
support@rational.com
http://www.rational.com

Rational the e-development company™

Getting Started with
Rational® PurifyPlus

PART NUMBER: 800-024651-000

WINDOWS

COPYRIGHT NOTICE

Copyright 2001 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY
TO RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY
PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY
RIGHTS TO REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL
ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN
CONSENT OF RATIONAL.

U.S. GOVERNMENT RIGHTS NOTICE

U.S. GOVERNMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR
52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Purify, Purify’d, PureCoverage, Quantify, ClearQuest, and Rational Visual Test
are trademarks or registered trademarks of Rational Software Corporation in the United States and in other
countries.

Visual C++, Windows NT, Visual Studio, and Microsoft are trademarks or registered trademarks of the
Microsoft Corporation. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

U.S. PATENT NOTICE

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed under Sun Microsystems Inc.’s
U.S. Pat. No. 5,404,499. Other U.S. and foreign patents pending.

Printed in the U.S.A.

Contents
Welcome to Rational PurifyPlus .5
Rational PurifyPlus: What it does . 5

Tips for development engineers . 6
Tips for test engineers . 7

Other PurifyPlus resources . 8
Contacting Rational technical support . 9
Contacting Rational technical publications . 9

Introducing Rational Purify . 11
For Visual C/C++ developers and testers . 11

Find errors before they occur . 11
Check every component in your program. 12
Look for errors in the right places . 12
Use Purify early and often . 13

For Java developers and testers. 13
Java memory leaks?. 13
Object references that are no longer needed . 14
System resources that are not freed . 14
How Purify can help . 14

Getting started with Purify: C/C++ code. .17
The basic steps. 17

Running a C/C++ program with Purify . 17

Seeing all your errors at a glance . 20
When identical errors repeat . 21

Focusing on critical errors first . 22
Working with error data filters . 23

Analyzing Purify error data . 24

Correcting errors . 25

Checking code coverage . 26

Comparing program runs . 27

Saving Purify data. 28

Advanced features for C/C++ users . 29
Customizing instrumentation . 29
Using just-in-time debugging . 30
iii

Using Purify standalone . 31
Testing with Purify’s command-line interface . 32
Extending error checking with Purify API functions . 33
Using Purify in an integrated environment . 33

Getting started with Purify: Java code . 37
The basic steps . 37

Running your Java program with Purify . 38

Taking snapshots of memory use . 39

Comparing snapshots to identify problem methods . 40

Diagnosing leaks with the Function List View tab . 42

Focusing on a method with the Function Detail window . 43

Looking for unneeded objects . 44
Getting from a suspicious method to its objects . 44
Examining object details . 45
Looking at all allocated objects together . 45

Saving Purify memory profiling data . 47

Advanced features for Java users. 47
Highlighting methods that share key attributes. 47
Focusing your data . 48

Index . 51
iv Contents

Welcome to
Rational PurifyPlus
Rational PurifyPlus: What it does

Rational® PurifyPlus brings together three essential tools that help you
develop high-quality applications more efficiently:

■ Rational Purify® An automatic error detection tool for finding
runtime errors and memory leaks in every component of your
program.

■ Rational Quantify® A performance analysis tool for pinpointing
performance bottlenecks so your program can run faster.

■ Rational PureCoverage® A code coverage tool for making sure your
code is thoroughly tested before you release it.

These tools are easy to use, yet provide invaluable information to help
your team develop faster and more reliable applications in Visual
C/C++, Visual Basic, Java, or any language that Microsoft
Visual Studio.NET supports.

If you’re developing code in Visual Studio, invoke the PurifyPlus tools
from the Visual Studio menus. You can use Purify, for example, along
with your Visual Studio debugger and editor to save time correcting
a software defect. You can also use the tools as standalone applications
when you don’t need all the resources of Visual Studio.

If you’re testing software, incorporate the PurifyPlus tools into existing
test scripts and harnesses to automate error detection, code-coverage
monitoring, and performance testing. Use the tools from the beginning
with your nightly tests so that you can easily spot regressions as soon as
they occur.

Do yourself a favor. Don’t waste days looking for problems that
PurifyPlus can pinpoint in seconds. And don’t release a product with
hidden bugs that these tools can detect easily. Consistent use of the
PurifyPlus tools, from the start of development until you ship, will
provide solid benefits both to you and to your customers.
5

Tips for development engineers

Here are some tips for using PurifyPlus to develop fast, reliable code.

Find memory errors early

Use Purify with Visual Studio to
pinpoint hard-to-find bugs.
Memory errors don’t always show
up right away, but they’re the
ones that will make your program
crash someday.

Improve code coverage

You haven’t Purify’d® code you
haven’t run. Use PureCoverage
from within Purify to make sure
you're exercising all your code
during pre-checkin testing—just
click Coverage, error, and leak data
in Purify’s Run Program dialog.

PureCoverage can tell you if your
tests are covering your code
sufficiently for Purify to find all
the memory errors.

Prevent performance
bottlenecks

Whenever you write new code or
modify existing code, use Quantify
right away to catch any
incremental performance losses
before they turn into bottlenecks.

Quantify gives you the information
you need to write more efficient
code. It can turn everyone on your
team into a performance engineer.

Analyze code structure

A common reason for writing new
code is to improve the performance
of a program. But how can you
effectively improve the
performance of code that might
have been developed over several
years by many different people?

Use Quantify not only to find
performance bottlenecks, but also
to learn more about how your code
is structured. It will help you to
make effective performance
improvements.

Purify

PureCoverage

Quantify
6 Welcome to Rational PurifyPlus

Tips for test engineers

Here are some tips for using PurifyPlus to guarantee quality software.

Find the internal errors in
your code

For best results, run all your tests
on a Purify’d version of your
program. This will find the
internal errors that your external
functionality tests can’t uncover.

If performance
improves . . .

An unexpected improvement in
performance can indicate that a
large part of your code is no
longer being exercised. Compare
the most recent PureCoverage
results with a previous run to see
if you’re still getting the same
level of coverage.

Test all your code daily

Use PureCoverage every day to
make sure you’re testing all your
code. With ongoing coverage
feedback, you can be sure your
tests are keeping pace with your
code development.

If coverage goes down . . .

If code coverage drops, your
existing tests may not be exercising
all your code. Or the new code
might have introduced a defect
that’s causing a large section of
code not to be tested. Use an
automated testing tool like
Rational Robot or Rational Visual
Test® to write test cases that
exercise the new code.

If performance drops . . .

A sudden drop in performance is
probably caused by the most recent
code checked in. Let Quantify
show you which parts of your
program became slower compared
to a previous run that had
acceptable performance.

Purify

Quantify

PureCoverage
Rational PurifyPlus: What it does 7

Other PurifyPlus resources

Additional information is available for all the PurifyPlus tools:

The online Help for Purify, Quantify, and PureCoverage contains
detailed information about using the products and interpreting the data
they collect.

For information about Rational Software and other Rational products,
go to http://www.rational.com.

To highlight performance bottlenecks, read
Getting Started with Rational Quantify

To avoid shipping untested code, read
Getting Started with Rational PureCoverage

To use Purify to automatically pinpoint hard-to-find bugs in
C/C++ and Java code, read the rest of this manual
8 Welcome to Rational PurifyPlus

Contacting Rational technical support

You can contact Rational technical support by email at
support@rational.com.

You can also reach Rational technical support over the Internet or by
telephone. For contact information, as well as for answers to common
questions about Purify, Quantify, and PureCoverage, go to
http://www.rational.com/support.

Contacting Rational technical publications

To order copies of Rational publications, go to the Rational Press at
http://www.rational.com/support/documentation/index.jsp#press.

Please send any feedback about Rational documentation to the Rational
technical publications department at techpubs@rational.com.
Other PurifyPlus resources 9

10 Welcome to Rational PurifyPlus

Introducing
Rational Purify
Whether you’re working in Visual C/C++ or Java, Rational® Purify® can
save you time and improve the quality of your code.

For Visual C/C++ developers and testers

Run-time memory errors and leaks are among the most difficult errors
to locate and the most important to correct. The symptoms of incorrect
memory use are unpredictable and typically appear far from the cause
of the error. The errors often remain undetected until triggered by some
random event, so that a program can seem to work correctly when in
fact it’s only working by accident.

That’s where Purify can help you get ahead. Purify provides:

■ Fast, comprehensive run-time error detection for Visual C/C++
programs

■ Error checking even when the source is not available

■ Code-coverage data that pinpoints untested code

Purify automatically integrates into Microsoft Visual Studio and
requires no special builds. You can use Purify without changing the
way you work.

Find errors before they occur

Purify detects the following kinds of memory errors—and many
others—before they actually occur, so that you can resolve them before
they do any damage:

■ Array bounds errors

■ Accesses through dangling pointers

■ Uninitialized memory reads

■ Memory allocation errors

■ Memory leaks
11

More information? For a complete list of the errors that Purify detects,
select Purify Messages from the Purify Help menu.

Check every component in your program

Software development today is component based. To deliver quality
applications on time, you not only need to make sure your own code is
error free, you also need a way to check the components your software
uses—even when you don’t have the source code. Errors that occur
within a component may be the result of your code supplying the
component with unexpected data; only Purify can detect such errors so
that you can correct your use of the component and improve the
reliability of your application.

Purify can check every component in your program, even in complex
multi-threaded, multi-process applications, including:

■ DLLs, including Windows DLLs and Microsoft Foundation Class
Library DLLs

■ Visual C/C++ components embedded within Visual Basic
applications, Internet Explorer, Netscape Navigator, or any
Microsoft Office application

■ Microsoft Excel and Microsoft Word plug-ins

■ COM-enabled applications using OLE and ActiveX controls

Purify checks calls to Windows API functions, including GDI, Internet
services, system registry, and COM and OLE interface API functions. It
also validates parameters such as memory handles and pointers.

Look for errors in the right places

In addition to finding the critical errors that occur when you exercise
your program, Purify can also tell you how thoroughly you’ve covered
your program’s code. With PurifyPlus, Purify can collect coverage data
automatically for every run, report exactly how much of your code
you’ve checked, and identify untested lines and functions. Using this
information you can be sure you’re finding the errors in all your code,
and that you won’t be caught off-guard by undiscovered problems in
lines or functions that you overlooked.

More information? Look up coverage data in the Purify online Help
index.
12 Introducing Rational Purify

Use Purify early and often

For maximum benefit, start using Purify as soon as your code is ready
to run and continue using it regularly throughout your development
cycle, especially for:

■ Code check-in. Reduce the risk that bugs in your code might impact
other code modules.

■ Nightly tests. Incorporate Purify into your test harness to verify that
modules work together and to expose code dependencies and
collisions. Collect coverage data for every run to make sure that
your tests are exercising any code that has been added or modified.

■ Acceptance tests. Validate third-party code or code from other
development groups before incorporating it into your application.

By using Purify early and often, you’ll release clean, reliable
products—on time.

More information? PurifyPlus tools help you improve not only your
application’s reliability, but also its performance. Using Quantify, you
can pinpoint and eliminate the bottlenecks that prevent your
application from operating at its greatest potential speed. Read Getting
Started with Rational Quantify for an introduction to Quantify’s features.

For Java developers and testers

Java memory leaks?

Yes, there are Java memory leaks, and they can be serious.

The Java garbage collector automatically removes from memory objects
that your program no longer needs, and so avoids most of the memory
leaks that occur in other programming contexts. But Java applications
can still consume more and more memory over time. The causes for this
can be extremely difficult to track down. Purify makes it much easier to
find and fix them.

There are two major categories of leaks in Java: object references that
are no longer needed, and system resources that are not freed.
For Java developers and testers 13

Object references that are no longer needed

Very often, Java code retains references to memory that it no longer
needs, and this prevents the memory from being garbage collected.
Java objects typically include references to other objects, so a single
object can hold an entire tree of objects in memory. Problems occur, for
example, when you:

■ add objects to arrays and forget about them.

■ do not release references to an object until the next time you use the
object. A menu command, for example, can create an object and not
release references to the object until the next time the command is
called, which may never happen.

■ change an object’s state while some references still reflect the old
state. For example, when you store properties for a text file in an
array and then store properties for a binary file, some fields, such as
“number of characters,” continue to hold memory that is no longer
needed.

■ allow a reference to be pinned by a long-running thread. Setting the
object reference to NULL does not help; the memory won’t be
garbage collected until the thread terminates or goes idle.

System resources that are not freed

Java methods can also allocate heap memory that exists outside of Java
instances, such as resources for windows and bitmaps. Java often
allocates these resources by calling C or C++ routines using Java Native
Interface (JNI) calls.

How Purify can help

Purify helps you find these Java memory leaks by reporting the
methods, classes, and objects that are responsible for monopolizing
large chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems.
Once you’ve located them, you can eliminate references to unneeded
objects, or force garbage collections in key areas of your code. To free
system resources, check your Java toolkit for help. For example, the
dispose() method in Sun Microsystem’s Abstract Windowing Toolkit
(AWT) frees the system resources used by the Frame, Dialog, and
Graphics classes.
14 Introducing Rational Purify

More information? In addition to detecting excessive memory
consumption with Purify, you can also improve your application’s
performance and increase your confidence in your testing using the
other PurifyPlus tools, Quantify and PureCoverage. Quantify can help
you find the bottlenecks that slow down your code, and PureCoverage
can show you the areas in your code that your tests are not reaching.
Read Getting Started with Rational Quantify and Getting Started with
Rational PureCoverage to see how these tools can help you.
For Java developers and testers 15

16 Introducing Rational Purify

Getting started with
Purify: C/C++ code
The basic steps

With Rational® Purify®, you can deliver more reliable C/C++ code in a
few easy steps:

1 Run your program with Purify to collect:

❑ Error data

❑ Code coverage data

2 Analyze the error data and correct your source code.

3 If you’ve collected coverage data, analyze it to find any parts of your
code that you have not Purify’d®.

4 Rerun your program with Purify.

This chapter shows you how to use Purify in Microsoft Visual Studio.
But you can also use Purify independently of Visual Studio. Read
“Using Purify standalone” on page 31 of this guide, and “Testing with
Purify’s command-line interface” on page 32.

Running a C/C++ program with Purify

Open your project in Visual Studio, then engage Purify from the Purify
toolbar.

Set Purify to collect coverage data, as well as checking for errors and
memory leaks.

Click to engage Purify

Click to collect
coverage data
17

Build and execute your program using commands from the
Visual Studio Build menu. To get the maximum level of detail in Purify
error and coverage data, build your program with debug and relocation
data.

More information? For information about building programs with
debug and relocation data, look up debug data in the Purify online Help
index.

Purify copies the program and each library the program calls, then
instruments the copies using Object Code Insertion (OCI) technology.
The instrumentation process inserts instructions that validate every
read, write, and memory allocation and deallocation. If you’re
collecting coverage data, Purify also inserts instructions that increment
counters when you exercise specific lines and functions.

Purify reports its progress as it instruments each module.

Purify instruments each module at a default instrumentation level, but
you can customize the instrumentation level to provide more or less
detail for special cases.

More information? For an explanation of instrumentation levels and
how to use them, read “Customizing instrumentation” on page 29 of
this guide. For more detail, look up instrumenting in the Purify online
Help index.

Purify caches the instrumented copy of each module. When you rerun a
program, Purify saves time and resources by using the cached modules,
re-instrumenting only the ones that have changed since the previous
run.

The instrumentation
level for error checking

and coverage monitoring
for each module

The module that Purify is
currently instrumenting
18 Getting started with Purify: C/C++ code

As you exercise your program, Purify detects run-time errors and
memory leaks and displays them in an Error View tab in the Purify
Data Browser window.

More information? Look up error view in the Purify online Help index.

Note: If you’re debugging client/server and multi-process applications,
you can debug several processes and see the error reports for each
running application simultaneously. To do this, run each process in a
separate instance of Visual Studio with Purify engaged. Alternatively,
you can use the standalone Purify user interface. See “Using Purify
standalone” on page 31 of this guide.

Purify Error View tab,
Data Browser window
Running a C/C++ program with Purify 19

Seeing all your errors at a glance

Purify displays error and warning messages about run-time errors and
memory leaks, and informational messages about the progress of your
program’s execution.

When you exit the program, Purify reports memory leaks. In addition
to memory leaks, you can set Purify to report memory in use at exit and
handles in use at exit.

More information? Look up error and leak settings in the Purify online
Help index.

Color-coded icons show message severity:
informational warning error

Acronyms like ABW
identify message type

For a description of a
message, right-click

the message, then
select Describe
20 Getting started with Purify: C/C++ code

When identical errors repeat

An error often repeats many times in a program, particularly if it occurs
inside a loop. To provide a concise overview of a program’s errors,
Purify by default displays each error message only once, the first time
an error occurs, and then updates a counter whenever the error repeats.

More information? If you want Purify to display each occurrence of a
message individually, instead of reporting counts, you can change the
default setting. Look up error and leak settings in the Purify online Help
index.

This uninitialized memory
read (UMR) occurred 17 times
Seeing all your errors at a glance 21

Focusing on critical errors first

A large program can generate hundreds of messages. To focus on the
most critical error messages quickly, create filters to hide all other
messages from the display.

You can filter messages individually, or you can filter them based on
their type and source. Consider hiding all informational messages, for
example, or all messages originating from a specific file.

Once created, error filters apply to the current run and to all future runs
of the program until you disable them. Disabling a filter causes hidden
messages to be redisplayed in the error view.

An unfiltered error view displays all the
messages from the program

A filtered error view displays only
the messages you want to see

Right-click a message
and select QuickFilter

to hide the message
immediately

Or select Create Filter
to define a set

of filtering criteria
22 Getting started with Purify: C/C++ code

Working with error data filters

Purify filters are very flexible. Click the Filter Manager tool to create
individual filters or groups of filters, and to apply them to specific
programs or modules. You can also create global filters that apply to all
programs and modules. And you can share filters, which Purify saves
as .pft files, with other members of your team.

More information? Purify provides filters for coverage data as well as
for error data. Look up filtering data in the Purify online Help index.

In addition to filtering, you can also use Purify’s PowerCheck feature to
focus on specific modules and simultaneously minimize
instrumentation time. For information about the PowerCheck feature,
read “Customizing instrumentation” on page 29 of this guide.

Click to enable or
disable filters

The Filter Manager
creates a filter group for

each program you run

The checked filters apply to the selected
program until you disable or delete them

Drag and drop filters to
move or copy them
Focusing on critical errors first 23

Analyzing Purify error data

You can expand Purify’s messages to pinpoint where errors occur and to
obtain diagnostic information for understanding why they occur.

Here’s an example of an expanded ABW (array bounds write) error
message:

The level of detail provided in call stacks depends on the availability of
debug and relocation data. Even if you build your program in release
mode, you can still get the highest possible level of detail. For more
information, look up debug data, release builds in the Purify online Help
index.

You can customize the format of Purify’s messages. For example, you
can increase the number of lines of source code that are displayed, or
include instruction pointers and offsets to make locating errors easier.

More information? Look up preferences, source code in the Purify online
Help index.

The location in memory
where the error occurs

Call stack showing
the function calls

leading to the error

Call stack showing the
function calls leading to

the allocation of the
memory block

associated with the error

Flag indicating the line
where the error occurs
24 Getting started with Purify: C/C++ code

Correcting errors

Purify makes it easy to correct errors.

More information? Look up source code in the Purify online Help index.

Double-click
the line where

the error occurs

Purify opens the
source code in the

editor, positioned at
the exact location

of the error
Correcting errors 25

Checking code coverage

To make sure that you find errors in your code wherever they occur, use
Purify to monitor code coverage each time you run your program. With
Purify’s coverage feature, you can check that you’re exercising all your
code, especially those parts that have recently been added or modified.

Purify displays coverage data in views that you can sort to find the
largest gaps in your testing.

Purify can also display line-by-line coverage information marked
directly on a copy of your code in an Annotated Source window. The
color of each line of code indicates whether it is tested, untested, or
partially tested, so that you can tell at a glance where you need to
tighten up your testing.

Click any column
header to sort the

coverage data

The Module View tab
groups functions
based on module

The Function List View tab lists
all functions in the program
across modules and files

The File View tab
groups functions
based on source file

Double-click a
function to display it

in an Annotated
Source window
26 Getting started with Purify: C/C++ code

Based on the coverage data, refine your approach to exercising your
code to make sure you are testing all the critical lines and functions. If
you are testing manually, try different menu commands, or enter new
values for variables. If you are testing automatically, revise or add test
scripts.

More information? Look up coverage data in the Purify online Help
index.

Comparing program runs

When you are satisfied that you’ve made good progress in eliminating
errors, and that you can exercise the parts of your program that most
need testing, rebuild. Then rerun the program under Purify.

After rerunning your corrected program, you can easily compare runs
to verify your corrections. Purify’s Navigator window, which you can
display from the Purify View menu, helps you keep track of multiple
runs and multiple programs.

This line was
exercised once

This line was not
exercised

Click to display information
about color codingThe Annotated Source

window displays
coverage information in

a copy of your code
Comparing program runs 27

More information? You can compare coverage data from different runs
using the Compare Runs tool . Look up comparing runs in the Purify
online Help index.

Saving Purify data

You can save Purify error data from a run and analyze it later, share it
with other members of your team, or include it in reports. Purify can
save data in the following formats:

■ Purify data files (.pfy, .pcy). The file extension Purify uses
depends on whether you are saving error data alone, or error and
coverage data. You can save merged coverage data to PureCoverage
data files (.cfy).

■ ASCII text files (.txt). You can process this data with scripts or use
it in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

A color-coded icon
indicates the maximum

message severity
displayed in the

error view for the run

The Navigator window groups runs by program
28 Getting started with Purify: C/C++ code

Advanced features for C/C++ users

Customizing instrumentation

Purify uses one of the following error-checking instrumentation levels
as the default for each module, depending on the module’s size and the
availability of debug and relocation data:

■ Precise instrumentation, which provides full run-time error
detection to pinpoint problems in any part of your program

■ Minimal instrumentation, which improves Purify’s performance
while providing a basic level of error detection

For coverage monitoring, Purify uses one of the following levels as the
default:

■ Line-level instrumentation, which reports line-by-line coverage data

■ Function-level instrumentation, which improves performance but
reports only function-by-function coverage data

Click to override
the defaults for
individual
modules

Use the PowerCheck
tab in the settings
dialogs to modify
default levels for

error detection . . .

and for coverage
monitoring
Advanced features for C/C++ users 29

You can override the default and specify the level for each module to
meet your own requirements.

Try using the Precise error level for the most critical modules in your
program and the Minimal level for the others. Later, you can change the
Minimal level to Precise for a thorough check of the other modules.

More information? Look up instrumentation levels and powercheck in the
Purify online Help index.

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to your
debugger when you need to solve tough problems. Click to enable
Break on Error. Purify now stops your program just before an error
executes so that you can debug it. You can also run a Purify’d program
directly under the debugger.

Then specify the
instrumentation

level for the
selected modules

Select one or
more modules

in the list
30 Getting started with Purify: C/C++ code

To quickly debug only the most critical errors in your program, use
Break on Error together with Purify error filters. First, filter out all the
less critical messages, then enable Break on Error. Purify breaks only for
the unfiltered messages. When you’re ready to debug the remaining
errors, just disable the filters.

More information? Look up break on error tool in the Purify online Help
index.

Using Purify standalone

When you don’t need all of Microsoft Visual Studio’s resources, you
can use Purify standalone. Purify’s independent user interface provides
the same error-detection and coverage capabilities as when you use
Purify integrated with Visual Studio.

Note: You can also use Purify’s independent user interface while
continuing to work integrated with Visual Studio by deselecting
Embed Data Browsers in the Purify Settings menu.

To use Purify as a standalone application, launch Purify from the Start
menu, Then click Run in the Purify Welcome Screen to display the Run
Program dialog.

With just-in-time
debugging, Purify raises

a breakpoint exception
when it detects an

error or warning

Click Cancel to explore
the error in your

debugger
Advanced features for C/C++ users 31

Purify instruments your code and displays the results in a Data
Browser window.

More information? For information about a tool, menu command, or
dialog, click and then click the item.

Testing with Purify’s command-line interface

Using Purify’s command-line interface, you can use Purify with
existing makefiles, batch files, and Perl scripts. For example, if you have
a test script that runs a program, you can easily modify the script to
instrument and run the program. To do this, change the line that runs
Exename.exe to:

purify Exename.exe

Alternatively, to run the instrumented version of Exename.exe
consistently throughout your tests, add this line to the beginning of
your test script:

purify /Replace=yes /Run=no Exename.exe

This line instructs Purify to save the original Exename.exe to a .bak
file, and to instrument Exename.exe but not to run it at this time. Now,
whenever your test script runs Exename.exe, it runs the instrumented
version of the program, providing Purify’s detailed diagnostics.

To collect coverage data as well as error data when you run a program
from the command line, use the /Coverage option:

purify /Coverage=yes Exename.exe

Third, click RunFirst, specify the
program you

want to check

Second, specify
whether to collect

error and leak data, or
coverage, error, and

leak data
32 Getting started with Purify: C/C++ code

You can run Purify without the graphical interface by using
the /SaveTextData option. This option saves Purify’s diagnostic
messages to a text output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the Purify online Help
index.

Extending error checking with Purify API functions

Purify includes a set of API functions that extend its error checking
capabilities and give you greater control over tracking errors.

Using Purify’s API functions, you can set and test memory state, and
search for memory and handle leaks. For example, by default Purify
reports memory leaks only when you exit your program. But you can
use the API function PurifyNewLeaks to check for leaks more
frequently. Click the NewLeaks tool to call PurifyNewLeaks while
your program is running, or add calls to PurifyNewLeaks at key points
in your code. Purify reports any new memory leaks it has detected
since the last time you called the function. This periodic checking
enables you to track memory leaks more closely.

You can call Purify API functions from the Purify View menu as your
program executes. You can also call them from the QuickWatch dialog
in the Visual Studio debugger, as well as by including them in your
code.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Using Purify in an integrated environment

Rational Software tools integrate into your working environment to
help you do your job more effectively and efficiently. For example, you
can use Purify with Rational ClearQuest™, Rational’s change request
management tool, and with Rational Robot and Rational Visual Test®,
Rational’s functional testing tools.
Advanced features for C/C++ users 33

Using Purify with ClearQuest

If you have ClearQuest installed, you can submit a defect as soon as
Purify detects an error or warning, or when you find a coverage
problem.

Purify automatically supplies entries for a number of fields in the
submit form and specifies the category of error. You can easily attach
Purify data files to further document the error.

Using Purify with Rational testing tools

If you have Robot installed, you can set a playback option in Robot to collect
Purify error and leak data when you run a Robot test script. Purify
detects memory errors as the code is executed. Robot also includes a
playback option that allows you to collect code coverage information as
well as error and leak data.

If you have Visual Test installed, you can run Purify on the program
that Visual Test is exercising within Visual Studio. If you are using a test
harness to run Visual Test scripts, you can easily modify it to run Purify
automatically as it exercises the program.

Right-click on an error
message and select

Submit ClearQuest Defect
34 Getting started with Purify: C/C++ code

More information? Look up clearquest, robot, and visual test in the
Purify online Help index, and refer to the ClearQuest, Robot, and
Visual Test documentation.

Now you’re ready to put Purify to work on your
C/C++ code. Remember that Purify’s online Help
contains detailed information to assist you.
Advanced features for C/C++ users 35

36 Getting started with Purify: C/C++ code

Getting started with
Purify: Java code
The basic steps

Java applications can consume a lot of memory over time if a forgotten
reference to an object unintentionally prevents it from being garbage
collected. With Rational® Purify®, you can determine how much
memory your Java program is using, and detect exactly which objects
are responsible for these “memory leaks.” You can also identify places
where forcing a garbage collection would improve your code’s
performance.

To use Purify to profile Java memory usage:

1 Run your Java program with Purify.

2 Take a snapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.

4 Compare the two snapshots to identify methods that may be
causing memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify
the references that are preventing the objects from being garbage
collected.
37

Running your Java program with Purify

To Purify your Java program, start Purify and click Run in the Welcome
Screen to display the Run Program dialog.

Note: When you select a Java program (or applet, class, or JAR file)
using the Browse button, Purify enters the name of the Purify Java
helper program, pstart.exe, in the Program name field. The name of
the Java program itself, along with the name of your specified Java
virtual machine’s Java viewer and any necessary options, is
automatically entered in the Command-line arguments field. You must
do the same if you enter information into these fields manually.

More information? Look up specifying a JVM and running Java programs
in the Purify online Help index.

As your program runs, Purify intercepts and tabulates messages related
to memory usage from the Java virtual machine. Based on these
messages, Purify keeps track of how much memory your program has
allocated to each method and object at any given time.

Third, click Run

First, use the Browse
button to select the Java

program, applet, class,
or JAR file that you

want to profile

Second, select the button
for collecting Java

memory usage data
38 Getting started with Purify: Java code

Taking snapshots of memory use

To zero in on memory leaks in your Java program, wait until your
application’s memory usage has stabilized (typically after it completes
its initialization procedures), then click to take a snapshot of the
current memory usage status. This snapshot is your baseline for
investigating how your program uses memory as it runs.

Now exercise the program in a way that you suspect may be leaking
memory. As your program runs, the Purify Data Browser’s Memory tab
displays a graph that indicates the amount of memory your program is
using.

Watch the graph for fluctuations in memory usage. A large increase in
memory usage may indicate a problem, especially when you can’t
reduce it by clicking to force a garbage collection.

Now take another snapshot so that you have a “before” and “after”
record of what’s going on, and exit your program.

More information? Look up taking snapshots (Java) and garbage
collection in the Purify online Help index.

Take your first snapshot
when your program’s

baseline memory usage
has stabilized

Watch for increasing
memory usage, then

take a second snapshot
Taking snapshots of memory use 39

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and click to compare
the second snapshot with the first.

Purify now displays a call graph showing the methods that are
responsible for allocating the largest amounts of memory during the
interval between the first and second snapshots.

The call graph also shows you the calling relationship between
methods. This can give you clues about which methods are holding
references to unneeded objects and preventing the garbage collector
from doing its job.

The thickest lines
indicate the paths

where the most
memory is allocated

The call graph overview
helps you orient yourself

within the call graph
40 Getting started with Purify: Java code

Move your cursor over the method or path you want to investigate. A
tool tip pops up to give you memory-related statistics for that method.

This allows you to zero in on the method that is consuming memory, as
well as its descendants.

To view your code from within Purify, right-click a method for which
source is available, then select Source File.

More information? Look up diff’ing snapshots (Java), call graph (Java),
and source code in the Purify online Help index.

Memory usage data is
available directly from

the call graph
Comparing snapshots to identify problem methods 41

Diagnosing leaks with the Function List View tab

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data. You can do full-program sorts
in the Function List View to find the biggest memory-consuming
methods in your entire program.

More information? Look up function list view (Java) in the Purify online
Help index.

Click a column header
to sort the memory

profiling data
42 Getting started with Purify: Java code

Focusing on a method with the Function Detail window

By double-clicking any method in the call graph or function list view,
you can open a Function Detail window. This window shows how the
method, its callers, and its descendants allocated memory.

More information? Look up function detail (Java) in the Purify online
Help index.

If the amount of memory attributed to any method seems unexpectedly
high, it may be the case that another method, possibly a descendant,
has created a reference to an object that is preventing the memory from
being garbage collected. For example, a descendant method may have
created a static variable as part of a string array. This would keep the
memory for the entire array from going out of scope, which may slow
your program down, and even kill it.

When you’ve located a method that appears to be causing memory
problems, go on to look at the method’s objects. Purify provides
extensive information not only about methods, but also about all
objects in your program and their use of memory.

Double-click a method
in the Caller or

Descendant column to
see the memory data

for that method
Focusing on a method with the Function Detail window 43

Looking for unneeded objects

Objects that a program no longer needs often prevent memory from
being garbage collected and so, over time, slow down your program.
Purify displays comprehensive memory data for objects in several
formats, so that you can easily track down this sort of problem.

Note: To examine object data, use a snapshot or an aggregate data set.
Comparison data sets, which are generated by clicking , do not
contain object data.

Getting from a suspicious method to its objects

The Function Detail window, in addition to its information about a
method, also lists objects that have been allocated by the method. You
can sort the objects in the list by clicking on any column heading.

The objects that the
method currently has
llocated. Double-click
n object to display the
Object Detail window
with comprehensive

memory data for
the object

Note that Function
Detail windows for

snapshots include pie
charts showing

memory allocation
44 Getting started with Purify: Java code

Examining object details

When you double-click an object in the Function Detail window, the
Object Detail window opens. This window contains complete
memory-related information for the object so that you can identify
objects that are holding on to large chunks of memory, and determine
how long these objects have been in existence.

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser
window for the snapshot that reveals potential memory problems, and
click the Object List View tab.

Choose a criterion for
highlighting objects in the
reference graph

The object reference
graph shows the objects

that reference, and are
referenced by, the

current object

Details about the
object currently
selected in the

reference graph,
including size and

creation time

The “object dump”
shows the contents
(data, references to
other objects) of the

object currently
selected in the graph

Pause the mouse over an
object for detailed memory
information
Looking for unneeded objects 45

The object list shows all top-level objects that were allocated at the time
the snapshot was taken. In addition to the size of the objects, the object
list provides information such as the time the object was created and
the number of garbage collections it has survived. You can sort the list
to find the objects that are holding on to the most memory, and the
oldest objects in the list.

You can open the Object Detail window for any object by
double-clicking the entry for the object.

When you locate an object that may no longer be needed, look at your
code. If you determine that the object is in fact no longer needed,
modify your code to release all references to the object so that the object
can be garbage collected.

More information? Look up function detail (Java), object detail (Java) and
object list view (Java) in the Purify online Help index.

Memory data for all
the currently allocated

top-level objects in
the program

Click any column head to
sort the list

The status bar shows
the selected line

number and the total
number of objects
46 Getting started with Purify: Java code

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other
members of your team, or include it in reports. Purify can save Java
data in the following formats:

■ Purify memory profiling files (.pmy). You can open these files and
view them in Purify, just as you would any run, snapshot, or other
dataset.

■ ASCII text files (.txt). You can process this data with scripts or use
it in spreadsheet and word-processing applications.

More information? Look up saving data (Java) in the Purify online Help
index.

Advanced features for Java users

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific
memory-related characteristics or to show calling relationships.

More information? Look up highlighting (Java) in the Purify online
Help index.

Click to display the Highlight list

Select Maximum Path to
Root, for example,

to highlight all
methods between

the selected method
and .Root on the path

where the most
memory is allocated

26 of the 1498 functions in
the current dataset are
displayed in the call graph

All 3 of the 3 functions on the
maximum path to .Root are
displayed in the call graph
Saving Purify memory profiling data 47

Focusing your data

Use Purify’s filter commands to remove a selected method, or all
methods in a class file, from the set of data that Purify has collected.
Alternatively, use subtree commands to focus on or remove a specific
method and all its descendants from the dataset. Right-click a method
in the call graph, function list view, or function detail to perform these
operations.

Purify has undo capabilities for all filter and subtree commands so that
you can easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands
that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only what is displayed in the call
graph; they do not change the dataset.

The Filter Manager offers additional
filtering options

You can hide or
delete individual

methods, all
methods in a

class, or entire
subtrees.

Hide methods or
subtrees to sum up

their memory and
attribute it to their

callers; delete them
to discard their

memory completely

Select Focus on Subtree
to delete all methods
except those in the subtree
48 Getting started with Purify: Java code

In addition to the menu commands, you can use the Filter Manager to
select the data you need.

More information? Look up filtering data (Java) and subtrees (Java) in the
Purify online Help index.

You can filter data
based on class file

or on method

Click to enable or
disable filters

Now you’re ready to put Purify to work on your
Java code. Remember that Purify’s online Help
contains detailed information to assist you.
Advanced features for Java users 49

50 Getting started with Purify: Java code

Index
A
ABW (array bounds write) error 24
Annotated Source window 26
API, Purify 33

B
basic steps

Purify’ing C/C++ code 17
Purify’ing Java code 37

batch files 32
Break on Error tool 30

C
cache files 18
call graph (Java)

filter commands 48
highlighting related methods 47
overview 40
subtree commands 48

call stack 24
C/C++ code, Purify’ing 17
.cfy files 28
ClearQuest, integrated with Purify 33
code

editing (C/C++) 25
editing (Java) 41
viewing coverage annotations 26

collapsing subtrees (Java) 48
colors, in annotated source 26
COM support 12
command-line arguments (Java) 38
command-line interface (C/C++) 32
commands

Expand/Collapse 48
filter commands 48
subtree commands 48
undoing 48

comparing snapshots (Java) 40
coverage monitoring

/Coverage option 32
description 12
saving coverage data 28
turning on 17
using coverage data 26– 27

Create Filter command 22

D
Data Browser window

coverage data 26
error data 19– 22, 24– 25
Java memory profiling data 39– 42
object list (Java) 45

data, saving
C/C++ error and coverage data 28
Java memory profiling data 47

debug data, and instrumentation 18, 29
debugging, just-in-time 30
default instrumentation levels 29
deleting subtrees (Java) 48
diff’ing Java snapshots 40
displaying filtered messages 23
dispose() method 14

E
editing source code

C/C++ 25
Java 41

Embed Data Browsers command 31
Error View tab, Data Browser window 19
errors

analyzing 24
breaking on 30
correcting 25
saving error data 28
See also messages
51

exit messages 20
expanding subtrees (Java) 48

F
File View tab, Data Browser window 26
files

caching after instrumentation 18
.cfy 28
.mst 34
.pcy 28
.pft 23
.pfy 28
.pmy 47
.txt 28, 47

filters
filter groups 23
Filter Manager, error data 23
Filter Manager, memory profiling data 49
overview 22, 47
saved in .pft files 23
sharing 23
undoing filter commands (Java) 48

focusing on subtrees 48
Function Detail window (Java) 43
function list view (C/C++) 26
function list view (Java) 42
function-level instrumentation 29
functions, Purify API 33

G
garbage collector, Java 13, 39
graphs

call graph (Java) 40
Java memory usage graph 39
object reference (Java) 45

groups, filter 23

H
handles

in use at exit 20
leaks 33

helper program pstart.exe 38
hiding messages

See filters
hiding subtrees (Java) 48
highlighting related methods 47

I
instrumentation

default levels 29
defined 18
overriding default levels 30

integration
Microsoft Visual Studio 17– 28
Rational ClearQuest 33
Rational Robot 33– 34
Rational Visual Test 33– 34

J
Java

examining objects 44– 46
filtering memory profiling data 48
helper program pstart.exe 38
memory leaks 13, 37
memory usage graph 39
Purify’ing Java code 37
saving memory profiling data 47

just-in-time debugging 30

L
leaks

Java 13
See also memory

line-level instrumentation 29
52 Index

M
makefiles 32
memory

Java memory leaks 13, 37
leaks reported at exit 20
PurifyNewLeaks API function 33

memory profiling data
filtering 48
saving 47

memory usage graph, Java 39
menu, shortcut 20
messages

analyzing 24
expanding 24
filtering 22, 47
redisplaying filtered 23
See also errors

Microsoft Visual Studio, integration with
Purify 17

minimal instrumentation 29
Module View tab, Data Browser window 26
modules

basis for filtering 48
setting instrumentation for 30

multi-process applications 19

N
Navigator

C/C++ 27
Java 40

O
Object Detail window 45
Object List View tab (Java) 45
object reference graph 45
object references, and Java memory leaks 14
objects, examining (Java) 44– 46

P
.pcy files 28

Perl scripts 32
.pft files 23
.pfy files 28
pie charts, Function Detail window (Java) 44
.pmy files 47
PowerCheck tab 29
precise instrumentation 29
problems, in Java code 14
programs

rerunning 27
running from command line 32
running from Microsoft Visual Studio 17
running Java programs 37
running under debugger 30

pstart.exe 38
PureCoverage

for coverage monitoring in Purify 15
in PurifyPlus 5
tips for developers 6
tips for testers 7

Purify data files
C/C++ 28
Java 47

Purify’ing
C+C++ code 17
Java code 37

PurifyPlus, described 5

Q
Quantify

in PurifyPlus 5
tips for developers 6
tips for testers 7

QuickFilter command 22

R
Rational ClearQuest, integrated with Purify 33
Rational PureCoverage

for coverage monitoring in Purify 15
in PurifyPlus 5
tips for developers 6
tips for testers 7
Index 53

Rational PurifyPlus, described 5
Rational Quantify

in PurifyPlus 5
tips for developers 6
tips for testers 7

Rational Robot, integrated with Purify 33– 34
Rational Software technical publications,

contacting 9
Rational Software technical support,

contacting 9
Rational Visual Test, integrated with

Purify 33– 34
relocation data, and instrumentation 18, 29
Robot, integrated with Purify 33– 34
running a C/C++ program

from Microsoft Visual Studio 17
from the command line 32
in the Purify standalone interface 31
rerunning 27

running a Java program 38
runs, comparing multiple 27, 40

S
saving data

C/C++ error and coverage data 28
Java memory profiling data 47
/SaveTextData option 33

sharing filters 23
shortcut menu 20, 48
snapshots, of Java memory use 39
source code

editing (C/C++) 25
editing (Java) 41
viewing coverage annotations 26

stack, call 24
standalone Purify interface (C/C++) 31
subtrees (Java)

deleting 48
expanding and collapsing 48
focusing on 48
undoing subtree commands 48

system resources, and Java memory leaks 14

T
technical publications, contacting 9
technical support, contacting 9
tests, using PureCoverage in 7
tests, using Purify in 7, 32, 34
tests, using Quantify in 7
threaded application support 12
tool tips, call graph (Java) 41
.txt files 28, 47

U
undoing Java filter and subtree commands 48
unembedding Purify 31

V
Visual Studio, integration with Purify 17
Visual Test, integrated with Purify 33– 34

W
windows and tabs

Annotated Source (C/C++) 26
Call Graph (Java) 40, 47
Data Browser (C/C++) 19– 22, 24– 26
Data Browser (Java) 39– 42, 45
File View (C/C++) 26
Function Detail (Java) 43, 44
Function List View (C/C++) 26
Function List View (Java) 42
Module View (C/C++) 26
Navigator (C/C++) 27
Navigator (Java) 40
Object Detail (Java) 45
Object List View (Java) 45
54 Index

	Title page
	Notices
	Welcome to Rational�PurifyPlus
	Rational PurifyPlus: What it does
	Tips for development engineers
	Tips for test engineers

	Other PurifyPlus resources
	Contacting Rational technical support
	Contacting Rational technical publications

	Introducing Rational�Purify
	For Visual C/C++ developers and testers
	Find errors before they occur
	Check every component in your program
	Look for errors in the right places
	Use Purify early and often

	For Java developers and testers
	Java memory leaks?
	Object references that are no longer needed
	System resources that are not freed
	How Purify can help

	Getting started with Purify:�C/C++ code
	The basic steps
	Running a C/C++ program with Purify
	Seeing all your errors at a glance
	When identical errors repeat

	Focusing on critical errors first
	Working with error data filters

	Analyzing Purify error data
	Correcting errors
	Checking code coverage
	Comparing program runs
	Saving Purify data
	Advanced features for C/C++ users
	Customizing instrumentation
	Using just-in-time debugging
	Using Purify standalone
	Testing with Purify’s command-line interface
	Extending error checking with Purify API functions
	Using Purify in an integrated environment

	Getting started with Purify:�Java code
	The basic steps
	Running your Java program with Purify
	Taking snapshots of memory use
	Comparing snapshots to identify problem methods
	Diagnosing leaks with the Function List View tab
	Focusing on a method with the Function Detail window
	Looking for unneeded objects
	Getting from a suspicious method to its objects
	Examining object details
	Looking at all allocated objects together

	Saving Purify memory profiling data
	Advanced features for Java users
	Highlighting methods that share key attributes
	Focusing your data

	Index
	A - E
	F - L
	M - R
	S - W

