Quantify User’s Guide

support@rational.com
http://lwww.rational.com

RATIONAL

S OF T W A R E

IMPORTANT NOTICE

COPYRIGHT NOTICE

Quantify, copyright [0 1992-1999 Rational Software Corporation. All rights
reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS
INFORMATION PROPRIETARY TO RATIONAL. ANY COPYING,
ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION
OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN
PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

U.S. GOVERMENT RIGHTS NOTICE

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Purify, PureCoverage, Quantify, ClearCase,
ClearDDTS, and ClearQuest, are trademarks or registered trademarks of
Rational Software Corporation in the United States and in other countries.

All other names are used for identification purposes only and are trademarks
or registered trademarks of their respective companies.

U.S. PATENT NOTICE

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed
under Sun Microsystems Inc.’s U.S. Pat. No. 5,404,499. Other U.S. and foreign
patents pending.

Printed in the U.S.A.

QUANTIFY USER’'S GUIDE

Contents

Welcome to Quantify

Usingthisguide i, (¢
Usingonline Help ix
Conventions used inthisguide X
Displaying the release notes X
Installing Quantify X
Contacting technical support i Xi

Introducing Quantify

How Quantifyworks i 1-2
Building and running a Quantify’d program 1-3
Interpreting the programsummarycoouun... 1-4
Using Quantify’s data analysiswindows 1-5
The Function Listwindow 1-6
Sorting the function list 1-6
Restricting functions 1-7
Finding and filtering functions 1-7
The Call Graphwindow 1-9
Understanding the layout of the call graph 1-10
Usingthe pop-upmenu 1-11
Expanding and collapsing descendants 1-11
Locating functionsinthecallgraph 1-12
Changing the focus of the callgraph 1-13
Displaying additional data for functions 1-14
Changing line scale factors 1-15
Shortening functionnames 1-16
Savingthecallgraph 1-16

The Function Detailwindow, 1-17

Understanding how time is distributed 1-18
Changing the scale and precisionofdata 1-19
Saving function detaildata 1-19
The Annotated Sourcewindow 1-20
Changing annotationsccviivnnn. 1-21
What annotations mean 1-21
Saving performancedata 1-22
Customizing Quantify’s graphical interface 1-23
Editing the .qurcfile 1-23

2 Improving Performance with Quantify

The hashtable package 2-1
Collecting baseline performancedata 2-4
Uncovering an unexpected behavior 2-5
The function detail suggests long buckets 2-6
Annotated source confirms excessivecalls 2-8
Saving the baselinedata 2-9
Improving the performance of the testHash program 2-10
Running the improved_testHash program 2-12
Verifying the performance improvement 2-14
Other causes of slow software 2-15
Needless computation 2-15
Premature computation 2-16
Needless recomputation 2-16
Inefficient computation 2-16
Needless library or system-callrequests 2-16
Excessive library or system-call requests 2-17
Expensive library or system-call requests 2-17
Environmental factors 2-17

3 How Quantify Collects Data
How Quantify records functiontime 3-2

How Quantify names functions 3-3

Analyzing basic blocks i 3-4
How Quantify identifies basic blocks 3-5
How Quantify reports multiple basic blocks 3-9
Annotations and compiler differences 3-9
C++ templates and annotated source 3-11

How Quantify times systemcalls 3-13
Variations in system-calltiming 3-14

How Quantify times register-window traps 3-15

Understanding recursive functions 3-16

Running on a different machine 3-20

Paging and memory cache effects 3-20

Customizing Data Collection

Avoiding all datarecording 4-2
Timingsystemecalls i, 4-2
Avoiding timing for all systemcalls 4-2
Controlling how system calls aretimed 4-4
Avoiding timing for specific systemcalls 4-5
Reporting excluded system-calltime 4-6
Timing shared-library operations 4-7
Recording dynamic linking 4-7
Understanding shared-library operations 4-8
Timing register-window traps 4-10
Changing the granularity of collected data 4-11
Collecting partial dataforarun 4-13
Analyzing datasets containing partialdata 4-14
Calling quantify _stop_recording_system_calls
and quantify_clear_data from your debugger 4-15
Annotatingdatasets 4-16
Savingdataonsignals 4-17
Collecting data in long-running programs 4-18

Vi

Collecting data for child processes 4-18

USINg BXECVE . . . oottt e 4-19
Using fork 4-19
Using vfork 4-19
Collecting data in threaded programs 4-20
Threadsandstacks 4-20
Solaris lightweight processes and threads 4-21
Analyzing data from threaded programs 4-22

Analyzing Data with Scripts

Exporting performancedata 5-1
The export data file format 5-1
RUNNING QV . ..o e 5-2
Rerouting Quantify’soutput, 5-3
Saving dataincrementally L, 5-4
Automating dataanalysis, 5-5
Automating performance regressiontests 5-5
Comparing program runs with gxdiff 5-7
What gxdiff annotationsmean 5-8
Managing cached objectfiles 5-10
Deleting cached objectfiles 5-10

Using Quantify Options and API Functions

Using Quantify options A-2
OptioN SYNtaX ...t A-2
Using conversion characters in filenames A-3
How Quantify creates filenames A-4
OptioN tYPES . o A-5
How Quantify processesoptionsouun. A-6
Using the -ignore-runtime-environment option A-8

Using Quantify APl functions A-9
Calling API functions from a debugger A-9

Calling API functions from your program A-9
Linking with the Quantify stubs library A-10

B Options and API Reference

Build-time options quick reference B-1
gv options quick reference L B-1
Run-time options quick reference B-2
Run-time API functions quick reference B-3
Build-time options B-4
OV OPtIONS ..o e B-7
Data collection options B-8
Data collection APl functions B-10
Run-time collection status API functions B-12
Threads options i e B-12
Child process options B-13
Optionsforsavingdata B-13
API functions forsavingdata B-14
Options for saving dataonsignals B-15
Options for automating data analysis B-15
OUtPUL OPLIONS . . . e e B-16
Output APl functions B-16
Miscellaneous run-timeoptions B-17

C Common Questions

Questions about instrumentation C-1
Questions about data collection C-3
Questions about data analysis C-6
Questions about performance C-6

Quantify Quick Reference

Index

vii

viii

Using this guide

QUANTIFY USER'S GUIDE

Welcome to Quantify

This guide documents the features and capabilities of Quantify:

Using online Help

Chapter 1, “Introducing Quantify,” provides an overview of how
to use Quantify.

Chapter 2, “Improving Performance with Quantify,” is a short
tutorial that demonstrates how to use Quantify to improve the
performance of a hashtable program.

Chapter 3, “How Quantify Collects Data,” explains how
Quantify times a program’s execution.

Chapter 4, “Customizing Data Collection,” explains how to
control Quantify’s data collection.

Chapter 5, “Analyzing Data with Scripts,” describes how to
automate Quantify’s operation by using scripts.

Appendix A, “Using Quantify Options and APl Functions,”
explains how to specify Quantify options and API functions.

Appendix B, “Options and APl Reference,” provides a complete
reference of all Quantify options and API functions.

Appendix C, “Common Questions,” provides answers to the most
frequently asked questions about Quantify.

Quantify provides online Help through the Help menu in each
data analysis window. If you select On Context from the Help menu,
the cursor becomes a question mark (?). Click on any component of
the window for specific information about that component.

Conventions used in this guide

®

<quant i f yhonme> refers to the directory where Quantify is
installed. To find the Quantify directory on your system, type:

% quantify -printhonmedir

Couri er font indicates source code, program names or output,
file names, and commands that you enter.

Angle brackets < > indicate variables.

Italics introduce new terms and show emphasis.

This icon appears next to instructions for the Sun SPARC
SunOS 4 operating system.

This icon appears next to instructions for the Sun SPARC
Solaris 2 operating system, also referred to as SunOS 5.

This icon appears next to instructions for the HP-UX operating
system.

This icon appears next to instructions for the Silicon Graphics
IRIX operating system.

Displaying the release notes

Installing Quantify

X Quantify User’s Guide

The Quantify README file is located in the <puri f yhome> directory.
It contains the latest information about this release of Quantify,
including hardware and software supported, and notes about
specific operating systems. To open the README file, select

Help > Release Notes.

For information about licensing and installing Quantify, see the
Installation and Licensing Guide for Rational Purify, Quantify,
and PureCoverage.

Contacting technical support

If you have a technical problem and you can't find the solution in
this guide, contact Rational Software Technical Support. See the
back cover of this guide for addresses and phone numbers of
technical support centers.

Note the sequence of events that led to the problem and any
program messages you see. If possible, have the product running
on your computer when you call.

For technical information about Quantify, answers to common
guestions, and information about other Rational Software
products, visit the Rational Software World Wide Web site at
http://ww. rational . com To contact technical support directly,
visit: http://wm. rati onal . com support.

Welcome to Quantify xi

QUANTIFY USER'S GUIDE

Introducing Quantify

Your application’s run-time performance—its speed—is one of its
most visible and critical characteristics. Developing
high-performance software that meets the expectations of
customers is not an easy task. Complex interactions between your
code, third-party libraries, the operating system, hardware,
networks, and other processes make identifying the causes of slow
performance difficult.

Quantify is a powerful tool that identifies the portions of an
application that dominate its execution time. Quantify gives you
the insight to quickly eliminate performance problems so that
your software runs faster. With Quantify, you can:

= Get accurate, repeatable performance data

= Control how data is collected by collecting data for a small
portion of your application’s execution or the entire run

= Compare before and after runs to see the impact of your changes
on performance

= Easily locate and fix the problems with the highest potential for
improving performance

Unlike sampling-based profilers, Quantify’s reports do not include
any overhead. The numbers you see represent the time your
program would take without Quantify.

Quantify can be installed and mastered in a few hours. You
incorporate it into your development process simply by adding a
single word to your makefile and relinking. You don't need to
recompile to use it, and you can use it on the exact code you expect
to ship. Quantify works with existing makefiles, debugging tools
and standard testing scripts.

1-1

Quantify instruments all the code in your program, including
system and third-party libraries, shared libraries, and statically
linked modules.

How Quantify works

1-2 Quantify User’'s Guide

Quantify counts machine cycles: Quantify uses Object Code
Insertion (OCI) technology to count the instructions your program
executes and to compute how many cycles they require to execute.
Counting cycles means that the time Quantify records in your code
is identical from run to run, assuming that the input does not
change. This complete repeatability enables you to see precisely
the effects of algorithm and data structure changes.

Since Quantify counts cycles, it gives you accurate data at any
scale. You do not need to create long runs or make numerous short
runs to get meaningful data as you must with sampling-based
profilers: One short run and you have the data. As soon as you can
run a test program, you can collect meaningful performance data
and establish a baseline for future comparison.

Quantify times system calls: Quantify measures the elapsed
time (wall clock) of each system call made by your program and
reports how long your program waited for those calls to complete.
You can immediately see the effects of improved file access or
reduced network delay on your program. You can optionally choose
to measure system calls by the amount of time the kernel recorded
for the process, much like the / bi n/ ti me UNIX utility records.

Quantify distributes time accurately: Quantify distributes
each function’s time to its callers so you can tell at a glance which
function calls were responsible for the majority of your program’s
time. Unlike gpr of , Quantify does not make assumptions about
the average cost per function. Quantify measures it directly.

Building and running a Quantify’d program

Add “quantify”

Instrumenting files —

Run the program —

Program output —

Quantify transmits —
the dataset to qv

To instrument your program, add quant i fy to the front of the link
command line. For example:

% quantify cc -g hello_world.c -0 hello_world

Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp.
Instrunmenting: hello_world.o Linking

Run your Quantify’d program normally:

% hel | o_wor | d

When the program starts, Quantify prints license and support
information, followed by the expected output from your program.

**** Quantify instrumented hello_world (pid 20352 at Jan 7 08:41: 27
1999)
Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp.
* For contact information type: “quantify -help”
* Quantify licensed to Quantify Evaluation User
* Quantify instruction counting enabled.
Hello, World.

Quantify: Sending data for 37 of 1324 functions
from hello_world (pid 20352)......... done.

When the program finishes execution, Quantify transmits the
performance data to qv, Quantify's data analysis program.

Introducing Quantify 1-3

Interpreting the program summary

After each dataset is transmitted, Quantify prints a program
summary showing at a glance how the original, non-Quantify’'d

program is expected to perform.

Time Quantify expects the original program to take

Time spent executing

program functions Quant|i fy: Resource Statistics for hello_world (pid 20352)
* cycles secs
(compute-bound) * Total counted tinme: 16148821 0. 323 (100. 0%
Time in your code: 2721 0.000 (0.09%
Time spent waiting for———=— Tine in systemcalls: 843950 0.017 (5.2%
system calls to complete * Dynani ¢ library Ioading: 15302150 0.306 (94.8%
*
Time spent Ioading—'—‘
dynamic libraries * Note: Data collected assunm ng a sparcstation_Ix with clock rate of 50 MHz
* Note: These tines exclude Quantify overhead and possible nmenory effects.
*
Time taken to collect * El apsed data col | ection tine: 0.336 secs
data includes Quantify’s *
*

counting overhead and Note: This neasurenent includes Quantify overhead.

any memory effects

1-4 Quantify User’'s Guide

Using Quantify’s data analysis windows

After transmitting the last dataset, Quantify displays the Control
Panel. From here, you can display Quantify’s data analysis
windows and begin analyzing your program’s performance.

Annotated Source

Control Panel See page 1-20

P g | [r—
- AR RNAR SR A RN Ry
:'\I.l"l_ﬂlh Tﬂ'l?l
w-:a Thie 1t ::'.-.-u L LR |
+ - in i v iS00 ad -
i l.l-u;.:-.:.:-l.:‘a-.lclll.-:l
| . T —
L] It iy sl et
LR]
AR 1Y RN -
o e (e el JARRARARNARA NN RN AR
e oo 3 =
o Ll [—
e s o s 1 L 51
- — | Reg LU UL
E mil I ———
“. ';:':-] e e i
. el e PPRPPIR: - hrh |- Bt T
[T T T | i |y " opss :
= == [rer— i W [T —
o,
3 3 ll-u-l_l.-l_. a-u-n—b—n—:-n-
Function List T | = r
See page 1_6 J T LU
""'[! Wy e El— .
Function Detail 4—-'--__-__,!--—.-—-{% ———
—r
See page 1-17
— = | —
-
Vo | e e Y e S A |
P |
1 et Pl (il PRI |
Call Graph

See page 1-9

Introducing Quantify 1-5

The Function List window

The Function List window shows the functions that your program
executed. By default, it displays the top 20 most expensive
functions in your program, sorted by their function time. This is
the amount of time a function spent in your code performing
computations (compute-bound) or waiting for system calls to

complete.
E Gy Fusiion Livi [
b e AAmETATE Hirlg
Function list description —— s 57 ferariies s
Fum s time (usecs)
055 BEATHE
044 Uecalecany
040 sawtby
-1 it
. . 0.k il
Click a function —
H [B} oy ld
to select it H3F mells
0.3k atark Flast
0.ag Eomt
H
Find a function by name, —— Firel im fimctiss ist: —| ||
or filter by expression 2 (o T b
haila il {pid 20087

Sorting the function list

To sort the function list based on the various data Quantify
collects, select View > Display data.

View

Display data > |4 Function time

Restrict functions & <> Function+descendants time
Function names... <> Descendants time

<> System call time

<> Register window trap time

<> Number of function calls
Number of callers

Show Annotated Source > Number of descendants

Show Function Detail <> Number of system calls

Locate in Graph <> Number of register window traps

Scale factors

v

Precision &
Go back

v

1-6 Quantify User’'s Guide

Restricting functions

To focus attention on specific types of functions, or to speed up the
preparation of the function list report in large programs, you can
restrict the functions shown in the report. Select View > Restrict

functions.
View
Display data B4
Restrict functions b |4 All functions
Function names... &> Top 20 functions

<> Top 100 functions

&> Contributing functions only

<> Annotated functions only

<> Compute—bound functions only

v

Scale factors

¥

Precision
Go back

v

Show Annotated Source
Show Function Detail

Locate in Graph

You can restrict the list to the top 20 or top 100 functions in the
list, to the functions that have annotated source, to functions that
are compute-bound (make no system calls), or to functions that
contribute non-zero time for a recorded data type.

Finding and filtering functions

To search the function list for a specific function, type its name in
the Find in function list entry field.
Type the name of the function to find

Select
Find in function list Frml i T Lo s L Il |

Sheew Amrariabed Seurce | Shew Funclion el || Locale in Graph

T sl (il MCERR)

You can also filter the function list. This is useful when you have
groups of related functions that contain common substrings in
their names. You can search for functions with substrings such as
str and mem With C++ programs, you can find functions that are
defined on different classes, such as "Li st: : ", and that use certain
types in their argument lists such as "(i nt, ".

Introducing Quantify 1-7

To filter the list of functions, type a regular expression in the
Function name filter entry field.

Type a regular expression describing

the function names you want to display

Select
Function name filter Fuireé il i [y

Shaw froalsied Sewrs || e Funclion Deisi | | Locais in Graph |
tersiHah jaie (gl COT)

You can use * and ? wildcards: * represents zero or more
characters; ? represents any single character. Matching is
case-sensitive. The initial filter expression is *, matching all
functions.

The lines at the top of the function list describe the number of
functions included in the report that satisfy any restrictions and
the filter expression.

Rty Pl Lt 2=
The description of the | e 'iew Wisdswrs .
restrictions or filters —= 1 Tt maich “asie’,
that you apply S ETRianDs Tse (5E05)

1-8 Quantify User’'s Guide

The Call Graph window

Thicker lines mean more
expensive paths

Click and drag anywhere
in the

call graph to move to

a new location

Or, click and drag the
Viewport to move
to a new location

The selected function

The Call Graph window presents a graph of the functions called
during the run. It uses lines of varying thickness to graphically
depict where your program spends its time. Thicker lines
correspond directly to larger amounts of time spent along a path.

The call graph helps you understand the calling structure of your
program and the major call paths that contributed to the total
time of the run. Using the call graph, you can quickly discover the
sources of bottlenecks.

File Wew Wiiown el

-'mﬁl_ Mu-é :TH:W

N "= Trlf

—

e rimm

e o T — — o g
R e R
0

|Im.nn1:llih1l| Freviam Fecus | Shaw Sralefed Seurce | Sheoey Funclion: Dbl
Fnat: |
il ey s vt s i oaiskis tds amimes el _wnrid (e FOESE)

By default, Quantify expands the call paths of the top 20 functions
that contribute most to the overall time of the program. The call
graph begins at the . r oot . accumulator, which represents the
total amount of time used by all the functions in the program. For
more information about the . r oot . accumulator, see “How
Quantify records function time” on page 3-2.

Introducing Quantify 1-9

The most expensive

subtrees are on top —7‘»

Straight lines indicate —

that the function
on the left called the
function on the right

1-10 Quantify User's Guide

Understanding the layout of the call graph

In single-threaded applications, the call graph begins at the

.root . function, with one or two branches emanating from it. One
branch corresponds to the initialization sequence of the program
before it reaches your program’s mai n function. This branch also
contains C++ static initialization and at _exi t processing, if any.

The other branch starts at pur e_si gt r anp and is present only if
your program handled any signals. Multi-threaded applications
can have several additional branches emanating from the . r oot .
function. See “Collecting data in threaded programs” on page 4-20.

Curved lines in the call graph often indicate the presence of
recursive functions or cycles of function calls. For more
information, see “Understanding recursive functions” on page
3-16.

Curved lines indicate that the function
on the right called the function on the left

ety £l Geph

File 'dwrwe 'Windown Heip

If a function is not a leaf function, a triangle indicates how many
of each function’s immediate descendants are shown in the call

graph.
k= None of the immediate descendants are shown.
» Some of the immediate descendants are shown.

= All of the immediate descendants are shown.

Using the pop-up menu

To display the pop-up menu, right-click any function in the call
graph.

Expand descendants

>
Locate callers B
Locate descendants &
Change focus i
Show Annotated Source
Show Function Detail

You can use the pop-up menu to:

= Expand and collapse the function’s subtree
= Locate individual caller and descendant functions
= Change the focus of the call graph to the selected function

= Display the annotated source code or the function detail for the
selected function
Expanding and collapsing descendants

Use the pop-up menu to expand or collapse the subtrees of
descendants for individual functions.

Click to expand — Expand descendants

or collapse | Locate callers

P | Collapse descendants

B
descendent subtrees Locate descendants &

B

Add immediate descendants
Expand top 20 descendants
Expand top 100 descendants
Show Annotated Source | Expand all descendants
Show Function Detail

Change focus

After expanding or collapsing subtrees, you can select
View > Redo layout to remove any gaps that your changes create in
the call graph.

Introducing Quantify 1-11

1-12 Quantify User's Guide

Locating functions in the call graph

To locate a particular caller or descendant of the selected function,
select Locate callers or Locate descendants from the pop-up menu.

Expand descendants &

Locate callers P | remHash
Locate descendants & : getHash
Change focus ¥ | putHash

Show Annotated Source
Show Function Detail

Quantify sorts the descendants by their contribution to the
function’s accumulated time.

If the function you are trying to locate is not present in the call
graph, Quantify displays the most expensive path from the
function that is the current focus to the desired function.

If the function is not in the descendant subtree of the current focus
(for example, if it is the caller of the current focus), Quantify
attempts to find a common function whose descendant subtree
contains both the current focus (and hence current selection) and
the desired function. It automatically makes that function the new
focus and then displays the most expensive path from the new
focus to the desired function.

The current focus is
the function with

x
|||¢|r|r*|..||--<5 _——pAHashis Il S——
: bt A
the crossicon g —= |a: . - ;] N

Changing the focus of the call graph

You can change the focus of the call graph to a different function.

Dapnity: ol Geagh

Files Wew Wiiow B

wm“ﬁ_,.;—l-""'-'ﬂ R

ar -

i "t b &
AT T i i [

TedgebEr——

Tl vl

To change the focus of the call graph to a new function, right-click
the desired function and select Change focus > Focus on subtree from
the pop-up menu.

Expand descendants

Locate descendants

b
Locate callers B
i
3

Change focus Focus on subtree

Show Annotated Source | Previous focus
Show Function Detail Focus on .root.

The selected function becomes the basis for scaling and expanding
operations. For example, you can select View > Scale factors >
% of focus to see numeric data scaled for the current focus.

Functions with multiple callers

The subtree of the function you select as the new focus of the call
graph might contain functions that are called from outside of the
subtree. Consider, for example, the functions mal | oc and fr ee.
Both of these functions are called from many different functions in
a typical C program.

If you select one of nal | oc’s callers as the new focus, its other
callers are excluded from the subtree. In this case, nal | oc’s
function+descendants time can exceed that of its individual
callers. This is because mal | oc distributed the additional time to

Introducing Quantify 1-13

the callers that are excluded from the subtree. If you display

mal | oc’s function+descendants time as a percentage of the focus
function’s function+descendants time, this percentage will exceed
100 percent. Quantify reports the percentage as “100+%.”

Quantify warns you if the subtree of the new focus contains any
functions that distribute time to functions outside of the subtree.
Quantify displays a count of these functions in the status bar at
the bottom of the call graph and places an asterisk (*) next to their
names in the call graph.

Displaying additional data for functions

To display additional data for functions in the call graph, select
View > Display data. Select None to display functions without any
additional data.

View
Display data P E1 Function time
Function names... {1 Function+descendants time
Line scale factors i1 Descendants time
Scale factors » L1 System call time
Precision - 1] Register window trap time
Go back B "] Number of function calls

] Number of callers
Legend # " Number of descendants
Redo layout] Mumber of system calls
Refresh display {1 Mumber of register window traps
Focus on Subtree ¥ Hone
Previous Focus
Show Annotated Source
Show Function Detail

1-14 Quantify User's Guide

The legend describes
the data displayed
for the functions

Quantify describes the data that is displayed for each function in
the legend at the top of the call graph. To hide or show the legend,
select View > Legend.

Bl W Windeed Hilp

Fara e rewms P iesr bime S af Toous f=dj

1H
I:"G\II“'IIl'l'A".i-ll.'E'{.IH_---l-'_'-'_'-.-.-.-mI

M- it
: 1 s h] 25 b
< i, LT, T Tl [ra T ——prn

- -ty At | e

BT Taban 1 i

Changing line scale factors

To change the scale of the lines in the call graph, select
View > Line scale factors.

View

Display data B

Function names...

Line scale factors b B Ui

Scale factors {4 Linear
Precision 1 1> Logarithmic
Go back £

Legend &

Redo layout
Refresh display

Focus on Subtree
Previous Focus

Show Annotated Source
Show Function Detail

You can select from three line scale factors:

= Unweighted lines show only the calling relationships between
functions. These lines do not carry information about how time
is distributed between functions.

= Linear scaling shows the distributed time from a descendant
function to its caller as a percentage of the total time of the
current focus. This is the default line scale factor.

= Logarithmic scaling shows the distributed time from a
descendant function to its caller as the logarithm of the
percentage of the total time of the current focus. This scaling

Introducing Quantify 1-15

de-emphasizes the rapid accumulation of time near the root of a
subtree while emphasizing small differences between
contributing functions deep in the subtree.

Shortening function names

You can shorten function names in order to tighten up the display
in the call graph. Select View > Function names.

You can shorten function names by eliminating the C++ class
name, argument list, or operator prefix. You can also specify a
custom truncation length. In cases where demangling the full C++
name is ambiguous, Quantify prints ??? in the function’s
argument list.

| Suppereax T=- Chaa Hwma
Hupprrsic C=4 frguarem | Les

| Sagyeess C=a Opsrater Preeiie
Trercule fures lan nasaes

Mamrim charsctens to st | 2l | 1 Specify a custom truncation length
ok || cance |

Saving the call graph

To save a PostScript version of the current call graph, select
File > Save call graph as.

(i B N
v Dl el T T i [
Fil; I_‘l.r-.'H:'ﬂ price. 200 0_pa
Paaprar Heighl | 11,1
PO B ST s Poprar Kiargs [1.0
rmk Fi e
|""-|l'r !
e Aordar [0 0
config b
bansh. ¢ Lt g
lrsh_ Prartrsil
|] i 1L o e pagw
0k Lo

1-16 Quantify User's Guide

The Function Detail window

Cwantiry. Funarios Ded
Files Wiew Windoan el
All the data collected —_
for mal | oc—+— T
ralenane AL bl s 1.9
Imlled 1 time
Ferction TiEs B cpzlea § O 00k of | reot. |
. Pare LLafdescirrlants Liae ISEE opsles o 0198 of | peet)
The minimum and— 2 | #arasum funckion tises BE cpcles
. . Nmcimun function i FE oo las
maximum time
spentin mal | oc
on any one call]
L Lo Lo 1 Clirsi Do Iriiva Ui Trinn dhesCorelands |
The functions that called——+7-L tise _fisibul 1 time {59 GA8 magedare
mal | oc 1 bxs o U 10%) demcis
|
Firat- ||
Lhalrdy ey bl | B Fyaia b Von Cetad || LaCak @ Graph
bl _wrorkdl jpad TITHAZ)

The Function Detail window presents detailed performance data
for a single function showing its contribution to the overall
execution of the program.

For each function, Quantify reports both the time spent in the
function’s own code (its function time) and the time spent in all the
functions that it called (its descendants time). Quantify distributes
this accumulated function+descendants time to the function’s
immediate caller.

The immediate descendants of mal | oc, and how they contributed
to mal | oc’s function+descendants time

Double-click a caller or descendant function to display function
detail for that function.

The function time and the function+descendants time are shown
as a percentage of . r oot , the total accumulated time for the entire
run. These percentages help you understand how this function’s
computation contributed to the overall time of the run. These
times correspond to the thickness of the lines in the call graph.

Introducing Quantify 1-17

1-18 Quantify User's Guide

Note: If a function calls itself recursively, the percentages
displayed in the Function Detail window can exceed 100 percent.
See “Understanding recursive functions” on page 3-16.

Times for system calls and register window traps are shown only if
times were recorded for the function. See “Timing system calls” on
page 4-2, and “Timing register-window traps” on page 4-10.

Understanding how time is distributed

Distribution to callers lists all the functions that called the current
function. For each caller, Quantify lists the number of times it
called the function and the percentage of time that was spent in
the current function and its descendants on behalf of that caller.

Contributions from descendants lists the immediate descendant
functions called by the current function. For each descendant
function, Quantify reports the number of times it was called by the
current function and the percentage of time it contributed to the
current function’s accumulated time.

For more information, see “How Quantify records function time”
on page 3-2.

Changing the scale and precision of data

Quantify can display the recorded data in cycles (the number of
machine cycles) and in microseconds, milliseconds, or seconds. To
change the scale of data, select View > Scale factors.

View |

Function names...

Scale factors P | @ Cycles

Precision & 1> Microseconds

Go back & <> Milliseconds
> Seconds

Show Annotated Source
Show Function Detail

Locate in Graph

To change the precision of data, select View > Precision.

View |
Display data 5
Restrict functions B
Function names...
Scale factors B
Precision = 1< dd.dd
Go back 1> dd.ddd
Show Annotated Source %::::::d

Show Function Detail

Locate in Graph

Saving function detail data

To save the current function detail display to a file, select
File > Save current function detail as.

To append additional function detail displays to the same file,
select File > Append to current detail file.

Introducing Quantify 1-19

The Annotated Source window

The Annotated Source window presents line-by-line performance
data using the function’s source code.

Note: The Annotated Source window is available only for files
that you compile using the - g debugging option.

.| Examity: AT (s | VB S0k e o_wo! i I0._soeiia) -4
i Wew Windewy el
Source file R EIE e el _worahein_world 0 { Aol oy)
iat Warld) =
Function summary——s—— % ractian World

* Enlled 1 rims

* rerclien Yiss L1 epeles § 0 OOLN of | et)

* Feretlarsdescerdmbs Tima EEAZAD cpclon f 4. 110K of . reet. |

+ Dpacrilecios to Callars

. 1 kame maan

Annotations show how— BE FEIER| |
function+descendant priatf(Wacld. e}

A T L F1Sk| |
time was distributed
over its source lines e va aapartt L LI R S
+ Faratiar (1]
+ Galled 1 %imm
& Feretion Tims LE cpclos 0 OOALE e oot |
v Fargtiarsdesperalwmics tiss TETLM coalea o 4 EOME of | root |
4 Duskribebion bo Gallers
+ 1 txma mksct
R T L P PR T RS L E L e P T T PR R R TR
[N EE T
HBalle(); B
31 A&EwRg BrLdin
bk
Find text in— st in mawna:

the source code

el _wmris (i P17

The numeric annotations in the margin reflect the time recorded
for that line or basic block over all calls to the function. By default,
Quantify shows the function time for each line, scaled as a
percentage of the total function time accumulated by the function.

For more information about how Quantify reports data for lines
and basic blocks, see “Analyzing basic blocks” on page 3-4.

1-20 Quantify User's Guide

Changing annotations

To change annotations, use the View menu. You can select both
function and function+descendants data, either in cycles or
seconds and as a percentage of the function+descendants time.

View

Annotations

7

<> Function time

Function summaries
Multi-block lines
Function names...
Scale factors
Precision

Go to function

B

v

<> Function time (% of function)
<> Function+descendant time
4 Functiontdescendant time (% of frd)

What annotations mean

Each source line in the Annotated Source window is marked with
a character indicating the type of annotation.

Annotation

Meaning

*

A comment line added by Quantify. By default, Quantify
inserts function summaries, comments for each function
that reflect its detailed function data. To eliminate
comments, select View > Function summaries > Hide
function summaries.

The start of a single basic block or line. A basic block can
span several lines.

The extent of basic blocks that span several lines.

A line containing multiple basic blocks.

A line containing basic blocks that were not executed. For
more information about basic blocks, see “How Quantify
reports multiple basic blocks” on page 3-9.

Introducing Quantify 1-21

Here is an example of how annotations are used in the Annotated
Source window:

| = ErA iy 4 SRGia B0 O | § R T IR TR IR T4 R a |
i Wew Windewn el
PO T s L earia e O | Repl pidy |
[l | Per (inddem = lomsr dndex IFpar; andhR=+) | =
B RE T sprintd ey, "NaT. L-:1I.Td.l'.rli|rh|rrll.
TT.SLE| valus = guitBeshiks lkery)
0 2ikj if (rmlus)
017w LF [oldwaluss] |
013k iF (uafax ls [chacs*iwalo - EawiTukla)
0 aiwr capactErras [foand the wrasg oalus wnc|
0.l proskEQ” Toured Bl aad should hawe Found %
(chartt|ralus - tantTable. aredas):
[B manbE_sucrdsded « FALER
[
Pl i e || J
L | i prarw (el EUP39)

Saving performance data

1-22 Quantify User's Guide

To exit Quantify, select File > Exit Quantify. If you analyze a dataset
interactively, Quantify does not automatically save the last
dataset it receives. When you exit, you can save the dataset for
future analysis.

T g
r!| Eritiag (uurcify Flasss canfime
Frew & ol (211 el

By default, Quantify names dataset files to reflect the program
name and its run-time process identifier. See “How Quantify
creates filenames” on page A-4. You can analyze a saved dataset at
a later time by running qv, Quantify’s data analysis program.

You can also save Quantify data in export format. This is a
clear-text version of the data suitable for processing by scripts. See
“Exporting performance data” on page 5-1 and “Saving data
incrementally” on page 5-4.

Customizing Quantify’s graphical interface

You can modify the appearance of Quantify’s graphical interface
using X resources. You can change:

= The windows that Quantify creates by default

= Fonts in titles and menus

= Foreground and background colors

= Colors of function lines in the Call Graph window

You can also specify the following default menu settings for each
window:

= The data to display

= The scale factors to apply

= The precision to use

= C++ name suppressions to apply

Editing the .qvrc file

When you run Quantify interactively, in addition to any resources
you have set using .Xdef aul t s (or the HP VUE resource support
mechanism for HP-UX machines), Quantify loads any X resources
specified in the .qvrc file in your home directory. If there is no .qvrc
file in your home directory, Quantify creates one when you exit

Quantify.

You can edit your . gvr c file to specify alternative values for
Quantify’s X resources. The .qvrc file lists the values that can be
changed and provides extensive comments about each value. You
can remove the comments from the resource specifications and
change the values. The changed values will take effect the next
time you run Quantify.

If you need a fresh copy of the . qvr c file, delete the current
version. The next time you run Quantify interactively, it will use
the default settings, and then write a copy of the .qvrc file on exit.

Introducing Quantify 1-23

QUANTIFY USER'S GUIDE

Improving Performance with Quantify

This chapter provides a short tutorial using an example program
called t est Hash that demonstrates how to use Quantify to
improve the performance of a program. This chapter also describes
some major causes of slow software.

Note: System call timing can vary due to the load on a machine.
When you run the example program, the times that Quantify
reports for system calls might be slightly different than the times
shown in this chapter.

The hashtable package

Suppose you are part of a team developing a compiler and you are
assigned the task of developing a symbol table that associates
various programming language and user tokens with different
parsing and lexical information. You implement a hashtable
package and a unit test program to ensure that it works. Before
you incorporate the hashtable package into the compiler, you use
Quantify to find any performance bottlenecks.

Note: You can find the source code for the t est Hash program and
the unit test program in <Quant i f yhome>/ exanpl e_quanti fy.

2-1

2-2 Quantify User’s Guide

The unit test program reads a file of tokens and exercises the
hashtable package against that test dataset. The hashtable
package itself supports inserting, fetching, and deleting hashtable
entries. Each hashtable is a fixed size array (called the
“backbone”) containing pointers to a chain of hashtable entries.

The chain of hashtable entries from each array element is called a
“bucket.”

"locale" “"transport”

0x359822a Ox5a2dlca

"arch" "bylaw" "serve"
—
0x68898a 0x6a0287a 0x79c9cba

"slope"

0x7a3665a

Backbone Buckets

Given a string token such as "ser ve", the hashtable package
computes a 32-bit hash key, in this case 0x79c9c5a, based on the
characters in the string. The hashtable package uses the hashkey
modulo the size of the hashtable backbone to determine what
bucket to search and then scans the entries in the bucket looking
for the entry with the same string.

Here is the source code for the t est Hash program.

/* hashEntry

* A hashEntry keeps the key, value pair together in a list hashEntries.

*/
typedef struct struct_hashEntry {
char* key;
voi d* val ue;
struct struct_hashEntry* next;
} hashEntry;

/* hashl ndex

string key for this entry */

/* Pointer to user data indexed by key */
/* Pointer to next bucket entry */

* Det er mi nes what bucket (index) to place a key in.
* Gven a key it returns the index of the appropriate bucket.

*/
static int hashlndex(key)
char* key;
{ char *p;
unsigned h = 0, g;
for (p = key; *p; p++) {
h = (h<<4) + (*p);
if ((g =h & 0xf0000000))
h =h~n (g > 24);
h=nhng;
}
}
return h%asht abl e_backbone_si ze;
}
/* getHash

* Hashes into the appropriate bucket,

and then wal ks the

* chain of hash entries. It conpares the keys with strcnp

* because the keys do not have to have the sane pointer,

* just the same string. Wien a match is found the associated
* value is returned. NULL is returned if no match is found.

*/
voi d* get Hash(ht, key)
hasht abl e* ht;
char* key;
{ hashEntry* entry;
int index = hashl ndex(key);

for (entry = ht[index];(entry & strcnp(entry->key, key));

entry = entry->next) {

if (entry)

return (entry->val ue);
el se

return (NULL);

Improving Performance with Quantify 2-3

Collecting baseline performance data

Build the testHash program using the makefile for your system.
For example, on SunOS type:

% make -f makefile.sun testHash. pure

Run the t est Hash program with a test dataset.

% t est Hash. pure 500 test_words

Begin the analysis of the t est Hash program by reviewing
Quantify’s program summary:

***xx Quantify instrumented testHash.pure (pid 20790)
Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp.
* For contact information type: "quantify -help"
* Quantify licensed to Quantify Eval uation User.
* Quantify instruction counting enabl ed.
Testing the first 500 entries fromtest_words with a hashtable of size 13.
Al tests passed.

Quantify: Sending data for 61 of 187 functions
fromtestHash. pure (pid 20790).......... done.

Quantify: Resource Statistics for testHash.pure (pid 20790)

* cycles secs
L .) * Total counted tine: 8151282 0.163 (100. 0%
The majority of time is Time in your code: 5029082 0.101 (61.7%
spent computing Time in systemcalls: 3122200 0.062 (38.3%

Note: Data collected assunming a sparcstation_|Ix with clock rate of 50 MHz.
Note: These tinmes exclude Quantify overhead and possible nenory effects.

El apsed data col |l ection tine: 1.962 secs

Note: This neasurenent includes Quantify overhead.

*
*
*
*
*
*
*
*
*

%

Testing the hashtable package involves only the compute-bound
operations of inserting and removing items from a data structure.
The only system calls you might expect during hashtable testing
are the result of printing the test results via pri ntf and
requesting memory for the hashtable data structures via nal | oc.
This means that you are interested in the major functions
contributing to the Time in your code category and not in Ti me
in system cal | s category.

2-4 Quantify User’s Guide

Uncovering an unexpected behavior

Click Function List in the Control Panel to display a list of functions
called in the t est hash program.

Camiity: Fussrion Lisk i
e Wew Windewy e
A s Lioess maloh =,
P Syt (2 a1 i,
The main Contributor—— | —
. LA T |
to the hasht_able 'tests el =zt
timeiswite, E TN I-hr-l-;:--

the function used =l e
to print the test output
from the program itself

5 mk depent
E Lk T

4 41% gutBesh
1 =k Fras

® 13k bl Do

Fimatl iy o o izl

Frrm Paralael Heens | by FureE Lion Da sl L:u.lhnth’q:l‘ll

e Hisah jurs (il 7

Since you are interested in the compute-bound functions of the
t est Hash program, select View > Restrict functions > Compute-bound
functions only. Quantify displays only the functions that made no
operating system calls.

st rcnp is the largest St Pusion Lt |
contributor to the overall el i ol by
execution time of BV Corepiris - et fid ines. match <,
the run, followed by Fenciion e (% of #ood.}
has h1 nd e — - —
21§ aakIreiae
L 1lk pukEssh
E @k _depant
E 1w urEm
1_ i!\ -giu"alh

You would expect hashl ndex to be high on the list since it is used
to compute the hash keys, but strcnp is a surprise.

Improving Performance with Quantify 2-5

The st r cnp function is considered to be efficient, so perhaps it was
called a large number of times. Select View > Display data > Number of
function calls to sort the compute-bound functions by the number of
times they were called by any function.

| Catity: Fussilion List]
P Wew Wnde .

st rcnp remains at the B Do - asndd fiagthiag satch <,
head of the list with over Calfs: jsarnbor of times)

40,000 calls - I i
uren ’

EEO hesshDrcdex
i wallec

Why should st r cnp be called so many times over such a small test
dataset?

The function detail suggests long buckets
Double-click st r cnp to open the Function Detail window.

| G riiy: Pamalion Baiai 2]

r ELE-TENELITE 1ol T e E]
st rcnp never took——| Zellsd F20TE tinas
th 92 I t Ferctian Tims 1STAIEE cyprles (16 &k of rEoT.]
more an_ cycles to TermLlarndeacerrlaats Line 1273388 oyeles (BE GAN of | peot |
execute but it was called Huramus Euncticn Eims EY e Las
. Nuwimus funstion tins ES cmrlas
a large number of times
|} 1=
s Lriva L Vi s i il Tty dhesg crpdants .
The calls were mostly———— 1345 times (45 5540 putsesh | Wi
L1563 tommw (4E Xin) getEwah
from put Hash and J 5053 Tines (LE 12k} remBash

get Hash ; -

Fat: ||

Ty S vl AR el | e Fiaethn Dl Lmu.-.w.l

L1 Hsah faurs (gl Z07H

2-6 Quantify User’s Guide

Double-click get Hash to inspect its function detail.

I S R A L a Ll
get Hash was called —| zsll=d LEDD trwes
1.000 ti f Ferction TiEs BIRT cprlas f 4 dlk of reoT.]
' Imes from rarliardeaterrdaats Lise 1335671 epeles (06 FN of feod)
the t est Get Hash Narasm Euncbion tuss 44 oprlee
driver function Wi function Tams BIT cprles
(b LR PRS2 i il Tty dhirs Corplamdss |
. || LD pimes vestisCEERsh 1TE5] rimss (80 5100 stevey
get Hash in turn called 1008 Eamen 2. 4E%) haohTofer
hashl ndex 1,000 |]
times, once per probe]
-]
By Piwvalafied Bvwria | st Fineclion Doled || Lidali o teaph |

tar Hisssh jrs gl TP

The minimum and maximum time spent in the get Hash code
varies between 44 and 937 cycles. This wide variation is
presumably because get Hash had to traverse hashtable buckets of
different sizes in its scanning loop.

The st r cnp function is called 10 to12 times for each call to
get Hash, making the scanning loop and the calls to strcnp the
major contributors to get Hash’s accumulated time.

To confirm this, you can look at the annotated source code for
get Hash.

Improving Performance with Quantify 2-7

Annotated source confirms excessive calls

Click Show Annotated Source in the Function Detail window to open
the Annotated Source window.

The annotated source for get Hash shows the function+descendants
time distributed on each source line and scaled as a percentage of
its overall function+descendants time.

=i

1= & e T | -]]
Filr dew Windewy Holp
B S e T i s r | Read oy |
waiidt gecHashi{kt. kay) =
haaktable® ht:
charc* kay
* FeretLan ik
+ delled LICD timms
+ Farotian TiEs ST cgeles | A4 &3k of TERT]
4 Fuwtiardesterdants Lime 13%5871 epeles (L6 ¥ of . recl.)
+ Ouptriyebion bo Oellscrs
* AEE] Coikess Caatis cHwady
XLHE] |
bahERLIyT ETLTY
ar® imdem = heshDades ey
o i Fez (Enkzy = ht|iandax]|;
The majority of time — [L denery b strompiERtay-keg, keyil
. . arkzy = enbtrp=ireaky |
in get Hash is spent y
in the hashtable 0.3 §f (emkry] |
. 0. 2w ewburn (makoysrenlos]
scanning loop y
glaa |
that calls st rcnp LR rwbarn (HELLI:
i alw i
5 |
find in mowrTa: [
e Hah e (pard FTEE)

2-8 Quantify User’s Guide

To find out how much of get Hash’s time is spent in the loop that
calls st r cnp (exclusive of the time in the st r cnp function itself),
select View > Annotations > Function time(% of function).

The Function time (% of function) view shows that over 90 percent
of st rcnp’s time was spent in the scanning loop.

i Aty - B IR T f 1S T e N 1N R | - |
Fie Wew Windews e
Aid S0 i trs tiaah hashor (Read onfy j

wapdt getHash (ke kay)

L=l

haskrahles ke
chard kay
B e R L P S P RS LT
1 Fereliar ek
+ dullsd LILD timas
* PFarstian TiEs ST coeles {4 £k o rERT]
+ Feretiaradescerslambs Lime 1395871 epeles (16 FN of pect)
+ Duatribrebisn ko Oellars
* TR Cimess costiscHysl
’
1

|
EaalfsLoor ERLay
ar® iodem = heshDndes Joey)
Ece (mpkry = hi|index|,
Bl ldus LRy A SEE ol DEREEY- Ry, ey
grkoy = entrp=oremt) |

Over 90 percent —
of strcnp’s time
was spent in |!| ; B AF (smEEWD |

. i) rwburn Cenboysrendlos)
the scanning loop
gl |
0. 2um) ewbacn (HELL) :

L LE®| §

Saving the baseline data

Now that you have identified the performance bottleneck, save the
collected data so it can serve as a baseline against which you can
measure performance changes. Select File > Save collected data and
File > Export data as to save both the binary data (in case you want to
rerun Quantify on this same dataset at a later time) and save the
collected data in export format. Later in this chapter, you'll use the
export file with the gxdi ff script in order to verify the
performance improvements you make to the program.

After saving the data, exit Quantify.

Improving Performance with Quantify 2-9

Improving the performance of the testHash program

2-10 Quantify User's Guide

The data Quantify reported indicates that much of the expense of
the hashing operation is the number of st r cnp comparisons that
must be performed to find the requested entry. Avoiding these
excessive st r cnp comparisons would significantly improve the
speed of the hash package.

There are several possible approaches you could take to improve
the performance of the hashtable package. You could improve the
hash key function itself in order to distribute items more
uniformly in the hashtable, thereby shortening the hash buckets
and thus the number of items that must be inspected to retrieve
the requested item. Or, you could double the size of the hashtable
array. This would distribute items into more buckets and make
better use of the information in the computed hash key.

The approach you will use in this example is based on the idea
that the full hash key is effectively a compressed version of the key
string itself. The modulo operation, however, uses only a small
fraction of the compressed information to form the index into the
hashtable. The rest of the information encoded in the hash key is
ignored. Since the hashl ndex function computes the same value
for identical strings, the t est Hash program could save the full
hash key on the hash entry, compare the full hash keys, and then
call the st r cnp routine only if the keys were identical. This hash
key comparison would be much quicker than calling strcnp.

The source code for the improved t est Hash program is in the file
<quant i f yhome>/ exanpl e_quanti fy/i nproved_hash. c. The
following changes have been made to the code in order to
implement the hash key comparison.

/* hashEntry

* A hashEntry keeps the key, value pair together in a list hashEntries.
*/

typedef struct struct_hashEntry {

int hash_key; /* The full hash key for this entry */
char* key; /* The full string key for this entry */
voi d* val ue; /* Pointer to user data indexed by key */

struct struct_hashEntry* next; /* Pointer to next bucket entry */
} hashEntry;

/* hashl ndex
* Det ermi nes what bucket (index) to place a key in.
* Gven a key it returns the index of the appropriate bucket.
*/
static int hashlndex(key, fullHashKeyp)
char* key;
int * ful |l HashKeyp;
{ char *p;
unsigned h = 0, g;
for (p = key; *p; p++) {
h = (h << 4) + (*p);
if ((g = h & 0xf0000000)) {
h =h " (g > 24);
h=hng
}
}
full HashKeyp = h; / Save full hash key in hash key paraneter*/
return h%asht abl e_backbone_si ze;
}
/* get Hash
* Hashes into the appropriate bucket, and then wal ks the
* chain of hash entries. It first conpares the full hash
* keys of each entry before it conpares the keys with strcnp.
Wien a match is found the associated value is returned.
* NULL is returned if no match is found.
*/
voi d* get Hash(ht, key)
hasht abl e* ht;
char* key;
{ hashEntry* entry;
int full HashKey;
int index = hashl ndex(key, &fullHashKey);
for (entry = ht[index];
(entry && ((entry->hash_key != full HashKey) || strcnp(entry->key, key)));
entry = entry->next) {

*

}
if (entry)

return (entry->val ue);
el se

return (NULL);

Improving Performance with Quantify 2-11

Running the improved_testHash program
Build and run the i npr oved_t est Hash program.

% i nproved_t est Hash. pure 500 test_words

Compare this program summary for the i nproved_t est Hash
program with the original program summary on page 2-4.

**%x Quantify instrumented inproved_testHash. pure (pid 20854)
Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp
* For contact information type: "quantify -help"
* Quantify licensed to Quantify Eval uation User.
* Quantify instruction counting enabl ed.
Testing the first 500 entries fromtest_words with a hashtable of size 13.
Al tests passed.

Quantify: Sending data for 61 of 187 functions
frominproved_t estHash. pure (pid 20854).......... done.

Quantify: Resource Statistics for inproved_testHash.pure (pid 20854)

* cycles secs
) . * Total counted tine: 5013898 0.100 (100.0%
Time spent in the code Time in your code: 3771298 0.075 (75.2%
has decreased from * Time in systemcalls: 1242600 0.025 (24.8%
5.0 to 3.8 million CyCIeS * Note: Data collected assunming a sparcstation_|x with clock rate of 50 MHz.
* Note: These tinmes exclude Quantify overhead and possible nmenory effects.
* El apsed data collection tine: 0. 906 secs
*
* Note: This neasurenent includes Quantify overhead.

%

The counts for Time in your code has decreased by 1.26 million
cycles—from 5.03 million cycles to 3.77 million cycles. It's now
25 percent faster.

2-12 Quantify User’s Guide

The time for get Hash —= Ferwtion riss

has decreased

get Hash called
st rcnp only 750 times

Display the Function Detail window for the get Hash function.

You can see that the numbe

r of calls to st r cnp from get Hash has

decreased dramatically, from 17,563 to 750.

Ll e
1030

1 cpzlea

eipales (L6 A 8l

1 epzlng

e L

Ferellardeacerslmals Liar
Narasm Euncbich txss
NECiEm fution tins

|-
L e Licon il s

i e e iesh s tpdied_baak ¢
TN
[b Edk ef Tast]

ragk |

D il T dbirs Corpcdamds

|
I

| LMD pimes rastosrERsh LOED vismes 03] 541 bosalrded
|
LU timew © 3. TRl wErcagp
Finut:
gy e lid e ey bl T D | ILERS) Do

rpraved e | Hissh prarw (pad TTEER)

The time for get Hash has decreased because, even though the
routine is now comparing hash keys before calling st rcnp, it is

saving time by avoiding the

cost of calling st r cnp. Overall, the

function+descendants time for get Hash has decreased from the

first to the second run.

Improving Performance with Quantify 2-13

Verifying the performance improvement

Over 40,000 calls to

Save the export data from the i npr oved_t est Hash run, then exit

Quantify.

You can use Quantify's gxdi f f script to compare the performance
of the original t est Hash program with the performance of the

i mproved_t est Hash run. The gxdi ff script compares two export
data files and reports any performance changes. Since you are
interested only in the time spent in the code itself, you can use the
-i option to ignore functions that make system calls.

% gxdi ff -i testHash. pure.20790.0.gx i nproved_testHash. pure. 20854. 0. gx

The gxdi ff report confirms a 25 percent improvement in the
performance of the t est Hash program:

Di f ferences between:
program test Hash. pure (pid 20790) and
program i nproved_t est Hash. pure (pid 20854)

strcnp have
been eliminated

2-14 Quantify User’s Guide

Function nane Calls Cycl es % change
strcnp -40822 -1198640 93.77% faster
! put Hash 0 -32912 6.61%faster
! get Hash 0 - 28376 7.86% f aster
! remHash 0 - 7856 5.91% f aster
! hashl ndex 0 10000 1.49% sl ower

5 differences; -1257784 cycles (-0.025 secs at 50 MHz)
25.01% faster overall (ignoring systemcalls).

The put Hash, get Hash, and r enHash functions are faster because
they now avoid unnecessary calls to st rcnp. The hashl ndex
function is slightly slower because it is saving the full hash key
into a global variable.

For more information about using the gxdi ff script, see
“Comparing program runs with gxdiff” on page 5-7.

Other causes of slow software

In the previous t est Hash example, you used Quantify to find one
type of performance bottleneck: inefficient computation. Quantify
can also help you find and resolve these other causes of slow
software:

= Needless computation

= Premature computation

= Needless recomputation

= Inefficient computation

= Needless library or system-call requests
= Excessive library or system-call requests
= Expensive library or system-call requests
= Environmental factors

Needless computation

As applications evolve and algorithms are refined, or as data
changes, portions of code that were needed in earlier versions can
end up falling into disuse, without ever being removed. The end
result is that many large programs perform computations whose
results are never used. Bottlenecks are caused by time wasted on
this dead code.

Other common useless computations are those made
automatically or by default, even if they are not required.
Applications that needlessly free data structures during a
program’s shutdown, or open connections to workstations even
though there isn't a user for them, are examples of this type of
bottleneck.

Quantify helps find the time that is spent in dead code. Once
you're convinced that the results of a computation are useless, you
can remove the code.

Improving Performance with Quantify 2-15

2-16 Quantify User's Guide

Premature computation

Any computation that is performed before there is a need for its
results can cause a bottleneck. For example, there may not be a
reason to sort a list of numbers if the user hasn’t requested that
the sort be performed. Quantify can't tell you if the computation
can be delayed; however, it can tell you the cost of the
computation, and you can decide whether to postpone it.

Needless recomputation

Programs sometimes recompute needed values rather than
caching them for later use. For example, determining the length of
a constant string can result in needless computation if the
computation is embedded in a loop; the length of the string is
recomputed many times, each time getting the same value.
Quantify can tell you where the recomputation is taking place,
and you can decide to store the value after one computation.

Inefficient computation

A poor choice of algorithm or data structure layout can cause extra
work for the program. The initial performance can appear
acceptable, given small datasets, but then scale poorly when
presented with larger or more complex datasets. This is what
happened in the t est Hash program described earlier.

Quantify can tell you the cost of each computation at different
scales so you can predict whether there will be a problem with still
larger datasets. You can then use alternative algorithms and data
structures that get the job done faster.

Needless library or system-call requests

Bottlenecks can be caused by the way your own code uses
operating system or third-party library services. Making library or
system-call requests when you don’t need the results is the same
as performing needless computations.

Quantify shows you the time spent in the operating system or
third-party libraries. You can see how much a request actually
costs and make an informed decision about eliminating the
request or pooling similar requests for more efficient service.

Excessive library or system-call requests

It is common with operating-system requests to make more
requests than necessary. Quantify helps you identify excessive
requests so you can design an alternative implementation.

Expensive library or system-call requests

Some operating-system calls can vary in the amount of time they
require. For example, opening and accessing files across a network
can be slower when there is increased network traffic. On most
UNIX file systems, opening or calling the st at function on a file
using a fully qualified pathname requires the operating system to
verify the existence of each intermediate directory. When st at is
called using a relative pathname, the operating system starts
checking from the current working directory, thereby reducing the
cost of the system call. The elapsed time that Quantify reports for
system calls helps you see when they slow down so you can explore
less expensive implementations.

Environmental factors

External or environmental factors, such as high network delay or
a high load average on the machine, can cause slow performance.
Your program can also exhibit large swapping and paging effects,
which Quantify cannot measure directly. These factors show up in
Quantify’s reports as increased system-call times.

Improving Performance with Quantify 2-17

QUANTIFY USER'S GUIDE

How Quantify Collects Data

The time your program takes to run depends on how many
instructions it executes, how many machine cycles each
instruction requires, and the machine’s clock rate, which is
typically expressed in millions of cycles per second (MHZz).
Quantify analyzes your program'’s instructions and inserts code
that counts, at run time, the actual number of machine cycles your
program requires to execute. For operating system calls, Quantify
times each call and converts the elapsed (wall-clock) time into the
equivalent number of machine cycles. Together, these times reflect
the time you can expect your original program to run.

This chapter describes how Quantify collects data. It includes:

= How Quantify records function time

= How Quantify names functions

= Analyzing basic blocks

= How Quantify times system calls

= How Quantify times register-window traps
= Understanding recursive functions

= Paging and memory cache effects

Understanding how Quantify collects data is helpful both for
interpreting the reported data and for fine-tuning how the data is
collected.

3-1

How Quantify records function time

Quantify starts a counter each time a function is called and counts
the number of machine cycles that the function call requires,
exclusive of any other function calls it makes. When the function
exits and returns to its caller, Quantify records the counted time.
Quantify also tracks the minimum and maximum function times
recorded for each function. This is useful, for example, if the
function performs initialization only on the first call, not on
subsequent calls.

To track the callers of each function, Quantify inserts code at all
function entry and exit points in your program. As the program
runs, Quantify maintains a parallel stack of function calls that

accumulates information about each function call. This stack is
used to determine the descendants of each function.

When the function exits, Quantify distributes the accumulated
function+descendants time to the function’s immediate caller as
part of the calling function’s descendant counts. This data is
shown in the Call Graph and Function Detail windows.

Quantify uses .r oot . as an accumulator for the total time
consumed by all the functions in the program. Quantify treats
.root . like a function and considers all the functions in the
program to be descendents of .r oot .

Quantify reports any signal handlers as descendants of .r oot in
the pur e_si gt r anp subtree.

B Bkl]
i Wew Windoar i

10
Quantify reports signal——1—— W‘::qv

handlers under
pure_sigtranp

sl

aigurlimemi

3-2 Quantify User’s Guide

Quantify is careful not to double count a function’s time when the
function calls itself directly, as in the case of a recursive function,
or indirectly through other functions. If care were not taken in
these cases, counts for the function would be recorded once in the
function time accumulator and again in the function’s descendants
count. In Quantify, a function is never its own descendant. A
function’s descendants’ time report always reflects the time spent
in all functions it called exclusive of calls to itself.

How Quantify names functions

Quantify names functions based on the function names in the
symbol table of the object file. For C++ function names, Quantify
demangles the name.

External function names are unique throughout the program. It is
possible, however, for two or more object files of an application to
contain identically named st at i ¢ functions. These names are not
considered external to the object file, and there is no conflict
during linking.

For ambiguous function names, Quantify appends the filename of
the object file containing the function and a number indicating the
function offset within the file. For example, if the static function
reset _cal | back is the third function in the gr aph. o module,
Quantify names it reset _cal | back[graph. o/ 3] .

In addition, the linker might have removed nonexternal symbols
from certain object modules in order to save disk space. When
Quantify finds the static function definition in the object module
without a corresponding name, it names the function
unknown_st ati c_f uncti on. It then appends the object filename
and function offset to distinguish the function from any other
unknown static functions in the same or other object modules.

On HP-UX, the linker inserts stub functions in shared libraries to
support distant branches within the shared library. Quantify
names these functions uwss_NNNN (unwind stub start) and
uwse_NNNN (unwind stub end).

How Quantify Collects Data 3-3

Analyzing basic blocks

3-4 Quantify User’s Guide

To determine the time spent in the function itself, Quantify
analyzes the basic code blocks of each function. A basic block is a
sequence of instructions that are always executed together in
succession. Basic blocks typically start at the beginning of
functions and other code blocks and terminate at conditional
jumps to other basic blocks.

Quantify uses information about your machine’s hardware to
compute the expected number of machine cycles each original
basic block will require to execute.

On RISC architecture machines, most instructions take a single
machine cycle. Instructions such as load and store instructions
can take longer and can stall, depending on the instruction stream
that follows each instruction. Quantify uses this machine-specific
information to estimate the number of instruction cycles each
basic block will take, including the expected number of stall cycles.

Quantify inserts code that adds the expected cycle count to a basic
block cycle accumulator each time the basic block is entered.
These accumulators have 64-bit precision, providing accurate
counts even in programs or blocks that execute for a very long
time.

The counts Quantify reports reflect the time the original program
would have taken without Quantify. The reported times are
exclusive of any Quantify run-time overhead.

How Quantify identifies basic blocks

To understand how Quantify identifies basic blocks, consider this

example program:

1 int test(a, b, c, d)
2 int a, b, c, d;
3 {
4 a++,
Block 1 5 if (a>0]]
Block2 © b>10) {
7 switch (c) {
Block3 g case 1:
Block 4 o d=d=+3
10 defaul t:
11 d=d+ 7
Block5 12 }
13 }
Block 6 14 d++;
15 return d,
16 }
17
18 int main()
Block 7 19 {
20 test(0, 1, 3, 8);
21 test(0, 1, 1, 6); /* max */
22 test(-1, 1, 1, 6);
23 return O;
24 '}

/[* mn */

The block numbers indicate the extent of the basic blocks in the
function t est when compiled using the - g debugging option.

How Quantify Collects Data 3-5

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

3-6 Quantify User’s Guide

Function Entry

at++;

a>0

switch (c)

d=d+7

d++

#

Function Exit

Here is the basic block flow structure of the t est function:

The first block contains a function entry
that allocates some stack space. It then
increments a and tests whether a>0.

If the test succeeds, the block ends in a
branch to the switch statement.

Otherwise, the code enters the second
block which, tests whether b>0 and
branches to the sixth block if the test fails.

Assuming that either condition is true, the
third block computes the switch case to
branch to based on variable c.

If c==1, the fourth block is entered, the
variable d is incremented by 3, and the code
falls through to the default case block.

The fifth block starts in this case because
the switch can branch to this case directly.

The sixth block increments the variable d.
In nonoptimized code, this block then
unconditionally branches to the exit block.

The final seventh block executes the function
return sequence. It moves d into a return
register, deallocates the stack space, and
returns to the calling function.

Block 1

Block 2
Block 3

Block 4

Block 5

Block 6

Block 7

Here is an example of the cycle counts for the program compiled
using cc -g on a SPARCstation ELC:

Function Entry

at++;

a>0

switch (c)

d=d+7

d++

¢

Function Exit

26 cycles are required by the instructions
in the first block to initialize the function,
compute a++, test whether a>0, and branch
to the switch statement if true.

5 cycles are required in the second block to
test whether b>0 and branch to the d++
block if false.

3 cycles are required in the third block to
compute and perform the switch branch.

6 cycles are required in the initial case in
the switch.

Otherwise, 8 cycles are required by the
default case, 5 to perform the addition and
another 3 to branch to the sixth block.

6 cycles, including the branch to exit, are
required by the sixth block (d++).

8 cycles are required by the seventh block to
perform the return function exit sequence.

How Quantify Collects Data 3-7

3-8 Quantify User’s Guide

To execute the first call totest (0, 1, 3, 8) in mai n, the program
enters blocks 1, 3, 5, 6 and 7, which takes 51 cycles. The table
below compares the difference in cycle counts between optimized
and non-optimized code. The optimized version is noticeably
faster, primarily because all the calculation occurs in registers,
thereby avoiding the need to load and store values from memory.

Block Nonoptimized Optimized

26

3

8

6

N | oo w |k
W k[, [N D>

8

Total cycles 51 11

Many optimizing compilers rearrange the execution order of
machine instructions to take advantage of the RISC processor’s
ability to overlap operations. These instruction scheduling
optimizations can have a significant impact on performance.

Since Quantify bases its analysis on the optimized instruction
sequences produced by the compiler, Quantify’s reports reflect any
benefits of instruction scheduling performed by the compiler.

Note: Quantify's analysis does not reflect the additional
performance improvements possible on superscalar architectures
using multiple pipelines and other hardware features such as
dynamic branch prediction. On such machines, Quantify’s
estimates are pessimistic, predicting a slower run time than what
actually might be possible.

How Quantify reports multiple basic blocks

In the Annotated Source window, lines marked with a plus sign (+)
indicate the start and possible continuation of multiple basic
blocks over one source line. This occurs in expressions such as:

if ((a>0) & (b > 0)) {c++}

The two clauses of the conditional expression and the increment
clause are compiled as three separate basic blocks, but all these
blocks are associated with the same line number. When Quantify
displays the data, the number in the margin reflects the sum of
the data recorded for all the basic blocks associated with that line.

If you select View > Multi-block lines > Show multi-block lines, the
individual times for basic blocks, as ordered in the object file, are
shown on comment lines inserted immediately after the initial
multiple basic block line. In some cases, the compiler might order
the basic blocks differently from the order of the source code.

Annotations and compiler differences

Quantify reports counts for basic blocks in the Annotated Source
window using the line number information emitted by the
compiler for debugging purposes. Different compilers emit
different line information in addition to different machine
instruction sequences for a source file. Quantify’'s annotated
source reports can reflect some of these internal differences.

For example, consider this code fragment:

if ((a>0) & (b >0)) {c++}

When compiling without debugging information, most compilers
emit three basic blocks for this code fragment, corresponding to
the two test expressions and the variable increment statement.
When compiling with debugging information, however, some
compilers emit four basic blocks. The extra basic block
corresponds to an “empty” el se clause:

if ((a>0) & (b > 0)) {c++;} else {}

How Quantify Collects Data 3-9

3-10 Quantify User’s Guide

At run time, if the conjunction succeeds, ¢ will be incremented and
the code will jump to the following statement. If either of the
conditions fail, however, the “empty” code block will be executed,
jumping to the next statement. This jump costs some machine
cycles, and Quantify records those cycles in a separate basic block.

Annotations for if-then expressions

For i f -t hen expressions written on several lines, the data from
the “empty” basic block can produce annotations such as:

6 |if (a>0){
0 # d++; /* "then" clause was never executed */
2 + c++; /* executing the inmplicit "else" clause */

}
The implied el se clause can result in positive counts for the last
line of the t hen cause.

For a description of the annotations in the Annotated Source
window, see “What annotations mean” on page 1-21.

Annotations for switch expressions

Similar annotations can occur in swi t ch statements, which are
often rewritten by the compiler asi f - t hen- el se statements.
Consider the following annotation fragment:

1 6 | switch (c) {
2 case 2:

3 0 # d++;

4 2 | br eak;

5 case 3:

In this case, the compiler rewrote the swi t ch statement as follows:

1 if (c == 2)

2 {

3 d++;

4 goto exit_switch; /* break */
+ } el se { goto case3; }

5 case 3:

The counts on line 4 are not caused by the br eak expression but by
the implicit el se clause added by the compiler and associated with
line 4. Compilers often do this because they assume that an

optimizer eliminates the superfluous branches in a later pass if
debugging information is not needed.

Showing multi-block lines, Quantify would display:

6 | switch (c) {
case 2

d++;

br eak;

0 cycles

2 cycles
case 3

0
2

* x4+ I -

Quantify indicates that the implicit got 0o exi t _swi t ch statement,
which corresponds to the original br eak statement, was never
executed. However, the added implicit el se basic block was
executed. Since the sum of the multiple basic blocks under line 4
was not zero, Quantify reports the total and marks the line as
being executed.

Most compilers emit many small basic blocks when compiling for
debugging. The increase in the number of small basic blocks often
results in a degradation in speed when Quantify is recording data
in these functions, since it must record the time for each basic
block separately. You can control this trade-off. See “Changing the
granularity of collected data” on page 4-11.

If you are recording data on register window traps, the counts for
the first and last lines of the function can look quite large.
Quantify assigns the register window trap times to the prevailing
basic block at the time of the trap. This is typically the first or last
basic block of the function.

C++ templates and annotated source

When using C++ templates, it is common to include the template
declaration in a header file and define each type variant
(specialization) in one or more source files. For debugging
purposes, the compiler indicates that the source code for each
specialization is actually found in the header file. This means that

How Quantify Collects Data 3-11

several different specializations share the same source code in the
header file.

i 'Ih'-ll'l Windaw. e
e © paEondefon_templriesisort. H [Resd ssky)
— R wa B -
AL - b, s lass T
Funt oA aames. .. r srcwyl]. comak amk w0 |
i sorbidoubile®. canst ilak)
[Previnion = £ timsa
- o =7 cpeles f D 00k of TEGT]
. Se!eCt_ e lofmlkn ___* | s, comst i) epeles | D03y of peef.]
View > Go to function : :I'-r-:lmn k[doubin®, conc mt) LIS
n 3 2andl
to see the data for . | vq Srh[char, comst i) ™
other specializations . :|--|,: ““:.:\.;-:: priT_srray[nl®, comst i) piivis T riT
el gy Char™, Coms b il
[L2 far |1 array | dousie’, consi mk
18 481+ t Fm'_ I Joeores }
co LT Lf [array|i| » errax|7|] §
T.LEk| T t = wrreyi],
=1 1] AresR|i] = arvawl]ls
1.5 array|y| = &:
1
O.58%j |,
5] |
T in mowna: [|
racisng (pa PR

Quantify reports data for each called specialization separately,
reporting each specialization as a separate function with a
demangled name that indicates the specialization’s data types.
Quantify displays the annotated source for a function in the
header file with the collected data for that function.

Note: The same display technique applies to st ati ¢ C functions
defined in header files and multiple function definitions on a
single line.

3-12 Quantify User’s Guide

How Quantify times system calls

When your program requests an operating system service such as
reading from or writing to a file, it executes a system call. Each
system call switches the processor from user state to kernel state,
permitting the operating system to process the request. When the
request is complete, the operating system switches the processor
back to user state and returns control to your program.

Quantify measures the time required to execute each system call.
You can choose to measure this time in elapsed (wall-clock) or
kernel time. See “Controlling how system calls are timed” on page
4-4. Quantify converts the measured time to machine cycles based
on your processor’s clock speed, then assigns the cycles to the
function containing the system call.

System call times help you to see how much time your program
spends waiting for operating system requests and the variation in
your program'’s performance due to load fluctuations on your
machine and the network. On an unloaded machine, system calls
that do not involve access to other devices, such as disk drives and
ethernet controllers, typically execute in nearly constant time. The
time required to access remotely mounted file systems through
NFS or to make requests to the X Windows server can vary
depending upon the remote machines, the server process, and the
network.

You can use Quantify options and API functions to customize
timing for system calls. See “Timing system calls” on page 4-2.

By default, Quantify does not time system calls such as sel ect
because they rely on unpredictable events such as a user clicking a
menu item. The system calls that Quantify does not time by
default are listed on page 4-5. On Solaris, Quantify also does not
time a group of system calls that are associated with lightweight
processes. These are listed on page 4-22.

You can have Quantify report the excluded system call times. See
“Reporting excluded system-call time” on page 4-6.

How Quantify Collects Data 3-13

3-14 Quantify User’s Guide

Variations in system-call timing

Timing system calls can produce widely varying measurements of
program performance, especially over short runs. The recorded
information depends on the machine state, the contents of
memory, the other processes running on the machine, the load on
the network, and so on. This is to be expected and can be the very
effect you want to demonstrate.

Note: Quantify uses the get ti neof day or get r usage system call
to time system calls, discounting the small amount of time these
calls take. Depending on the other processes that have made
system requests, the kernel can switch context during Quantify’s
request for get t i meof day. If this occurs after the system call
Quantify is timing, the measured time appears longer than it
actually was.

< > g
[Operating-system call being measured
I Timing call inserted by Quantify
[] Operating-system context switch
4—> Elapsed time measured by Quantify
—> Time recorded by Quantify after discounting overhead

Quantify does not adjust for this effect, since it cannot detect that
it has occurred. In most programs, however, this happens
infrequently.

How Quantify times register-window traps

@ @

The SPARC architecture provides a fixed set of register windows
that are allocated for each function call, providing very fast access
to function arguments and local variables. Allocating and
releasing a new window typically takes a single instruction cycle
at function entry and exit. When the set of register windows is
exhausted, however, the hardware issues a trap to the operating
system to save and later restore the contents of a window to
memory.

Register-window trap processing by the operating system is
relatively expensive, taking several hundred instruction cycles in
a simple case. For programs with deeply nested function calls such
as highly recursive programs, the accumulated cost of handling
register-window traps can dominate the actual computation of the
function itself.

By default, Quantify does not time register-window traps. As a
consequence, the predicted times in the program summary report
are optimistic, since they do not account for this hidden cost.
Although this time is excluded, if the register-window trap times
are substantial, Quantify reports this time in a separate category
in the program summary. Quantify provides options and an API
function that allow you to time register-window traps. See “Timing
register-window traps” on page 4-10.

When you request that Quantify time register window traps,
Quantify tracks each register window save-and-restore request at
run time. By simulating the register-window mechanism,
Quantify records the time spent by the operating system in
preserving and restoring register windows required by your
program. Quantify allocates the time for handling the overflow
and underflow to the function that caused it.

Quantify provides this level of detail so that you can design ways
to minimize the performance impact of register-window traps on
your programs.

How Quantify Collects Data 3-15

Understanding recursive functions

3-16 Quantify User's Guide

If a function does not call itself, the percentages listed in
Contributions from descendants plus the function time itself, as a
percentage of the function+descendants time, equals 100 percent.
If the function calls itself recursively, the percentages displayed in
the Function Detail window can exceed 100 percent. Although
Quantify avoids double counting during arbitrarily complicated
calling sequences, the Function Detail window can only display
the contributions from all calling sequences in terms of the
immediate descendants of those calling sequences. It cannot
display the separate contributions from each unique calling
sequence.

This display limitation is rarely a problem, since recursive calls
occur infrequently. Quantify helps to identify these potentially
confusing situations by reporting when a recursive call is made to
a function by one of its descendants and marking these
descendants with an asterisk (*). Quantify also displays a warning
dialog when showing the first recursive function in the Function
Detail window.

To understand why the combined percentages might exceed 100
percent, consider this function calling sequence:

mai n —p Al —p»B —p C —p A2 —p D
32 17 23 32 14

In this sequence, function A calls itself through a call to B. The
calls are shown as Al and A2. The function time required by each
function call is listed under each function name.

Function A B C D
Function time 64 17 23 14
Function+descendants time 118 86 69 14

mai n and Ccall A—4 L1 L ke

Dand B are called by A

Quantify adds the call times for both of these calls and reports this
value as the function time of A: 32 + 32 = 64 cycles. All other

functions were called once, so their function times are the same as
the call times.

In Quantify, no function is considered its own descendant. When a
function calls itself, Quantify records only the subsequent call’s
contribution to the function time and does not double-count that

time when distributing the counts as the contributions to its
callers.

The total function+descendants time for A is its function time
(64 cycles) plus the call times of all other descendants

(17 + 23 + 14 = 54 cycles), which in this case is 64 + 54 = 118
cycles.

The Function Detail window for A shows:

Fie W Wneden

Talerians
Imlled
Teratiar

By BT ety
L Eamars
el oyclas
118 exiles
% cyclan
B2 ryelas

BT _mag

Tims
Fererliarndeacerelaals Lime
Hxramm Bunckion tuss
e Pubdon tina

O 35k of oot
I 008w af | gesl.)

L Lo Loy Vi o s i | il Ty obirs C o sanllss
[iim) Ifas =&dn

5. 768 = ¥
| =963 €

111.96% 0

L Lk

L tams L Eamm

Oy Ppeia lid Tt L Livl fliz i Lo

Netursrvaly called Lhrrsghi 1 cececandan| rucarzian (pd 1EZ3T]

Quantify does not list A as either a caller or descendant in this
example. Quantify only shows the immediate callers and
descendants of a function in the Function Detail window. If A had
called itself directly, Quantify would have listed A as both a caller

How Quantify Collects Data 3-17

3-18 Quantify User’s Guide

and a descendant. Notice the asterisk next to B indicating that a
recursive call to Awas made through the call to B.

The Distribution to callers shows 100 percent of the
function+descendants time of A distributed to mai n. This makes
sense since the time from everything to the right of mai n in the call
graph comes from strict descendants of mai n.

The Function Detail window also shows a percentage of As time
distributed to C. This is because the second call to A distributed
both D's time and its own time to C, since both A and D are strict
descendants of C.

Turning next to the contributions from immediate descendants,
computing the sum of the contribution percentages plus the
function time as a percentage of the function+descendants time of
Avyields: 54.23% (64/118) + 45.76% (contribution from B) + 11.86%
(contribution from D) = 111.85%. To understand why this happens,
observe that B contributed time to A that includes B's own time
plus C and D's time but, by Quantify’s rule, does not include time
from the second call to A.

In addition, A also received time directly from D, via the A2 call. In
fact, the time contributed from D happens to be the same
contribution from D that is included in the contribution from B.

Although it might appear that Quantify is double counting, in fact
it is only double-displaying the contribution from D, not A. The
first contribution is reported from the immediate call from A2 to D.
The second contribution is reported when Ds time is included with
the time from B and C, but not from A2, as the contribution to A via
the immediate call to B.

Consider the following call sequence:
D
14
min —pe AL —pp»B —p»C —p A2
36 17 27 29

In this sequence Astill calls itself through a call to B. However, the
first, not the second, call to A makes the call to D.

Function A B C D
Function time 65 17 27 14
Function+descendants time 123 73 56 14

The total function time for Ain this case is 36 + 29 = 65 cycles and
the function+descendants time for Ais 65 + (17 + 27 + 14) = 123
cycles. The Function Detail window for this calling sequence is:

iy P o Bl

Fie W Wideen

Talerians BT s PR R

Tmlled 2 Eamars

Ferction Tims s cyclas | O35% of | coait
rereliarndeacerslamtls Line 127 ewiles | 0. LIw of | g
Naramm Punckicn tusa = oopelan

NniEm Pusbdon i o rpelas

L Lo L Vi o s D il T dbirs Corpcdamds

L vies (100080 mein L viws (35778 ¥
L tase] 20.0E%) L tamn [11.J8% 0

e e Lind Foear e Trire

Livt i il g

Netursrvaly caled Lhrragh 1 cececandan| recerzien (pid 1I562]

The immediate calling relations are identical to the previous
version. Function Astill calls Band Dand is called by Cand nai n. B
is still marked with an asterisk because A was called recursively
through that call. In this case, however, the percentages add up to
100 percent: 52.85% (65/123) + 35.77% (contribution from B) +
11.38% (contribution from D) = 100.00%.

This is because D was not called by the recursive call to A. This
critical difference in the calling sequence means that Ds time is

How Quantify Collects Data 3-19

not displayed twice via As call to B, as it was in the first call
sequence.

Running on a different machine

Because CPUs vary in the amount of time they take to execute
certain instructions, Quantify counts the number of cycles in each
basic block differently for each machine.

Quantify determines the machine type and clock rate at
instrumentation time. Quantify uses information from the
operating system to match the machine-code values in the

.machi ne. <pl at f or > file. If a match is not found, Quantify
assumes a default machine, currently sparcst ati on_1 for SPARC
architectures and HP9000/ 715 for HPPA architectures.

Quantify records the machine type and clock rate in the
Quantify’'d program. It uses the stored clock rate at run time to
determine the expected cycles. When you run the Quantify’'d
program on a different machine than the one used to instrument
the program, Quantify detects the changes in the clock rate at run
time and issues a warning. However, it continues to use the
original clock rate.

You can instrument your program to collect data as if it were built
and running on a different machine type. This enables you to see
the changes in performance due to different clock rates. For
details, see the discussion of the - use- machi ne option in page B-1.

Paging and memory cache effects

3-20 Quantify User’s Guide

When your program uses a load instruction to request a value
from memory, it makes an explicit request of the memory system.
Quantify does not report times associated for memory system
activity for the following reasons.

= If the data requested is in the processor’'s memory cache, the
request typically takes only one or two cycles to complete.
Depending on the data available in the cache, however, the
memory system itself may make additional requests to retrieve

or flush memory between cache memory and main memory and
disk. To your program, these requests appear to make the load
instructions stall, since they take longer than normal.

The cost of these implicit operations varies with the memory
system implementation. Retrieving data from main memory
(DRAM) into the cache typically takes tens of cycles. Paging, that
is, retrieving data from a file on disk or the swap space into the
main memory, can take several thousands of cycles. If the device
is remotely accessed through an NFS connection, this time
depends on network delays as well as remote service contention.
For a few programs, the time spent in paging and memory
management dominates the computation.

It is difficult to gather data about memory requests that trigger
the additional paging requests because these additional
requests occur transparently to your program. Critical memory
references occur at different times, based not only on the history
of the program’s memory usage, but on other processes including
the operating system from the time the system was booted.

Quantify’'d programs differ from the original program in that
additional memory references are introduced with the new
object code Quantify inserted. This skews its memory system
behavior.

How Quantify Collects Data 3-21

QUANTIFY USER'S GUIDE

Customizing Data Collection

This chapter describes how to use Quantify options and API
functions to customize data collection. It describes:

Avoiding all data recording

Timing system calls

Timing shared library operations

Timing register-window traps

Changing the granularity of collected data
Collecting partial data for a run
Annotating datasets

Saving data on signals

Collecting data for child processes
Collecting data in threaded programs

For more information about how Quantify collects data, see
Chapter 3, “How Quantify Collects Data.”

For information about how to specify options and API functions,
see Appendix A, “Using Quantify Options and APl Functions.”

Note: You can change run-time options without recompiling or

reinstrumenting your application. After embedding Quantify API

functions in your code, you must recompile the program. You

should also link with the Quantify stubs library. See “Linking with
the Quantify stubs library” on page A-10.

41

Avoiding all data recording

You can use the - r ecor d- dat a option to avoid recording data
during a run. This option is useful for avoiding timing data during
start-up before your program gets to nai n. For example, you can
set - r ecor d- dat a=no, then call the API function
quantify_start_recording_data from your program at the point
where you want to begin recording data.

Timing system calls

4-2 Quantify User's Guide

This section describes the various options that Quantify provides
that let you control how system calls are timed.

Avoiding timing for all system calls

You can use the -recor d- syst em cal | s option to control whether
Quantify collects timing data for system calls. By default,
-record- system cal | s=yes so that Quantify records and
distributes the elapsed (wall-clock) time of each system call. To
avoid timing system calls, use - recor d- syst em cal | s=no.

For example, if you run the t est Hash program with the default

setting, Quantify times system calls. The program summary looks
like this:

% set env. QUANTI FYOPTI ONS -record-systemcal | s=yes
% t est Hash. pure 500 test_words

Quantify: Cunul ative Resource Statistics for testHash.pure (pid 5150)
* cycles secs

* Total counted tine: 7756225 0.235 (100. 0%
* Time in your code: 6159190 0.187 (79.4%
*

Time in systemcalls: 1597035 0.048 (20.6%

Not e: This neasurenent includes Quantify overhead.

If you run the t est Hash program with - recor d- syst em cal | s=no,
Quantify does not time system calls. The program summary looks
like this:

% set env. QUANTI FYOPTI ONS -recor d- system cal | s=no
% t est Hash. pure 500 test_words

Quantify: Cunul ative Resource Statistics for testHash.pure (pid 5153)

*

cycles secs
* Total counted tinme: 6159190 0.187 (100. 0%
Tinme in your code —=—— Tine in your code: 6159190 0.187 (100.0%

remains the same,
but Quantify notes that
system call counts
were not recorded

* Note: No systemcall tinmes were recorded during this period.

* Note: This measurenent includes Quantify overhead.

*

For more information about how Quantify records system calls,
see “How Quantify times system calls” on page 3-13.

Note: When you use the gxdi ff script to compare program runs,
you can ignore the reporting of system call times even if Quantify
has recorded system call data. This enables you to easily see just
the performance improvements for compute-bound functions. For
more information about the gxdi ff script, see “Comparing
program runs with gxdiff” on page 5-7.

Customizing Data Collection 4-3

With user +syst em
system call counts
are smaller

4-4 Quantify User's Guide

Controlling how system calls are timed

The - neasur e-ti ned- cal | s option controls how system calls are
timed. By default, - reasur e-ti ned- cal | s=el apsed-ti nme. This
measures the elapsed time of each call.

Specify - neasur e-ti med- cal | s=user +syst emto measure the
change in user and system time recorded by the kernel for the
process. Unlike el apsed-ti ne, user +syst emmeasurements do not
reflect any time that your program and the kernel waited for other
processes before the system call could be completed. The
measurements Quantify reports match more closely those
reported by / bi n/ ti me for the uninstrumented version of the
program. It tells you the amount of work the kernel did to service
your program only.

If you specify user +syst em Quantify typically reports smaller
counts for system calls. This is because the wait time is not
included in these measurements. For example:

% set env. QUANTI FYOPTI ONS - neasur e-ti med- cal | s=user +syst em
% t est Hash. pure 500 test_words

Quantify: Cunul ative Resource Statistics for testHash.pure (pid 5156)

cycles secs
Total counted tine: 6514930 0.197 (100.09%
Time in your code: 6159190 0.187 (94.5%
Time in systemcalls: 355740 0.011 (5.59%

Note: Data collected assuming a sparcstation_elc with clock rate of
MHz.

*
*
*
*
*
*
3

You can also specify user or syst emindividually to measure only
the time the kernel spent servicing your requests.

Avoiding timing for specific system calls

You can use the - avoi d- recor di ng- syst em cal | s option to avoid
timing one or more specific operating system calls. Specify a list of
system call names or numbers, separated by commas. You can find
the names and numeric values in the

/usr/include/sys/syscal | . h header file.

The default values for - avoi d-r ecor di ng- system cal | s are:
SYS_ exit, SYS select, SYS |listen, SYS_sigpause

SYS_exit, SYS poll

O®

SYS exit, SYS select, SYS |isten, SYS sigpause

In X Windows programs, Quantify routinely reports that large
amounts of time were excluded from the dataset. This is because,
by default, Quantify avoids recording time for system calls such as
SYS sel ect and SYS exit.

In the following example from a Quantify’d X Windows client,
most of the unreported time is due to the X Windows server and
client waiting at the sel ect system call for the user to select an
operation to perform.

*

cycles secs

* Total counted tinme: 254406924 7.709 (100.0%
* Time in your code: 113897874 3.451 (44.8%
* Time in systemcalls: 124626051 3.777 (49.0%
* Dynamic library | oading: 15882999 0.481 (6.2%
*
* Time Quantify excluded fromthe dataset:
* Time in systemcalls: 56195007 1.703

Quantify excluded the—+—— SYS_sel ect

data for SYS_sel ect * Tine in register w ndow traps: 3175200 0. 096

Note: Some UNIX client-server applications typically combine an
X Windows graphical user interface and a database client
interface, which communicate with the X Windows server and the
database server respectively. If the database client routines also
use SYS_sel ect to wait for the database server to respond,

Customizing Data Collection 4-5

4-6 Quantify User's Guide

Quantify does not report the time your program waited for the
database server, since it avoids timing all calls to sel ect .

To time the database calls, but avoid the X Windows calls, you can
surround the database accesses with calls to the API functions
guantify start_recording_systemcall and
quantify_stop_recordi ng_system cal | . See “Collecting partial
data for a run” on page 4-13.

Reporting excluded system-call time

If you avoid timing system calls completely by using
-record-system cal | s=no, or individually by using

-avoi d-recordi ng-syst em cal | s, Quantify does not include this
time in the recorded data for the function and does not distribute
the time to callers. Quantify, however, does continue to time the
avoided system calls.

By default, if the excluded time exceeds 0.5 percent of the
combined counted and excluded times, Quantify reports this value
as excluded in the program summary along with the names of
system calls contributing to the excluded time. This helps you to
understand how much time is not accounted for by Quantify so
you can include the time in the dataset if necessary.

You can use the - r eport - excl uded- t i me option to control whether
Quantify reports excluded time. Specify

-report-excl uded-ti ne=no to eliminate the reports of excluded
time. You can also specify a number between 0.0 and 100.0 as a

percentage threshold, past which Quantify reports the excluded
time in the program summary.

% set env. QUANTI FYOPTI ONS -report-excl uded-ti me=yes
% t est Hash. pure 500 test_words

Quantify: Cunulative Resource Statistics for testHash.pure (pid 5159)

* cycles secs
* Total counted tinme: 7875025 0.239 (100.0%
* Time in your code: 6159190 0.187 (78.2%
* Time in systemcalls: 1715835 0.052 (21.89%
*

Quantify reports the * Time Quantify excluded fromthe dataset:

time excluded from * Tine in register w ndow traps: 7020 0. 000

the dataset

Timing shared-library operations

For programs linked with shared libraries, Quantify instruments
the code in each shared library and records data from functions in
those libraries. Quantify does not instrument the dynamic linker
itself, the program responsible for loading the shared libraries into
the running process and resolving references to entry points and
data within those libraries. These dynamic-linking operations,
including calls to dl open under SunOS 4.1 and Solaris 2, and

shl _| oad under HP-UX, can take a substantial amount of time.

Recording dynamic linking

Quantify measures the elapsed time of dynamic-linking
operations.

% set env. QUANTI FYOPTI ONS -record-dynami c-1i brary-dat a=yes
% t est Hash. pure. dynanmi ¢ 500 test_words

Quantify: Cumul ative Resource Statistics for testHash. pure.dynanmic (pid 5169)

* cycles secs

* Total counted tine: 17776759 0.539 (100.0%

* Time in your code: 6284146 0.190 (35.4%

* Time in systemcalls: 1255221 0.038 (7.19%
Elapsed time for * Dynamic library |oading: 10237392 0.310 (57.6%

dynamic linking

. Note: Data collected assuming a sparcstation_elc with clock rate of 33 MHz.
operations

Customizing Data Collection 4-7

4-8 Quantify User's Guide

You can use the - recor d-dynani c- | i brary- dat a option to control
whether Quantify records time for dynamic linking. The default is
-record-dynam c- | i brary-dat a=yes.

To specify how Quantify measures time for dynamic linking, use
the - neasur e-ti med- cal | s option. The default is

- measur e-ti ned- cal | s=el apsed-ti me. This option also controls
how Quantify measures times for system calls. If you change how
Quantify measures time for system calls, you also change how it
measures time for dynamic linking.

For more information about the - neasur e-ti ned- cal | s option,
see the - neasure-ti med-cal | s option on page B-8.

Note: Most dynamic linkers perform an initial link of a shared
library and then, as individual functions in that library are called,
the final references are resolved once and a procedure linkage
table (PLT) is updated by the dynamic linker so that subsequent
calls to this function are processed directly. Quantify does not
measure the time required to patch these PLT entries.

If the program attempts to open a dynamic library at run time
that has not been instrumented, Quantify automatically
instruments the library. Quantify does not measure the time
required to instrument the library. Quantify records only the time
required to open the instrumented library and link it into the
process.

Understanding shared-library operations

Each operating system implements dynamic library initialization
and support differently. As a consequence, when Quantify times
dynamic library operations it often reports the times in different
functions and files.

On SunOS 4.1, the dynamic linker | d. so is loaded by a static
function in the file crt 0. o before start calls nai n. After 1 d. so is
loaded into memory, st art runs it and the linker loads the initial
set of dynamic libraries into memory and initializes them.
Quantify times both the initial load of | d. so and the initialization

operations, and attributes the times to the start[crt0. o/ 4]
function. Quantify records dynamic library loading at run time in
the dl open function.

On Solaris 2, the dynamic linker | d. so is loaded by the standard
program interpreter before the program is started, so Quantify
cannot time this loading operation. Each dynamic library contains
init andfini code that is run after the library is loaded. Quantify
reports these times under the i ni t [<dynamni c_l i brary_name>]
and fi ni [<dynani c_I i brary_nane>] functions. Quantify records
dynamic library loading at run time in the dl open function.

On HP-UX, the dynamic loader dl d. sl is loaded by a function in
the file crt 0. o before st art calls mai n. After dl d. sl is loaded into
memory, st art calls it and it loads the initial set of dynamic
libraries into memory and initializes them. Quantify times both
the initial load of dl d. sl and the initialization operations and
attributes the times to the _p__ map_dl d function. Quantify
records dynamic library loading at run time in the shl _| oad
function.

Note: Unmapping dynamic libraries using dl cl ose on SunOS 4.1
and Solaris 2, and shl _unl oad on HP-UX, causes Quantify to
attribute data to incorrect functions. Therefore, Quantify
intercepts these functions and prevents the unmapping of
dynamic libraries.

Customizing Data Collection 4-9

Timing register-window traps

@)

Quantify simulates the time required to handle register window
overflow and underflow conditions for SPARC processors. See “How
Quantify times register-window traps” on page 3-15.

To control recording these simulated times, use the option
-record-regi st er-w ndowtraps. For example:

% set env. QUANTI FYOPTI ONS -record-regi ster-w ndowtraps=yes
% t est Hash. pure. dynam ¢ 500 test_words

Quantify: Cunul ative Resource Statistics for testHash. pure.dynamc (pid
5172)
* cycl es secs

* Total counted tine: 14418955 0. 437 (100.0%

* Time in your code: 6284146 0.190 (43.6%

* Time in systemcalls: 1633368 0.049 (11.3%

~Time reported for ——=——— Tine in register w ndow traps: 6480 0.000 (0.0%
register-window traps * Dynanic |ibrary | oading: 64949610. 197 (45.0%

4-10 Quantify User’s Guide

*

* Note: Data collected assuming a sparcstation_elc with clock rate of 33
MHz.

You can find the cost in machine cycles that Quantify uses for each
register-window underflow and overflow trap in the

. machi ne. sunos4 or the . machi ne. sol ari s2 file in

<quanti f yhome>.

By default, - r ecor d-r egi st er - wi ndow-t r aps=no. Quantify
reports the excluded register-window trap time only if it is a
significant fraction of the combined recorded and excluded time for
the entire run.

On machines such as HPPA which do not support register
windows, Quantify ignores any attempts to time these operations
and issues a warning message.

Changing the granularity of collected data

Quantify can collect function time information at different levels
of detail, or granularity. As the level of detail increases, so does the
cost of collecting the data. By default, Quantify determines the

evel of detail based on the type of code your compiler emits.

Quantify can collect data at the following levels of granularity:

Collection granularity Description

Function Distinguishes counts for each function only
Basic-block Distinguishes counts for each basic block
Line Distinguishes counts for each line

You can use the - col | ecti on-granul ari ty option to control the

|
f

evel of detail at which Quantify collects data. You can specify
uncti on, basi c- bl ock, orl i ne.

Note: You can use basi c- bl ock and | i ne only if debugging

nformation is available; that is, if you compile your application

using the - g debugging option.

-col l ection-granul arity=function

Quantify tracks the total machine cycles over each function call
but does not record any data about machine cycles for basic
blocks. This level of data collection incurs the least overhead,
requiring about 1 machine cycle for each basic block. This is the
detail that is displayed in the Function Detail window.

Note: When you specify - col | ecti on-granul arity=function,
the Annotated Source window is not available.

If debugging information is not present, such as in third-party
libraries and in optimized code, Quantify automatically
instruments code at function granularity.

-col l ection-granul arity=basic-bl ock

This setting requires debugging information. Quantify tracks
both the total machine cycles over each function call and the

Customizing Data Collection 4-11

4-12 Quantify User’s Guide

machine cycles executed in each basic block. Basic block data is
used for the line annotations in the Annotated Source window.

* -col lection-granul arity=line

This is the default if debugging information is available.

-col | ection-granul arity=line is identical to basi c- bl ock
granularity, except that when a basic block extends over several
lines of source code, Quantify inserts additional counters to
record line-by-line counts. This improves readability of the data
but at the expense of additional counting at run time.

Counting for basic blocks and lines is substantially slower than
counting for function granularity, requiring approximately seven
machine cycles per basic block or line counter. This is because
Quantify must update both its function counter and each of the
basic-block counters as it enters each basic block. Updating the
basic-block counters requires updating a counter in memory.

The average cost of each basic block in normal code is 5 to 10
machine cycles. This means that, exclusive of function entry and
exit overhead, Quantify’s counting insertion in this case slows the
function on average by a factor of two. This contrasts with
function granularity which slows the same code by only about 20
percent.

To control the granularity of data collection without using the
-col I ection-granul arity option, you can:

= Recompile your application without using the - g option so
Quantify automatically collects data at function granularity.

= Usestrip -1 toremove the line number information from
certain files. Quantify then automatically collects data at
function granularity.

To speed up data collection in an application compiled for
debugging without recompiling the code, use the -f orce-rebui | d
option with the - col | ecti on-granul ari ty option:

% quantify -force-rebuild \
-coll ection-granul arity=function cc ...

Collecting partial data for arun

You can use Quantify’s API functions to fine-tune data collection.
For example, to record only the cost of the last call to the

t est Put Hash routine in the example t est Hash program, you can
embed the quantify_stop_recordi ng_systemcal | s and
quantify_stop_recordi ng_dat a functions in the program code:

Include "quant i fy. h" —#include "quantify.h"
/* testHashTabl e
* Create a hashtabl e and do a bunch of operations on it checking that
* they are done correctly, and then delete the hashtable. Each operation
* tests whether the hashtabl e val ues should be present or not.
*/
static int testHashTabl e(testTable, table_size)
testEntry *testTable;
int table_size;

int tests_succeeded = TRUE;
/* Make the hashtable */
hasht abl e* ht = test MakeHashTabl e();
if (ht == NULL)

return FALSE;
/* Put themall in the hashtable and ensure they were not there before */
tests_succeeded & testPutHash(ht, testTable, 0, table_size, FALSE);
/* Now put themin again and make sure they were already there */
tests_succeeded & testGetHash(ht, testTable, 0, table_size, TRUE);
/* Lose the first half of them and make sure there was something deleted */
tests_succeeded & testRenHash(ht, testTable, 0, table_size/2, TRUE);
/* Try to renpve them again and make sure there was nothing to renove */
tests_succeeded & testRenmHash(ht, testTable, 0, table_size/2, FALSE);
/* Try to find the first set again and ensure no one is there */
tests_succeeded & testGetHash(ht, testTable, 0, table_size/2, FALSE);
/* But make sure the rest are still there */
tests_succeeded &= testGetHash(ht, testTable, table_size/2, table_size, TRUE);
/* Put the first half back in again and make sure they are all new */
tests_succeeded & testPutHash(ht, testTable, 0, table_size/2, FALSE);

if (quantify_is_running()) {
quantify_clear_data(); /* drop any data so far */
quantify_stop_recording_systemcalls();/* don't care about calls to OS */

Resets all counters
Stops recording
system calls }

/* Try to put the last half in again and ensure they are already there */
tests_succeeded &= testPutHash(ht, testTable, table_size/2, table_size, TRUE);

if (quantify_is_running())
quantify_stop_recording_data(); /* don't get any nore data */

Stops recording data
tests_succeeded & testDel HashTabl e(ht); /* Delete the table */

return tests_succeeded;

}

Note: After embedding Quantify API functions in your code, you
must recompile the program.

Customizing Data Collection 4-13

Analyzing datasets containing partial data

Look at the program summary to see the results of the
quantify_stop_recording systemcalls and
quantify_stop_recordi ng_dat a calls. Quantify reports only the
Ti me i n your code, the code executed by the testPutHash call.

Quantify: Cunul ative Resource Statistics for single_testHash.pure (pid 12056)
* cycles secs

*

*

Total counted tine:
Time in your code:

332723
332723

0.010 (100.0%
0.010 (100.0%

Not all system calls —— note: Not al systemcal |l times were recorded during this period.
were recorded
Note: Data coll ected assuming a sparcstation_elc with clock rate of 33 MHz.
Note: These tinmes exclude Quantify overhead and possible nenory effects

El apsed data col |l ection tine: 3. 009 secs

*
*
*
*
*
*
*

Note: This neasurenent includes Quantify overhead.

The call graph for this run includes the calling functions of

t est Put Hash. This is because Quantify distributes time to the
calling functions, even if they contributed no time themselves.

] Sy v :
lir CAra e el
TR Sl T
Bt T My LT
iR - — | Gt - ’ v e T b e
s [EETRE . g
| muiFrdinh T 1T B
o i Db 1 sl i
Fomret e i Ui + W . L6l | CoDBE |
™ e
i —_— - — " —
Irprimk Tanie
ll\.--'l--'?aulrw‘ Pepiinr P | Hew Swwlilid Seege | Faie B e Ciidad
Ll H
A LeATAnil e (i 1% |

The functions that are called after the call to t est Put Hash are also
recorded, even though these functions contribute no time.

4-14 Quantify User’s Guide

Although Quantify does not record timing data after you call
quantify_stop_col | ecting_dat a, it still tracks the function calls.
This is so that if you decide to start recording data at a later point,
Quantify can distribute that time correctly to the calling functions
from that point on.

Calling quantify _stop_recording_system_calls
and quantify_clear_data from your debugger

You can also run the t est Hash program under a debugger and
place a breakpoint on the t est Put Hash line. When the program
reaches the breakpoint, call the functions
quantify_stop_recording_systemcalls and

quantify_cl ear _dat a from the debugger. Use next to step the
program over the call to t est Put Hash and call
quantify_stop_coll ecting_dataorquantify_save_data

and continue.

See “Calling API functions from your program” on page A-9.

API functions are useful when used with run-time options: The
run-time options specify the initial recording state only; the API
functions called during the execution of the program can change
that state as desired.

You can call the API functions as often as you want. The overhead
of using Quantify’s data collection API functions is negligible. A
common Quantify practice in X Windows applications or other
programs that use an event-driven architecture is to place a call to
quantify_start_recording_dat a at the beginning of a callback
function, and a call to quanti fy_stop_recordi ng_dat a at the end
of the callback function. Then run the Quantify'd application with
-recor d- dat a=no, or place a call to quanti fy_cl ear _dat a before
the program enters the main event loop. In the final dataset,
Quantify reports the accumulated times recorded for exactly the
callback(s) of interest.

Customizing Data Collection 4-15

Annotating datasets

You can add annotation strings to saved data files in order to
distinguish between different data files and to record special
data-collection circumstances, such as high network traffic or the
use of special data files.

Use the API function quanti fy_add_annot ati on to add an
annotation string to the next binary data file saved using
quantify_save_data, quantify_save_data_to_file, or program
exit. You can add as many annotations to a dataset as you want.
You can also add annotations to an existing binary data file using
the qv option - add- annot at i on. For example:

% qv -add-annotati on="Run to collect dynamic library data" \
t est Hash. pure. dynam c. 5172. 0. qv

Quantify automatically adds an annotation indicating the type of
machine on which the data was collected. If a fatal signal is
received without a user-defined signal handler, Quantify
automatically saves the data to that point in the run and adds an
annotation indicating the type of signal received.

To view the annotations in a data file, use the qv option
- print-annot ati ons. For example:

% qv -print-annotations testHash. pure.dynam c.5172.0. qv
**xx Quantify instrumented testHash. pure.dynamic (pid 5172 at Wed Jan
13 12:54: 02 1999)
Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp.

* For contact information type: "quantify -help"

* Quantify licensed to Rational Software

* Quantify anal ysis enabl ed.
Quantify: testHash.pure.dynanmic (pid 5172) run on host kenya.

Quantify: Reading data for 65 functions
fromtestHash. pure.dynamc (pid 5172)......... done.

The added annotation —Run to col l ect dynanic library data

4-16 Quantify User’s Guide

%

Saving data on signals

Quantify installs signal handlers for many of the software signals
that can be delivered to a Quantify’d process. The signal handler
saves performance data to a file before proceeding with the normal
signal behavior (which typically involves termination of the
program). If you have already installed a signal handler for a
given signal, Quantify does not save data when it receives that
signal.

The initial default set of signals handled by Quantify are:

SIGHUP, SIG NT, SIGOTI, SIGQUIT, SIGLL, SIGABRT, SIGEM,
SI GFPE, SI GBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGIERM Sl GUSRL,
SI GURSR2, SI GLOST, SIGXCPU, S| GXFSZ,

SIGHUP, SIGNT, SIAOT, SIGQU T, SIGLL, SIGABRT, SIGEM,
S| GFPE, SI GBUS, SI GSEGV, SIGSYS, SIGPlPE, SIGIERM S| GUSR1,
S| GQUSR2, SI GPOLL, SIGRTM N, SI GRTMAX, SI GXFSZ, SI GXCPU, Sl GXFSZ,

SIGHUP, SIG NT, SIGOT, SIGQUIT, SIGLL, SIGABRT, SIGEM,
SI GFPE, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGIERM Sl GUSRL,
SI GQUSR2, SI GLOST, SIGRESERVE, SI AL, SIGXCPU, SIGXFSZ

To ignore signals in this list, use the - i gnor e- si gnal s option.
Specify a comma-separated list of signals to ignore. For example:

% set env QUANTI FYOPTI ONS - i gnor e- si gnal s=SI GSEGV, SI GBUS

To handle additional signals, use the - handl e-si gnal s option.
Specify a comma-separated list of additional signals. For example:

% set env. QUANTI FYOPTI ONS - handl e- si gnal s=SI GALARM S| GCHLD

Note: Quantify does not handle SI GKI LL, SI GTSTOP, and S| GTRAP,
since doing so interferes with normal program operation. If you
specify these signals with - handl e- si gnal s, Quantify silently
ignores them.

If you do not want Quantify to save data on any signals, specify:

% set env. QUANTI FYOPTI ONS - save- dat a- on- si gnal s=no

Customizing Data Collection 4-17

Collecting data for

4-18 Quantify User’s Guide

Collecting data in long-running programs

If you have a program, such as a daemon, that does not exit, you
can capture Quantify data and save it to a file while the program
is running, without terminating the program. You can use either
of these methods:

= Write a signal handler for a given signal that calls the Quantify
API function quanti fy_save_dat a. To clear the Quantify
counters, call quantify_cl ear _dat a.

= Use the - api - handl er - si gnal s option to install signal handlers.
For example, - api - handl er - si gnal s=SI GUSR1, SI GUSR2 installs
signal handlers for the SI GUSR1 and SI GUSR2 sighals. When the
program receives the first signal (SI GUSR1),
quantify_save_dat a is called. When the program receives the
second signal (S| GQUSR2), quant i fy_cl ear _dat a is called.

To send the signal to the process, type:
%kill -USR1 <pid>

This causes Quantify to write the data to the next dataset
number. You can view that data with qv immediately after the
file is written, while the daemon continues to run. Quantify
automatically resets its counters to zero after saving the data,
ensuring that the next incremental dataset will contain the data
since the last save.

For additional information on signals, see the si gnal , si gvec, and
si gmask manual pages, and the / usr/ i ncl ude/ si gnal . h and
/usr/include/ sys/ si gnal . h files.

child processes

Programs often create child processes using f or k or vf or k. When
these child processes start, they execute from the current data
state of the parent, typically to perform some computation based
on data the parent provides. For example, the parent process
might fork a child process to handle a request from the client to
update a data record. Child processes, rather than the parent
processes, are often the actual site of the performance bottlenecks

in a program. To capture the performance data from these
separate processes, Quantify must start a different instance of
itself for each child process before the child process executes.

Using execve

Sometimes child processes immediately call execve to start
running a different program altogether. In this case, the effort of
starting a new copy of Quantify for the child process is wasted.
Therefore, by default, Quantify does not start Quantify to record
child process data. To record child process data, set the
-record-chil d- process-dat a option:

% set env. QUANTI FYOPTI ONS -record-chi |l d- process-dat a=yes

By default, Quantify saves data for each child process in a
different file, since the filename prefix includes the % character,
which expands to the process ID of each child.

Using fork

Since the operating system makes a copy of the memory state
during a f or k, the counts for the child process include the counts
from the parent process up to the point of the fork. To exclude the
parent data from the child process data, you can call the
quantify_cl ear _dat a API function after the child process begins.

Using vfork

The vf or k system call creates a child process that shares the same
memory image as its parent process. The parent process is
suspended until the child exits. Since Quantify keeps its counter
data in memory, as the child process executes it adds the counts to
the parent’s counters, thereby corrupting the parent’s data. To
prevent this, Quantify intercepts all vf or k calls and converts them
to f ork calls. The f or k system call ensures that the child is an
independent process with its own memory state. Since the child is
Quantify'd, its data is reported under a separate process ID, if
-record-chil d- process-dat a=yes.

Customizing Data Collection 4-19

Collecting data in threaded programs

4-20 Quantify User’s Guide

Threads are separate, independent lines of control executing
within a single process. Threads share the same address space but
maintain separate execution stacks. Quantify collects performance
data as each thread runs and, by default, reports the composite
performance data over calls to all functions from all threads.

Quantify works with most popular threads packages. For a list of
supported threads packages, see the README file.

Threads and stacks

Quantify maintains separate accumulators for each stack and
combines them to form the composite data. To request that
Quantify save the per-stack data in separate qv data files, use the
option:

% set env. QUANTI FYOPTI ONS - save-t hr ead- dat a=st ack, conposite

This saves both the composite and the per-stack data. If you
specify st ack, each dataset is written to a separate file. Quantify
names the file by appending the value of the %@ character to the
value of the -fi | enane- pref i x option, followed by the .qv
extension. For example, if the -fi | enane- prefi x option is

% . %. %, data for each stack is saved to a file named according to
the expansion of %. %p. %. %9. qv. See “Using conversion
characters in filenames” on page A-3 and “How Quantify creates
filenames” on page A-4.

The data collection options and API functions described in this
chapter affect data collection and saving for all threads, not just
the thread that is currently executing. Thread-specific versions of
the API functions are available. See the

<quant i f yhome>/ quantify_threads. h file.

Typically, many threads reuse a single stack. This can happen if
the thread is destroyed and the threads package recycles the stack
for a later thread. Since Quantify detects stack creation and stack

switches, not thread creation and destruction, the statistics it
gathers reflect all of the threads that used a particular stack.

Quantify detects the use of a new stack by monitoring the stack
pointer and comparing it against its table of known stack areas. If
the stack pointer is not close to the stack of a known thread,
Quantify assumes that a new stack has been created.

Use the -t hr ead- st ack- change option to specify how large, in
bytes, a change to the stack pointer must be before Quantify
recognizes a new stack. You might need to increase this value for
programs that allocate large data structures on the stack using
al | oca, and decrease this value for programs that create threads
with stacks very close to one another.

Quantify accesses its own internal data structures in a thread-safe
way. Quantify uses mutual exclusion (mut ex) locks to accomplish
this. The exact implementation of mut ex locks depends on the
thread library being used. The mut ex locks used by Quantify work
properly with the scheduling code in your threads library.

By default, Quantify assumes that your application creates no
more than 20 stacks during a run. To increase this number, use
the - max-t hr eads option.

Solaris lightweight processes and threads

On Solaris 2, threads can be assigned to different lightweight
processes (LWPs), which, in turn, can be assigned by the operating
system to different processors if they are present.

Quantify, however, cannot easily determine when an LWP has
been assigned to a different processor (since it can happen at any
time) and hence cannot determine whether two LWPs (and
therefore threads) might be running at the same time. Quantify
therefore cannot account for true concurrency in such an
application, and reports the sum of all counted times as though
there is only a single processor. In this regard, Quantify’s times
are pessimistic for applications running on symmetric
multi-processor (SMP) machines.

Customizing Data Collection 4-21

4-22 Quantify User’s Guide

Since Quantify cannot determine if several LWPs are running
simultaneously, it does not time system calls that cause LWP
scheduling to occur. These system calls look as though the calling
thread blocked for a long time, but in fact the process was doing
useful work in another thread in the same process, which
Quantify is counting. If these system calls were timed, the time
spent in other threads would be double-counted in the elapsed
time recorded for the system call.

Quantify assumes that there are several CPUs and by default does
not time system calls associated with lightweight processes. By
default, - never-record-systemcal | s=:

SYS_sigtinedwai t, SYS | wp_sema_wai t, SYS_| wp_create,
SYS_ I wp_ki I'l, SYS_| wp_nut ex_unl ock, SYS_| wp_nut ex_| ock,
SYS | wp_cond_wai t, SYS_si gnoti f ywai t

If you are running only one processor on the system, you can
increase the accuracy of Quantify’s times by having Quantify time
the LWP system calls. You can remove specific system calls from
the list specified to - never-record-systemcal | s, or specify a
null string to have Quantify time all of the system calls listed
above.

This list might change for different release levels of the Solaris 2
operating system. Consult the installation notes and README for
the updated list.

Analyzing data from threaded programs
The call graph looks different for multi-threaded applications.

With multi-threaded applications, there are additional functions
emanating from . r oot . corresponding to the unique starting
points for the different threads started during the dataset. Some
thread packages place their own routines on those stacks, which
then call your functions. Other packages arrange for your
functions to be called directly. You are also likely to see functions

emanating from . r oot . reflecting the activity on any scheduler
and signal handling threads the thread library sets up.

Dum iy Gl Grap |
P e Wi o

colaraln e,
..-:"' ;_nlpu-:u“w o
e rmal lL-m'“'“K:;m}‘ ity eunperd lacis

e it o |

Theck e tlrye

Since threaded programs must lock accesses to shared data, you
see support functions calling various different locking primitives
supplied by the threads package. On Solaris 2, even under a
single-threaded application, the linked libraries are MT-safe
(multiple-thread safe). This means they call locking primitives as
well, even though they are stubbed out in a single-thread
application. These locking calls increase the complexity in the call
graph. You can use the call graph pop-up menu to collapse the
subtrees under these locking primitives.

Customizing Data Collection 4-23

QUANTIFY USER'S GUIDE

Analyzing Data with Scripts

This chapter discusses how to use scripts to automate the analysis
of Quantify’s performance data.

Exporting performance data

You can save Quantify data in an export format that is suitable for
processing by shell scripts and other programs.

There are several ways to create an export data file:

= You can use the -wite-export-fil e option at run time.

= You can select File > Save export data in any Quantify data analysis
window.

= If you have saved the binary data in a file, you can use the
-write-export-fileoptionon the gv command line to write the
export file. For example, the command:

%qv -wite-export-file a.out.83475.0.qv
writes an export data file named a. out . 83475. 0. gx in the
current directory.

Quantify creates export filenames by expanding any conversion
characters in the - fi | ename- prefi x option, then adding the . gx
extension. See “Using conversion characters in filenames” on page
A-3 and “How Quantify creates filenames” on page A-4.

Note: The export file does not provide data for basic blocks or
lines. All C++ function names are demangled.
The export data file format

Each line of an export data file contains a keyword followed by
tab-separated data fields appropriate for that type of line. The

5-1

Running qv

5-2 Quantify User’s Guide

keyword keyword describes the format of each keyword. All data
for a keyword appears on a single line. The primary keywords are:

= Comment: Each line contains a comment.

= Keyword: Each line describes a keyword and its data fields.

= Program: This line contains the name of the program, the
process ID, the type of machine the data was collected on, the
clock rate for that machine, and the version of Quantify.

= Function: Each line contains one function’s detailed data.

= Caller: Each line contains one caller of a function and the
distribution of time from the function to the caller.

You can view a saved binary dataset at any time by running the qv
program.

% qv a.out.513.0.qv

Alternatively, you can use the command:

% quantify -view a.out.513.0.qv

Note: You do not need to specify or retain the original executable
to view your data. Each dataset file contains all function name
and source file information required to display the performance
data. In addition, dataset files are highly compressible. This is
especially important for large datasets that need to be retained for
comparison purposes.

The qv program supports a number of command-line options. See
“gv options” on page B-7.

If you specify -write-export-file,-wite-summary-file,

- add- annot ati on, or -pri nt - annot at i ons, qv does not start the X
Windows display. To start the X Windows display, include

-wi ndows=yes on the command line. For example:

%qv -wite-summary-file -w ndows=yes a.out.513.0.qv

To connect to an X Window display, set the environment variable
DI SPLAY to the display name where windows should be created.
The named display must have proper access permissions.

gv also supports standard X Windows options such as - di spl ay,
- backgr ound, and - | anguage. You can specify values for these
options by using either the standard X Windows format in which
option name and value are specified as separate tokens, or by
using the Quantify options format:

% qv -w ndows=yes -display=ginza:0 \
-l anguage j apanese a.out.513.0.qv

Rerouting Quantify’s output

You can save Quantify reports and messages to a log file. This
allows you to run a Quantify’'d program and then inspect the
output from Quantify at your convenience.

You can use the - | ogfi | e option to reroute Quantify output,
separating it from the program’s normal output:

% setenv QUANTIFYOPTIONS '-logfile=/tmp/pureout \
-write-summary-file=none’

% a. out

Hello, World

%

Notice that there is no Quantify banner. Quantify writes the
banner to the log file. The option -wr it e- summary-fi | e=none
prevents the printing of the program summary report, which will

not be added to the log file. You can print the program summary
report later, using the command:

% qv -write-summary-file=- a.out.<pid>.0.qv

Analyzing Data with Scripts 5-3

To view the program output and Quantify output at the same
time, open a separate terminal window and view the log file in this
window while your program is running. Use the command:

%tail -f /tnp/pureout

You can add informative messages to the log file by calling one of
several Quantify API functions from your program.

= The function pure_pri ntf adds a message to all forms of
Quantify output.

= The function pure_| ogfil e_printf is avariation, adding a
message if the output goes to a log file.

These functions take a format string and a variable number of
arguments just like printf.

Note: The full %escape syntax of pri ntf is not supported. You
must limit escapes to simple %, %, 9%, %, %, %, % , or %g. No
field width or precision specifiers are allowed, and %, %, %g are
equivalent to %4.0. 2f .

To interleave your program'’s output with Quantify messages, use
the option - copy- f d- out put - t o- | ogfi | e. Specify a list of
file-descriptor numbers. For example, specifying 1,2 causes
Quantify to copy all output written on file descriptors 1 and 2,
interleaving it with Quantify output.

Saving data incrementally

5-4 Quantify User’s Guide

You can use the API functions quantify_save_data and
quantify_save_data_to_fil e to save the collected performance
data on demand. After saving the data, these functions
automatically call quanti fy_cl ear _dat a to clear the
accumulators so that saved files do not contain overlapping data.

Use the function quantify_save data to_fil e to save data in
binary form to the file you specify. You can use conversion
characters in filenames. See “Using conversion characters in
filenames” on page A-3.

Use the function quanti fy_save_dat a to save data in binary form
to a file whose name is based on the value of the

-fil enane- prefix option and the .qv extension. The default value
for -fil ename- prefix is %. %p. %. For example, for a program
named new with a process ID of 513, Quantify would name the file
new. 513. 0. gv. See “How Quantify creates filenames” on page A-4.

By default, Quantify saves each dataset and prints an incremental
summary of the timing data recorded for each dataset. This
behavior is controlled by the default behavior of the
-write-summary-fil e option.

If - wi ndows=yes, Quantify runs with the graphical interface and
displays the last dataset it receives. In addition to the incremental
summary on this last dataset, Quantify also prints a summary of
all the timing data recorded over all the datasets it received. If no
data was recorded in a dataset, it is not transmitted or saved.

Automating data analysis

You can use the -run-at - save and - run- at - exi t options to
automate repetitive performance analysis and reporting tasks.
Both options take a quoted string containing sh(1) shell
commands. Quantify passes the string to sh whenever data is
saved with the API functions quantify_save_data or
quantify_save_data_to_fil e and when the program exits,
respectively. The shell command has access to all the environment
variables available at the start of the Quantify’d program.

You can use conversion characters in the string. Quantify expands
the conversion characters before the string is passed to the shell.
See “Using conversion characters in filenames” on page A-3.

Automating performance regression tests

If you have an automated overnight build process, you can use the
-run-at-exit option to detect any regression in your program’s
performance. Add a step to the build procedure to Quantify the
program and then run it on a standard test data set. The gxchange

Analyzing Data with Scripts 5-5

5-6 Quantify User’s Guide

script uses gxdi f f to compare a saved export data file with a given
export file for an executable. It then copies the given export file to
become the saved export data file for subsequent comparisons.

#!/bin/ sh

Runs qgxdiff to conpare a recent run with a previously saved export file
Then replaces the saved export data with the recent data.

Usage: gxchange <execut abl e_name> <export_file> [gxdiff options]
Typically gxchange %W % -i

execut abl e="$1"

shift

current _export_file="$1"

shift

previous_export _file="${executabl e}.|ast_gx"

if [-f "$previous_export_file"]; then
gxdi ff "$@ $previous_export_file $current_export_file
el se

echo "No previous data. Conparison will be made on subsequent runs."
fi
cp $current _export_file $previous_export_file

To run this script during the nightly build, set the environment
variable QUANTI FYOPTI ONS to:

' -wi ndows=no -run-at-exit="gxchange % % -i"’

The - wi ndows=no option specifies that Quantify should be run
without the graphical interface during the automated run. The
-run-at - exi t option specifies that the gxchange script should run
whenever the program saves a dataset and that comparisons
should ignore system call times.

By default, the output from gxchange is written to st dout . To
email the comparison to yourself, you can use:

' -wi ndows=no -run-at-exit="gxchange W % -i | mail $USER"’

Inspecting incremental datasets during a run

If your program calls the API function quanti fy_save_dataon a
regular basis in order to capture incremental performance data,
you can use the - run- at - save option to view each dataset as it is
saved. To view each dataset as it is saved, use:

% setenv QUANTI FYOPTI ONS -run-at-save="qv % &"

Comparing program runs with gxdiff

The gxdi ff script compares two export data files from runs of a
Quantify’d program and reports any changes in performance. To
use the gxdi f f script:

1 Save baseline performance data to an export file. Select
File > Export Data As in any data analysis window.

2 Change the program and run Quantify on it again.

3 Select File > Export Data As to export the performance data for the
new run.

4 Use the gxdi ff script to compare the two export data files. For
example:

% gxdi ff -i testHash. pure.20790. 0. gx i nproved_test Hash. pure. 20854. 0. gx

You can use the -i option to ignore functions that make calls to
system calls.

Below is the output from this example.

Di fferences between:
program t est Hash. pure (pid 20790) and
program i nproved_t est Hash. pure (pid 20854)

gxdi f f lists the Function nane Calls Cycles % change
functions that have strenp -40822 -1198640 93.77%faster
changed put Hash 0 -32912 6.61%faster
! get Hash 0 - 28376 7.86% faster
! renHash 0 - 7856 5.91% f aster
! hashl ndex 0 10000 1. 49% sl ower

And summarizes the—5 differences; -1257784 cycles (-0.025 secs at 50 Miz)

differences for the 25 019 faster overall (ignoring systemcalls).
entire run

Analyzing Data with Scripts 5-7

5-8 Quantify User’s Guide

What gxdiff annotations mean

Each line in the gxdi f f report lists a function whose time has
changed. The annotations on each line mean the following:

Symbol Meaning

- Called in the baseline run only

! Called in both runs; timing changed

+ Called in the changed run only

Unless you change the calling structure of the program, gxdi f
reports only the functions whose performance has changed (lines
marked “!”). You can use the -1 option to print a description of the
columns and annotations in the gxdi ff report.

The gxdi ff report summarizes the total number of differences,
the change in the total function time count, and the overall
percentage change between the baseline and the changed run. The
gxdi ff script prints the report to st dout .

By default, gxdi ff reports changes in operating system call times.
These changes can be caused by a different number of calls or
changed network traffic loads. You can use the -i option to tell
gxdi ff toignore functions that make system calls in order to focus
on the changes in compute-bound functions only.

The example on the following page shows the effect of the -i
option.

For example, you can use gxdi ff -i to see the effect of a different
compiler optimization level on the i npr oved_t est Hash program.

Compile an optimized— % cc -c -0t i nproved_hash.c -o i nproved_hash. o
version of the % nmake i nproved_t est Hash. pure

improved_testHash

program quantify cc -Bstatic -g -o inproved_testHash. pure testHash.o inproved_hash.o

Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp.
I nstrunmenting: inproved_hash.o Linking

Run the optimized — o set env QUANTI FYOPTI ONS * - wi ndows=no -write-export-file=
program % inproved_t est Hash. pure 500 test_words

***x% Quantify instrumented inproved_testHash.pure (pid 9952 at Wed Jan 13
15: 04: 39 1999)
Quantify 4.4 SunCS 4.1, Copyright 1993-1999 Rational Software Corp.

* For contact information type: "quantify -help"

* Quantify licensed to Rational Software

* Quantify instruction counting enabl ed.
Testing the first 500 entries fromtest_words with a hashtable of size 13.
Al tests passed.

Quantify: Sending data for 62 of 186 functions
frominproved_testHash. pure (pid 9952).......... done.
To view your saved Quantify data, type:

qv i nproved_t est Hash. pure. 9952. 0. qv

Quantify: Cumul ative Resource Statistics for inproved_testHash.pure (pid 9952)

*

cycles secs
* Total counted tine: 5422968 0.164 (100.0%
* Time in your code: 3552297 0.108 (65.5%
* Time in systemcalls: 1870671 0.057 (34.5%

* Note: Data collected assuming a sparcstation_elc with clock rate of 33 M.
* Note: These times exclude Quantify overhead and possible nenory effects.

* El apsed data collection tine: 0. 747 secs
* Note: This measurenent includes Quantify overhead.
Use gxdi ff to compare —o qxdi ff -i inproved_testHash. pure. 9928. 0. gx i nproved_t est Hash. pure. 9952. 0. gx

the original run with

the optimized run Di fferences between:
program i nproved_t est Hash. pure (pid 9928) collected on sparcstation_elc (33

Mz)
program i nproved_t est Hash. pure (pid 9952) collected on sparcstation_elc (33
MHz)
Function nane Calls Cycl es % change
hashl ndex -614212 64.72% faster

! 0

! put Hash 0 -347142 51.81%faster
! get Hash 0 -214193 45.94% faster
! renHash 0 -92545 51.69% faster
! del HashTabl e 0 -10322 55.70% faster
! nmakeHashTabl e 0 -13 41.94%faster

The optimized runis 6 differences; -1278427 cycles (-0.039 secs at 33 M)
26% faster— 26.46% faster overall (ignoring systemcalls).

Analyzing Data with Scripts 5-9

Managing cached object files

5-10 Quantify User's Guide

To improve build-time performance, Quantify caches its
instrumented versions of all the libraries and object files that are
used by the program. When you rebuild a program, Quantify
updates only the new or modified files; otherwise it uses the
cached versions.

You can identify an instrumented cache file by its name. It
includes _pur e_ and a Quantify version number. It can also
include information about the size of the original file, or the name
and version number of the operating system.

Quantify writes Quantify'd files to the original file's directory if
that is writable, or to the global cache directory.

You can control how instrumented libraries and files are cached
by:
= Specifying the global cache directory

= Directing Quantify to save all cache files in the global cache
directory

= Restricting Quantify from caching files in certain directories

See “Build-time options” on page B-4.

Deleting cached object files

Since Quantify rebuilds cached files as needed, you can remove
them at any time in order to conserve disk space.

Using the pure_remove_old _files script

Note: The pure_renove_ol d_fil es script also removes Purify
and PureCoverage cache files.

To remove cache files, use the pure_renove_ol d_fil es script
located in the <quant i f yhome> directory. For example, to remove
all cache files that are 14 days or older:

% pure_renove_old_files / 14

The first argument (/) specifies the path, the second argument
(14) specifies the number of days. This command removes files 14
days or older recursively from the root directory / .

Using a cron job

To automate the removal of cache files, create a cr on job that
periodically removes the files. For example, to remove files that
have not been accessed in two weeks, type:

% crontab -e
Add this entry to the cront ab file:
15 2 * * * <quantifyhome>/pure_renove_old_files / 14

This runs pure_renove_ol d_fil es each day at 2:15 A.M., and
removes all cached files starting at the root directory / that have
not been read within the last 14 days.

To remove all of the cache files in the current directory and
subdirectories, use:

% pure_renove_old files . 0O

This is useful in cl ean targets of makefiles.

Analyzing Data with Scripts 5-11

QUANTIFY USER'S GUIDE

Using Quantify Options and API Functions

This appendix describes how to use Quantify options and
Application Programming Interface (API) functions. It includes:
= Quantify option syntax

= Quantify option types

= Quantify option processing

= Using the -i gnor e-runti me- envi ronnent option

= Calling Quantify API functions from a debugger

= Calling Quantify API functions from your program

= Linking with the Quantify stubs library

For a complete list of Quantify options and API functions, see
Appendix B, “Options and APl Reference.”

A-1

Using Quantify options

Option syntax

A Quantify option consists of a word or phrase that begins with a
hyphen. For example:

-record-systemcal | s=no

= The leading hyphen is required.
= No space is allowed on either side of the equal sign (=).

= Quantify ignores case, hyphens, and underscores in the option
name. For example, the option - record-systemcal I's iS
equivalent to -record_system cal | s and - Recor dSyst ental | s.

= For options that take a list of directories, you can specify the
directory names separated by colons (:). For example:

-forbi dden-directori es=/usr/hone/ program /usr/hone/ prograni

= Specify a list of signals separated by commas (,). For example:
- handl e- si gnal s=SI GUSR1, SI GUSR2, SI G LL

= You can use wildcards. For example, in filenames: pr ogr ant
matches pr ogram4, / di ra/ di r b/ program o, and
/diraldirb/programl. o.

A-2 Quantify User's Guide

Using conversion characters in filenames

You can use conversion characters when you specify filenames for
options such as-fil ename-prefix,-log-file,-run-at-save, and
-run-at - exi t . Quantify supports these conversion characters:

Character Converts to

Y Full pathname of the program with “/ ” replaced by “_”
Qv Program name

% Process ID (pid)

o Thread identifier

% Current time (hh:mm:ss)

%l Current date (yymmdd)

% Sequence number, starting at 0. This value is

incremented as each dataset is saved.

% Name of a / t np file containing binary data
%s Name of a/ t np file containing program summary
U Name of a/ t np file containing export data

Quantify expands conversion characters at run time to form
uniquely named datasets.

If the filename is unqualified (does not contain “/), Quantify
writes it to the directory where the program resides. Qualified
filenames can be absolute, or relative to the current working
directory. For example, if you specify the option:

-log-file=./%.ql og

Quantify writes the log file to the current working directory. If the
program is called t est, the log file is called . / t est . gl og.

Using Quantify Options and APl Functions A-3

How Quantify creates filenames

By default, Quantify forms filenames by expanding any conversion
characters in the value of the - fi | enane- pref i x option and
appending an extension. By default, - fi | enane- pref i x=%. %. %n.
Quantify saves data to these files:

Filename Data saved

Y. %. Y. qv The binary dataset file

%v. %p. Y. gx The export data file

%. %. %. gs The program summary file

%. %. %. gl The current Function List

. %. %. gf d The current Function Detail data

. %p. Y. ps The Call Graph, in PostScript form

<sour ce>. % The annotated source file

$HOWE . qvrc The X resource file for customizing Quantify

Note: The value of % is incremented each time the dataset is
saved.

A-4 Quantify User’s Guide

Option types
Quantify uses three types of options: boolean, string, and integer.

= Boolean options take the values yes or no, or t rue or f al se.
If you do not specify an explicit value, the value is yes. For
example, the option settings - r ecor d- dat a and
-recor d- dat a=yes are identical.

= String options can be a string of any kind. String options are
used for programs, directories, file names, lists of file descriptor
numbers, system call and signal numbers, shell commands,
floating point numbers, and directory paths.

If you do not specify an explicit value for a string option, the
value is cleared. For example, the option

-wite-summary-file=./quantifyout
routes Quantify reports to the file quanti f yout in the current
directory. The option -wri t e- sunmary- fi | e=, without a value,

clears any default specification of a summary file and writes the
reports to the standard output.

= Integer options can be set to any whole number. For example,
the option - max- t hr eads=60 instructs Quantify to expect a
maximum of 60 threads to be created during a run. Integer
values cannot be cleared.

Using Quantify Options and APl Functions A-5

A-6 Quantify User’s Guide

How Quantify processes options

You can specify Quantify options in environment variables and on
the link line. Quantify processes options in the following order
(highest precedence first):

Options specified in the QUANTI FYOPTI ONS or PURECPTI ONS
environment variables

Options specified on the link line

Specifying options in environment variables

You can specify any Quantify option in the QUANTI FYOPTI ONS and
PURECPTI ONS environment variables. Values in PUREQPTI ONS apply
to Quantify, PureCoverage, and Purify software products. The
values specified in QUANTI FYOPTI ONS take precedence over
PUREGPTI ONS.

Quantify applies build-time options specified in environment
variables when a Quantify'd application is built. Any build-time
options on the link line override environment variables.

Quantify applies run-time options specified in environment
variables when you run the Quantify’d program. The environment
values in force when you run the program override any defaults
specified on the link line.

If an option is specified more than once in an environment
variable, Quantify applies the first value it sees. To add an
overriding value for the - | og-fi | e option without changing other
options specified, use a command like:

csh % set env QUANTI FYOPTI ONS "-1 og-fi | e=new $QUANTI FYOPTI ONS"
sh, ksh $ QUANTI FYOPTI ONS="-10g-fi | e=new $QUANTI FYOPTI ONS"; \
export QUANTI FYOPTI ONS

Setting site-wide options

You can use the PURECPTI ONS environment variable to set options
that apply to Quantify, PureCoverage, and Purify software
products.

For example, if your site has a central shared file that is sourced
by all users’ . cshrc or. profil e files, you can set
-cache-dir=al ternat e/ di r in the PUREOPTI ONS environment
variable to apply to all users.

Specifying options on the link line

You can specify any Quantify option on the link line. For example:
quantify -cache-dir=$HOME/ gcache -al ways-use-cache-dir $CC ...
Quantify applies build-time options to the Quantify build
command being run. Quantify builds run-time options into the
executable so that they become the default values for the

Quantify'd executable. This is a convenient way to build a
program with nonstandard default values for run-time options.

For example, the link line:

% quantify -collection-granularity=function \
-record-systemcal Il s=no cc ...

instructs Quantify to instrument the program at build time to
collect data only at the function level, and at run time to avoid
collecting system call data.

Using Quantify Options and APl Functions A-7

A-8 Quantify User's Guide

Using the -ignore-runtime-environment option

You can use the -i gnor e-runt i me- envi ronment option when you
build your executable to make sure that the run-time options you
specify remain in effect whenever the executable is run.

The -i gnore-runti me-envi ronnment builds into an executable all
the run-time options specified on the link line along with any
run-time options specified in the QUANTI FYOPTI ONS and

PURECPTI ONS environment variables.

When the Quantify’'d program is run, Quantify ignores the current
option values in the environment variables and uses the built-in
values.

Use the - i gnore-runti me- envi ronnment option when:

= You want someone else to run your program without their
run-time environment modifying your run-time option
specifications.

= Your program is started automatically by another program, and
you cannot set the environment variable for that program.

= You have several Quantify’d programs running at one time, and
you cannot specify options for each program.

Note: Use the -i gnore-runti ne-environment option at build
time only. Quantify ignores this option if you specify it at run time.

Using Quantify APl functions

You can call Quantify API functions from a debugger or from your
program. Unless otherwise specified, Quantify functions return 1
(Tr ue), indicating success.

Calling API functions from a debugger

You can use Quantify’s API functions by setting breakpoints in
your debugger and then calling the appropriate function when the
breakpoint is reached:

(gdb) call quantify_clear_data()

(dbx) print quantify_clear_data()

x(xdb) p quantify_clear_data()

Note: You can get help about using the API functions at run time
by calling the API function quanti fy_hel p(). This function prints
a list of the Quantify API functions, and supports cut and paste of
the function names into the debugger.

Calling API functions from your program

To call Quantify functions from ANSI C and C++ programs, include
the file quanti fy. h:

include <quantify. h>

This header file is located in the same directory as Quantify. You
might need to add the compiler option - | <quant i f yhone> in your
makefile to locate it.

Note: After embedding API functions in your code, you must
recompile your program.

Using Quantify Options and APl Functions A-9

Linking with the Quantify stubs library

If you call Quantify functions in your program, you should link
with the Quantify API stubs library. This is a small library that
stubs out all the Quantify API functions when you are not using
Quantify. When you are using Quantify, the stubs are ignored.

Add the library <quanti f yhonme>/ | i bquanti fy_st ubs. a to your
link line.

Here is an example of a makefile:

Build Hello Wrld
Use: make -f Makefile.hello_world a.out.pure

Quantify-related flags
Q@DIR = ‘quantify -print-home-dir*

QFLAGS = -ignore-runtime-options
QUANTI FY = quantify $(QFLAGS)
QBTUBS = $(QDIR)/quantify_stubs.a

Ceneral flags

cC = cc

CFLAGS =-g -1$(QDIR)
Targets

all: a.out a.out.pure

a.out: hello_world.c

$(CC) $(CFLAGS) -0 $@ $? $(QSTUBS)

a.out.pure: hello_world.c
$(QUANTI FY) $(CC) $(CFLAGS) -0 $@ $? $(QSTUBS)

A-10 Quantify User’'s Guide

QUANTIFY USER'S GUIDE

Options and API Reference

This appendix presents a complete list of Quantify’s options and
API functions. For a description of how to specify Quantify options
and API functions, see Appendix A, “Using Quantify Options and
API Functions.”

Build-time options quick reference

Build-time options Default Page
- al ways- use-cache-dir no B-4
-cache-dir <quant i f yhone>/ cache B-4
-collection-granularity l'ine B-4
-col |l ector not set B-4
-forbidden-directories system-dependent B-5
-force-rebuild no B-5
-gt++ no B-5
-ignore-runtime-environnent no B-5
-linker system-dependent B-5
- use- machi ne system-dependent B-6
-print-hone-dir not set B-6
-version not set B-6

gv options quick reference

gv options Default Page
-add- annot ati on not set B-7
-print-annotations no B-7
- Wi ndows yes B-7
-wite-export-file none B-7
-wite-summary-file /dev/tty B-7

B-1

Run-time options quick reference

Quantify options Default Page
-api - handl er-si gnal s not set B-15
-append- | ogfile no B-16
- aut o- mount - prefix /t np_mt B-17
-avoi d-recordi ng-systemcal |l s system-dependent B-8
-copy-fd-output-to-logfile not set B-16
-fds 26 B-17
-filenane-prefix W. %p. Y B-13
- handl e-si gnal s not set B-15
-ignore-signals not set B-15
-logfile not set B-16
- max-threads 20 B-12
-measure-timed-calls el apsed-tine B-8
-never-record-systemcalls system-dependent B-8
-output-limt 1000000 B-16
- program nane ar gv[0] B-17
-record-chil d-process-data no B-13
-record-data yes B-9
-record-dynanic-1library-data yes B-9
-record-register-w ndowtraps no B-9
-record-systemcalls yes B-9
-report-excluded-tine 0.5 B-9
-run-at-exit not set B-15
-run-at-save not set B-15
-save- dat a-on-signal s yes B-15
-save-t hread-data conposite B-12
-t hread- st ack- change 0x1000 B-12
-threads no B-12
-user-path not set B-17
-wi ndows yes B-7
-wite-export-file none B-7
-write-sumary-file /dev/tty B-7

B-2 Quantify User's Guide

Run-time API functions quick reference

Unless otherwise indicated, all Quantify API functions return 1
(t rue), indicating success.

Quantify API functions Page
pure_printf (char *format, ...) B-16
pure_logfile_printf (char *format, ...) B-16
quantify_hel p (void) B-12
quantify_is_running (void) B-12
gquantify_print_recording_state (void) B-12
guantify_save_data (void) B-14
gquantify_save_data_to_file (char *fil ename)
guantify_add_annotation (char *annotation) B-14
quantify_cl ear_data (void) B-14
guantify_di sabl e_recordi ng_data (void) B-11
qgquantify_start_recordi ng_data (void) B-10

guantify_stop_recordi ng_data (void)
quantify_is_recording_data (void)

quantify_start_recording_dynam c_library_data (void) B-11
quantify_stop_recordi ng_dynam c_library_data (void)
quantify_is_recording_dynamic_library_data (void)

quantify_start_recording_register_w ndow_traps (void) B-11
gquantify_stop_recordi ng_regi ster_wi ndow traps (void)
qgquantify_is_recording_register_w ndow_ traps (void)

gquantify_start_recordi ng_system call B-10
(char *systemcall _string)

quantify_stop_recordi ng_system cal
(char *systemcall _string)

quantify_is_recording_system cal
(char *system call _string)

qgquantify_start_recording_systemcalls (void) B-10
quantify_stop_recordi ng_systemcalls (void)
qgquantify_is_recording_systemcalls (void)

-save-dat a- on-si gnhal s B-15
- handl e-si gnal s
-ignore-signals

Options and API Reference B-3

Build-time options

Build-time options Default

-al ways-use-cache-dir no

Specifies whether all Quantify’d libraries and object files are written to the global
cache directory, even if they reside in writable directories.

-cache-dir <quanti f yhome>/cache

Specifies the location of the global directory where Quantify caches instrumented
versions of object files and libraries. See “Deleting cached object files” on page
5-10.

-collection-granularity l'ine

Specifies the level of collection granularity for files containing debugging
information. You can specify f uncti on, basi c- bl ock, orl i ne. See “Changing
the granularity of collected data” on page 4-11.

-col l ector not set

Specifies the name of the collect program to be used to sequence and collect static
constructors in C++ code. You must set this option to the name of the collect
program used by the g++ compiler.

To find the name of the collect program used by the g++ compiler, type:
% g++ -v myprogramc

For example, if the collect program is:
lusr/local/lib/gcc-lib/ld

use the command:

% quantify -g++=yes \
-collector=/usr/local/lib/gcc-1ib/ld g++ nyprogramc

Note: g++ on Solaris 2 does not use a collector for C++ programs. Quantify on
Solaris ignores this option.

(Build-time options continued on next page)

B-4 Quantify User's Guide

Build-time options Default

-forbidden-directories system-dependent

Specifies a colon-separated list of directories into which Quantify cannot write files,
even if the directories listed are writable. All the subdirectories of forbidden
directories are also forbidden. The default values are:

[lib:/opt:/usr/lib:/usr/5lib:/usr/ucb/lib:/usr/lang:/usr/local

[lib:/opt:/usr/lib:/usr/4lib:/usr/ucblib:/usr/lang:/usr/local

/1ib:/usr/lib:/usr/local:/opt

-force-rebuild no

O®

Specifies whether Quantify creates a new instrumented version of every file
required by the application. You can use this option when changing the granularity
level with the - col | ecti on-granul arity option.

- g+t no

Specifies that the g++ compiler should be used. This option additionally tells the
linker to invoke the appropriate collect program (specified using the- col | ect or
option).

-ignore-runtinme-environnent no

Specifies whether the run-time Quantify environment overrides the option values
used in building the program.

This option is useful if you are building a Quantify’d program for someone else to
run, and you want to make sure that the options you specify are in effect at run time.

See “Using the -ignore-runtime-environment option” on page A-8.

-1inker system-dependent

Specifies the name of the linker that Quantify should invoke to produce the
executable. Use this option only if you need to bypass the default linker. The default
linkers are:

/bin/ld
/usr/ccs/ bin/ld

(Build-time options continued on next page)

Options and API Reference B-5

B-6 Quantify User's Guide

Build-time options Default

- use- machi ne system-dependent

Specifies the build-time analysis of instruction times according to a particular
machine. The default value for this option is one of the machines defined in the
. machi ne. <pl at f or > file.

This option is particularly useful if you build your application on a fast compile
server but want to test the performance on a more modest machine. You can
instrument the application during the build and test it later without having to
re-Quantify the application. See “How Quantify times register-window traps” on
page 3-15.

The entries in a . machi ne. <pl at f or > file describe:

" Processors and the cost of different instructions
* Floating-point accelerators used to perform floating point operations

" Machines that are combinations of specific processors and fpas running at
different clock rates

The . machi ne. <pl at f or m> file supplied with Quantify defines machines

currently available. However, new machines are being released and the data in the

. machi ne. <pl at f or m> file might change. In addition, you can define anticipated

or imaginary machines to see what performance difference a change of hardware

might provide.

Contact Rational Software Technical Support for additional information on the
.machine.<pl at f or n file and any new machine entries.

-print-hone-dir not set

Prints the name of the directory where Quantify is installed, then exits. You can use
this option to build the compiler command when including the quant i fy. h file
from the installation directory:

$CC -c $CFLAGS -I*‘quantify -print-home-dir‘ nyprogramc

-version not set

Prints Quantify’s version number string to st dout and then exits. You can use this
option to identify which version of Quantify is in use while running a test suite by
incorporating these lines in your test harness scripts:

#!/ bi n/ sh

echo "Run nonitored by : ‘quantify -version

gv options

For instructions on how to use , see “Running qv” on page 5-2.

qv options Default

-add- annot ati on not set

Specifies a string to add to the binary file. The annotation string in a file can be
printed at a later time with the - pri nt - annot at i ons option.

-print-annotations no

Specifies whether to write annotations to st dout .

-wi ndows yes

Specifies whether qv runs with the graphical display. When it is settoyes, qv
displays the Control Panel.

When set to no, qv saves the collected data to a file. See “Automating data
analysis” on page 5-5.

-wite-export-file none

Specifies the name of the file used to write the export data file for a dataset. By
default, the value none specifies that no export file is written. If you specify no
value using - wri t e- export - fil e, Quantify creates the export filename based
on the value of the - fi | e- pref i x option. Quantify appends the .qX extension to
the option value. See “Exporting performance data” on page 5-1.

-write-sumary-file /devltty

Specifies the name of the file used to write the program summary for a dataset. By
default, Quantify writes the program summary to the current output. If you specify
the value none, Quantify does not write a program summary. If you specify
-write-sunmary-fil e without a value, Quantify creates the summary filename
based on the value of the -fi | e- prefi x option. Quantify appends the .qs
extension to the option value. See “Exporting performance data” on page 5-1.

Options and API Reference B-7

Data collection options

HO

HPUX

Data collection options Default
-avoi d-recordi ng-systemcal | s system-dependent
Specifies that Quantify not time specified system calls. The syscal | _l i st isa

comma-delimited list of system call names or numbers. See “Avoiding timing for
specific system calls” on page 4-5.

Specify a list of system-call names or numbers, separated by commas. The names
and numeric values inthe / usr /i ncl ude/ sys/ syscal | . h header file. The
default values for - avoi d- r ecor di ng- syst em cal | s are:

SYS exit, SYS select, SYS_ |listen, SYS sigpause
SYS exit, SYS_poll
SYS exit, SYS select, SYS |listen, SYS sigpause

-measure-timed-calls el apsed-tine

Specifies how Quantify measures the time required for system calls and dynamic
library operations. You can specify el apsed-ti me, user +syst em user, or
system

If - measur e-ti med- cal | s=el apsed-ti nme, Quantify records the elapsed
(wall-clock) time the operation took using the get t i meof day system call. If the
value is user, syst emor user +syst em Quantify records the time the kernel
recorded for that operation using the get r usage system call. See “Controlling
how system calls are timed” on page 4-4.

-never-record-systemcalls system-dependent

B-8 Quantify User's Guide

Specifies that Quantify not time certain system calls. The syscal | _l i st isa
comma-delimited list of system call names or numbers. Unlike

-avoi d-recordi ng-systemcal | s, this option ensures that time is never
collected on these system calls and that time is never added to the excluded time
Quantify tracks and reports.

Use this option on Solaris to avoid timing system calls that cause LWP switches to
occur in symmetric multi-processor (SMP) installations. Setting this option avoids
double-counting the system call time that elapsed while one thread was blocked
but another thread was able to execute. See “Collecting data in threaded
programs” on page 4-20.

The default on Solaris is: SYS_si gti nedwai t, SYS_| wp_senma_wai t,
SYS | wp_create, SYS_ | wp_kill, SYS | wp_nut ex_I ock,
SYS_| wp_nut ex_unl ock, SYS_| wp_cond_wai t, SYS_si gnoti fywai t

Data collection options Default

-record-data yes

Specifies whether Quantify records any data over the entire program, including
data for system calls and register-window traps. This option establishes the initial
recording state only. See “Avoiding all data recording” on page 4-2.

-record-systemcalls yes

Specifies whether Quantify records the time spent by a function making calls to the
operating system. This option establishes the initial recording state only. See
“Timing system calls” on page 4-2.

-record-register-w ndowtraps no

Specifies whether Quantify records the time spent by a function in saving and
restoring register windows. This option establishes the initial recording state only.
See “Timing register-window traps” on page 4-10.

-record-dynam c-library-data yes

Specifies whether Quantify records the time spent performing dynamic library
operations. This option establishes the initial recording state only. See “Timing
shared-library operations” on page 4-7.

-report-excluded-tine 0.5

Specifies whether to report any time that has been excluded from a dataset. The
excluded time is reported if, as a percentage of the combined total counted time
and the excluded time, it exceeds the specified value.

no sets the threshold at 0, so Quantify never reports excluded times.
yes sets the threshold at 100, so Quantify always reports excluded times.

See “Reporting excluded system-call time” on page 4-6.

Options and API Reference B-9

Data collection API functions

B-10 Quantify User's Guide

Data collection functions

nt quantify_start_recording_data (void)
nt quantify_stop_recording_data (void)
nt quantify_is_recordi ng_data (void)

Starts and stops the recording of all count data, including code, system call, and
register-window trap data.

quantify_is_recordi ng_dat a returns TRUE if Quantify is recording data,
FALSE otherwise. See also, “Collecting partial data for a run” on page 4-13.

nt quantify_start_recording_systemcalls (void)
nt quantify_stop_recordi ng_systemcalls (void)
nt quantify_is_recordi ng_systemcalls (void)

Starts and stops the recording of system-call timing data.

quantify_is_recordi ng_system cal |l s returns TRUE if Quantify is recording
system calls, FALSE otherwise.

nt quantify_start_recordi ng_systemcall (char * syscall_string)
nt quantify_stop_recordi ng_systemcall (char * syscall_string)
nt quantify_is_recordi ng_systemcall (char * syscall_string)

Starts and stops the recording of system-call timing data for specific system calls.
The first two functions take a string containing one or more system-call names or
numbers. They return TRUE if the argument list is well-formed, FALSE otherwise.

quantify_is_recordi ng_system cal | takes a single system-call name or
number and returns TRUE if Quantify is recording that system call, FALSE
otherwise. The system-call names and numbers are located in the system header
file /usr/incl ude/ sys/ syscall . h.

Note: Overall system-call timing must be enabled for these functions to have an
effect. To enable system-call timing, use the - r ecor d- syst em cal | s option or
the quantify_start _recordi ng_system cal | s API function.

(Data collection functions continued on next page)

Data collection functions

nt quantify_start_recording_dynanmic_library_data (void)
nt quantify_stop_recording_dynamc_library data (void)
nt quantify_is_recording_dynamc_library_data (void)

Starts and stops the recording of dynamic library timing data, for example, during
dl open operations under SunOS 4.1 and Solaris 2, or shl _| oad operations under
HP- UX machines. The function

quantify_is_recordi ng_dynani c_li brary_dat a returns TRUE if Quantify
is recording dynamic library calls, FALSE otherwise. See “Timing shared-library
operations” on page 4-7.

nt quantify_start_recordi ng_regi ster_w ndow_traps (void)
nt quantify_stop_recordi ng_register_w ndow traps (void)
nt quantify_is_recording_register_w ndow_ traps (void)

Starts and stops the recording of register-window trap data. The function
gquantify_is_recording_register_w ndow_traps returns TRUE if Quantify
is recording register-window traps, FALSE otherwise. On non-SPARC platforms,
these functions always return FALSE. See “Timing register-window traps” on page
4-10.

nt quantify_di sabl e_recordi ng_data (void)
Disables collection of all data by Quantify. This function always returns TRUE.

Once this function is called, you cannot re-enable data collection for this process.
No data is recorded and no data is saved.

Options and API Reference B-11

Run-time collection status API functions

Run-time collection status functions

int quantify_is_running (void)

Returns TRUE if the executable is Quantify’d, FALSE otherwise. Use this function to
enclose special-purpose application code to execute only in a Quantify’d
environment.

int quantify_help (void)

Prints a message describing most of Quantify’s API functions. Always returns
TRUE.

int quantify_print_recording_state (void)

Prints the current recording state of the process. Always returns TRUE.

Threads options

Threads options Default

- max-t hr eads 20

Specifies the maximum number of threads run at any time.

-save-t hread-data conposite

Specifies whether to save the per-stack performance data as separate datasets.
The value is a comma-delimited string containing one or more keywords:

st ack saves each per-stack dataset.
conposi t e saves the composite dataset.

By default, Quantify saves only the conposi t e dataset.

-t hreads no

Specifies thread support. This option is automatically set to yes when you link with
a supported threads package.

-t hr ead- st ack- change 0x1000

Specifies the minimum size, in bytes, of a change to the stack pointer that signals a
thread context switch. See “Collecting data in threaded programs” on page 4-20.

B-12 Quantify User's Guide

Child process options

Child process options Default

-record-chil d-process-data no

Specifies whether Quantify records the data for any child processes created by
f or k and vf or k. See “Collecting data for child processes” on page 4-18.

Options for saving data

Options for saving data Default

-filename-prefix W. %. %

Specifies the prefix name for report filenames. See “How Quantify creates
filenames” on page A-4.

-wite-export-file none

Specifies the name of the file used to write the export data file for a dataset. By
default, the value none specifies that no export file is written. If you specify no
value using - wri t e- export -fil e, Quantify creates the export flename based

on the value of the - f i | e- pref i x option. Quantify appends the .qX extension to

the option value. See “Exporting performance data” on page 5-1.

-wite-summary-file /dev/tty

Specifies the name of the file used to write the program summary for a dataset. By

default, Quantify writes the program summary to the current output. If you specify
the value none, Quantify does not write a program summary. If you specify

-write-sumary-fil e without a value, Quantify creates the summary filename

based on the value of the -fi | e- prefi x option. Quantify appends the .qs
extension to the option value. See “Exporting performance data” on page 5-1.

Options and APl Reference B-13

API functions for saving data

B-14 Quantify User's Guide

Functions for saving data

int quantify_clear_data (void)

Clears all the performance data recorded to this point. You can use this function, for
example, to ignore the performance data collected about the start-up phase of your
program. This function always returns TRUE.

int quantify_save_data (void)
int quantify_save_data_to_file (char * filenane)

Saves all the data recorded since program start or the last call to

quant i fy_cl ear_dat a into a data file. You can view the data file using qv. After
saving the data, these functions call quanti fy_cl ear _dat a in order to ensure
non-overlapping datasets. Both functions return TRUE if successful, FALSE
otherwise. See “Saving data incrementally” on page 5-4.

The function quant i f y_save_dat a creates a flename based on the value of the
-fil ename- prefix option. The function quantify_save_data_to file
takes a string that overrides the value of the - f i | ename- pr ef i x option. You can
use conversion characters in filenames. The default - f i | enane- prefi x is

% . %. %, which writes data files based on the application basename, the current
process ID, and the current dataset number. Quantify always adds the extension

. qV to each dataset file it writes.

% is incremented each time the dataset is saved.

See “Using conversion characters in filenames” on page A-3, and “How Quantify
creates filenames” on page A-4.

int quantify_add_annotation (char * annotation)

Adds the given string to the next saved dataset. You can view the annotation strings
later, using the gV option - pri nt - annot at i ons. Use this function to record any
special data-collection circumstances with a particular qV file. This function returns
the length of the string, or FALSE if passed a NULL pointer.

Options for saving data on signals

Options for saving data on signals Default

-save- dat a-on-si gnal s yes

Specifies whether Quantify installs default signal handlers for any fatal signals your
program does not handle itself. This option controls whether Quantify automatically
saves data on fatal signals. See “Saving data on signals” on page 4-17.

-handl e-si gnal s not set
-ignore-signals not set

Specifies whether Quantify saves the collected performance data whenever the
program receives a signal that would be fatal. If you want Quantify to save data on
any nonfatal signals, specify the signals with the - handl e- si gnal s option. If you
do not want Quantify to save data on some fatal signals, specify them with the
-ignore-signal s option. See “Saving data on signals” on page 4-17.

-api - handl er-si gnal s not set

Installs signal handlers. For example:

- api - handl er - si gnal s= SI GUSR1, SI GUSR2

The first signal specified is associated with quant i fy_save_dat a; the second
signal is associated with quant i fy_cl ear _dat a. See “Collecting data in
long-running programs” on page 4-18.

Options for automating data analysis

Options for automating data analysis Default

-run-at-exit not set

Specifies a shell script to run at program exit. See “Automating data analysis” on
page 5-5.

-run-at-save not set

Specifies a shell script to run each time the program saves counts. See
“Automating data analysis” on page 5-5.

- Wi ndows yes

Specifies whether qv runs with the graphical display. When it is settoyes, qv
displays the Control Panel. When set to no, qv saves the collected data to a file.
See “Automating data analysis” on page 5-5.

Options and APl Reference B-15

Output options

Output options Default

-logfile not set

Specifies the name of the log file to which Quantify’s output is sent.

-append- 1 ogfile no

Specifies that Quantify output be appended to the current log file rather than
replacing it.

-output-limt 1000000

Use with the - | ogf i | e option to restrict the size of the log file and conserve disk
space. Specify the maximum size, in bytes, of the log file. All output is truncated
beyond this size.

-copy-fd-output-to-logfile not set

Specifies that output from file descriptors be appended to the log file. Specify a
comma-delimited list of file descriptors. Output written to these file descriptors is
copied into the log file and helps you reconstruct the actions of the user.

For example, to copy output written to st dout and st der r into the log file,
interspersed with Quantify output, use:

% quantify -copy-fd-output-to-logfile=1,2 cc foo.c

Output API functions

Output functions

int pure_logfile_printf (char *format, ...)

Prints output from the program to the log file if set.

int pure_printf (char *format, ...)

Prints output from the program to the log file. If not set, output goes to st derr.

B-16 Quantify User's Guide

Miscellaneous run

-time options

Special run-time options Default

aut o- mount - prefi x /t np_mt

Specifies the directory prefix used by the file system auto-mounter, usually
/ t mp_mmt , to mount remote file systems in NFS environments. Use this option to
strip the prefix, if present.

Note: If your auto-mounter alters the prefix, instead of adding a prefix, use the
syntax: - aut o- mount - pref i x=/t np_mt / hone: / hones to specify that the
real filename is constructed from the apparent by replacing

/tnmp_mt/home with /hones.

If this option is not set correctly, Quantify might be unable to access files on
auto-mounted file systems. The auto-mounter might not recognize their names.

-fds 26

Specifies the default set of file descriptors used by Quantify in case they clash with
the ones used by your program. To use file descriptors 57 and 58 instead of the
default 26 and 27, use:

% set env. QUANTI FYOPTI ONS - f ds=57

pr ogr am name ar gv[0]

Specifies the full pathname of the Quantify’d program if ar gv[0] contains an
undesirable or incorrect value. This can occur if you change ar gv[0] in your
program. For example, many programs that are invoked by a script rename their
ar gv[0] to the name of the script.

user-path not set

Specifies a colon-delimited list of directories that Quantify should search to find the
program at run time. Normally, the program can be found by looking atar gv[0]
and your $PATH, but it is possible to execute a program not on your path.

If your program is forked by another and Quantify cannot find it to read the debug
symbols, set this option to the directory where your program is stored. This option
takes precedence over $PATH. Use this option if Quantify cannot find source files
when attempting to display Annotated Source windows.

Options and APl Reference B-17

QUANTIFY USER'S GUIDE

Common Questions

This appendix contains answers to the most frequently asked
guestions about using Quantify.

Questions about instrumentation

@

L

o'

Does Quantify work with Purify, and PureCoverage?

You cannot use Quantify on the same files that you instrument
with Purify or with PureCoverage. The instruction sequences
Quantify inserts are different from those inserted by Purify and
PureCoverage.

What are the . pure and * _pure_g512_200. o files created in
my working directory? Is it safe to delete them?

The *_pure_g512_200. o files are the Quantify'd versions of your
object files for your particular machine. They are kept so that if
you change one object file, the rest of the objects do not have to be
re-Quantify’d. The .pur e file is a part of the file locking mechanism
Quantify uses when creating instrumented files. If you delete any
of these files, Quantify will rebuild them when necessary. See
“Managing cached object files” on page 5-10.

C-1

4=

45

C-2 Quantify User's Guide

Does Quantify work with shared libraries?

Yes, including the use of dl open on SunOS 4.1 and Solaris 2, and
shl _I oad on HP-UX. If you dynamically open a library that
Quantify has not seen before, or if you delete a cached Quantify'd
shared library, Quantify builds it, if required, at run time. See
“Timing shared-library operations” on page 4-7.

Why do | get the following failure?

Menory allocation failed during a request for 12345678 bytes.

If you get this message, you need to add at least 13 megabytes of
swap space to your configuration. You can increase the swap space
on your machine or instrument your application on a machine that
has more swap space.

The first time you link with Quantify, you need more swap space
than on subsequent links, because Quantify instruments and
caches versions of all the libraries your application uses.

To determine the current swap size and increase it, use the
appropriate commands for your operating system. See the manual
pages for each command’s options and arguments.

To determine the current swap size, use the pst at - s command.
To increase your swap space, use the nkfi | e and swapon
commands.

To determine the current swap size, use the swap - s command.
To increase your swap space, use the nkfil e and swap - a
commands.

To determine the current swap size, use the swapi nf o command.
To increase your swap space or increase the data-segment size
limit, use the sam(System Administration Manager) application.
You must be root to use these commands.

Why do | get an | d out - of - dat e warning?
I'd: /usr/local/quantify/cache/lib/libc_pure_q512_ 200.sa.1.7:

warning: table of contents for archive is out of date;
rerun ranlib(1)

Your workstation’s clock is out of sync with your file server. To
synchronize them, use the command:

root%rdate file-server

You must be root to do this.

Questions about data collection

@

N

o'

Can | collect data over just part of my program?

Yes, by using Quantify’s API functions. See “Collecting partial data
for a run” on page 4-13.

Why are the times reported by / bi n/ ti me different from
Quantify’s predictions?

Quantify and / bi n/ t i me measure time in your code and time in
system calls differently.

The system utility / bi n/ ti e reports times measured by the
kernel for your process. When the kernel switches to and from user
state for your process, it adds the elapsed (wall-clock) time to the
user time measurement for your process. In kernel state, when
the kernel switches to and from another process, it adds the
elapsed time it spent on your process to the sys time measurement
for your process. When the kernel waits for a device, this elapsed
time is not added to your sys time measurement. These
measurements include time spent handling cache misses and
memory paging but exclude time the kernel (and your process)
waited for response from a device or another process.

In contrast, Quantify counts instructions using a technique that
excludes cache miss and paging effects. By default, Quantify also
measures elapsed time for operating-system calls which, from

Common Questions C-3

/bin/tinme

Quantify

Quantify

4=

C-4 Quantify User's Guide

your process’s point of view, includes any time required for the
kernel to wait on devices or for other processes to run.

Total Elapsed Time
- '

user system wait

memory I

system calls
cache Y

in your code

-measur e-ti nmed- cal | s=user +system

i memory f system calls i
in your code waae Y wait

I:l Time not measured by tool

Quantify underestimates the time / bi n/ t i me reports in user code,
since it does not measure memory effects, and predicts longer
system times than / bi n/ ti me because its measurements include
wait times that / bi n/ ti ne excludes, but that represent a true cost
to your program.

You can tell Quantify to measure system-call time using the same
technique as / bi n/ ti me by using the option
- measur e-ti ned- cal | s. See “Timing system calls” on page 4-2.

Why do | get two different times for the same program
when nothing has changed in the program?

Because Quantify measures the elapsed time required by the
operating system to perform an operation such as a call towrite,
the measured time varies from one run to another. In particular,
the measured time depends on the status of other processes as
well (your process might be swapped out) and the cost to perform
the operation on a particular device. Since Quantify counts
instructions, the Ti ne i n your code will be identical between runs.

49

Why does Quantify sometimes report excessive system-call
times compared with / bi n/ti me?

Quantify measures system-call times by calling either the

get ti meof day or the get r usage functions. If the operating system
performs a context switch during one of these additional function
calls, the measured time of the operating-system call will appear

longer than it actually was. Quantify cannot adjust for this effect
because it cannot detect that it has occurred.

This typically happens because your program is making a very
large number of very fast system calls in a short period of time, for
example, calling the function get t i meof day in a loop. This effect is
negligible in normal programs. You should consider avoiding
recording system-call times during these periods. You can also
avoid recording the specific system calls with high-call counts that
occur during this period.

See “How Quantify times system calls” on page 3-13, and
“Variations in system-call timing” on page 3-14.

Does Quantify save data even if my program encounters a
segmentation fault?

Yes. Quantify installs a default handler that saves your data in
the event of a segmentation violation. Quantify installs its handler
before the code begins execution. If you install your own handler,
Quantify calls it rather than the default handler. If you want to
save data in that case, your handler should call the API functions
quanti fy_save_dataor quantify_save_data_to_file.

How are the options - run- at - save and - r un- at - exi t
different? What do they mean?

The -run-at - save and - run- at - exi t options provide a
mechanism for you to invoke arbitrary commands or scripts at
different times during your program execution. The option
-run-at-exit allows you to invoke your command once at
program exit time. The option - r un- at - save is invoked whenever
Quantify saves data.

Common Questions C-5

Questions about data analysis

L

r

e

49

What are the unknown_st ati c_functi on function names that
appear in Quantify’s output?

When Quantify finds a static-function definition without a
corresponding name in an object module, it names the function
unknown_st ati c_f uncti on. It then appends the object filename
and function offset to distinguish the function from any other
unknown static functions in the same or other object modules. See
“How Quantify names functions” on page 3-3.

What are the uwss_NNNN and uwse NNNN function names that
appear in Quantify’s output?

In shared libraries, the linker creates stub functions for various
purposes but does not give these functions names. Quantify,
however, requires names, so it gives these functions names such
as uwss_NNNN. These names do not appear in gpr of .

Why are the line numbers listed by Quantify in the
Annotated Source window occasionally off by a line or
two?

Different compilers build their debugging information in different
ways. Some C++ compilers tend to put incorrect line numbers in
the debugging information in the code. Quantify uses whatever
debugging information is provided to indicate line numbers. You
can sometimes see similar behavior in debuggers.

Questions about performance

[

C-6 Quantify User's Guide

What are the disk requirements for using Quantify?

Quantify makes instrumented copies of your object files before
passing them to the linker. As a time-saving measure, Quantify
caches these instrumented versions of your libraries and object
files. See “Managing cached object files” on page 5-10.

The amount of disk space consumed by the cache files depends on
the size of the object files and libraries your program requires.
Quantify typically increases the size of these files by 50 percent.

If these cached files take too much disk space, you can remove
them at any time. They will be rebuilt as needed.

What are the swap requirements for Quantify?

At build-time, Quantify requires swap space approximately equal
to two to five times the size of your largest uncached object file or
library.

At run time, your Quantify’d program requires approximately 1.5
times the swap space required by your non-Quantify’'d program.
This is due to the increased size of the instrumented code and the
presence of dynamically allocated data accumulators and other
data structures.

What is the run-time performance impact of Quantify?

Your Quantify'd program typically runs two to five times slower
than your non-Quantify’d program. How much slower depends
primarily on the number of basic blocks executed by your program,
and on the collection granularity of the code. The fastest
Quantify'd code is optimized code or code that is instrumented
with function granularity. Code instrumented at basic-block or
line granularity is significantly slower. See “Changing the
granularity of collected data” on page 4-11.

Run-time speed also depends on how large your program’s virtual
memory space is relative to your machine’s physical memory. If
your program is using a large amount of virtual memory relative
to the amount of real memory, the increase in the memory
requirements can cause your program to thrash, that is, to spend
nearly all its time paging to disk instead of running.

If your Quantify’'d program is more than five times slower, your
program is probably thrashing. Use the virst at command to see
how much time your program is spending in ker nel vs. user
mode. User mode time should typically be greater than 80 percent.

Common Questions C-7

If user mode drops to less than 50 percent, run your program on a
machine with more real memory, try to increase the locality of
your program’s memory references to reduce paging, or increase

the real memory of your machine.

C-8 Quantify User's Guide

Quantify Quick Reference
Using Quantify

The CONTROL PANEL appears by default when running a Quantify’d program.

You can also invoke qv on a saved .qv file:
% qv a.out.23.0.qv

Control Panel: Open data analysis windows

Click to open data analysis windows ——|| | lusciimn Lisi | [l Gt | Hioip || i

sl _wordl (UGS Program and process ID

Function List window: Sort functions to find bottlenecks

Restrict functions

Dy P Lyl b [Oroptay s 5
[P - iy Restrict functions P | 4@ All functions
P Function names... <> Top 20 functions
Description of ——— il i tamst smikiss = Scale factors & [Top 100 functions
current Fom o b e s | Precision & | Contributing functions only
function list r

Go back 4 1O Annotated functions only

Compute-bound functions only

Show Annotated Source
Show Function Detail
Locate in Graph

Click a function to — Sort by different data

select it
View
Display data > | @ Function time
i ; == Restrict functions & | Function+descendants time
Find a fU_nCtIOn, Function names... <> Descendants time
or filter by - Scale factors » | System call time
EXPresSION ——— jiut i o hutes, Wl I' Precision 5 < Register window trap time
Go back 5 < Number of function calls
e > = - - Number of callers
) n e Dalel || Livpsby e el Show Annotated Source | Number of descendants
- e RN Show Function Detail <> Number of system calls
¥ Locate in Graph < Number of register window traps

Call Graph window: Understand your application’s calling structure
By default, Quantify expands the top 20 descendents of .r oot .

Change how data is displayed
‘ l I!" View

Display data >
P e m— N
Function names...

Save call graph
as PostScript file

Line scale factors &
Scale factors >
Precision & 1< Logarithmic
il
>
>

Go back
,__—ﬂ_h‘______ [——
- =]

<> Unweighted
inear

Legend
w— Redo layout
Refresh display

. Focus on Subtree

Click and drag anywhere ———— Previous Focus

in the call graph to move Show Annotated Source
to a new location

Show Function Detail

Click and drag Viewport to -

move to a new location B S e Right-click any function to

display the pop-up menu

a Expand descendants | Collapse

3

1am = e pr— e Locate callers > | Add immediate descendants

Locate descendants & | Expand top 20 descendants
>

[Change focus

Expand top 100 descendants
Show Annotated Source | Expand all descendants
Show Function Detail

i e T T e s e PR

Quantify Quick Reference

Function Detail window: Examine how a function’s calling time is distributed

Save function detall to file

All the data collected for the function

All the functions that called the

selected function

w o

L Lame liralead

Double click a caller or
descendant to display its data

1 Lo ™ Ak -
1 Cias T

F v ifa i iy gt
i e | A

. I,
All the functions that were called by the selected function

Annotated Source window: View line-by-line performance data

The Annotated Source window is available if you compile your program using the - g debugging option.

Save annotated source

Function summary

b |

M Sew Bk

Line-by-line performance
annotations

Find text in source

Conversion characters for filenames

" FYFL

W b

AN et ekl wardd o [Hedel iy |

Use these conversion characters when specifying filenames for options.

Character Converts to Character Converts to

%l Current date (yymmdd) % Current time (hh:mm:ss)

% Process id (pid) %y Program name

% Sequence number, starting at 0. Increments %n/ Full pathname of the program with */ "

each time the dataset is saved.

W on

replaced by

o Thread identifier

Quantify Quick Reference

API functions

Include <quant i f yhome>/ quanti f y. h in your code and link with <quant i f yhome>/quanti fy_st ubs. a

Commonly used functions Description
quantify_hel p (void) Prints description of Quantify API functions
quantify_is_running (void) Returns t r ue if the executable is Quantify’'d
quantify_print_recordi ng_state (void) Prints the recording state of the process
quantify_save_data (void) Saves data from the start of the program or since last
calltoquantify_cl ear_data
quantify_save_data_to_file (char * filenane) Saves data to a file you specify
quantify_add_annotati on (char * annotation) Adds the specified string to the next saved dataset
quantify_clear_data (void) Clears the performance data recorded to this point
quanti fy_<acti on>t_recording_data (void) Starts and stops recording of all data
quantify_<action> t_recording_dynamic_library_data (void) Starts and stops recording dynamic library data
quantify_<action> T_recording_register_window_traps (void) Starts and stops recording register-window trap data
quantify_<action> T_recording_system_call Starts and stops recording specific system-call data

(char *system_call_string)

quantify_<action> T_recording_system_calls (void) Starts and stops recording of all system-call data

T <action>isoneof:start,stop,is. Forexample: quantify_stop_recordi ng_system call

Build-time options

Specify build-time options on the link line to build Quantify’d programs:
% quantify -cache-dir=$HOVE/ cache -al ways-use-cache-dir cc ...

Commonly used build-time options Default

-always-use-cache-dir no
Specifies whether Quantify'd files are written to the global cache directory

-cache-dir <quanti f yhome>/ cache
Specifies the global cache directory

-collection-granularity l'ine
Specifies the level of collection granularity

-col l ector not set
Specifies the collect program to handle static constructors in C++ code

-ignore-runtime-environnent no
Prevents the run-time Quantify environment from overriding option values
used in building the program

-1inker system-dependent
Specifies an alternative linker to use instead of the system linker

- use- machi ne system-dependent
Specifies the build-time analysis of instruction times according to a particular machine

Quantify Quick Reference

gv run-time options

To run qv, specify the option and the saved .qv file: % qv -wite-summary-file a.out.23.qv

gv options Default

-add- annot ati on not set
Specifies a string to add to the binary file

-print-annotations no
Writes the annotations to st dout

- wi ndows yes
Controls whether Quantify runs with the graphical interface

-wite-export-file not set
Writes the recorded data in the dataset to a file in export format

-write-summary-file not set
Writes the program summary for the dataset to a file

Run-time options

Specify run-time options using the environment variable QUANTI FYOPTI ONS:
% set env. QUANTI FYOPTI ONS "-wi ndows=no"; a.out

Commonly used run-time options Default

-avoi d-recordi ng-systemcalls system-dependent
Avoids recording specified system calls

-neasure-tined-calls el apsed-tinme
Specifies measurement for timing system calls

-record-chil d-process-data no
Records data for child processes created by f or k and vf or k

-record-systemcalls yes
Records system calls

-report-excluded-tine 0.5
Reports time that was excluded from the dataset

-run-at-exit not set
Specifies a shell script to run when the program exits

-run-at-save not set
Specifies a shell script to run each time the program saves counts

-save-dat a-on-si gnal s yes
Saves data on fatal signals

-save-thread-data conposite
Saves composite or per-stack thread data

-write-export-file none
Writes the dataset to an export file as ASCII text

-wite-summary-file /dev/tty
Writes the program summary for the dataset to a file

- wi ndows yes
Specifies whether Quantify runs with the graphical interface

QUANTIFY USER'S GUIDE

Index

Symbols

. in annotated source 1-21
in annotated source 1-21
$HOME/.qvrc A-4

%b 5-6, A-3

%d A-3

%n A-3, A-4

%p A-3

%T A-3

%t A-3

%V A-3

%v 5-6, A-3

%x 5-6, A-3

in annotated source 1-21

in call graph 1-14

in filenames A-2
+ in annotated source 1-21, 3-9
??? in function name 1-16
_p___map_dld function 4-9
| in annotated source 1-21

Numerics

100+% function+descendants
time 1-14
64-bit precision 3-4

A

-add-annotation 4-16, B-7
-always-use-cache-dir B-4
Annotated Source window
and -g option 1-20
C++ templates 3-11
changing annotations 1-21
compiler differences 3-9
function summaries 1-21
multiple basic blocks 3-9
single basic block 1-21
Annotated Source window
symbols 1-21

annotations
adding to datasets 4-16
and -user-path B-17
Annotated Source window
symbols 1-21
for if-then expressions 3-10
for switch expressions 3-10
printing 4-16
removing from call graph 1-14
API functions
annotating data B-14
calling from a debugger A-9
calling from a program A-9
clearing collected data B-14
printing recording state B-12
recording data B-10
recording dynamic-library
data B-11
recording partial data 4-13
recording register-window
traps B-11
recording system calls B-10
run-time B-3
stubs library A-10
using with options 4-15
API functions (by name)
pure_logfile_printf B-16
pure_printf B-16
guantify_add_annotation 4-16,
B-14
guantify_clear_data 4-15, 4-19,
5-4, B-14
guantify_disable_recording_data
B-11
quantify_help B-12
guantify_is_recording_data B-10
guantify_is_recording_dynamic_
library_data B-11
quantify_is_recording_register_
window_traps B-11
quantify_is_recording_system_
calls B-10

Index-1

Index-2

quantify_is_running B-12
quantify_print_recording_state
B-12
quantify_save_data 4-15, 4-16, 5-6
quantify_save_data to_file 4-16,
5-4, B-14
quantify_start_recording_data
4-15
quantify_start_recording_
dynamic_library data B-11
quantify_start_recording_
register_window_traps B-11
quantify_start_recording_system_
calls B-10
quantify_stop_recording_data
B-10
quantify_stop_recording_
dynamic_library_data B-11
quantify_stop_recording_register_
window_traps B-11
quantify_stop_recording_system_
calls 4-15
-api-handler-signals 4-18, B-15
appearance, customizing
Quantify’'s 1-23
appending function detail to
file 1-19
-append-logfile B-16
architecture
HPPA 4-10
RISC 3-4,3-8
SPARC 3-15
superscalar 3-8
at_exit 1-10
automating data analysis 5-5
-auto-mount-prefix B-17
-avoid-recording-system-calls 4-5,
4-6,B-8

B

background color, changing 1-23
baseline data 2-9
basic blocks
accumulators 3-4
collection granularity 4-11
definition 3-4
identification of 3-4
multiple 1-21
binary dataset
conversion character (%b) A-3

file directive (%b) 5-6
/bin/time 1-2, 4-4, C-3,C-5
blocks, basic 3-4
bottlenecks

environmental factors 2-17

in library or system-call

requests 2-16, 2-17

premature computation 2-16

types of 2-15
branch

instruction 3-4

prediction 3-8
bucket 2-2
building a Quantify’'d program 1-3
build-time options B-1, B-4

C

C++ applications
annotated source for
templates 3-11
argument lists 1-7

classes 1-7, 1-16

finding functions in 1-7

function name demangling 1-16,
51

function names 3-3

static initialization 1-10

cache

directory B-4

memory effects 3-20, C-3
memory miss C-3
options B-4

removing files 5-10

-cache-dir B-4
Call Graph window

changing focus 1-13

controlling complexity 1-11

displaying data for functions 1-14

displaying function data 1-14

expanding and collapsing
subtrees 1-11

finding functions 1-12

layout 1-10

multi-threaded applications 1-10

redoing layout 1-11

saving 1-16

saving PostScript version 1-16

single-threaded applications 1-10

callers, distribution 1-18
calling functions from 4-15

calls, see system calls
changing annotations 1-21
characters
conversion A-3
See also Annotated Source win-
dow symbols
child processes
collecting data about 4-18
options B-13
using execve 4-19
using fork 4-19
using vfork 4-19
client-server applications 4-5
clock rate 3-1
code, see Annotated Source window
collapsing subtrees 1-11
collection API functions B-12
collection granularity
controlling 4-12
default 4-11
levels 4-11
option B-4
-collection-granularity 4-11, 4-12,
B-4
-collector B-4
colors, changing 1-23
comparing program runs 5-7
compilers
annotation differences 3-9, C-6
-g switch 3-5
composite data 4-20
computation, needless 2-15
compute-bound functions 1-4, 1-6,
1-7,2-5
context switch 3-14
contributions from
descendants 1-18
conversion characters A-3
-copy-fd-output-to-logfile 5-4, B-16
counts
clearing B-14
expected cycle 3-4
in optimized code 3-8
register-window traps 3-15
relation to original program 3-4
system calls 3-13
cron job, for removing files 5-11
crt0.0 4-8
current focus 1-12
curved lines in call graph 1-10

customizing Quantify’s
interface 1-23
cycles
and register windows 3-15
scale factor 1-19

D

daemons, collecting data from 4-18
data
automating analysis 5-5
baseline 2-9
comparing export files 5-7
composite 4-20
exporting 1-22,5-1
recording 4-2
saving incrementally 5-4
saving on exit 1-22
stack 4-20
start/stop recording B-10
transmission to qv 1-3
data collection
API functions B-8
granularity 4-11
multi-threaded programs 4-22
on threaded programs 4-20
options B-8
partial 4-13,C-3
speeding up 4-12
starting 4-2
data recording, starting 4-2
data-analysis questions C-6
database applications 4-5
datasets
adding annotations to 4-16
annotating 4-16
containing partial data 4-14
dead code 2-15
debugger 4-15
debugging information C-6
deeply nested function calls 3-15
default machine 3-20
demangling function names 1-16
descendants
called from outside subtrees 1-13
contributions from 1-18
distribution of time 1-18
expanding and collapsing in call
graph 1-11
detail of collected data 4-11

Index-3

Index-4

directives
current date A-3
current time A-3
export data A-3
full pathname A-3
process ID A-3
program name A-3
program summary A-3
sequence number A-3
thread identifier A-3
directories
cache B-4
search list B-17
searched for sources 1-9
disk
requirements C-6
swap space C-2
distribution of time
descendants time 3-2
to callers 1-18
diclose 4-9
did.sl 4-9
dlopen 4-7,C-2
dynamic branch prediction 3-8
dynamic libraries
timing 1-4,4-8,B-11
unmapping 4-9
dynamic linker, Id.so 4-8, 4-9
dynamic linking
timing 4-8

E

elapsed time 3-13,4-4,C-3
empty code blocks 3-10
environment variables
PUREOPTIONS A-6
QUANTIFYOPTIONS A-6
specifying options in A-6
excluded time 4-6
execve 4-19
exiting and saving data 1-22
expanding subtrees 1-11
expansion characters for
filenames A-3
exporting data 1-22
default filename 5-1, 5-7
file format 5-1
expression, filter 1-8

expressions
if-then 3-10
switch 3-10

F

-fds B-17
file descriptors B-17

-filename-prefix 4-20, 5-5, A-4, B-13

filenames
conversion characters A-3
default A-4
unqualified A-3

files
appending function detail data

to 1-19

cache C-7
created by Quantify C-1
export data 5-2
libquantify_stubs.a A-10
log 54
.machine 4-10, B-6
program summary A-3
.pure C-1
quantify_threads.h 4-20
quantify.h A-9
.qvrc 1-23
removing old 5-10
signal.h 4-18
syscall.h 4-5, B-8
/tmp A-3
Xdefaults 1-23

filtering function names 1-8

finding functions in function list 1-7

fini code 4-9

focus
changing in call graph 1-13
current 1-12

fonts, changing 1-23

-forbidden-directories B-5

-force-rebuild 4-12, B-5

foreground color changing 1-23

fork 4-18, 4-19

free 1-13

Function Detail window 1-17
appending data to file 1-19
saving data 1-19

Function List window
filtering function names 1-7
finding functions 1-7
finding top contributors 1-6

header 1-8
restricting functions 1-7
function names
demangling 1-16, 5-1
filtering 1-7, 1-8
making unique C-6
truncating 1-16
unique 3-3
function time
minimum and maximum 1-17, 3-2
sorting 1-6
function(s)
changing focus in call graph 1-13
collection granularity 4-11, 4-12
compute-bound 1-7
displaying data in call graph 1-14
filtering function list 1-8
finding in call graph 1-12
finding in function list 1-7
finding top contributors 1-6
multiple callers of 1-13
recursive 3-3, 3-16
recursive in call graph 1-10
restricting display of 1-7
sorting 1-6
static 3-3
summaries 1-21
See also API functions
function+descendants
100+% time 1-14
time 1-17,1-21

G

-g compiler switch 3-5

-g++ B-5

getrusage system cal 3-14
gettimeofday system call 3-14
global options A-6

granularity of collected data 4-11

H

handlers, signal 4-18
-handle-signals 4-17, B-15
hashtable example 2-1
header files 4-18
help
in debugger A-9
technical xi
using online Help ix

high load average 2-17
HPPA 4-10
HP-UX 3-3,4-9

-i option for gxdiff script 2-14
if-then expressions,
annotations 3-10
-ignore-runtime-environment A-8,
B-5

-ignore-signals 4-17, B-15
incomplete subtrees 1-13
incremental datasets 5-6
incrementing %n A-3, A-4
inefficient computation 2-16
init code 4-9
inspecting incremental datasets 5-6
installing Quantify x
instruction

branch 3-4

load and store 3-4

scheduling 3-8

stalls 3-4
instrumentation

analysis 3-4

first time C-1

granularity 4-11
interface, customizing 1-23

K

keywords in export files 5-2
kill 4-18

L

Id.so 4-8, 4-9

leaf function 1-10

library
dynamic, time loading 1-4
shared C-2
stubs A-10

lightweight processes (LWPs) 4-21

line scale factors 1-15
changing 1-15

line(s)
changing scale factors 1-15
collection granularity 4-12
curved in call graph 1-10
linear 1-15

Index-5

Index-6

logarithmic scaling 1-15
removing number
information 4-12

unweighted 1-15

linear scaling 1-15

link, disk requirements C-2, C-6

-linker B-5

linker options B-5

load and store instructions 3-4

load fluctuations 3-13

log files 5-4

logarithmic scaling, lines 1-15

-logfile 5-3, B-16

long-running programs 4-18

M

.machine file 3-20, 4-10, B-6
machine(s)

counting cycles 1-2

default 3-20

instructions 3-4

running of different 3-20

SMP 4-21
makefile example A-10
malloc 1-13, C-2
maximum function time 1-17
-max-threads 4-21, B-12
measured time 3-13
-measure-timed-calls 4-4, 4-8, B-8,

C-4

measuring timed calls 4-4
Mega-Hertz (MHz) 3-1
memory

cache effects 3-20, C-3

fetching 3-21

paging effects 3-20, C-3
memory access options B-12, B-13
menu, pop-up 1-11
minimum function time 1-17
miss, cache memory C-3
MT-safe (multiple-thread safe) 4-23
multiple basic blocks 1-21
multiple callers of functions 1-13
multi-threaded programs 1-10, 4-22
mutual exclusion (mutex) locks 4-21

N
n, incrementing %n A-3, A-4

names

shortening function 1-16
network delay 2-17
-never-record-system-calls 4-22, B-8
NFS 3-13
non-exiting programs 4-17
numbers for lines, removing 4-12
numeric annotations 1-21

o

Object Code Insertion (OCI) 1-2
object files
caching and removing 5-10
Quantify'd version C-1
operating system
affect on time 3-1
optimized code 3-8
options
build-time B-4
caching B-4
child process B-13
in environment variables A-6
in makefiles A-10
invoking shell scripts 5-5
link line A-7
linker B-5
memory access B-12, B-13
processing A-6
qv B-1,B-7
recording register-window
traps 3-15
running scripts at save 5-5
run-time B-2
site-wide A-6
syntax A-2
threads 4-20, B-12
timing system calls 4-2,4-4
types A-5
using with API functions 4-15
windows 5-2, 5-5, B-7
options (by name)
-add-annotation B-7
-always-use-cache-dir B-4
-api-handler-signals 4-18, B-15
-append-logfile B-16
-auto-mount-prefix B-17
-avoid-recording-system-calls 4-5,
4-6,B-8
-cache-dir B-4

-collection-granularity 4-11, 4-12,
B-4
-collector B-4
-copy-fd-output-to-logfile B-16
-fds B-17
-filename-prefix 4-20, 5-5, A-4,
B-13
-forbidden-directories B-5
-force-rebuild 4-12, B-5
-g++ B-5
-handle-signals 4-17, B-15
-ignore-runtime-environment B-5
-ignore-signals 4-17, B-15
-linker B-5
-logfile 5-3, B-16
-max-threads 4-21, B-12
-measure-timed-calls 4-4, 4-8, B-8
-never-record-system-calls 4-22,
B-8
-output-limit B-16
-print-annotations 4-16, B-7
-print-home-dir B-6
-program-name B-17
-record-child-process-data 4-19,
B-13
-record-data 4-2, 4-15, B-9
-record-dynamic-library-data 4-8,
B-9
-record-register-window-traps
4-10, B-9
-record-system-calls 4-2, 4-6, B-9
-report-excluded-time 4-6, B-9
-run-at-exit B-15, C-5
-run-at-save B-15, C-5
-save-data-on-signals 4-17, B-15
-save-thread-data 4-20, B-12
-threads B-12
-thread-stack-change 4-21, B-12
-use-machine 3-20, B-6
-user-path B-17
-version B-6
-windows 5-5, B-7, B-15
-write-export-file 5-1, B-7, B-13
-write-summary-file 5-3, 5-5, B-7,
B-13
output, re-routing to log file 5-3
-output-limit B-16
overflow register windows 3-15
overhead 1-4, 3-4,C-7
dynamic library 4-7
Quantify 1-1

P

paging effects 2-17, 3-20, 3-21, C-3
parallel stack of function calls 3-2,
4-20

partial data collection 4-13
performance

data transmission 1-3

impact C-6

load fluctuations 3-13
pessimistic timing 3-8
PLT, procedure linkage table 4-8
pop-up menu 1-11
PostScript, saving call graph 1-16
precision, 64-bit 3-4
-print-annotations 4-16, B-7
printf escape syntax 5-4
-print-home-dir B-6
printing PostScript call graph 1-16
procedure linkage table (PLT) 4-8
process

identifier B-14

swapping C-4
processes, child 4-18
program summary

excluded time 4-6

interpreting 1-4
program(s)

comparing runs 5-7

long-running 4-18

output 1-3
-program-name B-17
.ps file extension A-4
.pure file C-1
pure_logfile_printf 5-4, B-16
pure_printf 5-4, B-16
pure_sigtramp 1-10, 3-2
PureCoverage C-1
PUREOPTIONS A-6
Purify C-1

Q

.qfd file extension A-4

.ql file extension A-4

.gs file extension A-4

Quantify
accuracy 3-20
disk space requirements C-6, C-7
how it works 1-2, 3-2, 3-3
overhead 1-1, 1-4, 3-4, 3-14
variations in timing 3-14

Index-7

Index-8

guantify
_add_annotation 4-16, B-14

_clear_data 4-15, 4-19, B-14
_disable_recording_data B-11
_help B-12
_is_recording_data B-10
_is_recording_dynamic_library
data B-11
_is_recording_register_window _
traps B-11
_is_recording_system_calls B-10
_is_running B-12
_print_recording_state B-12
_save_data 4-15, 4-16, 5-4, 5-6,
B-14
_save_data_to_file 4-16, 5-4, B-14
_start_recording_data 4-2, 4-15,
B-10
_start_recording_dynamic_
library_data B-11
_start_recording_system_call 4-6
_start_recording_system_calls
B-10
_stop_recording_data 4-15, B-10
_stop_recording_dynamic_
library_data B-11
_stop_recording_register_
window_traps B-11
_stop_recording_system_call 4-6
_stop_recording_system_calls 4-1
3,4-15,B-10
quantify_threads.h 4-20
Quantify’'d programs
building C-1
inherent differences in 3-21
run-time memory usage C-7
run-time performance
differences C-7
QUANTIFYOPTIONS A-6
guestions
about data analysis C-6
about data collection C-3
about instrumentation C-1
about performance C-6
general C-1
qv 1-3,5-2
options B-1
running 5-2
.qv file extension A-4
.gx file extension 5-1, A-4
gxchange script 5-5

gxdiff script 2-9, 4-3, 5-7
example of using 2-14
-i option 2-14

R

Rational Software World Wide
Web xi
-record-child-process-data 4-19,
B-13
-record-data 4-2, 4-15, B-9
-record-dynamic-library-data 4-8,
B-9
recording data 4-2
recording dynamic library data
API functions B-11
-record-register-window-traps 4-10,
B-9
-record-system-calls 4-2, 4-6, B-9
recursive functions 1-10, 3-3, 3-16
and register window traps 3-15
redoing layout of call graph 1-11
register windows
API functions B-10
options 4-10, B-9
recording B-11
trap data 3-11
regular expression 1-8
release notes, locating X
removing
annotations in call graph 1-14
old files 5-10
-report-excluded-time 4-6, B-9
reports
program summary 1-4
re-routing to log file 5-3
sending by e-mail 5-6
RISC architecture 3-4, 3-8
.root.
accumulator 1-9, 1-10
as accumulator 3-2
as focus 1-9
as function 3-2
in call graph 1-10
-run-at-exit 5-5, B-15, C-5
-run-at-save 5-5, B-15, C-5
runs, comparing program 5-7
run-time
API functions B-3
options B-2
overhead 3-4
performance C-7

S

-save-data-on-signals 4-17, B-15
-save-thread-data 4-20, B-12
saving

call graph 1-16

data B-13

data on exit 1-22

incremental data 5-4
scale factors 1-19

>0% of focus 1-13

line 1-15
scripts

gxchange 5-5

gxdiff 2-9, 4-3, 5-7

remove_old_files 5-10
select() 3-13
sending data to qv 1-3
sequence number %n A-3
shadow stack 3-2, 4-20
shared libraries C-2

operations 4-8

timing 4-7
shell scripts 5-5
shl_load 4-7, C-2
shl_load function 4-9
shortening function names 1-16
signal handlers 3-2

default set 4-17

installing 4-18

See also signals
signal.h 4-18
signals

ignoring 4-17

not handled 4-17

reported in call graph 1-10

saving data on 4-17

See also signal handlers
SIGUSR1, SIGUSR2 4-18, B-15
single-threaded applications 1-10
site-wide options A-6
slow software, causes of 2-15
Solaris 2 3-15, 4-9, 4-21
source, see Annotated Source win-

dow

SPARC architecture 3-15
stacks, and threads 4-20
starting recording data 4-2
static functions 3-3, 3-12
stored clock rate 3-20
strings, annotation 4-16

strip -1 4-12
stubs library A-10
subtrees
changing focus 1-13
expanding and collapsing 1-11
incomplete 1-13
summary for functions 1-21
Sun0S 4.1 4-8
superscalar architectures 3-8
support, technical xi
swap space 3-20, C-2, C-7
swapping effects 2-17
switch expressions,
annotations 3-10
symbols, see
Annotated Source window sym-
bols
conversion characters
symmetric multi-processors
(SMP) 4-21
syntax, options A-2
SYS_exit 4-5
SYS select 4-5
syscall.h 4-5, B-8, B-10
system calls
and database clients 4-5
avoiding timing 4-5
ignoring with -i option 2-14
start/stop recording B-10
SYS exit 4-5
SYS_select 4-5
timing 1-2, 3-13,4-2
timing in X Windows
programs 4-5

T

technical support xi

templates, C++ 3-11

thrashing C-7

-threads B-12

threads
collecting data in 4-20
identifier (%T) A-3
lightweight processes, and 4-21
options 4-20, B-12
reported in call graph 1-10, 4-22
single-threaded applications 1-10
stacks, and 4-20

-thread-stack-change 4-21, B-12

Index-9

Index-10

time(s)
compute-bound 1-4
current time directive A-3
elapsed (wall-clock) 3-1, 3-13
exceeding 100% 1-13, 1-14
excluding overhead 3-4
function+descendants 1-17
in code 1-4,2-4
in system calls 2-4
kernel 3-13, C-7
loading dynamic libraries 1-4
memory swapping 3-21
network delays 3-13
optimistic 3-15
pessimistic 3-8, 4-21
predicted 3-15
system calls 3-13
to collect the data 1-4
unexpected amounts 1-13
timing
recursive functions 3-3
register-window traps 4-10
system calls 4-2
variations in 3-20
triangle icons 1-10
truncating function names 1-16

U
unique function names 3-3, C-6

unknown_static_function 3-3, C-6

unqualified filename A-3
unweighted lines 1-15
-use-machine 3-20, B-6

user+system measurements 4-4

-user-path B-17
uwse_NNNN C-6
uwss_NNNN C-6

\Y

variations in timing 3-20
verifying improvements 5-7
-version B-6

vfork 4-18, 4-19

viewport 1-9

w

wall-clock time, see elapsed time
wildcards
in filenames A-2
in filter expressions 1-8
-windows 5-5, B-7, B-15
windows, data analysis 1-5
World Wide Web site, Rational
Software xi
-write-export-file 5-1, B-7, B-13
-write-summary-file 5-3, 5-5, B-7,
B-13

X

X resources, customizing
Quantify 1-23
X Windows 3-13, 5-2
applications 4-5
avoiding call timing 4-6
options 5-3
Xdefaults 1-23

	Title Page
	Notice
	Welcome to Quantify
	Using this guide
	Using online Help
	Conventions used in this guide
	Displaying the release notes
	Installing Quantify
	Contacting technical support

	1 Introducing Quantify
	How Quantify works
	Building and running a Quantify’d program
	Interpreting the program summary
	Using Quantify’s data analysis windows
	The Function List window
	Sorting the function list
	Restricting functions
	Finding and filtering functions

	The Call Graph window
	Understanding the layout of the call graph
	Using the pop-up menu
	Expanding and collapsing descendants
	Locating functions in the call graph
	Changing the focus of the call graph
	Displaying additional data for functions
	Changing line scale factors
	Shortening function names
	Saving the call graph

	The Function Detail window
	Understanding how time is distributed
	Changing the scale and precision of data
	Saving function detail data

	The Annotated Source window
	Changing annotations
	What annotations mean

	Saving performance data
	Customizing Quantify’s graphical interface
	Editing the .qvrc file

	2 Improving Performance with Quantify
	The hashtable package
	Collecting baseline performance data
	Uncovering an unexpected behavior
	The function detail suggests long buckets

	Annotated source confirms excessive calls
	Saving the baseline data
	Improving the performance of the testHash program
	Running the improved_testHash program
	Verifying the performance improvement
	Other causes of slow software
	Needless computation
	Premature computation
	Needless recomputation
	Inefficient computation
	Needless library or system-call requests
	Excessive library or system-call requests
	Expensive library or system-call requests
	Environmental factors

	3 How Quantify Collects Data
	How Quantify records function time
	How Quantify names functions
	Analyzing basic blocks
	How Quantify identifies basic blocks
	How Quantify reports multiple basic blocks
	Annotations and compiler differences
	C++ templates and annotated source

	How Quantify times system calls
	Variations in system-call timing

	How Quantify times register-window traps
	Understanding recursive functions
	Running on a different machine
	Paging and memory cache effects

	4 Customizing Data Collection
	Avoiding all data recording
	Timing system calls
	Avoiding timing for all system calls
	Controlling how system calls are timed
	Avoiding timing for specific system calls
	Reporting excluded system-call time

	Timing shared-library operations
	Recording dynamic linking
	Understanding shared-library operations

	Timing register-window traps
	Changing the granularity of collected data
	Collecting partial data for a run
	Analyzing datasets containing partial data
	Calling quantify _stop_recording_system_calls and quantify_clear_data from your debugger

	Annotating datasets
	Saving data on signals
	Collecting data in long-running programs

	Collecting data for child processes
	Using execve
	Using fork
	Using vfork

	Collecting data in threaded programs
	Threads and stacks
	Solaris lightweight processes and threads
	Analyzing data from threaded programs

	5 Analyzing Data with Scripts
	Exporting performance data
	The export data file format

	Running qv
	Rerouting Quantify’s output
	Saving data incrementally
	Automating data analysis
	Automating performance regression tests

	Comparing program runs with qxdiff
	What qxdiff annotations mean

	Managing cached object files
	Deleting cached object files

	A Using Quantify Options and API Functions
	Using Quantify options
	Option syntax
	Using conversion characters in filenames
	How Quantify creates filenames
	Option types
	How Quantify processes options
	Using the -ignore-runtime-environment option

	Using Quantify API functions
	Calling API functions from a debugger
	Calling API functions from your program
	Linking with the Quantify stubs library

	B Options and API Reference
	Build-time options quick reference
	qv options quick reference
	Run-time options quick reference
	Run-time API functions quick reference
	Build-time options
	qv options
	Data collection options
	Data collection API functions
	Run-time collection status API functions
	Threads options
	Child process options
	Options for saving data
	API functions for saving data
	Options for saving data on signals
	Options for automating data analysis
	Output options
	Output API functions
	Miscellaneous run-time options

	C Common Questions
	Questions about instrumentation
	Questions about data collection
	Questions about data analysis
	Questions about performance
	Using Quantify
	Control Panel: Open data analysis windows
	Function List window: Sort functions to find bottlenecks
	Call Graph window: Understand your application’s calling structure
	Function Detail window: Examine how a function’s calling time is distributed
	Annotated Source window: View line-by-line performance data
	Conversion characters for filenames
	API functions
	Build-time options
	qv run-time options
	Run-time options

	Quantify Quick Reference
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

