
support@rational.com
http://www.rational.com

Rational the e-development company™

Guide to Team Development

Rational Rose

VERSION: 2001A.04.00

PART NUMBER: 800-024464-000

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Portions Copyright ©2000-2001, Compaq Computer Corporation. All rights reserved.

Portions Copyright ©1992-2000, Summit Software, Inc. All rights reserved.

Part Number: 800-024464-000

Version Number: 2001A.04.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY
OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE
SOLE PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF
RATIONAL. NO PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE,
AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN
OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN PART,
WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company, ClearCase,
ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest, ClearQuest MultiSite,
DDTS, Object Testing, Object-Oriented Recording, ObjecTime & Design , Objectory,
PerformanceStudio, ProjectConsole, PureCoverage, PureDDTS, PureLink, Purify, Purify'd,
Quantify, Rational, Rational Apex, Rational CRC, Rational Rose, Rational Suite, Rational
Summit, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA,
TestFactory, TestFoundation, TestMate, The Rational Watch, AnalystStudio, ClearGuide,
ClearTrack, Connexis, e-Development Accelerators, ObjecTime, Rational Dashboard,
Rational PerformanceArchitect, Rational Process Workbench, Rational Suite
AnalystStudio, Rational Suite ContentStudio, Rational Suite Enterprise, Rational Suite
ManagerStudio, Rational Unified Process, SiteLoad, TestStudio, VADS, among others, are
either trademarks or registered trademarks of Rational Software Corporation in the United
States and/or in other countries. All other names are used for identification purposes only,
and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop, Active
Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell,
Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral, BizTalk, Bookshelf,
ClearType, CodeView, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace, DriveSpace, FrontPage,
Funstone, Genuine Microsoft Products logo, IntelliEye, the IntelliEye logo, IntelliMirror,
IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, Mapbase, MapManager,
MapPoint, MapVision, Microsoft Agent logo, the Microsoft eMbedded Visual Tools logo, the
Microsoft Internet Explorer logo, the Microsoft Office Compatible logo, Microsoft Press, the
Microsoft Press logo, Microsoft QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the
Office logo, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler,
QuickShelf, RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat,
VideoFlash, Virtual Basic, the Virtual Basic logo, Visual C++, Visual C#, Visual FoxPro,
Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo,
Vizact, WebBot, WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the
Windows logo, Windows NT, the Windows Start logo, and XENIX, among others, are either
trademarks or registered trademarks of Microsoft Corporation in the United States and/or
in other countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot, Solaris,
Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and SunPCi,
among others, are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries
and utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Portions of this product incorporate the expat XML parser 1.0 under the Mozilla 1.1 license
available at http://www.mozilla.org/MPL/MPL-1.1.txt. The source code version of the expat
XML parser is available at http://www.jclark.com/xml/expat.html.

PATENT

Portions covered by U.S. Patent Nos.5,193,180 and 5,335,334 and 5,535,329 and
5,835,701 and 5,574,898 and 5,649,200 and 5,675,802.

U.S. Patents Pending.

International Patents Pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth
in the applicable Rational Software Corporation license agreement and as provided in
DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1988),
FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license
agreement. Rational Software Corporation expressly disclaims all other warranties,
express or implied, with respect to the media and software product and its documentation,
including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage, or trade practice.

http://www.mozilla.org/MPL/MPL-1.1.txt
http://www.jclark.com/xml/expat.html
http://www.jclark.com/xml/expat.html

Contents
Preface. .15
Audience . 15

Using this Guide . 15

Other Resources. 16

What to Read Next . 16

Limitations of this Document . 17

Contacting Rational Technical Publications . 17

Contacting Rational Technical Support . 17

1 Understanding Team Development. .1
Contents . 1

Planning for Team Development . 1
Developing a Strategy. 1

How Rational Rose Supports Team Development . 2

2 Establishing a Model Architecture and Process for Team
Development .5

Model Architecture and Process . 5

Establishing Roles and Responsibilities . 6
Model Architect. 7
Model Manager. 7
Modeler/Developer . 8
Model Integrator . 8
Source Control Administrators . 9
Configuration Managers . 10

Developing a Model Architecture . 10
Understanding Subsystems . 10
One Model Versus Multiple Models . 12
Mapping the Architecture to Subsystems . 12
Checking Package Dependencies for Completeness. 13
Checking if a Subsystem is Self-Contained . 14
Defining Subsystem Interfaces . 15
Configuring Subsystem Components . 15
Providing Support for Unit Testing . 17
Using Property Sets for Build Settings . 17
Creating Processors and Component Instances . 17
v

Preparing and Releasing Subsystems . 19
Splitting a Model into Subsystem Models . 20
Splitting a Model Under Version Control. 23

Managing/Administering a Model . 26
Configuring Compatible Workspaces . 26
Configuring a Version Control System and Repository 27
 Partitioning the Model into Controlled Units . 27
Save Model to Local Work Area . 28
Adding the Model to Version Control . 28
Defining Developer Work Areas . 28
Creating Labels and Lineups . 28
Manipulating the Version Control Repository . 28

Developing/Implementing a Model . 29
Setting up Version Control . 29
Setting up Developer Work Areas. 29
Getting a Specific Lineup of a Model . 29
Opening a Model Under Version Control . 29
Working under Version Control . 30
Comparing and Merging Model Elements . 30
Promoting Changes for Integration. 30
Integrating Changes . 30
Automating Model Validation . 30

3 Best Practices . 33
Contents . 33

Goals of Team Development . 33

Sharing Within a Team Environment. 34

Protecting Configuration Items From Unintentional Changes 35
Overwriting a Modification . 36
Adding Dependency Issues . 38

Managing Relationships Between Configuration Items. 40

Managing and Delivering Configuration Items . 41

Improving Efficiency in Team Development . 43
Model Architect Role . 43
vi Contents

Recommendations . 44
Source Control Fundamentals . 44
Preempting Conflicts . 46
Managing Dependencies . 46
Labeling . 47
When Merging is Necessary . 48

Advanced Concepts and Heuristics . 48
Moving Controlled Units . 48
Parallel Development . 50
Model Integrator . 51
Using Rational ClearCase Multi-Site . 52
Additional Heuristics for Team Development . 52

4 Dividing a Model into Controlled Units . 55
What is a Controlled Unit? . 55

What Can be a Controlled Unit . 56
How Controlled Units are Related and What They Contain 57

Working with Controlled Units. 59
Creating Controlled Units . 59
Loading, Reloading, and Unloading Controlled Units . 59
Creating and Using Model Workspaces. 61
Protecting Controlled Units . 64
Splitting a Controlled Unit. 65
Merging Controlled Units . 66
Adding Controlled Units to a Model (Importing/Loading) 66
Uncontrolling Controlled Units . 66

Creating Virtual Paths to Controlled Units . 67
Understanding Virtual Path Maps . 67
How Virtual Paths Work . 68
Creating Virtual Path Maps . 69
Defining a Path Map Relative to the Location of the Model File. 70
Defining a New Path Map Using Another Path Map Symbol 70
Defining a Path Map with Wildcards. 70
Using Virtual Paths for the Value of a Model Property . 71
Using Path Maps for Other Artifacts . 71
Where Virtual Path Maps are Stored . 72
Contents vii

Checking References and Access Violations . 72
Check Model. 72
Show Access Violations . 73

Organizing Controlled Units for Teams . 74
Suggested Strategies . 74

5 Comparing and Merging Models . 77
Contents . 77

About the Model Integrator . 77
Model Integrator Interface. 78
Contributors . 80
Base Model. 80
Comparing Models . 80
Merging Models . 80
Differences and Conflicts . 81
Model Files and Model Integrator . 82
Understanding Semantic Checking . 84
Memory Requirements and Performance. 85

Model Integrator and ClearCase . 86
Merging Whole Models with Controlled Subunits . 87
Starting Model Integrator in a ClearCase Integration . 87

Comparing and Merging Models . 87
Starting Model Integrator . 87
Preparing Models for Merging . 88
Selecting the Contributors . 88
Loading or Unloading Controlled Units . 89
Using Compare Mode. 92
Using Merge Mode . 92
Interpreting Compare and Merge Results . 94
Navigating Through a Model. 95
Accepting Changes from Contributors . 99
Changing Nodes with Differences . 100
Reversing Changes to Nodes. 101
Using Subtree Mode . 101
Using Semantic Checking. 102
Checking Merged Model for Consistency . 102
Correcting Merge Errors . 103
Saving Results . 104
viii Contents

Performing a Partial Merge. 105

Merging Models Without a Base Model . 106

Viewing a Single Model File . 107

Using Model Integrator from the Command Line . 107

6 Working with a Version Control System. 109
Understanding Version Control. 109

Types of Version Control Systems . 110
Version Control Development Concepts . 110
Versioning Strategies . 112

Rational Rose Integration with Version Control Systems . 114
Version Control Add-In . 114
ClearCase Add-In. 115
Choosing and Activating a Version Control Add-In . 115

Using Rational ClearCase . 116
About ClearCase . 116
Versioned Object Bases (VOBs) . 116
ClearCase Views . 117
Configuring ClearCase for Rational Rose . 118

Using Microsoft Visual SourceSafe . 119
Configuring Microsoft Visual SourceSafe for Rational Rose 119

Using Version Control Features From Rational Rose . 120
Using the Version Control Add-In on a Previously Controlled Model 120
Adding Controlled Units to Version Control . 121
Checking in Controlled Units . 122
Checking Out Controlled Units . 123
Undoing the Check-Out of Controlled Units . 124
Getting the Latest Version of Controlled Units . 124
Removing Controlled Units from Version Control. 125

Index . 127
Contents ix

Figures
Figure 1 Architect Role in Team Development. 7
Figure 2 Manager Role in Team Development . 8
Figure 3 Modeler/Developer Role in Team Development 8
Figure 4 Integrator Role in Team Development . 9
Figure 5 Subsystems . 11
Figure 6 Component Diagram for a Sample Subsystem 16
Figure 7 Overwriting a modification . 36
Figure 8 Check-out and Check-in Scenario . 37
Figure 9 Checking Out an Artifact After it is Checked In 37
Figure 10 Merging Changes Prior to Check-In . 38
Figure 11 Comparison Between Versions . 38
Figure 12 Removing Required Dependencies . 39
Figure 13 Comparing Dependency Reports . 40
Figure 14 Labelling Configuration Items . 41
Figure 15 Example of Labelling Items . 42
Figure 16 Comparing Reports . 43
Figure 17 Parallel Stream Versioning Strategy. 45
Figure 18 Controlled Units . 56
Figure 19 View from which you cannot create Controlled Units 56
Figure 20 Example of a Controlled Unit Hierarchy. 57
Figure 21 Controlled Unit Hierarchies in the Rational Rose Browser 58
Figure 22 Controlled Unit File Name . 60
Figure 23 Loaded and Unloaded Controlled Unit Icons. 60
Figure 24 Adornments Indicating Controlled Units and Unresolved References. . 61
Figure 25 Example Model Workspace . 63
Figure 26 Write-Protected Control Unit . 64
Figure 27 Virtual Path Maps . 68
Figure 28 Virtual Path Map Dialog Box . 69
Figure 29 Model Integrator Graphical User Interface. 78
Figure 30 Subunits Dialog Box . 89
Figure 31 Property View of a TransView Object . 98
Figure 32 Model Integrator Window. 99
Figure 33 Parallel Stream Versioning. 113
Figure 34 Version Controlled Object (VOB) Tree Structure 117
Figures xi

Tables xiii

Table 1 Image Legend . 36
Table 2 AutoMerge Rules for Merging Models . 93
Table 3 Compare Status Icons . 94
Table 4 Merge Status Icons . 95
Table 5 Navigation Buttons for Viewing Conflicts and Differences 96

Tables

Preface

This book provides an overview of the basic team development concepts in Rational Rose, and
shows how to set up and use Rational Rose in a team environment.
Audience

This manual is intended for:

� Users who work in or support teams of modelers/developers.

� Database developers and administrators.

� Software system architects.

� Software engineers and programmers.

� Anyone who makes design, architecture, configuration management, and testing
decisions.

This manual assumes you are familiar with a high-level language and the life-cycle of
a software development project.

Using this Guide

This guide provides an overview of the basic team development concepts in Rational
Rose, as well as how to set up and use Rational Rose in a team environment.

The information in this book spans other product lines, including software from other
vendors. Its primary goal is to help you develop and tailor your own guidlines.

While this book provides explanations of some features, you will need to rely on
additional product libraries for information. For example, you may need to refer to
the ClearCase documentation to configure ClearCase for your environment.

In addition to this guide, refer to the Rational web site (www.rational.com) for white
papers, technical notes, and articles relating to team development.
15

Other Resources

� For more information on training opportunities, see the Rational University Web
site at http://www.rational.com/university.

� The information in this guide spans numerous products, both from Rational and
from other software vendors. To learn more about these products, consult the
product’s documentation. The Rational Rose Guide to Using Rose and the
Rational Rose online Help provide detailed information about Rose models and
the Model Integrator.

What to Read Next

All users of Rational Rose should familiarize themselves with how models are stored
and how Rational Rose interacts with source control systems. See Storage of Model Data
on page 45 and Source Control Fundamentals on page 77 for details on these areas.

Developers should also read Working with a Model Under Source Control (Developer
Tasks) on page 121. Project leads and architects will want to review the material in
Organizing a Model (Architect Activities) on page 95.

Development environment infrastructure is discussed in Source Control Administration
on page 137. That section should be read by source control administrators and anyone
involved with preparing builds. As well, specific details regarding the creation of a
build process and automating builds, as well as how to perform model integration, is
covered in Building and Integrating (Integrator Tasks) on page 131.

Finally, an example of setting up a parallel development environment with ClearCase
is presented in ClearCase Parallel Development: Sample Process on page 169. Many of the
concepts and techniques presented in the example are not specific to either ClearCase
or parallel development, and will be instructive to all wishing to set up a production
development environment with Rational Rose.
16 Preface

Limitations of this Document

One of the primary goals of Rational Rose is to fit into your existing development and
build processes. While this document tries to be thorough, you will encounter team
development issues which are not covered here. As a general guideline, you should
approach these situations with the same mindset you would have for ‘more typical’
C++, C, and Java development. In most cases, you can apply the same, or slightly
modified practices to achieve your goals.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support.

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name
� Your computer’s make and model
� Your operating system and version number
� Product release number and serial number
� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Limitations of this Document 17

1Understanding Team
Development
Contents

The chapter is organized as follows:

� Planning for Team Development on page 1
� How Rational Rose Supports Team Development on page 2

Planning for Team Development

Developing complex systems requires that groups of analysts, architects, and
developers be able to see and access the “big picture” while working on their own
portion of that picture. Successfully managing an environment where multiple team
members have different kinds of access to the same model requires:

� Formulating a working strategy for managing team activity.
� Having the tools to support that strategy.

Developing a Strategy

When working in teams, you need to develop strategies for:

� Supporting current development.
� Maintaining and retrieving the reusable modeling artifacts that result from

development.

Current Projects

When developing current projects, the tools that a team uses must be able to:

� Provide all team members with simultaneous access to the entire model.
� Control which team members can update different model elements.
� Introduce change in a controlled manner.
� Maintain multiple versions of a model.
1

Implementing a configuration management or version control system is essential for
complex projects. A configuration management system can effectively support team
development as long as it:

� Protects developers from unapproved model changes.
� Supports comparing and merging all changes made by multiple contributors.
� Supports distributed (geographically dispersed) development.

Developing for Reuse

When you develop a system, you develop valuable project artifacts that can be reused.
Artifacts are typically maintained in some type of repository. To support reuse:

� Model artifacts should be architecturally significant units, such as patterns,
frameworks, and components (not usually individual classes).

� All members of a team, no matter where they are located, should have access to
reusable artifacts.

� It should be easy to catalog, find, and then apply these artifacts in a model.

A reuse repository can differ from your project’s configuration management system
as long as it supports versioning. Versioning is a process of tracking a file’s history
from the initial version to the current version.

The repository should also support cataloging artifacts at an appropriate level of
granularity, for example, at the component level.

How Rational Rose Supports Team Development

To support teams of analysts, architects, and software developers, Rational Rose:

� Allows team development of a shared model by supporting decomposition of the
model into versionable units, called controlled units.

� Permits model files and controlled units to be moved or copied among work areas
by using the virtual path map mechanism.

� Enables teams to manage their model in concert with other project artifacts by
integrating with standard source control systems.

� Provides a separate tool, called Model Integrator, to compare and merge controlled
units.

� Enables teams to build their models in concert with other project artifacts by
integrating with standard build environments.

Since managing parallel development is so crucial, Rational Rose provides
integrations with Rational ClearCase and with SCC-compliant version control
systems, such as Microsoft Visual SourceSafe. By integrating configuration
2 Chapter 1 - Understanding Team Development

management systems, Rational Rose makes frequently used version control
commands directly accessible from the Rational Rose menus, such as check in and
check out functions.
How Rational Rose Supports Team Development 3

2Establishing a Model
Architecture and Process
for Team Development
The following topics are covered in this section:

� Model Architecture and Process on page 5

� Establishing Roles and Responsibilities on page 6

� Developing a Model Architecture on page 10

� Managing/Administering a Model on page 26

� Developing/Implementing a Model on page 29

Model Architecture and Process

Chapters 4, 5, and 6 of this guide describe fundamental concepts about models, how
they are stored, and the tools that you use to manage them. As essential as this
information is, it is probably even more important that you and your team develop
and implement a sound architecture for layering and partitioning your Rational Rose
models, as well as defining a process for managing your model and related artifacts
throughout the development cycle.

This chapter provides:

� Guidelines for developing a model architecture
� A suggested breakdown of activities and roles associated with the architecture

Note: The Rational Unified Process (RUP) provides detailed information about the
overall development process and should be one of your primary resources for
implementing team development.
5

Establishing Roles and Responsibilities

This section provides an overview of the typical development roles played by team
members in a software project. The organization of the remaining sections elaborate
on the logical activities associated with these roles.

Typical Roles

A role is a named behavior of an entity participating in team development, and each
role has assigned tasks to complete. There are typically seven roles to consider in your
team environment:

� Model Architect

� Model Manager

� Modeller/Developer

� Model Integrator

� Administrator (for source control)

� Configuration Manager

Roles Vary Based on Team Size

In a large team environment, several people can be responsible for different team
tasks associated with the same role, whereas smaller projects can have only one
person responsible for most or all of the tasks for a specific role.

A single person can play multiple roles. A user can perform Architect tasks while
working on the initial architecture of the system. Later, they can perform Developer
tasks when they are performing detailed implementation. After they make changes,
the user can perform Integrator tasks to promote this change to the integration branch
of their source control system.
6 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Model Architect

The architect role leads and coordinates technical activities and artifacts throughout
the project. The Architect establishes the overall structure for each architectural view,
including the decomposition of the view, the grouping of elements, and the interfaces
between these major groupings.

Figure 1 Architect Role in Team Development

Model Manager

The manager provides the overall version control infrastructure and environment to
the product development team. The manager function supports the product
development activity so that developers and integrators have appropriate workspaces
to build and test their work, and so that all artifacts are available for inclusion in the
deployment unit as required. The manager also has to ensure that the version control
environment facilitates product review, and change and defect tracking activities.
Establishing Roles and Responsibilities 7

Figure 2 Manager Role in Team Development

Modeler/Developer

The modeler/developer is a collective name that represents people who view or
modify Rational Rose models.

Figure 3 Modeler/Developer Role in Team Development

Model Integrator

Developers deliver their tested components into an integration workspace where
integrators combine them to produce a build. An integrator is also responsible for
planning the integration, which takes place at the subsystem and system levels, with
each having a separate integration workspace. Tested components are delivered from
8 Chapter 2 - Establishing a Model Architecture and Process for Team Development

an implementer’s private development workspace into a subsystem integration
workspace, whereas integrated implementation subsystems are delivered from the
subsystem integration workspace into the system integration workspace.

Figure 4 Integrator Role in Team Development

Source Control Administrators

The Source Control Administrator provides the overall source control infrastructure
and environment for all required members of the team.

Source Control Administrator Tasks:

� Configuring the source control system for use with Rational Rose

� Placing a model under source control

� Creating a default workspace file

� Defining work areas

� Defining lineup policies

� Enforcing all other configuration management plan policies

Depending on your team organization, the Integrator role can perform one or more of
these tasks.
Establishing Roles and Responsibilities 9

Configuration Managers

The Configuration Manager provides the overall Configuration Management (CM)
infrastructure and environment. The CM function supports the product development
activity so that developers, integrators have appropriate workspaces to perform
work.

The Configuration Manager must ensure that the CM environment facilitates product
review, change, and defect tracking activities. The Configuration Manager is
ultimately responsible for a comprehensive plan that identifies and deals with pitfalls
to team development in the most efficient way for the project.

Developing a Model Architecture

One of the Architect’s primary goals is to structure or organize a Rational Rose model
so that it can be used effectively by a team.

Product development often starts with a small team working on a single model. As
development progresses, the team (and the model) grow to a point where organizing
the model appropriately becomes crucial to supporting multiple teams working in
parallel.

An Architect also has a profound impact on developing for reuse. You can use
Rational Rose to split a model into highly cohesive layers or frameworks that can be
reused in multiple models.

The actual division of a model into packages and subsystems is something of an art
form and this chapter attempts to describe guidelines to help you get started.
Remember that after a model is partitioned into subsystems, you can either work with
one model or split the model into separate models for each subsystem.

Understanding Subsystems

Packages group model elements. There are four types of packages in Rational Rose:
use case, logical, and component packages. Each type of package can only group
certain model elements. For example a logical package can group classes, whereas a
component package groups component diagrams and components. Packages can also
contain packages of the same kind, so it is possible to decompose your models
hierarchically.

A model is composed of the four root packages: Use Case View, Logical View,
Component View, and the Deployment View. The model is the top level model
element which contains all sub elements.
10 Chapter 2 - Establishing a Model Architecture and Process for Team Development

A subsystem is a concept and not an explicit modeling element in Rational Rose. The
term represents a set of related packages that can be developed, tested, and released
together. Subsystems provide strong separation between major portions of your
model and form the basis for reuse between models. In a layered development
approach, the model for each layer will share in subsystems for the layers beneath it.

A subsystem will typically consist of one or more logical packages and one or more
component packages. The logical packages contain the classes in the subsystem and
the component packages contain the components that are used to build the
subsystem.

By converting packages that provide discrete, well-defined services into subsystems,
you are able to control dependencies better. Subsystems expose services only through
an interface and subsystem internals should depend only on the interfaces that are
offered by other systems.

Figure 5 Subsystems
Developing a Model Architecture 11

One Model Versus Multiple Models

A large development project can result in a correspondingly large model for the
complete application. If the model has a layered architecture, then it is possible to
produce a set of smaller models that follow the layering of the larger model.

One of the goals of having a separate model for each layer/subsystem is to reduce the
number of developers working on the same model. This technique helps to isolate
development work and reduce parallel development issues.

To build the full project, one designer, typically called the builder, opens a model that
references all the subsystems that make up the project, thus loading all the changes
made to the packages in the subsystems, then build from that model.

Before splitting a model into a set of subsystem models, you should first consider the
trade-offs.

Advantages of a model for each subsystem:

� Improves Rational Rose performance and memory footprint because the model is
smaller.

� You can build, test, and release subsystems separately, reducing system
complexity.

� Groups can share subsystems. Teams can share stable versions of subsystems.

Disadvantages:

� Can be more complicated to set up.

� Build process can be more involved.

� Might not be appropriate for small teams.

The following sections describe steps you should perform before splitting a model to
ensure that your model is well partitioned.

Mapping the Architecture to Subsystems

You can decompose a model by grouping modeling elements into packages then
assign a set of these packages to subsystems.

You should consider each subsystem as a distinct unit that you can build and test
independently, whether or not you will split the model. You will also need to define
and enforce the interfaces between subsystems.
12 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Tasks for Decomposing a Model into Subsystems

� Checking Package Dependencies for Completeness

� Checking if a Subsystem is Self-contained

� Defining Subsystem Interfaces

� Configuring Subsystem Components

� Providing support for Unit Testing

� Using Property Sets for Build Settings

� Creating Processors and Component Instances

� Preparing and Releasing Subsystems

Tasks for Splitting a Model:

� Splitting a Model not in Version Control

� Splitting a Model Under Version Control

Checking Package Dependencies for Completeness

Developers can define class-level relationships that may violate dependencies
between packages and subsystems. After you create packages and move the model
elements into the packages (subsystems), ensure that the subsystems you created
have the dependencies that you expect. If the dependencies between subsystems are
too complex, it may be difficult to work in teams (changes are not isolated) and split
the model.

Show Access Violations

Click Report > Show Access Violations to verify that the designed dependencies
between packages (subsystems) are correct and complete.

The Architect should revisit the package dependencies periodically to check that the
detailed implementation has not violated the intended architecture.

Click Show Access Violations to verify that there are no violations in the logical
packages and component packages in the subsystem. You should also verify that
every class and logical package referenced by the components in the subsystem are
also part of the subsystem.
Developing a Model Architecture 13

Determine the External Dependencies for a Package

The Specification dialog box for a package contains a Relations tab that shows the
dependencies for this package. You can determine if a package has any dependencies,
but it can be difficult to visualize the dependencies if you only look at this list. In
order to properly visualize the package relationships, use a class diagram.

To create a class diagram showing the relationships for a specific package, follow
these steps:

1 Open the class diagram.

2 If the package is not already on this diagram, then drag it from the browser onto
the diagram.

3 Click Query > Add Classes to add all the classes from a package to a diagram.

4 Press CTRL + A to select all of the classes in the diagram, then click
Query > Expand Selected Elements.

5 The resulting dialog allows you to add related elements to this diagram based on
the chosen options. To see the direct dependencies for this package, set the options
to expand one level of suppliers. Ensure that dependency relations are selected in
the Relations dialog box.

By varying the options chosen in these dialogs you can produce a diagram showing
the desired information. If many packages were added to the diagram, then you may
want to use the automatic layout feature to produce an initial layout for the diagram.

By reviewing the relationships in this diagram, the Architect can detect any
undesirable dependencies. Resolving an undesirable dependency can involve either
modifying the class(es) that caused the violation and/or moving some of these classes
to another package.

Checking if a Subsystem is Self-Contained

A self-contained subsystem is composed of packages that do not have any
dependencies to packages outside of the subsystem. A self-contained subsystem can
be shared without requiring any other subsystems.

Assuming the package dependencies are complete (see Checking Package Dependencies
for Completeness on page 13), then checking whether a subsystem is self-contained
means examining the dependencies for the packages in the subsystem to ensure that
all of them are to other packages within the subsystem.

A subsystem does not need to be self-contained in order to be shared, as long as the
sharing model contains all the other subsystems that are required.
14 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Defining Subsystem Interfaces

By reducing the coupling between subsystems, you can lessen the chance of having
integration problems caused by using subsystems that have complex dependencies.

It is important for the subsystem producer to pay close attention to which classes in a
subsystem are public (visible and usable outside of the subsystem) and which are
private. It is also recommended that the subsystem contain a set of class diagrams that
illustrate the public classes.

Best practices include:

� Specify the visibility of each class (public or implementation).
� Include one or more class diagrams showing the public classes.

You may also use different visual clues (such as color) for the public classes in a class
diagram.

Configuring Subsystem Components

Rational Rose can support general types of components such as:

� Executables

� Source code

� Binary code

� dlls

A small model may have a single executable component that is built to produce the
application. A large model has an executable component and many library
components, typically corresponding to the layering in the architecture.

In addition to the components used to build the complete application, it is useful to
have components that build subsets of the model, for example for unit testing
purposes.

Components in Subsystems

Ideally, each subsystem contains one or more external library components. These
components are built as part of the build process of a subsystem and are referenced in
models that use the subsystem.

An external library component allows the sharing model to reuse the prebuilt library,
which can dramatically reduce build times for a large model.
Developing a Model Architecture 15

A subsystem often includes multiple variations of each component, such as a debug
component and a release component. For ease of navigation and organization, group
the subsystem components into packages (a Debug package and a Release package)
containing the debug and the release components.

The subsystem model requires one or more executable components used to test the
subsystem. Typically, the executable component only contains the testing classes and
has a dependency on the library component for the subsystem.

The following component diagram shows three components for a sample subsystem.
The BaseRelease component is a library that contains the subsystem. The SanityTests
and FullRegressionTests components are executables that use the BaseRelease
component.

Figure 6 Component Diagram for a Sample Subsystem

After you create the necessary components and the dependencies between them, you
must determine which classes belong to which components. Typically, this follows
from the architecture of the model, although there can be issues that arise during
development. As new classes are created, they must be added to the appropriate
component(s). If multiple developers create classes referenced by the same
component, then the component can become a source of contention.

The contention for a component can sometimes be avoided, or at least reduced, when
the component references logical packages instead of classes themselves. Referencing
a package from a component is equivalent to referencing all the classes in that
package.
16 Chapter 2 - Establishing a Model Architecture and Process for Team Development

The added benefit is that the component does not need to be updated when a new
class is added to the package as long as that class belongs in that component. The risk
is that a component may contain classes that it does not require.

Providing Support for Unit Testing

While working within a subsystem model, a developer may find it useful to create a
component for use in unit testing changes. If this component has lasting value, then it
should be created as part of the subsystem model so that it can be reused. To support
the organized storage of unit testing components, an Architect may find it useful to
create component packages that can be used for grouping these components.

If many developers create components in the same package, then this package can
become a source of contention. If your development process requires the creation and
version control of unit testing components, then you may wish to create several
component packages used for this.

Using Property Sets for Build Settings

Using property sets for common build settings is a suggested method for maintaining
and reusing project level configuration information for building components.

Tasks

� The builder or architect defines custom sets of component properties that are
specific to a project. For example, you can have debug and release build settings.
Custom properties are stored in the .prp file for this model.

� A component should be based on the appropriate property sets by modifying the
Default set field in appropriate property tabs of the component Specification
dialog. Any local overrides should also be added.

Creating Processors and Component Instances

Project Level Processors

For each project, there is usually a known set of processors where component
instances execute. Since all the subsystems in the model are intended to execute on
this set of processors, these project level processors should be defined in a package
shared between the various subsystem models.

The builder should set up a package that contains these project level processors. For
example, the builder could configure processors for the labs that are available for the
development teams. These package(s) can then be shared in each subsystem model.
Each package should be owned by one of the models so that modifications can be
made to it in a controlled manner.
Developing a Model Architecture 17

The processors in these project level packages will not typically contain any
component instances. If they did contain a component instance, then sharing them
would also require the corresponding component packages which contain the
required components. In turn, these components would require the referenced classes
and logical packages. Unless these elements are present in all subsystem models,
these processors should only be used as templates in the subsystem models.

Subsystem Level Processors

A development team may choose to create additional processors for their own use,
either by copying the project level processors or by creating new processors for
platforms that are not shared with other teams.

The subsystem level processors can contain component instances based on the
components present in the subsystem. Typically, this includes component instances
for regression testing the subsystem and for unit testing major classes in the
subsystem.

Component Instances

Component instances indicate the ability to run a specified executable component on
a specified processor. A component instance is controlled with the processor. As
mentioned above, project level processors usually won’t have any component
instances so they will are typically copied before they can be used to execute/test a
component.

Subsystem level processors will often contain component instances that execute/test
the entire subsystem. Developers working on the subsystem can use these component
instances but they may find it easier to create specific unit testing components and
corresponding component instances.

Tasks

� A set of packages can be created to hold processors that are available in-house for
testing. The processors will contain IP addresses, host names, and other
configuration information that can be reused by all developers.

� Subsystem processors can be created by copying project level processors and
creating the component instances desired for executing/testing the subsystem.
18 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Preparing and Releasing Subsystems

In a model composed of multiple subsystems, there should be policies in place that
describe how new versions of the subsystems will be made available to other models.

Subsystem Supplier

When a team is ready to release a new version of a subsystem, they must ensure that
the correct version of all the necessary elements of the subsystem are made available.
This includes:

� Logical packages containing the classes in the subsystem

� Component packages containing the library components and/or external library
components for the subsystem

� Any other required Rational Rose elements

� Any other required external (non-Rose) elements for external library components

The team releasing the subsystem will typically prepare the required elements using
one of the following mechanisms:

� Label Subsystem Elements. If the model is under version control, then a label can
be applied to the elements in the subsystem.

� Copy Subsystem Elements. The elements in the subsystem can be copied to a
known location.

Subsystem Consumer

The architect for a model that requires this subsystem must then ensure that the
model includes the new version of the subsystem. The mechanism for this depends on
how the subsystem elements were made available.

If the subsystem elements have been copied to a known location, the architect must
ensure that this location is referenced by the model. If the location is the same as the
previous version of the subsystem, then no changes should be necessary. If the
location has changed, then the architect may have to recreate the model by loading the
shared packages from the new locations and adding in the packages that are owned
by this model.

If the subsystem has been packaged using a version control label, then the architect
must ensure that this label is used for getting the new lineup for the model.

If there are changes to the subsystem interface, then the architect of a model which
uses this subsystem must ensure that the corresponding changes are made within
their model.
Developing a Model Architecture 19

Splitting a Model into Subsystem Models

Splitting a large model into smaller subsystem models can improve team
development. A developer can then work on the appropriate model for his or her
particular subsystem. Working on this smaller model should reduce the Rational Rose
footprint and improve the performance of several operations such as opening a
model.

It is possible to split a model before or after it has been placed under version control. If
a model has not been controlled, we recommend that you split the model first, then
add the resulting controlled units to version control.

Before a model is split into subsystem models, you must ensure that the dependencies
between the subsystems will support this partitioning. Specifically, you must ensure
that the subsystems form a layered architecture that allow each subsystem to exist in a
model that does not contain any of the “higher level” subsystems. See Checking
Package Dependencies for Completeness on page 13 for more information.

Should you Split the Model Before Adding to Version Control?

If your model is not currently in version control, split the model before adding it to
version control. If your model is already in version control, you can also split the
model into separate models, however, this process is different.

Splitting a Model not in Version Control

At present, we assume that you have a base model (in this example we call it Base)
and that the model is not yet in version control. We also assume that you will create
separate models for each of your subsystems.

Lastly, this description also assumes that you want to keep the controlled units for
each subsystem model together so they can be moved into the subsystem directory
tree. Moving the files is optional but it can make it much easier to manage the files
that make up each model.

See Dividing a Model into Controlled Units on page 55 for more information on loading
and importing controlled units.

Tasks

1 Ensure that the base model has defined the initial controlled units, at least at the
package level corresponding to the subsystem partitioning.

Note: By default, Rational Rose does not put files in a directory hierarchy.
20 Chapter 2 - Establishing a Model Architecture and Process for Team Development

The base model (Base) directory hierarchy for the sample model looks like:

Base.mdl
<Base>
 UseCaseView.cat
 <UseCaseView>
<LogicalView>
 SubSystem1.cat
 <SubSystem1> SubSystem2.cat
 <SubSystem2>
 ComponentView.sub
<ComponentView>
 SubSystem1.sub
 <SubSystem1>
 SubSystem2.sub
 <SubSystem2>
DeploymentView.prc

Click File > Edit Path Map to create a Virtual Path Map variable for each top level
package in the model (for example, each subsystem package). In our example, we
could create path map variables SubSystem1LogicalPkg,
SubSystem1ComponentPkg, SubSystem2LogicalPackage,
SubSystem2ComponentPkg, and so on.

2 Save the Base model units affected by the new path map variable.

3 If the Base model makes use of custom property sets, then these must be made
available to the subsystem models. Click Tools > Model Properties > Export to
create a file that can be imported to the subsystem models.

4 Create a new model by selecting File > New. This model will be used for the first
subsystem. Ensure that the path map variables are defined correctly.

5 If the Base model makes use of custom property sets, then ensure that these are
available in the subsystem model. Click Tools > Model Properties > Replace to
import the file containing the property sets.

6 Control all the elements in the new model by clicking File > Units > Control.

7 Save the model (.mdl file) into an appropriate directory by clicking File > Save As.
We recommend that you create a dedicated directory for each subsystem. For
example, name the subsystem model SubSystem1 and store it in a directory called
SubSystem1.
Developing a Model Architecture 21

8 Next, you can optionally move the packages that make up your subsystem from
the base model directory hierarchy into the subsystem model directory hierarchy
that was created when you saved the new model.

For each package that will be part of the subsystem, move the package controlled
units into the corresponding directory level in the new model, and then move the
directories for each package to the corresponding location. The resulting directory
hierarchy for the new model looks like:

 SubSystem1.mdl
 <SubSystem1>
 UseCaseView.cat
 <UseCaseView>
<LogicalView>
 SubSystem1.cat
 <SubSystem1>
 ComponentView.sub
 <ComponentView>
 SubSystem1.sub
 <SubSystem1>
 DeploymentView.prc

If you move the files, edit the associated path maps to reflect the new file locations.

9 Add the subsystem packages into the subsystem model by clicking
File > Units > Load. These packages should be added in at the same location in the
subsystem model hierarchy as they were in the base model. In our example,
SubSystem1.cat should be added to the Logical View and SubSystem1.sub should be
added to the Component View.

10 Save the subsystem model.

Repeat steps 5 - 11 for each remaining subsystem with the following addition:

Before adding the subsystem packages to the new subsystem model (Step 7), you
must load the packages from the other subsystems that are required by this
subsystem.

After splitting the original model, you will typically not use that model for any
further development. You may choose to create an equivalent model that shares in all
the subsystems. For example, create a new model called NewBase that shares in the
packages in SubSystem1 and SubSystem2. This model cannot be used to edit any of
the subsystems, but it might be useful for building and/or testing.
22 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Splitting a Model Under Version Control

At present, we assume that you have a base model (in this example we call it Base)
and that the model is under version control. We also assume that you create separate
models for each of your subsystems.

Lastly, this description also assumes that you want to keep the controlled units for
each subsystem model together and so they will be moved into the subsystem
directory tree. Moving the files is optional but it can make it easier to much manage
the files that make up each model.

See Dividing a Model into Controlled Units on page 55 for background information that
should be understood before proceeding with this task.

Tasks

1 Ensure that the base model has defined the initial controlled units, at least at the
package level that corresponds to the subsystem partitioning.

The base model (Base) directory hierarchy for the sample model looks like:

Base.mdl
<Base>
 UseCaseView.cat
 <UseCaseView>
<LogicalView>
 SubSystem1.cat
 <SubSystem1>
 SubSystem2.cat
 <SubSystem2>
 ComponentView.sub
 <ComponentView>
 SubSystem1.sub
 <SubSystem1>
 SubSystem2.sub
 <SubSystem2>
 DeploymentView.prc

2 Click File > Edit Path Map to create a Virtual Path Map for each top level package
in the model (for example, each subsystem package). In our example, we could
create path map variables SubSystem1LogicalPkg, SubSystem1ComponentPkg,
SubSystem2LogicalPackage, SubSystem2ComponentPkg, and so on.

3 Check out the root packages in the Base model.

4 Explicitly save the Base model units affected by the new path map.
Developing a Model Architecture 23

5 Check in the root packages in the Base model in order to save the modified file
path information under version control.

6 If the Base model makes use of custom property sets, then these must be made
available to the subsystem models. Click Tools > Model Properties > Export to
create a file that can be imported to the subsystem models.

7 Create a new model by clicking File > New. This model will be used for the first
subsystem. Enable version control for this model by enabling the SCC (Version
Control) or the CC add-in using the Add-In Manager. Ensure that the path map
variables are defined correctly.

8 If the Base model makes use of custom property sets, then ensure that these are
available in the subsystem model. Click Tools > Model Properties > Replace to
import the file containing the property sets.

9 Control all the elements in the new model by right-clicking the Model in the
browser and clicking File > Units > Control.

10 Save the model in the appropriate local working directory for your version control
system clicking File > Save As (for example, /vob/SubSystem1). We suggest that
you create a dedicated directory for each subsystem.

For example, name the subsystem model SubSystem1 and store it in a directory
called SubSystem1.

You may want to add the subsystem model to version control at this stage. For the
SCC add-in, click Tools > Version Control > Add to Version Control to ensure that all
the controllable units are added. For the CC add-in, click
Use Tools > ClearCase > Add to Version Control.

11 You can optionally move the packages that make up your subsystem from the base
model directory hierarchy into the subsystem model directory hierarchy created
when you saved the new model.

The actual steps involved in moving the files and directories within version control
depend on the version control tool used.
24 Chapter 2 - Establishing a Model Architecture and Process for Team Development

For each package that will be part of the subsystem, move the package controlled
units into the corresponding directory level in the new model, and then move the
directories for each package to the corresponding location. The resulting directory
hierarchy for the new model should looks like:

SubSystem1.mdl

<SubSystem1>
UseCaseView.cat
 <Use Case View>
<Logical View>
 SubSystem1.cat
 <SubSystem1>
 ComponentView.sub
 <Component View>
 SubSystem1.sub
 <SubSystem1>
 DeploymentView.prc

If you move the files, edit the associated path maps to reflect the new file locations.

12 Add the subsystem packages into the subsystem model by clicking
File > Units > Load. These packages should be added in at the same location in the
subsystem model hierarchy as they were in the base model.

If you previously added the subsystem model to version control, you must
manually check out the root packages that are affected.

13 Save the subsystem model.

14 Use the SCC or CC add-in command Add to Source Control to enter the changes for
this subsystem model into version control.

15 We recommend that you create a default workspace for each subsystem model.

After splitting the original model, you will typically not use that model for any
further development. You may choose to create an equivalent model that shares in all
the subsystems. For example, in our example we could create a new model called
NewBase which shares in the packages in SubSystem1 and SubSystem2. This model
cannot be used to edit any of the subsystems but it might be useful for building
and/or testing.
Developing a Model Architecture 25

Managing/Administering a Model

The Rational Rose manager or administrator is responsible for providing the overall
version control infrastructure and environment for the development team.

Before starting team development work, the following tasks must be completed:

� Setting up Compatible Workspaces

� Setting up version control system and repository

� Partitioning the model into controlled units

� Adding the model to version control

After these steps are completed, development can start. However, consider these
additional responsibilities:

� Defining developer work areas

� Creating labels and lineups

� Manipulating version control repository

Configuring Compatible Workspaces

To effectively work as a team, each team member should have a consistent workspace
for working in a model. The starting point is the model structure created by the model
Architect.

The tasks for managing a model include:

� Defining Rational Rose model defaults. All team members working in the same
model should adhere to the same rules and should use the same model properties,
including those settings that affect diagram layout, style, format, and so on.

� Defining the physical storage structure for model elements. In this task, you determine
how the various model elements (specifically the controlled units) are organized.

� Defining virtual path maps. Defining the root of the hierarchy as a symbolic name is
the first step in setting up a multiuser environment. (See Understanding Virtual Path
Maps on page 67 for information about virtual path maps.) Each team member
controls the definition of these symbolic names in his or her own workspace. Path
maps are essential for working in a team since members often cannot work in the
same directory on their local machines. By using path maps, you can distribute
and relocated physical files.
26 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Configuring a Version Control System and Repository

Before placing Rational Rose models under version control, there are steps that must
be followed to configure the version control system to allow proper integration with
Rational Rose. Most of these tasks are performed outside of Rational Rose and require
knowledge of the version control tools you use. If you are unsure about the
procedures, please see your version control documentation.

Before continuing, please review the tool-specific documentation in Working with a
Version Control System on page 109.

After reviewing this material, ensure that a repository is properly set up for
integration with Rational Rose.

 Partitioning the Model into Controlled Units

Controlled units are the smallest Rational Rose model elements that you control via a
version control system. Therefore, the packages that are controlled should be selected
carefully. For example, it is not always correct to control all the packages. Packages
that are controlled units may contain packages that are not controlled units and vice
versa. Control the units that provide sufficiently low level of granularity to allow
project members to do their work without preventing other project members doing
theirs. Ownership of packages and controlled units is very important for effectively
working in a team.

For complete details on Controlled Units, see Dividing a Model into Controlled Units on
page 55.

Because controlled units correspond to files in your file system, only one team
member should be allowed to work on a given controlled unit at any one time. While
this works well in most cases, there are situations when it is necessary to allow
multiple team members to work simultaneously on the same controlled unit. The
following procedure can be used to that effect:

1 The current owner of the package of interest creates subpackages for each team
member who needs to get involved in the work. These packages can even be
named after the team members.

2 Within each package, relocate the elements of the parent package that you want to
assign to the different team members.

3 Control the new packages and assign them to their intended owners.
Managing/Administering a Model 27

When the work is complete, uncontrol the temporary packages, relocate all elements
in them to the original package, and delete the temporary packages now empty. This
is a tactical solution to a controlled unit access problem that can be used as required so
that package structures and controlled units are not permanently created on an
arbitrary or expedient basis, but for sound architectural reasons.

Save Model to Local Work Area

Before placing the model under version control, it must be saved to the local work
area. Save the model to the directory you have associated with your version control
repository.

Adding the Model to Version Control

The easiest method of adding all applicable units to version control when using the
SCC add-in is to click Tools > Version Control > Add to Source Control. When using the
ClearCase add-in, you can add units to source control by clicking
Tools > ClearCase > Add to Source Control.

Defining Developer Work Areas

The model manager should think about how each worker (developer, integrator, and
other team development roles) will work individually and access specific versions
(lineups) of a model. This usually involves defining labeling policies.

The model manager should provide guidelines to the rest of the team as to how work
areas should be created for each developer. In some cases the manager may need to
actually create the work areas.

Defining work areas is tool dependent, and the steps required for setting up a work
area for single stream and parallel stream development can be quite different. See
Working with a Version Control System on page 109 for more information.

Creating Labels and Lineups

Labels, and the use of labels to create lineups, are crucial to any successful
development strategy. There are many ways to use labels and lineups, though, and
the specifics of each are highly specific to each organizations development
environment and version control tools.

Manipulating the Version Control Repository

It may be necessary to move or rename files in the repository. This should only be
performed by someone who is familiar with the version control tool being used. In
many development environments, moving and renaming is always carried out by the
version control administrator, who can carry out the task most effectively.
28 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Developing/Implementing a Model

Developers work day-to-day with a subsystem model under version control.
Therefore, each developer should be familiar with the material in chapter 6, Working
with a Version Control System on page 109 .

Setting up Version Control

Before using Rational Rose with your version control system, you must perform any
tool-specific configuration as described in Working with a Version Control System on
page 109.

If you have customized Rational Rose to work with another version control tool, then
you should ensure that tool is correctly installed on each developer workstation.

Setting up Developer Work Areas

Before working on a version controlled model, you first have to get a specific lineup of
controlled units onto your local disk. From there you can start working on the model.
Your Version Control Administrator or Integrator will know how to determine the
specific label or configuration that should be used to create a local work area. Next, it
is a matter of configuring a local work area before running Rational Rose.

Getting a Specific Lineup of a Model

When a developer begins a development task, they must start with the correct version
of the model files. The steps involved vary depending on your team development
process and the underlying version control tool. For Rational ClearCase, the
developer should be using a config spec that defines the view to include the correct
versions of the model elements. For Microsoft Visual SourceSafe, your team may be
using labels to mark the correct versions and the developer should perform a Get
based on that label by using the Label field available from the Parameters... button in
the Get dialog box.

Opening a Model Under Version Control

Opening a model under version control is no different than opening a non-version
controlled model. In either case, opening the model file or its associated workspace
file is the recommended way to load the model into Rational Rose. Default property
settings will typically be made available by the Version Control Administrator, see
Make default property set available to project members later in this chapter.
Developing/Implementing a Model 29

Working under Version Control

After your model has been placed under version control, use the following
procedures:

� Check Out Parent Package.

When a new controlled unit is added to a version controlled model, you will have
to check out the package in which the new unit will be placed. If there is excessive
contention for parent packages, then you may wish to partition the package into
several smaller packages.

� Checking Controlled Units In and Out of Version Control.

After you have a model under version control, you should check out elements
before you edit them. Depending on the version control settings, Rational Rose
may force you to check out before editing.

� Undoing a Check Out.

After you check out a controlled unit, you may choose to undo the check out and
not submit a new version.

Comparing and Merging Model Elements

See Comparing and Merging Models on page 77 for more information.

Promoting Changes for Integration

When working in a single stream development process, there is no explicit integration
step. Instead, submitting changes to the version control repository effectively
integrates them with the existing file versions.

Integrating Changes

Integrating changes is highly dependent on the development process being used. The
primary goal of the Integrator is to produce an updated lineup of model elements to
use as a basis for subsequent development activities. This often involves merging
changes from multiple developers (using the Model Integrator) and performing local
builds to verify sanity.

Automating Model Validation

Rational Rose provides an automated method to determine if a model is valid. These
steps can be incorporated into an automated build process to determine if the code
generation and compilation steps of the build should be performed.
30 Chapter 2 - Establishing a Model Architecture and Process for Team Development

Using the Rational Rose Extensibility Interface (REI), you can write a script that:

1 Opens a specified model (using the Application.OpenModel method).

2 Saves the log to a specified file (using the Application.SaveLogAs method).

3 Closes Rational Rose (using the Application.Exit method)

For more information on the REI, see the Extensibility Interface documentation. This
script could be invoked as part of an automated build. The automated build script can
then search (for example, grep) the log file to determine if any errors/warnings were
encountered when the model was opened. If problems were encountered, then the
build script can email the log file to the builder. If no problems were encountered,
then the build script can continue with the code generation and compilation steps.
Developing/Implementing a Model 31

3Best Practices
Contents

This chapter is organized as follows:

� Goals of Team Development on page 33

� Sharing Within a Team Environment on page 34

� Protecting Configuration Items From Unintentional Changes on page 35

� Managing Relationships Between Configuration Items on page 40

� Managing and Delivering Configuration Items on page 41

� Improving Efficiency in Team Development on page 43

� Recommendations on page 44

� Advanced Concepts and Heuristics on page 48

Goals of Team Development

Developing complex systems requires that groups of people, such as analysts,
architects, developers, and testers, coordinate their efforts to produce the finished
product. Consequently, they must ask themselves the following questions:

� What are we trying to accomplish in team development?

� What are the goals of team development?

How does Rational help implement strategies and best practices to meet those
goals?

� What do I need to do to have efficient and effective team development?

The purpose of this book is to outline the goals of team development, and recommend
some best practices when using Rational Rose to help ensure success.

Team development touches on development, testing, configuration management,
project management, and other disciplines such as engineering, analysis, and design.
33

This overview of team development helps provide your team with an overview of the
challenges associated with team development, while specifically outlining the tools
and mechanisms Rational Rose supports to aid in implementing a team development
strategy.

The Guide to Team Development provides an overview of the basic team
development concepts in Rational Rose and specifies how to configure and use
Rational Rose in a team environment.

The goals of team development are to:

� Allow team members to share their work with a team. See Sharing Within a Team
Environment on page 34.

� Protect configuration items from unintentional change. See Protecting Configuration
Items From Unintentional Changes on page 35.

� Manage the relationship between configuration items. See Managing Relationships
Between Configuration Items on page 40.

� Deliver specific versions of configuration items to interested parties. See Managing
and Delivering Configuration Items on page 41

� Reduce or eliminate disruptions to team activities. See Improving Efficiency in Team
Development on page 43.

Sharing Within a Team Environment

After a developer completes an activity (work), they require a mechanism to share
that work with others. Integration is the mechanism that permits the integration of
changes made by a team member into what is currently being shared.

A version control system can facilitate the work flow of team members. A team
member working on a shared artifact acquires some type of implicit or explicit
permission to check-in their work by performing a check-out prior to working on the
artifact.

The check-out status for the artifact indicates to other team members that work is
currently being done to change the artifact. A configuration manager or configuration
system can monitor these operations and enforce any policies. The mechanism can
involve the use of a version control system, or it may be an unsophisticated
implementation whereby the check-in is a simple copy, and the communication is
verbal between developers. Regardless of the mechanism used, an awareness of a
change at the appropriate levels must be achieved, and you must assess the
implications of the change.
34 Chapter 3 - Best Practices

A check-in does not necessarily imply that the artifact is immediately available to
team members. Typically, it is useful to work with older versions of shared artifacts
until such time as the team is ready to access the latest version.

A version control system allows the team to return to previous versions of work,
while providing an audit trail of changes. The desire to associate work with specific
requirements is a type of policy the Integrator can enforce at integration time.

Work produced by a member of a team can affect other members of the team;
therefore, those effects must be intentional. A copy of the work is made available to a
team member in an environment isolated from other team members.

The environment is only isolated one-way. The work environment can see shared
team artifacts, but other environments are not effected by the isolated environment.
The benefits of this type of implementation are:

� Development team members can produce builds in their isolated environment in
an iterative, non-intrusive way. It also allows team members to see a read-only
version of shared work.

� Testing teams can perform a series of tests on a specific lineup of work in their own
test environment. A lineup is a collection of specific versions of files from a version
control repository.

� Production users can use a particular lineup of work that has met quality control
criteria.

Protecting Configuration Items From Unintentional Changes

There are several ways revisions can cause unintentional changes:

� Direct conflicting change where one change overwrites another. See Overwriting a
Modification on page 36.

� The source from one change conflicts with another change by removing a
dependency that one of the changes relies on. See Adding Dependency Issues on
page 38.
Protecting Configuration Items From Unintentional Changes 35

Table 1 shows the legend that explains some images found in Figure 7 through
Figure 11.

Table 1 Image Legend

Overwriting a Modification

If a team member shares their work with the team, not realizing that someone else
produced or edited some work with the same name, they may overwrite the changes
of the other team member.

Figure 7 Overwriting a modification

Most version control tools provide adequate protection from this type of
unintentional change through a process of obtaining permission to make
modifications, called a check-out. The version control tool grants implicit permission
when there are no check-outs currently in place. When one team member has an
artifact checked out, other team members are denied permission to check out that
same artifact until it is no longer required by the first team member. Figure 8 shows a
scenario where a check-out is followed by a check-in, allowing the sequence of events
to iterate.

Image Description

Represents a unit of work or
configuration item

Represents movement

Represents an unintended change
36 Chapter 3 - Best Practices

Figure 8 Check-out and Check-in Scenario

This type of scenario may cause contention that is unacceptable for high traffic work
items. The diagonal lines in Figure 9 indicate that a check-out cannot occur until the
previous check-in process completes.

Figure 9 Checking Out an Artifact After it is Checked In

The problem illustrated in Figure 7 commonly occurs in strategies that do not use a
version control system. Because previous versions of configuration items are always
available to developers, the possibility of having this type of unintended change
always exists. A developer may make changes to a private copy of an artifact without
permission to do so. Subsequently, they may acquire the appropriate permission and
check in the changes of the local copy that may not represent the latest version of the
configuration item.

You can use a merge tool to apply a combined set of changes in situations when
multiple team members have permissions to make changes to a single artifact.
Figure 10 shows how you can merge two changes made to the same artifact.
Protecting Configuration Items From Unintentional Changes 37

Figure 10 Merging Changes Prior to Check-In

It may be difficult to remove a set of changes that occurred in a previous version of an
artifact. The situation in Figure 11 shows us three versions of an artifact. If you want
to remove all changes applied to the second version (the changes occurring between
the two diagonal lines), you may encounter difficulties.

Figure 11 Comparison Between Versions

For example, the changes between version 1 and version 2 must be compared to the
changes between version 1 and version 3.

Obtaining adequate permission to modify artifacts helps to ensure that unintentional
changes do not occur. Configuration management can choose to implement and
enforce this type of policy.

Adding Dependency Issues

Modifying an artifact may cause a conflict with another change if it removes a
dependency that one or more other artifacts rely on. Figure 12 shows how this type of
problem can occur.
38 Chapter 3 - Best Practices

Figure 12 Removing Required Dependencies

Developer A and B individually check out artifacts A and B respectively, and have
access to the shared version of artifact A and B respectively.

Developer A creates a new dependency in foo() by adding myBar-> bar().

Developer B makes changes to bar() in class A by changing the parameter signature to
integer.

Changes to bar - from bar() to bar(int) - cause any references to this function to fail.
The changes made by Developer B to artifact B that are referenced by foo from artifact
A are not valid.

Note: Most merge tools are unable to identify a conflict here because they compare items of
work individually, and not against all referenced work.

This type of change is common and may have serious implications. Often, when
product maintenance is underway and feature development is concurrently managed,
the maintenance person or developer may be unsure or unaware of all dependencies
Protecting Configuration Items From Unintentional Changes 39

involved in a proposed change. Rather than research all the dependencies associated
with the artifact, they do not modify the original item. Instead, they create a new item
with the proposed changes. Changing Language Semantics

Managing Relationships Between Configuration Items

Team members must understand and use the dependencies between configuration
items to reduce or prevent unintended changes in the system.

Because most configuration items do not work in isolation from other configuration
items, a set of particular versions of configuration items has a set of dependencies.
When a set of versions of configuration items changes, the possibility exists that the
dependencies also change. It is useful to compare the set of dependencies from one set
of versions to a previous set to ensure that dependency changes are intentional.

A set of versions of configuration items is also known as a lineup. Figure 13 shows a
generated dependency report for a lineup identified by the label called ALabel. Later,
a comparison is made between ALabel and another dependency report generated for
the lineup identified by BLabel. Although the dependency reports themselves may be
too large to be of any use, a good differencing tool can make it easy to see
dependencies modified since a previous stable lineup of the project artifacts.

Figure 13 Comparing Dependency Reports
40 Chapter 3 - Best Practices

Specific to Rational Rose, there are several levels of dependencies that must be
understood and managed:

� Dependencies between control units in a model.

The Rational Rose Toolset interprets what is loaded into memory as the entire
model. When loaded from separate configuration items, the model elements
stored on secondary storage must be loaded such that it creates a model where
elements are consistent with any corresponding relationships.

� Model element relationships

Managing and Delivering Configuration Items

A specific set of configuration items in their appropriate version (a lineup) must be
accessible and reproducible. Protection of these version sets is important. Like most
one-to-many relationships, a label is often stored many times; once with each
configuration item.

Figure 14 Labelling Configuration Items

Figure 14 shows the following:

� The full set of configuration items are not all labelled at the same time.

Note: If the label is applied while the lineup changes, this may create an inconsistent state.

� A configuration item may be overlooked or may not be associated with the label.
Sometimes, it is better if the configuration item is not associated with the label. The
label associated with a previous version of the configuration item would make the
problem difficult to find.

A fixed label is the first primary use of a label, forever identifying a version of a
configuration item with a specific label. It is also useful to include in your naming
convention details, such as the date and time in a label name.
Managing and Delivering Configuration Items 41

The two types of floating labels (logical and explicit) become associated with different
versions of a configuration item.

Over time, a logical floating label is arbitrarily associated with the latest version of a
configuration item on a particular branch or stream. For example,
“LatestDevelopment” or “JanesLatest”.

An explicit floating label is explicitly assigned to different versions over time, and it is
almost always based on the associations of another label and not with the latest
versions on a branch or development stream. This means that it is not necessary to
“freeze” the configuration items to associate a label with versions already assigned to
another label; only the state of the base model must be frozen. For example, Figure 15
shows that the SYSTEMTEST label is associated with version 3 of this particular
configuration item.

Figure 15 Example of Labelling Items

When the test team for the system is ready, they can associate the label with all the
versions associated with FUNCTIONALTEST. No changes should occur to the
FUNCTIONALTEST label until the SYSTEMTEST label change is complete. However,
assigning LATESTSTABLE with the current versions of all the files on the main branch
of development requires that no new main branch versions are added to any of the
configuration items until the LATESTSTABLE label change has completed the
operation. Since labels can be moved, it is good practice to produce and keep a dated
report on the versions associated with important labels for milestones.
42 Chapter 3 - Best Practices

Creating and comparing label reports of different dates on a regular basis can reveal
trends and areas that require additional testing to ensure quality of volatile areas of
the system. Figure 16 shows label reports for two consecutive weeks.

Figure 16 Comparing Reports

Teams looking at a particular lineup of configuration items should retrieve artifacts
solely on the selection of configuration items associated with a specific label. Testing
in this type of environment quickly identifies overlooked configuration items because
of a missing association. It also ensures that all necessary configuration items are
included as they are made available to other teams.

Improving Efficiency in Team Development

The implementation of some team development practices can hinder the
implementation of other team development goals. Planned activities may be part of
the strategy to deal with implementation issues in a team environment.

You can reduce unplanned activities by using an effective strategy that promotes
handling conflicts up front. Your configuration management plan should implement a
strategy that promotes team development goals with as little impact to team activities
as possible. See Goals of Team Development on page 33 for more information about
specific team development goals.

The stakeholders of the configuration management plan are almost everyone, and
their needs vary significantly. The description of the roles and tasks in this document
is general and must be customized to suit your particular development organization.

Model Architect Role

The Model Architect establishes the overall structure of the model: the grouping of
elements into packages, the separation of models into subsystems, and the interfaces
between these major groupings. The Model Architect adapts the structure of the
model to reflect the organization of the team.
Improving Efficiency in Team Development 43

Recommendations

Protection of configuration items and the ability to deliver a consistent set of
configuration items are the main priorities of the configuration management plan. An
implementation of a plan to achieve the other goals should support this ideal.

Use the source control operations supported through Rational Rose to facilitate the
implementation of a greater configuration management plan. For complex projects, a
large part of the configuration management strategy that deals with Rational Rose
models, may be strict ownership of shared packages.

You may think of shared packages as the building blocks of the system. One Rational
Rose model brings all the building blocks together in a coherent system. Many
working models are used with the sole purpose of creating and testing those building
blocks.

Source Control Fundamentals

In chapter 5, called Working with a Version Control System, specifies the source control
operations supported from Rational Rose . It outlines some of the differences in
view-based and file-based source control systems. There is also a discussion on
versioning strategies.

The ability to associate labels and create a lineup exists in both types of source control
systems. Using a parallel stream versioning strategy while maintaining a single
stream versioning policy, provides the safety inherent in single stream versioning
strategies, and also the ability to control parallel development of the same artifacts
among different teams.

Any source control tool that allows branching is capable of supporting a parallel
stream versioning strategy. An example of appropriate streams of development are:

� Development streams, where developers make changes to the configuration items.

� Integration stream (implementing requirements and features) managed by
Integrators.

� Product version maintenance streams (providing fixes for bugs/defects identified
after release date) also managed by Integrators.

Include a maintenance stream for every product version currently supported by your
organization. When support for the specific product version is concluded, these
streams should end.

Note: You can use merge tools, such as Model Integrator, for merging simple, non-conflicting
changes. However, because of their limited semantic support, we do not recommend that you
use automated merge tools when there are many conflicting changes.
44 Chapter 3 - Best Practices

Bugs and defects reported against a version of the product should be evaluated
against the product under continued development in the new development stream.
Other versions of the product that may be affected by the bug/defect are under
continued support. Apply corrections to all affected versions through a manual
merge, or through focused merges.

If you implement a parallel stream versioning strategy, maintain virtual single
streams within the parallel streams. For example, Figure 17 shows a version tree
history for a configuration item. A branching of development effort occurs at
version 1.0, and version 2.0 of the configuration item

Figure 17 Parallel Stream Versioning Strategy.

Only one side of the branch is checked back into that integration stream. The
Integrator uses the main streams of development and may be unaware of the details
of individual changes. Therefore, from the perspective of these streams, they are a
single stream of development only receiving updates from one source that has
Recommendations 45

permission to modify the next version in the stream. If you require merging, perform
it outside of these integration streams, and sanity test it before integrating it as a new
version.

Do not associate product verification labels and packaging or deployment labels with
versions outside these main integration streams of development. When working with
files such as test scripts that are version controlled, consider these files as if they were
in a separate project.

You may have separate streams for the development and maintenance of these scripts
as well, but this should be thought of as a different project than the one it supports
from a version control perspective. That supporting system may have logical ties or
parallels with the product under development.

Preempting Conflicts

You want to minimize more than one concurrent check-out of a configuration item. If
this strategy results in unacceptable contention for a configuration item, or a
dead-lock occurs, put overrides in place to deal with the contention.

A dead-lock occurs when team member A requires a configuration item checked out
to team member B to finish work, and team member B requires the configuration item
that team member A currently has checked out. Because this is done up front, there is
an awareness that changes are being concurrently made to the same configuration
item, and these changes can be managed to minimize the likelihood of unintended
change.

This type of concurrent work must occur outside the main development streams.
When it occurs, resolve this type of situation as quickly as possible and provide
adequate testing of the configuration item following the period of concurrent change,
to ensure no unintended changes occurred as a result.

The Rational Rose shared package capability can implement an ownership strategy to
limit the scope of implicit permissions to change configuration items.

Managing Dependencies

To effectively manage changes to the dependencies in your system, you must create
and enforce your own team processes. For Rational Rose projects, you must identify
the following dependencies:

� Dependencies between control units in a model.
� Model element relationships
46 Chapter 3 - Best Practices

If you do not have a formal reporting mechanism that automatically identifies these
dependencies, every change must be addressed to ensure that dependencies are
researched and assessed as a result of the change.

Labeling

When considering labelling, we recommend the following:

� Establish an environment for each group or individual that will work with a
specific set of configuration items in isolation from other changes for any length of
time. For most version control tools, this is established with directories containing
a copy of the appropriate version of the configuration item identified through a
movable label. The team member performs work on artifacts in these directories,
and this set of directories is also called the sandbox. ClearCase users have the
capability of achieving virtual directories through the configuration specifications
of dynamic views.

� When using file-based version control tools in Unix systems, developers can
configure a directory that references the shared work through soft links. When
team members modify the reference in the directory, the link is broken and it is
replaced in the sandbox by the modified file.

� Create dated reports for each floating label on a regular basis, listing all
configuration items associated with the label and the associated version. We
recommend that you add the report to your version control system. You can use
the data from the report to identify how the set of configuration items changed
over time, and to help you identify volatile and stable elements of the system.
Fixed labels do not require this type of report. For a label associated with a set of
configuration items that do not change often, you can reduce the frequency to
some appropriate interval, or on an ad-hoc basis.

� Define your labeling strategy as much as possible before you begin. Use a naming
convention so that everyone can understand the labels.

� Identify labels that may require protection from modification, and those labels that
may require restricted access.
Recommendations 47

When Merging is Necessary

Merging is necessary when an awareness exists that concurrent development may
result in conflicting changes. Perform the merge as often as possible. Each developer
involved in a concurrent change must regularly work with a merged version of the
ongoing work to identify adverse or unintended change.

The intention is to reduce the amount of lost work that can occur when conflicts arise.
A conflict identified early reduces the amount of re-work necessary. This kind of
concurrent work on the same artifacts must be done in isolation from other work.

The way ClearCase facilitates integration branches, it is wise to chose a special
integration stream for the concurrent changes to a configuration item. This isolates the
remaining artifacts in your system (which uses mutual exclusion) from these changes
until the configuration item can go through extensive quality verification.

With other sandbox type systems, one developer merges other developer's work, and
then provides the merged version to the other developer.

After every merge, assess changes to semantic relationships and other dependencies.

Advanced Concepts and Heuristics

This section includes additional information about advanced concepts and heuristics
in the following areas:

� Moving Controlled Units on page 48

� Parallel Development on page 50

� Model Integrator on page 51

� Using Rational ClearCase Multi-Site on page 52

� Additional Heuristics for Team Development on page 52

Moving Controlled Units

When a model element moves from one package to another, and the element is under
configuration management (CM) control, Rational ClearCase does not move the file
corresponding to the model element into it’s new directory.

Some CM systems do not support moving history when moving a file from one
directory to another. Consequently, if the file is not moved to it’s corresponding
directory as the element in the model is, the operations that involve labeling will not
be done correctly.

When a UML package is assigned a Rational ClearCase label, ClearCase performs an
operation on the directory and all it’s contents. However, if the controlled moved, its
corresponding element will not be labeled correctly.

When the name of a package, diagram (one that can be a separate control unit), or
classifier changes, and that element corresponds to a controlled unit, the source
control element in Rational ClearCase should also change.

What are some use-cases that relate to moving controlled units?

� Control to package level granularity: move an element from one package to
another.

� Control to package level granularity: move an element from one package to a
scratch-pad package.

� Control to package level granularity: move an element from a scratch-pad package
to package under CM

� Delete a package from the model and the file exists in the CM repository. The script
created to move a controlled unit could identify these files as well.

� A file is under CM, but an element with that name already exists. The tool
currently generates a unique file name, and provides a warning.

� Changing from a controlled unit, to uncontrolled unit, and then back to a
controlled unit.

Some solutions for these use-cases may include:

� Writing a script to move a controlled unit. Ensure that the script detects the
controlled units who’s locations do not match the model element, and then repairs
the locations.

� Writing a script to rename the controlled unit, when required. Ensure that the
script detects any name differences, and then repairs the names.

� Since Rational creates the CM scripts for ClearCase, and ClearCase supports
moving history with a file, ensure that the scripts are fixed to address this issue.

� Ensure that the ClearCase move script can handle a move between VOBs.

Considerations

In ClearCase, the relationship between a file element and directory elements is such
that an element may be in multiple directories at the same time, possibly even in the
same view. This does not necessarily complicate things for the toolset, but requires
careful consideration.
Advanced Concepts and Heuristics 49

A Rational Rose model element may be saved as two distinctly named Rational
ClearCase elements.

Heuristics

Use package-level granularity rather than class-level granularity. Class-level
granularity helps reduce issues when moving classes, and issues with package
ownership.

Parallel Development

Parallel Development is a term which sets high expectations regarding collaborative
development, where there is a need for multiple users to work together on a common
set of artifacts to achieve the same goals.

When collaborating on a common set of artifacts, consider the following approaches
to collaborative development:

� When more than one user needs to make changes to the same artifact, they must
share the artifact; the changes are made serially, one after the other. Although this
is the most reliable approach, it is perceived by most users as not being most
efficient. This approach can be managed using the check-in and check-out features
of most CM systems.

� When more than one user needs to make changes to the same artifact, they can
make the changes at the same time. The changes are merged back into one artifact
at a later date. The benefit of this approach is that work goes on in parallel, and it
saves time. The problem is that arbitrary and uncoordinated changes on the copies
of the same artifact can be difficult to resolve during the merge process. And in
fact, may never be resolved and the changes from only one contributor are
accepted, and the other discarded.

The development process and tool chain can have a significant impact on the
opportunity to use and the effectiveness of the second approach. The second approach
is characterized as Parallel Development. For the purpose of this discussion, the term
Parallel Development refers specifically to this second approach to collaborative
development.

It is unrealistic to expect employ parallel development without any constraint or
guidance. Too often, this technique is used without coordination or planning.
Sophisticated tools, such as Rational ClearCase, may not be properly used and can
lead to this misperception. The design artifacts at the center of collaborative
development have complex interrelationships within them, and between them. These
higher level abstractions and concepts are not easily, and cannot arbitrarily be,
merged without some experience. Fortunately, when team members are working
50 Chapter 3 - Best Practices

within a well-defined process, and there is a clear definition of roles and
responsibilities, most changes made in parallel are done in a complementary manner.
A certain amount of conflicting changes are inevitable. You can resolve the changes by
choosing one or the other. These conflicting changes must be expected and their
frequency should be minimized. If they are unexpected, it may be counterproductive
and time is being wasted by changes that will not be discarded.

The following guidelines will help maximize the efficiency and productivity of a
process that employs parallel development:

� Scrutinize and minimize the occurrence of every conflicting change in the merge.

� A well documented and communicated development plan helps ensure that every
developer knows how they are contributing and what they will implement. This
helps minimize duplication of effort, even at the lowest level of detail.

� Establish clear ownership of design artifacts, and use source control to enforce i.t

� Invest time into understanding what the Rational Rose Model Integrator will and
will not do during a merge.

� Follow all guidance specific to the Rational Rose Model Integrator regarding the
types of changes that it can reliably merge.

� Resolve all issues relating to merging parallel changes prior to integration.

Model Integrator

The Rational Rose Model Integrator is a powerful tool that manages the merging and
differencing of models at the Rational Rose meta-model level. It is not a visual model
or UML semantic-level merge tool, therefore it lacks a number of features that can
make the merging of models more efficient and more accurate.

For every use-case of Model Integrator that fails to do what you may expect, there are
many other use-cases that do add value or do what is expected, and will save time.
When using Model Integrator, you must understand what it can do efficiently and
properly, and what should be avoided.

When you plan for a graphical change (a layout change) to a diagram within a model,
only one person should make this change. This ensures that during the merge process,
all of the graphical changes are accepted by one contributor and merging at a lower
level of detail is not allowed.

You can change most information associated with a model element as long as it is
information not related to its identity. For example, the Action property or
Documentation field.
Advanced Concepts and Heuristics 51

Using Rational ClearCase Multi-Site

When a team follows best practices, for example, being careful about artifact
ownership, they can use Rational ClearCase Multi-Site to work on separate branches.

Rational ClearCase Multi-Site is a powerful tool that can help you with the challenges
of a distributed team development. When using Rational ClearCase Multi-Site, you
must consider the following:

� Rational ClearCase Multi-Site has a restriction that a branch is owned by a site.

� Only developers on that specific site can check out to that particular branch.

Additional Heuristics for Team Development
� Begin with high level of granularity for controlled units when area of a model is

immature. As the area of a model becomes more mature, then it's level of
granularity can be lowered.

� During the architecture phase, the granularity is course. When the architecture is
released to the designers, decrease the granularity to manageable pieces for
efficient team development.

� Use a layered architecture, where the coupling between layers is minimal and
well-defined. This kind of architecture is also called loosely coupled.

� Define the interfaces between layers of the architecture early and minimize
changes to these interface elements.

� The interfaces and associated components at a layer boundary are released
separately and have their own test and release schedule. There are one or more
separately released components in each layer.

� Every controlled unit should have only one owner.

� Plan for conflicting merges and attempt to minimize them throughout the
development life-cycle.

� Only merge controlled units with primary edits are back into the integration
stream.

� If the system is sufficiently complex, divide each layer into subsystems.

� Ensure that subsystems have a well-defined and minimal interface to other
subsystems.
52 Chapter 3 - Best Practices

� Subsystems are not necessarily confined to one layer. Interfaces at lower and
higher levels of abstractions should coincide with one of the architectural layers.
Subsystems may encapsulate their own set of layers which satisfy particular
objectives.

� Employ at least three streams of development: release stream, integration, and
developer.

� You can place a new part of a model under source control after it has had some
(minimal) testing.

� Do not make frequent or large changes to a superclass.

� A process that employs parallel development should insure that

� Subsystem interfaces may need to be modified by both users, but changes should
be planned, controlled, and authorized by owner (or group).

� Appoint one responsible person for each interface. This person is the only one that
can change the interface. For example, all requests for changes must be sent to this
single team member for them to make the required change.
Advanced Concepts and Heuristics 53

4Dividing a Model into
Controlled Units
This chapter is organized as follows:

� What is a Controlled Unit? on page 55
� Working with Controlled Units on page 59
� Creating Virtual Paths to Controlled Units on page 67
� Checking References and Access Violations on page 72
� Organizing Controlled Units for Teams on page 74

What is a Controlled Unit?

By default, Rational Rose saves a complete model as a single model (.mdl) file.
However, when many users are working on a model at the same time, you can reduce
contention and enable parallel development by dividing the model into a series of
individual files called controlled units.

Controlled units are the configuration elements that a team places under version
control. When using controlled units, each team or team member is responsible for
maintaining or updating a specific unit.

The lowest level of granularity for a controlled unit is a package in the use case,
logical and component views of a model since packages are considered the smallest
architecturally significant elements.
55

Figure 18 Controlled Units

What Can be a Controlled Unit

You can create controlled units for packages in your Use Case, Logical, Component,
and Deployment Views, as well as your model properties.

When you create controlled units, you name each new file and use one of these four
extensions for the particular type of controlled unit you create:

� Logical packages and use-case packages are stored in .cat files.

� Component packages are stored in .sub files.

� A deployment view is stored in a .prc file.

� Model properties are stored in a .prp file.

You can have an unlimited number of .cat and .sub files associated with a Rational
Rose model. Because a model supports only one deployment diagram, there is only
one .prc file. Similarly, there is a single set of model properties and only one .prp file.

You cannot create controlled units for three of the top-most views, namely the Use
Case, Logical, and Component Views.

Figure 19 View from which you cannot create Controlled Units

These are
controlled units.

You cannot create controlled
units for these views.

These can be controlled
units.
56 Chapter 4 - Dividing a Model into Controlled Units

How Controlled Units are Related and What They Contain

When you create a controlled unit from a package, the contents of the package are
moved from the model file or enclosing package, and stored in the new unit file. The
new controlled unit file contains:

� All model elements that are in the package.
� All packages that are in the package, or a reference to those packages if they are

also controlled units.
� All diagrams that belong to the package.

The original file no longer holds the contents of the package. Instead, the original file
now only references the new controlled unit file.

The model file only references the first level of controlled units. Thus, a controlled
unit that holds another controlled unit also holds the reference to that unit.

Packages own modeling elements such as other packages. Ownership implies a
one-to-one relationship. Therefore, every package is owned by exactly one other
package in the model.

When you work on a controlled unit, you can change its contents without affecting
the controlled unit it might belong to, or the controlled units it encloses.

Figure 20 Example of a Controlled Unit Hierarchy

In Figure 20, developers can modify the file articles.cat without affecting
business_serv.cat, and business_serv.cat can be modified without affecting ordersys.mdl.

You can create a virtually unlimited hierarchy of controlled units where top-level
controlled units consist of references to other controlled units.

For example, you could make all packages controlled units with top-level packages
that are pointers to nested packages. This enables two developers to check out
packages that belong to the same higher level package.

Packages can also be shared. By creating controlled units, multiple models can share
the same packages, allowing you to effectively reuse model elements.

data_serv.catbusiness_serv.cat

ordersys.cat

articles.catorders.cat

user_serv.cat
What is a Controlled Unit? 57

How you partition a model and the type of hierarchy you implement will depend on
how team members will operate, both physically (who works on which packages) as
well as logically (how best to partition the model and preserve its design).

Figure 21 illustrates how controlled unit hierarchies appear in the Rational Rose
browser.

Figure 21 Controlled Unit Hierarchies in the Rational Rose Browser

The format that Rational Rose uses for the model (.mdl) and controlled unit files is
called petal format. Petal is a text-based format that allows you to open and view the
model and controlled unit files in any text editor. The petal format is the same on
Windows and Unix platforms, thus enabling teams of developers on different
platforms to share models.

A hierarchy of
controlled units.
58 Chapter 4 - Dividing a Model into Controlled Units

Working with Controlled Units

Creating Controlled Units

To designate a package as a controlled unit, you select the package in the browser or
diagram then click File > Units > Control. Rational Rose prompts you to provide a
location and a filename with the appropriate extension, then it moves the contents of
the selected package from the model file (or enclosing controlled unit) into the
specified file.

Note: After you create one or more controlled units, you must save your Rose model
in order to save the new references in any enclosing controlled units or in the model
(.mdl) file.

Because the model file (or the enclosing controlled unit, if the new unit is going to be
created inside another unit) is changed when a new controlled unit is created, ensure
that the enclosing file is write-enabled. If the file is under version control, you must
first check out the file.

Carefully consider the file structure you implement when creating and saving
controlled units. If the controlled unit will be under version control, the file structure
you use may need to correspond to the version control structure.

Also, in the early stages of analysis and design, the architecture of your model can
change, sometimes drastically. During these early stages, modeling elements are often
created, moved, and deleted. When a controlled unit is moved in the model, the
corresponding controlled unit file is not automatically moved in the directory
structure. If there is significant change, the directory structure can become
fragmented, resulting in situations where controlled units that are logically grouped
in the model will not be physically located in the same directory hierarchy.

Loading, Reloading, and Unloading Controlled Units

There are three ways to load controlled units:

� Open a model

If a model has controlled units, Rational Rose prompts you to determine whether
to load all the subunits as the model opens. Clicking Yes loads all the controlled
units associated with the model.
Working with Controlled Units 59

� Manually load units

Use File > Units > Load (or Reload) to individually load each controlled unit file
that you require. When you point to a package in the browser, Rational Rose
displays the controlled unit file name in the Status Bar, regardless if the controlled
unit is not currently loaded.

Figure 22 Controlled Unit File Name

If you double-click an unloaded package in the browser, Rational Rose loads that
package.

Use File > Units > Load or File > Import to add controlled units from another source
to your model.

� Loading a model workspace

Rational Rose allows you to save your working environment; that is, the set of
controlled units that you have loaded. For complete details about model
workspaces, see Creating and Using Model Workspaces on page 61.

If your model is large, or you are planning to work on a few specific units, you can
greatly reduce latency and resource consumption by manually loading individual
controlled units, or by creating and then loading a model workspace.

To view or update a unit modified by another developer since you last loaded it, you
must reload the unit by using File > Units > Reload.

In Figure 23 Rational Rose uses the icons in its browser to distinguish between loaded
and unloaded units.

Figure 23 Loaded and Unloaded Controlled Unit Icons

Unloaded
controlled units.

Loaded controlled
units.
60 Chapter 4 - Dividing a Model into Controlled Units

In diagrams, Rational Rose uses adornments to indicate which model elements are
controlled units and whether there are unresolved references to unloaded units. You
can enable or suppress adornments by clicking Tools > Options > Diagram > Display.

Figure 24 Adornments Indicating Controlled Units and Unresolved References

To unload a controlled unit, select the controlled unit in a diagram, then click
File > Units > Unload.

Creating and Using Model Workspaces

Understanding Workspaces

A workspace is a snapshot of all currently loaded units and open diagrams. By
defining one or more workspaces, you can set up your working environment in
Rational Rose and return to that environment each time you are ready to work. When
you load the workspace, Rational Rose restores the snapshot by loading the specified
controlled units and opening the correct diagrams.

If you work with large models that are divided into many controlled units, you will
notice even greater productivity gains by using workspaces to load predefined units
and diagrams.

unresolved reference
to an unloaded
control unit

the package is a
controlled unit

POS System

External
Systems

Telesales
System

Warehouse
System

eCommerce
System

Legend
Working with Controlled Units 61

How a Saved Model Differs from a Model Workspace

A saved Rational Rose model contains the diagrams, elements, and controlled units
that make up the complete model. A model workspace contains the actual state of
open diagrams and controlled units for a specific saved model at a given point in
time.

It is possible to have multiple workspaces that correspond to only one model. For
example, during analysis and design, you can define one model workspace that
displays the most important analysis diagrams and controlled units, and another
model workspace for important design diagrams and controlled units. Each
workspace is different but uses the same model.

Saving a model workspace does not affect how the model is loaded on another
computer. If another team member loads a model using a model workspace that you
defined on your computer, they must have a copy of the model and the model
workspace in the same folder on their computer.

By default, Rational Rose names the workspace <model name>-<Operating System User

Name>.wsp. For example, the name of a saved model workspace may be
MyModelName-SomeUser.wsp.

Note: Rational Rose stores all workspace files (*.wsp) in the workspaces folder of the
Rational Rose installation directory.

Workspace Scenario

The following scenario shows how using model workspaces can benefit a team
working on a large model.

A new software developer joins a distributed team working on a very large model
containing over two hundred controlled units. Through the course of the next several
months, the new developer will model several systems in the Use Case Model and
modify the Business Actors and Use Cases (as shown in Figure 25). To help the new
developer, the team’s project manager creates a model workspace that loads all of the
units the software developer is responsible for, as well as some of the more important
diagrams.
62 Chapter 4 - Dividing a Model into Controlled Units

Figure 25 Example Model Workspace

When the developer loads the model workspace, the Business Actors, Business Use
Cases, eCommerce System, POS System, Telesales System, and Warehouse System
controlled units load. The workspace configuration also displays some important
class and activity diagrams in the diagram window.

The model workspace helps the new developer by:

� Automatically loading the controlled units that the developer is responsible for.
� Displaying some of the more important diagrams the developer should examine

first.
� Saving the developer time because Rational Rose only has to load a subset (six) of

the controlled units.
� Eliminating confusion by limiting the scope of information the developer sees.

After working in the model, the developer can easily customize the model workspace
the project manager created, or create additional model workspaces for greater
efficiency.

Creating and Saving a Model Workspace

To create a model workspace:

1 Load all controlled units that you will want to restore when loading this
workspace.

2 Open all diagrams to restore when loading this workspace.

3 Click File > Save Workspace.
Working with Controlled Units 63

Name the model workspace file in the Save As dialog box. The default model
workspace name is <model name><Operating System Use Name>.wsp.

Rational Rose stores all model workspace files (*.wsp) in the Rational Rose
workspaces folder.

Loading a Model Workspace

To load a model workspace, click File > Load Model Workspace. Select the name of
workspace file (*.wsp) to load.

Protecting Controlled Units

When loading a controlled unit into a model, Rational Rose makes the unit
write-protected or write-enabled depending on the current status of the file in the file
system. A controlled unit, which is read only in the file system, is write-protected in
the model and Rational Rose prevents you from modifying it. This means that the
toolbox is dimmed on all of its diagrams and you cannot update the Specifications of
the contained model elements.

Note: If a write-protected controlled unit contains other controlled units, the
write-protection is not extended to the contained controlled units.

A unit’s write protection status displays in the Rational Rose Status Bar when
selecting the controlled unit in the browser. For example, the status of the controlled
units in Figure 26 is write-enabled.

Figure 26 Write-Protected Control Unit

If you use a version control add-in, Rational Rose handles the write-protection of the
controlled unit automatically. This means that a checked-in unit is automatically
write-protected.

There may be situations when you want to write-protect or write-enable a controlled
unit manually from within Rational Rose (even if the controlled unit is under version
control). For example, if:

� You want to load a checked-in unit, modify it, and save the result to a new file. To
do this, you must manually write-enable the unit after loading.

� You have loaded a checked-out unit with the intention of browsing rather than
modifying the unit. Manually write-protecting the unit assures that you do not
inadvertently change the unit. After you reload the model, write-protection no
longer applies, and you can edit the file.
64 Chapter 4 - Dividing a Model into Controlled Units

You can change a unit’s write-protection manually from within Rational Rose by
using File > Units > Write Protect/Write Enable.

Write-Protecting a Controlled Unit

There are three ways to write-protect a controlled unit:

� If you use a version control system, place the controlled unit under version control
and check it in.

� Make the file read-only by setting the file protection of the .cat file to read-only in
the underlying file system.

� Right-click on the controlled unit in the browser, and click Write-Protect on the
Units menu.

Write-Enabling a Controlled Unit

To write-enable a controlled unit under version control, click
Tools > Version Control > Check Out. This will check out the unit and allow you to edit
it.

Splitting a Controlled Unit

If a controlled unit becomes too large or if several team members often need to update
a unit at the same time, you can split the unit. There are two ways to split a controlled
unit:

� Remove the unit and split it into two different units.
� Keep the unit, but divide its contents into two new sub-units.

To split a controlled unit into two units, ensure that the controlled unit is
write-enabled. If it is under version control, you must check out the file. If you want
the original unit to constitute one of the new units, create one new package at the
same level as the controlled unit. Otherwise, create two new packages.

Move the contents that belong to the new package (including the associations) from
the unit into the new package by using drag-and-drop in the browser. Or, move the
contents by selecting an element in a diagram, copying the element to the Clipboard,
pasting it into a diagram that is owned by the new package, and then clicking
Relocate on the Edit menu. Designate the new package(s) as a controlled unit.

Note: If you move classes from one package to another, the dependencies and
generalizations move; the associations do not move. You must move the associations
manually.
Working with Controlled Units 65

To divide the contents of a controlled unit into two sub-units, ensure that the
controlled unit is write-enabled. If it is under version control, you must check out the
file.

Create two new packages in the package that corresponds to the controlled unit, then
move the contents from the unit into the two packages by using drag-and-drop in the
browser. You must manually move any associations as well. Designate the new
packages as controlled units.

Merging Controlled Units

You can display the differences between, and merge two versions of a controlled unit
by using Model Integrator on the Tools menu.

For more information, see Chapter 5, Comparing and Merging Models on page 77.

Adding Controlled Units to a Model (Importing/Loading)

The controlled units you create can be imported or loaded into other models.
Importing and loading adds a reference to a controlled unit in the model; it does not
make a copy of the controlled unit. The imported controlled units can be edited in
both models; changes made in one model are visible in the other model. As with any
file, the controlled unit cannot be open simultaneously in two different models.

Rational Rose imports controlled units to diagrams that currently have focus control;
therefore, ensure you are in the diagram to which you want to import the controlled
units. The import will fail if you import to the wrong type of diagram. For example,
you cannot import .cat files to a deployment diagram.

When you import a controlled unit, Rational Rose attempts to resolve any references.
If an element has a reference that Rational Rose cannot resolve, the problem is logged.

Before you import a controlled unit, ensure that the destination model file or
enclosing controlled unit is write-enabled. If under version control, you must check
out these files.

To import a controlled unit, click File > Import. In the dialog box, select *.cat or *.sub, or
. as the file type. Do not import a .ptl file. These are exported model files. When you
import them, they replace the contents of your model.

Uncontrolling Controlled Units

Uncontrolling a controlled unit incorporates the contents into the model file or into
the enclosing controlled unit if the unit to uncontrol is contained within another unit.
After uncontrolling a unit, the enclosing file will no longer reference that unit’s file.
Instead, the content of the uncontrolled unit’s file is inserted into the enclosing file.
66 Chapter 4 - Dividing a Model into Controlled Units

Before you uncontrol a unit, ensure that the model file (or the enclosing controlled
unit) is write-enabled. If it is under version control, check out the file.

If you use a version control add-in, select the model element and click Tools > Version
Control > Remove from Version Control. The contents of the unit are now incorporated
into the corresponding package in the model, and the file is removed from version
control.

If you do not use version control, right-click on the package in the browser and click
Uncontrol on the Units menu. The contents of the unit are incorporated into the
corresponding package in the model, but the file continues to exist in the file system.

Save the model (or enclosing controlled unit), which now holds the contents of the
unit file.

Creating Virtual Paths to Controlled Units

Understanding Virtual Path Maps

Rational Rose allows you to define symbolic names for file paths. Each user can
control how these symbolic or virtual names are defined in their own workspace.

Path maps are essential for working in teams, especially where all users cannot work
in exactly the same directory on their local machines. Using path maps allows model
files to be distributed and relocated.

When you create controlled units, the enclosing model file or controlled unit stores
the reference to the new unit as a file path. In the sample illustration that follows, the
classics.mdl file contains the path to analysis.cat, the Analysis Model controlled unit
file. In the illustration, the text is actually the contents of the .mdl and .cat files when
opened in a text editor. The analysis.cat file contains a path to eCommReal.cat, the
controlled unit for the eCommerce System Realizations package which Analysis
Model encloses.
Creating Virtual Paths to Controlled Units 67

Figure 27 Virtual Path Maps

By defining virtual path maps, you substitute absolute paths with virtual paths. This
allows you to move models and controlled units between different folder structures,
and to update them from different workspaces.

How Virtual Paths Work

When Rational Rose reads from or writes to a model, it attempts to substitute every
absolute path with a virtual path. When Rational Rose opens a controlled unit, or uses
a path specified in a model property, it converts each virtual path to an absolute path.

For example, if a user has defined a virtual path,

$MYPATH=Z:\MyModels\classics

and saves a package as

Z:\MyModels\classics\analysis.cat

the model file will refer to the package as

$MYPATH\analysis.cat

Absolute paths
68 Chapter 4 - Dividing a Model into Controlled Units

When another user, who has defined $MYPATH as

$MYPATH=X:\MyModels\classics

opens the same model from their “X” drive, Rational Rose resolves the internal
reference to the controlled unit and loads the following file:

X:\MyModels\classics\analysis.cat

After you create virtual path maps, when anyone on the team opens or saves a model,
Rational Rose attempts to match the longest possible file path to the symbols in the
path map, and will continue until you have concatenated path map symbols.

Note: Each user working on a particular model must define the same path map
symbols before opening the model. For example, a user with the private workspace
called Y:\MyModels, must define $MYPATH=Y:\MyModels. We recommended that you do
not use path maps to point to network drives or shared files.

Creating Virtual Path Maps

You use File > Edit Path Map to open the Virtual Path Map dialog box.

Figure 28 Virtual Path Map Dialog Box

Specify the
symbol
(name) to
use.

Select or
enter a
physical
path.
Creating Virtual Paths to Controlled Units 69

Do not enter the $ before the name in the Symbol box; it is automatically added to the
name. When you click Add, the new path map is added to the list of existing path
maps at the top of the dialog box.

Defining a Path Map Relative to the Location of the Model File

A leading “&” on a path name indicates that the path is relative to the model file or the
enclosing controlled unit (if any). For example, if you create a model:

X:\MyModels\classics.mdl

and a controlled unit:

X:\MyModels\units\analysis.cat.

To allow different users to open the model and load the unit in different locations,
each user can create a path map:

$CURDIR=&.

When the model saves, the reference from the model file to the package is stored as:

$CURDIR\units\data_serv.cat

When the model opens in another location, $CURDIR is expanded to the physical path
to the model in that specific workspace, for example:

Z:\ordersystem.

Note: The “&” requires that the controlled units be located in the same directory as the
model file or in a subdirectory of the model file.

Defining a New Path Map Using Another Path Map Symbol

The actual path in a path map definition can contain existing path map symbols. For
example, if there is a path map, $ROOT=X:\model_vob, you can define a path map for
the path X:\model_vob\MyModels by adding the path map $MYPATH=$ROOT\MyModels.

Defining a Path Map with Wildcards

You can use a wildcard character (*) in the path map to parameterize a virtual path.
For example, if the following virtual path is defined:

$SUBSYSTEM=\server\models\project*\fred

and each user working on “project” has their own set of model files within each
subsystem, then a controlled unit belonging to the display subsystem can have the
following path:

\server\models\project\display\fred\diagrams.cat
70 Chapter 4 - Dividing a Model into Controlled Units

The model file refers to the unit as:

$SUBSYSTEM(display)/diagrams.cat

When the model is opened by user “suzanne,” who has the following virtual path
definition:

$SUBSYSTEM=\server\models\project*\susanne

the virtual path reference to the unit is converted back to the actual path:

\server\models\project\display\susanne\diagrams.cat

This allows different users to work on the same files with the same contents but in
different folders without having to define a virtual path symbol for each such folder.

The slashes you use to define a path map are not literal, meaning that Rational Rose
substitutes the correct format for Windows or Unix platforms.

Using Virtual Paths for the Value of a Model Property

Rational Rose does not convert actual paths in model properties to virtual paths. To
use a virtual path in the value of a model property, you must manually enter the
virtual path map symbol, including the “$” sign (for example, $CURDIR) into the value
of the model property.

Using Path Maps for Other Artifacts

In addition to using path maps for model and controlled unit files, you can use them
for any artifacts attached to your model, such as documents, code, and URLs.

It is strongly recommended that you maintain one path map for all model artifacts,
including model and controlled unit files. However, if that is not possible, create
separate path maps for each directory structure.

The easiest way to use path maps for artifacts other than model and controlled unit
files is to create the path map before you attach the artifact. When you do this, Rational
Rose automatically converts the absolute path to a virtual path when you attach the
artifact and save it.

For example, suppose you created the path map:

$MYDOCS =E:\Rational
Creating Virtual Paths to Controlled Units 71

When you attach the file test.doc that resides in your E:\Rational directory to the
Analysis Model package in a Rose model, the following virtual path is added to the
analysis.cat file (the controlled unit for the Analysis Model package):

 external_docs (list external_doc_list
 (object external_doc
 external_doc_path "$MYDOCS\\test.doc"))

If you attach an artifact before you create a path map, Rational Rose does not
automatically convert the absolute path to a virtual path when you save your model.
However, it does automatically do the conversion for controlled units and .mdl files.

Alternatively, you can move the artifact to another part of your model, immediately
move it back to its appropriate location, then save the model. There is no need to save
the model when the artifact is in its “temporary” location.

Similarly, if you delete or change a path map, you need to perform these same actions
for Rational Rose to register the change.

Where Virtual Path Maps are Stored

Virtual path maps are stored in two locations in your system registry: the users area
and the system area. A user can typically see and access only the virtual path maps in
their specific area of the registry.

There are also system virtual path maps that are in HKEY_LOCAL_MACHINE. You need
to be an administrator to edit these virtual path maps on a specific computer.

Checking References and Access Violations

After you create controlled units and unit ownership becomes distributed, it becomes
increasingly important to check the integrity of your model. There are two ways to do
this:

� By using Check Model.
� By using Show Access Violations.

Check Model

Check Model (Tools > Check Model) scans the entire model looking for unresolved
references and places the results into the log. You can use this feature when you save
your model to multiple controlled units, to ensure that all the units are consistent with
one another. This is especially useful where parallel development occurs in multiple
controlled units, since it is possible for different units to get out of synch with one
another.
72 Chapter 4 - Dividing a Model into Controlled Units

In a model where one item holds a reference to another item, it is possible that a
reference exists, no item in the model of the right kind or with the right name. In that
instance, the reference is unresolved.

Check Model checks the reference:

� To the supplier, such as any kind of dependency, generalization, association,
realizes, instantiation.

� From a view on a diagram to an item in the model.

� From a logical package to its assigned component package, and from a module to
its assigned class.

� From an object to its class.

� From a message on an object diagram to an operation in a class.

� From dynamic semantics in an operation to a scenario diagram.

Show Access Violations

Show Access Violations (Report > Show Access Violations) provides a list of all access
violations between packages in a model.

As projects grow larger, access violations become more important
Show Access Violations is the primary tool for verifying that a large project is
maintaining its design architecture.

An access violation occurs when a class in one package references a class in another
package without an import relationship between the two packages. The import
relationship is a dependency between the two packages. The direction of the
dependency must be the same as the direction of the relationship between the classes
or interfaces.

An access violation will also occur when a package references a class from another
package whose export control is not set to Public. In this case, the presence of an
import relationship between the two packages has no bearing. All references to
non-public classes from different packages are cited as violations.

Import (dependency between packages) is not transitive, so if package A imports
package B, which imports package C, then package A is not importing package C. A
would have to have import package C separately.

Also, a package that has a nested package automatically gets visibility to the nested
package. The inner package does not have visibility to its parent. Any package that
imports the parent does not get visibility to the nested packages.
Checking References and Access Violations 73

Violations are displayed in a dialog box. You can locate the diagram and element
where the violation occurs by selecting the violation from the dialog box and clicking
Browse.

Organizing Controlled Units for Teams

When sharing models among teams of developers, it is essential that the model be
partitioned so that it can evolve in a controlled manner. To successfully share a model,
you need to manage the dependencies between different portions of a model.

Ultimately, how many packages and controlled units to create becomes a question for
the project leader or model architect, and the person responsible for configuration
management in your project. The level of version control you use may define what
becomes a controlled unit. For example, all packages can be controlled units,
including nested packages. Doing so, provides the capability for two developers to
check out packages that belong to the same higher level package.

Suggested Strategies

The following are strategies to consider when partitioning a model into controlled
units:

� The model should be a shell with nothing but controlled units under the use-case,
logical, and component views.

� Create design model, analysis model, and business model controlled units under
the logical view.

� Create an implementation model controlled unit under component view.

� Consider separating actors and use-case controlled units.

� Also consider separate controlled units for each use-case.

� Prevent your use-case controlled units from including any diagrams that describe
internal system operations or structure, such as class or interaction diagrams.

� Under the design model and analysis model packages, provide a use case
realizations controlled unit and provide a separate controlled unit for each
realization.

� Class and interaction diagrams that describe system internals should go with the
use case realizations.

� Describe the system structure using a series of nested packages that become
controlled units.
74 Chapter 4 - Dividing a Model into Controlled Units

� Layers and global packages should be at the top level of nesting.

� Maintain interfaces in separate controlled units.

� Describe each significant mechanism in its own controlled unit.

� Control dependencies. Create UML subsystems by using packages that provide
discrete, well-defined services.

� Subsystems should expose services only via UML interfaces - they provide strong
separation between major portions of the model.

� Subsystem internals should depend only on the interfaces that are offered by other
subsystems.

� Developers sometimes define class-level relations that violate dependencies
between packages and subsystems. To detect this in a model, click
Report > Show Access Violations.

For more details about model architecture, see Establishing a Model Architecture and
Process for Team Development.
Organizing Controlled Units for Teams 75

5Comparing and Merging
Models
Contents

This chapter is organized as follows:

� About the Model Integrator on page 77
� Model Integrator and ClearCase on page 86
� Comparing and Merging Models on page 87
� Performing a Partial Merge on page 105
� Merging Models Without a Base Model on page 106
� Viewing a Single Model File on page 107
� Using Model Integrator from the Command Line on page 107

About the Model Integrator

Model Integrator is a tool for comparing and merging Rational Rose models. Model
Integrator lets you compare model elements from up to seven contributor files,
discover their differences, and merge them into a recipient model.

For example, two developers may need to modify a shared model at the same time.
They can each copy the model, modify it separately, and then use Model Integrator to
merge their changes back into a single shared copy of the model. Or they can use
Model Integrator to compare their models and identify the differences between them.

You can also use Model Integrator can to view the contents of a single model file.
Model Integrator provides a method of looking at a model that is different from the
view provided by Rational Rose. Model Integrator provides a low-level textual view
of all model elements and their properties. This method of examining a model allows
you to view all property settings in use.

Model Integrator runs in two modes: Compare mode and Merge mode. As described
later in this chapter, you can switch between modes.
77

Model Integrator Interface

Model Integrator runs outside of Rational Rose and provides its own interface as
shown in Figure 29.

Figure 29 Model Integrator Graphical User Interface

There are three major components to the interface: browser view, property view, and
text view.

Browser View

The left window pane is called the browser view. In this window, the primary objects
that make up the model are displayed in a hierarchical tree structure similar to that
used in Rational Rose. However, the objects displayed in the browser view are not

Browser view Property view Text view
78 Chapter 5 - Comparing and Merging Models

identical to those displayed in Rational Rose. Model Integrator displays some objects
that Rational Rose hides from your view. See Model Files and Model Integrator on
page 82 for a brief discussion of the objects Model Integrator displays.

The browser view displays only a single view of the model hierarchy, even though
there are several models loaded. The browser view shows all of the objects from all of
the contributing models, but it attempts to partner objects that are the same across all
the models. If all of the contributors have the same model element in the same
location, the browser only displays a single entry for that node of the model.

If different contributors have the same model element located in different places in the
model, there is a node in the browser view for each location where the model element
exists in the merged model. However, only one of these locations will be written to the
final merged output model file (you will decide which one when you resolve the
conflict at that node).

On the left side of the browser window are icons that display the results of comparing
and, in merge mode, of merging the models. The meaning of these icons is discussed
in Interpreting Compare and Merge Results on page 94.

Property View

The upper right window pane is called the property view. This window displays the
set of properties that belong to the currently selected object in the browser view. In
this view, there is a column for each contributor and a column for the recipient model
(in merge mode). There is also a column of icons to help you see the comparison state
of the properties provided by the different contributors. These icons are the same as
the comparison icons mentioned above.

Text View

These windows along the lower right side of the main window display the values
from each contributor for the property currently selected in the property view. In
merge mode, the left-most text view displays the value for the recipient model, with
the other contributors following it to the right in numerical order. These windows are
for viewing purposes only. You cannot change the values displayed there.

Other Interface Features

The toolbar makes some commonly used functions available as buttons. All of these
functions are also available in the menus. When you position the cursor over the icons
in the browser view, they display a message explaining the compare or merge state.
At the bottom of the screen, a status bar displays the merge status of the node
currently selected in the browser view.
About the Model Integrator 79

Contributors

Contributors are the models that form the input to Model Integrator. Model Integrator
accepts up to seven contributor models for merging. All contributors must be of the
same type; you cannot compare a .mdl to a .sub file, for example. A contributor can be
any of the following:

� A model file, with or without its associated controlled units (subunits). If you
specify a model file (*.mdl) as the contributor, and the model has subunits, Model
Integrator prompts you to load its subunits.

� A controlled unit of a model.

You can specify a single controlled unit (a .cat, .sub, .pty, .prc, or .prp file) as the
contributor. Controlled units are also referred to as subunits.

The first contributor, called Contributor 1, has special significance to Model
Integrator; it is the base model used for comparing the differences between the other
models.

Base Model

The base model is the model that is the ancestor to all of the other contributor models
being merged. That is, the base model is the version of the model that existed before
any changes were made. The base model must always be specified as Contributor 1.

Comparing Models

Compare mode in Model Integrator highlights the differences and conflicts between
two or more models. You can switch back and forth between Compare mode and
Merge mode; you can begin a work session in Compare mode and then switch to
Merge mode if you decide to merge the models. In Compare mode, you cannot make
any changes to the model, and the Merge menu and toolbar functions appear dimmed.

Merging Models

Merge mode incorporates all of the features of Compare mode, along with additional
information to support the decisions you need to make to successfully merge model
files. Model Integrator supports two types of merge functionality:

� Automatic Merge: Model Integrator merges all changes that do not produce
conflicts.

� Selective Merge: Allows the user to optionally choose the contributor for each
difference identified by Model Integrator between the models to merge.
80 Chapter 5 - Comparing and Merging Models

Automatic merge takes effect when Model Integrator first enters Merge mode. It
creates a recipient model and automatically merges all unchanged or trivially
changed nodes into the recipient model for you. (A node is another name for an object
in the model hierarchy. Examples of nodes are classes, use cases, objects, operations,
components, and diagrams.) If the merged model has nodes that have conflicts,
Model Integrator displays an icon at the location of the conflict in the browser
window. As you make choices to resolve these conflicts, Model Integrator shows you
the results of your merge.

The selective merge feature lets you change the contributor at nodes that have
differences as well as conflicts. This can be useful when you do not want to accept all
the changes that a contributor makes to your model. It is also useful when you need to
correct more complicated errors such as those discovered by the semantic checking
functions.

Model Integrator merges models that have a common ancestor (the base model). This
is necessary when you keep your model under version control, and when two or more
people modify the model at the same time. However, Model Integrator also supports
merging models that do not have a base model.

Differences and Conflicts

Model Integrator uses the base model, called Contributor 1, to identify the types of
changes made to the models being compared or merged. Each contributor is first
compared to the base model. Model Integrator displays additions, changes, and
deletions between a contributor and its base model as differences. Symbols identify
the types of differences found. (These symbols are displayed in the C column of both
the browser view and the property view.)

In compare mode, Model Integrator only displays differences; but in merge mode,
Model Integrator also displays conflicts. A conflict occurs when there are two or more
differences at the same node of the model. When Model Integrator finds a conflict, it
cannot tell which of the different contributors to incorporate into the recipient model.
(Conflicts are displayed in the M column of the browser window, along with other
status information about the merge.)

In Merge mode, Model Integrator automatically incorporates differences into the
recipient model. However, you must resolve conflicts by selecting the contributor
from which to accept changes.

Model Integrator also supports comparing and merging models without using a base
model as a reference point. However, in this mode, every node of the model displays
as a difference. Conflicts continue to have the same meaning in this mode.
About the Model Integrator 81

Model Files and Model Integrator

A Rational Rose model consists of a set of objects (also called model elements, items,
or nodes), where each object has its own set of properties that define attributes of the
object. Model Integrator exposes to your view all of the objects and properties defined
in the models you are merging. This way of looking at the model is considerably
different from the normal graphical presentation of the model in Rational Rose. The
following is a brief introduction to the kinds of objects that Rational Rose models
contain.

Basic Objects

The objects you are most concerned with when you create the model are those that
represent elements in your application such as actors and classes.

Diagram Objects

Each diagram in your model is an object. The diagrams display differently in Model
Integrator than in Rational Rose. The diagram titles are the same in the browser
window, but the diagrams are not shown as pictures. They are shown as lists of their
component objects. Some of these components you are already familiar with, such as
Labels. Others are new because Rational Rose does not typically display them. These
objects include view objects.

View Objects

Each basic object that appears in a diagram is represented by a view object when it
appears in a diagram. For example, when a class appears on a diagram, the diagram
object will have as a child a ClassView object for that class, and so on for every kind of
basic object. Other view objects exist for items that are part of a mechanism.

Mechanism

A Mechanism is hidden component of a model that contains a set of objects used
internally to implement parts of the model you created. A mechanism will contain
more objects as children.
82 Chapter 5 - Comparing and Merging Models

Quids

A quid is a unique identifying number that distinguishes the object it is attached to
regardless of the object’s name. A quid property is generated by Rational Rose for
each object created in the model. quids are unique, so that they can be used to identify
an object when the name of the object changes, or the object is moved in the model.
Model Integrator uses quids extensively to determine whether objects are the same; if
the quid is the same, then those objects have a common ancestry.

References

Much of the power of a Rational Rose model comes from the relationships that exist
between objects. These relationships are identified by reference properties (or just
references), based on quids, that enable one object to point to another one. A given
object in a model may have no references at all or it may have many. Reference
properties have names; common names are client, supplier, and quidu. Model
Integrator provides the command View > Referenced Nodes that allows you to follow
these references to view the model element that lies at the other end of the reference.

It is essential to maintain valid references between the objects in the model after a
merge completes. When objects are deleted or moved, Model Integrator verifies that
references from other objects remain valid. This semantic checking function is
performed before the model saves.

Unnamed Objects

Virtually every object in a Rational Rose model has a unique name. You are not
required to name every object that you create. For objects that you do not name,
Rational Rose creates a name of the form $UNNAMED$nn, where nn is a number.

Often a model will contain many unnamed objects that you are not aware of because
Rational Rose does not display the $UNNAMED$ string. Model Integrator displays
the actual name of every object, including unnamed objects. You can determine an
object’s type by its corresponding icon in the browser view, its properties (the object
type is at the top of the property view), and, in some cases, by looking at the children
of the object.

Rational Rose Model File Versions

Each new version of Rational Rose contains new or improved features that must be
represented in the model files produced by that version. This leads to model files
having their own versions. You can see the model file version information listed in the
property view of the first node of the model in the browser view, under the @Petal
property.
About the Model Integrator 83

It is good practice to only merge models that have the same model file version
numbers. This avoids problems encountered when creating merged models that
declare themselves to be one version, but contain model elements (accepted from
contributors) that may be incomplete or different from the expected version. Model
Integrator itself is independent of model file versions, and does not know how to
bring old model files up to date.

Understanding Semantic Checking

Semantic checking is a merge mode feature that helps to ensure that the merge choices
you make are valid. There are two forms of semantic checking available in Model
Integrator. The first is performed by the Check Merge function.

This function is called automatically before a merged model is saved. It
cross-references all of the nodes of the recipient model to ensure that the final result is
complete.

The second form of semantic checking is an optional, real-time version of the Check
Merge function. This function checks references on the nodes as you access them, and
disables merge choices that may introduce errors into the model.

For example, your base model contains class A. Contributors 2 and 3 make changes to
one member of this class, while contributor 4 deletes the class. If you already accepted
changes from contributor 4 to delete the class, it does not make sense to allow you to
accept the changes that contributors 2 or 3 made to the class. However, with semantic
checking turned off, Model Integrator allows you to make these contradictory
changes. Model Integrator does not discover the problem until either you save the
recipient, or you use the Check Merge function to verify the model.

This example is very simple and probably would not be a problem in practice. But in a
large, complicated model, it can be difficult to determine which contributors present
valid choices at a particular node of the model. This problem can also arise when
Model Integrator makes automatic merge choices at nodes that do not have conflicts.
If a node is deleted automatically, you may not be aware of that fact when you are
viewing a conflict at one of its dependent nodes. Semantic checking helps you avoid
these problems by making your choices clearer at each step of the merge process.

When semantic checking is activated, and the user moves the current selection to a
new node of the model tree, the checker determines which choice of contributor (if
any) would result in an invalid model if chosen by the user. These choices are then
disabled in the interface by dimming the appropriate menu items and Toolbar
buttons.
84 Chapter 5 - Comparing and Merging Models

When working with a very large model, you may not want the overhead of semantic
checking. Or, you may want to make the change now and fix it later. In this case,
semantic checking can be disabled. Merge choices can then be made in the normal
manner. After making the merge choices, the user can then select the Merge > Check
Merge menu function to check and repair the model. The model is always checked for
validity before it is saved.

Limitations of Semantic Checking

For performance reasons, semantic checking only checks the nodes of the model you
are currently viewing, and only when you view them. Consequently, it is necessary to
perform a check of the entire model before saving, and this check may reveal errors
that need to be corrected.

For both types of semantic checking, references to subunits that are not loaded into
the merge session are not checked.

Memory Requirements and Performance

For a typical merge operation, Model Integrator must load the models and then
compile additional information from the loaded models to compare and merge them.
This requires an amount of memory proportionate to both the number and the size of
the contributors.

The exact proportion varies, but a good estimate of the maximum amount required is
to take the sum of the sizes of the model files you are merging and multiply that
number by 5 to get the amount of memory Model Integrator will need to complete the
merge operation. This memory is in addition to that used by your operating system
and other programs you may be using.

If your models are small, memory is not a problem. If you have large models to
merge, such a 30 megabyte (MB) set of models, this may be a strain on your system
resources. A typical sign of a serious memory deficiency is that loading the models is
extremely slow (Model Integrator may also appear to be frozen) while the disk drive
is constantly busy. This condition is known as thrashing. It occurs because Model
Integrator requires access to the entire data set for all the models you want to merge,
but the physical memory shortage results in much of this data being stored in virtual
memory on your hard disk (in your computer’s pagefile or swap file, depending on
which operating system you use). The computer devotes much of its resources on
reading and writing to the disk, without completing the merge. If your virtual
memory configuration is also insufficient, your computer may need to be rebooted in
order to recover.
About the Model Integrator 85

Here are some tips on how to improve the performance of Model Integrator:

� Configure your computer with enough RAM to meet or exceed the 5x requirement
stated above. For example, if you have 30 MB of models to merge, you should have
at least 150 MB of RAM in your computer. Anything less will compromise
performance, as Model Integrator has to store its data on the disk.

� If there is not enough physical memory to meet the requirements for Model
Integrator, ensure that you allocate enough virtual memory. Consult your
operating system documentation or ask a system administrator to adjust the
available virtual memory.

� Close other programs to free up memory. If you have a lot of RAM and virtual
memory in your computer, other programs may claim large portions of it. In some
extreme cases, applications may load system components that are not unloaded
when the application exits. If you continue to have problems, you may want to try
running Model Integrator after rebooting your computer and before running other
applications.

� Use the tools that come with your operating system to measure and report
memory usage. For example, in the Windows 2000 environment, you can use the
Task Manager and its Performance page to report on you system’s memory usage.

Model Integrator and ClearCase

Model Integrator is designed to work with Rational ClearCase to allow you to
compare and merge individual model files from within the ClearCase environment.
You can use the standard ClearCase tools, such as the Version Tree Browser or the
ClearCase context menus in Windows Explorer, to compare model file versions and
merge branched versions of models.

For example, you can right-click a model file version displayed in the ClearCase
Version Tree Browser window and select Compare > with Previous Version from the
shortcut menu. ClearCase will invoke Model Integrator to display the differences. Or,
from Windows Explorer you can right-click a model file in a ClearCase view and
select ClearCase > Compare with Previous Version to accomplish the same thing.

If you select one of the above compare commands and you do not see the models
displayed within Model Integrator, it is likely that the ClearCase integration with
Rational Rose has not been set up. See Chapter 6 for instructions.
86 Chapter 5 - Comparing and Merging Models

Merging Whole Models with Controlled Subunits

ClearCase and Model Integrator only support comparing and merging individual
model files or controlled units directly from ClearCase. Often this works well in a
team environment because modelers are only working on individual component files
of the model.

For example, use cases can be divided into categories so developers only have to
check out the .cat file that contains their use cases. These files can be privately
branched and subsequently merged back into the main development branch without
having to merge the entire model.

However, it can be desirable to merge the entire model, because semantic checking
works best when the whole model is loaded into Model Integrator. This is done by
constructing a separate ClearCase view for each full contributor to the merge session.
Each view is constructed to make the correct version of the model files for that
contributor visible within the view. The model files are checked out for writing in the
view that will receive the merge result.

Starting Model Integrator in a ClearCase Integration

Model Integrator is started, not from a ClearCase menu, but from the Rational Rose
Tools menu or by the standard method for the system you are using, such as the Start
menu in Windows. The merge session proceeds in the same way it would if ClearCase
were not involved. When completed, the merged model files are saved and checked
back into ClearCase.

Comparing and Merging Models

Starting Model Integrator

To start Model Integrator, you can do one of the following:

� From within Rational Rose, select Tools > Model Integrator.

� From a Unix shell process or a Windows console process, type

modelint file.mdl

and press Return.
Comparing and Merging Models 87

For more information about the command line interface, see Using Model Integrator
from the Command Line on page 107. To run Model Integrator from the command
line, the directory containing the Model Integrator executable must be in your path
variable.

� You can also start Model Integrator from Rational ClearCase as part of a ClearCase
compare or merge operation. See Model Integrator and ClearCase on page 86.

Preparing Models for Merging

Before merging models, it is good practice to check each model with the Rational Rose
Tools > Check Model. If errors are reported, correct the errors before performing a
merge with Model Integrator.

Selecting the Contributors

An easy method of specifying contributor files is to drag and drop the files from
Windows Explorer onto the Model Integrator window (Windows platform only). If
the Contributors dialog box is not open, Model Integrator opens it for you. If it is
already open, then you must drop the files onto the dialog box, not the main window.

Alternatively, select File > Contributors to display the Contributors dialog box. Then,
follow these steps to specify the files to compare or merge:

1 Do one of the following to specify the first .mdl, .cat, .sub, .pty, .prc, or .prp file in the
Files list.

❑ Enter the fully qualified file name in the blank area of the Files list.

❑ Click Browse at the top of the Files list control and use the file browser to find a
file to add to the list.

2 Click Enter to confirm the file name.

3 Click New to create a new file input field.

4 Repeat steps 1 through 3 until all files are specified.

5 Click Compare or Merge.

Note: If the Compare/Merge Against Base Model check box is selected, then the first
specified file must the base model. If the first file listed is not the base model, you can
use the arrow buttons to change the order of filenames listed in the Files area so that
the base model is listed first. Select one of the file names by clicking it, then click the
arrow button to move it in the appropriate direction.

Model Integrator can provide a base model for you if you do not have one to use. See
Merging Models Without a Base Model on page 106.
88 Chapter 5 - Comparing and Merging Models

Loading or Unloading Controlled Units

If one or more of the contributor files you specify have controlled units, Model
Integrator displays the Subunits dialog box. This dialog box allows you to load or not
load (unload) those units before comparing or merging your files, and to save them
again when you save the merged model.

Figure 30 Subunits Dialog Box

Subunit Status

The Status column displays the subunit status for each potential subunit in the model
you load or save. The Status column can display four different values when loading
subunits, or two values when saving.

Status Description

loaded Subunit was loaded successfully.

not a unit Entry is not currently a separate subunit. This model
section is part of the main .mdl file.

LOAD Model Integrator loads the entry when you click OK
or Apply.

SAVE Model Integrator saves the entry to a separate file
when you click OK.

unloaded Subunit will not be loaded.
Comparing and Merging Models 89

Loading Subunits

Subunits for each contributor are loaded separately, so a separate Subunits dialog box
appears for each contributor .mdl file that has subunits. You can toggle the Status
value between LOAD and unloaded by clicking the value with your left mouse button.
By default, Model Integrator will try to load all subunits for a model. If there are units
you do not want to load, click the Status value to change the status to "unload", and
the subunit is skipped. If you do not want to load any subunits, click Cancel.

When you complete one dialog box and click OK, Model Integrator tries to load the
subunits that have the LOAD Status value. If there is an error and some of the subunits
cannot be loaded, the Subunits dialog box displays again.

Note: Model Integrator cannot perform reference checking for subunits that are not
loaded.

Each contributor with subunits opens a corresponding Subunits dialog box. When
you complete the final Subunits dialog box, Model Integrator immediately begins the
Compare or Merge session.

Saving Subunits

When you save a model using File > Save or the Save button on the Toolbar, Model
Integrator saves your subunits to the same place relative to the main .mdl file’s
location. In this case, the Subunit dialog box does not display. If you want to change
the subunit configuration of your model, use File > Save As. When you save the
merged model using this function, the Subunits dialog box displays. It allows you to:

� Save your existing subunits configuration by clicking OK in the dialog box.

� Create new subunits by clicking the Status column for the subunit you want to
create. Model elements eligible to become subunits are displayed in the Subunits
dialog box with the “not a unit” Status value. Click this value to change it to SAVE;
when you click OK or Apply, a new subunit is created.

� Eliminate subunits by clicking the Status field and changing the SAVE value to “not
a unit”. When you click OK, this part of the model is saved in the main .mdl file
instead of a separate subunit file.

Whether you use the Subunits dialog box or not, if you save subunits to a directory
that already contains copies of the same subunits, Model Integrator warns you that
you are overwriting the subunits and prompts you to continue. This is in addition to
asking you if you want to overwrite the main model file. You can click Yes, No, or Yes
to All to save your entire set of subunits with no more questions.
90 Chapter 5 - Comparing and Merging Models

Subunit File and Path Names

The Subunits dialog box displays two columns of path-related information about the
subunits in this model. The Virtual Path column shows the value of the path stored in
the parent model. This value may be an absolute path or it may contain a virtual path
map. The Actual Path column displays the path that Model Integrator is using to load
the subunit.

If path map variables appear in the Actual Path column, click PathMap to set a value
for the path map variable.

Model Integrator shares path map variables with Rational Rose and uses the same
values transparently. However, Model Integrator may require you to enter a value for
a path map variable if that variable has not previously been defined on the machine
you are using. This situation is evident when you see a virtual path map variable
listed in the Actual Path column of the Subunits dialog box.

You can left-click the value listed in the Actual Path column and directly edit the path
name that Model Integrator uses to find the subunit.

When saving a subunit, we recommend that you define a path map variable (in the
PathMap dialog box) and set it equal to the value “&”. This prevents absolute path
names from being stored in the .mdl file for the subunits, which makes it easier to
move the files to new storage locations in the future.

Resolving Subunit Loading Errors

If you instruct Model Integrator to load a subunit and the load process fails, Model
Integrator displays the Subunits dialog box to allow you to correct the problem. The
Status column of the dialog box shows you the current status of each subunit. You
may need to scroll through the dialog box to find a subunit that was not loaded. It will
continue to display the LOAD status.

Currently, you have several options to resolve the problem:

� You can directly edit the Actual Path field to change the path for that particular
subunit as mentioned above.

� If the subunit uses a path map variable, you can change the value of the path map
variable by clicking PathMap and modifying the variable in the Pathmap dialog
box.

� You can first select the subunit in the list and then click Browse to open a directory
browser window to find the file. Select a file and click OK. The filename appears in
the Subunit dialog box.
Comparing and Merging Models 91

� You can change the current directory for path map variables that take the value
“&” by changing Context located at the top of the Subunit dialog box.

� You can elect to not load the subunit. Click the Status value for the subunit. The
status changes to “unloaded”, and the subunit is not included in the merge.

Setting a New Context for Subunits

The Context box at the top of the Subunits dialog box shows the default path that
Model Integrator uses to substitute for the “&” path map symbol (See Understanding
Virtual Path Maps on page 67 for a description of how to use path map symbols).

If you created your models using a virtual path map, you can define the value of the
symbol to be “&”, when Model Integrator encounters the “&” symbol in the definition
of a path map, it replaces the symbol with the actual path specified in the Context box.

By default, the value of the Context box is the path where the main model file (*.mdl) is
located. However, if you moved the files to a new location, you can change the
Context value and Model Integrator will load the files from the new context.

You can select a new Context path by either entering a new value directly into the
Context box, or by clicking Browse to the right of the field to locate the desired drive
and folder.

Using Compare Mode

Use compare mode to scroll through the model and observe the differences between
the contributors. If you want to merge the models, change the mode to merge mode or
exit the program when you are done.

Using Merge Mode

In merge mode, Model Integrator has already tried to automatically merge the models
for you. Your next step depends on the results of the automatic merge.

AutoMerge

When Model Integrator first enters merge mode, it applies the AutoMerge procedure
to the entire set of contributors. The AutoMerge procedure follows the rules
illustrated in Table 2 for a typical case of three contributors (not shown is a move
operation, but it behaves like a change).
92 Chapter 5 - Comparing and Merging Models

Table 2 AutoMerge Rules for Merging Models

A, B, C are model elements. “–” means not present.

Note: Only the role of the base model is fixed in the AutoMerge procedure. The order
of the other contributors does not matter. Swapping Contributor 2 and Contributor 3
does not affect the results.

If a contributor that is not the base model introduces a change (adds, modifies, moves,
or deletes an object), that change is copied to the merged output instead of the original
object. However, if two or more contributors change the same thing, then the
AutoMerge procedure does not know how to decide which one to choose. Instead, it
generates a conflict.

By default Model Integrator uses automatic merge to merge all changes that do not
produce conflicts into your merged model. You can also use the Merge > AutoMerge
command to reapply automatic merging to nodes of the model you have previously
reverted using the Merge > Revert command.

In the bottom right corner of the main window, a message appears in the status bar
saying “Unresolved items nn” where nn is a number. If the number of unresolved
items is greater than zero, you must resolve these items before the merge can be
completed. Use the Forward toolbar button to find the first conflict. Examine the
contributors for this model element and accept your choice to resolve the conflict.

AutoMerge
State

Contributor
1 (Base)

Contributor 2 Contributor 3 Result

No change A A A A

Added -- A – A

Changed A A B B

Deleted A A – –

Conflict A B C ?

Conflict A B – ?

Conflict – B C ?
Comparing and Merging Models 93

Interpreting Compare and Merge Results

Model Integrator shows the results of comparing the contributing models by
displaying an icon to the left of each node in the browser view in the C column.
Table 3 depicts the Compare status icons and their meanings.

Table 3 Compare Status Icons

Symbol Description

space Common item (same values in all contributors).

New item added by a single contributor. (difference)

Item deleted in a single contributor. (difference)

Item changed in a single contributor. (difference)

Item moved to a new location in a single contributor. (difference)

Item added by multiple contributors, each has different property values. (conflict)

Item deleted in some contributor; item changed by another contributor. (conflict)

Item changed in multiple contributors. (conflict)

Item moved in some contributor; item changed by another contributor. (conflict)

Item moved in some contributor; item deleted by another contributor. (conflict)

Item moved to different locations by multiple contributors. (conflict)
94 Chapter 5 - Comparing and Merging Models

Symbols indicating the status of a merge operation appear in the M column. Table 4
depicts the Merge status icons and their meanings.

Note: Merge results do not appear in Compare mode.

Navigating Through a Model

Searching for a Model Element

To search for a particular node by its name in the browser window, select
Edit > Search. Enter the search string, select the direction to search in, and click Find.

The search starts at your current location in the browser window and proceeds
through all the nodes in the model that are displayed in the browser window. (Use
Edit > Expand All to display every model object in the browser.) If the string is found,
the browser window scrolls to display the desired node, and its properties are
displayed in the property view. If the node found is not the desired one, click Find
Next to continue the search from the current point. When the search reaches the last
(first) node of the model, it will wrap back to the beginning (end) and continue
searching. After the desired node is found, click Cancel to dismiss the search window.

You do not have to specify the entire name you want to find. Model Integrator
performs the search by matching the string you enter against any part of the model
element name. The search is not case-sensitive.

Table 4 Merge Status Icons

Symbol Description

space Common item and recipient is set to the common property values.

Recipient item is not set. This occurs for an unresolved conflict or after
applying the Merge > Revert command.

Recipient item is set with values from contributor n, where n is a number
between 1 and 7.

Recipient item is set to be deleted by contributor n, where n is a number
between 1 and 7 and where, as indicated by the minus sign, this contributor
has no values set for the selected item.
Comparing and Merging Models 95

Viewing Conflicts and Differences

The View menu contains a number of options for navigating through conflicts and
differences. These same commands also appear as buttons on the toolbar. Use these
commands to speed your way through the merged model, ensure that you visit all the
conflicts and differences. These commands automatically expand the browser tree to
make the next conflict visible.

Some of these commands, as noted in Table 5, operate in the same mode as the setting
for Auto Advance mode. The text displayed in the menus and tool tips changes to
reflect this.

Table 5 Navigation Buttons for Viewing Conflicts and Differences

Button Description

First Difference
Depends on the Auto Advance mode setting:
- Conflict: goes to the first conflict
- Difference: goes to the first difference
- None: goes to the first node of the model

Previous Conflict
Moves back to the previous conflict

Previous Difference
Depends on the Auto Advance mode setting:
- Difference: goes to the previous difference
- None: goes to the previous node of the model

Next Difference
Depends on the Auto Advance mode setting:
- Difference: goes to the next difference
- None: goes to the next conflict

Next Conflict
Moves to the next conflict

Last Difference
Depends on the Auto Advance mode setting:
- Conflict: goes to the last conflict
- Difference: goes to the last difference
- None: goes to the last node of the model
96 Chapter 5 - Comparing and Merging Models

Viewing Conflicts and Differences with Auto Advance

The Auto Advance function automatically moves the current selection in the browser
window after you have accepted a change. The function has three modes of operation:

� Conflict: advances to the next conflict
� Differences: advances to the next difference
� None: does not auto advance

You can change the Auto Advance setting by selecting your choice from the
Options > Auto Advance menu.

The Auto Advance setting also affects the functioning of the commands for viewing
conflicts and differences.

The Auto Advance function is set automatically when you load a set of models. If the
model has conflicts, then the Conflict mode is set. If the model has no conflicts, but has
differences, the Differences mode is set. If there are no conflicts or differences, the
None mode is set.

Viewing Model Elements that have Moved

Model Integrator can detect when you move items from one place to another within
your model (for example, by using drag and drop editing or by using the Clipboard
within Rational Rose). When you merge models with elements that have been moved,
Model Integrator displays all the locations where the model elements could be placed
by the different contributors. However, you can only keep one of these locations in the
merged file.

When you see one of the status icons indicating that an item has been moved, you can
navigate between the different locations by clicking View > Other Locations menu
item. Each time you select this function, it will cycle to the next location where a
contributor has placed the model element you are viewing. If the model element has
only one location, this function is dimmed.

You can click View > Previous Location to return to the node you were originally
viewing.

Viewing the Parent of a Node

Every node in the model, except for the first one, has a parent node. Usually there is
an important relationship between a node and its parent. For example, the parent of a
State node is a State Machine.
Comparing and Merging Models 97

While merging models you may need to view the parent of a node currently
displayed, but if the model is large, the parent node may not be visible on the screen.
Click View > Parent to bring the parent node into view. Click View > Previous Location
to return to the node you were viewing previously.

View Nodes Referenced by this Node

It is not uncommon for a particular node of a Rational Rose model to reference other
nodes in the model. To ensure consistency in your merged model, you may want to
view these referenced nodes while making a decision about which contributor to
select to resolve a given conflict. Also, if semantic checking is turned on and a choice
of contributor has been disabled, viewing the referenced nodes can often reveal why
this is so. Use View > Referenced Node for those nodes that have one or more of the
three common types of references: client, supplier, and quidu.

Note: These reference types are used internally within the Rational Rose model and
their meaning changes depending on the node viewed. The only significance they
have in Model Integrator is that they link two different objects in the model together.

Nodes that have these references displays them in the property view. Figure 31 shows
an excerpt from the property view of a TransView object that has all three types of
references. To the right of the reference name is the name of the referenced node. You
could scroll through the browser trying to find this node, or click
View > Referenced Node.

Figure 31 Property View of a TransView Object

When a node in the model contains any of these references, View > Referenced Node is
active for the type of reference (client, supplier, or quidu). The pop-up menu for each
type of reference contains an entry for the recipient and each contributor, since the
referenced nodes may be in different places in different models (one of the
contributors may have moved them). If you or Model Integrator have already
98 Chapter 5 - Comparing and Merging Models

accepted a change for the referenced node, View > Recipient becomes active. Typically,
you view the recipient because it is saved in the merged model. If Recipient is not
active, the referenced node is an unresolved item.

Accepting Changes from Contributors

The results of the merge are in the main Model Integrator window, as shown in
Figure 32.

Figure 32 Model Integrator Window

The X indicates a node that must be resolved before the merge can be completed. To
resolve the conflict, you must specify which of the contributors to accept.

Deciding Which Contributor to Select

The crucial issue in performing a merge is to decide which changes you want to keep.
There are a few rules you can follow to make this job easier:

� Merge often while you are familiar with the changes.

� Partition the work and the model so that developers can work on different parts of
it at the same time. This will reduce the number of conflicts you have to resolve.

� Know the models you are merging. Know in advance which contributors you
want to select for major components of the model, such as classes and diagrams.
This will help guide the choices you must make.
Comparing and Merging Models 99

� You may encounter internal parts of the model that you do not understand. For
these items, choose the same contributor that you chose for related items that you
do understand.

For example, you have a use case with an associated interaction diagram, and you
are selecting contributor 3 for this diagram because it has the most recent set of
changes. If conflicts arise among the hidden objects, such as the mechanism or one
of its components that are also part of this use case, you should select contributor 3
for those objects as well. This maintains consistency in the final merged model.

Two Ways to Accept Changes

There are two functions that let you accept changes from a contributor. You can:

� Resolve all the remaining conflicts with Merge > Resolve All Conflicts Using. This
command lets you choose a single contributor to resolve all the remaining
unresolved items. It operates over the entire merged model, regardless of where
you are when you select it. However, it only operates on unresolved conflicts.
Nodes that you have previously accepted changes for, or that are displaying only
differences, will not be affected.

� Resolve an individual conflict or difference by selecting its node and then using
Merge > Resolve Selected Nodes Using. This command copies one of the available
contributor choices to the recipient. Unlike Resolve All Conflicts Using, it operates
on any node that displays either a conflict or a difference, and previous choices are
overwritten.

This command can also be used with the Subtree mode to resolve an entire subtree
of model nodes at one time, or with a set of nodes selected using the mouse and
SHIFT+CTRL keys. It affects all nodes displaying either conflicts or differences, and
it changes values that have been set previously.

Warning: Subtree mode is very powerful. Use it with caution.

When semantic checking is enabled, Model Integrator disables choices of contributors
that may produce errors in the recipient model. To make the change, you must turn
off Merge > Semantic Checking.

You can use Edit > Undo to undo any merge choices you make.

Changing Nodes with Differences

You can accept changes from nodes that do not have conflicts, but do have differences.
In this case, Model Integrator’s AutoMerge procedure has already made the choice.
The choice of contributor is not displayed in the M column of the browser window,
100 Chapter 5 - Comparing and Merging Models

but does appear in the property view. The Recipient column displays the values for
the chosen contributor. The AutoMerge choice is the contributor that is different from
the others.

You can override the Auto Merge choice by selecting the node in the browser and
clicking Merge > Resolve Selected Nodes Using to select a different contributor. The
change is not accepted because you choose a contributor that does not change the
model. This is useful when, for example, you do not want to delete a model element
that is deleted in one of the contributors. When you apply this command to a node
with a difference, the M column will show the contributor you’ve chosen for the
result.

Reversing Changes to Nodes

If you change a node, you can always click Edit > Undo to restore it to its original state.
If you previously made changes in your current merge session and you do not want to
undo other work you completed, there is another method of reversing the changes.
Click Merge > Revert Selection to restore a node to the unmerged state.

This command makes the node unresolved, regardless of whether or not it is a
conflict. The M column for this node changes to display the “X” icon. For conflict
nodes, this command removes your choice of a contributor to resolve the conflict. For
difference nodes, this command removes the AutoMerge choice made by Model
Integrator.

The Merge > AutoMerge Selection command is only applied to reverted nodes.
Applying the AutoMerge command to reverted nodes restores them to the state they
were in when the merge session started.

Using Subtree Mode

Subtree Mode allows you to apply merge mode commands to the current node and to
all of its children. Click Merge > Subtree Mode to toggle to Subtree mode.

With Subtree mode not set, you can visit each subtree node and make independent
choices of contributor for each node. With Subtree mode set, Model Integrator
automatically applies the selected command to all of the children of the current node.

Merge mode commands affected by Subtree mode are:

� Merge > Resolve Selected Nodes Using

� Merge > Revert Selection

� Merge > AutoMerge Selection
Comparing and Merging Models 101

Subtree mode is useful when you want to accept a group of related objects from a
particular contributor. For example, you can accept an entire diagram from a
contributor by selecting the top level node of the diagram, enabling Subtree mode,
and then selecting Merge > Resolve Selected Nodes Using (or use the toolbar buttons).

Subtree mode is very powerful. Use it with caution, and turn off Subtree mode when
you are done; but, you can always click Edit > Undo to undo any unwanted changes.

Using Semantic Checking

Semantic checks are performed by the Check Merge command before you save the
merged model, but they are also available while you work. Clicking
Merge > Semantic Checking enables Model Integrator to perform reference checking
when you select a new node in the browser. Model Integrator disables merge choices
that result in merge errors later in the session.

Enable this command when you want to avoid accepting changes that may produce
errors. However, the checking performed by this function is not complete because it
may take too long to check the entire model every time you select a different node.
Consequently, Model Integrator must use the Check Merge function, and it may
continue to find errors when semantic checking is enabled.

Disabling a Contributor Using Semantic Checking

When a contributor is disabled using semantic checking, you have two options:

� Track down the reason the choice is disabled by looking at the model elements
referenced by this node (View > Referenced Node), or the parents of this node, or its
referenced nodes (View > Parent). You will find that one of these nodes is already
being deleted by another contributor. Choose a new contributor that does not
delete the node, and then use View > Previous Location to return to the original
node and make your desired choice.

� Turn off Semantic Checking, and make your desired choices. Rely on the Check
Merge command to find errors when you finish your merge.

Checking Merged Model for Consistency

Click Merge > Check Merge to check your merged model for internal consistency.
Inconsistency can occur during a merge operation when, for example, one of the
contributor models being merged deletes model elements that are currently in use by
another contributor to your merged model. This can occur because of:

� Decisions you make when you resolve conflicts between contributors.

� Decisions made by the automatic merging feature in Model Integrator.
102 Chapter 5 - Comparing and Merging Models

You can use the Check Merge command to check your model while you are using
Model Integrator to create a merged model. If there are errors, the Check Merge dialog
box opens.

Before saving a merged model, Model Integrator automatically uses Check Merge to
verify the model for consistency. If a merged model fails the Check Merge consistency
check, Model Integrator does not allow you to save it.

Correcting Merge Errors

The Merge Errors dialog box floats above the main Model Integrator window. It
provides a set of tools that can help you find and correct errors that Model Integrator
detected in the merged model.

The first step in repairing an error is to select an error message in the list of errors in
the Merge Errors dialog box. To correct a merge error, you must select a different
contributor for some node of the model (See Accepting Changes from Contributors on
page 99). The Merge Errors dialog box has buttons to help you find the node you need
to change:

View Error: Takes you to the node of the model where the error was discovered - the
error node.

View Definition: Takes you to the node of the model that defines the reference made by
the error node.

View Parent: Takes you to the parent of the currently selected node in the browser. Use
this command to search for the parent of a definition node. Click this button when
you have a node whose parent is deleted.

View Other Locations: If the node you are viewing moved to different locations by a
separate contributors, this command takes you to one of the other locations where the
node exists. Only one of these locations actually exists in the merged output model;
the other nodes are marked for deletion. Use this button when you have a forward
reference error.

Refresh List: This command clears the error list and recomputes the Check Merge
command. If new errors are encountered, they are listed. Use this command after
fixing all the errors because there may be other errors that were hidden by the first set
of errors. The same node of the model could have several errors, but only one is
reported at a time. You may fix one error, but it may fix other errors. Refresh List
always displays the current set of errors (if any).
Comparing and Merging Models 103

Check Merge detects three types of merge errors. The error messages generated by
Check Merge are:

� This node references a deleted node.

The error node references another node in the model that was deleted in the
merged model. Click View Definition to display the location where the deletion
occurs. This error must be corrected because the error node requires the other node
to exist. To correct this error, choose either

❑ A contributor at the definition node that does not delete the node.

❑ A contributor that deletes the error node (if one is available).

Generally, choosing the same contributor at both locations is the preferred
solution.

� This node references a node whose parent is deleted.

Here the problem is essentially the same as for the first message above, except that
one of the parent nodes of the defining node is being deleted, rather than the
defining node itself. When the parent node is deleted, all of its children are also
deleted; you must change the parent node so that it is not deleted. Click View
Definition to go to the defining node in the model. Click View Parent to move up the
model tree until you find the parent node being deleted. Choose a contributor for
this node that contains a definition of the node rather than deleting it.

� This node has a forward reference.

The error node references another node in the model moved backward in the
merged model (for example, the definition previously occurred before the
reference in the original model, but now it occurs after the node that references it).
Certain forms of Rational Rose model references are only allowed to nodes defined
first in the model. Click View Definition to display the original location of the node.
Click View Other Locations to find where the referenced node was moved in the
other contributors. To correct this problem, you must choose a contributor that will
restore the definition node to its original place in the model. To move the nodes to
the new location, you must do it in Rational Rose after the merge completes. This
allows all references and definitions to be updated properly.

Saving Results

When the number of unresolved items is zero, you can save the model. Click Save to
initiate the save operation. Model Integrator checks the model for errors. If it
encounters errors, you must correct them before Model Integrator can save the model.
104 Chapter 5 - Comparing and Merging Models

The Merge Errors dialog box has tools and help topics to help you correct these
problems. After you finish correcting problems, close the Merge Errors dialog box and
save the model again.

Model Integrator prompts you to specify the location to save the main model file.
Select a file name and a directory for the output.

If your model contains loaded subunits, the Subunits dialog box prompts you to save
the subunits. Click OK to continue the save operation. After the Subunit dialog box
closes, the merge is complete and saved.

Performing a Partial Merge

You may have confined your editing in Rational Rose to a specific portion of the
model, but when you load the model into Model Integrator, differences appear in
other areas of the model that you may not expect. This is not an error on the part of
Rational Rose or Model Integrator; it simply reflects the fact that the model is
complicated, and not necessarily organized in the way you might expect.

However, if you want to restrict your merge session to a portion of the model, you can
use a base model to provide the output for the parts of the model you do not want to
modify. Follow this procedure to do a partial merge of a model:

1 Enter Merge mode, either from the Contributors dialog box or by clicking
Options > Merge Mode.

2 Set Subtree mode by clicking Merge > Subtree Mode.

3 Select the root node of the model tree. This is the first node in the browser window.

4 Click Merge > Resolve Selected Nodes Using > Contributor 1. This causes the base
model to be selected for all conflicts and differences in the entire model. The M
column for the entire model changes to the 1 icon (nodes that were added by other
contributors change to the 1- icon).

5 Select the part of the model to actively merge. You can use Subtree mode if the area
you want to merge consists of one or more subtrees. Otherwise, you can select
portions of the model by holding down the SHIFT or CTRL keys while clicking
nodes you want to select with the mouse. Ensure that you expand the model tree
so that all nodes are visible or click View > Expand All.

6 Click Merge > Revert Selection to this part of the model to display an X icon
opposite each node.

7 Click Merge > AutoMerge Selection to the same part of the model.
Performing a Partial Merge 105

You have successfully restricted the AutoMerge command to a specific portion of the
model. There may be conflicts in the part of the model you have reverted and
automerged. Complete your merge of this part of the model and save the model.

Note: The Check Merge command may find errors due to references to the parts of the
model you have excluded from the merge with this procedure. If this occurs, you
must resolve the reference errors even when that means making changes outside of
the area you have chosen to merge. You cannot save a merged model that has
reference errors.

Merging Models Without a Base Model

To merge two files that do not have a common base model as an ancestor:

1 Click File > Contributors dialog box.

2 Before clicking Compare or Merge to load the models, clear Compare/Merge Against
Base Model in the Contributors dialog box.

3 Load the models.

Model Integrator automatically creates an empty base model. The base model
occupies the slot for Contributor 1, but it is not displayed and you cannot accept
changes from it in the merge.

Note: Previous versions of Model Integrator required you to supply your own empty
base model. Using this new feature, a separate empty base model is no longer
required. Because a base model is not required in this mode, Model Integrator allows
you to specify a merge session with as few as two files when Compare/Merge Against
Base Model is cleared.

When merging models using this feature, all nodes in the contributors that do not
conflict with each other appear with a plus “+” sign, indicating that they are being
added to the merged model.
106 Chapter 5 - Comparing and Merging Models

Viewing a Single Model File

Model Integrator supports a view mode for viewing the contents of a single model
file. Do the following to view a single file:

1 Click File > Contributors.

2 Click a single file in the Contributors dialog box, and click View.

Note: If two files display, or if you enter a second filename, the button changes from
View to Compare. When the button displays Compare and you have only entered a
single file name, clicking the Compare button changes to View mode.

Using Model Integrator from the Command Line

Model Integrator supports a simplified command line interface used from the DOS
and UNIX command lines.

Additionally, you can use the following command line options; use either the slash
character (/) or the minus sign (-) to begin each option:

Command Description

modelint file.mdl Starts Model Integrator with file.mdl in the View mode.

modelint file1.mdl file2.mdl Starts Model Integrator in Compare mode for both files.

modelint file1.mdl file2.mdl
file3.mdl

Starts Model Integrator in Merge mode with the first file
named on the command line selected as the base
contributor.

Command Description

/xcompare Starts Model Integrator in Compare mode for the files
named on the command line. This is the default mode for
two files, but must be specified when comparing more
than two files.

/xmerge Starts Model Integrator in Merge mode for the files
named on the command line. This is the default mode for
three or more files.
Viewing a Single Model File 107

/compare Starts Model Integrator in Compare mode but does not
display the results in graphical mode. This mode
performs the compare operation and then exits to the
operating system with an exit code indicating the result of
the compare operation:

0 for identical models
1 for models with differences

/merge Starts Model Integrator in Merge mode but does not
display the results in graphical mode. If the merge
algorithm detects conflicts, the merge is aborted and the
program returns an exit code of 1. If the merge can be
completed without conflicts, the merged file is written to
disk to the file named by the /out parameter. If no /out
parameter is specified, the Save dialog will be displayed.
The Subunits dialog will also be displayed unless a
subunit policy choice is made.

/out filename Specifies the name of the file to write the merged output
file to. You must specify an absolute or relative pathname
for the file. Either of the following are valid:
/out c:\models\test.mdl
/out .\test.mdl

but this is not valid

/out test.mdl

/ask

/all

/none

Subunit policy options:

The /ask option is the default in the graphical mode of
Model Integrator. By default when reading and writing
models, Model Integrator will display a subunit dialog
that allows you to specify whether they want to
load/save subunits.

The /all option loads or saves all subunits without
prompting the user with subunit dialogs.

The /none option suppresses the loading and saving of
subunits.

Command Description
108 Chapter 5 - Comparing and Merging Models

6Working with a Version
Control System
This chapter is organized as follows:

� Understanding Version Control on page 109

� Rational Rose Integration with Version Control Systems on page 114

� Using Rational ClearCase on page 116

� Using Microsoft Visual SourceSafe on page 119

� Using Version Control Features From Rational Rose on page 120

Understanding Version Control

Successful team development requires versioning tools that meet certain minimum
requirements, including:

� The ability to access artifacts in a controlled manner even when team members
work from different geographic locations.

� An access mechanism that provides versioning of Rational Rose models and
related artifacts.

� The ability for developers to concurrently access and modify different versions of
an artifact.

� The ability to evaluate and merge changes that are introduced during concurrent
development.

� The Ability to define configurations of related artifacts then checkpointing and
retrieving them at any time.

Version control systems help make team development possible. At a minimum, they
are repositories that store successive versions of files. A version control repository
may contain thousands of files, but each version control user typically has a local
working area for storing only a copy of the files in the repository that they needs to
access.
109

Types of Version Control Systems

There are two types of version control systems, file-based and view-based. Each type
of system has different features and methods for supporting the version control
process. Consequently, there are features of each type that are not supported by the
other.

File-Based Version Control Systems

Version control systems in this category include Microsoft Visual SourceSafe, Rational
ClearCase with snapshot views, Revision Control System (RCS), and Source Code
Control System (SCCS).

File-based version control systems require each user to have a copy of the files in a
local folder, and use the file system's read-only attribute to control writing to files.

View-Based Version Control Systems

In view based version control systems, all versions of a file are stored in a versioned
file system.

Users do not work with the contents of the versioned file system directly. Instead, they
use a work area called a view that provides access to a set of files in the versioned file
system. Moreover, a view provides access to an appropriate set of versions of those
files by specifying how to choose the version of each file seen in the view.

Rational ClearCase is a view-based version control system.

Version Control Development Concepts

The following concepts are helpful when designing a development process for
working with Rational Rose.

Development Activity

A development activity is comprised of changes to several elements. Each activity
should encompass a unit of work, such as fixing a bug or defect, or adding a new
feature. When changes for an activity are submitted to the repository, the model
evolves to a consistent new state.

Integration

Integration is the process of making changes available for use by other developers.
Typically, a single person performs the integration activities, but developers can also
play this role.
110 Chapter 6 - Working with a Version Control System

Lineup

A lineup is a collection of specific versions of files from the version control repository.
Examples of lineups are:

� Version 4 of every file involved in a project.

� The latest version of each file in the project dated before midnight, May 12.

� The version labeled “Build 6.1.112” of each file in the project.

Lineups represent significant combinations of files. In most development
environments, the files that go into any nightly or production build form a lineup.
Lineups are also valuable for reproducing specific builds of the system. The term
baseline is also used to refer to a formal lineup.

Working in Isolation

It is essential that a developer’s work be isolated from the work of other developers.
This is important for a number of reasons:

� To ensure that each developer can work without being influenced by other
developers’ editing, compiling, testing and debugging.

� To ensure that each developer can access the appropriate material to perform his or
her role. This usually requires using some sort of lineup process.

� To ensure that each developer does not expose work to other team members until
it is ready for integration.

To support these basic team development requirements, developers need to have a
private work area for implementing and testing code in accordance with the project’s
adopted standards, and in relative isolation from other developers.

In addition to providing access to source versions, a work area needs to provide
private (isolated) storage for files generated during software development, including:

� Working (checked-out) versions of source files

� Executables

� Other work area private objects and source code, test subdirectories, and test data
files.

A work area private storage is typically located within a developer’s home directory
on a workstation.
Understanding Version Control 111

Versioning Strategies

Single Stream Versioning

Single stream versioning refers to having a single series of version numbers for each
file. In effect, the version history for a file is a linear sequence of revisions.

While developing a project using single stream versioning, each developer always
works with the most recent version of files in the repository. To edit a file, a reserved
check out is performed on the latest version of the file. After developers make
changes, they are submitted. This immediately makes the new version visible to other
users, and becomes the latest version for others to base their changes on. This also
means that only one person can work on each file at any one time since they must
have the most recent version checked out in order to perform work.

Single stream versioning is not ideally suited for fixing defects or bugs for an existing
release while doing new development for a future release.

You can use file-based and view-based version control systems for small projects
without the need for branching or multiple stream development.

Benefits:

� Simple to set up.

� Work area configurations do not need to be modified.

� Users can browse any lineup stored in the repository.

Drawbacks:

� Work is always based on latest version of elements in your version control system.

� You cannot work on arbitrary lineups - only with most recent version.

� If a developer checks in changes that are incompatible with the latest lineup in the
version control, integration and build problems can occur.

Parallel Stream Versioning

Parallel stream versioning permits each file to have a branching tree of versions. This
allows many versions of the same file to be active at the same time. Figure 33 shows
the version tree for a typical file in a parallel development project.
112 Chapter 6 - Working with a Version Control System

Figure 33 Parallel Stream Versioning

Most parallel development environments involve nominating a branch in the version
control system as the integration branch. The integration branch contains all changes
to the project. Testing, release builds, and new development are based on the contents
of the integration branch.

All labeled lineups should consist of file versions from the integration branch. Create
a labeled lineup as the basis for builds, testing, or further development. You can also
create and build a temporary lineup. If the build completes successfully and passes
basic sanity tests, you can make the lineup available as a baseline. This process is
usually automated, and should be done on a nightly or weekly basis, depending on
your team development requirements.

The lineup of file versions in the baseline is used for subsequent development.
Development activities should not be performed on the integration branch, but
separate from it. When a development activity is finished, the changes for that activity
Understanding Version Control 113

can be merged by an integrator back onto the integration branch. This ensures that the
integration branch is strongly controlled and that only correctly working models are
used to base further development on.

Benefits:

� Baselines are controlled.

� Baselines allow for the reuse of build results.

� Provides better control over exposing changes to the development team.

Drawbacks:

� Requires more sophisticated version control system knowledge.

� There is a separate integration step involved.

� Work area configurations must be regularly updated.

Rational Rose Integration with Version Control Systems

Version Control Add-In

Rational Rose provides version control facilities such as versioning and controlled
access to model files by integrating with any SCC1-compliant version control system.

Through its Version Control add-in, Rational Rose makes the most frequently used
version control commands directly accessible from its Tools and shortcut menus.

For example, you can use the Version Control add-in to:

� Add packages to version control, which you must do before you can check out or
check in the packages.

� Check out and check in packages.

� Start your SCC-compliant version control system.

Version Control logs its actions in the Rational Rose log window, as well as in the log
file that you specify on the Log tab of the Version Control Options dialog box
(Tools’> Version Control > Version Control Options).

1. SCC (Source Code Control) is the Microsoft standard API for version control systems.
114 Chapter 6 - Working with a Version Control System

The Version Control Add-In automatically determines which version control system
you installed. To see which version control system and SCC API version the Version
Control Add-In uses, see the Version Control Options dialog box.

Note: For the Version Control Add-In to work with your version control system, the
version control system has to be configured for your environment.

ClearCase Add-In

The ClearCase Add-In provides a tight integration between Rational Rose and
Rational ClearCase. In addition to the generic commands that the Version Control
Add-In provides, the ClearCase Add-In provides:

� Reserved and unreserved checkout.

� Additional ClearCase query and browse commands.

� Support for managing files generated by the C++ and Ada Add-Ins.

� ClearCase-specific log reporting, including the Cleartool commands issued and
complete ClearCase output messages for each command.

Note: For the ClearCase Add-In to work with ClearCase, ClearCase has to be
appropriately configured for your environment.

Choosing and Activating a Version Control Add-In

When you install Rational Rose, the installation program detects whether ClearCase
or an SCC-compliant version control system is installed on your system. Based on the
version control system you installed, either the Version Control Add-in or the
ClearCase Add-In is activated on your system.

If you install or change your version control system after you install Rational Rose,
you must ensure that the appropriate add-in is activated. In addition, ensure that only
one of the version control add-ins is active at a time. Because the Version Control and
ClearCase add-ins use many of the same commands, you may receive error messages
or unpredictable results if both are activated.

To activate or deactivate a version control add-in, click Add-In Manager on the Add-Ins
menu, and click the add-in you want to activate or deactivate.

Note: If you use Rational ClearCase for version control, we recommend that you
activate the ClearCase Add-In, even though you can also use the Version Control
Add-In in the Windows NT or Windows 2000 environment. The ClearCase Add-In
provides a much tighter integration and provides you with direct access to many
ClearCase commands from within Rational Rose.
Rational Rose Integration with Version Control Systems 115

Using Rational ClearCase

About ClearCase

ClearCase is a comprehensive software configuration management system. It
manages multiple variants of evolving systems, tracks which versions were used in
software builds, performs builds of individual programs or entire releases according
to user-defined version specifications, and enforces site-specific development policies.

These capabilities enable ClearCase to address the critical requirements of
organizations that produce and release software, namely:

� Effective development. ClearCase enables users to work efficiently, allowing them
to fine-tune the balance between sharing each other’s work and isolating
themselves from destabilizing changes. ClearCase automatically manages the
sharing of both source files and the files produced by software builds.

� Effective management. ClearCase tracks the software build process so that users
can determine what was built and how it was built. Further, ClearCase can
instantly recreate the source base from which a software system was built,
allowing it to be rebuilt, debugged, and updated -- all without interfering with
other programming work.

� Enforcement of development policies. ClearCase enables project administrators to
define development policies and procedures, and to automate their enforcement.

At its core, ClearCase has a secure data repository. It contains data that is shared by all
users and includes current and historical versions of source files, along with derived
objects built from the sources by compilers, linkers, etc.

In addition, the repository stores detailed accounting data on the development
process itself, such as who created a particular version, what versions of source went
into a particular build, and other relevant information.

Conceptually, the data repository is a globally accessible, central resource. The
implementation, however, is modular. Each source (sub)tree can be a separate
versioned object base (VOB). VOBs can be distributed throughout a local area
network, accessed independently, or linked into single logical tree.

Versioned Object Bases (VOBs)

ClearCase development data is organized into any number of versioned object bases
(VOBs). Each VOB provides permanent storage for all the historical versions of all the
source objects in a particular tree -- the right versions of the development objects
appear, and all other versions are hidden.
116 Chapter 6 - Working with a Version Control System

A version-controlled object in a VOB is called an element. Its versions are organized
into a version tree structure with branches and subbranches.

Figure 34 Version Controlled Object (VOB) Tree Structure

Figure 34 shows branches that have user-defined names to indicate their role in the
development process. All versions have integer ID numbers. You can assign version
labels to important versions to indicate development milestones, such as a product
release.

ClearCase Views

Users access the ClearCase repository through views. A view is an isolated virtual
work area that provides dynamic access to the entire data repository. The changes
being made to a source file in a particular view are invisible to other views. Software
builds performed in a view do not disturb the work taking place in other views.

Working in views, ClearCase users access version-controlled data using standard path
names and their accustomed commands and programs. The view accesses the
appropriate data automatically and transparently.

A view’s isolation does not render it inaccessible. A view can be accessed from any
host in the local area network. A view can be shared by several users working on a
single host or on multiple hosts.
Using Rational ClearCase 117

Configuring ClearCase for Rational Rose

By using a view model combined with a virtual file system, ClearCase allows users to
specify the lineup of file versions with which they want to work. (A configuration
specification, or config spec, controls the lineup used for a particular view.) Rational
Rose can see the files in the current view as if they were stored on a regular
(non-ClearCase) file system.

Rational Rose specifies the set of files that make up the model, and ClearCase
provides the versions of these files based on the view’s config spec. A config spec is a
set of rules that determines which files are in a view.

To add files to version control, save the model to a view directory that is not
view-private.

ClearCase allows you define a new element type, including specifying the merge and
differencing tool that should be used on files of the new type. Rational Rose uses this
feature to define an element type that applies to all Rational Rose files under version
control. With this element type defined, all new Rational Rose files placed into a VOB
are associated with the file type, and use Model Integrator as their default merge and
differencing tool. (For more information about Model Integrator, see Chapter 5.)

Steps for Setup

To configure your ClearCase environment to work with Rational Rose:

1 Create and mount a ClearCase VOB (for example, ProjectRose).

Note: Create VOBs and views directly in ClearCase (outside of Rational Rose).

2 Create a ClearCase view to provide access to the VOB you created. If you use
ClearCase on Windows, you must map the view to an appropriate Windows NT or
Windows 2000 drive (for example, z:\)
118 Chapter 6 - Working with a Version Control System

3 Create all necessary views, prepare the model for team development, and organize
the model in to controlled units.

4 To create the rose_unit element type in the VOB(s) where you store model files, do
one of the following:

If you are using Rational Rose in the Windows NT or Windows 2000 environment:

❑ In a ClearCase command prompt window, change the directory to point to a
drive and path representing a view and the VOB where your model files are
located.

❑ Create the element type in this VOB, by typing:

cleartool mkeltype -supertype text_file -manager _rose -c "Model files" rose_unit

If you use Rational Rose in a Unix environment:

In Rational Rose, click Tools > ClearCase > Setup VOB for Rose Units to add the
rose_unit element type and type manager to the VOB.

Using Microsoft Visual SourceSafe

Microsoft Visual SourceSafe (VSS) stores and retrieves files on your local disk. Each
VSS project has a working folder specified for it. Rational Rose saves model elements
to, and loads elements from this working folder. VSS then checks those local files in to
and out of its repository.

Configuring Microsoft Visual SourceSafe for Rational Rose

Steps for Setup

1 Ensure that there is a Microsoft Visual SourceSafe database available to store the
model. Create the database directly in Visual SourceSafe.

2 Since the Version Control Add-In uses the current user name to identify the
SourceSafe user, the system administrator must add you as a user before you can
use the integration. To identify the current user name, click Version Control on the
Tools menu in Rational Rose, and click Version Control Options.

3 In Microsoft Visual SourceSafe, open the database where you want to store the
model and create a project for the model. (You can start Visual SourceSafe from
within Rational Rose by clicking Version Control on the Tools menu in Rational
Rose, and then click Start Version Control Explorer.)
Using Microsoft Visual SourceSafe 119

4 Right-click the project and click Set Working Folder. Select an existing working
folder where you want to version control your model or create a new folder.

Note: If you attempt to control two files of the same name in the same Visual
SourceSafe project, but you specify different working folders for the files (for
example, c:\NewPackage.cat and c:\temp\ NewPackage.cat), Visual SourceSafe
controls the first file in the project (c:\ NewPackage.cat); it does not control the
second file (c:\temp\ NewPackage.cat). No error message informs you that the
second file was not controlled. Consequently, we strongly recommend that you
save all the files from a single project in the same working folder. Otherwise, you
may think you have controlled a file, when you actually have not done so.

5 Click Options from the Tools menu. On the Command Line Options tab, select the
Assume Project Based on Working Folder check box.

Note: If the Version Control commands on the Tools menu in Rational Rose do not
work, the SourceSafe Integration component in Visual SourceSafe may not be
installed. To install that component, start the Microsoft Visual SourceSafe setup
program. Click Add/Remove and select Enable SourceSafe Integration on the
Maintenance Mode page.

Using Version Control Features From Rational Rose

Using the Version Control Add-In on a Previously Controlled Model

If a model is currently under version control, but not through the Version Control
Add-In, you must add the controlled units to version control by using the
Add to Version Control command. If you do not add the model using this method, the
Version Control Add-In will be unaware of any of the previously controlled units. for
that model.

Note: This information applies only to the Version Control Add-In. If you use the
ClearCase Add-In, you do not have to do anything because it will be aware of any
previously controlled units.

Follow these steps to prepare a previously controlled model for use with the Version
Control Add-In:

1 Ensure that the model is not currently open in Rational Rose.

2 In your version control system, check out all the controlled units that belong to the
model. (This cannot be done through the Version Control Add-In because it does
not know that the model is under version control.)
120 Chapter 6 - Working with a Version Control System

3 In Rational Rose, open the model, load all units, and click Add to Version Control
on the Tools menu’s Version Control menu.

4 If you want to check-in the files after this operation, clear Keep Checked Out.

5 If you use Microsoft Visual SourceSafe, click Browse, search for the project, then
click OK. If all files are located in the same project, click Select All, then click OK.
Otherwise, click the check box next to each file located in the selected project, click
OK, and then repeat steps 3-5 for each set of files located in a different project.

The model is already under version control, so the Version Control Add-In only
updates the controlled units with some additional Version Control information. Now,
you can use the Version Control commands to check out and check in the units.

Adding Controlled Units to Version Control

The following procedure describes how to save a package to a file, and how to control
it in ClearCase or an SCC-compliant version control system such as Microsoft Visual
SourceSafe. You can use the same procedure to control the model file, the deployment
diagram, or the model properties.

1 Ensure that the unit that the package belongs - that is, the model file or the
enclosing package - is checked out.

2 Right-click the package in the browser or the diagram, then click
Add to Version Control.

3 A list shows all model elements that can be added to version control. The specified
packages are selected by default in the list. Ensure that you select all packages to
add to version control from this list.

4 If you use Microsoft Visual SourceSafe, ensure that the SourceSafe Project box
refers to the project that represents the working folder where the selected file units
are (or will be) located. If the box does not refer to the appropriate project, click
Browse and select the appropriate project.

Note: We recommend that you create new projects in the dialog box displayed
when clicking Browse. However, if you do, the working folder for the new project
becomes the same as the folder where you save the controlled units you are adding
to version control.

5 To keep the files checked in after this operation, clear the Keep Checked Out check
box.

6 You can also write a comment in the Comment box. Your version control system
inserts the comment as a description of the new unit. This step is optional.
Using Version Control Features From Rational Rose 121

7 You can also click Advanced to display a dialog box with additional options. This
step is optional.

This button is not available for all version control systems.

8 Click OK.

9 For each selected unit not yet saved to a file, a Save As dialog box displays. Specify
the name and storage location of the new unit (for example,
x:\ordersystem\units\user_serv.cat). You must save the file in the appropriate working
folder in Visual SourceSafe or in the appropriate ClearCase view.

10 Click Save.

Rational Rose creates a file unit from each selected package, if needed, and adds each
file to the version control system.

Note: If you use Microsoft Visual SourceSafe, the Add to Version Control command
can only handle files located in the same Visual SourceSafe project and working
folder. To add files that belong to different projects, you must repeat the
Add to Version Control command for each project.

Checking in Controlled Units

To check in a loaded controlled unit into ClearCase or an SCC-compliant version
control system, such as Microsoft Visual SourceSafe, use the following steps:

1 Right-click the unit in the browser or the diagram, and click Check In.

A list with all loaded, checked out controlled units in the current model displays.
Any units currently selected in the browser or in a diagram are selected by default
in the list.

2 Select the appropriate units.

3 Optionally, write an explanation of the check-in in the Comment box. The text you
type is stored by your version control system as history for the current check-in.

4 Optionally, click Advanced to display a dialog box with additional options.

For example, to check in an unchanged unit in ClearCase, select the
Check in even if identical option in the Advanced dialog box. If you do not select
this option when checking in an unchanged unit, you receive an error message.
(The Advanced button is not available for all version control systems.)
122 Chapter 6 - Working with a Version Control System

5 Click OK.

Rational Rose checks in the units and makes the corresponding model elements
read-only in the model.

Note: If you use the Version Control add-in, to be able to check in a controlled unit
from within Rational Rose, the unit must have been previously added to version
control from within Rational Rose using the Add to Version Control command. This
restriction does not apply to the ClearCase add-in.

If you use the Version Control Add-In with Microsoft Visual SourceSafe, the Check In
command can only handle files located in the same Visual SourceSafe project and
working folder. To check in files that belong to different projects, you must repeat the
Check n command for each project.

Checking Out Controlled Units

To check out a loaded controlled unit from ClearCase or an SCC-compliant version
control system, use the following steps:

1 Right-click the unit in the browser or the diagram and click Check Out. A list with
all loaded, checked in controlled units in the current model displays. Any units
currently selected in the browser or the diagram are selected by default in the list.

2 Select the units you want to check out.

3 Optionally, write an explanation of the checkout in the Comment box. The text you
type is stored by your version control system as history for the current check-out.

4 Optionally, click Advanced to display a dialog box with additional options.

For example, if you use ClearCase, you can make an unreserved check out with the
advanced options. (The Advanced button is not available for all version control
systems.)

5 Click OK.

Rational Rose checks out the files and makes the contained model elements
editable.

6 If Rational Rose prompts you to load the unit, click Yes.

Note: If you use Microsoft Visual SourceSafe, the Check Out command can only
handle files that are located in the same Visual SourceSafe project and working folder.
To check out files that belong to different projects, you must repeat the Check Out
command for each project.

To check out a controlled unit, the unit must have been previously added to version
control from within Rational Rose using the Add to Version Control command.
Using Version Control Features From Rational Rose 123

Undoing the Check-Out of Controlled Units

To undo the check-out of a loaded controlled unit and to load the latest checked-in
version:

1 Click Version Control on the Tools menu, and then click Undo Check Out.

A list with all loaded, checked-out controlled units in the current model displays.
Any packages currently selected in the active diagram are selected by default in
the list.

2 Select the checked-out unit.

3 Optionally, click Advanced to display a dialog box with additional options. This
button is not available for all version control systems.

4 Click OK.

5 If Rational Rose prompts you to save the changes before loading a new unit,
click No.

Note: If you use Microsoft Visual SourceSafe, the Undo Check Out command can only
handle files located in the same Visual SourceSafe project and working folder. To undo
the check-out of files that belong to different projects, you must repeat the
Undo Check Out command for each project.

Getting the Latest Version of Controlled Units

To copy the latest checked-in version of a loaded controlled unit to your Microsoft
Visual SourceSafe working folder, or dynamically access it via the ClearCase view to
load that version into the model, follow these steps:

1 Click Version Control on the Tools menu, and then click Get Latest.

A list with all loaded, checked-in controlled units in the current model displays.
Any packages currently selected in the active diagram are selected by default in
the list.

2 Select the appropriate unit.

3 Optionally, click Advanced to display a dialog box with additional options. This
button is not available for all version control systems.

4 Click Get.

5 If Rational Rose prompts you to save the changes before loading a new unit,
click No.
124 Chapter 6 - Working with a Version Control System

Note: If you use Microsoft Visual SourceSafe, the Get Latest command can only
handle files that are located in the same Visual SourceSafe project and working folder.
To get the latest versions of files that belong to different projects, you must repeat the
Get Latest command for each project.

If you use Rational ClearCase, the Get Latest command is only valid for snapshot
views. See your ClearCase documentation for more information on views.

Removing Controlled Units from Version Control

To remove a loaded controlled unit from version control, follow these steps:

1 Ensure that the unit to which the unit belongs - that is, the model file or the
enclosing package - is checked in.

2 Click Version Control on the Tools menu, and select Remove From Version Control.

A list shows all loaded controlled units under version control by the Version
Control Add-In. Any packages currently selected in the active diagram are
selected by default in the list.

3 Select the unit that you want to remove.

4 Optionally, click Advanced to display a dialog box with additional options. This
button is not available for all version control systems.

5 Click OK. The selected unit is removed from version control and its contents are
incorporated into the model, but will continue to exist as:

❑ For Microsoft Visual SourceSafe: A file in your working folder.

❑ For ClearCase: A file in your view, if you are using a snapshot view, but the file
is automatically removed from all dynamic views.

Note: If you use Microsoft Visual SourceSafe, the Remove From Version Control
command can only handle files that are located in the same Visual SourceSafe project
and working folder. To remove files that belong to different projects, you must repeat
the command for each project.

Note: To remove a controlled unit from version control from within Rational Rose, the
unit must have been added to version control from within Rational Rose, by using the
Add to Version Control command.
Using Version Control Features From Rational Rose 125

Index
Symbols
$CURDIR 71
$UNNAMED$ 83
@petal property 83

A
access violations 13, 72, 73

import 73
activating a Version Control Add-In 115
adding

controlled units to a model 60
adornments on diagrams 61
Architect 7
architect role 43
architecture, model 5
artifacts, and virtual path maps 71
Auto Advance 97
automatic merging 80
automating model validation 30
AutoMerge 92

B
base model 80
baseline 113
basic objects 82
browser view (Model Integrator) 78

C
cat files 56
Check Merge 84, 102
Check Model 72
checking in controlled units 122
checking out controlled units 123

ClearCase
about 116
add-in 115
and Model Integrator 86, 118
config spec 118
configuring 118
views 117

command line
access to Model Integrator 107
starting Model Integrator 87

compare mode 77
comparing 80
comparing models

about 77, 80
conflicts 81
differences 81
loading controlled units 89
using Model Integrator 80

component instances 18
config spec 118
configuration manager role 10
configuring

ClearCase for Rational Rose 118
Microsoft Visual SourceSafefor Rational

Rose 119
workspaces 26

conflicts 81
Auto Advance 97
viewing 96

contacting Rational technical support 17
context field (Model Integrator) 92
contributors 77, 92

about 80
accepting changes from 99
disabled by semantic checking 102
file types 80
selecting 88
127

controlled units 55
access violations 72
adding to a model 60, 66
adornments 61
cat files 56
checking into version control 122
checking out of version control 123
contents 57
creating 59
getting latest from version control 124
hierarchy 57
icons 60
importing 66
loading 59, 89
loading manually 60
logical packages 56
manually loading 60
merging 66
model workspaces 60
moving 48
opening a model 59
organizing 74
partitioning

strategies 74
partitioning a model 27
prc files 56
protecting 64
read only 64
reloading 60
removing from version control 125
sharing 57
splitting 65
sub files 56
uncontrolling 66
undoing check out 124
unloading 61, 89
unresolved references 72
use-cases 49
version control of 55
virtual path maps 67
write-enabling 65
write-protect 65
write-protecting 64

correcting merge errors 103
creating

controlled units 59
labels and lineups 28
model workspace 63
processors and component instances 17
virtual path maps 69

D
defining subsystem interfaces 15
deployment view 56
developing

current projects 1
for reuse 2
strategy 1

diagram objects 82
differences 81

Auto Advance 97
changing nodes 100
viewing 96

E
element type 118
export control 73

F
file types

cat 56
for contributors 80
mdl 107
petal 58, 83
prc 56
prp 56
ptl 58
sub 56
wsp 64

file-based version control 110
128 Index

G
getting latest version of controlled units 124

I
icons, controlled units 60
import relationship 73
importing controlled units 66
integrating change 30
integration 110
Integrator 8
interfaces, and subsystems 15

L
labels 28
lineups 28, 29

about 111
loading a model workspace 64
loading controlled units 59, 89

manually 60
model workspaces 60
opening a model 59
reloading 60

M
manually loading controlled units 60
mechanism 82
merge mode 77
merging

controlled units 66
file types 80

merging models
about 77, 80
accepting changes from contributors 99
automatic merge 80
AutoMerge 92
Check Merge 102
Check Merge function 84
conflicts 81
correcting merge errors 103
differences 81

loading controlled units 89
partial merge 105
preparing for 88
selective merge 80
semantic checking 84
using subtree mode 101
whole models 87
without a base model 106

Microsoft Visual SourceSafe 119
model

unresolved references 72
Model Architect 7
model architecture

about 5
Model Integrator 51

about 77
accepting changes from contributors 99
and ClearCase 86, 118
Auto Advance 97
automatic merge 80
AutoMerge 92
base model 80
basic objects 82
browser view 78
changing nodes with differences 100
Check Merge 102
Check Merge function 84
comparing models 80
conflicts 81
contributors 80
correcting merge errors 103
diagram objects 82
differences 81
mechanism 82
merging models 80
merging models without a base model 106
partial merges 105
property view 79
quids 83
references 83
resolving subunit loading errors 91
searching for nodes 95
selecting contributors 88
selective merge 80
semantic checking 83, 84, 102
Index 129

setting new context for subunits 92
starting 87
subtree mode 101
text views 79
unnamed objects 83
user interface 78
using from a command line 107
view objects 82
viewing a parent node 97
viewing a single model 107
viewing conflicts 96
viewing differences 96
viewing references to nodes 98
virtual path maps 91

Model Manager 7
model properties

controlled units 56
using virtual path maps 71

model validation 30
model workspaces

about 61
creating 63
loading 64
loading controlled units 60
saving 64

Modeler/Developer 8
modelint file.mdl 87, 107
models 80

base 80
contributors 80
merging 80
selective merging 80

moving controlled units 48
moving the contents of a controlled unit 65

N
nodes

about 81
changing, with differences 100
searching for 95
viewing a parent 97
viewing references to 98

O
objects

basic 82
diagram 82
view 82

opening a model 59
organizing controlled units 74

P
packages

access violations 13
as subsystems 10
component 56
logical 56
partitioning a model 27
sharing 57

parallel development 50
parallel stream versioning 112
partial merges 105
partitioning

model 27
partitioning a model 5, 58, 74
path maps

artifacts 71
defining 70
wildcards 70

path maps, See virtual path maps
petal file format 58
planning

developing a strategy 1
team development 1

prc files 56
project level processors 17
property view (Model Integrator) 79
protecting controlled units 64
prp files 56
ptl files 58

Q
quids 83
quidu 83
130 Index

R
Rational ClearCase Multi-Site 52
Rational technical support

contacting 17
read only controlled units 64
reference a controlled unit 57
references

checking 72
in Model Integrator 83
unresolved 61, 66

releasing subsystems 19
reloading controlled units 60
removing controlled units from version

control 125
resolving subunit loading errors 91
resources 16
reusing artifacts 2
roles 6

architect 43
configuration manager 10
source control administrator 9
team size 6

S
saving a model workspace 61, 64
SCC version control systems 114
searching for nodes 95
selective merge 80
semantic checking 83, 84, 85

limitations 85
performing 102

setting
new context for subunits 92

Show Access Violations 13, 73
single stream versioning 112
source control administrator role 9
splitting

controlled unit 65
model into subsystems 20

starting Model Integrator 87
strategies for partitioning a model 74
sub files 56

subsystem level processors 18
subsystems

components in 15
defining interfaces 15
releasing 19
splitting a model 20

Subtree Mode 101
subunits 59

T
tasks

source control administrator role 9
team development

architect role 43
configuration manager role 10
developing for reuse 2
developing strategies 1
heuristics 52
parallel development 50
planning 1
roles 6
source control administrator role 9
support using Rational Rose 2
team size 6
typical roles 6

text views (Model Integrator) 79

U
uncontrolling controlled units 66
undoing check out 124
unit testing 17
unloading controlled units 61, 89
unnamed objects 83
unresolved references 61, 66

checking for 72
URLs 71
use-cases

controlled units 49
using Model Integrator form a command

line 107
Index 131

V
validating a model 30
version control

about 109
activating 115
adding controlled units 121
baseline 113
checking in controlled units 122
checking out controlled units 123
development activity 110
development concepts 110
file-based 110
getting latest controlled units 124
integration 110
lineups 111
removing controlled units 125
setting up 27
single stream 112
types 110
uncontrolling controlled units 67
undoing check out 124
view-based 110
working in isolation 111
write-protecting controlled units 64

Version Control Add-In 114
versioned object base 116
versioned object base, see VOB
view

version control system 110
view objects 82
view-based version control 110

viewing
conflicts 96
differences 96
moved model elements 97
parent node 97
references to nodes 98
single model file (Model Integrator) 107

views
ClearCase 117

views (Model Integrator) 78
virtual path maps

about 67
creating 69
for artifacts 71
for model properties 71
how stored 72
in Model Integrator 91
using another path map 70
using wildcards 70
wildcards 70

VOB 116
VSS 119

W
working in isolation 111
workspaces

configuring 26
model 61

write enabling a controlled unit 65
write protecting controlled units 64
write-protect a controlled unit 65
wsp files 64
132 Index

	Guide to Team Development
	Preface
	Audience
	Using this Guide
	Other Resources
	What to Read Next
	Limitations of this Document
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Understanding Team Development
	Contents
	Planning for Team Development
	Developing a Strategy
	Current Projects
	Developing for Reuse

	How Rational Rose Supports Team Development

	Establishing a Model Architecture and Process for Team Development
	Model Architecture and Process
	Establishing Roles and Responsibilities
	Typical Roles
	Roles Vary Based on Team Size
	Model Architect
	Model Manager
	Modeler/Developer
	Model Integrator
	Source Control Administrators
	Configuration Managers

	Developing a Model Architecture
	Understanding Subsystems
	One Model Versus Multiple Models
	Mapping the Architecture to Subsystems
	Checking Package Dependencies for Completeness
	Show Access Violations
	Determine the External Dependencies for a Package

	Checking if a Subsystem is Self-Contained
	Defining Subsystem Interfaces
	Configuring Subsystem Components
	Components in Subsystems

	Providing Support for Unit Testing
	Using Property Sets for Build Settings
	Creating Processors and Component Instances
	Project Level Processors
	Subsystem Level Processors
	Component Instances

	Preparing and Releasing Subsystems
	Subsystem Supplier
	Subsystem Consumer

	Splitting a Model into Subsystem Models
	Should you Split the Model Before Adding to Version Control?
	Splitting a Model not in Version Control

	Splitting a Model Under Version Control

	Managing/Administering a Model
	Configuring Compatible Workspaces
	Configuring a Version Control System and Repository
	Partitioning the Model into Controlled Units
	Save Model to Local Work Area
	Adding the Model to Version Control
	Defining Developer Work Areas
	Creating Labels and Lineups
	Manipulating the Version Control Repository

	Developing/Implementing a Model
	Setting up Version Control
	Setting up Developer Work Areas
	Getting a Specific Lineup of a Model
	Opening a Model Under Version Control
	Working under Version Control
	Comparing and Merging Model Elements
	Promoting Changes for Integration
	Integrating Changes
	Automating Model Validation

	Best Practices
	Contents
	Goals of Team Development
	Sharing Within a Team Environment
	Protecting Configuration Items From Unintentional Changes
	Overwriting a Modification
	Adding Dependency Issues

	Managing Relationships Between Configuration Items
	Managing and Delivering Configuration Items
	Improving Efficiency in Team Development
	Model Architect Role

	Recommendations
	Source Control Fundamentals
	Preempting Conflicts
	Managing Dependencies
	Labeling
	When Merging is Necessary

	Advanced Concepts and Heuristics
	Moving Controlled Units
	Considerations
	Heuristics

	Parallel Development
	Model Integrator
	Using Rational ClearCase Multi-Site
	Additional Heuristics for Team Development

	Dividing a Model into Controlled Units
	What is a Controlled Unit?
	What Can be a Controlled Unit
	How Controlled Units are Related and What They Contain

	Working with Controlled Units
	Creating Controlled Units
	Loading, Reloading, and Unloading Controlled Units
	Creating and Using Model Workspaces
	Understanding Workspaces
	How a Saved Model Differs from a Model Workspace
	Workspace Scenario
	Creating and Saving a Model Workspace
	Loading a Model Workspace

	Protecting Controlled Units
	Write-Protecting a Controlled Unit
	Write-Enabling a Controlled Unit

	Splitting a Controlled Unit
	Merging Controlled Units
	Adding Controlled Units to a Model (Importing/Loading)
	Uncontrolling Controlled Units

	Creating Virtual Paths to Controlled Units
	Understanding Virtual Path Maps
	How Virtual Paths Work
	Creating Virtual Path Maps
	Defining a Path Map Relative to the Location of the Model File
	Defining a New Path Map Using Another Path Map Symbol
	Defining a Path Map with Wildcards
	Using Virtual Paths for the Value of a Model Property
	Using Path Maps for Other Artifacts
	Where Virtual Path Maps are Stored

	Checking References and Access Violations
	Check Model
	Show Access Violations

	Organizing Controlled Units for Teams
	Suggested Strategies

	Comparing and Merging Models
	Contents
	About the Model Integrator
	Model Integrator Interface
	Browser View
	Property View
	Text View
	Other Interface Features

	Contributors
	Base Model
	Comparing Models
	Merging Models
	Differences and Conflicts
	Model Files and Model Integrator
	Basic Objects
	Diagram Objects
	View Objects
	Mechanism
	Quids
	References
	Unnamed Objects
	Rational Rose Model File Versions

	Understanding Semantic Checking
	Limitations of Semantic Checking

	Memory Requirements and Performance

	Model Integrator and ClearCase
	Merging Whole Models with Controlled Subunits
	Starting Model Integrator in a ClearCase Integration

	Comparing and Merging Models
	Starting Model Integrator
	Preparing Models for Merging
	Selecting the Contributors
	Loading or Unloading Controlled Units
	Subunit Status
	Loading Subunits
	Saving Subunits
	Subunit File and Path Names
	Resolving Subunit Loading Errors
	Setting a New Context for Subunits

	Using Compare Mode
	Using Merge Mode
	AutoMerge

	Interpreting Compare and Merge Results
	Navigating Through a Model
	Searching for a Model Element
	Viewing Conflicts and Differences
	Viewing Conflicts and Differences with Auto Advance
	Viewing Model Elements that have Moved
	Viewing the Parent of a Node
	View Nodes Referenced by this Node

	Accepting Changes from Contributors
	Deciding Which Contributor to Select
	Two Ways to Accept Changes

	Changing Nodes with Differences
	Reversing Changes to Nodes
	Using Subtree Mode
	Using Semantic Checking
	Disabling a Contributor Using Semantic Checking

	Checking Merged Model for Consistency
	Correcting Merge Errors
	Saving Results

	Performing a Partial Merge
	Merging Models Without a Base Model
	Viewing a Single Model File
	Using Model Integrator from the Command Line

	Working with a Version Control System
	Understanding Version Control
	Types of Version Control Systems
	File-Based Version Control Systems
	View-Based Version Control Systems

	Version Control Development Concepts
	Development Activity
	Integration
	Lineup
	Working in Isolation

	Versioning Strategies
	Single Stream Versioning
	Parallel Stream Versioning

	Rational Rose Integration with Version Control Systems
	Version Control Add-In
	ClearCase Add-In
	Choosing and Activating a Version Control Add-In

	Using Rational ClearCase
	About ClearCase
	Versioned Object Bases (VOBs)
	ClearCase Views
	Configuring ClearCase for Rational Rose
	Steps for Setup

	Using Microsoft Visual SourceSafe
	Configuring Microsoft Visual SourceSafe for Rational Rose
	Steps for Setup

	Using Version Control Features From Rational Rose
	Using the Version Control Add-In on a Previously Controlled Model
	Adding Controlled Units to Version Control
	Checking in Controlled Units
	Checking Out Controlled Units
	Undoing the Check-Out of Controlled Units
	Getting the Latest Version of Controlled Units
	Removing Controlled Units from Version Control

	Index

