MANAGING SOFTWARE PROJECTS
WITH CLEARCASE

Release 4.1 and later

Windows Edition

Rationarl

eeeeeeeeeeeeeeeeeeeeeeeee

800-023556-000

ClearCase and MultiSite Release Notes
Document Number 800-023556-000 August 2000
Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice

Copyright © 1992, 2000 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California

Copyright 1984-1991 by Raima Corporation

Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks

Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, ClearDDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle? are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable

Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
discllzims alFother warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments

This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contri%)utors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http:/ /www.webdav.org }) mod_dav /%.

Rationarl

the e-development company™

Contents

Contents

PIEIACE ..o xix
About This Manual ... Xix

Organization ... xix

ClearCase Documentation Roadmapccoceueiviiiiiiiinieiiice, XX
Typographical CONVENtIONSccccueuiuiuiuiucuiiiiiicccecceecerceeeeeneeeene xxi

Online Documentation ..ot xxii

Technical SUPPOTTc.cueueviiiiiiciciieiceccce s xxii

1. Choosing Between UCM and Base ClearCasecccoeverereienenenieieceeeceese e 1
1.1 Differences Between UCM and Base ClearCase............cccooovvevviirririininrnnnnn. 1
Branching.........cco 2

Creating and Using Baselines...........cccccccoceiiiiiiiiiiiiceccccecceeennes 3

Managing ACtiVIties........ccooeeiiiiiiiiiiiicii 4

Enforcing Development POLICIES..........ccccceuiueiiiiiiiiiiiccccccccccccennes 5

12 Using Base ClearCase Tools with UCM.........ccccoooiiiiiiiiie, 5

Part 1. Working in UCM

2. UNderstanding UCM ...ttt sttt s b e bbb esbessesaesaesaeseeseesassessens 9
2.1 The Project Management Cycle..........ccccoiiiiiiiiiiiiiiccccicicceennas 9
2.2 Creating the Project........cccociiiiiiiiiiciccccceceeeeeeecee e 12

Creating @ PVOB ... 12
Organizing Directories and Files into Components............cccccccoccucueucuencns 13
Shared and Private Work Areas...........cccccoeiuiiiiiiiiiiiiiciiiccccicnne, 13
Starting from a Baselineccccccccueuiuiiiiiiicccceccceeceeee e 14
Setting POLICIESc.cuoviiiiiiiiiiiicccic e 14
Setting Up the UCM-ClearQuest Integration............cccoeeeeriiirecicnnnnnes 15

2.3 Integrating Work into the Project (MultiSite)cccccoeviiiiiiiiinnnnes 16
2.4 Making a New Baseline.........cccccociiiiiiiiiiiieccccccceeecee e 17
i

2.5 Promoting the Baseline.........cccccoooiiiiiiii 18
2.6 Overview of the UCM-ClearQuest Integration............cccccceevvieciiincnnnncne. 20
Associating UCM and ClearQuest Objectsccoooriiiiiiiiiiiiiin, 20
UCM-Enabled Schema...........cccoovriiiiiiiiiiiiccne 21

State TYPES .ot e 21
Queries in a UCM-Enabled ClearQuest Schema............cccccooevviniiiiinnnnn, 22

3. Planning the PrOJECE ...ttt sttt 23
3.1 Using the System Architecture as the Starting Pointcccccoeveiaae 23
Mapping System Architecture to Components............cccooeeieieiiicieiiinnne, 24
Deciding What to Place Under Version Control...........cccccccevuviviiininininnnnns 24
Mapping Components to Projects........cccoceuiiiieioiiiiciiiiccecee, 25

Size Of the SYStem......c.ccuiiiiiiiiiiiiirccccccc e 25

Amount of Integration..........cccccoeuevviiiiiiiiiiiis 25

Need for Parallel Releases..........cccccovuviiiiiiiiininiiiniiicins 25

EXQMIPLE ..o 26
Components and VOBSccccccvviiniiiiiiiiiiiiccs 26

3.2 Organizing COMPONENLESccocvviiiiiiiiii s 27
Considering VOB Capacitycccccoeeiviviniiiiiiiiiiiniiiicicniccnncseean 27
Identifying Additional Componentscccoovvviiiiviiiieniniiiiine, 28
Defining the Directory Structure...........ccccoevivivviiiiinniiiiiiiinins 28
Identifying Read-Only COMPONENtSccceueuvueueueueieueerureeecieirieeeeeeeeeeeeeenes 29

3.3 Specifying a Baseline Strategycccccooiiiiiniiiiiiiiniiics 30
When to Create Baselinescccooviviiiiiiininins 30
Identifying the Initial Baselinecccccccceviiiininniniiinniiiinne 31

Ongoing Baselinesccocueiiiiciiieiicecc s 31

Defining a Naming Conventioncccccccceerrriicninnineciierreeeeeeeeens 32
Identifying Promotion Levels to Reflect State of Development 32
Planning How to Test Baselinescccccccccuiueiriiiiiiicinniiciceccceeeens 32

3.4 Planning PVOBS........ccooiiiiic s 33
Deciding How Many PVOBS t0 Use........cccccccueurririiiiinnriiicicrrceeieieeeene 33
Understanding the Role of the Administrative VOB ..., 34

3.5 Identifying Special Element Types........cccccoeiiiiiiiiiiciiiiccccceenenes 35

Managing Software Projects with ClearCase

Contents

Nonautomerging Elements...........ccccccociiiiiiiiiiiiiiiceiccceeeeennes 36
Defining the Scope of Element Typesccccooviiiiiiiiieiicee, 36

3.6 Planning How to Use the UCM-ClearQuest Integrationc.c.cccce..c... 36
Mapping PVOBs to ClearQuest User Databasesccccoeeueirieriiinnnen. 37

All Enabled Projects in a PVOB Must Link to the Same Database37

Projects Linked to Same Database Must Have Unique Names.......... 37

Use One Schema Repository for Linked Databases............c.cccoccu... 38

Deciding Which Schema to USeccccccueiiiiiiiiiiicccicccceccennes 38
Overview of the UnifiedChangeManagement Schema....................... 39

Enabling a Schema for UCMcccoooeiniiiniiiiicicccce e, 40

3.7 Considering Which Development Policies to Enforce...........ccccccecuiuinniee. 41
Policies Available in UCM.........cccoooiiiiiiiiiiiiiiiiccccnsisnnes 41
Recommended Baselines...........ccccovuirmiiiinincniieiniiieecees 41
Modifiable COMPONENLSccceuiviiimiiiiiiiiiiiiiciiccccianes 41

Default View TYPEeScocueviieiiieiieiiciccc e 41

Rebase Before Deliver...........coviiviiiiiiniiicecnaes 42

Allow Deliveries from Stream with Pending Checkouts.................... 42

Policies Available in UCM-ClearQuest Integration.............cccocovvvvvvinrnnan. 43
Check Before Work On.........ccccccciiiiiiiiiiicicccccccccceecnes 43

Check Before ClearCase Delivery.........ccccooimeieiiiciiiiiiicicieccce 43

Do ClearQuest Action After Delivery........cccoccvviiiinininiiinins 43

4. Setting Up a ClearQuest User Databasecccccveoreinennennenneneneneeeneeeneeneeene 45
41 Using the Predefined UCM-Enabled Schemascccccocoeiuiiiciiincnnes 45
42 Enabling a Schema to Work with UCM..........ccccooi 46
Requirements for Enabling Custom Record Types........cccccceeeciciccnnns 49
Setting State TYPeSccuovirueiiiicie 49

State Transition Default Action Requirements for Record Types............. 50

43 Customizing ClearQuest Project POliciesc.ccooviiiiiiiiiniciiicce 52
44 Associating Child Activity Records with a Parent Activity Record......... 52
Using Parent/Child COntrols...........cccooiiiiiiiiiiiiiiciiccccns 53

4.5 Creating USeTS ...t 53
v

Nonmerging Elements.............cooorueiiiiiiieiiiicieccc e 35

5. Setting Up the PrOJECE ...c..ooiiieeeeeeeerteese ettt ee 55

51 Creating a Project from Scratch ..o 56
Creating the Project VOB.........coooii e, 56
Creating COmMPONENtSs ... 57
Creating the Project ... 57

Defining Promotion Levelsc.ccccoceieiiiiiiinniiccceeeeeereeene 59
Creating an Integration View ... 59
Creating the Directory Structurecoceccueueieeieieicieeeieeceeeeeeeeeeenes 60
Importing Directories and Files from Outside ClearCase............cccccueueuee 61

52 Creating a Project Based on an Existing ClearCase Configuration........... 62
Creating the PVOB ... 62
Making a VOB into a COmMponent..........cccccueueueueueieueieeneeeeeeneeeieeeeeeeeeeeeeeeeenas 62
Making a Baseline from a Labelccccccccoviinniiinnniiiiiiiiis 63
Creating the ProJectc.ccccciiiiiiiiieccceeeecceeee e 63
Creating an Integration View ... 63

5.3 Creating a Project Based on an Existing Project..........ccccoceeivnniniinnnns 63
Reusing Existing PVOB and Components.............cccccecvvviiininnniinnnnnnnnns 64
Creating the ProJectc.ccccciiiiiiiiieccceeeecceeee e 64
Creating an Integration View ... 65

5.4 Enabling a Project to Use the UCM-ClearQuest Integration...................... 65
Migrating ActiVitiesccccoovieiiiiiiii e 66
Setting Project POLICIESc.cceueueieiiieicicieieicccieeeeicceeeee e 66
AsSIgNING ACHIVIIES ..o 67
Disabling the Link Between a Project and a ClearQuest User Database..68
Fixing Projects That Contain Linked and Unlinked Activities.................. 68

Detecting the Problem ... 68

Correcting the Problem ... 69

5.5 Creating a Development Stream for Testing Baselines.............ccccccoeueee.. 69

6. Managing the PrOJECEco.ciiiiieieeeee ettt 71

6.1 Adding CompPONents.........ccccoviurieieiiiiieieieecete s 71
Updating Snapshot View Load Rules...........ccccooovviiiiiiniciiicecne, 72

6.2 Integrating the Project............ccooeoii 73
Finding WorkThat is Ready to Be Delivered..........cccccocovuiiiiiniiinirnnnne, 73

vi Managing Software Projects with ClearCase

Contents

Completing Remote Deliver Operationscooceeiviicieiiiiiccieieecnen, 74

Undoing a Deliver Operation...........c.cccccccceeiiciiiiccceeeeeeeecenenes 74

6.3 Creating a New Baselinecc.cccooooii 75
Locking the Integration Stream............cccccoceeeiiiiiiicccecicceeeeennes 75
Veritying That the Code Base Is Stable.............ccoooiiii 75
Making the New Baselinecccccococeuiiiiiiiiiiiiicccccecceeeeennes 76
Making a Baseline For a Set of Activitiesc..ccooeeeiiiiiiniiiccens 77
Unlocking the Integration Stream...........ccccoovviiiviniiininiiinicens 77

6.4 Testing the Baselineccccccovvviiiiiiiinniiiii, 77
Fixing Problems.c.cocciiiiiiiicccecccceeecceee e 78

6.5 Promoting or Demoting the Baseline...........cccccovvviininnnnnnnnninne, 79
6.6 Tracking the ProjJECtc.cocovveirerirereirrreer e 79
Comparing Baselinescccccciiiiiiiiiiiiiiiiiccccccccceees 80
Querying ClearQuest User Databases............c.cccoeeuriiiiieinieiiicicicciciennn, 82
Using ClearCase RePOTtsccceuiuiiiiiiiiiiiiiiiiicciccccccccccccies 83

6.7 Cleaning Up the Project.........ccooevviviiniiiiiiicccceicans 84
Removing Unused Objects..........ccccoeuiiiiiiiiiiiiiiiiiiicccccccccccnes 84
PrOJECES vttt 85

SEEAMS ...ttt 85
COMPONENLES......cviiiiiiiiiic e 85

Baselinescoueuiiiiiiiiiiiiiciic e 85

ACHVIHIES .ottt 86

Locking and Making Obsolete the Project and Streams............................. 86

7. Managing Parallel Releases of Multiple Projects ..o 87
7.1 Managing a Current Project and a Follow-on Project Simultaneously87
EXQMIPLE ..o 88
Performing Interproject Rebase Operations...........c.ccoevveuiiriiiiciniicniicnnnes 89

7.2 Incorporating a Patch Release into a New Version of the Project............. 90
EXaMPIe ..o 90
Merging Work to Another Projectc.cccooveveveiiiiiiicicce, 92

7.3 Additional Merging SCENArioscccceeurirurieiiiiicieieiiicee e 93
Merging from a Project to a Non-UCM Branch...........ccccccoeiiiiiininnne, 93
Merging to a System Project ..o, 93

vii

Part 2: Working in Base ClearCase

8. Managing Projects in Base ClEarCaseccoceeveieieieieieieeeeereeresie e ssessessessessesnens 97
8.1 Setting Up the Project........ccccccviviviviiiiiniiiniiiiiiiiininiiinnsicceccsiseens 98
Creating and Populating VOBSc.ccccceuiiiinniccereeccceeeeeeeeeenae 98
Planning a Branching Strategyccccceeiiviiiiiinniiiicis 98
Branch Names ..o 99

Branches and ClearCase MultiSite............cccooeveriiviininininiicnes 99

Creating Shared Views and Standard Config Specsccccccooiriienncie, 100
Recommendations for View Namesccccocvvvviiniiiiineniicnns 100

8.2 Implementing Development POLCIescccoueviirieiiiiiiieiccie 101
USING Labelsc.cvoviiiiiiiiiiiiiiccccceccecee e 101
Using Attributes, Hyperlinks, Triggers, and Locks........cccccccoiiiinnne, 101
GlODAl TYPES....vviiiiiciciciciciciccccee et 102
Generating RePOTtS.......c.ouirueiiiiiiiieci 103

8.3 Integrating Changes..........cccceerriririiiririririiccreeece e 103
9. DefiNiNg ProjECE VIBWS ...ttt ettt sttt 105
9.1 How Config Specs WOrK ... 105
9.2 Default Config SPeC.......cccoeuriuriririeiiieiieic s 106
The Standard Configuration Rulesccccccooiiiiinniiiiniiiiis 106
Omitting the Standard Configuration Rules...........c.cccccooiiinii. 107

9.3 Config Spec Include Files ..o 107
9.4 Project Environment for Sample Config Specsccoceveiviririeiiircnennne. 108
9.5 Views for Project Development............coooeiiininiinininnininnceeenes 109
View for New Development on a Branch ... 110
Variation That Uses a Time Rule..........cccccoovviiniiiiiniiiin, 110

View to Modify an Old Configurationcccoeeeioioiiinicciicna, 110
Omitting the \main\LATEST Rulecccccccevvrmriimmrniiieicieines 112

Variation That Uses a Time Rule...........ccccooveiiniiiiiiiiicee, 112

View to Implement Multiple-Level Branching ..., 112

View to Restrict Changes to a Single Directoryc.cccccovvvvnnrncnccnes 114

9.6 Views to Monitor Project Statuscoooeueiiiciiiiic 114

viii

Managing Software Projects with ClearCase

View That Uses Attributes to Select Versions........cccoevveevveeevcveeicveeinnneen. 114

Pitfalls of Using This Configuration for Development 116

View That Shows Changes of One Developercccccooeverniiiiinnnnne 117
Historical View Defined by a Version Label..........ccccccovvviniiinnnnnns 117
Historical View Defined by a Time Rule...........cccccccevniiinnininiiinnn, 118

9.7 Views for Project Builds ..o, 118
View That Uses Results of a Nightly Buildccccooeviiiiinn 119
Variations That Select Versions of Project Librariescccccovvinnnnn 120

View That Selects Versions of Application Subsystems...............cccc...... 120

View That Selects Versions That Built a Particular Program................... 121
Configuring the Makefile...........ccccccoeiiiiiiniiiiiiiiicce 121

Fixing Bugs in the Programc.c.cccoooeiiiiieiiiieeecc 122

Selecting Versions That Built a Set of Programs...........ccocccvvviiunnnae 122

9.8 Sharing Config Specs Between UNIX and Windowsc.cccccceininne 123
Pathname Separators..........c.cceeeeeiciiieiiicccc 123
Pathnames in Config Spec Element Rules...........cccccooviiiiiiniiinnnn, 124
Config Spec Compilationccccoeviviimiiniiiiiiiiiiies 124
EXamMPLE ...oviiiiiiiiii e 124

10. Implementing Project Development POlICIES ccoieieieeveeeeeeeeeee e 127
10.1 Policy: Good Documentation of Changes Is Requiredcc.cccocouee. 127
10.2 Policy: All Source Files Require a Progress Indicator...........ccccccccueuneene. 128
10.3 Policy: Label All Versions Used in Key Configurations..........c.c.cccocu.... 129
10.4 Policy: Isolate Work on Release Bugs to a Branch............c.cccccccoeeiecnnne 130
10.5 Policy: Avoid Disrupting the Work of Other Developers........................ 131
10.6 Policy: Deny Access to Project Data When Necessary.........c.cccccoccueuneeee 132
10.7 Policy: Notify Team Members of Relevant Changesccccccoourenen 132
10.8 Policy: All Source Files Must Meet Project Standards...........ccccccccueneeeee. 134
10.9 Policy: Associate Changes with Change Orderscc.ccooriiiirnnnn 134
10.10 Policy: Associate Project Requirements with Source Files....................... 135
10.11 Policy: Prevent Use of Certain Commands.........c.cccooereiiiiiiiccieinincnnen 137
10.12 Policy: Certain Branches Are Shared Among MultiSite Sites.................. 138
10.13 Sharing Triggers Between UNIX and Windows.........cccoevviriiiiinnnnn 139
Using Different Pathnames or Different Scripts........ccccccccevvviirivnnnnns 139

Contents ix

INOEES .ot 140

11. Integrating ChANQES ..ottt ettt re et s aesreesbe s s e beessessaessenseensanns 141
11.1 How Merging WOTKSccccoiiiiiiiiiiiiiicccccccceecennes 141

Using the GUI to Merge Elementscccooiiiiiniiniiiccee 143

Using the Command Line to Merge Elements...............cccooveevniiiinnininnes 144

112 Common Merge SCENATIOSocvurueiiinrerieieiicieie et 145
Scenario: Selective Merge from a Subbranch............cccccccceiiivniiinnnns 145

Scenario: Removing the Contributions of Some Versions............ccccccuu... 146

Scenario: Merging All Project Workccooiiiiiiiiins 147

All Project Work Is Isolated on a Branch ... 147

All Project Work Isolated In @ VIeWcccccceeueueiciciceiiccnccccceee 147

Scenario: Merging a New Release of an Entire Source Tree..................... 148

Scenario: Merging Directory Versions...........ccovviiinniccinniciciniencnns 151

11.3 Using Your Own Merge Tools..........ccccooiiiiiiiiiiiiiciiicccccnens 152

12. Using Element Types to Customize Processing of File Elements 155
12.1 File Types in a Typical Project ... 155

12.2 How ClearCase Assigns Element Types..........cccccceiiiiiiiccciicccncnne. 156

12.3 Element Types and Type Managers...........cccococueueiniimieieinicieieieiccieeeae 157

Other Applications of Element TYPesccccceeueueueuirrireicineccicieennns 159

Using Element Types to Configure a Viewcocoeevviiiiiiiiccnnnnn 159

Processing Files by Element Type........cccoooiiiiiiiiiiiiiicce 160

12.4 Predefined and User-Defined Element Types........ccccocoeiiiiiiiiicnnnne. 160

13. Using ClearCase Throughout the Development Cycle cccooeieieeveneieieen, 161
13.1 Project OVeIVIEWccociiiiiieiiiiiiiccicc s 161

13.2 Development Strategy ..o 163

Project Manager and ClearCase Administrator..........ccccceevviviiiiininnnnns 163

Use 0Of Branches...........coiviiiiiiice s 163

Creating Project VIEWS.........ccccvoviiiiniiiiiccce 166

13.3 Creating Branch TYPes........cccciiiiiiiiiiiccccccceeecce s 166

Managing Software Projects with ClearCase

Contents

13.4 Creating Standard Config Specs ... 167

13.5 Creating, Configuring, and Registering Views...........cccccccceveciuiicccnnne. 167
13.6 Development Begins...........ccooeuoiiiiiiioiiiiiccc 168
Techniques for Isolating Your Workc.ccccoeiiiiiiiiiiniicicnns 168

13.7 Creating Baseline 1..........cccoooriiiiiiiii e 169
Merging Two Branchesccccccccceeeniiiiininiccccceceeeeeeeeeeeeens 169
Integration and Test ..o, 170
Labeling SOUTICES.......c.ceuruiiiuiiiiiirieicicicieieeeieie e 170
Removing the Integration VIew ..., 171

13.8 Merging Ongoing Development Work..........c.cccccoeeiiiiiiciiiicccnnnn 171
Preparing to Merge ..o 172
Merging WOTKc.coiiiiiiiiiiiccceccce e 173

13.9 Creating Baseline 2.............cooiurioiiiiiiiiicc 175
Merging from the r1_fix Branch.........cccccccoeiviiiiiniiiinnccccens 176
Preparing to Merge from the major Branch ..., 176
Merging from the major Branch...........cccccccceviiiiiiniiiiicceens 177
Decommissioning the major Branch ..., 178
Integration and Test.........ccccccuriiiiiiiniiccccee e 178

13.10 Final Validation: Creating Release 2.0...........cccooorieiiiiiiieiniiiicec 179
Labeling SOUTICES.......c.ceuruiiiiiiiiiiieicicieieieeeieie e 179
Restricting Use of the main Branch ..., 180
Setting Up the Test VIEWccccoiiiiiiiiiiiiiiicecccccceceeeeeeeeeeeees 180
Setting Up the Trigger to Monitor Bugfixing..........cccoooriiiininnn, 181
Fixing a FINal BUG.....c.coiiiiiiiiiiiiicccccccccceeeeeeeeeeeeas 181
Rebuilding from Labels...........ccooiiiiiiiicc e, 182
WIapPINg Up ..o 182

A. Moving from View Profiles t0 UCM ...t 183
A1 View Profiles and UCMcccoiiiiiiiiiiiiiiiccceccccaes 183
Feature COMPATiSONcccoueviiiiirieiiiciee e 183
Branches and Streams............ccocoeeeiviinniiiie e 183

Moving Work Among Branches or Streamscccccevvviviviiininininns 184

VOBS and CompoNnentscceeirueieiiiicieieiceeseee e 184
Checkpoints and Baselinescccccccocceririiiiinnniiirrecceeeeae 184

Xi

Xii

A.2 How to Move View Profile Information t0 UCM........ccccceeveiveiveeeecneene 185

Preparing Your View Profile Projectc.cccccoeeeicivncicicnicicicens 185
Moving the View Profile Informationcccoooiiiiiiiii, 185

B. ClearCase-ClearQuest INtegrationsc.ccverrerreneeneeneenieesiee et 187
B.1 Understanding the Two ClearCase-ClearQuest Integrations.................. 187
Managing Coexisting Integrations............cccccoceeeviviiiiniiiinnccnns 188
SChema ..o 188
Presentationccoveiriiniiiniiiicee e 188

C. Customizing ClearCase REPOIMS cccccevvevierieieieierieeee et eresre et ss s esse s ssenes 191
C.1 How ClearCase Reports WOrks.........ccooviiiiiiiiviiniiininniicccccns 191
C.2 What You Can Customize in ClearCase Reports.........ccccovviiiinininiicnnns 192
Run-Time Processing Sequence for Reports Programming Interface.....194
Configuring Shared Report Directories.........c.cccceeueueueeeeiccinnccicnennns 197
Adding Report Procedures to Source Controlccccceveuciiiiennnne 197

Pointing the Report Builder to the Customized Directory................ 198

Default Directory Structure for ClearCase Reports.........cccccceeuvecucucueunnnnns 198
Populating the Report Builder Tree Panecccooooeiiiiiiieiiiniine, 199

C.3 Report Procedure Interface Specifications...........cccoeveeeeecrinnnncnnnncncnnes 201
Interface Specification for All_Views.prl.........cccocooininiiinnnnn. 202

Interface Specification for test_null.prl........cccccooovriiiiiiiicenn, 203

Interface Specification for test2_null.prl..........cccccceeiiiiiiiiinnns 203
Description Specification..........ccccueueiiirieiiiicc 203

Help ID Specificationcccccccueurueicicieiiiiicicicicieieieeciceieeeceseeeeeeeneeeeennes 203
Parameters Specification............ccocueuoiiiiiiiiiiic 204
Rightclick Specification..........c.cccecueueieiiiiiiiiiicicccceecceceecceeeeee 207
Fields Specification...........coceueiiiiiiiiiiicec 208
field_type CONVENtIONS.......cccceueueueurueuemiicieieieieieieieieeieeeeeeeeeeeeneneeeaeenes 208
Parameter ChOOSETSccccuiiiriiiiiiiiccicee e 210

Path ChOOSETcoviiiiiiiiiiiciciicccc e 211

UCM Targets ChOOSETccccueuiueiriiiiicicicieicicicieieeeeieeseeeeeeeneneneaeenes 211

Type ChOOSETcoviiiiiiiiii e 211

Managing Software Projects with ClearCase

Contents

C4

C5

Date/Time CROOSETuviieiieiee et
TEXE CROOSET ...ttt
Viewing the Report ..o
Saving Report Datacccociiviiiiiiniiiiiiiiii
Report Programming Examples..........ccccccoeviviviiiiiiininiiiniiin,
Example 1: Adding a Column to Report Outputcccceeuvuvivieiivnnnnnns
Processing LOGIC. ...
Interface Specificationccoooeiiiiiiii
Changes Required..........ccccoociiiniiiiininiiiiccne
Modified Report Procedure............ccccocucuvuriniiiiiiinininiiiiiiiirciiiccene

Example 2: Changing Report Directory Organization,
Report Description, and Report Output ..o,

Processing LOZIC.......oovviiiiiiiiiiiii
Interface Specificationccccceeiviviiiiiiiininiiiii
Changes Required...........ccooeueiiiiiiiiiiiiicc
Modified Report Procedure...........cccccceucueuririiiiiiinininiiiicicrcccccene

Example 3: Changing Report Description, Parameter Types,
and Report Output ...

Processing LOZIC.......covviiviiiiiiiiiiiiiicc
Interface Specificationcccccceueiviiiiiiininiiiiie
Changes Required...........cooeueiiiiiiiiiiiic
Modified Report Procedure.........c.ccccceucueurieiiiiieeninieiicereeeeeeeeees

Example 4: Changing the Shortcut Menu for the Rightclick
Handling MechaniSmccccoceviiiiiiiiininiiiiiiiiicnnccccns

Interface Specificationccccevieiiieiicinicc
Changes Required.........ccccccoeuiiiiiiiiniiiiiicceececeeeeeeeeeae
Modified Report Procedure............ccccooueuviviviniiiiininininiiiiiiiins

Example 5: Adding a New Command to the Report Viewer
ShOTtCUt MENU ..o

Interface Specificationccccceeuviiiiiiiiiiiniiiie
Changes Required..........cooeueiiiiiiiiiiiic
Modified Report Procedure.........c.ccccceucururirieiiienniniiieereeeeeeeeee
TroubleShOOtINgccccoiiiiiiiiiiiiiicce

Errors in the Interface Specificationc.cccceceeueceeenieinnecceeens

xiii

Xiv

Managing Software Projects with ClearCase

Figures

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Branching Hierarchy in Base ClearCase............coocoeueioiiriniiiinniecccee 2
Branching Hierarchy Under UCM Streams..........cccoccucueucmeucueieiciccncencnccnenenes 3
Project Management and Development Cycles in UCMc.cccccooeueee. 11
Baselines of Two COMPONENLS.........ccceuririririririririrrrrrrreee e 14
Rebase Operation ... 18
Promoting Baselines ..o 19
Association of UCM and ClearQuest Objects in Integration........................ 20
Components Used by Transaction Builder Project..........cccccoeoeiiiiiiinnnes 26
Mapping Components to Projects........ccoceueiieieioiiiciccce, 27
Using a Read-Only Component...........cccccciiiiiiiiiicceeeeceeeeeenenes 30
Related Projects Sharing One PVOB ..o, 34
Projects in Multiple PVOBs Linked to the Same ClearQuest Database.......37
Using the Same Schema Repository for Multiple
ClearQuest Databasescccevueeveiieeieniieiesieeeesteeteee et eesae e esaeseebeeenens 38
UCM Tab of Record Form for a UCM-Enabled Record Type.............cc....... 39
Main Tab of Record Form for the BaseCMActivity Record Type................. 40
Associating a User Database with a UCM-Enabled Schema......................... 46
Adding the UCMPolicyScripts Package to a Schema..........ccccooooriiiiinnnn, 47
Assigning State Types to a Record Type’s States..........cccccoceiiiiccccccnnes 48
Navigating to Record Type’s State Transition MatrixX.......ccccccoeerieieiiinnnen. 48
State Transition Diagram for UCM-enabled BaseCMActivity
RECOTA TYPE..eieiiiiierr e 51
Navigating to Integration Stream in Project Explorer ..o, 60
Step 2 of New Project Wizard ... 64
Enabling a Project to Work with a ClearQuest User Database...................... 66
Navigating to the UCMProjects QUETYccccoiiiiiiiiccieicccecccennes 67
Add Baseline Dialog BoXccouoiiiiiiiiicieieiccc e, 72
Find Posted Deliveries Dialog BoX..........cccccoeiiuiiiiiiiiiicciceeceeeenenes 74
Make Baseline Dialog BOXcoooiuiiiiiiiiiicc e, 76
ClearCase Component Tree BroWSETcccciuiiiiiiiiiiiceeiccceceeenenes 80
Comparing Baselines by Activitycccocoeoiiiiiiiiiiiie, 81
XV

XVi

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59

Comparing Baselines by Version..........cccciinniiinnicncniiiccccicceenns 82

ClearCase Report Builder...........c.ooooiuiiiii e 84
Managing a Follow-on Release ... 88
Incorporating a Patch Releaseooueiiiiiiiiiiiice, 91
Making a Change to an Old Version...........cccovvniininnncncninnenncnreeceenes 111
Multiple-Level Auto-Make-Branch ..., 113
Development Config Spec vs. QA Config Spec.......ccovvvvvivirinineneninenincnccnes 115
Checking Out a Branch of an Elementcccoooooiii, 116
Requirements Tracing.........ccccoevviivieiniiiiiiicc s 137
Versions Involved in a Typical Mergeccooeueueiiiiiiiiiiccicccee 142
ClearCase Merge AlgOrithm..........cccocooiiiiiiiiininiiic e 143
Selective Merge from a Subbranch ... 145
Removing the Contributions of Some Versionscccccceevuvvvriccnnnns 146
Merging a New Release of an Entire Source Tree ..o, 149
Data Handling: File Type, Element Type, Type Managerc.ccccceueueuce. 158
Project Plan for Release 2.0 Developmentc.ccoooeriiiiiincininiiniciene, 162
Development Milestones: Evolution of a Typical Element.......................... 165
Creating Baseline ©..........ccoooiiiiiiii e 169
Updating Major Enhancements Developmentcccoeeeevinnininnnnnncncne. 172
Merging Baseline 1 Changes into the major Branch ...l 174
BaSEliNe 2cuouviiiiiiic e 175
Element Structure after the Pre-Baseline-2 Mergeccoocoeiiiiiiininnne, 178
Final Test and Releasecccoeuiiiiiiiiiiiiiiiiiccccecec e 179
Change Sets in ClearQuest GUI............coooiuiiiiiiice 189
Customizable Areas of Report Builder Interface........ccccccovvvniininincncnne. 193
Customizable Interface for Report Viewer Windowccccoeeiiiininnne, 194
Run-Time Processing SEQUENCEccceviviiiiiiinininiiiiicccccnes 196
Report Builder User Interface............cooomeieioiiiiii 200
Report Viewer WINAOWcccccuiiriiiiiiininiiicicceicceeeeeeneeeeeeeeneeeneaeenes 213
Report Builder Window with Invalid Parameterscccocoiiiiiinnnne, 240

Managing Software Projects with ClearCase

Tables

Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

Recommended Directory Structure for Components..........c.cccooooeueieininnnnen. 28
State Types in UCM-Enabled Schema ... 50
Queries in UCM-Enabled Schema..........cccocveiiiiieiinieieceeieceee e 82
Files Used in a Typical Project ... 156
View Profile Features and Their UCM Counterparts..........ccccoouereieieinnne. 184
Parameters Supplied with ClearCase Reports..........coeeiiiriniiniinincncncnnes 205
Fields MOdIfiers ..o 208

XVvii

Xviii Managing Software Projects with ClearCase

Preface

ClearCase, a configuration management system, is designed to help software development teams
track the objects used in software builds. You can use base ClearCase to create a customized
configuration management environment, or you can adopt the Unified Change Management
(UCM) process. UCM is an out-of-the-box process, layered on base ClearCase and ClearQuest
functionality, for organizing software development teams and their work products.

About This Manual

This manual shows project managers how to set up and manage a configuration management
environment for their development team using either UCM or the customizable features of base
ClearCase.

Organization

The manual is divided into two parts:

O Part 1: Working in UCM. Read this part if you plan to use UCM to implement your team’s
development process.

O Part 2: Working in Base ClearCase. Read this part if you plan to use the base ClearCase
features to implement a customized development process for your team.

Preface Xix

ClearCase Documentation Roadmap

Orientation

Introduction to ClearCase
ClearCase and MultiSite Release Notes
ClearCase Tutorials

Project
Development)

Management

Developing Software with ClearCase Managing Software Projects with ClearCase

More Information
ClearCase Reference Manual

ClearCase Online Help
clearcase.rational.com

Build
Management

ClearCase
Administration

ClearCase OMAKE Manual (Windows)

Administering ClearCase
Building Software with ClearCase

ClearCase Product Family Installation Notes
— ClearCase MultiSite Manual

XX Managing Software Projects with ClearCase

Preface

Typographical Conventions

This manual uses the following typographical conventions:

O

ccase-home-dir represents the directory into which the ClearCase Product Family has been
installed. By default, this directory is /usr/atria on UNIX and
C:\Program Files\Rational\ClearCase on Windows.

attache-home-dir represents the directory into which ClearCase Attache has been installed.
By default, this directory is C:\Program Files\Rational\ Attache, except on Windows 3.x,
where it is C:\RATIONAL\ATTACHE.

Bold is used for names the user can enter; for example, all command names, file names, and
branch names.

Italic is used for variables, document titles, glossary terms, and emphasis.

A monospaced font is used for examples. Where user input needs to be distinguished
from program output, bold is used for user input.

Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.
Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.
[1 Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax
descriptions.

I A vertical bar separates items in a list of choices.

In a syntax description, an ellipsis indicates you can repeat the preceding item or line
one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar
to “*” or “?”. See the wildcards_ccase reference page for more information.

If a command or option name has a short form, a “medial dot” (O) character indicates the
shortest legal abbreviation. For example:

1sc-heckout

This means that you can truncate the command name to Isc or any of its intermediate
spellings (Isch, 1sche, Ischec, and so on).

XXi

XXii

Online Documentation
The ClearCase graphical interface includes a standard Windows help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or
the F1 key. HelpO Help Topics provides access to the complete set of ClearCase online
documentation. For help on a particular context, press F1. Use the Help button on various dialog
boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase
commands, utilities, and data structures) with the cleartool man subcommand. Without any
argument, cleartool man displays the cleartool overview reference page. Specifying a command
name as an argument gives information about using the specified command. For example:

> cleartool man (display the cleartool overview page)
> cleartool man man (display the cleartool man reference page)
> cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s —help command option or help command displays individual subcommand syntax.
Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout —help are equivalent.

> cleartool Isprivate —help
Usage: Isprivate [-tag view-tag] [-invob vob-selector] [-long | -short]
[-size] [-age] [-co] [-do] [-other]

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s
environment, along with a step-by-step tour through ClearCase’s most important features. To
start the ClearCase Tutorial, choose Tutorial in the ClearCase folder off the Start menu.

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical
Support via telephone, fax, or electronic mail as described below. For information regarding
support hours, languages spoken, or other support information, click the Technical Support link
on the Rational Web site at www.rational.com.

Managing Software Projects with ClearCase

Preface

Your Location

Telephone

Facsimile

Electronic Mail

North America

800-433-5444
toll free or
408-863-4000
Cupertino, CA

408-863-4194
Cupertino, CA
781-676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, and Africa

+31-(0)20-4546-200
Netherlands

+31-(0)20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific

61-2-9419-0111
Australia

61-2-9419-0123
Australia

support@apac.rational.com

XXiii

XXV
Preface

Choosing Between UCM and Base
ClearCase

Before you can start to use ClearCase to manage the version control and configuration needs of
your development project, you need to decide whether to use the out-of-the-box Unified Change
Management (UCM) process or base ClearCase. This chapter describes the main differences
between the two methods from the project management perspective.

The rest of this manual is organized into two parts. Part 1 describes how to manage a project
using UCM. Part 2 describes how to manage a project using the various tools in base ClearCase.

1.1 Differences Between UCM and Base ClearCase

Base ClearCase consists of a set of powerful tools to establish an environment in which
developers can work in parallel on a shared set of files, and project managers can define policies
that govern how developers work together.

UCM is one prescribed method of using ClearCase for version control and configuration
management. UCM is layered on base ClearCase. Therefore, it is possible to work efficiently in
UCM without having to master the details of base ClearCase.

UCM offers the convenience of an out-of-the-box solution; base ClearCase offers the flexibility to

implement virtually any configuration management solution that you deem appropriate for
your environment.

1 - Choosing Between UCM and Base ClearCase 1

Branching

Base ClearCase uses branches to enable parallel development. A branch is an object that specifies
a linear sequence of versions of an element. Every element has one main branch, which represents
the principal line of development, and may have multiple subbranches, each of which represents
a separate line of development. For example, a project team may use the main branch for new
development work while using a subbranch simultaneously for fixing a bug.

Subbranches can have subbranches. For example, a project team may designate a subbranch for
porting a product to a different platform. The team may then decide to create a bug-fixing
subbranch off that porting subbranch. Base ClearCase allows you to create complex branch
hierarchies. Figure 1 illustrates a multilevel branch hierarchy. As a project manager in such an
environment, you need to ensure that developers are working on the correct branches. To do that,
you must tell them which rules to include in their config specs so that their views access the
appropriate set of versions.

Figure 1 ~ Branching Hierarchy in Base ClearCase

Managing Software Projects with ClearCase

UCM uses branches also, but you do not have to manipulate them directly because it layers
streams over the branches. A stream is a ClearCase object that maintains a list of activities and
determines which versions of elements appear in a developer’s view. In UCM, a project contains
one integration stream, which records the project’s shared set of elements, and multiple
development streams, in which developers work on their parts of the project in isolation from the
team. UCM does not allow for complex branch hierarchies. The project’s integration stream uses
one branch. Each development stream uses its own branch, which is a subbranch of the
integration stream’s branch. Development stream branches cannot have subbranches. Figure 2
illustrates the simple branching hierarchy that supports UCM streams.

As project manager of a UCM project, you need not write rules for config specs. Streams
configure developers’ views to access the appropriate versions on the appropriate branches.

Figure 2 Branching Hierarchy Under UCM Streams

| developer 1} | developer 2|

Creating and Using Baselines

Both base ClearCase and UCM allow you to create baselines. UCM automates the creation
process and provides additional support for performing operations on baselines. A baseline
identifies the set of versions of files that represent a project at a particular milestone. For example,
you may create a baseline called betal to identify an early snapshot of a project’s source files.

1 - Choosing Between UCM and Base ClearCase 3

Baselines provide two main benefits:
0 The ability to reproduce an earlier release of a software project

0 The ability to tie together the complete set of files related to a project, such as source files, a
product requirements document, a documentation plan, functional and design
specifications, and test plans

In base ClearCase, you can create a baseline by creating a version label and applying that label
to a set of versions.

In UCM, baseline support appears throughout the user interface because UCM requires that you
use baselines. When developers join a project, they must first populate their work areas with the
contents of the project’s recommended baseline. This method ensures that all team members
start with the same set of shared files. In addition, UCM lets you set a property on the baseline
to indicate the quality level of the versions that the baseline represents. Examples of quality
levels include “project builds without errors,” “passes initial testing,” and “passes regression
testing.” By changing the quality-level property of a baseline to reflect a higher degree of
stability, you can, in effect, promote the baseline.

Managing Activities

In base ClearCase, you work at the version and file level. UCM provides a higher level of
abstraction: activities. An activity is a ClearCase object that you use to record the work required
to complete a development task. For example, an activity may be to change a graphical user
interface (GUI). You may need to edit several files to make the changes. UCM records the set of
versions that you create to complete the activity in a change set. Because activities appear
throughout the UCM user interface, you can perform operations on sets of related versions by
identifying activities rather than having to identify numerous versions.

Because activities correspond to significant project tasks, you can track the progress of a project
more easily. For example, you can determine which activities were completed in which baselines.
If you use the UCM-ClearQuest integration, you gain additional project management control,
such as the ability to assign states and state transitions to activities. You can then generate reports
by issuing queries such as “show me all activities assigned to Pat that are in the Ready state.”

Managing Software Projects with ClearCase

Enforcing Development Policies

A key part of managing the configuration management aspect of a software project is
establishing and enforcing development policies. In a parallel development environment, it is
crucial to establish rules that govern how team members access and update shared sets of files.
Such policies are helpful in two ways:

0 They minimize project build problems by identifying conflicting changes made by multiple
developers as early as possible.
0 They establish greater communication among team members.

These are examples of common development policies:

0 Developers must synchronize their private work areas with the project’s recommended
baseline before delivering their work to the project’s shared work area.

0 Developers must notify other team members by e-mail when they deliver work to the
project’s shared work area.

In base ClearCase, you can use tools such as triggers and attributes to create mechanisms to
enforce development policies. UCM includes a set of common development policies, which you
can set through the GUI or command-line interface (CLI).

1.2 Using Base ClearCase Tools with UCM

This manual is organized into two parts: Part 1 for UCM and Part 2 for base ClearCase. If you are
managing a UCM project, you may occasionally want to extend UCM by using some of the tools
in base ClearCase. In particular, you may want to use ClearCase attributes, triggers, and
hyperlinks to customize development policies.

1 - Choosing Between UCM and Base ClearCase 5

Managing Software Projects with ClearCase

Part 1: Working in UCM

The following chapters describe how to plan, set up, and manage a
UCM project to implement your team’s development process.

Understanding UCM

This chapter provides an overview of Unified Change Management (UCM). Specifically, it
introduces the main UCM objects and describes the tasks involved in managing a UCM project.
Subsequent chapters describe the detailed steps required to perform these tasks.

2.1 The Project Management Cycle

o

Project Create Integrate \ Promote
Manager project work D baseline
Make new
baseline

In UCM, your work follows a cycle that complements an iterative software development process.
Members of a project team work in a UCM project. A project is the object that contains the
configuration information needed to manage a significant development effort, such as a product
release. A project contains one shared work area and typically multiple private work areas.
Private work areas allow developers to work on activities in isolation. As project manager, you
are responsible for maintaining the project’s shared work area. Work within a project progresses
as follows:

2 - Understanding UCM 9

10

10.

You create a project and identify an initial set of baselines of one or more components. A
component is a group of related directory and file elements, which you develop, integrate, and
release together. A baseline is a version of a component.

Developers join the project by creating their private work areas and populating them with
the contents of the project’s baselines.

Developers create activities and work on one activity at a time. An activity records the set of
files that a developer creates or modifies to complete a development task, such as fixing a
bug. This set of files associated with an activity is known as a change set.

When developers complete activities, and build and test their work in their private work
areas, they share their work with the project team by performing deliver operations. A deliver
operation merges work from the developer’s private work area to the project’s shared work
area.

In the shared work area, you integrate the work delivered by developers.

Periodically, you create new baselines in the shared work area that incorporate the delivered
work.

You perform quick validation tests to make sure that the new baselines build and appear to
work correctly. A team of software quality engineers performs more extensive testing.

Periodically, as the quality and stability of baselines improve, you adjust the promotion level
attribute of baselines to reflect appropriate milestones, such as Built, Tested, or Released.
When the new baselines pass a sufficient level of testing, you designate them as the
recommended set of baselines.

Developers perform rebase operations to update their private work areas to include the set of
versions represented by the new recommended baselines.

Developers continue the cycle of working on activities, delivering completed activities,
updating their private work areas with new baselines.

This list of UCM tasks can be seen as two cycles: project management and development. Figure 3
illustrates the connection between these cycles.

Managing Software Projects with ClearCase

Figure 3 Project Management and Development Cycles in UCM

Make
baselines

Rebase
work area

Deliver Work on

activities activities
Integrate Promote
work Development cycle baselines

Project management cycle

2 - Understanding UCM

11

12

2.2

Creating the Project

Q

> gD S D
Project ~ Create Integrate \ Promote
Manager ~Project work D baseline
Make new
Create a Setup ClearQuest baseline
PVOB integration
Create Set
components policies
Create
baseline

To create and set up a project, you must perform the following tasks:

Create a repository for storing project information

Create components that contain the set of files the developers work on

Create baselines that identify the versions of files with which the developers start their work
Select the development policies you want to enforce

Oo0ooo

Creating a PVOB

ClearCase stores file elements, directory elements, derived objects, and metadata in a repository
called a versioned object base (VOB). In UCM, each project must have a project VOB (PVOB). A
PVOB is a special kind of VOB that stores UCM objects, such as projects, activities, and change
sets. A PVOB must exist before you can create a project. Check with your site’s ClearCase
administrator to see whether a PVOB has already been created. For details on creating a PVOB,
see Creating the Project VOB on page 56.

Managing Software Projects with ClearCase

Organizing Directories and Files into Components

As the number of files and directories in your system grows, you need a way to reduce the
complexity of managing them. Components are the UCM mechanism for simplifying the
organization of your files and directories. The elements that you group into a component
typically implement a reusable piece of your system architecture. By organizing related files and
directories into components, you can view your system as a small number of identifiable
components, rather than one large set of directories and files.

Within a component, you organize directory and file elements into a directory tree. The
component’s root directory must be the root directory of a VOB. You can convert existing VOBs
into components, or you can create a component from scratch. For details on creating a
component from scratch, see Creating Components on page 57. For details on converting a VOB
into a component, see Making a VOB into a Component on page 62.

Shared and Private Work Areas

A work area consists of a view and a stream. A view is a directory tree that shows a single version
of each file in your project. A stream is a ClearCase object that maintains a list of activities and
determines which versions of elements appear in your view.

A project contains one integration stream, which records the project’s baselines and enables access
to versions of the project’s shared elements. The integration stream and a corresponding
integration view represent the project’s shared work area.

Each developer on the project has a private work area, which consists of a development stream
and a corresponding development view. The development stream maintains a list of the
developer’s activities and determines which versions of elements appear in the developer’s
view.

When you create a project from the UCM GUI, ClearCase creates the integration stream for you.
If you create a project from the command-line interface, you need to create the integration stream
explicitly. Developers create their development streams and development views when they join
the project. See Developing Software with ClearCase for information on joining a project.

2 - Understanding UCM 13

14

Starting from a Baseline

After you create project components or select existing components, you must identify the
baseline or baselines that serve as the starting point for the team’s developers. A baseline
identifies one version of every element visible in a component. Figure 4 shows baselines named
BL1 and BL2 that identify versions in Component A and Component B, respectively.

The project’s integration stream records the baselines. When developers join the project, they
populate their work areas with the versions of directory and file elements represented by the
baselines. This practice ensures that all members of the project team start with the same set of
files.

Figure 4 Baselines of Two Components

Integration stream
Element Element

Version
@ ©
Q
I .
Component A Component B
Baseline BL1 Baseline BL2

Setting Policies

UCM includes a set of policies that you can set to enforce development practices among
members of the project team. By setting policies, you can improve communication among project
team members and minimize the problems you may encounter when integrating their work. For
example, you can set a policy that requires developers to update their work areas with the

Managing Software Projects with ClearCase

project’s latest recommended baseline before they deliver work to the integration stream. This
practice reduces the likelihood that developers will need to work through complex merges when
they deliver their work. For a description of all policies you can set in UCM, see Considering
Which Development Policies to Enforce on page 41.

Setting Up the UCM-ClearQuest Integration

You can use UCM without Rational ClearQuest, the change request management tool. The
integration with ClearQuest adds significant project management and activity management
capabilities. When you set up a UCM project to work with ClearQuest, the integration links all
project activities to ClearQuest records. You can then take advantage of UCM’s state transition
model and ClearQuest’s query, reporting, and charting features. These features allow you to do
the following;:

Assign activities to developers

Assign states and state transition rules to activities
Generate reports based on database queries

Select additional development policies to be enforced

O
O
O
O
To set up the UCM-ClearQuest integration:

1. Enable a ClearQuest schema to work with UCM or use a predefined UCM-enabled schema.

2. Create or upgrade a ClearQuest user database to use the schema.

3. Enable your UCM project to work with ClearQuest.

See Overview of the UCM-ClearQuest Integration on page 20 for additional information about the
integration.

2 - Understanding UCM 15

2.3

Integrating Work into the Project (MultiSite)

g DO—B—
Project Create Integrate\ / Promote
Manager project work D baseline

Make new
baseline

In most cases, developers complete the deliver operations that they start. If your project uses
ClearCase MultiSite, you may need to complete some deliver operations. Many ClearCase
customers use MultiSite, a product layered on ClearCase, to support parallel software
development across geographically distributed project teams. MultiSite lets developers work on
the same VOB concurrently at different locations. Each location works on its own copy of the
VOB, known as a replica.

To avoid conflicts, MultiSite uses an exclusive-right-to-modify scheme, called mastership. VOB
objects, such as streams and branches, are assigned a master replica. The master replica has the
exclusive right to modify or delete these objects.

In a MultiSite configuration, a team of developers may work at a remote site, and the project’s
integration stream may be mastered at a different replica than the developers” development
streams. In this situation, the developers cannot complete deliver operations to the integration
stream. As project manager, you must complete these deliver operations. UCM provides a
variation of the deliver operation called a remote deliver. When UCM detects a stream mastership
situation, it makes the deliver operation a remote deliver, which starts the deliver operation but
does not merge any versions. You then complete the deliver operation.

For details on completing remote deliver operations, see Integrating the Project on page 73.

Managing Software Projects with ClearCase

2.4

Making a New Baseline

DD
Project Create Integrate\ / Promote
Manager project work - baseline

Make new
baseline

To ensure that developers stay in sync with each other’s work, make new baselines regularly. A
new baseline includes the work developers have delivered to the integration stream since the last
baseline. To make a new baseline:

1. Lock the integration stream to prevent developers from delivering work while you create the
baseline. Developers can continue to work on activities in their development streams.

2. Verify the stability of the project by building and testing its components.
3. Make the baseline.

4. Unlock the integration stream so that developers can resume delivering work.

After your team of software quality engineers test the new baseline more extensively and
determine that it is stable, make the baseline the recommended baseline. Developers then update
their work areas with the new baseline by performing a rebase operation, which merges files and
directories from the integration stream to the development stream.

Figure 5illustrates a rebase operation from baseline BL1 to BL2. For details on making baselines,
see Creating a New Baseline on page 75.

2 - Understanding UCM 17

18

Figure 5 Rebase Operation

Integration stream
Pat's development Pat's development

work area work area after rebase

0%
'ZW?W’#
RUAIATN
LKA
R,
A,
R,
o
LDBIKEAN
AL

K
(K
R i
Ry
RO
s
/450

0
U

2.5

Promoting the Baseline

‘ o— [o—

Project Create Integrate \ Promote
Manager project work D baseline
Make new
baseline

As work on your project progresses and the quality and stability of the components improve,
change the baseline’s promotion level attribute to reflect important milestones. The promotion
level attribute typically indicates a level of testing. For example, Figure 6 shows the evolution of
baselines through three levels of testing; the BL8 baseline is ready for production.

You can use promotion levels in development policies. For example, you can set a policy to make
a baseline the recommended baseline when it reaches a particular promotion level, such as
“tested.” You can set another policy that requires developers to rebase their development
streams to the set of recommended baselines before they deliver work. These policies help to

Managing Software Projects with ClearCase

ensure that developers update their work areas whenever a baseline passes an acceptable level

of testing.
For details on promoting baselines, see Promoting or Demoting the Baseline on page 79

Figure 6 Promoting Baselines

Production

Acceptance tested
BL6

System tested

Integration tested

BL1

2 - Understanding UCM

19

20

2.6

Overview of the UCM-ClearQuest Integration
This section describes the following UCM-ClearQuest integration concepts:

Association of UCM and ClearQuest objects
UCM-enabled schema
Queries

0
0
0
O State types

Associating UCM and ClearQuest Objects

Setting up the integration links UCM and ClearQuest objects. Figure 7 shows the bidirectional
linking of these objects.

Figure 7 Association of UCM and ClearQuest Objects in Integration

PVOB P ClearQuest User Database

m UCM_Project

Record

Record 2

_/v

When you enable a project to link to a ClearQuest user database, the integration stores a reference
to that database in the project’s PVOB.

Every ClearQuest-enabled project is linked to a project record of record type UCM_Project in the
ClearQuest user database.

Every activity in a ClearQuest-enabled project is linked to a record in the database. An activity’s
title is linked to the headline field in its corresponding ClearQuest record. If you change an

Managing Software Projects with ClearCase

activity’s title in ClearCase, the integration changes the headline in ClearQuest to match the new
title, and the reverse is also true. Similarly, an activity’s name is linked to the ID field in its
ClearQuest record.

It is possible for a ClearQuest user database to contain some records that are linked to activities
and some records that are not linked. Record 2 in Figure 7 is not linked to an activity. You may
encounter this situation is if you have a ClearQuest user database in place before you adopt
UCM. As you create activities, the integration creates corresponding ClearQuest records.
However, any records that existed in that user database before you enabled it to work with UCM
remain unlinked.

UCM-Enabled Schema

In ClearQuest, a schema is the definition of a database. To use the integration, you must create
or upgrade a ClearQuest user database that is based on a UCM-enabled schema. A UCM-enabled
schema contains certain fields, scripts, actions, and state types. ClearQuest includes two
predefined UCM-enabled schemas, which you can use. You can also enable a custom schema or
another predefined schema to work with UCM. For details on UCM-enabled schemas, see
Deciding Which Schema to Use on page 38.

State Types

ClearQuest uses states to track the progress of change requests from submission to completion.
A state represents a particular stage in this progression. Each movement from one state to another
is a state transition. The integration uses a particular state transition model. To implement this
model, the integration uses state types. A state type is a template that defines actions and other
attributes of a state. You can define as many states as you want, but all states in a UCM-enabled
record type must be based on one of the following state types:

Waiting
Ready
Active
Complete

Oo0ooo

For each state type, you can have multiple states. However, you must define at least one path of
transitions between states of state types as follows: Waiting to Ready to Active to Complete. For
details on state types, see Setting State Types on page 49.

2 - Understanding UCM 21

22

Queries in a UCM-Enabled ClearQuest Schema

A UCM-enabled schema includes six queries. When you create or upgrade a ClearQuest user
database to use a UCM-enabled schema, the integration installs these queries in two subfolders
of the Public Queries folder in the user database’s workspace. These queries make it easy for
developers to see which activities are assigned to them and for project managers to see which
activities are active in a particular project. For details on these queries, see Querying ClearQuest
User Databases on page 82

Managing Software Projects with ClearCase

Planning the Project

This chapter describes the issues you need to consider in planning to use one or more UCM
projects as your configuration management environment. We strongly recommend that you
write a configuration management plan before you begin creating projects and other UCM
objects. After you create your plan, see Chapter 5, Setting Up the Project for information on how
to implement it.

3.1 Using the System Architecture as the Starting Point

Essential to developing and maintaining high quality software is the definition of the system’s
architecture. The Rational Unified Process states that defining and using a system architecture is
one of the six best practices to follow in developing software. A system architecture is the highest
level concept of a system in its environment. The Rational Unified Process states that a system
architecture encompasses the following:

0 The significant decisions about the organization of a software system

O The selection of the structural elements and their interfaces of which the system is
composed, together with their behavior as specified in the collaboration among those
elements

O The composition of the structural and behavioral elements into progressively larger
subsystems

0 The architectural style that guides this organization, these elements, and their interfaces,
their collaborations, and their composition

3 - Planning the Project 23

24

A well-documented system architecture improves the software development process. It is also
the ideal starting point for defining the structure of your configuration management
environment.

Mapping System Architecture to Components

Just as different types of blueprints represent different aspects of a building’s architecture (floor
plans, electrical wiring, plumbing, and so on), a good software system architecture contains
different views to represent its different aspects. The Rational Unified Process defines an
architectural view as a simplified description (an abstraction) of a system from a particular
perspective or vantage point, covering particular concerns and omitting entities that are not
relevant to this perspective.

The Rational Unified Process suggests using five architectural views. Of these, the
implementation view is most important for configuration management. The implementation
view identifies the physical files and directories that implement the system’s logical packages,
objects, or modules. For example, your system architecture may include a licensing module. The
implementation view identifies the directories and files that make up the licensing module.

From the implementation view, you should be able to identify the set of UCM components you
need for your system. Components are groups of related directory and file elements, which you
develop, integrate, and release together. Large systems typically contain many components. A
small system may contain one component.

Deciding What to Place Under Version Control

In deciding what to place under version control, do not limit yourself to source code files and
directories. The power of configuration management is that you can record a history of your
project as it evolves so that you can re-create the project quickly and easily at any point in time.
To record a full picture of the project, include all files and directories connected with it. These
include, but are not limited to the following:

Source code files and directories
Model files, such as Rational Rose files
Libraries

Executable files

Interfaces

Test scripts

Project plans

Oo0oo0oogoao

Managing Software Projects with ClearCase

0 System and user documentation
0 Requirements documents

Mapping Components to Projects

After mapping your system architecture to a set of components and identifying the full set of files
and directories to place under version control, you need to determine whether to use one project
or multiple projects. In general, think of a project as the configuration management environment
for a project team. Team members work together to develop, integrate, test, and release a set of
related components. For many systems, all work can be done in one project. For some systems,
work must be separated into multiple projects. In deciding how many projects to use, consider
the following factors:

O Size of the system
0 Amount of integration required
0 Whether you need to release multiple versions of the product concurrently

Size of the System

Consider the number of developers working on the system and the number of components. For
a small system that consists of two or three components being developed by a dozen developers,
one project probably makes sense. For a large system that consists of 20 components being
developed by 100 developers, it may be wise to use several projects.

Amount of Integration

Determine the relationships between the various components. Related components that require
a high degree of integration belong to the same project. By including related components in the
same project, you can build and test them together frequently, thus avoiding the problems that
can arise when you integrate components late in the development cycle.

Need for Parallel Releases

If you need to develop multiple versions of your system in parallel, consider using separate
projects, one for each version. For example, your organization may need to work on a patch
release and a new release at the same time. In this situation, both projects use mostly the same
set of components. (Note that multiple projects can modify the same set of components.) When
work on the patch release project is complete, you integrate it with the new release project.

3 - Planning the Project 25

Example

Figure 8 shows the initial set of components planned for the Transaction Builder system. A team
of 30 developers work on the system. Because a high degree of integration between components
is required, and most developers work on several components, the project manager included all
components in one project.

Figure 8 Components Used by Transaction Builder Project

Transaction Builder Project

D

Customer GUI Admin GUI

Rgjuginging

Modeler Admin Security Reporting

Components and VOBs
ClearCase implements components as versioned object bases (VOBs), the repositories for versions

of file elements, directory elements, derived objects, and metadata associated with them.
Figure 9 illustrates this implementation. In Figure 9, both Project] and Project2 use Component2.

26 Managing Software Projects with ClearCase

Figure 9 Mapping Components to Projects

PVOB

K>\/

VOB Componentl
VOB Component2 ‘

3.2 Organizing Components

After you map your system architecture to an initial set of components and determine which
projects will access those components, refine your plan by performing the following tasks:

Ensure that your components are a suitable size for VOBs
Identify any additional components

Define the component directory structures

Identify read-only components

Identify nonmerging elements

O0o0ooao

Considering VOB Capacity
Because ClearCase implements components as VOBs, you must ensure that the contents of each

planned component do not exceed the capacity of a VOB. See Administering ClearCase for details
on VOB capacity.

3 - Planning the Project 27

Identifying Additional Components

Although you should be able to identify nearly all necessary components by examining your
system architecture, you may overlook a few. For example:

System component

Testing component

Deployment component

It is a good idea to designate one component for storing
system-level files. These items include project plans,
requirements documents, and system model files and other
architecture documents.

Consider using a separate component for storing files related to
testing the system. This component includes files such as test
scripts, test results and logs, and test documentation.

At the end of a development cycle, you need a separate
component to store the generated files that you plan to ship with
the system or deploy inhouse. These files include executable files,
libraries, interfaces, and user documentation.

Defining the Directory Structure

After you complete your list of components, you need to define the directory structures within
those components. We recommend that you start with a directory structure similar to the one
shown in Table 1; then modify the structure to suit your system’s needs.

In Table 1, Component_1 through Component_n refers to the components that map to the set of
logical packages in your system architecture.

Tablel Recommended Directory Structure for Components

Component Directories Typical Contents

System plans Project plans, mission statement, and so on
requirements Requirements documents
models Rose files, other architecture documents
documentation System documentation

28

Managing Software Projects with ClearCase

Tablel Recommended Directory Structure for Components

Component Directories Typical Contents
Component_1 requirements Component requirements
through)
Component_n models Component model files
source Sourece files for this component
interfaces Component public interfaces
binaries Executable and other binary files for this
component
libraries Libraries used by this component
tests Test scripts and related documents for this
component
Test scripts Test scripts
results Test results and logs
documentation Test documentation
Deployment binaries Deployed executable files
libraries Deployed libraries
interfaces Deployed interfaces
documentation User documentation

Identifying Read-Only Components

When you create a project, you must indicate whether each component is modifiable in the

context of that project. In most cases, you make them modifiable. However, in some cases you
want to make a component read-only, which prevents project team members from changing its

elements. Components can be used in multiple projects. Therefore, one project team may be

responsible for maintaining a component, and another project team may use that component to

build other components.

For example, in Figure 10, Project A team members maintain a set of library files. Project B team
members reference some of those libraries when they build their components. In Project A, the

3 - Planning the Project

29

cm_libs component is modifiable. In Project B, the same component is read-only. With respect to
the cm_libs component, Project A and Project B have a producer-consumer relationship.

¢

read-only ‘ i ?

Figure 10 Using a Read-Only Component

Project A

cm_libs
modifiable

3.3

Specifying a Baseline Strategy

After you organize the project’s components, determine your strategy for creating baselines of
those components. The baseline strategy must define the following:

When to create baselines
How to name baselines
The set of promotion levels
How to test baselines

Oo0ooo

When to Create Baselines
At the beginning of a project, you must identify the baseline or baselines that represent the

starting point for new development. As work on the project progresses, you need to create new
baselines periodically.

Managing Software Projects with ClearCase

Identifying the Initial Baseline

If your project represents a new version of an existing project, you probably want to start work
from the latest baselines of the existing project’s components. For example, if you are starting
work on version 3.2 of the Transaction Builder project, identify the baselines that represent the
released, or production, versions of its version 3.1 components.

If you are converting a base ClearCase configuration to a project, you can make baselines from
existing labeled versions. Check whether the latest stable versions are labeled. If they are not, you
need to create a label type and apply it to the versions that you plan to include in your project.

Ongoing Baselines

After developers start working on the new project and making changes, create baselines on a
frequent (nightly or weekly) basis. This practice has several benefits:

0 Developers stay in sync with each other’s work.

It is critical to good configuration management that developers have private work areas
where they can work on a set of files in isolation. Yet extended periods of isolation cause
problems. Developers are unaware of each other’s work until you incorporate delivered
changes into a new baseline, and they rebase their development streams.

0 The amount of time required to merge versions is minimized.

When developers rebase their development streams, they may need to resolve merge
conflicts between files that the new baseline selects and the work in their private work areas.
When you create baselines frequently, they contain fewer changes, and developers spend
less time merging versions.

0 Integration problems are identified early.

When you create a baseline, you first build and test the project by incorporating the work
delivered to the integration stream since the last baseline. By creating baselines frequently,
you have more opportunities to discover any serious problems that a developer may
introduce to the project inadvertently. By identifying a serious problem early, you can
localize it and minimize the amount of work required to fix the problem.

3 - Planning the Project 31

32

Defining a Naming Convention

Because baselines are an important tool for managing a project, define a meaningful convention
for naming them. A useful baseline name provides this information:

O Project name
0 Milestone or phase of development schedule
0 Date created

For example: V4.0TRANS_BL2_990519

Identifying Promotion Levels to Reflect State of Development

A promotion level is an attribute of a baseline that you can use to indicate the quality or stability
of the baseline. ClearCase provides the following default promotion levels:

Rejected
Initial
Built
Tested
Released

O0Oo0ooao

You can use some or all of the default promotion levels, and you can define your own. The levels
are ordered to reflect a progression from lowest to highest quality. You can use promotion levels
in development policies for the project. For example, you can set a policy that makes a baseline
the recommended baseline when it has a certain promotion level or a higher one. By default, when
developers join the project or rebase their development streams, they use the recommended
baselines. Determine the set of promotion levels for your project and the criteria for setting each
level.

Planning How to Test Baselines

Typically, software development teams perform several levels of testing. An initial test, known
as a validation test, checks to see that the software builds without errors and appears to work as
it should. A more comprehensive type of testing, such as regression testing, takes much longer
and is usually performed by a team of software quality engineers.

Managing Software Projects with ClearCase

When you make a new baseline, you need to lock the integration stream to prevent developers
from delivering additional changes. This allows you to build and test a static set of files. Because
validation tests are not exhaustive, you probably do not need to lock the integration stream for a
long time. However, more extensive testing requires substantially more time.

Keeping the integration stream locked for a long time is not a good practice because it prevents
developers from delivering completed work. One solution to this problem is to create a
development stream to be used solely for extensive testing. After you create a new baseline that
passes a validation test, your testing team can rebase the designated testing development stream
to the new baseline. When the baseline passes the next level of testing, promote it. When you are
confident that the baseline is stable, make it the recommended baseline so that developers can
rebase their development streams to it.

For information on creating a testing development stream, see Creating a Development Stream for
Testing Baselines on page 69.

3.4 Planning PVOBs

ClearCase stores UCM objects such as projects, streams, activities, and change sets in project
VOBs (PVOBs). In addition to storing objects, PVOBs can function as administrative VOBs. You
need to decide how many PVOB:s to use for your system and whether to take advantage of the
administrative capabilities of the PVOB.

Deciding How Many PVOBs to Use

Projects that use the same PVOB have access to the same set of components. If developers on
different projects need to work on some of the same components, use one PVOB for those
projects. For example, Figure 11 shows concurrent development of two versions of the
Webotrans product. While most members of the team work on the 4.0 release in one project, a
small group works on the 4.0.1 release in a separate project. Both projects use the same
components, so they use one PVOB.

3 - Planning the Project 33

34

Figure 11 Related Projects Sharing One PVOB

V4.0 _Webotrans V4.0.1_Webotrans

Webotrans
PVOB

Consider using multiple PVOBs only when one or more of the following conditions applies:

0 The projects do not share components and you anticipate that they will never need to share
components.

O The projects are so large that PVOB capacity becomes an issue. For information on VOB
capacity, see Administering ClearCase.

O You plan to use the UCM-ClearQuest integration, and you want to link projects to different
ClearQuest user databases. See Planning How to Use the UCM-ClearQuest Integration on
page 36 for information on the role of the PVOB in the integration.

Understanding the Role of the Administrative VOB

An administrative VOB stores global type definitions. VOBs that are joined to the administrative
VOB with AdminVOB hyperlinks share the same type definitions without having to define them
in each VOB. For example, you can define element types, attribute types, hyperlink types, and so
on in an administrative VOB. Any VOB linked to that administrative VOB can then use those
type definitions to make elements, attributes, and hyperlinks.

Managing Software Projects with ClearCase

If you currently use an administrative VOB, you can associate it with your PVOB when you
create the PVOB. ClearCase then creates an AdminVOB hyperlink between the PVOB and the
administrative VOB. Thereafter, when you create components, ClearCase creates AdminVOB
hyperlinks between the components and the administrative VOB so that the components can use
the administrative VOB’s global type definitions.

If you do not currently use an administrative VOB, do not create one. When you create
components, ClearCase makes AdminVOB hyperlinks between the components and the PVOB,
and the PVOB assumes the role of administrative VOB.

For details on administrative VOBs and global types, see Administering ClearCase.

3.5 Identifying Special Element Types

The concept of element types allows ClearCase to handle each class of elements differently. An
element type is a class of file elements. ClearCase includes predefined element types, such as file
and text_file, and lets you define your own. When you create an element type for use in UCM
projects, you can specify a mergetype attribute, which determines how deliver and rebase
operations handle merging of files of that element type.

When ClearCase encounters a merge situation during a deliver or rebase operation, it attempts
to merge versions of the element. ClearCase requires user interaction only if it cannot reconcile
differences between the versions. For certain types of files, you may want to impose different
merging behavior.

Nonmerging Elements

Some types of files never need to be merged. For these files, you may want to ensure that no one
attempts to merge them accidentally. For example, the deployment, or staging, component
contains the executable files that you ship to customers or install in-house. These files are not
under development; they are the product of the development phase of the project cycle. For these
types of files, you can create an element type and specify never merge behavior.

NOTE: If you do not specify never merge behavior for these elements, developers could
encounter problems when they attempt to deliver work to the project’s integration stream.
Developers create executable files when they build and test their work prior to delivering it. If
these files are under version control as derived objects, they are included in the current activity’s
change set. During a deliver operation, ClearCase attempts to merge these executable files to the

3 - Planning the Project 35

integration stream unless the files are of an element type for which never merge behavior is
specified.

Nonautomerging Elements

For some types of files, you may want to merge versions manually rather than let ClearCase
merge them. One example is a Visual Basic form file, which is a generated text file. Visual Basic
generates the form file based on the form that a developer creates in the Visual Basic GUI. Rather
than let ClearCase change the form file during a merge operation, you want to regenerate the
form file from the Visual Basic GUI.

For these types of files, you can create an element type and specify user merge behavior. For
information on creating element types, see Chapter 12, Using Element Types to Customize
Processing of File Elements, and the mkeltype reference page in ClearCase Reference Manual.

Defining the Scope of Element Types

When you define an element type, its scope can be ordinary or global. By default, the element

type is ordinary; it is available only to the VOB in which you create it. If you create the element
type in an administrative VOB and define its scope as global, other VOBs that have AdminVOB
hyperlinks to that administrative VOB can use the element type. If you want to define an element

type globally, and you do not currently use an administrative VOB, define the element type in
the PVOB.

3.6

Planning How to Use the UCM-ClearQuest Integration

Before you can set up the UCM-ClearQuest integration, you need to make some decisions, which
fall into two general categories:

0 How to map PVOBs to ClearQuest user databases
O Which schema to use for the ClearQuest user databases

Managing Software Projects with ClearCase

Mapping PVOBs to ClearQuest User Databases

This section describes three issues that you need to consider in deciding how many PVOBs to use
for projects that link to ClearQuest user databases.

All Enabled Projects in a PVOB Must Link to the Same Database

When you enable a project to link to a ClearQuest user database, the integration stores a reference
to that database in the project’s PVOB. Any other projects in that PVOB that you enable must use
the same database. Therefore, be careful when choosing projects to store in a PVOB. If you plan
to link projects to different databases, use different PVOBs.

NOTE: If you use ClearCase MultiSite, all PVOB replicas must have access to the ClearQuest user
database.

Projects Linked to Same Database Must Have Unigue Names

Although UCM allows you to create projects with the same name in different PVOBs, you cannot
link those projects to the same ClearQuest user database. Figure 12 illustrates this naming
requirement.

Figure 12 Projects in Multiple PVOBs Linked to the Same ClearQuest Database

PVOB1

[Project2 |
u|

ClearQuest User
Database

UCM_Projectl

—

UCM_Project2

UCM_Project3
vj

3 - Planning the Project 37

38

Use One Schema Repository for Linked Databases

If some developers on your team work on multiple projects, we recommend that you store the
schemas for the ClearQuest user databases that are linked to those projects in one schema
repository, as shown in Figure 13. This allows developers to switch between projects easily. If you
store the schemas in different schema repositories, developers must use the ClearQuest
Maintenance Tool to connect to a different schema repository whenever they switch projects.

Figure 13 Using the Same Schema Repository for Multiple ClearQuest Databases

ClearQuest User
PVOB1 Databasel

Schema Repository

Projectl

oo

QP 8schemar
ClearQuest U Vows
earQuest User
PVOB2 Database 2 o ‘
/= Schema2 =\
J S - e & |/

Project2

Qe

\/

y-

Deciding Which Schema to Use

To use the integration, you must create or upgrade a ClearQuest user database that is based on
a UCM-enabled schema. A UCM-enabled schema meets the following requirements:

0 The UnifiedChangeManagement package has been applied to the schema. A package
contains metadata, such as records, fields, and states, that define specific functionality.
Applying a package to a schema provides a way to add functionality quickly so that you do
not have to build the functionality from scratch.

Managing Software Projects with ClearCase

O

The UnifiedChangeManagement package has been applied to at least one record type. This
package adds fields and scripts to the record type, and adds the Unified Change
Management tab to the record type’s forms. Figure 14 shows the Unified Change
Management tab.

The UCMPolicyScripts package has been applied to the schema. This package contains the
scripts for three ClearQuest development policies that you can enforce.

ClearQuest includes two predefined UCM-enabled schemas, named
UnifiedChangeManagement and Enterprise. You can start using the integration right away by
using one of these schemas, or you can use the ClearQuest Designer and the ClearQuest Package
Wizard to enable a custom schema or another predefined schema to work with UCM. You can
also use one of the predefined UCM-enabled schemas as a starting point and then modify it to
suit your needs.

Figure 14 UCM Tab of Record Form for a UCM-Enabled Record Type

UCM Project: Stream:

hain Unified Change Management |

Wiew:

=

Change Set:

Change Set

Overview of the UnifiedChangeManagement Schema

The UnifiedChangeManagement schema includes the following record types:

O

3 - Planning the Project

BaseCMActivity

This is a lightweight record type that you can use to store information about activities that
do not require additional fields. Figure 15 shows the Main tab of the BaseCMActivity
record form. You may want to use this record type as a starting point and then modify it to
include additional fields and states.

Defect
This record type is identical to the record type of the same name that is included in

39

40

ClearQuest’s other predefined schemas, with one exception: it is enabled to work with
UCM. The Defect record type contains more fields and form tabs than the Activity record
type to allow you to record detailed information.

O UCMUtilityActivity
This record type is not intended for general use. The integration uses this record type when
it needs to create records for itself, such as when you link a project that contains activities to
a ClearQuest user database. You cannot modify this record type.

Figure 15 Main Tab of Record Form for the BaseCMActivity Record Type

hdain | Unified Change Managementl

10: Owner:

| || E
| |

Headline:

Description:

Enabling a Schema for UCM

If you decide not to use one of the predefined UCM-enabled schemas, you need to do some
additional work to enable your schema to work with UCM. Before you can do this, you need to
answer the following questions:

0 Which record types are you enabling for UCM? You do not need to enable all record types
in your schema, but you can link only records of UCM-enabled record types to activities.

0 For each UCM-enabled record type:

0 Which state type does each state map to? You must map each state to one of the four
UCM state types: Waiting, Ready, Active, Complete. See Setting State Types on page 49.

0 Which default actions are you using to transition records from one state to another? See
State Transition Default Action Requirements for Record Types on page 50.

Managing Software Projects with ClearCase

O Which policies do you want to enforce? The integration includes policies that you can
set to enforce certain development practices. You can also edit the policy scripts to
change the policies. See Policies Available in UCM-ClearQuest Integration on page 43 for
details.

3.7 Considering Which Development Policies to Enforce

UCM includes policies that you can set to enforce certain development practices within a project.
Some policies are available only if you enable the project to work with ClearQuest.

Policies Available in UCM

This section describes the policies that are available regardless of whether you enable the project
to work with ClearQuest.

Recommended Baselines

Recommended baselines are the set of baselines that project team members use to rebase their
development streams. In addition, when developers join the project, their development work
areas are initialized with the recommended baselines. Select the promotion level at which
baselines become recommended baselines.

NOTE: If a component does not contain a baseline whose promotion level is at or above the

recommended baseline promotion level, ClearCase uses the component’s foundation baseline
for the project when developers attempt to rebase their development streams or join the project.

Modifiable Components

In most cases, you want components to be modifiable. For information on when to use read-only
components, See Identifying Read-Only Components on page 29 .

Default View Types

When developers join a project, they use the Join Project Wizard to create their development
views, integration views, and development streams. They use a development view and a
development stream to work in isolation from the project team. They use an integration view to
build and test their work against the latest work delivered to the integration stream by other

3 - Planning the Project 41

42

developers. ClearCase provides two kinds of views: dynamic and snapshot. Decide which type
of view to use as the default for development and integration views.

Dynamic views use the ClearCase multiversion file system (MVEFS) to provide immediate,
transparent access to files and directories stored in VOBs. ClearCase maps a dynamic view to a
drive letter in Windows Explorer. Snapshot views copy files and directories from VOBs to a
directory on your computer.

We recommend that you use dynamic views as the default view type for integration views.
Dynamic views ensure that when developers deliver work to the integration stream, they build
and test their work against the latest work that other developers have delivered since the last
baseline was created. Snapshot views require developers to copy the latest delivered files and
directories to their computer (a snapshot view update operation), which they may forget to do.

Rebase Before Deliver

This policy requires developers to rebase their development streams to the project’s current
recommended baselines before they deliver work to the integration stream. The goal of this policy
is to have developers build and test their work in their development work areas against the work
included in the most recent stable baselines before they deliver to the integration stream. This
practice minimizes the amount of merging that developers must do when they perform deliver
operations.

Allow Deliveries from Stream with Pending Checkouts

This policy allows developers to deliver work to the integration stream even if some files remain
checked out in the development stream. If you do not set this policy, developers must check in
all files in their development streams before delivering work. You may want to require
developers to check in files to avoid the following situation:

1. A developer completes work on an activity, but forgets to check in the files associated with
that activity.

2. The developer works on other activities.

3. Having completed several activities, the developer delivers them to the integration stream.
Because the files associated with the first activity are still checked out, they are not included
in the deliver operation. Even though the developer may build and test the changes
successfully in the development work area, the changes delivered to the integration may fail
because they do not include the checked-out files.

Managing Software Projects with ClearCase

Policies Available in UCM-ClearQuest Integration

This section describes the policies that are available only when you enable the project to work
with ClearQuest. ClearQuest uses scripts to implement these policies. You can modify a policy’s
behavior by editing its script. See Customizing ClearQuest Project Policies on page 52.

Check Before Work On

ClearQuest invokes this policy when a developer attempts to work on an activity. The default
policy script checks to see whether the developer’s user name matches the name in the
ClearQuest record’s Owner field. If the names match, the developer can work on the activity. If
the names do not match, the Work On action fails.

The intent of this policy is to ensure that all criteria are met before a developer can start working
on an activity. You may want to modify the policy to check for additional criteria.

Check Before ClearCase Delivery

This default policy script is a placeholder: it does nothing. ClearCase invokes this policy when a
developer attempts to deliver an activity in a UCM-enabled project. We recommend that you edit
the script to implement an approval process to control deliver operations. For example, you may
want to add an Approved check box to the activity’s record type and require that the project
manager select it before allowing developers to deliver activities.

Do ClearQuest Action After Delivery

ClearCase calls this policy at the end of a deliver operation for each activity included in the
deliver operation. The default policy script uses the activity’s default action to transition the
activity to a Complete type state. If the default action requires entries in certain fields of the
activity’s record, and one of those fields is empty, the script returns an error and leaves the
deliver operation in an uncompleted state. This state prevents the developer from performing
another deliver operation, but it does not affect the current one. It does not roll back changes
made during the merging of versions.

To recover from an error, the developer needs to fill in the required fields in the activity’s record,
and resume the deliver operation.

The integration runs this script for each activity in the deliver operation. The script may return
success for any number of activities before returning an error on an activity. For the successful
activities, the script may change their state when it invokes the default action. When you recover
from an error and rerun the deliver operation, the script looks at all activities again. For those

3 - Planning the Project 43

44

that succeeded previously, the script does not attempt to change state. If you modify the script,
be sure that it adheres to this behavior. ClearQuest returns an error if you attempt to change the
state of a record to its current state.

Managing Software Projects with ClearCase

Setting Up a ClearQuest User
Database

This chapter describes how to set up a ClearQuest user database so that you can use the
UCM-ClearQuest integration for your project. The steps in this chapter are typically completed
by the ClearQuest database administrator. ClearQuest includes predefined schemas that are
ready for use with UCM. You can also enable a custom schema, or another predefined schema,
to work with UCM. See Planning How to Use the UCM-ClearQuest Integration on page 36 for
information on the decisions you need to make before setting up the integration.

4.1 Using the Predefined UCM-Enabled Schemas

The predefined UCM schemas, named UnifiedChangeManagement and Enterprise, include the
record type, field, form, state, and other definitions necessary to work with a UCM project. To set
up a ClearQuest user database to work with UCM:

1. Create a user database that is associated with one of the predefined UCM-enabled schemas.
In the ClearQuest Designer, click Database>New Database to start the New Database
Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to associate with the
new database. Scroll the list of schema names and select the new schema, as shown in
Figure 16.

3. Click Finish.

4 - Setting Up a ClearQuest User Database 45

46

Figure 16 Associating a User Database with a UCM-Enabled Schema

Schema Scherma| Checked| Check
MNarme Yersion Out OW_I
4 |AnalystStudio 1 Mo
5 |DevelopmentStudio 1 Mo
B |Test=tudio 1 Mo
1

-1

Enterprise

4]

Mo
'ﬁ UnifiedChangeManagement _E_H;l
»

4.2

Enabling a Schema to Work with UCM

The predefined UCM schemas let you use the UCM-ClearQuest integration right away, but you
may prefer to design a custom schema to track your project’s activities and change requests, or
you may prefer to use a different predefined schema. To enable a schema to work with UCM:

1. Ensure that the schema does not contain a record type named UCM_Project, which is a
reserved name used by the UCM-ClearQuest integration.

2. Inthe ClearQuest Designer, click Package>Package Wizard to start the Package Wizard, as
shown in Figure 17.

3. Add the UCMPolicyScripts package to your schema. If this package is not listed in the first
page of the wizard, it has not been installed in your schema repository. To add the package
to your schema repository, click More Packages to open the Install Packages dialog box;
select the highest version of the package, and click OK. In the wizard, select the package, as
shown in Figure 17. Click Next.

Managing Software Projects with ClearCase

Figure 17 Adding the UCMPolicyScripts Package to a Schema
Package Wizard - Install/Select Pﬁc'ﬁage

Selecta package to install into your schema:

Fackage Mame | Yersion]
History 1.0

MNotes 1.0

FQC 1.0

Froject 1.0

Fepositary 0z

RequisitePro 0.z

Fesalution 1.0

TeamTest 0.1

<] | B

tMore Packages... | Efnar Lo |

< Eack I Mext > | Cancel | Help |

4. Onthe second page of the wizard, select your schema, and click Finish. To make the changes
to the schema, ClearQuest checks out the schema for you. Check in the schema by clicking
File>Check In. ClearQuest creates a new version of the schema.

5. Optionally, you can use the Package Wizard to apply the BaseCMActivity package to your
schema. The BaseCMActivity package adds the BaseCMActivity record type to your
schema. The BaseCMActivity record type is a lightweight activity record type. You may want
to use the BaseCMActivity record type as a starting point and then modify it to include
additional fields, states, and so on.

6. Apply the UnifiedChangeManagement package to the schema. Start the Package Wizard.
Select UnifiedChangeManagement, and click Next.

7. In the second page of the wizard, select your schema. Click Next.

8. The third page of the wizard prompts you to specify the schema’s record types. Select the
check boxes of the record types that you want to enable. Click Next. All selected record types
must meet the requirements listed in Requirements for Enabling Custom Record Types on
page 49.

9. Inthe fourth page of the wizard, you must assign state types to the states for each record type
that you choose to enable. For each state, click in the adjacent state type cell to display the
list of available state types, as shown in Figure 18, and select one. To enable another record

4 - Setting Up a ClearQuest User Database a7

type, click the arrow in the Record Type list to see the available record types. See Setting State
Types on page 49 for a description of the four state types, and the rules for setting them.

When you are finished, click Finish to check out the schema.

Figure 18 Assigning State Types to a Record Type’s States

Fackage Wizard - Setup State Types

A
Packages: IUnifiedChangeManagement—1.D j
Becard Type: IDefel:i j

Select a state type for a state:

States State Type
Subrnitted |VWaiting

Aszzigned |Ready
Opened | Acti
Resalved |[{
Claged

-
Civiulin ke |

| »

| = oo ra| —

10. Before you can check in your schema, you must set default actions for the states of each
enabled record type. Default actions are state transition actions that ClearQuest takes when
a developer begins to work on an activity or delivers an activity. In the ClearQuest Designer
workspace, navigate to the record type’s state transition matrix, as shown in Figure 19.

Figure 19 Navigating to Record Type’s State Transition Matrix

=-£3 Testl, version 4

[Schema Properties
=3 Record Types
S Activity
2 Fields
- States and Actions
1 State Transition katrix
w4 Actions
. P Behaviors
#-[1 Forms
w88 Record Scripts

Double-click State Transition Matrix to display the matrix. Right-click the state column
heading, and select Properties from its shortcut menu. Click the Default Action tab. Select

48 Managing Software Projects with ClearCase

the default action. See State Transition Default Action Requirements for Record Types on page 50
for default action requirements. Before you can set default actions, you may need to add
some actions to the record type. To do so, double-click Actions to display the Actions grid,
and then click Edit>Add Action.

11. In the ClearQuest Designer workspace, navigate to the record type’s Behaviors.
Double-click Behaviors to display the Behaviors grid. Verify that the Headline field is set to
Mandatory for all states. Verify that the Owner field is set to Mandatory for all Ready and
Active state types.

12. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest
displays, and then check in the schema by clicking File>Check In.

13. Upgrade the user database so that it is associated with the UCM-enabled version of the
schema by clicking Database>Upgrade Database.

Requirements for Enabling Custom Record Types

Before you can apply the UnifiedChangeManagement package to a custom record type, the
record type must meet the following requirements:

0 It contains a field named Headline defined as a SHORT_STRING, and a field named
Owner defined as a REFERENCE to the ClearQuest-supplied users record type. The
Headline field must be at least 120 characters long.

0 It does not contain fields with these names:

ucm_vob_object
ucm_stream
ucm_stream_object
ucm_view

Oo0ooo

0 It contains an action named Modify of type Modity.

Setting State Types

The integration uses a state transition model to help you monitor the progress of activities. To
implement this model, the integration adds state types to UCM-enabled schemas. Table 2 lists
and describes the four state types. You must assign each state to a state type. You must have at

4 - Setting Up a ClearQuest User Database 49

least one state definition of state type Waiting, one of state type Ready, one of state type Active,
and one of state type Complete.

Table 2 State Types in UCM-Enabled Schema

State Type

Description

Waiting

The activity is not ready to be worked on, either because it has not
been assigned or it has not satisfied a dependency.

Ready

The activity is ready to be worked on. It has been assigned, and
all dependencies have been satisfied.

Active

The developer has started work on the activity but has not
completed it.

Complete

The developer has either worked on and completed the activity,
or not worked on and abandoned the activity.

State Transition Default Action Requirements for Record Types

Record types can include numerous state definitions. However, UCM-enabled record types must
have at least one path of transitions among state types as follows: Waiting to Ready to Active to
Complete. The transition from one state to the next must be made by a default action.

For example, Figure 20 shows the actions and default actions between the states defined in the
UCM-enabled BaseCMActivity record type included in the predefined UCM schema. The
default actions are identified with an asterisk (*). The state types are in uppercase letters enclosed
in brackets. The states appear immediately above their state types.

50

Managing Software Projects with ClearCase

Figure 20 State Transition Diagram for UCM-enabled BaseCMActivity Record Type

Postpone

Postpone

Submitted Active

[\
[WAITING]

LT

Complete

[READY]

Lo _Gf

[ACTIVE]

|3, |[COMPLETE]
Ge_Gd [y,

*Activate *Complete

Re-open

In addition to this single path requirement, states must adhere to the following rules:

O All Waiting type states must have a default action that transitions to another Waiting type
state or to either a Ready or Active type state.

O If a Ready type state has an action that transitions directly to a Waiting type state, that
Waiting type state must have a default action that transitions directly to that Ready type
state.

0 AllReady type states must have a default action that transitions to another Ready type state
or to an Active type state.

0 All Ready type states must have at least one action that transitions directly to a Waiting type
state.

0 For the BaseCMActivity record type, its initial state must be a Waiting type.

4 - Setting Up a ClearQuest User Database 51

52

4.3

Customizing ClearQuest Project Policies

To implement the project policies, the integration adds the following pairs of scripts to a
UCM-enabled schema:

0 UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver Def
0 UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def
0 UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

Each policy has two scripts: a base script and a default script. The default scripts have _Def
appended to their names and are installed by the UnifiedChangeManagement package. The
integration invokes the base scripts, which are installed by the UCMPolicyScripts package. The
base script calls the corresponding default script, which contains the logic for the default
behavior. To modify the behavior of a policy, remove the call to the default script from the base
script. Then add logic for the new behavior to the base script. Adhere to the rules stated in the
base script.

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts have a UCM
prefix. The Perl scripts have a UCU prefix. For ClearQuest clients on Windows NT , the
integration uses the Visual Basic scripts. For ClearQuest clients on UNIX, the integration uses the
Perl scripts. If you modify a policy’s behavior and your environment includes ClearQuest clients
on both platforms, be sure to make the same changes in both the Visual Basic and Perl versions
of the policy’s script. Otherwise, the policy will behave differently for ClearQuest clients on
UNIX and Windows NT.

For descriptions of these policies, see Policies Available in UCM-ClearQuest Integration on page 43.

4.4

Associating Child Activity Records with a Parent Activity
Record

As project manager, you may assign activities for large tasks to developers. When the developers
research their activities, they may determine that they need to perform several separate activities
to complete one large activity.

For example, an “Add customer verification functionality” activity may require significant work

in the product’s GUI, the command-line interface, and a library. To more accurately track the
progress of the activity, you can decompose it into three separate activities.

Managing Software Projects with ClearCase

By using the parent/child controls in ClearQuest , you can accomplish this decomposition and
tie the child activities back to the parent activity.

Using Parent/Child Controls

In ClearQuest, you use controls to display fields in record forms. A parent/child control, when
used with a reference list field, lets you link related records. By adding a parent/child control to
the record form of a UCM-enabled record type, you can provide the developers on your team
with the ability to decompose a parent activity into several child activities.

To have ClearQuest change the state of the parent activity to Complete when all child activities
have been completed, you need to write a hook. See Administering Rational ClearQuest for an
example of such a hook.

4.5 Creating Users

Before you can assign activities to the developers on your project team, you must create user
account profiles for each developer in ClearQuest. To do so:

1. In ClearQuest Designer, click Tools>User Administration.
2. Click Add.

3. Complete the User Information dialog box.

See Administering Rational ClearQuest and the ClearQuest Designer online help for details on
creating user profiles.

4 - Setting Up a ClearQuest User Database 53

54

Managing Software Projects with ClearCase

Setting Up the Project

This chapter describes how to set up a project so that a team of developers can work in the
Unified Change Management (UCM) environment. Before you set up a project, be sure to plan
the project. See Chapter 3, Planning the Project, for information on what to include in a
configuration management plan.

The chapter presents five scenarios:

Creating a project from scratch

Creating a project based on an existing base ClearCase configuration
Creating a project based on an existing project

Enabling a project to use the UCM-ClearQuest integration

Creating a development stream reserved for testing new baselines

Oo0oooao

5 - Setting Up the Project 55

56

5.1

Creating a Project from Scratch

Q

= o
Project ~ Setup Integrate \ Promote
Manager ~Project work D baseline
Make new
Create a Create baseline
PVOB directory structure
Create Create
components integration view
Create a
project

This section describes how to create and set up a new project that is not based on an existing
project or on an existing set of ClearCase VOBs.

Creating the Project VOB

To create a PVOB:

1. Click Start>Programs>ClearCase Administration>Create VOB. The VOB Creation Wizard
appears.

2. InStep 1 of the VOB Creation Wizard, enter a name for the PVOB. Enter a comment to
describe the purpose of the PVOB. Leave the Create VOB as a UCM component box clear.
Although you can use one VOB as the PVOB and a component, we recommend against
doing so unless your project is very small and you anticipate that it will remain small. Select
the UCM project data check box.

3. InStep 2, specify the PVOB’s storage directory. A PVOB storage directory is a directory tree
that serves as the repository for the PVOB’s contents. A PVOB’s storage directory contains

Managing Software Projects with ClearCase

the same subdirectories as a VOB'’s storage directory. (For details about VOB storage
directory structure, see Administering ClearCase.) You can choose one of the recommended
locations or enter the universal naming convention (UNC) path of a different location. Click
Browse to search the network for shared resource locations.

Step 3 prompts you to choose an administrative VOB to be associated with the PVOB.
Because you are creating a project from scratch and do not currently use an administrative
VOB, scroll to the top of the list and select none. When you create components, ClearCase
makes AdminVOB hyperlinks between the components and the PVOB, and the PVOB
assumes the role of administrative VOB.

Creating Components

To create a component:

1.

2.

Start the VOB Creation Wizard.

In Step 1, enter a name for the component. Enter a comment to describe the purpose of the
component. Select the Create VOB as a UCM component check box.

In Step 2, specify where to store the component. You can choose one of the recommended
locations or enter the UNC path of a different location. Click Browse to search the network
for shared resource locations.

Step 3 prompts you to identify the PVOB that will store the project information about the
component. Click the arrow to see the list of available PVOBs. Select the PVOB that you
previously created.

ClearCase creates the component with an initial baseline that points to the \main\0 version
of the component’s root directory.

Creating the Project

To create a project:

1.

5 - Setting Up the Project

In the left pane of ClearCase Explorer, click UCM and then click Project Explorer. The
Project Explorer appears. The Project Explorer is the graphical user interface (GUI) through
which you create, manage, and view information about projects.

57

58

The left pane of the Project Explorer lists root folders for all PVOBs in the local ClearCase
domain. Each PVOB has its own root folder. ClearCase creates the root folder using the name
of the PVOB.

ClearCase also creates a folder called Components, which contains entries for each
component in the PVOB. Folders can contain projects and other folders. Select the root folder
for the PVOB that you want to use for storing project information.

Click File>New>Folder to create a project folder. You do not need to create a project folder,
but it is a good idea. As the number of projects grows, project folders are helpful in
organizing related projects.

In the left pane, select the project folder or root folder. Click File>New>Project. The New
Project Wizard appears.

In Step 1 of the New Project Wizard, enter a descriptive name for the project in the Project
Title box. Enter a comment in the Description box to describe the purpose of this project.

Step 2 asks whether you want to create the project based on an existing project. Because you
are creating a project from scratch, click No.

Step 3 asks you to choose the baselines that the project will use. These baselines are known
as foundation baselines because they are the foundation upon which all work within the
project is built.

Click Add to open the Add Baseline dialog box. In the Component list, select one of the
components that you previously created. The component’s initial baseline appears in the
Baselines list. Select the baseline. Be sure that the Allow project to modify the component
check box is selected unless you want the component to be read-only. See Identifying
Read-Only Components on page 29 for information on when you may want to use read-only
components. Click OK. The baseline now appears in the list in Step 3. Continue to use the
Add Baseline dialog box until the project contains its full set of foundation baselines.

Step 4 prompts you to specify the development policies to enforce for this project. Select the
check boxes for the policies you want to enforce. See Considering Which Development Policies
to Enforce on page 41 for information about each policy.

Step 5 asks whether to configure the project to work with the ClearQuest integration. To
enable the project to work with ClearQuest, click Yes, and select a ClearQuest user database
from the list. See Enabling a Project to Use the UCM-ClearQuest Integration on page 65 for
details about the integration.

Managing Software Projects with ClearCase

Defining Promotion Levels

ClearCase provides five baseline promotion levels. You can keep some or all of them, and you
can define your own promotion levels. To define the promotion levels that your project uses:

1. Inthe Project Explorer, select the PVOB root folder that contains your project, and then click
Tools>Define Promotion Level. All projects that use that PVOB have access to the same set
of promotion levels.

2. The Define Promotion Levels dialog box appears. To remove an existing promotion level,
select it and click Remove. To change the order of promotion levels, select a promotion level
and use the Move Up or Move Down buttons.

3. Toadd a new promotion level, click Add. The Add Promotion Level dialog box appears.
Enter the name of the new promotion level and click OK. The new promotion level appears
in the list of promotion levels in the Define Promotion Levels dialog box. Move it to the
desired place in the order.

4. When you finalize the set and order of promotion levels, select one to be the initial promotion
level for new baselines. The initial promotion level is the level assigned by default when you
create a baseline.

Creating an Integration View

When you create a project, ClearCase creates the project’s integration stream for you. To see and
make changes to the project’s shared elements, you need an integration view. To create an
integration view:

1. In the Project Explorer, navigate to the integration stream by moving down the object
hierarchy:

a. Root Folder
b. Project Folder
c. Project

d. Stream

Figure 21 illustrates this hierarchy.

5 - Setting Up the Project 59

Figure 21 Navigating to Integration Stream in Project Explorer

F] - Exploring ClearCase Projects

Fie View Tools Help K
F* Integration M : L (e = o=
! o = e 5% |
-2 ktessier_upvab2 MNamea | winer
[Components B deliver bert_newproject? on 08/23/99 14:4411, ktessier
ED newproj_folder E deliver bert_newproject? on 08/23/99 146414, ktessier

- newprojectl
ER ewproject?
“. bert_newproject?
. Integration

2. Select the integration stream and click File>New>View.

3. The View Creation Wizard appears. Accept the default values to create an integration view
associated with the integration stream. By default, the View Creation Wizard uses this
convention for the integration view name: username_project-name_integration.

ClearCase supports two kinds of views:

0 Dynamic views, which use the ClearCase multiversion file system (MVES) to provide
immediate, transparent access to files and directories stored in VOBs. ClearCase maps a
dynamic view to a drive letter in Windows Explorer.

O Snapshot views, which copy files and directories from VOBs to a directory on your
computer.

We recommend that you make the integration view a dynamic view to ensure that you
always see the correct version of files and directories that developers deliver to the
integration stream. With a snapshot view, you have to perform an update operation to copy
the latest delivered files and directories to your computer. For more information about
dynamic and snapshot views, see Developing Software with ClearCase. Dynamic views are not
available on Windows.

Creating the Directory Structure

Because you are creating the project from scratch, you need to create the directory elements
within the project’s components to implement the directory structure that you define during the

Managing Software Projects with ClearCase

planning phase. See Defining the Directory Structure on page 28. To add a directory element to a
component:

1. In Windows Explorer, navigate to the integration view. Double-click the component to
display its contents.

2. Create a folder.
3. Right-click the folder to display the shortcut menu. Click ClearCase>Add to Source Control.

4. When prompted, specify an activity to be associated with the addition of the new directory
element.

For additional information about creating directory and file elements, see Developing Software
with ClearCase and the mkelem reference page.

Importing Directories and Files from Outside ClearCase

If you have a large number of files and directories that you want to place under ClearCase
version control, you can speed the process by using the clearexport and clearimport
command-line utilities. These two utilities allow you to migrate an existing set of directories and
files from another version control software system, such as SourceSafe or PVCS, to ClearCase.
You can also use clearexport and clearimport to place directories and files that are not currently
under any version control under ClearCase control.

To migrate source files into a component:

1. Create and set a non-UCM view by using the View Creation Wizard. To start the View
Creation Wizard, from ClearCase Explorer click Base ClearCase>Create View.

2. From within the view, run clearexport to generate a data file from your source files.

3. From within the view, run clearimport to populate the component with the files and
directories from the data file.

4. In the component, create a baseline from a labeled set of versions. If the versions that you
want to include in the baseline are not labeled, create a label type and apply it to the versions.
See Making a Baseline from a Label on page 63 for details.

As an alternative, you can use clearexport and clearimport on VOBs, and then convert the VOBs

to components. See Creating a Project Based on an Existing ClearCase Configuration on page 62 for
details on converting VOBs into components.

5 - Setting Up the Project 61

For details on using clearexport and clearimport, see Administering ClearCase and the clearexport
and clearimport reference pages.

5.2

Creating a Project Based on an Existing ClearCase
Configuration

If you have existing VOBs, you may want to convert them into components so that you can
include them in projects. This section describes how to set up a project based on existing VOBs.

Creating the PVOB

Use the VOB Creation Wizard, as described in Creating the Project VOB on page 56, to create the
PVOB. In Step 3, if you currently use an administrative VOB, select it in the list. ClearCase creates
an Admin VOB hyperlink between the PVOB and the administrative VOB. When you create
components, they use the existing administrative VOB. If you do not currently use an
administrative VOB, select none.

Making a VOB into a Component

To make a VOB into a component:

1. Inthe Project Explorer, select the PVOB. Click Tools>Import VOB. The Import VOB dialog
box appears.

2. Inthe Available VOBs list, select the VOB that you want to make into a component. Click
Add to move the VOB to the VOBs to Import list. You can add more VOBs to the VOBs to
Import list. If you change your mind, you can select a VOB in the VOBs to Import list and
click Remove to move it back to the Available VOBs list. When you are finished, click
Import.

Managing Software Projects with ClearCase

Making a Baseline from a Label

After you convert an existing VOB into a component, to access the directories and files in that
component, you must create a baseline from the set of versions identified by a label type. To
create the baseline:

1. Ifthesetof versions that you want to use are not already labeled, use the Apply Label Wizard
to make and apply a label type. To start the Apply Label Wizard, click
Start>Programs>ClearCase>Apply Label.

2. In the Project Explorer, select the PVOB. Click Tools>Import Label. Step 1 of the Import
Label Wizard appears.

3. Inthe Available Components list, select the component that contains the label from which
you want to create a baseline. Click Add to move that component to the Selected
Components list. If you change your mind, select a component in the Selected Components
list and click Remove to move the component back to the Available Components list.

4. InStep #2, select the label type that you want to import, and enter the name of the baseline
that you want to create for the versions identified by that label type. Then select the
baseline’s promotion level.

Creating the Project

Use the New Project Wizard to create the project as described in Creating the Project on page 57.

Creating an Integration View

Create an integration view as described in Creating an Integration View on page 59.

5.3 Creating a Project Based on an Existing Project

As you create new projects, you may need to create new versions of existing projects. For
example, suppose you have released Version 3.0 of the Webotrans project and are planning for
Version 3.1. You anticipate that Version 3.1 will use the same components as Version 3.0.

5 - Setting Up the Project 63

64

Therefore, you want to use the latest baselines in the Version 3.0 components as the foundation
baselines for Version 3.1 development.

Reusing Existing PVOB and Components

Because your project is a new version of an existing project and uses the same components as the
existing project, do not create a new PVOB for this project. Continue to use the existing PVOB.

Creating the Project

Start the New Project Wizard, as described in Creating the Project on page 57, to create the project.
In Step 2 of the wizard, select Yes to indicate that the project begins from the baselines in an
existing project. Then navigate to the project that contains those baselines. Figure 22 shows that
the new project is based on the baselines in newproject2.

Figure 22 Step 2 of New Project Wizard

New Project - Step 2

Will this project begin from the set of baselines created by an

i’. . \’.0 existing UCM praject?
%(" NQ

 Yes, seed this project with the baseline list from
the project T selected below:

=3 ktessier_upvob2
=0 newproj_folder
i?? nesvproject]

Bl rcvnrojoct?

Step 3 lists the latest baselines in the project that you select in Step 2. You can add baselines from
components that are not part of the existing project by clicking Add to open the Add Baseline
dialog box. Similarly, you can remove a baseline by selecting it and clicking Remove.

Finish the remaining steps in the wizard as described in Creating the Project on page 57.

Managing Software Projects with ClearCase

Creating an Integration View

When you create a new project, ClearCase creates a new integration stream for you. Therefore,
you need to create a new integration view to access elements in the integration stream. Create an
integration view as described in Creating an Integration View on page 59.

54 Enabling a Project to Use the UCM-ClearQuest Integration

Before you can connect a project to a ClearQuest user database, you must set up the database to
use a UCM-enabled schema. See Chapter 4, Setting Up a ClearQuest User Database.

To enable a project to work with a ClearQuest user database:

1. In the left pane of the Project Explorer, right-click the project to display its shortcut menu.
Click Properties to display its property sheet.

2. Click the ClearQuest tab and then select the Project is ClearQuest-enabled check box. Select
the user database from the list, as shown in Figure 23. The first time that you enable a project,
ClearQuest opens its Login dialog box. Enter your user name, password, and the name of
the database to which you are linking the project.

3. Select the development policies that you want to enforce. See Policies Available in
UCM-ClearQuest Integration on page 43 for a description of these policies. Click OK when
you are finished.

If you are creating a new project, you can enable the project to work with ClearQuest by selecting
Project is ClearQuest-enabled and selecting the user database in Step 5 of the New Project
Wizard.

ClearCase does not require you to enable all projects in the PVOB to work with ClearQuest.
However, all enabled projects in the same PVOB must use the same ClearQuest database.
Therefore, give careful consideration to choosing the ClearQuest database. See Mapping PVOBs
to ClearQuest User Databases on page 37 for details.

After you enable a UCM project to work with a ClearQuest user database, you may decide to link
the project to a different user database. You can switch databases by selecting a different one on
the ClearQuest tab of the project’s property sheet if no other project in the same PVOB is
ClearQuest-enabled, and no activities have been created.

5 - Setting Up the Project 65

66

Migrating Activities

If your project contains activities when you enable it to work with a ClearQuest database, the
integration creates records for each of those activities by using the UCMUtilityActivity record
type. If you want to store all of your project’s activities in records of some other record type,
enable the project when you create it, before team members create any activities. After the
migration is complete, any new activities that you create can link to records of any UCM-enabled

record type.

Figure 23 Enabling a Project to Work with a ClearQuest User Database

newproject3 Properties HE

Generall Policy Clearuest | Custuml Lock I

¥ Projectis ClearQuest-enabled:

Link to this ClearCluest User Database: Wekho j

ClearQuest Falicies
v Check Assignment Before WWork On

[” Check Before ClearCase Daliverny

[" Do ClearCuest Action After Delivery

Setting Project Policies

A UCM-enabled schema includes three policies that you can set from either ClearCase or
ClearQuest.

In ClearCase, set the policies by selecting check boxes on the ClearQuest tab of the project’s
property sheet, as shown in Figure 23.

To set policies from ClearQuest:

Managing Software Projects with ClearCase

1. Start the ClearQuest client by clicking Start>Programs>Rational ClearQuest 2.0>Rational
ClearQuest. In the ClearQuest client workspace, navigate to the UCMProjects query, as
shown in Figure 24.

2. Double-click the query to display all UCM-enabled projects.
3. Select a project from the Results set. The project’s form appears.

4. On the form, click Actions and select Modify. Select the check boxes for the policies you
want to set.

See Policies Available in UCM-ClearQuest Integration on page 43 for descriptions of the policies.

Figure 24 Navigating to the UCMProjects Query

=l

E-g Wiorkspace: Cueries, Charts, Reports
-7 Personal Queries

=& Public Queries

B UCMSystemQueries

¢ L UCMCustamQueny1

&= UCMUserQueries

Assigning Activities
To create and assign activities in ClearQuest:
1. Start the ClearQuest client, and log in to the user database connected to the project.

2. Click Actions>New. The Choose a record type dialog box appears. Select a UCM-enabled
record type, and click OK.

3. The Submit form appears. Fill in the boxes on each tab. On the Main tab, you must fill in at
least the Headline and Owner boxes. On the Unified Change Management tab, select the
project. When you finish filling in the boxes, click OK. ClearQuest creates the record.

User account profiles must exist in ClearQuest for the developers to whom you assign activities.
See Creating Users on page 53 for details on creating user account profiles.

5 - Setting Up the Project 67

68

Disabling the Link Between a Project and a ClearQuest User Database

There may be times when you want to disable the link between a project and a ClearQuest user
database. If another project in the same PVOB is ClearQuest-enabled or if activities have been
created, you must first disable the link between each ClearQuest-enabled project in the PVOB
and the user database. To disable the links:

1. On the ClearQuest tab of the project’s property sheet, clear the Project is
ClearQuest-enabled check box.

2. Click OK on the ClearQuest tab. The integration disables the link between the project and
the ClearQuest database. The integration also removes any existing links between activities
and their corresponding ClearQuest records.

3. Display the project’s property sheet again, select the Project is ClearQuest-enabled check
box, and select another user database if you want to link the project to a different user
database.

NOTE: If you select the same user database that you just unlinked, the integration creates new
ClearQuest records for the project’s activities; it does not link the activities to the ClearQuest
records with which they were previously linked.

Fixing Projects That Contain Linked and Unlinked Activities

It is possible that after you enable a project to work with ClearQuest, some of the project’s
activities remain unlinked to ClearQuest records. Similarly, when you disable the link between
a project and ClearQuest, some activities may remain linked. Two scenarios can cause your
project to be in this inconsistent state:

O A network failure or a general system crash occurs during the enabling or disabling
operation and interrupts the activity migration.

0 The project’s PVOB is in a ClearCase MultiSite configuration, and unlinked activities were

added by a MultiSite synchronization operation to the local PVOB'’s project, which is
enabled to work with ClearQuest.

Detecting the Problem

If a developer attempts to take an action, such as modifying an unlinked activity in an enabled
project, the integration displays an error and disallows the action.

Managing Software Projects with ClearCase

Correcting the Problem

To restore the project to a consistent state:
1. In the Project Explorer, display the project’s property sheet, and click the ClearQuest tab.

2. Click Ensure all Activities are Linked. The integration checks all the project’s activities. If
the project is enabled, the integration links any unlinked activities. The integration then
displays the following summary information:

0 Number of activities that had to be linked.
0 Number of activities that were previously linked.

O Number of activities that could not be linked because they are not mastered in the
current PVOB replica. In this case, the integration also displays a list of replicas on which
you must run the Ensure all Activities are Linked operation again to correct the
problem.

5.5 Creating a Development Stream for Testing Baselines

When you make a new baseline, we recommend that you lock the integration stream so that you
can build and test a static set of files. Otherwise, developers can inadvertently cause confusion
by delivering changes while you are building and testing. Locking the integration stream for a
short period of time is acceptable; locking the integration stream for several days can result in a
backlog of completed but undelivered activities. To avoid locking out developers for a long
period of time, you may want to create a development stream and use it for extensive testing of
baselines.

To create a development stream:

1. In ClearCase Project Explorer, right-click the project, and select New>Stream from the
shortcut menu.

The Create a Development Stream dialog box appears.

2. By default, ClearCase uses the set of recommended baselines when creating a development
stream. Because the new baseline has not been tested extensively, you probably have not yet
promoted it to the level associated with recommended baselines. To create the development
stream with baselines other than the recommended baselines, click Advanced Options.

5 - Setting Up the Project 69

70

The Change Baseline dialog box appears.

3. Inthe Change Baseline dialog box, select the component that contains the baseline you want
to test. Click Change.

A second Change Baseline dialog box appears listing all baselines for the component.

4. Select the baseline that you want to test, and click OK. If you need to test the baseline of
another component, select it in the first Change Baseline dialog box and repeat the process.
When you are finished, click OK in the first Change Baseline dialog box.

5. Inthe Create a Development Stream dialog box, be sure that the Prompt me to create a View
for this stream check box is selected. Click OK.

The View Creation Wizard appears.

6. Complete the steps of the View Creation Wizard to create a view for the development stream.

Now the development stream is configured so that you can build and test the new baselines, and
developers can deliver changes to the integration stream without being concerned about
interfering with the building and testing process.

Managing Software Projects with ClearCase

Managing the Project

After you create and set up a project, developers join the project, work on activities, and deliver
completed activities to the integration stream. As project manager, you need to maintain the
project so that developers do not get out of sync with each other’s work. This chapter describes
the following maintenance tasks:

Adding components

Integrating work delivered by the remote deliver model
Making new baselines

Testing baselines

Promoting and demoting baselines

Tracking the progress of the project

Cleaning up the project

Oo0oo0oogoago

6.1 Adding Components

Over time, the scope of your project typically broadens, and you may need to add components.
To add a component to a project’s integration stream:

1. In the left pane of ClearCase Explorer, click UCM and then click Project Explorer.

2. Intheright pane of the Project Explorer, right-click the project’s integration stream to display
its shortcut menu. Click Properties to open the integration stream’s Properties dialog box.

3. Click the Configuration tab, and then click Add. The Add Baseline dialog box appears.

6 - Managing the Project 71

4. In the Component list, select the component that you want to add. The component’s

baselines appear in the Baselines list. Figure 25 shows the baselines available in the
kmt_testvob component.

Figure 25 Add Baseline Dialog Box

Add Baseline]

Companent: Ikmt_testvob j oK |
EBaselines: Cancel |
Title | Created On Help |
RELY 08/2049917:43.31
krmt_testyob_[MITIL.. 08/20/9917:32:.03 Flimii= |

¥ Allow project to modify the component

Project YOB: I\ktessier_upVDbE j

5. In the Baselines list, select the baseline that you want to add to the project.

6. Click OK. The Add Baseline dialog box closes, and the baseline that you chose appears on

the Configuration tab.

7. Click OK to close the integration stream’s Properties dialog box.

The Rebase Stream Preview dialog box appears. To modify the integration stream’s
configuration to include the new foundation baseline, UCM needs to rebase the integration

stream.
8. C(lick OK in the Rebase Stream Preview dialog box.

9. Click Complete to finish the rebase operation.

Updating Snapshot View Load Rules

If your integration view is a snapshot view, you need to edit the view’s load rules to include the
components that you add to the integration stream. A snapshot view’s load rules specify which

components ClearCase loads into the view. To edit the integration view’s load rules:

Managing Software Projects with ClearCase

1. Inthe Project Explorer, select the integration stream, and click File>Properties to display the
integration stream’s property sheet.

2. In the property sheet, click the Load Rules tab.
3. Select the component or components that you added to the integration stream.

4. Click Add. Click OK to dismiss the property sheet.

In addition, you need to know whether any developers working on the project use snapshot
views for their development views. When a developer who uses a snapshot view rebases to a
baseline that contains a new component, ClearCase updates the snapshot view’s config spec, but
it does not update the view’s load rules. When you add a component, notify developers who use
snapshot views that they need to update the load rules for their development views after they
rebase their development streams to the new baseline.

6.2 Integrating the Project

In most cases, developers complete the deliver operations that they start. However, in a MultiSite
configuration where the project’s integration stream is mastered at a different replica than the
developer’s development stream, the developer cannot complete deliver operations. When
ClearCase detects such a stream mastership situation, it makes the deliver operation a remote
deliver operation.

In a remote deliver operation, ClearCase starts the deliver operation but leaves it in the posted
state. It is up to you, as project manager, to find and complete deliver operations in the posted
state. Developers who have deliver operations in the posted state cannot deliver from, or rebase,
their development streams until you complete or cancel their deliver operations.

Finding WorkThat is Ready to Be Delivered

To find all deliver operations that are in the posted state:
1. Inthe Project Explorer, select the project.

2. Click Tools>Find Posted Deliveries. The Find Posted Deliveries dialog box appears, as
shown in Figure 26, and lists all development streams within the project that contain deliver
operations in the posted state.

6 - Managing the Project 73

74

Figure 26 Find Posted Deliveries Dialog Box

Find Posted Deliveries

The streams below hawve drliveries posted to the Deliver |
newproject? project: —

Mo posted deliveries were found.

To resume (or cancel) any of these deliveries,
click 'Deliver'.

Completing Remote Deliver Operations

To complete remote deliver operations for a development stream:
1. Select the development stream from the list in the Find Posted Deliveries dialog box.

2. Click Deliver. The Deliver dialog box appears. Click Resume to resume the deliver
operation. Click Cancel to cancel the deliver operation. See Developing Software with ClearCase
for details on completing the deliver operation.

Undoing a Deliver Operation

In addition to the remote deliver scenario, there is another case where you may need to help
developers with their deliver operations. At any time before completing the deliver operation,
developers can back out of the deliver operation and undo any changes made during the
operation. However, if developers check in their versions to the integration view, they cannot
easily undo the changes. When this happens, you may need to remove the checked in versions
by using the cleartool rmver —-xhlink command.

NOTE: The rmver command erases part of your organization’s development history, and it may
have unintended consequences. Therefore, be very conservative in using this command,

Managing Software Projects with ClearCase

especially with the —xhlink option. See the rmver reference page in ClearCase Reference Manual
for details.

Note that removing a version does not guarantee that the change is really gone. If a successor
version was created or if the version was merged before you removed the version, the change
still exists. You may need to check out the file, edit it to remove the change, and check the file
back in.

6.3 Creating a New Baseline

As developers deliver work to the integration stream, it is important that you frequently make
new baselines that record the changes. Developers can then rebase to the new baselines and stay
current with each other’s changes.

Locking the Integration Stream

Before you make a new baseline, lock the integration stream to prevent developers from
delivering work. This ensures that you are dealing with a static set of files. To lock the integration
stream:

1. In the Project Explorer, select the integration stream.
2. Click File>Properties to display the integration stream’s property sheet.
3. Click the Lock tab.

4. C(Click Locked and then click OK.

Verifying That the Code Base Is Stable

After you lock the integration stream, we recommend that you build and test the project’s
executable files to make sure that the changes delivered by developers since the last baseline do
not contain any bugs. For information on performing builds, see Building Software with ClearCase.
Because you lock the integration stream when you build and test in it, we recommend that you
use a separate development stream for extensive testing of new baselines. Perform only quick
validation tests in the integration stream so that it is not locked for an extended period of time.

6 - Managing the Project 75

76

See Testing the Baseline on page 77 for information about using a development stream for testing
new baselines.

Making the New Baseline

To make a new baseline:

1. In the Project Explorer, select the project’s integration stream.

2. Click Tools>Make Baseline. The Make Baseline dialog box appears, as shown in Figure 27.
Figure 27 Make Baseline Dialog Box

Make Baseline |

Baseline Title: IBrinks1 0_05_26_00 i I

Cancel

D ezcription:

il

Help

Bazeling Tupe: I Incremental * I

Praject/Strear: IBlinks'I .O/lhteqration

Yiew Context: Iktessier_Brinks‘I 0_2_inteqgratio j

Components to include:
[kmit_compl
[kmit_comp3
[kmt_compd

3. Enter a name in the Baseline Title box. By default, ClearCase names the baseline by
appending the date to the project’s name.

4. Choose the type of baseline to create.

An incremental baseline is a baseline that ClearCase creates by recording the last full baseline
and those versions that have changed since the last full baseline was created.

A full baseline is a baseline that ClearCase creates by recording all versions below the
component’s root directory.

Managing Software Projects with ClearCase

Generally, incremental baselines are faster to create than full baselines; however, ClearCase
can look up the contents of a full baseline faster than it can look up the contents of an
incremental baseline.

5. Specify which components to include in the baseline. By default, ClearCase applies the
baseline to all project components. If a component has not changed since the current
baseline, ClearCase does not create a new baseline for it.

Making a Baseline For a Set of Activities

By default, all activities modified since the last baseline was made are included in the new
baseline. There might be times when you want to create a baseline that includes only certain
activities. To do so, use the cleartool mkbl command and specify the activities parameter. See
the mkbl page in ClearCase Reference Manual for details.

Unlocking the Integration Stream

After you create a new baseline, unlock the integration stream so that developers can resume
delivering work to the integration stream. To unlock the integration stream:

1. In the Project Explorer, select the integration stream.
2. Click File>Properties to display the integration stream’s property sheet.
3. Click the Lock tab.

4. C(Click Unlocked and then click OK.

6.4 Testing the Baseline

To avoid locking the integration stream for an extended period of time, we recommend that you
use a separate development stream for performing extensive testing, such as system, regression,
and acceptance tests, on new baselines. See Creating a Development Stream for Testing Baselines on
page 69 for information on creating a development stream.

After you create a new baseline and verify that it builds and passes an initial validation test in
the integration stream, rebase the development stream:

6 - Managing the Project 77

78

In the Project Explorer, select the development stream and click Tools>Rebase Stream.
The Rebase Stream Preview dialog box appears.

By default, ClearCase rebases your development stream to the recommended baselines.
Because the new baseline has not been tested extensively, you probably have not yet
promoted it to the level associated with recommended baselines. To rebase to the baseline,
or baselines, you want to test, click Change.

The Change Rebase Configuration dialog box appears.

Select a component that contains a baseline you want to test. Click Change.

The Change Baseline dialog box appears, listing all baselines for the component.
Select the baseline that you want to test, and click OK.

Select another component in the Change Rebase Configuration dialog box and repeat the
process. When you finish selecting baselines, click OK to dismiss the Change Rebase
Configuration dialog box.

Click OK in the Rebase Stream Preview dialog box to continue the rebase operation. See
online help or Developing Software with ClearCase for details on rebasing a development
stream. When you finish rebasing the development stream, you are ready to begin testing the
new baselines.

Fixing Problems

If you discover a problem with a baseline while testing it, fix the affected files and deliver the
changes to the integration stream as follows:

1.

From the development view attached to the development stream, check out the files you
need to fix. When you check out a file, you need to specify an activity.

Make the necessary changes to the files and check them in.
Build and test the changes in the development view.
When you are confident that the changes work, deliver the activity to the integration stream.

In the Project Explorer, make a new baseline that includes the fixes you delivered plus
changes that other developers have delivered since you created the last baseline. See Creating
a New Baseline on page 75.

Managing Software Projects with ClearCase

6.5 Promoting or Demoting the Baseline

As work on your project progresses, and the quality and stability of the components improve,
change the baseline’s promotion level attribute to reflect a level of testing that the baseline has
passed.

To promote a baseline’s promotion level to the level specified for recommended baselines:
1. Inthe Project Explorer, select the integration stream.

2. Click Tools>Recommend Baselines.

To change a baseline’s promotion level to something other than the level specified for
recommended baselines:

1. In the Project Explorer, right-click the project’s integration stream to display its shortcut
menu. Click Properties to open the integration stream’s Properties dialog box.

2. Click the Baselines tab.

3. Inthe Components list, select the component that contains the baseline you want to
promote. In the Baselines list, select the baseline. Click Properties. The baseline’s Properties
dialog box appears.

4. Click the arrow in the Promotion Level list to display all available promotion levels. Select
the new promotion level.

On occasion, you may need to demote a baseline by changing its promotion level to one that is
lower in the promotion level order. For example, suppose that after you create a new baseline,
you discover that it contains a major bug. To prevent developers from introducing this bug to
their development streams by rebasing, you can demote the baseline to a Rejected level.

6.6 Tracking the Project

ClearCase provides several tools to help you track the progress of your project. This section
describes how to use those tools.

6 - Managing the Project 79

80

Comparing Baselines

The ClearCase Component Tree Browser is a GUI that displays the baseline history of a
component. You can use it to compare the contents of two baselines. To start the Component Tree
Browser:

1. Start the Project Explorer, and navigate to the component whose baseline history you want
to see.

2. Right-click the component to display its shortcut menu. Select Browse Baselines.
The Component Tree Browser appears, as shown in Figure 28.

Figure 28 ClearCase Component Tree Browser

;= kmt_comp - ClearCase C-Rmpunent Tree Browser
File “iew Tools Help

|=] 05 %N

krnt_céllomp

E|I ket cornp TRITIAL {44

M
hert_newglrujectz Integration [project : newproject2]

|
] deliverblbert_newprofect? 00970 19990823 144411 1587

| PN
))] newproiectz_ 08 23 99195
deitvierbl bert newproject? 008970 19930523 1454714 157 |
-

=]
|

*
|

The Component Tree Browser shows the lines of development for the component and each
stream that uses the component. In Figure 28, kmt_comp_INITIAL.144 is the initial baseline that
was created when the project manager created the kmt_comp component. The .144 is a unique
identifier that ClearCase appends to the baseline. REL2.144 is the first baseline that the project
manager created after creating the component. It is the foundation baseline for the integration

Managing Software Projects with ClearCase

stream and the development stream named bert_newproject2. When Bert joined the project,
ClearCase populated his development work area with the contents of the REL2.144 baseline.

The deliverbl.bert_newproject2_n entries are baselines that ClearCase creates in the
development stream during deliver operations. The integration arrows from the development
stream to the integration stream represent deliver operations. The newproject2_08_23_99.195
baseline includes the work from the first deliver operation. The newproject2_latest.195 baseline
includes the work from the second deliver operation.

The integration arrow from the integration stream to the development stream represents a rebase
operation.

To compare two baselines, select a baseline by clicking its icon. Then click Tools>Compare>with
Another Baseline. Click the second baseline’s icon. The Compare Baselines window appears, as
shown in Figure 29. Alternatively, you can click Tools>Compare>with Previous Baseline to

compare a baseline with its immediate predecessor.

Figure 29 Comparing Baselines by Activity

Compare Baselines H=] B3
File Wiew Help k

0 s | =

Baseline 1: newprajectz_08_23_99
Hame | Headline | Chwiner |

1 B Activities I:Y‘v’ersions |

Baseline 2: newproject?_latest

Marme | Headline | Chwerier |
2 Fix_copyright_dates_03828 Fix copyright dates
2 deliverbert_newproject?_00970.19990823 145414 deliver bert_newproject? on 08/23/93 14:54:14.

ktessier
ktessier

y B Activities ISY\f’ersions |

The Compare Baselines window in Figure 29 shows the results of a comparison of the
newproject2_08_23_99.195 and newproject2_latest.195 baselines. The more recent baseline

6 - Managing the Project 81

contains the Fix copyright dates activity. The Compare Baselines window also lists the
integration activity that ClearCase created during the deliver operation.

To see the change sets associated with the activities, click Versions. Figure 30 shows the versions
associated with the Fix copyright dates and integration activities.

Figure 30 Comparing Baselines by Version

Baseline 2 newpraject?_latest

Fathname | Activity MName | Activity Headline |
Ykmt_complinclude@ @ mainyIntegration_1626341 deliverber_.. deliver hert_newproject? on 08,23/99 ...
Ykmit_comphinclude@ @\ mainihert_newproject?_0097041 Fix_copyright.. Fix copyright dates
Ykmt_comphinclude’loop @& main Integration_1626941 deliverber_.. deliver ber_newproject? on 08723799 .

Ykrnt_comphincludeloop ta@E maint bert_newproject?_0097041 Fix_copyright.. Fix copyright dates

¥ Activiies 4 Versions I

Querying ClearQuest User Databases

If you use the UCM-ClearQuest integration, you can use ClearQuest queries to retrieve
information about the state of your project. When you create or upgrade a ClearQuest user
database to use a UCM-enabled schema, the integration installs six queries in two subfolders of
the Public Queries folder in the user database’s workspace. These queries make it easy for
developers to see which activities are assigned to them and for project managers to see which
activities are active in a particular project. Table 3 lists and describes the queries.

Table 3 Queries in UCM-Enabled Schema

Query Description

ActiveForProject For one or more specified projects, selects all activities in an active
state type.

ActiveForStream For one or more specified streams, selects all activities in an active
state type.

ActiveForUser For one or more specified developers, selects all assigned
activities in an active state type.

Managing Software Projects with ClearCase

Table 3 Queries in UCM-Enabled Schema

Query Description

MyToDoList Selects all activities in an active or ready state type assigned to the
developer running the query.

UCMProjects Selects all projects linked to the ClearQuest user database.

UCMCustomQuery1 This query is not intended to be used by users; the integration
uses it. When a developer checks out or checks in a file, or adds a
file to source control and is prompted to select an activity, the
integration calls this query to display the list of activities
available in the stream associated with the developer’s view.

You can also create your own queries by clicking Query>New Query within the ClearQuest
client. In the Choose a record type dialog box that appears, select All_UCM_Activities if you
want the query to search all UCM-enabled record types.

Using ClearCase Reports

The ClearCase Reports applications (Report Builder and Report Viewer) allow you to generate
and view reports specific to your project environment. Use the Report Builder to select and
define a report’s parameters. Use the Report Viewer to see the report output. To start the
ClearCase Report Builder, click Start>Programs>ClearCase Administration>ClearCase Report
Builder.

The ClearCase Report Builder categorizes its reports based on object types, such as UCM projects
and streams. When you select a category in the left pane, the Report Builder lists the reports
available for that category in the upper right pane. When you select a report, the Report Builder
prompts you for parameters in the lower right pane. For example, in Figure 31, with the
Activities Delivered Since Date report selected, the Report Builder prompts for the name of an
integration stream and a date.

For details on using the Report Builder and the Report Viewer, see their online help.
ClearCase Reports includes a set of hooks into the Report Builder and Report Viewer

applications. These hooks, known as report procedures, implement all the operations necessary
to generate and view a specific report. The ClearCase Reports Programming Interface allows you

6 - Managing the Project 83

to customize report procedures. For details on doing so, see Appendix C, Customizing ClearCase
Reports.

Figure 31 ClearCase Report Builder

Ef ClearCase Report Builder =] E3
Beport Help
J W R Repor «F Exit k? Help
E{j “FAeports Reports I
i 7] ClearCaze Tools Activities Delivered But in Mo Baseline
1 Elements rities Delivered Since Date
12 UCH Projects Activities in Streams

£ 1UCM Sheams Eumpleted .é'.CllI\fIFIES.II"l Streams
] voe Continued Activities in Streams

; 8 Mew Activities in Streams

(] Views Perding Activities in Streams

Select Integration Stream in UCM Process VOB
Since datestime

Cleaning Up the Project

When your team finishes work on a project and releases or deploys the new software, you should
clean up the project environment before creating the next version of the project. Cleaning up
involves removing any unused objects, and locking and hiding the project and its streams. This
process reduces clutter and makes it easier to navigate in the Project Explorer.

Removing Unused Objects

During the life of the project, you or a developer might create an object and then decide not to
use it. Perhaps you decide to use a different naming convention and you create a new object
instead of renaming the existing one. To avoid confusion and reduce clutter, remove these
unused objects.

To delete a project, stream, component, or activity, select the object in the Project Explorer, and
click File>Delete. To delete a baseline, use the cleartool rmbl command.

Managing Software Projects with ClearCase

Projects

You can delete a project only if it does not contain any streams. When you create a project with
the Project Creation Wizard, the wizard also creates an integration stream. Therefore, you can
delete a project only if you created it with the cleartool mkproject command, or if you first delete
the integration stream. For more information on removing projects, see the rmproject reference
page in ClearCase Reference Manual.

Streams

You can delete a development stream or an integration stream only if all of the following
conditions are true:

0 The stream contains no activities.
0 No baselines have been created in the stream.
0 No views are attached to the stream.

In addition, you cannot delete an integration stream if the project contains any development
streams. For more information on removing streams, see the rmstream reference page in
ClearCase Reference Manual.

Components

You can delete a component only if all of the following conditions are true:

O No baselines of the component other than its initial baseline exist.
0 The component’s initial baseline does not serve as a foundation baseline for another stream.

For more information on removing components, see the rmcomp reference page in ClearCase
Reference Manual.

Baselines

You can delete a baseline only if all of the following conditions are true:

The baseline does not serve as a foundation baseline.

The baseline is not a component’s initial baseline.

A stream has not made changes to the baseline.

The baseline is not used as the basis for an incremental baseline.

Oo0oo0oo

For more information on removing baselines, see the rmbl reference page in ClearCase Reference
Manual.

6 - Managing the Project 85

86

Activities
You can delete an activity only if both of the following conditions are true:

0 The activity has no versions in its change set.
0 No view is currently set to the activity.

For more information on removing activities, see the rmactivity reference page in ClearCase
Reference Manual.

Locking and Making Obsolete the Project and Streams

To prevent a project or a stream from appearing in the Project Explorer, lock the object and use
the obsolete option. The obsolete option hides the object.

1. In the Project Explorer, select the stream or project that you want to hide, and click
File>Properties to display its property sheet.

2. Click the Lock tab, and select Obsolete. Click OK.

To see objects that you have made obsolete, click View>Show Obsolete Items in the Project
Explorer.

Managing Software Projects with ClearCase

Managing Parallel Releases of
Multiple Projects

The previous chapters describe how to manage a single project. However, you may need to
manage multiple releases of a project simultaneously. To do so, you need to merge changes from
one project to another. This chapter describes how to accomplish that merging in two common
scenarios:

0 Managing a current project and a follow-on project simultaneously
0 Incorporating a patch release into a new release of the project

This chapter also describes other scenarios in which you can use these merging techniques
between projects.

7.1 Managing a Current Project and a Follow-on Project
Simultaneously

Given the tight software development schedules that most organizations operate within, it is
common practice to begin development of the next release of a project before work on the current
release is completed. The next release may add new features, or it may involve porting the
current release to a different platform.

7 - Managing Parallel Releases of Multiple Projects 87

Example

Figure 32 illustrates the flow of a current project, Webotrans 4.0, and a follow-on project,

Webotrans 4.1.

Figure 32 Managing a Follow-on Release

Project Webotrans 4.0
Integration stream A/////%///

Activity //////

— \

Project Webotrans 4.1

Create project \

/

(%%7

N

O

TN

0

W

— (’/}/////////{//

Rebase h-A‘//%

.
integration stream

= 1\

Managing Software Projects with ClearCase

In this example:

0 The project manager for the follow-on project created the Webotrans 4.1 project based on
the Beta baselines of the components used in the Webotrans 4.0 project. Developers on both
project teams then continued to make changes, and the 4.0 and 4.1 project managers
continued to create new baselines that incorporate those changes.

O When the 4.0 team completed its work, the project manager created the final baselines,
named FCS. The 4.1 project manager then rebased the 4.1 integration stream to the FCS
baselines.

Performing Interproject Rebase Operations

To rebase an integration stream to a set of baselines in another project’s integration stream:
1. Navigate to an integration view attached to the integration stream that you want to rebase.

2. For each component, issue the cleartool rebase command, specifying the component’s
baseline. For example:

% cleartool rebase —baseline FCS.195 —gmerge

Changed config spec for view “webotrans4.1_integration” to reflect its
stream’s new configuration.

Build and test are necessary to ensure that the merges were completed
correctly.

When build and test are confirmed, run “cleartool rebase —resume —
complete”.

3. ClearCase merges nonconflicting changes automatically. You must resolve the changes that
ClearCase cannot merge automatically. The —-gmerge option directs ClearCase to start its Diff
Merge graphical tool to help you resolve conflicting changes. For details on using Diff Merge,
see the Diff Merge online help and Developing Software with ClearCase.

4. When you finish the merge, build and test the changes before completing the rebase
operation.

5. Complete the rebase operation. For example:

% cleartool rebase —resume —complete

In the example shown above, FCS.195 is the full name of the baseline for one of the components
in the Webotrans 4.0 integration stream. To determine a baseline’s full name:

7 - Managing Parallel Releases of Multiple Projects 89

90

In the Project Explorer, select the integration stream.

Click File>Properties. The integration stream’s property sheet appears.

Click the Baselines tab.

In the Components list, select the component that contains the desired baseline.

In the Baselines list, select the root name of the baseline. Click Properties. The baseline’s
property sheet appears. The Name box identifies the full baseline name.

Note that you can rebase your project’s integration stream only if the baseline to which you are
rebasing is a successor of your integration stream'’s current foundation baseline. In the above
example, the FCS baseline is a successor to the Beta baseline, which is the current foundation
baseline for the Webotrans 4.1 integration stream.

7.2

Incorporating a Patch Release into a New Version of the Project

Another common parallel development scenario involves working on a patch release and a new
release of a project at the same time. This section describes this scenario.

Example

Figure 33 illustrates the flow of a patch release and a new release. In this example:

0

Both the Webotrans 3.0 Patch and Webotrans 4.0 projects use the FCS baselines of the
components in the Webotrans 3.0 project as their foundation baselines. The purpose of the
patch release is to fix a problem detected after Webotrans 3.0 was released. Webotrans 4.0
represents the next major release of the Webotrans product.

Development continues in both the 3.0 Patch and 4.0 projects, with the project managers
creating baselines periodically.

The developers working on the 3.0 Patch project finish their work, and the project manager
incorporates the final changes in the BL2 baseline. The project manager then needs to merge
those changes from the 3.0 Patch integration stream to the 4.0 integration stream so that the
4.0 project contains the fix.

Managing Software Projects with ClearCase

Figure 33 Incorporating a Patch Release

Project Webotrans 3.0

Project Webotrans 4.0

Y

Create projects

FCS

\

(L N\

Project Webotrans 3.0

merge

7 - Managing Parallel Releases of Multiple Projects 91

92

Merging Work to Another Project

UCM does not support interproject deliver operations. However, you can simulate a deliver
operation by running a script such as the one shown here, which uses base ClearCase
functionality to merge changes.

Sample Perl script for delivering contents of one UCM project to another,
or to a nonUCM project. Run this script while set to the integration

view of the destination project.

#

Usage: Perl <this-script> <project-name> <project-vob>

use strict;

my $mergeopts = '—print’;

my $project = shift @ARGV;

my $pvob = shift @ARGV;

my $bl;

chdir ($pvob) or die("can’t cd to project VOB '$pvob™);

print("##HE#H#H## Getting recommended baselines for project '$project\n”);
my @recbls = split(* ', ‘cleartool Isproject —fmt "%][rec_bls]p" $project’);

foreach $bl (@recbils) {

my $comp = ‘cleartool Isbl —fmt "%[component]p” $bl’;
my $vob = ‘cleartool Iscomp —fmt "%[root_dir]p" $comp’;

print("##HHH#H#H# Merging changes from baseline '$bl' of $vob\n®);

my $st = system(“cleartool findmerge $vob —fver $bl $mergeopts");
$st == 0 or die("findmerge error");

}

exit 0;

The script finds the recommended baselines for the integration stream from which you are
merging. It then uses the cleartool findmerge command to find differences between the versions
represented by those recommended baselines and the latest versions in the target integration
stream. For details on findmerge, see the findmerge reference page.

Managing Software Projects with ClearCase

We recommend that you add error handling and other logic appropriate for your site to this
script before using it.

7.3 Additional Merging Scenarios

This section describes two additional scenarios for which you may want to use a script similar to
the one shown in Merging Work to Another Project on page 92.

Merging from a Project to a Non-UCM Branch

You may be in a situation in which part of the development team works in a project, and the rest
of the team works in base ClearCase. If you are a longtime Clea