

� Bind output parameters to VU or VB variables

� Include think time delays.

� Include both think time and CPU delays.

� Have a maximum think time delay.
6-11

Setting Recording Options
The following sections describe these options.

Use Datapools
Select this check box if you want Robot to generate datapool commands in the script.
Datapool commands allow the script to access data in a datapool.

A datapooldatapooldatapooldatapool allows each virtual tester running a script to send realistic data to the
server. If you do not use a datapool, each virtual tester sends the same data to the
server (the data that you sent to the server when you recorded the script).

Command ID Prefix
This option specifies an optional prefix for emulation command IDs.

Emulation commands include commands for emulating database clients as well as
commands for performing communication and timing functions. An emulation
command ID appears in brackets after the command name. It uniquely identifies the
emulation command in TestManager reports.

Emulation command IDs consist of a prefix and a three-digit numeric suffix.
For example, if you specify task as the command ID prefix, you might see the
following emulation command name and ID:

sqlnrecv ["task001"] 1355;

Robot automatically increments the numeric suffix by a value of 1 with each
emulation command.

The maximum length of the command ID prefix is seven characters. If you do not
specify a prefix, Robot uses the script name as the prefix (up to seven characters).

You cannot use this option to define multiple command ID prefixes in a recording
session. If you want your script to contain multiple command ID prefixes, use blocks
to define these prefixes.

With TUXEDO commands, any prefix that you define in Command ID prefix Command ID prefix Command ID prefix Command ID prefix is
ignored if you specify a predefined TUXEDO emulation command ID prefix. For
more information, see Assigning a Prefix to TUXEDO Command IDs on page 6-26.

Truncating a Command ID Prefix
Robot uses a tilde (~) to indicate that a command ID prefix that exceeds seven
characters has been truncated.

The command ID prefix format is slightly different for truncated prefixes that appear
in single-script sessions and multi-script sessions. For example, if you define a
command ID prefix of EmulCmdID, Robot truncates the prefix as follows:

� Truncation format for single-script sessions:
6-12

Setting Script Generation Options
sqlexec ["EmulCmd~024"] "select * from table";

sqlnrecv ["EmulCmd~025"] ALL-ROWS;

� Truncation format for multi-script sessions:

sqlexec ["EmulCmd~3.024"] "select * from table";

sqlnrecv ["EmulCmd~3.025"] ALL-ROWS;

The 3 after the tilde shows that the command is in the third script in the session.

Display Recorded Rows
This option specifies whether you want some or all of the data retrieved from the
server to be inserted into the script.

The inserted data is for informational purposes only. Data is inserted in the form of
comments and does not affect playback.

Select one of the following values from the Display recorded rowsDisplay recorded rowsDisplay recorded rowsDisplay recorded rows list:

Display recorded rowsDisplay recorded rowsDisplay recorded rowsDisplay recorded rows is supported only for Sybase, SQL Server, ODBC, HTTP,
TUXEDO, and socket protocols.

Value Meaning

AllAllAllAll Insert all retrieved data into the script.

FirstFirstFirstFirst Insert a specified number of bytes (HTTP and socket protocols) or
rows (other protocols) from the beginning of the data retrieved from
the server.

If you select FirstFirstFirstFirst, enter the number of bytes or rows to retrieve in the
box that appears to the right of the Display recorded rows Display recorded rows Display recorded rows Display recorded rows list:

LastLastLastLast Insert a specified number of rows from the end of the set of records
retrieved from the server.

You cannot use LastLastLastLast with HTTP or socket protocols.

If you select LastLastLastLast, enter the number of rows to retrieve in the box that
appears to the right of the Display recorded rows Display recorded rows Display recorded rows Display recorded rows list:

NoneNoneNoneNone Do not insert any retrieved data into the script.
6-13

Setting Recording Options
Verify Playback Row Counts

This option specifies whether the number of rows that were affected by a SQL
statement, or the number of bytes that were affected by a request to a Web server, are
inserted into the script.

This information helps you determine whether the statement or request executed
during playback behaves as it did during recording. If a different number is returned
during playback, the Test Log window notes the discrepancy.

Verify playback row countsVerify playback row countsVerify playback row countsVerify playback row counts has the following meanings:

For an example of the effect that this check box has on a generated script, see Example
of the Verify Playback Check Boxes on page 6-15.

Verify Playback Return Codes

This option specifies whether you want the return code for an executed SQL
statement to be inserted into the script.

During playback, TestManager checks whether the return code for a SQL statement
executed during playback matches the return code for the same statement executed
during recording. If the SQL statement returns a different code during playback, the
Test Log window notes the discrepancy.

The Verify playback return codesVerify playback return codesVerify playback return codesVerify playback return codes check box has the following meanings:

A single SQL statement can return multiple error codes.

State of check box Meaning

The check box is selected. Insert into the script the number of rows or bytes
affected by a SQL statement or Web request.

The check box is cleared. Do not insert the number of affected rows or bytes into
the script.

State of check box Meaning

The check box is selected. Report SQL return codes for each SQL statement
executed in the script.

The check box is cleared. Do not insert any SQL return codes into the script.
6-14

Setting Script Generation Options
Example of the Verify Playback Check Boxes
Suppose you want the script to execute the following SQL statement:

INSERT INTO mytable VALUES ("value1", "value2")

Depending on your Verify playback row counts Verify playback row counts Verify playback row counts Verify playback row counts and Verify playback return codesVerify playback return codesVerify playback return codesVerify playback return codes
selections, Robot generates the SQL statement in one of the following ways:

Because one SQL statement can return multiple error messages (for example, as a
result of stored procedure execution), EXPECT_ERROR is an array. During
playback, if an error code is returned that is not one of the values specified in the
array, TestManager generates an error.

Check box
selected

VU command and meaning

Neither sqlexec ["x001"] "INSERT INTO mytable VALUES
('value1', 'value2')";

During recording, Robot does not report the data it collects from the
execution of the SQL statement. During playback, TestManager
assumes that any non-zero return code is an error. It pays no attention
to the number of affected rows.

Verify playback
return codes

sqlexec ["x001"] EXPECT_ERROR {-212}, "INSERT
INTO mytable VALUES ('value1', 'value2')";

Robot records that the error code -212 was returned from the SQL
statement. During playback, TestManager expects the SQL statement
to return the error code -212. If the SQL statement returns a different
code during playback, the Test Log window notes the discrepancy.

Verify playback
row counts

sqlexec ["x001"] EXPECT_ROWS 1, "INSERT INTO
mytable VALUES ('value1', 'value2')";

Robot records that one row was affected by the SQL statement.
During playback, TestManager expects the SQL statement to affect
one row. If the SQL statement returns a different count during
playback, the Test Log window notes the discrepancy.

Both sqlexec ["x001"] EXPECT_ERROR{-212},
EXPECT_ROWS 0, "INSERT INTO mytable VALUES
('value1', 'value2');

Robot records that the SQL statement returned the error code -212,
and that no rows were affected. During playback, TestManager
expects that the SQL statement will return error -212 and that no
rows will be affected. If the SQL statement returns different results
during playback, the Test Log window notes the discrepancy.
6-15

Setting Recording Options
Bind Output Parameters to VU Variables
Select this check box to automatically script the VU expressions needed to contain
the return values of output parameters. This applies only to emulation commands
that support output parameter binding (currently the iiop_invoke command).
Clearing this box will shorten VU scripts, but you will have to manually script
output parameter binding expressions and binding variable declarations for any
output parameters of interest.

Playback Pacing
Controls the script’s playback speed by including or excluding think time delays in
the script. A think timethink timethink timethink time delay includes both the time required for the user to think
about and key in a request and the time required for the client to receive a response
to the request.

Choose one of the following PlaybackPlaybackPlaybackPlayback PacingPacingPacingPacing settings:

Pacing setting Meaning

per commandper commandper commandper command Plays back the script at a rate based on the actual time required to
record and process each emulation command. For example, if the
think time delay for a VU emulation command is 16,703 ms during
recording, Robot adds the following line before that emulation
command:

push Think_avg 16703;

This setting provides a realistic rate of playback on a per-command
basis, reproducing delays in the same script locations as they occurred
during recording. However, this setting adds more commands to the
script than the per scriptper scriptper scriptper script setting does.

per per per per scriptscriptscriptscript Plays back the script at a rate based on the average time it took to
record and process all emulation commands. All emulation
commands use the same (average) think time delay.

This setting and the per commandper commandper commandper command setting both run a script in
roughly the same amount of time. While playback timing is not as
accurate on a per-command basis with the per scriptper scriptper scriptper script setting, it
requires fewer commands to be inserted into the script. As a result,
you can modify the script’s average think time by editing one “think
average” environment variable (VU Think_avg or Visual Basic
EVAR_Think_avg).

nonenonenonenone Plays back the script on a per scriptper scriptper scriptper script basis, using the most recently-set
value for VU Think_avg (or Visual Basic EVAR_Think_avg).
The default value is 5000 ms. No think time commands are added to
the script with this setting.
6-16

Setting Script Generation Options
Pacing settings of per commandper commandper commandper command and per scriptper scriptper scriptper script use a combination of think time and
response time environment variables. For more information, see the VU Language
Reference and the VB Language Reference.

CPU/User Threshold (ms)
Specifies the dividing point, in milliseconds (ms), between CPU processing delays
and delays due to user think time. In TestManager reports, delays that fall below the
threshold you specify are considered CPU processing delays.

For example, an actual user might pause to think before selecting a student name
from a SQL database. This delay is recorded as user think time. Once the user clicks
on the student name, the time spent generating the SQL command and accessing the
database is a CPU delay.

Typical thresholds range from 0 through 10,000 ms (10 seconds). Valid thresholds
range from 0 through 2,000,000,000 ms (just over 23 days).

If you clear the CPU/User Threshold (ms) CPU/User Threshold (ms) CPU/User Threshold (ms) CPU/User Threshold (ms) check box, all delays are considered think
time delays.

Think maximum (ms)
Specifies the maximum think time delay to allow in a script. If you specify a
maximum think time delay, no think time delay in the script will exceed it. This
feature could be useful when a script recording session is interrupted.

You can type a maximum think time or select one from the list. The valid range is
0 through 2,000,000,000 ms (just over 23 days).

If you clear the Think maximum (ms)Think maximum (ms)Think maximum (ms)Think maximum (ms) check box, there is no limit to the length of a
think time delay.

Setting Filtering Options
When you record a session, the session might include requests associated with a
variety of protocols—for example, Oracle, SQL Server, and HTTP.
After recording, you can generate scripts that include requests for all of the recorded
protocols or just some of them.

NOTE: If you set Playback Pacing Playback Pacing Playback Pacing Playback Pacing to nonenonenonenone, the CPU/User threshold (ms)CPU/User threshold (ms)CPU/User threshold (ms)CPU/User threshold (ms) and Think Think Think Think
maximum (ms)maximum (ms)maximum (ms)maximum (ms) options are disabled.
6-17

Setting Recording Options
Typically, you filter protocols only with network and proxy recording, because you
record all traffic to or from an IP address. API recording targets a client application
on a specific computer, so you probably do not need to filter protocols if you are
using this method. However, you can filter protocols with API recording if you
notice that Robot is capturing raw socket information as well as other protocols (such
as non-HTTP requests from a Web browser).

To see a list of the protocols that Robot records, select the Manual FilteringManual FilteringManual FilteringManual Filtering check box,
record a script, and then view the list in the Manual Filtering dialog box at the end
of the recording session.

How to Filter Protocols
To filter protocols from a recorded script:

1. Click Tools Tools Tools Tools > Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator FilteringGenerator FilteringGenerator FilteringGenerator Filtering tab.
6-18

Setting Script Generation Options
Automatic and Manual Filtering
At script generation time, at the end of the recording session, Robot can
automatically filter the protocols to generate (based on the protocols listed in the
Selected protocolsSelected protocolsSelected protocolsSelected protocols box in this tab), or you can specify the protocols that Robot should
generate, depending on how you set the following check boxes:

If you select both Auto Filtering Auto Filtering Auto Filtering Auto Filtering and Manual FilteringManual FilteringManual FilteringManual Filtering, the list of connections includes
all captured protocols:

� Protocols that you listed in the Selected protocolsSelected protocolsSelected protocolsSelected protocols box are marked for inclusion
in the script.

� Protocols that you listed in the Available protocolsAvailable protocolsAvailable protocolsAvailable protocols box are marked for exclusion
from the script.

You can change these inclusion/exclusion designations in the Manual Filtering
dialog box, so that requests for any captured protocol can be included in or excluded
from the script. For information about using this dialog box, see Choosing the Protocols
to Include in a Script on page 7-11.

NOTE: If you are recording DCOM protocol, Visual Basic version 6 must be
installed on your Local computer, and the path to VB6.exe and RC.exe must be
set.

Check box Meaning

Auto FilteringAuto FilteringAuto FilteringAuto Filtering If selected, Robot generates scripts containing requests for the
protocols listed in Selected protocolsSelected protocolsSelected protocolsSelected protocols.

If cleared, Robot generates scripts containing requests for all
scriptable protocols it records.

Manual FilteringManual FilteringManual FilteringManual Filtering If selected, Robot displays a list of connections, each consisting of a
client, a server, and the protocol used in the client/server traffic. This
list appears immediately after recording, just before Robot generates
the script.

When the list appears, select one or more connections to include in
the script.

If cleared, Robot does not display a list of connections.

NOTE: If you select Manual FilteringManual FilteringManual FilteringManual Filtering, Robot attempts to detect the computer
name of each client and server it records before it generates the script. This can
increase script generation time.
6-19

Setting Recording Options
Protocol Lists
When the Auto FilteringAuto FilteringAuto FilteringAuto Filtering check box is selected, the following lists are enabled:

Available protocolsAvailable protocolsAvailable protocolsAvailable protocols – Protocols that are available for capture, but that you want to
exclude from the script that Robot generates. The available protocols are: DBLIB,
DCOM, HTTP, IIOP, Jolt, ODBC, Oracle, Socket, SQL Server, Sybase, and
TUXEDO.

Selected protocolsSelected protocolsSelected protocolsSelected protocols – Protocols to include in the script that Robot generates.

To select or deselect a protocol:

1. Click on a protocol in the Available protocolsAvailable protocolsAvailable protocolsAvailable protocols section.

2. Click on the greater-than symbol (>), and the protocol moves to the Selected Selected Selected Selected
protocolsprotocolsprotocolsprotocols section.

3. To deselect a protocol in the Selected protocolsSelected protocolsSelected protocolsSelected protocols section, click on the protocol and
then click the less-than symbol (<). The protocol moves back to the Available Available Available Available
protocolsprotocolsprotocolsprotocols section.

4. Click on the double greater-than symbol (>>), and all protocols in the Available Available Available Available
protocolsprotocolsprotocolsprotocols section except DCOM move to the Selected protocolsSelected protocolsSelected protocolsSelected protocols section.

5. Click on the double less-than symbol (<<), and all protocols in the Selected Selected Selected Selected
protocolsprotocolsprotocolsprotocols section move back to the Available protocolsAvailable protocolsAvailable protocolsAvailable protocols section.

Jolt, Socket, and TUXEDO Protocols
If you click the AdvancedAdvancedAdvancedAdvanced button, the Advanced Protocol Filtering dialog box appears.
This dialog box lets you define more detailed information about the Jolt, socket, and
TUXEDO protocols specified in the Selected protocolsSelected protocolsSelected protocolsSelected protocols list:

� Jolt protocolJolt protocolJolt protocolJolt protocol. By default, TestManager plays back all Jolt sessions recorded,
regardless of which Jolt servers on the network they may have connected to. To
limit playback to Jolt sessions connected to a specific Jolt server, specify values
for both of the following filters:

– JSL Host JSL Host JSL Host JSL Host – Filter out all sessions not connected to a Jolt Server Listener at
this host address.

– JSL Port JSL Port JSL Port JSL Port – Filter out all sessions not connected to a Jolt Server Listener at this
TCP port number.

NOTE: DCOM is an exclusive protocol that cannot be selected in combination
with any other protocol.
6-20

Setting Script Generation Options
To play back specific Jolt sessions, specify values for either or both of the
following filters:

– UserName UserName UserName UserName – Filter out all sessions that do not have this value as the
userName parameter of the client’s JoltSession object constructor
invocation.

– UserRole UserRole UserRole UserRole – Filter out all sessions that do not have this value as the userRole
parameter of the client’s JoltSession object constructor invocation.

� Socket protocolsSocket protocolsSocket protocolsSocket protocols. All Robot recording captures socket protocols. Socket
protocols are at a level below the other protocols that Robot captures. The
following check boxes define the socket protocols you can include in a script:

– Well-known protocols (FTP, Telnet, ...) Well-known protocols (FTP, Telnet, ...) Well-known protocols (FTP, Telnet, ...) Well-known protocols (FTP, Telnet, ...) – Select this check box to include
common socket protocols in the generated scripts. These protocols typically
use port numbers 1 through 1,023 (for example, FTP uses port 21).

– Unrecognized protocols Unrecognized protocols Unrecognized protocols Unrecognized protocols – Select this check box to include other socket
protocols in the generated scripts. For example, select this box to capture
requests from a Java applet that communicates with a server via sockets.

� TUXEDO protocolTUXEDO protocolTUXEDO protocolTUXEDO protocol. TestManager can play back the traffic from one TUXEDO
connection at a time. If you record traffic from multiple TUXEDO
connections, you can specify which conversation to generate in the following
WorkStation ListenerWorkStation ListenerWorkStation ListenerWorkStation Listener (WSL) boxes:

– WSL Host WSL Host WSL Host WSL Host – The name of the workstation listener host.

– WSL Port WSL Port WSL Port WSL Port – The TCP/IP port number for the host.

If you provide workstation listener information, you must supply values for
both boxes.

In addition, you can specify the conversation to generate by supplying values for
the following user-defined fields of the TPINIT request message. These fields
are set by the client in the TPINIT typed buffer that is passed as an argument to
the TUXEDO API function tpinit(). You can define either or both of the
following fields. If you define both, the request message must contain both field
values (that is, a logical AND operation):

– Usrname Usrname Usrname Usrname – The user name.

– Cltname Cltname Cltname Cltname – The client name.
6-21

Setting Recording Options
When specifying a TUXEDO connection, you can use either the WSL or
TPINIT method, or you can use both methods.

Providing Protocol-Specific Information
If you are recording HTTP, Oracle, TUXEDO, IIOP, or DCOM requests, you
need to supply Robot with certain information.

NOTE: The TPINIT method is an advanced method for specifying a TUXEDO
connection. Typically, it is used only if the WSL method does not produce
satisfactory results.
6-22

Setting Script Generation Options
Controlling the Values Accepted When an HTTP Script Is
Played Back
You can set recording options that control which status values are acceptable when a
script that accesses a Web server is played back. If you do not set any recording
options, the script plays back successfully only if the playback conditions exactly
match the conditions during recording. However, you can set recording options so
that a script plays back successfully even if:

� The server responds with partial or full page data during record or playback.

� The response was cached during record or playback.

� The script was redirected to another http server during playback.

� You are recording a number of HTTP scripts and plan to play them back in a
different order.

To expand the conditions under which a script will play back successfully:

1. Click Tools Tools Tools Tools → Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator per protocol Generator per protocol Generator per protocol Generator per protocol tab.

3. Select HTTPHTTPHTTPHTTP at the ProtocolProtocolProtocolProtocol section, and then select one or more of the following:

a.a.a.a. Allow partial responsesAllow partial responsesAllow partial responsesAllow partial responses

Select this option to enable a script to play back successfully if the HTTP
server responds with partial data during playback. This generates a script
that sets the TSS environment variable Http_controlHttp_controlHttp_controlHttp_control to
HTTP_PARTIAL_OK. Leaving this box cleared enforces strict
interpretation of recorded responses during playback.

b.b.b.b. Allow cache responsesAllow cache responsesAllow cache responsesAllow cache responses

Select this option to enable a script to play back successfully if a response is
cached differently during playback. This generates a script that sets the TSS
environment variable Http_controlHttp_controlHttp_controlHttp_control to HTTP_CACHE_OK. Leaving this box
cleared enforces strict interpretation of recorded cache responses during
playback.

c.c.c.c. Allow redirectsAllow redirectsAllow redirectsAllow redirects

Select this option to enable a script to play back successfully if the script was
directed to another HTTP server during playback or recording. This
generates a script that sets the TSS environment variable Http_controlHttp_controlHttp_controlHttp_control to
HTTP_REDIRECT_OK. Leaving this box cleared enforces strict
interpretation of recorded redirects during playback.

d. Use HTTP keep-alives for connections in a session with multiple scripts.
You should generally leave this box cleared.
6-23

Setting Recording Options
Selecting this option provides more accurate representation of keep-alive
behavior, but at a cost—if you loop scripts or play them back in a different
order, you will have to manually edit your scripts to achieve successful
playback.

Therefore, you should select this option only if:

– You will not loop scripts or play them back in a different order (or, if you
do, you do not mind editing the scripts).

– You want to preserve the browser’s connection keep-alive behavior that
is in the recorded session.

For multiple script recordings it is best to not use keep-alives. This prevents you
from having to be aware of persistent HTTP connections that span script
boundaries when you loop or change script ordering. However, the default
behavior may result in increased HTTP server overhead due to the absence of
keep-alives.

Supplying Variable Data Values to an HTTP Script
Dynamic data correlation is a technique to supply variable data values to a script
when the transactions in a script depend on values supplied from the server.

When you record an HTTP script, the Web server may send back a unique string, or
session ID, to your browser. The next time your browser makes a request, it must
send back the same session ID to authenticate itself with the server.

The session ID can be stored in three places:

� In the CookieCookieCookieCookie field of the HTTP header.

� In an arbitrarily named field of the HTTP header.

� In an arbitrary hidden field in an actual HTML page.

TestManager finds the session IDs (and other correlated variables) and, when you
run the suite, automatically generates the proper script commands to extract their
actual values.

Before you record a script, you can tell TestManager to correlate all possible values
(the default), not to correlate any values, or to correlate only a specific list of variables
that you provide.

To specify the level of data correlation:

1. Click Tools Tools Tools Tools > Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator per protocol Generator per protocol Generator per protocol Generator per protocol tab.
6-24

Setting Script Generation Options
3. At Correlate variables in responseCorrelate variables in responseCorrelate variables in responseCorrelate variables in response, select one of the following:

a All All All All – All variables are correlated. You should generally select this option.
Select another option only if you encounter problems when you play back
the script.

b Specific Specific Specific Specific – Only the variables that you select are correlated.

c None None None None – No variables are correlated.
If you have selected All All All All or Specific Specific Specific Specific, your generated VU script will contain the
function http_find_values. This function finds the value of items that the
server returns and the user does not change. It then correlates these values and places
them in a system-defined variable in the form SgenRes_00n.

Examine the script to determine whether the proper values are being correlated. If
you want fewer values to be correlated, change the Correlate variables in responseCorrelate variables in responseCorrelate variables in responseCorrelate variables in response
option to SpecificSpecificSpecificSpecific, and then use the AddAddAddAdd and RemoveRemoveRemoveRemove buttons to select only the names
that you want correlated.

For example, assume you enter data in a form during recording, and the form has a
field that you cannot modify—for example, UNITED STATES. In the generated
script, the http_response emulation command will show the form as follows:

"<form name = \…

…

"\t<input type=\"hidden\" name=\"Country\" value=\"UNITED

STATES\">\r\n

TestManager can determine that this is an item for correlation, and adds an
http_find_values function to your script. This function puts the UNITED
STATES value in a variable. Your script will also contain a line that looks like this

{

string SgenRes_002[];

SgenRes_002 = http_find_values("Country", HTTP_FORM_DATA, 1);

#if 0

<UNITED STATES>

#endif

}

If you do not want UNITED STATES to be correlated, choose SpecificSpecificSpecificSpecific but do not
select the Country name from the list. You do not have to re-record the script; you
can simply regenerate it from the session.
6-25

Setting Recording Options
Providing the Name of an Oracle Database
If you are using the network or proxy methods to record Oracle requests, you must
provide the name that the client application uses to connect to the Oracle database.
This name is in Oracle’s tnsnames.ora file. You can later play back the script against
another Oracle database by changing this name.

To provide this name:

1. Click Tools Tools Tools Tools > Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator per protocol Generator per protocol Generator per protocol Generator per protocol tab.

3. Select Oracle at the ProtocolProtocolProtocolProtocol section.

4. Enter the name that the client application uses in the Database nameDatabase nameDatabase nameDatabase name box.

Assigning a Prefix to TUXEDO Command IDs
If you are recording TUXEDO requests, you can have Robot automatically assign an
identifying prefix to TUXEDO emulation command IDs. The prefix allows
TestManager reports to be filtered by emulation command type. The prefix that you
set here overrides the Command ID prefixCommand ID prefixCommand ID prefixCommand ID prefix in the GeneratorGeneratorGeneratorGenerator tab.

For example, if you select the Use command type to prefix emulation commandsUse command type to prefix emulation commandsUse command type to prefix emulation commandsUse command type to prefix emulation commands check
box, the third tux_tpcall emulation command in the script has the following
command ID:

tux_tpcall ["tcal003"]

Robot assigns the following command ID prefixes for particular TUXEDO
commands:

Command Prefix Command Prefix

tux_bq tbq tux_tpinit tini

tux_tpabort tabo tux_tpnotify tnot

tux_tpacall* tacaR tux_tppost tpos

tux_tpbroadcast tbro tux_tprecv trec

tux_tpcall tcal tux_tpresume tres

tux_tpcommit tcom tux_tpsend tsen

* tacaR applies when tux_tpacall involves a request only. When tux_tpacall
involves both a request and the reply (request/reply turnaround), the prefix is tacaT. This
is used for asynchronous request timing only and is never assigned to an emulation
command.
6-26

Setting Script Generation Options
Assigning a Prefix to IIOP Command IDs and Including IORs in
IIOP_bind
If you are recording IIOP requests, you can have Robot automatically assign an
identifying prefix to IIOP emulation command IDs. You can also include the
original IORs in iiop_bind commands.

To assign an identifying prefix or to include the original IORs in iiop_bind
commands:

1. Click Tools Tools Tools Tools → Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator per protocol Generator per protocol Generator per protocol Generator per protocol tab.

3. Select IIOPIIOPIIOPIIOP at the ProtocolProtocolProtocolProtocol section, and then select one or more of the following:

–––– Use operation name to prefix emulation command IDsUse operation name to prefix emulation command IDsUse operation name to prefix emulation command IDsUse operation name to prefix emulation command IDs

Select this check box to have Robot automatically prefix the command IDs
with the operation being invoked. This applies to the iiop_invoke
command. The prefix allows TestManager reports to be filtered by
operation. The prefix that you set here overrides the Command ID prefixCommand ID prefixCommand ID prefixCommand ID prefix in
the GeneratorGeneratorGeneratorGenerator tab.

–––– Include original IORs in iiop_bind commandsInclude original IORs in iiop_bind commandsInclude original IORs in iiop_bind commandsInclude original IORs in iiop_bind commands

Select this check box to make the ior argument of every scripted
iiop_bind emulation command contain the stringified form of the IOR
originally recorded for that object reference. The ior argument is required
by the IOR bind modus. Clearing this box will shorten scripts, but you will
have to manually enter the ior argument value when using the IOR bind
modus.

tux_tpconnect tcon tux_tpsubscribe tsub

tux_tpdequeue tdeq tux_tpsuspend tsus

tux_tpdisconnect tdis tux_tpterm tter

tux_tpenqueue tenq tux_tpunsubscribe tuns

tux_tpgetrply tget

Command Prefix Command Prefix

* tacaR applies when tux_tpacall involves a request only. When tux_tpacall
involves both a request and the reply (request/reply turnaround), the prefix is tacaT. This
is used for asynchronous request timing only and is never assigned to an emulation
command.
6-27

Setting Recording Options
DCOM Recording
Robot records DCOM client applications that are constructed with Visual Basic
(compiled executables), Java (compiled executables), or C++, with the restriction
that the C++ interfaces are useable by VB - they must use attributes that conform
to the OLE Automation attribute. No preprocessing of the application is necessary
before recording begins.

For VB script recording, the VB IDE should be used as the script editor.

Type Library Requirement for DCOM Recording
For Robot to get data type information from DCOM components during recording,
the type librarytype librarytype librarytype library must be present. If Robot does not locate the type library for a
particular interface, it is unable to understand method signatures (the number of
parameters and their data types), and will ignore method call activity on these
interfaces.

The type library will always be embedded within an object module for VB or Java
applications. For C++ applications, it may be a standalone .tlb file.

After DCOM recording, if script generation completes with a no scriptable protocol no scriptable protocol no scriptable protocol no scriptable protocol
is foundis foundis foundis found error, the first troubleshooting method should be locating and identifying
the presence of the type library.

Assigning a Prefix to DCOM Command IDs
If you are recording DCOM requests, you can have Robot automatically assign an
identifying prefix to DCOM emulation command IDs. Emulation command IDs
consist of a prefix and a three-digit numeric suffix. Robot automatically increments
the numeric suffix by a value of 1, which allows each command to be uniquely
identified.

To assign an identifying prefix :

1. Click Tools Tools Tools Tools > Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the Generator per protocol Generator per protocol Generator per protocol Generator per protocol tab.

3. Select DCOM DCOM DCOM DCOM at the ProtocolProtocolProtocolProtocol section, and then select an event label. The label you
select determines the prefix of the emulation command IDs in your script.

– User GeneratedUser GeneratedUser GeneratedUser Generated. Lets you generate a command ID prefix. After you select
this option, click the Command ID prefixCommand ID prefixCommand ID prefixCommand ID prefix in the GeneratorGeneratorGeneratorGenerator tab, and then enter
the prefix that you want generated. If you do not enter a prefix, the
command ID follows the name of your script. For example, if you do not
enter a prefix and the your script is named Accounting, the command IDs
are [ACCOUNT~001], [ACCOUNT~002], and so forth.
6-28

Setting General Recording Options
– SCRIPT NAMESCRIPT NAMESCRIPT NAMESCRIPT NAME. The command ID prefix is the script name. If your script is
named Accounting, the command IDs are [ACCOUNTING001],
[ACCOUNTING002], and so forth.

– MethodMethodMethodMethod. The command ID prefixes are the method names in your program.

– ClassClassClassClass. The command ID prefixes are the class names in your program. Any
commands within a class follow the class name.

– Class.MethodClass.MethodClass.MethodClass.Method. The command ID prefixes are in the format
class-name.method-name.

– Library.Class.MethodLibrary.Class.MethodLibrary.Class.MethodLibrary.Class.Method. The command ID prefixes are in the format
library-name.class-name.method-name.

– NoneNoneNoneNone. Command IDs are omitted from your script.

Setting General Recording Options

Robot lets you set general recording options, which apply to all session recording
methods. To set general recording options:

1. Click Tools Tools Tools Tools → Session Record Options Session Record Options Session Record Options Session Record Options.

2. Click the GeneralGeneralGeneralGeneral tab.

This tab lets you set:

� Automatic prefixes for scripts and sessions

� Whether Robot should prompt you to start an application after you start
network or proxy recording

� Various settings for the Session Recorder window

The following sections describe these options.

Autonaming Prefixes
In the Autonaming PrefixesAutonaming PrefixesAutonaming PrefixesAutonaming Prefixes group box, you can define prefixes for default script and
session names. If you define a prefix, Robot appends a consecutive number to the
prefix, and uses the unique prefix and number combination as the name it suggests
each time it prompts you to define a script or session name during recording.

For example, if your prefix for a script is Script, Script1 is the default script
name for the first script you record, Script2 is the default script name for the
second script you record, and so on.

During recording, when you are prompted to define a script or session name, you
can accept the default name, modify it, or change it completely.
6-29

Setting Recording Options
Optionally, you can leave either or both of these boxes blank, so that session and
script names consist of the names that you define during recording.

Names can have a maximum of 40 characters. Consequently, the maximum length
of a prefix is 40 characters less the number of digits in the numeric suffix of the last
script or session that you recorded.

Start Application
To have Robot prompt you to start the client after you begin recording, select Prompt Prompt Prompt Prompt
for application name on start recordingfor application name on start recordingfor application name on start recordingfor application name on start recording.

With API recording, you must start the client after you begin the recording process,
when Robot prompts you to do so. As a result, the Prompt for application name on Prompt for application name on Prompt for application name on Prompt for application name on
start recordingstart recordingstart recordingstart recording check box is disabled with API recording.

With network or proxy recording, you can start the client before or after you begin
recording. However, connection information is sometimes lost if you start the
application before you begin recording. We recommend that you start the
application after you begin recording.

If you start the client after you begin recording, you can have Robot prompt you to
start the client, or you can start it without being prompted (for example, if the client
is running on a different computer than Robot).

Setting the Recorder Window
The Session Recorder window displays information about client requests and server
responses as they occur during a recording session. This window appears
automatically, in either a normal or minimized state, when you begin recording.

The following check boxes in the Recording WindowRecording WindowRecording WindowRecording Window group box set a variety of
options for the Session Recorder window:

Minimize on start recordingMinimize on start recordingMinimize on start recordingMinimize on start recording – Select this check box to minimize the Session Recorder
window when you start recording. Clear this check box to display the window in a
normal state.

During recording, the Session Recorder icon is displayed in the taskbar, to the left of
the clock. The icon blinks when Robot is capturing a request or response. This icon
serves as a visual cue that Robot is recording, even when the Session Recorder
window is minimized.
6-30

Defining a Client or Server Computer
Show Rates viewShow Rates viewShow Rates viewShow Rates view – Select this check box to display the number of calls and bytes in
the current three-second interval.

Show Statistics viewShow Statistics viewShow Statistics viewShow Statistics view – Select this check box to display the total number of calls and
bytes in the recording session.

Show Annotations viewShow Annotations viewShow Annotations viewShow Annotations view – Select this check box to display the comments, start/stop
blocks, timers, or synchronization points that you insert into the script during
recording.

Defining a Client or Server Computer

If you are using network or proxy recording, and the computer that you want to use
is not listed in the Method Network and Method Proxy tabs, you can add it to the
list.

To add a client or server computer:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab or Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab, depending on whether you
are adding a computer for network or proxy recording.

Rates view Statistics view

Annotations view
6-31

Setting Recording Options
3. Click Manage ComputersManage ComputersManage ComputersManage Computers.

4. Click NewNewNewNew.

5. In the NameNameNameName box of the ComputersComputersComputersComputers group, type a name to associate with the
network name of the computer that you are adding. You can assign any name up
to 40 characters.

6. Type the computer’s network name.

You can find the computer’s network name in the IdentificationIdentificationIdentificationIdentification tab of the Windows
NT Network dialog box (Start Start Start Start > Settings Settings Settings Settings > Control Panel Control Panel Control Panel Control Panel > NetworkNetworkNetworkNetwork), or the
Network IdentificationNetwork IdentificationNetwork IdentificationNetwork Identification tab in Windows 2000 (Start Start Start Start > Settings Settings Settings Settings > Control Panel Control Panel Control Panel Control Panel >
Network and Dial-up Connections Network and Dial-up Connections Network and Dial-up Connections Network and Dial-up Connections > AdvancedAdvancedAdvancedAdvanced). In this tab, the network name is
labeled Computer NameComputer NameComputer NameComputer Name.

Alternatively, you can type the computer’s IP address associated with the
network name. However, because DHCP-provided IP addresses can change,
you should type a network name.

7. Optionally, click PingPingPingPing to make sure that the network name you just typed is
correct. If it is correct, “Successful Ping of network name” appears in the
status bar.

8. Select Client System Client System Client System Client System to list this computer as a client. Select Server System Server System Server System Server System to list
this computer as a server. You can select both choices.

9. Click AddAddAddAdd.

10. Take the following steps to use a port number with the network name. A port
number is required for servers used in proxy recording:

a. In the PortsPortsPortsPorts group, type a name to associate with the port number that you
are adding. You can assign any name up to 40 characters.

b. Type the port number to use with the computer’s network name.

c. Click ApplyApplyApplyApply, then OKOKOKOK.

11. Click CloseCloseCloseClose.

The computer is now added to the Rational project and appears in the list of
computers.

NOTE: You can also define a computer with Rational Administrator. The
Administrator lets you define additional information about the computer, such as
what type of operating system the computer runs on.
6-32

Removing a Computer or Port
Removing a Computer or Port

To remove a client or server computer from the Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab.

3. Click Manage ComputersManage ComputersManage ComputersManage Computers.

4. In the NameNameNameName box of the ComputersComputersComputersComputers group, select the computer name to remove
from the list.

5. Click DeleteDeleteDeleteDelete.

6. Click CloseCloseCloseClose.

To remove a port name and number from a computer’s address or edit the
information:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the Method:NetworkMethod:NetworkMethod:NetworkMethod:Network tab.

3. Click Manage ComputersManage ComputersManage ComputersManage Computers.

4. In the NameNameNameName box of the ComputersComputersComputersComputers group, select the computer name associated
with the port that you are removing.

5. Under PortsPortsPortsPorts, select the port name to remove.

6. Click Edit Edit Edit Edit and make the changes.

7. Click CloseCloseCloseClose.

Authenticating Login

If you are running tests against a database that requires a user ID and password, you
must provide them when the script is recorded and when the script is played back.

During recording, Robot attempts to detect the user ID, password, and other login
information. When successful, Robot stores this information in an Authentication
Datapool. In addition, Robot adds the user ID, but not the password, to the script.

During playback, when a user ID and password are required for a database, Robot
finds the user ID in the script, and then attempts to find a password in the
Authentication Datapool that is associated with the user ID. Robot uses the first
active password that it finds for the user ID.
6-33

Setting Recording Options
When to Modify the Authentication Datapool
If Robot detects the user ID, password, and other login information provided during
recording, it updates the Authentication Datapool automatically. If your login
information does not subsequently change, you never need to modify the
Authentication Datapool.

However, there are times when modifying the Authentication Datapool is necessary:

� If Robot cannot detect the password during recording. For example, Oracle
passwords are almost always transmitted in encrypted form. As a result, you
typically need to enter Oracle passwords into the Authentication Datapool.

� If you change your password after the password is recorded and stored in the
Authentication Datapool.

� If the server does not allow a user to log into the database multiple times
simultaneously.

In other words, suppose Robot detects your user ID and password when you
record a script. Robot writes the information to the Authentication Datapool.
During playback, TestManager retrieves your user ID and password from the
Authentication Datapool and uses the information to log the virtual tester into
the database.

Modifying the Authentication Datapool with TestManager
To modify the Authentication Datapool with TestManager:

1. In TestManager, click Tools Tools Tools Tools > Manage Manage Manage Manage > DatapoolsDatapoolsDatapoolsDatapools.

2. Click RTAuthenticationRTAuthenticationRTAuthenticationRTAuthentication (the Authentication Datapool).

3. Click EditEditEditEdit.

4. Click Edit Datapool DataEdit Datapool DataEdit Datapool DataEdit Datapool Data in the Datapool Properties dialog box.

5. Each row in the Edit Datapool dialog box contains the following information:

Datapool column Meaning

State Whether the password in this row is ACTIVE or INACTIVE.
Select one of these choices from the list box.

If a user provides a password for a particular service, and the
Authentication Datapool already contains a password for that user
and service, Robot automatically makes the currently provided
password active and the earlier password inactive.

If there is more than one active password, Robot uses the first
active password that it finds in the Authentication Datapool.
6-34

Authenticating Login
6. Repeat the last step for each user ID and password that you need to enter.

7. Click SaveSaveSaveSave, and then click CloseCloseCloseClose.

8. Click OK OK OK OK to close the Datapool Properties dialog box, and then close the Manage
Datapools dialog box.

Modifying the Authentication Datapool During Recording
If you need to insert many rows of login information into the Authentication
Datapool, it is best to do so through TestManager.

But if you need to add just a few rows of login information, you should do so during
recording, when Robot prompts you for this information.

Unique Features of the Authentication Datapool
The Authentication Datapool is similar to other datapools that you edit with
TestManager. However, there are differences:

� An empty Authentication Datapool is included with the Rational Test software.

� The Authentication Datapool is used strictly for login information. You
cannot assign any standard or user-defined data types to the columns in an
Authentication Datapool.

� Do not delete or rename the Authentication Datapool.

Class The class is always SQLSQLSQLSQL in this release.

Subclass One of the following values:
■ OracleOracleOracleOracle
■ SybaseSybaseSybaseSybase
■ SQL ServerSQL ServerSQL ServerSQL Server

Service The name of the database server as it is defined in the database
environment. Do not use a computer name for the name of
Service.

This is the same name that Robot inserts into the server
argument of the sqlconnect command during recording.

Login The user ID.

Password The password for this user ID.

Datapool column Meaning
6-35

Setting Recording Options
� You should not add to or remove the columns in the Authentication Datapool.

� The Authentication Datapool is not associated with the DATAPOOL_CONFIG
statement or any datapool commands.

Managing Proxies

If you are using the proxy recording method, you need to create a proxy and identify
client/server pairs that will communicate through the proxy.

After you have defined a proxy relationship, you can manage your proxies as follows:

� Starting and stopping proxy service.

� Monitoring proxy activity.

� Deleting a client/server pair.

� Deleting a proxy.

� Reassociating a proxy with a client/server pair.

The following sections describe these functions.

Starting and Stopping Proxy Service
Proxy service is a system service that lets you use the proxy recording method. Proxy
service starts automatically when you:

� Install TestStudio.

� Start your system.

� Open the Session Record Options dialog box and click the Method:Proxy Method:Proxy Method:Proxy Method:Proxy tab.

Proxy service stops automatically when you shut down Windows.

Explicitly Starting or Stopping Proxy Service
Typically, you will want to keep proxy service running, even when you shut down
Robot. But if you need to explicitly stop proxy service, or start it up again after
stopping it, follow these steps:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab and make sure that Proxy recordingProxy recordingProxy recordingProxy recording is selected.

3. Click the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab.
6-36

Managing Proxies
4. Click Proxy AdminProxy AdminProxy AdminProxy Admin. The Proxy Administration dialog box appears.

The StatusStatusStatusStatus box shows whether proxy service is Running or Stopped:

– If proxy service is Stopped, click StartStartStartStart to run it.

– If proxy service is Running, click StopStopStopStop to stop it.

Alternatively, if you are using Windows NT 4.0, you can start and stop proxy service
as follows:

1. Click Start Start Start Start > Settings Settings Settings Settings > Control PanelControl PanelControl PanelControl Panel.

2. Double-click ServicesServicesServicesServices.

3. Select ProxyServer ServiceProxyServer ServiceProxyServer ServiceProxyServer Service.

4. Click either StartStartStartStart or StopStopStopStop.

If you are using Windows 2000:

1. Click Start Start Start Start > Programs Programs Programs Programs > Administrative ServicesAdministrative ServicesAdministrative ServicesAdministrative Services.

2. Double-click ServicesServicesServicesServices.

3. Select ProxyServer ServiceProxyServer ServiceProxyServer ServiceProxyServer Service.

4. Click either StartStartStartStart or StopStopStopStop.

Recreating Proxies After Proxy Service Is Stopped
The proxy computers are listed in the Existing ProxiesExisting ProxiesExisting ProxiesExisting Proxies grid of the Proxy
Administration dialog box.

When proxy service stops, either explicitly or during Windows shutdown, all proxy
computers are deleted. Therefore, you must create new proxy computers before you
start proxy recording. For information about creating a proxy computer, see Creating
a Proxy Computer on page 6-9.

Proxy service is not automatically shut down (and therefore, proxy computers are not
deleted) if you:

� Exit Robot, but do not exit Windows.

� Log off of your NT session, but do not exit Windows.
6-37

Setting Recording Options
Monitoring Proxy Activities
You can view information about existing proxies in the Existing PropertiesExisting PropertiesExisting PropertiesExisting Properties grid of the
Proxy Administration dialog box. The grid has the following columns:

Click RefreshRefreshRefreshRefresh to update the information in the grid.

Deleting Client/Server Pairs
You should remove client/server pairs that are listed in the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab but are
not involved in the session you that want to record. To do so:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab and make sure that Proxy recordingProxy recordingProxy recordingProxy recording is selected.

3. Click the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab.

4. Select the client/server pair to delete from the Client/Server pairs for Client/Server pairs for Client/Server pairs for Client/Server pairs for
recordingrecordingrecordingrecording list.

5. Click RemoveRemoveRemoveRemove.

6. Click OKOKOKOK.

Column in grid Meaning

Proxy:Port The name and port number of the proxy computer.

Server:Port The name and port number of the server computer. Client requests to
the server are routed through the proxy.

Connections The current number of connections to the server.

State The state of the proxy:

ACTIVE – The proxy is available for recording.

RECORD – The proxy is recording.

CLOSE_WAIT – A request has been issued to delete the proxy. The
proxy is deleted as soon as it is no longer in use. If the proxy is in use,
new connect requests are accepted.

CLOSE_WAIT_NOCONN – A request has been issued to delete the
proxy. The proxy is deleted as soon as it is no longer in use. If the proxy
is in use, new connect requests are not accepted.
6-38

Managing Proxies
Deleting a Proxy
To delete the proxy relationship between a server and its proxy:

1. Click Tools Tools Tools Tools > Session Record OptionsSession Record OptionsSession Record OptionsSession Record Options.

2. Click the MethodMethodMethodMethod tab and make sure that Proxy recordingProxy recordingProxy recordingProxy recording is selected.

3. Click the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab.

4. Click Proxy AdminProxy AdminProxy AdminProxy Admin. The Proxy Administration dialog box appears.

5. In the grid of existing proxies, select the proxy to delete.

6. Click Delete ProxyDelete ProxyDelete ProxyDelete Proxy.

7. In the Delete Proxy dialog box, click one of the following buttons:

–––– Wait for all connections to close, accept new connectionsWait for all connections to close, accept new connectionsWait for all connections to close, accept new connectionsWait for all connections to close, accept new connections

Delete the proxy as soon as it is no longer in use. If the proxy is currently in
use, allow new connections. This selection is associated with the proxy state
CLOSE_WAIT.

–––– Wait for all connections to close, do not accept new connectionsWait for all connections to close, do not accept new connectionsWait for all connections to close, do not accept new connectionsWait for all connections to close, do not accept new connections

Delete the proxy as soon as it is no longer in use. If the proxy is currently in
use, do not allow new connections. This selection is associated with the
proxy state CLOSE_WAIT_NOCONN.

–––– Immediately close all connectionsImmediately close all connectionsImmediately close all connectionsImmediately close all connections

Delete the proxy immediately. If the proxy is currently in use, close the
connections.

8. Click DeleteDeleteDeleteDelete.

In the Proxy Administration dialog box, the proxy that you deleted has either been
removed, or it is still present but has a modified state, depending on your choice in
step 7.
6-39

Setting Recording Options
Re-Creating Proxies that Have Been Removed
If a proxy is removed, any client/server pairs that communicated through that proxy
can no longer do so. To use these client/server pairs in proxy recording again, you
must first re-create the proxy. You re-create a proxy by reassociating it with the
server.

When you click the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab of the Session Record Options dialog box, any
client/server pairs that are no longer associated with a proxy are displayed in the
Delete Pairs Without Proxies dialog box. You can either:

� Click OKOKOKOK to delete all of the client/server pairs.

� Click CancelCancelCancelCancel to re-create one or more proxies.

To re-create a proxy:

1. Click Proxy AdminProxy AdminProxy AdminProxy Admin in the Method:ProxyMethod:ProxyMethod:ProxyMethod:Proxy tab.

2. In Proxy:PortProxy:PortProxy:PortProxy:Port, specify the proxy computer’s port number. Note that Robot has
already detected and specified the proxy computer’s name.

3. You can specify any available port number. Avoid the “well-known” port
numbers (those below 1024). If you specify a port number that is unavailable,
Robot prompts you for a new port number.

4. In the Server:PortServer:PortServer:PortServer:Port list, select the server to be reassociated with the proxy.

5. Click Create ProxyCreate ProxyCreate ProxyCreate Proxy.

The proxy that you just created appears in the Existing ProxiesExisting ProxiesExisting ProxiesExisting Proxies list.
6-40

� ��� �� C H A P T E R 7

Recording Sessions
This chapter describes how to record sessions and generate scripts. The chapter
includes the following topics:

� Recording a session

� Recording a single script in a session

� Getting feedback during recording

� Canceling scripts during recording

� Choosing the protocols to include in a script

� Playing back a script quickly

� Working with sessions

� Coding a script manually

� Defining script properties

� Managing scripts and sessions

Recording a session

You do not record scripts for performance testing directly as you do GUI scripts.
Instead, you record a session. After recording, Robot generates one or more scripts
from the session.

A Robot recording session contains all of the client requests and server responses
issued from the time you begin recording until the time you stop recording. Robot
stores all of the requests and responses recorded during the session in a session file
(.wch). The session file is sometimes called the "watch" file.
7-1

Recording Sessions
What You Can Record in a Session
Robot gives you considerable recording flexibility. You can record:

� Multiple transactions. For example, you can record a data entry transaction and
a query transaction in the same recording session, one after the other.

� Transactions against the same server or different servers. For example, you can
record one transaction against one Web server, and then record another
transaction against a different Web server.

� Different types of requests in the same session. For example, you can record
Oracle, SQL Server, HTTP, DCOM, DBLIB, Jolt, ODBC, Socket, Sybase, and
TUXEDO requests in a session.

Where Files Are Stored
By default, scripts are stored in the TMS_Scripts directory of your current project
datastore. For example, if the current project is MyProject, here is what the directory
hierarchy looks like:

c:\MyProject\TestDatastore\DefaultTestScriptDatastore\TMS_Scripts

Session files (the API calls or network IP packets Robot captures during recording)
are stored with a .wch extension in the TMS_Sessions directory. For example, if you
named your session Tst:

c:\MyProject\TestDatastore\DefaultTestScriptDatastore\TMS_Sessions\Tst.wch

Restoring Robot During Recording
When you begin recording, Robot becomes minimized by default, allowing you
unobstructed access to the client application.

At any time during recording, you can restore the Robot window without affecting
the client/server traffic you are recording. For example, you might want to restore
the Robot window to insert features such as timers, blocks, and synchronization
points through the Robot Insert menu rather than through the floating toolbar.

When Robot is minimized during recording or is hidden behind other windows
during recording, you can bring it to the foreground in one of the following ways:

� Click the Open Robot Window button on the Session Record floating toolbar.

� Click the Robot icon on the Windows taskbar.

� Use the standard Windows ALT+TAB key combination.
7-2

Recording a Single Script in a Session
Recording a Single Script in a Session

Use the following procedure to record a script. For information about splitting a
recording session into multiple scripts, see Splitting a Session into Multiple Scripts on
page 7-17.

To record a script:

1. In Robot, click the Record Session button.

Alternatively, click File > Record Session, or press CTRL+SHIFT+R.

2. Type the session name (40 characters maximum), or accept the default name. You
will specify the script name when you finish recording the script.

If you have not yet set your session recording options, do so now by clicking
Options.

3. Click OK in the Record Session - Enter Session Name dialog box. The
following events occur:

– Robot is minimized (default behavior).

– The Session Record floating toolbar appears (default behavior). You can use
this toolbar to stop recording, redisplay Robot, split a script, and insert
features into a script. (See Using the Floating Toolbars on page 7-5.)

– The Session Recorder icon appears on the taskbar. The icon blinks as Robot
captures requests and responses.

4. If the Start Application dialog box is displayed, provide the following
information, and click OK:

– The path of the executable file for the browser or database application.

– Optionally, the working directory for any components (such as DLLs) that
the client application needs at runtime.

– Optionally, any arguments that you want to pass to the client application.

The Start Application dialog box appears only if you are performing API
recording, or if you are performing network or proxy recording and selected
Prompt for application name on start recording in the General tab of the
Session Record Options dialog box.

5. Perform the transactions that you want to record.

As the application sends requests to the server, notice the activity in the Session
Recorder window. Progress bars and request statistics appear in the top of the
window.
7-3

Recording Sessions
If there is no activity in the Session Recorder window (or if the Session Recorder
icon never blinks), there is a problem with the recording. Stop recording and try
to find the cause of the problem.

6. Optionally, insert features such as blocks and timers through the Session Insert
floating toolbar or through the Robot Insert menu.

7. Optionally, when you finish recording transactions, close the client application.
With API recording, when you close the client, Robot asks whether you want to
stop recording. If so, click Yes, and either name the session or click to ignore
the recorded information in the Generating Scripts dialog box.

8. Click the Stop Recording button on the Session Record floating toolbar.

Stop Recording and Generating Scripts
To stop recording and generate scripts:

1. Click the Stop Recording button on the Session Record floating toolbar.

2. In the Name of the just-recorded script box, type or select a name for the
script that you just finished recording, or accept the default name.

Alternatively, to cancel the requests you made since you began recording, click
Ignore just-recorded information. For more information, see Cancelling Scripts
During Recording on page 7-10.

3. Click OK.

The Generating Scripts dialog box appears. This dialog box reflects the progress
of the automatic script generation. After a few seconds (or longer, depending on
the length of the session), script generation ends, the message Completed
successfully appears in the status bar, and the OK button is enabled.

During script generation, you might see:

– The Missing Password dialog box. For more information about this dialog
box, see Providing a Missing Password on page 7-5.

– The Manual Filtering dialog box. For information about this dialog box, see
Choosing the Protocols to Include in a Script on page 7-11.

4. Click OK in the Generating Scripts dialog box. The script that you recorded
appears in the Robot window.

NOTE: If a problem exists with the recording and nothing is captured, Robot
displays a Session Recording Error box..
7-4

Recording a Single Script in a Session
Using the Floating Toolbars
When you begin to record a script, Robot displays a floating toolbar by default. The
Session Record toolbar gives you access to activities you might want to perform
while Robot is hidden from view during recording.

If you click the button on the far right of the Session Record toolbar, you display the
Session Insert toolbar. This toolbar lets you insert features into the script and start
another application during recording.

The following figure shows the Session Record toolbar and the Session Insert
toolbar:

If Problems Occur During Script Generation
If problems occur during script generation, the following message appears in the
status bar of the Generating Scripts dialog box:

Completed with warnings and/or errors.

To see the list of errors, click Details. If the text of an error is truncated, you can
either:

� Double-click the text to see the entire message.

� Press CTRL+C to copy the text to the Clipboard.

Providing a Missing Password
During recording, if you provide a user ID and password required to access the
database, Robot attempts to detect this login information. If Robot can detect all of
this information, it writes the information to the Authentication Datapool. (During
script playback, TestManager checks the Authentication Datapool whenever an
emulated user needs to provide a valid user ID and password when accessing the
database.)

Stop recording

Split session into scripts

Open Robot window

Open Session Insert
toolbar

Start / stop
timer

Start / stop
block

Synchronization
point

Comment

Start
application
7-5

Recording Sessions
If Robot cannot detect a password that you provided during recording, and it cannot
find a valid password for the associated user ID in the Authentication Datapool,
Robot prompts you to provide the password just before generating the scripts you
recorded.

Robot prompts you to provide each password that it could not detect, one by one, in
the Missing Password dialog box.

To Provide a Password
To add a password for the user ID displayed in Login:

1. Type the password in Password, and type it again in Verify Password. An
asterisk (*) represents each character that you type.

Alternatively, if no password is needed for this user ID, select No Password.

2. Click Enter.

Robot automatically closes the dialog box when you finish providing passwords.

To Skip One or More Passwords
If you do not know a password for a particular user ID, click Skip. You will need to
provide the password later (for example, by editing the Authentication Datapool).

If you prefer to provide passwords for all the user IDs at a later time, click Skip All.
You may prefer to do this if there are many passwords to provide.

Type the password here, and then
repeat the entry in the box below.

If you have many passwords to enter,
consider clicking Skip All, and then
running TestManager to add the
passwords directly to the Authentication
Datapool.
7-6

Getting Feedback During and After Recording
Getting Feedback During and After Recording

When you begin to record a session, the Session Recorder appears, either in a normal
or minimized state. You can use this window to monitor client activity during the
recording session.

The Session Recorder tracks a variety of statistics about the client/server
conversation, such as the number of bytes the client sends or receives in a call.

To help you gauge the rate at which client/server activity occurs, the Session
Recorder displays its data at three-second intervals. Information in the Session
Recorder window is continuously updated as the client/server conversation
progresses.

If you do not see any activity in this window as you record, Robot is not capturing
client/server traffic. Stop recording and try to determine the cause of the problem.
7-7

Recording Sessions
The Session Recorder During Recording
The following figure shows the Session Recorder window as it might appear during
recording, and the type of information that it displays:

The activity that the window displays varies, depending on your recording method.

� With API recording, the window displays the number of API calls and bytes sent
from your computer.

Progress bars indicating the
number of calls and bytes in
the current 3-second interval

Number of calls and bytes
in the current 3-second
interval

Total number of calls and bytes
in the recording session

Most calls and bytes in
any 3-second interval

The annotations (comments, start/stop
blocks, timers, synchronization points) you
can insert during recording
7-8

Getting Feedback During and After Recording
� With network recording, the window displays the number of IP packets and the
bytes in these packets. However, the information may not be from your
computer only. For example, if you are recording the activities of any client, in
the Client list, the Session Recorder window reports the activity of all clients on
the network, not just the activity of your computer.

� With proxy recording, the window displays the number of IP packets and the
bytes in these packets.

The Session Recorder Icon
During recording, the icon associated with the Session Recorder window is
displayed on the taskbar. The icon blinks whenever Robot is capturing a request or
response. This icon serves as a visual cue that Robot is recording, even when the
Session Recorder window is minimized.

The Session Recorder After Recording
The Session Recorder captures “raw” client API calls or network IP packets — in
other words, the calls or packets as they exist before Robot converts them into
appropriate scripting language commands.

When recording ends, Robot stores the calls or packets as follows:

� Robot stores the calls or packets in a session file (.wch) in the same raw form that
the packets have when captured.

� Robot translates the calls or packets into VU commands and stores them in one
or more .s script files.

NOTE: At any time, you can regenerate new script files from the stored .wch file.
For more information, see Regenerating Scripts from a Session on page 7-18.
7-9

Recording Sessions
Cancelling Scripts During Recording

During session recording, you can cancel scripts that you have generated. The scripts
are deleted.

This feature is useful if you make errors while recording a session or if you want to
exclude non-essential or preliminary activity (such as logging in or navigating to the
Web site that you want to test). For example, if you split a script at the point where
you want to send a query, you can ignore the login and other preliminary requests
you needed to make to get to the query’s starting point.

Cancelling a Script in a Single-Script Session
If you have not split the session into multiple scripts, you can cancel both the script
and the session, and then stop recording as follows:

1. During recording, click the Stop button on the Session Record floating toolbar.

2. In the Stop Recording dialog box, click Ignore just-recorded information.

3. Click OK in the Stop Recording dialog box.

4. Click OK to acknowledge that the session is being deleted.

Cancelling the Current Script in a Multi-Script Session
When you record a session, you click the Split Script button to create multiple
scripts.

To cancel the current script, keep the other scripts that you recorded in this session,
and then continue recording:

1. During recording, click the Split Script button on the Session Record floating
toolbar.

2. In the Split Script dialog box, click Ignore just-recorded information.

3. Click OK.

You can now begin recording a new script.

To cancel the current script, keep the other scripts that you recorded in this session,
and then stop recording:

1. During recording, click the Stop button on the Session Record floating toolbar.

2. In the Stop Recording dialog box, click Ignore just-recorded information.
7-10

Choosing the Protocols to Include in a Script
3. Click OK.

4. Click OK in the Generating Scripts dialog box (after Robot finishes generating
the script).

Cancelling All Scripts in a Multi-Script Session
To cancel all of the scripts in a session and stop recording:

1. During recording, click the Stop button on the Session Record floating toolbar.

2. Click OK in the Stop Recording dialog box.

3. Immediately click Cancel in the Generating Scripts dialog box.

You probably want to keep a script if you have planned a script in TestManager and
defined properties for it. You can later record over the script and retain the properties
that you have defined.

For information about deleting scripts and sessions, see Deleting Scripts and Sessions on
page 7-26.

Choosing the Protocols to Include in a Script

During network and proxy recording (and to a lesser extent, during API recording),
Robot might capture requests for protocols that you do not want to include in a
script. You can specify the protocols to include in either of the following ways:

� Automatically, by selecting Auto Filtering in the Generator Filtering tab of the
Session Record Options dialog box.

� Manually, by selecting Manual Filtering in the Generator Filtering tab. If you
select this check box, Robot displays the Manual Filtering dialog box during
script generation, immediately after recording. The following section describes
how to filter protocols manually.

Manually Filtering Protocols
The Manual Filtering dialog box lists in a hierarchical tree the connections that
Robot detected during the recording session. In this dialog box, a connection has
three parts:

� The name or IP address of a client

� The name or IP address of the server that communicated with the client during
the connection

� The protocol of the captured requests and responses issued during the
connection
7-11

Recording Sessions
Use this dialog box to select the protocols to include in the script. You select the
protocols to include by adding and removing the connections listed in the dialog box.
Because you are selecting protocols within the context of a connection, you select
protocols in one or more of these ways:

� You can select the protocol used in all the connections to a particular server.

� You can select the protocols used in all the connections from a particular client.

� You can select a particular protocol name, regardless of the clients and servers
that use it.

Controls in the Manual Filtering Dialog Box
The Manual Filtering dialog box has the following controls:

Control name Purpose

Sort OrderSort OrderSort OrderSort Order Changes the hierarchical order in which protocol, client, and
server names are listed in the tree.

ProtocolProtocolProtocolProtocol Changes the type of requests that Robot generates for the
currently selected connection in the tree. Robot converts the
protocol in the current connection to the protocol type that you
specify in ProtocolProtocolProtocolProtocol.

Typically, you will not want to convert captured protocols.

IncludeIncludeIncludeInclude, ExcludeExcludeExcludeExclude Includes or excludes selected items in the script that Robot is
generating.
7-12

Choosing the Protocols to Include in a Script
TreeTreeTreeTree Displays the protocol, client, and server names that Robot
captures during recording. Also indicates whether items are
marked for inclusion in or exclusion from the script.

� Items are marked for inclusion or exclusion as follows:

� Items that Robot will generate to the script are shaded red.

� Items that Robot will exclude from the script are clear
(white).

If an item is partially shaded red, some of the items below will
be included, and some will be excluded.

When you click an item in the tree, you select that item and also
any items below that item.

Click the + icon to expand a branch, and click the - icon to close
a branch.

To change the hierarchical order of the protocol, client, and
server names, select a new order in Sort OrderSort OrderSort OrderSort Order.

Robot attempts to detect and display the names of the clients and
servers involved in the conversations. If the names cannot be
resolved, Robot displays IP addresses.

OKOKOKOK, CancelCancelCancelCancel Confirms or cancels any changes that you have made in this
dialog box, and then closes the dialog box. When you close the
dialog box, requests represented by shaded items are generated
to the script.

Control name Purpose
7-13

Recording Sessions
Example of Manually Filtering Protocols

The following figure shows the Manual Filtering dialog box:

Choose a new
protocol to replace
the selected protocol
in the tree.

Specify whether to
include or exclude the
selected item in the
generated script.

Tree displaying the
names of the
recorded
connections.

Specify the hierarchical order of client,
server, and protocol names in the tree.

Shaded (red) items will
be included in the script.

Clear (white) items will be
excluded from the script.

Partially shaded items indicate that
some connections will be included and
some excluded in the generated
script.
7-14

Choosing the Protocols to Include in a Script
Including or Excluding Connections
In the Manual Filtering dialog box tree, each top-level item expands to display the
components of one or more connections. Connection components can appear in the
tree in any hierarchical order, depending on the Sort Order setting.

If a top-level item is marked for inclusion in the script that is being generated, all
requests associated with that item (such as all HTTP connections) are included in
the script. However, you can then selectively exclude one or more of the individual
connections.

By selecting items to include and exclude, you can:

� Include or exclude all requests associated with a protocol, or just some of those
requests (by including or excluding client or server items below it).

� Include or exclude all requests to a particular server, or just some of those
requests (by including or excluding protocol or client items below it).

� Include or exclude all requests from a particular client, or just some of those
requests (by including or excluding protocol or server items below it).

To include or exclude the requests associated with an item in the tree:

1. Click an item to include or exclude. Any items hierarchically below it are also
selected.

2. Click Include or Exclude.

3. Repeat the above steps until all items to include in the script are shaded in red,
and all items to exclude are clear (white).

4. Click OK.

Converting from One Protocol Type to Another
You can also use the Manual Filtering dialog box to convert the requests captured
during a connection from one protocol type to another.

To convert a protocol in the Manual Filtering tree:

1. Click the item of the tree representing the protocol to convert.

2. In the Protocol box, select the new protocol.

3. Click OK.

NOTE: Some requests may be lost in a protocol conversion.
7-15

Recording Sessions
Typically, you will not want to convert protocol requests. But if you need to convert,
you will most likely convert to or from socket requests.

Socket requests are low-level requests that are typically issued in addition to requests
made with other, higher-level protocols (such Oracle or SQL Server). As a result,
you can specify that a captured protocol be converted to its associated socket
requests, or that captured socket requests be converted to the associated requests in
a higher-level protocol.

Playing Back a Script Quickly

After you record a script, you generally play it back from a suite, as part of a user
group. However, if you want to test a script that you have just recorded or edited,
you can play it back quickly.

To play back a script quickly:

1. In Robot, click File > Playback.

2. Click the name of the script to play back.

3. Click OK.

TestManager appears, ready to play back the script that you selected.

4. In TestManager, click Run > Suite.

5. Click OK in the Run Suite dialog box.

Working with Sessions

A performance recording session contains all of the client requests and server
responses issued from the time you begin recording until the time you stop
recording.

When you work with sessions, you can:

� Split the session into multiple scripts.

� Regenerate the scripts from the session.

� View the session’s properties.

The following sections describe each of these activities.
7-16

Working with Sessions
Splitting a Session into Multiple Scripts
Splitting a session signifies that everything you have recorded represents one logical
unit of work, such as a login to a database. When you split a session, you name the
completed script and start a new script. You can continue recording transactions and
splitting the session into as many scripts as you want.

When would you want to split a session? If quick script development time is a
priority - perhaps because testable builds are developed daily, or because web content
is updated daily - splitting sessions may not be the best idea. If session reusability
and modularity are a priority, sessions should not be split. However, examples of
optimal times to split sessions might be:

– The expectation of extended use of a session - for instance, a single release
of an application that will be tested on ten different hardware configurations
The testing would take a month to complete and the code would be frozen.
In this case, time invested in splitting sessions is spread over a long, fixed
period.

– You have a login process that requires a lot of manual script modifications
in order to work robustly. You may have three user groups and you do not
want to edit the login part of the script three times; therefore, you have a
simple login script for all three user groups.

– You want to "mix and match" activities from different sessions.

– You record some parts of a session that need to be repeated multiple times
at playback, while other parts of the sesion will not need to be repeated.

How to Split a Session into Multiple Scripts
To split a session into multiple scripts:

1. During recording, at the point where you want to end one script and begin a new
one, click the Split Script button on the Session Record floating toolbar.

2. Enter a name for the script that you are ending, or accept the default name.

You will specify a name for the script that you are about to begin when you finish
recording client requests for it.

NOTE: If you split a session into multiple scripts, you should examine the
resulting scripts to make sure that they begin and end at a known state. This is
particularly important if you plan to use a split script as part of a loop or to run a
series of scripts in a different order than you recorded them. Check the state of
connections used in the script and any sqlprepare emulation commands or
VU commands that declare or manipulate cursors.
7-17

Recording Sessions
Alternatively, to cancel the requests you made since you began recording the
current script, click Ignore just-recorded information. This action affects only
the current script, not any previous scripts you recorded in this session. For
more information, see Cancelling Scripts During Recording on page 7-10.

3. Click OK.

4. Repeat the previous steps as many times as needed to end one script and begin
another.

5. After you click the Stop Recording button to end the recording session, type or
select a name for the last script you recorded, or accept the default name.

Importing a Session
You can import a session from a different computer into your current project. For
example, assume someone at another site e-mails you a session file. You can import
this session file, regenerate scripts, and create a suite.

Upon importing a session into Robot, you are asked whether you want to generate
the scipts contained within the imported session. To do so, click Yes, and the scripts
are generated and opened in the appropriate editor.

To import a session file and regenerate scripts:

1. In Robot, click Tools > Import Session. The Open dialog box appears.

2. Click the session file, then click Open. The session and its scripts are now in
your project.

3. To regenerate the scripts in the session you imported, click Tools > Regenerate
Test Scripts from Session, and select the session you imported.

4. To regenerate the suite, click Tools > Rational Suite TestStudio > Rational
TestManager.

5. Click File > New Suite. The New Suite dialog box appears.

6. Select Existing Session, and click OK.

7. TestManager displays a list of sessions that are in the project. Click the name of
the session that you imported, and click OK.

TestManager automatically creates a suite that is ready to run.

Regenerating Scripts from a Session
You might want to regenerate a session’s scripts for a variety of reasons—for
example, to overwrite edits you made to the original scripts (restoring the scripts to
the original recorded transactions), or to change the script generation options.
7-18

Working with Sessions
When you regenerate scripts from a session, the regenerated scripts inherit the
properties of the original scripts.

At any time, you can regenerate a session’s scripts from the session file. To do so:

1. In Robot, click Tools > Regenerate Test Scripts from Session.

2. Click the name of the session to use.

You can regenerate scripts that are contained within a session but not those that
have been deleted from the session. To see the scripts in a session, click the
session name, click Properties, and then click Contained Scripts. Click OK.

The Generating Scripts dialog box appears. This dialog box shows how script
regeneration is progressing. After a few seconds (or longer, depending on the
length of the session), regeneration ends, the message Completed successfully
appears, and the OK button is enabled.

3. Click OK to acknowledge that the regeneration operation is complete.

Changing Recording Options
When you regenerate a session’s scripts, you can change many of the recording
options that were set when the script was recorded. You can change the options in
the following Session Record Options tabs:

� Generator

� Generator Filtering

� Generator per Protocol

For example, you can:

� Select Use datapools to add datapool commands to the script, even if the
original script had no datapool commands generated for it. (Conversely, clear
this check box to have no datapool commands included in the new script.)

� Select a different Display returned data value than the one used in the
original script.

� Set different playback expectations than those used in the original script.

When you regenerate scripts, you cannot add client/server requests to those that you
originally recorded. However, you can remove some recorded requests through
protocol filtering.

NOTE: Script names resulting from regeneration are set at recording. When you
regenerate a session’s scripts, you overwrite all of the previously generated scripts
in the session.
7-19

Recording Sessions
For example, to change options in the Generator tab:

1. Click Tools > Session Record Options.

2. Click the Generator tab.

3. Specify the script options to include in the new script, and click OK.

4. Click Tools > Regenerate Test Scripts from Session to regenerate the script.

Viewing Session Properties
Session properties include the list of scripts in the session and a description of
the session.

While viewing a session’s properties, the only session property that you can modify
is its description. Other session properties are automatically defined when you create
the session.

To view and optionally modify session properties while you are regenerating a
session’s scripts in Robot:

1. Click Tools > Regenerate Test Scripts from Session.

2. Click the name of the session whose properties you want to view.

3. Click Properties.

4. When finished, click OK to save any changes, or click Cancel.

5. In the Regenerate Test Scripts from Session dialog box, click Cancel.

Accessing Script Properties from Session Properties
While you are viewing a session’s properties, you can view and optionally modify the
properties of any script generated from the session.

To view script properties:

1. In Robot, click Tools > Regenerate Test Scripts from Session.

2. Click the name of the session whose properties you want to view. Session names
are the same as session file names, but without the .wch extension.

3. Click Properties.

4. Click the Contained Scripts tab.

NOTE: If you click OKOKOKOK in the Regenerate Test Scripts from Session dialog box,
the existing scripts in the session are destroyed. If you then click CancelCancelCancelCancel in the
Generating Scripts dialog box before the scripts are regenerated, Robot will
generate empty scripts.
7-20

Coding a Script Manually
5. Select the script whose properties you want to view or modify.

6. Click Properties. The Script Properties dialog box appears.

7. When you have finished viewing and editing properties, click OK to save any
changes in the Script Properties dialog box, or click Cancel.

8. Click Cancel to close the Session Properties dialog box.

9. In the Regenerate Test Scripts from Session dialog box, click Cancel.

Coding a Script Manually

The fastest and easiest way to generate a script is to record a session with Robot and
generate the script automatically.

However, you can open an empty script and add code to it—for example, if you are
hand-coding the script or if you are copying code from another script.

To open an empty script and add code to it:

1. In Robot, click File > New Test Script, then choose the type of script to create.

2. Type a script name and, optionally, a description of the script.

3. Click OK. Robot creates an empty script with the appropriate scripting language
headers.

4. Add the code to the script.

Creating Library Files for VU Scripts
Scripting language libraries are packaged in DLLs. You create dynamic link library
(DLL) files using a development tool such as Microsoft Visual Studio. For
information about making the DLLs that you create available to VU scripts, see the
VU Language Reference.

Defining Script Properties

A script can have properties associated with it in addition to the script name.
Examples of script properties include a description of the script, the purpose of the
script, and any test requirements associated with the script.

Defining script properties is an important part of the test planning process. For that
reason, you typically define a script’s properties in TestManager before you record
the script. But you can also define a script’s properties after you record the script, as
described in the following section.
7-21

Recording Sessions
How to Define Script Properties in Robot
To define properties for a script that is open for editing in Robot, click
File > Properties.

If the script exists but is not open:

1. Click File > Open > Test Script to open the Open Test Script dialog box.

2. Click the script you are defining properties for.

3. Click Properties.

4. Define the script’s properties, and click OK.

For information about the properties that you can define, see the Editing Test Scripts
section of the Using Rational TestManager manual.

Managing Scripts and Sessions

This section describes the following script and session management activities:

� Finding the scripts contained in a session

� Finding the session name associated with a script

� Removing a script from a session

� Re-recording sessions

� Re-recording scripts

� Copying scripts

� Deleting scripts and sessions

Finding the Session Associated with a Script
A script can be associated with only one session. To see the name of this session:

1. In Robot, click File > Open > Test Script.

2. Click the name of the script whose associated session you want to view.

3. Click Properties.

4. Click General.

5. View the session name in Referenced Session.

A script might not be associated with a session. For example, a script might have been
removed from its session, as described in the next section.
7-22

Managing Scripts and Sessions
Removing a Script from a Session
If you remove a script from a session, you can no longer regenerate that script if you
regenerate the session.

To remove a script from a session:

1. In Robot, click File > Open > Test Script.

2. Click the name of the script to remove from its session.

3. Click Properties.

4. Click General.

5. View the session name in Referenced Session.

6. Click Clear.

Re-Recording Sessions
When you begin to record over a session that contains scripts, Robot prompts you
for a confirmation. In the same dialog box, Robot also prompts you for a disposition
of the scripts in the session, as follows:
7-23

Recording Sessions
Whether you select or clear the check box depends on what you want to do:

� Delete all of the session’s scripts and their associated properties, and begin
re-recording the session.

� Keep the original scripts and their properties while creating new scripts for the
session.

� Overwrite the original scripts, but assign their properties to the new scripts.

The following sections describe each action. Regardless of which action you take, the
original session and its properties are overwritten.

Deleting the Original Scripts and Properties
To re-record a session and delete the original scripts and their properties:

1. Click File > Record Session.

2. In the Record Session - Enter Session Name dialog box, select the name of the
session to re-record, and click OK.

3. In the Session Recording dialog box, select Delete old session’s contained
scripts, then click Yes.

The session’s contained scripts and their properties are deleted.

4. Continue re-recording the session, assigning any names you like to the scripts
that you are recording.

Keeping the Original Scripts
To re-record a session and create new scripts while keeping the original scripts and
their properties intact:

1. Click File > Record Session.

2. In the Record Session - Enter Session Name dialog box, select the name of the
session to re-record, and then click OK.

3. In the Session Recording dialog box, clear Delete old session’s contained
scripts, and then click Yes.

4. Continue re-recording the session, assigning any names you like to the scripts
that you are recording other than the names of the original scripts.

The original scripts will no longer be associated with this or any other session.
However, you can still add the original scripts to a suite.
7-24

Managing Scripts and Sessions
Overwriting the Original Scripts but Keeping Their Properties
To re-record a session and overwrite the original scripts while assigning the
properties of the original scripts to the new scripts:

1. Click File > Record Session.

2. In the Record Session - Enter Session Name dialog box, select the name of the
session to re-record, and click OK.

3. In the Session Recording dialog box, clear Delete old session’s contained
scripts, , , , and click Yes.

4. Continue re-recording the session, assigning the name of one of the original scripts
to each script that you record.

Re-Recording Scripts
Recording over a session affects all scripts in the session. To record over just one
script, simply select that script’s name when Robot prompts you for a script name
during recording (in the Split Test Script or Stop Recording dialog box).

Also, if you plan a script in TestManager, its name appears in the list that you can
choose from when you record a script.

The following table summarizes the events that take place when you select the name
of a planned or existing script rather than type a new name for a script that you have
just recorded:

Type of script Result of overwriting the script

Planned script The script’s properties are applied to the new script.

Robot does not prompt for a confirmation before recording the script
because the existing script is empty.

Existing script is
part of a session

Robot prompts for a confirmation that you want to overwrite the
script:

� Click No to select or type another script name.

� Click Yes to overwrite the script. The properties of the original
script are applied to the new script. Also, the script is removed
from the original session and added to the new session.

Existing script is
not part of a session

Robot overwrites the original script without prompting you for a
confirmation.

The properties of the original script are applied to the new script.
7-25

Recording Sessions
Copying Scripts
To copy a script in Robot:

1. Click File > Open > Test Script.

2. Click the name of the script to copy, and then click OK.

3. Click File > Save As.

4. Type a name for the new script, and then click OK.

The new script does not retain the properties of the original and is not associated
with any session.

Deleting Scripts and Sessions
To delete a script and its properties:

1. In Robot, click File > Delete.

2. Click the name of the script to delete.

To delete multiple scripts, hold down the CTRL key and click each script.

3. Click OK.

4. Click OK when prompted to confirm the deletion.

5. Click Cancel to close the Delete Script dialog box.

If you delete all scripts in a session, the session still remains.

To delete a session:

1. In Robot, click File > Delete > Delete Session.

2. Click the name of the session to delete, and then click Delete.

3. Click Contained Test Scripts.

4. When prompted to confirm the deletion, select or clear the Delete scripts
contained in the session? check box as follows:

– Select the check box to delete all of the session’s scripts and properties in
addition to deleting the session.

– Clear the check box to leave the session’s scripts and properties intact. The
scripts will no longer be associated with this or any other session. However,
you can still add the scripts to a suite.

5. Click Yes to confirm the deletion.
7-26

� ��� �� C H A P T E R 8

Adding Features to Scripts
This chapter describes the features that you can add to a script while recording the
session with Robot. The chapter includes the following topics:

� Timers

� Blocks

� Synchronization points

� Comments

� Using the Insert menu

Toolbars for Adding Features

You can easily add features like timers, blocks, synchronization points, and
comments, while recording via the Session Insert toolbar.

To access the Session Insert toolbar, click on Display Session Insert Toolbar in the
Session Record toolbar:

Clicking the Display Session
Insert Toolbar will display the
Session Insert toolbar:

Start
application

Start/stop timer

Comment Synchronization
point

Start/stop block
8-1

Adding Features to Scripts
Timers

Individual emulation commands (such as sqlprepare and sqlexec) are timed
automatically. By default, these times are included in TestManager report output.

However, if you want to measure the time it takes a virtual tester to perform an
activity—for example, sending a query to the server and displaying the results—you
insert a timer or a block in the script.

How Timers Work
Think of a timer as a stopwatch that you click on just before you begin to perform
the timed activity, and that you click off when you complete the activity.

For example, suppose you want to time how long it takes to submit a query to a
database server and receive the results. During recording, you would:

1. Start the timer (click Insert → Start Timer) just before you click the button to
send the query. This action inserts the VU emulation command start_time
into the script.

2. Stop the timer (click Insert → Stop Timer) as soon as the results appear. This
action inserts the VU emulation command stop_time into the script.

When you stop a timer, you can reuse that timer’s name in another timer. There is
no practical limit to the number of timers that you can add to a script.

You can nest timers within other timers (by starting and stopping the second timer
before stopping the first timer), and you can overlap timers (by stopping the second
timer after stopping the first timer).

If you do not explicitly stop a timer, no response time is reported for that activity.

You cannot extend a timer over multiple scripts.

The following illustration shows the start_time and stop_time emulation
commands for a timer named query1:
8-2

Timers
Why Use Timers?
Use timers in the following cases:

� Time an overlapping sequence of events. You can insert a start_time
command followed by several stop_time commands. You cannot overlap
blocks (although you can nest them).

� Time a very specific portion of the script. You can insert the start_time and
stop_time commands exactly where you want when you edit the script. You
can insert a block, however, only during recording.

In other cases, however, you may want to use blocks rather than timers. Blocks not
only add timers to a script, but they also add a prefix to each command ID in the
block. This prefix enables you to easily identify emulation commands associated
with a block both in the script and in the report output.

Adding a Timer During Recording
During recording, you can add a timer operation to a script as follows:

1. If the Session Insert floating toolbar is not already displayed, click the Display
Session Insert Toolbar button on the Session Record floating toolbar.

2. Click the Start Timer button.

3. In the Start Timer dialog box, type the timer’s name (40 characters maximum),
and click OK.

4. Perform the timed activity.

5. Immediately after receiving the results generated by the activity, click the Stop
Timer button on the Session Insert floating toolbar.

6. In the Stop Timer dialog box, select the name of the timer you typed in step 3,
and click OK.

When you start and stop a timer during recording, you can view these commands in
the Annotations window.

Adding a Timer During Editing
The Session Insert toolbar adds timers during recording. To add a timer during
editing, type the timer commands into the script.
8-3

Adding Features to Scripts
The following are the timer commands for VU scripts:

� start_time – Starts timing the activity. Insert this command immediately
before the first emulation command for the activity that you are timing. The
start_time measurement includes the think time (if any) for the next
emulation command in the script.

To exclude the think time for an emulation command, insert start_time
after the emulation command and use the _fs_ts read-only variable. For
example:

http_request ["test1.001"] ...

start_time ["timerid"] _fs_ts;

stop_time ["timerid"];

� stop_time – Stops timing the activity. Insert this command immediately after
the last emulation command for the activity that you are timing.

For information on using timers in VU scripts, see the start_time command in
the VU Language Reference.

For information on using timers in Visual Basic scripts, see the TimerStart
method in Rational Test Script Services for Visual Basic.

For information on using timers in SQABasic scripts, see the StartTimer
command in SQABasic Language Reference.

Blocks

A block is a set of contiguous lines of code that you want to make distinct from the
rest of the script. Typically, you use a block to identify a transaction within a script.

A block has the following characteristics:

� A block begins with the comment. In the VU language, a block begins like this:

/* Start_Block "BlockName" */

� Robot automatically starts a timer at the start of the block. In the VU language,
the timer looks like this:

start_time ["BlockName"] _fs_ts;

Typically, the start_time emulation command is inserted after the first
action, but with an argument to use a read-only variable that refers to the start
of the first action.

� The ID of every emulation command in a block is constructed the same way—
that is, by the block name followed by a unique, three-digit autonumber.
For example, in the VU language:
8-4

Blocks
http_header_recv ["BlockName002"] 200;

When you end a block, command IDs are constructed as they were before you
started the block. For example, if the last command ID before the block was
Script025, the next command ID after the block will be Script026.

� A block ends with a stop_time command plus a comment. For example, in
the VU language:

stop_time ["BlockName"]; /* Stop_Block */

A script can have up to 50 blocks.

When you end a block, Robot automatically ends the current block. In other words,
blocks can be nested, but they cannot be overlapped. For example:

You cannot extend a block over multiple scripts. If you attempt to split a script in the
middle of a block, Robot ends the block when it ends the initial script.

Why Use Blocks?
You might want to use blocks for the following reasons:

� To associate the block and timer names with the emulation command that
performs the transaction.

� To include the block name in TestManager reports, thus enabling you to filter
the reports with the block name.

� To make the script easier to read, and to provide an immediate context for a line
within the block through command IDs.

Valid blocks Invalid blocks

Block1Start Block1Start

Block2Start Block2Start

Block2Stop Block1Stop

Block1Stop Block2Stop
8-5

Adding Features to Scripts
Adding a Block
To insert a block into a script:

1. If the Session Insert floating toolbar is not already displayed, click the Insert
button on the Session Record floating toolbar.

2. Click the Start Block button at that point in the script where you want the block
to begin—for example, just before you start to record a transaction.

3. Type the block name.

Robot uses this name as the prefix for all command IDs in the block. The
maximum number of characters for a command ID prefix is seven.

4. Click OK.

5. Record all of the client requests in the block.

6. Click the Stop Block button to end the current block, and click OK.

7. Continue recording the other sections of the script.

When you start and stop a block during recording, the commands are reported as
annotations in the Annotations window.

Nesting Blocks
To nest blocks, click Start Block on the Session Insert floating toolbar to start a new
block without explicitly ending the current block.

When you nest blocks:

� Robot automatically starts a timer at or near the beginning of the second block.

� Timing continues on the first block (in other words, a stop timer command is
not inserted for the first block).

� The second block’s name replaces the first block’s name as the prefix for
emulation commands.

NOTE: When you end a block, you always end the current block. If you are
nesting blocks, you cannot specify which block you want to end—the Stop Block
command always applies to the innermost block. For more information, see
Nesting Blocks on page 8-6.

NOTE: You can add a block only during recording, not during editing.
8-6

Blocks
If you have nested blocks and you click Stop Block:

� Robot inserts a stop timer command to stop timing the current block.

� The next block up in the hierarchy becomes the current block (that is, its name
is used as the prefix for emulation commands). Timing continues on this block
plus other blocks that may be above it in the nesting hierarchy.

Example of Nested Blocks
The following VU language example contains three blocks—blockA, blockB,
and blockC:

/* blockA begins with a Start Block command */
/* Start_Block "blockA" */
start_time ["blockA"];
... /* Perform transaction in blockA */
http_nrecv ["blockA022"] 100 %% ; /* 411/8147 bytes */
http_disconnect(img4_yahoo_com_80_5);

/* blockB begins with a second Start Block command */
/* Start_Block "blockB" */
start_time ["blockB"];
/* Perform transaction in blockB */
http_nrecv ["blockB012"] 100 %% ; /* 5812 bytes */
http_disconnect(D141_217_90_3_80);

/* blockC begins with a third Start Block command */
/* Start_Block "blockC" */
start_time ["blockC"];
/* Perform transaction in blockC */
http_nrecv ["blockC054"] 100 %% ; /* 4577 bytes */
http_disconnect(D141_217_90_3_80_17);

/* A Stop Block command ends the current block (blockC) */
stop_time ["blockC"]; /* Stop_Block */
moe_si_umich_edu_80 = http_request ["blockB013"] ...;
... /* Resume blockB transaction */
http_nrecv ["blockB018"] 100 %% ; /* 5076 bytes */

http_disconnect(moe_si_umich_edu_80);

/* A second Stop Block command ends the current block (blockB) */

stop_time ["blockB"]; /* Stop_Block */

ntdwwaag_v1_compuserve_com_80_38 = http_request ["BlockA023"]...;

... /* Resume blockA transaction */

http_nrecv ["BlockA031"] 100 %% ; /* 3791/3787 bytes */

http_disconnect(ntdwwaag_v1_compuserve_com_80_38);

/* A third Stop Block command ends the current block (blockA) */

stop_time ["blockA"]; /* Stop_Block */
8-7

Adding Features to Scripts
Synchronization Points

A synchronization point lets you coordinate the activities of a number of virtual
testers by pausing the execution of each tester at a particular point—the
synchronization point—until one of the following events occurs:

� All virtual testers associated with the synchronization point arrive at the
synchronization point.

� A timeout period is reached before all virtual testers arrive at the synchronization
point. You specify the timeout period in the TestManager Synchronization
Point dialog box.

� You manually release the virtual testers while monitoring a suite run in
TestManager.

When one of the above events occurs, TestManager releases the virtual testers,
allowing them to continue performing the transaction.

How Synchronization Points Work
At the start of a test, all virtual testers begin executing their assigned scripts. They
continue to run until they reach the synchronization point. In a script, a
synchronization point is the command sync_point (VU script) or
SQASyncPointWait (SQABasic script). In a suite, a synchronization point is a time
specified in the suite.

The following figure illustrates a synchronization point in a script:

The virtual testers pause at the synchronization point until TestManager releases
them. Typically, TestManager releases synchronized virtual testers when they all
arrive at the synchronization point.

Virtual users running
simultaneously

Virtual users reach the
synchronization point1 2

sync_point
8-8

Synchronization Points
Why Use Synchronization Points?
By synchronizing virtual testers to perform the same activity at the same time, you
can make that activity occur at some particular point of interest in your test—
for example, when the application-under-test sends a query to the server.

Typically, synchronization points that you insert into scripts are used in conjunction
with timers to determine the effect of varying workload on the timed activity. For
example, to determine workload on data retrieval, you could take the following
general steps:

1. While recording the script (named VU1 in this example) that will submit the
query and display the result, perform the following actions:

a. Insert a synchronization point named TestQuery into the script.

b. Click the Start Block button (see page Adding a Block on page 8-6).

The block times the transaction you are about to perform. The block also
associates the block and timer names with the name of the emulation command
that performs the transaction.

c. Submit the query and wait for the results to be displayed.

d. Click the Stop Block button.

2. While recording the virtual tester that will provide the workload, insert
another TestQuery synchronization point just before you begin to record
the activity that provides the load—for example, just before you click the button
to submit an order form. Name this script VU2.

3. Add VU1 and VU2 to a suite.

4. Run the suite a number of times, each time using a different number of the VU2
virtual testers. However, you only need one VU1 user in each test.

Theoretically, as the number of synchronized VU2 virtual testers increases, the
time reported by the VU1 timer should also increase.

In this example, the TestQuery synchronization point ensures that:

� All VU2 virtual testers submit their forms at the same time—thereby providing
maximum concurrent workload.

� The VU1 virtual tester submits its query at the same time that the VU2 virtual
testers are loading the server—thereby providing maximum workload at a
critical time.
8-9

Adding Features to Scripts
Inserting Synchronization Points
You can insert a synchronization point into a script (through Robot) or into a suite
(through TestManager).

� Into a script – You can insert a synchronization point into a script in one of the
following ways:

– During recording, through the Sync Point toolbar button or through the
Insert menu.

– During script editing, by manually typing the synchronization point
command name into the script.

Insert a synchronization point into the script to control exactly where the script
pauses execution. For example, you can insert a synchronization point command just
before you send a request to a server.

You should also use this method if the synchronization point will depend upon some
logic that you add to the script during editing.

� Into a suite – You can insert a synchronization point into a suite through the
TestManager Synchronization Point dialog box.

Insert a synchronization point into the suite to pause execution before or
between scripts rather than within a script. In addition, inserting a
synchronization point into a suite offers these advantages:

– You can easily move the location of the synchronization point without
having to edit a script.

– The synchronization point is visible within the suite rather than hidden.

A script can have multiple synchronization points, each with a unique name. The
same is true of a suite. A given synchronization point name can be referenced in
multiple scripts and/or suites.

The following sections describe the various ways to insert synchronization points.

Inserting a Synchronization Point During Recording
To insert a synchronization point into a script during recording:

1. If the Session Insert floating toolbar is not already displayed, click the Insert
button on the Session Record floating toolbar.
8-10

Synchronization Points
2. Click the Sync Point button immediately before you begin to record the activity
that you are synchronizing.

For example, to synchronize multiple virtual testers so that they all submit a
query at the same time, first insert the synchronization point, and then perform
the user action that sends the query to the server.

3. Type the synchronization point name.

4. Click OK.

When you insert a synchronization point during recording, the command is reported
as an annotation in the Annotations window.

Inserting a Synchronization Point During Editing
You can only use the Session Insert toolbar to insert a synchronization point into a
script during recording. To insert a synchronization point during editing, type a
synchronization point command into a script.

For information on inserting synchronization points in VU scripts, see the
sync_point command in the VU Language Reference.

For information on inserting synchronization points in Visual Basic scripts, see the
SyncPoint method in Rational Test Script Services for Visual Basic.

For information on inserting synchronization points in SQABasic scripts, see the
SQASyncPointWait command in SQABasic Language Reference.

Inserting a Synchronization Point into a Suite
When you insert a synchronization point into a suite, you can do more than simply
assign a synchronization point name to a script. For example:

� You can specify whether you want the virtual testers to be released at the same
time or at different times.

If the virtual testers are to be released at different times (that is, in a staggered
fashion), you can specify the minimum and maximum times within which all
virtual testers must be released.

� You can specify a timeout period.

For more information about inserting a synchronization point into a suite, see Using
Rational TestManager.
8-11

Adding Features to Scripts
Release Times and Timeouts for Synchronization Points in Test Scripts
You cannot define minimum and maximum release times or timeout periods for
synchronization points that you insert into scripts (as you can for synchronization
points that you insert into suites). By default:

� Virtual testers held at a script-based synchronization point are released
simultaneously.

� There is no time limit to how long virtual testers can be held at the
synchronization point.

However, if a synchronization point in a suite has a release time range and timeout
period defined for it, the release times and timeout period apply to all
synchronization points of that same name—even if a synchronization point is
in a script.

Scope of a Synchronization Point
The scope of a synchronization point includes all scripts and all user groups that
reference a particular synchronization point name.

For example, suppose a suite contains the following user groups:

� A Data Entry user group of 75 virtual testers. This user group runs a script
containing the synchronization point Before Query.

� An Engineering user group of 10 virtual testers. This user group runs a different
script than the Data Entry groups runs. But this script also contains a
synchronization point named Before Query.

� A Customer Service user group of 25 virtual testers. This user group runs a
script that contains no synchronization points. However, the user group does
have a synchronization point defined for it. This synchronization point is also
named Before Query.

At suite runtime, TestManager releases the virtual testers held at the Before
Query synchronization point when all 110 virtual testers arrive at their respective
synchronization points.
8-12

Comments
Comments

Use comments to document the script and to help you find your way around the
script if you later need to edit it. Comments are ignored at compile time and during
playback.

In VU, a comment begins with the characters /* and ends with the characters */
—for example:

/* This is a VU comment. */

In Visual Basic, comments begin with a single quotation mark:

’This is a Visual Basic comment.

In SQABasic, comments begin with a single quotation mark or the rem statement:

’This is an SQABasic comment.

Rem This is an SQABasic comment.

Adding Comments During Recording
To insert a comment into a script during recording:

1. If the Session Insert floating toolbar is not already displayed, click the Insert
button on the Session Record floating toolbar.

2. Click the Comment button at that point in the script where you want to insert
the comment.

3. Type your comment in the Comment dialog box (60 characters maximum), and
then click OK.

When you add a comment during recording, the comment is reported as an
annotation in the Annotations window.

Adding Comments During Editing
To add a comment during editing, type the comment directly into the script.

Comments that you type in manually during editing are not limited to the
60-character maximum that applies when you add comments during recording.
8-13

Adding Features to Scripts
Using the Insert Menu

The preceding sections describe how to use the Session Insert floating toolbar to
add timers, synchronization points, blocks, and comments to a script during
recording.

During recording, you can also use the Robot Insert menu to add these features.

If Robot is minimized while you are recording (its default state), click the
Open Robot Window button on the Session Record floating toolbar. This button
restores the Robot window, letting you access the Insert menu.
8-14

� ��� �� Part IV

Playing Back GUI Scripts

� ��� �� C H A P T E R 9

Playing Back GUI Scripts
This chapter explains how to play back GUI scripts. It includes the following topics:

� Playback phases

� Restoring the test environment before playback

� Setting GUI playback options

� Playing back a GUI script

� Viewing results in the TestManager log

� Analyzing verification point results with the Comparators

Playback Phases

When you play back a script, Rational Robot repeats your recorded actions and
automates the software testing process. With automation, you can test each new
build of your application faster and more thoroughly than by testing it manually.
This decreases testing time and increases both coverage and overall consistency.

There are two general phases of script playback:

� Test development phase

� Regression testing phase

These phases are described in the following sections.
9-1

Playing Back GUI Scripts
Test Development Phase
During the test development phase, you play back scripts to verify that they work as
intended, using the same version of the application-under-test that you used to
record. This validates the baseline of expected behavior for the application.

The following table shows the general process for the test development phase.

Regression Testing Phase
During the regression testing phase, you play back scripts to compare the latest
build of the application-under-test to the baseline established during the test
development phase. Regression testing reveals any differences that may have been
introduced into the application since the last build. You can evaluate these
differences to determine whether they are actual defects or deliberate changes.

Task See

1. Prepare for playback by restoring the test
environment and setting the playback options.

Restoring the Test Environment Before
Playback on page 9-3

Setting GUI Playback Options on
page 9-3

2. Play back each script against the same version of the
application-under-test that was used for recording to
verify that it performs as intended.

Playing Back a GUI Script on page
9-18

3. Analyze the results using the TestManager log. Viewing Results in the TestManager
Log on page 9-20 and the
TestManager Help.

4. Use the appropriate Comparator to determine the
cause of verification point failures.

Analyzing Verification Point Results
with the Comparators on page 9-21
and the Comparators Help.

5. If the script fails, edit, debug, or rerecord the script
so that it runs as required.

Chapter 5, Editing, Compiling, and
Debugging Scripts

6. Group individual scripts into a comprehensive shell
script. Play back the shell script to verify that the
scripts work properly. If necessary, edit, debug, or
re-record the scripts.

Creating Shell Scripts to Play Back
Scripts in Sequence on page 2-25
9-2

Restoring the Test Environment Before Playback
The following table shows the general process for the regression testing phase.

Restoring the Test Environment Before Playback

The state of the Windows environment as well as your application-under-test can
affect script playback. If there are differences between the recorded environment
and the playback environment, playback problems can occur.

Before playing back a script, be sure that your application-under-test is in the same
state it was in when you recorded the script. Any applications and windows that
were open, active, or displayed when you started recording the script should be
open, active, or displayed when you start playback. In addition, be sure that any
relevant network settings, active databases, and system memory are in the same state
as when the script was recorded.

Setting GUI Playback Options

GUI playback options provide instructions to Robot about how to play back scripts.

Task See

1. Prepare for playback by restoring the test
environment and setting the playback options.

Restoring the Test Environment Before
Playback on page 9-3

Setting GUI Playback Options on page
9-3

2. Play back each script against a new build of the
application-under-test.

Playing Back a GUI Script on page 9-18

3. Analyze the results using the TestManager log. Viewing Results in the TestManager Log
on page 9-20 and the TestManager
Help.

4. Use the appropriate Comparator to determine
the cause of verification point failures. If failed
verification points are the result of intentional
changes to the application-under-test, update the
baseline data using the appropriate Comparator.

Analyzing Verification Point Results with
the Comparators on page 9-21 and the
Comparators Help.

5. Use the log to enter defects. The TestManager Help

6. If necessary, revise the scripts to bring them
up-to-date with new features in the
application-under-test. Play back the revised
scripts against the current build and then
reevaluate the results.

Chapter 5, Editing, Compiling, and
Debugging Scripts
9-3

Playing Back GUI Scripts
You can set these options either before you begin playback or early in the playback
process.

To set GUI playback options:

� Open the GUI Playback Options dialog box by doing one of the following:

– Before you start playback, click Tools > GUI Playback Options.

– Start playback by clicking the Playback Script button on the toolbar. In the
Playback dialog box, click Options.

Acknowledging the Results of Verification Point Playback
By selecting the Acknowledge results check box, you can have Robot display a
results message box each time it plays back a verification point.

For example, in the following figure, the message box indicates that the verification
point named Object Properties failed during playback. You must click OK before
playback continues. During the test development phase, this lets you interactively
view the playback results of each verification point.

For detailed information about
an item, click the question
mark, and then click the item.

Set the options on each tab.

Click OK or change
other options.

Click OK to continue playback.
9-4

Setting GUI Playback Options
During the regression testing phase, you usually play back scripts in unattended
mode. By clearing the Acknowledge results check box, you can prevent Robot
from displaying this message box. After the script plays back, you can view the
results of all verifications points in the log.

To set this option:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. In the Playback tab, do one of the following:

– Select Acknowledge results to have Robot display a pass/fail result message
box for each verification point. You must click OK before playback
continues.

– Clear Acknowledge results so that Robot does not interactively display
pass/fail results.

3. Click OK or change other options.

Setting Log Options for Playback
A log is a file that contains the record of events that occur while a script is playing
back. A log includes the results of the script and of all verification points. You view
logs in TestManager. (For more information, see the TestManager Help)

To set the log options:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. Click the Log tab.

3. To output the playback results to the log so you can view them, select Output
playback results to log.

If you clear this, you cannot to view the playback results in the log.
9-5

Playing Back GUI Scripts
4. To have the log appear automatically after playback is complete, select View log
after playback.

If you clear this, you can still view the log after playback by clicking Tools >
Rational Test > TestManager, and then opening the log.

5. To have Robot prompt you before it overwrites a log, select Prompt before
overwrite log.

6. Click one of the following:

Specify log information at playback – At playback, displays the Specify Log
Information dialog box so that you can specify the build, log folder, and log.

Use default log information – At playback, uses the same build and log folder
that was used during the last playback. Uses the script name as the log name.

7. Click OK or change other options.

Setting Wait State and Delay Options
In most cases, it is important for the playback of a GUI script to be synchronized
with the application-under-test, so that Robot executes commands in the script
only after the application is ready to receive them. Robot attempts to maintain this
synchronization automatically for you using several techniques.

You can refine the synchronization by setting the following options in the GUI
Playback Options dialog box:

� Wait states for windows

� Delays between commands

� Delays between keystrokes

These options are described in the following sections.

NOTE: If a script needs to wait before executing a particular command, you can
insert a delay for just that command. (For information, see Inserting Delay Values
on page 3-12.) If you are testing an application in which time estimates are not
predictable, you can define a wait state for a verification point so that playback
waits based on specific conditions rather than on absolute time. (For information,
see Setting a Wait State for a Verification Point on page 4-8.)
9-6

Setting GUI Playback Options
Setting Wait State Options
During playback, Robot waits for windows (including dialog boxes) to appear
before executing a user action or verification point command. You can specify how
often Robot checks for the existence of a window and how long it waits before it
times out.

For example, suppose that Robot is playing back a script with the following lines:

StartApplication “MyVBApp.exe”
Window SetContext, “Name=Form1”,””
Pushbutton Click, “Name=Command5”

This example specifies that Robot should start an application, find a window on the
desktop named “Form1”, find a pushbutton named “Command5”, and generate a
click on that button. However, suppose Robot gets to the SetContext line in the
script and fails to find a window named “Form1”. This may not necessarily be an
error — the application may not yet have started up and created the window. In this
case, Robot keeps looking for the window for a specified period of time.

By default, if Robot cannot find a window during playback, it waits for 2 seconds
and then looks for it again. If it still cannot find the window after 30 seconds, it
times out and returns a command failure indication to the script. Script execution
continues or stops based on the On script command failure setting in the Error
Recovery tab of the GUI Playback Options dialog box.

You can change the default values for the retry time and the timeout by changing
the wait state options.

To set the wait state options:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. Click the Wait State tab.

3. To specify how often Robot checks for the existence of a window, type a
number in the Retry test every box.

4. To specify how long Robot waits for a window before it times out, type a
number in the Timeout after box.

5. Click OK or change other options.
9-7

Playing Back GUI Scripts
Setting Delay Options for Commands and Keystrokes
By default, Robot pauses 100 milliseconds between each user action command and
between each verification point command during playback. If you find that Robot
consistently gets ahead of your application-under-test during playback, you can
increase the time that Robot waits between these commands.

Also, if you find that your application-under-test does not see all of the keystrokes
that Robot sends it, you can have Robot wait between sending keystrokes to the
application.

To set the delay options for commands and keystrokes:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. Click the Playback tab.

3. Click Delay between commands. Type the delay value.

This is the delay between each user action command and between each
verification point command during playback.

4. Click Delay between keystrokes. Type the delay value.

5. Click OK or change other options.

Setting Error Recovery Options
Use the error recovery options to specify how Robot handles script command
failures and verification point failures.

To set the error recovery options:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

NOTE: This synchronization is used only in Object-Oriented Recording. In
contrast, low-level scripts are processed in real time. They play back at the same
speed at which they were recorded and do not use automatic wait settings.
9-8

Setting GUI Playback Options
2. Click the Error Recovery tab.

3. To specify what Robot should do if it encounters a failure, click one of the
following options under both On script command failure and On verification
point failure:

Continue execution – Continues playback of the script.

Skip current script – Terminates playback of the current script. If the script with
the failure was called from another script, playback resumes with the command
following the CallScript command.

Abort playback – Terminates playback of the current script. If the script with
the failure was called from another script, the calling script also terminates.

4. Click OK or change other options.

Failures are stored in the log.

Setting Unexpected Active Window Options
An unexpected active window is any unplanned window that appears during script
playback that prevents the expected window from being made active (for example,
an error message from the network or application-under-test). These windows can
interrupt playback and cause false failures.

To set options to specify how Robot responds to unexpected active windows:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. Click the Unexpected Active Window tab.
9-9

Playing Back GUI Scripts
3. To have Robot detect unexpected active windows and capture the screen image
for viewing in the Image Comparator, select Detect unexpected active
windows and Capture screen image. (For information, see the Image
Comparator Help.)

4. Specify how Robot should respond to an unexpected active window:

Send key – Robot sends the specified keystroke: ENTER, ESCAPE, or any
alphabetic key (A through Z).

Select pushbutton with focus – Robot clicks the push button with focus.

Send WM_CLOSE to window – Robot sends a Windows WM_CLOSE message.
This is equivalent to clicking the Windows Close button.

5. Specify what Robot should do if it cannot remove an unexpected active window:

Continue running script – Robot continues script playback with the next
command in the script after the one being processed when the unexpected active
window appeared. Playback continues even if the unexpected active window
cannot be removed. This may result in repeated script command failures.

Skip current script – Robot halts playback of the current script. If the script that
detected the unexpected active window was called from within another script,
playback resumes with the script command following the CallScript
command.

Abort playback – Robot halts playback completely. If the script that detected the
unexpected active window was called from within another script, the calling
script also stops running.

6. Click OK or change other options.
9-10

Setting GUI Playback Options
Setting Diagnostic Tools Options
You can use the Rational diagnostic tools — Rational Purify, Quantify, and
PureCoverage — to collect diagnostic information about an application during
playback of a Robot script.

After playback, Robot can integrate the diagnostic tool’s results into the Robot log,
so that you can view all of the playback results in one place. You can choose to show
any combination of errors, warnings, and informational messages. You can then
double-click a result in the log to open the script in Robot and the appropriate file in
the diagnostic tool.

About Purify and Robot
Robot with playback under Purify works with Visual C/C++ applications on
Windows NT 4.0 and Windows 2000.

Purify detects and diagnoses memory access errors and memory leaks. Without
Purify, the visible symptoms (crashes, malfunctions, or incorrect results) of these
kinds of errors often do not show up until long after the erroneous code was
executed, and in a short test, often not at all. Purify detects and pinpoints the cause
of the error as the code is executed.

Where applicable, Purify adds significant value to Robot, because it finds many
otherwise hidden defects in the application code.

About Quantify and Robot
Robot with playback under Quantify works with Visual C/C++, Visual Basic, and
Java applications on Windows NT 4.0 and Windows 2000.

Quantify profiles the time spent in each module, function, line, and block of code,
and detects performance bottlenecks within an application. Once bottlenecks are
identified, you can focus on the inefficient parts of the code, and substitute
alternative implementations or algorithms to improve performance.

By using a Robot script to drive the application, in conjunction with Quantify, you
ensure that a repeatable test is measured for each iteration of performance
improvement. This minimizes the risk of comparing different things when
contrasting a run before and after a possible performance-enhancing code-change.

About PureCoverage and Robot
Robot with playback under PureCoverage works with Visual C/C++, Visual Basic,
and Java applications on Windows NT 4.0 and Windows 2000.

PureCoverage is a code coverage analyzer that reports which modules, functions,
and lines of code were and were not executed in any run or collection of runs.
9-11

Playing Back GUI Scripts
Using PureCoverage to monitor a script reveals how comprehensively that script
exercises the application-under-test, and can provide helpful information about
which code paths are taken under particular scenarios.

How the Diagnostic Tools Work with Robot
For Visual C/C++ and Visual Basic applications, these diagnostic tools work best
when the applications have been compiled with debug information (in other words,
when a .pdb file is available). These tools use the Rational Object Code Insertion
(OCI) technology to insert instrumentation probes into the executable program for
the application before it runs. When you select a diagnostic tool in the GUI
Playback Options dialog box, you instruct Robot to call that tool to instrument the
application that is to be started, and then run the instrumented application in place
of the original.

For Java applications, Quantify and PureCoverage put the JVM into a special mode
to enable event monitoring when the application runs during playback. When you
select a diagnostic tool in the GUI Playback Options dialog box, you instruct Robot
to call that tool to enable event monitoring.

To use any of the diagnostic tools with Robot, start the application as follows when
recording:

� Start Visual C/C++ and Visual Basic applications with the Start Application
button or menu command.

� Start Java applications with the Start Java Application button or menu
command.

For more information, see Starting an Application on page 3-1.

How the Start Application and Diagnostic Tools Options Interact
When you record a script, you use the Start Application or Start Java Application
dialog boxes to indicate how you want each application to start. These dialog boxes
includes options for starting the application under a diagnostic tool during playback.
(For more information, see Starting an Application on page 3-1.)

NOTE: There is no support for using Robot to play back Java applets under these
diagnostic tools. For information about the environments that are supported
directly in these tools, see the documentation for the appropriate product.
9-12

Setting GUI Playback Options
If you select a diagnostic tool during recording, that selection overrides the tool
selected in the GUI Playback Options dialog box.

However, instead of selecting a diagnostic tool during recording, you can select
Using settings from GUI Playback Options dialog box. In that case, you can
specify the diagnostic tool for playback in the GUI Playback Options dialog box.

Setting the Diagnostic Tools Options
To set options to specify the diagnostic tool to be used during playback:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. Click the Diagnostic Tools tab. Then do the following:

Overrides the tool selected
in the GUI Playback Options
dialog box.

Starts application using the
tool selected in the GUI
Playback Options dialog box.

a. Click the diagnostic tool
under which the application
should run. The options are
enabled if you have the tools
installed.

c. Select the type of
information to show in the
log.

b. Optionally, change this
value. This multiplies wait
state and delay values.
9-13

Playing Back GUI Scripts
For Visual C/C++ and Visual Basic applications, the instrumentation added by
these tools causes the application-under-test to run considerably slower than the
uninstrumented program. For Java applications, the event monitoring causes
the application to run slower than usual. If you select Set timeout multiplier
value, Robot compensates for this effect by multiplying wait state values for
windows, wait state values for verification points, and delay values (between
user action and verification point commands, and between keystrokes) by the
specified value. If you need to fine-tune the wait states and delays further, see
Setting Wait State and Delay Options on page 9-6.

Set timeout multiplier value is not used if the application is not run under a
diagnostic tool.

3. If you selected any of the log check boxes in step 2c, click the Log tab and select
both Log management check boxes.

If Output playback results to log is cleared, the diagnostic tool opens (instead
of the log) after you play back the script. (For more information about the log
options, see Setting Log Options for Playback on page 9-5.)

4. Click OK or change other options.

You are now ready to play back the script. Keep in mind that the script will run
slower than usual because of the instrumentation or event monitoring added by
these tools.

NOTE: If a diagnostic tool was selected when the application was started
during recording, that tool overrides the tool selected in the GUI Playback
Options dialog box.
9-14

Setting GUI Playback Options
Viewing the Playback Results
After you play back the script, the results appear in the log.

A summary line at the end of the log indicates the total number of errors, warnings,
and informational messages for each tool. The highlighted line in the figure above is
an example of a summary line.

Double-click a log event to open up both:

� The script in Robot, near the line that was executing when the error was
reported.

� The appropriate file in the diagnostic tool, so that you can view the details.

If you double-click the summary line, and if there are multiple files involved in the
summary, then all of the files open. This happens if the script plays back more than
one application under that tool.
9-15

Playing Back GUI Scripts
Setting the Trap Options to Detect GPFs
Robot uses the Trap utility to detect the occurrence of General Protection Faults
(GPF) and the location of offending function calls during playback. If a GPF is
detected, Robot updates a log file that provides information about the state of the
Windows session that was running.

Important Notes
� To use the Trap utility, you must include Common Object File Format

(COFF) information in your application when you link. For instructions, see
the documentation for your development environment.

� Trap, Visual C++, and Dr. Watson (from Microsoft), WinSpector (from
Borland), and Crash Analyzer (from Symantec) use the same Windows system
calls to trap faults. You cannot use more than one error trapping program at the
same time.

Uses for Trap
The occurrence of a GPF usually results in a crash of the running application and
may also result in a loss of data. Using Trap, you can:

� Capture information about GPFs.

� Write the state of your environment to a log file when a GPF is detected.

� Specify the type of information to write to the log file.

� Automatically restart Windows or call your own error handling sub procedure
before performing any other action.

� Save an audit of the function where the fault occurred in the failing program.

The Trap utility detects and traps the following events during playback:

� UAE: General Protection Fault #13

� Stack Overflow: Fault #12

� Invalid Op Code: Fault #6

� Divide by Zero: Fault #0

If one of these errors occurs, Trap appends the error data to the existing Sqatrap.log
file in the Rational installation directory, or creates a new file if one does not exist.
(For more information, see Analyzing Results in the Sqatrap.log File on page 9-17.)
9-16

Setting GUI Playback Options
Starting Trap

To automatically start Trap during playback:

1. Open the GUI Playback Options dialog box. (See Setting GUI Playback Options
on page 9-3.)

2. Click the Trap tab.

3. Select Start Trap to enable the other options.

4. To include the contents of the stack for non-current tasks, select Stack trace.

5. To include the modules and class list information, select Module and class list.

6. Click one of the following to specify what Trap should do after detecting a GPF:

Restart Windows session – Trap restarts Windows.

Call user-defined sub procedure – Trap calls the sub-procedure in the module
that you specify. Select this option to specify your own custom SQABasic error
handling. Type the names of the library source file (with an.sbl extension) and
the sub-procedure.

7. Click OK or change other options.

Analyzing Results in the Sqatrap.log File
If you select the Start Trap option and an error occurs during playback, Robot
appends the error data to the existing Sqatrap.log file in the Rational installation
directory, or creates a new file if one does not exist. (To start with a clean
Sqatrap.log file, delete the old file.) This file provides information about the state of
the Windows session that was running.

NOTE: Before you start Trap, see Important Notes on page 9-16.
9-17

Playing Back GUI Scripts
The Sqatrap.log file can contain a variety of information about failure events. The
following failure information is always written to Sqatrap.log:

� Contents of the stack for the current task

� Names of functions that were called just before the error occurred

� Contents of CPU registers

� Date/Time stamp and Fault Number

Other information can be written to Sqatrap.log depending on settings in the Trap
tab of the GUI Playback Options dialog box.

To see a sample Sqatrap.log file, see Sqatrap.log file in the Robot Help Index.

Playing Back a GUI Script

To play back a GUI script:

1. Prepare for playback by restoring the test environment. (For information, see
Restoring the Test Environment Before Playback on page 9-3.)

2. Set your playback options. You can also set these options after you start playback.
(For instructions, see Setting GUI Playback Options on page 9-3.)

3. Click the Playback Script button on the toolbar.

Select a query to filter
the list of scripts.

Modify a query.

Show names of scripts.

Show details of scripts.

Change GUI playback options. Change the properties of the
selected script.

Type a name or select
a script from the list.
9-18

Playing Back a GUI Script
4. Type a name or select it from the list.

To change the list, select a query from the Query list.

5. To change the playback options, click GUI Options. When finished, click OK.

6. Click OK to continue.

7. If the Specify Log Information dialog box appears, fill in the dialog box and
click OK.

This dialog box appears if you selected Specify log information at playback in
the Log tab of the GUI Playback Options dialog box.

For information about builds, log folders, and logs, see the TestManager Help.

8. If a prompt appears asking if you want to overwrite the log, do one of the
following:

– Click Yes to overwrite the log.

– Click No to return to the Specify Log Information dialog box. Change the
build, log folder, and/or log information.

– Click Cancel to cancel the playback.

This prompt appears if you selected Prompt before overwrite log in the Log tab
of the GUI Playback Options dialog box.

When you begin playback, the Robot main window is minimized by default. You
can change this behavior in the Playback tab of the GUI Playback Options dialog
box.

After playback, you can see the results in the log, as described in the next section.

... or create a new build.
a. Select a build...

b. Select a log folder...

c. Accept the default log
name or type a new name.

... or create a new log folder.

NOTE: To stop playback of a script, press the F11 key. Robot recognizes the F11
key only when playing back object-oriented commands. The F11 key does not
stop playback during low-level actions.
9-19

Playing Back GUI Scripts
Viewing Results in the TestManager Log

After playback finishes, you can use the log to view the playback results, including
verification point failures, procedural failures, aborts, and any additional playback
information.

The following table gives you more information about the log.

For detailed information about the log, see the TestManager Help.

To Do this For information, see

Control the log
information and display

Set options in the Log tab of the
GUI Playback Options dialog
box.

Setting Log Options for
Playback on page 9-5

Play back a script under
Purify, Quantify, or
PureCoverage, and see
the results in the log

Set options in the Diagnostic
Tools tab of the GUI Playback
Options dialog box.

Setting Log Options for
Playback on page 9-5

Analyze a failure in a
Comparator

Select a verification point failure
in the log and click View >
Verification Point.

The next section, Analyzing
Verification Point Results with
the Comparators

Enter defects into
Rational ClearQuest
from the log

Select the failed event in the log
and click Defect > Generate.

TestManager Help
9-20

Analyzing Verification Point Results with the Comparators
Analyzing Verification Point Results with the Comparators

Use the Comparators to analyze differences between the baseline verification point
data (the data captured when you created the verification point) and the actual
verification point data (the data captured when you played back the verification
point). The Comparators help you determine whether a failure is a defect or an
intentional change to the application-under-test.

There are four Comparators, as follows:

To open a Comparator from the log:

� In the Log Event column of a log, select a verification point and click View >
Verification Point.

Comparator Description For information see

Object Properties Compares the baseline data to the
data that caused a failure for the
Object Properties verification point.

Object Properties
Comparator Help

Text Compares the baseline data to the
data that caused a failure for the
Alphanumeric verification point.

Text Comparator Help

Grid Compares the baseline data to the
data that caused a failure for the
following verification points:
Clipboard, Menu, and Object Data.

Grid Comparator Help

Image Compares the baseline image to the
image that caused a failure for the
Window Image or Region Image
verification points. Also lets you view
unexpected active windows that
cause a failure during playback.

Image Comparator Help
9-21

Playing Back GUI Scripts
As the following figure shows, selecting an Object Properties verification point in
the log and clicking View > Verification Point opens the Object Properties
Comparator.

NOTE: You can also open a Comparator from Robot by double-clicking a
verification point in the Asset (left) pane of a Script window. However, when you
open a Comparator this way, you can view only the baseline file. To compare the
baseline and actual files, you must open the Comparator through the log.

... to analyze the
results in a
Comparator.

Select a verification point in the log and click View Verification Point....
9-22

� ��� �� C H A P T E R 10

Working with Datapools
This chapter describes how to create and manage datapools. It includes the
following topics:

� What is a datapool

� Planning and creating a datapool

� Data types

� Using datapools with session scripts

� Using datapools with GUI scripts

You should familiarize yourself with the concepts and procedures in this chapter
before you begin to work with datapools.

What Is a Datapool?

A datapool is a test dataset. It supplies data values to the variables in a script during
script playback.

Datapools let you automatically pump test data to virtual testers under high-volume
conditions that potentially involve hundreds of virtual testers performing thousands
of transactions.

Typically, you use a datapool so that:

� Each virtual tester that runs the script can send realistic data (which can include
unique data) to the server.

� A single virtual tester that performs the same transaction multiple times can send
realistic data to the server in each transaction.

NOTE: This chapter describes datapool access from scripts played back in a
TestManager suite. For information about datapool access from GUI scripts
played back in Robot, see the online help for Rational Robot.
10-1

Working with Datapools
If you do not use a datapool during script playback, each virtual tester sends the same
literal values to the server (the values that were captured when you recorded the
script).

For example, suppose you record a session script that sends order number 53328 to
a database server. If 100 virtual testers run this script, order number 53328 is sent to
the server 100 times. If you use a datapool, each virtual tester can send a different
order number to the server.

Datapool Tools
You create and manage datapools with either Robot or TestManager, as follows:

This chapter describes how to perform all of these activities.

Activity Robot TestManager

Automatically generate datapool
commands in a session script. •
Create a datapool and automatically
generate datapool values. • •

Edit the DATAPOOL_CONFIG
section of a session script. •

Edit datapool column definitions
and datapool values. • •

Create and edit datapool data types. •
Perform datapool management
activities such as copying and
renaming datapools.

•

Import and export datapools. •
Import data types. •
10-2

What Is a Datapool?
Managing Datapool Files
A datapool consists of two files:

� Datapool values are stored in a text file with a .csv extension.

� Datapool column names are stored in a specification(.spc) file. The Robot or
TestManager software is always responsible for creating and maintaining this
file. You should never edit this file directly.

.csv and .spc files are stored in the Datapool directory of your Robot project.

Unless you import a datapool, the Robot or TestManager software automatically
creates and manages the .csv and .spc files based on instructions you provide through
the user interface.

If you import a datapool, you are responsible for creating the .csv file and populating
it with data. However, the Rational Test software is still responsible for creating and
managing the .spc file for the imported datapool.

For information about importing datapools, see Using Rational TestManager.

Datapool Cursor
The datapool cursor, or row-pointer, can be shared among all users that access the
datapool, or it can be unique for each user.

Sharing a datapool cursor among all users allows for a coordinated test. Because each
row in the datapool is unique, each user can share the same cursor and still send
unique records to the database.

Also, a shared cursor can be persistent across suite runs. For example, suppose the
last datapool row accessed in a suite run is row 100:

� If the cursor is persistent across suite runs, datapool row access resumes with
row 101 the first time the datapool is accessed in a new suite run.

� If the cursor is not persistent, datapool row access resumes with row 1 the first
time the datapool is accessed in a new suite run.

For information about defining the scope of a cursor, see the description of the
Cursor argument on page 10-15.

NOTE: TestManager automatically copies a .csv file to each Agent computer that
uses it. If an Agent’s .csv file becomes out-of-date, TestManager automatically
updates it.

NOTE: GUI users can share a cursor when playback occurs in a TestManager
suite, but not when playback occurs in Robot.
10-3

Working with Datapools
Row Access Order
Row access order is the sequence in which datapool rows are accessed at test runtime.

With GUI scripts, you can control the row access order of the datapool cursor
through the sequence argument of the SQABasic SQADatapoolOpen
command.

With session scripts, you can control row access order through the Access Order
setting in the Robot Configure Datapool in Test Script dialog box. (See page 10-16.)

Datapool Limits
A datapool can have up to 150 columns if the Rational Test software automatically
generates the data for the datapool, or 32,768 columns if you import the datapool
from a database or other source. Also, a datapool can have up to 2,147,483,647 rows.

What Kinds of Problems Does a Datapool Solve?
If you play back a script just once during a test run, that script probably does not need
to access a datapool.

But often during a test run, and especially during performance testing, you need to
run the same script multiple times — for example:

� During performance testing, you will probably want to run multiple instances
of a script, so that the script is executed many times simultaneously.
(Remember, a virtual tester is one runtime instance of a script.)

� During functional and performance testing, you will often want to run multiple
iterations of a script, so that the script is executed many times consecutively
(simulating a virtual tester performing the same task over and over).

If the values used in each script instance and each script iteration are the same literal
values — the values you provided during recording — you might encounter
problems at test runtime.

Here are some examples of problems that datapools solve:

� Problem: During recording, you create a personnel file for a new employee, using
the employee’s unique social security number. Each time the script is played
back, there is an attempt to create the same personnel file and supply the same
social security number. The application rejects the duplicate requests.

Solution: Use a datapool to send different employee data, including unique social
security numbers, to the server each time the script is played back.
10-4

Planning and Creating a Datapool
� Problem: You delete a record during recording. During playback, each instance
and iteration of the script attempts to delete the same record, and “Record Not
Found” errors result.

Solution: Use a datapool to reference a different record in the deletion request
each time the script is played back.

� Problem: The client application reads a database record while you record a script
for a performance test. During playback, that same record is read hundreds of
times. Because the client application is well designed, it puts the record in cache
memory, making its retrieval deceptively fast in subsequent fetches. The
response times that the performance test yields will be inaccurate.

Solution: Use a datapool to request a different record each time the script is
played back.

Planning and Creating a Datapool

Here is a summary of the stages involved in preparing a datapool for use in testing.
The order shown is the typical order for planning and creating a datapool for session
scripts:

1. Plan the datapool.

Determine the datapool columns you need. In other words, what kinds of values
(names, addresses, dates, and so on) do you want to retrieve from the datapool
and send to the server?

Typically, you need a datapool column for each script variable that you plan to
assign datapool values to during recording.

For example, suppose your client application has a field called Order Number.
During recording, you type in a value for that field. With session scripts, the
value is automatically assigned to a script variable. During playback, that variable
can be assigned unique order numbers from a datapool column.

This stage requires some knowledge of the client application and the kinds of
data that it processes.

To help you determine the datapool columns you need, record a preliminary
session script. Rational Robot automatically captures all the values supplied to
the client application during recording and lists them in the
DATAPOOL_CONFIG section at the end of the script. For more information, see
Finding Out What Data Types You Need on page 10-9.
10-5

Working with Datapools
2. Generate datapool code.

To access a datapool at runtime, a script must contain datapool commands, such
as commands for opening the datapool and fetching a row of data. With session
scripts, a DATAPOOL_CONFIG section must also be present. This section
contains a variety of information about how the datapool is created and accessed.

Datapool code is generated in either of these ways:

– With session scripts, Robot generates datapool code automatically when you
finish recording a script. Robot is aware of all the variables in the script that
are assigned values during recording, and it matches up each of these
variables with a datapool column.

To have Robot generate datapool commands automatically during
recording, make sure Use datapools is selected in the Generator tab of the
Session Record Options dialog box, and then record the script.

– With GUI scripts, you manually insert the datapool commands and match up
script variables with datapool columns. For information about coding
datapool commands, see Using Datapools with GUI Scripts on page 10-23.

3. Create and populate the datapool.

After the datapool commands are in the script, you can create and populate the
datapool.

To start creating and populating a datapool for a session script you are editing in
Robot, click Edit, then Datapool Information.

If you are creating a datapool for exclusive use by a GUI script, use TestManager
to create and populate the datapool. For more information, see Using Rational
TestManager.

Creating and populating a datapool for a session script involves these
general steps:

– Editing the DATAPOOL_CONFIG section of the script. For example, you
might want to change the default datapool access flags, or exclude a datapool
column from being created for a particular script variable. Or, you can
accept all the default settings that Robot specifies when it creates this section
in a session script.

For information about editing the DATAPOOL_CONFIG section of a script,
see Step 1. Editing Datapool Configuration on page 10-13.

– Defining the datapool columns that you determined you needed during the
planning stage. For example, for an Order Number column, you can specify
the maximum number of characters that an order number can have, and
whether the Order Number column must contain unique values.
10-6

Planning and Creating a Datapool
For information about defining datapool columns, see Step 2. Defining
Datapool Columns and Generating the Data on page 10-19.

You also assign a data type to each datapool column. Data types supply a
datapool column with its values. For information about data types, see Data
Types on page 10-8.

– Generating the data. Once you configure the datapool and define its
columns, you populate the datapool simply by clicking Generate Data.

With Robot, you can create and populate a datapool immediately after recording
or at any other time, as long as the datapool commands are in the script.

The following figure illustrates the three stages of datapool creation:

NOTE: You can also create and populate a datapool file manually and import
it into the project. For more information, see Using Rational TestManager.

In Robot, click Edit
Modify DATAPOOL_CONFIG or accept the defaults.

Plan the Datapool
What datapool columns do you need?
What data type should you assign each column?
Do you need to create data types?

Generate the Code

Select the Use datapools recording option.
Record the transaction(s), and then stop recording.
Robot automatically generates datapool commands.
Robot automatically matches up script variable
names with datapool column names.

Session Scripts

Manually add datapool commands to the script.
Match up script variable names with datapool
columns.

GUI Test Scripts

Create and Populate the Datapool

Datapool Information.

In Robot or TestManager, define datapool columns (including
assigning a data type to each datapool column).
Generate the data.

Session Test Scripts

Session and GUI Test Scripts
10-7

Working with Datapools
Data Types

A datapool data type is a source of data for one datapool column.

For example, the Names - First data type (shipped with Rational Test as a standard
data type) contains a list of persons’ first names. Suppose you assign this data type to
the datapool column FNAME. When Robot automatically generates the datapool, it
populates the FNAME column with all of the values in the Names - First data type.

Here is the relationship between data types, datapool columns, and the values
assigned to script variables during playback:

Standard and User-Defined Data Types
There are two kinds of datapool data types, as follows:

� Standard data types that are included with Rational Test. These data types
include commonly used, realistic sets of data in categories such as first and last
names, company names, cities, and numbers.

For a list of the standard data types, see Appendix C.

� User-defined data types that you create. You must create a data type if none of
the standard data types contains the kind of values you want to supply to a script
variable.

First Name
Data Type

FNAME
Datapool Column

Virtual Tester 1 Virtual Tester 3Virtual Tester 2
FNAME="Frederick" FNAME="Mary" FNAME="Frank"

Charlotte

Frederick
Mary
Frank

Lauren
Eleanor

William
Victor ..., Frederick, ...

..., Mary, ...

..., Frank, ...

..., Lauren, ...

..., Eleanor, ...

..., Charlotte, ...

..., William, ...

..., Victor, ...

..., ..., ...

During datapool generation,
the First Name data type
populates the FNAME
datapool column with values

During playback, the FNAME
column supplies a different
value to the FNAME variable
in each instance of the script
10-8

Data Types
User-defined data types are useful in situations such as:

– When a field accepts a limited number of valid values. For example, suppose
a datapool column supplies data to a script variable named color. This
variable provides the server with the color of a product being ordered. If the
product only comes in the colors red, green, blue, yellow, and brown, these
are the only values that color can be assigned. No standard data type
contains these exact values.

To ensure that the variable is assigned a valid value from the datapool:

1. Before you create the datapool, create a data type named Colors that
contains the five supported values (Red, Green, Blue, Yellow,
Brown).

2. When you create the datapool, assign the Colors data type to the
datapool column COLOR. The COLOR column will supply values to
the script’s color variable.

– When you need to generate data that contains multi-byte characters, such as
are used in some foreign-language character sets. For more information, see
the section Generating Multi-Byte Characters on page 10-12.

Before you create a datapool, find out which standard data types you can use as
sources of data and which user-defined data types you need to create. Although it is
possible to create a data type while you are creating the datapool itself, the process of
creating a datapool will be smoother if you create the user-defined data types first.

Finding Out What Data Types You Need
To decide whether to assign a standard data type or a user-defined data type to each
datapool column, you need to know the kinds of values that will be supplied to script
variables during playback — for example, will a variable contain names, dates, order
numbers, and so on.

Here are two ways you can find the kind of values that are supplied to a variable:

� With session scripts, you can view the DATAPOOL_CONFIG section that Robot
automatically adds to the end of the script. (Robot adds this information to a
session script when you select Use datapools in the Generator tab of the
Session Record Options dialog box.)

The DATAPOOL_CONFIG section contains a line for each value assigned to a
script variable during recording. In the following example, the value 329781 is
assigned to the variable CUSTID:

INCLUDE, "CUSTID", "string", "329781"

For more information about the DATAPOOL_CONFIG section of a script, see
Step 1. Editing Datapool Configuration on page 10-13.
10-9

Working with Datapools
� With GUI scripts, you need to search the script for each value that you provided
to the application during recording. Later, you will replace these literal values with
variables. During playback, the variables will be supplied values from the datapool.

Finding Values in GUI Scripts
Here are two examples of literal values in GUI scripts. The values are in bold type:

'Credit Card Type
ComboBox Click, "ObjectIndex=1", "Coords=104,7"
ComboListBox Click, "ObjectIndex=1", "Text=Discover"

'Credit Card Expiration Date
EditBox Left_Drag, "ObjectIndex=4", "Coords=19,13,16,12"
InputKeys "12/31/99"

To make the task of searching for values easier, insert a descriptive comment into the
script before providing a value to the client application during recording.

Creating User-Defined Data Types
If none of the standard data types can provide the correct kind of values to a script
variable, create a user-defined data type.

To create a user-defined data type in TestManager:

1. Click Tools > Manage Data Types.

2. Click New.

3. Type a name for the data type (40 characters maximum) and optionally,
a description (255 characters maximum).

4. Click OK.

5. Click Yes when prompted to enter data values now.

The Edit Data Type dialog box appears. This dialog box supports Input Method
Editor (IME) modes for typing multi-byte characters.

6. Type in a data type value on the first blank line in the list.

When you start typing the value, a pencil icon appears, indicating editing mode.

7. To type a new value, place the insertion point on the blank line next to the
asterisk icon, and then type the value.

8. Repeat steps 6 and 7 until you have added all the values.

9. Click Save.

NOTE: The only values that Robot records are those that you specifically provide
during recording. If you accept a default, Robot does not record that value.
10-10

Data Types
The following figure shows the data type colors being populated with five values:

When you create a user-defined data type, it is listed in the Type column of the
Datapool Specification dialog box (where you define datapool columns). Type also
includes the names of all the standard data types. User-defined data types are flagged
in this list with an asterisk (*).

Generating Unique Values from User-Defined Data Types
You may want a user-defined data type to supply unique values to a script variable
during playback. To do so, the user-defined data type must contain unique values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, make the following settings for the datapool column associated with the
user-defined data type:

� Set Sequence to Sequential.

� Set Repeat to 1.

� Make sure the No. of records to generate value does not exceed the number
of unique values in your user-defined data type.

For information about the values you set in the Datapool Specification dialog box,
see Using Rational TestManager.

Type new value hereType new value here.

Slide this bar
up or down to
change row height.

Line currently being edited.

NOTE: You can assign data from a standard data type to a user-defined data type.
For information, see Using Rational TestManager.
10-11

Working with Datapools
Generating Multi-Byte Characters
If you want to include multi-byte characters in your datapool (for example, to
support Japanese and other languages that include multi-byte characters), you can
do so in either of these ways:

� Through a user-defined data type. For information, see the section Creating
User-Defined Data Types on page 10-10.

The editor provided for you to supply the user-defined data fully supports Input
Method Editor (IME) operation. An IME lets you type multi-byte characters,
such as Kanji and Katakana characters as well as multi-byte ASCII, from a
standard keyboard. It is included in the Japanese version of Microsoft Windows.

� Through the Read From File data type. For information, see the section Using
Rational TestManager.

Using Datapools with Sessions

Robot can insert datapool commands into a performance testing session
automatically. If you want Robot to do so, take these steps before you begin to record
a session:

1. In Robot, click Tools > Session Record Options.

2. Click the Generator tab.

3. Select Use datapools, and click OK.

4. Record your transaction(s), and then stop recording.

The datapool commands are included in the script that Robot generates during
recording. Next, you create the datapool itself, as described in the following section.

Creating a Datapool with Robot
In Robot, you create a datapool in two basic steps:

1. Edit the DATAPOOL_CONFIG section of the session script, or accept
the defaults. (See the next section, Step 1. Editing Datapool Configuration.)

2. Define datapool columns and generate the data. (See Step 2. Defining Datapool
Columns and Generating the Data on page 10-19.)

You cannot automatically generate data for a datapool that has more than
150 columns.
10-12

Using Datapools with Sessions
Step 1. Editing Datapool Configuration
You begin the process of creating a datapool by editing the DATAPOOL_CONFIG
statement that Robot automatically generates in a script.

DATAPOOL_CONFIG has two basic purposes:

� During datapool creation, it specifies the datapool columns for Robot to create,
if any.

� During test runtime, it provides information such as the access order of datapool
rows, and whether script variables should be assigned values from the datapool
or use the literal values provided during recording.

The best way to edit DATAPOOL_CONFIG is by editing the Robot Configure
Datapool in Test Script dialog box rather than by editing the script directly.

To edit datapool configuration and to begin the process of defining and generating
a datapool:

1. If the script that will access the datapool is not open for editing, click File >
Open > Test Script to open it.

2. Click Edit > Datapool Information to open the Configure Datapool in Test
Script dialog box.

This dialog box lets you edit the DATAPOOL_CONFIG section of the script.

3. Either accept the defaults in the Configure Datapool in Test Script dialog box,
or make any appropriate changes.

Use the table on page 10-15 to help you modify the settings in this dialog box.

4. When finished making any changes, click Save.

The DATAPOOL_CONFIG section of the script is updated according to the
values set in the Configure Datapool in Test Script dialog box.

NOTE: DATAPOOL_CONFIG is included only in session scripts. As a result, this
section is not applicable for GUI scripts, or if you are creating a datapool for
exclusive use by a GUI script. To create a datapool that is accessed only by GUI
scripts, see Using Datapools with GUI Scripts on page 10-23.

NOTE: By default, the Usage column (see page 10-18) contains the value
EXCLUDE for each script variable listed in the grid. This means that Robot
does not create a datapool column for these variables when it creates the
datapool. To have Robot automatically create datapool columns when it
creates the datapool, change the Usage values to INCLUDE or OVERRIDE.
10-13

Working with Datapools
5. Take one of these actions:

– Click Create to define and populate the new datapool.

If the datapool you are trying to create already exists, the Create button does
not appear in the dialog box. Instead, the Edit Specification button appears,
allowing you to edit datapool column definitions, and the Edit Existing
Data button appears, allowing you to edit datapool values.

– Click Close if you do not want to define and populate a datapool at this time.

6. If you clicked Create in the previous step, continue by following the
instructions in the section Step 2. Defining Datapool Columns and Generating the
Data on page 10-19.

Here is how the Configure Datapool in Test Script dialog box maps to the
DATAPOOL_CONFIG section of a script:

For more information about the parts of the DATAPOOL_CONFIG section of a
script, see the description of DATAPOOL_CONFIG in the VU Language Reference.

Because Obey Usage is selected and the Persistent
check box is not checked, no other flag is used.

These tables match row for
row and column for column.

NOTE: Typically, a script has just one DATAPOOL_CONFIG section. If a script
has multiple DATAPOOL_CONFIG sections (for example, to accommodate a
script that accesses multiple databases and servers), the Configure Datapool in
Test Script dialog box accesses the first one. To edit the others, you must edit the
script directly.
10-14

Using Datapools with Sessions
Modifying DATAPOOL_CONFIG
Use the following table to help you define the fields and columns in the Configure
Datapool in Test Script dialog box (see step 3 in the previous instructions):

Field or column Description

Datapool name The name assigned to the datapool. The datapool name defaults to
the script name. You cannot modify Datapool nameDatapool nameDatapool nameDatapool name.

Wrap at end of file? Sets the action to take after the last row in the access order is reached:
� YesYesYesYes – Resume at the beginning of the access order.
� NoNoNoNo – End access to the datapool.

If you attempt to retrieve a datapool value after the end of the
datapool is reached, a runtime error occurs.

To ensure that unique datapool rows are fetched, choose NoNoNoNo, and
make sure the datapool has at least as many rows as the number of
users (and user iterations) that will be requesting rows at runtime.
With an access order of RandomRandomRandomRandom, this value is ignored.

Cursor Specifies whether the datapool cursor is shared by all users accessing
the datapool (Shared) or is unique to each user (Private). Also
specifies whether a shared cursor is persistent across suite runs:
� With a shared cursor, all users work from the same access order.

For example, if the access order for a Colors column is Red,
Blue, and Green, the first user to request a value is assigned Red,
the second is assigned Blue, and the third is assigned Green.

� If you check the PersistentPersistentPersistentPersistent box, the datapool cursor is persistent
across suite runs. For example, if you have a persistent cursor
with Access Order set to Sequential, and datapool row number
100 was the last row accessed in the last suite run, the first row
accessed in the next suite run is 101.
A persistent cursor resumes row access based on the last time the
cursor was accessed as a persistent cursor. For example, suppose a
cursor is persistent, and the last row accessed for that cursor in a
suite run is 100. Then, the same suite is run again, but the cursor
is now private. Row access ends at 50. If the cursor is set back to
persistent the next time the suite is run, row access resumes with
row 101, not 51.
With persistent cursors, you can use the RowRowRowRow box to set the row
to be accessed first in the next test run.
Persistent cursors are only valid with shared cursors, and when
Access Order is set to either Sequential or Shuffle.

� With a private cursor, each user starts at the top of its access
order. With Random or Shuffle access, the access order is
unique for each user and operates independently of the others.
With Sequential access, the access order is the same for each
user (ranging from the first row stored in the file to the last), but
it operates independently for each user.
10-15

Working with Datapools
Access Order Determines the sequence in which datapool rows are accessed:
� SequentialSequentialSequentialSequential – Rows are accessed in the order in which they are

physically stored in the datapool file, beginning with the first
row in the file and ending with the last.

� RandomRandomRandomRandom – Rows are accessed in any order, and any given row
can be accessed multiple times or not at all.

� ShuffleShuffleShuffleShuffle – Each time TestManager rearranges, or “shuffles,” the
access order of all datapool rows, a unique sequence results. Each
row is referenced in a shuffled sequence only once.

Think of non-sequential access order (Shuffle and Random) as
being like a shuffled deck of cards. With Shuffle access order, each
time you pick a card (access a row), you place the card at the bottom
of the pack. With Random access order, the selected card is
returned anywhere in the pack — which means that one card might
be selected multiple times before another is selected once.

Also, with Shuffle, after each card has been selected once, you
either resume selecting from the top of the same access order
(Wrap at end of file? is Yes), or no more selections are made
(Wrap at end of file? is No).

With Random, you never reach the end of the pack (there is no
end-of-file condition, so Wrap at end of file? is ignored).

Use Test Script Data Specifies the source of the values that script variables are assigned
during suite runtime, as follows:
� AlwaysAlwaysAlwaysAlways – Script variables are assigned the values provided during

recording rather than values from the datapool. Recorded values
are listed in the Test Script Data column.
This option overrides the runtime meaning of the INCLUDE
directive in the Usage column. It also adds the flag OVERRIDE
to the DATAPOOL_CONFIG section of the script.
This option provides a convenient way to run the script even if
the datapool file is missing or incomplete.

� Obey UsageObey UsageObey UsageObey Usage – Script variables associated with the INCLUDE
directive in the Usage column are assigned datapool values.
Script variables not associated with the INCLUDE directive are
assigned values in the Test Script Data column.
No flag is added to DATAPOOL_CONFIG with this option.

 (Continued)
Field or column Description
10-16

Using Datapools with Sessions
Datapool Exits this dialog box to let you further define the datapool, and shows
the next row to be accessed in the row access order, as follows:
� Create or Edit SpecificationCreate or Edit SpecificationCreate or Edit SpecificationCreate or Edit Specification – Lets you define datapool

columns in a new or existing datapool, and lets you populate the
datapool with values.

� Edit Existing DataEdit Existing DataEdit Existing DataEdit Existing Data – Lets you edit values in an existing datapool.
� Row Number – Shows the datapool row to be accessed first in the

next test run. This box applies only to persistent cursors (the
Persistent box must be checked). The row number is modifiable.
Valid row numbers are 1 through 2,147,483,647 (commas are
not allowed). If you specify a number that is not in the datapool,
an error occurs at test runtime.
After you specify a starting row number, click Set Cursor.

Any changes you make in the Datapool group box do not affect the
DATAPOOL_CONFIG section of the script.

 (Continued)
Field or column Description
10-17

Working with Datapools
Usage Specifies one of the following directives to apply during database
creation and during suite runtime. To change an individual
directive, right-click the directive name:
� INCLUDEINCLUDEINCLUDEINCLUDE

- During datapool creation, creates a column for the script
variable in Name. The column is assigned the same name.

- During suite runtime, assigns a value to the script variable in
Name from the corresponding datapool column.
You can override the runtime meaning of all INCLUDE
directives by selecting Always in the Use Test Script Data
group box. With Always selected, all script variables are
assigned the associated values in the Test Script Data
column.

� EXCLUDEEXCLUDEEXCLUDEEXCLUDE
- During datapool creation, does not create a column for the

script variable in Name.
- During suite runtime, assigns the value in Test Script Data

to the script variable in Name. Datapool values are not used.

� OVERRIDEOVERRIDEOVERRIDEOVERRIDE
- During datapool creation, creates a column for the script

variable in Name. The column is assigned the same name.
- During suite runtime, assigns the value in Test Script Data

to the script variable in Name. Datapool values are not used.

You can select multiple Usage items using standard Windows
selection methods (for example, holding down the CONTROL key
while clicking each item to change). When all items are selected,
right-click on one of them to change them all.

Name The name of a script variable that is assigned a value during
recording. If Robot creates a datapool column for this variable (if
Usage is either INCLUDE or OVERRIDE), the datapool column is
assigned the same name.

This value can only be modified in the script.

Type The data type of the value in Test Script Data. The data type is
always string.

This value can only be modified in the script.

 (Continued)
Field or column Description
10-18

Using Datapools with Sessions
Step 2. Defining Datapool Columns and Generating the Data
To complete the creation of the datapool that you started in Step 1. Editing Datapool
Configuration on page 10-13, you define the datapool’s columns and populate it with
data. You do so in the Datapool Specification dialog box.

The Datapool Specification dialog box contains the Datapool Fields grid. Each row
in the grid represents a datapool field — that is, a column of data in the datapool file.

When the dialog box opens, the grid lists a datapool column name and a default
column definition for each script variable that is assigned the value INCLUDE or
OVERRIDE in the Configure Datapool in Test Script dialog box.

You define and populate the datapool as follows:

1. To insert one or more new columns into the datapool file:

a. Click the row located either just before or just after the location where you
want to insert the new datapool column. (Note that the order in which
datapool column names are listed in Name determines the order in which
values are stored in a datapool record.)

An arrow appears next to the name of the datapool row you clicked.

b. Click either Insert before or Insert after, depending on where you want to
insert the datapool column.

c. Type a name for the new datapool column (40 characters maximum).

Make sure there is a script variable of the same name listed in the Configure
Datapool in Test Script dialog box. The case of the names must match.

Script Data A value that was provided during recording. The value was assigned
to the script variable in Name.

If there is no value in this column for a particular script variable, a
length of 1 is assigned to the datapool column associated with the
script variable.

This value can only be modified in the script.

 (Continued)
Field or column Description

NOTE: If the Datapool Specification dialog box is not open, see Step 1. Editing
Datapool Configuration on page 10-13 to learn how to open it.
10-19

Working with Datapools
2. For each datapool column in the grid, assign a data type to the column, and
modify the default property values for the column as appropriate.

For information about the data types and other properties you can define for a
datapool column, see Using Rational TestManager.

To see an example of datapool columns defined in the Datapool Specification
dialog box, see Using Rational TestManager.

3. When finished defining datapool columns, type a number in the No. of records
to generate field.

If a different row has to be retrieved with each fetch, make sure the datapool has
at least as many rows as the number of users (and user iterations) that will be
requesting rows at runtime.

4. Click Generate Data.

You cannot generate data for a datapool that has more than 150 columns.

Alternatively, if you do not want to generate any data now, click Save to save
your datapool column definitions, and then click Close.

5. Optionally, click Yes to see a brief summary of the generated data.

If There Are Errors
If the datapool values are not successfully generated, you are prompted to see an
error report rather than a summary of the generated data. To correct the errors:

1. Click Yes to see the error report.

2. After viewing the cause of the errors, click Cancel.

3. Correct the errors in the Datapool Fields grid.

Viewing Datapool Values
To see the generated values, close the Datapool Specification dialog box. In the
Configure Datapool in Test Script dialog box, click Edit Existing Data.

If a datapool includes complex values (for example, embedded strings, or field
separator characters included in datapool values), you should view the datapool
values to make sure the contents of the datapool are as you expect.
10-20

Using Datapools with Sessions
Editing Datapool Column Definitions with Robot
To edit datapool column definitions in Robot, you must begin in the Configure
Datapool in Test Script dialog box.

This section provides the basic steps for editing datapool column definitions while
in Robot. For information about the Configure Datapool in Test Script dialog box,
see Step 1. Editing Datapool Configuration on page 10-13.

To edit a datapool’s column definitions while in Robot:

1. If the script that will access the datapool is not open for editing, click File >
Open > Test Script to open it.

2. Click Edit > Datapool Information to open the Configure Datapool in Test
Script dialog box.

3. Either accept the defaults in the Configure Datapool in Test Script dialog box,
or make any appropriate changes.

Use the table on page 10-15 to help you modify the settings in this dialog box.

4. When finished making any changes, click Save.

5. Click Edit Specification to open the Datapool Specification dialog box, where
you update datapool column definitions.

For information about the data types and other properties you can define for a
datapool column, see Using Rational TestManager.

To see an example of datapool columns defined in the Datapool Specification
dialog box, see Using Rational TestManager.

6. To insert one or more new columns into the datapool file:

a. Click the row located either just before or just after the location where you
want to insert the new datapool column. (Note that the order in which
datapool column names are listed in Name determines the order in which
values are stored in a datapool record.)

An arrow appears next to the name of the datapool row you clicked.

b. Click either Insert before or Insert after, depending on where you want to
insert the datapool column.

c. Type a name for the new datapool column (40 characters maximum).

Make sure there is a script variable of the same name listed in the Configure
Datapool in Test Script dialog box. Case of the names must match.
10-21

Working with Datapools
7. When finished modifying datapool columns, type a number in the No. of
records to generate field.

If a different row has to be retrieved with each fetch, make sure the datapool has
at least as many rows as the number of users (and user iterations) that will be
requesting rows at runtime.

8. Click Generate Data.

You cannot generate data for a datapool that has more than 150 columns.

Alternatively, if you do not want to generate any data now, click Save to save
your datapool column definitions, and then click Close.

9. Optionally, click Yes to see a brief summary of the generated data.

If There Are Errors
If the datapool values are not successfully generated, you are prompted to see an
error report rather than a summary of the generated data. To correct the errors:

1. Click Yes to see the error report.

2. After viewing the cause of the errors, click Cancel.

3. Correct the errors in the Datapool Fields grid.

Editing Datapool Values with Robot
To edit datapool values in Robot, you must begin in the Configure Datapool in Test
Script dialog box.

This section provides the basic steps for editing datapool values while in Robot.
For information about the Configure Datapool in Test Script dialog box, see Step 1.
Editing Datapool Configuration on page 10-13.

To view or edit a datapool’s values while in Robot:

1. If the script that will access the datapool is not open for editing, click File >
Open > Test Script to open it.

2. Click Edit > Datapool Information to open the Configure Datapool in Test
Script dialog box.

3. Either accept the defaults in the Configure Datapool in Test Script dialog box,
or make any appropriate changes.

Use the table on page 10-15 to help you modify the settings in this dialog box.

4. When finished making any changes, click Save.

5. Click Edit Existing Data.
10-22

Using Datapools with GUI Scripts
6. In the Edit Datapool dialog box, edit datapool values as appropriate.

For information about editing datapool values, see Using Rational TestManager.

7. When finished editing datapool values, click Save, and then click Close.

For an example of the datapool values that TestManager generates, see Using Rational
TestManager.

Cancelling Your Edits
To abandon all the edits that you made in the Edit Datapool dialog box, click Cancel
or the ESC key. With either action, all your edits are abandoned, and the Edit
Datapool dialog box closes.

Using Datapools with GUI Scripts

A GUI script can access a datapool when it is played back in Robot. Also, when a GUI
script is played back in a TestManager suite, the GUI script can access the same
datapool as other GUI scripts and/or session scripts.

There are differences in the way GUI scripts and session scripts are set up for
datapool access:

� You must add datapool commands to GUI scripts manually while editing the
script in Robot. Robot adds datapool commands to session scripts automatically.

� There is no DATAPOOL_CONFIG statement in a GUI script. The command
SQADatapoolOpen defines the access method to use for the datapool.

Although there are differences in setting up datapool access in GUI scripts and
session scripts, you define a datapool for either type of script using TestManager in
exactly the same way.

Here are the general tasks involved in providing access to a datapool from a GUI
script. The steps are not in a fixed order — you can create the datapool at any point:

� Record the GUI script.

� Add datapool commands to the script.

� Create the datapool.

For information about recording a GUI script for datapool access and adding
datapool commands to a GUI script, see Chapter 5 of the SQABasic Language
Reference. For additional information and examples, see the SQABasic Help, under
the index keyword datapools.

For information about creating a datapool with TestManager, see the TestManager
Help.
10-23

Working with Datapools
Accessing a Datapool from GUI and Session Scripts
If a GUI script and a session script provide the same set of values to the client
application during recording, the scripts can access the same datapool during
playback in a TestManager suite.

Here is the suggested order of steps for creating a datapool and setting up access to it
from GUI scripts and session scripts:

1. Record the procedure and create the datapool as described in Using Datapools
with Sessions on page 10-12.

2. Record the GUI script.

3. Edit the GUI script and add datapool commands to it.

For information about recording GUI scripts and adding datapool commands to
GUI scripts, see the GUI recording section of the Using Rational Robot manual.

If you want to ensure that virtual testers retrieve a unique row of data from the
datapool, follow the guidelines listed in Using Rational TestManager.
10-24

� ��� �� Part V

Testing IDE Applications

� ��� �� C H A P T E R 11

Testing Visual Basic Applications
This chapter explains how to test 32-bit Visual Basic applications with Rational
Robot. It includes the following topics:

� About Robot support for Visual Basic applications

� Verifying that the Visual Basic extension is loaded

About Robot Support for Visual Basic Applications

Rational Robot provides comprehensive support for testing 32-bit applications built
with Visual Basic version 4.0 through 6.0. Robot supports the testing of applications
that you migrate from one Visual Basic version to another, and allows for the reuse
of scripts between Windows NT 4.0, Windows 2000, Windows 98, and Windows 95.

With its Object Testing technology, Robot examines data and properties that are not
visible to the user. This means that Robot can do the following:

� Recognize all Visual Basic objects, including objects that have windows
associated with them (such as EditBoxes) and objects that are “painted” on the
containing form (such as Labels).

� Determine the names of objects in your program (as given in the Visual Basic
source code), and use those names for object recognition.

� Capture properties of Visual Basic objects, using the Object Properties
verification point.

� Capture the data underlying a Visual Basic data control, using the Object Data
verification point.

As an example, suppose you have a label in a Visual Basic form. If you click the label
during Robot recording, the label’s name appears in the Robot script. If you create
an Object Properties verification point on the label, the label’s name is captured. The
name by which Robot identifies the object is the same as its Visual Basic name, as
shown in the Visual Basic Properties window.
11-1

Testing Visual Basic Applications
NOTE: To test Visual Basic 4.0 applications, you need to add the Rational
ActiveX Test Control to your Visual Basic forms. For information, see Visual Basic
support, making Visual Basic 4.0 applications testable in the Robot Help Index.

Label Click, “Name=Label1” ... is the same name that appears in the
Robot script when you click the object ...

... The object name that appears in
the Visual Basic Properties window...

... and the same name that is captured
when you create an Object Properties
verification point on the object.
11-2

Verifying that the Visual Basic Extension Is Loaded
Verifying that the Visual Basic Extension Is Loaded

To test Visual Basic applications, you should first verify that the Robot Visual Basic
extension is loaded in Robot.

To verify that the extension is loaded:

1. Start Robot.

2. Click Tools > Extension Manager.

3. Verify that Visual Basic is selected. If not, select it.

4. To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5. Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.
11-3

Testing Visual Basic Applications
11-4

� ��� �� C H A P T E R 12

Testing Oracle Forms Applications
This chapter describes how to test 32-bit Oracle Forms applications with Rational
Robot. It includes the following topics:

� About Robot support for Oracle Forms applications

� Making Oracle Forms applications testable

� Recording actions and testing objects

� Testing an object’s properties

� Testing an object’s data

About Robot Support for Oracle Forms Applications

Rational Robot provides comprehensive support for testing 32-bit applications built
with Oracle Forms 4.5, 5.0, and 6.0. Robot supports the testing of applications that
you migrate from one Oracle Forms version to another, and allows for the reuse of
scripts between Windows NT 4.0, Windows 2000, Windows 98, and Windows 95.

With its Object Testing technology, Robot examines data and properties that are not
visible to the user. Robot uses Object-Oriented Recording to recognize an Oracle
Forms object by its internal name.

You can use Robot to test Oracle Forms objects, including:

� Windows

� Forms

� Canvas-views

� Oracle Trees (Tree-views)

� Base-table blocks (single- and multi-record)

� Items, including OLE containers
12-1

Testing Oracle Forms Applications
Making Oracle Forms Applications Testable

Before you can test your Oracle Forms applications, you must:

� Install the Rational Test Oracle Forms Enabler.

� Run the Enabler on your application and generate the form(s) afterward.

� Verify that the Robot Oracle Forms extension is loaded.

Installing the Rational Test Oracle Forms Enabler
You can install the Enabler from the Rational Software Setup wizard. For
instructions, see the Installing Rational Testing Products manual.

You then need to run the Enabler, which instruments the code in your .fmb file to
make your application testable by Robot.

Running the Enabler on Your Application
After you install the Enabler, you need to enable every form in your application. The
following sections explain:

� What happens when you run the Enabler.

� How to run the Enabler.

� What to distribute with your application.

What Happens When You Run the Enabler?
The Enabler adds the Rational Test Object Testing Library and three triggers to one
or all .fmb files in a directory, as shown in the following figure and table.

Contains sqa_evt_handler;
Contains sqa_mouse_handler;
Contains sqa_exit_handler;

Contains the Rational Test
Object Testing Library
12-2

Making Oracle Forms Applications Testable
As shown in the previous figure, the triggers contain the following code:

The Enabler handles the triggers and code as follows:

You can leave the triggers and the Object Testing Library in your application when
you distribute it. For more information, see Distributing Your Application on page 12-6.

Running the Enabler
To run the Enabler, which adds the Object Testing Library and triggers to your
application:

1. Start the Rational Test Oracle Forms Enabler from the folder in which it was
installed (the default folder is Developer 2000).

Trigger Code

WHEN-WINDOW-RESIZED sqa_evt_handler;

WHEN-MOUSE-ENTER sqa_mouse_handler;

POST-FORM sqa_exit_handler;

If the .fmb file The Enabler

Does not contain the trigger Adds a new trigger containing the code.

Contains the trigger Prepends the code to your existing trigger.

Contains a reference to the trigger Does not change the trigger in either the
selected (referencing) .fmb file or in the
referenced .fmb file. Displays a message
indicating that you should run the Enabler on
the referenced .fmb file.

NOTE: If objects in your application contain the WHEN-MOUSE-ENTER trigger,
the Enabler prepends sqa_mouse_handler; to each trigger. This is necessary
for Robot to correctly record mouse actions against these objects. If you need to
prevent this modification, you can clear the Modify local WHEN-MOUSE-ENTER
triggers option in the Enabler. (See the next section, Running the Enabler.) In this
case, the Enabler displays warning messages in the Status window when it detects
any of these local triggers.
12-3

Testing Oracle Forms Applications
The following dialog box appears:

2. Click Browse. Select the .fmb file that you want to make testable and click OK.

3. Click Add Rational Test Object Testing Library.

4. Set the following options as needed:

Backup original FMB file – Creates a backup file before the file is enabled.

Enable all FMB files in selected directory – Enables every .fmb file in the
directory. If this check box is not selected, only the .fmb file in the Oracle FMB
file box is enabled.

Generate each selected FMB file – Generates each .fmb file after enabling it.
If this check box is not selected, you will need to generate each .fmb file from
the Oracle Forms 6.0 Builder, Oracle Forms 5.0 Builder, or Oracle Forms 4.5
Designer after the Enabler runs.
12-4

Making Oracle Forms Applications Testable
5. Click Advanced to open the following dialog box:

6. If you selected the Generate each selected FMB file option, type your database
connection parameters in the Database tab.

7. Click the Directories tab.

8. If you need to change the default locations of the Object Testing Library and
Oracle home directory, select Override Oracle paths in registry. Click each
Browse button and select the new location.

9. Click the General tab.

10. To send the output in the Status box of the Enabler to a log file that you can view
or print, select Write status output to log file.

In the Log file box, use the default log file name, type a new name, or click
Browse and select a file.

The log file is stored in the same directory as the .fmb file unless you specify
another path. If the file already exists, the text is appended to the file.
12-5

Testing Oracle Forms Applications
11. If objects in your application contain the WHEN-MOUSE-ENTER trigger, the
Enabler prepends sqa_mouse_handler; to each trigger. This is necessary for
Robot to correctly record mouse actions against these objects. If you need to
prevent this modification, clear Modify local WHEN-MOUSE-ENTER triggers.
(For information about the Enabler and triggers, see What Happens When You
Run the Enabler? on page 12-2.)

If this check box is cleared, the Enabler displays warning messages in the Status
box when it detects any of these local triggers.

12. Click OK.

13. Click Enable. As the file is enabled, information appears in the Status box.

14. If you did not select the Generate option in step 4, regenerate your application
once before using Robot by doing one of the following:

– In Oracle Forms 6.0 or 5.0, open the Forms Builder. Load each enabled
.fmb file, and click File > Administration > Compile File.

– In Oracle Forms 4.5, open the Forms Designer. Load each enabled .fmb file,
and click File > Administration > Generate.

You are now ready to use Robot with your Oracle Forms application.

Distributing Your Application
The triggers and the Object Testing Library are not visible and are non-intrusive,
and there are no license restrictions on them. Therefore, you can leave them in the
application when you distribute it. In this case, you must distribute the Rational Test
Object Testing Library with your application.

You may freely distribute the Object Testing Library for Oracle Forms and the
Enabler. The Rational Test Enablers directory on the CD-ROM contains a Setup
wizard for these and other items. You may copy this directory to a network drive or
to a diskette for distribution to your developers.

NOTE: If you choose to remove the Object Testing Library and triggers from
your application, follow the procedure in Running the Enabler on page 12-3. In
step 3, click Remove Rational Test Object Testing Library.
12-6

Recording Actions and Testing Objects
Verifying that the Oracle Forms Extension Is Loaded
To test Oracle Forms applications, you should first verify that the Robot Oracle
Forms extension is loaded in Robot.

To verify that the extension is loaded:

1. Start Robot.

2. Click Tools > Extension Manager.

3. Verify that Oracle Forms is selected. If not, select it.

4. To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5. Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Recording Actions and Testing Objects

An Oracle Forms application is made up of visual and nonvisual objects.

� Visual objects are GUI objects that you can see in the application. Examples are
check boxes and push buttons.

� Nonvisual objects are non-GUI objects that you cannot see in the application.
Examples are blocks and forms.

You can record actions against visual objects, and you can test both visual and
nonvisual objects.

Recording Actions
When you record actions against a visual Oracle object, Robot recognizes the object
by its internal name as follows:

� Window – Recognized by the window internal name assigned by the developer.

� Item – Recognized by the block.item name assigned by the developer.

For example, if you click a button within a window, the script appears as follows:

window name

block.item name
12-7

Testing Oracle Forms Applications
Testing Objects
When you test a visual or nonvisual Oracle object, Robot can provide two views into
the Oracle application:

� Full View – Includes all objects (visual and nonvisual) in the application. (This
is similar to the Ownership View in the Oracle Forms Navigator.) In this view,
items are children of blocks, which are children of a form. This view also
includes canvas-views and windows. When you select an object from the full
view, the object is identified by its complete path in the script.

� GUI View – Includes only the visual (GUI) objects in the application. (This is
similar to the Visual View in the Oracle Forms Navigator.) In this view, all
objects are children of a window. When you select an object from the GUI view,
the object is identified by its block.item name relative to the window in the script.

The following figure shows the full view and the GUI view (collapsed):

To see both Robot views of an Oracle application:

1. Start to create a verification point.

2. In the Select Object dialog box, click Browse to open the Object List.

There are two types of branches under the OracleRootWindow branch:

� The Form branch gives you a full view of all objects (visual and nonvisual) in the
application. (If you have multiple forms, Robot displays a full view for the active
form only.)

� The Window branches give you a GUI view of only the visual objects in the
application.

The full view includes
visual and nonvisual
objects.

The GUI view includes
only visual objects.
12-8

Recording Actions and Testing Objects
The following figure shows the expanded full view of the Form branch:

The following figure shows the expanded GUI view of the Window branch:

The expanded full view
includes ...

... items as children of
blocks, which are children
of the form, and ...

... canvas-views and
windows as children of
the form.

The expanded GUI
view includes ...

... all visual items as
children of the window.
12-9

Testing Oracle Forms Applications
Testing an Object’s Properties

You can use two methods to test the properties of an Oracle object:

� Object Properties verification point – Use to test properties while recording
or editing a script.

� Object Scripting commands – Use to test properties programmatically while
editing a script.

Object Properties Verification Point
You can use the Object Properties verification point to test any property that you can
access in PL/SQL (the Oracle programming language) for the following objects:

� Visual (GUI) objects:

Chart item Push Button item
Check Box item Radio Button item
Display item Radio Group item
Image item Text item
List item Oracle VBX Control item
OLE Container item Window
Oracle Tree (Tree-view)

� Nonvisual (non-GUI) objects:

Block
Canvas-view
Form

NOTE: Before you can test an Oracle Forms application, you need to run the
Enabler. For instructions, see Making Oracle Forms Applications Testable on page
12-2.

NOTE: To test the properties of list of values (LOV) and record group objects,
see Object Scripting Commands on page 12-13 and Testing LOVs and Record Groups on
page 12-15.
12-10

Testing an Object’s Properties
Testing Properties of Visual Objects
To test the properties of a visual (GUI) object:

1. Start creating a Object Properties verification point as usual. (For instructions,
see Object Properties Verification Point in the Robot Help Index.)

2. When the Select Object dialog box appears, drag the Object Finder tool to the
object to test and release the mouse button. If the Select Object dialog box
appears again, click OK.

If you point to the title bar of a window (other than the Developer/2000 Forms
Runtime window), Robot captures the properties of all of the visual objects in
the window.

If you point to the title bar of the Developer/2000 Forms Runtime window,
Robot captures the properties of all of the visual and nonvisual objects in the
application. (For more information, see the next section, Testing Properties of
Nonvisual Objects.)

3. Complete the verification point as usual.

Testing Properties of Nonvisual Objects
To test the properties of a nonvisual object:

1. Start creating a Object Properties verification point as usual. (For instructions,
see Object Properties Verification Point in the Robot Help Index.)

2. In the Select Object dialog box, click Browse to display the Object List. This is
a list of all objects on the desktop.

3. Expand the Window Name=OracleRootWindow branch by double-clicking
the plus sign.

The nonvisual objects are contained in the Form branch of the
OracleRootWindow.

Contains the full
view of objects,
which includes
nonvisual objects.
12-11

Testing Oracle Forms Applications
4. Expand the Form branch by double-clicking the plus sign.

All of the blocks, canvas-views, and windows appear as children of the form.
Items appear as children of a block. (For information about working with the
Object List, see Selecting the Object to Test on page 4-10.)

5. Select the object to test and click OK. If the Select Object dialog box still appears,
click OK.

6. Complete the verification point as usual.

NOTE: To capture the properties of all of the objects, you can drag the
Object Finder tool to the Developer/2000 Forms Runtime window and
release the mouse button (instead of clicking Browse). Using Browse is
usually faster because you can select only the objects that you want to test
from the Object List before the properties are captured.

The form includes
blocks, items,
canvas-views,
and windows.

NOTE: Visual items within the full view are children of blocks. If you select a
visual item from the full view, Robot tests its Oracle properties only. If you select
a visual item from the GUI view, Robot tests both its Oracle properties and its
standard properties. For a description of the two views, see Testing Objects on page
12-8.
12-12

Testing an Object’s Properties
Object Scripting Commands
You can manually add the Object Scripting commands to any script to access
the properties of Oracle Forms objects. For example, you can use the
SQAGetProperty command to retrieve the value of a specified property. (For
information about the Object Scripting commands, see the SQABasic Language
Reference.)

The Object Scripting commands are especially useful for accessing the properties of
LOV and record group objects, which cannot easily be tested with the Object
Properties verification point.

To reference an LOV or record group object in an Object Scripting command, you
need to know the name assigned to the object within your Oracle Forms application.
Once you know the object name, you can access the following properties:

The following example uses the SQAGetProperty command to assign the value
of the Group_Name property of an LOV object to a variable called Value:

Sub Main
Dim Result As Integer
Dim Value As Variant
Window SetTestContext, "Name=OracleRootWindow", ""
Result = SQAGetProperty("Type=Form;Name=FORM_NAME;\;

Type=LOV;Name=LOV_NAME", "Group_Name", Value)
MsgBox Value

End Sub

NOTE: For instructions about testing LOVs and record groups with verification
points, see Testing LOVs and Record Groups on page 12-15.

Object Type Properties

List of values (LOV) X_Pos
Y_Pos
Auto_Refresh
Group_Name
Width
Height

Record group Row_Count
Selection_Count
12-13

Testing Oracle Forms Applications
Testing an Object’s Data

You can use the Object Data verification point to test the data in the following Oracle
objects:

� Base-table blocks and items

� LOV and record group objects

For instructions about testing an object’s data, see Object Data Verification Point in the
Robot Help Index.

Testing Base-Table Blocks and Base-Table Items
Several pre-defined data tests are supplied with Robot to test any base-table block or
base-table item. These tests include:

� Current Record – Captures the currently selected record.

� Displayed Records – Captures the currently displayed records.

� Entire Table – Captures the entire contents of the database table associated with
the object.

You can use the Object Data Test Definition to define additional data tests. (For
information, see Appendix A, Working with Data Tests.)

NOTE: Before you can test an Oracle Forms application, you need to run the
Enabler. For instructions, see Making Oracle Forms Applications Testable on page
12-2.

Pre-defined
data tests
12-14

Testing an Object’s Data
Testing LOVs and Record Groups
You can use the Object Data verification point to test the data in list of values (LOV)
and record group objects in Oracle Forms. (You can also use the Object Scripting
commands. For information, see Object Scripting Commands on page 12-13.)

To test an LOV or record group, you need to perform two steps:

1. Create an .sqa text file containing information about the LOV or record group.

2. Create the Object Data verification point.

Creating an .SQA Text File
Before you test an LOV or record group, you need to create an .sqa text file. To create
this file:

1. Before creating the verification point, identify which LOV or record group
objects to test, including:

– The Form containing the LOV or record group.

– The internal Oracle name of the LOV or record group.

– The names of the data columns and each column’s data type (char, number,
or date).

You may need to get this information from the developer of the form.

2. In the same directory as the form's executable (.fmx) file, create a text file with
the same name as the .fmx file, but with an .sqa extension.

For example, if the form’s executable file is Oraapp32.fmx, create a text file
named Oraapp32.sqa.

3. In the .sqa text file, type:

– An [LOV] section containing the names of all LOVs to test.

– A [RECORD_GROUP] section containing the names of all record groups
to test.

– The name of each LOV, the name of each column, and the data type of each
column.

– The name of each record group, the name of each column, and the data type
of each column.

NOTE: Once you create the .sqa file, you can also test the properties of LOVs
and record groups using the Object Properties verification point.
12-15

Testing Oracle Forms Applications
The following figure shows an example.

After you create the .sqa file, you can capture the data in:

� An LOV associated with a text item.

� Any LOV or record group.

Once you create the .sqa file, you can also test the properties of LOVs and record
groups using the Object Properties verification point.

Capturing Data in an LOV Associated with a Text Item
If an LOV is associated with a text item, you can point to the text item to capture the
data in the LOV.

To capture the data:

1. Display the form containing the LOV.

2. Make sure the LOV is closed. You can capture the data in an LOV only when the
LOV is closed.

LOV section

Record Group section

LOV name
Column names and types

Record Group name
Column names and types

Text item

LOV associated with text
12-16

Testing an Object’s Data
3. Start creating an Object Data verification point.

4. When the Select Object dialog box appears, drag the Object Finder tool to the
text item and release the mouse button. If the Select Object dialog box still
appears, click OK. The Object Data Tests dialog box appears.

5. From the Data test list, select LOV Contents.

6. Click OK to open the Object Data Verification Point dialog box.

If you typed incorrect information in the .sqa file, a message appears in the data
grid in the dialog box.

7. Complete the verification point as usual.

Capturing Data in LOVs and Record Groups
To capture the data in any LOV or record group, you can select the object from the
Object List.

1. Display the form containing the LOV or record group.

2. If the form contains an LOV, make sure that the LOV is closed. You can capture
the data in an LOV or record group only when the LOV is closed.

3. Start creating an Object Data verification point.

4. In the Select Object dialog box, click Browse to open the Object List dialog box.

5. Expand the Window Name=OracleRootWindow branch by double-clicking
the plus sign.
12-17

Testing Oracle Forms Applications
6. Expand the Form branch by double-clicking the plus sign.

If the LOV or record group objects do not appear in the Object List, check that
the .sqa file has been created in the same directory as the form’s executable file
and contains the correct information. For details, see Creating an .SQA Text File
on page 12-15.

7. Select the object to test and click OK to open the Object Data Verification Point
dialog box.

If you typed incorrect information in the .sqa file, a message appears in the data
grid in the dialog box.

8. Complete the verification point as usual.

LOVs and record groups
are children of the form.
12-18

� ��� �� C H A P T E R 13

Testing HTML Applications
This chapter explains how to use Robot to test HTML applications. It includes the
following topics:

� About Robot support for HTML applications

� Configuring your browser for testing

� Making HTML applications testable

� Testing data in HTML elements

� How Robot maps HTML elements

� Supported data tests for HTML testing

� Testing properties of HTML elements

� Playing back scripts in Netscape Navigator

� Recording tips

� Enhancing object recognition of HTML elements

About Robot Support for HTML Applications

Rational Robot provides comprehensive support for testing HTML applications that
run on the World Wide Web. Robot lets you test both static and
dynamically-generated pages accessed from both standard and secured HTTP
servers, regardless of make or model. Robot examines the data and properties of each
HTML element, letting you test the elements that appear on your Web pages,
including table data, links, and form elements, such as buttons, check boxes, lists, and
text.

With Robot you can both record and play back scripts in both Microsoft Internet
Explorer versions 4.x and later and Netscape Navigator versions 4.x. Scripts can be
recorded and played back on a variety of Windows platforms, including Windows
NT 4.0, Windows 2000, Windows 98, and Windows 95.
13-1

Testing HTML Applications
Configuring Your Browser for Testing

Before you record scripts, you should configure Internet Explorer and/or Netscape
Navigator so that scripts will play back in the same way as when you recorded them.
For best results, you should configure Internet Explorer and/or Navigator identically
on both the computer that you record scripts on and the computer that you play back
scripts on. In addition, you should disable the cookie prompt.

Disabling the Cookie Prompt
To disable the cookie prompt in Internet Explorer 5:

1. Start Internet Explorer 5.

2. Click Tools > Internet Options.

3. Click the Security tab.

4. Make sure the Internet icon is selected.

5. Click the Custom Level button.

6. Scroll to the Cookies section.

7. Click Disable in both cookies options.

8. Click OK two times.

To disable the cookie prompt in Netscape Navigator:

1. Start Netscape Navigator.

2. Click Edit > Preferences.

3. Click the Roaming Access category.

4. Click the Item Selection tab.

5. Uncheck Cookies.

6. Click OK.

Making HTML Applications Testable

To make HTML applications testable:

� Verify that the HTML extension is loaded in Robot.

� Enable HTML testing in Robot.

� For recording on Netscape, enable caching on the server.
13-2

Making HTML Applications Testable
These steps are described in the following sections.

Verifying that the HTML Extension Is Loaded
To test HTML applications, you must first make sure that the HTML extension is
loaded in Robot. To do this:

1. Start Robot.

2. Click Tools > Extension Manager.

3. Verify that HTML-MSIE or HTML-Navigator is selected. If not, select it.

4. To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5. Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Enabling HTML Testing in Robot
After loading the HTML extension, you must enable HTML testing so that Robot
can recognize HTML elements. You can do this either by starting Internet Explorer
or Netscape Navigator through the Robot Start Browser command or by loading
the Rational ActiveX Test control.

To enable HTML testing using the Start Browser command:

1. Start recording in Robot. To record, click the Record GUI Script button on the
Robot toolbar. For details, see Recording a New GUI Script on page 2-15.

2. Type a script name or select a name from the list.

3. Click OK to display the GUI Record toolbar.

4. Click the Display GUI Insert Toolbar button on the GUI Record toolbar.

5. Click the Start Browser button on the GUI Insert toolbar.

6. Type the URL of the HTML application that you plan to test, or click Browse
and select a local file.

7. Type the name of a tag to uniquely identify this instance of the browser. By using
tags, you can test multiple instances of the browser.

8. Click OK.

Robot starts the selected browser and navigates to the specified URL.
13-3

Testing HTML Applications
9. Continue recording in Robot, as described in Recording a New GUI Script on page
2-15.

Enabling Cache for Netscape Recording and Playback
To record or playback on Netscape Navigator, make sure that the cache is turned on
for the server that is hosting the web pages or applications you are testing. If caching
is not enabled on the server, recording will not work. Your server may refer to cache
as security or some other terminology. Refer to your server documentation for
details on how to enable the cache.

It is also a good idea to make sure the cache is enabled on your browser. It is enabled
by default. To specifically enable the cache:

1. Start Netscape and click Edit > Preferences.

2. Expand the Advanced category and select Cache.

When cache is enabled, the Preferences: Cache dialog box displays values greater
than 0 for Memory Cache and Disk Cache. The Preferences: Cache dialog box
has the following default settings:

Memory Cache: 1024 KBytes

Disk Cache: 7680 KBytes

Disk Cache Folder: Should point to your user profile directory in the directory
where you installed Netscape.

To disable the cache, set the Memory Cache and the Disk Cache to 0.

NOTE: If you start the browser outside of Robot without using the Start
Browser command, you must open the rbtstart.htm page in your browser
before loading the Web pages for testing. The rbtstart.htm page loads the
Rational ActiveX Test Control, which is required for HTML testing in
Robot. By default, this file is located in C:\Program Files\Rational\
Rational Test.
13-4

Testing Data in HTML Elements
Testing Data in HTML Elements

Use the Object Data verification point to test the data in HTML elements. For
example, you can use this verification point to test whether a purchase order has been
processed or whether a Submit button returns the page that it is supposed to. For
more specific information about verification points, see Chapter 4, Creating
Verification Points in GUI Scripts.

To test an HTML element’s data:

1. Start recording in Robot, as described in Enabling HTML Testing in Robot on page
13-3.

2. Navigate to the Web page that contains the elements to test. For example,
navigate to the page that is returned after the user submits a page to be processed.

3. Click the Object Data Verification Point button on the GUI Insert toolbar.

4. Assign a name, wait state, and expected result for the verification point and then
click OK, as described in Tasks Associated with Creating a Verification Point on page
4-6.

5. In the Select Object dialog box, drag the Object Finder tool over the page until
the element that you want to test appears in the TestTip, as described in Selecting
and Identifying the Object to Test on page 4-10.

For example, to test for the existence of a particular string of text on a page (any
text within the <BODY> and </BODY> tags), drag the Object Finder tool over
the page until HTMLDocument appears in the TestTip and in the Selected
Object field. You can see examples of these items in the following figure.
13-5

Testing HTML Applications
For a list of the HTML elements that you can test, see How Robot Maps HTML
Elements on page 13-9.

6. Release the mouse button and click OK.

7. If the Object Data Test dialog box appears, select the data test to use and
click OK.

HTMLDocument TestTip

Object Finder tool
13-6

Testing Data in HTML Elements
There are five types of data tests that you can use on HTML elements. Not all
tests are available for each type of element. For example, you might want to
perform a Contents data test on an HTMLDocument. The Contents data test
captures all of the visible text on the page, including text in forms fields, such as
list boxes and combo boxes. For information about the types of data tests that are
available for each element, see Supported Data Tests for HTML Testing on page
13-11.

8. Select the verification method that Robot should use to compare the baseline
data captured while recording with the data captured during playback.

For example, you can use the Find Sub String Case Sensitive verification
method to verify that the text captured during recording exactly matches a
subset of the captured text during playback.

Suppose you want to verify that the text, thank you for shopping with Classics Online,
is returned after a customer submits a purchase order. By selecting the Find Sub
String Case Sensitive verification method, you can ensure that Robot will
always test for the text, thank you for shopping with Classics Online, regardless of the
text that surrounds it.

For more information about verification methods and the Object Data
Verification Point dialog box, see Working with the Data in Data Grids on page
4-19.

9. Click OK.

10. When finished, click the Stop Recording button on the GUI Record toolbar.

Additional Examples
This section provides some additional examples of creating Object Data verification
points for HTML elements.

To Test the Contents of a Drop-Down List Box
1. Add an Object Data verification point.

2. Select the ListBox with the Object Finder tool.

3. Select a Contents data test.

4. Select the Case Sensitive verification method to test for the entire contents of
the list box. Select the Find Sub String Case Sensitive verification method to
test for a subset of the list box items.
13-7

Testing HTML Applications
To Test for Text within a Table
1. Add an Object Data verification point.

2. Select the HTMLTable object with the Object Finder tool.

3. Select a Contents data test.

4. Select the Case Sensitive verification method to test for all of the text in the
table. Select the Find Sub String Case Sensitive verification method to test for
any text item with the table.

You can edit the text that the verification point captures. For information, see
Editing Data for a Clipboard or Object Data Verification Point on page 4-21.

To Test the Destination of a Link
1. Add an Object Data verification point.

2. With the Object Finder tool, select HTMLLink to test a text-based link.

3. Select a Contents data test to capture the URL of the destination.

4. Select the Case Sensitive verification method to test for the entire URL. Select
the Find Sub String Case Sensitive verification method to test for part of the
URL.
13-8

How Robot Maps HTML Elements
How Robot Maps HTML Elements

Robot maps HTML elements, such as INPUT, SELECT, BODY, TABLE, and
others, to Robot object types, such as PushButton, ListBox, and HTMLDocument.
The following table describes these mappings.

Robot object
type

HTML element Description

PushButton <INPUT type=Submit>
<INPUT type=Reset>
<INPUT type=Button>

<BUTTON>

Used for elements in forms
created with the <INPUT>
tag where the type attributed
is either Submit or Reset.

CheckBox <INPUT type=Checkbox> Used for elements in forms
created with the <INPUT>
tag where the type attributed
is Checkbox.

RadioButton <INPUT type=Radio> Used for elements in forms
created with the <INPUT>
tag where the type attribute is
Radio.

ComboBox <SELECT size=1>

<OPTION> . . .

</SELECT>

Used for elements in forms
created with the <SELECT>
tag where the size attribute is
equal to one.

ListBox <SELECT size=>n>

<OPTION> . . .

</SELECT>

Used for elements in forms
created with the <SELECT>
tag where the size attribute is
greater than one.

EditBox <INPUT type=Text>
<INPUT type=TextArea>

Text is for single line controls.
TextArea is for multiline
controls.

Used for elements in forms
created with the <INPUT>
tag where the type attribute is
equal to Text or TextArea.

HTMLLink <A> . . . Used for anchor elements.

HTMLImage Used for server- and client-
side image maps or images on
a page.
13-9

Testing HTML Applications
HTMLDocument All text between <BODY>
and </BODY>

Used so that verification
points can access all of the
data on a page. Individual
elements are identified by tag
and name or prefix.

HTMLTable All text between <TABLE>
and </TABLE>

Used to test tables.
Verification points act on the
entire table. When capturing
object properties, each cell
appears as a separate
subelement.

HTMLActiveX <OBJECT> Used to record against clicks
on ActiveX controls
embedded in the page.

HTML All other tags Used for all other tags when
the tag has an ID or a name.
HTML can be used, for
example, to identify and test a
single paragraph on a page. In
this case, you must manually
insert an ID into the HTML
source to tag the particular
paragraph.

 (Continued)
Robot object
type

HTML element Description
13-10

Supported Data Tests for HTML Testing
Supported Data Tests for HTML Testing

The following table describes the data tests that are available for each Robot object
type supported in the HTML environment. For information about creating your
own data tests, see Appendix A, Working with Data Tests.

Robot object type Supported data test Description of data test

PushButton
CheckBox
RadioButton
EditBox

Contents Captures and compares visible text.

HTMLText Captures and compares the HTML source.

ComboBox
ListBox

Contents Captures and compares the text of all items in the box.

ItemData Captures and compares the value attribute in the HTML
source.

HTMLText Captures and compares the HTML source.

HTMLLink Contents Captures and compares the “href” of the anchor — that
is, the URL of the destination.

HTMLText Captures and compares the HTML source.

HTMLImage HTMLText Captures and compares the HTML source of the image.

HTMLDocument Contents Captures and compares the visible text of the entire
document, including text in all of the elements in HTML
forms, such as list boxes and combo boxes.

HTMLText Captures and compares the HTML source of the entire
document.

Document URL Captures the URL of the document.

Document Title Captures the title of the document.

HTMLTable Contents Captures and compares the visible text of the entire table.

HTMLText Captures and compares the HTML source of the table.

HTMLActiveX None
13-11

Testing HTML Applications
Testing Properties of HTML Elements

Another way to test your Web pages is to use the Object Properties verification point.

Properties describe an HTML element’s characteristics, such as its appearance, state,
behavior, and data. The Rational Object Testing technology inspects and verifies all
properties of the HTML elements in your application, including hidden properties
that cannot be tested manually.

For example, you can create an Object Properties verification point to capture and
compare the modification date of a page or to determine whether a check box or a
radio button is selected.

The Object Properties verification point provides you with information about more
than 20 properties for each HTML element. Some properties provide you with the
same information as a data test. For example, a radio button’s Value property
provides you with the same information as a Contents data test.

For more information about the Object Properties verification point, see the Robot
Help.

To test an HTML element’s properties:

1. Start recording in Robot, as described in Enabling HTML Testing in Robot on page
13-3.

2. Navigate to the Web page that contains the element to test.

3. Click the Object Properties Verification Point button on the GUI Insert
toolbar.

4. Assign a name, wait state, and expected result for the verification point and then
click OK, as described in Tasks Associated with Creating a Verification Point on page
4-6.
13-12

Playing Back Scripts in Netscape Navigator
5. Select the element to test and then click OK. The element’s properties are
displayed as follows:

6. Click OK to insert the verification point.

Playing Back Scripts in Netscape Navigator

With Robot, you can now record scripts in both Internet Explorer and Netscape
Navigator, and play them back in either browser. Netscape playback requires at
minimum a 200 MHz Pentium with at least 64 MB of RAM.

If you are recording and/or playing back on Netscape Navigator, you must make sure
that the cache is turned on on the server that is hosting the web pages or applications
you are testing. It is also a good idea to make sure the cache is enabled on your
browser. It is enabled by default. If caching is not enabled on the server, record and
playback will not work.

Configuring Robot for Netscape Playback
To configure Robot for Netscape playback:

1. In Robot, click Tools > Extension Manager and make sure that the
HTML-Navigator extension is selected.

To improve performance, clear any extensions that are not used. Click OK.
Restart Robot to load the extension.

2. In Robot, click Tools > GUI Playback Options and click the Web Browser tab.
13-13

Testing HTML Applications
3. Select Netscape Navigator 4.x.

If you have multiple versions of Navigator, you can specify the full path to the
version of Navigator that you want to use for playback.

Alternatively, you can edit your script so that it will play back in Navigator. For
example, to specify Navigator playback, type one of the following commands in
your script:

SQASetDefaultBrowser "Navigator"

SQASetDefaultBrowser "Navigator=c:\program files\
netscape\communicator\program\netscape.exe"

Use the first command if you have only one version of Navigator on your
computer. Use the second command if you have multiple versions of Navigator
on your computer, replacing the program path indicated with the actual path on
your computer. Be sure to insert the command before the StartBrowser
command is invoked in the script.

Differences Between Internet Explorer and Navigator
Both Microsoft Internet Explorer and Netscape Navigator contain proprietary
extensions to the HTML standard. As a result, HTML documents are often
rendered differently in each browser.

In addition, you should be aware of the following areas in which Navigator playback
differs from Internet Explorer playback:

� The following Robot object types, which represent the Microsoft
implementation of Dynamic HTML, are not recognized by Robot during
Navigator playback:

– HTMLActiveX

– HTMLEmbed

– HTMLScriptlet

� The following Robot object types do not support Robot action commands, such
as Click, Drag, and Scroll, during Navigator playback:

– HTMLTable

– HTML

� Not all of the object properties recognized by Internet Explorer during
recording are supported by the Navigator extension. In addition, other object
properties may have different values because of browser differences.
13-14

Recording Tips
� The current Robot implementation of Navigator record and playback requires
a Web server that allows disk caching. Cache must be enabled on the server for
Netscape record and playback to work.

Recording Tips

This section provides suggestions to help you record scripts in Robot. It contains the
following tips:

� Capturing the properties of Java applets in HTML pages

� Synchronizing pages

� Recording mouse movements

� Ensuring browser compatibility

Capturing the Properties of Java Applets in HTML Pages
There are two ways to capture the properties of a Java applet embedded in a Web
page. You can either capture the properties of the entire window, or you can capture
the properties of the applet itself. Either way, you should first click Tools →
Extension Manager in Robot to verify that the Java extension is loaded.

To capture the entire window, including the applet:

1. Add an Object Properties verification point.

2. With the Object Finder tool, point to the title bar of the browser window until
Window appears in the TestTip.

3. Click OK.

To capture only the properties of the Java applet:

1. Add an Object Properties verification point.

2. With the Object Finder tool, point to the Java applet until JavaWindow appears
in the TestTip.

3. Click OK.

NOTE: Do not point to the HTMLDocument object type. This object type
provides minimal detail about Java applets.
13-15

Testing HTML Applications
Synchronizing Pages
Whenever you click on a page for the first time, Robot inserts a Browser NewPage
command into the script. This command causes Robot to wait for the contents of the
page to fully load before continuing, and also helps prevent timing problems that
could cause scripts to fail when they are played back. The following scenarios
illustrate how this works.

For more information about page synchronization, see the description of the
Browser command in the SQABasic Language Reference.

Capturing Properties or Data of Window Objects
Any time you plan to capture the data or properties of a window object, be sure to
click in the window before inserting an Object Data or Object Properties verification
point. Clicking in the window inserts a Browser NewPage command into the
script and ensures proper synchronization between pages.

Using the Browser’s Back and Forward Buttons
If you use the Back or Forward buttons to navigate to a previously viewed page while
recording a script, you must perform some action on the page before you click the
Back or Forward button again. Clicking on the page, for example, inserts the
Browser NewPage command into the script, and just as with the previous
example, ensures proper synchronization between pages.

Recording Transactions
When you submit a purchase order for an e-commerce transaction, there may be a
substantial delay before the Web server responds with a confirmation. In fact, a Web
server may send one or more interim pages while it is processing the transaction.
Robot waits 30 seconds, by default, for this confirmation to arrive from the server. If
the confirmation requires additional time, you will see the warning New Page Not
Found in the log after you play back the script. To correct this problem, edit the script
by adding a Wait value greater than 30 seconds to the Browser NewPage
command, as in the following example:

Browser NewPage, “HTMLTitle=Thank you for your order!”, ”Wait=45”

In this example, the use of HTMLTitle in the recognition string allows Robot to
identify the correct page at playback and skip over any interim pages. The Wait value
causes Robot to wait 45 seconds for this specific page to be displayed.
13-16

Recording Tips
Recording Mouse Movements
With Dynamic HTML, it is possible to cause a page to change color or to cause text
on a page to update simply by moving the mouse over the page. To capture these
mouse movements:

1. Start recording in Robot.

2. Navigate to the page that contains the Dynamic HTML.

3. Press CTRL+SHIFT+R to enter low-level recording mode.

4. Move the pointer over the portion of the page that is affected by the mouse
movement.

5. Press CTRL+SHIFT+R to stop low-level recording mode.

6. Insert an Object Properties verification point.

For more information about low-level recording, see Switching to Low-Level Recording
on page 2-21.

Ensuring Browser Compatibility
To help ensure that scripts recorded in Internet Explorer play back as expected in
Navigator, observe the following recording tips:

� Do not click on the scroll bars in Internet Explorer during recording. If you need
to scroll, pause the recording, scroll the window, and then resume recording.

� Avoid using the Forward or Back arrows during recording in Internet Explorer.
If you find it necessary to use them, edit your script by replacing the arrows with
the following commands:

– Browser Back, "",""

– Browser Forward, "",""

For more information, see the SQABasic Language Reference.

� Exit Internet Explorer by clicking the Close Window button in the upper-right
corner of the window, rather than by clicking File > Close.
13-17

Testing HTML Applications
Enhancing Object Recognition of HTML Elements

Robot uses recognition methods to identify HTML elements in the
application-under-test. These recognition methods are saved as arguments in scripts
to help Robot identify these elements during playback. For example, Robot can
identify a link by the visible text of the link — that is, the text that a user clicks on. If
this text changes after a script has been recorded, the script may fail when it is played
back.

The best way to ensure that Robot recognizes this link is to assign it an ID that will
always remain the same, even if the visible text changes — for example:

See About Our Product

To enhance the recognition of image elements, it is best to use either ALT tags or ID
tags, as shown in the following examples:

<img src="lookpix.gif" border =0 alt="Lookup a
document">

<img ID="SearchButton" src="searchpix.gif"
border=0>

For more information about recognition methods, see the SQABasic Language
Reference.
13-18

� ��� �� C H A P T E R 14

Testing Java Applets and Applications
Java is an object-oriented programming language that lets you write programs that
can run on any computer that implements the Java Virtual Machine (JVM).

This chapter describes how to use Robot to test both Java applets running in a
browser and standalone Java applications. It includes the following topics:

� About Robot support for Java

� Making Java applets and applications testable

� Setting up the sample Java applet

� Testing data in Java components

� Support for custom Java components

� Supported data tests for Java testing

� Testing properties of Java components

� Enhancing object recognition of Java components

For a good introduction to Java concepts and terminology, read the Java language
overview at the following URL:

http://java.sun.com/docs/overviews/java/java-overview-1.html
14-1

Testing Java Applets and Applications
About Robot Support for Java

Rational Robot provides comprehensive support for testing GUI components in
both Java applets and standalone Java applications. With its Object Testing
technology, Robot examines the data and properties of Java components. This means
that Robot can do the following:

� Determine the names of components in your program, and use those names for
object recognition.

� Capture properties of Java components with the Object Properties verification
point.

� Capture data in Java components with the Object Data verification point.

Robot includes several Java-specific object types for testing Java components,
including JavaPanel, JavaWindow, JavaSplitPane, JavaMenu, JavaPopupMenu,
JavaTable, JavaTableHeader, and JavaTree.

Robot scripts can be played back on a variety of Windows platforms, including
Windows NT 4.0, Windows 2000, Windows 98, and Windows 95, and are
transportable across the various Java platforms.

The following matrix presents an overview of the Java support in Robot:

For information about support for additional Java environments and foundation
classes, see the Rational Web site at www.rational.com.

Java Virtual Machines (JVM)

Su
pp

or
te

d
C

la
ss

 L
ib

ra
ri

es

Sun JDK 1.1, 1.2, 1.3 Microsoft Java SDK 3.1 Netscape 4.x (Applets
only)

AWT AWT AWT

JFC/Swing JFC/Swing JFC/Swing

WFC

Symantac Visual Cafe Symantac Visual Cafe Symantac Visual Cafe

KL Group KL Group KL Group

Extensibility Extensibility Extensibility
14-2

About Robot Support for Java
Robot Support for Testing Java Applets and Applications
A Java applet is a Java program embedded inside a Web page or displayed with an
applet viewer. Java applications are standalone programs that require a Java Virtual
Machine (JVM) in order to run. Java applications create their own windows and are
not embedded inside Web pages.

Support for Testing Java Applets
Robot provides support for testing Java applets that run in the following
environments:

� Internet Explorer 4.0 or later with the Microsoft Java Virtual Machine (JVM) or
with the Sun plug-in

� Netscape 4.05 or later with the Netscape JVM or with the Sun plug-in

� Microsoft Appletviewer

� Sun Appletviewer from the Java Developer Kit (JDK) 1.1.4 or later

Support for Testing Java Applications
Robot provides support for testing standalone Java applications that run in the
following environments:

� Sun JDK 1.1.4 to 1.3

� Sun Java Runtime Environment (JRE) 1.1.4 to 1.3

� Microsoft JVM (jview) 3.1

You can create Robot scripts that play back Java applications under Rational Quantify
and PureCoverage. For information, see Setting Diagnostic Tools Options on page 9-11.

Supported Foundation Class Libraries
With Robot you can test Java objects that are instances of the following class libraries
or objects that are derived from any of these class libraries:

� Abstract Windowing Toolkit (AWT)

AWT is a collection of core graphical user interface classes that will run on any
supported Java platform.
14-3

Testing Java Applets and Applications
� Java Foundation Class (JFC)

JFC is an extension to AWT that provides additional graphical user interface
classes, such as:

– Swing

– Accessibility

– Drag and Drop

– Java-2D, Java-3D

� Windows Foundation Classes (WFC). Java programs using WFC components
run only on Microsoft JVMs.

� Symantec Visual Cafe

� KL Group

� Oracle Class

In future releases, Rational will provide support for additional foundation class
libraries. For information about the most recent enhancements, see the Rational
Web site.

Making Java Applets and Applications Testable

To make Java applets and applications testable, you need to:

� Run the Java Enabler. The Java Enabler makes each host environment testable.

� Verify that the Java extension is loaded. The Java extension includes those
additions to Robot that allow Robot to test Java.

These tasks are described in the following sections.

NOTE: For information about how to enable your computer to support other
foundation classes such as Swing, see Setting Up the Sample Java Applet on page
14-7.
14-4

Making Java Applets and Applications Testable
Running the Java Enabler
By default, Java testing is disabled in Robot. To enable Java testing, you need to run
the Java Enabler. The Java Enabler is a wizard that scans your hard drive looking for
Java environments such as Web browsers and Sun JDK installations that Robot
supports. The Java Enabler only enables those environments that are currently
installed.

To run the Java Enabler:

1. Make sure that Robot is closed.

2. Click Start > Programs > Rational product name > Rational Test >
Java Enabler.

3. Select one of the available Java enabling types.

NOTE: If you install a new Java environment such as a new release of a browser
or JDK, you must rerun the Enabler after you complete the installation of the Java
environment. You can download updated versions of the Java Enabler from the
Rational Web site whenever support is added for new environments. To obtain
the most up-to-date Java support, simply rerun the Java Enabler.
14-5

Testing Java Applets and Applications
4. Select the environments to enable.

5. Click Next.

6. Click Yes to view the log file.

The following table describes what the Java Enabler does to update the various Java
environments:

NOTE: If the Java Enabler does not find your environment, you must upgrade to
one of the supported versions and rerun the Java Enabler. For a list of supported
environments, see About Robot Support for Java on page 14-2.

With this Java environment The Java Enabler

Sun JDK 1.1 Updates the CLASSPATH on Windows 95 and Windows
98 and the system CLASSPATH on NT 4.0 and
Windows 2000 to include the path to the sqarobot.jar file.

Sun JRE 1.1 Updates the CLASSPATH on Windows 95 and Windows
98 and the system CLASSPATH on NT 4.0 and
Windows 2000. If the CLASSPATH is not used by the
Java application, you will need to manually add the
sqarobot.jar file to the CLASSPATH used by the
application.

Sun JDK 1.2 � Copies the sqarobot.jar file to the Jre\Lib\Ext directory.
� Updates the accessibility.properties file to reference the

Robot runtime monitor class.

Java 2 SDK, Standard Edition,
V 1.3

� Copies the sqarobot.jar file to the Jre\Lib\Ext directory.
� Updates the accessibility.properties file to reference the

Robot runtime monitor class.
14-6

Setting Up the Sample Java Applet
Verifying that the Java Extension Is Loaded
To test Java, you must first make sure that the Java extension is loaded in Robot.

To verify that the Java extension is loaded:

1. Start Robot.

2. Click Tools > Extension Manager.

3. Verify that Java is selected. If not, select it.

4. To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5. Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Setting Up the Sample Java Applet

After you complete the tasks in the proceeding section, you can start testing your Java
applets or standalone applications, or you can learn more about testing Java by
installing the sample Java applet that Rational provides.

To use the sample applet, you must perform the following tasks:

1. Install the sample Java applet.

2. Install Sun’s Swing foundation classes. (Swing is a subset of JFC.)

3. Start the sample Java applet.

These tasks are described in the following sections.

Microsoft JVM Updates the trusted CLASSPATH in the registry.

Netscape JVM � Copies the sqarobot.jar file to the Java\Classes directory
within the Netscape directory structure.

� Copies the sqajava.dll file to the Java\Bin directory.
� Updates the awt.properties file in the Java\Classes

directory.

 (Continued)
With this Java environment The Java Enabler
14-7

Testing Java Applets and Applications
Installing the Sample Java Applet
To install the sample Java applet:

1. Click Start > Programs > Rational product name > Rational Test >
Set Up Rational Test Samples.

2. Select Java Sample.

3. Click Next to complete the installation.

Installing the Swing Foundation Classes
The sample Java applet requires Sun's JFC 1.1 or Swing foundation classes version
1.1 or later. You can download JFC/Swing from www.javasoft.com/products/jfc.
After you download the Swing foundation classes, you need to install them.

Installing Swing Under Windows NT 4.0
To install the Swing foundation classes on a computer running Windows NT 4.0:

1. Double-click the file that you just downloaded to install Swing on your
computer.

2. Click Start > Settings > Control Panel.

3. Double-click System.

4. Click the Environment tab.

5. Click CLASSPATH under System Variables.

6. Move the cursor to the end of the Value box. Type a semi-colon and the full path
to the swingall.jar file.

This file is installed when you install Swing. For example, if you installed
Swing-1.1 at the root of your C drive, you would type the following:

;c:\swing-1.1\swingall.jar

7. Click Set.

8. Click OK.

NOTE: When you run the Java Enabler, the Swing foundation classes are
automatically installed. For information, see Running the Java Enabler on page 14-5.
14-8

Setting Up the Sample Java Applet
Installing Swing Under Windows 2000
To install the Swing foundation classes on a computer running Windows 2000:

1. Double-click the file that you just downloaded to install Swing on your
computer.

2. Click Start > Settings > Control Panel.

3. Double-click System.

4. Click the Advanced tab. Click Environment Variables.

5. Click CLASSPATH under System Variables, and click Edit.

6. Move the cursor to the end of the Variable Value box. Type a semi-colon and
the full path to the swingall.jar file.

This file is installed when you install Swing. For example, if you installed
Swing-1.1 at the root of your C drive, you would type the following:

;c:\swing-1.1\swingall.jar

7. Click OK.

8. Click OK.

Installing Swing Under Windows 98 and Windows 95
To install the Swing foundation classes on a computer running Windows 98 or
Windows 95:

1. Double-click the file that you just downloaded to install Swing on your
computer.

2. Edit the CLASSPATH environment variable in your workstation’s autoexec.bat
file to include the path to the swingall.jar file.
14-9

Testing Java Applets and Applications
Starting the Sample Java Applet
To run your default browser and load the sample Java applet:

� Click Start > Programs > Rational Test Samples > Java.

Testing Data in Java Components

Use the Object Data verification point to test the data in Java components. For more
information about verification points, see Chapter 4, Creating Verification Points in
GUI Scripts and the Robot Help.

To test a Java component’s data:

1. Start recording in Robot. For details, see Recording a New GUI Script on page
2-15.

2. Open the Java applet or application that you want to test.

If you plan to play back the script under Rational Quantify or PureCoverage to
test a Java application (not an applet), use the Start Java Application button on
the GUI Insert toolbar. For information about Quantify and PureCoverage, see
Setting Diagnostic Tools Options on page 9-11. For information about starting a
Java application, see Starting an Application on page 3-1.

3. Navigate to the page that you want to test.

4. Start creating the Object Data verification point. (For instructions, see Object
Data verification point in the Robot Help Index.)
14-10

Testing Data in Java Components
5. Assign a name, wait state, and expected result for the verification point and then
click OK, as described in Tasks Associated with Creating a Verification Point on page
4-6.

6. In the Select Object dialog box, drag the Object Finder tool over the page until
the component you want to test appears in the TestTip, as described in Selecting
and Identifying the Object to Test on page 4-10.

For example, to test that a particular item in a ComboBox is selected, drag the
Object Finder tool over the page until ComboBox appears in the TestTip.

7. Release the mouse button.

8. If the dialog box is still open, click OK.

9. If the Object Data Tests dialog box appears, select the data test to use and
click OK.

For example, to test that a particular element in a ComboBox is selected, select
the JavaActiveState data test. To test all of the elements in a ComboBox, select
the Contents data test.

10. Complete the verification point as usual.

ComboBox

Object Finder tool

TestTip
14-11

Testing Java Applets and Applications
Testing the Contents of a Java Panel
A feature unique to Java testing is the ability to collect and test the data for all the
known components on a Java panel. A panel is a container of components and other
panels that you have grouped together.

To test the contents of a Java panel:

1. Repeat steps 1 – 5 from the section Testing Data in Java Components on page 14-10.

2. In the Select Object dialog box, drag the Object Finder tool over the page until
JavaPanel appears in the TestTip, as described in Selecting and Identifying the
Object to Test on page 4-10.

You can use the Object Data verification point to capture the active state of each
component in the panel. Robot inserts only the fields with dynamically
changing data, such as EditBox, RadioButton or ComboBox, into the panel’s
Object Data verification point. Components without active state (JavaPanels,
PushButtons, or Labels) are not saved in the verification point.

3. Repeat steps 7 – 10 from the section Testing Data in Java Components on page
14-10.

JavaPanel

Object Finder tool

TestTip
14-12

Support for Custom Java Components
Support for Custom Java Components

With Java, you can create your own user-defined classes. For example, you can create
a new kind of button class that acts the same way as an existing AWT Button. If you
derive your new button from the AWT button class, Robot can map the new class
correctly.

Beyond the standard class libraries, Robot supports custom Java components in
other class libraries, such as those available with IBM Visual Age and other IDEs.
This extended Java support is provided through the Robot Java Open API.

By mapping a standard SQABasic object type (such as a push button or Java panel) to
a custom Java component, and by using the Java Open API to create a proxy interface
for the custom component, you can use Robot to test the custom component.

You map standard SQABasic object types with custom Java components in the Java
Class Mapping tab of the Robot General Options dialog box, as shown here:

To display the Java Class Mapping tab in Robot:

� Click Tools > General Options. Click the Java Class Mapping tab.
14-13

Testing Java Applets and Applications
For More Information About Java Support
For information about mapping standard SQABasic object types to custom Java
components, click the Help button in the Java Class Mapping tab to display Robot
Help for that topic, or search the Robot Help index for Java Class Mapping tab.

For information about the Robot Java Open API, open the online document
overview-summary.htm. By default, this file is located in the following path:

Program Files\Rational\Rational Test\JavaEnabler\api

You can also open this file through the Robot and SQABasic Help systems wherever
you see the link to the Robot Java API Overview.

Supported Data Tests for Java Testing

The following table describes the data tests that are available for each Robot object
type supported in the Java environment.

Robot object type Supported data test Description of data test

PushButton, Label Contents Captures and compares visible text.

CheckBox
RadioButton

Contents Captures and compares visible text.

Java Active State Displays Selected or Not Selected depending on the
current state.

EditBox Contents Captures and compares visible text.

Java Active State Captures and compares selected text.

ScrollBar, TrackBar Contents Displays the current value.

Java Active State Displays the Value, Unit Increment, and Block
Increment.

ListBox, ComboBox
ComboListBox

Contents Captures and displays all elements in the list box, combo
box, or combo list box.

Java Active State Captures and displays the currently selected elements.

TabControl Contents Captures and displays all of the tabs.

Java Active State Captures and displays the currently selected tab.

JavaTree Contents Captures and displays the contents of the Java tree.

Java Active State Captures and displays the currently selected elements in
the Java tree.
14-14

Testing Properties of Java Components
Testing Properties of Java Components

You can use the Object Properties verification point to test the properties of Java
components.

Properties describe a component’s characteristics such as its appearance, state,
behavior, and data. The Rational Object Testing technology inspects and verifies all
properties of the components in your application, including hidden properties that
cannot be tested manually.

To test the properties of Java components:

1. Start recording in Robot. For details, see Recording a New GUI Script on page
2-15.

2. Navigate to the page that contains the component you want to test.

3. Start creating the Object Properties verification point as usual. (For instructions,
see Object Properties verification point in the Robot Help Index.)

4. Assign a name, wait state, and expected result for the verification point and then
click OK, as described in Tasks Associated with Creating a Verification Point on page
4-6.

JavaSplitPane Contents Captures and displays the current scroll value for the
pane.

JavaTable Contents Captures and displays each cell in the table.

JavaTableHeader Contents Displays each column header in the table.

JavaPanel
JavaWindow

Contents Captures and displays the data-sensitive objects in the
object and its children. A data-sensitive object is a
child or nested child of a selected object that contains
dynamically-generated data. Examples include
EditBoxes, CheckBoxes, and RadioButtons, but not
PushButtons.

JavaMenu
JavaPopupMenu

Contents Captures and displays the menu header and items for
each menu.

Java Active State Captures and displays the currently selected menu item.

Menu Test Captures and displays the menu header and items for
each menu, along with accelerator keys and mnemonic
specifiers.

 (Continued)
Robot object type Supported data test Description of data test
14-15

Testing Java Applets and Applications
5. In the Select Object dialog box, drag the Object Finder tool over the page until
the component that you want to test appears in the TestTip, as described in
Selecting and Identifying the Object to Test on page 4-10.

For example, to test for the current, minimum, and maximum values in a
trackbar, drag the Object Finder tool over the component until Trackbar
appears in the TestTip. See the following example.

6. Release the mouse button. If the Select Object dialog box is still open, click OK.

The object’s properties appear:

Trackbar TestTip

Object Finder tool

Current value of trackbar

Maximum value of trackbar

Minimum value of trackbar
14-16

Enhancing Object Recognition of Java Components
7. Click OK to complete the verification point.

Enhancing Object Recognition of Java Components

Robot uses recognition methods to identify components in the
application-under-test. These recognition methods are saved as arguments in scripts
so Robot can correctly identify these component during playback. For example,
Robot can identify a Java Button by the visible text displayed on the button. If the
text changes after the script has been recorded, the script may fail when it is played
back.

The best way to make sure that Robot recognizes a Java component is to assign a
name to the object in the Java code. Although Java supports several ways of doing
this, Robot works as follows:

� If the component exports a public String getName() method and this
method returns a name that starts with a dot (.) character, Robot uses this name
to uniquely identify the component. The dot prefix is necessary to make sure
that the name has been explicitly set by the user and not set to a default value by
the browser.

This recognition method is available with all java.awt.Component derived
classes.

� If the component contains an accessibleContext.accessibleName
property, Robot will use it to recognize the component.

This recognition method is available only with JFC-derived classes.

By assigning unique names to your Java components, you can make your scripts
more resilient.

NOTE: When you create an Object Properties verification point, you can
edit the list of properties that are saved with the component. Robot saves the
list relative to the Java class name (for example, Java.awt.Button), not the
Robot command name (for example, PushButton). This allows you to save
derived classes with different lists of properties. For more information about
adding and removing properties from the properties list, see the Robot Help.
14-17

Testing Java Applets and Applications
14-18

� ��� �� C H A P T E R 15

Testing PowerBuilder Applications
This chapter describes how to test 32-bit PowerBuilder applications with Rational
Robot. It includes the following topics:

� About Robot support for PowerBuilder applications

� Verifying that the PowerBuilder extension is loaded

� Recording actions on DataWindows

� Testing an expression value of a DataWindow property

� Testing DataStore controls and hidden DataWindows

� Capturing data in a DropDownDataWindow and DropDownListBox

� Testing the value of a DataWindow computed field

About Robot Support for PowerBuilder Applications

Rational Robot provides comprehensive support for testing 32-bit applications built
with PowerBuilder 5.0 through 7.0. Robot supports the testing of applications that
you migrate from one PowerBuilder version to another, and allows for the reuse of
scripts between Windows NT 4.0, Windows 2000, Windows 98, and Windows 95.

With its Object Testing technology, Robot examines data and properties that are not
visible to the user. Robot uses Object-Oriented Recording to recognize a
PowerBuilder object by its internal name.
15-1

Testing PowerBuilder Applications
You can use Robot to test all PowerBuilder and third-party components, including:

� DataStore controls and hidden DataWindows

� ActiveX controls

� RichTextEdit controls

� DataWindows with RichText presentation style

� All properties of a DataWindow computed field, including expression and value

Verifying that the PowerBuilder Extension Is Loaded

To test PowerBuilder applications, you should first verify that the Robot
PowerBuilder extension is loaded in Robot.

To verify that the extension is loaded:

1. Start Robot.

2. Click Tools > Extension Manager.

3. Verify that PowerBuilder is selected. If not, select it.

4. To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5. Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Recording Actions on DataWindows

Robot uses certain action parameters to identify a DataWindow row if the action is a
mouse click. These parameters help make your scripts more reliable and readable by
reducing the dependency on absolute positions.

These parameters are used when you record actions on:

� DataWindows

� DataWindow sub-objects

NOTE: For detailed information about DataWindow action parameters, see the
SQABasic Language Reference.
15-2

Recording Actions on DataWindows
Parameters for a Mouse-Click Action
The following action parameters identify a DataWindow row if the action is a mouse
click:

Robot can record these action parameters for the following types of multi-row
DataWindow and DropDownDataWindow presentation styles: FreeForm, Grid,
OLE, RichText, and Tabular.

Robot records coordinates for all other DataWindow presentation styles and for
DropDownListBoxes.

Value-Based Recording
By using value-based recording, Robot lets you record actions on a DataWindow and
lets you play back those actions regardless of the position of records in the database.
Value-based action parameters are written to a script as column/value pairs, using
either the column number or the column name.

Action parameter Action during playback

Col=%;Value=x Clicks the row specified by the column/value pair. Col
is the numeric position of a DataWindow column and
Value is the contents of the cell located at the intersection
of column Col and the clicked row. (See the next section,
Value-Based Recording.)

ColName=$;Value=x Clicks the row specified by the column/value pair.
ColName is the developer-assigned name of a
DataWindow column, and Value is the contents of the
cell located at the intersection of column ColName and
the clicked row. (See the next section, Value-Based
Recording.)

CurrentRow Clicks the currently selected row in the DataWindow.

LastRow Clicks the last row in the DataWindow.

Row=% Clicks the row specified by the number (first row =1).

Text Clicks the row identified by the visible text in the
DataWindow row.

VisibleRow=% Clicks the visible row specified by the number. The range
of row numbers begins with the first visible row.
15-3

Testing PowerBuilder Applications
In the following example, when you select a cell in the tabular DataWindow, Robot
records a column/value pair to uniquely identify the row that was clicked.

This script shows that Robot:

– Recorded a Click in the DataWindow dw_customer_info

– In the column customername

– In the row with a customerid of 1

Robot detects which columns in a DataWindow are key columns, and then uses the
key columns in the column/value pairs. If there are no key columns, Robot uses as
many column/value pairs as necessary to uniquely identify the clicked row, starting
with the leftmost column.

Testing an Expression Value of a DataWindow Property

In PowerBuilder, the value of any property of a DataWindow or DataWindow
sub-object can be an expression. For example, you can have the background color of
a DataWindow dynamically vary based on a formula or comparison.

If a property's value comes from an expression, an Object Properties verification
point performed on a DataWindow returns both the current value and an
.Expression property whose value is the expression. In this case, you can test the
actual result and the expression itself.

If you select this cell ...

... Robot writes this in the script.

The column/value pair identifies the clicked row.
15-4

Testing DataStore Controls and Hidden DataWindows
For example, if the value of Background.Color is an expression, an Object
Properties verification point returns both:

� The Background.Color property with a value that is the actual result of the
expression.

� The Background.Color.Expression property with a value that is the expression.
(The value of an .Expression property is always a string.)

Expressions that are used against objects within the detail band of a DataWindow are
reevaluated for every row. When Robot returns the values of such properties, they
are based on the state of the current row of the DataWindow. If you select a different
row and recapture the properties, you may get different values.

Testing DataStore Controls and Hidden DataWindows

You can test the properties and data of PowerBuilder objects even though they are
not visible in the application. By selecting from a list of all objects on the Windows
desktop, you can test:

� Nonvisual DataStore controls. (DataStore controls always appear as direct
children of the Windows desktop.)

� Hidden DataWindows (Visible property is False).

Current color
Expression
15-5

Testing PowerBuilder Applications
For information about selecting objects from the Windows desktop, see Selecting and
Identifying the Object to Test on page 4-10.

Capturing Data in a DropDownDataWindow/ListBox

To capture the data in a DropDownDataWindow or DropDownListBox, use the
Object Data verification point as follows:

1. Start creating an Object Data verification point.

2. In the Select Object dialog box, drag the Object Finder tool to the DWColumn
that contains the data.

If the DWColumn has a child dropdown, the TestTip shows DWColumn
(Contains DropDownDataWindow) or (Contains DropDownListBox).

3. Release the mouse button. If the Select Object dialog box still appears, click OK.

The Object Data Tests dialog box appears.

4. To capture the data stored in the child dropdown of the DataWindow or ListBox,
select the DropDown Contents data test.

To capture the data in the DataWindow, select the DataWindow Contents test.
(If the DWColumn does not contain a child dropdown, the data in the
DataWindow is captured automatically after step 3.)

5. Click OK.

6. Continue creating the verification point as usual.

The nonvisual
DataStore control is a
child of the desktop.

Shows hidden
objects on the
desktop.
15-6

Testing the Value of a DataWindow Computed Field
Testing the Value of a DataWindow Computed Field

The Object Properties verification point supports a Value property for a computed
field (DWComputedField) within a DataWindow. The Value property contains the
current result of the expression assigned to the computed field.

You can also test the Expression property, which contains the expression used to
calculate the value of the computed field.

Expression used to
calculate the value

DWComputedField

Current result of the
expression
15-7

Testing PowerBuilder Applications
15-8

� ��� �� C H A P T E R 16

Testing PeopleTools Applications
This chapter describes the support that Rational Robot provides for testing
PeopleTools applications. It includes the following topics:

� About Robot support for PeopleTools applications

� Verifying that the PeopleTools extension is loaded

� Testing a component’s properties

� Testing a component’s data

� PeopleTools commands

About Robot Support for PeopleTools Applications

Rational Robot provides comprehensive support for testing applications built with
PeopleTools versions 6.0 through 7.5. With its Object Testing technology, Robot
examines data and properties that are not visible to the user. Robot uses
Object-Oriented Recording to recognize a PeopleTools component by its field name
in the database.

Robot provides end-to-end automated testing of your PeopleTools applications,
as follows:

If you have purchased Then

A PeopleTools application Your PeopleTools package includes a PeopleTools-only
version of Robot.

Rational Robot Support for testing PeopleTools applications with Robot
is available in addition to all the other features of Robot.

Rational TestFoundation You have access to a testing methodology and a
comprehensive collection of pre-recorded scripts for
PeopleTools applications.
16-1

Testing PeopleTools Applications
You can use Robot to test the following PeopleTools components:

Grids Tab controls
Menu objects Toolbars
Navigator Panels Trees
Panels Tree Views
Spin controls

Verifying that the PeopleTools Extension Is Loaded

To test PeopleTools applications, you should first verify that the Robot PeopleTools
extension is loaded in Robot.

To verify that the extension is loaded:

1. Start Robot.

2. Click Tools > Extension Manager.

3. Verify that PeopleTools is selected. If not, select it.

4. To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5. Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Testing a Component’s Properties

There are two methods that you can use to test the properties (attributes) of a
PeopleTools component:

� Object Properties verification point – Use to test properties while recording a
script.

� Object Scripting commands – Use to test properties programmatically while
editing a script. (For information, see the SQABasic Language Reference.)

NOTE: To test the properties of the entire panel, point to the window title
bar when selecting the object to test.
16-2

Testing a Component’s Data
Testing a Component’s Data

You can use the Object Data verification point to test the data in PeopleTools
data-aware components.

You can use the Object Data Test Definition to define user data tests. (For
information, see Appendix A, Working with Data Tests.)

PeopleTools Commands

The following commands are included in the SQABasic scripting language to
support the PeopleTools development environment. (For detailed information
about these commands, see the SQABasic Language Reference.)

NOTE: To test the data in the entire panel, point to the panel when selecting the
object to test.

Command Description

PSGrid Performs an action on a PeopleTools grid.

PSGridHeader Performs an action on a column header in a PeopleTools
grid.

PSGridHeaderVP Creates a verification point on a column header in a
PeopleTools grid.

PSGridVP Creates a verification point on a PeopleTools grid.

PSMenu Performs an action on a PeopleTools menu object.

PSMenuVP Creates a verification point on a PeopleTools menu
object.

PSNavigator Performs an action on a PeopleTools Navigator window
or a navigator map in the PeopleTools Business Process
Designer.

PSNavigatorVP Creates a verification point on a PeopleTools Navigator
window or a navigator map in the PeopleTools Business
Process Designer.

PSPanel Performs an action on a PeopleTools panel.

PSPanelVP Creates a verification point on a PeopleTools panel.

PSSpin Performs an action on a PeopleTools spin control.
16-3

Testing PeopleTools Applications
PSSpinVP Creates a verification point on a PeopleTools spin
control.

PSTree Performs an action on a PeopleTools tree object.

PSTreeHeader Performs an action on a column header in a PeopleTools
tree object.

PSTreeHeaderVP Creates a verification point on a column header in a
PeopleTools tree object.

PSTreeVP Creates a verification point on a PeopleTools tree object.

 (Continued)
Command Description
16-4

� ��� �� C H A P T E R 17

Testing Delphi Applications
This chapter describes the Delphi 3.0, 4.0, and 5.0 support in Rational Robot. It
includes the following topics:

� About Rational Robot support for Delphi

� Making Delphi applications testable

� Testing a component’s properties

� Testing a component’s data

About Rational Robot Support for Delphi

With Rational Robot, you get comprehensive support for testing your Delphi
applications. With its Object Testing technology, Robot examines data and
properties that are not visible to the user. Robot uses Object-Oriented Recording to
recognize a Delphi component by its internal name.

Use Robot to test Delphi and third-party components, including:

� Visual Component Library (VCL) components

� Win 32 controls

� ActiveX controls

� Data-aware components

� Nonvisual components

� Internet-enabled controls

� Visual inheritance forms

NOTE: Robot supports the testing of applications built with Delphi 3.0, 4.0, and
5.0 for Windows NT, Windows 95, Windows 98, and Windows 2000.
17-1

Testing Delphi Applications
Making Delphi Applications Testable

Before you can test your Delphi applications, you must install the Rational Object
Testing Library for Delphi and the Rational Test Delphi Enabler. You then need to
run the Enabler, which adds one line of code (SQASrvr,) to your project, and then
you need to recompile your project in Delphi to make it Robot-testable.

Installing the Rational Object Testing Library and Enabler
Be sure to install Delphi 3.0, 4.0, or 5.0 for Windows NT, 95, 98, or 2000 before you
install the Object Testing Library for Delphi and the Enabler.

To install the Library and Enabler:

1. Insert the Rational Suite CD-ROM into your CD-ROM drive.

2. Do one of the following:

– From the Windows taskbar: Choose Start > Run.

– From Program Manager: Choose File > Run.

3. Type drive:\SETUP.EXE and choose OK to start the Rational Setup wizard.

4. When the list of Rational Test Enablers appears, choose Rational Test Delphi
Enabler.

5. Follow the onscreen instructions to complete the installation.

Running the Rational Test Delphi Enabler
After you install the Object Testing Utilities, you need to run the Delphi Enabler,
which adds one line of code to your project, and then you need to compile the
project.

You only need to run the Enabler once for each project you want to make testable.

NOTE: You may freely distribute the Rational Object Testing Library for Delphi
and the Enabler. The SQAOBTST directory on the CD-ROM contains a setup
wizard for these and other items. You may copy this directory to a network drive
or to a diskette for distribution to your developers.

NOTE: The Rational Object Testing Library is not visible and is non-intrusive,
and there are no license restrictions on it. Therefore, you can leave it in the
application when you distribute it.
17-2

Making Delphi Applications Testable
Adding the Rational Object Testing Library
To add the Object Testing Library to your project:

1. Click Start > Programs > Borland Delphi > Rational Test Delphi Project
Converter to open the Enabler.

2. Click Browse under Delphi Project. Select the project you want to make
Robot-testable and click OK.

3. Choose the correct compiler version, depending on which version of Delphi
you have installed on your computer.

4. Select Add Rational Object Testing Library.

5. Optionally, uncheck Backup Project File if you don’t want a backup file to be
created before the project file is converted.

6. Optionally, uncheck Launch Delphi After Conversion if you don’t want Delphi
to be automatically started after the conversion. (If this is not checked, you will
need to start Delphi manually after the conversion.)

7. Click Convert. The Enabler will:

– Optionally create a backup file of the project.

– Add the line SQASrvr, to your project file (after the uses line).

– Optionally start Delphi.

8. Click the Close button in the Enabler. If an information dialog pops up, click
Yes to reload the project.

9. In Delphi, recompile your project.
17-3

Testing Delphi Applications
Removing the Rational Object Testing Library
The Rational Object Testing Library is not visible and is non-intrusive, and there are
no license restrictions on it. Therefore, you can leave it in the application when you
distribute it.

However, if you choose to remove the Object Testing Library from your project:

1. Click Start > Programs > Borland Delphi > Rational Test Delphi Project
Converter to open the Enabler.

2. Click Browse under Delphi Project. Select the project from which you want to
remove the Library and click OK.

3. Choose the correct compiler version, depending on which version of Delphi
you have installed on your computer.

4. Select Remove Rational Object Testing Library.

5. Optionally, uncheck Backup Project File if you don’t want a backup file to be
created before the project file is converted.

6. Optionally, uncheck Launch Delphi After Conversion if you don’t want Delphi
to be automatically started after the conversion. (If this is not checked, you will
need to start Delphi manually after the conversion.)

7. Click Convert. The Enabler will:

– Optionally create a backup file of the project.

– Remove the line SQASrvr, from your project file (after the uses line).

– Optionally start Delphi.

8. Click the Close button in the Enabler. If an information dialog pops up, click
Yes to reload the project.

9. In Delphi, recompile your project.
17-4

Testing a Component’s Properties
Testing a Component’s Properties

There are two methods you can use to test the properties of a Delphi component.
You can use either method to test all properties shown by the Delphi Object
Inspector.

� Object Properties verification point – Use to test properties while recording
or editing a script.

For information about testing properties, see the Robot Help.

� Object Scripting commands – Use to test properties programmatically while
editing a script.

For information about the Object Scripting commands, see chapter 5 of the
SQABasic Language Reference.

NOTE: Before you can test a Delphi application, you need to run the
Rational Test Delphi Enabler. For instructions, see Making Delphi Applications
Testable on page 17-2.
17-5

Testing Delphi Applications
Testing a Component’s Data

Use the Object Data verification point to test the data in Delphi components. For
instructions, see Creating an Object Data Verification Point on page 4-8.

You can use the Object Data verification point to define additional data tests. For
instructions, see Defining a Data Test on page 4-11.

NOTE: Before you can test a Delphi application, you need to run the Rational
Test Delphi Enabler. For instructions, see Making Delphi Applications Testable on
page 17-2.
17-6

� ��� �� Part VI

Appendixes

� ��� �� A P P E N D I X A

Working with Data Tests
This appendix describes how to work with data tests, which are used with the Object
Data verification point. This appendix includes the following topics:

� About data tests

� An example of a data test

� Creating or editing a custom data test

� Copying, renaming, or deleting a data test

For information about the Object Data verification point, see Object Data verification
point in the Robot Help Index.

About Data Tests

The Object Data verification point supports data tests to capture the data in objects.
In general, there are two types of data tests:

� Built-in data tests – Delivered with Robot. Built-in tests are available to all
users no matter which repository they are using. These tests cannot be edited,
renamed, or deleted, but they can be copied and viewed.

� Custom data tests – Created within your organization. Each custom data test
is stored in the repository that was active when the data test was created. If you
switch to a different repository, the custom data tests are not available unless you
recreate them in the new repository. Custom data tests can be edited, renamed,
and deleted.

When you use the Object Data verification point to test an object that has more than
one data test, Robot displays a list of all of the object’s data tests (built-in and
custom).
A-1

Working with Data Tests
You can select any of the tests in the list depending on what you want to capture and
test. For example, you might have data tests defined for a grid that let you:

� Capture all of the data in the grid including fixed columns and rows, even if the
data is not visible on the screen.

� Capture only selected or displayed data in the grid.

Before you create a custom data test, make sure you have the following:

� Access to the documentation or Help that came with the object that you want
to test.

� A good understanding of the object’s properties and how the properties relate.

� A good understanding of the Object Data verification point. For information,
see Object Data verification point in the Robot Help Index.

An Example of a Data Test

One way to understand how to create a data test is to look at a built-in data test. This
section explains the All Data test for the MSFlexGrid control.

What the All Data Test Does
When you create an Object Data verification point on the MSFlexGrid, you can
select the All Data test in the dialog box that appears, as shown in the following
figure.

Built-in data test
supplied with Robot

Custom data test
created by customer
A-2

An Example of a Data Test
When you use this data test, Robot captures the data from every cell in the
MSFlexGrid control, as shown in the following figures.

The Definition of the All Data Test
You cannot edit the All Data test, because it is a built-in test. However, you can view
the test’s definition for the MSFlexGrid by looking at the data test in the View Object
Data Test dialog box.

Robot cycles through every
column and row in the
MSFlexGrid control to extract
the values from each cell...

... and then displays the
data in the Robot data grid.
A-3

Working with Data Tests
The following figure shows the main information in the dialog box:

Because the MSFlexGrid control is a zero-based grid, the numbering for columns
and rows actually begins with zero. Therefore, the From box contain 0 as the first
column and row, and the To box subtracts 1 from the total number of columns and
rows.

Changing a Data Test Definition
Suppose you want to test only the first three rows in the control instead of all the
rows. You could do this by making a copy of the All Data test, and then editing the
copy so that the rows range from 0 to 2.

Internal class name of the control

Collects data from the first column (0) to
the last column (Cols -1)

Collects data from the first row (0) to
the last row (Rows -1)

Identifies the current cell to test in the
grid using the Col and Row properties

Name of the data test

Retrieves the value of the Text property

Collects data from row 0 to
row 2 (3 rows)

First 3 rows of data
A-4

Creating or Editing a Custom Data Test
Creating or Editing a Custom Data Test

Data tests must be created before you begin to test your application. The tests that
you create are stored in the repository that is currently active when you create the
tests. If you switch to a different repository, the data tests will not be available unless
you recreate the data test in the new repository.

You can edit any custom data test. If you change the parameters of an existing data
test, it affects the behavior of all verification points that depend on the data test.

To create or edit a custom data test:

1. Display the object for which you want to create the data test.

2. In Robot, click Tools > Object Data Test Definition.

3. Click Select to open the Select Object dialog box.

4. Select the object for which you want to create the data test in one of the
following ways:

– Drag the Object Finder tool over the object and release the mouse button.

As you move the Object Finder tool over an object, the object type appears
in the yellow TestTip.

– Click Browse to open the Object List dialog box, select the object from the
list, and click OK.

The Object List dialog box shows a hierarchical list of all objects on the
Windows desktop, including hidden objects.

5. If the Select Object dialog box is still open, click OK to close it.

The object classification of the selected object and its data tests appear in the
Object Data Test Definition dialog box.

If the object is Unknown (not defined), the Define Object dialog box appears.
Select an object type and click OK to open the Object Data Test Definition
dialog box. (For information about defining an object, see Defining Unknown
Objects During Recording on page 2-20.)

6. Do one of the following to display the Create/Edit Object Data Test dialog box:

– To create a new test, type a name (50 characters maximum) in the Data test
name box and click New.

– To edit a custom test, select the test from the list and click Edit.

– To copy a test and edit the copy, select the test and click Copy. Type the new
name and click OK. Then, click Edit.
A-5

Working with Data Tests
For example, if you copied the All Data test to a new test named Displayed Data,
and clicked Edit, the following dialog box would appear:

7. Select a property from the Property to test list. This property is the one whose
values you want to capture in the data test.

8. Select the Column check box to add parameters for the vertical axis. Select the
Row check box to add parameters for the horizontal axis.

9. Type an expression in the From and To boxes, or click the Expression button to
the right of each box to build the expression.

An expression is a single value or property, or a combination of values,
properties, and operators.

For detailed
information
about an item,
click the question
mark, and then
click the item.
A-6

Creating or Editing a Custom Data Test
If you click the Expression button, the Edit Expression dialog box appears.

Do the following if you clicked Expression:

10. In the Using box (in the Create/Edit Object Data Test dialog box), type a
property or select it from the list to further define the property that you are
capturing and testing.

The Using box specifies what property Robot will modify to affect its iteration.
For example, to iterate from row 0 to row Rows-1, Robot will set the Row
property.

11. Select the check boxes under Additional parameters as needed.

12. In the Description box, type a description that indicates what the data test does.

13. Optionally, click Test to do the following:

– Verify the syntax of the data test before you save it.

– If the syntax is correct, watch Robot perform the data test on the selected
object.

When the test has ended, Robot opens a dialog box with the captured data. Click
OK to close the dialog box.

14. Click OK to save the test and automatically verify it.

If the syntax of the expression is incorrect, the incorrect area is highlighted so
you can correct it and then resave the test.

a. Type an
expression
here ...

b. Click Verify to check the
syntax of the expression. Click
OK in the message box. If the
syntax is invalid, the incorrect
area is highlighted.

c. Click OK to accept the
expression. If you did not verify
the expression, Robot verifies it
now. Click OK in the message
box. If the syntax is invalid, the
incorrect area is highlighted.

... or build an
expression by
double-clicking
in these lists.
A-7

Working with Data Tests
Copying, Renaming, or Deleting a Data Test

You can copy any built-in or custom data test to back it up or to create a new test from
an existing one. When you copy a data test, you can use the test only for objects of
the class for which the original data test was created.

You can rename any custom data test. However, scripts that contain the data test
under its original name will fail on playback unless you change the name in the
scripts.

You can delete any custom data test. However, scripts that contain the data test will
fail on playback unless you delete the test from the scripts.

To copy, rename, or delete a data test:

1. Click Tools > Object Data Test Definition.

2. Select the data test.

3. Do one of the following:

– To copy the test, click Copy. Type a new name (50 characters maximum)
and click OK.

– To rename the test, click Rename. Type a new name (50 characters
maximum) and click OK.

– To delete the test, click Delete. Click OK to confirm the deletion.

If you renamed or deleted the data test, be sure to rename it or delete it in any scripts
that use that data test.
A-8

� ��� �� A P P E N D I X B

Rational Robot Command-line Options
You can use the Rational Robot command-line options to log in, open a script, and
play back the script.

SYNTAX
rtrobo.exe [scriptname] [/user userid] [/password password]
[/project full path and full projectname] [/play]
[/purify] [/quantify] [/coverage] [/close] [/nolog]

Syntax Element Description

rtrobo.exe Rational Robot executable file.

scriptname Name of the script to run.

/user userid User name for log in.

/password password Optional password for log in. Do not use this parameter if
there is no password.

/project full path and full
projectname

Name of the project that contains the script referenced in
scriptname preceded by its full path.

/play If this keyword is specified, plays the script referenced in
scriptname. If not specified, the script opens in the editor.

/purify Used with /play. Plays back the script referenced in
scriptname under Rational Purify.

/quantify Used with /play. Plays back the script referenced in
scriptname under Rational Quantify.

/coverage Used with /play. Plays back the script referenced in
scriptname under Rational PureCoverage.

/close Closes Robot after playing back the script.

/nolog Does not log any output while playing back the script.
B-1

COMMENTS

Use a space between each keyword and between each variable.

If a variable contains spaces, enclose the variable in quotation marks.

If you log the output (by omitting /nolog), then the Robot log options (set in the
GUI Playback Options dialog box) determine whether the default log information
is used or whether you are prompted at the start of playback.

If you intend to run Robot unattended in batch mode, be sure to specify the
following options to get past the Rational Login dialog box:

/user userid
/password password
/project full path and full projectname

EXAMPLE
rtrobo.exe VBMenus /user admin /project C:\Sample
Files\Projects\Default.rsp /play /close

In this example, the user “admin” opens the script “VBMenus”, which is in the
project file “Default.rsp” located in the directory “c:\Sample Files\Projects”. The
script is opened for playback, and then it is closed when playback ends. The results
are logged.
B-2

� � � Index
A
access order of datapool rows 10-4, 10-16

starting row number 10-17

acknowledging results for GUI script playback 9-4

adding

features to GUI scripts 3-1

Adding SQA Object Testing Library

Delphi 17-3

Administrator 1-2

alphanumeric values, testing 4-3

Alphanumeric verification point 4-3

animation mode for debugging 5-13

API recording 6-2, 6-4

monitoring feedback during 7-8

starting applications 6-30

applets, Java 14-3

applications

Java 14-3

starting 3-1

applications, starting when recording 6-30

Apply a User-Defined DLL test function verification
method 4-15

Authentication Datapool 6-33

features 6-35

modifying with Robot during recording 6-35

modifying with TestManager 6-34

when to modify 6-34

automatic protocol filtering 6-19

automatic timing

blocks 8-4

emulation commands 8-2

autonaming GUI scripts 2-6

autonaming scripts and sessions 6-29

B
batch compiling scripts and library source files 5-8

blocks 8-4

adding during recording 8-6

nesting 8-6

breakpoints, setting and clearing 5-11

Browser NewPage command 13-16

browsers

playing back scripts in Internet Explorer 13-2

playing back scripts in Netscape Navigator 13-13

recording scripts in Internet Explorer 13-2

recording scripts in Netscape Navigator 13-2

Build tab of Output window 5-9

built-in data tests A-1

By Content identification method 4-16

By Key/Value identification method 4-17

By Location identification method 4-16

By Title identification method 4-16

C
C++ applications

enabling for testing 2-4

recognition order preference 2-9

C++ Recognition Order preference 2-9

cache

enabling for Netscape recording 13-4

cached responses, in HTTP scripts 6-23
Index-1

Using Rational Robot
calling scripts from within scripts 3-5

Case-Insensitive verification method 4-14

Case-Sensitive verification method 4-14

changing

object class mappings 2-14

script properties in Robot 2-23

clearing breakpoints 5-11

client computers

associating with a server 6-9

defining for network or proxy recording 6-31

removing 6-33

selecting for network recording 6-4

client requests

monitoring during recording 7-7

recording 7-3

client/server pairs

deleting 6-38, 6-40

identifying for proxy recording 6-9

reassociating with a proxy 6-40

Clipboard verification point 4-3

clipboard, testing content of 4-3

columns in data grids

changing widths 4-22

testing titles 4-20

transposing with rows 4-23

columns in datapools

adding 10-19, 10-21

configuring through the script 10-18

defining 10-19

editing column definitions, in Robot 10-21

editing values, in Robot 10-22

including or excluding 10-18

maximum number 10-4, 10-12, 10-20

names correspond to script variables 10-18

values supplied by data types 10-8

command IDs 6-26, 6-27, 6-28

prefix 6-12

prefix for all commands 6-12

TUXEDO prefixes 6-26

command-line options S-9

comments

adding to scripts during editing 8-13

adding to scripts during recording 8-13

comments in GUI scripts 3-11

compiling

locating errors 5-9

scripts and library source files 5-7

computers

defining for network or proxy recording 6-31

removing 6-33

selecting a network interface card 6-5

connections in session recording 6-19, 7-11

constant values, examining 5-13

contained scripts 7-19

Content identification method 4-16

cookie prompt

disabling in Internet Explorer 13-2

disabling in Netscape Navigator 13-2

copying

data tests A-8

low-level scripts 5-5

scripts 7-26

verification points 4-25

CPU delays, think time 6-17

creating

datapools, in Robot 10-12

user-defined data types 10-10

.csv datapool files 10-3

cursors 10-3

persistent 10-15

private vs. shared 10-15

starting row number 10-17

wrapping 10-15
Index-2

Index
custom data tests A-1

custom object classes 2-13

customer support 2-xvi

D
data correlation 6-24

data grids

definition 4-15

working with 4-19

data tests A-1

copying A-8

creating A-5

deleting A-8

example A-2

expressions A-6

renaming A-8

data types

creating 10-10

determining which data types you need 10-9

role of 10-8

standard and user-defined 10-8

data, testing in objects 4-4

DATAPOOL_CONFIG

editing 10-13

role of 10-13

datapools 10-5

access order 10-4, 10-16

accessing from GUI scripts and sessions 10-24

adding commands to sessions 10-12

Authentication Datapool 6-33

creating in Robot 10-12

cursors 10-3

data types 10-8

editing column definitions, in Robot 10-21

editing values, in Robot 10-22

files 10-3

finding data types for 10-9

generating data, in Robot 10-20, 10-22

limits 10-4

maximum number of columns 10-4, 10-12,
10-20

naming 10-15

persistent cursors 10-15

planning 10-5

populating with values, in Robot 10-20, 10-22

private user access to 10-15

role of 10-1, 10-4

row access order 10-4, 10-16

script generation option 6-12

shared user access to 10-15

starting row number 10-17

where stored 10-3

DataWindow Contents data test 15-6

DataWindows in PowerBuilder

computed fields 15-7

expression values 15-4

hidden 15-5

recording actions 15-2

DCOM

API recording method required with 6-2

assigning prefix to emulation commands 6-28

DCOM Recording 6-28

DCOM recording 6-19

debugging GUI scripts 5-9

animation mode 5-13

clearing breakpoints 5-11

executing to a selected line 5-13

setting breakpoints 5-11

stepping into scripts 5-11

declarations, global 3-17

Default object order preference 2-9

default settings

recording 6-1
Index-3

Using Rational Robot
delay values

adding to scripts 3-12

options for GUI script playback 9-6

deleting

client/server pairs 6-38

data tests A-8

low-level scripts 5-6

object class mappings 2-14

proxy computers 6-39

script from a session 7-23

scripts 5-15, 7-26

sessions 7-26

verification points 4-25

Delphi

making applications testable 17-2

Object Testing Library/Enabler 17-2

testing data 17-6

testing properties 17-5

Delphi Enabler 17-2

diagnostic tools options 3-3, 9-11

directives in datapools 10-18

overriding 10-16

disabling cookie prompt

in Internet Explorer 13-2

in Netscape Navigator 13-2

divide by zero errors, detecting 9-16

documenting GUI scripts 3-11

DropDown Contents data test 15-6

DropDownDataWindows in PowerBuilder 15-6

DropDownListBoxes in PowerBuilder 15-6

DWColumns in PowerBuilder 15-6

dynamic data correlation 6-24

E
editing

data in data grid 4-21

datapool column definitions, in Robot 10-21

datapool values, in Robot 10-22

DATAPOOL_CONFIG 10-13

scripts 5-1, 5-2

verification points 4-23

emulated users. See GUI users, virtual users, users

emulation commands 6-12

associating with block and timer names 8-5

automatically timed 8-2

Enabler for Oracle Forms 12-2

Enabler, Delphi 17-2

enabling applications for testing 2-4

ending recording of GUI scripts 2-22

error recovery options for GUI script playback 9-8

errors

detecting during playback 9-16

locating after compiling 5-9

excluding datapool columns 10-18

executable files, starting 3-1

executing suites 7-16

executing to a selected line during debugging 5-13

expected results for verification points 4-9

expressions

in data tests A-6

in PowerBuilder applications 15-4

Extension Manager

Java 14-1

Oracle Forms 12-7

PeopleTools 16-2

PowerBuilder 15-2

Visual Basic 11-3

F
failures

setting error recovery options 9-8

features, adding to GUI scripts 3-1

adding to existing GUI scripts 5-2

comments 3-11
Index-4

Index
delay values 3-12

inserting calls to scripts 3-5

log messages 3-11

starting applications 3-1

timers 3-8

verification points 3-6

feedback during session recording 6-30, 7-7, 7-9

File Comparison verification point 4-3

File Existence verification point 4-3

file location

scripts 7-2

session files 7-2

file types

.csv (datapool files) 10-3

.ord (object order preference files) 2-13

.rec (as SQABasic library source files) 3-14

.s (scripts) 7-2

.sbh (SQABasic header files) 3-16

.sbl (SQABasic library source files) 3-14

.sbx (SQABasic library runtime files) 3-16

.spc (datapool specification files) 10-3

.sqa (LOV text files) 12-15

.wch (session) 7-2

files

comparing 4-3

datapool file location 10-3

testing existence of 4-3

filtering

protocols 6-17, 6-19, 7-11

Find Sub String Case-Insensitive verification
method 4-14

Find Sub String Case-Sensitive verification
method 4-14

floating toolbars

Session Insert 7-5

Session Record 7-5

FTP protocol 6-21

G
general protection faults, detecting 9-16

generating

values in datapools, in Robot 10-20, 10-22

generating scripts 7-4

from a session 7-18

manual protocol filtering 7-11

problems with 7-5

generating VU scripts

recording options 6-19

Generic object type, defining unknown objects
as 2-8, 2-20

global

declarations 3-17

header files 3-17

library source files 3-15

global datapool directives 10-16

global.sbh file 3-17

global.sbl file 3-15

GPFs, detecting during playback 9-16

grouping scripts for playback 2-25

GUI Insert toolbar 2-19

GUI playback options 9-3

GUI Record toolbar 2-19

GUI recording options 2-5

GUI scripts

adding features 5-2

adding user actions 5-2

autonaming 2-6

coding manually 2-23

creating modular scripts 2-3

datapools and 10-23

debugging 5-9

ending recording 2-22

pausing recording 2-19

playing back 9-1, 9-18

recording 2-1, 2-15
Index-5

Using Rational Robot
recording options 2-5

recording workflow 2-2

resuming recording 2-19

shell scripts 2-25

test environment 2-3

testing 2-24

viewing results of playback 9-20

See also scripts

GUI scripts and datapools 10-23

associating variable names and datapool columns
10-18

datapool access shared with VU scripts 10-24

H
header files 3-14, 3-16

help desk 2-xvi

hidden object, selecting 4-12

hot keys

restoring Robot window during recording 2-18

turning low-level recording on and off 2-21

hotline support 2-xvi

HTML support

testing applications 13-1

testing data in elements 13-5, 13-7

HTTP scripts

cached responses 6-23

dynamic data correlation 6-24

keep-alives 6-23

partial responses 6-23

redirects 6-23

I
icon for Session Recorder 6-30, 7-9

IDE applications

enabling for testing 2-4

HTML 13-1

Java 14-1

Oracle Forms 12-1

PeopleTools 16-1

PowerBuilder 15-1

Visual Basic 11-1

identification methods

for verification points 4-15

identifying objects to test 4-13

IIOP

assigning prefix to emulation commands 6-27

including original IORs in iiop_bind 6-27

iiop_bind emulation command 6-27

images, testing 4-5

IME 10-10, 10-12

importing

sessions 7-18

including datapool columns 10-18

Input Method Editor 10-10, 10-12

inserting

features in GUI scripts 3-1

inserting columns in a datapool 10-19, 10-21

Installing

SQA Object Testing Library/Enabler for Delphi
17-2

interface card, selecting for network recording 6-5

invalid op codes, detecting 9-16

J
Japanese characters 10-9, 10-12

Java applets 6-21

Java applets and applications 14-3

Java Developer Kit (JDK) 14-3

Java Enabler 14-4

Java extension, enabling 14-1

Java Virtual Machine (JVM) 14-1

Jolt protocol 6-20
Index-6

Index
K
Kanji characters 10-12

Katakana characters 10-12

keep-alives, in HTTP scripts 6-23

Key/Value identification method 4-17

keyboard actions, tracking during recording 2-21

keys

using to compare data in columns 4-17

keystrokes, waiting for during playback 9-6

L
library source files 7-21

compiling 5-7

creating and editing 3-15

global 3-15

role of 3-14

links, testing HTML 13-8

Location identification method 4-16

log messages, adding to GUI scripts 3-11

log options for GUI script playback 9-5

login information

Authentication Datapool 6-33

automatic detection 6-33

user ID and password 6-33

logs

definition 9-5

low-level recording

copying scripts 5-5

deleting scripts 5-6

hot keys for 2-21

renaming scripts 5-4

switching to 2-21

viewing scripts 5-4

M
manual protocol filtering 6-19, 7-11

mapping

clients and servers for proxy recording 6-9

illustration of proxy mapping 6-7

object types and classes 2-13

proxy computer with a server 6-9

measuring duration of events 3-8

Menu verification point 4-4

menus, testing 4-4, 4-20

missing passwords 7-4, 7-5

modifying

object class mappings 2-14

Module Existence verification point 4-4

modules, testing existence of 4-4

monitoring proxies 6-38

mouse movements, tracking during recording 2-21

multi-byte characters 10-9, 10-10, 10-12

N
naming

scripts 6-29

sessions 6-29

naming scripts when recording 2-6

nesting blocks in scripts 8-6

Netscape Navigator

enabling cache for recording 13-4

playing back scripts in 13-13

Netscape Navigator recording 13-4

network interface card, selecting for network
recording 6-5

network recording 6-2, 6-4

defining a client or server computer for 6-31

filtering protocols 6-17
Index-7

Using Rational Robot
identifying the client and server 6-4

selecting a network interface card 6-5

starting applications 6-30

Numeric Equivalence verification method 4-14

Numeric Range verification method 4-15

numeric values, testing 4-3

O
object data tests A-1

Object Data verification point 4-4, A-1

Object Finder tool 4-11

object mapping 2-13

object order preference

creating 2-13

selecting 2-9

Object Properties verification point 4-4

object recognition methods

creating new order preference 2-13

customizing the order 2-11

selecting order preference 2-9

Object Testing Library

Delphi 17-2

object types and classes, mapping 2-13

Object-Oriented Recording 2-21

objects

identifying the object to test 4-13

selecting the object to test 4-10

unknown 2-7, 2-20, A-5

Oracle

client name required 6-26

login information 6-35

proxy recording and 6-8

Oracle Forms support 12-1

making applications testable 12-2

Rational Test Enabler 12-2

recording actions 12-7

testing base-table blocks and items 12-14

testing data 12-14

testing LOVs 12-15

testing objects 12-8

testing properties 12-10

testing record groups 12-15

verifying that extension is loaded 12-7

.ord files for object order preferences 2-13

P
partial responses, in HTTP scripts 6-23

passwords

modifying in Robot 6-35

modifying in TestManager 6-34

supplying 6-33, 7-4, 7-5

pausing recording of GUI scripts 2-19

PeopleTools support 16-1

commands 16-3

testing data 16-3

testing properties 16-2

verifying that extension is loaded 16-2

performance tests

recording scripts for 7-3

persistent datapool cursors 10-3, 10-15

starting row number 10-17

planning

datapools 10-5

session recording 6-1

playing back GUI scripts 9-1, 9-18

acknowledging results 9-4

delays between commands 9-6

delays between keystrokes 9-6

detecting GPFs 9-16

error recovery options 9-8

in debugging mode 5-10

log options 9-5

playback options 9-3

Trap options 9-16
Index-8

Index
under PureCoverage 3-3, 9-11

under Purify 3-3, 9-11

under Quantify 3-3, 9-11

unexpected active window options 9-9

wait state options 9-6

playing back scripts

verifying SQL return codes 6-14

playing back VU scripts

pacing 6-16

PlayJrnl command for low-level recording 2-22

populating datapools

in Robot 10-20, 10-22

PowerBuilder support 15-1

DataStore controls 15-5

DataWindows 15-2, 15-4, 15-5, 15-7

DropDownDataWindows/ListBoxes 15-6

verifying that extension is loaded 15-2

prefixes

autonaming scripts and sessions 6-29

command ID 6-12, 6-26, 6-27, 6-28

DCOM command ID 6-28

IIOP command ID 6-27

TUXEDO command ID 6-26

prefixes, autonaming GUI scripts 2-6

printing

scripts 5-7

SQABasic files 5-7

private datapool cursors 10-15

project

managing with Rational Administrator 1-2

selecting 1-2

Project Enabler, Delphi 17-2

project header files, creating and editing 3-17

properties

session 7-20

testing objects 4-4

properties of scripts

accessing from session properties 7-20

defining 7-22

defining in Robot 2-23

status when re-recording scripts 7-25

status when re-recording sessions 7-24

protocols

converting 7-15

filtering 6-17, 6-19, 7-11

Java applets 6-21

Jolt 6-20

selecting for scripts 6-20

socket 6-21

TUXEDO definition 6-21

proxy computers 6-6

associating with a server 6-9

computer shutdown and 6-36

creating 6-9

deleting 6-39

monitoring 6-38

reassociating with a client/server pair 6-40

redefining after proxy service is stopped 6-37

status 6-38

proxy recording 6-2, 6-6, 6-8

client/server relationships 6-7

computer shutdown and 6-36

creating a proxy computer 6-9

defining a client or server computer for 6-31

filtering protocols 6-17

identifying client/server pairs 6-9

starting applications 6-30

proxy service

computer shutdown and 6-36

starting 6-36

stopping 6-36

PureCoverage, using with Robot 3-3, 9-11

Purify, using with Robot 3-3, 9-11
Index-9

Using Rational Robot
Q
Quantify, using with Robot 3-3, 9-11

R
random datapool access 10-4, 10-16

Rational Administrator 1-2

Rational project

about 1-2

managing with Rational Administrator 1-2

selecting 1-13

Rational PureCoverage, using with Robot 3-3, 9-11

Rational Purify, using with Robot 3-3, 9-11

Rational Quantify, using with Robot 3-3, 9-11

Rational RequisitePro 1-12

Rational technical support 2-xvi

Rational Test Authentication 6-34

Rational Test Enabler for Oracle Forms 12-2

.rec library files 3-14

recording GUI scripts 2-1, 2-15

and unknown objects 2-7, 2-20

creating modular scripts 2-3

ending 2-22

mapping object types and classes 2-13

pausing 2-19

process 2-1

recording options 2-5

restoring main window 2-18

resuming 2-19

selecting object order preference 2-9

workflow 2-2

recording methods

API recording 6-4

network 6-4

proxy 6-6

setting 6-2

recording options 6-1

changing 7-19

filtering protocols 6-17

proxy 6-8

script generation 6-19

setting 6-1, 6-7

setting recording method 6-2

recording scripts 7-3

cancelling 7-10

feedback 6-30, 7-7, 7-9

in a session 7-3

recording methods 6-2

values recorded 10-19

redirects, in HTTP scripts 6-23

regenerating scripts from a session 7-18

Region Image verification point 4-5

regions of screen, testing 4-5

regression testing phase 9-2

release times 8-8, 8-12

ranges 8-12

Removing SQA Object Testing Library

Delphi 17-4

renaming

data tests A-8

low-level scripts 5-4

verification points 4-25

reports

filtering with block names 8-5

requests

cancelling recorded 7-10

monitoring during recording 7-7

recording 7-3

RequisitePro 1-12

re-recording

scripts 7-25

sessions 7-23

restoring Robot during recording 7-2

results of playback, viewing 9-20
Index-10

Index
resuming recording of GUI scripts 2-19

rewinding the datapool cursor 10-15

Robot main window, restoring during recording 2-18

Robot, restoring during recording 7-2

row access order 10-4, 10-16

rows in data grid, transposing with columns 4-23

rows in datapools

access order 10-4, 10-16

maximum number 10-4

starting row number 10-17

running

applications 6-30

GUI scripts 9-1

suites 7-16

S
saving scripts and SQABasic files 5-7

.sbh header files 3-16

.sbl library files 3-14

.sbx library runtime files 3-16

schedules

synchronization points and 8-10

synchronizing items in 8-11

scope of a synchronization point 8-12

script command failures 9-8

script generation options 6-19

adding SQL return codes to scripts 6-14

changing 7-19

command ID prefix 6-12

datapool commands 6-12

display number of rows retrieved 6-14

display retrieved rows in scripts 6-13

playback pacing 6-16

think time vs. CPU delays 6-17

script properties

accessing from session properties 7-20

defining in Robot 2-23, 7-22

status when re-recording scripts 7-25

status when re-recording sessions 7-24

scripts

adding datapool commands to 6-12

autonaming 6-29

blocks 8-4

cancelling 7-10

changing recording options 7-19

comments in 8-13

compiling 5-7

copying 7-26

copying code from one script to another 7-21

deleting 5-15, 7-24, 7-26

editing 5-1

generating after recording 7-4

generating from a session

improving readability 8-5

list of, in a session 7-19

manual protocol filtering 7-11

overwriting 7-25

printing 5-7

properties 7-21

recording 7-3

regenerating from a session 7-18

removing from a session 7-23

re-recording 7-25

saving 5-7

session associated with 7-22

splitting 7-17

stopping recording 7-4

where stored 7-2

See also GUI scripts

selecting objects to test 4-10

sequential datapool access 10-4, 10-16

servers

associating with a client 6-9

associating with a proxy 6-9
Index-11

Using Rational Robot
defining for network or proxy recording 6-31

removing 6-33

selecting for network recording 6-4

session files 7-1

regenerating scripts from 7-18

where stored 7-2

session ID 6-24

where stored 6-24

Session Insert toolbar 7-5

Session Record toolbar 7-5

Session Recorder 7-7

after recording 7-9

during API recording 7-8

icon 7-9

sessions

autonaming 6-29

contents of 7-16

deleting 7-26

finding the session name for a script 7-22

importing 7-18

properties of 7-20

recording 7-1

regenerating scripts from 7-18

removing a script from 7-23

re-recording 7-23, 7-24

scripts within 7-19

splitting into multiple scripts 7-17

uses for 7-16

where stored 7-2

setting breakpoints 5-11

shared datapool cursors 10-3, 10-15

shell scripts 2-25

shuffle datapool access 10-4, 10-16

single step execution during debugging 5-11

socket protocols 6-21

changing 7-15

.spc datapool specification files 10-3

SQA Delphi Project Enabler 17-2

.sqa files for LOV objects 12-15

SQA Object Testing Library

Delphi 17-2

SQABasic files

compiling 5-7

header files 3-17

library source files 3-15

printing 5-7

saving 5-7

template file 3-19

SQABasic header files 3-14, 3-16

SQASrvr code 17-2

sqatrap.log 9-17

SQL return codes, comparing during session
recording and playback 6-14

SQL Server login information 6-35

stack overflows, detecting 9-16

standard data types

role of 10-8

when to use 10-9

Start Application command 3-2

Start Browser command 3-2

Start Java Application command 3-2

starting

applications 3-1

starting applications 6-30

starting proxy service 6-36

stepping into scripts during debugging 5-11

stepping out of called scripts during debugging 5-11

stepping over command lines during debugging 5-11

stopping

proxy service 6-36

recording 7-4

stopping recording of GUI scripts 2-22

suites

running 7-16

support, technical xvi
Index-12

Index
Swing foundation classes, installing 14-8

Sybase

login information 6-35

synchronization points 8-8, 8-11

example of 8-9

inserting into schedules 8-10, 8-11

inserting into script 8-10, 8-11

multiple 8-10

release time ranges 8-12

releasing virtual testers from 8-8, 8-12

scope of 8-12

timeout 8-12

synchronizing

GUI scripts with application 3-12

playback with application 9-6

synchronizing items in schedules

synchronization points 8-11

T
tables, testing HTML 13-8

technical support 2-xvi

Telnet protocol 6-21

template file 3-19

test development phase 9-2

test environment

setting up for playback 9-3

setting up for recording 2-3

test scripts. See scripts

Testing Library

Delphi 17-2

testproc.tpl file 3-19

think time

CPU delays and 6-17

maximum 6-17

setting 6-16

threshold between think time and CPU delays 6-17

timeout values

for script playback 9-6

for verification points 4-8

timeout values, for synchronization points 8-12

timers 8-2

adding during editing 8-3

adding during recording 8-3

timers in GUI scripts 3-8

inserting 3-10

playing back scripts 3-10

uses for 3-9

times

think 6-16, 6-17

Title identification method 4-16

toolbars

Session Insert 7-5

Session Record 7-5

top menus, testing 4-20

TPINIT request message 6-21

transactions

automatically timing in blocks 8-4

performing during recording 7-3

transposing columns and rows in data grid 4-23

Trap options for GUI script playback 9-16

Trap utility

setting options to detect GPFs 9-16

truncating emulation command ID prefixes 6-12

TUXEDO

assigning prefix to emulation commands 6-26

command ID prefixes 6-26

defining a connection 6-21

type library 6-28
Index-13

Using Rational Robot
U
UAEs, detecting 9-16

unexpected active windows

definition 9-9

detecting during playback 9-9

options for GUI script playback 9-9

unique datapool rows

user-defined data types and 10-11

unknown objects

controlling how Robot responds to 2-7

defining during recording 2-20

defining while creating data tests A-5

unrecoverable application errors, detecting 9-16

usage directives for datapools 10-18

user actions

adding to existing GUI scripts 5-2

definition 2-1

user IDs

modifying list of, in Robot 6-35

modifying list of, in TestManager 6-34

supplying 6-33

user-defined data types

creating 10-10

role of 10-8

unique values 10-11

when to use 10-9

User-Defined verification method 4-15

users. See also GUI users, virtual testers

V
Value identification method 4-17

values supplied during recording 10-19

variable names and datapool column names 10-18

variable values, examining 5-13

Variables window 5-13

verification methods

for verification points 4-14

verification points 4-1

adding 3-6

before you create 4-6

copying 4-25

definition 2-1

deleting 4-25

editing 4-23

expected results 4-9

failures 9-8

identification methods 4-15

identifying objects to test 4-13

library files and 3-14

renaming 4-25

selecting objects to test 4-10

types 4-3

verification methods 4-14

viewing in Comparators 4-24, 9-21

wait state values 4-8

Verify that selected field is blank verification
method 4-15

verifying SQL return codes 6-14

viewing

datapool values, in Robot 10-22

virtual testers

pacing 6-16

synchronizing 8-8

think time 6-16

think time vs. CPU delays 6-17

Virtual User Recorder

icon 6-30

Visual Basic support 11-1

verifying that extension is loaded 11-3
Index-14

Index
VU scripts

adding number of rows retrieved to 6-14

adding retrieved rows to 6-13

command ID prefixes in 6-12

datapool access shared with GUI scripts 10-24

distinguishing think time and CPU delays 6-17

improving readability 6-12

maximum think time 6-17

methods of recording 6-2

playback rate 6-16

recording options for 6-1

script generation options 6-19

SQL return code verification 6-14

think time in 6-16

variable names and datapool column
names 10-18

W
wait state options for GUI script playback 9-6

watch files. See session files

Web Site Compare verification point 4-5

Web Site Scan verification point 4-5

Window Existence verification point 4-5

Window Image verification point 4-5

windows

setting wait values for 9-6

testing existence of 4-5

testing images 4-5

unexpected during playback 9-9

WorkStation Listener information 6-21

wrapping the datapool cursor 10-15
Index-15

Using Rational Robot
Index-16

	Using Rational Robot
	Version 2001A.04.00
	Part Number 800�024535�000

	COPYRIGHT
	Contents
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction to Rational Robot
	What Is Rational Robot?
	Managing Rational Projects with the Administrator
	Developing Tests in Robot
	Creating Datapools
	Analyzing Results in the Log and Comparators
	Managing Intranet and Web Sites with SiteCheck and Robot

	Using Robot with Other Rational Products
	Planning and Managing Tests in TestManager
	Testing Applications with Rational TestFactory
	Managing Defects with Rational ClearQuest
	Collecting Diagnostic Information During Playback
	Performance Testing with Rational TestManager
	Managing Requirements with Rational RequisitePro

	Starting Robot and Its Components
	Logging in
	Opening Other Rational Products and Components

	Tasks You Can Perform with Robot and Its Components

	Recording GUI Scripts
	The Recording Process
	The Recording Workflow
	Before You Begin Recording
	Establishing Predictable Start and End States for Scripts
	Setting Up Your Test Environment
	Creating Modular Scripts

	Enabling IDE Applications for Testing
	Setting GUI Recording Options
	Naming Scripts Automatically
	Controlling How Robot Responds to Unknown Objects
	Selecting an Object Order Preference

	Using Advanced Features Before Recording
	Customizing the Object Recognition Method Order
	Important Notes
	Changing the Order of Object Recognition Methods
	Creating a New Object Order Preference

	Mapping Object Types and Classes Before Recording
	Defining an Object Class Mapping
	Modifying or Deleting a Custom Class Name

	Recording a New GUI Script
	Restoring the Robot Main Window During Recording
	Using the GUI Record and GUI Insert Toolbars
	Pausing and Resuming the Recording of a Script
	Defining Unknown Objects During Recording
	Important Notes

	Switching to Low�Level Recording
	Ending the Recording of a GUI Script

	Defining Script Properties
	Coding a GUI Script Manually
	Testing Your Recorded Script
	Playing Back the Script
	Editing and Compiling the Script
	Debugging the Script

	Creating Shell Scripts to Play Back Scripts in Sequence
	Creating a Shell Script
	Playing Back a Shell Script

	Adding Features to GUI Scripts
	Starting an Application
	Starting Applications
	Starting Applications Under the Rational Diagnostic Tools
	Specifying the Diagnostic Tool During Recording
	Specifying the Diagnostic Tool During Playback

	Inserting a Call to Another Script
	Inserting Verification Points
	Inserting Timers
	Uses for Timers
	Measuring General Application Performance
	Measuring Specific Task Performance

	Inserting a Timer
	Playing Back a Script that Includes Timers

	Inserting Comments
	Inserting Log Messages
	Inserting Delay Values
	Using the Insert Menu
	Customizing SQABasic Scripts
	Library Source Files
	Creating and Editing .sbl Library Source Files
	Creating and Editing .rec Library Source Files
	Adding Procedures to the Global Library Source File
	Using Library Source Files

	SQABasic Header Files
	Creating and Editing Header Files
	Adding Declarations to the Global Header File
	Using SQABasic Header Files

	Header and Library Source File Examples
	Example Script
	Example Library Source File (Tstlibrary.sbl)
	Example Header File (Tstheader.sbh)

	The Template File

	Creating Verification Points in GUI Scripts
	About Verification Points
	Verification Points and Data Files
	Verification Points and Scripts

	Types of Verification Points
	Before You Create a Verification Point
	Tasks Associated with Creating a Verification Point
	Starting to Create a Verification Point
	Setting a Wait State for a Verification Point
	Setting the Expected Result for a Verification Point
	Selecting and Identifying the Object to Test
	Selecting the Object to Test
	Identifying the Object to Test

	Selecting a Verification Method
	Selecting an Identification Method
	By Content
	By Location
	By Title
	By Key/Value
	List of Identification Methods

	Working with the Data in Data Grids
	Selecting the Data to Test in a Data Grid
	Testing Column Titles or Top Menus in a Data Grid
	Editing Captured Data in a Data Grid
	Editing Data for a Clipboard or Object Data Verification Point
	Editing Data for a Menu Verification Point
	Restrictions on Editing Data

	Changing a Column Width in a Data Grid
	Transposing Columns and Rows in a Data Grid

	Editing a Verification Point
	Viewing a Baseline File
	Renaming a Verification Point
	Copying a Verification Point
	Deleting a Verification Point

	Editing, Compiling, and Debugging Scripts
	Editing the Text of a Script
	Adding a User Action to an Existing GUI Script
	Adding a Feature to an Existing GUI Script
	Working with Low�Level Scripts
	Viewing Low�Level Scripts
	Renaming a Low�Level Script
	Copying a Low�Level Script
	Deleting a Low�Level Script

	Saving Scripts and SQABasic Files
	Printing a Script or SQABasic File
	Compiling Scripts and SQABasic Library Source Files
	Compiling One or All Scripts and Library Source Files
	Batch Compiling Scripts and Library Source Files
	Locating Compilation Errors

	Debugging GUI Scripts
	Setting and Clearing Breakpoints
	Executing to a Selected Line
	Executing in Animation Mode
	Examining Variable Values

	Deleting Scripts

	Setting Recording Options
	About Session Recording
	Setting the Recording Method
	API Recording
	How to Choose API Recording
	Network Recording
	How to Choose Network Recording
	Selecting a Client/Server Pair
	Selecting a Network Card
	Proxy Recording
	How to Choose Proxy Recording
	Proxy Recording Use Overview
	Creating a Proxy Computer
	Identifying Client/Server Pairs

	Setting Script Generation Options
	Modifying the Contents of a Script
	Use Datapools
	Command ID Prefix
	Display Recorded Rows
	Verify Playback Row Counts
	Verify Playback Return Codes
	Bind Output Parameters to VU Variables
	Playback Pacing
	CPU/User Threshold (ms)
	Think maximum (ms)

	Setting Filtering Options
	How to Filter Protocols
	Automatic and Manual Filtering
	Protocol Lists
	Jolt, Socket, and TUXEDO Protocols

	Providing Protocol�Specific Information
	Controlling the Values Accepted When an HTTP Script Is Played Back
	Supplying Variable Data Values to an HTTP Script
	Providing the Name of an Oracle Database
	Assigning a Prefix to TUXEDO Command IDs
	Assigning a Prefix to IIOP Command IDs and Including IORs in IIOP_bind
	DCOM Recording
	Type Library Requirement for DCOM Recording
	Assigning a Prefix to DCOM Command IDs

	Setting General Recording Options
	Autonaming Prefixes
	Start Application
	Setting the Recorder Window

	Defining a Client or Server Computer
	Removing a Computer or Port
	Authenticating Login
	When to Modify the Authentication Datapool
	Modifying the Authentication Datapool with TestManager
	Modifying the Authentication Datapool During Recording
	Unique Features of the Authentication Datapool

	Managing Proxies
	Starting and Stopping Proxy Service
	Explicitly Starting or Stopping Proxy Service
	Recreating Proxies After Proxy Service Is Stopped

	Monitoring Proxy Activities
	Deleting Client/Server Pairs
	Deleting a Proxy
	Re�Creating Proxies that Have Been Removed

	Recording Sessions
	Recording a session
	What You Can Record in a Session
	Where Files Are Stored
	Restoring Robot During Recording

	Recording a Single Script in a Session
	Stop Recording and Generating Scripts
	Using the Floating Toolbars
	If Problems Occur During Script Generation
	Providing a Missing Password
	To Provide a Password
	To Skip One or More Passwords

	Getting Feedback During and After Recording
	The Session Recorder During Recording
	The Session Recorder Icon

	The Session Recorder After Recording

	Cancelling Scripts During Recording
	Cancelling a Script in a Single�Script Session
	Cancelling the Current Script in a Multi�Script Session
	Cancelling All Scripts in a Multi�Script Session

	Choosing the Protocols to Include in a Script
	Manually Filtering Protocols
	Controls in the Manual Filtering Dialog Box
	Including or Excluding Connections
	Converting from One Protocol Type to Another

	Playing Back a Script Quickly
	Working with Sessions
	Splitting a Session into Multiple Scripts
	How to Split a Session into Multiple Scripts

	Importing a Session
	Regenerating Scripts from a Session
	Changing Recording Options

	Viewing Session Properties
	Accessing Script Properties from Session Properties

	Coding a Script Manually
	Creating Library Files for VU Scripts

	Defining Script Properties
	How to Define Script Properties in Robot

	Managing Scripts and Sessions
	Finding the Session Associated with a Script
	Removing a Script from a Session
	Re�Recording Sessions
	Deleting the Original Scripts and Properties
	Keeping the Original Scripts
	Overwriting the Original Scripts but Keeping Their Properties

	Re�Recording Scripts
	Copying Scripts
	Deleting Scripts and Sessions

	Adding Features to Scripts
	Toolbars for Adding Features
	Timers
	How Timers Work
	Why Use Timers?
	Adding a Timer During Recording
	Adding a Timer During Editing

	Blocks
	Why Use Blocks?
	Adding a Block
	Nesting Blocks
	Example of Nested Blocks

	Synchronization Points
	How Synchronization Points Work
	Why Use Synchronization Points?
	Inserting Synchronization Points
	Inserting a Synchronization Point During Recording
	Inserting a Synchronization Point During Editing
	Inserting a Synchronization Point into a Suite

	Scope of a Synchronization Point

	Comments
	Adding Comments During Recording
	Adding Comments During Editing

	Using the Insert Menu

	Playing Back GUI Scripts
	Playback Phases
	Test Development Phase
	Regression Testing Phase

	Restoring the Test Environment Before Playback
	Setting GUI Playback Options
	Acknowledging the Results of Verification Point Playback
	Setting Log Options for Playback
	Setting Wait State and Delay Options
	Setting Wait State Options
	Setting Delay Options for Commands and Keystrokes

	Setting Error Recovery Options
	Setting Unexpected Active Window Options
	Setting Diagnostic Tools Options
	About Purify and Robot
	About Quantify and Robot
	About PureCoverage and Robot
	How the Diagnostic Tools Work with Robot
	How the Start Application and Diagnostic Tools Options Interact
	Setting the Diagnostic Tools Options
	Viewing the Playback Results

	Setting the Trap Options to Detect GPFs
	Important Notes
	Uses for Trap
	Starting Trap
	Analyzing Results in the Sqatrap.log File

	Playing Back a GUI Script
	Viewing Results in the TestManager Log
	Analyzing Verification Point Results with the Comparators

	Working with Datapools
	What Is a Datapool?
	Datapool Tools
	Managing Datapool Files

	Datapool Cursor
	Row Access Order

	Datapool Limits
	What Kinds of Problems Does a Datapool Solve?

	Planning and Creating a Datapool
	Data Types
	Standard and User�Defined Data Types
	Finding Out What Data Types You Need
	Finding Values in GUI Scripts

	Creating User�Defined Data Types
	Generating Unique Values from User�Defined Data Types
	Generating Multi�Byte Characters

	Using Datapools with Sessions
	Creating a Datapool with Robot
	Step 1. Editing Datapool Configuration
	Step 2. Defining Datapool Columns and Generating the Data
	Viewing Datapool Values

	Editing Datapool Column Definitions with Robot
	If There Are Errors

	Editing Datapool Values with Robot
	Cancelling Your Edits

	Using Datapools with GUI Scripts
	Accessing a Datapool from GUI and Session Scripts

	Testing Visual Basic Applications
	About Robot Support for Visual Basic Applications
	Verifying that the Visual Basic Extension Is Loaded

	Testing Oracle Forms Applications
	About Robot Support for Oracle Forms Applications
	Making Oracle Forms Applications Testable
	Installing the Rational Test Oracle Forms Enabler
	Running the Enabler on Your Application
	What Happens When You Run the Enabler?
	Running the Enabler
	Distributing Your Application

	Verifying that the Oracle Forms Extension Is Loaded

	Recording Actions and Testing Objects
	Recording Actions
	Testing Objects

	Testing an Object’s Properties
	Object Properties Verification Point
	Testing Properties of Visual Objects
	Testing Properties of Nonvisual Objects

	Object Scripting Commands

	Testing an Object’s Data
	Testing Base�Table Blocks and Base�Table Items
	Testing LOVs and Record Groups
	Creating an .SQA Text File
	Capturing Data in an LOV Associated with a Text Item
	Capturing Data in LOVs and Record Groups

	Testing HTML Applications
	About Robot Support for HTML Applications
	Configuring Your Browser for Testing
	Disabling the Cookie Prompt

	Making HTML Applications Testable
	Verifying that the HTML Extension Is Loaded
	Enabling HTML Testing in Robot
	Enabling Cache for Netscape Recording and Playback

	Testing Data in HTML Elements
	Additional Examples
	To Test the Contents of a Drop�Down List Box
	To Test for Text within a Table
	To Test the Destination of a Link

	How Robot Maps HTML Elements
	Supported Data Tests for HTML Testing
	Testing Properties of HTML Elements
	Playing Back Scripts in Netscape Navigator
	Configuring Robot for Netscape Playback
	Differences Between Internet Explorer and Navigator

	Recording Tips
	Capturing the Properties of Java Applets in HTML Pages
	Synchronizing Pages
	Capturing Properties or Data of Window Objects
	Using the Browser’s Back and Forward Buttons
	Recording Transactions

	Recording Mouse Movements
	Ensuring Browser Compatibility

	Enhancing Object Recognition of HTML Elements

	Testing Java Applets and Applications
	About Robot Support for Java
	Robot Support for Testing Java Applets and Applications
	Support for Testing Java Applets
	Support for Testing Java Applications

	Supported Foundation Class Libraries

	Making Java Applets and Applications Testable
	Running the Java Enabler
	Verifying that the Java Extension Is Loaded

	Setting Up the Sample Java Applet
	Installing the Sample Java Applet
	Installing the Swing Foundation Classes
	Installing Swing Under Windows NT 4.0
	Installing Swing Under Windows 2000
	Installing Swing Under Windows 98 and Windows 95

	Starting the Sample Java Applet

	Testing Data in Java Components
	Testing the Contents of a Java Panel

	Support for Custom Java Components
	For More Information About Java Support

	Supported Data Tests for Java Testing
	Testing Properties of Java Components
	Enhancing Object Recognition of Java Components

	Testing PowerBuilder Applications
	About Robot Support for PowerBuilder Applications
	Verifying that the PowerBuilder Extension Is Loaded
	Recording Actions on DataWindows
	Parameters for a Mouse�Click Action
	Value�Based Recording

	Testing an Expression Value of a DataWindow Property
	Testing DataStore Controls and Hidden DataWindows
	Capturing Data in a DropDownDataWindow/ListBox
	Testing the Value of a DataWindow Computed Field

	Testing PeopleTools Applications
	About Robot Support for PeopleTools Applications
	Verifying that the PeopleTools Extension Is Loaded
	Testing a Component’s Properties
	Testing a Component’s Data
	PeopleTools Commands

	Testing Delphi Applications
	About Rational Robot Support for Delphi
	Making Delphi Applications Testable
	Installing the Rational Object Testing Library and Enabler
	Running the Rational Test Delphi Enabler
	Adding the Rational Object Testing Library
	Removing the Rational Object Testing Library

	Testing a Component’s Properties
	Testing a Component’s Data

	Working with Data Tests
	About Data Tests
	An Example of a Data Test
	What the All Data Test Does
	The Definition of the All Data Test
	Changing a Data Test Definition

	Creating or Editing a Custom Data Test
	Copying, Renaming, or Deleting a Data Test

	Rational Robot Command�line Options
	Index
	A
	access order of datapool rows 10-4, 10-16
	starting row number 10-17

	acknowledging results for GUI script playback 9-4
	adding
	features to GUI scripts 3-1

	Adding SQA Object Testing Library
	Delphi 17-3

	Administrator 1-2
	alphanumeric values, testing 4-3
	Alphanumeric verification point 4-3
	animation mode for debugging 5-13
	API recording 6-2, 6-4
	monitoring feedback during 7-8
	starting applications 6-30

	applets, Java 14-3
	applications
	Java 14-3
	starting 3-1

	applications, starting when recording 6-30
	Apply a User-Defined DLL test function verification method 4-15
	Authentication Datapool 6-33
	features 6-35
	modifying with Robot during recording 6-35
	modifying with TestManager 6-34
	when to modify 6-34

	automatic protocol filtering 6-19
	automatic timing
	blocks 8-4
	emulation commands 8-2

	autonaming GUI scripts 2-6
	autonaming scripts and sessions 6-29

	B
	batch compiling scripts and library source files 5-8
	blocks 8-4
	adding during recording 8-6
	nesting 8-6

	breakpoints, setting and clearing 5-11
	Browser NewPage command 13-16
	browsers
	playing back scripts in Internet Explorer 13-2
	playing back scripts in Netscape Navigator 13-13
	recording scripts in Internet Explorer 13-2
	recording scripts in Netscape Navigator 13-2

	Build tab of Output window 5-9
	built-in data tests A-1
	By Content identification method 4-16
	By Key/Value identification method 4-17
	By Location identification method 4-16
	By Title identification method 4-16

	C
	C++ applications
	enabling for testing 2-4
	recognition order preference 2-9

	C++ Recognition Order preference 2-9
	cache
	enabling for Netscape recording 13-4

	cached responses, in HTTP scripts 6-23
	calling scripts from within scripts 3-5
	Case-Insensitive verification method 4-14
	Case-Sensitive verification method 4-14
	changing
	object class mappings 2-14
	script properties in Robot 2-23

	clearing breakpoints 5-11
	client computers
	associating with a server 6-9
	defining for network or proxy recording 6-31
	removing 6-33
	selecting for network recording 6-4

	client requests
	monitoring during recording 7-7
	recording 7-3

	client/server pairs
	deleting 6-38, 6-40
	identifying for proxy recording 6-9
	reassociating with a proxy 6-40

	Clipboard verification point 4-3
	clipboard, testing content of 4-3
	columns in data grids
	changing widths 4-22
	testing titles 4-20
	transposing with rows 4-23

	columns in datapools
	adding 10-19, 10-21
	configuring through the script 10-18
	defining 10-19
	editing column definitions, in Robot 10-21
	editing values, in Robot 10-22
	including or excluding 10-18
	maximum number 10-4, 10-12, 10-20
	names correspond to script variables 10-18
	values supplied by data types 10-8

	command IDs 6-26, 6-27, 6-28
	prefix 6-12
	prefix for all commands 6-12
	TUXEDO prefixes 6-26

	command-line options S-9
	comments
	adding to scripts during editing 8-13
	adding to scripts during recording 8-13

	comments in GUI scripts 3-11
	compiling
	locating errors 5-9
	scripts and library source files 5-7

	computers
	defining for network or proxy recording 6-31
	removing 6-33
	selecting a network interface card 6-5

	connections in session recording 6-19, 7-11
	constant values, examining 5-13
	contained scripts 7-19
	Content identification method 4-16
	cookie prompt
	disabling in Internet Explorer 13-2
	disabling in Netscape Navigator 13-2

	copying
	data tests A-8
	low-level scripts 5-5
	scripts 7-26
	verification points 4-25

	CPU delays, think time 6-17
	creating
	datapools, in Robot 10-12
	user-defined data types 10-10

	.csv datapool files 10-3
	cursors 10-3
	persistent 10-15
	private vs. shared 10-15
	starting row number 10-17
	wrapping 10-15

	custom data tests A-1
	custom object classes 2-13
	customer support 2-xvi

	D
	data correlation 6-24
	data grids
	definition 4-15
	working with 4-19

	data tests A-1
	copying A-8
	creating A-5
	deleting A-8
	example A-2
	expressions A-6
	renaming A-8

	data types
	creating 10-10
	determining which data types you need 10-9
	role of 10-8
	standard and user-defined 10-8

	data, testing in objects 4-4
	DATAPOOL_CONFIG
	editing 10-13
	role of 10-13

	datapools 10-5
	access order 10-4, 10-16
	accessing from GUI scripts and sessions 10-24
	adding commands to sessions 10-12
	Authentication Datapool 6-33
	creating in Robot 10-12
	cursors 10-3
	data types 10-8
	editing column definitions, in Robot 10-21
	editing values, in Robot 10-22
	files 10-3
	finding data types for 10-9
	generating data, in Robot 10-20, 10-22
	limits 10-4
	maximum number of columns 10-4, 10-12, 10-20
	naming 10-15
	persistent cursors 10-15
	planning 10-5
	populating with values, in Robot 10-20, 10-22
	private user access to 10-15
	role of 10-1, 10-4
	row access order 10-4, 10-16
	script generation option 6-12
	shared user access to 10-15
	starting row number 10-17
	where stored 10-3

	DataWindow Contents data test 15-6
	DataWindows in PowerBuilder
	computed fields 15-7
	expression values 15-4
	hidden 15-5
	recording actions 15-2

	DCOM
	API recording method required with 6-2
	assigning prefix to emulation commands 6-28

	DCOM Recording 6-28
	DCOM recording 6-19
	debugging GUI scripts 5-9
	animation mode 5-13
	clearing breakpoints 5-11
	executing to a selected line 5-13
	setting breakpoints 5-11
	stepping into scripts 5-11

	declarations, global 3-17
	Default object order preference 2-9
	default settings
	recording 6-1

	delay values
	adding to scripts 3-12
	options for GUI script playback 9-6

	deleting
	client/server pairs 6-38
	data tests A-8
	low-level scripts 5-6
	object class mappings 2-14
	proxy computers 6-39
	script from a session 7-23
	scripts 5-15, 7-26
	sessions 7-26
	verification points 4-25

	Delphi
	making applications testable 17-2
	Object Testing Library/Enabler 17-2
	testing data 17-6
	testing properties 17-5

	Delphi Enabler 17-2
	diagnostic tools options 3-3, 9-11
	directives in datapools 10-18
	overriding 10-16

	disabling cookie prompt
	in Internet Explorer 13-2
	in Netscape Navigator 13-2

	divide by zero errors, detecting 9-16
	documenting GUI scripts 3-11
	DropDown Contents data test 15-6
	DropDownDataWindows in PowerBuilder 15-6
	DropDownListBoxes in PowerBuilder 15-6
	DWColumns in PowerBuilder 15-6
	dynamic data correlation 6-24

	E
	editing
	data in data grid 4-21
	datapool column definitions, in Robot 10-21
	datapool values, in Robot 10-22
	DATAPOOL_CONFIG 10-13
	scripts 5-1, 5-2
	verification points 4-23

	emulated users. See GUI users, virtual users, users
	emulation commands 6-12
	associating with block and timer names 8-5
	automatically timed 8-2

	Enabler for Oracle Forms 12-2
	Enabler, Delphi 17-2
	enabling applications for testing 2-4
	ending recording of GUI scripts 2-22
	error recovery options for GUI script playback 9-8
	errors
	detecting during playback 9-16
	locating after compiling 5-9

	excluding datapool columns 10-18
	executable files, starting 3-1
	executing suites 7-16
	executing to a selected line during debugging 5-13
	expected results for verification points 4-9
	expressions
	in data tests A-6
	in PowerBuilder applications 15-4

	Extension Manager
	Java 14-1
	Oracle Forms 12-7
	PeopleTools 16-2
	PowerBuilder 15-2
	Visual Basic 11-3

	F
	failures
	setting error recovery options 9-8

	features, adding to GUI scripts 3-1
	adding to existing GUI scripts 5-2
	comments 3-11
	delay values 3-12
	inserting calls to scripts 3-5
	log messages 3-11
	starting applications 3-1
	timers 3-8
	verification points 3-6

	feedback during session recording 6-30, 7-7, 7-9
	File Comparison verification point 4-3
	File Existence verification point 4-3
	file location
	scripts 7-2
	session files 7-2

	file types
	.csv (datapool files) 10-3
	.ord (object order preference files) 2-13
	.rec (as SQABasic library source files) 3-14
	.s (scripts) 7-2
	.sbh (SQABasic header files) 3-16
	.sbl (SQABasic library source files) 3-14
	.sbx (SQABasic library runtime files) 3-16
	.spc (datapool specification files) 10-3
	.sqa (LOV text files) 12-15
	.wch (session) 7-2

	files
	comparing 4-3
	datapool file location 10-3
	testing existence of 4-3

	filtering
	protocols 6-17, 6-19, 7-11

	Find Sub String Case-Insensitive verification method 4-14
	Find Sub String Case-Sensitive verification method 4-14
	floating toolbars
	Session Insert 7-5
	Session Record 7-5

	FTP protocol 6-21

	G
	general protection faults, detecting 9-16
	generating
	values in datapools, in Robot 10-20, 10-22

	generating scripts 7-4
	from a session 7-18
	manual protocol filtering 7-11
	problems with 7-5

	generating VU scripts
	recording options 6-19

	Generic object type, defining unknown objects as 2-8, 2-20
	global
	declarations 3-17
	header files 3-17
	library source files 3-15

	global datapool directives 10-16
	global.sbh file 3-17
	global.sbl file 3-15
	GPFs, detecting during playback 9-16
	grouping scripts for playback 2-25
	GUI Insert toolbar 2-19
	GUI playback options 9-3
	GUI Record toolbar 2-19
	GUI recording options 2-5
	GUI scripts
	adding features 5-2
	adding user actions 5-2
	autonaming 2-6
	coding manually 2-23
	creating modular scripts 2-3
	datapools and 10-23
	debugging 5-9
	ending recording 2-22
	pausing recording 2-19
	playing back 9-1, 9-18
	recording 2-1, 2-15
	recording options 2-5
	recording workflow 2-2
	resuming recording 2-19
	shell scripts 2-25
	test environment 2-3
	testing 2-24
	viewing results of playback 9-20
	See also scripts

	GUI scripts and datapools 10-23
	associating variable names and datapool columns 10-18
	datapool access shared with VU scripts 10-24

	H
	header files 3-14, 3-16
	help desk 2-xvi
	hidden object, selecting 4-12
	hot keys
	restoring Robot window during recording 2-18
	turning low-level recording on and off 2-21

	hotline support 2-xvi
	HTML support
	testing applications 13-1
	testing data in elements 13-5, 13-7

	HTTP scripts
	cached responses 6-23
	dynamic data correlation 6-24
	keep-alives 6-23
	partial responses 6-23
	redirects 6-23

	I
	icon for Session Recorder 6-30, 7-9
	IDE applications
	enabling for testing 2-4
	HTML 13-1
	Java 14-1
	Oracle Forms 12-1
	PeopleTools 16-1
	PowerBuilder 15-1
	Visual Basic 11-1

	identification methods
	for verification points 4-15

	identifying objects to test 4-13
	IIOP
	assigning prefix to emulation commands 6-27
	including original IORs in iiop_bind 6-27

	iiop_bind emulation command 6-27
	images, testing 4-5
	IME 10-10, 10-12
	importing
	sessions 7-18

	including datapool columns 10-18
	Input Method Editor 10-10, 10-12
	inserting
	features in GUI scripts 3-1

	inserting columns in a datapool 10-19, 10-21
	Installing
	SQA Object Testing Library/Enabler for Delphi 17-2

	interface card, selecting for network recording 6-5
	invalid op codes, detecting 9-16

	J
	Japanese characters 10-9, 10-12
	Java applets 6-21
	Java applets and applications 14-3
	Java Developer Kit (JDK) 14-3
	Java Enabler 14-4
	Java extension, enabling 14-1
	Java Virtual Machine (JVM) 14-1
	Jolt protocol 6-20

	K
	Kanji characters 10-12
	Katakana characters 10-12
	keep-alives, in HTTP scripts 6-23
	Key/Value identification method 4-17
	keyboard actions, tracking during recording 2-21
	keys
	using to compare data in columns 4-17

	keystrokes, waiting for during playback 9-6

	L
	library source files 7-21
	compiling 5-7
	creating and editing 3-15
	global 3-15
	role of 3-14

	links, testing HTML 13-8
	Location identification method 4-16
	log messages, adding to GUI scripts 3-11
	log options for GUI script playback 9-5
	login information
	Authentication Datapool 6-33
	automatic detection 6-33
	user ID and password 6-33

	logs
	definition 9-5

	low-level recording
	copying scripts 5-5
	deleting scripts 5-6
	hot keys for 2-21
	renaming scripts 5-4
	switching to 2-21
	viewing scripts 5-4

	M
	manual protocol filtering 6-19, 7-11
	mapping
	clients and servers for proxy recording 6-9
	illustration of proxy mapping 6-7
	object types and classes 2-13
	proxy computer with a server 6-9

	measuring duration of events 3-8
	Menu verification point 4-4
	menus, testing 4-4, 4-20
	missing passwords 7-4, 7-5
	modifying
	object class mappings 2-14

	Module Existence verification point 4-4
	modules, testing existence of 4-4
	monitoring proxies 6-38
	mouse movements, tracking during recording 2-21
	multi-byte characters 10-9, 10-10, 10-12

	N
	naming
	scripts 6-29
	sessions 6-29

	naming scripts when recording 2-6
	nesting blocks in scripts 8-6
	Netscape Navigator
	enabling cache for recording 13-4
	playing back scripts in 13-13

	Netscape Navigator recording 13-4
	network interface card, selecting for network recording 6-5
	network recording 6-2, 6-4
	defining a client or server computer for 6-31
	filtering protocols 6-17
	identifying the client and server 6-4
	selecting a network interface card 6-5
	starting applications 6-30

	Numeric Equivalence verification method 4-14
	Numeric Range verification method 4-15
	numeric values, testing 4-3

	O
	object data tests A-1
	Object Data verification point 4-4, A-1
	Object Finder tool 4-11
	object mapping 2-13
	object order preference
	creating 2-13
	selecting 2-9

	Object Properties verification point 4-4
	object recognition methods
	creating new order preference 2-13
	customizing the order 2-11
	selecting order preference 2-9

	Object Testing Library
	Delphi 17-2

	object types and classes, mapping 2-13
	Object-Oriented Recording 2-21
	objects
	identifying the object to test 4-13
	selecting the object to test 4-10
	unknown 2-7, 2-20, A-5

	Oracle
	client name required 6-26
	login information 6-35
	proxy recording and 6-8

	Oracle Forms support 12-1
	making applications testable 12-2
	Rational Test Enabler 12-2
	recording actions 12-7
	testing base-table blocks and items 12-14
	testing data 12-14
	testing LOVs 12-15
	testing objects 12-8
	testing properties 12-10
	testing record groups 12-15
	verifying that extension is loaded 12-7

	.ord files for object order preferences 2-13

	P
	partial responses, in HTTP scripts 6-23
	passwords
	modifying in Robot 6-35
	modifying in TestManager 6-34
	supplying 6-33, 7-4, 7-5

	pausing recording of GUI scripts 2-19
	PeopleTools support 16-1
	commands 16-3
	testing data 16-3
	testing properties 16-2
	verifying that extension is loaded 16-2

	performance tests
	recording scripts for 7-3

	persistent datapool cursors 10-3, 10-15
	starting row number 10-17

	planning
	datapools 10-5
	session recording 6-1

	playing back GUI scripts 9-1, 9-18
	acknowledging results 9-4
	delays between commands 9-6
	delays between keystrokes 9-6
	detecting GPFs 9-16
	error recovery options 9-8
	in debugging mode 5-10
	log options 9-5
	playback options 9-3
	Trap options 9-16
	under PureCoverage 3-3, 9-11
	under Purify 3-3, 9-11
	under Quantify 3-3, 9-11
	unexpected active window options 9-9
	wait state options 9-6

	playing back scripts
	verifying SQL return codes 6-14

	playing back VU scripts
	pacing 6-16

	PlayJrnl command for low-level recording 2-22
	populating datapools
	in Robot 10-20, 10-22

	PowerBuilder support 15-1
	DataStore controls 15-5
	DataWindows 15-2, 15-4, 15-5, 15-7
	DropDownDataWindows/ListBoxes 15-6
	verifying that extension is loaded 15-2

	prefixes
	autonaming scripts and sessions 6-29
	command ID 6-12, 6-26, 6-27, 6-28
	DCOM command ID 6-28
	IIOP command ID 6-27
	TUXEDO command ID 6-26

	prefixes, autonaming GUI scripts 2-6
	printing
	scripts 5-7
	SQABasic files 5-7

	private datapool cursors 10-15
	project
	managing with Rational Administrator 1-2
	selecting 1-2

	Project Enabler, Delphi 17-2
	project header files, creating and editing 3-17
	properties
	session 7-20
	testing objects 4-4

	properties of scripts
	accessing from session properties 7-20
	defining 7-22
	defining in Robot 2-23
	status when re-recording scripts 7-25
	status when re-recording sessions 7-24

	protocols
	converting 7-15
	filtering 6-17, 6-19, 7-11
	Java applets 6-21
	Jolt 6-20
	selecting for scripts 6-20
	socket 6-21
	TUXEDO definition 6-21

	proxy computers 6-6
	associating with a server 6-9
	computer shutdown and 6-36
	creating 6-9
	deleting 6-39
	monitoring 6-38
	reassociating with a client/server pair 6-40
	redefining after proxy service is stopped 6-37
	status 6-38

	proxy recording 6-2, 6-6, 6-8
	client/server relationships 6-7
	computer shutdown and 6-36
	creating a proxy computer 6-9
	defining a client or server computer for 6-31
	filtering protocols 6-17
	identifying client/server pairs 6-9
	starting applications 6-30

	proxy service
	computer shutdown and 6-36
	starting 6-36
	stopping 6-36

	PureCoverage, using with Robot 3-3, 9-11
	Purify, using with Robot 3-3, 9-11

	Q
	Quantify, using with Robot 3-3, 9-11

	R
	random datapool access 10-4, 10-16
	Rational Administrator 1-2
	Rational project
	about 1-2
	managing with Rational Administrator 1-2
	selecting 1-13

	Rational PureCoverage, using with Robot 3-3, 9-11
	Rational Purify, using with Robot 3-3, 9-11
	Rational Quantify, using with Robot 3-3, 9-11
	Rational RequisitePro 1-12
	Rational technical support 2-xvi
	Rational Test Authentication 6-34
	Rational Test Enabler for Oracle Forms 12-2
	.rec library files 3-14
	recording GUI scripts 2-1, 2-15
	and unknown objects 2-7, 2-20
	creating modular scripts 2-3
	ending 2-22
	mapping object types and classes 2-13
	pausing 2-19
	process 2-1
	recording options 2-5
	restoring main window 2-18
	resuming 2-19
	selecting object order preference 2-9
	workflow 2-2

	recording methods
	API recording 6-4
	network 6-4
	proxy 6-6
	setting 6-2

	recording options 6-1
	changing 7-19
	filtering protocols 6-17
	proxy 6-8
	script generation 6-19
	setting 6-1, 6-7
	setting recording method 6-2

	recording scripts 7-3
	cancelling 7-10
	feedback 6-30, 7-7, 7-9
	in a session 7-3
	recording methods 6-2
	values recorded 10-19

	redirects, in HTTP scripts 6-23
	regenerating scripts from a session 7-18
	Region Image verification point 4-5
	regions of screen, testing 4-5
	regression testing phase 9-2
	release times 8-8, 8-12
	ranges 8-12

	Removing SQA Object Testing Library
	Delphi 17-4

	renaming
	data tests A-8
	low-level scripts 5-4
	verification points 4-25

	reports
	filtering with block names 8-5

	requests
	cancelling recorded 7-10
	monitoring during recording 7-7
	recording 7-3

	RequisitePro 1-12
	re-recording
	scripts 7-25
	sessions 7-23

	restoring Robot during recording 7-2
	results of playback, viewing 9-20
	resuming recording of GUI scripts 2-19
	rewinding the datapool cursor 10-15
	Robot main window, restoring during recording 2-18
	Robot, restoring during recording 7-2
	row access order 10-4, 10-16
	rows in data grid, transposing with columns 4-23
	rows in datapools
	access order 10-4, 10-16
	maximum number 10-4
	starting row number 10-17

	running
	applications 6-30
	GUI scripts 9-1
	suites 7-16

	S
	saving scripts and SQABasic files 5-7
	.sbh header files 3-16
	.sbl library files 3-14
	.sbx library runtime files 3-16
	schedules
	synchronization points and 8-10
	synchronizing items in 8-11

	scope of a synchronization point 8-12
	script command failures 9-8
	script generation options 6-19
	adding SQL return codes to scripts 6-14
	changing 7-19
	command ID prefix 6-12
	datapool commands 6-12
	display number of rows retrieved 6-14
	display retrieved rows in scripts 6-13
	playback pacing 6-16
	think time vs. CPU delays 6-17

	script properties
	accessing from session properties 7-20
	defining in Robot 2-23, 7-22
	status when re-recording scripts 7-25
	status when re-recording sessions 7-24

	scripts
	adding datapool commands to 6-12
	autonaming 6-29
	blocks 8-4
	cancelling 7-10
	changing recording options 7-19
	comments in 8-13
	compiling 5-7
	copying 7-26
	copying code from one script to another 7-21
	deleting 5-15, 7-24, 7-26
	editing 5-1
	generating after recording 7-4
	generating from a session
	improving readability 8-5
	list of, in a session 7-19
	manual protocol filtering 7-11
	overwriting 7-25
	printing 5-7
	properties 7-21
	recording 7-3
	regenerating from a session 7-18
	removing from a session 7-23
	re-recording 7-25
	saving 5-7
	session associated with 7-22
	splitting 7-17
	stopping recording 7-4
	where stored 7-2
	See also GUI scripts

	selecting objects to test 4-10
	sequential datapool access 10-4, 10-16
	servers
	associating with a client 6-9
	associating with a proxy 6-9
	defining for network or proxy recording 6-31
	removing 6-33
	selecting for network recording 6-4

	session files 7-1
	regenerating scripts from 7-18
	where stored 7-2

	session ID 6-24
	where stored 6-24

	Session Insert toolbar 7-5
	Session Record toolbar 7-5
	Session Recorder 7-7
	after recording 7-9
	during API recording 7-8
	icon 7-9

	sessions
	autonaming 6-29
	contents of 7-16
	deleting 7-26
	finding the session name for a script 7-22
	importing 7-18
	properties of 7-20
	recording 7-1
	regenerating scripts from 7-18
	removing a script from 7-23
	re-recording 7-23, 7-24
	scripts within 7-19
	splitting into multiple scripts 7-17
	uses for 7-16
	where stored 7-2

	setting breakpoints 5-11
	shared datapool cursors 10-3, 10-15
	shell scripts 2-25
	shuffle datapool access 10-4, 10-16
	single step execution during debugging 5-11
	socket protocols 6-21
	changing 7-15

	.spc datapool specification files 10-3
	SQA Delphi Project Enabler 17-2
	.sqa files for LOV objects 12-15
	SQA Object Testing Library
	Delphi 17-2

	SQABasic files
	compiling 5-7
	header files 3-17
	library source files 3-15
	printing 5-7
	saving 5-7
	template file 3-19

	SQABasic header files 3-14, 3-16
	SQASrvr code 17-2
	sqatrap.log 9-17
	SQL return codes, comparing during session recording and playback 6-14
	SQL Server login information 6-35
	stack overflows, detecting 9-16
	standard data types
	role of 10-8
	when to use 10-9

	Start Application command 3-2
	Start Browser command 3-2
	Start Java Application command 3-2
	starting
	applications 3-1

	starting applications 6-30
	starting proxy service 6-36
	stepping into scripts during debugging 5-11
	stepping out of called scripts during debugging 5-11
	stepping over command lines during debugging 5-11
	stopping
	proxy service 6-36
	recording 7-4

	stopping recording of GUI scripts 2-22
	suites
	running 7-16

	support, technical xvi
	Swing foundation classes, installing 14-8
	Sybase
	login information 6-35

	synchronization points 8-8, 8-11
	example of 8-9
	inserting into schedules 8-10, 8-11
	inserting into script 8-10, 8-11
	multiple 8-10
	release time ranges 8-12
	releasing virtual testers from 8-8, 8-12
	scope of 8-12
	timeout 8-12

	synchronizing
	GUI scripts with application 3-12
	playback with application 9-6

	synchronizing items in schedules
	synchronization points 8-11

	T
	tables, testing HTML 13-8
	technical support 2-xvi
	Telnet protocol 6-21
	template file 3-19
	test development phase 9-2
	test environment
	setting up for playback 9-3
	setting up for recording 2-3

	test scripts. See scripts
	Testing Library
	Delphi 17-2

	testproc.tpl file 3-19
	think time
	CPU delays and 6-17
	maximum 6-17
	setting 6-16

	threshold between think time and CPU delays 6-17
	timeout values
	for script playback 9-6
	for verification points 4-8

	timeout values, for synchronization points 8-12
	timers 8-2
	adding during editing 8-3
	adding during recording 8-3

	timers in GUI scripts 3-8
	inserting 3-10
	playing back scripts 3-10
	uses for 3-9

	times
	think 6-16, 6-17

	Title identification method 4-16
	toolbars
	Session Insert 7-5
	Session Record 7-5

	top menus, testing 4-20
	TPINIT request message 6-21
	transactions
	automatically timing in blocks 8-4
	performing during recording 7-3

	transposing columns and rows in data grid 4-23
	Trap options for GUI script playback 9-16
	Trap utility
	setting options to detect GPFs 9-16

	truncating emulation command ID prefixes 6-12
	TUXEDO
	assigning prefix to emulation commands 6-26
	command ID prefixes 6-26
	defining a connection 6-21

	type library 6-28

	U
	UAEs, detecting 9-16
	unexpected active windows
	definition 9-9
	detecting during playback 9-9
	options for GUI script playback 9-9

	unique datapool rows
	user-defined data types and 10-11

	unknown objects
	controlling how Robot responds to 2-7
	defining during recording 2-20
	defining while creating data tests A-5

	unrecoverable application errors, detecting 9-16
	usage directives for datapools 10-18
	user actions
	adding to existing GUI scripts 5-2
	definition 2-1

	user IDs
	modifying list of, in Robot 6-35
	modifying list of, in TestManager 6-34
	supplying 6-33

	user-defined data types
	creating 10-10
	role of 10-8
	unique values 10-11
	when to use 10-9

	User-Defined verification method 4-15
	users. See also GUI users, virtual testers

	V
	Value identification method 4-17
	values supplied during recording 10-19
	variable names and datapool column names 10-18
	variable values, examining 5-13
	Variables window 5-13
	verification methods
	for verification points 4-14

	verification points 4-1
	adding 3-6
	before you create 4-6
	copying 4-25
	definition 2-1
	deleting 4-25
	editing 4-23
	expected results 4-9
	failures 9-8
	identification methods 4-15
	identifying objects to test 4-13
	library files and 3-14
	renaming 4-25
	selecting objects to test 4-10
	types 4-3
	verification methods 4-14
	viewing in Comparators 4-24, 9-21
	wait state values 4-8

	Verify that selected field is blank verification method 4-15
	verifying SQL return codes 6-14
	viewing
	datapool values, in Robot 10-22

	virtual testers
	pacing 6-16
	synchronizing 8-8
	think time 6-16
	think time vs. CPU delays 6-17

	Virtual User Recorder
	icon 6-30

	Visual Basic support 11-1
	verifying that extension is loaded 11-3

	VU scripts
	adding number of rows retrieved to 6-14
	adding retrieved rows to 6-13
	command ID prefixes in 6-12
	datapool access shared with GUI scripts 10-24
	distinguishing think time and CPU delays 6-17
	improving readability 6-12
	maximum think time 6-17
	methods of recording 6-2
	playback rate 6-16
	recording options for 6-1
	script generation options 6-19
	SQL return code verification 6-14
	think time in 6-16
	variable names and datapool column names 10-18

	W
	wait state options for GUI script playback 9-6
	watch files. See session files
	Web Site Compare verification point 4-5
	Web Site Scan verification point 4-5
	Window Existence verification point 4-5
	Window Image verification point 4-5
	windows
	setting wait values for 9-6
	testing existence of 4-5
	testing images 4-5
	unexpected during playback 9-9

	WorkStation Listener information 6-21
	wrapping the datapool cursor 10-15

