PureCoverage User’s Guide

support@rational.com
http://lwww.rational.com

RATIONAL

S OF T W A RE

IMPORTANT NOTICE

COPYRIGHT NOTICE

PureCoverage, copyright [0 1992-1999 Rational Software Corporation. All
rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS
INFORMATION PROPRIETARY TO RATIONAL. ANY COPYING,
ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION
OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN
PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

U.S. GOVERMENT RIGHTS NOTICE

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Purify, PureCoverage, Quantify, ClearCase,
ClearDDTS, and ClearQuest, are trademarks or registered trademarks of
Rational Software Corporation in the United States and in other countries.

All other names are used for identification purposes only and are trademarks
or registered trademarks of their respective companies.

U.S. PATENT NOTICE

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed
under Sun Microsystems Inc.’s U.S. Pat. No. 5,404,499. Other U.S. and foreign
patents pending.

Printed in the U.S.A.

PURECOVERAGE USER'S GUIDE

Contents

Welcome to PureCoverage

Usingthisguide i, Vi
PureCoverage features i, vii
Gettingstarted vii
Taking advantage of special features viii
Common questions and reference material Viii
Conventions used inthisguide viii

Usingonline Help e (¢

Displaying the release notes (¢

Installing PureCoverageouiiinnnniniinnn . iX

Contacting technical support X

Introducing PureCoverage
PureCoverage: simple & effective 1-2
Key PureCoverage features ity 1-3

Finding Untested Areas of Hello World

Instrumenting a program 2-1
Running an instrumented program 2-4
Programoutput 2-4
Coveragedatat 2-5
Displaying coverage datay 2-5
Expanding the detail level 2-6
Examining function level detail 2-7
Examining the annotated source 2-8
Improving Hello World's test coverage 2-9

Modifying makefiles for PureCoverage 2-11

Beyond Hello World: how PureCoverage works 2-12
Files created by PureCoverage 2-12
Compiling with the debugging option-g 2-13
How PureCoverage finds source files 2-14
Covering multiple processes ..., 2-15
Signalhandling 2-17
Covering multi-threaded applications 2-17
Saturating Counterst 2-18

3 When to Use PureCoverage

Using PureCoverage in nightly builds 3-1

Using PureCoverage with testharnesses 3-2
Separating data for individual testruns 3-3
Combining data from multiple programruns 3-4
Discarding data from failed tests 3-6

Exportingdata 3-8

Running report SCripts 3-9

Using PureCoverage with other Rational Software products ... 3-11
Using PureCoverage with Purify 3-11
Using PureCoverage with ClearDDTS 3-12

4 Customizing Coverage

Excluding libraries, directories, and files from coverage 4-1
Coverage for libraries 4-1
Customizing datacollection 4-2

Adjusting coverage on a line-by-line basis 4-4
Adiustments 4-4
Types of adjustments 4-5
Marking adjustments manually 4-5
Marking adjustments interactively 4-10
Unnecessary adjustmentscccviina... 4-12
Saving files with adjustments 4-12

Removing adjustments in the Annotated Source window 4-13

Adjustment file format 4-14
Strategies for using PureCoverage adjustments 4-15
Adjustment usage considerations 4-15
Models for using PureCoverage adjustments 4-17

5 Using the PureCoverage Graphical Display

PureCoverage VIEWer 5-1
Selecting items 5-1
Usingthetoolbar 5-2
Selecting Viewer columns i 5-3
Using the Viewer Filemenu 5-6
Using the Viewer Viewmenu 5-7
Using the Viewer Adjustmentsmenu 5-8
Using the Viewer Helpmenu 5-8

Annotated Source WiNdow 5-9
Using the Annotated Source Filemenu 5-10
Using the Annotated Source Viewmenu 5-10
Using the Annotated Source Helpmenu 5-11
Navigating in the Annotated Source window 5-11

6 Report Scripts

PureCoverage report SCripts 6-1
Coverage summary reportuiunnnn... 6-2
Low coverage reportt 6-3
Low coverage mailreport 6-3
Spreadsheetreport e 6-4
Differencesreport 6-5
Build differences summary report 6-6
Annotated SOUrCE report oot 6-8
Annotated differencesreport 6-9

Selected testsreport 6-11

CUSIOM FEPOIS . o vt e e e e e e e 6-15
A sample custom reportscript 6-15

PureCoverage Options

Optiontables 7-1
Using PureCoverage optionsy 7-2
PureCoverage optionsyntaxc.oiiiiuun... 7-2
Using conversion characters in filenames 7-3
PureCoverage optiontypes, 7-3
PureCoverage option processingcouvuu... 7-4
Specifying options in environment variables 7-4
Using the PUREOPTIONS environment variable 7-4
Setting options for Purify and PureCoverage 7-5
Specifying options on the link line 7-5
Using the ignore-run-time-environment option 7-6
Using analysis-time mode options 7-7
Build-time options 7-7
Optionsforcaching i, 7-7
Options for linker and collector 7-9
Run-time options i 7-10
Options for file identification 7-10
Anoptionforsavingdata 7-12
An option for data collection 7-12
Options for signalhandling 7-13
An option for exit processing 7-14
Analysis-time options e 7-15
An option for handling adjustments 7-15
Anoptionformerging 7-15
Analysis-time mode options 7-16
Informational options e 7-19

8 PureCoverage API

Calling PureCoverage API functions from your program 8-1

Calling PureCoverage API functions from a debugger 8-2

Data collection APl functions 8-3
Appendixes

A Common Questions

CUStOMIZING COVEIage . . . o v v i ittt ettt A-1
General qUESEIONS A-2
Performance iSSUES A-4

B Export Format
Export format description B-1
The effect of coverage adjustments onexport B-9

C Annotation Variations

Complexsource linesttt C-1
Multi-line statements C-2
Functionentry points it C-3
Local variable declarations C-5
Switch statements C-5
exit() statements C-7
C++inlinefunctions i C-7

PureCoverage Quick Reference

Index

Vi

Using this guide

PURECOVERAGE USER'S GUIDE

Welcome to PureCoverage

PureCoverage is a test-coverage monitoring program that is both
effective and easy to use. Once PureCoverage is installed, you can
immediately start using it on your applications by adding the
word pur ecov to your link line. For example:

% purecov cc -g <nyprog>.o
or, if you compile and link at the same time:

% purecov cc -g <nyprog>.c

This guide is intended to assist you as you are learning to use
PureCoverage, and to serve as a reference after you have mastered
the program.

This guide can help you get the most out of PureCoverage at all
levels of use.

PureCoverage features

For an overview of what PureCoverage can do, read Chapter 1,
“Introducing PureCoverage.”

Getting started

To start using PureCoverage, read Chapter 2, “Finding Untested
Areas of Hello World.” This chapter also gives you a look into how
PureCoverage works.

To learn how to use PureCoverage with your test harness or
nightly builds, and how to take advantage of PureCoverage when

vii

you are using other Rational Software products, read Chapter 3,
“When to Use PureCoverage.”

To control coverage collection and adjust coverage statistics, read
Chapter 4, “Customizing Coverage.”

To make full use of the features that the PureCoverage graphical
user interface provides, read Chapter 5, “Using the PureCoverage
Graphical Display.”

Taking advantage of special features

Chapters 6 through 8 contain information about important
PureCoverage features: report scripts, options, and the application
programming interface (API).

Common questions and reference material

A great investment of your time is to read through Appendix A,
“Common Questions.” This appendix contains answers to the most
frequently asked questions about PureCoverage.

Appendix B provides information about export format for coverage
data. Appendix C shows some of the variations in coverage display
that result from using different compilers.

Conventions used in this guide

= <pur ecovhone> refers to the directory where PureCoverage is
installed. Whenever you see <pur ecovhone>, use the
PureCoverage directory name instead. To find the PureCoverage
directory on your system, use the command

% pur ecov -printhomedir

= Courier font indicates source code, program names or output,
file names, and commands that you enter.
= Angle brackets < > indicate variables.

= [talics introduce new terms and show emphasis.

viii PureCoverage User’s Guide

O®

:

Using online Help

This icon appears next to instructions for the Sun SPARC
SunOS 4.1 operating system.

This icon appears next to instructions for the Sun SPARC
Solaris 2 operating system, also referred to as SunOS 5.

This icon appears next to instructions for the HP-UX operating
system.

Unless otherwise noted, commands are shown using csh(1)
syntax.

Unless otherwise noted, debugging examples are shown using
the debugger dbx.

PureCoverage provides online Help through the Help menu in
each PureCoverage window.

To get online Help, click any item in the Help menu. If you click
On Context in the Help menu, the cursor becomes a question
mark (?). Click the cursor on any component of the window for
specific information about that component.

Displaying the release notes

The PureCoverage READVE file is located in the <pur ecovhone>
directory. You can display it by using UNIX commands, or by
selecting Release notes from the Help menu in any PureCoverage
window. The README file contains the latest information about this
release of PureCoverage, including new features and supported
hardware and software.

Installing PureCoverage

For information about licensing and installing PureCoverage, see
the Installation and Licensing Guide for Rational Purify, Quantify,
and PureCoverage.

Welcome to PureCoverage ix

Contacting technical support

X PureCoverage User’'s Guide

If you have a technical problem and you can't find the solution in
this guide, contact Rational Software Technical Support. See the

back cover of this guide for the addresses and telephone numbers
of technical support centers.

Note the sequence of events that led to the problem and any
program messages you see. If possible, have the product running
on your computer when you call.

For technical information about PureCoverage, answers to
common questions, and information about other Rational
Software products, visit the Rational Software World Wide Web
site at htt p: // www. r at i onal . com To contact technical support
directly, use http: //ww. rati onal . com support.

PURECOVERAGE USER'S GUIDE

Introducing PureCoverage

Test coverage data is a great help in developing high-quality
software, but most developers find coverage tools and the data
they produce too complex to use effectively. PureCoverage is the
first test coverage product to produce highly useful information
easily.

During the development process, software changes daily,
sometimes hourly. Unfortunately, test suites do not always keep
pace. PureCoverage is a simple, easily-deployed tool that identifies
the portions of your code that have not been exercised by testing.

PureCoverage lets you:
= ldentify the portions of your application that your tests have
not exercised

= Accumulate coverage data over multiple runs and multiple
builds

= Merge data from different programs sharing common
source code

= Work closely with Purify, Rational’s run-time error detection
program, to make sure that Purify finds errors throughout your
entire application

= Automatically generate a wide variety of useful reports
= Access the coverage data so you can write your own reports

One of the keys to high quality software is comprehensive testing
and identification of problem areas throughout the development
process. PureCoverage provides the information you need to
identify gaps in testing quickly, saving precious time and effort.

1-1

If you use PureCoverage consistently during development, you
will be able to ship more reliable software while meeting your
aggressive schedules.

PureCoverage: simple & effective

PureCoverage is easy to use, and its output is easy to understand
and analyze. PureCoverage pinpoints critical holes in your test
suites; scales well to large, long-running applications; and works
seamlessly with Purify. You no longer need to labor over tedious
and error-prone compilation processes or hard-to-understand
output.

You can install and master PureCoverage in one hour. Incorporate
PureCoverage into your development process simply by adding
one word, pur ecov, to your makefile and re-linking. You do not
need to recompile or link special libraries. You can use
PureCoverage with existing makefiles and debugging tools.
Seamless integration with your development environment ensures
that developers receive the most complete information quickly and
painlessly.

PureCoverage provides an optional API that allows you to control
data collection during the application run. The API consists of
functions for configuring the data collection mechanism.

PureCoverage accumulates data over multiple runs and keeps
track of the data for you. You no longer have to determine whether
a changed file invalidates previous data. PureCoverage does it
automatically.

PureCoverage’s graphical and textual output lets you determine
quickly and effectively where your tests need to be improved in
order to exercise your code.

1-2 PureCoverage User’s Guide

Key PureCoverage features
PureCoverage’s unique capabilities include:

= Faster analysis. PureCoverage helps reduce time spent
determining problem areas of your code. PureCoverage’s outline
view provides detailed, yet manageable, coverage information at
the executable, library, file, function, block and line levels. A
point-and-click interface provides immediate access to
increasing levels of detail and lets you view annotated source
with line-by-line statistics.

= Comprehensiveness. PureCoverage monitors coverage in all
of the code in an application including third-party libraries, even
in multi-threaded applications. It identifies critical gaps in
application testing suites, providing accumulated statistics over
multiple runs and multiple executables.

= Customized output. PureCoverage allows you to tailor
coverage output to your specific needs using report scripts. For
example, you can use the scripts to generate reports that:

= Inform you when coverage for a file dips below a threshold

= Show differences between successive runs of an executable,
making improvements immediately obvious

= |dentify the appropriate subset of test cases that must be run
to exercise the changed portions of your program

You can use the scripts as-is, modify them, or follow them as
models for your own scripts.

= Support for your tools and practices. PureCoverage works
behind the scenes with standard tools and compilers.
PureCoverage supports shared libraries and all standard
industry compilers.

Introducing PureCoverage 1-3

1-4 PureCoverage User’s Guide

PURECOVERAGE USER'S GUIDE

Finding Untested Areas of Hello World

This chapter describes how to use PureCoverage to determine
which parts of your program are untested. It steps you through an
analysis of a sample hel | o_wor | d. ¢ program, telling you how to:

= Compile and link your program under PureCoverage to
instrument the program with coverage monitoring instructions

= Run the program to collect coverage data

= Display and analyze the coverage data to determine which parts
of your program were not tested

= Improve coverage for the program

= Modify your makefiles to use PureCoverage throughout your
development cycle

The chapter concludes with a behind-the-scenes look at how
PureCoverage works, and a discussion of how PureCoverage
handles more complex programming situations.

Instrumenting a program

Begin your analysis of the sample hel | o_wor | d. ¢ program by
copying the program file into your working directory. Then
instrument the program with PureCoverage and run it.

When you work through this example on your own system,
remember that there is no single standard compiler. Different
compilers produce slightly different output. Do not be concerned
about minor differences between what you see on your monitor
and what you see in this guide.

2-1

1 Create a new working directory. Go to the new directory, and copy
the hel | o_wor | d. ¢ program and related files from the
<pur ecovhonme>/ exanpl e directory:

% nkdi r /usr/hone/ pat/exanpl e
% cd /usr/ hone/ pat/exanpl e
% cp <purecovhonme>/ exanpl e/ hel | o* .

2 Examine the code inhell o_worl d. c.

The version of hel | o_wor | d. c provided with PureCoverage is
slightly more complicated than the usual textbook version:

#i ncl ude <stdio. h>

voi d display_hello_world();
voi d di spl ay_nessage();

mai n(argc, argv)
int argc;
char** argyv;

{
if (argc == 1)
di splay_hel l o_world();
el se
di spl ay_nessage(argv[1]);
exit(0);
}
voi d
di spl ay_hel I o_wor | d()
{
printf("Hello, World\n");
}
voi d
di spl ay_nessage(s)
char *s;
{
printf("%, Wrld\n", s);
}

3 Compile, using the - g debugging option, and link the program.
Then run the program:

%cc -g hello_world.c
% a. out

2-2 PureCoverage User's Guide

Verify that it produces the expected output:

Hel l o, World

Note: If you compile your code without the - g option,
PureCoverage provides only function-level data. It does not show
line-coverage data.

Now add pur ecov at the beginning of the compile-and-link line:

% purecov cc -g hello_world.c

A message appears, indicating the version of PureCoverage that is
instrumenting the program:
PureCoverage 4. 4 Sol ari s 2, Copyright 1994-1999 Rati onal Software Corp.

Al rights reserved.
Instrunmenting: hello_world.o Linking

Note: When you compile and link in separate stages, add pur ecov
only to the link line.

Finding Untested Areas of Hello World 2-3

Running an instrumented program

1 You now have a PureCoverage-instrumented executable. Run it:

% a. out

Typical output is:

Instrumented
executable

You can use this command to display

) technical support contact information
PureCoverage version

[*x*x* PureCov%r age i nstrunented a.out (pid 3466 |at Wed Jan 13 10: 32: 40 1999)
* PureCoverage 4.4 Sol aris 2, Copyright 1994- 1999 Rat i onal Sof t war e Cor p.
Al rights reserved.
For contact infornmation type: "purecov -help"
Command- | i ne: a. out
Options settings: -purecov \
- pur ecov- home=/ usr/ pur e/ pur ecov- 4. 4-sol ari s2
* PureCoverage |licensed to Rational Software Corp.
L— * Coverage counting enabl ed.
Normal ——Hel 1 o, World
program output

Start-up banner— N

[**** PureCoverage instrunmented a.out (pid 3466) ****
Recording — * Saving coverage data to /usr/hone/ pat/exanpl e/ a.out. pcv.
message | * To view results type: purecov -view /usr/hone/pat/exanple/a.out.pcv

Program output

In addition to the PureCoverage start-up banner and recording
message, the program produces its normal output, just as if it
were not instrumented. For programs that do not ordinarily
produce console output, PureCoverage displays only the start-up
banner and the recording message.

You can redirect all PureCoverage output to a file by using the
-1 og-fil e option. For more information about this and other
PureCoverage options, see Chapter 7.

2-4 PureCoverage User's Guide

Coverage data

When the program a. out completes execution, PureCoverage
writes coverage information for the session to the file a. out . pcv.
Each time the program runs, PureCoverage updates this file with
additional coverage data.

Displaying coverage data

1 To display the coverage data for the program, use the command:

% purecov -view a.out.pcv &

The PureCoverage Viewer appears:

These columns show
statistics for function usage This column shows the
number of adjusted lines

These columns show
statistics for line usage

| - S S T

I I
U=l Purtilinotr gue 110
Pile View Aclioew Bijus e nis Halp
0| o/ EETHeED
Sarting arder! FLCT __GDNETEN (15 W
A kgl uremee] Direer P Lalle uressd e el uremsd uzsd =esdl botal
The first row—+ # Tetal Coaraga | i 1 Bl E: E EAX P

contains summary
information for all
functions and lines
in the program

1 r I E WL L]

e ol

Note: The default header for line statistics is ADJUSTED LI NES, not
just LI NES. This is because PureCoverage has an adjustment
feature that lets you adjust coverage statistics by excluding
specific lines. Under certain circumstances, the adjusted statistics
give you a more practical reflection of coverage status than the

Finding Untested Areas of Hello World 2-5

actual coverage statistics. See “Adjusting coverage on a
line-by-line basis” on page 4-4.

The ADJS column, to the right of the ADJUSTED LI NES column,
contains zeroes, which indicates that this sample does not actually
include adjustments.

The row below Tot al Cover age displays function and line
information for each source directory. In this example, there is
only one source directory, so the information displayed for the
directory is identical to the information in the Tot al Cover age
row.

For more information about displaying coverage data in the
Viewer, see page 5-3.

Expanding the detail level
2 Click the » button to the left of the exanpl e row. The display

expands to show file-level information for the directory, and the
button changes to v:

=l Furtiiresy oim ol
File Virw Aplove Aousivenis Help: |l
e b
O/ 0557 e
St oy arder-! FBCTIERS _ GDJIETED LJWES W0H
Ad kgl urenreed L e P Lalle urassd w=sd umell urensed umed zesdl bxbal
% Tokal Comrega | 1 3 EE 3 E BET i [
= T T g L 1 2 I [L]
File-level —f—— ¥ kallo s]d.x 1 L I B E Bl]
information,
including the
number of Runs
over which
PureCoverage has
collected data =

r m

You used only one file in the exanpl e directory to build a. out .
Therefore the FUNCTI ONS and ADJUSTED LI NES information for the

2-6 PureCoverage User's Guide

i B dizr Loy ey
Function-level — B pir.

information

file is the same as for the directory. The number 1 in the Runs
column indicates that you ran the instrumented a. out only once.

Note: When you are examining data collected for multiple
executables, or for executables which have been rebuilt with some

changed files, the number of runs can be different for each file.

Examining function level detail

Expand the hel | o_wor | d. ¢ row to show function-level

information.

The Calls column shows
how many times the
program called each
function

The FUNCTI ONS columns tell
at a glance whether each
function was used or unused

=l PureCirotr e
Fie View Golore s

Halp

O 0 “EETEE

Sardirg arder! 1

A ok es urened D P Lalls urassd wme el urened uzsd szedl batal
% Tobal Cowmrwgas L FI - E: E BEL]
e L o L 1 2 B T E BRI i

= s loo s 1.0 1 L 1 EEE 7 [a

01| wrmsad Es [ER 1]

1 mnd k| L a

W diepieyg bl e o d 1 [= & LI L]

-1

_’1-4

The Viewer shows coverage information for the functions
di spl ay_nessage, nai n, and di spl ay_hel | o_wor | d.

PureCoverage does not list the pri nt f function or any functions
that it calls. The printf function is a part of the system library,
I i bc. By default, PureCoverage excludes collection of data from

system libraries. For details, see “Coverage for system libraries”

on page 4-2.

Finding Untested Areas of Hello World 2-7

Examining the annotated source

4 To see the source code for mai n annotated with coverage
information, click the button to the left of mai n in the Viewer:

izplay_messzage

Click here

izplay_hello_world
The Annotated Source window appears.

Number of times each line was executed

Adjustments
(see page 4-10)

Source code

P gy Brred s Smsrre — bl e arld 2 (Bipaind cooeraget [Begd e by

= - |
w0 LT [k ["
Source code —— i — T
line numbers u arirm. x
Unused code—£—= I | T P —

Unused code

R T P O B . e

PureCoverage highlights code that was not used when the
program ran. In this file only a few pieces of code were not used:

* The di spl ay_nessage(argv[1]) ; statement in nai n

= The entire di spl ay_nessage function

A quick analysis of the code reveals the reason: The program was

invoked without arguments.

2-8 PureCoverage User's Guide

Improving Hello World's test coverage

2

If you select either
of these options,

this dialog is Not—+§— « - Reload now; automatically relsad in the future

displayed again

until you close —#— .- Don't relead and don't inform me of future changes

the Viewer and
reopen it

To improve the test coverage for Hello World:

Without exiting PureCoverage, run the program again, this time
with an argument:

% a. out Goodbye

Here is the output:

***% pyreCoverage i nstrunmented a. out (pid17331 at Wed Jan 13 10: 38: 07 1999)
* PureCoverage 4.4 Sol aris 2, Copyright 1994-1999 Rati onal Software Corp.
Al rights reserved.

For contact information type: "purecov -help"

Conmend- | i ne: a.out Goodbye

Options settings: -purecov \

- pur ecov- home=/ usr/ pur e/ pur ecov- 4. 4-sol ari s2

* PureCoverage |licensed to Rational Software Corp.

* Coverage counting enabl ed.

Goodbye, World

* ok ok *

% pyreCoverage instrunented a.out (pid 17331) *
* Saving coverage data to /usr/hone/ pat/exanpl e/ a.out. pcv.
* To view results type: purecov -view /usr/hone/ pat/exanpl e/ a.out.pcv

A dialog appears with options for handling coverage data from this
and future runs. Select Reload changed .pcv files and click OK.

Some: PureEoveraﬁe data chanﬁed

Files which have changed since being loaded (and when):

07/10 10338 - a.out.pov =

=

~d I~

Please choose one of these options:
<> Reload changed pcv files

-~ Don't reload, but inform me of future changes

ok

Note: This dialog appears only if the PureCoverage Viewer is
open when you run the program.

Finding Untested Areas of Hello World 2-9

PureCoverage updates the coverage information in the Viewer and
the Annotated Source window:

Function and line coverage is now 100%

H Cge = i

s s
The statement - e L
di spl ay_nessage
(argv[1]);

4
E.-,l..‘_l-llq_,-u:-

and the function T TP sl fa

di spl ay_nessage
are now shown as
used

el
o g, et |
i Bl

Note: If you still have untested lines, it is possible that your
compiler is generating unreachable code. See Chapter 4,
“Customizing Coverage,” for ways to handle this.

2-10 PureCoverage User’'s Guide

3 To exit PureCoverage, select Exit from the Viewer’s File menu.

Note: The first time you exit, PureCoverage displays information
about your default settings. Click the OK button to continue.

L]
E The file Ausrshome/pats, purecow, ¥defaults haz been created for you,
Thiz file allows you to customize the look-and-feel of the PureCoverage Viewer,

You may edit the ¥ resource definitions in this file to change the setting
of many of the PureCoverage Yiewer’s initial dizplay optionz. Any changed
optionz will apply the next time you run the PureCoverage Yiewer,

Fleaze refer to the PureCoverage User’s Guide for more information,

ok |

For information about the . pur ecov. Xdef aul t s file, see page 5-8,
or read the instructions in the . pur ecov. Xdef aul t s file.

Modifying makefiles for PureCoverage

You can start building your applications with PureCoverage by
adding just one word, pur ecov, in front of the link line in your
makefile.

a.out: hello_world.c
purecov cc -g hello_world.c

You can also create separate targets for instrumented and
non-instrumented executables by adding a few lines to the
makefile. The sample makefile hel | o_wor | d. Makefi | e. si npl e,
located in the <pur ecovhome>/ exanpl e directory, illustrates how
to do this:

Sanpl e makefile tenplate

May al so be used in instrumenting Hello World with PureCoverage
Use make -f hello_world. Makefile.sinple a.out.pure

a.out: hello_world.c
cc -g -0 a.out hello_world.c

a.out.pure: hello_world.c
purecov cc -g -0 a.out.pure hello_world.c

Finding Untested Areas of Hello World 2-11

Beyond Hello World: how PureCoverage works

You have now seen PureCoverage in action. This section discusses
how PureCoverage works so that you can use the program more
effectively.

Files created by PureCoverage

PureCoverage inserts usage-tracking instructions into the object
code of your application. After the compiler creates the object files
for your application, PureCoverage instruments the object files,
using Object Code Insertion (OCI) to add the monitoring
instructions. The instrumented object files, or cache files, are
given new names so that your original object files are not
modified.

PureCoverage passes the cache files, complete with the
instrumented versions of any libraries required for the
application, to the linker, in place of the original object files.

The cache file names always include pur e and an encoded
PureCoverage version number. The names can also include
information about the size of the original file, or the name and
number of the operating system.

PureCoverage stores the cache files in the same directories as
their original counterparts, unless those directories do not have
write permission. In this case, PureCoverage creates shadow
directories in the central cache, <pur ecovhone>/ cache, where it
stores the cache files.

Note: To force PureCoverage to store all cache files in the central
cache, use the - al ways- use- cache- di r option. For more about
caching, see “Options for caching” on page 7-7.

You can clean up and remove old cached files with the script
<pur ecovhome>/ pure_renove_ol d_fil es. It is safe to remove
these files because PureCoverage rebuilds them as needed. By
removing them, you gain disk space, but lose some time during
linking.

2-12 PureCoverage User’'s Guide

To remove all cache files that have been in the system 14 days or
longer, use:

% pure_renove_old files / 14

To remove all of the cache files in the current directory and
subdirectories, useful in cl ean targets of makefiles, use:

% pure_renove_old_files . 0O

To remove the cache files periodically, add a cron job. For example,
to remove files that have not been accessed in two weeks, add an
entry to your crontab file:

15 2 * * * <purecovhonme>/pure_renove_old_files / 14

This runs pure_renmove_ol d_fil es every day at 2:15 a.m. and,
starting at the root directory, removes all cached files that have
not been read in the last 14 days.

Compiling with the debugging option -g

PureCoverage adds an instruction sequence for each function to
record the number of times the function is entered.* PureCoverage
always provides the same summary information for the functions
in your program, as well as for the files and directories, regardless
of which compilation options you use.

When you compile code using the -g debugging option, the
compiler includes debugging information in the resulting object
file, relating source line numbers to the program instructions. In
this case, PureCoverage adds a count sequence at the beginning of
each basic block of code.

A basic block is an indivisible sequence of instructions always
executed together in succession. PureCoverage uses this

1. The exact location of the instruction sequence, at or near the entry point of the
function, depends on your compiler.

Finding Untested Areas of Hello World 2-13

information to generate an annotated source listing that shows
the lines that are tested and untested within a function.

If you compile code without the - g option, PureCoverage does not
provide coverage data below the function level. It cannot annotate
source code with line coverage data because there is no way to tell
which program instructions relate to which lines. Although you
can display summary information for this code in the Viewer, you
cannot open the Annotated Source window for it.

Note: Do not use PureCoverage to instrument files that were
compiled with both - g and - Oat the same time. The - Ooption
changes instruction ordering, so that data for line counts can be
misleading.

How PureCoverage finds source files

PureCoverage uses full pathnames to identify source files. This
allows it to distinguish between like-named files in different
directories.

PureCoverage ordinarily determines the location of source files
when you instrument them. If you move source files to a different
directory, however, PureCoverage cannot automatically identify
them. In addition, some compilers do not record enough
information in the object files for PureCoverage to determine
where the source files are located.

For this reason, PureCoverage is designed so that it can also
determine the location of a source file when you view coverage
data for the file.

At instrumentation time

If the compiler encodes a full pathname into the object file, and if
that pathname is valid, PureCoverage attributes counts to the
specified file.

If the compiler provides only a file basename or if the full
pathname is invalid, and if you specify the option - user - pat h,

2-14 PureCoverage User’'s Guide

PureCoverage looks for the file in each of the directories specified
in - user - path.

PureCoverage automatically appends both the current working
directory and the directory where the object file resides to the end
of the - user - pat h directory list. This helps PureCoverage find
source files with missing or incorrect directory names.

For details on the option - user - pat h, see “Options for file
identification” on page 7-10.

At view time

If the filename determined at instrumentation time still exists,
PureCoverage uses it to generate annotated source listings. If the
filename no longer exists:

= PureCoverage attempts to find the file's basename in each
directory specified with the option - user - pat h. It automatically
appends the current working directory to the - user - pat h
directory list.

= If PureCoverage still cannot find the file, it displays a dialog
asking you for the location of the source file. If PureCoverage
can open the file in the directory you specify, it appends the
directory to the list in - user - pat h and uses it for subsequent
searches.

Note: PureCoverage outputs the filename determined during
instrumentation in exported counts data. For details on exporting
data, see “Exporting data” on page 3-8 and Appendix B, “Export
Format.”

Covering multiple processes

Using fork

By default, PureCoverage does not accumulate coverage data for
child processes, since a common reason for forking is to execute a
new process right away.

Finding Untested Areas of Hello World 2-15

You can specify the - f ol | ow-chi | d- pr ocesses option if you want
PureCoverage to accumulate coverage data for the child process.
When this option is set and the child process exits or executes
another process, PureCoverage writes the accumulated counts in
the child to the . pcv file. Likewise, when the parent process exits,
PureCoverage writes counts accumulated for the parent to

the . pcv file.

By default, when this option is set, PureCoverage combines
coverage data for both the parent and child in the same . pcv file.

To separate the counts for parent and child, you can use the option
-counts-file=%. %. pcv to specify a counts file including the
process pi d in the filename, or call the API function

purecov_set _fil enane() in either or both the parent or child
process to control where the data is written.

Using exec

When an instrumented program calls exec or related functions
with a valid executable filename specified in the path argument,
PureCoverage accumulates the coverage data in the . pcv file for
the calling process before the exec is attempted. The counts are
then set to zero. If the exec fails, and the calling process continues
to run, the counts are correctly updated when the process finally
exits or does a successful exec.

Note: If the exec is done from a child process and you have not
set the - f ol | ow chi | d- pr ocesses option, no coverage data is
accumulated, and no data is written at the time of the exec.

The process invoked by exec is a new process, and does not share
coverage information or status with the calling process. If the
invoked process is itself a PureCoverage instrumented program, it
starts accumulating coverage data regardless of whether the
program calling exec was instrumented, and whether you set the
option -fol | owchi | d- processes.

2-16 PureCoverage User’'s Guide

Using vfork

A child process started with vf or k shares a common address and
accumulated coverage data with its parent. PureCoverage
counting is not disabled in the child process of a vf or k, even if you
set the option - f ol | ow chi | d- processes=no.

Signal handling

PureCoverage installs a signal handler for many of the possible
software signals that can be delivered to an instrumented process.
The signal handler prints an informative message and saves
coverage data to the . pcv file in case the process crashes.

The - handl e- si gnal s and - i gnor e- si gnal s options specify which
signals are handled. For details about these options, see “Options
for signal handling” on page 7-13.

The signal handler installed by PureCoverage outputs a signal
message to st derr, or to the Purify Viewer if the process is
Purify'd. If the signal is a fatal signal such as a segv, and the
program has not installed a user signal handler to catch such a
condition, PureCoverage writes the coverage data to the . pcv file
before normal signal termination. If the instrumented program
has installed a signal handler, the PureCoverage handler passes
control to that handler instead.

If you do not want to save data for a process that crashes, you can
specify the signal name as the value of the -i gnor e-si gnal s
option. Or you can have your program install a handler of its own
that invokes the API function pur ecov_di sabl e_save() or
purecov_set _fil enane() to specify an alternate destination for
the data from the failed application.

Covering multi-threaded applications
PureCoverage supports multi-threaded applications.

PureCoverage writes coverage data whenever any of the
lightweight process threads invokes exi t or exec. Those system

Finding Untested Areas of Hello World 2-17

calls terminate all the threads at the same time, so the total
coverage data is recorded for the combination of threads.

PureCoverage options and API functions do not control separate
recording of coverage data by an individual thread. This is because
all the threads share the coverage counters.

Saturating counters

PureCoverage uses saturating counters to record the number of
times a function or line has been executed. These counters
saturate when their value reaches 9999. All counts of 10,000 and
more are represented as 10K+ in the PureCoverage Viewer and as
10000 everywhere else.

2-18 PureCoverage User’'s Guide

PURECOVERAGE USER'S GUIDE

When to Use PureCoverage

The PureCoverage Viewer and Annotated Source window,
introduced in Chapter 2, are useful for interactive analysis of the
coverage data. However, for many applications, other approaches
to accessing and handling coverage data are more practical.

The chapter includes:
= Examples of how to use PureCoverage with your nightly builds
and test suites

= Basic information about exporting coverage data and using
PureCoverage report scripts

= Information about using PureCoverage with other Rational
Software products

Using PureCoverage in nightly builds

You can use PureCoverage to collect coverage data and distribute
reports automatically as part of your nightly build procedure.

Take as an example two hypothetical programs, progl and prog2,
which share some code segments. The programs are recompiled
from scratch each night and then a test suite is run to exercise
each program multiple times. Results from the tests are collected
and distributed automatically.

3-1

The section of the makefile responsible for recompiling and linking
your application, before you start using PureCoverage, looks like
this:

all: progl prog2

progl: progl.o shared.a
cc -0 progl progl.o shared. a

prog2: prog2.o0 shared.a
cCc -0 prog2 prog2.o0 shared. a

This section is used both for automated nightly builds and for
routine daytime builds. You can change it so that the nightly
builds run in PureCoverage mode while the daytime builds remain
unchanged. For example:

all: progl prog2

progl: progl.o shared.a
$(PURECOV) cc -0 progl progl.o shared. a

prog2: prog2.o0 shared.a
$(PURECOV) cc -0 prog2 prog2.o shared. a

Change the nightly compile command line from:

% make al

to:

% make PURECOV=pur ecov al

Do not change the command line for the daytime builds.

PureCoverage now collects coverage data for each test as the
applications run each night.
Using PureCoverage with test harnesses

When the programs are instrumented with PureCoverage, the
coverage data is automatically accumulated for each execution of
each program. PureCoverage generates the files pr ogl. pcv and

3-2 PureCoverage User's Guide

pr og2. pcv. You do not need to change the test harness to
incorporate the basic data collection from PureCoverage.

However, there are several reasons to consider changing the
harness:

= To control whether the coverage data is collected for each test
separately or for the entire test suite

= To discard coverage data from failed tests

= To send coverage data reports automatically when the test suite
is finished

Separating data for individual test runs

By default, PureCoverage accumulates coverage data for the
various executions of each program in the files progl. pcv and

pr og2. pcv. These files reside in the same directory as the
programs progl and prog2. As each session completes,
PureCoverage adds coverage data for that session to the
application’s default . pcv file. At the end of the test harness, the
files contain the cumulative coverage data for the entire test suite.

Note: PureCoverage . pcv files are often in existence at the
beginning of a test suite, as for example when they are left over
from the previous night’s run. If this is the case, PureCoverage
combines the existing data and the new data in the . pcv file.

To collect separate data for each test rather than accumulating the
data over multiple program runs, specify the option

-counts-fil e=<fil enane> in the environment variable
PURECOVOPTI ONS when running the application.

csh % set env PURECOVOPTI ONS -counts-fil e=progl.testl. pcv; \
progl < testl.input

sh $ PURECOVOPTI ONS=- counts-fil e=progl. testl. pcv \
progl < testl.input

You can also use the PureCoverage API to specify the name of the
output file. This is particularly useful when you want to get

When to Use PureCoverage 3-3

information about particular sections of a program. See Chapter 8,
“PureCoverage API,” for details.

Combining data from multiple program runs

Since coverage data is collected on a program-by-program basis,
the coverage data for the library shar ed. a is split between the two
programs. To combine the coverage data for the programs, you can
use the - ner ge option. For example:

shared. a

filel.o

testl.cand—m7mM file2. o

test 2.c share file3.o
the library
shared. a

Compile and— purecov cc -g testl.c \ purecov cc -g test2.c \

instrument the shared. a -o progl shared.a -o prog2
programs
Run the programs ——— progl prog2

progl. pcv prog2. pcv

Merge the —pur ecov - merge=bot h. pcv \
instrumented progl.pcv prog2. pcv
files

You can use the Viewer to examine bot h. pcv. It shows the
combined data for the shared portion of the code. To open the
Viewer, use the command:

% purecov -view both. pcv

Note: You do not have to use the - mer ge option if you plan to
examine the data in the Viewer. You get the same results with the
command purecov -view progl. pcv prog2. pcv. If, however, you

3-4 PureCoverage User's Guide

have a large number of files and plan to run multiple Viewer
sessions, using the - mer ge option is more efficient.

You can use the - mer ge option to combine coverage data for
separate test cases that were stored separately. For example:

%pur ecov - nerge=tests. pcv testl.pcv test2. pcv test3.pcv

How PureCoverage discards data

Suppose that the compilation fails and that your test suite runs
tonight’s version of pr ogl but last night’s version of pr og2, so that
some of the shared code is from tonight and some is from last
night. PureCoverage tracks the version of each program
internally, using an object-code checksum scheme to detect
whether the code has been changed.

Before combining sets of data for an object file, PureCoverage
looks at the checksums of each version of the object file that is
associated with a set of data. If the checksums match,
PureCoverage treats the sets of data as generated from the same
version and combines them. Otherwise, it uses the newer data and
discards the older data. This way, when you examine the results
for shared code, you can be sure you are seeing only valid data.

PureCoverage merges or discards data on an object-file basis. If
you change one part of an application, and then recompile and
make additional runs, PureCoverage discards data only for the
files containing changed code and continues to accumulate data
for the rest of the application.

If PureCoverage discards data when you merge . pcv files, it prints
a warning:

Pur eCoverage 4.4 Sol ari s 2, Copyright 1994-1999 Rational Software Corp.
PureCoverage |icensed to Rational Software Corp.

War ni ng: sonme dataignored because they were from ol der versions.
Check the Runs column in the Viewer for each file to note the
number of runs for which the data has been collected. If the Runs
value differs from file to file, either data for multiple applications
sharing some code has been merged together, or data has been

When to Use PureCoverage 3-5

discarded for earlier runs of a changed file included in the
application.

You can display columns in the Viewer that show you the dates of
the oldest and newest data for each directory and file; see
“Optional columns” on page 5-4. This is often helpful when the
Runs figures differ from file to file.

How to force PureCoverage to merge data

You can use the - f or ce- mer ge option to force PureCoverage to
accumulate data even when it appears to be from different
versions of the program. This is useful if you build into your
program timestamps or other data that varies from one
compilation to the next. In these cases, you know that the
instructions and line-numbers are unchanged between
compilations, and that you can safely merge the results. For
details, see “An option for merging” on page 7-15.

Note: When PureCoverage computes checksums, it ignores the
timestamps that the compiler automatically inserts into object
files.

Unless you are absolutely certain that the two versions were both
built from precisely the same source, you should avoid using the

- f or ce- ner ge option. Otherwise, you can end up with
meaningless data.

Discarding data from failed tests

PureCoverage cannot tell if a run of your program succeeded or
failed. By default, PureCoverage accumulates the data for each
run.

To discard data from failed test runs, you can:

= Discard data using the test harness

= Discard data from within the test program

3-6 PureCoverage User's Guide

Discarding data using the test harness

When a given test finishes and your test harness determines
that the test has failed, the test harness can delete the
appropriate . pcv file. This prevents PureCoverage from
accumulating data from the failed tests. This is useful if you
are keeping separate data for each test case.

To discard data using the test harness, you can change your test
script from this:

#!/bin/sh
if test_program
then

echo "test passed!"
el se

echo "test failed!"
fi

to this:

#! / bi n/ sh
if test_program
then
echo "test $nane passed!"
nmv test_program pcv $nane. pcv
el se
echo "test $nane failed!"
echo "cl eaning up coverage data...."
rmtest_program pcv
fi

At the end of the test suite, you can view the coverage data for a
single test, t est 1:

% purecov -view testl.pcv
or you can see the combined results of the passing tests:
% purecov -view *.pcv

You can use the - run-at - exi t option to provide an alternate
method of preventing the accumulation of data from failed tests.
This method has several advantages: It requires no change in the

When to Use PureCoverage 3-7

test harness, and the exit script runs only with the version of the
test program that has been instrumented by PureCoverage. See
page 7-14 for details about this option.

Discarding data from within the test program

If you do not collect separate data for each test, you can modify the
programs to use the PureCoverage API so that data for the failed
tests is discarded.

For example, you can use pur ecov_di sabl e_save() to disable
saving data when a test program detects a failure condition. Or
you can call purecov_set_fil enane("pass. pcv") right before a
successful exit to arrange that data for passing tests ends up in
pass. pcv while all other data ends up in the default file.

You can even choose to discard coverage data for only the failed
portion of your program, and to retain the data for the rest of the
run. See Chapter 8, “PureCoverage API.”

Exporting data

Once PureCoverage has collected the data, you can convert it to
PureCoverage export format. To export data to a file, use the
syntax:

% purecov -export=<fil enane> progl. pcv prog2.pcv prog3.pcv...
To supply export data to a script for processing, use the syntax:
% purecov -export prog.pcv | <report_script>

See also “- export ” on page 7-17 and Appendix B, “Export
Format.”

3-8 PureCoverage User's Guide

Running report scripts

Report scripts let you process PureCoverage data for viewing in a
variety of plain-text formats.

PureCoverage comes with a set of ready-to-use report scripts. You
can use them just as they are to generate reports, modify them, or
use them as models for your own scripts.

PureCoverage’s ready-to-use report scripts provide the following
reports:

= An overall summary report similar to the information
displayed in the Viewer: pc_summary

= A report about files that have coverage below a specified
minimum percentage: pc_bel ow

= A low-coverage report sent by e-mail to the person who last
modified the insufficiently tested files: pc_enmi |

= A conversion of the coverage information into a form suitable for
import by various spreadsheet programs: pc_ssheet

= A report listing files for which coverage has changed: pc_di f

= A comparative summary of PureCoverage data from two nightly
builds: pc_bui | d_di f f

= An annotated source text file: pc_annot at e

= A report showing the output of di f f, with PureCoverage
annotations, for modified source code: pc_covdi f f

= A report identifying the subset of tests required to exercise
modified source code: pc_sel ect

For a detailed description of these reports and their syntax, see
Chapter 6.

To write your own scripts, see “Custom reports” on page 6-15.

The PureCoverage report scripts are located in the directory
<pur ecovhone>/ scri pts. To run scripts from a shell or makefile,
you can include this directory on your $PATH, make symbolic links

When to Use PureCoverage 3-9

from / usr/ | ocal / bi n to the script, or simply invoke the scripts by
absolute pathname.

You can also run the report scripts from within the Viewer. Select
Run Script from the File menu. This opens the Script dialog:

Press and hold right mouse
button here to select from Enter arguments here and click Ok

the script selection list

|

PuRsEss gaped | ,,_.m;.. _.||
_ox | cancal |

Select the script name from the script selection list. Enter any
arguments, being sure to escape any character that has a special
meaning to the shell. The script works on the data files currently
being viewed, and shows the adjustments that are currently
displayed.

The Script Output window displays the results:

—'| PureCoverage: Script Output —— poc_summary 2 J|
File Help
&
PureCoverage Summary Report Fri Jul 12 12:14:59 POT 1996 Page
File? fusr/homespat/exanple/hello_world,c
Furcs Funes Times Lines Lines Line
Function Mame Uzed Used? Called Unused Used Used
##¥ hello_world,c total s 2 EEX 3 E EE
dizplay_mez=zage 0 2 0 0
main 1 1 4 a0
dizplay_hello_world 1 0 2 10
The command produced 12 lines of output,
i
] [=

3-10 PureCoverage User’'s Guide

You can also run custom scripts in the Viewer, provided that they
use st di n as the source of their export data. Install your custom
script in the directory <pur ecovhonme>/ scri pts. The next time you
start the Viewer, the custom script name appears in the Script
dialog, where you can select it.

To run the pc_di ff or pc_bui | d_di ff script from the Viewer, use
“-” (for st di n) as one of the arguments, and the name of the file to
be compared as the other. For details, see “Differences report” on

page 6-5 and “Build differences summary report” on page 6-6. You
cannot run the pc_covdi f f script from the Viewer.

A report script that you run from the dialog produces output in the
Script Output window that is similar to the output when you
invoke scripts using the command:

% purecov -export prog.pcv | <report_script>

To save a report, select Save as . .. from the File menu in the Script
Output window.

Using PureCoverage with other Rational Software products

You can easily use PureCoverage with other Rational Software
products such as Purify, and ClearDDTS.

Note: The instruction sequences that PureCoverage inserts
during instrumentation are incompatible with the instruction
sequences inserted by Quantify, Rational Software’s performance
analysis product. You cannot use PureCoverage and Quantify at
the same time.

Using PureCoverage with Purify

PureCoverage is designed to work closely with Purify, Rational
Software’s run-time error detection application. Use
PureCoverage with Purify to improve coverage for your test cases
while verifying that the tests do not have memory access errors or
memory leaks. PureCoverage identifies the parts of your program
that have not yet been tested and Purify'd.

When to Use PureCoverage 3-11

To use PureCoverage with Purify, add both product names to the
beginning of your link line. Include all options with the programs
to which they refer. For example:

% purify <purifyoptions> purecov <purecovoptions> \
cc -g hello_world.c -0 hello_world

For information about the order in which the Purify and
PureCoverage options are applied, see “PureCoverage option
processing” on page 7-4.

When you run your program, you see the Purify banner and the
PureCoverage banner. Purify reports memory access errors and
memory leaks as the program runs. You can examine test coverage
data after the program terminates. You can also open the
PureCoverage Viewer from the Purify Viewer by clicking the
PureCoverage icon E in the toolbar.

Using PureCoverage with ClearDDTS

If ClearDDTS, Rational Software’s defect-tracking tool, is
installed at your site and in your path, you can start it directly
from the PureCoverage Viewer. Click the ClearDDTS icon @ in
the toolbar or select File a Bug Report from the File menu.

3-12 PureCoverage User’'s Guide

PURECOVERAGE USER'S GUIDE

Customizing Coverage

This chapter discusses two ways of customizing coverage:

= Excluding libraries, directories, and files from coverage

= Adjusting coverage on a line-by-line basis

Excluding libraries, directories, and files from coverage

This section tells you how PureCoverage collects coverage data for
different types of libraries. It also explains how you can customize
coverage by excluding libraries, directories, and individual files.

Coverage for libraries

PureCoverage provides different coverage information for
third-party, shared, and system libraries.

Coverage for third-party libraries

The data that PureCoverage collects includes coverage data for
third-party libraries. The degree of detail available depends on
how the library code is compiled. Typically, debugging data is not
available for third party libraries. Therefore, PureCoverage
accumulates only function-level summary data. Even when the
code is compiled with debugging data, source code is not usually
available, and so the Annotated Source window cannot display it.

Coverage for shared libraries

PureCoverage collects data for shared libraries in the same way as
for other code. It records coverage at the function level for code
without debugging data. It also collects coverage data at the line
level when debugging data is available.

41

Coverage for system libraries

The coverage data for system libraries such as | i bc and | i bmis
usually low and often meaningless. By default, PureCoverage does
not collect coverage data for system libraries in standard directory
locations.® PureCoverage accomplishes this with excl ude
directives in the default . purecov and . pur ecov. <pl at f or n» files.

Customizing data collection

You can use the excl ude directive to disable coverage insertion for
files and directories. This is useful for avoiding instrumentation of
files for which you do not need coverage data, such as system
libraries. By excluding such files, you also improve run-time
performance.

Excluding coverage by filename or directory

PureCoverage reads the excl ude directives from the . pur ecov and
. pur ecov. <pl at f or n» files at build-time. PureCoverage looks for
these files in:

= The current directory

= Your home directory

= The <pur ecovhone> directory

These files contain directives such as:

exclude /usr/lib

This directive disables coverage instruction for files whose
pathname begins /usr/lib,suchas/usr/lib/libc.a.

To see which files are excluded from instrumentation by default,
look at the . pur ecov and <pur ecov. pl at f or > files. You can

1. PureCoverage instruments libraries even when they are excluded, but the
instrumentation is only a partial instrumentation, required to maintain the
necessary registers. The overhead for partial instrumentation is minimal.

4-2 PureCoverage User's Guide

change these files and re-link your application to include coverage
data for any system libraries of your choice.

Note: Since excl ude directives are read at build time, you need to
re-link your program for new directives to take effect.

PureCoverage creates canonical versions of all pathnames by
expanding all symbolic links, so that the same file does not appear
under multiple names in the coverage data. The excl ude
directives must match the canonical nhames; excl ude directives
that refer to the symbolic link names do not work.

This is especially an issue when your program obtains site-wide
libraries from a remote file system via a generic pathname that is
a symbolic link to a specific installation directory. The best way to
handle this problem is to use wildcards (* or ?) in the excl ude
directive for the root part of the pathname.

For example, you can find the real name of the library you know
as/usr/site/lib/libdrivers.abyexamining previously
collected coverage data where the library was not excluded, and
use that full name:

exclude /nfs/u46/site/releases/3.0/1ib/libdrivers.a
or use wildcards:

exclude */1ib/libdrivers*

You can also omit the entire leading pathname and exclude object
files and libraries by unqualified names (containing no “/ "), such
as:

exclude |ibdrivers*

Excluding a file or library in your program does not remove
previously collected data from any . pcv files. No new data will be
collected for the excluded files. To eliminate the old data, remove
the . pcv files.

Customizing Coverage 4-3

Excluding coverage by source filename

You can exclude files by source name, but this is not
recommended, because there is no way for PureCoverage to know
which object files to update when source name excl ude directives
are changed.

If you change source name excl ude directives, you must manually
remove the instrumented versions of all object files that may
contain contributions from those source files. For example a C++
header file can easily generate code every time it is included,
affecting code in hundreds of object files. Or you can rebuild your
program once with the option - f or ce- r ebui | d to force all files and
libraries to be re-instrumented.

Adjusting coverage on a line-by-line basis
This section explains:

= What adjustments are

= What types of adjustments can be made

= How to apply adjustments to code manually and interactively
= How to save files with adjustments

= How to remove adjustments interactively

= Adjustment file format

= Strategies for using adjustments

Adjustments

Actual coverage data is the basis for PureCoverage’s statistical
and annotated source code displays. The displays, by default,
reflect data for all code that PureCoverage reviews.

At times, however, the displayed information is more useful if you
adjust the scope of coverage to exclude specific lines. For example,
if your program contains code that is logically unreachable, or
extremely difficult to reach, PureCoverage highlights the

4-4 PureCoverage User's Guide

unreached code as untested and includes it in the statistics as
unused code. For practical purposes, this can be misleading.

PureCoverage lets you mark source code that is difficult or
impossible to reach. This keeps it from being displayed as
untested and counted as unused code.

Types of adjustments

You can mark lines with three types of adjustments:

= Deadcode adjustments indicate that the lines are impossible to
reach, even though the compiler has generated code for them.

= Tested adjustments indicate that someone has been able to reach
the lines, and that they worked correctly.

= Inspected adjustments indicate that someone has examined the
lines of code and concluded that they are correct.

All three types of adjustments apply to lines, so you must compile
with the - g debugging option if you want to use the adjustment
feature.

You can mark adjustments in two ways:

= Manually, using your text editor.

= Interactively, using the Annotated Source window. (See
page 4-10.)

Marking adjustments manually

To mark adjustments manually, embed adjustment directives

as comments in your source code as you edit it. You can
subsequently tell PureCoverage to extract the directives and apply
them in calculating coverage data.

Two styles of comments are available: single-line comments, each
of which affects one line of code, and block comments, which
indicate the beginning and end of an adjusted block of lines. Each

Customizing Coverage 4-5

comment consists of the keyword pur ecov followed by a colon (3),
and then the type of adjustment. The complete set of comments is:

Comment Meaning
/* purecov: deadcode */ The indicated lines are not reachable, even
in theory.

/* purecov: begin deadcode */
/* purecov: end */

/* purecov: tested */ The indicated lines have been tested by
someone, at some point, and should be

/* purecov: begin tested */ considered as working.

/* purecov: end */

/* purecov: inspected */ The indicated lines have been through
some kind of code inspection or review, and

/* purecov: begin inspected */ are believed to be correct.

/* purecov: end */

For example, the following line is marked as deadcode:

printf("bar!\n"); /* purecov: deadcode */

If you use begi n and end pairs, the adjustment applies to the lines
containing the comment, as well as all lines in between.

The begi n and end pairs do not nest, regardless of whether they
are the same type of adjustment. It is not necessarily an error for a
begi n to exist without a matching end: Everything in the file after
the begi n is adjusted.?2 However, a warning that there is no
corresponding end appears on the output.

Directives are recognized wherever they occur, even if they are not
in comments.

2. When there is no explicit end, PureCoverage uses the line of the EOF as the
missing end line. Note that if the file grows, this adjustment still extends only to
the old EOF unless you extract the adjustments from the file again.

4-6 PureCoverage User's Guide

If there is no code on an adjusted line, the adjustment has no
effect on the coverage data, so there is no danger in something like
this:
/* $Log: nyfile.c,v $

* Revision 2.54 1999/01/16 12:32:02 frodo

* added "purecov: deadcode" directives
*/

Be aware, however, that PureCoverage also suppresses a line like
this:

printf("/* purecov: deadcode */\n");

Extracting adjustments from source files

PureCoverage supports the - ext ract option for use on source
files:

purecov -extract <sourcefile> [<sourcefile....>]

This option extracts all adjustments from the source files and
stores them in ~/ . pur ecov. adj ust .

Note: PureCoverage extracts adjustments from an individual file
automatically when you open the Annotated Source window for
that file. To extract adjustments from all files referenced in the
PureCoverage Viewer, you can use the Viewer’s Adjustments
menu. Or use the command pur ecov -extract *.c before opening
the Viewer.

You can use the - extract option with two or more files, for
example:

purecov -extract foo.c bar.c

The adjustment data for both files is stored in your

~/ . pur ecov. adj ust file. If you run the extract option on the same
file twice, the newer version of the ~/ . pur ecov. adj ust file
replaces the older version.

Customizing Coverage 4-7

The adjustments should be extracted each time the source file is
modified. You can do this automatically by adding the - ext r act
option in the makefile as part of the cc - c step.

Whenever PureCoverage extracts adjustments, it outputs a short
summary of the extraction process. For example:

% purecov -extract bimc

Updating adjustments for /canonical/path/to/bimc:
23 lines of dead code
42 manual ly tested lines

Viewing adjusted displays

When you open the PureCoverage Viewer, PureCoverage applies
the adjustments in ~/ . pur ecov. adj ust to the display. To make
sure the adjustments are current, select Extract adjustments from all
source files from the Viewer’s Adjustments menu.

Note: The adjustments are always current if you include the
-extract option in your makefile.

The adjusted Viewer display

The three adjustment types have different effects on the
ADJUSTED LI NES information in the Viewer display:

= Marking a line t est ed moves it from the unused column to the
used column, with a corresponding change in the used%
statistics.

= Marking a line i nspect ed has the same effect on the Viewer
display as marking it t est ed.

= Marking a line deadcode removes it entirely from the
ADJUSTED LI NES statistics, as if it did not exist. The number in
the unused column is decremented by 1, with a corresponding
change in the used%column but no change in the used column.

You can display additional columns in the Viewer to see more
information about adjustments. Use the Select columns item from
the View menu. See “Using the Viewer View menu” on page 5-7.

4-8 PureCoverage User's Guide

All lines in —

function bar
were marked
deadcode

If you mark all lines in a function deadcode, PureCoverage still
counts the function as an unused function, but treats it as if it had
no lines in it. The unused and used columns for FUNCTI ONS list it as
dead.

= T 1
File Virw Aclee Rius e nis Halp
O/ 0FEETIeED
Sard ire arder! AMT]INS POULETEN LTHES [5]
Ad kgl urenreed L e Fure Calle uressd w=sd umsell urensed umed zesdl bxbal
® Tckal Coarsga 2 2 &m f £ ggx| 2 |2
B o T oo L] 3 B ¥ [7
= resi_hie] b 1 2 2 e E B Bal z
direlmy ey 0| urmsed -] 0 f 7]
ki 1 1 e 1 []
i bar 1] TS] [T] 1] 1] 2
B el rd e Teoe 1d 1 sl o T loox]

_,14 T

If you mark all lines in a file deadcode, the file still appears in the
Viewer statistics, but PureCoverage treats the file as if it
contained only functions with no lines in them.

The adjusted Annotated Source window display

The different types of adjustments are marked DEAD, TEST, or | NSP
in the Hi t s column of the Annotated Source window.

Likewise, each adjusted line is marked D, I, or T in the
adjustments columns:

= Dfor deadcode
= | forinspected
= Tfortested

A lowercase d, i , or t indicates an adjustment to a block of lines.

Customizing Coverage 4-9

Foroisisd Smrce

Adjusted line

e o L R R ‘r:m;.r:a:.

IF dorge == 13
dimleubel o s i
=3

dimlsiramealagellll: & precoy: rapscted &7
P
1

waid
el b Lo

kP Halla. Hor e "l
b

wvaid

gl e gL
char gz

Adjusted line _: E;: iy rr-i"'ﬁ. I+:|:w. i M purgces: bwisd &
AN e | Teiled
Adjusted block F e [ek
(including g | | En ki, b Pt K [
4]

unnecessary

adjustments; Ml snemed | P urened | Goio i | Pt |
see page 4-12) o P e P

You can turn on highlighting for any type of adjustment through
choices in the Annotated Source window View menu. In addition,

you can change the highlight colors for the different types by

customizing your ~/ . pur ecov. Xdef aul t s file.

Marking adjustments interactively

In addition to making adjustments manually in your source code,
you can make adjustments interactively in the Annotated Source

window.

4-10 PureCoverage User's Guide

To adjust code in the Annotated Source window, click one of the
three adjustment columns (D, |, or T) next to the line you want to
adjust. Note that the cursor changes to a mouse icon when you
move it over the adjustment columns.

Adjustment columns

Prrploeer gt Srpckabed Speres — rea bl jaop Sdpgied poesrems 1
P R |

PureCoverage appends adjustment directives as comments to the
right of code lines, for example: / * purecov: inspected */.An
adjustment directive automatically replaces any previous
adjustment to the line.

Each adjustment is effective immediately. PureCoverage updates
both the Annotated Source window and the statistics in the
Viewer. It does not re-sort the Viewer display, however, but only
changes the Sorting order to Unsorted:

g/ |veE

Sorting order:
Unsorted

| Total Coverage
| fusrshone/patdexanples
*| new_hello,c

To re-sort the display, select Select sorting order from the View menu
in the PureCoverage Viewer.

Note: You cannot use this interactive method to mark FORTRAN
dialects that require all comments to exist on a separate line. You
can, however, change the comment style (to C++// -style
comments, for example) by editing your ~/ . purecov/ . Xdef aul t s
file.

Customizing Coverage 4-11

Unnecessary adjustments

Adjustments are appropriate only for lines that meet two
conditions: They must contain code, and they must be unused. If
you mark an adjustment for a line that does not meet these
conditions, PureCoverage highlights the adjustment columns to
indicate that the adjustment is unnecessary. Other than the
highlight, marking these lines has no effect.

Using begi n and end comment pairs to mark multi-line
statements as blocks (see page 4-5) frequently results in
unnecessary adjustments. Marking multi-line statements
interactively, through the Annotated Source window, allows you to
avoid this.

Unnecessary4H : |-| | S P e e—— "J
adjustments L prisifs bl ;
d

To mark multi-line statements manually with individual
comments, mark the line that your compiler would annotate if the
line were used. Different compilers annotate multi-line
statements differently. See “Multi-line statements” on page C-2 for
examples.

Saving files with adjustments

To rewrite the current source file, including all adjustments you
added interactively through the Annotated Source window, and
the ~/ . purecov. adj ust adjustments file, select Save from the
Annotated Source window File menu.

Likewise, when you close the Annotated Source window,
PureCoverage asks you whether you want to save the
modifications you made. If you select Save and close window,
PureCoverage saves both the modified source file and the
modified ~/ . pur ecov. adj ust file.

Note: The items Save source and annotations as . . . and Snapshot in
the Annotated Source window File menu save a record of the

4-12 PureCoverage User's Guide

window display. They do not affect either the source file or
the ~/ . pur ecov. adj ust file.

Removing adjustments in the Annotated Source window

Remove an adjustment by clicking the D, I, or T to the left of the
line.

You can also remove an adjustment by selecting a line and
pressing the space bar. To select a line, click on the number; use
the arrow keys or the j and k keys; or enter a line number in the
Go to line # field at the lower edge of the window. The selection
point shows which line is currently selected.

15 1 if {arge == 1}

16 1 dizplay_hello_world{}:
. . 17 else
Selection point I INSP displau_messagefarawll11: /% purecov: inspected %/
19 1 exitil:
20 1]r

PureCoverage deletes the entire comment, but only if the
comment'’s format is exactly identical to the format that the
Annotated Source window uses for interactive adjustments; see
page 4-6. Otherwise, PureCoverage inserts the word NOT.

For example, PureCoverage cannot delete the following manual
adjustment because it does not include a space between the colon
and the word deadcode:

/* purecov: deadcode */
Instead, PureCoverage modifies it as follows:

/* purecov: NOT deadcode */

Note: For information on how export mode handles adjustments,
refer to “The effect of coverage adjustments on export” on
page B-9.

Customizing Coverage 4-13

Adjustment file format

Refer to this description of the adjustment file format when you
are writing scripts that process adjustments.

Most users process adjustments with pur ecov - extract, or
through the Viewer and Annotated Source window. Direct editing
of PureCoverage adjustments, which are in ASCII format, is also
possible. For example, you can use a script to apply adjustments to
export data produced by an old version of PureCoverage.

If you have already annotated your code with markers that
another tool understands, you can process your code into a format
that PureCoverage can read without editing all your source files.
For example, you can convert | i nt -style NOTREACHED comments
into PureCoverage deadcode adjustments.

Format description

All adjustment files must start with this line, exactly as shown:

Pur eCoverage Adjustnents File 1.0

The line must not contain any extra spaces or tabs. It must be the
first line in the file, and cannot have a comment at the end.

Each additional line in the file can be arbitrarily wide. Lines
beginning with a # in the leftmost column are comments. The
format of each non-comment line is:

<name> <t ab> <t i me> <t ab> <t ype> <t ab> <styl e> <t ab> <l i st of adj ust ment s>

where:

= <nane> is the canonical fullpath to the file containing
adjustments. This is exactly the form of the name that appears
in the Viewer.

= <time> is the update time of the adjustments for that file as an
int (UNIXtine_t).

= <type> is deadcode, t est ed, or i nspect ed.

4-14 PureCoverage User's Guide

= <styl e>is either an uppercase L, indicating that the adjustment
came from a single-line adjustment, or an uppercase B,
indicating that the adjustment came from a block-style
adjustment.

= <list of adjustnents>is a listof single line numbers or
ranges of lines, each separated by a space; for example,
4 10 15-23.

If there are multiple entries for a single file, PureCoverage uses
all entries with times matching the most recent time given for that
file; it discards the others. It also discards incorrectly formatted
lines (or sometimes only portions of them). Depending on how you
are reading the file, PureCoverage displays errors either in a
dialog or on st derr.

Strategies for using PureCoverage adjustments

The PureCoverage adjustment feature requires you to adopt an
appropriate strategy for adapting it to your own situation. This
section raises considerations that can influence your use of the
feature, and suggests two possible usage models.

Adjustment usage considerations

To use the PureCoverage adjustments feature in the most efficient
and productive way, keep the following considerations in mind as
you develop your strategy.

Can you use adjusted coverage?

Does your development and testing methodology permit the use of
adjusted coverage?

If not, there is no requirement to use the adjustment feature.
PureCoverage still provides you with the actual coverage data.

Note: The Adj ust ed Li nes column header appears in the Viewer
by default, even if you do not use the adjustment feature. To
change the header, select the Select columns. .. item in the Viewer’s
View menu. Then select columns from the Actual Line Coverage

Customizing Coverage 4-15

category instead of the Adjusted Line Coverage category. Also, use
Select sorting order in the View menu to reflect actual coverage.

Who can make adjustments?

Who is permitted to insert adjustments into the code? What rules
must they follow?

Many answers are possible. Here is one:

Allow any developer to insert any type of adjustment into the code.
For t est ed and deadcode adjustments, the developer must also
add a comment nearby, indicating who made the adjustment,
when the adjustment was applied, and why the code is dead or
how it was tested. The exact placement of the comments depends
on your compiler. For example:

void ErrExit(char * nessage)

{
fflush(stdout);
fprintf(stderr, "\nError: %\n", message);
fflush(stderr);
exit(1l); /* pat 12/11/98: exit is a non-returning */
/* function, so this 'return’ line is */
} /* unreachable. purecov: deadcode */

void *SafeMalloc(int num_bytes)

{
int real_num_bytes = num_bytes < 1? 1 : num_bytes;
char *ptr = (char *)malloc(real_num_bytes);
if (ptr == NULL) { /* pat 12/11/98: | used */
/* dbx to force ptr */
/* null; this worked. */
ErrExit("out of memory"); /* purecov: tested */
}else {
memset(ptr, 0, real_num_bytes);
}
return(ptr);
}

I nspect ed adjustments also require a comment nearby including
the developer’s name, the date, and the name of another person
who has also examined the code and agrees with the placement of
the i nspect ed adjustment.

4-16 PureCoverage User's Guide

However, many groups that follow informal development
methodologies find this approach too strict. The main point is that
everyone in the group must mean the same thing when they mark
a line of code with an adjustment.

When are adjustments applied?

When are adjustments applied to the data, and how is the
database of adjustments maintained?

This question has many practical day-to-day implications. Its
answer depends on the model your development group follows, as
discussed in the next section.

Models for using PureCoverage adjustments

This section describes two models for using the PureCoverage
adjustments feature.

Full-usage model

The model that makes the most thorough utilization of the
adjustment features is one in which adjustments are always
applied by all the developers. This implies complete integration of
adjustments into the daily build system.

Under this model, you can modify the cc rule in your makefiles for
compiling source files to . o files. For example, instead of:

.C.0:
$(COMPI LE. c) -0 $% $<

You can use:

.c.o0:
$(COWPI LE. c) -0 $% $<
purecov -extract $<

The additional step says that whenever a C file has been changed,
not only must the file be recompiled, but the updated coverage
adjustments must also be extracted from it.

Customizing Coverage 4-17

Any time the PureCoverage Viewer is started, it loads the
adjustments from ~/ . pur ecov. adj ust , so coverage for the
program is always adjusted.

The advantages of this method are that adjustments are always
up-to-date, and that no effort other than the initial makefile setup
is required.

The disadvantages are that the makefiles must be modified
globally. Everyone has to agree to use this approach, which is not
possible if some groups are not using PureCoverage, or if some
developers do not have a license. It also requires a small amount of
extra time for extracting adjustments during every compilation.

Single-user model

This is a good way to operate if an individual uses PureCoverage
with adjustments in a group that, for any reason, does not want to
include PureCoverage in its makefiles.

Under this model, when you are examining coverage data in the
PureCoverage Viewer, select Extract adjustments from all source files
from the Adjustments menu. This applies all current adjustments
to the display.

You can then add appropriate adjustments to the source files
interactively as your analysis proceeds. You can save the adjusted
source file and the ~/ . pur ecov. adj ust file by selecting Save from
the File menu in the Annotated Source window.

The main difference between this model and the full-usage model
is that the user has to maintain the adjustments manually, since
the makefiles do not take care of it automatically.

Note: If you use scripts instead of the Viewer to analyze coverage
data, you can use the command:

purecov -extract *.c

to extract the adjustments from your source files.

4-18 PureCoverage User's Guide

PURECOVERAGE USER'S GUIDE

Using the PureCoverage Graphical Display

This chapter gives you a quick tour through features of the
PureCoverage graphical display that were not introduced in
Chapter 2 or Chapter 4.

PureCoverage Viewer

Menu bar

Toolbar

First summary row

Selected items

The PureCoverage Viewer displays coverage statistics for your
application.

e el

0 0 EETEE

St irg arder!
A ke e Lirse

13 PDUISTED |]S iy

P Lallr uressd weed el U sl upsdl batal

¥ loksl Lomraga] 4 =1 E 1 BT
S Tt o e § 4 BT [: 17 Wl

._..:
m

f i

Selecting items

Operations in the Viewer apply to the currently selected item or
set of items. The Viewer displays these items in inverse video.

To select an item, click left on it. To select a set of items, hold down
the left mouse button and sweep the items you want to select.

5-1

Using the toolbar

Click toolbar buttons to perform the following actions:

Expand selected Open Annotated
item or items Source window

Collapse Start ClearDDTS
Move to previous item selected (if installed at your
‘ item or items site and in your path)

If you prefer, you can hide the toolbar by selecting Hide toolbar from
the View menu, and perform all these operations in other ways.
For example:

= Next, Previous, Expand, Collapse, and Show annotated source are
available in the Actions menu.

To open the Actions menu,

click here
OR
ress and hold the
P You can type keyboard accelerators
right mouse button) ; .
. . instead of selecting menu items
in the summary display
| I —
Fie | View Gotons | Sdpsive s
——— Hriak -
adpntes uere Goilapes ail poed Lowd umem
| Tobal Doy ESESIRE Cin) i BEd
Or, to expand and = oot all i L
collapse items, and to I . -
open the Annotated i " Provins ElHeE .;3
Source window, click T T Gims | 7 ;R
these buttons [(o | s
| i 1 [F]

5-2 PureCoverage User's Guide

= Start ClearDDTS is available in the File menu.

To open the File menu, click here

[
Pl | vew Apioem AdpsTen

LE’iEﬂ
Wele pav s
Weie gapor] e I
B .
[T
Aunwsrpl [,
S GEsrdDTS [Sd. 000
— Unrdellib’
Exil

Note: To display the toolbar again, select Make toolbar visible from
the View menu.

Selecting Viewer columns

By default, the Viewer displays the following information:

This column This column shows how This column shows how many times
identifies many times each file each function was called; it is blank for
eachitem was used,; itis blank for items that are not functions

items that are not files

Fariirg ader) | ‘ FUHC TS SDILSTED LIS L]

Adpntes urened i Fure Cally uresed el ol urened wxndl upsdl babal
¥ Tokad Covraga] i ER £ i X 2=

| o T an L eans s f] 4 BT E 1¥F EX ?

= e o 10 1 1 1 e EH E B o

dizelry sy i] S L L1} u

ki 1 L=sd 1 [1]

W dinpley Fellz worid 1 [[§ LT o

M rena] [1] 1 [[E B 4

Note: Each time you run a program containing a file, the Runs
count for the file increases by one, even if the run did not use any
code in the file.

Using the PureCoverage Graphical Display 5-3

Functions

The columns labeled FUNCTI ONS give information for each file and
for each function, as well as Tot al Cover age information for your
entire application:

= For the entire application and for each file, the values show how
many functions were used or unused, and what percentage of
the total number of functions was used.

= For each function, a word in the appropriate column indicates
whether the function was used or unused.

Meaningless percentages are displayed as “- - ” instead of as a
number.

Adjusted Lines

The columns labeled ADJUSTED LINES indicate how many lines
in the entire application, in each file, and in each function were
unused and used, as well as what percentage of lines was used.

The heading ADJUSTED LI NES does not necessarily imply that
adjustments are present, but only that any current adjustments
are included in the statistics. The ADJS column indicates whether
adjustments are present, giving the total number of adjustments
applied for the entire application, for each file, and for each
function.

Note: The ADJS totals do not include unnecessary adjustments;
see page 4-12.

For complete information about adjustments, see “Adjusting
coverage on a line-by-line basis” on page 4-4.
Optional columns

The Viewer can display many types of columns in addition to the
defaults. To customize the display, select Select Columns from the
View menu, then select the columns you want to see.

5-4 PureCoverage User's Guide

To select a column for display, click the column description. A
punched-down selection button shows that a column is selected.

Selected for display—i

Selected for display—

Cial s oot | e, o
Cokmmm lodmpay
Mace lnneon Fuslem A b lrm CEvmEgE
| Murnheer of Tl 7 Unesead I Urised
—F Wumberof sessiors | Perseni umised | Perpank ersed
_| Ol I SEan 7 Used [T Ui
_| Memslsession 7 Paroenl ied I Peren med
—+ rumlionoalls _| Toml _| okl
_| Desccods
| Pereani s
Bl i | oo P P B Wi LT
| Uramed _| Humtss ol desdoode Bnee | Urnueed
| Percent seed | Humizer ol inepoc v lines. | Peront sreced
| sl | Wiz of lesied bres | e
| Pemant sl 7 Toal | Perant el
- il | "eimi
o | canoel|

The M scel | aneous settings include:

= Nunber of files, which adds a column indicating the number
of files in each directory and in the entire Viewer. This column
is blank for individual files and functions.

* Nunber of sessi ons, which controls the Runs column, showing
the number of runs for which data has been collected.

* O dest sessi on and Newest sessi on, which add columns
showing the date and time of the oldest and newest run for
which data has been collected for a given file or directory.

* Function cal I s, which controls the Cal | s column, showing
the number of times each function has been called.

For lines, you can display Act ual Li ne Cover age and Adj ust ed
Li ne Cover age. Act ual Li ne Cover age ignores adjustments. For
Basi c bl ocks, you can display only actual coverage.

In each category, you can display percentages and counts for
used and unused code. Selecting Tot al displays the total
number of used and unused lines or blocks.

Using the PureCoverage Graphical Display 5-5

The Funct i on adjustments are similar to those for lines, but
include additional options for displaying the number and
percentage of deadcode adjustments. If all lines in a function are
marked deadcode, the entire function is marked dead in the
used and unused columns.

The Adj ust ment s columns provide line-based adjustment
information for each item in the Viewer. The figures represent
the number of lines adjusted, not the number of source lines
marked. (To qualify as an adjustment, a line must both contain
code and be unused.)

Using the Viewer File menu

The File menu allows you to control the Viewer’s operation. This
includes reading and writing Viewer data files.

5-6 PureCoverage User's Guide

Open opens a dialog allowing you to select a . pcv file for merging
into the current Viewer. The new coverage data from the file is
merged with the data currently loaded in the Viewer.

Reload all allows you to reload the data for all the . pcv files
currently displayed in the Viewer. PureCoverage discards the
data from the files already being viewed and loads updated
coverage data.

This option is useful if you instruct PureCoverage not to reload
changed . pcv files, and not to inform you of future changes
when you are running tests while the Viewer is open (see

page 2-9).

Write .pcv file. . . opens a dialog box allowing you to save the
current coverage data in a new. pcv file for later analysis.

Write export file. . . opens a dialog box allowing you to save the
current merged coverage data in export format in an ASCII text
file.

Save as. . . opens a dialog box allowing you to save the current
contents of the Viewer display to an ASCII text file.

Run script. . . opens a dialog box allowing you to run one of
PureCoverage’s report scripts or a custom script. See page 3-10.

= Start ClearDDTS starts the ClearDDTS defect-tracking tool, if it is
installed on your system.

= Exit exits the PureCoverage program and closes all
PureCoverage windows.

Using the Viewer View menu
The View menu allows you to control the Viewer display.

= Select columns. .. allows you to display different types of data in
the Viewer. See “Optional columns” on page 5-4.

= Select sorting order opens a pull-right menu allowing you to control
how items in the Viewer are sorted. The Viewer identifies the
current sorting order in the upper-left corner of the summary
display.

= Set display style for names. .. opens the Nane st yl e set ti ngs dialog,
allowing you to specify how to display directory names,
pathnames, filenames and function names in the Viewer. For
C++ applications, you can choose to suppress class names,
argument lists, or operator prefixes.

You can also specify a minimum width for the names column,
which the Viewer maintains even when you make the Viewer
narrower.

= Vertical column separators opens a pull-right menu allowing you to
control how columns in the Viewer are separated.

= Hide toolbar/Make toolbar visible allows you to turn the toolbar
display off and on.

= Refresh display refreshes all open PureCoverage windows.

Using the PureCoverage Graphical Display 5-7

= Update ~/.purecov.Xdefaults modifies your ~/ . pur ecov. Xdef aul t s
file to reflect the current PureCoverage display.1

= Write view settings to . . . allows you to record the current graphical
display settings in a file of your own choosing. Comments are
not included.

Using the Viewer Adjustments menu

This menu contains one item, Extract adjustments from all source files.
Select it to extract adjustments from every source file named in
the Viewer, and to apply the adjustments to the Viewer display.

Using the Viewer Help menu

The Help menu gives you access to information that can be useful
while you are working in the PureCoverage graphical display:

= On Context turns the cursor into a question mark (?). Click the
guestion mark on the area of your PureCoverage display that
you want information about. The Help Outline dialog appears:

Click for related topics Click to close

| Helj: Fils commasls |

. I
Click for more————+ pss aisn Fabied pes
information
Thin Pl b e g i) Soegs to e
ol l i the resding e e iting af filea of
ao-iom kindr. It almo dscluder cossesh b

SN U Wi rooes,

- —
Enlargement of File
the location you e

clicked to open
the help window

1. You can also modify your ~/. purecov. Xdef aul t s file manually using your
editor. The defaults apply the next time you start PureCoverage. The file uses
typical . Xdef aul t s file format. For more information about editing an . Xdef aul t s
file, see your X Window System Users Guide.

5-8 PureCoverage User's Guide

The remaining items return specific information:

= On version reports on your version of PureCoverage.
= On license displays a copy of the Simple License Agreement.

= PureCoverage overview gives you a quick introduction to the
PureCoverage graphical display.

= Release notes displays the current README file, containing
supplementary PureCoverage information.

= Bug report tells you how to file a bug report.

Annotated Source window

The Annotated Source window displays a selected source file with
line-by-line coverage data. You can use this window to make
coverage adjustments to the code, but not to change the code itself.
See “Adjusting coverage on a line-by-line basis” on page 4-4.

For the adjustment information displayed in this window, see
“Viewing adjusted displays” on page 4-8.

Number of times

the line was used Source code

Frare ey v] lmmarew — el ln e ld o | Bl pri vl rraged [Bed mm byt

Selection point ——| ms

Highlight by - L} _
default shows
uncovered lines

of code ,
Navigation = || | I
buttons —— || s s | Mo iomana | G i | Pt |
and fields A P p e s

Using the PureCoverage Graphical Display 5-9

Using the Annotated Source File menu

The File menu allows you to control operations in the Annotated
Source window.

= Save rewrites both the current source code file, including all
adjustments displayed in the Annotated Source window, and
the ~/ . pur ecov. adj ust file.

= Save source and annotations as . . . opens a dialog box allowing you to
save the current display, including line numbers and hit counts,
to an ASCII text file. This file cannot be compiled. In content and
format, it is equivalent to the report that the pc_annot at e script
produces.

= Snapshot allows you to take a read-only snapshot of the current
Annotated Source window.

The Annotated Source window changes when you load new
coverage information. Snapshot allows you to compare
line-by-line coverage data while you test a file.

PureCoverage discards snapshots when you exit the program.

= Close closes the Annotated Source window, but does not exit
PureCoverage.

= Exit PureCoverage exits the PureCoverage program and closes all
PureCoverage windows.

Using the Annotated Source View menu

The View menu allows you to customize the display in the
Annotated Source window. By default, the window displays line
numbers and line counts, highlighting unused lines that have not
been adjusted.

You can turn the following items on or off:

= Show adjusted annotated source allows you to choose between
highlighting based on adjusted coverage and highlighting based
on actual coverage.

5-10 PureCoverage User’'s Guide

= Show line counts displays the Hi t s column, which shows how
many times each line of code has been executed.

= Show line numbers displays a column showing line humbers for
each line of code.

= Highlight unused lines displays all lines of untested code in inverse
video.

= Highlight used lines displays all lines of tested code in inverse
video.

The following menu items allow you to turn on highlighting for the
different types of adjustments:

= Highlight ‘purecov: deadcode’ lines

= Highlight ‘purecov: inspected’ lines

= Highlight ‘purecov: tested’ lines

You can assign colors to distinguish the types of adjustments by
modifying your ~/ . pur ecov. Xdef aul t s file.
Using the Annotated Source Help menu
The Help menu items are the same as those in the Viewer. See
“Using the Viewer Help menu” on page 5-8.
Navigating in the Annotated Source window

The navigation buttons and text fields are located along the
bottom edge of the Annotated Source window:

Type a string and

) Type the line number press RETURN to find
Click to move the)
. . and press the Return the first occurrence of
selection point to ;
the previous arou key to move to the the string between the
P group indicated line number selection point and the

of unused lines end of the file

Click to move the
selection point tO—]» Mol sriedd | Prev umsed |Goloised | | Fiad | ‘
the next group of

unused lines

Using the PureCoverage Graphical Display 5-11

To find each occurrence of a string in a file, begin searching at
line #1. Press the Return key after each match. PureCoverage
informs you when it finds no more matches.

The search is case-sensitive, and recognizes the wildcards ? (a
match for a single character) and * (a match for a series of zero or
more characters).

5-12 PureCoverage User’'s Guide

PURECOVERAGE USER'S GUIDE

Report Scripts

Report scripts allow you to format and process the data that
PureCoverage has generated. PureCoverage includes a
comprehensive set of report scripts that you can run as-is, modify
for your environment, or use as a starting-point for writing your
own custom report scripts.

PureCoverage report scripts

PureCoverage includes the following report scripts:

Report name Script Description Page
Coverage summary pc_sumary Produces an overall summary 6-2
report

Low coverage report pc_bel ow Reports low coverage 6-3
Low coverage mail report pc_enai | Mails a report to the last user 6-3

who modified insufficiently
covered files

Spreadsheet report pc_ssheet Produces a summary in 6-4
spreadsheet format

Differences report pc_diff Lists files for which coverage 6-5
has changed

Build differences pc_build_diff Compares PureCoverage data 6-6

summary report from two builds of an
application

Annotated source report pc_annot ate Produces an annotated source 6-8
text file

Annotated differences pc_covdi ff Annotates the output of di f f for 6-9

report modified source code

Selected tests report pc_sel ect Identifies the subset of tests 6-11

required to exercise modified
source code

6-1

The scripts are located in the <pur ecovhone>/ scri pt s directory.
You can add the directory to your path, or install links to the
scripts from a location such as / usr/ | ocal / bi n. See the
Installation & Licensing Guide for details. The scripts are written
in Perl, a version of which is included with PureCoverage in the
<pur ecovhone>/ PERL directory.

All scripts accept the - f or ce- mer ge and - appl y- adj ust nent s
options. For information about these and other options, see
Chapter 7.

For information about writing custom report scripts, see
page 6-15.
Coverage summary report

This report is an overall summary similar in format to the data
the PureCoverage Viewer displays. The syntax is:

% pc_sunmmary [-file=<name>...] [-force-nerge] \
[- appl y- adj ust ment s=no] [<prog>. pcv...]

The <pr og>. pcv files are the PureCoverage data files for the
programs to be summarized.

The - fi | e=<name> option controls which files appear in the
summary. PureCoverage includes only the files you specify. When
you do not specify a file, PureCoverage includes all source files
referenced by the . pcv files.

Note: If you do not specify a <pr og>. pcv filename, the script
accepts export-format data on st di n.

An overall summary report is printed showing the coverage
information for all the files listed on the command line.

6-2 PureCoverage User's Guide

% pc_sunmary a.out. pcv
PureCoverage Sunmary Report Wed Jan 13 12:50: 18 EDT 1999 Page 1

File: /tnmp/hello/hello_world.c
Funcs Funcs Tinmes LinesLines Lines

Functi on Narme Used Used%Cal | ed Unused Used Used%
** hello_world.c total ** 3 100% 0 12 100%
di splay_hel l o_world 1 0 3 100%
di spl ay_nessage 1 0 3 100%
mai n 2 0 6 100%

Low coverage report

This report lists files where the percentage of line coverage is
lower than a specified minimum. The syntax is:

% pc_bel ow [-force-nmerge] [-apply-adjustnments=no]\
[- percent =<pct >] [<pr og>. pcv...]

This report lists only files with line coverage below the specified
percentage. If you do not specify <pct >, PureCoverage uses 80% as
the threshold.

The <pr og>. pcv files listed are the PureCoverage data files for the
programs to be reported.

% pc_bel ow - percent =75 nypr og. pcv
60 [usr/ pat/wor k/ message/ utils.c
56 [usr/ pat/work/ dat abase/utils.c

Low coverage mail report

This report is an extension of the low coverage report. It takes the
low coverage report output, examines the RCS data for each file
listed, and determines who most recently modified the files. The
responsible developers are sent e-mail informing them that the
coverage on the file is too low. The syntax is:

% pc_emil [-force-nerge] [-apply-adjustnments=no]\
[- percent =<pct >] [<pr og>. pcv...]

Report Scripts 6-3

Mail is sent only for files that have a percentage of used lines
below <pct >. If you do not specify <pct >, PureCoverage uses 80%
as the threshold. If no files are below the requested percentage, no
mail is sent.

The <prog>. pcv files that you list are the PureCoverage data files
for the programs to be reported.

Developers receive mail listing all appropriate files:

% pc_emai | -percent=75 myprog. pcv

Date: Wed, 13 Jan 1999 07:45: 34 -0800

From terry@ational.com (Terry Programmer)

To: pat@ational.com

Subj ect: Coverage too | ow

/usr/ pat/work/ message/ utils.c is below 75% used |ines
/ usr/ pat/work/ dat abase/utils.c is bel ow 75% used |ines

Note: The PureCoverage e-mail script supports only the RCS
source control system. You can customize the script to support
your own source code control system.

Spreadsheet report

This report is a file which can be read into a spreadsheet program
for further analysis. The syntax is:

% pc_ssheet [-force-nmerge] [-apply-adjustnments=no]\
[<prog>. pcv...]

The <pr og>. pcv files that you list are the PureCoverage data files
for the programs to be reported.

The report format is tab-separated text. For each function, the
report includes the directory name, file name, and function name.
The numbers in the two columns on the right indicate the
percentage of uncovered lines and the total calls to the function.

6-4 PureCoverage User's Guide

% pc_ssheet prog. pcv

[usr/ pat/wor k/ nessage/ utils.c unused_function 100 O

[usr/ pat/wor k/ message/ utils.c heavily_used_function 0 1000
[usr/ pat/wor k/ nessage/ utils.c sonmewhat_used_function 0 25

[usr/ pat/wor k/ message/ shifty.c enpty_line 0 100
[usr/ pat/wor k/ nessage/ shifty.c enpty_line2 0 200
[usr/pat/work/database/ wutils.c unused_function 100 O

[usr/pat/work/dat abase/ wutils.c heavily_used_function 0 10000
[usr/pat/work/database/ wutils.c somewhat_used_function O 25

Note: When the number of total calls reaches 10,000, as for the
second function from the last, the counter becomes saturated; the
value stops incrementing.

Differences report

This report is useful for analyzing changes in coverage, typically
because some change to the program or test suite was made
between the time the old data was collected and the time the new
data was collected. The syntax is:

% pc_di ff [-appl y-adjustnents=no] ol d. pcv new. pcv

You must specify two filenames when you use the pc_di ff script.
One of the filenames, however, can be “- ”; this designates st di n as
the source of exported information:

% purecov -export new pcv | pc_diff old.pcv -
or

% purecov -export old.pcv | pc_diff - new pcv

Note: When you run the script from the PureCoverage Viewer,
you must enter “- " as one of the filenames.

The ol d and newfiles are the two PureCoverage data files to be
compared. The resulting report shows the files for which coverage
got worse or improved, and files which were added or deleted.

Report Scripts 6-5

% pc_di ff ol d. pcv new. pcv
Fil es whi ch got worse:

Fil es which inproved:
[usr/ sam wor k/ hash/ hash.c 71% changed to 96%
/usr/sam work/tests/ testHash.c 52% changed to 70%

Files which are new to new. pcv.
/usr/chris/work/graphics/ view c 100%
[usr/chris/work/graphics/ menu.c 100%
/usr/chris/work/graphics/ dial og.c 100%

Files from ol d. pcv which no |onger exist:
[usr/ pat/work/ dat abase/ utils.c 56%
[usr/ pat/wor k/ message/ shifty.c 100%
[usr/ pat/work/ nessage/ utils.c 60%
[usr/ pat/work/ nessage/ xmt.c 100%

Build differences summary report

This report shows how coverage has changed between builds of an
application. The syntax is:

% pc_build_diff [-apply-adjustnents=no] [-prefix=xXxXXX ..]\
ol d. pcv new. pcv

The script exports each . pcv file, takes a di ff of the resulting
data, and prints a summary of the changes. The differences are
calculated in terms of lines of code, so the script works only if the
- g option was used to compile.

Any prefixes are stripped from the left side of directory names so
that data from nightly build areas can be compared even though
the root directory of the builds varies from day to day. You can
specify multiple - pr ef i x arguments, but one prefix at most will be
applied to each directory name. The prefixes are applied in
left-to-right order.

Note: The prefix is a Perl regular expression anchored to the left
by a caret ().

As an example for pc_bui | d_di ff, suppose you do nightly
builds or tests in directories named using the scheme
/ usr/ home/ bui | ds/ dai | y. <dat e>, and that one program you

6-6 PureCoverage User's Guide

produce as part of this build is called nypr og and is built in the
nypr og subdirectory of the build tree. Suppose further that there
is some shared code used by this and other programs. So, in your
filesystem, you have:

[usr/ hone/ bui | ds/ dai | y. 960408/ mypr og/ mai n. c

[usr/ honme/ bui | ds/ dai | y. 960408/ mypr og/ appl y_patch. c
/usr/ hone/ bui | ds/ dai | y. 960408/ mypr og/ mypr og. pur e. pcv
/usr/hone/ bui | ds/dai | y. 960408/ shared/ strings. c

as well as other source files. You also have the corresponding trees
for other days on which you have done builds.

To compare coverage between the April 8 and April 9 builds, go to
the / usr/ hone/ bui | ds directory, and run:

% pc_build_diff -prefix=".*daily....... /"
dai | y. 96040{ 8, 9}/ nypr og/ nypr og. pur e. pcv

This generates the following report:

*** Reduced coverage *** Unused Change | Used% Change
shared/ strings.c 61 +10 | 75% -3
*** | mproved coverage *** Unused Change | Used% Change
nmyprog/ main.c 255 -3 | 70% 0
appl y_patch.c 103 -1 | 75% 0

*** New files *** Unused Used%

*** No | onger tested ***

In the command, which is written here in csh {}

syntax, the prefix . *dai ly....... / strips out the

[usr/ home/ bui | ds/ dai | y. <dat e>/ part of the filenames. (The
series of dots in this Perl expression matches the 7 characters of
date specifications such as . 960408.) The two . pcv files are then
specified. The Unused and Change columns are measured in lines,
so0 10 fewer lines of stri ngs. ¢ were tested in the Apr 9 build. This
works out to a decrease of 3% of the used lines. In mai n. c, 3
additional lines were used (3 fewer unused), but this is too small a
number to influence the %used figure.

Report Scripts 6-7

Note: You must specify two filenames when using the
pc_bui I d_di ff script. However, one of the filenames can be “-” to
denote that exported information is to be supplied via st di n.

Annotated source report

This report produces an annotated source listing for specified files.
The syntax is:

% pc_annotate [-force-merge] [-apply-adjustnments=no] \
[-fil e=<basenanme>...] [-type=<type>] [<prog>. pcv...]

By default, PureCoverage produces the annotated source report at
line granularity. You can specify -t ype=bl ock to see basic block
coverage instead.

The report annotates all files that match at least one of the
<basenanes> given in the - fi | e argument. If you do not specify
-fil e, the report annotates all files mentioned in the specified
. pev files.

The script compares the <basenane> to the end of file and path
names. For example, the <basenane> pr og. ¢ matches 1prog. ¢ and
2pr og. c. It also matches pat h/ prog. ¢ and / sone/ pat h/ prog. c.

% pc_annot at e hel | 0. pcv
nmai n()

1
1
1

print_hello(); print_hello(); print_goodbye(); print_goodbye();
}

|

|

|

|

| print_hello()
2 |
2 | printf ("hello!\n");
2 |

|

| print _goodbye()
2 [
2 | printf ("bye bye!\n");
2 |

6-8 PureCoverage User's Guide

This example shows the report when -t ype=bl ock.

% pc_annot ate -type=bl ock hell o. pcv

| mai n()
1 [A{
1 | print_hello(); print_hello(); print_goodbye(); print_goodbye();
1 +
1 +
1 I }
| print_hello()
2 [{
2 | printf ("hello!\n");
2 |
|
| print _goodbye()
2 [{
2 | printf ("bye bye!\n");
2 |

Annotated differences report

The pc_covdi ff script generates a source code differences report
that includes coverage information. This allows you to see the
coverage of the lines of code that you have just changed without
having to consider the coverage for the unchanged portion. The
syntax is:

% yourdi ff <name> ... | pc_covdiff
[- cont ext =<l i nes>]
[-format ={diff]|side-by-side| new only}]
[-1ines=<bool ean>] [-tabs=<stops>]
[-w dt h=<wi dt h>]
[-force-nerge]
[- appl y- adj ust ment s=no]
-file=<name> <file> pcv ...

The st di n for the pc_covdi ff script is a description in di f f (1)
format of the changes made to a file specified in <nane>. The value
for your di ff depends on the code management tool you are using.
If you are using RCS, for example, yourdi ff isrcsdiff.

Specify the same file for the - fi | e option. This script calls the
pc_annot at e report script, so you can use any form of the file
name that pc_annot at e recognizes. List the . pcv files that contain
the coverage data for the new version of the file. If you specify the
- f or ce- mer ge option here, the script passes it to pc_annot at e.

Report Scripts 6-9

You can use this script only on one file at a time. You cannot run it
from the PureCoverage Viewer.

The other options control the format of the output. There are two
output styles: di ff and sdi ff. In sdi ff style, the old and new
versions of the source are displayed side-by-side, with a column
between them indicating whether the lines were added, deleted, or
changed. In di ff style, the old and new are listed sequentially,
with code lines indicating what happened. The default is sdi f f .

The option - f or mat allows you to specify the style:

-format =di ff di ff style

- f or mat =si de- by- si de sdi ff style

- f or mat =new- onl y sdi ff style, but without the
“old” column

In both di ff and sdi ff styles, the tabs are stripped. Use the
-t abs option if your text editor normally expands tabs to a value
other than 8 character stops.

In both styles, you can request that additional context lines be
included in the output. The default is 2, but set it to 0 if you want
to produce output understandable to other tools that read di f f .

In sdi ff style, use the - 1i nes option (default TRUE) to indicate
whether line numbers should be included in the output.

In sdi ff style, you can use the option - wi dt h to specify the width
of each column of source. Normally, width is adjusted
automatically to accommodate the input. If you specify an explicit
value, the sources are truncated if they are too wide. Note that the
width is for each column of the source, not the overall width,
which includes other items such as coverage counts, the dividing
column, and line numbers, depending on the options that you use.

6-10 PureCoverage User’'s Guide

The following sample shows the use of the pc_covdi f f script.

% rcsdiff foobie.c | pc_covdiff -file=foobie.c -w dth=29 -1ines=no foobie.pcv

RCS file: foobie.c,v
retrieving revision 1.3
diff -r1.3 foobie.c

Change ad Version New Ver si on Usage
unsi gned | ong unsi gned | ong
{ { 2
15a16 > int result = 2
unsi gned | ong i; unsi gned | ong i;
if (argc > 1) { if (argc > 1) { 2
19c20 for (i=0; i < numele | for (i=0; (i < numel 5
if (MW_STR EQtab if (M_STR EQtab 3
21, 23c22, 25 printf("runni | printf("Proce 1
return((*tabl | printf("wal ki 1
printf("back | result = (*ta 1
> printf("back 1
} } 3
} }
} }
28c30 return(-1); | return(result); 2
} } 2
............... |nt| |nt| 5
48d49 printf("barsoom %\n <
printf("bimbam %\n printf("bimbam %\n 0
49a51 > printf("bang, bang! % 0
} 0
return(l); return(1); 0
Di spatchTable ny_cmds[] = { Di spatchTable ny_cmds[] = {
54a57, 58 > { "foo", foo },
> { "joe", foo },
{ "bar", bar } { "bar", bar }
} I

Selected tests report

The pc_sel ect script addresses the problem of selecting an
appropriate subset of tests to run in order to test a limited change
made to the code. Most of the time, it is too time consuming to run
the entire test suite after each change, so the typical practice is for
the user to update the master source code without running any of
the test suite. Then, as part of an overnight build process, the full
test suite is run and reported.

Report Scripts 6-11

There are problems with this practice, for example:

= If the update introduces severe problems, the rest of the
development group may be “stuck” while they wait for a repair.

= If several developers have made updates, it may not be clear
which code changes caused things to break.

= |If several developers have introduced bugs, one set of problems
may mask the other, causing a series of delays between the
initial update of the code and the eventual discovery of problems
introduced.

= When problems are eventually discovered, the developer may
already be involved in other changes, making it inconvenient or
difficult to stop and fix those problems.

The pc_sel ect script gives developers a way to run just that
subset of the test suite which is necessary to exercise the code
changes they have just made. It can greatly reduce the testing
time required, making it much more feasible to do the appropriate
testing before the code update.

Even though some test harnesses support the selection of an
arbitrary subset of the tests to run, they still do not address the
issue of determining just which subset of the tests is the
appropriate subset to exercise a given set of changes. The
pc_sel ect script addresses this problem. It assumes that:

= Your test harness supports specification of an arbitrary subset of
tests to run.

= Thereisasetof. pcv files available, one per testcase, that might
need running; and further that you have some way to determine
from the name of a . pcv file which testcase corresponds to it.

* You can identify which source files were modified.

= There is some way to determine for each source file the full set of
di f f output identifying the changes made since the coverage
data for each test was collected.

When pc_sel ect runs, it searches all the coverage files, and
identifies each coverage file that exercises any function that was

6-12 PureCoverage User’'s Guide

modified. The resulting list of coverage files is output. These can
then be converted into whatever form you need to run just the
corresponding tests from the test suite.

% <changed files> | pc_select [-diff=<rule>] \
[-canoni cal i ze=<rul e>] <file> pcv ...

The <changed fil es> list piped to pc_sel ect via stdi n should
consist of filenames, one per line, identifying each file modified
since the coverage data was collected. For example, if you have
been making the changes for the last 3 days, you can use a fi nd
command to produce the correct list, and then pipe the list into the
pc_sel ect command:

%find * -type f -ntime -3 -print | pc_select

The list of <. pcv> files on the command line should be the full list
of coverage data corresponding to the test suite. For example,

% /[usr/buil ds/ 951211/ tests/*. pcv

The -di ff <rul e> option is used to specify exactly how to obtain
the di f f output for each file. It is a generic Perl expression that is
applied (via eval) to each file on st di n in turn to obtain the di f f
output for each file. When the expression is evaluated, the
variable $fi | e contains the name as it was found on st di n, and
for convenience the variable $_ is also set to the same value.

Note: Since the shell and Perl use some of the same
metacharacters, it is very important to apply appropriate
guotation marks and escapes to make sure the correct program
parses the value.

The default value for the -di ff <rul e>is
-diff="*rcsdiff $file'’

which says to use rcsdi ff on each file to look up the changes in
the RCS data. Another example value is

-diff="'diff $file.original $file"”’

Report Scripts 6-13

which says to look for a file f 0o. ori gi nal from which the new
version of f oo is descended, then to use the standard di f f
program to calculate the changes.

Note: While the script can detect syntax errors in the
specification, it cannot detect various other problems, such as
reversing the order of the two files and argument errors to the
command which cause it to produce no output.

The - canoni cal i ze <rul e>is used in the case where the fullpaths
in the . pcv files do not match those of the files which were being
modified. For example, suppose that the name of the original
file.c when it was built for the overnight full test run was:

/usr/buil ds/951211/src/file.c

while the fullpath in your development area is now:

/usr/ hone/ pat/work/file.c

In this case, the pc_sel ect script looks for coverage information
for the file under the latter name, but does not find it because all
the information in the . pcv file is under the former name.

The - canoni cal i ze <rul e> is a generic Perl expression that is
applied (via eval) to each file in turn in order to determine what
name to use to locate coverage for it in the . pcv files. When the
expression is evaluated, the variable $f i | e contains the name as
it was found on st di n, and for convenience the variable $_ is also
set to the same value.

The default value of the - canoni cal i ze <rul e> is:

-canoni cal i ze=" chop(l ocal ($here)="pwd‘); "$here/ $file"

This converts the relative pathname to an absolute pathname,
using pwd to calculate the fullpath. For the example shown here, if
the filename is just the basename of the file, you can use:

-canoni cal i ze=""/usr/buil ds/ 951211/ src/ $fil e"

Note: While the script can detect syntax errors in this
specification, it cannot detect problems such as incorrect use of

6-14 PureCoverage User’'s Guide

Custom reports

automounter prefixes or specification of a fixed value instead of a
variable value.

You can use the PureCoverage export format to write your own
scripts to produce custom reports.

The PureCoverage export format is in ASCII and is used to
transfer coverage data to other programs. The export format
contains nested summary information about directories, files,
functions, lines, and blocks. For details, see Appendix B, “Export
Format.”

To create a custom report:

= Convert the appropriate PureCoverage data files to export
format. To obtain export data, use the command
purecov -export.See page 7-17 for details about the use of the
- export mode option.

= Read the export data and process it into the desired form.

A sample custom report script

This example shows how to write a simple report script onef unc
that prints the line coverage percentage for a specific function
within a program. The script syntax is:

onefunc <progranm> <function>

where <pr ogr an is the name of the program to search, and

<f unct i on> is the name of the function to display. The script
automatically appends the . pcv extension to the program name,
and it ignores the possibility of invalid parameters.

Report Scripts 6-15

The custom report script onef unc is shown here. You can use it as
a template for writing scripts of your own.

#! /usr/ | ocal / bi n/ perl

Usage: onefunc program function

Reports coverage for "function" which is used by "prograni.
Exanpl e: onefunc nyprog main

open(EXPORT, "purecov -export $ARGV[O0].pcv |");
whi | e (<EXPORT>) {
if (/~dif) { (key, Scurdir)
if (/~fil) { (key, Scurfile)
if (/~ful) {
($key, Scurfunc, $ign, $ign, $unused, $lines) =
split(/\t/);
if ($curfunc eq $ARGV[1]) {
$count = $lines - $unused;
$percent = ($count * 100) / $lines;
push(@mat ches,
sprintf("98d%Wb6 %%: %\ n", $percent, S$curdir,
$curfile, $curfunc));

split(/\t/); }
split(/\t/); }

}
}
cl ose(<EXPORT>) ;
print sort @mtches;

The basic script structure uses pur ecov to produce the export
data, and then extracts the function information and records it in
the array @mt ches. It uses sort to organize the data, in case the
function name is used more than once in the program.

The command line to pur ecov uses the - export option with
$ARGV[0] , the program name, to export data from the program you
specify when you run the script.

The whi | e loop has three major pattern-matching sections. This
report handles three different types of lines from the export data:
= The name of the directory containing the file

= The name of the file containing the function

= The name of the function plus the coverage information for the
function

6-16 PureCoverage User’'s Guide

The caret (*) in front of the keywords makes the patterns match
only at the beginnings of lines. For the file and directory lines, you
only need to record the name. For the function line, you also want
to record the line coverage data from $unused and $l i nes,
calculate the coverage percentage, and print function information.

When you run the script, you get coverage information for the
function you specify.

% chnod +x onefunc

% onefunc nyprog nyfunc
70% / home/ pat/dir1/filel.c:nyfunc

Report Scripts 6-17

6-18 PureCoverage User’'s Guide

Option tables

PURECOVERAGE USER'S GUIDE

PureCoverage Options

PureCoverage options let you customize PureCoverage operations.
By specifying build-time or run-time options in the link line or in
environment variables, you can control how your program is
instrumented and linked, and how data is collected. By specifying

options after running the program, you can choose how coverage
data is presented for analysis.

Build-time options Default Page
- al ways- use- cache-dir no 7-7
-aut o- nount - prefix /t mp_mt 7-10
-cache-dir <pur ecovhome>/ cache 7-7
-col l ector none 7-9
-forbidden-directories system-dependent 7-8
-ignore-run-tine-environnent no 7-6
-linker system-dependent 7-9
Run-time options Default Page
- aut o- nount - prefi x /t mp_mt 7-10
-counts-file %W . pcv 7-12
-fol I owchil d-processes no 7-12
-force-merge no 7-15
-handl e-si gnal s none 7-13
-ignore-signals none 7-13
-log-file stderr 7-11

- progr am name argv[0] 7-11
-run-at-exit none 7-14
-user-path none 7-10

7-1

Analysis-time options Default Page

- appl y- adj ust ment s yes 7-15
-force-nmerge no 7-15
-user-path none 7-10
Analysis-time mode options Page
- export 7-17
-extract 7-17
- mer ge 7-18
-view 7-18
Informational options Page
-print-home-dir 7-19
-version 7-19

Using PureCoverage options

PureCoverage option syntax

Each PureCoverage option is a word or phrase that begins with a
hyphen, for example, - f or ce- ner ge.
= The leading hyphen is required.

= PureCoverage ignores case, hyphens, and underscores in the
option name. For example, the option - f or ce- mer ge is
equivalent to - FORCE_MERGE and - For ceMer ge.

= For options that take a list of directories, use spaces or colons (:)
to separate directory names.

= Many options have default values. You can override these values
using the syntax - opti on_nane[=[val ue]] .

= Do not use a space on either side of an equal sign (=).

7-2 PureCoverage User's Guide

Using conversion characters in filenames

When you specify filenames for options such as -1 og-fi |l e and
-counts-fil e, you can include conversion characters that expand
to the program name or to the process id (pid):

Character Converts to

%V Full pathname of the program (/" replaced by “_").
%v Program name.

%p Process id (pid).

If the filename is unqualified (does not contain “/”), PureCoverage
writes it to the directory where the program resides. Qualified
filenames can be absolute or relative to the current working
directory. For example, if you specify the option

-log-file=./%.plog

PureCoverage writes the log file to the current working directory.
If the program is called t est , the log file is called . / t est . pl og.

PureCoverage option types
PureCoverage supports two types of options: boolean and string:

= Boolean options take the values yes or no.

= The value yes applies if you specify an option but no value. For
example, - f or ce- mer ge is equivalent to - f or ce- mer ge=yes.

= The default value for an option applies if you do not specify the
option at all.

= For the - appl y- adj ust nent s option, you must specify
- appl y- adj ust ment s=no to turn the option off.

= String options can be a string of any kind. If you specify an
option without an explicit value, the value is cleared.

For example, the option -1 og-fil e=./ pur ecovout routes
PureCoverage messages to the file pur ecovout in the current
directory. The option -1 og- fi | e without a value clears any
specification of a logfile.

PureCoverage Options 7-3

PureCoverage option processing
You can specify PureCoverage options in several locations:

* |n the environment variables PURECOVOPTI ONS or PURECPTI ONS
= On the link line

= On the purecov - vi ew, purecov - mer ge, Or pur ecov - export
command line

Specifying options in environment variables

You can specify PureCoverage options in the environment
variables PURECOVOPTI ONS or PURECPTI ONS. Values in PUREOPTI ONS
apply to PureCoverage, Purify, and Quantify software products.
Values in PURECOVOPTI ONS take precedence over values in
PUREGPTI ONS.

PureCoverage applies build-time options specified in environment
variables when it builds instrumented applications. Any
build-time options on the link line override build-time
environment variables.

PureCoverage applies run-time options specified in environment

variables when you run instrumented applications. The run-time
environment values in force when you run the program override

any values specified on the link line.

Note: If an option is specified more than once in an environment
variable, PureCoverage applies the first value. To add an
overriding value for the - og-fi | e option without changing other
options specified, use a command like:
csh % setenv PURECOVOPTIONS "-1log-fil e=new \

$PURECOVOPTI ONS"

ksh $ export PURECOVOPTI ONS="-1o0g-fil e=new \
$PURECOVOPTI ONS"

Using the PUREOPTIONS environment variable

You can use the PURECPTI ONS environment variable to set options
that apply to all users of PureCoverage, Purify, and Quantify

7-4 PureCoverage User's Guide

software products. PUREOPTI ONS is convenient for specifying
defaults that apply to all three applications.

For example, if your site has a central shared file that is sourced
by all users’ . cshrc or . profil e files, you can set
-cache-dir=/al ternate/dir in the environment variable
PURECPTI ONS to apply to all users.

Setting options for Purify and PureCoverage

When using Purify and PureCoverage together, you can use a
command such as:

% purify <purifyoptions> purecov <purecovoptions>\
$CC ...

In this case, both <puri f yopti ons> and <pur ecovopt i ons> are
used, as well as the values of the environment variables

PURI FYOPTI ONS, PURECOVOPTI ONS, and PUREOPTI ONS, in that order
of precedence. Where there are conflicting values, the first value
seen is used. A value in <puri f yopt i ons> overrides a value in
<pur ecovopt i ons>. These options override environment variables.

Specifying options on the link line

You can specify build-time and run-time options on the link line.
For example:

% pur ecov -cache-di r=${HOVE}/ pcache \
-al ways- use-cache-dir $CC ...

Build-time options apply to the PureCoverage build command
being run.

Run-time options are built into the executable and become the
default values for the instrumented executable. This provides a
convenient way to build a program with nonstandard default
values for run-time options. For example:

% purecov -force-nmerge $CC ...

PureCoverage Options 7-5

Using the ignore-run-time-environment option

You can use the -i gnor e-run-ti me-envi ronment option when you
build your executable to make sure that the run-time options you
specify remain in effect whenever the executable is run.

The -ignore-run-time-environnment builds into an executable all
the run-time options specified on the link line along with any
run-time options specified in the PURECOVOPTI ONS and

PURECPTI ONS environment variables.

When the instrumented program runs, PureCoverage ignores the
current option values set in environment variables in preference
to the built-in values.

Use the -i gnore-run-ti me-envi ronnent option when:

= You want someone else to run your program without their
run-time environment modifying your run-time option
specifications

= Your program is started automatically by another program and
you cannot set the environment variable for that program

* You have several instrumented programs running at one time
and you cannot specify options for each program

To find out what options are built into a PureCoverage
instrumented program, use:

% <pur ecovhone>/ pur ecov_what _opti ons <program nanme>

Note: Use the -i gnore-run-tine-environment option at build
time only. PureCoverage ignores this option if you specify it at run
time.

7-6 PureCoverage User's Guide

Using analysis-time mode options

When using the - vi ew, - export, - ner ge, or - ext ract mode
options, you can specify additional options on the command line.
These additional options have precedence over any options
obtained from the environment variables PURECOVOPTI ONS or
PURECPTI ONS for that operation.

The table beginning on page 7-17 lists the options that are
compatible with each mode.

Build-time options

Options for caching

To improve build-time performance, PureCoverage caches its
versions of all the libraries and object files used to build the
program. By default, files instrumented by PureCoverage are
written into the original file's directory if it is writable. If this
directory is not writable, PureCoverage writes into the central
cache directory.

If you need to manage disk space, you can safely remove the
cached files by using the script pure_renove_ol d_fil es.
PureCoverage rebuilds any shared libraries required at program
run-time. See page 2-12.

Option Default

-cache-dir <pur ecovhone>/ cache
This option sets the central cache directory for caching instrumented versions of
files.

- al ways- use-cache-dir no

This option forces PureCoverage to write all instrumented versions of files to the
central cache directory.

PureCoverage Options 7-7

Option Default

-forbi dden-directories system-dependent

i ® ®

You can use this option to specify a list of directories, each separated by a colon,
into which files are never written, even if the directories listed are writable. All the
subdirectories of forbidden directories are also forbidden. The default values are
system-dependent:

/lib:/opt:/usr/lib:/usr/5lib:/usr/ucb/lib:/usr/lang:/usr/local

/lib:/opt:/usr/lib:/usr/4lib:/usr/ucblib:/usr/lang:/usr/local

/lib:/usr/lib:/usr/local

7-8 PureCoverage User's Guide

Options for linker and collector

Option Default

-li nker system-dependent

®
® @

HPUX

HPUX

&

This option specifies the name of the linker for PureCoverage to invoke to produce
the executable. Use this option only if you need to bypass the default linker.

The defaults are:

/bin/ld

/usr/ccs/bin/ld

-col | ector none

This option specifies the name of the collector program to be used to sequence and
collect static constructors in C++ code. It is mandatory to set this option to the
name of the collector program if you are using the g++ compiler.

You can find the name of the collector program used by the g++ compiler with the
command:

% g++ -v foo.cc

If the collector program is
/usr/local/lib/gcc-1ib/sun-sparc-sunos4/2.1/1d
use the command:

% pur ecov - g++=yes -col | ector =\
/usr/local/lib/gcc-1ib/sun-sparc-sunos4/2.1/1d \
g++ foo.cc

Solaris 2 does not use a collector for C++ programs, so PureCoverage on Solaris
ignores this option.

PureCoverage Options 7-9

Run-time options

Options for file identification

Option Default

- aut o- mount - prefi x /tmp_mt

This option is used to specify the directory prefix used by the file system
automounter, usually / t mp_mt , to mount remote file systems in NFS
environments. Use this option to strip the prefix, if present, to improve the
readability of source filenames in PureCoverage reports.

If your automounter alters the prefix, instead of adding a prefix, use the syntax
- aut o- nount - pr ef i x=/t np_mt / hone: / hones to specify that the real file name is
constructed from the apparent by replacing / t np_mmt / home with / homes.

If you do not set this option correctly, PureCoverage may be unable to access files
on automounted filesystems. The automounter may not recognize their names.

-user-path none

7-10 PureCoverage User’'s Guide

This option specifies a list of directories to search for source code.

When searching for source code to build annotated source listings, PureCoverage
looks for the file in the full pathname specified in the debugging data, then in
directories listed in - user - pat h, and finally in the current directory.

PureCoverage can also use -user - pat h at instrumentation time to help resolve
source-code path names if the debugging data is incomplete or the files have been
moved. The resolved name is built into the executable and is used in the export
data and at analysis time.

The directory where the object file resides and the current working directory are
automatically appended to the end of the - user - pat h directory list to help find
source files with missing or incorrect directory names.

Option Default

- progr am nane argv[0]

This option specifies the full pathname of the instrumented program. Use this
option if ar gv[0] contains an undesirable or incorrect value—for example, when
your program is invoked by an exec call whose path differs from the argument it
passes as ar gv[0] to your program. In such cases, PureCoverage cannot find the
program file, and therefore cannot match addresses to function names.

-log-file stderr

If this option is not set, PureCoverage run-time messages are sent to the program’s
stderr stream.

If this option is set to a filename, PureCoverage run-time messages are sent to the
named file.

Sometimes it is more important that the PureCoverage instrumented application
run exactly like the uninstrumented application, with no additional output to st derr,
than it is to be reminded that coverage data is being collected. You can silence
run-time messages by specifying the option -1 og-fi | e=/ dev/ nul | .

If your application is instrumented for both PureCoverage and Purify,
PureCoverage’s start-up and data recording messages go to the Purify Viewer. If
the option -1 og-fi | e is set, the same logfile receives both PureCoverage and
Purify output. If you set PURI FYOPTI ONS - | og- fi | e=pl og and PURECOVOPTI ONS

-1 og-fil e=xl og, the value in PURI FYOPTI ONS has precedence.

The -1 0g-fil e option can be used with filename conversion characters. See
“Using conversion characters in filenames” on page 7-3.

PureCoverage Options 7-11

An option for saving data

Option Default

-counts-file % . pcv

This option specifies the pathname and filename for saving the accumulated
coverage counts. The default filename is the name of the program with a. pcv
extension; the default location is the directory where the program resides.

The option - count s-fi | e can be used with filename conversion characters.
See “Using conversion characters in filenames” on page 7-3.

An option for data collection

Option Default

-foll ow chil d-processes no

This option controls whether PureCoverage monitors child processes created when
an instrumented program forks.

If this option is not specified, PureCoverage does not accumulate counts for child
processes, and does not write counts data for the child process to the . pcv file.

If this option is set to yes, PureCoverage accumulates coverage data for the child
process. When the child process exits or executes another process, PureCoverage
writes the accumulated counts in the child to the . pcv file.

Likewise, when the parent process exits, PureCoverage writes counts accumulated
in the parent to the . pcv file. By default, PureCoverage writes both parent and child
counts to the same . pcv file (W . pcv), so that viewing that file shows the combined
coverage data.

To separate the counts for parent and child, you can use the option

-counts-fil e=%. %. pcv to specify a counts file including the process pi d in the
filename, or call the API function pur ecov_set _fi | ename() in either or both the
parent or child process to control where the data is written.

7-12 PureCoverage User’'s Guide

O®

Options for signal handling

Option Default
- handl e-si gnal s none
-ignore-signals none

PureCoverage installs a signal handler for many of the possible software signals
which are delivered to an instrumented process. The signal handler prints an
informative message and saves coverage data to the . pcv file in case the process
crashes.

The signal handler installed by PureCoverage outputs a signal message to st derr,
or to the Purify Viewer if the process is Purify’d. If the signal is a fatal signal such as
a SEGv, and no user signal handler has been installed by the program to catch such
a condition, the coverage data is written out to the . pcv file before the normal signal
termination occurs. If the instrumented program has installed a signal handler, the
PureCoverage handler will pass control to that handler instead.

The default list of signals that are handled by PureCoverage is:

SIGHUP SIGNT SIGQU T SIGLL SIG OT SI GABRT SI GEMI SI GFPE Sl GBUS
SI GSEGV SI GSYS SI GPI PE SI GTERM S| GXCPU Sl GXFSZ SI GLOST SI GUSR1 S| GUSR2

SIGHUP SIGNT SIGQU T SIGLL SIG OT SI GABRT SI GEMI' SI GFPE SI GBUS
S| GSEGV SI GSYS SI GPI PE SI GTERM SI GUSR1 Sl GUSR2 SI GPOLL SI GXCPU SI GXFSZ
S| GFREEZE S| GTHAW SI GRTM N SI GRTMAX

SIGHUP SIGNT SIGQUIT SIG LL SI GABRT SI GEMI SI GFPE SI GBUS SI GSEGV
SI GSYS SI GPI PE SI GTERM Sl GUSR1 SI GUSR2 SI GLOST S| GRESERVE S| GDI L
SI GXCPU S| GXFSZ

To skip handling signals in this list, set the value of the option -i gnor e- si gnal s to
a comma-separated list of the signal names not to be handled. For example:

- i gnor e- si gnal s=SI GSEGV, SI GBUS

Option description continued on next page.

PureCoverage Options 7-13

To handle additional signals, set the value of the option - handl e- si gnal s to a
comma-separated list of the additional signal names to be handled. For example:

- handl e- si gnal s=SI GALRM S| GCHLD
These signals are added to the current list of handled signals.

PureCoverage does not handle SI G«I LL, SI GSTOP, or S| GTRAP, since doing so
interferes with normal program operation. If you specify these signals in
- handl e- si gnal s, they are silently ignored.

The default action upon delivery of SI GALRMis to terminate the process.
PureCoverage does not handle this signal by default, since functions like sl eep use
it internally. However, if you see a process terminated with a message like Al arm
cl ock, you can set - handl e- si gnal s=SI GALRMto save data when the program is
terminated.

See the man pages for si gnal and si gmask, and the files
/usr/include/signal.hand/usr/include/sys/signal.h for more information
on signals.

An option for exit processing

Option Default

-run-at-exit none

This option specifies an arbitrary shell command to be run when your program exits
or otherwise terminates. In addition to filename conversion characters, you can
also use the directive % for the program’s exit status (O if the program did not call
exit).

You can use this option to log the coverage data that results from each session of a
program into a testing database system. You can use it to trigger a script such as
pc_emai | at the end of a test run.

7-14 PureCoverage User’'s Guide

Analysis-time options

An option for handling adjustments

Option Default

- appl y- adj ust nent s yes

This option specifies whether PureCoverage applies coverage adjustments when
you export coverage data.

This option applies only to the command pur ecov - export and to the report
scripts. Adjustments are always applied in the Viewer, though you can choose to
see the unadjusted statistics in the Viewer and the unadjusted source code in the
Annotated Source window.

An option for merging

Option Default

-force-nerge no

The - f or ce- mer ge option controls PureCoverage’s behavior when combining data
obtained from different versions of the same object file. PureCoverage uses an
object-code checksum to detect when the code has changed. By default, if a file
appears to have changed, PureCoverage uses the data from the most recent
version and discards the data from the earlier version.

PureCoverage merges and discards data on an object-file basis. If you change one
part of an application, re-compile and make additional runs, PureCoverage
discards data only for the changed code and continues to accumulate it for the rest
of the application.

You can combine data from different versions of an object file. For example,
suppose a program varies only slightly owing to conditional compilation:

#i f def VERSI ON1

do_sonet hing();
#el se

do_sonet hi ng_el se();
#endi f

To combine data from these two different versions of the object file, use the option
-for ce- mer ge. PureCoverage combines the data even if it is not from the same
program.

Option description continued on next page.

PureCoverage Options 7-15

For example:

% purecov cc -g -DVERSIONL nyprog.c -o nyprogl

% purecov cc -g -DVERSI ON2 nyprog.c -0 nyprog2

% myprogl

% myprog2

% purecov -view -force-nerge nyprogl. pcv nyprog2. pcv

Note: Do not use this option unless you are absolutely certain that the two versions
were both built from precisely the same source.

Analysis-time mode options

Three of the four analysis-time mode options, - vi ew, - expor t , and
- mer ge, work with the same input, . pcv files, but generate
different output:

\ —% ___» (graphicaldisplay

. -export
—> _—> export file

The fourth analysis-time mode option, - ext r act , uses source files
as input, and generates or updates the file ~/ . pur ecov. adj ust .

-extract
_>‘—> o/ purecov. adj ust

7-16 PureCoverage User’'s Guide

Mode option

- export

This option instructs PureCoverage to generate export data from one or more . pcv
files. For example, use the command

% pur ecov -export=result.export a.pcv

to save export data from the a. pcv file in the resul t. export file. Use the following
command to save export data from the merged a. pcv and b. pcv files in the
resul t. export file:

% pur ecov -export=result.export a.pcv b.pcv

Note: When you use the - export option on multiple files, PureCoverage performs
an implicit merge, but does not save the results in a merged . pcv file.

If you do not set a value, PureCoverage sends its output to st dout . For example,
use the command

% pur ecov -export a.pcv b. pcv

to send export data for the merged a. pcv and b. pcv files to st dout .

Compatible Options: You can use the following option on the command line when
you start PureCoverage in export mode: - appl y- adj ust nent s.

-extract

This option extracts coverage adjustments from specified source files and stores
them in the file ~/ . pur ecov. adj ust . For example, use the command

% purecov -extract filel.c file2.c

Note: Choosing Extract adjustments from all files from the Viewer Adjustments menu
is equivalent to running this option for all source files listed in the . pcv data in
memory.

Compatible Options: None.

PureCoverage Options 7-17

Mode option

- mer ge

This option instructs PureCoverage to merge the coverage data from multiple . pcv
files, and write a merged . pcv file. For example, use the command

% pur ecov -nerge=result.pcv a.pcv b.pcv

to merge a. pcv and b. pcv into resul t. pcv.

Note: You must specify an output file with this option.
Compare also the two following examples:

% pur ecov -nerge=result.pcv a.pcv

% purecov -nerge=result.pcv result.pcv b.pcv

The first example is just a way to copy a. pcv to resul t. pcv. The second instructs
PureCoverage to read resul t. pcv completely, and then combine it with b. pcv
before overwriting r esul t . pcv with the new, merged data.

Compatible Options: You can use the following option on the command line when
you start PureCoverage in merge mode: - f or ce- mer ge.

-View

This option displays coverage data for one or more . pcv files in the PureCoverage
Viewer. For example, use the command

% purecov -view a. pcv

to display the a. pcv data in the Viewer. Use the following command to display data
from the merged a. pcv and b. pcv files in the Viewer:

% purecov -view a.pcv b.pcv

Note: When you use the - vi ewoption on multiple files, PureCoverage performs an
implicit merge, but does not save the results in a merged . pcv file.

Note: By default, PureCoverage does not invoke the Viewer at run time. You must
invoke it after collecting coverage data from one or more test runs.

Compatible Options: You can use the following options on the command line
when you start PureCoverage in view mode: - f or ce- ner ge, - user - pat h.

7-18 PureCoverage User’'s Guide

Informational options

The informational options each return a single item of
information. You can specify these options, one at a time, on a
command line after pur ecov. You can also embed them in other
commands for evaluation before the commands are executed.

Option Default

-print-hone-dir

This option instructs PureCoverage to print the name of the directory where
PureCoverage is installed, and then exit. You can use this option, for example, to
build the compiler command when including the pur ecov. h file from the installation
directory:

$CC -c $CFLAGS -1 ‘purecov -print-horme-dir‘ foo.c

-version

This option instructs PureCoverage to print its version number string to st dout and
then exit. You can use this option, for example, to identify which version of
PureCoverage is in use while running a test suite, by incorporating this line in your
test harness scripts:

#!'/ bi n/ sh

echo "Run nonitored by PureCoverage: \

‘purecov -version‘"..

PureCoverage Options 7-19

7-20 PureCoverage User’'s Guide

PURECOVERAGE USER'S GUIDE

PureCoverage API

Use the PureCoverage application programming interface (API)
for fine-grained control over the collection and management of
PureCoverage data. The API functions let you control what part of
your code has data collected, when the data is saved, and where it
is saved.

By default, PureCoverage collects data from the beginning of the
program through the exit of the program, and saves it at the exit
of the program regardless of whether the program completes
successfully. The API functions enable you to change this behavior
to suit your needs.

API Function Page
int purecov_set_filename (const char *file_name) 8-3
int purecov_save_data (void) 8-3
int purecov_clear_data (void) 8-3
int purecov_disabl e_save (void) 8-3
int purecov_enabl e_save (void) 8-4
int purecov_is_running (void) 8-4

Calling PureCoverage API functions from your program

You can call PureCoverage functions directly from your program.
Use #i ncl ude <purecov. h>to include the file pur ecov. h in your C
or C++ programs.

The header file is located in the PureCoverage home directory. Add
the compiler option - | <pur ecovhonme> in your makefile, if
necessary.

If you add calls to the PureCoverage functions to your code, you
can add the library <pur ecovhonme>/ pur ecov_st ub. a to your link

8-1

line. This is a small library that stubs out all the API functions.
When you are not using PureCoverage, these stubs satisfy the
linker; when you are using PureCoverage, these stubs are ignored.

PFLAGS = -force-nerge

PDI R = ‘purecov -print-honme-dir*
PURECOV = purecov $(PFLAGS)

PSTUBS = $(PDI R)/ purecov_stubs. a

General flags
cc
CFLAGS

CcC
-g -1$(PDIR)

Targets
all: a.out a.out.pure

a.out: hello_world.c
$(CCO) $(CFLAGS) -0 $@ $? $(PSTUBS)

a.out.pure: hello_world.c
$(PURECOV) $(CC) $(CFLAGS) -0 $@$? $(PSTUBS)
Calling PureCoverage API functions from a debugger

You can use the PureCoverage API functions by setting
breakpoints in the debugger running your instrumented program
and then calling the appropriate function when the breakpoint is
reached.

(gdb) call purecov_clear_data()
(dbx) print purecov_clear_data()

8-2 PureCoverage User's Guide

Data collection API functions

int purecov_set _filenane (const char *fil enane)

This function sets the name of the file for saving or merging the accumulated
counts when the program exits or executes another program. This call does not
actually write data or clear the counts.

The filename is subject to expansion of conversion characters such as %, %/, %.
For details, see “Using conversion characters in filenames” on page 7-3.

If the filename string is NULL, the default filename is restored. This is typically the
name of the program with the . pcv extension (% . pcv), unless you specify the
-counts-fil e option.

If the filename is unqualified (contains no “/”), it is written in the directory where the
program lives. A qualified filename can be either absolute or relative to the current
working directory.

i nt purecov_save_data (void)

This function takes the accumulated counts at the time of the call and writes or
merges them into the counts file. It then clears the counts to zero.

You can use this function with a long-running program to checkpoint coverage data
incrementally. Alternatively you can use it to distribute counts for different phases of
a program’s run to different files.

int purecov_clear_data (void)

This function resets all data accumulators to zero. This permits you to reset
coverage information after a section of the code has failed, while continuing to
collect information about the session after the failure. You can also use this to
ignore coverage up to a certain point—for example, if you have a function used by
several parts of the code but you are specifically interested in the coverage
obtained by one section of the code.

i nt purecov_di sabl e_save (void)

This function sets a flag which prevents PureCoverage from writing the
accumulated data when the program exits or executes another program.

For example, you can call this function within a self-testing program. If the program
detects a failure, the function keeps PureCoverage from writing coverage data
automatically when the failed program exits. A signal handler detecting a fatal
signal can call this function before exiting.

PureCoverage AP| 8-3

i nt purecov_enabl e_save (void)

This function clears the flag set by pur ecov_di sabl e_save, permitting

PureCoverage to write the data when the program exits or executes another
program.

For example, a self-test program can disable saving at start-up, and only re-enable
saving upon positive confirmation of successful completion.

int purecov_is_running (void)

This function returns 1 if the executable is instrumented with PureCoverage, O if
not.

8-4 PureCoverage User's Guide

PURECOVERAGE USER'S GUIDE

Common Questions

Customizing coverage

&

How do | keep PureCoverage from instrumenting specific
lines of code?

PureCoverage allows you to mark specific lines in order to exclude
them from the coverage statistics and prevent them from being
highlighted as untested in the Annotated Source window. See
“Adjusting coverage on a line-by-line basis” on page 4-4.

You can exclude a function or file by marking all lines in the function
or file.

For details on the excl ude directive, which allows you to exclude
groups of files, see “Customizing data collection” on page 4-2.

Is there any way | can exclude some libraries after | build my
executables?

No, because excl ude directives are read at build-time. You need to
re-link your program for new directives to take effect.

I excluded | i bf oo. a and rebuilt my application. Why do I still
see coverage data for this file when | use purecov -viewto
examine the results?

You are probably seeing data in the . pcv file that was collected
before you excluded the library. Remove the . pcv file and start over.
You should no longer see data collected for this library.

If you still see data, your excl ude directive probably does not match
the exact pathname as shown in the coverage summary. If the
pathname is very long, expand the width of the Viewer to see it all.
Or use the script pc_sunmar y to generate an ASCII report in which
pathnames are not truncated.

A-1

4=

Make sure your excl ude directive matches the pathname as
recorded here. It is best to use wildcards for the root of the
pathname in the directive, or to use unqualified file names.
For details on the excl ude directive, see “Customizing data
collection” on page 4-2.

How come, if | exclude a library, it still gets instrumented?

The OCI technology that PureCoverage uses requires that all files
receive a minimum level of instrumentation. The excl ude directive
provides this minimum level without the additional instrumentation
for the coverage collection that PureCoverage normally performs.

This partial instrumentation is required so that the fully
instrumented parts of the program can successfully call the
excluded parts. Overhead for partial instrumentation is
minimal—significantly less than counting the coverage data at run
time.

General questions

fg,

What is a basic block?

A basic block is an indivisible sequence of instructions always
executed together in succession.

An example is:

a++;

b++;

c = atb;

if (a==Db) { c =0;
d = 0;

~NOoO b~ WNPE

}
e = 0;
The statements on line 1, 2, and 3, and the comparison on line 4, all

form one basic block that ends with the conditional jump
implementing the i f statement.

The assignments on line 4 and 5 form a second basic block.

A-2 PureCoverage User's Guide

4=

4=

4=

Line 7 begins a third basic block, because the assignmente = 0; is
not indivisibly attached to those on lines 4 and 5, since the i f
statement on line 4 may cause those assignments to be skipped.

Do | have to specify the - g debugging option when | compile
my code in order to obtain coverage data? If I don't compile
with the - g option, what kind of coverage will PureCoverage
provide?

For code compiled with the - g option, PureCoverage provides both
line-level and function-level coverage information. For code compiled
without - g, PureCoverage provides only function-level coverage
information.

Can | use both the -g and -O options when | compile?

This is not useful when you are working with PureCoverage, even if
your compiler allows it. The coverage data collected from such a file is
confusing because the instructions for each line are sometimes deleted,
repeated, or interleaved with other lines.

I notice differences in annotation when | use different
compilers or move to a different platform. Why is this?

Compilers add debugging data differently. Since PureCoverage uses the
debugging data to provide coverage information, you will notice
differences in annotation. For details, see Appendix C, “Annotation
Variations.”

I have several libraries, parts of which get exercised by
different executables. How do | get a coverage report
showing total coverage?

You can combine the . pcv files for all your executables using

pur ecov - nerge. You can also simply list them all on the command
line to pur ecov - vi ewor one of the coverage analysis scripts. If the
shared code is built with different conditional compilation options,

try using the option - f or ce- mer ge, but only if you are certain that

the files you are merging share identical source code.

For details see “An option for merging” on page 7-15.

Common Questions A-3

Performance issues

) What is the overhead when using PureCoverage?

Your PureCoverage instrumented program should typically run 1.5
to 3 times slower than your non-instrumented program.

Code compiled with debugging data (- g) runs more slowly than code
without, because PureCoverage adds many additional counters to
note line coverage data.

When the program exits and saves data, additional overhead is
incurred, roughly proportional to the size of the program. To
minimize this overhead, exclude libraries such as | i bc, i bC, | i bX,
and | i bmfrom coverage.

The data from these libraries is not likely to be useful, and the time
taken to save coverage data for all the unused code in the library
may be substantial. This is particularly important when the
libraries are shared libraries, and all functions in the library are
present, not just the ones your application requires.

Will the overhead of Purify and PureCoverage be combined
if | instrument my program with both products?

=9

The overhead when using Purify and PureCoverage is less than the
combined overhead for using these products separately.

A-4 PureCoverage User's Guide

PURECOVERAGE USER'S GUIDE

Export Format

Export format description

Once you have collected coverage data, you can convert it to
PureCoverage export format for processing by a script. The

PureCoverage export format is in ASCII. To convert data to export

format, use the syntax:

% purecov -export=tests.export testl.pcv test2.pcv test3.pcv.

In export format, data records appear one per line, with a keyword
defining the type of data followed by data values. The keyword is
always the first word on the line. The values are positional, and

fields are separated by tabs. Blank lines can appear in the file.

Each line in the export file contains one type of information:

Keyword Line Type of information

to total Summary information about all the data

di directory Start of information about a source directory

edi end directory End of information about a source directory

fi file Start of information about a file

efi end file End of information about a file

fu function Start of information about a function

efu end function End of information about a function

I line Information about a single line of source code

bl block Information about a single basic block of object
code

Note: You can use the # symbol to add comments or other
documentation to an export file.

B-1

Each export file contains a header describing the key and field
meanings:

HHAEHFEHFHHEHHEHR TR TSRS

This is a PureCoverage export file, created 18-Jan-1999 08:52:56 AM
Coverage data type: adjusted.

Summary of keys and field nmeanings:

to unused- bl ocks bl ocks unused-lines |ines unused-funcs funcs files dirs

di name unused- bl ocks bl ocks unused-lines |ines unused-funcs funcs files

fi name unused-bl ocks bl ocks unused-lines |ines unused-funcs funcs sessions
fu nanme unused- bl ocks bl ocks unused-lines lines calls

li line_no hits

bl line_no hits

efu name

efi name

edi name

In all of these entries, the character separating the values is a TAB, not
a space.

Values for hits, calls, and sessions stop accunul ati ng once they reach

10000,

"to'
di

" edi
i

tefi
Tt

tefu’ --

bl

so a value of 10000 should be taken as 10000 or greater.

Total coverage summary.

Coverage summary for one directory, followed by the files in the
directory. Repeated for each directory.

End of infornation for named directory.

Coverage summary for one file, followed by the functions in the
file. Repeated for each file within a directory.

End of information for named file.

Coverage summary for one function, followed by |ine and bl ock
coverage infornmation for the function. Repeated for each function
within the file.

End of infornation for named function.

Use count for the indicated line. Repeated for each line in the
function. |If coverage adjustments are NOT applied, then the
hits figure is the true hits figure for the line. |If coverage
adj ust ments ARE applied, then inspected and tested lines will
indicate INSP or TEST as appropriate, while other used and unused
lines will indicate their counts. Deadcode |ines do not appear
in export format when adjustnents are applied.

Use count for the basic block. Repeated for each block in the
function. Note that a single line may contain nultiple blocks,
and that a single block may span multiple |ines.

HHEHFEHAHHEHHEH AT TSRS

B-2 PureCoverage User's Guide

The information in the export file is nested hierarchically.
However, the data is not indented in the export format to show
this nesting:

to
d
fi
fu
b

b
li
li
efu
fu
b

b
li
li
efu
fu
b

b

b

b
li
li
li
li
li
efu
efi
ed

0 8 0

/ usr/ home/ pat / deno/
hello_world.c 0

di splay_hel |l o_wor | d
32 1

33 1

32 1

33 1

di splay_hel | o_world
di spl ay_nessage

39 1

40 1

39 1

40 1

di spl ay_nessage

nmai n 4

22
23
25
26
22
23
25
26
27
nmai n
hello_world.c

/ usr/ home/ pat / deno/

NNRFRPFEPNNRERPRNO

o 0o ©

NO oo

o wWwow

NO O

P WOor

N W

In this example, the directory / usr/ hone/ pat / deno contains the
file hel l o_worl d. c. Thefile hel | o_wor| d. ¢ contains the functions
di spl ay_hel | o_worl d, di spl ay_nessage, and mai n, and each
function contains a number of blocks and lines.

Comments

Comments are indicated by a # character. A comment runs from
the # character to the end of the line. Comments always appear on
a separate line.

Export Format B-3

Total — “to”

There is only a single t o line in the entire format, and it is always
the first information line.

The data fields in a total line are:

to <# unused bl ocks> <# bl ocks> <# unused |ines> \

B-4 PureCoverage User's Guide

<# |lines> <# unused funcs> <# funcs> \
<# files> <# dirs>

The <# unused bl ocks> field indicates the number of unused
basic blocks for all source files in any of the test sessions.

The <# bl ocks> field indicates the total number of basic blocks
in the source files, including both used and unused blocks.

The <# unused | i nes> field indicates the total number of lines
that were not used in any of the test sessions, summed across all
the source files.

The <# | i nes> field indicates the total number of source lines in
the source files, including both used and unused lines.

The <# unused f uncs> field indicates the total number of
functions that were not used in any of the test sessions, summed
across all the source files.

The <# f uncs> field indicates the total number of functions in all
the source files.

The <# fi | es> field indicates the total number of source files in
all the directories.

The <# di r s> field indicates the total number of directories in
the data.

Directory — “di”

There is one directory line for each directory containing source
code included in the PureCoverage data being exported. The
directory line is followed by information for each file within the
directory, and eventually by a matching edi , which indicates the
end of directory data. No new directory can appear before the
matching edi .

The data fields in a directory line are:

di <name> <# unused bl ocks> <# bl ocks> <# unused |ines> \
<# lines> <# unused funcs> <# funcs> <# files>

= The <nane> field indicates the pathname of the directory. As
much of the pathname as is known to PureCoverage will be
included, usually the full pathname.

= The remaining fields are the same as in at o line, except that
they are summed across the directory rather than across the
entire set of source files.

End Directory — “edi”

An edi line follows the information for files, functions, and lines
within a directory. It has a single data field:

edi <nane>

= The <nane> field repeats the name from the matching di line.

Export Format B-5

File — “fi”

Afi line provides information about a single file within the
containing directory. It is followed by information about functions
and lines, and eventually by a matching ef i , indicating the end of
file data. No new file can appear before the matching ef i line.

The data fields of the file entry are:

fi <name> <# unused bl ocks> < bl ocks> <# unused |ines> \
<# lines> <# unused funcs> <# funcs> <# sessi ons>

= The <nane> field contains the name of the file, without any
directory information.

* The <# sessi ons> field indicates the number of sessions over
which the data for the file was collected. Note that this is not the
same for all files if some files were modified more recently than
others.

= The remaining fields have the same interpretation as they do in
di andt o entries, except they are summed only across all
functions or lines within the file.

End File — “efi”

An efi line follows the information for functions and lines within
a file. It has only a single data field:

efi <nanme>

= The <nane> field repeats the name from the matching fi line.

B-6 PureCoverage User's Guide

Function — “fu”

A fu line provides information about a single function within a
file. It is followed by information about lines within the function
and eventually by a matching ef u, indicating the end of function
data. No new function can appear before the matching ef u line.

The data fields of the function entry are:

fu <nane> <# unused bl ocks> <# bl ocks> <# unused |ines> \
<# lines> <# call s>

= The <nane> field contains the name of the function.

= The <# cal | s> field contains the number of times the function
was entered.

= The other fields have the same interpretation as in previous
examples, except summed only within this specific function.

End Function — “efu

The ef u line follows the line information within a single function.
It has a single data field:

efu <nane>

= The <nane> field repeats the function name from the matching
fu entry.

Export Format B-7

Line — “Ii"

The l'i entry contains information about a specific line of source
code, which is inside the function named in the surrounding f u
and ef u lines. It contains the data fields:

Ii <source line #> <# hits>

= The <sour ce | i ne #> field gives the line number within the
source file. Because it is possible to have multiple functions on
the same line of code, source line numbers are not necessarily
unique within the export file.

= The <# hi t s> field gives the number of times that specific source
line was used in all the sessions contributing to the total for that
file.

Block — “bl”

The bl entry contains information about a specific basic block of
object code, which is inside the function named in the
surrounding f u and ef u lines. It contains the data fields:

bl <source line #> <# hits>

= The <sour ce | i ne #> gives the first line number which
contributed instructions to the basic block. It is possible that
other lines following this line have also contributed instructions
to the basic block. Because it is possible to have multiple basic
blocks on a given line, line numbers are not necessarily unique
within the export file.

= The <# hi t s> field gives the number of times that specific basic
block was used in all the sessions contributing to the total for
that file.

B-8 PureCoverage User's Guide

The effect of coverage adjustments on export

When you adjust coverage of a program with the techniques
discussed in Chapter 4, the outline-level items of the export
format—t o, di,fi,fu,li,and bl —are affected in different ways:

= The totals reported for t o, di , fi , and f u entries reflect the
adjustments.
= Theli entries are affected as follows:

= For lines marked tested, the export format includes the | i
entry, but displays the word TEST instead of a use count.

= For lines marked inspected, the export format includes the | i
but displays the word | NSP instead of a use count.

= For lines marked dead code, the export format suppresses the
i entry completely.

= The bl entries always show unadjusted, or true, coverage totals.

Export Format B-9

B-10 PureCoverage User's Guide

PURECOVERAGE USER'S GUIDE

Annotation Variations

PureCoverage uses debugging information in object files to
determine line coverage information. This debugging information
is created by the compiler when invoked with the option - g.

The debugging information recorded in object files varies from
compiler to compiler. There is no single standard. This section
identifies some of the differences in how compilers annotate source
code.

Note: For readability, this appendix shows Annotated Source
windows customized to exclude the adjustment columns and
display actual coverage. You can customize your own display by
selecting and deselecting items in the window’s View menu.

Complex source lines

If a single line contains parts which execute at different times,
PureCoverage does not show which part of the line was executed.
This is because the compiler does not provide this level of detail in
the object file.

| Purslinmyame! fwwdalod Soarss — Fodos Dibaal dimvrass: L]
File VW g |
Live | Buis | fewatated Goeros |
1 (O T R L A I LS B =
] {
E L iF i == @5 redurn 02 alos rebon 02
4 1

When there are multiple basic blocks on one line, PureCoverage
collects separate counts for each basic block. The Annotated
Source window, however, displays only the highest count. A
partially used line, therefore, is always shown as used.

C-1

Note: To view separate basic block counts, run the script
pc_annot at e with the option -t ype=bl ock. For details, see
“Annotated source report” on page 6-8.

Multi-line statements

Some compilers annotate the first line of multi-line statements:

I=]
Halp

Pl ViEw
L | Bres | Fewgited Soios
1 { i e i 13
2 1
-] 1 ink j:
i
First line is— H 1 N
annotated ; LR
1] [ILIL
] [EICIECI
b L]
11 1 ratam g
12 L3

Some compilers annotate the last line of multi-line statements:

Faritorsiroses Rmaebed Tarce — Fon,s {feteal cogres? | Ol

Lire

Hita

R pled (e

Ko

Last line is—
annotated

C-2 PureCoverage User’s Guide

E'\.-.IJ".IICII-IE‘ Wi ¥

it i
=1+
imj =
Wiy =
iwiagEg o
LI L L] B

raban j:

Function entry points

Compilers indicate function entry points in a wide variety of ways:

Some compilers annotate only the leading { as the function entry

point;
Pl Wiew Halp
—_—
Lire | Buis | st gt Bowros
1 it 1
Leading {—Lpmm| :|:7
P 4 abakiz ing g = |
is annotated E ITE iE
I L i ow fgi % dgd o+ LRD B D
[] Nk
a
10 wisid
1 weply fures
12 1|1
1% L]}

Some compilers annotate the first executable statement as the
entry point. If there are no executable statements, as for example
in an empty function, the leading { is annotated instead. Variable
declarations without initialization clauses do not count as
executable statements in this sense.

Fle aw Halp

1
]
4 pRakdc int Bd = LER
3 (o
First executable - i L L= ml @ dmd o= ik B3
statement - I
is annotated 1 ET

11 wnpby_ Turesi
12 I
1% L]¥

Annotation Variations C-3

Leading {—

is annotated

Line following -

local variable
is annotated

C-4 PureCoverage User’s Gui

Some compilers annotate the leading { and the first local variable
declaration:

I I
=l FursCinerams! el gled fSarts — Fobod IRl dimmy gas 1=]
File View Halp
Liws | Buis | Arestatind Boron
1 Wi X
J_'\- ‘H' 1
S L4
! 1 pbakis nf Bd = LiEn:
-] ink br
-]
¥ L i w gl & g3 v 1K) b 2:
[Nk
a
10 vl
11 mnphy_Tures
12 K
1% L]

Some compilers annotate the first local variable declaration as the
function entry point. It does not matter if the variable is declared
static or not. If there are no local variables, the leading { is
annotated as the function entry point.

Some compilers annotate the line containing the first statement
and the line following local variable declarations, even if that line
is blank:

I I
=l Purglinmriims Frstaled Serge - i, i (] s 1=

Pl Wire Halp
L | Bt | Aol tod Bonrds

i i 2

i Fod

£ 1)1

4 sabac Ind ed = LO0;

B Inf 4z
q 1

L I knl & qxd = Lk 5 3G

1] L|3

g

10 wirid

11 anpby_Turei)

12 Ll

15 L]

Some compilers annotate the function declaration and the first
statement.

Some compilers annotate the leading { and the first executable
statement.

de

Local variable declarations

Local variable declarations typically are not annotated unless they
are initialized at declaration time. This does not apply to static
local variables. In this case initialization occurs during the
compilation phase instead of at run-time.

An exception to this is if a compiler marks the first local variable
declaration as a function entry point.

Switch statements

L | Eues | Aewstgtd Saros

_!. eatern I laglredll, M D, me], s 00, s he =
5 vrad
]]t _tekadei
1 £
Ef & iwitch Ulaak raml®)
¥ caan 3;
al o _[=n;
ay I bk 7
0 tane L1
11 i} rem_1-+;
ke . breank =
1% oage Loag
1d E i o]
150 3 bruwks
15 el mslt;
1 | | I N

Last executable — f! = Lread
1 ¥

_ statement wl &
is annotated

All compilers accumulate data at the switch keyword, but they
vary on whether they accumulate data for all passes through a
switch statement at the end of the switch statement. The way they
accumulate data varies as well.

Some compilers accumulate data at the last executable statement
of a switch statement:

[=] Purel peprape! Ferslaned Soarie — oo n (eclual presrapl [=]

Annotation Variations C-5

Some compilers accumulate data at the trailing } of the switch

statement:
L L
U=l Fursinty genl Mwndaliod Sarcs — Fres (FLeal domsy mpat I=1
Pl Wrw g
Lire | BLLs | Friatatod Eawros
i eatern I laglredll, M D, me], s 00, s he B
5 vead
]]t _tekadei
1 £
Ef & iwibch Claat ramltd §
4 caan J3;
n i i [=s;
al 1 beead s
0 tane L1
11 i} rem_1-+;
12 o breat
1% e L)
1] = LS L]
150 3 bruwks
15 . el mslt;
1T
Trailing }—+ i 1) _
is annotated =) mp;

Some compilers do not accumulate data at the end of the switch

statement:
T T
=l Pued pmr g ! Freablalend Gouris — Fad,0 dRledl (oss st =]
Pl Wirw i
Lire | Funs | vl giod Souros
1 dalern [Jeatretidln, mm 0, s], s 100, fes_othes 4
] o &
4 el b _temaleil
By & A
BEf & it [lak_resuldl {
r []
n Ll ra_(naz
ag el s
L] e 12
11 .1} rem_1i=z
12 o] borwsh
1% L L H
4] g qi=er
15)] bk}
15 . e mail t
a0 |
End of switch 4 —ﬁ }
statement is L
not annotated

C-6 PureCoverage User’s Guide

exit() statements

Code after exit—

statement is
not annotated

Normally, when an exi t () statement is executed the program
stops and control is passed back to the invoking process. This
means that the function return is not reached and therefore does
not accumulate run data:

! T
| Puril e ! Frrataled Gourds —— Foa,d ieleal e} =1

Pl Wirw i
Lire | Funs | vl giod Souros
1 (et "
2 g fmpa [}
£ i
[1 [ea LU b
- 0" .|

When the exi t (XXX) occurs in mai n(), some compilers treat it as
equivalent to r et ur n(XXX) , so this annotation variation does not
necessarily appear consistently under all circumstances.

C++inline functions

No inline
function
coverage

Some compilers do not record debugging information for C++
inline functions, and therefore do not annotate inline functions:

| Purelmerays! Feralsted Sorce == fi, o fhiual presrae)

Pl e .o
L | ®pis || rwsstaiend Soaros

i 17 bl A0 Salp INCSLLAE W, LD W)0 j

2 {

z irk t:

4
! L zm

Wy o= my
T LTRLI $

1] 1

ik main Jisl gk chare grpe
137 b ink i, 3

i = iy

jom EED:

e irviaelBa . Bl
ribaFd 0]

-

Annotation Variations C-7

Some compilers annotate inline functions:

i._
i
ol

Lires | Bris | Preatated Boaros
1 ind b il Seap_intballn o, Ll eg) T
2 1
. -] L irk k3
Inline i 1
: L Ll 8
function ! i s
coverage o1 LTRERY
1] L|3
g
i ink main {asl ik, char® g
1 L4
12 1 ink &, 3t
15
14 L i = i
15 L J o= XX
1E L mer_ il Ba . Ll
ir L rebaEn 03
18 L

Some compilers that annotate inline functions do not generate any
code for an unreachable inline function—one that is not used
anywhere. In this case, the function does not appear in the Viewer,
and no count appears next to it in the Annotated Source window.

C-8 PureCoverage User’s Guide

PureCoverage Quick Reference

PureCoverage Viewer

Compile a program with the command %pur ecov cc -g <fil ename>. c
Run the program, then use the command %pur ecov -vi ew a. out. pcv to open the Viewer.

Toolbar buttons E ﬁ 1:% !_TI E m

Next Previous Expand Collapse Annotated ClearDDTS

Source
] Farslevaragm K
P VEw Ais Adpeaesl nep |
r dar: FULT __SRRENERGINED _*HLI.
Sorting order w::r.:-'.-,.-..n-u Diniwmd Fawi [alld amiid = ekl siell awiel ekl siell Lils
for summary rows
i Total Covermga 5 i] 12 B o
BT P) i §E -] il 2 a
bl Bz] 2 7 A H o o
Summary rows |r::- .u.-fl i; i i L =]] E B=]
dimpl ey, BRI Fote]] L I]
v i] i i HE]
B i g bl Lo v I| [Ul 0 L] 'T-' F]
[J1]
Number of runs over which_
data was collected for this file
Number of times this glg%tbstt'cs géagbsttlcs
function was called functions lines
Number of
adjusted
lines
PureCoverage Annotated Source Window
In the Viewer, click the & button next to any function name to open the Annotated Source window.
Mark adjustments here: Number of times the line Source code with
deadcode, i nspected, tested was executed adjustment comments
i Frarowm age; Brvaitanis Gource — el b Lo, 0 (st o age) | I.
v W |
Lirs !i T | ®iin || Frecipisd Somro
1 1 [T Tp——T E
Untested code i m _
1L H miLibI}
-1]
= s
ﬁ i_lnﬁhp_l-lh._ﬂ k1
= 1| P kAT M e e i
= 1
h el
& o e g w1
i. e
Adjusted code ——&—=| (1| | Pkl Tn, Mo DP® . al O purecoe irapscted o
=] | IR |3 parin Lol B
- P
=] '
Navigation and —— Wertussted | Pres ueies |Gaic i | o |
search region I ‘EFAOTE LS s

PureCoverage Quick Reference

Build-time options

Set build-time options on the link line when you instrument programs with PureCoverage. For example:
% purecov -cache-di r=$HOVE/ cache - al ways-use-cache-dir cc ...

Commonly used build-time options Default

-al ways- use-cache-dir no

Forces all PureCoverage instrumented object files to be written to the global cache directory

- aut o- mount - prefi x /t mp_mt

Removes the prefix used by file system automounters

-cache-dir <pur ecovhone>/ cache

Specifies the global directory where PureCoverage caches instrumented object files

-coll ector none

Specifies the collect program to handle static constructors (for use with gcc, g++)

-ignore-run-time-environnent no
Prevents the run-time PureCoverage environment from overriding the option values used in building the program

-1inker system-dependent

Specifies a linker other than the system default for building the executables

Run-time options

Set run-time options on the link line or by using the PURECOVOPTIONS environment variable. For example:
% set env PURECOVOPTI ONS "-counts-file=./test1l.pcv ‘'printenv PURECOVOPTI ONS' "

Commonly used run-time options Default
-counts-file % . pcv

Specifies an alternate file for writing coverage count data in binary format Note: Can use filename conversion characters
-foll owchil d-processes no

Controls whether PureCoverage is enabled in forked child processes
-log-file stderr

Specifies a log file for PureCoverage run-time messages Note: Can use filename conversion characters
- program nane ar gv[0]

Specifies the full pathname of the PureCoverage instrumented program

-user-path none
Specifies a list of directories to search for source code Note: Can also be used in - vi ew mode

Analysis-time options

Use analysis-time options with analysis-time mode options, for example:
% purecov -nerge=result.pcv -force-nmerge filea.pcv fileb.pcv

Commonly used analysis-time options Default

-appl y-adj ust nent s yes
Applies all adjustments in the $HOVE/ . pur ecov. adj ust file to exported coverage data

-force-nerge no
Forces the merging of coverage data files (. pcv files) obtained from different versions of the same object file

PureCoverage Quick Reference

Analysis-time mode options

Command-line syntax: % pur ecov - <mode option> [anal ysis-tine options] <filel.pcv file2.pcv ...>

Analysis-time mode options

Compatible options

- export

- appl y- adj ust nent s

Merges and writes coverage counts from multiple coverage data files (. pcv files) in export format to a specified file
(- expor t =<f i | ename>) or to st dout

-extract

none

Extracts adjustment data from source code files and writes it to $HOVE/ . pur ecov. adj ust

- ner ge=<fil enane. pcv>

-force-nerge

Merges and writes coverage counts from multiple coverage data files (. pcv files) in binary format

-view

-force-nerge, -user-path

Opens the PureCoverage Viewer for analysis of one or more coverage data files (. pcv files)

Using PureCoverage with other Rational products

Product Command line syntax
Purify % purify <purifyoptions> purecov <purecovoptions> cc ...
Quantify Cannot instrument for PureCoverage and Quantify simultaneously

Conversion characters for filenames

Use these conversion characters when specifying filenames for options such as -1 og-fil e.

Character Converts to

%n/ Full pathname of program with “/” replaced by “ _”
%y Program name

% Process id (pid)

qualified filenames (. / % . pl og)

Either absolute or relative to current working directory

unqualified filenames (no “/)

Directory containing the program

Viewer keyboard accelerators

Key

Action

Menu equivalent

Control-a

Open Annotated Source window

Show annotated source in the Actions menu

Down arrow or Control-n

Move to the next block of uncovered code

Next in the Actions menu

Up arrow or Control-p

Move to the previous block of uncovered code

Previous in the Actions menu

Control-o

Expand the selected row

Expand in the Actions menu

Control-k or DEL

Collapse the selected row

Collapse in the Actions menu

Space or Return

Toggle the selected row between expanded and
collapsed

Expand in the Actions menu
Collapse in the Actions menu

PureCoverage Quick Reference

Report scripts

Run report scripts from the command line, or choose Run script from the Viewer File menu to open the script dialog.

Choose a script from the selection list Enter arguments here, then choose OK
‘ |
e v | = ‘ - I
Script dialog —# = i
Report scripts
pc_annot ate Produces an annotated source text file

% pc_annotate [-force-nerge][-apply-adjustments=no][-fil e=<basenanme>...][-type=<type>][<prog>.pcv...]

pc_bel ow Reports low coverage

% pc_bel ow [-force-nerge] [-appl y-adj ust ment s=no] [- per cent =<pct >] [<pr og>. pcv. . .]

pc_buil d_diff Compares PureCoverage data from two builds of an application

% pc_bui l d_diff [-apply-adjustments=no][-prefix=XXXX....] ol d.pcv new. pcv

pc_covdi f f Annotates the output of di f f for modified source code Note: Cannot be run from Viewer

% yourdi ff <name> | pc_covdiff [-context=<lines>][-format={diff]|side-by-side|lnewonly}][-|ines=<bool ean>] \
[-tabs=<stops>][-w dt h=<wi dt h>] [- f or ce- mer ge] [- appl y- adj ust ment s=no] - f i | e=<nane> <prog>. pcv. ..

pc_diff Lists files for which coverage has changed

% pc_di ff [-apply-adjustnments=no] ol d.pcv new. pcv

pc_eni | Mails a report to the last user who modified insufficiently covered files

% pc_enmmi | [-force-nerge][-apply-adjustnents=no][-percent=<pct>][<prog>. pcv...]

pc_sel ect Identifies the subset of tests required to exercise modified source code

% <list of changed files> | pc_select [-diff=<rules>][-canonicalize=<rule>]testl.pcv test2.pcv...

pc_ssheet Produces a summary in spreadsheet format

% pc_ssheet [-force-nerge][-apply-adjustnments=no][<prog>. pcv...]

pc_sunmary Produces an overall summary in table format

% pc_summary [-file=<nanme>...] [-force-nerge] [-apply-adjustnments=no] [<prog>. pcv...]

API functions

Include <pur ecovhome>/ pur ecov. h in your code and always link with <pur ecovhone>/ pur ecov_st ubs. a

Useful compile or link options include: - | * purecov -print-hone-dir‘ and-L‘ purecov -print-home-dir*
Function Description

int purecov_clear_data (void) Clears and resets all coverage accumulators to zero

i nt purecov_disabl e_save (void) Prevents coverage counts from being written when the program
exits or executes another program

int purecov_enabl e_save (void) Permits coverage counts to be written when the program exits
or executes another program

int purecov_is_running (void) Returns 1 if the program is PureCoverage-instrumented

int purecov_save_data (void) Merges and writes coverage counts accumulated before this
function call

int purecov_set_filenane (const char *file_nane) Sets the file for writing coverage data (default is pr og. pcv)
Note: Can use filename conversion characters

PURECOVERAGE USER'S GUIDE

Index

Symbols

%p 7-3

%V 7-3

%v 7-3

*.pev files
defined 2-5
merging 3-4
separating 3-3
specifying 3-3

A

accelerators, keyboard 5-2
Action menu (Viewer), opening 5-2
actual coverage data
displaying 5-5-5-6
explained 4-4
ADJS column (Viewer) 2-6, 5-4
adjusted coverage data
displaying 5-5-5-6
explained 4-4
ADJUSTED LINES columns
(Viewer) 2-5, 5-4
adjustments 4-4-4-18
adjustment file format 4-14
adjustment files 4-7
Adjustments menu 5-8
Annotated Source window
display 4-9
blocks 4-6, 4-9
comment format 4-6
distinguishing types by color 5-11
extracting from source files 4-7
files 4-7
FORTRAN limitations 4-11
highlighted columns 4-12
implicit end comment 4-6
interactive 4-10
manual 4-5
multi-line statements 4-12
non-nesting 4-6
removing 4-13

adjustments, continued
saving 4-12
sorting order 4-11
strategies for use 4-15-4-18
unnecessary 4-12
updating 4-8
Viewer display 4-8
Adjustments menu (Viewer) 5-8
-always-use-cache-dir 2-12, 7-7
analysis-time mode options 7-2,
7-16-7-18
analysis-time options 7-2, 7-15-7-18
annotated differences report 6-9
annotated source code
adjustments to 4-4
examining 2-8
annotated source report 6-8
Annotated Source window 5-9-5-12
adjusted display 4-9
components 5-9
File menu 5-10
navigating 5-11
removing adjustments 4-13
saving source files 4-12
selecting a line 4-13
unavailable for code compiled
without -g 2-14
View menu 5-10
viewing unused code 2-8
annotations
C++ in-line functions C-7
complex source lines C-1
function entry points C-3
local variable declarations C-5
local variables C-4
multi-line statements C-2
switch statements C-5
a.out.pcv 2-5
See also *.pcv files
API functions
calling interactively 8-2
data collection 8-3

Index-1

Index-2

API functions (by name)
purecov_clear_data 8-3
purecov_disable_save 2-17, 8-3
purecov_enable_save 8-4
purecov_is_running 8-4
purecov_save_data 8-3
purecov_set_filename 2-16, 2-17,

8-3

-apply-adjustments 7-15

arguments for scripts. entering 3-10

ASCII format, used for

adjustments 4-14
automatic discarding of data 3-5
automatic reloading of changed
data 2-9
automating data collection 3-1
-auto-mount-prefix 7-10

B

basic blocks

defined 2-13

example A-2
bl, export format directive B-8
block adjustments

display 4-9

marking manually 4-5-4-6
block, export format keyword B-8
Bug report (Help menu) 5-9
build differences summary

report 6-6

builds, makefiles for 3-2
build-time options 7-1, 7-5, 7-7—7-9
built-in options, finding 7-6

C

C++

adjustment comment format 4-11

in-line function annotation C-7
-cache-dir 7-5, 7-7
caching

directory 2-12, 7-7

files 2-12

options 7-7

removing old files 2-12
Calls column (Viewer) 5-3
canonical pathnames 4-3
checksum, used to discard data 3-5
child processes 2-15

ClearDDTS, using with
PureCoverage 3-12, 5-3
Close (Annotated Source File
menu) 5-10
-collector 7-9
color, to distinguish adjustment
types 5-11
columns (Viewer) 5-3-5-6
selecting 5-4
combining data for multiple
runs 3-4
commands
for compiling and linking with
PureCoverage Vii
for displaying coverage data 2-5
shown using csh(1) syntax ix
syntax for specifying options 7-4
comments
adjustments 4-6
C++ format 4-11
export format B-3
compiler options 2-13, C-1
compiler-based annotation
variations C-1-C-8
compiling with PureCoverage Vii
separately from linking 2-3
complex source line annotation C-1
context help ix
control key combinations 5-2
conventions used in this guide viii
conversion characters 7-3
counters, saturating 2-18
-counts-file 2-16, 3-3, 7-3, 7-12
coverage
excluding files and directories 4-2
excluding files by source
filename 4-4
excluding libraries 4-1-4-2
coverage data
adjusting 4-4—-4-18
and API functions 8-3
automatic discarding 3-5
automating collection 3-1
collection options 7-12
combining for multiple runs 3-4
composite, for libraries A-3
converting to export format B-1
customizing collection 4-2—4-4
detail level 2-6
discarded 3-5-3-6, 7-15
displaying (general) 2-5-2-7

coverage data, continued
displaying actual coverage 5-5
displaying adjusted coverage 5-5
expanding detail level 2-6
exporting 3-8
file level 2-6
for excluded libraries A-1
for failed tests 3-6
forcing a merge 3-6
function level 2-7
graphically inspecting 2-5, 5-3
handling options 2-9
line level 2-8
location of files 7-12, 8-3
maximum counts 2-18
merged 3-4, 7-15
output files 2-5
reloading in the Viewer 5-6
removing collected data for
excluded files 4-3
saving options 7-12
separating child processes 2-16
separating for individual test
runs 3-3
coverage level
expanding 2-6
file level 2-6
function level 2-7
line level 2-8
coverage summary report 6-2
csh(l) syntax, used for command
examples ix
custom reports
accessing in the Viewer 3-11
writing scripts for 6-15-6-17
customizing the Viewer display 5-4

D

data
See coverage data
data handling options 2-9
dbx debugger, used for debug
examples ix
deadcode adjustment type
applied to all lines in a file 4-9
applied to all lines in a
function 4-8
defined 4-5
effect on Viewer display 4-8
debug examples, dbx format ix

debugger, calling API functions 8-2
debugging option -g 2-13
default Viewer settings 5-8
deleting coverage data 4-3
detail level of coverage data
expanding 2-6
file level 2-6
function level 2-7
line level 2-8
di, export format directive B-5
differences report 6-5
directives
exclude 4-2
full pathname 7-3
process id 7-3
program name 7-3
directories
excluding from coverage 4-2
for custom scripts 3-11
location of cache files 2-12
PureCoverage home directory Vviii
specified in -user-path option 2-15
directory, export format
keyword B-5
discarding data
failed tests 3-6
PureCoverage procedure 3-5
displaying
actual coverage 5-5
adjusted coverage 5-5
PureCoverage toolbar 5-3

E

edi, export format directive B-5
efi, export format directive B-6
efu, export format directive B-7
eliminating old coverage data 4-3
e-mail, automatic, for low coverage
reports 6-3
end directory, export format
keyword B-5
end file, export format keyword B-6
end function, export format
keyword B-7
environment variable options,
precedence 7-4
examples
annotated differences report 6-11
annotated source report 6-8—6-9
basic block A-2

Index-3

build differences summary
report 6-7
coverage summary report 6-3
custom report script 6-15-6-17
differences report 6-6
export format B-3
hello_world.c 2-1-2-11
low coverage mail report 6-4
low coverage report 6-3
makefile 2-11, 3-2
spreadsheet report 6-5
test script for discarding data
automatically 3-7
using PureCoverage 2-1-2-11
exclude directives 4-2, A-4
wildcards 4-3
excluding
by filename or directory 4-2
by source filename 4-4
functions and files A-1
libraries A-1
exec
invoked by threads 2-17
using 2-16
Exit (Viewer File menu) 5-7
Exit PureCoverage (Annotated
Source File menu) 5-10
exit statement annotation C-7
exit, invoked by threads 2-17
exiting PureCoverage 2-11
expanding coverage detail level 2-6
-export 3-8, 7-7, 7-17
export format
comments B-3
data fields B-4
example B-3
writing custom reports 6-15
export format keywords
block B-8
defined B-2
directory B-5
end directory B-5
end file B-6
end function B-7
file B-6
function B-7
line B-8
list of B-1
total B-4
exporting data 3-8, 7-17

-extract 7-17
in makefile 4-8
running twice on one file 4-7
Extract adjustments from all source
files (Viewer Adjustments
menu) 5-8
extracting adjustments 4-7

F

failed tests, discarding data 3-6—3-8
features, PureCoverage 1-3
new ix
fi, export format directive B-6
file level coverage data 2-6
File menu
Annotated Source window 5-10
Script Output window 3-11
Viewer 5-6
file options 7-10
filename expansion 7-3
files
adjustment 4-7
adjustment file format 4-14
a.out.pcv 2-5
cache files 2-12
excluding from coverage 4-2, A-1
export format keyword B-6
location of .pcv files 7-12, 8-3
merging output files 3-4
object files 2-12
redirecting coverage output to
file 7-11
saving adjustments 4-12
source 2-14
specifying output file names 3-3
-follow-child-processes 2-16, 2-17,
7-12
fonts, in User's Guide viii
-forbidden-directories 7-8
-force-merge 3-6, 7-15, A-3
-force-rebuild 4-4
fork 2-15
format
adjustment comments 4-6, 4-13
adjustment file 4-14
export B-1-B-9
FORTRAN and interactive
adjustments 4-11
fu, export format directive B-7

function, export format keyword B-7
function-level coverage
example 2-7
for code compiled without -g 2-14
functions
entry point annotation C-3
excluding from coverage A-1
usage statistics 2-5
FUNCTIONS columns (Viewer) 5-4

G

-g compiler option 2-13
incompatible with -O 2-14
graphical display 5-1-5-12

H

-handle-signals 2-17, 7-13
hardware, supported by
PureCoverage ix

harnesses, test

discarding data for 3-7

using PureCoverage with 3-2
header file, PureCoverage 8-1
Hello World example

accessing 2-2

code 2-2

example directory 2-6

file information line 2-6

hello_world.c 2-2

improving test coverage 2-9

program output 2-4

system library coverage 2-7
hello_world.c 2-2
Help menu 5-8
hiding the toolbar 5-2
hierarchy of options 7-4
Highlight menu items (Annotated

Source View menu) 5-11

highlighting

adjustment columns (Annotated

Source) 4-12
changing colors for
adjustments 4-10

-ignore-signals 2-17, 7-13
improving test coverage
Hello World example 2-9

individual test runs, separating data
from 3-3
informational options 7-2, 7-19
in-line function annotation C-7
inspected adjustment type
defined 4-5
effect on Viewer display 4-8
installation ix
instrumentation
defined 2-12
for excluded libraries A-2
instrumenting a program 2-1
partial 4-2
instrumented programs,
running 2-4
interactive marking of
adjustments 4-10

K
keyboard accelerators 5-2

L

li, export format directive B-8
libraries
composite coverage A-3
coverage 4-1
excluding from coverage A-1
instrumentation of excluded
libraries A-2
licensing ix
line adjustments
display 4-9
marking interactively 4-11
marking manually 4-5
line usage statistics 2-5
line, export format keyword B-8
line-level coverage data 2-8
linker
default 7-9
options 7-9
linking with PureCoverage Vii
separately from compiling 2-3
link-line command 7-5
lint 4-14
local variable declaration
annotation C-4
-log-file 7-3, 7-11
low coverage mail report 6-3
low coverage report 6-3

Index-5

Index-6

M

mailing reports, automatically 6-3
Make toolbar visible (Viewer View
menu) 5-7
makefile example 2-11
marking adjustments
interactively 4-10
manually 4-5
maximum coverage counts 2-18
menus
Annotated Source
window 5-10-5-11
Script Output window 3-11
Viewer 5-6-5-9
-merge 7-7, 7-18, A-3
merging files
forcing 3-6
with -view option 3-4
merging options 7-15
minimum instrumentation A-2
mode options
listed 7-2
using 7-7
modifying makefiles 2-11
multi-line statements
annotations C-2
marking adjustments
manually 4-12
multiple processes, covering 2-15
multiple program runs, combining
data 3-4
multi-threaded applications 2-17

N

names
cache files 2-12
source filenames for excluding
coverage 4-4
specifying output file names 3-3
unqualified file names 4-3
navigating (Annotated Source

window) 5-11
nightly builds, using PureCoverage
in 3-1

o

-O compiler option 2-14
Object Code Insertion (OCI) 2-12

object files, handling by
PureCoverage 2-12
On Context (Help menu) 5-8
On license (Help menu) 5-9
On version (Help menu) 5-9
online Help ix, 5-8
Open (Viewer File menu) 5-6
options
analysis-time 7-15
build-time 7-4, 7-7
compatibility with
modes 7-17-7-18
default values 7-2
environment variable 7-4
for handling coverage data 2-9
for Purify and PureCoverage 7-5
informational 7-19
link-line 7-5
listing built-in options 7-6
mode 7-16
processing 7-4
reference tables 7-1
run-time 7-4
setting site-wide 7-4
syntax 7-2
options (by name)
-always-use-cache-dir 2-12, 7-7
-apply-adjustments 7-15
-auto-mount-prefix 7-10
-cache-dir 7-5, 7-7
-collector 7-9
-counts-file 2-16, 3-3, 7-12
-export 7-7, 7-17
-extract 7-17
in makefile 4-8
running twice on one file 4-7
-follow-child-processes 2-16, 2-17,
7-12
-forbidden-directories 7-8
-force-merge 3-6, 7-15, A-3
-force-rebuild 4-4
-handle-signals 2-17, 7-13
-ignore-signals 2-17, 7-13
-linker 7-9
-log-file 2-4,7-3, 7-11
-merge 7-7,7-18
-print-home-dir 7-19
-program-name 7-11
-run-at-exit 3-7, 7-14
-user-path 2-14, 7-10

options (by name), continued
-version 7-19
-view 2-5,7-7,7-18
output (.pcv) files
defined 2-5
merging 3-4
separating 3-3
specifying 3-3
output from instrumented
programs 2-4
overhead, for PureCoverage A-4
overriding the run-time
environment 7-6

P

parent process counts, separating
from child process counts 2-16

partial instrumentation 4-2
pathnames, canonical 4-3
pc_annotate 6-8
pc_below 6-3
pc_build_diff 6-6
pc_covdiff 6-9
pc_diff 6-5
pc_email 6-3
pc_select 6-11
pc_ssheet 6-4
pc_summary 6-2
.pev files

introduced 2-5

merging 3-4

separating 3-3

specifying 3-3
Perl

included with PureCoverage 6-2

sample custom report 6-16
precedence of options 7-4
printf function, excluded 2-7
-print-home-dir 7-19
-program-name 7-11
pure_remove_old_files 2-12, 2-13,

7-7

purecov_clear_data 8-3
purecov_disable_save 2-17, 8-3
purecov_enable_save 8-4
purecov_is_running 8-4
purecov_save_data 8-3
purecov_set_filename 2-16, 2-17, 8-3
purecov_stubs.a 8-1
purecov_what_options 7-6

.purecov.adjust 4-7
PureCoverage
and ClearDDTS 3-12
and Purify 3-11, 7-5
and Quantify 3-11
APl 8-1-8-4
benefits provided 1-1
cache files 2-12
discarding data 3-5
ease of use 1-2
files created by 2-12
functional description 2-12
header file 8-1
installation ix
key features 1-3
modifying makefiles 2-11, 3-2
option processing 7-4
options 7-1-7-19
overhead A-4
release notes ix
report scripts 6-1-6-17
starting vii
support questions X
tutorial 2-1-2-11
using with nightly builds 3-1
using with test harnesses 3-2
PureCoverage overview (Help
menu) 5-9
PureCoverage Viewer
See Viewer
purecov.h 8-1
purecovhome Vviii
PURECOVOPTIONS 7-4, 7-6
.purecov.Xdefaults 5-8
changing adjustment colors 5-11
changing comment style 4-11
PUREOPTIONS 7-4,7-5,7-6
Purify, using with
PureCoverage 3-11, 7-5, A-4

Q

Quantify, separate
instrumentation 3-11

R

Rational Software Corporation,
contacting X

README file ix, 5-9

redirecting output 2-4

Index-7

Index-8

Refresh display (Viewer View
menu) 5-7

release notes, displaying ix
Reload all (Viewer File menu) 5-6
reloading changed data 2-9
removing

adjustments 4-13

coverage data 4-3
report scripts 6-1-6-17

directory location 6-2

entering arguments 3-10

running 3-9-3-11

writing 6-15
report scripts (by name)

pc_annotate 6-8

pc_below 6-3

pc_build_diff 6-6

pc_covdiff 6-9

pc_diff 6-5

pc_email 6-3

pc_select 6-11

pc_ssheet 6-4

pc_summary 6-2
reports

annotated differences 6-9

annotated source 6-8

automating distribution 3-1

build differences summary 6-6

coverage summary 6-2

custom 6-15

differences 6-5

low coverage 6-3

low coverage mail 6-3

selected tests 6-11

spreadsheet 6-4

writing scripts 6-15
Run script (Viewer File menu) 5-6
-run-at-exit 3-7, 7-14
running instrumented programs 2-4
running report scripts 3-9-3-11
Runs column (Viewer) 5-3

different counts for each file 2-7
runs, multiple, combining data 3-4
run-time environment, ignoring 7-6
run-time options 7-1, 7-10-7-14

S

saturating counters 2-18
Save (Annotated Source File
menu) 5-10

Save as (Viewer File menu) 5-6

Save source and annotations as
(Annotated Source File
menu) 5-10

saving files with adjustments 4-12

Script dialog 3-10

Script Output window 3-10

scripts

See report scripts

searching, Annotated Source
window 5-12

Select columns (Viewer View
menu) 5-7

Select sorting order (Viewer View
menu) 5-7

selected tests report 6-11

selecting items (Viewer) 5-1

Set display style for names (Viewer
View menu) 5-7

setting site-wide options 7-4

shared library coverage 4-1

Show adjusted annotated source
(Annotated Source View
menu) 5-10

Show line counts (Annotated Source
View menu) 5-11

Show line numbers (Annotated
Source View menu) 5-11

signal handling 2-17, 7-13

Snapshot (Annotated Source File
menu) 5-10

software, supported by
PureCoverage ix

sorting order (Viewer) 4-11, 5-7

source file, finding path to 2-14

source filenames, for excluding
coverage 4-4

source files, extracting
adjustments 4-7

spreadsheet report 6-4

Start ClearDDTS (Viewer File
menu) 5-3

starting PureCoverage Vii

statistics

See coverage data

strings, finding in the Annotated
Source window 5-12

stubs library 8-1

support, technical x

supported hardware and software ix

switch statement annotation C-5

symbolic links, not used in exclude
directives 4-3

syntax, PureCoverage options 7-2

system library coverage 4-2

T

targets, in makefiles 2-11
technical support, contacting X
test harnesses

discarding data from 3-7

using PureCoverage with 3-2
test programs, modified to discard

data 3-8

test script, example 3-7
tested adjustment type

defined 4-5

effect on Viewer display 4-8
tests

discarding data for failed

tests 3-6-3-8

selecting a subset 6-11
third-party library coverage 4-1
timestamps and merging data 3-6
to, export format directive B-4
toolbar 5-2
Total Coverage row 2-5
total, export format keyword B-4
tutorial 2-1-2-11

U

unnecessary adjustments 4-12

unqualified file names, for excluding
files and libraries 4-3

Update ~/.purecov.Xdefaults
(Viewer View menu) 5-8

updating adjustments 4-8

-user-path 2-15, 7-10

\%

variant annotations C-1-C-8

-version 7-19

Vertical column separators (Viewer
View menu) 5-7

vfork 2-17

-view 2-5, 7-18

View menu
Annotated Source window 5-10
Viewer 5-7

Viewer 5-1-5-9
adjusted display 4-8
Adjusted Lines columns 5-4
Adjustments menu 5-8
Calls column 2-7
default settings 5-8
displaying 2-5
effect of adjustment types 4-8
File menu 5-6
file-level detail 2-6
Function columns 5-4
function-level detail 2-7
Functions columns 2-7
optional columns 5-4
Runs column 2-7
toolbar 5-2
View menu 5-7
window components 5-1

w

web site, Rational Software
Corporation X
wildcards
Annotated Source window 5-12
exclude directives 4-3
windows
See Annotated Source window,
Script Output window,
Viewer
World Wide Web site, Rational Soft-
ware Corporation X
Write export file (Viewer File
menu) 5-6
Write .pcv file (Viewer File
menu) 5-6
Write view settings to (Viewer View
menu) 5-8

X
X defaults 5-8

Index-9

	Title Page
	Notice
	Welcome to PureCoverage
	Using this guide
	PureCoverage features
	Getting started
	Taking advantage of special features
	Common questions and reference material
	Conventions used in this guide

	Using online Help
	Displaying the release notes
	Installing PureCoverage
	Contacting technical support

	1 Introducing PureCoverage
	PureCoverage: simple & effective
	Key PureCoverage features

	2 Finding Untested Areas of Hello World
	Instrumenting a program
	Running an instrumented program
	Program output
	Coverage data

	Displaying coverage data
	Expanding the detail level
	Examining function level detail
	Examining the annotated source

	Improving Hello World’s test coverage
	Modifying makefiles for PureCoverage
	Beyond Hello World: how PureCoverage works
	Files created by PureCoverage
	Compiling with the debugging option -g
	How PureCoverage finds source files
	Covering multiple processes
	Signal handling
	Covering multi-threaded applications
	Saturating counters

	3 When to Use PureCoverage
	Using PureCoverage in nightly builds
	Using PureCoverage with test harnesses
	Separating data for individual test runs
	Combining data from multiple program runs
	Discarding data from failed tests

	Exporting data
	Running report scripts
	Using PureCoverage with other Rational Software products
	Using PureCoverage with Purify
	Using PureCoverage with ClearDDTS

	4 Customizing Coverage
	Excluding libraries, directories, and files from coverage
	Coverage for libraries
	Customizing data collection

	Adjusting coverage on a line-by-line basis
	Adjustments
	Types of adjustments
	Marking adjustments manually
	Marking adjustments interactively
	Unnecessary adjustments
	Saving files with adjustments
	Removing adjustments in the Annotated Source window
	Adjustment file format

	Strategies for using PureCoverage adjustments
	Adjustment usage considerations
	Models for using PureCoverage adjustments

	5 Using the PureCoverage Graphical Display
	PureCoverage Viewer
	Selecting items
	Using the toolbar
	Selecting Viewer columns
	Using the Viewer File menu
	Using the Viewer View menu
	Using the Viewer Adjustments menu
	Using the Viewer Help menu

	Annotated Source window
	Using the Annotated Source File menu
	Using the Annotated Source View menu
	Using the Annotated Source Help menu
	Navigating in the Annotated Source window

	6 Report Scripts
	PureCoverage report scripts
	Coverage summary report
	Low coverage report
	Low coverage mail report
	Spreadsheet report
	Differences report
	Build differences summary report
	Annotated source report
	Annotated differences report
	Selected tests report

	Custom reports
	A sample custom report script

	7 PureCoverage Options
	Option tables
	Using PureCoverage options
	PureCoverage option syntax
	Using conversion characters in filenames
	PureCoverage option types
	PureCoverage option processing
	Specifying options in environment variables
	Using the PUREOPTIONS environment variable
	Setting options for Purify and PureCoverage
	Specifying options on the link line
	Using the ignore-run-time-environment option
	Using analysis-time mode options

	Build-time options
	Options for caching
	Options for linker and collector

	Run-time options
	Options for file identification
	An option for saving data
	An option for data collection
	Options for signal handling
	An option for exit processing

	Analysis-time options
	An option for handling adjustments
	An option for merging
	Analysis-time mode options

	Informational options

	8 PureCoverage API
	Calling PureCoverage API functions from your program
	Calling PureCoverage API functions from a debugger
	Data collection API functions

	A Common Questions
	Customizing coverage
	General questions
	Performance issues

	B Export Format
	Export format description
	Comments
	Total — “to”
	Directory — “di”
	End Directory — “edi”
	File — “fi”
	End File — “efi”
	Function — “fu”
	End Function — “efu”
	Line — “li”
	Block — “bl”

	The effect of coverage adjustments on export

	C Annotation Variations
	Complex source lines
	Multi-line statements
	Function entry points
	Local variable declarations
	Switch statements
	exit() statements
	C++ inline functions
	PureCoverage Viewer
	PureCoverage Annotated Source Window
	In the Viewer, click the button next to any function name to open the Annotated Source window.
	Build-time options
	Run-time options
	Analysis-time options
	Analysis-time mode options
	Using PureCoverage with other Rational products
	Conversion characters for filenames
	Viewer keyboard accelerators
	Report scripts
	API functions

	PureCoverage Quick Reference
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X

