
support@rational.com
http://www.rational.com

Rational the e-development company™

Using Rational TestManager

VERSION 2001.03.00

PART NUMBER 800-023807-000

IMPORTANT NOTICE

COPYRIGHT

Copyright © 2000, Rational Software Corporation. All rights reserved.

Part Number: 800-023807-000

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO
PART OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, the Rational logo, Rational the e-development company,
ClearCase, ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio,
PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational
PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational
Visual Test, Requisite, RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational
Watch are trademarks or registered trademarks of Rational Software Corporation in the United States and
in other countries. All other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C++, Visual
Basic, Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and
XENIX are trademarks or registered trademarks of Microsoft Corporation in the United States and
other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc.
Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product
or application the primary purpose of which is software license management.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and
277.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
227-14, as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying license agreement.
Rational Software Corporation expressly disclaims all other warranties, express or implied, with respect to
the media and software product and its documentation, including without limitation, the warranties of
merchantability or fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface .xvii
Audience. xvii

Other Resources . xvii

Contacting Rational Technical Publications . xvii

Contacting Rational Technical Support . xviii

Part 1: Using TestManager to Manage Testing Projects

1 Introducing Rational TestManager. .1
What Is Rational TestManager . 1

TestManager Workflow . 2
Planning Tests . 3
Designing Tests . 5
Implementing Tests. 6
Executing Tests. 7
Evaluating Tests . 7

TestManager and Other Rational Products . 8
The Rational Unified Process . 8
Projects and the Rational Administrator . 8
Test Scripts and Rational Robot . 9
Component Testing and Rational QualityArchitect . 9
Requirements and Rational RequisitePro . 10
Model Elements and Rational Rose . 10
Defects and Rational ClearQuest . 10
Reports and Rational SoDA . 11

TestManager and Extensibility . 11
Defining Extensible Test Input Types . 11
Defining Extensible Test Script Types. 12

Virtual Testers and Types of Tests . 12
About Virtual Testers . 12
Functional and Performance Testing . 13
Contents iii

Test Script Services . 15

Starting TestManager. .17
Logging into TestManager . 17
Starting Other Rational Products and Components from TestManager 18

The TestManager Main Window. .19
Test Asset Workspace . 19
Other TestManager Windows . 22

2 Planning Tests . 25
About Test Planning .25

Defining What to Test by Using Test Inputs .26
Built-in Test Input Types . 26
Custom Test Input Types . 28

Creating a Test Plan. .29
Editing and Creating Test Plans . 29
Properties of a Test Plan . 30
Customizing the Properties of a Test Plan . 31

Organizing Test Cases with Folders. .31

Creating Test Cases. .33
Properties of a Test Case . 33
Specifying the Owner . 34
Defining the Configurations to Test. 35
Specifying When to Run Tests . 40
Setting up Traceability Using Test Inputs . 42

3 Designing Tests . 45
About Designing Tests .45

Specifying the Testing Steps and Verification Points46

Specifying Conditions and Acceptance Criteria of Test Cases 48

Example of a Test Design .50

4 Implementing Tests . 53
About Implementing Tests .53

Implementing Built-in Test Scripts Types and Suites54

Implementing Extensible Test Script Types .55

Creating Manual Test Scripts .56
Starting Rational ManualTest . 57
Example of a Manual Test Script . 57
iv Contents

Setting the Default Editor for Manual Test Scripts . 58
Including an External File in a Manual Test Script . 59
Creating Script Queries . 59
Customizing Test Assets . 60

Associating an Implementation with a Test Case. .60

Implementing Tests as Suites .62
Defining Computers and Computer Lists . 64
Opening a Suite . 67
Editing a Test Script . 67
Editing a Suite . 68
Setting Shared Variables . 86
Printing and Exporting a Suite . 87
Saving a Suite . 87

5 Executing Tests. 89
About Running Tests .89

Built-in Support for Running Test Scripts .89

Running Automated Test Scripts .90

Running Manual Test Scripts .91
Example of Running a Manual Test Script . 92
. .Viewing the Results of Running a Manual Test Script92

Running Test Cases .92
Viewing the Associated Implementations. 92
Running a Test Case . 93

Running Suites. .94
Checking a Suite . 95
Checking Agent Computers . 95
Controlling Runtime Information of a Suite . 96
Controlling How a Suite Terminates . 99

Monitoring Suites .102
About Monitoring Suites . 102
Displaying the Suite Views . 104
Displaying the Histogram Views. 107
Displaying the User/Computer Views. 114
Displaying the Shared Variables View . 119
Displaying the Script View . 120
Displaying the Sync Points View . 120
Contents v

Displaying the Computer View . 122
Displaying the Transactor View. 125
Displaying the Group Views . 127
Filtering and Sorting Views. 127
Changing the Value of a Shared Variable. 130
Debugging a Test Script . 130
Changing Monitor Defaults . 131
Configuring Custom Histograms. 132
Controlling the Suite During a Run . 133

6 Evaluating Tests . 137
About Test Logs .137

Opening a Test Log in TestManager . 138
The Test Log Main Window . 138
About Log Filters . 141

Viewing Test Log Results .143
Viewing Test Case Results . 143
Viewing Events Details . 143
Viewing a Test Script . 146
Working with Test Logs. 146
About Test Logs . 146
Entering and Modifying Defects . 148
Printing a Test Log . 150
Managing Log Event Property Types . 151

Viewing Test Script Results Recorded with Rational Robot152

Reporting Results .154
About Reports . 154
Selecting Which Reports to Use. 156
Additional Reports . 158
Creating Reports . 158
Opening a Report . 161
Running Reports . 161
Print, Save, or Copy a Test Case Trend or Distribution Report. 163
Print, Export, or Zoom a Listing Report . 163
Print, Save, Copy, Delete, or Export a Performance Report. 164
Copying Reports to a New Project . 164
Creating a Query . 164
vi Contents

Part 2: Functional Testing with Rational TestManager

7 About Functional Tests . 169
Planning Functional Tests .169

Identifying Functional Testing Requirements . 169
Setting Pass and Fail Criteria for Functional Tests. 169

Distributed Functional Testing .170
Distributing Tests Among Different Computers . 170
Running Tests on a Specific Computer . 170
Example of a Distributed Functional Test. 171

Recording Considerations for Functional Tests .171

8 Creating Functional Testing Suites . 173
About Suites. .173

Creating a Suite .174

Inserting Computer Groups into a Suite. .176

Inserting Test Scripts into a Suite. .177

Preconditions .178

Inserting Other Items into a Suite .179
Inserting a Test Case into a Suite . 179
Inserting a Suite . 181
Inserting a Selector . 182

Advanced Functional Testing .184
Inserting a Scenario . 184
Inserting a Delay . 187
Inserting a Synchronization Point. 187

Using Events and Dependencies to Coordinate Execution191

Executing Suites .193

9 Using the Comparators . 195
About the Four Comparators .195

Starting a Comparator .196

Using the Object Properties Comparator .196
The Main Window . 197
The Objects Hierarchy and the Properties List . 198
Loading the Current Baseline. 200
Contents vii

Locating and Comparing Differences . 200
Viewing Verification Point Properties . 201
Adding and Removing Properties. 201
Editing the Baseline File . 202
Saving the Baseline File . 202

Using the Text Comparator .203
The Main Window. 203
The Text Window . 203
Locating and Comparing Differences . 204
Viewing Verification Point Properties . 204
Editing the Baseline File . 205
Saving the Baseline File . 205

Using the Grid Comparator .205
The Main Window. 206
The Grid Window . 206
Differences List . 207
Setting Display Options . 207
Locating and Comparing Differences . 208
Viewing Verification Point Properties . 208
Using Keys to Compare Data Files. 209
Editing the Baseline File . 210
Saving the Baseline File . 210

Using the Image Comparator .210
The Main Window. 211
Locating and Comparing Differences . 213
Changing How Differences are Determined . 214
Changing the Color of Masks, OCR Regions, or Differences. 214
Moving and Zooming An Image . 215
Viewing Image Properties. 215
Working with Masks . 216
Working with OCR Regions . 216
Saving the Baseline File . 217
Viewing Unexpected Active Window. 217
viii Contents

Part 3: Performance Testing with Rational TestManager

10 Planning Performance Tests . 221
About Performance Testing .221

Performance Testing Basics. .222
Types of Tests . 223
Local and Agent Computers. 226
Suites . 226

Rational TestManager and Performance Testing .227
Why Use TestManager for Performance Testing? . 227
The TestManager Environment . 228

Planning Performance Tests .229
Testing Response Times . 230
Setting Pass and Fail Criteria for Performance Tests . 230
Identifying Performance Testing Requirements . 230
Designing a Realistic Workload . 231

Implementing Performance Tests. .232

Examples of Performance Tests. .233
Number of Virtual Testers Supported Under Normal Conditions 233
Incrementally Increasing Virtual Testers . 234
How a System Performs Under Stress Conditions. 236
How Different System Configurations Affect Performance. 237

Analyzing Performance Results .237
Comparing Results of Multiple Runs . 238
Comparing Specific Requests and Responses . 238
Determining the Cause of Performance Problems. 239

11 Creating Performance Testing Suites . 243
About Suites. .243

Creating a Suite .245

Inserting User Groups into a Suite. .246

Inserting Test Scripts into a Suite. .249

Preconditions .250

Inserting Other Items into a Suite .251
Inserting a Test Case into a Suite . 252
Inserting a Suite . 253
Contents ix

Inserting a Scenario . 255
Inserting a Selector . 257
Inserting a Delay. 263
Inserting a Transactor . 265
Inserting a Synchronization Point . 269

Using Events and Dependencies to Coordinate Execution276

Executing Suites .278

12 Working with Datapools. 279
What Is a Datapool? .280

Datapool Tools . 280
Datapool Cursor . 282
Datapool Limits. 282
What Kinds of Problems Does a Datapool Solve? . 282

Planning and Creating a Datapool .284

Data Types .286
Standard and User-Defined Data Types. 287
Finding Out Which Data Types You Need. 288
Creating User-Defined Data Types. 288
Generating Unique Values from User-Defined Data Types 289
Generating Multi-Byte Characters . 290

Managing Datapools .290
Creating a Datapool . 290
Editing Datapool Column Definitions . 298
Editing Datapool Values . 299
Renaming or Copying a Datapool. 299
Deleting a Datapool . 300
Importing a Datapool . 300
Exporting a Datapool . 301

Managing User-Defined Data Types .302
Editing User-Defined Data Type Values . 302
Editing User-Defined Data Type Definitions . 302
Importing a User-Defined Data Type . 303
Renaming or Copying a User-Defined Data Type. 303
Deleting a User-Defined Data Type . 304

Generating and Retrieving Unique Datapool Rows304
What You Can Do to Guarantee Unique Row Retrieval 305
x Contents

Creating a Datapool Outside Rational Test .306
Datapool Structure . 307
Using Microsoft Excel to Create Datapool Data. 308
Matching Datapool Columns with Test Script Variables 309
Maximum Number of Imported Columns . 309

Creating a Column of Values Outside Rational Test 310
Step 1. Create the File . 310
Step 2. Assign the File’s Values to the Datapool Column 310
Generating Unique Values . 311

13 Reporting Performance Testing Results. 313
About Reports .313

Running a Report. .316
Running a Report from the Report Bar . 316
Running a Report from the Menu Bar . 316

Customizing Reports .317
Filtering Report Data . 317
Setting Advanced Options . 318
Changing a Graph’s Appearance or Type . 324
Editing the Properties of a Report . 328

Managing Reports .328
Printing a Report . 328
Copying a Report . 328
Renaming a Report . 329
Deleting a Report . 329
Exporting Reports . 330

Changing Report Defaults .330
Changing the Reports that Run Automatically . 330
Changing the Reports that Run from the Report Bar. 331

Types of Reports .331
Performance Reports . 332
About Percentiles in Performance Reports . 334
Compare Performance Reports . 335
Response vs. Time Reports. 341
Command Status Reports . 344
Command Usage Reports . 346
Contents xi

A Configuring Local and Agent Computers 355
Running More Than 245 Virtual Testers .355

Running More Than 1000 Virtual Testers .355

Running More Than 1000 Virtual Testers on One NT Computer356

Running More Than 24 Virtual Testers on a UNIX Agent 357

Controlling TCP Port Numbers .358

Setting Up IP Aliasing .359

Assigning Values to System Environment Variables360

B Standard Datapool Data Types . 365
Standard Data Type Table .365

Data Type Ranges .372

Index . 375
xii Contents

Preface
Rational TestManager is an open and extensible framework that unites all of the tools,
artifacts, and data both related to and produced by the testing effort. Under this single
umbrella, all stakeholders and participants in the testing effort can define and refine
the quality goals they are working toward.

This manual describes how to use Rational TestManager to support the five testing
activities defined in the Rational Unified Process, and how to use TestManager for
functional testing and performance testing.

Audience

This manual is intended for project analysts, project architects and developers, quality
assurance team members, project managers, and any other stakeholders involved in
the testing effort.

Other Resources

■ TestManager contains complete online Help. From the main toolbar, choose an
option from the Help menu.

Note: This manual contains conceptual information. For detailed procedures, see
the TestManager Help.

■ All manuals are available online, either in HTML or PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

■ For information about training opportunities, see the Rational University Web
site: http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.
xvii

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xviii Preface

Part 1: Using
TestManager to Manage
Testing Projects

1Introducing Rational
TestManager
This chapter introduces you to Rational TestManager. It includes the following topics:

■ What is Rational TestManager

■ TestManager workflow

■ TestManager and other Rational products

■ TestManager and extensibility

■ Virtual testers and types of tests

■ Starting TestManager

■ The TestManager main window

What Is Rational TestManager

Testing is the feedback mechanism in the software development process. It tells us
where corrections need to be made to stay on course at any given iteration of a
development effort. It also tells us about the current quality of the system being
developed.

Everyone involved in the project is a stakeholder in the process of defining how
system quality will be assessed and in taking actions to correct problems. For
example:

■ Project analysts need to know about the availability, completeness, and quality of
use cases, features, and requirements supported by the system.

■ Project architects and developers need to understand the state of components and
subsystems they have designed or developed.

■ Quality assurance team members need to develop a plan to test the system so that
the answers required by the rest of the project team can be provided. Further, they
need to understand and define the relationships between the elements of their
testing plan and the other artifacts of the development effort. These traceability
1

relationships allow the QA team to understand how changes elsewhere in the
project affect their work, and to define how they will test the elements of the
system to provide the required answers to the entire team.

■ Project managers will use the information the testing effort provides to make
decisions about the acceptability and readiness of the system for release. Their
decisions will be based on input from other team members such as analysts and
developers who will, at least in part, be drawing their knowledge of the state of the
system from these same measurements.

What has been described here is no small effort. This is why testing efforts often
represent 25–50% of the overall project effort. Making these tasks more difficult is the
fact that collecting the required data, tracking the relationships amongst artifacts, and
providing a common presentation of the output of the testing effort often involves use
of several tools with disparate artifacts and data. This can make it nearly impossible to
efficiently track the effects of dependencies and to get a concise, consistent view of the
state of a system.

Rational TestManager is the open and extensible framework that unites all of the
tools, artifacts, and data both related to and produced by the testing effort. Under this
single umbrella, all stakeholders and participants in the testing effort can define and
refine the quality goals they are working toward. It is where the team defines the plan
it will implement to meet those goals. And, most importantly, it provides the entire
team with one place to go to determine the state of the system at any given point in
time as measured against any stakeholder's quality requirements.

By supporting all testing activities, quality assurance professionals use TestManager
as the central point from which all of those activities are coordinated and from which
the outputs of activities are managed and tracked. It tells testers what work needs to
be done by whom and by what date. It also informs the testers what areas of their
work are affected by changes happening elsewhere in the development effort.
TestManager is the one place to go for the answers to all questions related to system
quality.

TestManager Workflow

The TestManager workflow supports the five major testing activities defined by the
Rational Unified Process:

■ Planning tests

■ Designing tests

■ Implementing tests
2 Chapter 1 - Introducing Rational TestManager

■ Executing tests

■ Evaluating tests

Each of these activities has input and output artifacts, as shown in the following
figure.

Testing Workflow

Planning Tests

The activity of planning tests primarily involves collecting and organizing
information that answers the following questions about testing:

■ What and Where? – Requirements, visual models, and other test inputs tell you
what to test and where to run the tests.

■ When? – Iteration plans tell you when the tests need to be run and to pass.
TestManager Workflow 3

■ Who? – Test plans, iteration plans, or project plans tell you who will perform the
testing activities.

Test Inputs

Test inputs help you answer the four questions about testing. The first step in
planning your testing effort is to identify the test inputs. A test input is anything that
the tests depend on or anything that needs validation. Test inputs help you decide
what you need to test. They also help you determine what tests might need to change
based on changes in the development process. This is extremely important in iterative
development where change is a frequent, necessary part of the process.

TestManager has two built-in test input types:

■ Requirements created in a Rational RequisitePro project

■ Elements in a Rational Rose visual model

These built-in test input types give you easy access to requirements and model
elements, and let you associate these inputs with other test artifacts for traceability
purposes.

TestManager also supports test inputs that are not generated by Rational tools. To use
any external test inputs within TestManager, you’ll need to write test input adapters
or use adapters provided by Rational’s partners. For more information, see Defining
Extensible Test Input Types on page 11.

Test Plans

Once you have identified your test inputs, you can use TestManager to create a test
plan. The test plan contains information about the purpose and goals of testing within
the project, and the strategies to be used to implement and execute testing.

The test plan can contain a varied collection of information and addresses many
issues including:

■ What tests will need to be performed?

■ When will the tests need to be performed and be expected to pass?

■ Who is responsible for each test?

■ Where will tests need to be performed? In other words, on what hardware and
software configuration must they be run?

Projects can contain multiple test plans. You may have a plan for each phase of testing.
Different groups may have their own plans. Generally, each plan should have a single
high-level testing goal.
4 Chapter 1 - Introducing Rational TestManager

Each test plan can contain test case folders and test cases.

Test Case Folders

Use test case folders to organize test cases. Within a test plan, you can create test case
folders to organize your test cases hierarchically.

You can organize your test cases in many ways. Common organizations may reflect
system architecture, major use cases, requirements, or combinations of these.

Test Cases

Use test cases to validate that the system is working the way that it’s supposed to work
and is built with the quality you need before you can ship it. The test case is the
artifact in TestManager that answers the question, “What do I need to test?” You
develop test cases to validate particular behaviors.

Each test case is owned by or assigned to a team member. This answers the question,
“Who will do the testing?”

Iterations

Use iterations to specify when a test case must pass. An iteration is a defined span of
time during a project. The end of an iteration is a milestone. An iteration says that at
some point in time, the product has to meet a certain quality standard to reach a
milestone. The quality standard is defined by the test cases that must pass.

Configurations

Use configurations to specify where test cases must be run—on what hardware and
software configurations. For example, if you need to make sure that your test case
passes when run under four different operating systems, you could create a
configuration for each operating system. Then you could associate those four
configurations with the test case, to create configured test cases. In order for the main
test case to pass, all of its configured test cases need to pass.

Designing Tests

The activity of designing tests is primarily answering the question, “How am I going
to do the testing?” When you complete your test designing, you end up with a design
that helps you understand how you are going to perform the test case.
TestManager Workflow 5

Designing tests is an iterative and ongoing process. You should be able to start before
any system implementation by basing the test design on use case specifications,
requirements, prototypes, and so on. As the system becomes more clearly specified,
the design can become more detailed along with it.

In TestManager, you can design your test cases by indicating the actual steps required
to interact with the application and the system in order to perform the test, and how
to validate that the features are working properly. You also specify pre-conditions,
post-conditions, and acceptance criteria for the test.

Implementing Tests

The activity of test implementation primarily involves creating reusable test scripts
that implement your test case. You can then associate the implementation with the test
case.

Implementation is different in every testing project. In one project, you might decide
to build both automated test scripts and manual test scripts. In an other project, you
might need to write modular pieces of software using a combination of tools.

TestManager provides built-in support for implementing the following test script
types:

TestManager also supports implementation of other test script types that you have
registered. See Defining Extensible Test Script Types on page 12.

Test Script Type Description

GUI A functional test script written in SQABasic, a Rational proprietary
Basic-like scripting language. Created in Rational Robot. (Available
only if Rational Robot is installed.)

VU A performance test script written in VU, a Rational proprietary C-like
scripting language. Created in Rational Robot. (Available only if
Rational Robot is installed.)

Note: When you choose to record a VU test script, you actually begin
recording a session. You can choose to generate VU or VB test scripts
from the recorded session, depending on selected recording options.

Manual A set of testing instructions to be run by a human tester. Created in
Rational ManualTest.

Command Line An executable file, including arguments and initial directory, detailed
when inserted into a suite or specified at test case implementation.
6 Chapter 1 - Introducing Rational TestManager

Executing Tests

The activity of executing your tests is primarily running the implementations of test
cases to make sure that the system functions correctly. In TestManager, you can run
any of the following: (1) an individual test script; (2) one or more test cases, which run
the implementations of the test cases; (3) a suite, which runs any combination of test
scripts and test cases (and their implementations) across multiple computers and
users

TestManager provides built-in support for executing the following test script types:

TestManager also supports execution of other test script types that you have
registered. See Defining Extensible Test Script Types on page 12.

Evaluating Tests

The activity of evaluating tests is necessary to:

■ Determine the validity of the actual test run. Did it complete? Did it fail because
pre-conditions weren’t met?

■ Analyze test output to determine the result. In performance testing, you look at
reports on the generated data to see if performance is acceptable.

■ Look at aggregate results to check coverage against plan, test inputs,
configurations, and so on. This can also be used to measure test progress and to do
trend analysis.

Test Script Type Description

GUI A functional test script written in SQABasic, a Rational proprietary
Basic-like scripting language.

VU A performance test script written in VU, a Rational proprietary C-like
scripting language.

Manual A set of testing instructions to be run by a human tester.

Visual Basic A test script written in the Visual Basic language.

Java A test script written in the Java language.

Command line A file (for example, an .exe file, a .bat file, or a UNIX shell script)
including arguments and an initial directory that can be executed from
the command line.
TestManager Workflow 7

TestManager and Other Rational Products

TestManager can be purchased standalone, or as part of other Rational packages.
When installed with other Rational products, it is tightly integrated with those
products.

The Rational Unified Process

The Rational Unified Process is a software engineering process that enhances team
productivity and delivers software best practices via guidelines, templates, and tool
mentors for all critical activities.

To quickly view the areas of the Rational Unified Process that are directly related to
testing:

■ In TestManager, click Help > Extended Help .

To view the complete online version of the Rational Unified Process if you have
installed Rational Suite:

■ Click Start > Programs > Rational Suite > Rational Unified Process .

Projects and the Rational Administrator

When you work with TestManager, the information you create is stored in projects.
You use the Rational Administrator to create and manage Rational projects.

A Rational project stores software testing and development information. All Rational
components on your computer update and retrieve data from the same project.

Note: The types of data in a Rational project depend on the Rational software that you
have installed.

A Rational project can contain several different datastores and databases:

■ A database contains information that is related to only one purpose or subject.

■ A datastore can contain one or more databases, as well as other types of files such as
schemas. Thus a database is one element of a datastore.

A Rational project can consist of the following types of datastores:

■ Rational Test datastore – Stores application testing information such as test assets,
logs, reports, and builds.

■ Rational RequisitePro datastore – Stores product or system requirements, software
and hardware requirements, user requirements, quality assurance procedures, and
test plans. Each datastore consists of project documents and a dynamically linked
database.
8 Chapter 1 - Introducing Rational TestManager

■ Rational ClearQuest database – Stores change-request information for software
development, including enhancement requests, defect reports, and documentation
modifications. Each ClearQuest database consists of one schema and one user
database.

■ Rational Rose models – Stores visual models for business processes, software
components, classes and objects, and distribution and deployment processes.

Test Scripts and Rational Robot

Rational Robot lets you develop automated test scripts for functional testing and
performance testing. Use Robot to:

■ Perform full functional testing. Record test scripts that navigate through your
application and test the state of objects through verification points.

■ Perform full performance testing. Record test scripts that help you determine
whether a multi-client system is performing within user-defined response-time
standards under varying loads.

■ Test applications developed with IDEs such as Java, HTML, Visual Basic, Oracle
Forms, Delphi, and PowerBuilder. You can test objects even if they are not visible
in the application’s interface.

■ Collect diagnostic information about an application during test script playback.
Robot is integrated with Rational Purify , Rational Quantify , and Rational
PureCoverage . You can play back test scripts under a diagnostic tool and see the
results in the log.

The Object-Oriented Recording technology in Robot lets you generate test scripts by
simply running and using the application-under-test. Robot uses Object-Oriented
Recording to identify objects by their internal object names, not by screen coordinates.
If objects change locations or their text changes, Robot still finds them on playback.

Component Testing and Rational QualityArchitect

Rational QualityArchitect is a powerful collection of integrated tools for testing
middleware components built with technologies such as Enterprise JavaBeans and
COM.

QualityArchitect lets you reverse-engineer a component into Rational Rose, generate
test scripts, and finally edit and run the test scripts right from your Java development
environment or from Rational TestManager.

With QualityArchitect, you can:

■ Generate test scripts that unit-test individual methods or functions in a
component-under-test.
TestManager and Other Rational Products 9

■ Generate test scripts that drive the business logic in a set of integrated
components. Scripts can be generated directly from Rose interaction diagrams or
from live components using the Session Recorder.

■ Generate stubs that allow you to test components in isolation, apart from other
components called by the component-under-test.

■ Track code coverage through Rational PureCoverage and model-level coverage
through Rational TestManager.

Requirements and Rational RequisitePro

Rational RequisitePro is a requirements management tool that helps project teams
control the development process. RequisitePro organizes your requirements by
linking Microsoft Word to a requirements repository and by providing traceability
and change management throughout the project lifecycle.

When you create a project using the Rational Administrator, you can associate a
RequisitePro project with the Administrator project. You can then use the
requirements in the RequisitePro project as test inputs to your test plan in
TestManager, and you can easily associate the requirements with test cases.

Model Elements and Rational Rose

Rational Rose helps you visualize, specify, construct, and document the structure and
behavior of your system’s architecture. With Rose, you can provide a visual overview
of the system using the Unified Modeling Language (UML), the industry-standard
language for visualizing and documenting software systems.

When you create a project using the Rational Administrator, you can associate Rose
models with the project. You can then use the elements in that model as test inputs to
your test plan in TestManager, and you can easily associate the elements with test
cases.

Defects and Rational ClearQuest

Rational ClearQuest is a change-request management tool that tracks and manages
defects and change requests throughout the development process. With ClearQuest,
you can manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.

With TestManager and ClearQuest, you can submit defects directly from a test log.
TestManager automatically fills in some of the fields in the ClearQuest defect form
with information from the test log.
10 Chapter 1 - Introducing Rational TestManager

Reports and Rational SoDA

Rational SoDA generates up-to-date project reports of data extracted from one or
more tools in Rational Suite. SoDA can work with one Rational tool, such as
RequisitePro, or combine information from more than one tool, such as Rational
RequisitePro, Rational Rose, Rational TestManager, and ClearQuest. These reports
provide a way for your team to communicate more efficiently and consistently.

For example, with SoDa you can create a report with the following information on a
software development project:

■ Software requirements from RequisitePro.

■ Software models from Rose.

■ Testing criteria from TestManager.

■ Defect tracking information from ClearQuest.

TestManager and Extensibility

By exporting various application programming interfaces (APIs), TestManager is not
limited to supporting test artifacts generated by Rational tools. The APIs provide
hooks into the TestManager software, enabling implementers to plug in functionality
that suits specific testing purposes. In addition to the pre-defined test inputs
(RequisitePro requirements and Rose models), TestManager supports test inputs
defined by the customer. The other type of test artifact that can be extended to include
types defined by the customer are test scripts.

Defining Extensible Test Input Types

Any kind of intermediary object needed for testing can be defined and managed as a
test input type—for example, objects like Microsoft Project files or Excel spreadsheets.
You could also define C++ -language project files as a test input type. These files
might contain project-specific language restrictions and metrics, such as permitted
depth of inheritance. The test designer might create test cases that determine whether
specific source modules adhere to these restrictions.

For TestManager to support a new test input type, there must be a user-implemented
dynamic link library called a Test Input Adapter (TIA). The adapter includes
functions for tasks such as connecting to and disconnecting from the test input source,
testing whether an input element has been modified, and setting various kinds of
filters. You cannot make modifications to test input elements through TestManager.
Changes to test input elements must be made through the application native to the
test input type.
TestManager and Extensibility 11

Defining Extensible Test Script Types

There are two ways of defining your own test script type:

■ Using the built-in command-line adapter. This adapter is for file-based test scripts
that have operations driven from a command line—for example, a PERL script. A
new PERL script can be created and later edited by using a text editor. You can
define the command for the creation and edit operations for test scripts of a
particular test type, as—for example—Notepad test, where test is replaced
with the name of the test script before the command line is executed.

Defining a test script type in this way requires no additional programming, but
only entering some information about the type through the TestManager user
interface. From the TestManager Tools menu you can select Manage > Test Script
Types . In the Console Adapter Type tab, select Use the Command-Line Console
Adapter . You can enter the names of the executable commands for creating and
editing a test script. Selecting test scripts is done through the standard File Open
dialog box.

■ Using a customer-created adapter. You use this kind of adapter for file-based test
scripts when you want to take advantage of Rational’s Test Script Services or
Verification Point services, or both. Also, for test script types that are not file
based— for example, Rational Visual Test scripts, you must implement a DLL that
provides a minimal user interface and enables TestManager to connect to and
disconnect from the test input source, in addition to creating, editing, and selecting
test scripts of the custom type. Rational provides an applications programming
interface (API) for implementing this DLL, which is called a Test Script Console
Adapter (TSCA). You can learn more about custom adapters in the Rational
TestManager Extensibility Reference manual.

Virtual Testers and Types of Tests

About Virtual Testers

A virtual tester is a single instance of a test script running on a computer. For
functional test, only one virtual tester at a time can run on a computer. For
performance tests, many virtual testers can run on a computer simultaneously.

A virtual tester running a performance test emulates client/server requests sent to a
server. For example, when you record a session in Robot, Robot records a client’s
requests—such as Oracle, Microsoft SQL Server, and HTTP requests—to the server.
12 Chapter 1 - Introducing Rational TestManager

Robot also records the server’s responses. This network traffic is the only activity that
Robot records. Robot ignores GUI actions such as keystrokes and mouse clicks. After
recording the session, Robot generates an appropriate test script.

Because many virtual testers can run on a computer simultaneously, performance
testing allows you add a workload to a client/server system. Virtual testers also let
you determine scalability and measure server response times.

Functional and Performance Testing

When you plan tests, you might need to think about whether you are interested in
performance testing, functional testing, or both types of testing.

About Functional Testing

Functional testing involves virtual testers running GUI test scripts. You are testing the
accuracy of the application and how it behaves on different computers. You need only
a few users to do this.

Functional testing tends to have well-defined objectives and outcomes. For example,
if the application has a feature that saves a file to disk, it is relatively straightforward
to test this feature. If a file gets saved correctly, it passes the test. If it does not get
saved correctly, it fails the test.

For information about functional testing with TestManager, see Part 2.

About Performance Testing

In performance testing, you can measure the following things:

■ The client response time. This is the total end-to-end response time as seen by a
user. It is the time it takes for a virtual tester to enter a request, the server to
respond to the request, and the virtual tester to see the results.

■ The server response time. This is the time it takes for the server to process a
request.

Performance testing can be more complex than functional testing because
performance itself is subjective. What one user might perceive as too slow, another
user might perceive as perfectly acceptable. Therefore, when planning performance
tests, you need to put some thought into what constitutes acceptable performance.

Another complication of performance testing is that performance varies widely
depending on workload conditions. Querying a database on a system that is primarily
used for CPU-intensive activities yields a different response time than performing the
same query on a system used primarily for generating I/O-intensive database reports.
Virtual Testers and Types of Tests 13

For information about performance testing with TestManager, see Part 3.

Differences Between Functional and Performance Tests

The following table summarizes the main differences between performance and
functional tests:

Local and Agent Computers

You coordinate the activities of all your test scripts from a single Windows computer
where TestManager is running. This is known as the Local computer. From the Local
computer, you create, run, and monitor suites.

During the execution of a test, you play back test scripts on the Local computer or on
computers that you have designated as Agent computers. You use an Agent computer
for the following:

■ Adding workload to the server. If you are running a test with a large number of
virtual testers, you can use Agent computers to add load to the server.

■ Running test scripts on more than one computer. If you are running a functional
test, you can save time by running the test scripts on the next available Agent
computer instead of having the Local computer run all the test scripts. For this
situation, the test scripts must be modular and independent.

Functional Tests Performance Tests

Answer the question: “Does the system
do what it is designed to do?”

Answer the question: “How quickly does
the system perform what it is designed to
do?”

Focus on how the system behaves
against the functional or the design
specification. The system must work as
specified.

Focus on how the system behaves when
executing actual business operations.

Do not use a workload model. Model an actual workload, which is an
approximation of the real-world
environment you are trying to emulate.

Might deliberately use incorrect data to
test error recovery and error handling.
For example, if a field accepts a number
from 1 to 100, the test might use the
numbers 100, 1, 0, 101, and -1.

Use data that mirrors the actual work done.
For stress tests, the data might not mirror
the actual work done but instead will stress
the capacity of the system.
14 Chapter 1 - Introducing Rational TestManager

■ Running functional tests with many virtual testers. If you are running a functional
suite with more than one virtual tester, you need an Agent computer, because only
one virtual tester can run on each computer.

■ Testing hardware configurations. If you are testing different hardware
configurations, you can run test scripts on different Agent computers that are set
up with these hardware configurations.

Suites

Typically, multiple test scripts and multiple computers are involved in a test. At
runtime, test script playback is coordinated by test suites that you design. These test
suites add workload to the server. You run these test suites from the Local computer.

Once you have used TestManager to create suites that describe a baseline of behavior
for the server, you can run these suites repeatedly against successive builds of your
product, and you can analyze the results using TestManager’s reporting tools.

Test Script Services

Rational Test Script Services (TSS) are testing services that you can add to your test
scripts using the calls in the Test Scripts Services API. For example, you can add
logging, synchronization, timing, and datapool calls to test scripts. You can also add
verification calls to validate the state of UI, COM/DCOM, and EJB objects.

The following table lists the categories of services that the Test Script Services
provides:

Category Description

Datapool Provide variable data to test scripts during playback, allowing virtual
testers to send different data to the server with each transaction.

Logging Log messages for reporting and analysis.

Measurement Provide the means of fine-tuning and controlling your tests through
operations such as timing actions, setting think time delays, and setting
environment variables.

Utility Perform common test script operations such as retrieving error
information, controlling the generation of random numbers, and printing
messages.

Monitor Monitor test script playback progress.

Synchronization Synchronize multiple virtual testers running on a single computer or
across multiple computers.
Virtual Testers and Types of Tests 15

Test Script Services and Test Script Types

All test script types—including custom test script types that you might add to
TestManager—support Test Script Services.

With all automated test script types, you can add Test Script Services commands to
test scripts manually during test script editing. Further, with some test script types,
some or all Test Script Services commands can be added to test scripts automatically
during the following operations:

■ Recording with Rational Robot. Robot lets you record GUI, VU, and Visual Basic
test scripts.

■ Recording with the Rational QualityArchitect Scenario Recorder. The Scenario
Recorder lets you record Java and Visual Basic test scripts.

■ Rational QualityArchitect test script generation from a Rational Rose sequence
diagram. The test script generator automatically generates Java and Visual Basic
test scripts.

Use the following table as a guideline for including Test Script Services in different
kinds of test scripts. For details, see the documentation listed for each test type:

Session Manage test script session execution and playback.

Advanced Advanced features, such as setting values for internal variables.

Verification Point Validate the state of UI, COM/DCOM, and EJB objects.

Test Script
Type

Method of Adding Test Script Services Commands Documentation

GUI Recording with Rational Robot or manually editing. SQABasic Language
Reference

VU Recording a session and generating the test script
with Rational Robot or manually editing.

VU Language Reference

Visual Basic Recording a session and generating the test script
with Rational Robot or manually editing.

Rational Test Script
Services for Visual Basic

Java Manual editing. Rational Test Script
Services for Java

Command
Line

Manual editing. Rational Test Script
Services for Shell Scripts

Category Description
16 Chapter 1 - Introducing Rational TestManager

Test Script Services and TestManager

Test Script Services are designed for use with TestManager. As a result, Test Script
Services features that are included in any type of test script—including test scripts of
custom test type(s)—can be tracked and managed by TestManager. For example:

■ TestManager will adhere to any synchronization and delay functionality in your
test script when it plays back (executes) the test script within a suite of test scripts.

■ During test script playback, a tester can monitor various status information about
your test script through the test script monitoring commands.

■ During script playback, TestManager can provide realistic and verifiable data to
the test scripts through use of datapools.

■ The results of timed actions are displayed in TestManager reports.

■ TestManager test cases can be associated with test scripts that contain verification
commands for validating UI, COM/DCOM, or EJB objects.

■ TestManager can run test scripts of multiple types within a single suite. For
example, SQABasic, VU, Visual Basic, Java, Shell Command, and test scripts of
custom types can all be run within the same suite.

Starting TestManager

Before you start using TestManager, you need to have:

■ Rational TestManager installed. For information, see the Installing Rational Testing
Products manual.

■ A Rational project. For information, see the Using the Rational Administrator manual
or the Rational Administrator Help.

Logging into TestManager

When you log into TestManager, you provide your user ID and password, which are
assigned by your administrator. You also specify the project to log into.

To log in:

Custom Manual editing. Rational TestManager
Extensibility Reference
Starting TestManager 17

■ Click Start > Programs > Rational product name > Rational TestManager to open the
Rational Test Login dialog box.

Starting Other Rational Products and Components from TestManager

Once you are logged into TestManager, you can start other Rational products and
components from either the Tools menu or the Tools toolbar.

Type your user ID and
password. If you do not know
these, see your administrator.

Select a project. To change
projects after you log in, exit
TestManager and log in again.
(Projects are created in the
Rational Administrator.)

The Tools menu

Rational AdministratorRational SiteCheck

Rational ClearQuestRational Robot

The Tools toolbar
18 Chapter 1 - Introducing Rational TestManager

The TestManager Main Window

The following figure shows the TestManager main window and some of its child
windows.

Test Asset Workspace

The Test Asset Workspace gives you different views of the test assets in your project. It
has four tabs:

■ Planning

■ Execution

■ Results

■ Analysis

Test Asset Workspace
(open from View menu)

Test Plan window
(open from File menu)

Test Inputs window
(open from View menu)

Configurations window
(open from View menu)
The TestManager Main Window 19

To show or hide the Test Asset Workspace:

■ Click View > Test Asset Workspace .

Right-click any test asset in the Workspace to display a shortcut menu.

Right-click near the bottom of the window (in an empty area) to allow docking of the
Workspace or to float it in the main window.

Planning Tab

The Planning tab lists the test plans and iterations in the project.

For information about test plans and iterations, see Planning Tests on page 25.
20 Chapter 1 - Introducing Rational TestManager

Execution Tab

The Execution tab lists the suites, computers, and computer lists in the project.

For information about suites, computers, and computer lists, see Implementing Tests on
page 53 and Evaluating Tests on page 137.

Results Tab

The Results tab lists the builds, test log folders, and test logs in the project.
The TestManager Main Window 21

For information about builds, test log folders, and test logs, see Executing Tests on
page 89 and Evaluating Tests on page 137.

Analysis Tab

The Analysis tab lists the reports in the project.

For information about reports, see Evaluating Tests on page 137 and Reporting
Performance Testing Results on page 313.

Other TestManager Windows

The following table lists other TestManager windows and where to find more
information about them.

Window Description See

Test Input Shows the test inputs associated
with the project.

Defining What to Test by Using Test
Inputs on page 26

Test Plan Shows a test plan and all of its test
case folders and test cases.

Creating a Test Plan on page 29
22 Chapter 1 - Introducing Rational TestManager

Each window opens within the TestManager main window as an MDI (Multiple
Document Interface) child, which can be moved around inside of the main window.
However, you can choose to make each window a floating (undocked) or anchored
window (docked at the top, left, bottom, or right in the TestManager window).
Right-click the title bar of the window and select a command on the shortcut menu.

Configuration Shows all of the configurations and
configuration attributes in the
project.

Defining the Configurations to Test
on page 35

Window Description See
The TestManager Main Window 23

24 Chapter 1 - Introducing Rational TestManager

2Planning Tests
This chapter describes how to plan tests. It includes the following topics:

■ About test planning

■ Defining what to test by using test inputs

■ Creating a test plan

■ Organizing test cases with folders

■ Creating test cases

Note: For detailed procedures, see the TestManager Help.

About Test Planning

The activity of test planning answers the question, “What do I have to test to meet the
agreed-upon quality objectives?” When you complete your test planning, you have a
test plan that defines what you are going to test.

The test planning happens over time. You continually add things to the test plan.
You’ll come up with new test cases that you have to define, new situations that you
need to test, and new features that you are just learning about. In other words, a test
plan is not something that you just create at the beginning of the process and view as
a stagnant object. A test plan is an evolving artifact that is defined iteratively.

In TestManager, a test plan can contain lists of test cases. The test cases can be
organized hierarchically in test case folders.

In TestManager, test planning consists of the following major tasks:

■ Gathering and identifying the test inputs.

■ Creating the test plan.

■ Creating the test case folders.

■ Creating the test cases.

■ Defining the configurations you need to test against.

■ Defining the iterations—when you need to run the tests.
25

Defining What to Test by Using Test Inputs

When you first start your test planning, your goal is to build a checklist of all of the
things that need to be tested.

One way to start planning is to look at any available source materials that will help
you determine what you need to test. For example, you can look at:

■ Builds of the software

■ Functional specifications

■ Requirements

■ Models

■ Source code

■ Change requests

All of these materials are something that you as a tester might look at to try to help
you decide, “What do I have to test?” These materials are your test inputs. They are
inputs to the planning phase. They help you build the checklist of the things you need
to test.

Once you build this checklist, you can create test cases. You can then associate the test
cases with the test inputs for tracking purposes. By setting up these associations, you
can more easily track changes to the test inputs that might result in changes to the test
cases or their implementations. For information, see Setting up Traceability Using Test
Inputs on page 42.

You can also run reports to identify the test inputs that have test cases and
implementations associated with them, and which of those test cases have been run.
For example, analysts might be interested in the test coverage based on requirements.
Architects might be interested in the test coverage based on model elements. For
information about reports, see Reporting Results on page 154.

Almost anything can be a test input. TestManager provides built-in test input types,
and you can also define custom test input types as your testing environment requires.

To view the available test inputs:

■ Click View > Test Inputs to open the Test Input window.

Built-in Test Input Types

TestManager comes with two built-in test input types:

■ Requirements created in a Rational RequisitePro project
26 Chapter 2 - Planning Tests

■ Elements in a Rational Rose visual model

Requirements from Rational RequisitePro

You can easily use RequisitePro requirements as test inputs. You or an administrator
can use the Rational Administrator to associate a RequisitePro project with a Rational
project. Once this is done, the requirements appear in the Test Input window after you
log on to that project. You can then create an association between a requirement and a
test case. The requirements themselves are created and managed in RequisitePro, but
you can modify the properties of the requirements in TestManager.

In the following figure, the project has a RequisitePro datastore associated with it.
When you open the Test Inputs window, you can see the requirements.

Model Elements from Rational Rose

If you use Rational Rose, then you can use Rose model elements as test inputs. You
use the Rational Administrator to associate a Rose model with a project. You can then
look at each individual model element in the Test Inputs window, and create an
association between a model element and a test case.

Rational RequisitePro requirements associated with the project.

To filter the
requirements
that appear,
right-click and
click Filter .
Defining What to Test by Using Test Inputs 27

Custom Test Input Types

TestManager supports using test input types other than RequisitePro requirements or
Rational Rose model elements. For example, you might want to use C++ language
project files that contain project-specific language restrictions and metrics, such as
permitted depth of inheritance. The test designer can create test cases that determine
whether specific source modules adhere to these restrictions.

For TestManager to support an extensible test input type, you must implement a DLL
with certain required functions for TestManager to call when necessary—for example,
when connecting to or disconnecting from the test input source. This DLL is called a
Test Input Adapter (TIA). The TIA functionality enables you to associate project files
for the custom test type with test cases. For information about writing test input
adapters, see the Rational TestManager Extensibility Reference manual.

To register a new test input type in TestManager:

■ Click Tools > Manage > Test Input Types . Click New.

Note: If the New button is disabled, you do not have Administrator privileges. See the
Using the Rational Administrator manual or Help for information.

After you register a new test input source, that source appears in the Test Inputs
window.

Type the path to the DLL file.

Click to register the source
of the test input type.
28 Chapter 2 - Planning Tests

Creating a Test Plan

In TestManager, a test plan is an asset of a Rational project. You can have one or more
test plans in a project. They can be organized in any way that makes sense for your
organization. For example, you could have one test plan for the entire testing project,
or you could have one test plan for each major component of the project.

You work with test plans in the Test Plan window. To open the Test Plan window, do
one of the following:

■ Click File > Open Test Plan .

■ In the Planning tab of the Test Asset Workspace, expand Test Plans . Right-click the
test plan and click Open .

Editing and Creating Test Plans

TestManager provides you with an empty test plan named Test Plan 1 that you can
use to start your planning. You can also create your own test plans.

To edit a test plan:

■ From the Planning tab of the Test Asset Workspace, expand Test Plans . Right-click
the test plan and click Open .

To create a new test plan, do one of the following:

■ Click File > New Test Plan .
Creating a Test Plan 29

■ From the Planning tab of the Test Asset Workspace, right-click Test Plans and click
New Test Plan .

Note: If the New Test Plan menu command is disabled, you do not have Administrator
privileges. See the Using the Rational Administrator manual or Help for information.

Properties of a Test Plan

A test plan has many properties. For example:

■ The name of the test plan (required).

■ A description of the test plan.

■ The owner of the test plan. For information, see Specifying the Owner on page 34.

■ The configurations associated with the test plan. For information, see Defining the
Configurations to Test on page 35.

■ The iterations associated with the test plan. For information, see Specifying When to
Run Tests on page 40.

■ Any external documents associated with the test plan. For example, you could
associate a Microsoft Project to track effort, tasks, and progress.

The name of the test plan is required. For all other properties, you can add them when
you first create the test plan, or add or change them later.

Any iterations and configurations associated with a test plan are automatically
associated with any new test case folders that are direct children of the test plan. In
other words, if you create a test case folder directly below a test plan in the Test Plan
30 Chapter 2 - Planning Tests

window, that new folder inherits all iterations and configurations that are associated
with the test plan. You can easily change the folder’s associations if they aren’t
appropriate.

When you assign properties to a test plan, you can run reports based on those
properties. For example, you can run Listing reports to determine which test plans are
owned by each tester, or which iterations are associated with a test plan. The reports
can give you valuable information about the state of your testing project. For
information about reports, see Reporting Results on page 154.

To change the properties of a test plan:

■ Right-click the plan in the Planning tab of the Test Asset Workspace or in the Test
Plan window, and click Properties .

You can also copy an existing test plan, which copies all of its properties.

Customizing the Properties of a Test Plan

When you create test plans, you can add your own properties and values.

Using the Customize Test Assets dialog box, you can define both the property itself
(the label) and the values that can be used with that property. You can then access
those properties in the Custom tab of the New Test Case or Test Case Properties dialog
box.

To add customized properties and values to a test plan:

■ Click Tools > Customize > Test Plan .

Note: You can also customize the properties and values of test cases, suites, builds,
test scripts, and sessions from the Tools > Customize menu.

Organizing Test Cases with Folders

Within a test plan, you can create test case folders to organize your test cases
hierarchically. You can organize your test cases in any way that makes sense for you.
For example, you might have a test case folder:

■ For each tester in your department.

■ For each major use case of the system.

■ For each major component in the application.

■ For each phase of testing.
Organizing Test Cases with Folders 31

You can nest test case folders within test case folders. For example, you could have a
folder for a tester, and then that tester could create folders for each piece of
functionality she plans to test.

To create a test case folder:

■ In the Test Plan window, right-click a test plan or a test case folder and click Insert
Test Case Folder .

Just as with test plans, a test case folder has certain properties. For example:

■ The name of the folder (required).

■ A description of the folder.

■ The owner of the folder. For information, see Specifying the Owner on page 34.

■ The iterations associated with the folder. For information, see Specifying When to
Run Tests on page 40.

The name of the folder is required. For all other properties, you can add them when
you first create the folder, or add or change them later.

Any iterations and configurations associated with a test case folder are automatically
associated with any new folders and test cases that are direct children of the test case
folder. In other words, if you create a test case directly below a test case folder in the
Test Plan window, that new test case inherits all iterations and configurations that are
associated with the folder. You can easily change the test case’s associations if they
aren’t appropriate.
32 Chapter 2 - Planning Tests

Properties are useful when you run reports. For example, you could run a Listing
report to see the iterations associated with each test case folder. For information about
reports, see Reporting Results on page 154.

Creating Test Cases

The test plan is centered on test cases. Once you‘ve identified your test inputs and
decided what you plan to test, you can create your test cases.

Use test cases to validate that the system is working the way that it's supposed to
work and is built with the quality you need before you can ship it. The test case is the
artifact in TestManager that answers the question, “What do I need to test?” You
develop test cases to validate particular behaviors.

A test case always resides in a test case folder in a test plan.

To create a test case:

■ In the Test Plan window, right-click a test case folder and click Insert Test Case .

Properties of a Test Case

A test case has many properties. For example:

■ The name of the test case (required).

■ A description of the test case.

■ The owner of the test case. For information, see Specifying the Owner on page 34.

■ The configurations associated with the test case. For information, see Defining the
Configurations to Test on page 35.
Creating Test Cases 33

■ The iterations associated with the test case. For information, see Specifying When to
Run Tests on page 40.

■ Any test inputs associated with the test case. For information, see Setting up
Traceability Using Test Inputs on page 42.

■ Any external documents associated with the test case.

■ The manual and automated implementations of the test case. These are the actual
test scripts that will be run. For information, see Implementing Tests on page 53.

■ The design of the test case (in other words, the steps to be performed when the test
case is implemented). For information, see Specifying the Testing Steps and
Verification Points on page 46.

■ Pre-conditions, post-conditions, and the acceptance criteria of the test case. For
information, see Specifying Conditions and Acceptance Criteria of Test Cases on
page 48.

The name of the test case is required. For all other properties, you can add them when
you first create the test case, or add or change them later.

You can also add your own properties and values to a test case. For information, see
Customizing the Properties of a Test Plan on page 31.

Properties are useful when you run reports. For example, you could run a Test Case
Distribution report to see the test cases distributed over the owners. For information
about reports, see Reporting Results on page 154.

To change the properties of a test case:

■ Right-click the test case in the Test Plan window, and click Properties .

Specifying the Owner

You can define the owner of the test case from the Owner list in the General tab of the
New Test Case dialog box.

The owner is important for tracking purposes. For example, you could run a Test Case
Distribution report to see the test cases distributed over the owners. For information
about reports, see Reporting Results on page 154.

The Owner list contains the User IDs of the
test users that were added to the project
through the Rational Administrator.
34 Chapter 2 - Planning Tests

Defining the Configurations to Test

You use configurations to test against different sets of attributes. For example, you
might need to make sure that a test case works on certain operating systems and
certain browsers. You could have configurations that test each operating system and
browser separately. Or you might need to test that certain combinations of operating
systems and browsers work together. (In many organizations, the configurations that
you need to test against are determined by an analyst.)

For example, a test case might need to work on these operating systems:

■ Windows 2000.

■ Windows NT 4.

■ Windows 98.

■ Windows 95.

Each of these is a configuration consisting of an operating system.

In another example, a test case might need to work on a combination of an operating
system and a Web browser:

■ Windows 2000 and Internet Explorer 4.

■ Windows 2000 and Netscape 4.

■ Windows NT 4 and Internet Explorer 4.

■ Windows NT 4 and Netscape 4.

Each of these is a configuration consisting of a combination of an operating system
and a specific browser.

There are three main steps to working with configurations:

1 Define the configuration attributes and their possible values.

For example, Operating System is a configuration attribute, and Windows 2000 and
Windows NT are its values.

2 Define the specific configurations that you need to test.

For example, Windows 2000 is one configuration, and Windows NT is another
configuration.

3 Create configured test cases.

You create a configured test case by associating a configuration (created in step 2)
with a test case.
Creating Test Cases 35

Once you’ve defined the attributes, you can combine them in different ways to define
the configurations. Defining attributes and configurations is an iterative process, and
you will most likely continue to add and refine both throughout the testing project.

Defining Configuration Attributes and Their Values

When you start planning, think about how you will combine the pertinent
configuration attributes to define the configurations to test against. Keep in mind that
you can run reports against these attributes after you run your test cases. For example,
you can run a Test Case Results Distribution report, and distribute the results over the
configuration variables. For these reports to be useful, you must define your attributes
appropriately.

This process is iterative. Throughout the testing project, you’ll probably continue to
expand and refine this list.

For example, when you start the project, you may need to test only Windows 2000 and
Window NT. Later in the project, the analyst may decide that you also need to test
Windows 98. You can open the configuration attribute named Operating System and
add Windows 98 as a new value.

To start defining a configuration attribute:
36 Chapter 2 - Planning Tests

■ Click Tools > Manage > Configuration Attributes . Click the New button.

Note: If the New button is disabled, you do not have Administrator privileges. See the
Using the Rational Administrator manual or Help for information.

Defining the Configurations You Need to Test

Now that you have defined the configuration attributes and their values, you define
the configurations you need to test. This process is iterative. Throughout the testing
project, you’ll probably continue to expand and refine this list.

To start defining a configuration:

The name of the
configuration attribute

Possible values of the
configuration attribute,
if List is selected as
the source of values

Lets you specify the value
when you create the
configuration

Lets you specify the
possible values now
Creating Test Cases 37

1 Click Tools > Manage > Configurations . Click the New button.

Note: If the New button is disabled, you do not have Administrator privileges. See
the Using the Rational Administrator manual or Help for information.

In this figure, the name of the configuration is Win2000-IE4. This name easily
identifies that the configuration will be used for testing on a combination of
Windows 2000 and Internet Explorer 4.

2 Click the Attribute tab.

In this tab, you can select a value from the list of values you defined when you created
the configuration attributes. In this example:

■ The Operating System is Windows 2000

Use a descriptive name that
includes the important
information about the
configuration.

If the configuration
attributes were defined as
a List , click in a field to
display a list of possible.
values.

Configuration
attributes If the configuration

attributes were defined as
Dynamic , type a value.
38 Chapter 2 - Planning Tests

■ The Browser is Internet Explorer 4

Since Memory is left blank, this configuration includes any memory value.

Using the Configurations Window

You can easily view and edit any of your configurations in the Configurations
window.

To open the Configurations window:

■ Click View > Configurations .

When the Configurations window is open, you can insert configuration attributes and
configurations from the Edit menu, or by right-clicking a row in the window.

Creating a Configured Test Case

Once you’ve created configuration attributes and configurations, you can create
configured test cases.

Configured test cases are useful when you need to validate that a piece of
functionality works under various configurations. For example, suppose you have a
test case that says, “Close the application.” You need to validate that the test case
passes on each of the following operating systems: Windows 2000, Windows NT 4,
Windows 98, and Windows 95. You could create four configured test cases associated
with the main test case. In order for the main test case to pass, all of its configured test
cases need to pass.

Configurations

Configuration attributes

Values of configuration attributes

Click the Save
button if you make
any changes.

Click the Reload button
to reload the last saved
configurations.

Click to display a list.
Creating Test Cases 39

After you run the configured test cases, you can modify the standard Test Case
Results Distribution report so that it filters based on the configurations you are
interested in (for example, operating system). When you run that report, you can see
the test case results based on operating system. For information about reports, see
Reporting Results on page 154.

You can associate a configuration with a test case in several ways:

■ When creating a new test case, click the Iterations - Configurations tab in the New
Test Case dialog box. Select the configurations to associate.

■ When editing the properties of an existing test case, click the Iterations -
Configurations tab in the Test Case Properties dialog box. Select the configurations
to associate.

■ In the Test Plan window, right-click a test case and click Associate Configuration .
Select the configurations to associate. A message appears giving you the option of
associating the configurations with all of the object’s existing children.

You can follow similar steps to associate configurations with a test plan or a test case
folder. When you associate configurations with an object, all new objects that are
direct children of that object inherit that configuration. For example, if you associate a
configuration named Windows 2000 with a test plan, all of the new test case folders
created directly under that test plan will be associated with Windows 2000. You can
always change an object’s configurations when you create that object or at a later time.

If a configuration is associated with a test case, the configured test case appears under
the test case in the Test Plan window.

Specifying When to Run Tests

Many test organizations plan more test cases than can actually execute at any given
time. You can create all of the test cases in TestManager, and then use iterations to
identify which test cases actually need to run and when they need to pass.

An iteration is a defined span of time during a project. The end of an iteration is a
milestone. An iteration says that at some point in time, the product has to meet a
certain quality standard to reach a milestone. The quality standard is defined by the
test cases that must pass.

Multiple iterations can be associated with a test case. The iterations indicate when the
test case must pass. In many organizations, the tester works with an analyst or
developers to determine at which iterations the test case needs to pass.

For example, at the beginning of a project you start to create all of the test cases that
you can think of for the system. The analyst reviews your test plan and says that test
cases 1, 2, 3, and 8 are important for the Construction 2 iteration. You go back into
40 Chapter 2 - Planning Tests

TestManager and associate the Construction 2 iteration with these four test cases.
During your testing, you come up with another test case. The analyst decides that this
is an important test case for Construction 2, so you add that iteration to the test case.

TestManager provides you with an initial set of iterations based on the Rational
Unified Process. (For a description of these iterations, see the Rational Unified Process
documentation.) You can use these iterations, or add your own based on what makes
sense for your organization.

Creating and Editing Iterations

To create or edit iterations:

1 Select Tools > Manage > Iterations .

2 Click New to create a new iteration, or select an existing iteration and click Edit .

Note: If the New and Edit buttons are disabled, you do not have Administrator
privileges. See the Using the Rational Administrator manual or Help for information.

You can also right-click Iterations in the Planning tab of the Test Asset Workspace.

Associating Iterations with a Test Case

You can associate an iteration with a test case in several ways:

■ When creating a new test case, click the Iterations - Configurations tab in the New
Test Case dialog box. Select the iterations to associate.

Name of iteration

Start date of
iteration

End date of the
iteration
Creating Test Cases 41

■ When editing the properties of an existing test case, click the Iterations -
Configurations tab in the Test Case Properties dialog box. Select the iterations to
associate.

■ In the Test Plan window, right-click a test case and click Associate Iteration . Select
the iterations to associate. A message appears giving you the option of associating
the iterations with all of the object’s existing children.

You can follow similar steps to associate iterations with a test plan or a test case folder.
When you associate iterations with an object, all new objects that are direct children of
that object inherit that iteration. For example, if you associate the iteration named
Transition 1 with a test plan, all of the new test case folders created under that test
plan will be associated with Transition 1. You can always change an object’s iteration
when you create that object or at a later time.

You can define a test case report so that it reports on specific information. For
example, you could start with one of the standard test case reports and build a report
that adds filtering for iteration. When you run that report, you can see the test case
coverage based on a specific iteration. When all of the test cases that define your
quality acceptance criteria for a given iteration pass, you have met your quality
milestone.

Setting up Traceability Using Test Inputs

As described in Defining What to Test by Using Test Inputs on page 26, test inputs help
you decide what to test. When you create your test cases, you can associate test inputs
with them. By doing this, you can determine if a test case needs to change because its
associated test input changes.

The association also lets you determine if the test input is covered by a test case. For
example, suppose you’re using requirements as test inputs. When every test input is
associated with a test case, you know that all of your requirements are covered. When
every test case passes, you know that all of the test inputs have been validated.

To associate a test input type with a test case:

■ In the Test Plan window, right-click a test case and click Associate Test Input .

The test inputs appear. When you select the test input, it becomes associated with that
test case.

You can also associate a test input when you first create the test case, or in the test
case’s Properties dialog box.
42 Chapter 2 - Planning Tests

When you run a test case report, you can modify that report so that it reports on
specific information. For example, you could start with one of the standard reports
and build a report that adds filtering for test input. When you run that report, you can
see the test case coverage based on the test inputs.
Creating Test Cases 43

44 Chapter 2 - Planning Tests

3Designing Tests
This chapter describes how to design tests. It includes the following topics:

■ About designing tests

■ Specifying the testing steps and verification points

■ Specifying pre-conditions, post-conditions, and acceptance criteria of test cases

■ Example of a test design

Note: For detailed procedures, see the TestManager Help.

About Designing Tests

Once you’ve defined the features that you need to test, you need to decide how to do
the testing. The activity of test design is primarily answering the question “How can I
test this? How can I perform this test case?”

As part of the design of the test case, you need to identify:

■ The steps required to interact with the application and system in order to perform
the test.

■ How to validate that the items or features you are testing are working properly.

■ The pre-conditions of the test case—how to set up the application and system so
that the test case can run.

■ The post-conditions of the test case—how to clean up after the test case runs.

■ The acceptance criteria—how to decide if the test case passed.
45

You should be able to design your tests based on test inputs such as feature
descriptions and software specifications (for example, requirements) before or during
the implementation of the actual system. This is a key aspect of making testing a
parallel development with system implementation.

Someone should then be able to take the test design and an implementation of the
system (with documentation) and know how to implement the test.

For example, if you are using an automated testing tool like Rational Robot, you
should be able to start your tool and follow the steps documented in the test case’s
design to create a test script. The test script becomes an implementation of the
designed test case, and therefore of the test case itself.

As another example, you could also look at all of the test designs (one for each test
case) before you implement the test cases. You might find patterns in the test designs
that indicate a more efficient way to implement the test cases. For example, you might
see that every test design begins with a step that says “From the Start menu, start the
application.” You might decide that it doesn't make sense to record this step in every
test script, because if the name of the application changes, all of the scripts would
need to be changed. Instead, you might build a subroutine to start the application,
and have the test scripts call that subroutine. This would become obvious by looking
at the test designs.

You can also use the test design to assist you in creating a manual test. For
information about manual tests, Creating Manual Test Scripts on page 56.

Specifying the Testing Steps and Verification Points

You can design a test case when you first create the test case or at a later time.

To design a new test case:
46 Chapter 3 - Designing Tests

■ In the Test Plan window, right-click a test case folder. Click Insert Test Case .

To design an existing test case:

■ Right-click the test case in the Test Plan window and click Design .

Use the Design Editor to include all of the steps and verification points that should be
included in the test script:

Step – An action to be taken in the application or system.

Click to open the Design Editor.

Indicates whether a row is a
step (footprint) or a verification
point (check mark). Click to
change.

Use to include
a note.

Contains the step or
verification point.

Prints the
test design.
Specifying the Testing Steps and Verification Points 47

Verification Point – A point in a test script that confirms the state of one or more
objects.

When you click OK in the Design Editor, that design becomes a property of the test
case.

The test design will evolve over iterations of the development process. As you learn
more of the details of how the system will be implemented, you can add more steps
and verification points to the design.

Specifying Conditions and Acceptance Criteria of Test Cases

Pre-conditions and post-conditions provide information for the person executing the
test. They describe the constraints on the system that must be true when an operation
starts or end, therefore ensuring that the test case can run properly and that it leaves
the system in an appropriate state. Failure of a pre-condition or post-condition does
not mean that the behavior or function being tested did not work. It means that the
constraint wasn’t met.

The acceptance criteria indicates what needs to be true in order for a particular test case
to pass.

To specify the conditions and acceptance criteria:
48 Chapter 3 - Designing Tests

1 In the Test Plan window, right-click a test case. Click Properties .

2 Click the Implementation tab.

For example, if the test case needs to verify whether the response time for logging into
a system is acceptable, then you might include the following information with the test
case:

Pre-condition – You must have the proper user ID login available in the system and
the system must be in a logged out state.

Post-condition – After you log in and successfully verify the test case, you need to log
out (or bring the system back into a known state for the following tests).

Acceptance criteria – The response time range should be between .5 and 2.0 seconds
for this test case to pass.

In another example, you could have five verifications in your test. However, at a
certain point in time, only three of them might need to pass for the test case to pass. In
this case, the acceptance criteria might change based on the iteration.

Any setup dependency that is
required for the test case to run.

Any cleanup steps after the test
case is run, to bring it back to a
known state.

The expected results or
performance characteristics
that define whether the test
case passed or failed.
Specifying Conditions and Acceptance Criteria of Test Cases 49

Example of a Test Design

This section gives an example of a design for a test case. Because the test design is
based on test inputs, it can be developed before any code is written.

In this example, you are testing an automated teller system (ATM). Your requirements
include a use case for withdrawing money from a specified account type. Another
requirement specifies that to perform any transactions with the ATM, the user must
be identified and validated. From these requirements, you have defined a test case to
ensure that you can withdraw a sum of money from a checking account when the
account contains more money at the start of the transaction than the amount
withdrawn.

The first iteration of the test design might be as follows:

Pre-conditions

■ Ensure that we have a valid account set up and know the user ID and validation
information (password or PIN).

■ Ensure that there is a checking account for the user and that we know the current
balance.

■ The current balance must be greater than zero.

Design

■ Step – Identify the user to the ATM and validate.

■ Verification Point – Make sure that we’re logged in.

■ Step – Select “Checking” as the account type and “Withdraw” as the transaction.

■ Step – Specify the amount to withdraw where the amount is less than the current
balance.

■ Verification Point – Ensure that the amount dispensed matches the amount
specified.

■ Verification Point – Run the account balance transaction to ensure that the new
balance equals the old balance minus the amount withdrawn.

Post -Conditions

■ Make sure that the user is logged off of the ATM.

Acceptance Criteria

■ All verifications must succeed.
50 Chapter 3 - Designing Tests

As more details of the system become available—as you move through iterations of
artifacts like visual models, software specifications, prototypes, and so on—you can
add more detail to the test design. For example, you might learn later that users will
identify themselves via a card and PIN. You could update the design to have steps to
insert the card, enter the PIN, and retrieve the card at the end.
Example of a Test Design 51

52 Chapter 3 - Designing Tests

4Implementing Tests
This chapter describes how to implement tests. It includes the following topics:

■ About implementing tests

■ Implementing built-in test script types and suites

■ Implementing extensible test script types

■ Creating manual test scripts

■ Associating an implementation with a test case

■ Implementing tests as suites

Note: For detailed procedures, see the TestManager Help.

About Implementing Tests

After you’ve created the test design for each test case, you’re ready to implement the
test case. You implement a test case by building a test script and then associating that
test script with the test case.

Implementation is different in every organization. You can use your preferred tools to
build any kind of test script appropriate for your testing environment.

For example, one testing organization might decide to implement all of the test cases
by recording the test script using Rational Robot.

Another organization might decide to write modular pieces of software using a
combination of Visual Test scripts, batch files, and Perl scripts, and then
programmatically tie them together in a higher level script.

After you implement a test script, you can associate it with a test case in TestManager.
For information, see Associating an Implementation with a Test Case on page 60.

You can then run the test case or the test script in TestManager. You can also insert the
test script into a suite and run the suite. For information about running
implementations, see Executing Tests on page 89.
53

Implementing Built-in Test Scripts Types and Suites

TestManager is tightly integrated with Rational’s test implementation tools. Starting
from TestManager, you can easily implement:

■ Automated test scripts recorded in Rational Robot

■ Manual test scripts created in Rational ManualTest

■ Suites created in Rational TestManager

Automated Test Scripts Recorded in Rational Robot

TestManager is tightly integrated with Rational Robot, and therefore comes with
built-in support for implementing the following test script types:

■ GUI – A test script written in SQABasic, a Rational proprietary Basic-like scripting
language. GUI scripts are used primarily for functional testing.

■ VU – A test script written in VU, a Rational proprietary C-like scripting language.
VU test scripts are used primarily for performance testing.

To start recording a test script from TestManager:

■ Click File > Record Test Script > GUI or VU.

This starts Robot and opens the Record dialog box.

Note: When you choose to record a VU test script, you actually begin recording a
session. You can choose to generate VU or VB test scripts from the recorded session.

For detailed information about recording test scripts, see the Using Rational Robot
manual and the Robot Help.

Manual Test Scripts Created in Rational ManualTest

TestManager is also tightly integrated with Rational ManualTest, and therefore comes
with built-in support for implementing the following test script type:

■ Manual – A set of testing instructions to be run by a human tester.

For information, see Creating Manual Test Scripts on page 56.

Suites Created in TestManager

TestManager allows you to build test suites from test scripts, test cases, and other
items. Suites provide great flexibility and power for creating multi-faceted functional
and performance tests.
54 Chapter 4 - Implementing Tests

Suite basics are covered in Implementing Tests as Suites on page 62. For details about
planning, creating, and interpreting functional testing suites, see Creating Functional
Testing Suites on page 173. For details about planning, creating, and interpreting
performance testing suites, see Creating Performance Testing Suites on page 243.

Implementing Extensible Test Script Types

TestManager’s extensible test script type functionality enables you to implement tests
using any tool that is appropriate for your testing environment. There are two ways to
extend TestManager to support a new test script type.

You can create a new test script type that is based on the Command Line test script
type and that uses the Command Line Test Script Console Adapter (TSCA) provided
with TestManager. The advantage of this method is simplicity: it requires no custom
programming. The only requirement is that the test scripts you want to run from
TestManager can be executed from the command line.

The drawback of these scripts is that, while TestManager can execute them
individually and also in suites that include test scripts of other types, they are not
fully integrated into TestManager. For example, any procedures required to make
these test scripts executable must be performed outside of TestManager.

The other way to extend TestManager is to create a new custom test script type. This
requires that you develop programs implementing the C-language APIs described in
chapters 2-4 of the Rational TestManager Extensibility Reference manual. Custom test
script types are fully integrated into the TestManager framework, but they require
considerably more effort to provide.

Which ever way you choose to incorporate a new test script type into TestManager,
you must register the type. To register a new test script type in TestManager:
Implementing Extensible Test Script Types 55

■ Click Tools > Manage > Test Script Types . Click New.

Note: If the New button is disabled, you do not have Administrator privileges. See the
Using the Rational Administrator manual or Help for information.

After you register the test script type, you should be able to open and run a test script
of that type from TestManager. Depending on how the adapter is implemented, you
might also be able to create and edit test scripts of that type.

Creating Manual Test Scripts

Rational TestManager is tightly integrated with Rational ManualTest.

Rational ManualTest lets you create and run test scripts for tests that you cannot
automate. A manual test script is a set of testing instructions to be run by a human
tester. The script can consist of steps and verification points that you type into an
editor.

A step is an instruction to be carried out by the tester when a manual test script is run.
This could be as simple as a single sentence (such as “Reboot the computer”) or as
complex as a whole document. In general, a step consists of one or two sentences.

Click this tab to specify the
console adapter.

Click this tab to specify the
execution adapter.

Click this tab to specify the
test script type source.
56 Chapter 4 - Implementing Tests

Within a manual test script, a verification point is a question about the state of the
application (for example, “Did the application start?”). A verification point can consist
of any amount of text but is likely to be one or two sentences, usually ending with a
question mark.

After you create a manual test script, you can associate it with a test case. When you
run the test case or manual test script, the script opens in ManualTest.

When you run a manual test script, you perform each step and indicate whether each
verification point passed or failed. You can then open the Test Log window of
TestManager and see the results. If all of the verification points passed, then the script
passes. If any verification points failed, then the script fails.

As with other types of test scripts, you can include your manual test scripts in
TestManager reports.

Note: For detailed procedures about manual test scripts, see the Rational ManualTest
Help.

Starting Rational ManualTest

To start ManualTest and create a new manual test script:

■ In TestManager, click File > New Test Script > Manual .

Example of a Manual Test Script

The following manual test script contains five steps and four verification points.

■ The steps are actions for you to take when you run the script.

■ The verification points are questions for you to answer.

Indicates whether a row
is a step (footprint) or a
verification point (check
mark).

Use to include a note.

Contains the step or verification point.

Right-click in any row...

... to open a shortcut menu.
Creating Manual Test Scripts 57

Setting the Default Editor for Manual Test Scripts

You can use either the grid editor or the text editor when you create a manual test
script. The grid editor is a structured editor that makes it easy to enter your steps and
verifications points. The text editor is a free-form editor that makes it easy to
manipulate text.

To set the default editor in ManualTest:

■ Click Tools > Options .

This setting takes effect the next time you create or open a manual test script.

Note: Instead of using either editor, you can include an external file in the Test Script
Properties dialog box.

In the text editor, you use a shortcut menu to mark items as steps and verification
points, and to create and view notes.

The footprint
indicates a step
to be performed.

The check mark
indicates a
verification point that
can pass or fail.

The Note icon
indicates that a note
exists. Click the icon
to open the note.

Grid editor

Text editor
58 Chapter 4 - Implementing Tests

The start of an item (step or verification point) is indicated by the footprint or check
mark icon. All lines that do not begin with either of these icons are part of the
previous item.

Including an External File in a Manual Test Script

Instead of typing the steps and verification points into the grid or text editor, you can
include an external file. This file can contain all of the instructions to be used in the
manual test script. You can create this file with Notepad, Microsoft Word, or any other
program for which there is a file association.

To include an external file in a manual test script.

1 Open an existing manual test script.

2 Click File > Properties .

3 Click the Specifications tab and include the file.

When you run the script, the external file opens so that you can follow the
instructions.

Note: When you run a manual test script that includes an external file, you can
indicate the results of the entire script (Pass or Fail), but you cannot indicate the
results of the individual verification points.

Creating Script Queries

Rational ManualTest provides queries that help you select test scripts in your Rational
project. Queries let you specify the fields that appear in selection dialog boxes, how
the test scripts are sorted, and which test scripts appear.

Indicates whether
an item is a step
(footprint) or a
verification point
(check mark)

Indicates a note

Contains the step or verification point

... to open a shortcut menu.

Right-click any item...
Creating Manual Test Scripts 59

Use filters in your queries to specify the information that is retrieved from a project.
Filters help you make queries more specific by narrowing down the information that
you are searching for. You can build simple filters or combine simple filters into more
complex ones. You use filters when you create or edit a query.

To create a new query:

■ Click Tools > Manage Script Queries .

Customizing Test Assets

When you create a manual test script, you can add custom properties to tailor the
terminology associated with the scripts to the standards and practices used within
your organization.

You can do the following to the properties of a script:

■ Add up to three custom properties and values. (These appear in the Custom tab of
the Test Script Properties dialog box.)

■ Add new operating environments and modify or delete existing ones.

■ Add a new purpose or modify or delete existing ones. You assign a purpose to
indicate why you would use a script.

To see the standard properties of a manual test script:

■ Click File > Properties .

To customize a manual test script:

■ Click Tools > Customize Test Script .

You can define both the property itself (the label) and the values that can be used with
that property.

For more information about customizing a script, see the ManualTest Help.

Associating an Implementation with a Test Case

Once you’ve created an implementation, you can associate it with a test case. You can
then run the test case, which runs its implementation. By associating test scripts with
test cases, you can run reports that provide test coverage information.

TestManager comes with built-in support for associating the following types of
implementations:

■ GUI test scripts
60 Chapter 4 - Implementing Tests

■ VU test scripts

■ VB test scripts

■ Manual test scripts

■ Command-line executable programs

■ Suites

TestManager also supports associating other test script types that you have registered.
For information, see Defining Extensible Test Script Types on page 12.

To associate an implementation with a test case:

1 In the Test Plan window, right-click a test case. Click Properties .

2 Click the Implementation tab.

You can have at most two implementations associated with a test script: one manual
and one automated. If both are associated with a test case, TestManager will run the
automated implementation when you run the test case. For information about
running test cases, see Running Test Cases on page 92.

Click to select a manual
implementation.

The automated implementation
associated with the test case

Click to select an automated
implementation.

The manual implementation
associated with the test case
Associating an Implementation with a Test Case 61

Implementing Tests as Suites

Suites are another way to implement tests in TestManager. Suites are categorized as
either functionally-based suites or performance-based suites.

A suite shows a hierarchical representation of the tasks that you want to test, or
workload that you want to add to a system. It shows such items as the user or
computer groups, the resources assigned to each group, which test scripts the groups
run, and how many times each test script runs.

When structuring a test using a suite, you can:

■ Define user or computer groups, and apply resources to them specifying where
they run

Groups are collections of virtual testers (emulating actual users or computers) that
perform similar tasks in the application.

■ Add test scripts

Test scripts are sets of instructions. Test scripts can be used to navigate the user
interface of an application to make sure all features work, or to test the activities
that the application performs behind the interface.

■ Add subordinate suites

Subordinate suites are structures that specify how test scripts are played back and
how test are run.

■ Add test cases

A test case is a testable and verifiable behavior in a target test system.

■ Create and add scenarios.

Scenarios are modular groups of test scripts and other items in a suite that can be
used by more than one user or computer group.

■ Specify a selector

Selectors allow you to indicate how often and in what order to run test scripts in
suites.

■ Add a delay

Delays tell TestManager to pause for a given length of time before executing the
next item in a suite.

■ Define synchronization points
62 Chapter 4 - Implementing Tests

Synchronization points are definable places in suites where all virtual testers stop
and wait for other virtual testers.

■ Add a transactor

Transactors allow you to specify the number of user-defined transactions that a
virtual tester performs in a given time period during the suite run.

While performance tests make use of all these feature, not all apply to functional tests.
If you are creating a functional test, the following suite elements are most beneficial to
you:

■ Computer groups

■ Test scripts

■ Suites

■ Test cases

■ Certain types of selectors

Additionally, more complex functional tests might include:

■ Scenarios

■ Delays

■ Synchronization points

For more information on functional testing suites, see Chapter 8, Creating Functional
Testing Suites.

For more information on performance testing suites, see Chapter 11, Creating
Performance Testing Suites.

Certain activities associated with creating scripts are independent of the type of suite.
These topics are discussed in the remainder of this section. They include:

■ Defining computers and computer lists

■ Opening suites

■ Editing test scripts

■ Editing suites, including:

❑ Editing suite properties

❑ Editing user group information and user settings

❑ Editing Agent computer settings

❑ Setting system environment variables
Implementing Tests as Suites 63

❑ Setting TSS environment variables

❑ Changing the number of start test scripts

❑ Limiting the number of test scripts

❑ Changing the way random numbers are generated

■ Setting shared variables

■ Printing and exporting a suite

■ Saving a suite

Defining Computers and Computer Lists

For both functional and performance tests, you can specify whether to run tests on the
Local computer, any defined Agent computer, or groups of computers.

The Local computer is always the default. Unless you specify other computers, tests
can only run on the Local computer.

Adding a New Computer

To add a new computer definition to TestManager:

■ Click Tools > Manage > Computers . Click the New button.

When you add a new computer definition to TestManager, you can include the
following properties:

■ Name - A name for the computer as appropriate to the testing environment.
64 Chapter 4 - Implementing Tests

■ Network Name - The name of the computer as recognized on the computer
network. This may or may not be the name of the computer as defined above. To
make sure you have the correct network name for the computer, click Ping to have
your system search for the computer and respond.

■ Description - (Optional) A description of the computer, perhaps noting its role in
the testing process.

■ Recording Usage - Specify whether the computer will be seen as a client or server
system during recording.

■ Playback Usage - Specify whether the system will be available for test script
playback.

■ Port Information -TCP/IP port information associated with the system. For
information about port settings, see Appendix A, Configuring Local and Agent
Computers.

Creating a Computer List

After you have defined computers within TestManager, you can define lists of
computers. This is useful if you want to run tests on several computers and only want
to reference that group once, or if a series of computers has as similar configuration or
organizational task.

To create a computer list:
Implementing Tests as Suites 65

■ Click Tools > Manage > Computer Lists . Click the New button.

After you have defined the computer list with a name and description, add computers
to the list. Computers must have been added to TestManager individually before they
can be included in a computer list

To add computers to a computer list:

■ From the Computer List Properties dialog box, click Select .

Once you have defined computers and computer lists, they are resources available for
running suites.
66 Chapter 4 - Implementing Tests

Opening a Suite

To work with a suite, you must open it. You can open a suite from a menu or from the
Test Asset Workspace.

To open a suite from a menu:

■ Click File > Open Suite .

To open a suite from the Test Asset Workspace:

■ From the Execution tab, double-click the suite in the tree.

Editing a Test Script

While you are working with a suite, you may want to edit a test script. Through
TestManager, you can:

■ Edit the properties of a test script.

■ Edit the text of a test script.

Editing the Properties of a Test Script

A test script can have properties associated with it in addition to the test script name
and type. Examples of test script properties include a description of the test script and
the purpose of the test script.

To edit the properties of a test script:
Implementing Tests as Suites 67

■ Choose the test script, then click Edit > Properties .

Editing the Text of a Test Script

To edit the text of a test script:

■ Select the test script to edit, and click Edit > Open Test Script .

TestManager starts the application appropriate to editing that script type. For
example, for VU test scripts, TestManager starts Rational Robot. Robot opens with the
selected test script ready to edit in a window. For Visual Basic or Java test scripts,
TestManager starts the appropriate registered application, such as VB6 Integrated
Development Environment (IDE), or Notepad if no IDE is associated with the selected
script type.

For information about editing other script types, see the appropriate Rational Test
Script Services API documentation.

Editing a Suite

While you are working with a suite, you might want to want to edit its contents. You
might want to:

■ Edit the properties of the suite.

For example, the suite name, its description, or specifications.
68 Chapter 4 - Implementing Tests

■ Edit the items in the suite.

For example, you might want to change the properties of a selector from sequential
to random with replacement, or the properties of a transactor from coordinated to
independent.

■ Replace items in a suite.

For example, you might want to replace a script or a scenario with a new one.

■ Edit user group information.

For example, you might want to change a user group from fixed to scalable,
and/or change the computers on which the user group runs.

Editing the Properties of a Suite

A suite has properties associated with it that can make it unique and help you
differentiate it from similar suites. Examples of suite properties include a description
of the suite and the owner of the suite.

To edit the properties of a suite:

■ Open the suite to edit, then click File > Properties .
Implementing Tests as Suites 69

Replacing Items in a Suite

Use inline editing to replace any item in a suite except delays and selectors. Replacing
an item—especially an item high in the suite structure—is often easier than deleting
the item and adding another one. For example, your suite may contain a complex
structure of user groups, test scripts, and scenarios. Rather than deleting an item and
recreating the suite structure underneath, you can replace the item.

Note: To be able to replace an item in a suite, you must first verify the value of one of
the TestManager suite creation options. Click Tools > Options > Create Suite , and clear
the Show numeric values check box. This option allows you to perform inline editing
and thus rename suite items in the tree.

To replace an item:

■ Select the item, then type over the new item name.

Editing Items in a Suite

As your testing process evolves over time, you may want to edit the properties
associated with suite items and how they are used within the suite. You can edit the
run properties of:

■ Test cases

■ Test scripts

■ Suites

■ Delays

■ Scenarios

■ Selectors

■ Synchronization points

■ Transactors

To edit the properties of an item:

■ Select that item, right-click and select Run Properties .

TestManager displays the same dialog box that appeared when you created the item.
You can edit the values in each box.

Note: When you edit the run properties of a suite item, the changes affect only that
instance of the item.

For example, to edit the properties of a transactor, right-click a transactor, then select
Run Properties .
70 Chapter 4 - Implementing Tests

Editing Information for All User Groups

At times, you may want to edit information for more than one user group. For
example, you might want to change the scaling proportion of the user groups.
Although you can edit each user group individually, it is much easier to edit the
information for all of the user groups at the same time.

To edit information for all user groups:

■ Click Suite > Edit Groups .

Editing the Settings of an Agent Computer

You may want to change the default settings associated with an Agent computer. The
configuration of that Agent system may have changed and the settings in
TestManager need to reflect this.
Implementing Tests as Suites 71

To change the computer settings:

■ Click Suite > Edit Computers .

Editing the User Settings

You may want to change the default settings associated with virtual testers. In
particular, it is often useful to change which information is logged when you run a
suite by setting TSS environment variables. For example, if you are having problems
running a suite, set one virtual tester to log all environment variables and the other
virtual testers to log failed environment variables so that you can investigate the
problem more thoroughly.

To edit virtual tester settings:

■ Click Suite > Edit Settings .
72 Chapter 4 - Implementing Tests

Initializing TSS Environment Variables

You can initialize the value of most TSS environment variables within TestManager.
When an environment variable is initialized through the TestManager interface, the
value is in effect for an entire suite run unless the test script specifically changes the
value.

To initialize the value of a TSS environment variable:

■ Click Suite > Edit Settings, then click the button in the TSS Environment Variables
column of the User Settings dialog box.

Note: For more information on TSS environment variables and their meanings, see
the Rational TestManager Extensibility Reference manual and the appropriate API
documentation.
Implementing Tests as Suites 73

Initializing Client/Server Environment Variables

To initialize client/server environment variables

■ Choose the Client/Server tab in the TSS Environment Variables dialog box.

Values for client/server environment variables can be initialized as follows:

Variable Description Potential values Default value

COLUMN_HEADERS Column headers ON
OFF

ON

SQLNRECV_LONG Number of bytes to
include in response

0-2000000000 20

TABLE_BOUNDARIES Stop row retrievals at
end of table

ON
OFF

OFF
74 Chapter 4 - Implementing Tests

Initializing Connect Environment Variables

To initialize connect environment variables:

■ Choose the Connect tab in the TSS Environment Variables dialog box.

Connect environment variables apply to scripts that use HTTP and socket protocols
only. Values for connect environment variables can be initialized as follows:

Variable Description Potential values Default value

CONNECT_RETRIES Retries 0-2000000000 100
CONNECT_RETRY_INTERVAL Retry interval 0-2000000000 ms 200
Implementing Tests as Suites 75

lt
Initializing HTTP Environment Variables

To initialize HTTP environment variables:

■ Choose the HTTP tab in the TSS Environment Variables dialog box.

Values for HTTP environment variables can be initialized as follows:

Variable Description Potential values
Defau
value

LINE_SPEED Line speed 0-2000000000

Standard selectable values:
9600
14400
28800
33600
56600
64000
128000

0

HTTP_CONTROL Http
Control

integer indicating 0 or more of:

0 (exact match)
Allow partial responses (HTTP_PARTIAL_OK)
Allow redirects (HTTP_PERM_REDIRECT_OK
and HTTP_TEMP_REDIRECT_OK)
Allow cache response (HTTP_CACHE_OK)

0

76 Chapter 4 - Implementing Tests

Initializing Logging Environment Variables

Logging environment variables specifically refer to events that appear in the log files
associated with a suite run.

To initialize logging environment variables:

■ Choose the Logging tab in the TSS Environment Variables dialog box.
Implementing Tests as Suites 77

Values for the Logging environment variables can be initialized as follows:

Variable Description Potential values
Default values
checked

TSS_LOG_EVENT_CONTROL Log event control Pass
Fail
Warning
Stopped
Informational
Unevaluated
Timers
Commands
Environment
Stubs
TSS Error
TSS Proxy

Pass
Fail
Warning
Stopped
Informational
Unevaluated
Timers
Commands

TSS_LOG_DATA_CONTROL Log data control Pass
Fail
Warning
Stopped
Informational
Completed
Unevaluated

Pass
Fail
Warning
Stopped
Informational
Completed
Unevaluated
78 Chapter 4 - Implementing Tests

)

Initializing Reporting Environment Variables

To initialize reporting environment variables:

■ Choose the Reporting tab in the TSS Environment Variables dialog box.

Values for the HTTP reporting environment variables can be initialized as follows:

Variable Description Potential values Default value

CHECK_UNREAD Check for unread
row results

First input command
(FIRST_INPUT_CMD)
Off (OFF)
Every input command
(EVERY_INPUT_CMD)

First input command
(FIRST_INPUT_CMD

MAX_NRECV_SAVED Maximum bytes
or rows saved

0-2000000000 2000000000
Implementing Tests as Suites 79

Initializing Response Timeout Environment Variables

To initialize response timeout environment variables:

■ Choose the Response TImeout tab in the TSS Environment Variables dialog box.

Values for the HTTP response timeout environment variables can be initialized as
follows:

Variable Description Potential values Default value

TIMEOUT_VAL Timeout 0-2000000000 ms 120000
TIMEOUT_SCALE Scale timeout by 0-2000000000 ms 100
TIMEOUT_ACT Timeout action Ignore (IGNORE)

Fatal (FATAL)
Ignore (IGNORE)
80 Chapter 4 - Implementing Tests

)

Initializing Think Time Environment Variables

To initialize think time environment variables:

■ Choose the Think Time tab in the TSS Environment Variables dialog box.

Values for the HTTP think time environment variables can be initialized as follows:

Variable Description Potential values Default value

THINK_DEF Starting point of think
time

First sent (FS)
Last sent (LS)
First received (FR)
Last received (LR)
First connection (FC)
Last connection (LC)

Last received
(LR)

THINK_DIST Think time
distribution

Constant
(CONSTANT)
Uniform (UNIFORM)
Negative exponential
(NEGEXP)

Constant
(CONSTANT

THINK_SD Standard deviation of
think time

0-2000000000 ms 0

THINK_AVG Average think time 0-2000000000 ms 5000
THINK_MAX Maximum think time 0-2000000000 ms 2000000000
Implementing Tests as Suites 81

Disabling Test Script Services

In some situations you may want to disable use of environment variables completely
during a test run. Disabling some test script services allows you to eliminate some
runtime overhead during a suite run.You also could create a test script that uses all
types of test script services and then, based on what is enabled or disabled here, test
only functional or performance related services.

To disable test script services and use of environment variables in certain testing
situations:

■ Choose the TSS tab in the TSS Environment Variables dialog box.

THINK_CPU_THRESHOLD CPU/tester threshold 0-2000000000 ms 0
THINK_CPU_DLY_SCALE Scale CPU think time

by
0-2000000000 percent 100

THINK_DLY_SCALE Scale tester think time
by

0-2000000000 percent 100

DELAY_DLY_SCALE Scale delays by 0-2000000000 percent 100

Variable Description Potential values Default value
82 Chapter 4 - Implementing Tests

Enable or disable the following services:

■ Datapools

■ Timers

■ Commands

■ Think time

■ Delays

■ Monitoring

■ Logging

■ Verification points

■ Synchronization points

■ Shared variables

By default, no test script services are selected as disabled.

Changing the Number of Start Test Scripts

If you are starting virtual testers in groups, TestManager lets you specify the number
of test scripts that the group of virtual testers must complete before the next group
starts. You may need to do this to control the maximum number of virtual testers that
log on to a database server at a given time.

For example, assume the Data Entry user group contains 100 virtual testers. Each
virtual tester runs a Login test script and then selects three test scripts in a random
order: Add New Record, Modify Record, and Delete Record. You have changed the
runtime settings so that the 100 virtual testers are not starting all at once; instead, they
are starting in groups of 25.

If you set the number of start scripts to one, the second group of 25 starts when each
virtual tester in the first group of 25 completes the Login test script. The third group of
25 starts when each virtual tester in the second group has completed the Login test
script, and so on.

To change the number of start test scripts:

■ Click Suite > Edit Settings .

Limiting the Number of Test Scripts

TestManager allows you to limit the number of test scripts that virtual testers can run
without having to remove any test scripts from the user group.
Implementing Tests as Suites 83

For example, limit the number of test scripts to:

■ Test if the virtual tester can complete an initial logon test script. By limiting the
number of test scripts, you don’t have to delete the remainder of the test scripts
assigned to the group and add them later, or create a new suite just to run a simple
test.

■ Temporarily disable a user or computer group without deleting it from the suite.
By setting Script Limits to 0 for the group, you disable it. (You can also disable a
fixed group by setting the number of virtual testers to 0.)

■ Vary the length of a suite run. If your suite contains nested scenarios with varying
numbers of test scripts, and you specified random selection of those scenarios, it is
very complicated to use repetition counts to vary the length of the suite run. A
simpler way is to limit the number of test scripts.

To limit the number of test scripts:

■ Click Suite > Edit Settings .

Changing the Way Random Numbers Are Generated

Each virtual tester in a user group has a user seed, which generates random numbers in
a test script. These random numbers affect a virtual tester’s think time, random
number library routines, and random access in datapools. Seeds are, primarily, either
unique or the same:

■ With a unique seed, each virtual tester who runs the same test script has a slightly
different behavior.

For example, if one virtual tester thinks for 1.3 seconds before executing the first
command, the second virtual tester might think for 2.4 seconds. Although the
individual think times vary, they have the same distribution around a mean value.

The seeds also affect the library routines involving random numbers. For example,
if the first virtual tester calls the a uniform routine twice (uniform in VU test
scripts, TSSUtility.Uniform in VB test scripts, or TSSUtility.uniform in
Java test scripts) and receives the numbers 5 and 3, other virtual testers in that
group probably receive different numbers, bounded only by the minimum and
maximum values that are set in the test script.
84 Chapter 4 - Implementing Tests

■ With the same seed, each virtual tester who runs the same test script has exactly the
same behavior.

For example:

❑ If the first virtual tester thinks for 1.3 seconds before executing the first
command, the second virtual tester (and all subsequent virtual testers) also
thinks for 1.3 seconds before executing that command.

❑ If the first virtual tester calls the uniform routine twice and receives the
numbers 5 and 3, all other virtual testers in that group also receives 5 and 3.

You can also set whether or not the random number generator is reseeded at the
beginning of each test script. In general, it is better not to reseed, because one long
pseudorandom sequence is more realistic than many short ones.

Therefore seeds are defined in one of the following ways:

■ Unique and not reseeded – Generates a unique seed for each virtual tester and does
not reseed the random number generator at the beginning of each test script. Each
virtual tester in a user group behaves slightly differently. This is the most
commonly used option in performance testing.

■ Unique and reseeded – Generates a unique seed for each virtual tester and reseeds
the random number generator at the beginning of each test script. Each virtual
tester in a user group behaves slightly differently, but the numbers are reseeded at
the beginning of each test script. This option is very effective for government LTD
(Live Test Demonstration) testing.

■ Same and not reseeded – Generates the same seed for each virtual tester and does not
reseed the random number generator at the beginning of each test script. This is
generally not a desirable option to select when modeling a realistic workload,
because each virtual tester who runs the same test script behaves in the same way.
But this option may be useful for certain types of stress testing.

■ Same and reseeded – Generates the same seed for each virtual tester and reseeds the
random number generator at the beginning of each test script. This generally is not
a desirable option to select when modeling a realistic workload, because each
virtual tester who runs the same test script behaves in the same way, and short
pseudorandom sequences are not realistic.

However, this option may be useful for certain types of stress testing. For example,
if you have a suite with a shared datapool with the seed set as unique and not
reseeded, each virtual tester and iteration has a different seed that gives random
data across all virtual testers and all iterations. To see what happens when all
virtual testers access the same data pattern over and over again, set the seed as
same and reseeded for all virtual testers.
Implementing Tests as Suites 85

To change the behavior of the default random number generator:

■ Click Suite > Edit Settings .

Note: The library routines that generate random numbers are negexp, rand, and
uniform in VU test scripts, TSSUtility.NegExp, TSSUtility.Rand, and
TSSUtility.Uniform in VB test scripts, and TSSUtility.negExp,
TSSUtility.rand, and TSSUtility.uniform in Java test scripts. For information
about these routines in VU test scripts, see the VU Language Reference. For information
about these routines in other script types, see the appropriate API documentation.

Setting Shared Variables

TestManager allows you to initialize shared variables in a suite. A shared variable
maintains its value across all test scripts in a suite. Each virtual tester can access and
change the shared variable.

To initialize a shared variable:

■ Click the Suite > Edit Shared Variables .

Shared variables are useful in the following situations:

■ For synchronizing virtual testers when you need more specific coordination than a
synchronization point provides. For example, you can limit a transaction so that
only five virtual testers perform it at once. In that case, use a shared variable with a
wait routine (wait in VU test scripts, TSSSync.SharedVarWait in VB test
scripts, and TSSSync.sharedVarWait in Java test scripts).
86 Chapter 4 - Implementing Tests

■ For blocking a virtual tester from executing until a global event occurs. It is easier
to set an event and a dependency than to set a shared variable. However, if the
event depends on some logic within a test script, you must use a shared variable.

■ For counting loops within a test script. If you want to set a loop for an entire test
script, it is easier to set a selector or an iteration count within the suite. However, if
only a portion of the test script loops, set a shared variable to control the number of
iterations of that loop.

■ For monitoring specific transaction counts and conditions. You can view shared
variables when you monitor a suite, and they provide detailed information about
the progress or state of a suite run.

You declare a shared variable within a test script or resource file with a shared
keyword (shared in VU test scripts, TSSUtility.SharedVarAssign for VB
resource files, and TSSUtility.sharedVarAssign for Java resource files). For
more information about declaring shared variables, see the VU Language Reference, or
the appropriate Rational Test Script Services API manual.

You initialize a shared variable within a suite. This is optional—the default value is 0.

You manipulate the value of a shared variable through the logic in a test script or when
you monitor the suite.

Printing and Exporting a Suite

Designing a suite can involve many iterations and changes. You may find it helpful to
examine a printed view of a suite. You can print a suite or export it as a .txt file.

To print a suite, from the open suite:

■ Click File > Print .

To export a suite as a .txt file, from the open suite:

■ Click File > Export .

Saving a Suite

After you have finished modifying a suite, save your changes. A suite that is not
saved has an asterisk in the title bar.

To save a suite:

■ Click File > Save.
Implementing Tests as Suites 87

To save more than one suite:

■ Click File > Save All .

Note: If you click Tools > Options , click the Create Suite tab, then select the Check suite
when saving box, one verification screen appears for each suite being saved.

To save a suite under a different name:

■ Click File > Save As .
88 Chapter 4 - Implementing Tests

5Executing Tests
This chapter describes how to run tests. It includes the following topics:

■ About running tests

■ Built-in support for running test scripts

■ Running automated test scripts

■ Running manual test scripts

■ Running test cases

■ Running suites

■ Monitoring suites

Note: For detailed procedures, see the TestManager Help.

About Running Tests

The activity of running your tests is primarily running the implementations of test
cases to make sure that the system functions correctly.

In TestManager, you can run:

■ Automated test scripts.

■ Manual test scripts.

■ Test cases.

■ Suites.

Built-in Support for Running Test Scripts

TestManager provides built-in support for running the following test script types:
89

Running Automated Test Scripts

To run an automated test script:

1 Click File > Run Test Script , and select the test script type.

2 Select the test script to run.

When you click OK, TestManager runs the test script on the first available computer in
the list. As the test script runs, you can monitor its progress and then view the results
in the test log.

Test Script Type Description

GUI A functional test script written in SQABasic, a Rational proprietary
Basic-like scripting language.

VU A performance test script written in VU, a Rational proprietary C-like
scripting language.

Manual A set of testing instructions to be run by a human tester.

Visual Basic A test script written in the Visual Basic language.

Java A test script written in the Java language.

Command line A test script (for example, an .exe file, a .bat file, or a UNIX shell script)
that can be executed from the command line.

Click to change the list of
computers and computer lists
that the test script runs on.

Click to view or edit the
properties of the selected
computer or computer list.
(This is disabled if Local
computer is selected.)

Click to change the build, log
folder, or log name.
90 Chapter 5 - Executing Tests

For information about computers and computer lists, see Defining Computers and
Computer Lists on page 64.

For information about monitoring progress, see Monitoring Suites on page 102.

For information about test logs, see About Test Logs on page 137.

Running Manual Test Scripts

If you used the grid or text editor when you created a manual test script, you can do
the following when you run the script:

■ Optionally, set the run option to log unchecked steps as warnings.

■ Indicate that you have performed each step.

■ Indicate whether each verification point passed or failed.

If you included an external file when you created the manual test script, you can do
the following after you run the script:

■ Indicate whether the entire script passed or failed.

Note: For information about creating manual test scripts, see Creating Manual Test
Scripts on page 56.

To run a manual test script, do one of the following:

■ In TestManager, click File > Run Test Script > Manual and select a test script.
Rational ManualTest opens.

■ In Rational ManualTest, click File > Run and select a test script.

If you used the grid or text editor to create the manual script, perform each step and
verification point listed in the Run Manual Script window:

■ For a step, select the Result check box to indicate that you have performed the step.

■ For a verification point, click the Result cell and click None, Pass, or Fail.

If you included an external file when you created the manual script, follow the
instructions in the file. Fill in the Enter Results of the Manual Script dialog box with
the results of the entire script.
Running Manual Test Scripts 91

Example of Running a Manual Test Script

The following figure shows the results of running a manual test script. When this
manual test script was run, the first verification point failed. The Comment icon
indicates that there is a comment about the failure. When you view the log, you will
be able to see the failure and the comment.

Viewing the Results of Running a Manual Test Script

After you run a manual test script, you can view the results in the test log.

To view the results of running a manual test script:

1 Return focus to TestManager by clicking Tools > Rational TestManager .

2 Click File > Open Test Log .

Running Test Cases

When you run a test case, you are actually running the implementation of the test
case. The implementation is a test script or suite that is associated with the test case.

Viewing the Associated Implementations

To view or change the implementations that are associated with a test case:

Indicates that
the step was
performed.

Indicates that the
verification point
failed.

Click to see a
comment about
the failure.

Click to specify log information.
92 Chapter 5 - Executing Tests

1 Right-click a test case in the Test Plan window and click Properties .

2 Click the Implementation tab.

You can have at most two implementations associated with a test script: one manual
and one automated. If both are associated with a test case, TestManager will run the
automated implementation when you run the test case.

For more information about implementing test cases and associating
implementations, see Implementing Tests on page 53.

Running a Test Case

To run a test case and its implementation:

1 Click File > Run Test Case .

2 Select the test case or configured test case to run and click OK.

When you click OK, TestManager runs the test case as follows:

■ If you run a test case that has an automated implementation, it runs on the
available computers in the list.

Click to change the list of
computers and computer lists
that the implementation runs
on.
Click to view or edit the
properties of the selected
computer or computer list.
(This is disabled if Local
computer is selected.)

Click to change the build, log
folder, or log name.

Click to add test cases to the
list.

Click to view or edit the
properties of the selected
test case.
Running Test Cases 93

If you run a configured test case, it runs on the computers in the list that match the
values of the configuration attributes. For example, if the configured test case
indicates that the test case should run on a computer with Windows 2000,
TestManager examines each computer in the list until it finds one that has
Windows 2000, and then runs the test case on that computer. If no computers in the
list match the configuration, a message appears in the test log.

As the test case runs, you can monitor its progress and then view the results in the
test log. For information about monitoring progress, see Monitoring Suites on
page 102. For information about test logs, see About Test Logs on page 137.

■ If you run a test case that has a manual implementation and no automated
implementation, it starts Rational ManualTest. You can perform the steps and
verification points in the manual test script, and then view the results in the test
log. For more information, see Running Manual Test Scripts on page 91.

Ignoring Configured Test Cases

Select the Ignore configurations for test cases check box to have TestManager ignore
system configurations for test cases, and to run the test cases on any available
computers.

TestManager has three ways of running test cases if this option is selected:

■ If a test case has configured test cases, and the parent test case has an
implementation (for example, a test script or suite), TestManager runs the parent
test case on any available computer, but does not run any of the configured test
cases.

■ If a test case has configured test cases, and the parent test case does not have an
implementation, TestManager does not run the parent or any configured test cases.

■ If a single configured test case has an implementation, TestManager runs the test
case on the specified computer.

Running Suites

If you implemented a test as a suite, for either a functional or performance test, there
are a number of steps involved with actually running the suite. They are:

■ Checking the suite.

■ Checking Agent computers.

■ Controlling runtime information of the suite.
94 Chapter 5 - Executing Tests

■ Controlling how the suite terminates.

■ Specifying virtual testers and configurations for the suite run.

■ Stopping the suite.

For information on creating and running a functional testing suite, see Chapter 8,
Creating Functional Testing Suites.

For information on creating and running a performance testing suite, see chapter 11,
Creating Performance Testing Suites.

Checking a Suite

While you are working on a suite, you might change it so that it does not run correctly.
For example, you might insert a test script into a suite before it is recorded. Although
TestManager automatically checks a suite before it runs, you can check a suite without
actually running it at any time. This can help you identify and correct problems.

To check a suite:

■ Click Suite > Check Suite .

TestManager checks a suite for many kinds of errors, including the following:

■ The suite does not contain any user or computer groups.

A suite must have at least one user or computer group to run.

■ The suite contains an empty user or computer group.

Either delete the user or computer group or add test scripts and other items to it.

■ A user or computer group contains an empty scenario.

Either delete the scenario or add items to it.

■ The suite contains a selector that is empty.

Either delete this selector or add properties to it.

Note: You can set options so that the suite is checked automatically whenever you
save it. To check the suite automatically, click Tools > Options , click the Create Suite
tab, and then select the Check suite when saving check box.

Checking Agent Computers

If you are running virtual testers on Agent computers, it is a good idea to check the
Agents before you run the suite. This way, you can determine whether any problems
exist before you run the suite.
Running Suites 95

When you check Agent computers, TestManager ensures that:

■ All of the Agent computers specified for virtual testers actually exist.

For example, if you incorrectly typed the name of an Agent computer,
TestManager notifies you.

■ The Agent computers are available and running.

■ The Agent software is running.

The same release of TestManager software must be installed on both the Local and
the Agent computers.

To check the Agent computers:

■ Click Suite > Check Agents .

TestManager displays any problems with the Agent computers in a separate window.

Controlling Runtime Information of a Suite

TestManager lets you control the way a suite runs.

To set the runtime settings for a suite:
96 Chapter 5 - Executing Tests

■ Click Suite > Edit Runtime .

By modifying the runtime settings, you can manage:

■ How virtual testers are started—either all at once or in groups.

Avoid overloading a server by choosing to start virtual testers in groups, and
specifying the number of virtual testers in those start groups.

Note: If you start virtual testers in groups, you should also specify the number of
start scripts for the group. To do this, click Suite > Edit Settings , and modify the
Start scripts box.

■ The criteria for whether a suite passes or fails.

❑ Suite ran to completion – The suite ran to completion without manual
termination of the run.

❑ All suite items executed – All items in the suite were able to complete all of their
assigned tasks.

❑ All test scripts passed – All test scripts passed, which means that no events failed
and no commands timed out.

❑ All test cases executed – All test cases in the suite were able to complete all of
their assigned tasks.

❑ All test cases passed – All test cases passed, which means that the application
being tested met the goals of the given test case.

If the suite does not meet the criteria, the Test Log window lists the Suite Start and
Suite End events as “failed.”

■ The order in which the user or computer groups run.
Running Suites 97

The execution order defines the order in which virtual testers are started, and
therefore determines which user groups are executed if you run fewer virtual
testers than the maximum number defined. Select one of the following:

❑ Suites that run in a sequential order run each virtual tester as it is encountered in
the suite (from the top to the bottom).

❑ Suites that run in a balanced manner evenly distribute the run among the user
groups in proportion to the suite.

❑ Suites that run in a custom order require you to select specific user groups or
virtual testers to run. Apply a custom run order to fixed user groups only.

Running user groups in a custom order is useful for troubleshooting. For
example, if a test script does not work, and that test script is used only by the
Accounting group, run that group only.

To create a custom run order, click Define in the Runtime Settings dialog box.

Note: You can temporarily disable a fixed user group by setting the number of
virtual testers to 0.

You can run fixed virtual testers first, thus running fixed user groups before the
scalable user groups, regardless of the execution order. If your user groups are all
fixed, specifying a run order has no effect.

■ Timing information such as:

❑ The maximum amount of time the run should take. A value of 0 imposes no
time limit.

❑ The maximum number of seconds for all virtual testers to confirm that they
completed initializing. If you have changed the number of start test scripts,
make sure that you set this time high enough.

❑ Choosing to suppress timing delays, thus running the suite very quickly
because all timing delays in test scripts are suppressed. This choice is useful if
you are testing a suite to see whether it runs correctly and you are not
interested in the timing delays. Note, however, that this creates a maximum
workload on the server, Local, and Agent computers.

Do not suppress timing delays if you are running a large number of virtual
testers.

❑ Choosing to initialize timestamps for each test script, which indicates whether
timestamps are carried over from test script to test script or are reinitialized
with each test script.

■ The number to feed to the random number generator.
98 Chapter 5 - Executing Tests

TestManager uses a specified seed to generate the random numbers for selectors
and shared access in datapools.

■ Whether to use IP aliasing.

IP aliasing requires that each virtual tester has a different source IP address. This
has meaning only if you are running HTTP test scripts, and your system
administrator has set up your computer to use IP aliasing. For information on
setting up IP Aliasing, see Appendix A, Configuring Local and Agent Computers.

Controlling How a Suite Terminates

TestManager lets you set the conditions that force a suite to stop running. For
example, you may want to stop a suite if you discover that a large number of virtual
testers are completing abnormally, indicating that something is wrong with the run.

To control how a suite terminates:

■ Click Suite > Edit Termination .

Running a Suite

When you run a suite, you supply runtime-specific information. Each virtual tester
that executes its assigned suite items run within these guidelines. The results of
running the suite are stored in logs.

After you run the suite, run reports to analyze the data stored in the logs. You can
display this information in the form of graphs and charts, or in more traditional report
formats.

To run a suite:
Running Suites 99

■ Click File > Run Suite .

TestManager checks the suite, and compiles any uncompiled or out-of-date test
scripts.

When you run a suite, you specify:

■ Suite name.

■ Number of virtual testers, if you are running a performance test.

If a suite includes both fixed and scalable user groups, the fixed user groups are
assigned first. So, for example, if your suite includes one user group fixed at 10
virtual testers, and you run 100 virtual testers, 10 virtual testers are assigned to the
fixed user group, and the remaining 90 virtual testers are distributed among the
scalable user groups.

Note: The number of available virtual testers depends on the type of license you
have. If your license does not support the number of virtual testers you specify,
you see an error message.

■ Number of computers on which to run the suite and a list of available computers,
if applicable.

If you did not specify the computers on which to run the suite when you added a
computer group, you must specify computers now.

■ Log information, including build number, log folder, and log file name.
100 Chapter 5 - Executing Tests

By default, the name of the log folder is based on the suite, and the log name is
based on the number of virtual testers and the number of times you have run the
suite. For example, if you run the sample suite three times, with 10 virtual testers,
15 virtual testers, and 20 virtual testers, all three logs will be in the sample suite
folder. The log names will be Users 10 #01, Users 15 #02, and Users 20 #03.
Therefore, the log name Users 20 #03 indicates that this is the third time you have
run the suite, and the suite is being run with 20 virtual testers.

You can change these settings on the Run tab of the Options dialog box. For more
information, see the TestManager Help.

■ Resource monitoring.

Monitoring observes computer resource usage when you play back the suite and
then graphs this usage data over the corresponding virtual tester response times
when you analyze your results. Specify the interval at which the views are
updated; the lower the interval, the faster the update.

■ Whether to ignore associated configurations.

Select the Ignore configurations for test cases check box to have TestManager
ignore system configurations for test cases, and to run the test cases on any
available computers.

TestManager has three ways of running suites if this option is selected:

❑ If a suite contains a test case with configured test cases, and the parent test case
has an implementation (for example, a test script or suite), TestManager runs
the parent test case on any available computer, but does not run any of the
configured test cases.

❑ If a suite contains a test case with configured test cases, and the parent test case
does not have an implementation, TestManager does not run the parent or any
configured test cases.

❑ If a single configured test case has an implementation, TestManager runs the
test case on the specified computer.

Stopping the Suite

To cancel the suite run while TestManager is checking the suite:

■ Click Cancel .

To stop a suite after TestManager checks it, compiles test scripts, and begins
monitoring the suite:

■ Click Monitor > Stop .
Running Suites 101

When the suite completes the test run—whether it completes normally or you
manually terminated it—TestManager displays default log data in the Test Log
window if log information is available. For more information on the Test Log window,
see Chapter 6, Evaluating Tests.

Monitoring Suites

This section discusses how to monitor a suite. It includes the following topics:

■ About monitoring suites

■ Displaying the Suite views

■ Displaying a histogram

■ Displaying the User/Computer views

■ Displaying the Shared Variables view

■ Displaying the Script view

■ Displaying the Sync Points view

■ Displaying the Computer view

■ Displaying the Transactor view

■ Displaying the Group views

■ Filtering and sorting views

■ Changing shared variable information manually

■ Debugging a test script

■ Changing monitor defaults

■ Controlling the suite during a run

Note: This section focuses on monitoring suite runs. However, you can also monitor
test case and test script runs in much the same way.

About Monitoring Suites

While a suite is running, you may want to monitor its progress. Monitoring a suite lets
you not only confirm that a suite is progressing successfully, but also lets you discover
potential problems early in the run so you can intervene if necessary. You can suspend
and restart virtual testers, change the values of shared variables, and release virtual
testers waiting on synchronization points.
102 Chapter 5 - Executing Tests

TestManager’s monitoring tools provide you with up-to-date information that is
dynamically updated as the suite runs. This information includes:

■ The number of commands that have executed successfully and the number of
commands that have failed.

■ The general state of the virtual testers: whether they are initializing, connecting to
a database, exiting the suite, or performing other tasks.

■ Whether any virtual testers have terminated abnormally.

When you run a suite, TestManager displays the monitoring information in a Progress
bar and in views. The Progress bar gives you a quick summary of the state of the run
and cannot be changed. You can change the views, however, to provide summary
information or detailed information about each virtual tester.

The following figure shows the Progress bar and the default views:

The Progress bar lets you quickly assess how successfully the suite is running. The
Progress bar provides the following information:

■ Testers – The total number of virtual testers in the run.

■ Active – The number of virtual testers that are neither suspended nor terminated.

■ Suspended – The number of virtual testers in a paused state.

Overall suite
view

Standard
histogram view

Compact user
view

Progress bar;
pull down to
resize.
Monitoring Suites 103

■ Terminated: Normal – The number of virtual testers that completed their tasks
successfully.

■ Terminated: Abnormal – The number of virtual testers that terminated without
completing all of their assigned tasks.

■ Time in Run – The time the suite has been running, expressed in
hours:minutes:seconds.

■ %Done – The approximate percentage of the suite that has completed.

TestManager also displays three views of the running suite:

■ The Overall Suite view, which displays general information about the status of
virtual testers. For more information, see Displaying the Suite Views on page 104.

■ The Standard Histogram view, which is a bar chart that provides a general idea of
what tasks the virtual testers are performing. For example, some virtual testers
might be initializing, some virtual testers might be executing code, and some
virtual testers might be connecting to the database. This chart shows the number
of virtual testers in each state.

TestManager displays the Standard Histogram view by default. However, if your
virtual testers are running GUI test scripts, or if you are testing a SQL database or
Web performance, you may want to display a bar chart specifically geared to those
tests. For more information, see Displaying the Histogram Views on page 107.

■ The Compact User view, which displays information about the current state of the
virtual testers. In this view, you can click on a particular virtual tester to display
additional information about that virtual tester or control its operation. For more
information, see Displaying the User/Computer Views on page 114.

Displaying the Suite Views

The suite views are very similar to the actual suite that you have designed. Columns
show you which iteration is being executed and what percentage of the virtual testers
in a group are currently in a test script or a selector.

The two suite views are:

■ Overall – Use this view to display general information about the status of the suite.
TestManager displays this view by default when you run a suite.

■ User/Computer – Use this view to display the exact suite progress of a particular
virtual tester.
104 Chapter 5 - Executing Tests

The Overall Suite View

To display the overall suite view:

■ Click Monitor > Suite > Overall .

The Overall suite view is similar to the actual suite that you have designed. However,
it contains two additional columns:

The Iteration column shows how many iterations are in the suite item and the iteration
in progress, averaged over all virtual testers currently executing that suite item.

For example, 8/20 indicates that, for the virtual testers currently executing that suite
item, on the average, the virtual testers are executing the 8th of 20 total iterations.

The Users Inside column shows the percentage of virtual testers that are currently
executing each portion of the suite. The percentage next to the user group shows the
percentage of total virtual testers that have been assigned to the group and have not
yet exited the suite. The percentage next to the items within a user group shows the
percentage of virtual testers within that group that are executing that item.
Monitoring Suites 105

For example, if the Sales user group contains 50 percent of the total virtual testers,
then the Users Inside column for that group is 50 percent. If all virtual testers in the
Sales group are executing the Read Record test script, then the Users Inside column
for that test script is 100 percent.

The User/Computer View

To display the User/Computer Suite view:

■ Click Monitor > Suite > Computer or Monitor > Suite > User .

Note: Whether the Computer Suite view or the User Suite view is available depends
on whether you are monitoring a computer group-based suite for functional testing or
a user group-based suite for performance testing.
106 Chapter 5 - Executing Tests

Displaying the Histogram Views

The histogram views group the virtual testers into various states, such as exiting and
initializing. Use a histogram view to display a bar graph of how many virtual testers
are in each state.

To display a histogram view:

■ Click Monitor > Histogram , and select the desired histogram.

The histogram views are:

■ Standard – Data is grouped in a general way. Select this histogram if you want a
general overview of the virtual tester states.

■ GUI – Data is grouped appropriately for tests that run GUI test scripts.

■ SQL – Data is grouped appropriately for tests that access SQL databases.

■ HTTP – Data is grouped appropriately for tests that access Web servers.

■ IIOP – Data is grouped appropriately for tests that access IIOP servers.

■ DCOM – Data is grouped appropriately for the tests that access DCOM functions.

■ Custom – Data is grouped according to your needs. For information about
customizing a histogram, see Configuring Custom Histograms on page 132.

The following figure shows a Standard histogram:

In this histogram, one virtual tester is in the Server state, 13 virtual testers are in the
Code state, and 16 virtual testers are in the Overhead state.

The following sections describe the different types of histograms that you can display.
Monitoring Suites 107

Standard Histograms

In a Standard histogram, which is displayed by default, data is grouped in a general
way. The following table describes the bars in a Standard histogram:

GUI Histograms

A GUI histogram displays information pertinent to tests that run GUI test scripts. The
following table describes the bars in a GUI histogram:

Bar Name Description

Unstarted The process associated with the virtual tester has not started. If
you see this state for a while, you have probably started virtual
testers and test scripts in groups. Until a group completes
initialization, subsequent groups are in this state.

Init Virtual testers that are initializing.

Quiet Virtual testers that are thinking, delaying, or suspended, or are
waiting on a shared variable or synchronization point.

Server States related to communicating with the server.

Code Virtual testers that are executing code such as VU, VB, Java,
Manual, or external C, or executing a testcase or emulate
command. This state does not include SQABasic code.

Overhead States related to run overhead. These states are GetTask (getting
the next suite task), InitScript (initializing a test script), Match
(pattern matching), and Read_Shv (reading a shared variable over
the network).

GUI Virtual testers performing GUI-related operations.

Exit Virtual testers that have finished the suite, with either normal or
abnormal termination.

Bar Name Description

Init Virtual testers that are initializing.

Input Virtual testers that are typing input.

WaitApp Virtual testers that are waiting on an application output.

Quiet Virtual testers that are delayed.

Code Virtual testers that are executing code such as VU, VB, Java,
Manual, or external C, or executing a testcase or emulate
command. This state does not include SQABasic code.
108 Chapter 5 - Executing Tests

SQL Histograms

A SQL histogram displays information pertinent to tests that access SQL databases.
The following table describes the bars in a SQL histogram:

HTTP Histograms

An HTTP histogram displays information pertinent to tests that access Web servers.
The following table describes the bars in an HTTP histogram:

Overhead States related to run overhead. These states are GetTask (getting
the next suite task) and InitScript (initializing a test script).

Other All other states.

Exit Virtual testers that have finished the suite, with either normal or
abnormal termination.

Bar Name Description

Init Virtual testers that are initializing.

Connect Virtual testers that are waiting to connect to the database server.

Exec Virtual testers that are executing VU sqlprepare or sqlexec
statements.

Query Virtual testers that are waiting on the results of a query.

Quiet Virtual testers that are thinking, delaying, or suspended, or are
waiting on a shared variable or synchronization point.

GUI Virtual testers that are performing GUI-related operations.

Other All other states.

Exit Virtual testers that have finished the suite, with either normal or
abnormal termination.

Bar Name Description

Init Virtual testers that are initializing.

Connect Virtual testers that are waiting to connect to the Web server.

Send Virtual testers that are sending data to the Web server.

Bar Name Description
Monitoring Suites 109

IIOP Histograms

An IIOP histogram displays information pertinent to tests that access IIOP. The
following table describes the bars in an IIOP histogram:

Recv Virtual testers that are waiting for data from the Web server.

Linespeed Virtual testers that are being artificially delayed to achieve a
specific network linespeed.

Quiet Virtual testers that are thinking, delaying, or suspended, or are
waiting on a shared variable or synchronization point.

GUI Virtual testers that are performing GUI-related operations.

Other All other states.

Exit Virtual testers that have finished the suite, with either normal or
abnormal termination.

Bar Name Description

Init Virtual testers that are initializing.

Bind Virtual testers that are obtaining an object reference.

Connect Virtual testers that are waiting to connect to the server.

Invoke Virtual testers that are invoking a remote operation.

Quiet Virtual testers that are thinking, delaying, or suspended, or are
waiting on a shared variable or synchronization point.

GUI Virtual testers that are performing GUI-related operations.

Other All other states.

Exit Virtual testers that have finished the suite, with either normal or
abnormal termination.

Bar Name Description
110 Chapter 5 - Executing Tests

DCOM Histograms

A DCOM histogram displays information pertinent to tests that access DCOM
protocol. The following table describes the bars in a DCOM histogram:

Zooming In on Histogram Bars

Each bar in a histogram shows a summary state that contains individual states. You
can zoom in on a bar to see a breakdown of how many virtual testers are in each state.

To zoom in on a histogram bar:

■ Double-click on a bar that contains virtual testers. A window appears that displays
the individual states.

Note: To restore the window to its original state, click View > Reset .

Bar Name Description

Init Virtual testers that are initializing.

Create Object Virtual testers that are creating a distributed object.

Connect Virtual testers that are waiting to connect to the server.

Call Method Virtual testers that are making object method calls.

Quiet Virtual testers that are thinking, delaying, or suspended, or are
waiting on a shared variable or synchronization point.

GUI Virtual testers that are performing GUI-related operations.

Other All other states.

Exit Virtual testers that have finished the suite, with either normal or
abnormal termination.
Monitoring Suites 111

The following figure shows an expanded histogram, after you have clicked on the
Server bar:

Six virtual testers are classified as Server. The expanded histogram shows that four are
in the WaitResp state and two are in the Connect state.

The individual states in the histogram bars are as follows:

This bar Indicates that

Bind Virtual testers that are obtaining an object reference.

Call Method Virtual testers that are making object method calls.

Cleanup A virtual tester is cleaning up (process cleanup) before exiting.

CPU_Delay A virtual tester is emulating a CPU (client application) delay
before submitting a command to the server.

Connect A virtual tester is executing a connect emulation function.

Create Object A virtual testers is creating a distributed object.

Disconn A virtual tester is executing a disconnect emulation function.
However, the client has not yet disconnected.

Delay A virtual tester is executing the TSSDelay function. For VU, the
routine is delay, for SQABasic the command is DelayFor(), for
VB the method is TSSUtility.Delay, and for Java the method is
TSSUtility.delay.

Exit A virtual tester has exited.

ExitSQABasic A virtual tester has finished executing an SQABasic test script.
112 Chapter 5 - Executing Tests

ExternC A virtual tester is executing an external C routine called from
within the test script.

GetTask A virtual tester is waiting to be assigned its next suite task.

Keys A virtual tester running an SQABasic test script is keystroking.

Init A virtual tester is being initialized (process initialization).

InitScript A virtual tester is preparing to execute a test script.

Invoke A virtual tester is invoking a remote operation.

Match A virtual tester is executing tux_precv pattern-matching code
while the virtual tester is waiting for completion of the server’s
response.

Read_Shv A virtual tester is running on an Agent computer and reading a
shared variable from the Local computer.

RecvDelay A virtual tester encountered a linespeed delay when receiving.

ScriptCode A virtual tester is executing code unrelated to emulation
commands. For example, the virtual tester may be accessing a
datapool or performing logic that you added to the test script.

SendDelay A virtual tester encountered a linespeed delay when sending.

Sending A virtual tester is sending data with an http_request or
sock_send emulation command.

ShvBlock A virtual tester is temporarily blocked while trying to obtain
exclusive access to change the value of a shared variable.

SQABasic A virtual tester is executing SQABasic code.

SQL_Exec A virtual tester is executing or preparing a SQL command
(sqlexec or sqlprepare) and waiting for the server to complete
the operation.

StartApp A virtual tester is starting an application within a SQABasic test
script.

SuiteDelay A virtual tester is executing a delay that you set in the suite.

Suspend A virtual tester has been suspended.

TestCase A virtual tester is executing a testcase or emulate command.

Think A virtual tester is thinking before submitting a command to the
server.

This bar Indicates that
Monitoring Suites 113

Displaying the User/Computer Views

The User/Computer views dynamically display the status and details of virtual tester
operations depending on the type of user the virtual tester is emulating. Display one
of the views to see the status of individual virtual testers.

To display a view:

■ Click Monitor > User or Monitor > Computer , and select a view.

The User/Computer views are:

■ Full – Contains complete information about all virtual testers.

■ Compact – Contains summary information about all virtual testers. This is the
most efficient view to use when you are running Agent computers.

■ Results – Contains information about the success and failure rate of each
emulation command.

■ Source – Displays the line number and the name of the source file being executed.

■ Message – Similar to the Compact view, but also displays the first 20 letters of text
from the display library routine.

The following items apply to all computer or user views:

TransDelay A virtual tester in a transactor is delayed waiting for the next
transaction.

Tuxedo A virtual tester is executing a TUXEDO emulation command and
waiting for the server to complete the operation.

Unstarted The process associated with the virtual tester has not started. If
you see this state for a while, you have probably started virtual
testers in groups. Until a group completes initialization,
subsequent groups are in this state.

VB A virtual tester is executing Visual Basic code.

WaitResp A virtual tester is waiting for completion of the server’s response
(a receive emulation command).

WaitShvSync A virtual tester is waiting on an event in a suite, waiting to be
released from a synchronization point, or executing the wait
routine, but the event has not yet occurred.

WaitObj A virtual tester running an SQABasic script is waiting for a
window or control to appear.

This bar Indicates that
114 Chapter 5 - Executing Tests

■ To make tracking certain virtual testers easier, you can change which virtual testers
are displayed. For more information, see Filtering and Sorting Views on page 127.

■ When you display a computer or user view, you can also display the test script that
the virtual tester currently is running. Double-click on the number in the first
column, next to the virtual tester. TestManager displays the test script. For more
information, see Displaying the Script View on page 120.

■ When a virtual tester terminates abnormally, TestManager writes a message
stating the reason for termination to the running Suite window. Right-click on the
terminated virtual tester, and then select the View Termination Message option.

A virtual tester that terminates abnormally can be identified easily in the views
because its Exited state is displayed in red.

The rest of this section describes and gives examples of each view.

Compact View

The Compact view contains summary information about all virtual testers, as shown
in the following figure:

The Compact view displays the following information:

■ Groups – Contains information about the computer or user group. The Suite
column displays the group to which the virtual tester belongs, as well as a number
identifying the individual virtual tester within the group. This identification
remains constant throughout the run. The Computer column displays the
computer on which a virtual tester is running.
Monitoring Suites 115

■ Test Script – The test script that each virtual tester is running. In this example, all
Accounting virtual testers are running the Calculate Hours test script.

■ State – The state that the virtual tester is in. In this example, one virtual tester is
connecting to the client, two virtual testers are thinking, two virtual testers are
executing VU code, and eight virtual testers have exited the run. If a tester has
terminated abnormally, TestManager displays the word Exited in red.

■ Time – The time each virtual tester has been in that state. In this example, the
Accounting[2] virtual tester has been thinking for 8 seconds.

Results View

The Results view contains information about the success and failure rate of each
emulation command, as shown in the following figure:

In addition to the information displayed in the Compact view, the Results view
contains the following information:

■ Command – The emulation command that is executing. In this example, two
Accounting virtual testers are executing the http_header_request command
and three Accounting virtual testers are executing the http_request command.

■ Streak – Succession of successes or failures of emulation commands. For example,
49 successes indicates that 49 emulation commands in a row have been
successfully executed.

■ Failure Rate – The number of failures in the last ten emulation commands, the
number of failures in the current test script, and the number of failures overall.
116 Chapter 5 - Executing Tests

Source View

The Source view displays the line number and the name of the source file that is being
executed, as shown in the following figure:

In addition to the information displayed in the Compact view, the Source view
contains the following information:

■ Command – The emulation command that is executing. In this example, three
Accounting virtual testers are executing the http_header_request, one is
executing http_nrecv, and one is executing http_request.

■ Source – Generally the same as the test script. However, if a test script calls another
test script, or if a test script contains an include file, the called test script or the
include file is displayed.

■ Cmd Count – The number of emulation commands that have been executed in the
current test script. This number helps you distinguish between executions of the
same command on different loop iterations. In this example, the first virtual tester
is on line 2075 and the command count is 241. If line 2075 is part of a loop, the next
time TestManager executes that line, the line number is the same but the command
count increases.
Monitoring Suites 117

Message View

The Message view is similar to the Compact view, but it also displays messages from a
display library routine. If you have added such a routine to a test script, you may
want to show this view.

The following figure shows an example of a Message view:

In addition to the information displayed in the Compact view, the Message view
contains the following information:

■ Message – Text displayed from a running test script. If the virtual tester executes a
display library routine (VU Language display() function and the TSS
TSSDisplay() function), the first 20 characters of its text appear here, and
remain until they are overwritten by the next display routine.

Full View

The Full view contains complete information about all virtual testers, as shown in the
following figure:
118 Chapter 5 - Executing Tests

In addition to the information displayed in the Compact view, the Full view contains
the following information:

■ Command – The emulation command that is executing. In this example, all virtual
testers are executing either http_header_request or http_request.

■ Source – Generally the same as the test script. However, if a test script calls another
test script, or if a test script contains an include file, the called test script or the
include file is displayed.

■ Cmd Count – The number of emulation commands that have been executed in the
current test script. If this test script is part of a loop, the next time TestManager
executes that line, the line number stays the same but the command count
increases. Thus, the command count helps you distinguish between executions of
the same command on different loop iterations.

■ Streak – Succession of successes (S) or failures (F) in the entire suite run. For
example, “2 Success” means that 2 emulation commands in a row have been
successfully executed from the time the suite began running.

■ Failure Rate – The number of failures in the last ten emulation commands, the
number of failures in the current test script, and the number of failures overall.

Displaying the Shared Variables View

The Shared Variables view lets you inspect the values of any shared variables that you
have set in your suite or test script.

Note: This view contains information that is more focused on performance testing
than on functional testing.

To display the Shared Variables view:

■ Click Monitor > Shared Variable .

The following figure shows a Shared Variables view:
Monitoring Suites 119

This view shows the name of each shared variable, the value of the variable, and the
number of virtual testers waiting for the shared variable to reach a certain value.

You can change the value of a shared variable from this view. For information about
changing the value, see Changing the Value of a Shared Variable on page 130.

Displaying the Script View

The Script view displays the line of code that a virtual tester is running. The Script
view is useful if you want to watch the progress of a virtual tester through a test
script.

To display the Script view:

■ Click Monitor > Script .

When you display a Script view, you must specify one or more virtual testers that are
running the particular test script.

The Script View window shows the test script that is currently running. The test script
displays, line by line, what the virtual tester is doing.

Displaying the Sync Points View

The Sync Points view displays information about the synchronization points that you
have set in the suite or that you have included in a test script. This view also lets you
manually release virtual testers that are waiting on a synchronization point.

Note: This view contains information that pertains to performance testing.

To display the Sync Points view:
120 Chapter 5 - Executing Tests

■ Click Monitor > Sync Points .

The Sync Points view displays the following information:

■ Name – The name of the synchronization point.

■ State – The state the synchronization point is in. The states can be:

❑ Empty – No testers have arrived at the synchronization point.

❑ Waiting – At least one tester has arrived at the synchronization point, but not all
of the testers have arrived.

❑ Released – The testers are released from the synchronization point. This
column also indicates whether the testers were released because they all
reached the synchronization point (Normal), whether you have released the
testers manually (Monitor), or whether the synchronization points have timed
out (Timeout).

■ Time – The time the synchronization point has been in the current state.

■ Timeout – The timeout period that you set in the suite, or Infinite , if you did not set
a timeout period.

■ Virtual Testers – The number of virtual testers that have reached the
synchronization point:

❑ Arrived – The number of testers that have arrived at the synchronization point
before it was released.

❑ To sync – The number of testers that must arrive to release the synchronization
point.
Monitoring Suites 121

❑ Late – The number of testers that arrived at the synchronization point after it
was released.

■ Delay – If the release time is together, this is the release delay that you have set in
the suite. If the release type is staggered, the minimum and maximum release
times.

Displaying Virtual Testers Waiting on a Synchronization Point

To display the virtual testers waiting on a synchronization point:

■ Click Monitor > Sync Points .

Releasing a Synchronization Point

You might decide to release a synchronization point, even though the required
number of virtual testers has not yet been reached. Subsequent testers that arrive at
the synchronization point are not held. However, if you have set a restart time and a
maximum time in the suite, the testers will be delayed. So, for example, if you release
a synchronization point but have set a restart time of 1 second and a maximum time of
4 seconds, each virtual tester who reaches that synchronization point is delayed from
1 to 4 seconds.

To release a synchronization point:

■ Click Monitor > Sync Points .

Displaying the Computer View

Use the Computer view to check the computer resources used during a suite run, as
well as the status of the Local and Agent computers at the beginning and end of a run.

Viewing Resource Usage During a Run

When you choose to view resource usage during a run, TestManager displays the
computer resources used for each Local and Agent computer in the run.

To check computer resources used during a suite run:

■ Click Monitor > Computers.
122 Chapter 5 - Executing Tests

The Computer view displays the following information:

■ Name – The name of the computer that you specified in the suite. Local is the local
computer.

■ Computer Type – The type of computer: either Local, Agent, or Server.

■ State – The state the computer is in. When you display the Computer view
manually, it is generally in the run state.

■ Time – The time the computer has been in the current state. The time is displayed
in hours:minutes:seconds.

■ Virtual Testers – The total number of virtual testers assigned to run on the
computer.

■ CPU System – The percent of CPU cycles servicing the operating system.

■ CPU User – The percent of CPU cycles servicing virtual tester processes.

■ CPU Queue Length – The number of processes or threads that are ready to run but
have to wait in a queue.

This number should be 0 or very small unless the CPU System and CPU Virtual
Tester percentages are close to 100.

■ Memory Pages Input/Sec. – The number of pages per second that are read into
memory.

■ Memory Pages Output/Sec. – The number of pages per second that are swapped
onto disk. This number should be considerably smaller than the memory pages
that are input.

Together, these numbers can indicate memory bottlenecks.

■ Memory % Used – The percentage of memory used.

■ Disk Transfers/Sec. – The disk access speed (seek, rotation, and transfer time) for
up to four disks. If one disk is much slower than the others, it might be
fragmented. If the transfer rate peaks when the response time is down, this also
could indicate a problem with your disk.

Note: If you are monitoring resources for a computer that runs HP-UX, AIX, or
LINUX, the Disk Transfers/Sec. column will always show n/a. This is because those
platforms are unable to supply TestManager with disk transfer information.
However, all other columns will be correct.

■ % Disk Used – The percent of used disk space on the monitored disk.
Monitoring Suites 123

■ Delay – This lets you gauge the general state of your network. At regular intervals,
TestManager sends a small ICMP packet to the remote computer and times that
request, in ms. This time does not include any service time used by a virtual
tester-level process on the remote computer. The time should stay relatively
consistent and quite small. A large number or a number that varies widely might
indicate network problems.

■ Service Time – This lets you gauge the general state of your network. At regular
intervals, TestManager sends a small TCP packet to the specified computer and
times that request, in ms. This time includes the service time for a virtual
tester-level process on the remote computer to reply to the packet. The time should
stay relatively consistent and quite small. A large number or a number that varies
widely might indicate network problems.

Note: In addition to monitoring your computer resources, you can report on them.
The Response vs. Time report lets you compare your response time with your
computer resource usage.

Graphing Resource Usage During a Run

You can graph the resources that your computer uses during a suite run. This
provides you with a visual representation of resource usage. Within this graph of
resources, you can change the color of an item in the graph, remove an item from the
graph, or remove all items in the graph.

To graph computer resources:

■ Click Monitor > Computers.

Viewing Computers at the Start or End of a Run

The Computer view appears automatically when Agent computers start up. When all
Agents are up and running, the Computer view closes. When Agents begin shutting
down, the Computer view reappears automatically so you can watch the cleanup
activities such as transferring files to the Local computer.

The Computer view includes Progress messages, which indicate when the computer
is creating or initializing processes, transferring files, terminating virtual testers, and
so on.
124 Chapter 5 - Executing Tests

The Computer view displays the following information:

■ Name – The name of the computer that you specified in the suite. Local is the local
computer.

■ State – The state the computer is in. It can be one of the following:

❑ Not Connected – The Local computer has not yet connected to the Agent
computer.

❑ Initializing – The computer is being initialized, or is transferring compiled test
scripts and datapools that are out of date.

❑ Run – The computer is running virtual testers.

❑ Termination – The computer is in termination mode, waiting for virtual testers
to exit.

❑ Clean Up – The computer is cleaning up before exiting. This includes transfer
and removal of the result files.

❑ Exit – The computer has exited.

■ Time – The time the computer has been in the current state. The time is displayed
in hours:minutes:seconds.

■ Virtual Testers – The total number of virtual testers assigned to run on the
computer.

Displaying the Transactor View

The Transactor view shows the status of the transactors that you inserted into the
suite.

Note: This view contains information that is more focused on performance testing
than on functional testing.

To display a Transactor view:

■ Click Monitor > Transactors .

The Transactor view contains the following information:

■ Name – The name that you gave the transactor when you inserted it in the suite.

■ Type – Whether the transaction is Independent or Coordinated.
Monitoring Suites 125

■ State – The state that the transactor is in. It can be one of the following:

❑ Not Started – An initial state, when the transactor has not run any virtual
testers.

❑ Arriving – This state pertains to Coordinated transactors only. At least one tester
has arrived at the sync point, but not all testers have arrived.

❑ Active – The transactor is running at least one virtual tester.

❑ Inactive – The transactor is not running any virtual testers.

■ Users – The number of virtual testers in the Arriving or Active states.

■ Target Rate – The rate that you set for the transactor when you inserted it in the
suite.

■ Start Time – The time the transactor first entered the Active state.

■ Active Time – The total amount of time the transactor has been in the Active state.

■ Transactions – The number of transactions that are scheduled by the transactor, but
not necessarily completed by the virtual tester.

■ Actual Rate – The rate that the transactions are actually running. TestManager
calculates this rate by dividing Transactions by the Active Time .

The Target Rate specifies the number of started transactors, but the Actual Rate
calculates the number of completed transactions. Because the transactions take
some time to complete, the Actual Rate will approach, but will not reach, the Target
Rate. However, over time and enough transactions, the Actual Rate should become
close to the Target Rate .

■ % Late – The percent of transactors that were unable to begin running at the
desired time.

For coordinated transactors, this usually means that not enough testers are
available to run the transactors. You may want to run the suite again with more
testers.

For independent transactors, this usually means that the time it takes to run one
transaction is longer than the time between two transactions.

If too many transactors are late, the target transaction rate will not be maintained
or the transactor will not accurately simulate peaks in the transaction rate.
126 Chapter 5 - Executing Tests

Displaying the Group Views

The Group views show the status of all user groups that you defined in the suite. Both
Group views show the same information, but the Suite view shows the information
by user group, and the Computer view shows the information by computer.

To display a Group view:

■ Click Monitor > Groups .

The two Group view types are:

■ Suite – A list of the user groups in a suite. The following figure shows the Suite
view:

■ Computer – A list of the user groups assigned to the same computer. The following
figure shows the Computer view:

The Group views contain the following information:

■ Total – The total number of virtual testers in the group.

■ Active – The number of virtual testers in the group currently running.

■ Suspended – The number of virtual testers in the group that are suspended.

■ Abnormal – The number of virtual testers that terminated without completing all of
their assigned tasks.

■ Normal – The number of virtual testers that completed their tasks successfully.

To display the virtual testers in the groups, right-click the group name in the left
column, and then click See Users .

Filtering and Sorting Views

This section discusses how to customize a view. For example, you can sort virtual
testers in various ways, or you can filter virtual testers and groups so that only certain
information is displayed.
Monitoring Suites 127

Sorting the Virtual Testers Displayed in a User/Computer View

While displaying a User/Computer view, you may want to see the virtual testers in a
particular order. For example, you can sort the virtual testers alphabetically, or you
can sort them in the order in which they started.

You can sort virtual testers in the following orders:

■ Suite Order – The order in which the user group appears in the suite.

■ Execution Order – The order in which the virtual testers are started.

■ Suite Groups – Alphabetical listing of suite groups.

■ Computer Groups – Alphabetical listing of computer groups.

Note: The current sort order is unavailable. In this example, Execution Order is
unavailable because it is the sort order being used.

To change the order in which the virtual testers are displayed, select a column under
the Suite or Computer heading from an open user or computer view and right-click to
view the context menu.

Filtering a View

When you display a User/Computer view, you can filter virtual testers so that only
certain testers appear. This is useful if your suite contains many virtual testers and
you want to focus on the progress of a few of these testers.

Filtering Virtual Testers

You can filter on virtual testers by including or excluding selected virtual testers:
128 Chapter 5 - Executing Tests

■ Include – only the virtual testers that you selected are displayed.

■ Exclude – all virtual testers except those that you selected are displayed.

To filter on virtual testers:

■ Select the virtual testers that you want to filter from an open user or computer
view and right-click to display the shortcut menu.

Filtering a Virtual Tester by Value

You can filter a virtual tester on any value that stays constant during the run, such as
the name of its group, the type of test script it is running, or the name of the computer
on which a virtual tester is running.

For example, you might be running a test with 200 virtual testers in the Accounting
user group, 300 virtual testers in the Data Entry user group, and 500 virtual testers in
the Sales user group. You want to see only virtual testers in the Data Entry group.
Filter the group so that TestManager displays only the group with the “Data Entry”
value.

To filter a virtual tester by value:

■ Right-click in any cell under the Suite, Group, or Type headings of an open User or
Computer view.

Filtering a Group View

If the Group view displays many columns, you can filter out some columns to provide
more room to view the columns that you want to see. You can filter a group on any
value that stays constant during the run, such as the name of the computer or user
group or the type of test script.

To filter a Group view:

■ Right-click in the Group or Type heading of an open User or Computer view to see
the shortcut menu.

Restoring the Default Views

If you have zoomed in on a histogram bar, filtered a view, or changed the widths of a
column in a view, you may want to restore the bar or views to their original settings.

To restore a view to its original setting, from the view you want to restore:

■ Click View > Reset .
Monitoring Suites 129

Changing the Value of a Shared Variable

You can change the value of a shared variable when you are monitoring a suite.

If the shared variable is being dynamically updated, however, you cannot type in a
new value. By the time you read the value, determine the new value, and change it, a
virtual tester may have modified the value. If this occurs, your change is lost. Instead:

1 Type an operand in the Value of box.

2 Under Operators , choose an operator. If you choose the subtract (-) or divisor (/)
operators, the order for operations is:

existing value - new value

existing value / new value

For example, assume the shared variable has a current value of 6. If you type 4 in the
Value of box and click the - operator, the new value of the shared variable is 2, because
6 - 4 = 2.

To change the value of a shared variable:

■ Click Monitor > Shared Variable .

Displaying the Virtual Testers Waiting on a Shared Variable

If your test scripts contain shared variables, you can see the virtual testers waiting on
each shared variable.

To display the virtual testers waiting on a shared variable, double-click the variable
name, or click the right mouse button.

Debugging a Test Script

You may encounter problems when you are monitoring a suite. TestManager provides
you with tools that enable you to debug a test script. When you debug a test script, it
is a good idea to run the suite with just one virtual tester, correct the test script, and
then run the suite as usual.

To debug a test script:

■ Click Monitor > Script and select the virtual tester running the script you want to
debug.

Debug a test script through the Script view. Through the Script view you have the
following debugging choices:
130 Chapter 5 - Executing Tests

■ Single Step – Steps through a test script one emulation command at a time,
allowing you to see what happens at each command. To use this choice, first
suspend a virtual tester. This is useful for pinpointing problems.

■ Multi-step – Steps through a test script multiple emulation commands at a time. To
use this choice, first suspend the virtual tester. Then you can select a number of
commands to execute at a time.

■ Suspend – Suspends a virtual tester at the beginning of the next emulation
command.

■ Resume – Allows a suspended virtual tester to resume its progress through a test
script.

■ Terminate – Ends the virtual tester’s execution of a test script.

■ Break Out – Moves a virtual tester out of the following three states:

❑ Waiting on a shared variable

❑ Waiting on a response

❑ delay function

To debug Visual Basic, Java, or test scripts of other types, refer to the API
documentation associated with that script type.

Changing Monitor Defaults

When you monitor a suite, you can set which views are displayed automatically, how
often the views are refreshed, and whether toolbars are displayed automatically when
you run a suite. You can even configure the Custom histogram, and change its colors,
as described in the next section.
Monitoring Suites 131

To change monitoring defaults:

■ Click Tools > Options , and then click the Monitor tab.

Configuring Custom Histograms

By default, the Custom histogram is identical to the Standard histogram. However,
unlike the other histograms, you can configure the Custom histogram. You can
configure the groups, create new groups, and change the colors that designate a
group.
132 Chapter 5 - Executing Tests

To configure custom histogram states:

■ From the Monitor tab of the Options dialog box, in the State Histogram area, click
the Configure button.

To assign or remove a state in a Custom Histogram group:

■ In the State Groupings dialog box, select a group from the Current State Grouping
field.

To add an entire group to the Custom histogram:

■ In the State Groupings dialog box, click the Add Grouping button.

To delete a group from the Custom histogram:

■ In the State Groupings dialog box, select the group you want to delete from the
Current State Grouping box, and then click Delete Grouping .

When you delete a group, all states that were in the group are unassigned.

Controlling the Suite During a Run

TestManager provides a variety of ways to help you control a suite while it is running.
For example, you can suspend a suite to change settings or examine its progress.
Monitoring Suites 133

Suspending and Resuming Virtual Testers in a Suite

While a suite is running you can suspend and resume all virtual testers in the suite, or
you can suspend and resume individual virtual testers. This is useful if a problem
occurs during the run and you want to investigate it.

To suspend and resume all virtual testers in the suite:

■ Click Monitor > Suspend or Monitor > Resume .

To suspend or resume individual virtual testers:

■ Click Monitor > Users or Monitor > Computers , and select the virtual tester row that
you want to suspend.

Stopping a Suite

You can stop the execution of a suite. This is useful if there is a serious problem and
you do not want to wait for the test to finish.

To stop a run:

■ Click Monitor > Stop .

Stop a suite in one of these ways:

■ Abort – Stops the run and does not save any results. Click this option if you do not
plan to run any reports or look at any Virtual Tester Error or Virtual Tester Output
file in the Test Log window.
134 Chapter 5 - Executing Tests

■ Process Results – Stops the run but saves the results so that you can run reports,
and look at any Virtual Tester Error or Virtual Tester Output file in the Test Log
window.

■ Save and Run Reports – Stops the run, saves the results, and produces reports, just
as if your run completed normally.

You can also specify Clean-up time . This is the amount of time allowed from the time
you request termination until TestManager forces the termination of the run.

Note: When you abort a large suite that includes multiprocessor Local or Agent
computers, choose a Clean-up time of 60 seconds or more to allow virtual testers
(rtsvui processes) time to exit on their own. The default Clean-up time of 1 second
often causes the Local computer to terminate many processes at once, and can result
in leftover rtsvui processes. Although not harmful, they clutter the process table. They
can be killed individually using Task Manager, or all at once by logging off.

When the suite completes the test run–whether it completes normally or you
manually terminated it–TestManager displays default log data in the Test Log
window if log information is available. For more information on the Test Log window,
see Chapter 6, Evaluating Tests.
Monitoring Suites 135

136 Chapter 5 - Executing Tests

6Evaluating Tests
This chapter explains how to use the Test Log window of TestManager to view logs
and interpret their contents. It also explains how to create and run reports to help you
manage your testing efforts. This chapter includes the following topics:

■ About test logs

■ Viewing test log results

■ Viewing test script results recorded with Rational Robot

■ Reporting results

Note: For detailed procedures, see the TestManager Help.

About Test Logs

Use the Test Log window of Rational TestManager to view the test logs created after
you run a test case, test script, or suite.

You can use the Test Log window to:

■ Open a test log to view a result.

■ Filter the data of a test log to view only the information you need.

■ View all test cases with an unevaluated result in the Test Case Results tab of the
Test Log window. This is particularly useful in evaluating the results of
performance test cases. You can sort the test cases by Actual Result and then
review and update all unevaluated test cases.

■ Submit a defect for a failed log event. The test log automatically fills in build,
configuration, and script information in the Rational ClearQuest defect form.

■ Open the test script of a script-based log event in the appropriate test script
development tool. For example if you created a GUI test script, Robot opens and
displays the test script. If you created a manual script, Rational ManualTest opens
and displays the test script.

■ Preview or print data displayed in the active test log in the Test Log window.
137

Opening a Test Log in TestManager

To open the Test Log window manually, do one of the following:

■ Click File > Open Test Log .

■ In the Results tab of the Test Asset Workspace, expand the Build tree and select a
log.

You can open more than one test log in the Test Log window. If you have more than
one test log open, the log that is currently active is the one that is acted upon when
you use most menu commands.

To control when the test log opens after running a test case, test script, or suite:

■ Click Tools > Options and click the Run tab.

Note: You can also start the test log from a selected test script in a Rational
TestFactory application map. For more information, see the Using Rational
TestFactory manual or the Rational TestFactory Help.

The Test Log Main Window

The Test Log window of TestManager contains the Test Log Summary area, the Test
Case Results tab, and the Details tab.

Test Asset
Workspace

Results tab

Build tree
138 Chapter 6 - Evaluating Tests

■ Test Log Summary – Lists the build, the name of the log folder, the iteration, the
start date and time, and the end date and time of the run. If you run a suite, lists
the suite name.

■ Test Case Results tab – Displays all test case results. Only displays data when you
run a test case.

■ Details tab – Displays all events in the test log.

Test Log
Summary

Test Case Results tab Details tab

Actual result of test case

Promoted test cases.Interpreted result of test case

Test Case name

Associated
defects
About Test Logs 139

Test Case Results Tab

The Test Case Results tab displays the test case results. The following information
appears in the Test Case Results tab:

■ Name – The test case name.

■ Actual Result – The result generated when you run a test case. The results in this
column are color coded to reflect severity. Green indicates a test case passed its
testing criteria, red indicates failure, yellow indicates warning, and blue indicates
informational results.

■ Interpreted Result – The interpreted results. You can interpret the actual result and
change it according to your testing criteria. Green indicates a test case passed
testing criteria, red indicates failure, yellow indicates warning, and blue indicates
informational results.

■ Promoted – Whether you have promoted the results of a test case. When you
promote a test case, you indicate that the results of running a test case are valid
and should be used to generate analysis reports.

■ Defects – The defect numbers associated with this test case (if there are any).

Test Case Results tab
140 Chapter 6 - Evaluating Tests

Details Tab

The Details tab of the Test Log window contains log events that are generated when
you run a test script, test case, or suite.

The following information appears in the Details tab:

■ Event Type – Lists all log events, such as the script start and end, verification
points, manual steps, and unexpected active windows.

■ Result – Indicates the result of an event. Green indicates an event passed its testing
criteria, red indicates failure, yellow indicates warning, and blue indicates
informational results. If a verification point fails in a test script created using
Rational Robot or Rational QualityArchitect, you can open the appropriate
Comparator. The Comparator shows the baseline and actual files so you can
evaluate any failures found and determine whether they are intentional changes or
defects.

■ Date & Time – Shows the date and start time of a log event.

■ Failure Reason – Shows the failure reason for the failure of a log event.

■ Computer Name – Shows the computer on which the script was run.

■ Defects – Shows the defect number associated with this test case (if there is one).

About Log Filters

TestManager allows you create a log filter to narrow down the amount of data
displayed in the Test Log window. A log filter can make it easier to view large test
logs.

You can:

■ Create or edit log filters.

Details tab
About Test Logs 141

■ Choose a filter to narrow down the amount of logged data displayed in the Test
Log window.

■ Copy, rename, or delete a log filter. The copy feature is useful when you want to
create multiple filters that are similar to one another. After you create the first filter,
you can make a copy of it. Then you can edit the copied filter to make the
necessary modifications. You can also rename and delete a log filter.

Creating and Editing a Log Filter

To create or edit a log filter:

■ Click Tools > Manage > Log Filters . Click New, or select a filter and click Edit . Then
select the type of event information you want to filter on each of the tabs.

If you filter an event type, the filter includes all information included in the event type
as well as the event type itself.

Applying a Test Log Filter

After you create a test log filter, you need to set the filter that you want to use to
narrow down the amount of logged data displayed in the Test Log window.

To apply a test log filter:

■ Open a log and click View > Set Test Log Filter and select the filter.

To turn off all log filters, click the test log filter All . This filter displays all
information logged in the Test Log window when you run a test case, test script, or
suite.
142 Chapter 6 - Evaluating Tests

Viewing Test Log Results

After running a test case, test script, or suite, you can quickly evaluate the results in
the Test Log window.

Viewing Test Case Results

The results of all test cases appear in the Test Case Results tab of the Test Log window.

In the Test Case Results tab you can:

■ Sort by name, actual result, interpreted result, or promotion status.

To sort test cases:

❑ In the Test Case Results tab, click View > Sort By and then select how you want
to sort the test cases.

■ Show test cases by the following criteria:

❑ Actual result with pass, fail, warning, or other.

❑ Interpreted with pass, fail, warning, or other.

❑ You can also hide the equivalent results.

To show test cases by certain criteria:

❑ In the Test Case Results tab click View > Show Test Cases . Then select the
criteria you want to see.

■ Display event details for a particular test case in the Test Case Results tab.

To display event details:

❑ In the Test Case Results tab, select a test case, and then click View > Event
Details . TestManager displays the Details tab and locates the event details for
the test case you selected.

Viewing Events Details

Detailed information on each event is available in the Details tab of the Test Log
window.

In the Details tab, you can:

■ Collapse and expand events.

■ Find a particular result, event type, protocol, failure reason, verification point, or
command, or search for the name and value of a specific event property.
Viewing Test Log Results 143

You can view an event and navigate through all of the failures (appearing in red in the
Result column of the Details tab) from the Log Event Properties window.

To view a particular event:

1 Click the Details tab in the Test Log window.

2 Click View > Properties .

You can keep the Log Event Properties window open while you move through each
event in the Details tab of the Test Log window. You can also resize and move this
window.

Note: If you previously used Rational Suite PerformanceStudio, the information
found in the Trace and Analog reports is now available in the Log Event Properties
window.

The General tab of the Log Event Properties window displays the type of event, the
date and time the event was recorded, the script name, result information (if any), and
other information about a log event.

The Configuration tab of the Log Event Properties window displays the configuration
information of the computer on which you recorded the test script.

Click to move to the
previous event.

Click to move to the
next event.
144 Chapter 6 - Evaluating Tests

If data is associated with an event, TestManager displays an Associated Data tab in the
Log Event Properties window. Associated data can be a response to a query or even a
graphics file.

Note: This tab is available only when data is associated with a selected event.

Click to move to the
previous event.

Click to move to the
next event.

Click to move to the
previous event.

Click to move to the
next event.
Viewing Test Log Results 145

Viewing a Test Script

You can select any log event that is associated with a script and view it in the tool that
you used to create the script. For example, if you create a GUI script and open the
script from the Test Log window, the script opens in Robot. If you create a manual
script and open the script from the Test Log window, it opens in Rational ManualTest.

Note: When you double-click an event in an open log generated from Robot under
Rational Purify, Quantify, or PureCoverage, the script opens in Robot, and the file
opens in the diagnostic tool. For information about setting diagnostic tools options,
see the Robot Help.

To view a script:

1 Open a test log.

2 Click the Details tab.

3 Right-click a script start or script end event, and click Open Script .

Working with Test Logs

When working with test logs, you can:

■ Open a test log.

■ Rename a test log.

■ View the properties of a test log (the name, description, build, and log folder).

To do any of these tasks:

1 Click the Results tab in the Test Asset Workspace.

2 Right-click a test log, then select an item on the shortcut menu.

Note: You can also print data displayed in the Test Log window. For information, see
Printing a Test Log on page 150.

About Test Logs

Test logs record everything that happens during a test script run from the time the
script begins until it ends. Unless logging is specifically turned off, every virtual tester
action, system call, verification point, and result is included in the logging process.
You can view properties for every event from the Test Log window and you can also
view certain test logs as a whole.
146 Chapter 6 - Evaluating Tests

Suite Log

The suite log contains all the messages associated with a suite run. It is the same
information that you see in the Messages window when you run a suite. The log
contains build, log folder and log name information, and messages about checking the
suite, compiling test scripts, and any warnings or errors associated with the suite.

To view the suite log:

■ Right-click a suite start event in the Test Log window, and click View Suite Log .

To print a suite log:

■ From an open suite log, click File > Print .

Virtual Tester Error File

The error file contains any runtime error information associated with a specific virtual
tester.

Note: The error file does not always exist. If an error is encountered during playback,
TestManager records the error in this file. If no errors occur, then there is no data in
this file, and TestManager deletes the file automatically. For more information on test
scripts, see the Using Rational Robot manual, or the Rational Test API documentation
appropriate to the scripting language.

To view an error file:

■ Right-click a virtual tester start event in the Test Log window, and click View
Virtual Tester Error File .

To print an error file:

■ From an open error file, click File > Print .

Virtual Tester Output File

The virtual test output file contains any information a virtual tester specifically writes
from test script output. This can be just about anything. For example, this file could
log SQL commands.

Note: The output file does not always exist. If output is generated during playback,
TestManager records the output in this file. If no output is generated, then there is no
data in this file, and TestManager deletes the file automatically. For more information
on test scripts, see the Using Rational Robot manual, or the Rational Test API
documentation appropriate to the scripting language.

To view an output file:
Viewing Test Log Results 147

■ Right-click a virtual tester start event in the Test Log window, and click View
Virtual Tester Output File .

To print an output file:

■ From an open output file, click File > Print .

Entering and Modifying Defects

A defect can be anything from a request for a new feature to an actual bug found in the
application-under-test. Defect tracking is an important part of the software testing
effort.

You can use the Test Log window of TestManager to enter defects for any verification
points that fail during playback of a recorded script. When you enter a defect from the
test log, TestManager opens the TestStudio defect form and fills in several fields for
you with information from the log. (When you enter defects this way, TestManager
does not actually start ClearQuest; it opens the defect form, which is part of
ClearQuest.) You can also enter defects manually using ClearQuest, but none of the
fields will be automatically filled in for you.

Once you have entered defects, you can use ClearQuest to review the data and decide
upon further action.

During the course of developing your application, you can update the state of each
defect to keep the information current with the development-test-repair cycle. You
can then use ClearQuest’s reporting options to retrieve current information about the
defects being tracked and the overall progress of development. You can also send
defect information to other members of your development team using ClearQuest’s
e-mail features. For information about working with ClearQuest, see the Rational
ClearQuest Help.

Note: To use ClearQuest to store defects, an administrator must first set up the
ClearQuest schema repository, and then create or attach a ClearQuest user database as
part of a Rational project. For information, see the Administering Rational ClearQuest
manual.

About ClearQuest and Defect Tracking

ClearQuest is a change-request management system designed for the dynamic and
interactive nature of software development. With ClearQuest, you can manage all of
the change-request needs of software development—for example, enhancement
requests, defect reports, and documentation modifications.
148 Chapter 6 - Evaluating Tests

For your convenience, a specially designed schema for defect tracking is included
with your software. In ClearQuest, the term schema refers to all attributes associated
with a change-request database. This includes field definitions, field behaviors, the
state transition tables, actions, and forms. For more information about ClearQuest
schemas, see the Rational ClearQuest Help. If you associate a test case with a test
input, the test input information appears automatically in the defect form.

Note: The version of ClearQuest that comes with Rational TeamTest differs from
standard ClearQuest in one way: you cannot add a field to a ClearQuest schema. To
add fields to a schema, you must purchase standard Rational ClearQuest software or
a Rational Suite product.

About the Rational TestStudio Schema

The TestStudio schema includes two TestStudio defect forms: one for entering new
defects, and one for modifying and tracking defect information.

Note: To use the TestStudio schema, you must select it when you create or attach a
ClearQuest user database as part of a Rational project. For information, see the Using
the Rational Administrator manual.

About the TestStudio Defect Form

You can use the TestStudio defect form to track as many or as few details about a
defect as you want.

Note: To display information about each item in the defect form, right-click the item
and click Help.

Entering Defects

You can enter defects from the Test Log window of TestManager or ClearQuest. If you
open a test log in TestManager, TestManager fills in many of the fields in the defect
form. If you use ClearQuest, you must enter the fields manually.

To enter a defect from TestManager, do one of the following:

■ Right-click the failed event in the Event Type column, and click Submit Defect.

■ Click Edit > Submit Defect .

Note: TestManager attempts to connect to ClearQuest using your user name and
password. However, if TestManager still cannot connect to the ClearQuest database,
the Login dialog box appears. In this case, type your ClearQuest user name and
password. Select the database in which you want to enter the defect.
Viewing Test Log Results 149

If you enter a defect from the test log, the number of the new defect appears in the
Defect column of the test log.

Note: You can also enter defects from SiteCheck, after you play back a Web
verification point. From the test log, right-click the failed Web verification point
and click Submit Defect . In SiteCheck, click Tools > Enter a Defect .

Printing a Test Log

You can preview or print the information displayed in the active test log to analyze
test results, as shown in this example:

To print an active test log:

1 Display the log you want to print in the Test Log window.

2 Click File > Print .

To get more details in the report, click the (+) plus sign in the Event Type column. To
reduce the number of details, click the minus sign (-) in the Event Type column.

Example of a
print preview
150 Chapter 6 - Evaluating Tests

Managing Log Event Property Types

Managing log event property types allows you to specify which log event data is
logged and how it is displayed in TestManager. When you add a new log event
property type—depending on how it is defined—it displays in a separate tab in the
Log Event window as text or as an HTML file, or in a separate application.

Note: Log event property types are related to the extensibility of TestManager. For
custom defined test script types in testing, for example, you can define specific events
to log. For more information, see the Rational Test Extensibility Reference manual.

Choosing to log a specific log event type can help you to identify how a particular
event performs during a test. For example, if you are running a test against a web
server, you could set up an event type that specifically logs HTTP requests on the web
server.

TestManager supplies the default log event property type “Associated Data.” For
more information on the information logged by this property type, see Viewing Events
Details on page 143.

To create or edit a log event property type:

■ Click Tools > Manage > Log Event Property Types . Click New.

Click Internal viewer and select
Text or HTML to either
add a tab to the Log Event
Properties dialog (Text) or launch
a Web browser displaying logged
information (HTML).

Click External viewer to see
logged data in the application of
your choice.

Click to select a Format type to
specify whether the data logged
is the actual data or the
reference to the data in an
separate file.

Enter a property name.
Viewing Test Log Results 151

Viewing Test Script Results Recorded with Rational Robot

You can use Rational Robot to record test scripts that contain verification points. After
you play back the test script, Robot writes the results to a log. Certain verification
points also have baseline data files that are saved. If a verification point fails during
playback, actual data files are also saved. You can use the appropriate Comparators to
view actual data or image files, and view and edit the baseline files as needed.

In addition to using the Test Log window to view the playback results of verification
points, you can use it to view procedural failures, aborts, and any additional playback
information.

A testing cycle can have many individual tests for specific areas of an application.
Reviewing the results of tests in the Test Log window reveals whether each passed or
failed. Analyzing the results in a Comparator helps determine why a test may have
failed. Review and analysis help determine where you are in your software
development effort and whether a failure is a defect or a design change.

Viewing a Verification Point in the Comparators

In the Details page of the Test Log window, failed events are indicated in red in the
Result column. If the event is a failed verification point of a script created using Robot,
you can analyze the failure using one of the Comparators.

To view a verification point in a Comparator:

1 Open a test log.

2 Click the Details tab.

3 Right-click a verification point and click View Verification Point .

The appropriate Comparator opens based on the type of verification point, as shown
in the following table. You can then analyze the results to determine whether the
failure was caused by a defect or an intentional change in the application.
152 Chapter 6 - Evaluating Tests

Note: Rational QualityArchitect uses the Grid Comparator to display verification
point information.

For more information about the four Comparators, see Chapter 9, Using the
Comparators.

Failure indications in test logs do not necessarily mean that the application-under-test
has failed. You need to evaluate each verification point failure with the appropriate
Comparator to determine whether it is an actual defect, a playback environment
difference, or an intentional design change made to a new build of the
application-under-test.

Playback/Environmental Differences

Differences between the recording environment and the playback environment can
generate failure indications that do not represent an actual defect in the software. This
can happen if there are applications or open windows in the recorded environment
that are not in the environment, or vice versa.

For example, if you have the Calculator open in the recorded environment but not
open in the playback environment, Robot can generate a failure that has nothing to do
with the software that you are actually testing.

You should analyze these failure indications with the appropriate Comparator to
determine whether the window that Robot could not find is an application window
that should have opened during the script playback or an unrelated window.

Intentional Changes to an Application Build

Revisions to the application-under-test can generate failure indications in scripts and
verification points developed using a previous build as the baseline. This is especially
true if the user interface has changed.

Comparator Verification points

Text Comparator Alphanumeric

Grid Comparator Object Data
Menu
Clipboard

Image Comparator Window Image
Region Image

Object Properties Comparator Object Properties
Viewing Test Script Results Recorded with Rational Robot 153

For example, the Window Image verification point compares a pixel-for-pixel bitmap
from the recorded baseline image file to the current version of the
application-under-test. If the user interface changes, the Window Image verification
point will fail. When intentional application changes result in failures, you can easily
update the baseline file to correspond to the new interface using the Image
Comparator. Intentional changes in other areas can also be updated using the other
Comparators.

For information about updating the baseline, see Chapter 9, Using the Comparators.

Reporting Results

About Reports

TestManager provides you with a set of standard reports that you can use to analyze
test case results. In addition to these standard reports, you can customize reports to
your needs by editing the design layouts. You can also use queries to narrow down
the data displayed in a report.

TestManager provides three types of reports to help you in your testing efforts:

■ Test case distribution, test case results distribution, and test case trend reports.

■ Listing reports.

■ Performance reports.

About Test Case Distribution and Trend Reports

Test case distribution and trend reports help you track the progress of your planning,
implementation, and execution of test cases. You can run a report to find out who is
testing a particular component or what percentage of test cases have been executed.
These reports have multiple display formats including pie, bar, line, and tree charts.

TestManager includes three types of test case reports:

■ Test Case Distribution reports provide information about the number of test cases
created, who created them, configuration information, and whether they have
been implemented manually or with an automated test script. You can also see the
number of test cases implemented versus those planned. Test case distribution
reports can be especially useful during the test planning phase of a project.

■ Test Case Results Distribution reports provide crucial information about the quality
of a specific build and the progress of your ability to test that build. These reports
tell you the number of test cases that have passed results, failed results, warnings
154 Chapter 6 - Evaluating Tests

results, and informational results, and that were stopped or completed for a
specific build. They can also tell you the number of test cases implemented, test
cases executed, and the test case instances executed. (Instances of test cases can be
added to performance testing suites. See Chapter 11, Creating Performance Testing
Suites.)

■ Test Case Trend reports provide information about the number of test inputs, and
test cases that have been planned, developed, executed, or met the testing criteria
over several builds, iterations, or dates.

About Listing Reports

Listing reports display lists of the different test assets stored in a Rational project.
TestManager includes listing reports for builds, computers, computer lists,
configurations, iterations, suites, sessions, test logs, test plans, test scripts, and virtual
testers.

Each listing report comes with one or more design layouts that you can run without
changing. A design layout defines the look of each report and the specific information
included in a listing report. You can also customize the design layout or create new
design layouts using Crystal Reports. For information, see Customizing Design Layouts
for Listing Reports on page 155.

By using different combinations of layouts and listing reports, you can create a wide
variety of ready-to-run reports.

For example, using the available design layouts and listing reports, you can create a
test script listing report that:

■ Lists the details of all of the test scripts in your project.

■ Summarizes all of the test scripts in a project.

You can create a query to specify which data to include in a listing report. For
information about creating a query, see the Crystal Reports Help.

Customizing Design Layouts for Listing Reports

A design layout defines the look of each report and the specific information included
in a listing report. To customize existing design layouts, or create a new design layout,
you must install Crystal Reports 8.0 Professional Edition. The Crystal Reports
software comes in a separate CD-ROM in your Rational software kit.

When you create a new listing report in TestManager, you can optionally create new
or customize existing design layouts. Crystal Reports uses report dictionaries of assets
and properties stored in the Rational Test datastore. These dictionaries link the
various assets together using the database schema.
Reporting Results 155

For more information about using Crystal Reports to create new or customize existing
design layouts, see the Crystal Reports Help.

About Performance Testing Reports

Performance testing reports help you analyze the relative success or failure of a given
suite run, and the performance of the server under specified conditions. For example,
you can determine how long it took for a virtual tester to execute a command, and
how response times varied with different suite runs. You can also define custom
reports based on standard report types. These custom reports can help you zoom in
on a given application element and further refine tests to show exactly the data you
need as determined by your test plan or test case.

Performance testing reports include:

■ Performance reports.

■ Compare Performance reports.

■ Response vs. Time reports.

■ Command Status reports.

■ Command Usage reports.

For detailed information about performance testing reports, see Chapter 13, Reporting
Performance Testing Results.

Selecting Which Reports to Use

The following table summarizes the types of TestManager reports.

To Use this report For information, see

Categorize test cases by a particular
property. (For example, you can view
how many test cases are in each iteration
or how many test cases were created by
people in a particular testing group.)

Test Case Distribution About Test Case
Distribution and Trend
Reports on page 154

Determine the number of test cases that
meet your test criteria.

Test Case Results Distribution About Test Case
Distribution and Trend
Reports on page 154
156 Chapter 6 - Evaluating Tests

Determine the percentage of test cases
planned, implemented, or executed for
several builds, iterations, or dates: to
view the percentage of test inputs tested,
not tested, satisfied, or not satisfied for
several builds, iterations, or dates.

Test Case Trend About Test Case
Distribution and Trend
Reports on page 154

List the builds in your project. Build Listing About Listing Reports on
page 155

List the computers in your project. Computer Listing About Listing Reports on
page 155

List the list of computers in your project. Computer List Listing About Listing Reports on
page 155

List the configurations in your project. Configuration Listing About Listing Reports on
page 155

List the iterations in your project. Iteration Listing About Listing Reports on
page 155

List the sessions in your project. Session Listing About Listing Reports on
page 155

List the suites in your project. Suite Listing About Listing Reports on
page 155

List the test logs in your project. Test Log Listing About Listing Reports on
page 155

List the test plans in your project. Test Plan listing About Listing Reports on
page 155

List the test scripts in your project. Test Script Listing About Listing Reports on
page 155

List the users in your project. User Listing About Listing Reports on
page 155

Display the response times, and calculate
the mean, standard deviation, and
percentiles for each command in the
suite run.

Performance Chapter 13, Reporting
Performance Testing
Results

Compare the response times measured
by several Performance reports.

Compare Performance Chapter 13, Reporting
Performance Testing
Results

Display individual response times and
whether a response has passed or failed.

Response vs. Time Chapter 13, Reporting
Performance Testing
Results
Reporting Results 157

Additional Reports

Additional reports are available in Rational ClearQuest and Rational SoDA.

You can use ClearQuest reports, as well as design layouts, queries, and charts to help
you manage your defect database. These reports and other items are automatically
created for you when you create a project that contains an associated ClearQuest
database. For information about using these defect reports see the ClearQuest Help.
For information about creating a project, see the Using the Rational Administrator
manual.

You can also create reports using Rational SoDA. Rational SoDA is a report generation
tool that supports reporting as well as formal documentation requirements. With
SoDA you can retrieve information from different information sources, such as
Rational Rose and Rational RequisitePro, to create a single document or report. For
information about creating reports using Rational SoDA, see the SoDA Help. To use
SoDA, click Reports > SoDA Report .

Creating Reports

To create a report:

■ Click Reports > New , and then select the type of report you want to create.

Creating a Test Case Distribution Report

When you create a test case distribution report, you can select how the data appears:
either in bar, stack, line, pie, or tree reports depending on the type of report you select.

Obtain a quick summary of which
commands passed or failed.

Command Status Chapter 13, Reporting
Performance Testing
Results

View cumulative response time and
summary statistics, as well as
throughput information for emulation
commands for all test scripts, and for the
suite run as a whole.

Command Usage Chapter 13, Reporting
Performance Testing
Results
158 Chapter 6 - Evaluating Tests

Creating a Test Case Results Distribution Report

When you create a test case results distribution report, you select the test case results
that you want in a report:

Select how
to display
the data.

Select the result.
Reporting Results 159

Creating a Test Case Trend Report

When you create a test case trend report, you select the information you want about
test cases or test inputs over several builds, iterations, or dates.

Creating a Listing Report

When you create a listing report, you determine how you want the information to
appear by choosing a Crystal Reports design layout. You can create new or customize
existing Crystal Reports design layouts. For more information, see Customizing Design
Layouts for Listing Reports on page 155.

Select the date.

Select the design layout.
160 Chapter 6 - Evaluating Tests

Creating Performance Reports

When you create performance reports, you can specify the log data on which to run
the report and how to manipulate the log data so that you see just the information you
need. For detailed information about creating performance reports, see Chapter 13,
Reporting Performance Testing Results.

Opening a Report

After creating a report, you can open it and, if necessary, make changes to the report.

To open or change a report, do one of the following:

■ Click Reports > Open , select a report from the list, and then click OK.

■ In the Analysis tab of the Test Asset Workspace select the type of report you want
to open. Select the particular report you want to open or change.

For more details about opening a report, see the TestManager Help.

Running Reports

You can run reports from:

■ The Report Bar.

■ The Report menu.

Running a Report from the Report Bar
Note: You can run only Performance Testing reports from the Report bar.

The quickest way to run a report is to click its name on the Report bar. On the Report
bar, TestManager displays the log of the last suite you ran. Unless you specify another
log, TestManager runs the report using the information in this log.

To run a report from the Report bar:

■ If the Report bar is not open, click View > Report Bar . Click any one of the report
buttons.

Note: You can customize the Report bar by populating it with your own reports. For
more information, see Changing the Reports that Run from the Report Bar on page 162.
Reporting Results 161

Running a Report from the Menu Bar

Although TestManager lets you run reports quickly from the Report bar, you can run
only one report of each type against a log using this method. You may want to run a
number of reports from a series of logs. (For example, if you have defined some new
Performance reports, and you want to run each report against the same log.) Run
these reports from the menu bar.

To run a report from the menu bar:

■ Click Reports > Run , and select the type of report to run.

Changing the Reports that Run Automatically
Note: You can run only Performance Testing reports automatically after a suite run.

TestManager automatically displays Performance and Command Status reports at the
end of the suite run. However, you can change the reports that TestManager displays.

To change the reports that TestManager displays at the end of a suite run:

■ Click Tools > Options , and then click the Reports tab.

Changing the Reports that Run from the Report Bar
Note: You can run only Performance Testing reports from the Report bar.

The Report bar lets you run reports by pressing a button. This bar automatically runs
the default reports unless you specify otherwise. For example, you may have defined
a new report that you want to run instead of the default reports.

To specify the reports that TestManager runs from the Report bar:

■ Click Tools > Options , and then click the Reports tab.

Note: To reset the Report bar so that it generates the default reports, click Tools >
Options , click the Reports tab, and then click the Reset Report Bar button.
162 Chapter 6 - Evaluating Tests

Print, Save, or Copy a Test Case Trend or Distribution Report

After you run a test case trend or distribution report, you can print, save, or copy it to
the Clipboard.

Print, Export, or Zoom a Listing Report

After you run a listing report, you can print it or export it to a different file format and
save it on your computer. You can export a finished report to a number of popular
spreadsheet and word processor formats, as well as to HTML, ODBC, and common
data interchange formats. This makes it easy to distribute information. For example,
you may want to use the report to project trends in a spreadsheet or to mail to other
members of your testing team.

Print a report.

Save a report.

Close report window.

Copy to Clipboard.
Reporting Results 163

Print, Save, Copy, Delete, or Export a Performance Report

TestManager allows you to perform common management tasks with reports. You
can print, copy, rename, delete, and export performance reports as necessary. For
more information on these administrative tasks, see Chapter 13, Reporting Performance
Testing Results.

Copying Reports to a New Project

If you create a report or a new design layout and want to use it in a new project, use
the Rational Administrator to copy them when you create a new project. The Rational
Administrator copies any saved listing reports and listing design layouts to the new
project.

For information, see the Administrator Help.

Creating a Query

A query is a request for specific information from a Rational Test datastore. You can
create a query for each type of TestManager report.

Export a report.

Print a report. Zoom in or out of chart.
164 Chapter 6 - Evaluating Tests

Queries for Test Case Distribution, Test Case Trend, and Performance Reports

TestManager provides pre-defined queries to narrow down the data in test case
distribution, test case trend, and performance reports. You can edit the existing
queries and create your own queries for these reports.

To create a query, do one of the following:

■ Create or open a report, and click the New button next to the Query field.

■ Click Tools > Manage > Queries > Test Case .

Queries for Listing Reports

To create a query for a listing report, you must install Crystal Reports 8.0 Professional
Edition. The Crystal Reports software comes in a separate CD-ROM in your Rational
software kit. For more information about creating a query for listing reports, see the
Crystal Reports Help.
Reporting Results 165

166 Chapter 6 - Evaluating Tests

Part 2: Functional Testing
with Rational
TestManager

7About Functional Tests
This chapter includes the following topics:

■ Planning functional tests

■ Distributed functional testing

■ Recording considering for functional tests

Planning Functional Tests

In the simplest sense, a functional test determines whether the software functions as
designed.

Identifying Functional Testing Requirements

When planning a functional test, you need to determine the hardware and software
that your test requires. For example:

■ Server computers – The server computers that will be accessed

■ Client computers – The characteristics of the computers that run the application
(for example, processor speed, memory, and disk space)

■ Databases that will be accessed

■ Applications to be tested

Setting Pass and Fail Criteria for Functional Tests

One of your primary tasks in planning a functional test is to identify the features to be
tested and how to determine whether the features pass or fail. If you are running a
functional test, the pass or fail criteria will be in the form of functional defects. For
example, you might need to determine whether the latest release of the application
produces:

■ The same output as the baseline

■ The same error detection as the baseline
169

■ The same error recovery as the baseline

Typically, changes to software can be classified in one of two ways:

■ An unplanned change – for example, a software defect

■ A planned change – for example, a fix for a software defect or an enhancement

In either case, if you want to continue with your functional testing, you must make
the newly accepted functionality the new baseline standard, and then compare this
new standard against tests of subsequent builds of the application.

Distributed Functional Testing

With TestManager, you can perform functional tests in distributed mode, meaning
that you can have many computers running concurrently. This enables you to:

■ Expand your functional testing efforts to include additional computers that are
configured differently—for example different operating systems, screen
resolutions, clock speeds, and so on.

■ Speed up the process of stand-alone functional testing by distributing the scripts
among different computers and playing them back in the same suite.

Distributing Tests Among Different Computers

With functional testing, you might want to run your tests immediately on any
computer that is available. In this case, follow these steps:

■ When you insert user groups into a suite, click the Multiple Computers button and
add your computers to the computer list that appears. For more information about
setting up test scripts to run on different computers, see Inserting User Groups into a
Suite on page 246.

■ After you have inserted your user groups, insert a Parallel selector. The scripts that
you insert under the selector will be continuously sent out to the next available
computer. Of course, the scripts must be designed so that they are self-contained
and do not rely on one another. For more information about the parallel selector,
see Inserting a Selector on page 257.

Running Tests on a Specific Computer

If you are testing functionality on a group of computers that have a variety of
hardware or software, you need to set up the user groups to run on a particular
computer. For information, see Inserting User Groups into a Suite on page 246.
170 Chapter 7 - About Functional Tests

Example of a Distributed Functional Test

In the following example, assume that you want to test your Accounting software.
You want to distribute your tests over different computers so that they can run as
quickly as possible.

The following table summarizes how you set up this test.

This table shows one way to perform a distributed functional test. There are many
other ways to use TestManager to build and run effective distributed functional tests.
The most important thing to keep in mind is that all of the scripts should be modular
in nature.

Recording Considerations for Functional Tests

Before you record a GUI script that accesses a database, you often need to make sure
that when you run the suite, the underlying database is in the same state as it was
when you originally recorded the scripts. There are several ways to accomplish this:

■ At the start of a suite run, have one user in the run initialize (roll back) the
database before the other users do active work.

■ Before each suite run, you can manually roll back the database to the state it was in
at the beginning of the recording session.

■ Have the last test script perform the necessary operations to restore the database,
such as removing inserted records or undoing updates.

Test Scripts Suite Reports

A script to log users in.

A modular script for
each user task.

A script to perform any
cleanup work and then
shut down the
application.

A fixed user group—with one user
assigned to each computer in the test—
that logs the users in.

A fixed user group—with one user
assigned to each computer in the test—
that contains a Next Available selector
and modular scripts that run on any
computer.

A fixed user group—with one user
assigned to each computer in the test—
that shuts down the application.

Test log report to show
whether all users in the
suite successfully ran
to completion.
Recording Considerations for Functional Tests 171

Once you have recorded a series of test scripts, you should modify them so that they
will run more than once. For example, if your recorded test script deletes a record
with the key of John Doe, you cannot run that test script multiple times. If you run the
test script with 100 virtual testers, the first virtual tester will succeed, but the next 99
virtual testers will get an error.

To avoid this problem, you can use a datapool to supply the data values to your test
script. Typically, you use a datapool so that each virtual tester that runs the test script
can send realistic data to the server. You can also use a datapool so a single virtual
tester that performs the same transaction multiple times can send realistic data to the
server in each transaction. If you do not use a datapool, each virtual tester would send
the same values to the server.

Another use of datapools is for testing the values of each field. So, for example, if you
are testing a numeric field, you can populate your datapool with the minimum and
maximum values accepted, one less than the minimum and one more than the
maximum values, a null value, and so on.

In general, you create a datapool immediately after you record the server or user
actions. You create a datapool with TestManager or Robot.

You will probably want to add a loop to your script to repeatedly test the values of a
field.

Note: For more information about datapools, see Working with Datapools on page 279.
Additionally, see the following Rational documents:

■ For datapool procedures, see the Rational TestManager Help.

■ For information about using datapools in VB or Java test scripts see the
appropriate Rational Test Script Services API documentation.

■ For information about datapools in custom test script types, see the Rational
TestManager Extensibility Reference manual.

■ For more information about creating datapools during test script recording, see
Using Rational Robot and Robot Help.

■ For information about datapools and GUI test scripts see the SQABasic
Reference.manual.
172 Chapter 7 - About Functional Tests

8Creating Functional
Testing Suites
This chapter describes how to design functional testing suites. It includes the
following topics:

■ About suites

■ Creating a suite

■ Inserting computer groups into a suite

■ Inserting test scripts into a suite

■ Inserting other items into a suite

■ Advanced functional testing features

■ Using events and dependencies to coordinate execution

■ Executing suites

About Suites

A suite shows a hierarchical representation of the tasks that you want to test. It shows
such items as the computer groups, resources assigned to each computer group,
which test scripts the computer groups run, and how many times each test script runs.

Through a suite, you can:

■ Run test scripts.

■ Group test scripts to emulate the actions of virtual testers.

■ Set the order in which test scripts run.

■ Synchronize virtual testers.
173

The following figure shows a suite with three computer groups: QA Group 1,
Development Group 2, and Administration Group 3.

The examples of suites in this chapter show GUI test scripts. A suite, however, can
contain GUI scripts, VU scripts, VB scripts, or other user-defined test script types. For
more information on defining other test script types and using them in TestManager,
see the Rational TestManager Extensibility Reference.

Creating a Suite

A suite enables you to not only run test scripts, but more importantly, to emulate the
actions of virtual testers using a system. A suite can be as simple as one virtual tester
executing one test script, or as complex as hundreds of virtual testers in different
groups, with each group executing different test scripts at different times using
different resources.
174 Chapter 8 - Creating Functional Testing Suites

You can create a suite in several different ways. For example, you can create a suite:

■ Using the performance testing suite wizard

■ Using the functional testing suite wizard

■ Based on an existing suite of any type

■ Based on an existing Robot session

■ Using a blank performance testing suite

■ Using a blank functional testing suite

To create a new suite using any of these methods:

■ Click File > New Suite .

The following sections explain how to insert computer groups, test scripts, and other
items into a suite so you can run it.

About Creating a Suite from a Wizard

If you are new to testing, using the suite wizards may be the easiest and fastest way to
create a working suite. Each wizard guides you through the process of creating a
suite.

When you create a suite using the functional testing wizard, TestManager helps you
choose test cases and scripts that become the basis for the test.

When you create a suite using the performance testing wizard, TestManager helps
you choose the computer on which the test will run and helps you associate scripts
that become the basis for the test.
Creating a Suite 175

Inserting Computer Groups into a Suite

A computer group is the basic building block for all functional testing suites. A
computer group is one or more computers (or computer lists) running the same the
test scripts and therefore testing the same application. For example, the suite on
page 174 contains three computer groups: QA Group 1, Development Group 2, and
Administration Group 3.

To insert a computer group into a suite:

■ Click Suite > Insert > Computer Group .

Note: The name of a computer group cannot be identical to the name of a shared
variable, a test script, or the following reserved words: MASTER, ALL, ASSIGN, TO, THRU,
END, UNION, DELAY, delay, shared, SHARED, SYC, DLB_FREQ, DLB_TIME, PERMUTE, TSIDX,
CIDX, TC_START, TC_END.

When you add a computer group to a suite, you must specify one of the following:
whether the group is associated with specific computers or computer lists, or whether
to have TestManager prompt for available computer resources at suite runtime.

If you choose to have TestManager prompt for resources at runtime, you have the
flexibility of specifying the computers available when you run the suite. Conversely, if
you specify a computer or computer list for a computer group, and that resource is
unavailable at suite runtime, the suite cannot run.

Note: When adding computer groups to suites, you can specify either one computer
group for which to prompt for resources at runtime, or numerous computer groups to
prompt for resources at runtime. You cannot mix the following within a suite:
computer groups with specific resources, and computer groups without specific
resources.
176 Chapter 8 - Creating Functional Testing Suites

If you specify that a computer group is associated with a computer or computer list,
you must specify those resources when you create the group. The default computer is
the TestManager Local computer, but you can specify that the computer group runs
on any defined Agent computer.

Typically, you run the computer group on an Agent computer if a functional test is
designed for a particular computer with a particular configuration.

For information on adding computers and computer lists to TestManager, see Chapter
4, Implementing Tests.

Note: Copy any custom-created external C libraries, Java class files, or COM
components necessary for the test to the Agent computer.

Typically, you run a computer group on multiple computers if you have a functional
test that must execute as quickly as possible. You can save time by running virtual
testers simultaneously on different computers.

To distribute the virtual testers in a computer group over multiple computers:

■ Click Suite > Insert > Computer Group , and then click Change .

Inserting Test Scripts into a Suite

After you insert a computer group into a suite, you add the test scripts that the
computer group should run. The computer groups in the suite on page 174 must have
GUI test scripts associated with them.

Any test scripts that model the behavior you are testing are valid additions to a suite.
You can mix test script types in computer groups with one exception: you cannot mix
GUI and VU scripts in one computer group. You can, however, mix such test scripts in
a suite by placing them in different computer groups.
Inserting Test Scripts into a Suite 177

To insert a test script into a suite:

■ From an open suite select the computer group to run the test script, and then click
Suite > Insert > Test Script .

Preconditions

When you specify a test script, suite, or test case to be included in a suite, you can
specify that successful completion of the test script, suite, or test case is a precondition
for the remainder of that suite sequence. This means that the test script, suite, or test
case must complete successfully for subordinate items in the suite sequence to run.

To set a precondition on a test script, suite, or test case:

■ Right-click the test script, suite, or test case to which to apply the precondition, and
select Run Properties .
178 Chapter 8 - Creating Functional Testing Suites

Since suites can be complex and contain subordinate suites, test cases, and user
groups, preconditions apply to their immediate sequence of events. For example,
suppose you have a suite that includes two subordinate suites, each of which contains
an initialization type of script (logging on to a network, for example) and several test
cases. If, in the first suite, a precondition is applied to an initialization script and the
script fails, TestManager skips all remaining actions (test cases) within that
subordinate suite only. The suite resumes at the beginning of the next suite (or
whatever is next in the larger suite).

Although preconditions are most commonly applied to test scripts, they can also be
applied to test cases and suites within a suite. The precondition property applies only
to the specific instance of the test script, test case, or suite. If a test script is used
multiple times within a suite, preconditions must be set for each instance of the test
script individually.

Unlike events or dependencies, when a precondition is applied to a test script, suite,
or test case, that test script, suite, or test case must pass for subsequent items in that
section of the suite to continue.

Preconditions on test scripts, test cases, and suites can be used to ensure that the
precondition of a test case is met correctly. For more information on test case
preconditions and postconditions, see Chapter 3, Designing Tests.

Inserting Other Items into a Suite

A suite requires only computer groups and test scripts to run. However, a suite that
realistically models the work that actual virtual testers perform is likely to be more
complex and varied than this simple model. A realistic suite might also contain test
cases, subordinate test suites, and scenarios. Advanced functional tests could also
include scenarios, delays, and synchronization points to represent a variety of virtual
tester actions.

Inserting a Test Case into a Suite

As discussed in Chapter 1, a test case is a testable and verifiable behavior in a target
test system. It can include:

■ Test inputs–the defined test requirement, possibly including Rational RequisitePro
documents, Rational Rose models, or other kinds of items.

■ Execution conditions–where, what, and how the input is tested, such as the
operating system on the target computer.

■ Expected results–the actual behavior to be verified.
Inserting Other Items into a Suite 179

The behavior can be as varied as a simple mouse click or a combination of server
response times.

To insert a test case into a suite:

■ Click Suite > Insert > Test Case .

A test case can be considered configured depending on its properties.

■ Test cases define a behavior to be verified in the system. Test cases that are not
configured are more flexible as they are not system-dependent; they can be run on
a system with any configuration.

■ Configured test cases not only define a behavior to be verified in the system, but
also specify the setup of the system on which the behavior will be verified.
Configured test cases are more specific; for the test criteria to be met and verified,
the system on which the test case is run must exactly match the defined
configuration.
180 Chapter 8 - Creating Functional Testing Suites

Test cases can be included in suites for a number of reasons. Using a test case as a
building block lets you create a test that can be used and applied in a variety of
different ways depending on the resources specified at runtime. This can be useful for
a set of test cases run on a regular basis. When you include configured test cases in
suites, TestManager pairs available systems with matching configurations for you at
runtime. Thus, different configured test cases may run each time depending on
system availability, simulating variations and randomness in system use.

Preconditions can be applied to test cases. For information on preconditions, see
Preconditions on page 178.

To set a precondition on a test case:

■ Right-click the test case to which to apply the precondition and select Run
Properties .

Inserting a Suite

For maximum flexibility and power, TestManager allows you to insert complete
computer-based suites into other suites. This allows you to use suites as building
blocks of tests just as you would any other suite item.

Note: You cannot place a user-based suite into another suite. In addition, suites placed
into a suite must have been created with the Prompt for resources option selected.

Using suites as building blocks is particularly helpful when you are creating a large,
complex tests, or when you are creating multiple tests that perform several duplicate
functions. You can create and check a smaller suite, then insert it to any other suite.
You save time by not having to redefine the same test assets in each separate suite.
Any change made to a suite is replicated in every instance of that suite.
Inserting Other Items into a Suite 181

To insert a suite into a suite:

■ Click Suite > Insert > Suite .

Preconditions can be applied to suites. For information on preconditions, see
Preconditions on page 178.

To set a suite as a precondition:

■ Right-click the suite to which to apply the preconditions, and then select Run
Properties .

Inserting a Selector

TestManager allows you to set suite items to run in different sequences by setting a
selector. A selector provides more sophisticated control than running a simple
sequence of consecutive items in a suite. A selector tells TestManager which items
each virtual tester executes, and in what sequence. For example, you might want to
repeatedly select a test script at random from a group of test scripts. A selector helps
you to do this.
182 Chapter 8 - Creating Functional Testing Suites

To insert a selector into a suite:

■ Select the computer group or a scenario that will contain the selector, and then
click Suite > Insert > Selector .

Types of Selectors

TestManager provides the following types of selectors:

■ Sequential – Runs each test script or scenario in the order in which it appears in the
suite. This is the default.

■ Parallel – Distributes its test scripts or scenarios to an available virtual tester (one
virtual tester per computer). This is the type of selector used most often in
functional testing. The items are parceled out in order, based on which virtual
testers are available to run another test script. Once an item runs, it does not run
again.

A parallel selector distributes each test script without regard to its iterations.

■ Random with replacement – The selector runs the items under it in random order,
and each time an item is selected, the odds of it being selected again remain the
same. Random with replacement selectors are rarely used in functional testing.

■ Random without replacement – The selector runs the items under it in random
order, but each time an item is selected, the odds change.

■ Dynamic load balancing – With dynamic load balancing, items are not selected
randomly. Items are selected to balance the workload according to the weight that
you have set. You can balance the workload either for time or for frequency.
Dynamic load balancing selectors are rarely used in functional testing.
Inserting Other Items into a Suite 183

Advanced Functional Testing

While computer groups, test scripts, suites, test cases and selectors provide most of
the features you need during functional testing, you can use scenarios, delays and
synchronization points to do additional fine tuning of your suites.

Inserting a Scenario

A scenario lets you group test scripts together so they can be shared by more than one
computer group. If you have a complicated suite that uses many test scripts, grouping
the test scripts under a scenario has the added advantage of making your suite easier
to read and maintain.

You define a scenario in the Scenarios section of the suite by inserting a scenario and
then inserting items within it. To make a computer group execute a scenario, you
insert the scenario name in a computer group. Otherwise, the scenario is not executed.

In the following suite, all three computer groups run the test scripts needed to
initialize the application before testing various parts of it. You can simplify this suite
by storing the required initialization test script in a scenario. The suite shows the test
184 Chapter 8 - Creating Functional Testing Suites

script Initialize as part of the Initialize Application scenario. A delay could be added
to this scenario after the test script is run, and that change would filter to all instances
of the Initialize Application scenario.

To create a new scenario:

■ From the Scenarios section of the suite, click Suite > Insert > Scenario .
Advanced Functional Testing 185

To insert a scenario into a suite:

■ Click where you want to place the scenario, then click Suite > Insert > Scenario .

After you have created the scenario and the computer group that runs the scenario, it
is a good idea to populate the scenario. A scenario requires only test scripts to run.
However, like a computer group, a realistic scenario may also contain selectors, suites,
test cases, delays, and synchronization points. A scenario can even contain other
scenarios.

Suite or Scenario?

The results of inserting a suite or scenario into a suite are similar. But each has
advantages and disadvantages.

Use a suite when:

■ You want to reuse a series of events in a variety of suites, and you want to be sure
that any change made to the suite filters to all instances of it. Suites are reusable
among different suites.

Use a scenario when:

■ You want to reuse a series of events in a suite, and you want to be sure that any
change made to that scenario filters to all instances of it within a suite. Scenarios
are not reusable among different suites.

For example, you could create three suites, each testing a different aspect of an
accounting application: one tests creating opening and editing spreadsheets, one tests
all the menus, and one tests complex formulas within the spreadsheet. Each suite
needs to have virtual testers open the application to perform their tasks. Yet within
each suite, tasks unique to the suite need to be repeated. You could use a suite for
opening the application that could be inserted in each suite, but within each suite, use
a scenario for the repeated functions unique to the suite.
186 Chapter 8 - Creating Functional Testing Suites

Inserting a Delay

A delay tells TestManager how long to pause before it runs the next item in the suite.

To insert a delay into a suite:

■ Click the computer group, scenario, or selector to which to add a delay, and then
click Suite > Insert > Delay .

In functional testing, you use delays to cause test scripts to wait before executing. For
example, if one virtual tester updates a record, you can insert a delay to give the
application time to process and display the correct information. By providing a delay,
you ensure that the application has enough time to complete a task, in case another
virtual tester must perform an action as a result of that task.

You can insert a delay into a suite or a test script. The advantages of inserting a delay
into a suite are that the delay is visible in the suite and the delay is easy to change
without editing the test script.

Inserting a Synchronization Point

A synchronization point lets you coordinate the activities of a number of virtual testers
by pausing the execution of each virtual tester at a particular point (the
synchronization point) until one of the following events occurs:

■ All virtual testers associated with the synchronization point arrive at the
synchronization point.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. When the specified number of virtual
testers reaches the synchronization point, TestManager releases the virtual testers
and allows them to continue executing the suite.
Advanced Functional Testing 187

■ A timeout period is reached before all virtual testers arrive at the synchronization
point.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. Other testers arrive at the
synchronization point and wait. However, before all virtual testers arrive at the
synchronization point, the timeout period expires and TestManager releases the
virtual testers and allows them to continue executing the suite. Virtual testers that
did not make it to the synchronization point before the timeout expired do not stop
at the synchronization point. They also continue executing the suite.

■ You manually release the virtual testers while monitoring the suite.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. Other testers arrive at the
synchronization point and wait. However, this time you decide to release virtual
testers from the synchronization point and continue executing the suite. All virtual
testers may or may not have arrived at the synchronization point. Virtual testers
that did not make it to the synchronization point before you released them
manually do not stop at the synchronization point. They also continue executing
the suite.

Insert a synchronization point into a suite through TestManager to:

■ Pause execution before or between test scripts rather than within a test script.
Inserting a synchronization point into a suite offers these advantages:

❑ You can easily move the location of the synchronization point without having
to edit a test script.

❑ The synchronization point is visible within the suite rather than hidden within
a test script.

■ Specify how the virtual testers are released from the synchronization point. For
example:

❑ Specify whether you want the virtual testers to be released at the same time or
at different times.

❑ Specify the minimum and maximum times within which all virtual testers are
be released if the virtual testers are to be released at different times (staggered).

❑ Specify a timeout period.
188 Chapter 8 - Creating Functional Testing Suites

To insert a synchronization point into a suite:

■ Click Suite > Insert > Synchronization Point .

Use a synchronization point in a functional test, for example, when two groups of
functional testers work together to test an application. Since both groups must be
appropriately logged on to an application before testing can start, add a
synchronization point that checks for this.

How Synchronization Points Work

At the start of a test, all virtual testers begin executing their assigned test scripts. They
continue to run until they reach the synchronization point. When specified in a test
script, a synchronization point is a programmatic command (sync_point in a VU test
script, SQASyncPointWait in a SQABasic test script, TSSSync.SyncPoint in a VB
test script, or TSSSync.syncpoint in a Java test script). When specified in a suite, a
synchronization point is placed similarly to other suite elements (delays, selectors,
and so on).
Advanced Functional Testing 189

The following figure illustrates a synchronization point:

The virtual testers pause at the synchronization point until TestManager releases
them.

By synchronizing virtual testers to perform the same activity at the same time, you
can make that activity occur at some particular point of interest in your
test—for example, when the application sends a query to the server.

The scope of a synchronization point includes all test scripts that reference a
particular synchronization point name, plus all user groups that reference that name.

When setting synchronization points, you must specify how virtual testers are
released from the synchronization point:

■ Together – Releases all virtual testers at once.

Specify a restart time to delay the virtual testers. For example, if you set the Restart
time to 4 seconds, after the virtual testers all reach the synchronization point (or
the timeout occurs), they wait 4 seconds, and then they are all released.

The default restart time is 0, which means that when the last virtual tester reaches
the synchronization point, all virtual testers are released immediately.

■ Staggered – Releases the virtual testers one by one.

The amount of time that each virtual tester waits to be released is chosen at
random and is uniformly distributed within the range of the specified minimum
time and maximum time. For example, if the minimum time is 1 second and the
maximum time is 4 seconds, after the virtual testers reach the synchronization
point (or the timeout occurs) each virtual tester waits between 1 and 4 seconds
before being released. All virtual testers are distributed randomly between 1 and 4
seconds.

The timeout period for a synchronization point specifies the total time that
TestManager waits for virtual testers to reach the synchronization point. If all the
virtual testers associated with a synchronization point do not reach the

Virtual testers running
simultaneously

Virtual testers reach the
synchronization point

1 2
190 Chapter 8 - Creating Functional Testing Suites

synchronization point when the timeout period ends, TestManager releases any
virtual testers waiting there. The timeout period begins when the first virtual tester
arrives at the synchronization point.

Although a virtual tester who reaches a synchronization point after a timeout is not
held, the virtual tester is delayed at that synchronization point. So, for example, if the
timeout period is reached, and the restart time is 1 second and the Maximum time is 4
seconds, a virtual tester is delayed between 1 and 4 seconds.

The default timeout is 0, which means that there is no timeout. Setting a timeout is
useful because one virtual tester might encounter a problem and might never reach
the synchronization point. When you set a timeout, you do not hold up other virtual
testers because of a problem with one virtual tester.

A suite or test script can have multiple synchronization points, each with a
unique name. A given synchronization point name can be referenced in multiple test
scripts and/or suites.

Release Times and Timeouts for Synchronization Points in Test Scripts

You cannot define minimum and maximum release times or timeout periods for
synchronization points inserted into test scripts as you can for synchronization points
inserted into suites. By default:

■ Virtual testers held at a script-based synchronization point are released
simultaneously.

■ There is no time limit to how long virtual testers can be held at the synchronization
point.

However, if a synchronization point in a suite has a release time range and timeout
period defined for it, the release times and timeout period apply to all
synchronization points of that same name—even if a synchronization point is in a test
script.

Using Events and Dependencies to Coordinate Execution

An event is a mechanism that coordinates the way items are run in a suite. For
example, you cannot test whether an application will save changes made to certain
values unless those values have actually changes. You set a dependency on the test
scripts that save changes, which blocks virtual testers until the event (the changes
actually being made) occurs.

You can have multiple events in a suite. While only one item in a suite can set an
event, many items can depend on the event.
Using Events and Dependencies to Coordinate Execution 191

The following suite shows virtual testers waiting until the first virtual tester changes
values:

The second column in the suite lists the events, and the third column lists the
dependencies.

To add a test script that sets an event, or to add a test script that depends on an event:

■ Click Suite > Insert > Test Script .

Note: The previous example shows how to add a test script that sets an event and
another test script that depends upon an event. However, scenarios and delays can
also set events.
192 Chapter 8 - Creating Functional Testing Suites

Executing Suites

After you have created and saved your suite, and before you actually run it, you can:

■ Check the suite for errors.

■ Check the status of Agent computers.

■ Control the runtime information of the suite.

■ Control how the suite terminates.

■ Run the suite.

Finally, while the suite is running, you can monitor the progress of the suite while it is
running.

For information on all these topics, see Chapter 5, Executing Tests.
Executing Suites 193

194 Chapter 8 - Creating Functional Testing Suites

9Using the Comparators
This chapter explains how to use the Comparators to compare and view data
captured when you use verification points in a Rational Robot test script or in
Rational QualityArchitect. This chapter includes the following topics:

■ About the Four Comparators

■ Starting a Comparator

■ Using the Object Properties Comparator

■ Using the Text Comparator

■ Using the Grid Comparator

■ Using the Image Comparator

Note: For detailed procedures, see the TestManager Help.

About the Four Comparators

The Comparators are used to view and compare data captured when you use
verification points in a Rational Robot test script.

When you record a test script that includes a verification point, Robot creates a
Baseline data file that contains the data you captured.

When you play back a test script, Robot compares the properties in the Baseline data
file with the properties in the application-under-test. If the comparison fails, Robot
saves the data that caused the failure to an Actual data file. The results of the
verification point appear in a test log.

The Comparators are:

■ Object Properties Comparator – Use the Object Properties Comparator to view and
compare the properties captured when you use the Object Properties verification
point.

■ Text Comparator – Use the Text Comparator to view and compare alphanumeric
data captured when you use the Alphanumeric verification point.
195

■ Grid Comparator – Use the Grid Comparator to view and compare data captured
when you use the following verification points: Object Data, Menu, or Clipboard.
Rational Quality Architect uses the grid comparator to display verification point
information.

■ Image Comparator – Use the Image Comparator to view and edit bitmap images
captured when you use the following verification points: Region Image or
Window Image. You can also view Unexpected Active Windows.

Starting a Comparator

To start a Comparator from TestManager:

1 Click File > Open Test Log .

2 Expand the Build folder that contains the log, and then double-click the log.

For the Test Log window of TestManager to open a Comparator, the log must
contain a verification point for that particular Comparator.

3 Click the Details tab at the bottom of the Test Log window.

4 In the Event Type column, click the plus sign (+) to expand a test script and view all
verification points.

5 Right-click a verification point and click View Verification Point.

The Comparator for that particular verification point opens and that verification
point appears.

If the verification point failed, the Comparator opens with both the Baseline and
Actual files displayed.

To start a Comparator from Robot, see the Using Rational Robot manual.

Using the Object Properties Comparator

Use the Object Properties Comparator to view and compare the properties captured
when you use the Object Properties verification point in a Rational Robot test script.

You can use the Object Properties Comparator to:

■ Review, compare, and analyze the differences between the Baseline data file and
the Actual data file.

■ View or edit the Baseline data file for an Object Properties verification point.
196 Chapter 9 - Using the Comparators

To start the Object Properties Comparator from the test log window, see Starting a
Comparator on page 196.

The Main Window

The main window of the Object Properties Comparator contains the Objects hierarchy,
the Properties list, and the Differences list.

The Objects hierarchy contains the list of all objects that Robot records in the Object
Properties verification point. The Properties list contains the list of properties of those
objects. When you select an object on the left, its properties appear on the right. You
can control the display of both the Objects and Properties sections of the window by
using the View commands.

The Differences list shows the objects that have differences between the Baseline and
the Actual files. If you click an object in the list, that object is highlighted in the Objects
hierarchy and Properties list. If you are viewing a file with no failures, this section
does not appear. To show or hide this section, click View > Show Difference List .

Properties list

Differences list

Objects hierarchy
Using the Object Properties Comparator 197

The Objects Hierarchy and the Properties List

When the Object Properties Comparator is opened, the Objects hierarchy and
Properties list appear as follows:

■ The Objects hierarchy appears in the left pane of the window. It displays the list of
all the objects recorded by Robot using the Object Properties verification point and
saved in the Baseline file.

■ The Properties list appears in the right pane of the window. It displays the list of
properties of the selected object, and the properties’ values in the Baseline file and
the Actual file (if there are differences).

If the verification point passed, the Comparator displays the Objects hierarchy and
the Properties list with only the Baseline column.

If the verification point failed, the Comparator displays the Objects hierarchy and the
Properties list with both the Baseline and Actual columns, so you can compare them.

Note: If the verification point contains just one object, the Objects hierarchy does not
appear. To display it, click View > Objects or View > Objects and Properties .

Changing the Window Focus

To change the focus between the Objects hierarchy and the Properties list, do one of
the following:

■ Click the mouse in the section.

■ Press TAB.

■ Press ALT+O to set the focus to the Objects hierarchy.

■ Press ALT+P to set the focus to the Properties list.

Working Within the Objects Hierarchy

To display the Objects hierarchy:

■ Click View > Objects or View > Objects and Properties .

The object list is hierarchical. You can expand or collapse the view of objects by
selecting a top-level object and using the View > Expand and View > Collapse
commands.

When you select an object, the properties for that object are displayed in the
Properties list.
198 Chapter 9 - Using the Comparators

Each object is listed by its object type and is bold. After the object name there may be
information such as the object class or index, which can be used to identify the object.
If the object is red, it has properties with different values in the Baseline and the
Actual files. If the object is blue, it exists in the Baseline file but not in the Actual file.

You can do any of the following to work within the Objects hierarchy. The Objects
hierarchy must have window focus.

■ Press HOME, END, PAGEUP, PAGEDOWN, UP ARROW, and DOWN ARROW to move
between objects.

■ Click the check box that precedes each object to select or deselect it for testing. All
objects preceded by a check mark are tested.

■ Select an object preceded by a check mark to display its properties in the Properties
list.

■ Select an object and press INSERT to display a dialog box for adding and removing
properties from the Properties list for that object.

■ Double-click a parent object to expand or collapse its children.

■ Press plus (+) to expand the highlighted object one level, or press minus (-) to
collapse the highlighted object. Press asterisk (*) to expand all objects.

■ Right-click an object in the hierarchy to display the Objects shortcut menu.

■ Double-click an object that is labeled Unknown to define the object. For information
about defining unknown objects during recording, see the Using Rational Robot
manual.

Working Within the Properties List

To display the Properties list:

■ Click View > Properties or View > Objects and Properties .

The Name column shows the name of the property. The Baseline and Actual columns
display the values for the properties. Values in the Baseline column represent the
properties from the original recording of the Object Properties verification point.
Values in the Actual column represent the state of the properties in the latest played
back version. By default, if there are differences between the Baseline and Actual, both
columns are displayed.

Use the View commands to control which columns appear in the Properties list.

If a property is red, it has different values in the Baseline and the Actual files. If a
property is blue, it exists in the Baseline file but not in the Actual file. If a value cell is
blank, the property has an empty value.
Using the Object Properties Comparator 199

You can do any of the following to work within the Properties list. The Properties list
must have window focus.

■ Type the first letter of a property’s name to move to that property or to the first
property beginning with that letter.

■ Press HOME, END, PAGEUP, PAGEDOWN, UP ARROW, and DOWN ARROW to
highlight a property.

■ Press INSERT to display a dialog box for adding and removing properties from the
Properties list.

■ Select a property and press DELETE to remove it from the list.

■ Double-click the value cell of a property to edit the value.

■ Position the pointer on the vertical border between column title cells. Drag the
pointer to the right or left to change the column widths.

■ Point to a property and click the right mouse button to display the Properties
shortcut menu.

Loading the Current Baseline

To load the Current Baseline file:

■ Click File > Load Current Baseline .

If the Current Baseline is already being displayed, this command will be disabled. In
order to edit a Baseline, you must be viewing the Current Baseline. Editing can
include creating a mask, cutting, copying, pasting, duplicating, moving, or deleting
masks, or using the Auto Mask feature.

The Current Baseline is the latest saved baseline file and is used as the expected result
for verification point comparisons. It is this Current Baseline that you see in the
Comparator when the Comparator is opened through Robot. However, when the
Comparator is opened through the Test Log window of TestManager, which is the
more common method, the Comparator may display the historical Baseline and
Actual pair. Since only the Current Baseline may be edited, if you have the historical
Baseline or any other logged Baseline showing, you will not be able to use any of the
editing commands—they will be disabled. You can manually force the Current
Baseline to be loaded by using this command.

Locating and Comparing Differences

The Object Properties Comparator begins its comparison with the first object in the
Objects hierarchy and its properties in the Properties list.
200 Chapter 9 - Using the Comparators

Objects that contain differences between the Baseline and Actual lists are red. Objects
that are in the Baseline list but not in the Actual list are blue.

To locate the first difference between the Baseline data and the Actual data:

■ Click View > First Difference .

When the difference is located, the failure is highlighted. The Differences list indicates
the failure number and provides information about the failure.

To navigate between differences, use the View commands.

You can also select a description in the Differences list to highlight that failure in the
Properties list.

Viewing Verification Point Properties

To view verification point properties:

■ Click File > Verification Point Properties .

The Verification Point Properties dialog box shows the verification point type, the
name of the Baseline file, and the name of the Actual file.

Adding and Removing Properties

When you first create an Object Properties verification point, you can specify the
properties to test by adding and removing them from the Properties list. You can also
add and remove properties from the list when you view the data file in the Object
Properties Comparator. This lets you refine a test even after it has been created and
played back.
Using the Object Properties Comparator 201

For example, if the Properties list for a verification point contains a Height property
that you decide you do not want to test, you can remove the property in the
Comparator. You can also apply the properties in the list to all objects of the same type
for this verification point, and define a list of default properties for each type of object.

To add a property to the Properties list:

■ Click Edit > Edit Property List .

Removing a property removes it from the Properties list but does not from the
verification point’s Baseline file. Removing a property means that it will no longer be
tested in future playbacks. Once removed, properties can be added back later.

To remove properties from the Properties list:

■ Click Edit > Remove Property .

If you remove a property, you can add it back to the Properties list at a later time by
using the Edit > Edit Property List command.

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the Baseline file to keep it up-to-date with the developing application.

When editing the Baseline file, you can:

■ Edit a value in the Properties list.

■ Cut, copy, and paste a value.

■ Copy values from the Actual to the Baseline file.

■ Change a verification method.

■ Change an identification method.

■ Replace the Baseline file.

Note: You cannot edit the Actual data file.

For step-by-step instructions on these tasks, search for the task in the Object
Properties Comparator Help.

Saving the Baseline File

To save changes made to the Baseline file:

■ Click File > Save Baseline .

This command is enabled only if you have made changes to the Baseline file.
202 Chapter 9 - Using the Comparators

Using the Text Comparator

Use the Text Comparator to view and compare alphanumeric data captured when you
use the Alphanumeric verification point in a Rational Robot test script.

You can use the Text Comparator to:

■ Review, compare, and analyze the differences between the Baseline data file and
the Actual data file.

■ View or edit the Baseline data file for an Alphanumeric verification point.

To start the Text Comparator, see Starting a Comparator on page 196.

The Main Window

The main window of the Text Comparator contains the Text window.

The Text Window

The Text window has two panes: Baseline and Actual. The Baseline pane shows the
data file that serves as a Baseline file for a comparison. The Actual pane shows data
from the current playback. You can control the display of the panes by using the View
commands.

The Text window uses a typical text editor format. In general, you use the same rules
and methods of typing, selecting, and deleting that you would use in a standard text
editor (such as Notepad).

The Baseline pane has a white background and the Actual pane has a gray
background. Data that failed the comparison between the Baseline file and the
Actual file appears in reverse color when you use one of the locating commands
to highlight it.

Text
window
Using the Text Comparator 203

In the Text window, you can:

■ Scroll the Text window

■ Change the widths of the text panes

■ Use word wrap

For step-by-step instructions, search for each task in the Text Comparator Help.

Locating and Comparing Differences

To locate the first difference between the Baseline data and the Actual data:

■ Click View > First Difference .

To navigate between differences, use the View commands.

The comparison starts in the upper left corner of the pane. The Comparator then scans
for differences by going across each row of text in order, as it would in a text editor.

When a difference is found using the View commands, the difference between the
Baseline file and the Actual file appears in reverse color.

The Alphanumeric verification point stores the specified verification method as part
of the test script command. For data files created by the Alphanumeric verification
point, the Comparator assumes a case-sensitive comparison, regardless of how it was
recorded. For numeric data, the Comparator assumes Numeric Equivalence as the
verification method.

Viewing Verification Point Properties

To view verification point properties:

■ Click File > Verification Point Properties .
204 Chapter 9 - Using the Comparators

The Verification Point Properties dialog box shows the verification point type, the
name of the Baseline file, and the name of the Actual file.

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the Baseline file to keep it up-to-date with the developing application.

When editing the Baseline file, you can:

■ Edit the data.

■ Cut, copy, and paste data.

■ Copy data from the Actual to the Baseline file.

■ Replace the Baseline file.

Note: You cannot edit the Actual data file.

For step-by-step instructions on these tasks, search for each task in the Text
Comparator Help.

Saving the Baseline File

To save changes made to the Baseline file:

■ Click File > Save Baseline .

This command is enabled only if you have made changes to the Baseline file.

Using the Grid Comparator

Use the Grid Comparator to view and compare data captured when you use the
following verification points in a Rational Robot test script:
Using the Grid Comparator 205

■ Object Data

■ Menu

■ Clipboard

Note: Rational Quality Architect also uses the grid comparator to display verification
point information.

You can use the Grid Comparator to:

■ Review, compare, and analyze the differences between the Baseline data file and
the Actual data file.

■ View or edit the Baseline data file for a verification point.

To start the Grid Comparator, see Starting a Comparator on page 196.

The Main Window

The main window of the Grid Comparator contains the Grid window and the
Differences list. The Grid window contains the grids of data recorded in an Object
Data, Menu, or Clipboard verification point. The Differences list displays descriptions
of any items that failed during playback.

The Grid Window

The Grid window has two panes: Baseline and Actual. The Baseline pane shows the
data file that serves as a Baseline file for a comparison. The Actual pane shows data
from the current playback. You can control the display of the Baseline and Actual files
by using the View commands.

Grid
window

Differences
list
206 Chapter 9 - Using the Comparators

The grids in the panes show data in row and column format. Cells with a green
background contain data that passed the comparison between the Baseline file and
the Actual file. Cells with a red background failed the comparison.

You can set display options to control the Grid window. For more information, see
Setting Display Options on page 207.

Differences List

The Differences list displays the Actual items that failed during playback. It shows the
reasons why a verification point failed, and it displays icons to graphically illustrate
the failure type. If you click an item in the list, that item is highlighted in the grid. If
you are viewing a file with no differences, this section does not appear.

The following icons may appear in the Differences list:

To work in the Differences list:

■ Use the vertical scroll bar to scroll through the list of descriptions.

■ Select a description in the Differences list to highlight the failure in the Baseline
and Actual files.

Setting Display Options

You can set the following display options in the Grid Comparator:

■ Change the column widths.

■ Transpose the grid data.

■ Synchronize the scroll bars.

���� ������	

����������	
������	�

��������	�������

�����	������	�

�������	�������

����	������	�
Using the Grid Comparator 207

■ Synchronize the cursors.

For step-by-step instructions on these tasks, search for each task in the Grid
Comparator Help.

Locating and Comparing Differences

To locate the first difference between the Baseline data and the Actual data:

■ Click View > First Difference .

To navigate between differences, use the View commands.

You can also select a description in the Differences list to highlight that failure in the
Baseline and Actual panes.

In the grid panes, the comparison starts with the first data cell in the grid (the cell in
the upper-left corner). The Comparator then scans for differences by going down the
first column. At the end of the column the comparison goes to the top of the second
column, and so on.

When a difference is located, the Comparator highlights the area of difference using
reverse color and highlights the description in the Differences list. You can also select
a description in the Differences list to highlight that failure in the Baseline and Actual
files.

Verification points that have entire rows or columns selected compare the data in each
cell as well as the number of cells in the row or column. If the number of cells is
different, the Comparator highlights the row or column and italicizes the header
number or text. It also displays a red line around the header cell.

If the data displayed in the grid is larger than the window, you can use the scroll bars
to view other areas of the data, or you can resize the window.

Note: If a difference is highlighted in the Baseline file and the description in the
Differences list is Item cannot be found, it means that there is no difference to highlight
in the Actual file, since the item is missing there.

Viewing Verification Point Properties

To view verification point properties:
208 Chapter 9 - Using the Comparators

■ Click File > Verification Point Properties .

The Verification Point Properties dialog box shows the verification point type, the
name of the baseline file, the name of the actual file, the verification method, the test
menu states, test menu keys, and the identification method.

Using Keys to Compare Data Files

You can select the Key/Value identification method when you create Object Data or
Clipboard verification points in Robot.

For verification points that have the Rows by Key/Value identification method, you
can use the Grid Comparator to add or change keys in the Baseline file. As in a
relational database, keys can be used to uniquely identify a row for comparison.

You can add or change keys to determine what the important comparisons are in a
verification point and to possibly change a failed verification point into one that
passes.

If the value of the data in a key column changes, Robot will not be able to locate the
record, and the verification point will fail. You may then want to change the keys in
the Comparator to gain more insight into why the verification point failed.

If you have not specified keys that ensure uniqueness, the test can fail because Robot
may compare the selected record to a record that contains similar values but is not the
record that you want to test. You can experiment by changing the keys in the
Comparator to improve the predictability of the verification point.

If the database schema changes, you can change the keys in the Comparator to
identify new and unique columns.

To use keys to compare data files:

1 Click the name of a column in the Baseline file.

2 Click the right mouse button, or press CTRL+K to add or remove a key.
Using the Grid Comparator 209

The data in the Baseline and Actual files should be automatically compared again.
At this point you can evaluate the new key placement.

If a key column in the Baseline file has different data from the Actual file, the
Differences list displays Row not found: Row x and includes the value from the
Baseline key column.

If there are no key columns and the row data in the Baseline and Actual files does not
match exactly, the Differences list displays Row not found: Row where x and
includes each column name and value from the Baseline file.

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the Baseline file to keep it up-to-date with the developing application.

When editing the Baseline file, you can:

■ Edit the data.

■ Edit a menu item.

■ Cut, copy, and paste data.

■ Copy data from the Actual to the Baseline file.

■ Save the Baseline file.

Note: You cannot edit the Actual data file.

For step-by-step instructions on these tasks, search for each task in the Grid
Comparator Help.

Saving the Baseline File

To save changes made to the Baseline file:

■ Click File > Save Baseline .

This command is enabled only if you have made changes to the Baseline file.

Using the Image Comparator

Use the Image Comparator to open and view bitmap images captured when you use
the following verification points in a Rational Robot test script:

■ Region Image

■ Window Image
210 Chapter 9 - Using the Comparators

You can use the Image Comparator to:

■ Review and analyze the differences between the Baseline image file and the Actual
image file.

■ Edit the Region Image or Window Image verification points by creating masks on
the image.

■ Create OCR regions to read the text within a region.

■ View images of unexpected active windows that cause a failure during a test
script’s playback.

To start the Image Comparator, see Starting a Comparator on page 196.

The Main Window

The main window of the Image Comparator contains the Image window, the
Mask/OCR List, the Differences List, and the status bar.

Image
window

Mask/OCR
list

Differences
list

Status bar
Using the Image Comparator 211

The Image Window

The Image window has two panes: Baseline and Actual. The Baseline pane shows the
image file that serves as an expected file for a comparison. The Actual pane shows the
image from the current playback. You can control the display of both panes by using
the View commands.

The parts of the image that passed the comparison between the Baseline file and the
Actual file appear exactly as they were recorded. The parts of the image that failed the
comparison (that is, the differences) are shown as red regions.

You can move the image within a pane and zoom the image. For information, see
Moving and Zooming An Image on page 215.

Differences List

The Differences List displays a list of the items that failed during playback. The Left,
Right, Top, and Bottom columns represent the measurement of the sides of the
difference area, in numbers of pixels. The number in the Left column is the number of
pixels from the left margin to the left edge of the difference region. The number in the
Right column is the number of pixels from the left margin to the right edge of the
difference region. In the same manner, the Top and Bottom columns define the
number of pixels to the top and bottom edges of the difference region, from the top
margin.

To work in the Differences List:

■ Use the vertical scroll bar to scroll through the list of descriptions.

■ Select a description in the Differences list to highlight the failure in the Baseline
and Actual files.

■ Double-click an item in the list to cause the image to be positioned so that the
region is centered in the view. It will flash briefly and then become selected.

■ The Difference list is sortable by column. The currently sorted column is indicated
with an asterisk. To sort by a different column, click the column header. The list is
sorted in ascending order of the selected column.

Mask/OCR List

Masks are used to hide the underlying masked area from comparison when test
scripts are played back. Any areas of the image that contain a mask will not be
compared when you play back a test script containing an Image verification point.

Robot uses OCR regions to read the text within a designated region and to compare it
in subsequent playbacks of the test script.
212 Chapter 9 - Using the Comparators

The Mask/OCR List in the lower left pane of the main window lists any masks and
OCR regions being used in the verification point. When you select a mask or OCR
region in the list, it is highlighted in the Baseline and Actual files. This list works in
the same way that the Differences List works, as described in the previous section.
This section is empty if you do not have any masks or OCR regions defined for the
verification point.

The Left, Right, Top, and Bottom columns represent the measurement of the sides of
the mask or OCR region in number of pixels. This measurement works in the same
way as it works in the Difference List. The Comment column for masks contains
optional comments, which you can add by selecting a mask and clicking Edit > Mask
Properties . The OCR Text column for OCR regions contains the text in the region that
will be tested.

The Status Bar

The status bar at the bottom of the main window provides useful information as
you work with the Comparator. To show or hide the status bar, choose View >
Status Bar .

The message area in the left part of the status bar displays menu command
descriptions and operational messages, such as progress updates while the
Comparator is scanning the image for differences.

On the right side, there are four small panes for specific information:

ReadOnly – Indicates a read-only state. This happens if the current Baseline is not
displayed since the current Baseline is the only file that you can edit.

Load CBL – Indicates that the current Baseline is not being displayed. If you want to
make edits, click File > Load Current Baseline to display the current Baseline.

BLINK – Indicates that the Blink feature is turned on.

<zoom percentage> – Indicates the zoom percentage of the window. If you have the
original or normal view, the zoom percentage is 100%. If you have zoomed to some
percentage of the normal view, that percentage is shown. If you have fit the image to
the window, FITTED appears.

Locating and Comparing Differences

To display differences in the Baseline and Actual images:

■ Click View > Show Differences .

To locate the first difference:
Using the Image Comparator 213

■ Click View > First Difference .

When a difference is located, the Comparator flashes it briefly, centers the difference
in the panes, and then selects it in both panes.

To navigate between differences, use the View commands.

You can also select a difference in the Differences List to highlight that failure in the
Baseline and Actual images.

Changing How Differences are Determined

Each difference region represents a logical set of differing pixels—a cluster of differing
pixels close together. Depending on your preference setting, the Comparator
determines whether this region is close enough to the last one to be classified as either
the same or a different difference region. Every time the Comparator defines a new
region around a differing pixel, it determines whether the region is close enough to
any other previously defined region. If so, the Comparator combines the two
rectangular regions. Otherwise, the region becomes a new difference region.

To change how differences are determined:

1 Click Tools > Options .

Use this setting to specify how close is close enough when a new differing pixel
has been found.

2 Change the setting under Difference Regions . Move the sliding bar to choose
whether you want more or fewer difference regions to be created.

When you move the bar, the picture next to the slide is a representation of that
choice.

Changing the Color of Masks, OCR Regions, or Differences

To change the color of masks, OCR regions, or differences in the Image window:

1 Click Tools > Options .

2 Change the setting under Colors .

Masks – Select the highlight color for masks in the image. The masks are displayed
as a block of this color in the Baseline and Actual files. The default color is a light
green. Click Change to select a different color.

Differences – Select the highlight color for differences in the image. The difference
regions are displayed as a block of this color in the Baseline and Actual files. The
default color is a light red. Click Change to select a different color.
214 Chapter 9 - Using the Comparators

OCR regions – Select the highlight color for OCR regions in the image. The regions
are displayed as a block of this color in the Baseline and Actual files. The default
color is a light blue. Click Change to select a different color.

Moving and Zooming An Image

There are several ways to move the image within the Baseline and Actual panes:

■ Use the horizontal and vertical scroll bars. Scrolling is synchronized if you are
viewing both files.

■ Use the moving hand pointer. If you hold down the left mouse button anywhere in
the image that is not a mask or a difference region, the mouse pointer turns into a
hand. You can then use it to move the image around in the window.

Note: You can use the zooming commands to move around the image. You can zoom
in, zoom out, zoom by percentage, fit the image exactly to the window, or return to the
normal image size.

■ To zoom in on the image, click View > Zoom > Zoom In .

This zooms in on the image by a factor of 2. If you have a mask, OCR region, or
difference region selected when you use the Zoom command, the zooming is
centered on that region. If you do not have a region selected, the zoom is centered
on the entire image. You can use the command repeatedly to keep zooming into
the image.

■ To zoom out from the image, click View > Zoom > Zoom Out .

■ To zoom the normal display of the image by a percentage, click View > Zoom >
Zoom Special and the percentage.

■ To restore the image to its original size, click View > Zoom > Normal Size .

■ To fit the image to the full size of the pane, click View > Zoom > Fit To Window .

Zoom factors always retain the image’s aspect ratio to ensure that text and images
appear without distortion. Fit To Window represents the largest zoom factor that can
display the entire image in the window while maintaining the image’s aspect ratio.

Viewing Image Properties

To view the properties of an image:

■ Click File > Properties .

The Image Properties dialog box shows information about the image, including its
scale, color, size, and the creation date of the file.
Using the Image Comparator 215

Working with Masks

You can create masks in the Image Comparator with the Edit > New Mask command.
Masks are used to hide the underlying masked area from comparison when test
scripts are played back. Any areas of the image that contain a mask are not compared
when you play back a test script that contains an Image verification point.

Use masks to ensure that certain regions are not tested. For instance, if your
application has a date field, you might want to mask it so that it will not produce a
failure every time the test script is played back. You can also apply masks to hide
differences that you determine were caused by intentional changes to the application,
so that they do not cause failures in future tests.

Since you can only edit the Baseline file, you cannot perform the following procedures
in the Actual file. However, when you select a mask in the Baseline file, the mask is
also selected in the Actual file. You cannot modify the mask in the Actual file—it is
shown there for convenience only.

You can do the following with masks:

■ Display masks.

■ Create masks.

■ Move and resize masks.

■ Cut, copy, and paste masks.

■ Duplicate masks.

■ Delete masks.

■ Automatically mask differences.

For step-by-step instructions, search for each task in the Image Comparator Help.

Working with OCR Regions

Robot uses Optical Character Recognition (OCR) regions to read the text within a
designated region and compare it in subsequent playbacks of the test script.

You can use OCR regions to verify proper operation of an application that
dynamically paints text in window areas or where the Actual text is difficult to obtain.
OCR regions are also valuable in situations where a text string’s font or weight may
change unexpectedly but go undetected using traditional verification methods. To
achieve the correct verification, you can define OCR regions on existing or
newly-captured Image verification points.

You can do the following with OCR regions:
216 Chapter 9 - Using the Comparators

■ Create an OCR region.

■ Move and resize OCR regions.

■ Cut, copy, and paste OCR regions.

■ Duplicate OCR regions.

■ Delete OCR regions.

For step-by-step instructions, search for each task in the Image Comparator Help.

Saving the Baseline File

To save changes made to the Baseline file:

■ Click File > Save Baseline .

This command is enabled only if you have made changes to the Baseline file.

Viewing Unexpected Active Window

Robot is designed to respond to unexpected active windows (UAW) during test script
playbacks. An unexpected active window is any unscripted window appearing
during test script playback that interrupts the playback sequence and prevents the
expected window from being made active. An example of a UAW is an error message
generated by the application-under-test, or an e-mail notification message window.

You can view the unexpected window in the Image Comparator only if you have set
the option in Robot. In the GUI Playback dialog box in Robot, click the Unexpected
Active Window tab. Make sure that the Detect unexpected active windows and the
Capture screen image options are both selected. (For more information about setting
an unexpected active window option, see Using the Rational Robot manual.)

To open a UAW to view in the Comparator:

1 Start TestManager and open a log file containing a UAW.

2 Do one of the following in the Event Type column:

❑ Double-click an unexpected active window event.

❑ Select an unexpected active window event and click UAW.

The Image Comparator opens and that UAW appears.
Using the Image Comparator 217

218 Chapter 9 - Using the Comparators

Part 3: Performance
Testing with Rational
TestManager

10Planning Performance
Tests
This chapter introduces performance testing using Rational TestManager. It includes
the following topics:

■ About performance testing

■ Performance testing basics

■ Rational TestManager and performance testing

■ Planning performance tests

■ Implementing performance tests

■ Examples of performance tests

■ Analyzing performance results

About Performance Testing

Application developers, system testers, and system integrators use TestManager to
test multi-user client/server systems. TestManager can be used to add maximum
workload conditions to the network and server in a client/server environment,
thereby reducing the total testing time. With TestManager, you can coordinate
multiple computers as well as emulate multiple virtual testers from a single computer.

Performance tests that are run from TestManager play back test scripts with
instructions on performing actions on the tested server. This test script can come from
a number of sources:

■ You can record a test script in Rational Robot.

When you use Rational Robot to record a script, Robot records activities in a
session, and then automatically creates a test script that represents the user’s
interactions with the server, as well as all queries and responses.

For more information about recording a test script in Rational Robot, see the Using
Rational Robot manual.
221

■ You can write a test script using any scripting language.

When you supply a test script in this way, you must write an adapter so that
TestManager recognizes the test script type. For more information, see the Rational
Test Extensibility Reference manual.

■ You can create a manual script that lists a virtual tester’s tasks.

Before you begin planning and developing performance tests, you should be familiar
with these TestManager concepts:

■ Virtual testers

■ Test scripts

■ Test cases

■ Test plans

■ Scripting languages

■ Local and Agent computers

■ Suites

For more information about these topics, see Chapter 1, Introducing Rational
TestManager.

Performance Testing Basics

A performance test helps you determine whether a multi-client system is performing to
defined standards under varying loads and configurations.

Performance testing is a class of tests implemented and executed to characterize and
evaluate the performance-related characteristics of the tested server such as:

■ Timing profiles

■ Execution flow

■ Response times

■ Operational reliability and limits

Different types of performance tests, each focused on a different test objective, are
implemented throughout the software development life cycle (SDLC).

Early in the development lifecycle—in the architecture iterations—performance tests
focus on identifying and eliminating architecture-related performance bottlenecks. In
the construction iterations, performance tests tune the software and environment
222 Chapter 10 - Planning Performance Tests

(optimizing response time and resources), and verify that the applications and system
acceptably handle high load and stress conditions, such as a large number of
transactions, clients, and/or volumes of data. Different types of performance tests are
suited to each iteration.

Performance tests usually involve loading the server with many virtual testers. For
example, you might have a timer associated with one virtual tester to find out how
much time a query takes when 1000 other virtual testers are sending requests to the
same server at the same time.

In addition, one or more functional testers can be included in a performance test to
observe what happens when many virtual testers are running against the same server.
Because functional testers measure client response times, they better represent what a
real user experiences when there is significant client processing or screen-painting
time associated with the user activity that you are measuring. Also, a functional tester
is a good cross-check for performance tester responses.

Types of Tests

The term performance testing includes the following types of tests:

■ Benchmark tests – Compares the performance of a new or unknown server to a
known reference standard, such as existing software or measurements.

■ Configuration tests/performance profiling – Verifies the acceptability of the
server's performance behavior using varying configurations while the operational
conditions remain constant.

■ Load tests – Verifies the acceptability of the server's performance behavior using
varying workloads while the operational conditions remain constant.

■ Stress tests – Verifies the acceptability of the server's performance behavior when
abnormal or extreme conditions are encountered, such as diminished resources or
an extremely high number of users.

■ Contention tests – Verifies that the server can handle multiple user demands on the
same resource (that is, data records or memory).

Performance generally is evaluated in steps. For more information about this
multi-level approach, see Analyzing Performance Results on page 237:

Benchmark Tests

Benchmark tests can provide a baseline of information on how a server is performing
under given conditions. An initial benchmark measurement can provide reference
point from which other performance details are evaluated.
Performance Testing Basics 223

Benchmark tests can be as simple as determining what percentage of virtual testers
complete an operation in a given amount of time, or as diverse as helping you to
figure out why the remaining percentage of virtual testers did not complete the
operation in that same amount of time.

If a benchmark of performance is established for a given application, then you can
measure configuration, load, stress, and contention test results against this baseline to
evaluate relative performance.

Configuration Tests/Performance Profiling

In today’s heterogeneous client/server environments, each user’s computer can have
a different mix of hardware and software, creating a risk that the application software
will run on some computers and not others. You can use configuration testing to
ensure that your product will to run on multiple platforms.

TestManager lets you schedule the same tests to run on different Agent computers,
which in turn lets you:

■ Test for compatibility issues.

■ Determine minimum and optimum configuration of hardware and software for
running the application.

■ Learn how the application performs on each computer.

While you typically perform configuration testing with functional testers only, you
can also load your client/server system with performance testers to test the effects of
changing configurations on workload.

Load Tests �

Load testing is designed to test client or server response times under varying
workload. Load tests also are used to help testers compute the maximum number of
transactions a server can handle over a given time period. In addition, when a
client/server system uses workload balancing or a distributed architecture, load
testing can help ensure that the load balancing or distribution methods work as
designed.

Load tests can involve performance testers only (for measuring server response
times), or performance testers and functional testers (for measuring client response
times).
224 Chapter 10 - Planning Performance Tests

Stress Tests �

Stress testing is the process of running your client application under extreme
conditions to see if it or the server breaks under the strain. Examples of stress testing
include:

■ Continuously running a client application for many hours.

■ Performing a large number of transactions.

■ Having hundreds of virtual testers perform the same operation or a specific
combination of operations simultaneously.

Other types of stress on a system include insufficient memory, unavailable services or
hardware, or diminished shared resources on the server.

Stress testing helps you ensure that your client application or the server is able to
handle production conditions, where ineffective management of computer resources
can result in system crashes.

You can test the following types of stress conditions:

Contention Tests �

Contention testing involves executing a combination of functional and performance
testers on one or more computers to simulate an actual user environment. For
example, you might have functional testers and multiple performance testers
accessing the same database to reveal problems such as locking, deadlock conditions,
and concurrency controls.

Stress condition Type of test

A large number of users performing the
same activity simultaneously.

performance

A few users continuously repeating the
same action on the client application
hundreds or thousands of times or over
long periods of time.

functional

A few users continuously repeating the
same client requests to a server
hundreds or thousands of times or over
long periods of time.

performance

Combinations of the preceding three
conditions.

performance and functional
Performance Testing Basics 225

Contention testing is often difficult to perform because it requires precise
coordination between virtual testers. In TestManager’s point-and-click environment,
you can conduct multi-computer tests in which functional and performance testers
wait for conditions to be satisfied on their own computers, or on other computers,
before they continue running. For example, you can have a functional tester on one
computer add a record to a database, and have a functional tester on another
computer pause before attempting to read the record until the first functional tester
finishes its test script.

If you want to run a contention test under heavy virtual tester conditions, you can use
performance testers to add to the load.

For more information on functional testing, see Chapter 6, Planning Functional Tests.

Local and Agent Computers

You coordinate the activities of all your test scripts from a single Windows NT
computer where TestManager is running. This is known as the Local computer. From
the Local computer, you create, run, and monitor suites.

During the execution of a test, you play back test scripts on the Local computer or on
computers that you have designated as Agent computers. You use an Agent computer
for the following performance testing situations:

■ Adding workload to the server – If you are running a test with a large number of
virtual testers, you can use Agent computers to add load to the server.

■ Running test scripts on more than one computer�– If you are running a functional test,
you can save time by running the test scripts on the next available Agent computer
instead of having the Local computer run all the test scripts. For this situation, the
test scripts must be modular and independent.

■ Testing hardware configurations�– If you are testing different hardware
configurations, you can run test scripts on different Agent computers that are set
up with these hardware configurations.

Suites

Typically, multiple test scripts and multiple computers are involved in a test. At
runtime, test script playback is coordinated by test suites that you design. These test
suites add an emulated workload to the server. You run these test suites from the
Local computer.

Once you have used TestManager to create suites that describe a baseline of behavior
for the server, you can run these suites repeatedly against successive builds of your
product, and then analyze the results using TestManager’s reporting tools.
226 Chapter 10 - Planning Performance Tests

Rational TestManager and Performance Testing

Performance testing with TestManager helps you discover and correct performance
problems before you deploy your application in the real world. With TestManager,
you have all of the tools you need to identify, isolate, and analyze performance
bottlenecks.

As an automated load testing tool, TestManager emulates one or many actual users
performing various computing tasks. By replacing users with virtual testers,
TestManager removes the need for users to manually add workload to the server.

Because TestManager lets you play back the activities of multiple virtual testers on a
single computer, you can run tests involving hundreds or thousands of virtual testers
on just a few computers—or on one computer.

Why Use TestManager for Performance Testing?

While TestManager has a range of uses, it excels in solving performance issues such as
the following:

Problem TestManager Solution

Does the server perform correctly
under load?

Conduct stability and stress testing of the network
and servers under maximum workload conditions.

Does the system meet scalability
requirements?

Determine the number of virtual testers a server can
support before the system is released.

What level of performance will the
client achieve? Can the server deliver
acceptable response times during
simultaneous access by large
numbers of virtual testers?

Measure the response times of server operations, as
seen by the client under varying transaction rates and
workload mixes. In addition, you can determine:
■ Application response time (average case, best case,

worst case).
■ How response time varies under different

computer configurations.
■ A server’s response time when a given number of

performance testers are running against it.
■ How rapidly a client’s response time falls as the

number of performance testers accessing the server
increases.

■ The server’s hit rate when Web testing is being
conducted.

■ The error rate and error breakdown.
Rational TestManager and Performance Testing 227

The TestManager Environment

TestManager enables you to run a suite in a distributed environment. This
environment consists of a single Local computer (on which you coordinate test
execution and play back test scripts), and zero or more Agent computers (on which
you play back test scripts).

How do the access patterns of
database tables affect performance?
When is table- or row-locking a
problem?

Run contention tests that analyze throughput and
capacity under varying transaction rates, workload
mixes, and server configurations.

What was the percentage of
improvement for client response
times after the last tunable parameter
change?

Place reproducible workloads on the server to
objectively measure tuning efforts.

Which queries cause performance
problems?

Isolate queries that perform poorly.

Problem TestManager Solution
228 Chapter 10 - Planning Performance Tests

The following figure illustrates a typical TestManager configuration:

The server can run under a variety of operating systems, and can be connected to the
Local and Agent computers over a TCP/IP network.

Planning Performance Tests

Testing the performance of a server typically involves loading the server with many
virtual testers. The objective is to find out how the server performs under the load.

Some of the performance questions you might want to answer are:

■ How many virtual testers can the server support under normal conditions?

■ Are there any situations where server performance degrades suddenly under
normal conditions?

■ How does the system perform when you exceed the normal conditions? In a
worst-case scenario, does the system degrade gracefully or does it break down
completely?

■ How does the system perform under varying hardware configurations?

The following sections discuss the key steps that are involved in planning a test.

/RFDO�FRPSXWHU
:LQ17����RU�:LQ�����

:LQ17���
81,;��

:LQ17����

SHUIRUPDQFH�WHVWHUV

:LQ��� :LQ���
6HUYHU

$JHQW�FRPSXWHUV

IXQFWLRQDO�WHVWHUV

:LQ�����

:LQ�����:LQ�0H
Planning Performance Tests 229

Testing Response Times

TestManager lets you measure various indicators of performance. Whereas
distributed functional testing measures correctness in terms of straightforward
pass/fail responses, performance testing also measures time—for example:

■ How long did it take for the action to complete?

■ How quickly was the server able to respond under heavy load conditions?

You can measure the client response time or server response time, or both.

Setting Pass and Fail Criteria for Performance Tests

Because performance can be subjective, it is essential that you identify the features to
be tested and the criteria that will determine whether performance passes or fails. The
pass or fail criteria often involves a range of acceptable response times. For example,
you could define the following as an acceptable response time:

■ For 100 virtual testers, 90% of all transactions have an average response time of 5
seconds or less. No response time can exceed 20 seconds.

■ For 500 virtual testers, 80% of all transactions have an average response time of 10
seconds or less. No response time can exceed 45 seconds.

Identifying Performance Testing Requirements

When planning a performance test, you need to determine the hardware and software
that your test requires. For example:

■ Server computers: database servers, Web servers, other server systems

■ Client computers: Windows 2000, NT, 98, 95, or Me computers; network
computers; or Macintosh or UNIX workstations

■ Databases that will be accessed

■ Applications that will be running

In addition, you need to determine the following parameters for your tests:

■ The size of the test databases and other test files to accurately represent the real
workload

■ The distribution of data across the server to prevent I/O bottlenecks

■ If you are testing a database, the settings of key database parameters
230 Chapter 10 - Planning Performance Tests

Designing a Realistic Workload

If you are testing performance, it is essential that your model accurately mirror the
workload at your site. Therefore, you must determine the types of transactions that
occur at your site.

For example, do users query the database and update it occasionally, or do they
update it frequently? If they update the database frequently, are the updates complex
and lengthy, or are they short?

When designing the workload, consider these issues:

■ The workload interval �– The period of time the workload model represents.

For example, the workload interval could be a peak hour, an average day, or an
end-of-the-month billing cycle.

■ Test variables �– The factors you will change during the performance test.

For example, you could vary the number of virtual testers to understand how
response time degrades as the workload increases.

It is best to change only one variable at a time. Then, if performance changes with
the next test, you know that the change was caused by that one variable.

You set test variables when you set up a suite. For more information, see Chapter
4, Implementing Tests.

■ Virtual tester classifications �– You categorize the virtual testers into groups based
on the types of activities they perform.

For each group, you identify the number of virtual testers or the percentage of
overall virtual testers. For example, you could group 20% of the virtual testers into
Accounting, 30% of the virtual testers into Data Entry, and 50% of the virtual
testers into Sales.

You set up user groups within a suite. However, you should keep these user
groups in mind as you plan the test scripts to be associated with the test. The test
scripts should accurately reflect the actions of realistic user groups. For
information about setting up user groups, see Inserting User Groups into a Suite on
page 246.

■ User work profiles – The set of activities that the virtual testers perform and the
frequency with which they perform them. The virtual tester actions should mirror
the mix of tasks that the users actually perform as closely as possible.

For example, if the Sales user group access the database 70% more than the other
two groups, be sure that the workload reflects this.
Planning Performance Tests 231

■ User characteristics �– Determine how long a virtual tester pauses before executing
a transaction, the rates at which the transaction is executed, and the number of
times a transaction is executed consecutively. It is important to model the real user
characteristics accurately because the values directly affect the overall
performance of the system.

For example, a user who thinks for 5 seconds and types 30 words per minute puts
a much smaller workload on the system than a user who thinks for 1 second and
types 60 words per minute.

Use delays and think times to model the virtual tester characteristics. For more
information about delays, see Inserting a Delay on page 263. For more information
about think times, see the Using Rational Robot manual.

When designing a workload model, make sure to consider factors such as these to
ensure an accurate test environment.

Taking the time to consider these issues will save you time in the long run. The more
clearly defined your testing goals are, the more quickly you can achieve them.

Implementing Performance Tests

Once you have chosen the pass and fail criteria, hardware and software requirements,
and workload model, you are ready to create test scripts and set up the tests. Some
issues to consider during this phase of the process are:

■ The termination conditions �– If one virtual tester fails, should the test stop or
should it keep running?

If you are implementing a large number of virtual testers and a few fail, generally
the test can continue. However, if a virtual tester that performs a fundamental task
(such as setting up the database) fails, the test should stop.

You set termination conditions in the suite. For more information about setting
termination conditions, see Controlling How a Suite Terminates on page 99.

■ The stable workload �– Should the test wait until all virtual testers are connected, or
should the test begin running immediately?

If you are trying to measure the response time for virtual testers, you probably
should wait until all testers are connected before the actual testing begins.

You define a stable workload for reporting purposes in the Performance report.
For more information, see Reporting on a Stable Load on page 321.
232 Chapter 10 - Planning Performance Tests

■ The applications that you will test �– It is not cost-effective to test all of your
applications. Spending time and resources testing an application that has little
effect on overall performance takes away from the time spent testing critical
applications. You must consider this balance when planning and designing tests.

In general, you should identify the 20% of the applications that generate 80% of the
workload on your system. For example, you might not want to include an
application that updates a database at the end of the year only.

■ The database on which you will run the test – Decide whether you want to run the
test on the production database or a test database. Running tests on production
systems in current use may yield incorrect results as the effect of the regular user
load is not included in the workload model.

Examples of Performance Tests

This section summarizes some typical performance tests. Each test objective is
accompanied by a table that lists the key elements to consider when defining such a
test. The tables are intended only as a guide; they do not attempt to define all of the
possible elements you can include in your performance tests.

Number of Virtual Testers Supported Under Normal Conditions

Suppose you want to determine the number of virtual testers that a server can
support, to ensure that the system can meet your scalability requirements. How many
virtual testers can the system support before the response is unacceptable?
Examples of Performance Tests 233

For example, you estimate that a database system supports 500 virtual testers. You
could plan to run the test with 300, 400, 500, 600, and 700 virtual testers concurrently
performing multiple tasks. The following table shows the key elements you might
include when designing the test:

Incrementally Increasing Virtual Testers

A common requirement in performance testing is to model what happens across a
span of time as different virtual testers perform their work. For example, suppose you
want to test how your server performs early in the morning when people are starting
their day. You also want to know how the server handles an increasing workload
during the day and particularly at times of peak load.

With TestManager, you could model this type of workload by incrementally loading
virtual testers. You would start by developing a model of the workload that you want
to test. For example, write down the frequency and volume of use of your
applications. Then, when setting up your suite:

1 Schedule different user groups to start at different times over the life of the suite.

2 For each user group, set the number of virtual testers that run the test script and an
iteration count (optional) as appropriate for your test.

By layering the start time and iteration count of your virtual testers, you build up load
incrementally. You also can add spikes of load at specific times in your suite run.

Test Scripts Suite Reports

A test script to initialize
the database.

A test script to log virtual
testers in.

A test script for each
virtual tester task:
■ adding records
■ deleting records
■ querying the database
■ running payroll reports

A fixed user group with one
virtual tester. This virtual
tester logs in, initializes the
database, and sets an event
indicating that the database
is initialized.

A scalable user group with
many virtual testers. This
group logs in and waits until
the event is set. It then
executes the scenario.

A scenario that contains:
■ a selector to randomly

select a test script
■ a test script for each

virtual tester task

A test log to show whether
all virtual testers in the
suite successfully ran to
completion.

A Command Status report
to show whether the
server completed its
requests successfully.

Performance reports for
each suite run: 300, 400,
500, 600, and 700 virtual
testers.

A Compare Performance
report comparing the
output of all five
Performance reports.
234 Chapter 10 - Planning Performance Tests

The following describes a sample test that represents overlapping shifts:

■ You start a suite with 100 virtual testers. This group of virtual testers represents the
early shift of entry clerks repeating the same group of order entry transactions
over and over, so you should set each virtual tester to run many iterations of the
transaction; you should set enough iterations to keep this group of virtual testers
running the test script until the suite ends. You may have to experiment to
determine how many iterations you need.

■ Through a suite, set a Delay. The Delay type might be from the start of the suite, or it
might begin at a certain time of day. When the delay is over, 200 new virtual testers
begin. This is the next shift of entry clerks which overlaps the first shift.

■ During the combined shift, which represents peak load, 300 virtual testers perform
transactions repeatedly.

The following table summarizes a sample test that represents overlapping shifts:

Test Scripts Suite Reports

A test script to initialize
the database.

A test script to log virtual
testers in.

A test script for each
virtual tester task:
■ adding records
■ deleting records
■ querying the database
■ running payroll reports

A fixed user group with one
virtual tester. This virtual
tester logs in, initializes the
database, and sets an event
indicating that the database
is initialized.

A fixed user group with 100
virtual testers. Each virtual
tester logs in and waits until
the event is set. Each virtual
tester then executes many
iterations of the scenario.

A fixed user group with 200
virtual testers that delays for
2 hours. Each virtual tester
then logs in, checks that the
event is set, and executes
many iterations of the
scenario.

One scenario that contains:
■ a selector to randomly

select a test script
■ a test script for each

virtual tester task

A test log to show whether
all virtual testers in the
suite successfully ran to
completion.

A Command Status report
to show whether the
server completed its
requests successfully.

Two Performance reports:
■ One report on the time

period from the start of
the run until 2 hours
have passed.

■ One report on the time
period from 2 hours
until the end of the run.

A Compare Performance
report comparing the
output of both
Performance reports.
Examples of Performance Tests 235

How a System Performs Under Stress Conditions

Stress testing can be understood as a relentless attempt to cause a breakdown in the
server. Use a stress test when you suspect that there are some weak areas of the server,
which may break down completely or diminish responsiveness when an operation is
performed a high number of times or over a long period of time.

Since stress tests involve multiple simultaneous operations (such as sending
hundreds of queries to the server at the same moment), virtual testers provide the
most practical and effective means of performing this type of stress test. Running test
scripts continuously helps you understand the long-term effects of running the
application under stressful conditions.

In a simple stress test, you could create a test where virtual testers perform the same
operation continuously and repeatedly for hours on end. Your test might involve:

■ Inserting thousands of records into a database.

■ Sending thousands of query requests to a database.

The following table summarizes a sample stress test:

Test Scripts Suite Reports

A test script to initialize
the database.

A test script to log virtual
testers in.

A test script for each
virtual tester task:
■ adding records
■ deleting records
■ querying the database
■ running payroll reports

A fixed user group with one
virtual tester. This virtual
tester logs in, initializes the
database, and sets an event
indicating that the database
is initialized.

A scalable user group with
1000 virtual testers. Each
virtual tester logs in and
waits at a sync point. When
all the virtual testers are
synchronized, each virtual
tester executes many
iterations of the scenario.

One scenario that contains:
■ a selector to randomly

select a test script
■ a test script for each

virtual tester task

A test log to show whether
all virtual testers in the
suite successfully ran to
completion.

A Command Status report
to show if the server
behaved correctly, even
under stress.

Performance reports for
each suite run: 900, 1000,
and 1100 virtual testers.
These Performance reports
show when the system
starts to degrade, and
ensure that the
degradation is graceful.

A Compare Performance
report comparing the
output of each
Performance report.
236 Chapter 10 - Planning Performance Tests

How Different System Configurations Affect Performance

TestManager lends itself well to configuration testing because of the way a suite is
organized and run. You might conduct a configuration test for a variety of reasons.
For example:

■ You want to test how your system performs with more (or less) memory.

■ You want to test how your system performs with a different amount of disk space.

■ You want to find the network card with which the system performs best.

The following table summarizes a sample configuration test for 100 virtual testers:

Analyzing Performance Results

TestManager generates a great deal of data about your tests, and at first, the sheer
volume of data might be overwhelming. However, if you planned your tests carefully,
you should be reasonably certain which data is important to you.

Firs, you should check that your data is statistically valid. To do this, run a
Performance report and a Response vs. Time report on your data.

Note: At the end of a suite run, if the log information is appropriate and complete,
TestManager runs the Performance and Response vs. Time reports automatically.

Test Scripts Suite Reports

A test script to initialize
the database.

A test script to log in
virtual testers.

A test script for each
virtual tester task:
■ adding records
■ deleting records
■ querying the database
■ running payroll reports

A fixed user group with one
virtual tester. This virtual
tester logs in, initializes the
database, and sets an event
indicating that the database
is initialized.

A fixed user group with 100
virtual testers. Each virtual
tester logs in and waits until
the event is set. Each virtual
tester then executes many
iterations of the scenario.

One scenario that contains:
■ a selector to randomly

select a test script
■ a test script for each

virtual tester task

A test log to show whether
all virtual testers in the
suite successfully ran to
completion.

A Command Status report
to show if the server
returned expected
responses, even under
stress.

Performance reports for
each suite run on each
configuration.

A Compare Performance
report comparing the
output of each
Performance report.
Analyzing Performance Results 237

The Performance report includes two columns: Mean and Standard Deviation. If the
mean is less than three times the standard deviation, your data might be too dispersed
for meaningful results.

The Response vs. Time graph shows the response time versus the elapsed time of the
run. The data should reach a steady-state behavior rather than getting progressively
better or worse. If the response time trend gets progressively better, you might be
including login time in your results rather than measuring a stable load. Or the
amount of data accessed in your database may be smaller than realistic, resulting in
all accesses being satisfied in cache.

After you are satisfied that your sample is valid, start analyzing the results of your
tests. When you are analyzing results, use a multi-level approach. For example, if you
were driving from one city to another, you would use a map of the United States to
plan an overall route, and a more detailed city map to get to your destination.
Similarly, when you analyze your results, you should first start at a macro level and
then move to levels of greater detail.

The following sections summarize the different levels of detail that you can use to
analyze the results of your tests. For more information on performance testing
reports, see Chapter 13, Reporting Performance Testing Results.

Comparing Results of Multiple Runs

The first level of analysis involves evaluating the graphical summaries of results for
individual suite runs and then comparing the results across multiple runs. For
example, examine the distribution of response times for individual virtual testers or
transactions during a single suite run. Then compare the mean response times across
multiple runs with different numbers of virtual testers.

This first-level analysis lets you know whether your performance goals are generally
met. It helps identify trends in the data, and can highlight where performance
problems occur—for example, performance might degrade significantly at 250 virtual
testers.

For this type of analysis, run the Performance and Compare Performance reports.

Comparing Specific Requests and Responses

The second level of analysis involves examining summary statistical and actual data
values for specific virtual tester requests and system responses. Summary statistics
include standard deviations and percentile distributions for response times, which
indicate how the system responses vary by individual virtual testers.
238 Chapter 10 - Planning Performance Tests

For example, if you are testing a SQL database, you could trace specific SQL requests
and corresponding responses to analyze what is happening and the potential causes
of performance degradation.

For second-level analysis, you could:

1 Identify a stable measurement interval by running the Response vs. Time report
and obtaining two timestamps. The first timestamp occurs when the virtual testers
exit from the startup tasks. This is the timestamp of the last virtual tester who
starts to do “real” work: adding records, deleting records, and so on. The second
timestamp is the first virtual tester who logs off the system. You have now
identified a stable measurement interval.

2 Create a Performance report using only the interval specified by these two
timestamps.

3 Graph the Performance report to verify that the distribution has flattened.

4 Run the Performance, Compare Performance, and Command Usage reports to
examine the summary statistics for this measurement interval.

Determining the Cause of Performance Problems

The third level of analysis helps you understand the causes and significance of
performance problems.

Analyzing Results Statistically

This detailed analysis takes the low-level data and uses statistical testing to help draw
useful conclusions. Although this analysis provides objective and quantitative
criteria, it is more time consuming than first- and second-level analysis and requires a
basic understanding of statistics.

When you analyze your data at this level, you use the concept of statistical significance
to help discern whether differences in response time are real or are due to some
random event associated with the test data collection. On a fundamental level,
randomness is associated with any event. Statistical testing determines whether there
is a systematic difference that cannot be explained by random events. If the difference
was not caused by randomness, the difference is statistically significant.

To perform a third-level analysis, run the Performance and Response vs. Time reports.

Some of the measurements to consider during third-level analysis are:

■ Minimum �– The lowest response time.

■ Maximum �– The highest response time.
Analyzing Performance Results 239

■ Mean�– The average response time. This average is computed by adding all of the
response time values together and then dividing that total by the number of
response time values.

■ Median �– The midpoint of the data. Half of the response time values are less than
this point and half of them are greater than this point.

■ Standard Deviation �– How tightly the data is grouped around the mean.

■ Percentiles �– The percentages of response times above or below a certain point.
The 90th percentile is often measured.

■ Outlier �– A value that is much higher or lower than the others in the data.

For example, System A and System B both have a mean response time of 12
milliseconds (ms). This does not necessarily mean that the system response is the
same. Further evaluation of the results reveal that System A has response times of 11,
12, 13, and 12, and System B has response times of 1, 20, 25, and 2. Although the mean
time is the same (12 ms), the minimum, maximum, and standard deviation are all
quite different.

Monitoring Computer Resources and Tuning Your System

Performance problems can be caused by limited hardware resources on your server
rather than software design. For example, your disk job service times could be
unacceptably slow due to a concentration of disk transfers being sent to a single disk
rather than being spread across several disk drives. This problem is typically fixed by
relocating some of the frequently accessed files (such as swap files or temporary files)
to a disk with less activity.

Performance problems also can be caused by overloaded LAN segments or routers,
resulting in substantial network congestion. Even the simplest round-trip delay from
client to server and back can take several seconds. This problem is typically fixed by
splitting an overloaded LAN segment into two or three segments with routers in
between. Sometimes you need to add a second network card to server systems so they
can be directly accessible to two LAN segments without going through a router.

Either of these hardware limitations can result in slow response time measurements
that cannot be fixed by changing the software design.
240 Chapter 10 - Planning Performance Tests

TestManager lets you match CPU, memory, and disk utilization metrics with virtual
tester response time data. You can monitor your computer resource usage during a
suite playback and then graph this usage data over the corresponding virtual tester
response times, to determine whether imbalance in the hardware resources is causing
slow response times.

For more information about running the Response vs. Time report, see Mapping
Computer Resource Usage onto Response Time on page 323.
Analyzing Performance Results 241

242 Chapter 10 - Planning Performance Tests

11Creating Performance
Testing Suites
This chapter describes how to design performance testing suites. It includes the
following topics:

■ About suites

■ Creating a suite

■ Inserting user groups into a suite

■ Inserting test scripts into a suite

■ Inserting other items into a suite

■ Using events and dependencies to coordinate execution

■ Executing suites

About Suites

A suite shows a hierarchical representation of the workload that you want to run. It
shows such items as the user groups, the number of users in each user group, which
test scripts the user groups run, and how many times each test script runs.

Through a suite, you can:

■ Run test scripts and test cases.

■ Group test scripts to emulate the actions of different types of virtual testers.

■ Set the order in which test scripts run.

■ Synchronize virtual testers.
243

The following simple suite shows three user groups: Accounting, Data Entry, and
Sales.

In this suite:

■ The Accounting user group runs two test scripts: one calculates payroll hours and
one calculates payroll taxes.

■ The Data Entry user group runs five test scripts: one logs in, one initializes
database options, and three change database records.

■ The Sales user group runs three test scripts: one logs in, one initializes database
options, and one reads database records.

The examples in this chapter show VU test scripts. A suite, however, can contain GUI
scripts, VU scripts, VB scripts, Java scripts, or other user-defined test script types. For
more information on defining other test script types and using them in TestManager,
see the Rational TestManager Extensibility Reference manual.
244 Chapter 11 - Creating Performance Testing Suites

Creating a Suite

A suite enables you to not only run test scripts, but more importantly, to emulate the
actions of virtual testers adding load on a system. A suite can be as simple as one
virtual tester executing one test script, or as complex as hundreds of virtual testers in
different groups, with each group executing different test scripts at different times.

You can create a suite in several different ways. You can create a new suite:

■ Using the performance testing suite wizard.

■ Using the functional testing suite wizard.

■ Based on an existing suite of any type.

■ Based on an existing Robot session.

■ Using a blank performance testing suite.

■ Using a blank functional testing suite.

To create a new suite using any of these methods:

■ Click File > New Suite .

The following sections explain how to insert user groups, test scripts, and other items
into a suite so you can run it.

About Creating a Suite from a Wizard

If you are new to testing, using the suite wizards may be the easiest and fastest way to
create a working test. Each wizard guides you through the process of creating a suite.

When you create a suite using the performance testing wizard, TestManager helps
you choose the computer on which the test will run and helps you associate scripts
that become the basis for the test.
Creating a Suite 245

When you create a new suite using the functional testing wizard, TestManager helps
you choose test cases and scripts that become the basis for the test.

Note: When you create a new suite using the wizards, you must have valid test scripts
available for use in the suite. For information on recording test scripts, see the Using
Rational Robot manual. For information on other test script types, see the Rational Test
Extensibility Reference manual.

About Creating a Suite from a Session

If you have recorded a session in Robot, you can play back the test scripts in the
session through TestManager.

When you create a suite from a session and then run the suite, you execute all of the
client/server requests that you recorded during the session, in the order in which you
recorded them.

Creating a suite from a session saves you from having to add individual test scripts to
the suite. For example, suppose you record the test scripts Connect, Query, and
Disconnect in a recording session named DBQuery. To run the test scripts in a suite,
you could either add each test script to the suite in the order in which you recorded
them, or you could create the suite from the session DBQuery.

Creating a suite from a session maintains the scripts in the order in which you
recorded them originally. If you want to maintain this order, you should create the
suite from the session. If you want more flexibility of placement of scripts in a suite,
you should add the test scripts individually. For information about adding test scripts
to suites, see Inserting Test Scripts into a Suite on page 249.

Inserting User Groups into a Suite

A user group is the basic building block for all performance testing suites. A user
group is a collection of virtual testers that perform the same activity. For example, the
suite on page 244 contains three user groups: Accounting, Data Entry, and Sales.
246 Chapter 11 - Creating Performance Testing Suites

To insert a user group into a suite:

■ From an open suite, click Suite > Insert > User Group .

Note: The name of a user group cannot be identical to the name of a shared variable, a
test script, or the following reserved words: MASTER, ALL, ASSIGN, TO, THRU, END,
UNION, DELAY, delay, shared, SHARED, SYC, DLB_FREQ, DLB_TIME, PERMUTE, TSIDX,
CIDX, TC_START, TC_END.

When you add a user group to a suite, you must specify whether the group contains
fixed or scalable virtual testers:

■ Fixed – Specifies a static number of virtual testers. Enter the maximum number of
virtual testers that you want to be able to run. For example, if you enter 50 virtual
testers, you can run up to 50 virtual testers in the Sales group each time you run a
suite.

Typically, you assign a fixed number of virtual testers to user groups that do not
add a workload. For example, one virtual tester could run a Warmup test script to
open a database for the virtual testers, and another virtual tester could run a
Shutdown test script to restore and close the database.

■ Scalable – Specifies a dynamic number of virtual testers. Type the percentage of
the workload that the user group represents. For example, the Accounting group
might represent 20 percent of the virtual testers, the Data Entry group might
represent 30 percent of the virtual testers, and the Sales group might represent 50
Inserting User Groups into a Suite 247

percent of the virtual testers. Each time you run a suite, specify the total number of
virtual testers that will run; TestManager distributes the virtual testers among the
scalable user groups according to the percentages you specify.

When you define a user group, you must also specify the computer where the user
group runs. The default computer is the TestManager Local computer, but you can
specify that the user group runs on any defined Agent computer.

Typically, you run the user group on an Agent computer if:

■ A performance test requires specific client libraries, or a functional test requires
specific software that is on a specific Agent computer. The user group must run on
the computer that has the libraries or software installed.

■ A functional test is designed for a particular computer.

Note: Copy any custom-created external C libraries, Java class files, or COM
components necessary for the test to the Agent computer.

You can also distribute the virtual testers among multiple computers. Typically, you
run a user group on multiple computers if you have:

■ A functional test that must execute as quickly as possible. You can save time by
running your virtual testers simultaneously on different computers.

■ A large number of virtual testers, and the Local computer does not have enough
CPU or memory resources to support this workload. You can conserve resources
by running fewer virtual testers on each computer in the distribution.
248 Chapter 11 - Creating Performance Testing Suites

To distribute the virtual testers in a user group among multiple computers:

■ Click Suite > Insert > User Group , and then click Multiple Computers .

Inserting Test Scripts into a Suite

After you insert user groups into a suite, you add the test scripts that the user groups
run. The suite on page 244 shows the test scripts associated with each user group. The
Accounting group runs two test scripts, the Data Entry group runs five test scripts,
and the Sales group runs three test scripts.

Note: You cannot mix GUI and VU test scripts in a user group. You can, however, mix
other test script types.
Inserting Test Scripts into a Suite 249

To insert a test script into a suite:

■ From an open suite, select the user group to run the test script, and then click
Suite > Insert > Script .

Preconditions

When you specify a test script, suite, or test case to be included in a suite, you can
specify that the item is a precondition for the remainder of that suite sequence. This
means that the test script, suite, or test case must complete successfully during the
suite run for subordinate items in the suite sequence to run.
250 Chapter 11 - Creating Performance Testing Suites

To set a precondition on a test script, suite, or test case:

■ Right-click the test script, suite, or test case to which to apply the precondition and
select Run Properties .

Note: Preconditions for test scripts, test cases and suites, within suites are different
from preconditions and postconditions on test cases as discussed in Chapter 4,
Implementing Tests.

Since suites can be complex and contain subordinate suites, test cases, and user
groups, preconditions apply to their immediate sequence of events. For example, a
suite includes two subordinate suites, each of which contain a setup type of script
(logging on to a network, for example) and several test cases. If in the first suite a
precondition is applied to a set up script and the script fails, TestManager skips all
remaining actions (test cases) within that subordinate suite only. The suite resumes at
the beginning of the next suite (or whatever is next in the larger suite).

Although preconditions are most commonly applied to test scripts, they also can be
applied to test cases and suites within a suite. The precondition property applies only
to the specific instance of the item in the suite. For example, if a test script is used
multiple times within a suite, preconditions must be set for each instance of the test
script individually.

Unlike events or dependencies, when a precondition is applied to a test script, suite,
or test case, that item must pass for subsequent items in that section of the suite to
continue.

Preconditions on test scripts, test cases, and suites can be used to ensure that the
precondition of a test case is met correctly. For more information on test case
preconditions and postconditions, see Chapter 3, Designing Tests.

Inserting Other Items into a Suite

A suite requires only user groups and test scripts to run. However, a suite that
realistically models the work that actual users perform is likely to be more complex
and varied than this simple model. A realistic suite might also contain test cases,
subordinate test suites, scenarios, selectors, delays, synchronization points, and
transactors to represent a variety of virtual tester actions.

In addition to the items that you can add to a suite in TestManager, you can add
certain features to a test script only through Rational Robot. These items—timers,
blocks, and comments—are discussed in detail in the Using Rational Robot manual.
Inserting Other Items into a Suite 251

Inserting a Test Case into a Suite

A test case, as discussed in Chapter 1, is a testable and verifiable behavior in system. It
can include:

■ Test inputs – the defined test requirement, possibly including Rational
RequisitePro documents, Rational Rose models, or other kinds of items.

■ Execution conditions – where, what, and how the input is tested, such as the
operating system on the target computer.

■ Expected results – the actual behavior to be verified.

The behavior can be as varied as a simple mouse click or a combination of server
response times.

To insert a test case into a suite:

■ From an open suite, click Suite > Insert > Test Case .
252 Chapter 11 - Creating Performance Testing Suites

A test case can be considered configured, depending on its properties.

■ Test cases define a behavior to be verified in the system. Test cases are not system
dependent; they can be run on a system with any configuration.

■ Configured test cases not only define a behavior to be verified in the system, but
also specify the setup of the system on which the behavior will be verified. For the
test criteria to be met and verified, the system on which the test case runs must
exactly match the defined configuration.

Test cases can be included in suites for a number of reasons. Using a test case as a
building block lets you create a test that can be used and applied in a variety of
different ways depending on the resources specified at runtime. This can be useful for
a set of test cases run on a regular basis. When you include configured test cases in
suites, TestManager pairs available systems with matching configurations for you at
runtime. Thus different configured test cases may run each time depending on system
availability, simulating variations and randomness in system use.

Preconditions can be applied to test cases. For information on preconditions, see
Preconditions on page 250.

To set a precondition on a test case:

■ Right-click the test case, and then select Run Properties .

Inserting a Suite

For maximum flexibility and power, TestManager allows you to insert a complete
computer-based suite into another suite. This allows you to use suites as building
blocks of tests just as you would any other suite item.

Note: You cannot place a user group-based performance suite into another suite. In
addition, computer group-based functional suites placed into a suite must have been
created with the Prompt for resources option selected for the computer group.
Inserting Other Items into a Suite 253

To insert a suite into a suite:

■ From an open suite, click Suite > Insert > Suite .

Using suites as building blocks is particularly helpful when you are creating a large,
complex tests, or when you are creating multiple tests that perform several duplicate
functions. You can create and check a smaller suite, then insert it to any other suite.
You save time by not having to redefine the same test assets in each separate suite.
Any change made to a suite is replicated in every instance of that suite, thus making
suites easier to maintain.

Preconditions can be applied to suites. For information on preconditions, see
Preconditions on page 250.

To set a precondition on a suite:

■ Right-click the suite, and then select Run Properties .
254 Chapter 11 - Creating Performance Testing Suites

Inserting a Scenario

A scenario lets you group test scripts together so they can be shared by more than one
user group. If you have a complicated suite that uses many test scripts, grouping the
test scripts under a scenario has the added advantage of making your suite easier to
read and maintain.

You define a scenario in the Scenarios section of the suite by creating a scenario and
then inserting items within it. To make a user group execute a scenario, you insert the
scenario name in a user group. Otherwise, the scenario is not executed.

In the suite on page 244, both the Data Entry and the Sales user groups run the test
scripts Login and Initialize Options. You can simplify this suite by storing both test
scripts in a scenario. The following suite shows the test scripts Login and Initialize
Options grouped under the Set Up Database Application scenario:
Inserting Other Items into a Suite 255

To create a new scenario:

■ From the Scenarios section of the suite, click Suite > Insert > Scenario .

To insert a scenario into a suite:

■ Click where you want to place the scenario, and then click Suite > Insert > Scenario .

After you have created the scenario and before you add the scenario to a user group, it
is a good idea to populate the scenario. A scenario requires only test scripts to run.
However, like a user group, a realistic scenario may also contain selectors, delays,
synchronization points, and transactors. A scenario can even contain other scenarios.

Suite or Scenario?

The results of inserting a suite or scenario into a suite are similar. But each has
advantages and disadvantages.

■ Use a suite when you want to reuse a series of events in a variety of suites, and you
want to be sure that any change made to that series of events filters to all instances
of the suite containing those events, across multiple suites. Suites are reusable
among different suites.

■ Use a scenario when you want to reuse a series of events within a suite, and you
want to be sure that any change made to that scenario filters to all instances of it
within a suite. Scenarios are not reusable among different suites.

For example, you could create three suites: one for testing accounting functions, one
for testing data entry functions, and one for testing sales functions. Each suite needs
to have virtual testers log in to a database to perform tasks. Yet within each suite,
256 Chapter 11 - Creating Performance Testing Suites

tasks unique to the suite need to be repeated. You could use a suite for log in that
could be inserted in each suite, but within each suite, use a scenario for the repeated
functions unique to the suite.

Inserting a Selector

TestManager allows you to set suite items to run in different sequences by setting a
selector. A selector provides more sophisticated control than running a simple
sequence of consecutive items in a suite. A selector tells TestManager which items
each virtual tester executes, and in what sequence. For example, you might want to
repeatedly select a test script at random from a group of test scripts. A selector helps
you to do this.

To insert a selector into a suite:

■ Select the user group or a scenario that will contain the selector, and then click
Suite > Insert > Selector .
Inserting Other Items into a Suite 257

Consider the following suite, which does not contain any selectors:

When you run the suite with 50 virtual testers, TestManager assigns 10 virtual testers
to Accounting, 15 virtual testers to Data Entry, and 25 virtual testers to Sales (based on
the specifications of the scalable user groups). All 50 virtual testers start executing test
scripts at the same time.

■ The 10 Accounting virtual testers run each test script in the order in which the test
script appears in the suite: first Calculate Hours and then Calculate Taxes.

■ The 15 Data Entry virtual testers run the Set Up Database Application scenario and
then run the Add New Record, Modify Record, and Delete Record test scripts in
the order in which the test scripts appear in the suite.

■ The 25 Sales virtual testers run the Set Up Database Application scenario and then
run the Read Record test script.

However, suppose your Data Entry virtual testers actually add records, delete
records, and modify records randomly. Furthermore, they do not perform these tasks
with the same frequency. For every record they delete, they modify seven records and
add two records.
258 Chapter 11 - Creating Performance Testing Suites

To make your user group reflect this behavior, insert a Random selector into the Data
Entry user group. The following suite shows the Data Entry user group set up to
select test scripts randomly without replacement.

When you run the suite with 50 virtual testers, scaled according to user group
specifications, each Data Entry virtual tester:

■ Runs the Set Up Database Application scenario.

■ Picks one test script per iteration: Add New Record, Modify Record, or Delete
Record. Since there are 100 iterations, each Data Entry virtual tester adds a record
20 times, modifies a record 70 times, and deletes a record 10 times. The adding,
modifying, and deleting are done in any order.
Inserting Other Items into a Suite 259

Types of Selectors

TestManager provides the following types of selectors:

■ Sequential – Runs each test script or scenario in the order in which it appears in the
suite. This is the default.

■ Parallel – Distributes its test scripts or scenarios to an available virtual tester (one
virtual tester per computer). Typically, you use this selector in functional testing.
The items are parceled out in order, based on which virtual testers are available to
run another test script. Once an item runs, it does not run again.

A parallel selector distributes each test script without regard to its iterations.

■ Random with replacement – The selector runs the items under it in random order,
and each time an item is selected, the odds of it being selected again remain the
same.

Think, for example, of a bucket that contains 10 red balls and 10 green balls. You
have a 50% chance of picking a red ball and a 50% chance of picking a green ball.
The first ball selected is red. The ball is then replaced in the bucket with another
red ball. Every time you pick a ball, you have a 50% chance of getting a red ball.

Since the ball is replaced after each selection, the bucket always contains 10 red
and 10 green balls. It is even possible (but unlikely) that you pick a red ball every
time. Similarly, the Random with replacement selector is not guaranteed to run
every item in it, particularly if you have set one test script to run more frequently
than another. In other words, if your bucket contains 19 red balls and one green
ball, the green ball might not be selected at all.

■ Random without replacement – The selector runs the items under it in random
order, but each time an item is selected, the odds change. For example, think of the
same bucket that contains 10 red balls and 10 green balls. Again, the first ball
selected is red. However, the ball is not replaced in the bucket. Therefore, the next
time you have a slightly greater chance of picking a green ball. Each time you
select a ball, your odds change.

Therefore, if the first 10 balls selected are red, the odds of the next 10 balls being
green are 100 percent. Similarly, the Random without replacement selector will run
every item in it, as long as the number of iterations of the selector is greater than or
equal to the number of items in the selector.
260 Chapter 11 - Creating Performance Testing Suites

■ Dynamic load balancing – With dynamic load balancing, items are not selected
randomly. Think again of the bucket that contains red and green balls. You have
assigned an equal “weight” to each ball. If the first ball that is selected is red, the
second ball selected is always green. This is because with each ball, or test script,
selected, the system “dynamically balances” the workload to approach the 50-50
weight that you set. You can set other weights that are not 50-50. The key point is
that the next test script to run is not selected randomly; it is selected to balance the
workload according to the weight that you have set.

You can balance the workload either for time or for frequency. For example,
assume you are dynamically balancing ScriptA and ScriptB, and using equal
weights. ScriptA, however, takes twice as long to run as ScriptB.

If you choose to balance the load dynamically for time, the load is balanced by the
runtime of each test script. Because ScriptA takes twice as long to run, it is actually
selected only half as often as ScriptB.

If you choose to balance the load dynamically for frequency, both test scripts run
an equal number of times. If ScriptA runs 500 times, ScriptB also runs 500 times.
The fact that ScriptA takes longer to run is not factored into the balance.

Dynamic load balancing is done across all virtual testers in a user group. For
example, the following figure shows the Data Entry user group with 15 virtual
testers. Three test scripts, Add New Record, Modify Record, and Delete Record,
are contained in a dynamic load balancing selector.
Inserting Other Items into a Suite 261

When you run the suite, the first Data Entry virtual tester selects the Modify
Record script, because it has the largest weight. But because the workload is
balanced across all Data Entry virtual testers, after the first virtual tester exits,
TestManager recalculates the weights to reflect the fact that the test script with the
largest weight (7) has already been selected. By the time later virtual testers are
ready to select a test script, the weights have changed so they have a greater
chance of selecting the Add New Record test script.
262 Chapter 11 - Creating Performance Testing Suites

Inserting a Delay

A delay tells TestManager how long to pause before it runs the next item in the suite.

To insert a delay into a suite:

■ Click the user group, scenario, or selector to which to add a delay, and then click
Suite > Insert > Delay .
Inserting Other Items into a Suite 263

In performance testing, you use delays to model typical user behavior. For example, if
your Accounting user group calculates the hours and taxes, and then pauses for two
minutes, you would add a delay after the Calculate Taxes test script, as shown in the
following suite.

You can insert a delay into a suite or a test script. The advantages of inserting a delay
into a suite are that the delay is visible in the suite and the delay is easy to change
without editing the test script.

The method that you use to insert a delay into a test script depends on the test script
type. For VU test scripts, you insert a delay into a test script by editing the test script
to include a delay routine or by modifying the think time environment variables.
(For VB test scripts, the routine is TSSDelay.Delay; for Java test scripts, the routine
is TSSDelay.delay.) Use this method to make the delay before test script execution
different each time. For more information about delay library routines and the think
time environment variables in the VU language, see the VU Language Reference
manual or the Help. For delay routines other script types, such as VB and Java, see the
appropriate Rational Test Script Services API documentation.
264 Chapter 11 - Creating Performance Testing Suites

Inserting a Transactor

A transactor tells TestManager the number of tasks that each virtual tester runs in a
given time period. For example, you might be testing an Order Entry group that
completes 10 forms per hour, or you might be testing a Web server that you want to be
able to support 100 hits per minute. Use a transactor to model this time-based
behavior.

To insert a transactor into a suite:

■ Select the user group or selector to contain the transactor, and then click Suite >
Insert > Transactor.

In the previous section, you added a delay to the Accounting user group. This delay
made the virtual testers pause for two minutes after they calculated the hours and
taxes, as shown in the suite on page 264.
Inserting Other Items into a Suite 265

However, suppose that the Accounting group instead calculates the hours and the
taxes at the specific rate of 10 transactions per hour. You could edit the suite to reflect
this by replacing the selector and delay with a transactor. The following suite shows
the Accounting user group after you have added a transactor:

This suite is identical to the one on page 264, except that it contains:

■ A transactor, which tells TestManager the rate that you want to maintain, and how
long you want to maintain this rate.

■ A scenario, which contains the items that the transactor will run.
266 Chapter 11 - Creating Performance Testing Suites

A transactor can be one of two types:

■ A Coordinated transactor, which has a built-in synchronization point, lets you
specify the total rate that you want to achieve. The virtual testers work together to
generate the workload. For example, if you run a suite with 10 virtual testers and
then run the same suite with 20 virtual testers, the total transaction rate will stay
the same.

Use a coordinated transactor when you are emulating the total transaction rate
applied to a server, rather than the rate of specific times a virtual tester runs a task.
For example, to emulate the number of hits per minute that a Web server can
handle, use a coordinated transactor.

■ An Independent transactor lets each virtual tester operate independently. It does not
coordinate the virtual testers under it with a built-in synchronization point. For
example, if you run a suite with 10 virtual testers and then run the same suite with
20 virtual testers, the total transaction rate will double—because the number of
virtual testers have doubled.

Use an independent transactor if different user groups run the transaction at
different times, or if you are emulating individual behavior rather than a group
behavior. For example, to emulate an Accounting user group that performs 10
calculations per hour but not all at the same time, use an independent transactor.

Once you have defined the transactor type, you must then specify the transactor rate:

■ Total rate – For a coordinated transactor, you generally select Total rate. This is
because whether 100 virtual testers or 50 virtual testers are participating, it has no
effect on the rate that TestManager submits transactions.

■ User rate – For an independent transactor, you must select User rate.

However, select User rate for a coordinated transactor if you expect to change the
rate frequently and want the convenience of not having to edit the suite. For
example, suppose you have inserted a coordinated transactor, and you want to
compare a workload at 100 hits per minute, 200 hits per minute, and 300 hits per
minute—increasing the workload with each suite run. If you select User rate, you
do not have to change the rate in the transactor’s properties. Instead, when you
run the suite at 100 virtual testers, 200 virtual testers, and 300 virtual testers, the
rate scales proportionally.
Inserting Other Items into a Suite 267

Next, specify the distribution of the transactor:

■ A Constant distribution means that each transaction occurs exactly at the rate you
specify. For example, if the transaction rate is 4 per minute, a transaction starts at
15 seconds, 30 seconds, 45 seconds, and 60 seconds—exactly four per minute,
evenly spaced, with a 15-second interval. Although this distribution is simple
conceptually, it does not accurately emulate the randomness of virtual tester
behavior.

A Constant distribution is useful for emulating an automated process. For example,
you might want to emulate an environment where virtual testers are uploading
data to a database every half hour.

■ A Uniform distribution means that over time, the transactions average out to the
rate you specify, although the time between each transaction is constant. The time
between the start of each transaction is chosen randomly with a uniform
distribution within the selected range. Think of this range as a “window” through
which the transaction runs.

For example, the transaction rate is 4 per minute (that is, 1 transaction per
15-second interval). If you select a range of 20%, your transaction has a 3-second
window on each side of that 15-second interval, because 20% of 15 seconds is 3
seconds.

Therefore, the first transaction starts at 12–18 seconds (15 plus or minus 3). The
second transaction starts 15 seconds plus or minus 3 seconds after the first
transaction starts. If the first transaction starts at 12 seconds, the second transaction
starts at 24 to 30 seconds. However, if the first transaction starts at 18 seconds, the
second transaction starts at 30 to 36 seconds.

Because each transaction starts randomly within the range that you specify, it is
normal for transactions to run at a rate that is faster or slower than the rate that
you selected for short periods of time. For example, if a transaction starts every 12
seconds for a minute (recall that the window is 12–18 seconds), the rate for that
initial interval is 5 per minute—not the 4 per minute that you selected. Over time,
however, the transaction rate averages out to 4 per minute.

With a Uniform distribution, a transaction has the same probability of running
within the range that you specify. The transaction starts anywhere within this
window. In our example, the probability of the first transaction starting at 12
seconds, 18 seconds—or anywhere in between—is equal.

■ A Negative Exponential distribution, in contrast, changes the probability of when a
transaction starts. This distribution most closely emulates the bursts of activity
followed by a tapering off of activity that is typical of virtual tester behavior. Using
268 Chapter 11 - Creating Performance Testing Suites

the same example of 4 transactions per minute, the probability that a transaction
starts immediately is high, but decreases over time. TestManager maintains the
desired average rate.

Imagine that you have called a meeting at two o’clock. Most people arrive at two, a
few people arrive at five minutes past two, and fewer still at ten past two. Perhaps
the last straggler arrives at two-thirty. This arrival time approximates a negative
exponential distribution. Most people arrive on time, and then the arrival rate will
decline. Mathematically speaking, the interval is chosen randomly from a negative
exponential distribution with the average interval is equal to 1/rate.

Transactors can be inserted in a user group or independently in a sequential or
random selector. If you are inserting an independent transactor within a random
selector, you must specify the weight of the selector. For information about selectors,
see Types of Selectors on page 260.

A transactor can set an event. For information about events, see Using Events and
Dependencies to Coordinate Execution on page 276.

Inserting a Synchronization Point

A synchronization point lets you coordinate the activities of a number of virtual testers
by pausing the execution of each virtual tester at a particular point (the
synchronization point) until one of the following events occurs:

■ All virtual testers associated with the synchronization point arrive at the
synchronization point.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. When the specified number of virtual
testers reaches the synchronization point, TestManager releases the virtual testers
and allows them to continue executing the suite.

■ A timeout period is reached before all virtual testers arrive at the synchronization
point.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. Other testers arrive at the
synchronization point and wait. However, before all virtual testers arrive at the
synchronization point, the timeout period expires and TestManager releases the
virtual testers and allows them to continue executing the suite. Virtual testers that
did not make it to the synchronization point before the timeout expired do not stop
at the synchronization point. They also continue executing the suite.
Inserting Other Items into a Suite 269

■ You manually release the virtual testers while monitoring the suite.

When one virtual tester encounters a synchronization point, the virtual tester stops
and waits for other virtual testers to arrive. Other testers arrive at the
synchronization point and wait. However, this time you decide to release virtual
testers from the synchronization point and continue executing the suite. All virtual
testers may or may not have arrived at the synchronization point. Virtual testers
that did not make it to the synchronization point before you released them
manually do not stop at the synchronization point. They also continue executing
the suite.

You can insert a synchronization point:

■ Into a test script – Insert a synchronization point into a test script using Rational
Robot in one of the following ways:

❑ During recording, using the toolbar button or the Insert menu.

❑ During test script editing, by manually typing the synchronization point
command into the test script.

Insert a synchronization point into the test script to control exactly where the test
script pauses execution. For example, insert a synchronization point command just
before you send a request to a server.

Use this method if the synchronization point depends upon some logic that you
add to the test script during editing.

For information on inserting a synchronization point into a test script during
recording, see the Using Rational Robot manual.

■ Into a suite – Insert a synchronization point into a suite through TestManager.

Insert a synchronization point into a suite in TestManager to pause execution
before or between test scripts rather than within a test script. Inserting a
synchronization point into a suite offers these advantages:

❑ You can easily move the location of the synchronization point without having
to edit a test script.

❑ The synchronization point is visible within the suite rather than hidden within
a test script.

When you insert a synchronization point into a suite in TestManager, you can do
more than assign a synchronization point name to a test script. For example:

❑ You can specify whether you want the virtual testers to be released at the same
time or at different times.
270 Chapter 11 - Creating Performance Testing Suites

❑ If the virtual testers are to be released at different times (staggered), you can
specify the minimum and maximum times within which all virtual testers are
be released.

❑ You can specify a timeout period.

To insert a synchronization point into a suite:

■ Click Suite > Insert > Synchronization Point .

For example, when you run a stress test (an attempt to run your applications under
extreme conditions to see if they or the server “break”), your suite might contain
virtual testers that perform the certain operations continuously and repeatedly for
hours on end. To most effectively run a stress test, you could synchronize the virtual
testers so that they perform the operations at the same time to stress the system. You
could do this by inserting a synchronization point to coordinate these virtual testers to
perform certain functions simultaneously.

How Synchronization Points Work

At the start of a test, all virtual testers begin executing their assigned test scripts. They
continue to run until they reach the synchronization point. When specified in a test
script, a synchronization point is a programmatic command (sync_point in a VU test
script, SQASyncPointWait in a SQABasic test script, TSSSync.SyncPoint in a VB
test script, or TSSSync.syncPoint in a Java test script). When specified in a suite, a
synchronization point is placed similarly to other suite elements (delays, transactors,
and so on).
Inserting Other Items into a Suite 271

The following figure illustrates a synchronization point:

The virtual testers pause at the synchronization point until TestManager releases
them.

The following suite shows synchronization points called Stress Test:

Virtual testers running
simultaneously

Virtual testers reach the
synchronization point

1 2
272 Chapter 11 - Creating Performance Testing Suites

The virtual testers in the Accounting user group wait at the synchronization point.
The virtual testers in the Data Entry and Sales user groups perform the Set Up
Database Application scenario and then wait at the synchronization point. When all
the virtual testers reach the synchronization point, they are released.

If you run the test with 10,000 virtual testers, when all the virtual testers reach the
Stress Test synchronization point, they are released. In this example:

■ Each of the 2000 virtual testers in the Accounting group calculates the hours and
taxes, pauses for two minutes, and then calculates the hours and taxes again. Each
virtual tester repeats this 100 times.

■ Each of the 3000 virtual testers in the Data Entry group adds, deletes, or modifies a
record. Each virtual tester repeats this 100 times.

■ Each of the 5000 virtual testers in the Sales group reads a record. Each virtual tester
repeats this 200 times.

When setting synchronization points, you must specify how virtual testers are
released from the synchronization point:

■ Together – Releases all virtual testers at once.

Specify a restart time to delay the virtual testers. For example, if you set the Restart
time to 4 seconds, after the virtual testers all reach the synchronization point (or
the timeout occurs), they wait 4 seconds, and then they are all released.

The default restart time is 0, which means that when the last virtual tester reaches
the synchronization point, all virtual testers are released immediately.

■ Staggered – Releases the virtual testers one by one.

The amount of time that each virtual tester waits to be released is chosen at
random and is uniformly distributed within the range of the specified minimum
time and maximum time. For example, if the minimum time is 1 second and the
maximum time is 4 seconds, after the virtual testers reach the synchronization
point (or the timeout occurs) each virtual tester waits between 1 and 4 seconds
before being released. All virtual testers are distributed randomly between 1 and 4
seconds.

The timeout period for a synchronization point specifies the total time that
TestManager waits for virtual testers to reach the synchronization point. If all the
virtual testers associated with a synchronization point do not reach the
synchronization point when the timeout period ends, TestManager releases any
virtual testers waiting there. The timeout period begins when the first virtual tester
arrives at the synchronization point.
Inserting Other Items into a Suite 273

Although a virtual tester who reaches a synchronization point after a timeout is not
held, the virtual tester is delayed at that synchronization point. So, for example, if the
timeout period is reached, and the restart time is 1 second and the Maximum time is 4
seconds, a virtual tester is delayed between 1 and 4 seconds.

The default timeout is 0, which means that there is no timeout. Setting a timeout is
useful because one virtual tester might encounter a problem and might never reach
the synchronization point. When you set a time you, you do not hold up other virtual
testers because of a problem with one virtual tester.

A suite or test script can have multiple synchronization points, each with a
unique name. A given synchronization point name can be referenced in multiple test
scripts and/or suites.

Why Use Synchronization Points?

By synchronizing virtual testers to perform the same activity at the same time, you
can make that activity occur at some particular point of interest in your
test—for example, when the application sends a query to the server.

Synchronization points inserted into test scripts are used in conjunction with timers to
determine the effect of varying virtual tester load on the timed activity. For example,
to simulate the effect of virtual tester load on data retrieval:

1 While recording the test script (named VU1 in this example) that submits the
query and displays the result, perform the following actions:

a Insert a synchronization point named TestQuery into the test script.

b Start a block.

The block times the transaction you are about to perform. The block also
associates the block and timer names with the name of the emulation command
that performs the transaction.

c Submit the query and wait for the results to be displayed.

d Stop the block.

2 While recording the test script, insert another TestQuery synchronization point
just before you begin to record the task that provides the load. For example, just
before you click the button to submit an order form, add a synchronization point.
Name this test script VU2.

3 Add VU1 and VU2 to a suite.
274 Chapter 11 - Creating Performance Testing Suites

4 Run the suite a number of times, each time applying a different number of virtual
testers to the VU2 test script. However, you need only one virtual tester running
the VU1 test script in each test.

Theoretically, as the number of synchronized VU2 virtual testers increases, the
time reported by the VU1 timer should also increase.

In this example, the TestQuery synchronization point ensures that:

■ All VU2 virtual testers submit their forms at the same time—thereby providing
maximum concurrent virtual tester load.

■ The VU1 virtual tester submits its query at the same time that the VU2 virtual
testers are loading the server—thereby providing maximum load at a critical time.

Release Times and Timeouts for Synchronization Points in Test Scripts

You cannot define minimum and maximum release times or timeout periods for
synchronization points inserted into test scripts as you can for synchronization points
inserted into suites. By default:

■ Virtual testers held at a script-based synchronization point are released
simultaneously.

■ There is no time limit to how long virtual testers can be held at the synchronization
point.

However, if a synchronization point in a suite has a release time range and timeout
period defined for it, the release times and timeout period apply to all
synchronization points of that same name—even if a synchronization point is in a test
script.

Scope of a Synchronization Point

The scope of a synchronization point includes all test scripts that reference a
particular synchronization point name plus all user groups that reference that name.

For example, suppose you have the following user groups in a suite:

■ A Data Entry user group of 75 virtual testers. This user group runs a test script
containing the synchronization point Before Query.

■ An Engineering user group of 10 virtual testers. This user group runs a different
test script than the Data Entry groups runs. But this test script also contains a
synchronization point named Before Query.
Inserting Other Items into a Suite 275

■ A Customer Service user group of 25 virtual testers. This user group runs a test
script that contains no synchronization points. However, the user group does have
a synchronization point defined for it. This synchronization point is also named
Before Query.

At suite runtime, TestManager releases the virtual testers held at the Before
Query synchronization point when all 110 virtual testers arrive at their respective
synchronization points.

Using Events and Dependencies to Coordinate Execution

An event is a mechanism that coordinates the way items are run in a suite. For
example, you are running a suite that contains 100 virtual testers that access a
database. You want the first virtual tester to initialize the database, and the other 99
virtual testers to wait until the initialization is complete. To do this, you could set a
dependency on the initialization event, which blocks the 99 virtual testers until the event
(the first virtual tester initializes the database) occurs.

You can have multiple events in a suite. While only one item in a suite can set an
event, many items can depend on the event.

Note: Events and dependencies require only that actions occur—not necessarily that
they complete successfully. If parts of your suite require that actions not only occur,
but also complete successfully, then use a precondition on a test case, test script, or
suite. For more information on preconditions set on items within suites, see
Preconditions on page 250.
276 Chapter 11 - Creating Performance Testing Suites

The following suite shows 99 virtual testers waiting until the first virtual tester
initializes a database:

The second column in the suite lists the events, and the third column lists the
dependencies. In this suite, as soon as the Initialize Database test script completes, it
sets the event Database Is Initialized. The Add New Record, Modify Record, and
Delete Record test scripts depend on this event and can run only after it is set.

Note: In the previous example, the virtual testers in the Data Entry user group ran test
scripts randomly. In this case, you must add a dependency to each test script in the
selector, because you do not know which test script will run first. However, if the Data
Entry user group runs the test scripts sequentially, add a dependency to the first test
script only.

To add a test script that sets or depends on an event:

■ Click Suite > Insert > Test Script .

Note: The previous example shows how to add a test script that sets an event and
another test script that depends upon an event. However, scenarios, transactors, and
delays can also set events, and executables can be dependent on an event.
Using Events and Dependencies to Coordinate Execution 277

Executing Suites

After you have created and saved your suite, and before you actually run it, you can:

■ Check the suite for errors.

■ Check the status of Agent computers.

■ Control the runtime information of the suite.

■ Control how the suite terminates.

■ Run the suite.

Finally, while the suite is running, you can monitor the progress of the suite while it is
running.

For information on all these topics, see Chapter 5, Executing Tests.
278 Chapter 11 - Creating Performance Testing Suites

12Working with Datapools
This chapter describes how to create and manage datapools. It includes the
following topics:

■ What is a datapool

■ Planning and creating a datapool

■ Data types

■ Managing datapools

■ Managing user-defined data types

■ Generating and retrieving unique datapool rows

■ Creating a datapool outside Rational Test

■ Creating a column of values outside Rational Test

You should familiarize yourself with the concepts and procedures in this chapter
before you begin to work with datapools.

Note: This chapter describes datapool access from VU and GUI test scripts played
back in a TestManager suite. Additional information on datapools can be found in a
number of different Rational documents:

❑ For datapool procedures, see the Rational TestManager Help.

❑ For information on using datapools in VB or Java test scripts see the
appropriate Rational Test Script Services API documentation.

❑ For information on datapools in custom test script types, see the Rational
TestManager Extensibility Reference manual.

❑ For more information on creating datapools during test script recording, see the
Using Rational Robot manual and Robot Help.

❑ For information about datapools and GUI test scripts see the SQABasic
Reference manual.
279

What Is a Datapool?

A datapool is a test dataset. It supplies data values to the variables in a test script
during playback.

Datapools let you automatically supply variable test data to virtual testers under
high-volume conditions that potentially involve hundreds of virtual testers
performing thousands of transactions.

Typically, you use a datapool so that:

■ Each virtual tester that runs the test script can send realistic data (which can
include unique data) to the server.

■ A single virtual tester that performs the same transaction multiple times can send
realistic (usually different) data to the server in each transaction.

If you do not use a datapool during playback, each virtual tester sends the same literal
values to the server—the values defined in the test script.

For example, suppose you record a VU test script that sends order number 53328 to a
database server. If 100 virtual testers run this test script, order number 53328 is sent to
the server 100 times. If you use a datapool, each virtual tester can send a different
order number to the server.

Datapool Tools

You create and manage datapools with either Robot or TestManager, as follows:

Activity Robot TestManager

Automatically generate datapool
commands in a test script. •

Create a datapool and
automatically generate datapool
values.

• •

Edit the DATAPOOL_CONFIG
section of a VU test script. •

Edit datapool column definitions
and datapool values. • •

Create and edit datapool data
types. •
280 Chapter 12 - Working with Datapools

This chapter discusses datapools and explains how to perform activities related to
datapools in TestManager. For information on activities associated with datapools
performed in Rational Robot, see the Using Rational Robot manual.

Managing Datapool Files

A datapool consists of two files:

■ Datapool values are stored in a text file with a .csv extension.

■ Datapool column names are stored in a specification(.spc) file. Robot or
TestManager is responsible for creating and maintaining this file. You should
never edit this file directly.

.csv and .spc files are stored in the TMS_Datapool directory of your project.

Unless you import a datapool, Robot or TestManager automatically creates and
manages the .csv and .spc files based on instructions that you provide through the
user interface.

If you import a datapool, you are responsible for creating the .csv file and populating
it with data. However, the Rational Test software is still responsible for creating and
managing the .spc file for the imported datapool.

For information about importing datapools, see Importing a Datapool on page 300 and
Creating a Datapool Outside Rational Test on page 306.

Note: TestManager automatically copies a .csv file to each Agent computer that needs
it. If an Agent’s .csv file becomes out-of-date, TestManager automatically updates it.

Perform datapool management
activities such as copying and
renaming datapools.

•

Import and export datapools.

•

Import data types.

•

Activity Robot TestManager
What Is a Datapool? 281

Datapool Cursor

The datapool cursor , or row-pointer, can be shared among all virtual testers that
access the datapool, or it can be unique for each virtual tester.

Sharing a datapool cursor among all virtual testers allows for a coordinated test.
Because each row in the datapool is unique, each virtual tester can share the same
cursor and still send unique records to the database.

In addition, a shared cursor can be persistent across suite runs. For example, suppose
that the last datapool row accessed in a suite run is row 100:

■ If the cursor is persistent across suite runs, datapool row access resumes with row
101 the first time the datapool is accessed in a new suite run.

■ If the cursor is not persistent, datapool row access resumes with row 1 the first
time the datapool is accessed in a new suite run.

Note: Virtual testers running SQABasic test scripts can share a cursor when playback
occurs in a TestManager suite, but not when playback occurs in Robot.

For information about defining the scope of a cursor, see the description of the Cursor
argument in the Using Rational Robot manual.

Row Access Order

Row access order is the sequence in which datapool rows are accessed at test runtime.

With GUI test scripts, you control the row access order of the datapool cursor through
the sequence argument of the SQABasic SQADatapoolOpen command.

With VU test scripts, you control row access order through the Access Order setting in
the Robot Configure Datapool in Script dialog box. (See the Using Rational Robot
manual.)

For other types of test scripts, refer to the appropriate API documentation.

Datapool Limits

A datapool can have up to 150 columns if Robot or TestManger automatically
generates the data for the datapool, or 32,768 columns if you import the datapool from
a database or other source. Also, a datapool can have up to 2,147,483,647 rows.

What Kinds of Problems Does a Datapool Solve?

If you play back a test script just once during a test run, that test script probably does
not need to access a datapool.
282 Chapter 12 - Working with Datapools

But often during a test run, and especially during performance testing, you need to
run the same test script multiple times. For example:

■ During performance testing, you probably want to run multiple instances of a test
script so that the test script is executed many times simultaneously. (Remember, a
virtual tester is one runtime instance of a test script.)

■ During functional and performance testing, you often run multiple iterations of a
test script so that the test script is executed many times consecutively (simulating a
virtual tester performing the same task over and over).

If the values used in each test script instance and each test script iteration are the same
literal values—the values you provided during recording or hand-coded into the test
script—you might encounter problems at suite runtime.

Here are some examples of problems that datapools solve:

■ Problem: During recording, you create a personnel file for a new employee using
the employee’s unique social security number. Each time the test script is played
back, there is an attempt to create the same personnel file and supply the same
social security number. The application rejects the duplicate requests.

Solution: Use a datapool to send different employee data, including unique social
security numbers to the server each time the test script is played back.

■ Problem: You delete a record during recording. During playback, each instance and
iteration of the test script attempts to delete the same record, and “Record Not
Found” errors result.

Solution: Use a datapool to reference a different record in the deletion request each
time the test script is played back.

■ Problem: The client application reads a database record while you record a test
script for a performance test. During playback, that same record is read hundreds
of times. Because the client application is well designed, it puts the record in cache
memory, making retrieval deceptively fast in subsequent fetches. The response
times that the performance test yields are inaccurate.

Solution: Use a datapool to request a different record each time the test script is
played back.
What Is a Datapool? 283

Planning and Creating a Datapool

A summary of the stages involved in preparing a datapool for use in testing is
illustrated in the following figure. The order shown is the typical order for planning
and creating a datapool for test scripts:

1 Plan the datapool.

Determine the datapool columns you need. In other words, what kinds of values
(names, addresses, dates, and so on) do you want to retrieve from the datapool
and send to the server?

Typically, you need a datapool column for each test script variable to which you
plan to assign datapool values during recording.

■ In Robot, click Edit > Datapool Information.
■ Modify DATAPOOL_CONFIG or accept the defaults.

Plan the Datapool
■ What datapool columns do you need?
■ What data type should you assign each column?
■ Do you need to create data types?

Generate the Code

VU Test Scripts

Create and Populate the Datapool

■ In Robot or TestManager, define datapool columns (including
assigning a data type to each datapool column).

■ Generate the data.

VU Test Scripts

VU and GUI Test Scripts

GUI Test Scripts

■ Select the Use datapools recording option.
■ Record the transaction(s), and then stop recording.
■ Robot automatically generates datapool commands.
■ Robot automatically matches up

test script variable names with

■ Manually add datapool
commands to the test script.

■ Match up test script variable names with datapool
284 Chapter 12 - Working with Datapools

For example, suppose your client application has a field called Order Number .
During recording, you type in a value for that field. With VU test scripts, the value
is assigned to a test script variable automatically. During playback, that variable
can be assigned unique order numbers from a datapool column.

This stage requires some knowledge of the client application and the kinds of data
that it processes.

To help you determine the datapool columns you need, record a preliminary test
script. Rational Robot automatically captures all of the values supplied to the
client application during recording and lists them in the DATAPOOL_CONFIG
section at the end of the test script. For more information, see Finding Out Which
Data Types You Need on page 288.

2 Generate datapool code.

To access a datapool at runtime, a test script must contain datapool commands,
such as commands for opening the datapool and fetching a row of data. With VU
test scripts, a DATAPOOL_CONFIG section must also be present. This section
contains information about how the datapool is created and accessed.

Datapool code is generated in either of the following ways:

❑ With VU test scripts, Robot generates datapool code automatically when you
finish recording a session. Robot is aware of all the variables in the session that
are assigned values during recording, and it matches up each of these variables
with a datapool column in the test script.

To have Robot generate datapool commands automatically during recording,
make sure Use datapools is selected in the Generator tab of the Session Record
Options dialog box before you record the test script.

Note: You must still supply data to the datapool and enable it.

❑ With SQABasic test scripts, you manually insert the datapool commands and
match up test script variables with datapool columns. For information about
coding datapool commands, see the Using Rational Robot manual.

❑ For information on using datapools with other script types, see the appropriate
Rational Test Script Services API documentation.

3 Create and populate the datapool.

After the datapool commands are in the test script, you can create and populate
the datapool.

To start creating and populating a datapool for a VU test script you are editing in
Robot, click Edit > Datapool Information .
Planning and Creating a Datapool 285

Creating and populating a datapool for a test script involves the following
general steps:

❑ Editing the DATAPOOL_CONFIG section of the test script. For example, you
might want to change the default datapool access flags, or exclude a datapool
column from being created for a particular test script variable. Or, you can
accept all of the default settings that Robot specifies when it creates this section
in a VU test script.

For information about editing the DATAPOOL_CONFIG section of a test script,
see the Using Rational Robot manual.

❑ Defining the datapool columns that you determined you needed during the
planning stage. For example, for an Order Number column, you can specify the
maximum number of characters that an order number can have, and whether
the Order Number column must contain unique values.

For information about defining datapool columns, see the Using Rational Robot
manual.

You also assign a data type to each datapool column. Data types supply a
datapool column with its values. For information about data types, see Data
Types on page 286.

❑ Generating the data. Once you configure the datapool and define its columns,
you populate the datapool by clicking Generate Data .

Note: You can also create and populate a datapool file manually and import it into the
datastore. For more information, see Creating a Datapool Outside Rational Test on page
306.

Data Types

A datapool data type is a source of data for one datapool column.

For example, the Names - First data type (shipped with Rational Test as a standard
data type) contains a list of common English first names. Suppose you assign this data
type to the datapool column FNAME. When you generate the datapool, TestManager
populates the FNAME column with all of the values in the Names - First data type.
286 Chapter 12 - Working with Datapools

The relationship between data types, datapool columns, and the values assigned to
test script variables during playback is shown in the following figure:

Standard and User-Defined Data Types

There are two kinds of datapool data types, as follows:

■ Standard data types that are included with Rational Test. These data types include
commonly used, realistic sets of data in categories such as first and last names,
company names, cities, and numbers.

For a list of the standard data types, see Appendix B, Standard Datapool Data Types.

■ User-defined data types that you create. You must create a data type if none of the
standard data types contains the kind of values you want to supply to a test script
variable.

User-defined data types are useful in situations such as:

❑ When a field accepts a limited number of valid values. For example, suppose a
datapool column supplies data to a test script variable named color. This
variable provides the server with the color of a product being ordered. If the
product only comes in the colors red, green, blue, yellow, and brown, these are
the only values that can be assigned to color. No standard data type contains
these exact values.

First Name

FNAME

Virtual Tester 1 Virtual Tester 3Virtual Tester 2
FNAME="Frederick" FNAME="Mary" FNAME="Frank"

Charlotte

Frederick
Mary
Frank

Lauren
Eleanor

William
Victor ..., Frederick, ...

..., Mary, ...

..., Frank, ...

..., Lauren, ...

..., Eleanor, ...

..., Charlotte, ...

..., William, ...

..., Victor, ...

..., ..., ...

During datapool generation,
the First Name data type
populates the FNAME
datapool column with
appropriate values.

During playback, the FNAME
column supplies a different
value to the FNAME variable
in each instance of the script.
Data Types 287

To ensure that the variable is assigned a valid value from the datapool:

i Before you create the datapool, create a data type named Colors that
contains the five supported values (Red, Green, Blue, Yellow, Brown).

ii When you create the datapool, assign the Colors data type to the datapool
column COLOR. The COLOR column will supply values to the test script’s
color variable.

❑ When you need to generate data that contains multi-byte characters, such as
those used in some foreign-language character sets. For more information, see
Generating Multi-Byte Characters on page 290.

Before you create a datapool, find out which standard data types you can use as
sources of data and which user-defined data types you need to create. Although it is
possible to create a data type while you are creating the datapool itself, the process of
creating a datapool will be smoother if you create the user-defined data types first.

Finding Out Which Data Types You Need

To decide whether to assign a standard data type or a user-defined data type to each
datapool column, you need to know the kinds of values that will be supplied to test
script variables during playback—for example, whether the variable contains names,
dates, order numbers, and so on.

To find the kind of values that are supplied to a variable:

■ With VU test scripts, view the DATAPOOL_CONFIG section of the test script. (Robot
adds this information automatically during recording to a VU test script when you
select Use datapools in the Generator tab of the Session Record Options dialog
box.)

The DATAPOOL_CONFIG section contains a line for each value assigned to a test
script variable during recording. In the following example, the value 329781 is
assigned to the variable CUSTID:

INCLUDE, "CUSTID", "string", "329781"

For more information about the DATAPOOL_CONFIG section of a test script, see the
Using Rational Robot manual.

Creating User-Defined Data Types

If none of the standard data types can provide the correct kind of values to a test script
variable, create a user-defined data type.
288 Chapter 12 - Working with Datapools

To create a user-defined data type:

■ Click Tools > Manage > Data Types , and then click New.

When you create a user-defined data type, it is listed in the Type column of the
Datapool Specification dialog box (where you define datapool columns). Type also
includes the names of all the standard data types. User-defined data types are flagged
in this list with an asterisk (*).

Note: You can assign data from a standard data type to a user-defined data type. For
information, see Editing User-Defined Data Type Definitions on page 302.

Generating Unique Values from User-Defined Data Types

You may want a user-defined data type to supply unique values to a test script
variable during playback. To do so, the user-defined data type must contain unique
values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, make the following settings for the datapool column associated with the
user-defined data type:

■ Set Sequence to Sequential.

■ Set Repeat to 1.

■ Make sure the No. of records to generate value does not exceed the number of
unique values in your user-defined data type.

For information about the values you set in the Datapool Specification dialog box, see
Defining Datapool Columns on page 293.
Data Types 289

Generating Multi-Byte Characters

If you want to include multi-byte characters in your datapool (for example, to support
Japanese and other languages that include multi-byte characters), you can do so in
either of these ways:

■ Through a user-defined data type. For information, see Creating User-Defined Data
Types on page 288.

The editor provided for you to supply the user-defined data fully supports Input
Method Editor (IME) operation. An IME lets you type multi-byte characters, such
as Kanji and Katakana characters as well as multi-byte ASCII, from a standard
keyboard. It is included in the Japanese version of Microsoft Windows.

■ Through the Read From File data type. For information, see Creating a Column of
Values Outside Rational Test on page 310.

Managing Datapools

Manage datapools in the Manage Datapools dialog box. The activities you perform in
this dialog box affect datapools stored in the current datastore. For information about
where datapools are stored, see Datapool Location on page 301.

Creating a Datapool

When you create a datapool using TestManager, you must specify the following:

■ Name and description of the datapool.

Choose a name of up to 40 characters. While a description is optional, entering one
can help you identify the purpose of the datapool. Datapool descriptions are
limited to 255 characters.
290 Chapter 12 - Working with Datapools

■ Column names.

Datapool columns are also called fields. With VU test scripts, datapool column
names must match the names of the test script variables that they supply values to.
Names are case-sensitive.

■ Data type and properties for each datapool column.

For information about the properties you can define for a datapool column, see
Defining Datapool Columns on page 293.

■ Number of records to generate.

To create and automatically populate a datapool:

■ Click Tools > Manage > Datapools , and then click New.

If There Are Errors

If the datapool values are not successfully generated, TestManager asks if you want to
see an error report rather than a summary of the generated data. Viewing this report
can help you identify where to make corrections in the datapool fields. To view an
error report, click Yes when TestManager asks whether you want to see an error
report or summary data.

Viewing Datapool Values

If a datapool includes complex values (for example, embedded strings, or field
separator characters included in datapool values), you should view the datapool
values to make sure the contents of the datapool are as you expect.
Managing Datapools 291

To see the generated values:

■ In the Manage Datapools dialog box, select the datapool you just created, click
Edit , and then click Edit Datapool Data .

Making the Datapool Available to a Test Script

For a test script to be able to access the datapool that you create with TestManager, the
test script must contain datapool commands, such as commands for opening the
datapool and fetching values. VU test scripts must also contain DATAPOOL_CONFIG.

You can add datapool commands and DATAPOOL_CONFIG to a test script either
before or after you create the datapool with TestManager:

■ For information about automatically adding datapool commands and
DATAPOOL_CONFIG to a test script during recording, see the Using Rational Robot
manual.
292 Chapter 12 - Working with Datapools

Defining Datapool Columns

Use the following table to help you define datapool columns in the Datapool
Specification dialog box:

Grid column Description

Name The name of a datapool column (and its corresponding test script
variable).

If you change the name of a datapool column, be sure the new name
matches all instances of its corresponding test script variable.

If you create a datapool outside of the Rational Test environment and
then import it, TestManager automatically assigns default names to
the datapool columns. Use Name to match the imported datapool
column names with their corresponding test script variables. Names
are case-sensitive.

You can use an IME to type multi-byte characters in datapool field
names.

Type The standard or user-defined data type that supplies values to the
datapool column in Name. User-defined data types are marked with
an asterisk (*).

Specify the data type to assign to the datapool column, as follows:
■ To select a standard data type or an existing user-defined data

type, click the currently displayed data type name, and then select
the new data type from the drop-down list:

■ See Appendix B for a description of the standard data types.
■ If you type rather than select the name of a user-defined data type,

enter an asterisk before the user-defined data type name. For
example, to specify the user-defined data type MyData, type:

*MyData

■ To create a new user-defined data type, enter the data type name
(without the asterisk) in the field, and then press RETURN. After
you click Yes to confirm that you want to create a user-defined
data type, the Data Type Properties - Edit dialog box appears.

■ For information about creating a data type, see Creating
User-Defined Data Types on page 288.
Managing Datapools 293

Sequence The order in which the values in the data type specified in Type are
written to the datapool column. Select one of these options from the
drop-down list:
■ Random – Writes numeric and alphanumeric values to the

datapool column in any order.
■ Sequential – Writes numeric values sequentially (for example, 0,

1, 2...). With decimal numbers, the sequence is based on the lowest
possible decimal increment (for example, with a Decimals value
of 2, the sequential values are 0.00, 0.01, 0.02, ...).

■ Sequential is only supported for numeric values (including date
and time values) and values generated from user-defined data
types.

When you select Sequential with numeric data types, and you
specify a Minimum and Maximum range, Interval must be
greater than 0.

■ Unique – With data type Integers - Signed, ensures that numbers
written to the datapool column are unique. Also, set Repeat to 1,
and define a Minimum and Maximum range.

Do not confuse the Random and Sequential settings in this grid
with Random and Sequential access order in the Configure
Datapool in Script dialog box.The Random and Sequential settings
in this grid determine the order in which values are written to an
individual datapool column at datapool creation time. Random and
Sequential access order determine the order in which virtual testers
access datapool rows at suite runtime.

Repeat The number of times a given value can appear in a datapool column.
Repeat cannot be set to 0.

To make values unique with Integers - Signed data types and
user-defined data types, set Repeat to 1. For unique Integers - Signed
values, also set Sequence to either Sequential or Unique.

When defining unique values, make sure the number of rows you are
generating is not higher than the range of possible unique values.

Length The maximum number of characters that a value in the datapool
column can have. If the datapool column contains numeric values,
Length specifies the maximum number of characters a number can
have, including a decimal point and minus sign, if any.

For example, for decimal numbers as high as 999.99, set Length to 6.
For decimal numbers as low as -999.99, set Length to 7.

Length cannot be 0.

Decimals Specifies the maximum number of decimal places that floating point
values can have. Maximum setting is 6 decimal places.

Grid column Description
294 Chapter 12 - Working with Datapools

Some items might not be modifiable, depending on the data type that you select. For
example, if you select the Names - First data type, you cannot modify Decimals ,
Interval , Minimum , or Maximum .

If you are generating unique values for an Integers - Signed data type, Length ,
Minimum , Maximum , and No. of records to generate must be consistent. For example, if
you want unique numbers from 0 through 999, errors may result if you set Length to 1,
Maximum to 5000, and/or No. of records to generate to a number greater than 1000.

Note: You can use an IME to type multi-byte characters into the Name column only.
The IME is automatically disabled when you are editing any other column.

Interval Writes a sequence of numeric values to the datapool column. The
sequence increments by the interval you set. For example, if Interval
is 10, the datapool column contains 0, 10, 20, and so on. If Interval is
10 and Decimal is 2, the datapool column contains 0.00, 0.10, 0.20,
and so on.

Minimum interval is 1. Maximum interval is 999999.

With numeric data types (including dates and times), when
Sequence is set to Sequential and you specify a Minimum and
Maximum range, Interval must be greater than 0.

Use Interval only with numeric values (including dates and times).

Minimum Specifies the lowest in a range of numeric values. For example, if the
datapool column supplies order number values, and the lowest
possible order number is 10000, set Type to Integer - Signed,
Minimum to 10000, and Maximum to the highest possible order
number.

Use Minimum only with numeric values (including dates and times).

Maximum Specifies the highest in a range of numeric values. For example, if the
datapool column supplies values to a variable named ounces, set
Type to Integer - Signed, Minimum to 0, and Maximum to 16.

Use Maximum only with numeric values (including dates and times).

Seed The number that Rational Test uses to compute random values.
The same seed number always results in the same random sequence.
To change the random sequence, change the seed number.

Data File The path to the user-defined data type file. The path is automatically
inserted for you. This field is not modifiable.

Data type files are stored in the Datatype directory of your project.
You never have to modify these files directly.

Grid column Description
Managing Datapools 295

Example of Datapool Column Definition

Suppose you want to record a transaction in which a customer purchase is entered
into a database. During recording, you supply the client application with the
following information about the customer:

■ Customer name

■ Customer ID

■ Credit card number

■ Credit card type

■ Credit card expiration date

After you record the test script, create the datapool. Define the datapool’s columns in
the Datapool Specification dialog box, as illustrated below:

Note the following datapool column definition highlights:

■ fName column. The standard data type Names - First supplies this datapool
column with masculine and feminine first names.

■ lName column. The standard data type Names - Last supplies this datapool
column with surnames.

■ custID column. The standard data type Integer - Signed supplies ID numbers to
this datapool column. Because all customer IDs in this example consist of seven
digits, the Minimum and Maximum range is set from 1000000 through 9999999. Also,
because all IDs must be unique, Sequence is set to Unique.

Note: Sequence can only be set to Unique for Integer - Signed data types.

Generate 1000
datapool rows

The only user-defined data
type needed

Date range

Float data type with 0
decimals is used for
credit card numbers

Customer ID is unique

Datapool
column 1
296 Chapter 12 - Working with Datapools

■ ccNum column. The Integer - Signed data type generates numbers up to nine
digits.

Note: Because credit card numbers contain more than nine digits, the standard
data type Float X.XXX is used to supply credit card numbers to this datapool
column.

■ Decimals is set to 0 so that only whole numbers are generated. Sequence is set to
Random to generate random card numbers. To generate unique numbers, Repeat
is set to 1.

■ ccType column. This is the only datapool column that needs to have values
supplied from a user-defined data type. The user-defined data type Credit Card
Type contains just four values—American Express, Discover, MasterCard,
and Visa.

■ ccExpDate column. The standard data type Date - MM/DD/YYYY supplies credit
card expiration dates to this datapool column. The range of valid expiration dates
is set from July 1, 1998 through December 31, 2002. Sequence is set to Random to
generate random dates.

Example of Datapool Value Generation

After you define datapool columns in the Datapool Specification dialog box, click
Generate Data to generate the datapool values.

To see the values you generated:

1 Click Close .

2 Click Edit Datapool Data .
Managing Datapools 297

This is what you see:

Editing Datapool Column Definitions

The Datapool Specification dialog box allows you to define and edit the columns in
the datapool file. Datapool column definitions are listed as rows in this dialog box.
Datapool columns are also called fields.

To edit the definitions of the columns in an existing datapool:

■ Click Tools > Manage > Datapools , select the datapool to edit, and then click Edit .

When you finish editing datapool column definitions, choose whether to generate
data for the datapool.

To see the generated values:

■ In the Datapool Properties - Edit dialog box, click Edit Datapool Data .

If the datapool values are not successfully generated, TestManager asks if you want to
see an error report rather than a summary of the generated data. Viewing this error
report can help you identify where to make corrections in the datapool fields. To view
an error report, click Yes when TestManager asks whether you want to see an error
report or summary data.

Drag this vertical bar to change column width.
298 Chapter 12 - Working with Datapools

Deleting a Datapool Column

Datapool column definitions are listed as rows in the Datapool Specification
dialog box. To delete a datapool column definition from the list, select the row to be
deleted and press the DELETE key.

Editing Datapool Values

To view or edit the values in an existing datapool:

■ Click Tools > Manage > Datapools , select the datapool to edit, and then click Edit .

When modifying the values in an existing datapool, note that:

❑ When you click a value to edit it, an arrow icon appears to the left of the row
you are editing.

❑ When you begin to edit the value, a pencil icon appears to the left of the row,
indicating editing mode.

❑ To undo the changes you just made to a value, before you move the insertion
point out of the field press CTRL + Z.

❑ To see the editing menu, select the text to edit, and then right-click the mouse.

❑ To increase the width of a column, move the bar that separates column names.
To increase the height of a row, move the bar that separates rows:

For an example of the datapool values that TestManager generates, see Example of
Datapool Value Generation on page 297.

Renaming or Copying a Datapool

When you rename or copy a datapool, you must specify a new name for the datapool,
up to a maximum of 40 characters.

To rename or copy a datapool:

■ Click Tools > Manage > Datapools .

Slide up or down
to change row
height.

Slide left or right to
change column
width.
Managing Datapools 299

Deleting a Datapool

Deleting a datapool removes the datapool .csv and .spc files plus all references to the
datapool from the datastore.

To delete a datapool:

■ Click Tools > Manage > Datapools .

Importing a Datapool

It is possible for you to create and populate a datapool yourself, using a tool such as
Microsoft Excel. For example, you might want to export data from your database into
a .csv file, and use that file as your datapool.

If you create a datapool yourself, you need to import it into the same datastore
as the test scripts that will access it. You can use TestManager to import a datapool
.csv file.

When you import a datapool, you often have to change the names of the datapool
columns to match the names of the corresponding test script variables. For more
information, see Matching Datapool Columns with Test Script Variables on page 309.

To import a datapool .csv file:

■ Click Tools > Manage > Datapools , and then click Import .
300 Chapter 12 - Working with Datapools

Datapool Location

When you import a datapool, TestManager copies the datapool’s .csv file to the
Datapool directory associated with the current project and datastore.

For example, if the current project is MyProject, and the current datastore directory is
MyDatastore, then the datapool is stored in the following directory:

C:\MyProject\MyDatastore\DefaultTestScriptDatastore\TMS_Datapool

This directory also includes the datapool’s specification (.spc) file. When you create
and then import a .csv file, TestManager automatically creates the .spc file for you.
You should never edit the .spc file directly.

Note: After you import a datapool, the original file that you used to populate the
datapool remains in the directory you specified when you saved it. The Rational Test
software has no further need for this file.

Importing a Datapool from Another Project

You can use the TestManager Import feature to copy a datapool that you created for
one project into another. When you import a datapool into a new project, the source
datapool is still available to the original project.

To import a datapool into a new project:

■ Click Tools > Manage > Datapools , and then click Import .

Note: If the datapool that you are importing includes user-defined data types, import
the data types before you import the datapool. For information, see Importing a
User-Defined Data Type on page 303.

Exporting a Datapool

You can use the TestManager Export feature to copy a datapool to any directory on
your computer’s directory structure. When you export a datapool, the original
datapool remains in its project and datastore.

Do not attempt to export a datapool to another Rational Test project. Instead, use the
import feature to import the datapool into the new project. For more information, see
Importing a Datapool on page 300.

To export a datapool to a location on your computer’s directory structure:

■ Click Tools > Manage > Datapools .
Managing Datapools 301

Managing User-Defined Data Types

You use TestManager to manage user-defined data types. You can edit data type
values and data type definitions. You can also rename, copy, and delete data types.

For information about creating user-defined data types, see Data Types on page 286.

Editing User-Defined Data Type Values

If you want to add, remove, or modify data type values, or if you just want to modify
the optional description, edit the data type.

You can only edit user-defined data types, not standard data types.

To edit a user-defined data type:

■ Click Tools > Manage > Data Types.

Editing User-Defined Data Type Definitions

Like all data types, a user-defined data type is essentially a one-column datapool. The
single column contains the values that you type into the user-defined data type.

You can edit the default definition of the data type column in the Datapool
Specification dialog box, just as you edit the default definition of datapool columns.

If you edit the definition of a user-defined data type, and then generate values for the
data type, you overwrite any existing values for the data type.

To edit the definition of a user-defined data type:

■ Click Tools > Manage > Data Types.

You can also add values to a user-defined data type by supplying it with values from
a standard data type. This automatic generation of values by TestManager can reduce
the typing that you need to perform when adding values to the user-defined data
type.

For example, suppose you want to create a user-defined data type containing a list
of valid product IDs. The valid ID numbers range from 1000001 through 1000100.
However, there is a dash between the fourth and fifth digits (such as 1000-001).

Rather than typing in all 100 numbers, with dashes, you can have TestManager
generate the numbers and assign them to a user-defined data type. Then, you can edit
the data type values and each ID.
302 Chapter 12 - Working with Datapools

When you choose to automatically generate values, you must specify guideline values
for TestManager to use during generation. These values include:

■ Type = Integers - Signed

■ Sequence = Sequential

■ Repeat = 1

■ Length = 7

■ Interval = 1

■ Minimum = 1000001

■ Maximum = 1000100

■ No. of records to generate

Note: You can also assign the standard data type Read From File to a user-defined
data type. For information about using the Read From File data type, see Creating a
Column of Values Outside Rational Test on page 310.

Importing a User-Defined Data Type

You can import a user-defined data type from one project into another. When you
import a user-defined data type into a new project, the source data type is still
available to the original project.

To import a user-defined data type into a new project:

■ Click Tools > Manage > Test Input Types .

Renaming or Copying a User-Defined Data Type

When you rename or copy a user-defined data type, you must specify a new name for
the data type, up to a maximum of 40 characters.
Managing User-Defined Data Types 303

To rename or copy a user-defined data type:

■ Click Tools > Manage > Data Types .

Deleting a User-Defined Data Type

To delete a user-defined data type in TestManager:

■ Click Tools > Manage > Data Types .

Generating and Retrieving Unique Datapool Rows

Many database tests work best when each row of test data is unique. For example,
if a test involves virtual testers adding customer orders to a database, each new order
has to be unique—in other words, at least one field in the new record has to be a “key”
field containing unique data.

When you are defining datapool columns in the Datapool Specification dialog box,
you specify whether a given datapool column should contain unique data. If you
specify that one or more columns should contain unique data, the datapool that the
Rational Test software generates is guaranteed to contain unique rows.

However, even when a datapool contains all unique rows, it is possible for duplicate
rows to be supplied to a test script at runtime.

To generate and retrieve unique datapool rows, you need to perform a few simple
tasks when you define the datapool.

Use the following guidelines when the datapool is being accessed by either a single
test script or by multiple test scripts, including both VU and GUI test scripts.
304 Chapter 12 - Working with Datapools

What You Can Do to Guarantee Unique Row Retrieval

To ensure that a datapool supplies only unique rows to test scripts at runtime, follow
these guidelines:

What to do How to do it

Specify at least
one column of
unique data.

In the Datapool Specification dialog box, specify that at least one
datapool column should contain unique data. Unique data can be
supplied through the Integers - Signed data type, through the Read
From File data type, and through user-defined data types.

With the Integers - Signed data type, take all of these actions:
■ Set Sequence to Unique or Sequential.
■ Set Repeat to 1.
■ If Sequence =Unique, set an appropriate range in Minimum and

Maximum .
■ Make sure that the values of Length and No. of records to

generate are appropriate for the set of numbers to generate.

With the Read From File data type, see Generating Unique Values on
page 311 for information.

With user-defined data types, see Generating Unique Values from
User-Defined Data Types on page 289 for information.

Generate enough
datapool rows.

Generate at least as many unique datapool rows as the number of
times the datapool will be accessed during a test.

For example, if 50 virtual testers will access a datapool during a
test, and each virtual tester is set for 3 iterations each, the datapool
must contain at least 150 rows.

You specify the number of rows to generate in the No. of records
to generate field of the Datapool Specification dialog box.

Disable cursor
wrapping.

If the datapool cursor wraps after the last row in the datapool has
been accessed, previously fetched rows are fetched again.

Disable cursor wrapping in any of these ways:
■ When editing the DATAPOOL_CONFIG section of a VU test

script in the Configure Datapool in Script dialog box, set Wrap at
end of file? to No.

■ When editing a VU test script in Robot, add DP_NOWRAP to the
list of flags in the flags argument of the DATAPOOL_CONFIG
statement or the datapool_open function.

■ When editing a GUI test script in Robot, set the wrap argument
of the SQADatapoolOpen command to False .
Generating and Retrieving Unique Datapool Rows 305

Note: Rational Test can guarantee that a datapool contains unique rows only when
you generate datapool data through Robot or TestManager.

Creating a Datapool Outside Rational Test

To create a datapool file and populate it with data, you can use any text editor, such as
Windows Notepad, or any application, such as Microsoft Excel or Microsoft Access,
that can save data in .csv format.

For example, you can create a datapool file and type in the data, row by row and
value by value. Or, you can export data from your database into a .csv file that you
create with a tool such as Excel.

After you create and populate a datapool, you can use TestManager to import the
datapool into the datastore. For information about importing a datapool, see Importing
a Datapool on page 300.

Use sequential or
shuffle access
order.

With sequential or shuffle access, each datapool row is referenced
in the row access order just once. When the last row is retrieved, the
datapool cursor either wraps or datapool access ends.

With random access, rows can be referenced in the access order
multiple times. So, a given row can be retrieved multiple times.

You can set row access order in any of these ways:
■ When editing the DATAPOOL_CONFIG section of a VU test

script in the Configure Datapool in Script dialog box, set Access
Order to Sequential or Shuffle .

■ When editing a VU test script in Robot, add DP_SEQUENTIAL
or DP_SHUFFLE to the list of flags in the flags argument of
the DATAPOOL_CONFIG statement or the datapool_open
function.

■ When editing a GUI test script in Robot, set the sequence
argument of the SQADatapoolOpen command to
SQA_DP_SEQUENTIAL or SQA_DP_SHUFFLE.

Do not rewind the
cursor during a
test.

If you rewind the datapool cursor during a test (through the VU
datapool_rewind function or the SQABasic
SQADatapoolRewind command), previously accessed rows will
be fetched again.

What to do How to do it
306 Chapter 12 - Working with Datapools

Datapool Structure

A datapool is stored in a text file with a .csv extension. The file has these
characteristics:

■ Each row contains one record.

■ Each record contains datapool field values delimited by a field separator. Any
character can be used for the field separator. Some common field separators are:

❑ Comma (,). This is typically the default in the US and the UK.

❑ Semi-colon (;). This is typically the default in most other countries.

❑ Colon (:).

❑ Pipe (|).

❑ Slash (/).

The field separator can consist of up to three single-byte ASCII characters or one
multi-byte character.

Note: To view or change the field separator, click Start > Settings > Control Panel ,
double-click the Regional Settings icon, and then click the Number tab. List
separator contains the separator character(s).

■ Each column in a datapool file contains a list of datapool field values.

■ Field values can contain spaces.

■ A single value can contain a separator character if the value is enclosed in double
quotes. For example, “Jones, Robert” is a single value in a record, not two.

The quotes are used only when the value is stored in the datapool file. The quotes
are not part of the value that is supplied to your application.

■ A single value can contain embedded strings. For example, “Jones, Robert “Bob””
is a single value in a record, not two.

■ Each record ends with a line feed.

■ Datapool column names are stored in a .spc file. (Robot and TestManager edit the
.spc file. Never edit the .spc file directly.)

■ The datapool name that is stored in the datastore is the same as the root datapool
file name (without the .csv extension). The maximum length of a datapool name is
40 characters.
Creating a Datapool Outside Rational Test 307

Example Datapool

This is an example of a datapool file with three rows of data. In this example, field
values are separated by commas:

John,Sullivan,238 Tuckerman St,Andover,MA,01810
Peter,Hahn,512 Lewiston Rd,Malden,MA,02148
Sally,Sutherland,8 Upper Woodland Highway,Revere,MA,02151

Using Microsoft Excel to Create Datapool Data

When you are using Microsoft Excel to populate a datapool, do not separate values
with the Windows separator character (see page 307). Excel automatically inserts the
separator character when you save the datapool in .csv format.

To create and populate a datapool using Microsoft Excel:

■ Click File > New to create a new Excel workbook.

The following is an example of how a datapool might look as it is being populated
with data in Microsoft Excel:

Note that:

■ Each column represents a datapool field.

■ Each row is an individual datapool record containing datapool field values.
308 Chapter 12 - Working with Datapools

Saving the Datapool in Excel

When you finish adding rows of values to the datapool, save the datapool to .csv
format.

To save a datapool file using Microsoft Excel:

■ Click File > Save As .

Note: Do not specify the Datapool directory in the datastore. When you later
import the datapool using the TestManager Import feature, TestManager
automatically copies the datapool to the Datapool directory in the current project and
datastore.

If you use Windows Notepad to open the datapool file that you just created and
saved, this is how it looks:

Matching Datapool Columns with Test Script Variables

When you create a .csv file and then import it as a datapool, TestManager
automatically assigns column names (that is, datapool field names) to each
datapool column.

Datapool column names must match the names of the test script variables that they
supply with data (including a case match). But most likely, when you create and
import a datapool, the column names that TestManager assigns will not match the
names of the associated test script variables. As a result, you need to edit the column
names that TestManager automatically assigns during the import. You do so by
modifying a column’s Name value in the Datapool Specification dialog box.

For information about how to open the Datapool Specification dialog box during
datapool editing, see Editing Datapool Column Definitions on page 298.

Maximum Number of Imported Columns

You can import a datapool that contains up to 32,768 columns. If you open an
imported datapool in the Datapool Specification dialog box, you can view and edit all
datapool column definitions up to that limit.
Creating a Datapool Outside Rational Test 309

A datapool is subject to a 150-column limit only if you generate data for the datapool
from the Datapool Specification dialog box.

Creating a Column of Values Outside Rational Test

A datapool that you create with Rational Test can include a column of values supplied
by an ASCII text file. You could use this feature, for example, if you want the datapool
to include a column of values from a database.

Populating a datapool column with values from an external file requires two
basic steps:

1 Create the file containing the values.

2 Assign the values in the file to a datapool column through the standard data type
Read From File.

Step 1. Create the File

If you want to use a file as a source of values for a datapool column, the file must be a
standard ASCII text file. The file must contain a single column of values, with each
value terminated by a carriage return.

You can create this text file any way you like—for example, you can use either of these
methods:

■ Type the list of values in Microsoft Notepad.

■ Export a column of values from a database to a text file.

Step 2. Assign the File’s Values to the Datapool Column

Once the file of values exists, you assign the values to a datapool column just as you
assign any set of values to a datapool column—through a data type. In this case, you
assign the values through the Read From File data type.
310 Chapter 12 - Working with Datapools

To do so, from the Datapool Specification dialog box, in the Type column, select the
data type Read From File for the datapool column being supplied the values from the
external text file.

You can use the Read From File data type to assign values to multiple columns in the
same datapool.

Generating Unique Values

You can use the Read From File data type to generate unique values to a datapool
column that you create outside Rational Test.

To generate unique values through the Read From File data type, the file that the data
type accesses must contain unique values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, make the following settings for the datapool column associated with the Read
From File data type:

■ Set Sequence to Sequential.

■ Set Repeat to 1.

■ Make sure the No. of records to generate value does not exceed the number of
unique values that you are accessing through the Read From File data type.

For information about the values you set in the Datapool Specification dialog box, see
Defining Datapool Columns on page 293.
Creating a Column of Values Outside Rational Test 311

312 Chapter 12 - Working with Datapools

13Reporting Performance
Testing Results
This chapter discusses performance testing reports and suggests ways to evaluate the
data provided in them. It includes the following topics:

■ About reports

■ Running a report

■ Customizing reports

■ Changing report defaults

■ Types of reports

About Reports

TestManager provides several types of reports that help you analyze the success or
failure of a given suite run, and the performance of the server under specified
conditions. For example, you can determine how long it took for a virtual tester to
execute a command and how response times varied with different suite runs.

You can define new reports based on standard report types. Custom reports can help
you zoom in on a given application element and further refine tests to show exactly
the data you need as determined by your test plan or test case.

TestManager does not differentiate between the report definition and the processed
report data. Most actions that you can perform on a report definition you can also
perform on the processed report data.

By default, if a test completes successfully and the test generates appropriate data,
TestManager automatically runs Command Status and Performance reports against
the data in the log and displays the processed results.
313

The following figure shows a sample Command Status and a sample Performance
report:

After you examine report data, you can save or delete the report. If you save the
report, TestManager gives it a default name based on the type of report and the
number of existing reports of that type. (For example, Performance 1.) TestManager
saves the report under the logs in the project. To view the report again, you can open
the saved report. If you delete the report, you can re-create it by running the same
type of report against the same log.
314 Chapter 13 - Reporting Performance Testing Results

The following table summarizes the different types of reports:

Note: Users who upgraded from Rational Suite PerformanceStudio or Rational
LoadTest may want to access information that previously was available in the Analog
and Trace reports. The information in those reports is now available through the Test
Log window. For information on viewing and using test logs, see Chapter 6,
Evaluating Tests.

Report Function Information

Performance Display the response times, and calculate the
mean, standard deviation, and percentiles for each
command in the suite run.

The report groups responses by command ID and
shows only responses that passed. In contrast,
Response vs. Time reports show each command
ID individually and show passed and failed
responses.

Performance Reports
on page 332

Compare
Performance

Compare the response times measured by
Performance reports. After you have generated
several Performance reports, use the Compare
Performance report to compare specific data.

Compare Performance
Reports on page 335

Response vs.
Time

Display individual response times and whether a
response has passed or failed. This report is useful
for looking at data points for individual responses
as well as trends in the data.

The report shows each command ID individually
and the status of the response. In contrast, the
Performance reports group responses by
command ID and they show only passed
responses.

You can right-click on the report, select a computer
that was in the run, and graph the resource
monitoring statics for that computer. These are the
same statistics that you display when you choose
to monitor resources during a suite run.

Response vs. Time
Reports on page 341

Command
Status

Obtain a quick summary of which and how many
commands passed or failed. The report displays
the status of all emulation commands and
SQABasic timer commands.

Command Status
Reports on page 344

Command
Usage

View cumulative response time and summary
statistics, as well as throughput information for
emulation commands for all scripts and for the
suite run as a whole.

Command Usage
Reports on page 346
About Reports 315

Running a Report

TestManager automatically runs the default Performance and Command Status
reports at the end of a suite run (unless the suite was aborted and log data was not
generated). While these reports offer a significant amount of information about your
test run, you might want to run other reports and/or vary the information displayed
in any given report. This section describes how to run different reports.

You run reports from the Report bar or from TestManager menus.

Note: You might also want to view the log files—the “raw” result files—before you
run reports against them. For information about viewing log information in the Test
Log window, see Chapter 6, Evaluating Tests.

Running a Report from the Report Bar

The quickest way to run a report is to click a button on the Report bar. On the Report
bar, TestManager lists the log created by the last suite you ran. Unless you specify
another log, TestManager runs the report using the information in this log.

To run a report from the Report bar:

■ Click View > Report Bar , and then click any one of the report buttons.

Note: You can customize the Report bar by populating it with your own reports. For
more information, see Changing the Reports that Run from the Report Bar on page 331.

Running a Report from the Menu Bar

Although TestManager lets you run reports quickly from the Report bar, you can run
only one report of each type against a log in this way. However, you might want to
run a number of reports from a series of logs. For example, if you have defined some
new Performance reports, you might want to run each report against the same log.
You can run these reports from the menu bar.

To run a report from the menu bar:

■ Click Reports > Run , and select the type of report to run.
316 Chapter 13 - Reporting Performance Testing Results

Customizing Reports

TestManager lets you customize reports for your particular testing requirements.

You can customize a report by:

■ Filtering the data.

For example, you can filter the report so that it contains only one virtual tester
group, only certain test scripts, and only certain command IDs.

■ Changing a report’s advanced options.

For example, you can modify a Response vs. Time report so that extremely long
responses are not included in the report.

■ Changing a graph’s type and appearance.

For example, you can display a graph as a line graph or a bar graph.

After you have customized a report and saved it, you can use it repeatedly to quickly
analyze your data.

Filtering Report Data

TestManager provides a set of default reports with predefined settings and options.
You can, however, customize reports to filter only certain data.

For example, the Performance report on page 314 contains information from many
command IDs, and the graph is complex. To see fewer command IDs, zoom in on the
graph, as explained on page 326. Alternately, right-click the report, click Settings , and
then click Select Command IDs .

However, instead of filtering the processed report, it is much easier to filter the report
definition beforehand so that the resulting report contains only the information you
are interested in. You can filter a report so it includes only certain virtual testers, only
certain test scripts, or only certain commands.

When you choose to set up filtering in a report, you must specify the following
information, depending on the type of report:

■ Build and log information

The build and log folder for which to look for appropriate log files, and the specific
log file on which to filter data in the report.

■ Virtual Testers

The virtual tester and/or groups (computer or user) associated with the specified
log on which to filter data.
Customizing Reports 317

■ Scripts

The test scripts associated with the selected virtual testers on which to filter data.

■ Command IDs

The command IDs specified in the selected test scripts on which to filter data.

To set up filtering in Performance, Response vs. Time, Command Status, and
Command Usage Reports:

■ Open or create a new report of that type, and then click Change Filters .

Note: If you are filtering virtual testers, you usually select the log with the largest
number of virtual testers. This ensures that your report filters all of the virtual testers.

You can also filter the report after you run it. For more information, see Filtering
Command IDs that Appear in a Graph on page 327.

Setting Advanced Options

All TestManager reports have advanced options, which determine how the report
data is calculated and displayed. The specific advanced options are different for each
report. To fine tune a report, change the advanced options.
318 Chapter 13 - Reporting Performance Testing Results

To see the advanced options for a report:

■ Open or create a new report, and then click the Change Options button.

Note: For more information about advanced options, see the TestManager Help.

The following table summarizes each advanced option, and lists the reports that use
the option:

Option Description Reports

Graph Display the report as a graph, a table, or both, change
the type of graph displayed, change the labels for the
graph axes, and add headers and footers.

Command Status,
Performance, Response vs.
Time, Compare Performance

Response
Range

Include only responses that fall between a maximum
and minimum time. The default includes all
response times.

you might want to set a maximum response time to
eliminate outliers. If you change this option for one
report, change the other reports, too, so that the
reports reflect the same information. For more
information, see Eliminating Outliers on page 321.

Command Status,
Performance, Response vs.
Time, Compare Performance

Response
Types

Include only HTTP responses or responses with
timers. The default includes all responses. The
Command Status and Response vs. Time reports also
let you filter responses that contain verification
points.

Command Status,
Performance, Response vs.
Time
Customizing Reports 319

Sort Method Sort command IDs numerically or in the order in
which they were run. The default is to sort command
IDs alphabetically.

Command Status,
Performance, Response Vs.
Time

Stable Load Specify a number of virtual testers that must be
logged on before results are reported. The default is
to report results when any number of virtual testers
are logged on. you might want to change this option
so that a certain number of virtual testers, or all
virtual testers, must be logged on. For more
information, see Reporting on a Stable Load on page
321.

If you dynamically added virtual testers when you
monitored the suite, you might want to change this
option to correspond with the numbers of virtual
testers you added. For more information, see
Reporting on a Dynamic Number of Virtual Testers on
page 322.

If you change this option for one report, change the
other reports, too, so that the reports reflect the same
information.

Command Status,
Performance, Response vs.
Time

Time Period Report on a specific portion of the suite run. The
default is to report on the entire run.

Command Status,
Performance, Response vs.
Time

Calculation Change how response times are calculated. The
default measures the time from the end of the last
send command until the last byte of the response is
received. If you change this option for one report,
change the other reports, too, so that the reports
reflect the same information.

Performance, Response vs.
Time

Response
Status

Include only passed responses, or only failed
responses. The default is to include all responses.

Response vs. Time

Summary Summarize data by virtual tester, test script,
command ID (Command Status), or run (Command
Usage). The default for the Command Status report
is detailed by command ID; the default for the
Command Usage report is by run.

Command Status, Command
Usage

Percentiles Change how the response times are grouped.
Generally, the defaults of 50, 70, 80, 90, and 95 are
adequate.

Performance

Option Description Reports
320 Chapter 13 - Reporting Performance Testing Results

Eliminating Outliers

Reports may contains some values, called outliers, that are completely out of the
normal range. For example, you run a Performance report on 1000 virtual testers and
most response times range from 2 to 7 seconds. The response for one command ID is
30 seconds—far more than normal. Since this occurs only once it may be a
nonrepresentative time. In some cases you might want to eliminate such data points
from the report because they may inaccurately skew cumulative data.

To eliminate outliers:

■ In the Response Range tab in the Advanced Options dialog box, specify a
maximum limit for a response time.

Note: Consider carefully whether to remove data points from graphs. While at times
outlying data may non-representative, in other cases outliers could be indicative of
other performance issues.

Reporting on a Stable Load

It is useful to limit your report so that it includes only times when you have a stable
virtual tester load. For example, you probably are not interested in response times
when only a few virtual testers have logged on to the system, or when most of the
virtual testers have logged off.
Customizing Reports 321

To specify a stable load:

■ On the Stable Load tab in the Advanced Options dialog box, specify the minimum
number of virtual testers that you consider to be a stable load.

Reporting on a Dynamic Number of Virtual Testers

If you add virtual testers dynamically when running a suite, you will want to know
how this addition affects your results. For example, if you start a suite with 50 virtual
testers, and then dynamically add three more groups of 50, your reports should show
ranges of 50–100, 101–150, 151–200.

To report on a dynamic number of virtual testers:

■ On the Stable Load tab in the Advanced Options dialog box, specify the number of
virtual testers.

■ On the Response Range tab in the Advanced Options dialog box, specify a range
for a dynamic number of virtual testers.

Reporting on a Particular Command ID

The default Response vs. Time report can look confusing because it contains
information about every command ID. This information is useful for assessing trends
in the data. However, you might want to report on a particular command ID or a
small group of command IDs, and display the report in a line histogram, which is
easier to read.
322 Chapter 13 - Reporting Performance Testing Results

To report on a particular command ID and then display it as a line histogram:

■ On the Graph tab of the Advanced Options dialog box, specify the graph type after
filtering the report on the command ID.

Mapping Computer Resource Usage onto Response Time

Monitoring computer resources is essential in performance testing. If you have a
performance problem, you need to determine whether it is caused by a large number
of virtual testers or by a hardware bottleneck. The Response vs. Time report lets you
overlay computer resource statistics over response time. If your response time
increases, you can determine whether this was caused by a computer resource
problem.

Note: TestManager needs to be set up to collect the information on computer
resources before you can report on computer resources. Therefore, when you run a
suite, select the Monitor resources check box. For information on running suites, see
Chapter 11, Creating Performance Testing Suites.

To map computer resources onto response time:

■ Right-click on the graph of the Response vs. Time report, and then click Show
Resources .
Customizing Reports 323

Changing a Graph’s Appearance or Type

TestManager can display the Compare Performance, Performance, Response vs. Time,
and Command Status reports as both graphs and table-style reports. The Report
Output Settings dialog box lets you change the type of graph that appears and lets
you enhance its display.

To change the type or appearance of a graph:

■ From an open report, click View > Settings .

Note: Available options for changing the type or appearance of a graph vary
according to the type of report you selected.

From this dialog box, you can:

■ Change the appearance of a graph.

■ Change the labels of a graph.

■ Filter information such as the command IDs.

In a Performance report, you can also change the response range that appears in the
graph.

Changing a Graph’s Appearance

TestManager lets you control a graph’s format and appearance. You can display or
clear information about selected points and datasets without affecting the graph’s
cumulative data. The following figure shows a stack graph with a header, background
grid, and various other options:
324 Chapter 13 - Reporting Performance Testing Results

Graph options that you can change include:

■ Log Scale – Scales any graphical display type to its logarithmic equivalent.

■ Inverted Axes – Switches the relative positions of the graph’s axes.

■ Show Dataset Label – Applies the data set labels to the graph.

■ Display Legend – Displays a color-coded legend for all displayed graphical
components (not available on the Response vs. Time report).

■ Display Grid – Displays a grid that is useful for visual comparisons (not available
on the Pie graph).

Displaying and Clearing Data Point Information

When working with graphs, you may want to display the value of a specific point in a
graph.

To display information about a data point:

■ Move the mouse over the desired area of the graph, and click
CTRL-SHIFT-BUTTON1.

To clear data point information:

■ Right-click the graph, and then click Clear Point Information .

Background
grid

Color-coded
legend

x,y axes labels

Header

Footer

Point
Customizing Reports 325

Changing a Graph’s Type

When working with graphs, you can change the type of graph that TestManager
displays.

To change a graph’s type:

■ In the graph that you want to change, click View > Settings , and then choose a
graph type.

Enlarging and Rotating a Graph

By clicking combinations of SHIFT/CONTROL keys and mouse buttons, you can further
manipulate a graph’s appearance. The following table lists some of the ways you can
do this:

Changing a Graph’s Labels

When working with a Command Status, Performance, or Compare Performance
graph, you can change the labels of the graph, including text, font, style, and size of a
label.

Action Mouse/Key sequence Other required action

Enlarge a graph’s size. CTRL-BUTTON1
BUTTON2

Drag the mouse toward the
bottom of the graph.

Change a graph’s
position.

SHIFT-BUTTON1
BUTTON2

Move the mouse to reposition the
graph.

Zoom in on a graph’s
axes.

SHIFT-BUTTON1 Draw a box around the area to
zoom, and then release
BUTTON1.

Zoom in on a graph’s
data.

CTRL-BUTTON1 Draw a box around the area to
zoom, and then release
BUTTON1.

Rotate the view of a
graph (stack and pie
graphs only).

BUTTON1 BUTTON2 Move the mouse up and down to
change the inclination angle.

Move the mouse left and right to
rotate the graph (stack only).

Reset a graph to its
original size.

The lowercase letter “r” None.
326 Chapter 13 - Reporting Performance Testing Results

To change a graph’s labels:

■ In the graph that you want to change, click View > Settings .

Filtering Command IDs that Appear in a Graph

TestManager lets you filter command ID data before or after you process the report.
Filtering command ID data after running the report is useful if your report results in a
graph that is complex, and you want to examine portions of it in more detail.

To filter the command IDs in a graph:

■ In the graph in which you want to filter IDs, click View > Settings .
Customizing Reports 327

Editing the Properties of a Report

A report’s properties are stored in the current project. These properties include:

■ The name of the report.

■ A description of the report.

■ Who created the report.

■ When the report was created.

Most of these properties are added automatically. However, you may want to add a
description of the report definition, or the results you were trying to achieve with the
report. To do this, edit the report properties.

To edit these properties:

■ Choose a report and click File > Properties .

Managing Reports

When working with reports, TestManager allows you to perform common
management tasks with them. You can print, copy, rename, delete, and export reports
as necessary for test administration.

Printing a Report

TestManager allows you to print out the properties of a report and the processed
results of any given report

To print a report:

■ From an open report, click File > Print .

Note: When printing a processed report, you can add a header to the printout. For
more information, see Changing a Graph’s Labels on page 326.

Copying a Report

TestManager allows you to copy reports to the Clipboard for use by other applications
and within TestManager.

TestManager displays Compare Performance, Performance, Response Vs. Time, and
Command Status reports in graphs and tables. You can copy the table portion onto the
Clipboard, and then paste it into another application such as Microsoft Excel,
Microsoft Word, or Microsoft Paint.
328 Chapter 13 - Reporting Performance Testing Results

To copy a table into another application:

■ From an open report, select the rows that you want to copy, and then click Edit >
Copy.

Copying a report within TestManager is useful if, for example, you have defined a
rather complex report and you want to modify one option. Although you can define
another report from scratch, it is much easier to copy the report and then change that
one option. In this way, you can be sure that you have modified only that option.

Copying graphical report data within TestManager is useful if you want to change the
report settings. For example, you might want to change the format of a graph from
bar to stack, or you might want to filter the report data. By copying the report and
then changing the settings of the copy, you can preserve both the original and the
changed report.

To copy a report:

■ From the Analysis tab of the Test Asset Workspace, select the report to copy and
click Edit > Copy.

Note: When you copy a report, you must specify a new name for the report.

Renaming a Report

After you have defined a number of reports, you might want to rename one or
several—for example, if you adopt a new naming convention for reports, or if you
want to standardize naming conventions.

To rename a report:

■ From the Analysis tab of the Test Asset Workspace, right-click the report to rename
and select Rename .

Deleting a Report

After you have defined and processed a number of reports, you may find that some of
them are no longer useful. You can delete both reports that you have defined and the
default reports that come with TestManager.

Note: Before you delete a report—default or otherwise—make sure that other people
using the current Rational Test project do not use the report.

Deleting processed reports is useful if you run reports frequently and accumulate
reports that you no longer need.
Managing Reports 329

To delete a report:

■ From the Results tab of the Test Asset Workspace, right-click the report and select
Delete .

Note: To restore a default report that you have deleted, click Tools > Options , click the
Reports tab, and then click the Restore Defaults button.

Exporting Reports

The Performance, Command Status, Compare Performance, and Response vs. Time
reports display data graphically. You can export this graphic data to a .csv file for
further processing.

To export reports:

■ Open the report and click File > Export to File .

Changing Report Defaults

TestManager automatically generates Performance and Command Status reports at
the end of a suite run. In addition, you can click a report name on the Report bar, and
TestManager runs the report that you click.

You can specify the reports that TestManager generates at the end of a run. For
example, TestManager can automatically display a Command Usage report in
addition to the Performance and Command Status reports. Or TestManager can
generate a Performance report based on a report that you have defined instead of the
default Performance report.

You also can change the reports that TestManager runs when you click a Report bar
button. For example, instead of TestManager running the default Performance report,
you can have it run a Performance report that you have defined.

Changing the Reports that Run Automatically

TestManager automatically displays Performance and Command Status reports at the
end of the suite run. However, you can change the reports that TestManager
automatically displays.
330 Chapter 13 - Reporting Performance Testing Results

To change the reports that TestManager automatically displays at the end of a suite
run:

■ Click Tools > Options , and then click the Reports tab.

Changing the Reports that Run from the Report Bar

The Report bar lets you run reports by clicking a button. TestManager automatically
runs the default reports unless you specify otherwise. For example, you may have
defined a new report that you want to run from the Report bar instead of a default
report.

To specify the reports that TestManager runs from the Report bar:

■ Click Tools > Options , and then click the Reports tab.

Note: To reset the Report bar so that it generates the default reports, click Tools >
Options , click the Reports tab, and then click the Reset Report Bar button.

Types of Reports

This section discusses the five kinds of performance reports available in TestManager.
Types of Reports 331

Performance Reports

You can use Performance reports to display the response times recorded during the
suite run for selected commands. Performance reports also provide the mean,
standard deviation, and percentiles for response times.

To define a new Performance report:

■ Click Reports > New > Performance .

Performance reports are the foundation of reporting performance-related results in
TestManager. They can show whether an application meets base criteria as defined in
the test plan and/or the test case. For example, a Performance report can tell you
whether 95% of virtual testers received responses from the test system in eight
seconds or less—or what percentage of virtual testers did not receive responses from
the system in that time.

Performance reports use the same input data as Response vs. Time reports, and they
sort and filter data similarly. However, Performance reports group responses with the
same command ID, while Response vs. Time reports show each command ID
individually.
332 Chapter 13 - Reporting Performance Testing Results

The following figure shows an example of a Performance report. This graph shows 15
bars for each percentile category, because 15 commands are graphed.

■ The graph plots the seconds of response time against preset percentiles.

■ The MIN category shows the minimum response time for each command ID.

■ The 50th category shows the 50th percentile of time for each command ID.

Half of the command IDs had a shorter response time and half had a longer
response time.

■ The MAX category shows the maximum response time for each command ID.

What’s in Performance Reports?

Performance reports contain the following information:

■ Cmd ID – The command ID associated with the response.

■ NUM – The number of responses for each command ID.

■ MEAN – The arithmetic mean of the response times of all responses for each
command ID.

■ STD DEV – The standard deviation of the response times of all responses for each
command ID.
Types of Reports 333

■ MIN – The minimum response time of all responses for each command ID.

■ 50th , 70th , 80th , 90th , 95th – The percentiles of the response times of all responses
for each command ID.

For example, if the 95th percentile of Add Ne002 is 0.53, then 95% of the responses
are less than 0.53 seconds.

■ MAX – The maximum response time of all responses for each command ID.

For example, to display the total response time in the graph and in the last line of the
report:

1 From an processed Performance report, right-click on the graph and select
Settings .

2 Click the Select Commands IDs tab, and select TOTAL .

About Percentiles in Performance Reports

A percentile in a Performance report represents the longest amount of time it takes a
defined percentage of the total number of virtual testers to complete a test script.
Percentiles are given for each command ID in a test script and for the total time it took
for all virtual testers to complete the entire list of commands.

For example, assume that you have a total of 100 virtual testers each executing a
command once. The time in the 50th percentile column indicates that 50% of the
virtual testers completed the command within that amount of time. It took some of
those virtual testers two seconds to complete a command in a test script, some three
seconds, and some five seconds. The 50th percentile time that would appear on the
334 Chapter 13 - Reporting Performance Testing Results

Performance report would be three seconds, meaning that it took all of the virtual
testers in the 50th percentile less than or equal to three seconds to complete the
command.

The Performance report displays the minimum and maximum amounts of time it
takes to complete one command. The percentile times range between the minimum
and maximum times.

When you run a performance test, it is common for some virtual tester runs to take an
abnormally long time to complete a command. For example, a server could be
downloading an application while you are performing the test, so that the time it
takes for the virtual testers to complete their tasks during this download will be
longer than for the other virtual testers. This creates outliers—data that is extreme at
one end of the scale and that does not accurately represent the trend of all the virtual
testers. You can use percentiles to evaluate the results of the test in a way that
eliminates outliers, and thus gives you a more accurate picture of the true response
times.

For example, assume that you have a server that contains an internal web site that has
support information used by 80 technical support staff. You do the following:

■ Decide that the time it takes to gain access to the Web site should never exceed 8
seconds.

■ Create a suite with a test script that gains accesses to the internal support web site.

■ Consider that the anticipated load is 80 users, and decide to test for 100 users to
eliminate outliers.

■ Define a user group of 100 virtual testers, run the suite, and then run a
Performance report.

The percentiles shown on the report are 50, 60, 70, 80, 90, 95. Although you ran the
suite with 100 virtual testers, because you are only required to have results for 80
users, you can discount the 90th and 95th percentiles to eliminate outlier data and to
get accurate results for 80 users. Along with eliminating outliers, testing for more
virtual testers enables you to determine whether the server can handle more than the
anticipated load

Compare Performance Reports

The Compare Performance report compares response times measured by
Performance reports. After you have generated several Performance reports, you can
use a Compare Performance report to compare the values of a specific field in each of
those reports. You also can compare reports that show different numbers of virtual
testers or compare reports from runs on different system configurations.
Types of Reports 335

Compare Performance reports allow you to see how benchmark information on a
particular application differs for various load configurations. This can help you
identify, for example, needed protocol improvements in the tested application. For
example, you could run a test on an application with various virtual tester loads, and
then compare the Performance reports of the various test runs to see how the
application manages under an ever-increasing virtual tester load.

When you run a Compare Performance report, you specify the base Performance
report and up to six other Performance reports.

Defining a Compare Performance Report

Defining a Compare Performance report is similar to defining other reports.

To define a new Compare Performance report:

■ Click Reports > New > Compare Performance .

When you define a Compare Performance report, you must define the following:

■ The fields to compare in the selected Performance reports:

❑ Mean – Compares the mean value of the response times.

❑ Standard Deviation – Compares the standard deviation for the response times.

❑ Percentile – Compares the response times based on the percentile that you
select. The percentile must be in the Performance report. For example, if the
Performance reports calculate the 50, 70, 80, 90, and 95 percentiles, the
Compare Performance report must use one of these percentiles.

■ The style of the comparison relative to the base Performance report:
336 Chapter 13 - Reporting Performance Testing Results

❑ Value relative to base report – Compares the response times relative to the base
Performance report. With this option, the first column in the report (the base
Performance report) is always 1, and the other columns are relative to it. For
example, if the base report lists a response time as 2.5, and another report lists
the response time as 5, then the Compare Performance report lists them as 1
and 2.

❑ Absolute data values – The indicated response times appear in the report. For
example, if the base report lists a response time as 2.5, and another report lists
the response time as 5, then the Compare Performance report lists them as 2.5
and 5.

■ The weight of the response times that occur most frequently:

❑ Individual sample data – The response times are not weighted. A command ID
that occurs ten times and a command ID that occurs 100 times have an equal
influence on the response time statistics.

❑ Weighted by count of base report samples – The response times are weighted to
reflect the frequency of occurrence of the command ID to which they
correspond. Command IDs that occur more frequently have more influence on
the response time statistics, and command IDs that occur less frequently have
less influence on the statistics.

Note: For more information about advanced options, see the TestManager Help.

What’s in Compare Performance Reports?

A Compare Performance report can compare reports in a number of ways. It can
compare reports absolutely, or it can compare reports relative to a base report. In
addition, the response times can be weighted so that command IDs that occur
frequently have more influence, or they can be unweighted so that each command ID
has equal influence.

There are four versions of the Compare Performance report:

■ Absolute

■ Weighted absolute

■ Relative

■ Weighted relative

Examples of each version use the same Performance reports as input.
Types of Reports 337

Absolute Compare Performance Reports

Absolute reports display the actual values of the response times, in seconds. The final
line of the report gives the arithmetic sum of the response times.

To define an absolute report:

■ Follow the steps in Defining a Compare Performance Report on page 336, and be sure
to choose the Absolute data values option.

The following figure shows the last few lines of an absolute Compare Performance
report:

Weighted Absolute Compare Performance Reports

Weighted absolute reports weigh response times by their frequency of occurrence and
are useful for comparing total response times.

To define a weighted absolute report:

■ Follow the steps in Defining a Compare Performance Report on page 336, and choose
the Absolute data values and the Weighted by count of base report samples options.

The weight applied is equal to the number of valid responses for that command ID in
each report. If the command IDs in the reports have a different number of responses,
TestManager uses the smallest non-zero number as the weight.

The weighted absolute value is the product of this weight and the absolute value for
the response time. The final line of the weighted absolute Compare Performance
report gives the arithmetic sum of the weighted response times for each report.
338 Chapter 13 - Reporting Performance Testing Results

The following figure shows the last few lines of a weighted absolute Compare
Performance report:

Relative Compare Performance Reports

Relative reports list the base response time as 1.00 and the other response times
relative to that base.

To define a relative report:

■ Follow the steps in Defining a Compare Performance Report on page 336, and choose
the Value relative to base report option.

The final line of the report gives the geometric mean of the relative response times for
each report. To determine the geometric mean, TestManager multiplies the response
times, and then takes a root of the product that is equal to the number of response
times.

For example, if there are five response times, TestManager multiplies them together
and takes the fifth root of the product.

Mathematically, the geometric mean of a set of values x1, x2, ..., xk is expressed as:

x1x2...xk()1 k/
Types of Reports 339

The following figure shows the last few lines of a relative Compare Performance
report:

Weighted Relative Compare Performance Reports

This report is the same as the relative report, except that it also lists the weighted
geometric mean.

To define a weighted relative report:

■ Follow the steps in Defining a Compare Performance Report on page 336, and choose
the Value relative to base report and the Weighted by count of base report samples
options.

The weighted geometric mean differs from the geometric mean in that it takes into
account the frequency with which the different command IDs occur. Frequently used
command IDs have a greater influence on the weighted geometric mean than
infrequently used ones—in contrast to the geometric mean, where all command IDs
have equal influence.

The weight applied when calculating the weighted geometric mean for each
command ID equals the number of valid responses for that ID in each report being
compared. If the number of valid responses for a command ID differs among the
reports, the smallest non-zero count is used as its weight.

Mathematically, the weighted geometric mean of a set of values x1, x2, ..., xk with
frequencies (weights) of f1, f2, ..., fk, where f1 + f2 + ... + fk = N, is expressed as:

x1
f1x2

f2...xk
fk()

1 N⁄
340 Chapter 13 - Reporting Performance Testing Results

The following figure shows the last few lines of a weighted relative Compare
Performance report:

N/A and Undefined Responses

Occasionally, you might see the strings n/a and Undefn in a Compare Performance
report. The following table describes when TestManager displays these strings:

Response vs. Time Reports

Response vs. Time reports display individual response times. Response vs. Time
reports use the same input data as Performance reports, and sort and filter data
similarly. However, Response vs. Time reports show each command ID individually,
while Performance reports group responses with the same command ID.

If ... Then the Compare Performance report ...

A command ID is in the base report but
does not exist in the other reports.

Lists n/a for that command ID in the table
and does not include information for that
command ID in the report graph.

A command ID is in the report but does
not occur in the base report.

Ignores that command ID.

You are producing a relative report, and
some command IDs have a response
time of 0.

Lists the response time as 0 in the base
report, and lists the other results
corresponding to that command ID as
Undefn .

All the response times for a report are
listed as n/a or Undefn .

Lists the geometric mean or sum as n/a.
Types of Reports 341

To define a new Response vs. Time report:

■ Click Reports > New > Response vs. Time .
342 Chapter 13 - Reporting Performance Testing Results

Response vs. Time reports are useful for the following tasks:

■ Checking the trend in the response time. The Response vs. Time report shows the
response time versus the elapsed time of the suite run.

The response time should be clustered around one point rather than getting
progressively longer or shorter. If the trend changes, check that you have excluded
login and setup time in your results. The worst case is that you might need to
change your test design.

■ Checking any spikes in the response time. If the response time is relatively flat
except for one or two spikes, you might want to investigate the cause of the spikes.

■ Filtering the data so that it contains only one command ID, and then graphing that
command ID as a histogram.

■ Checking the resources used by a computer in the run (optional).

To see the resources used, right-click on the Response vs. Time report and select a
computer.

The following figure shows a Response vs. Time report. This graph shows that the
first virtual tester in the accounting group (Accounting 1) executed two commands.
Types of Reports 343

The graph plots each virtual tester versus the response time in milliseconds. The
graph contains many short lines that resemble dots. They indicate that the response
times for all the virtual testers are quite short. The longer a line is on the X axis, the
longer the response time, because the X axis graphs the response time.

What’s in Response vs. Time Reports?

Typically, Response vs. Time reports contain two sections, one for expected responses
and one for unexpected responses. The responses within each section are sorted by
command ID. Within each command ID, responses are sorted by the ending
timestamp.

Response vs. Time reports contain the following information:

■ Cmd ID – The command ID associated with the response.

■ Ending TS – The ending timestamp of the response. This timestamp corresponds to
the value of the read-only timestamp variable for the response. The timestamp is
the interval ending timestamp as defined by the Time Period report option.

■ Response – The response time in milliseconds.

■ Status – Displays P or F to indicate whether the response passed or failed.

■ Virtual Tester – The virtual tester corresponding to the response.

■ Script – The name of the test script corresponding to the response.

Command Status Reports

Command Status reports show how well actual responses correspond with the
expected responses. If the response that you received is the same or is expected,
TestManager considers that it has passed; otherwise, TestManager considers it failed.
344 Chapter 13 - Reporting Performance Testing Results

To define a new Command Status report:

■ Click Reports > New > Command Status .

Command Status reports reflect the overall health of a suite run. They are similar to
Performance reports, but they focus on the quantity of commands run in the suite.
Command Status reports are excellent tools for debugging the testing process, as you
can see easily which commands fail repeatedly and that address that test script
accordingly.

The following figure shows an example of Command Status report. This graph shows
that command 1 (command ID Add Ne01) ran 24 times and did not fail, and
command 6 (command ID Calcul001) ran 8 times and did not fail.
Types of Reports 345

The graph plots the command number against the number of times the test script ran.
It displays commands that passed in green, and displays commands that failed in red.

What’s in Command Status Reports?

Command Status reports contain the following information:

■ Cmd ID – The command ID associated with the response.

■ NUM – The number of responses corresponding to each command ID. This number
is the sum of the numbers in the Passed and Failed columns.

■ Passed – The number of passed responses for each command ID (that is, those that
did not time out).

■ Failed – The number of failed responses for each command ID that timed out (that
is, the expected response was not received).

■ % Passed – The percentage of responses that passed for that command ID.

■ % Failed – The percentage of responses that failed for that command ID.

The last line of the report lists the totals for each column.

Command Usage Reports

Command Usage reports display data on all emulation commands and responses.
The report describes throughput and virtual tester characteristics during the suite run.

To define a new Command Usage report:

■ Click Reports > New > Command Usage .
346 Chapter 13 - Reporting Performance Testing Results

The summary information in the Command Usage report gives a high-level view of
the division of activity in a test run. The cumulative time spent by virtual testers
executing commands, thinking, or waiting for a response can tell you quickly where
there are bottlenecks in the test application. The Command Usage report also can
provide summary information for protocols.

The following figure shows an example of a Command Usage report:

What’s in Command Usage Reports?

Command Usage reports contain a section on cumulative statistics and a section on
summary statistics.

Cumulative Statistics

■ Active Time – The sum of the active time of all virtual testers. The active time of a
virtual tester is the time that the virtual tester spent thinking (including delays
after the virtual tester’s first recorded command), executing commands, and
waiting for responses.

■ Inactive Time – The sum of the inactive time of all virtual testers and test scripts.
The inactive time of a virtual tester is the time before the virtual tester’s first
emulation command (including overhead time needed to set up and initialize the
run), and possibly inter-script delay (the time between the last emulation
command of the previous test script and the beginning of the current test script).

■ Passed Commands – The total number of passed sqlexec, sqlprepare,
sql*_cursor, TUXEDO, http_request, sock_send, emulate, and DCOM method
call commands executed.
Types of Reports 347

■ Failed Commands – The total number of failed sqlexec, sqlprepare,
sql*_cursor, TUXEDO, http_request, sock_send, emulate, and DCOM method
call commands executed.

■ Passed Responses – The total number of responses to input commands that were
matched by passing receive commands (sqlnrecv, sqllongrecv, http_nrecv,
http_recv, sock_nrecv, and sock_recv). This is not the same as the total number
of expected receive commands, since a response may be matched by an arbitrary
number of receive commands. A response is considered expected if all receive
commands used to match it have an expected status.

■ Failed Responses – The total number of responses that were matched by failing
receive emulation commands. This is not the same as the total number of
unexpected receive commands, since a response may be received by an arbitrary
number of receive commands. A response is considered unexpected if any receive
commands used to match it have an unexpected status.

■ Average Throughput – Four measurements of average throughput are provided:
passed command throughput, failed command throughput, passed response
throughput, and failed response throughput. This represents the throughput of an
average virtual tester.

■ Time Spent Waiting – The total time spent waiting for responses, given both in
seconds and as a percentage of active time. The time spent waiting is the elapsed
time from when the input command is submitted to the server until the server
receives the complete response. The time that an http_request spends waiting for
a connection to be established is counted as time spent waiting.

■ Time Executing Commands – The total time spent in executing sqlexec,
sqlprepare, sql*_cursor, TUXEDO, emulate, and DCOM method call commands.
This measurement is provided both in seconds and as a percentage of active time.
The time spent executing SQL commands is defined as the elapsed time from
when the SQL statements are submitted to the server until these statements have
completed. The time spent executing TUXEDO commands is defined as the time to
execute the specific ATMI primitive until it succeeds or fails.

■ Time Spent in Input – The total time spent sending virtual tester input to the server.
This measurement is provided both in seconds and as a percentage of active time.
The time spent by http_request and sock_send commands in sending input to
the server is reported as time spent in input.

■ Time Spent Thinking – The total time spent thinking, both in seconds and as a
percentage of active time. The time spent thinking for a given command is the
elapsed time from the end of the preceding emulation command until the current
emulation command is submitted to the server. This definition of think time
348 Chapter 13 - Reporting Performance Testing Results

corresponds to that used during the run only if the environment variable
Think_def in the test script has the default LR (last received), which assumes that
think time starts at the last received data timestamp of the previous response.

If any SQL emulation commands were executed, the Command Usage report
includes:

■ Rows Received – The number of rows received by all reported sqlnrecv
commands.

■ Received Rows/Sec – Average number of rows received per second. Derived by
dividing the number of rows received by the active time

■ Average Rows/Response – Average number of rows in the passed and failed
responses. Derived by dividing the number of rows received by the number of
passed and failed responses.

■ Average Think Time – Average think time in seconds for sqlexec and sqlprepare
statements only.

■ SQL Execution Commands – The number of sqlexec commands reported.

■ Preparation Commands – The number of sqlprepare commands reported.

■ Rows Processed – The number of rows processed by all reported sqlexec
commands.

■ Processed Rows/Sec – Average number of rows processed per second. Derived by
dividing the number of rows processed by the active time.

■ Avg Rows/Execute Cmd – Average number of rows processed by each sqlexec
command. Derived by dividing the number of rows processed by the number of
sqlexec commands reported.

■ Avg Row Process Time – Average time in milliseconds for processing a row by an
sqlexec command. Derived by dividing the time spent on sqlexec commands by
the number of rows processed.

■ Avg Execution Time – Average time in milliseconds to execute an sqlexec or
DCOM method call command. Derived by dividing the time spent on sqlexec
commands by the number of sqlexec commands.

■ Avg Preparation Time – Average time in milliseconds to execute an sqlprepare
command. Derived by dividing the time spent on sqlprepare commands by the
number of sqlprepare commands.

If any HTTP emulation commands were executed, the Command Usage report
includes:
Types of Reports 349

■ Passed HTTP Connections – The number of successful HTTP connections
established by all reported http_request commands.

■ Failed HTTP Connections – The number of HTTP connection attempts that failed to
establish a connection for all reported http_request commands.

■ HTTP Sent Kbytes – Kilobytes of data sent by reported http_request commands.

■ HTTP Received Kbytes – Kilobytes of data received by reported http_nrecv and
http_recv commands.

■ Sent Kbytes/Connection – Kilobytes of data sent by reported http_request
commands per connection. Derived by dividing the kilobytes of data sent by the
number of successfully established HTTP connections.

■ Passed Connections/Min – The number of successful HTTP connections established
per minute. Derived by dividing the number of successful HTTP connections by
the active time.

■ Avg Connect Setup Time – Average time, in milliseconds, required to establish a
successful HTTP connection. Derived by dividing the total connection time for all
recorded http_request commands by the number of successful connections.

■ HTTP Sent Kbytes/Sec – Kilobytes of data sent per second. Derived by dividing the
kilobytes of data sent by all recorded http_request commands by the active time.

■ HTTP Recv Kbytes/Sec – Kilobytes of data received per second. Derived by
dividing the kilobytes of data received by all recorded http_nrecv and http_recv
commands by the active time.

■ Recv Kbytes/Connection – Kilobytes of data received by reported http_nrecv and
http_recv commands per connection. Derived by dividing the kilobytes of data
received by the number of successfully established HTTP connections.

If any socket emulation commands were executed, the Command Usage report
includes:

■ Passed Socket Connections – The number of successful socket connections
established by all reported sock_connect functions.

■ Socket Sent Kbytes – Kilobytes of data sent by reported sock_send commands.

■ Socket Received Kbytes – Kilobytes of data received by reported sock_nrecv and
sock_recv commands.

■ Passed Connections/Min – The number of successful socket connections
established per minute. Derived by dividing the number of successful socket
connections by the active time.
350 Chapter 13 - Reporting Performance Testing Results

■ Socket Sent Kbytes/Sec – Kilobytes of data sent per second. Derived by dividing
the kilobytes of data sent by all recorded sock_send commands by the active time.

■ Socket Recv Kbytes/Sec – Kilobytes of data received per second. Derived by
dividing the kilobytes of data received by all recorded sock_nrecv and sock_recv
commands by the active time.

If any TUXEDO emulation commands were executed, the Command Usage report
includes:

■ Tuxedo Execution Commands – The number of TUXEDO commands reported.

■ Avg Execution Time – Average time in milliseconds to execute a TUXEDO
command. Derived by dividing the time spent on TUXEDO commands by the
number of TUXEDO commands.

If any start_time emulation commands were executed, the Command Usage report
includes:

■ stop_time Commands – The number of stop_time commands reported.

■ stop_time Cmds/Min – The number of stop_time commands per minute. Derived
by dividing the number of stop_time commands by the active time.

■ start_time Commands – The number of start_time commands reported.

■ Avg Block Time – Average response time in seconds for reported stop_time
commands. Derived by dividing the sum of the response times for all stop_time
commands by the number of stop_time commands. The response time of a
stop_time command is the elapsed time between it and its associated start_time
command.

If any emulate emulation commands were executed, the Command Usage report
includes:

■ Passed emulate Commands – The number of emulate commands that report a
passed status.

■ Passed emulate Time Spent – The total time spent, from when the passed emulate
commands start to where they end.

■ Failed emulate Commands – The number of emulate commands that report a failed
status.

■ Failed emulate Time Spent – The total time spent, from when the failed emulate
commands start to where they end.

If any testcase emulation commands were executed, the Command Usage report
includes:
Types of Reports 351

■ Passed testcase Commands – The number of testcase commands that report a
passed status.

■ Failed testcase Commands – The number of testcase commands that report a
failed status.

Summary Statistics

■ Duration of Run – Elapsed time from the beginning to the end of the run. The
beginning of the run is the time of the first emulation activity among all virtual
testers and test scripts, not just the ones you have filtered for this report. Similarly,
the end of the run is the time of the last emulation activity among all virtual testers
and test scripts.

■ Passed Commands , Failed Commands , Passed Responses , Failed Responses –
Identical to their counterparts in Cumulative Statistics on page 347.

■ Total Throughput – Four measurements of total throughput are provided: passed
command throughput, failed command throughput, passed response throughput,
and failed response throughput. The total throughput of passed commands is
obtained by dividing the number of passed commands by the run’s duration, with
the appropriate conversion of seconds into minutes. Thus, it represents the total
passed command throughput by all selected virtual testers at the applied
workload, as opposed to the throughput of the average virtual tester. The total
failed command, and the total passed and failed response throughputs are
calculated analogously.

These throughput measurements, as well as the test script throughput, depend
upon the virtual tester and test script selections. For example, if only three virtual
testers from a ten-virtual tester run are selected, the throughput would not
represent the server throughput at a ten-virtual tester workload, but rather the
throughput of three selected virtual testers as part of a ten-virtual tester workload.
As a guideline, the summary throughput measurements are most meaningful
when all virtual testers and test scripts are selected.

■ Number of Users – The number of virtual testers in the suite run.

■ Number of stop_time Cmds – The number of stop_time commands in the suite
run.

■ Number of Completed Scripts – Test scripts are considered complete if all activities
associated with the test script are completed before the run ends.

■ Number of Uncompleted Scripts – The number of test scripts that have not finished
executing when a run is halted. Test scripts can be incomplete if you halt the run or
set the suite to terminate after a certain number of virtual testers or test scripts.
352 Chapter 13 - Reporting Performance Testing Results

■ Average Number of Scripts Completed per User – Calculated by dividing the
number of completed test scripts by the number of virtual testers.

■ Average Script Duration for Completed Scripts – Average elapsed time of a
completed test script. Calculated by dividing the cumulative active time of all
virtual testers and test scripts by the number of completed test scripts.

■ Script Throughput for Completed Scripts – The number of test scripts-per-hour
completed by the server during the run. Calculated by dividing the number of
completed test scripts by the duration of the run, with the conversion of seconds
into hours. This value changes if you have filtered virtual testers and test scripts.

If any stop_time emulation commands were executed, the Command Usage report
includes:

■ Avg Number of stop_time Commands – Calculated by dividing the number of
stop_time commands by the number of virtual testers.

■ Average start_time/stop_time Duration – Average response time in seconds for
reported stop_time commands. Derived by dividing the sum of the response
times for all stop_time commands by the number of stop_time commands. The
response time of a stop_time command is the elapsed time between it and its
associated start_time command.

■ stop_time Command Throughput for all Users – The number of stop_time
commands executed per minute during the suite run. Derived by dividing the
number of stop_time commands by the duration of the run.

If any emulate emulation commands were executed, the Command Usage report
includes:

■ Passed emulate Commands – The number of emulate commands that report a
passed status.

■ Passed emulate Time Spent – The total time spent, from when the passed emulate
commands start to where they end.

■ Failed emulate Commands – The number of emulate commands that report a failed
status.

■ Failed emulate Time Spent – The total time spent, from when the failed emulate
commands start to where they end.

If any testcase emulation commands were executed, the Command Usage report
includes:

■ Passed testcase Commands – The number of testcase commands that report a
passed status.
Types of Reports 353

■ Failed testcase Commands – The number of testcase commands that report a
failed status.
354 Chapter 13 - Reporting Performance Testing Results

AConfiguring Local and
Agent Computers
If your suite runs a large number of virtual testers, you must set certain system
environment variables for the run to complete successfully.

Running More Than 245 Virtual Testers

If your suite runs more than 245 virtual testers total, you must change two settings in
the NuTCRACKER operating environment on the Local computer. To run more than
245 virtual testers on an NT Agent computer, you must make the same changes on
that Agent.

To change these settings:

1 Click Start > Settings > Control Panel > Nutcracker .

2 Click the NuTC 4 Options tab.

3 Select Semaphore Settings from the Category list.

4 Change the Max Number of Semaphores to N + S + 10, where N is the number of
virtual testers you want to run and S is the number of shared variables used by
scripts in the suite.

5 Repeat for Max Number of Semaphores Per ID .

6 Click OK.

7 Click Restart Later .

8 Restart NT.

Running More Than 1000 Virtual Testers

If your suite runs more than 1000 virtual testers total, you must create an environment
variable that sets the minimum shared memory size on the Local computer. To run
more than 1000 virtual testers on an NT Agent computer, you must make the same
changes on that Agent.
355

To create and set this environment variable:

1 Click Start > Settings > Control Panel > System .

2 Click the Environment tab.

3 Create an environment variable named RT_MASTER_SHM_MINSZ, and set its value
to 700 * N, where N is the number of virtual testers that you want to run.

On the Local computer, N is the total number of virtual testers for the entire run.
On the Agent computer, N is the number of virtual testers that run on that Agent.

4 Click Set, and then click OK.

5 Restart NT.

Running More Than 1000 Virtual Testers on One NT Computer

If your suite runs more than 1000 virtual testers on an NT computer, you must create
and set a system environment variable on each NT computer running more than 1000
virtual testers.

To create and set this environment variable:

1 Click Start > Settings > Control Panel > System .

2 Click the Environment tab.

3 Create an environment variable named RT_MASTER_NTUSERLIMIT, and set its
value to the number of virtual testers you want to run.

4 Click Set, and then click OK.

5 Restart TestManger (on the Local computer) or the test Agent (on the Agent
computer) for the new setting to take effect on that computer.
356 Chapter A - Configuring Local and Agent Computers

Running More Than 24 Virtual Testers on a UNIX Agent

If your suite runs more than 24 virtual testers on a UNIX Agent computer, you must
set the following system environment variables:

Note: These values are in addition to the requirements of other system processes or
applications. The current system values should not be decreased. For example, if other
system processes require SEMMNI=10, then do not decrease the value to 1.

For example, for a Solaris Agent running 2000-4000 virtual testers, set system
environment variables as follows:

set semsys:seminfo_semmap=1024
set semsys:seminfo_semmni=4096
set semsys:seminfo_semmns=4096
set semsys:seminfo_semmnu=4096
set semsys:seminfo_semmsl=1024
set semsys:seminfo_semopm=50
set semsys:seminfo_semume=64
set semsys:seminfo_shmmni=1024

System Environment Variable Value

Total TestManager processes (NPROC,
MAXUP)

The number of virtual testers on the Agent
+ 5.

Total open files (NFILE, NINODE) (6 * N) + (open_files * N) + (connections * N)

N is the number of virtual testers on the
Agent.
open_files is the number of files explicitly
opened within test scripts.
connections is the number of connections
open concurrently.

Total system-wide shared memory
(SHMALL/SHMMAX)

724 + 5609N + 16S + 13G + group_names
bytes

N is the number of virtual testers on the
Agent. S is the total number of shared
variables in all the test scripts in the suite. G
is the total number of user groups in the
suite. group_names is the total length of all
user group names in the suite.

Semaphore set IDs (SEMMNI,
SEMMAP)

1

Total semaphores (SEMMNS) The number of virtual testers on the Agent.

Semaphores per set (SEMMSL) The number of virtual testers on the Agent.
Running More Than 24 Virtual Testers on a UNIX Agent 357

set semsys:seminfo_shmmax=100072000
set semsys:seminfo_shmseg=100
set semsys:seminfo_shmmin=1

Controlling TCP Port Numbers

The rtmstr_v and rtmstr_s network services have been added to control the ports on
the Local computer to which the Agent communication software connects. These
network services allow tests to be run with Local and Agent computers on different
networks separated by a firewall, by controlling the ports to which the listening Local
server processes bind.

In a test run involving Agents, there are multiple socket connections between the
Local and each Agent.

Connections made from the Local to the Agent computer are always made to a single
well-known port on which the test Agent is listening. This port defaults to 8800.

There are two connections made from each Agent to the Local, one to a Local server
process named rtvsrv and another to a Local server process named rtssrv. These two
server processes each listen on a separate port. They do not bind to a specific port, but
instead the Local computer’s operating system chooses a port dynamically. The Local
computer then communicates these port values to the Agent during run initialization.
(Note that all Agents connect to the same two ports on the Local computer.) It is these
two dynamically chosen ports on the Local computer that cause firewall
administration problems because the two ports that will be used cannot be
determined in advance.

You can control this problem by using the optional presence of network services (the
traditional TCP/UDP network services defined in an /etc/services file, not to be
confused with an NT service). On NT, the services file is found in
Drive\WINNT\system32\drivers\etc\services. There is one entry per line, which
lists the service name, the port number, and the protocol (TCP or UDP).

Specifically, control over the ports is provided as follows:

rtvsrv binds to the port (in priority order):

1 The value of the TCP service named rtmstr_v, if defined.

Otherwise,

2 A port dynamically chosen by the system.
358 Chapter A - Configuring Local and Agent Computers

rtssrv binds to the port (in priority order):

1 The value of the TCP service named rtmstr_s, if defined.

Otherwise,

2 A port dynamically chosen by the system.

Note that the ports defined by these two services are independent. That is, they do not
need to be adjacent, nor related to the well-known test Agent port of 8800. They do
need to be unique. We suggest using the ports 8801 and 8802 if they are not used for
some other service on the Local computer.

For example, if you want the ports on the Local computer to be 8801 and 8802, add
two lines to the services file:

rtmstr_s8801/tcp# TestStudio Master S server

rtmstr_v8802/tcp# TestStudio Master V server

In addition, the rtagent network service has been added to control the port at which
the test Agent listens. If the well-known Agent port of 8800 is already in use by
another application on one or more Agent computers, an alternate port needs to be
specified using the rtagent service.

The rtagent service is put in the services file in the same way that the network services
rtmstr_v and rtmstr_s are put in the file. The difference is that the rtagent service must
be defined on the Local and all Agents used in the testing run, and must be identical
for all systems. The Agents must be rebooted after altering the service file.

For example, if you want the Agent to list on port 8888, add a line to the services file
on both the Local and the Agent:

rtagent8888/tcp# TestStudio Agent

Setting Up IP Aliasing

TestManager provides IP aliasing, which allows many IP addresses to be assigned to
the same physical system. Every virtual tester can be assigned a different IP address to
realistically emulate your virtual tester community. The requests generated by these
virtual testers receive responses back from the Web server with timing characteristics
and validation recorded intact.

To use IP aliasing on any particular computer, the system administrator must set up
the IP addresses on that system.

For Windows NT, this can be done with the Settings > Control Panel > Network >
Protocols > TCP/IP Protocol > Properties > Advanced > IP Addresses > Add button.
Setting Up IP Aliasing 359

For UNIX, this can be done with the ifconfig (1) command line utility. See the
ifconfig manual pages for specific details appropriate to that operating system. To
set up large numbers of IP addresses, it is convenient to use a Perl or UNIX shell
script. A sample Korn shell script for this purpose named ipalias_setup can be
found in the bin directory of UNIX Agent installs. (You must have root privileges to
set up IP aliases with ifconfig.)

Be careful when assigning IP addresses to a computer, since you may run into
problems such as conflicting IP addresses or routing considerations. We recommend
that IP addresses be assigned by a qualified network administrator.

After IP Aliasing is set up, open a suite, click the Suite > Edit Runtime , and select the
Enable IP Aliasing check box.

If IP Aliasing is selected in the suite, then at the beginning of a run, the TestManager
software on each computer (Local or Agent) queries the system for all available IP
addresses. Each suite scheduled to run on that computer is assigned an IP address
from that list, in round-robin fashion. In other words, if there are more virtual testers
on a computer than IP addresses, then an IP address is assigned to multiple virtual
testers. If there are fewer virtual testers than IP addresses, then some IP addresses are
not used. This approach optimizes the distribution of IP addresses regardless of the
number of virtual testers scheduled on any particular computer, and frees you from
having to match IP addresses to specific virtual testers.

Assigning Values to System Environment Variables

TestManager passes the system environment variables set on an Agent computer to
each virtual tester. If you are using virtual testers to test a database server or
application, you can override these system environment variables.
360 Chapter A - Configuring Local and Agent Computers

To override the value of a system environment variable:

■ Click Suite > Edit Settings , and then click the button in the Sys Environment
Variables column of the User Settings dialog box.

You can change the value or a previously set system environment variable in the
System Environment Variables dialog box. For more information, see TestManager
online Help.

You can set system environment variables for listed testing platforms as follows:

Testing Platform System Environment Variable Settings

Oracle on a UNIX
Agent

Specify the directory that contains the client software in the
variable ORACLE_HOME.

Example:

ORACLE_HOME = /ora/app/oracle/product/8.0.5

If /var/opt/oracle does not contain tnsnames.ora, assign the
pathname of the file to the variable TNS_ADMIN.

Example: TNS_ADMIN = /home/uname/oracletest

Sybase on a UNIX
Agent

Specify the directory that contains the client software in the
variable SYBASE.

Example: SYBASE = /usr/local/sybasec

Specify the directory that contains the Sybase client libraries in
the path of one of the following system environment variables:

PATH (Windows)

LD_LIBRARY_PATH (Solaris Agents)

SHLIB_PATH (HP-UX Agents)

LIBPATH (AIX Agents)
Assigning Values to System Environment Variables 361

Java on a UNIX
Agent

Specify the directory that contains the Java libraries in the
variable LD_LIBRARY_PATH.

Example:
LD_LIBRARY_PATH=/usr/jre118/lib/linux/native_threads

When the Agent computer is also using third-party software
(such as IBMWebSphere) you must specify the directory
location of that software’s libraries in the system environment
variable LD_LIBRARY_PATH in addition to the Java libraries.

In addition, for Java Developers Kit version1.1, you must also
set the following variable:

JAVA_COMPILER=NONE

Local or Agents
running TUXEDO
test scripts

Specify the directory that contains the client software in the
variable TUXDIR.

Set the NLSPATH environment variable to the path of the
directory that contains the TUXEDO message file.

Set the value of $TUXDIR/lib to one of the following system
environment variables:

LD_LIBRARY_PATH (Solaris Agents)

SHLIB_PATH (HP-UX Agents)

LIBPATH (AIX Agents)

For Windows NT Local computers, these must be defined
only for TUXEDO client-only installations. The TUXEDO full
run-time installation process sets them automatically. For
more information, see the TUXEDO installation instructions.

Set one of the following:

The Workstation Listener’s address to WSNADDR.

Example:

WSNADDR=//sparky:36001
WSNADDR=00028CA1C0A8F0D6

The Workstation Listener’s host name and port to WSLHOST
and WSLPORT. These variables override WSNADDR, if set.

Example:

WSLHOST=sparky
WSLPORT=36001

Testing Platform System Environment Variable Settings
362 Chapter A - Configuring Local and Agent Computers

Local or Agents
running TUXEDO
test scripts that
use FML typed
buffer field names

Set a list of FML field table file names to FIELDTBLS. This
variable is used by Agents running test scripts that contain FML
typed buffer field name references. If this variable is not set,
functions that use FML typed buffer field names that are not
included in this list fail, causing dependent commands to fail.

Example: FIELDTBLS=ct.fldtbl,inv.fldtbl

Set the absolute pathname of the directory containing the FML
field table file to FLDTBLDIR. This variable is used by Agents
running test scripts that contain FML typed buffer field name
references. If this variable is not set, functions that use FML
typed buffer field names that are not included in this list (for
example, tux_setbuf_int()) fail, causing dependent
commands to fail.

Example: FLDTBLDIR=/u1/tuxapp/dat

Local or Agents
running TUXEDO
test scripts that
use FML32 typed
buffer field names

Set a list of FML32 field table file names to FIELDTBLS32. This
variable is used by Agents that run test scripts that contain
FML32 typed buffer field name references. If this variable is not
set, functions that use FML32 typed buffer field names that are
not included in this list fail, causing dependent commands to
fail.

Example: FIELDTBLS32=ct32.fldtbl,inv32.fldtbl

Set the absolute pathname of the directory containing the
FML32 field table files to FLDTBLDIR32. This variable is used
by Agents running test scripts that contain FML32 typed buffer
field name references. If this variable is not set, functions that
use FML32 typed buffer field names that are not included in this
list (such as tux_setbuf_int()) fail, causing dependent
commands to fail.

Example: FLDTBLDIR32=/u1/tuxapp/dat

Local or Agents
running TUXEDO
test scripts that
use VIEW,
X_COMMON, or
X_C_TYPE typed
buffers

Set a list of view description file names to VIEWFILES. This
variable is used by Agents running test scripts that use VIEW,
X_COMMON or X_C_TYPE typed buffers. If this variable is not set,
functions that use these typed buffers that are defined in view
description files not in this list fail, causing dependent
commands to fail.

Example: VIEWFILES=ct.V,inv.V

Set the absolute pathname of the directory containing the view
description files to VIEWDIR. If this variable is not set,
tux_tpalloc() or tux_alloc_buf() calls that try to
allocate a buffer of type VIEW, X_COMMON, or X_C_TYPE fail,
causing dependent commands or functions to fail.

Example:
VIEWDIR=/u1/tuxapp/dat:/u1/tuxapp/dat2

Testing Platform System Environment Variable Settings
Assigning Values to System Environment Variables 363

Local or Agents
running TUXEDO
test scripts that
use VIEW32 typed
buffers

Set a list of view description file names to VIEWFILES32. This
variable is used by Agents running scripts that use VIEW32
typed buffers. If this variable is not set, functions that use
VIEW32 typed buffers which are defined in view description
files not in this list will fail, causing dependent commands to
fail.

Example: VIEWFILES32=ct32.V,inv32.V

Set the absolute pathname of the directory containing the view
description files to VIEWDIR32. This variable is used by Agents
running test scripts that use VIEW32 typed buffers. If this
variable is not set, tux_tpalloc() or tux_alloc_buf()
calls that try to allocate a buffer of type VIEW32 fail, causing
dependent commands or functions to fail.

Example: VIEWDIR32=/u1/tuxapp/dat

Solaris Agents
running TUXEDO
test scripts

Set the TLI network service provider pathname to WSDEVICE.
This value is typically /dev/tcp. If not set, playback terminates
with an error message.

Example: WSDEVICE=/dev/tcp

INFORMIX on a
UNIX Agent
computer

Assign a valid entry in the $INFORMIXDIR/etc/sqlhosts
file to INFORMIXSERVER.

Assign a value to INFORMIXDIR. The value depends on your
version of INFORMIX CLI and INFORMIX ESQL/C.

Testing Platform System Environment Variable Settings
364 Chapter A - Configuring Local and Agent Computers

BStandard Datapool Data
Types
This appendix contains:

■ A table of standard data types

■ A table of minimum and maximum ranges for the standard data types

Standard Data Type Table

Data types supply datapool columns with their values. You assign data types to
datapool columns when you define the columns in the Datapool Specification
dialog box.

The standard data types listed in the following table are included with your Rational
Test software. Use these data types to help populate the datapools that you create.

The standard data types (plus any user-defined data types you create) are listed in
the Datapool Specification dialog box under the heading Type. You can use this dialog
box to set Type and the other datapool column definitions (such as Length and
Interval) listed in the following table.

Note that related data types (such as cities and states) are designed to supply
appropriate pairings of values in a given datapool row. For example, if the
Cities - U.S. data type supplies the value Boston to a row, the State Abbrev. - U.S. data
type supplies the value MA to the row.
365

Standard Data Type Table
Standard data type name Description Examples

Address - Street Street numbers and names. No period after
abbreviations.

20 Maguire Road
860 S Los Angeles St 8th Fl
75 Wall St 22nd Fl

Cities - U.S. Names of U.S. cities. Lexington
Cupertino
Raleigh

Company Name Company names (including designations
such as Co and Inc where appropriate).

Rational Software Corp
TSC Div Harper Lloyd Inc
Sofinnova Inc

Date - Aug 10, 1994 Dates in the format shown.

The day portion of the string is always two
characters. Days 1 through 9 begin with a
blank space.

To include the comma (,) as an ordinary
character rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

Oct 8, 1997
Jun 17, 1964
Nov 10, 1978

If the comma is the
delimiter, the values are
stored in the datapool as
follows:

"Oct 8, 1997"
"Jun 17, 1964"
"Nov 10, 1978"

Date - August 10, 1994 Dates in the format shown.

The day portion of the string is always two
characters. Days 1 through 9 begin with a
blank space.

To include the comma (,) as an ordinary
character rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

October 8, 1997
June 17, 1964
November 10, 1978

If the comma is the
delimiter, the values are
stored in the datapool as
follows:

"October 8, 1997"
"June 17, 1964"
"November 10, 1978"
366 Appendix B

Standard Data Type Table
Date - MM/DD/YY Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in Maximum
must be greater than the year in Minimum).

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
010100 and Maximum to 123199.

10/08/97
06/17/64
11/10/78

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"10/08/97"
"06/17/64"
"11/10/78"

Date - MM/DD/YYYY Dates in the format shown.

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

10/08/1997
06/17/1964
11/10/1978

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"10/08/1997"
"06/17/1964"
"11/10/1978"

Date - MMDDYY Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in Maximum
must be greater than the year in Minimum).

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
010100 and Maximum to 123199.

100897
061764
111078

Date - MM-DD-YY Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in Maximum
must be greater than the year in Minimum).

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
010100 and Maximum to 123199.

10-08-97
06-17-64
11-10-78

Date - MMDDYYYY Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

10081997
06171964
11101978

Date - MM-DD-YYYY Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
01011900 and Maximum to 12312050.

10-08-1997
06-17-1964
11-10-1978

Standard data type name Description Examples
Standard Datapool Data Types 367

Standard Data Type Table
Date - YYYY/MM/DD Dates in the format shown.

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
19000101 and Maximum to 20501231.

1997/10/08
1964/06/17
1978/11/10

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"1997/10/08"
"1964/06/17"
"1978/11/10"

Date - YYYYMMDD Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
19000101 and Maximum to 20501231.

19971008
19640617
19781110

Date, Julian - DDDYY Dates in the format shown. DDD is the
total number of days that have passed in a
year. For example, January 1 is 001, and
February 1 is 032.

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
00100 and Maximum to 36599.

28197
16964
31478

Date, Julian - DDDYYYY Dates in the format shown. DDD is the
total number of days that have passed in a
year. For example, January 1 is 001, and
February 1 is 032.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
0011900 and Maximum to 3652050.

2811997
1691964
3141978

Date, Julian - YYDDD Dates in the format shown. DDD is the
total number of days that have passed in a
year. For example, January 1 is 001, and
February 1 is 032.

To set a range of dates from January 1, 1900
through December 31, 1999, set Minimum to
00001 and Maximum to 99365.

97281
64169
78314

Date, Julian - YYYYDDD Dates in the format shown. DDD is the
total number of days that have passed in a
year. For example, January 1 is 001, and
February 1 is 032.

To set a range of dates from January 1, 1900
through December 31, 2050, set Minimum to
1900001 and Maximum to 2050365.

1997281
1964169
1978314

Standard data type name Description Examples
368 Appendix B

Standard Data Type Table
Float - X.XXX Positive and negative decimal numbers in
the format shown.

Set ������ to the number of decimal places
to allow (up to 6).

Set Minimum and Maximum to the range of
numbers to generate.

To generate numbers with more than 9
digits (the maximum allowed with the
Integers - Signed data type), use the Float -
X.XXX data type and set ��	
��
� to 0.

243.63918
-95.99
155075028157503

Float - X.XXXE+NN Positive and negative decimal numbers in
the exponential notation format shown.

Set ������ to the number of decimal places
to allow (up to 6).

Set Minimum and Maximum to the range of
numbers to generate.

4.0285177E+068
-3.2381443E+024
8.8373255E+119

Gender Either M or F, with no following period. M
F

Hexadecimal Hexadecimal numbers. 1d6b77
ff
3824e7d

Integers - Signed Positive and negative whole numbers. This
is the default data type.

To include negative numbers in the list of
generated values, set Minimum to the
lowest negative number you want to allow.

Maximum range:
■ Minimum = -999999999 (-999,999,999)

■ Maximum = 999999999 (999,999,999)

For larger numbers, use a float data type.

If you do not specify a range, the default
range is 0 through 999,999,999.

Use this data type to generate unique data
in a datapool column (for example, when
you need a “key” field of unique data).
You can also use Read From File and
user-defined data types to generate unique
data.

1349
-392993
441393316

Standard data type name Description Examples
Standard Datapool Data Types 369

Standard Data Type Table
Name - Middle Masculine and feminine middle names.

If the middle name is preceded by a field
with masculine or feminine value (such as
a masculine or feminine first name), the
middle name is in the same gender
category as the earlier field.

Richard
Theresa
Julius

Name - Prefix (e.g., Mr) Mr or Ms, with no following period.

If the name prefix is preceded by a field
with masculine or feminine value (such as
a masculine or feminine gender
designation), the name prefix is in the
same gender category as the earlier field.

Mr
Ms

Names - First Masculine and feminine first names.

If the first name is preceded by a field with
masculine or feminine value (such as a
masculine or feminine name prefix), the
first name is in the same gender category
as the earlier field.

Richard
Theresa
Julius

Names - Last Surnames. Swidler
Larned
Buckingham

Names - Middle Initial Middle initials only, with no following
period.

B
M
L

Packed Decimal A number where each digit is represented
by four bits. Digits are non-printable.

Note that commas and other characters
that can be used to represent a packed
decimal number may cause unpredictable
results when the datapool file is read.

Non-printable digits.

Phone - 10 Digit Telephone area codes, appropriate
exchanges, and numbers.

7816762400
4123818993
5052658498

Phone - Area Code Telephone area codes. To generate correct
area code lengths, set ������ to 3.

781
412
505

Phone - Exchange Telephone exchanges. To generate correct
exchange lengths, set ������ to 3.

676
381
265

Standard data type name Description Examples
370 Appendix B

Standard Data Type Table
Phone - Suffix Four-digit telephone numbers (telephone
numbers without area code or exchange).
To generate correct telephone number
suffix lengths, set ������ to 4.

2400
8993
8498

Random Alphabetic String Strings of random upper case and lower
case letters.

������ determines the number of
characters generated.

AQSEFuOZUIUIpAGsEM
DESieAiRFiEqiEIDiicEw
edEIDiIcisewsDIEdgP

Random Alphanumeric
String

Strings of random upper case and lower
case letters and digits.

������ determines the number of
characters generated.

AYcHI8WmeMeM0AK4
HSk9vGAQU79esDE
7Eeis93k4ELXie7S32siDI4E

Read From File Assigns values from an ASCII text file to
the datapool column. For example, you
could export a database column to a text
file, and then use this data type to assign
the values in the file to a datapool column.

You can use this data type to generate
unique data. You can also use the Integers -
Signed and user-defined data types to
generate unique data.

For information about using this data type,
see “Creating a Column of Values Outside
Rational Test” on page 310.

Any values in an ASCII text
file.

Space Character An empty string. ""

State Abbrev. - U.S. Two-character state abbreviations. MA
CA
NC

String Constant A constant with the value of ����. The
datapool column is filled with this one
alphanumeric value.

1234
AAA
1b1b

Time - HH.MM.SS Times in the format shown. Hours range
from 00 (midnight) through 23 (11 pm).

To set a range of times from midnight to
2 pm, set Minimum to 0 and Maximum to
140000.

00.00.00 (midnight)
11.14.38
21.44.19

Standard data type name Description Examples
Standard Datapool Data Types 371

Data Type Ranges
Data Type Ranges

The following table lists the minimum and maximum ranges for the standard data
types:

Time - HH:MM:SS Times in the format shown. Hours range
from 00 (midnight) through 23 (11 pm).

To include the colons (:) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of times from midnight to
2 pm, set Minimum to 0 and Maximum to
140000.

00:00:00 (midnight)
11:14:38
21:44:19

If the colon is the delimiter,
the values are stored in the
datapool as follows:

"00:00:00" (midnight)
"11:14:38"
"21:44:19"

Time - HHMMSS Times in the format shown. Hours range
from 00 (midnight) through 23 (11 pm).

To set a range of times from midnight to
2 pm, set Minimum to 0 and Maximum to
140000.

000000 (midnight)
111438
214419

Zip Code - 5 Digit Five-digit U.S. postal zip codes. To
generate the correct zip code lengths, set
������ to 5.

02173
95401
84104

Zip Code - 9 Digit Nine-digit U. S. postal zip codes. 021733104
954012694
841040190

Zip Code - 9 Digit with Dash Nine-digit U.S. postal zip codes with a
dash between the fifth and sixth digits.

02173-3104
95401-2694
84104-0190

Zoned Decimal Zoned decimal numbers. 3086036
450
499658196

Standard data type name Description Examples

Type of range Limitation

Maximum hours 23

Maximum minutes 59

Maximum seconds 59

Maximum two-digit year 99
372 Appendix B

Data Type Ranges
Maximum four-digit year 9999

Maximum months 12

Minimum six-digit date 010100 (January 1, 00)

Maximum six-digit date 123199 (December 31, 9999)

Minimum eight-digit date 01010000 (January 1, 0000)

Maximum eight-digit date 12319999 (December 31, 9999)

Minimum negative integer (Integers -
Signed)

-999999999 (-999,999,999)

Maximum positive integer (Integers -
Signed)

999999999 (999,999,999)

Maximum decimal places (Float data types) 6

Male/Female title Mr, Ms

Gender designation M, F

Type of range Limitation
Standard Datapool Data Types 373

Data Type Ranges
374 Appendix B

Index
A
Abnormal_term_cnt. See suites, setting runtime

information
acceptance criteria of test cases 48
access order of datapool rows 282
adapters

command-line TSCA 12
custom 12
custom TSCA 12

addresses data type 366
Agent computers 14, 177, 226, 248

changing settings of 71
checking 95
controlling port numbers 358
Java 362
monitoring resources of 122, 315, 323
monitoring status of 122
Oracle 361
preferred user view 114
running suite items in parallel 183, 260
Sybase 361
TUXEDO 362

AIX Agents 361
Analog report 315
analyzing results 237, 313
ASCII text files 310
automatically generating values for user-defined

data types 302
axes, inverting in graphs 325

B
baseline file, editing

in Grid Comparator 210
in Object Properties Comparator 202
in Text Comparator 205

baseline file, saving
in Grid Comparator 210
in Image Comparator 217

in Object Properties Comparator 202
in Text Comparator 205

benchmark tests 223
blocks, reporting average time 351
books, Rational xvii
builds

assigning when running tests 90
in Test Asset Workspace 138
in Test Log Summary 139
test logs and 138

builds, intentional changes to 153

C
checking

Agent computers 95
suites 95

cities data type 366
Cleanup_time. See suites, terminating
ClearQuest 148
client computers, performance tests and 223
client/server TSS environment variables 74
columns in datapools

assigning data types to 293
assigning values from a text file 310, 371
deleting 299
editing column definitions 298
editing values in TestManager 299
example of column definition 296
field values and 307
length of 294
maximum number 282, 309
names correspond to test script

variables 293, 309
setting numeric ranges in 295
setting unique values in 294
unique 305
values supplied by data types 286

command IDs
filtering 317, 327
Index 375

grouping Command Status reports by 320
sorting in reports 320

Command Status reports 315, 344
automatically run 316
data summary style 320
graphing 319, 324
setting response ranges 319, 321
setting response type 319
setting stable loads 320
setting time period for 320
sorting command IDs 320

Command Usage reports 315, 346
data summary style 320

command-line adapters 12
command-line TSCA 12
Compact user view 114, 115

preferred with Agent computers 114
company names data type 366
Comparators

Grid 205
Image 210
Object Properties 196
starting 196
Text 203
viewing verification points in 152

Compare Performance reports 315, 335, 336
absolute comparison 338
defining 336
graphing 319, 324
N/A and Undefined responses 341
relative comparison 339
setting response ranges 319, 321
weighted absolute comparison 338
weighted relative comparison 340

computer lists
defining 64, 65
running tests on 90

Computer view 122
computers

defining 64
monitoring resources of 101, 122, 240, 315,

323
running tests on 90
running virtual testers on 177, 248
See also Agent computers, Local computers

configuration tests 224, 237
configurations

about 5, 35
associating with test cases 39
attributes and values 36
defining 37

configured test cases 39
connect TSS environment variables 75
constant value data type 371
contention tests 225, 228
controlling port numbers 358
copying

datapools 299
graphs 328
log filters in Test Log 142
reports 328, 329
user-defined data types 304

credit card numbers 297
.csv datapool files 281, 301
.csv exported reports 330
cursors

datapool 282
disabling wrapping for unique row

retrieval 305
custom adapters 12
custom histograms 107

adding groups to 133
assigning states to 133
deleting groups from 133
removing states from 133

custom TSCA adapter 12
customer support, Rational xviii
customizing

histograms 132
properties 60
reports 317, 318
views 127

D
data types

assigning to a datapool column 293
copying 304
creating 288
376 Index

deleting 304
determining which data types you need 288
editing values in 302
importing user-defined 303
list of standard data types 365
minimum and maximum values 372
renaming 304
role of 286
standard and user-defined 287

datapools 284
access order 282
assigning data types to 293
copying 299
creating in TestManager 291
creating outside Rational Test 306
cursors 282
data types 286
deleting 300
deleting columns from 299
editing column definitions 298
editing values, in TestManager 299
example of column definition 296
example of value generation 297
exporting 301
files 281, 301
finding data types for 288
functional tests and 172
importing from another project 301
importing from outside Rational test 300
limits 282
maximum number of columns 282, 309
numeric ranges in 295
planning 284
role of 280, 282
row access order 282
setting unique values in 294
shared virtual tester access to 99
structure 307
unique row retrieval 305
where stored 281

dates
Julian 368
setting ranges 366, 367, 368

dates data types 366, 367, 368
debugging test scripts 130, 131

decimal numbers 294, 369
default reports

deleting 329
restoring 330

default settings
for virtual testers 72
monitor 129, 131
reports 330

defects
entering in ClearQuest 149
generating from Test log 149
TestStudio defect form 149
tracking 148

defining computer lists 65
delays 187, 192, 235, 263, 277

inserting into a test script 264
setting in a suite 187, 264
suppressing 98

deleting
datapool column definitions 299
datapools 300
log filters in Test Log 142
reports 329
user-defined data types 304

dependencies 191, 276
setting 192, 277

Design Editor 46
designing tests 5, 45
disabling

test script services 82
TSS environment variables 82

display library routine 114, 118
distributed functional tests 170, 177, 248

vs. performance tests 14
DLB_FREQ. See dynamic load balancing selectors
DLB_TIME. See dynamic load balancing selectors
documentation, Rational xvii
dynamic load balancing selectors 183, 261

E
editing

datapool column definitions 298
datapool values in TestManager 299
Index 377

default monitor settings 131
default user settings 72
in-line 70
suites 68
test scripts 67
user group properties 70
user options 70
user-defined data type definitions 302
user-defined data type values 302

editor for manual scripts 58
empty string data type 371
emulate emulation commands 351, 353
emulation commands

displaying success or failure of 114, 116
entering defects 149
environment differences 153
environment variables. See system environment

variables, TSS environment variables
error files

displaying 120, 130
virtual tester 147

evaluating tests 7
event details, displaying 144
events 191, 276

displaying state of 114
setting 192, 277
viewing failed 144

Excel, creating datapool files with 308
executables

replacing 70
executing suites 99
executing tests 7, 89
execution order of virtual testers 98
Execution_list. See suites, setting runtime infor-

mation
exponential notation data type 369
exporting

datapools 301
reports 330
suites 87

Extended Help 8
extensible test script types 12

F
fields in datapools. See columns in datapools
FIELDTBLS system environment variable 363
FIELDTBLS32 system environment variable 363
file types

.csv (datapool files) 281, 301

.csv (reports) 330

.spc (datapool specification files) 281, 301
files

datapool file location 281
total open 357
Virtual Tester Error 120, 130

filtering
group views 129
report data 317, 327
user views 128

firewalls, controlling port numbers 358
first names data type 370
FLDTBLDIR system environment variable 363
FLDTBLDIR32 system environment variable 363
float data types 369
floating point numbers 294, 369
folders, test case 32
Full user view 114, 118
functional tests 169
functional tests. See distributed functional tests

G
gender data type (M, F) 369
generating

defects 149
values in datapools, example 297

graphs
changing formats 326
copying 328
data point information 325
modifying labels 326

Grid Comparator 205
comparing actual and baseline files 208
editing baseline file 210
locating differences 208
saving baseline file 210
setting display options 207
378 Index

using keys to compare data 209
grids, displaying in graphs 325
Group views 127
groups

adding to custom histograms 133
deleting from custom histograms 133
filtering 129

GUI histograms 107, 108
GUI test scripts 54
GUI test scripts and datapools

associating variable names and datapool
columns 309

GUI testers
including in performance tests 223
parallel selectors 183

GUI virtual testers
Agent computers and 15
parallel selectors 260

H
Help

Extended 8
for TestManager xvii

hexadecimal data type 369
histograms

custom 107, 132
GUI 107, 108
HTTP 107, 109
IIOP 107, 110
SQL 107, 109
standard 107, 108
zooming in on bars 111

HP-UX Agents 361
HTTP emulation commands

reporting 347, 348, 349
HTTP histograms 107, 109
HTTP TSS environment variables 76

I
IIOP histograms 107, 110
Image Comparator 210

changing color of masks and differences 214

displaying differences 213
locating differences 213
Mask/OCR list 212
masks 216
saving baseline file 217
unexpected active windows 217

images, testing 210
IME (Input Method Editor) 290, 293, 295
implementing tests 6

as suites 62
importing

datapools from another project 301
datapools from outside Rational Test 300
user-defined data types 303

INFORMIXDIR system environment
variable 364

Input Method Editor 290, 293, 295
integer data type 369
iterations

about 5, 40
associating with test cases 41
creating and editing 41
displaying suite 105

J
Japanese characters 288, 290
Java, setting system environment variables 362
JAVA_COMPILER system environment

variable 362
job classes. See scenarios
Julian date data types 368

K
Kanji characters 290
Katakana characters 290
keys in unique datapool rows 304
keys, using to compare data in columns 209

L
last names data types 370
Index 379

LD_LIBRARY_PATH system environment
variable 361, 362

legends, displaying in graphs 325
LIBPATH system environment variable 361,

362
listing reports

about 155
creating 160
customizing design layouts 155

literal value data type 371
load tests, about 223, 224
Local computers 14, 226, 358

monitoring resources of 122, 315, 323
monitoring status of 122
running suites on 15, 226
TUXEDO 362

log event details 143
log event properties

associated data 145
configuration 144
general 144
types of 151

log filters, turning off 142
log folders, assigning when running tests 90
log scale, displaying in graphs 325
logging TSS environment variables 77
logs 99

assigning when running tests 90
displaying 120, 130
folder name 101
manual test scripts 92
naming 101
running reports against 318

M
manual test scripts

creating 56
customizing properties 60
editors 58
example 57
external files 59
queries 59
running 91

specification files 59
steps in 56
verification points in 57
viewing results of run 92

manuals, Rational xvii
ManualTest, Rational 57
mapping resource usage onto response time 323
masks in Image Comparator 214, 216
maximum response time 239, 332
mean response time 240, 332
median response time 240, 332
memory

minimum shared for large user runs 355
total shared for large user runs 357

Message user view 114, 118
Microsoft Excel, creating datapool files with 308
middle initials data type 370
middle names data type 370
milestones 40
minimum response time 239, 332
monitoring computer resources 122, 240, 315,

323
setting option to allow 101

monitoring suites 102
changing default settings 131
Compact user view 114, 115
Computer view 122
Full user view 114, 118
Group views 127
Message user view 114, 118
Results user view 114, 116
Script view 120
setting update rates 101
Shared Variables view 119
Source user view 114, 117
Sync Points view 120
Transactor views 125

multi-byte characters 288, 290, 293, 295
multiple computers 65

N
N_users. See suites, running
names data types
380 Index

company names 366
first names 370
last names 370
middle initials 370
middle names 370
titles (Mr, Ms) 370

naming reports 329
network services 358
NLSPATH system environment variable 362
Normal_term_cnt. See suites, setting runtime

information
numbers data type 369
NuTCRACKER settings, changing when running

large numbers of users 355

O
Object Properties Comparator 196

adding properties to test 201
displaying differences in baseline and actual

files 200
editing baseline file 202
locating differences 201
Objects hierarchy 198
Properties list 198
removing properties 201
saving baseline file 202

OCR regions, creating in Image Comparator 216
Oracle, setting system environment

variables 361
ORACLE_HOME system environment

variable 361
outliers 240, 319, 321
output file, virtual tester 147
owners of test assets, specifying 34

P
packed decimal data type 370
parallel selectors 183, 260
PATH system environment variable 361, 362
Performance reports 238, 239, 315, 332

automatically run 316
comparing output of 335

creating 161
dynamic number of virtual testers 322
graphing 319, 324
setting response ranges 319, 321
setting response time calculation 320
setting response time percentiles 320
setting response type 319
setting stable loads 232, 320, 321
setting time period for 320
sorting command IDs 320

performance tests 222, 229
basic concepts 221
including GUI testers in 223
reports 156
vs. distributed functional tests 14

PERMUTE. See random without replacement
selectors

persistent datapool cursors 282
phone numbers data types 370, 371
planning

datapools 284
performance tests 229

planning tests 3, 25
playback differences 153
populating datapools

example 297
port numbers 358
post-conditions of test cases 48
preconditions

suites 178, 182, 250, 254
test cases 178, 181, 250, 253
test scripts 178, 250

pre-conditions of test cases 48
printing

reports 328
suites 87
test case designs 47

processes, total TestManager 357
projects 8
properties

manual test scripts 60
report 324, 328
suites 69
test case folders 32
test cases 33
Index 381

test plans 29
properties of test scripts 67

R
random alphabetic string data type 371
random alphanumeric string data type 371
random datapool access 282
random numbers 84
random value seed 295
random with replacement selectors 183, 260

generating random numbers for 99
random without replacement selectors 183, 260

generating random numbers for 99
ranges in dates 366, 367, 368
Rational Administrator 8
Rational ClearQuest 10, 148, 158
Rational ManualTest 57
Rational projects 8
Rational QualityArchitect 9
Rational RequisitePro 10, 27
Rational Robot 9
Rational Rose 10, 27
Rational SoDA 11, 158
Rational Technical Support xviii
Rational TestManager 1
Rational Unified Process 8
Read From File data type 310, 371

unique values 311
records in datapools. See rows in datapools
release times 191, 275

ranges 191, 275
staggering 190, 273

renaming
log filters in Test Log 142
reports 329
user-defined data types 304

reporting TSS environment variables 79
reports 313

about 154
changing default settings 330
changing graph formats 326
changing reports that run automatically 162,

330

Command Status 315, 344, 345
Command Usage 315, 346, 347
Compare Performance 315, 335, 336, 337
comparing 336
copying 328, 329
creating 158
customizing 317, 318
default names of 314
deleting 329
displaying grids 325
displaying legends 325
displaying log scales 325
dynamic number of virtual testers 322
exporting 330
filtering data 317, 327
inverting axes 325
Listing 155
opening 161
Performance 238, 239, 315, 332, 333
performance testing 156
printing 328
properties of 324, 328
Rational ClearQuest 158
Rational SoDA 158
renaming 329
Response vs. Time 238, 239, 341, 343
restoring default 162, 330, 331
running from menu bar 162, 316
running from report bar 161, 316
saving 135
selecting which to run 156
setting response time calculations 320
setting response type 319
setting stable loads 232, 320, 321
setting time period for 320
sorting command IDs 320
Test Case Results Distribution

reports
Test Case Trend154

types of 315
resource monitoring 122, 240, 315, 323

setting option to allow 101
response timeout TSS environment variables 80
response times

reporting on 239, 320
382 Index

standard deviation 240, 332
Response vs. Time reports 238, 239, 341

graphing 319, 324
including passed or failed responses 320
resource monitoring 315, 323
setting response ranges 319, 321
setting response time calculations 320
setting response type 319
setting stable loads 320
setting time period for 320
sorting command IDs 320

restoring default reports 162, 330, 331
Results user view 114, 116
row access order 282
rows in datapools

access order 282
maximum number 282
records and 307
unique 305

RT_MASTER_NTUSERLIMIT system environ-
ment variable 356

Run_time. See suites, setting runtime information
running

automated test scripts 90
manual test scripts 91
reports 161, 162, 316
suites 15, 94, 99, 226
test cases 92
test scripts 89
suites See also monitoring suites
suites. See also monitoring suites

running test on multiple computers 65
running tests 89

S
saving suites 87
scenarios 184, 192, 255, 277

and suites 186, 256
replacing 70

scientific notation data type 369
scope of a synchronization point 190, 275
Script view 120
seeds 86

base 99
for random selectors 99
for virtual testers 84
random datapool values 295

selectors 182, 257
dynamic load balancing 183, 261
inserting into a suite 183, 257
parallel 183, 260
random 183, 260
sequential 183, 260

semaphores
changing maximum number of 355, 357
per set 357
set IDs 357

sequential datapool access 282
unique row retrieval and 306

sequential selectors 183, 260
servers, testing 233
sessions, creating suite from 246
shared datapool cursors 282
shared memory 355, 357
shared variables

changing value of 130
displaying users waiting on 130
initializing 86
viewing values of 119

SHLIB_PATH system environment variable 361,
362

shuffle datapool access 282
unique row retrieval and 306

socket emulation commands
reporting 347, 348, 350

Solaris Agents 361
sorting virtual testers 128
Source user view 114, 117
space data type 371
.spc datapool specification files 281, 301
SQABasic language, monitoring 113
SQL emulation commands

reporting 347, 348
SQL histograms 107, 109
stable loads

planning 232, 238, 239
setting in reports 232, 320, 321

staggering release times 190, 273
Index 383

standard data types
list of 365
minimum and maximum values 372
role of 287
when to use 288

standard deviation of response times 240, 332
standard histograms 107, 108
start scripts 83

setting maximum initialization time for 98
Start_group_size. See suites, setting runtime infor-

mation
start_time emulation commands

reporting on 353
Start_time. See suites, setting runtime information
state abbreviations data type 371
states

assigning to custom histograms 133
removing from custom histograms 133

steps in manual test scripts 56
stop_time emulation commands

reporting on 351
street names data type 366
stress tests 225, 236, 271
string constant data type 371
structure of datapools 307
suites 15, 173, 243

and scenarios 186, 256
changing logs in 101
checking 95
creating from a session 246
editing 68
execution order of virtual testers 98
exporting 87
implementing tests as 62
inserting selectors 182, 183, 257
inserting test cases 179, 252
inserting test scripts 177, 249
inserting transactors 265
inserting user groups 246
minimum requirements for running 95, 179,

251
monitoring 102
opening 67

percent done 104
preconditions 178, 182, 250, 254
printing 87
replacing items in 70
reporting on portion of 320
results 99
running 94, 99
saving 87
setting delays in 187, 264
setting maximum time for run 98
setting number of virtual testers 100
setting pass or fail criteria 97
setting runtime information 96
synchronization points and 188, 270
synchronizing items in 187, 188, 191, 263,

269, 270, 276
terminating 99, 101, 134, 135, 352
time in run 104

survey utility.See suites, monitoring
suspending virtual testers 131, 134
Sybase, setting system environment

variables 361
synchronization points 120, 187, 188, 190,

269, 270, 273
displaying state of 121
example of 190, 274
inserting into a suite 270
inserting into a test script 270
inserting into suites 187, 188, 269, 270
multiple 191, 274
number of virtual testers waiting 120, 122
release time ranges 191, 275
releasing 122
releasing virtual testers from 120, 190, 191,

273, 275
replacing 70
scope of 190, 275
timeout 121, 191, 275

synchronizing items in suites
delays 187, 263
events and dependencies 191, 276
synchronization points 187, 188, 269, 270

system environment variables 360
384 Index

T
Task_dir. See suites, running
Task_term_cnt. See suites, terminating
Task_ts_init. See suites, setting runtime informa-

tion
tasks. See test scripts
technical publications, Rational xvii
technical support, Rational xviii
terminating suites 99, 101, 134, 352

planning 232
terminating virtual testers 131

abnormal 104, 115, 116, 127
normal 104, 127

Test Asset Workspace
copying reports with 329
deleting reports with 329
renaming reports with 329

Test Case Distribution reports
about 154
creating 158

test case folders
about 5
creating 31
properties 32

Test Case Results Distribution reports
about 154
creating 159

Test Case Trend reports
about

reports
Test Case Distribution154

creating 160
test cases 5

acceptance criteria 48
associating configurations with 39
associating iterations with 41
associating test inputs with 42
configured 39, 180, 253
creating 33
displaying 143
filtering 143
folders 5
inserting into a suite 179, 252
inserting into test case folder 33

organizing in folders 31
post-conditions 48
pre-conditions 48
preconditions in suites 178, 181, 250, 253
properties 33
running 92
sorting 143
viewing events from 143
when to run 40

test input types
built-in 26
custom 28

Test Input window 26
test inputs

about 4
appearing in defect form 149
associating with test cases 42
defining what to test 26

test log filters
turning off 142

Test Log window
virtual tester error file 147

Test log window 97
associated data 151
entering defects 148, 149
log event details 143
log event properties 143
log event property types 151
main window 138
usage scenarios 137
user interface 138
virtual tester output file 147

test plans
about 4
creating 29
properties 29

test script properties 67
test script types, extensible 12
test scripts

changing number 83
debugging 130, 131
editing 67
grouping into scenarios 184, 255
GUI 54
initializing timestamps for 98
Index 385

inserting delays 264
inserting into a suite 177, 249
limiting number 83
opening from Test log window 146
preconditions 178, 250
replacing 70
reporting active times of 347
reporting inactive times of 347
running 89
setting dependencies 192, 277
setting events 191, 276
variable names and datapool column

names 293
VB (Visual Basic) 54

TEST7_LTMASTER_SHM_MINSZ system envi-
ronment variable 356

testcase emulation commands 352, 353
TestManager 227

about 1
hardware and software environment 228
total processes 357

tests
benchmark 223
configuration 224
contention 225, 228
designing 5, 45
evaluating 7
executing 7, 89
implementing 6
load 224
performance 222, 229
planning 3, 25
stress 225, 236, 271

TestStudio defect schema and form 149
Text Comparator 203

comparing actual and baseline files 204
editing baseline file 205
locating differences 204
saving baseline file 205
viewing verification point properties 204

text files, assigning values to a datapool
column 310, 371

think time TSS environment variables 81
throughput 348, 352
time data types 371, 372

timeout values, for synchronization points 191,
275

times
reporting active 347
reporting inactive 347
setting maximum initialization 98
setting maximum suite run 98
standard deviation of response 240, 332
suppressing delays 98

timestamps, initializing for test scripts 98
TNS_ADMIN system environment variable 361
Total_term_cnt. See suites, setting runtime infor-

mation
Trace report 315
traceability 42
training, Rational xvii
Transaction reports. See Response vs. Time

reports
transactors 125, 192, 265, 277

displaying information about 125
inserting into a suite 265

TSS environment variables 73
client/server 74
connect 75
disabling 82
HTTP 76
logging 77
reporting 79
response timeout 80
think time 81

TUXEDO
emulation commands in Command Usage

report 347, 348, 351
setting system environment variables 362

U
unexpected active windows 217
unique datapool rows

guidelines for 304
Read From File data type and 311
setting unique values 294
user-defined data types and 289

update rates, when monitoring suites 101
386 Index

U.S. cities data type 366
U.S. state abbreviations data type 371
user groups 176, 246

changing information about 71
displaying information about 127
editing properties of 70
fixed 247
inserting into suites 176, 246, 247
planning 231
replacing 70
reserved words 247
scalable 247
temporarily disabling 84, 98

user settings, changing 72
User_term_mode. See suites, terminating
user-defined data types 288

automatically generating values for 302
copying 304
deleting 304
editing definitions of 302
editing values in 302
importing 303
renaming 304
role of 287
unique values 289
when to use 288

userlists. See user groups

V
variable names, and datapool column

names 293, 309
VB test scripts 54
verification points

manual test scripts 57
viewing in Comparators 152

VIEWDIR system environment variable 363
VIEWDIR32 system environment variable 364
VIEWFILES system environment variable 363
VIEWFILES32 system environment variable 364
viewing

datapool values in TestManager 299
user-defined data type values 302
verification points in the Comparators 152

views
Compact user 114, 115
Computer 122
customizing 127
Full user 114, 118
Message user 114, 118
restoring default 129
Results user 114, 116
Script 120
Shared Variables 119
Source user 114, 117
Sync Points 120

virtual tester
error file 147
output file 147

Virtual Tester Error files
displaying 120, 130

virtual testers 249
abnormal termination 104, 116, 127
active 103
combining test script types 249
determining number supported 233
displaying information about 104
execution order 98
filtering 128
incrementally loading 234
limiting number of test scripts run by 83
normal termination of 104, 127
percentage executing suite 105
reporting active times of 347
reporting inactive times of 347
reporting on dynamic number of 322
resuming suspended 131
running large numbers 355
seeds for 84
setting limit for large virtual tester runs 356
setting number of 100, 176, 247
sorting 128
starting at different times 83
suspended 103, 127
suspending 131, 134
terminating 131
total number in run 103
Index 387

W
Windows NT Agents 361
workloads 14

adding to system-under-test 14, 223, 226
designing 231
planning stable 232, 238, 239
reporting on stable 232, 320, 321

WSDEVICE system environment variable 364
WSLHOST system environment variable 362

WSLPORT system environment variable 362
WSNADDR system environment variable 362

Z
Zap_mode. See suites, setting runtime informa-

tion
zip code data types 372
zoned decimal data type 372
388 Index

	Using Rational TestManager
	Version 2001.03.00
	Part Number 800-023807-000
	Preface xvii
	Part 1: Using TestManager to Manage Testing Projects
	1
	Introducing Rational TestManager 1
	2

	Planning Tests 25
	3

	Designing Tests 45
	4

	Implementing Tests 53
	5

	Executing Tests 89
	6

	Evaluating Tests 137

	Part 2: Functional Testing with Rational TestManager
	7
	About Functional Tests 169
	8

	Creating Functional Testing Suites 173
	9

	Using the Comparators 195

	Part 3: Performance Testing with Rational TestManager
	10
	Planning Performance Tests 221
	11

	Creating Performance Testing Suites 243
	12

	Working with Datapools 279
	13

	Reporting Performance Testing Results 313
	A

	Configuring Local and Agent Computers 355
	B

	Standard Datapool Data Types 365
	Index 375

	Contents
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Part 1: Using TestManager to Manage Testing Projects
	Introducing Rational TestManager
	What Is Rational TestManager
	TestManager Workflow
	Planning Tests
	Test Inputs
	Test Plans
	Test Case Folders
	Test Cases
	Iterations
	Configurations
	Designing Tests
	Implementing Tests
	Executing Tests
	Evaluating Tests

	TestManager and Other Rational Products
	The Rational Unified Process
	Projects and the Rational Administrator
	Test Scripts and Rational Robot
	Component Testing and Rational QualityArchitect
	Requirements and Rational RequisitePro
	Model Elements and Rational Rose
	Defects and Rational ClearQuest
	Reports and Rational SoDA

	TestManager and Extensibility
	Defining Extensible Test Input Types
	Defining Extensible Test Script Types

	Virtual Testers and Types of Tests
	About Virtual Testers
	Functional and Performance Testing
	About Functional Testing
	About Performance Testing
	Differences Between Functional and Performance Tests
	Local and Agent Computers
	Suites
	Test Script Services
	Test Script Services and Test Script Types
	Test Script Services and TestManager

	Starting TestManager
	Logging into TestManager
	Starting Other Rational Products and Components from TestManager

	The TestManager Main Window
	Test Asset Workspace
	Planning Tab
	Execution Tab
	Results Tab
	Analysis Tab
	Other TestManager Windows

	Planning Tests
	About Test Planning
	Defining What to Test by Using Test Inputs
	Built-in Test Input Types
	Requirements from Rational RequisitePro
	Model Elements from Rational Rose
	Custom Test Input Types

	Creating a Test Plan
	Editing and Creating Test Plans
	Properties of a Test Plan
	Customizing the Properties of a Test Plan

	Organizing Test Cases with Folders
	Creating Test Cases
	Properties of a Test Case
	Specifying the Owner
	Defining the Configurations to Test
	Defining Configuration Attributes and Their Values
	Defining the Configurations You Need to Test
	Creating a Configured Test Case
	Specifying When to Run Tests
	Creating and Editing Iterations
	Associating Iterations with a Test Case
	Setting up Traceability Using Test Inputs

	Designing Tests
	About Designing Tests
	Specifying the Testing Steps and Verification Points
	Specifying Conditions and Acceptance Criteria of Test Cases
	Example of a Test Design

	Implementing Tests
	About Implementing Tests
	Implementing Built-in Test Scripts Types and Suites
	Automated Test Scripts Recorded in Rational Robot
	Manual Test Scripts Created in Rational ManualTest
	Suites Created in TestManager

	Implementing Extensible Test Script Types
	Creating Manual Test Scripts
	Starting Rational ManualTest
	Example of a Manual Test Script
	Setting the Default Editor for Manual Test Scripts
	Including an External File in a Manual Test Script
	Creating Script Queries
	Customizing Test Assets

	Associating an Implementation with a Test Case
	Implementing Tests as Suites
	Defining Computers and Computer Lists
	Adding a New Computer
	Creating a Computer List
	Opening a Suite
	Editing a Test Script
	Editing the Properties of a Test Script
	Editing the Text of a Test Script
	Editing a Suite
	Editing the Properties of a Suite
	Replacing Items in a Suite
	Editing Items in a Suite
	Editing Information for All User Groups
	Editing the Settings of an Agent Computer
	Editing the User Settings
	Setting Shared Variables
	Printing and Exporting a Suite
	Saving a Suite

	Executing Tests
	About Running Tests
	Built-in Support for Running Test Scripts
	Running Automated Test Scripts
	Running Manual Test Scripts
	Example of Running a Manual Test Script
	Viewing the Results of Running a Manual Test Script

	Running Test Cases
	Viewing the Associated Implementations
	Running a Test Case
	Ignoring Configured Test Cases

	Running Suites
	Checking a Suite
	Checking Agent Computers
	Controlling Runtime Information of a Suite
	Controlling How a Suite Terminates
	Running a Suite
	Stopping the Suite

	Monitoring Suites
	About Monitoring Suites
	Displaying the Suite Views
	The Overall Suite View
	Displaying the Histogram Views
	Standard Histograms
	GUI Histograms
	SQL Histograms
	HTTP Histograms
	IIOP Histograms
	DCOM Histograms
	Zooming In on Histogram Bars
	Displaying the User/Computer Views
	Compact View
	Results View
	Source View
	Message View
	Full View
	Displaying the Shared Variables View
	Displaying the Script View
	Displaying the Sync Points View
	Displaying Virtual Testers Waiting on a Synchronization Point
	Releasing a Synchronization Point
	Displaying the Computer View
	Viewing Resource Usage During a Run
	Graphing Resource Usage During a Run
	Viewing Computers at the Start or End of a Run
	Displaying the Transactor View
	Displaying the Group Views
	Filtering and Sorting Views
	Sorting the Virtual Testers Displayed in a User/Computer View
	Filtering a View
	Filtering a Group View
	Restoring the Default Views
	Changing the Value of a Shared Variable
	Debugging a Test Script
	Changing Monitor Defaults
	Configuring Custom Histograms
	Controlling the Suite During a Run
	Suspending and Resuming Virtual Testers in a Suite
	Stopping a Suite

	Evaluating Tests
	About Test Logs
	Opening a Test Log in TestManager
	The Test Log Main Window
	Test Case Results Tab
	Details Tab
	About Log Filters
	Creating and Editing a Log Filter
	Applying a Test Log Filter

	Viewing Test Log Results
	Viewing Test Case Results
	Viewing Events Details
	Viewing a Test Script
	Working with Test Logs
	About Test Logs
	Suite Log
	Virtual Tester Error File
	Virtual Tester Output File
	Entering and Modifying Defects
	About ClearQuest and Defect Tracking
	Printing a Test Log
	Managing Log Event Property Types

	Viewing Test Script Results Recorded with Rational Robot
	Viewing a Verification Point in the Comparators
	Playback/Environmental Differences
	Intentional Changes to an Application Build

	Reporting Results
	About Reports
	About Test Case Distribution and Trend Reports
	About Listing Reports
	About Performance Testing Reports
	Selecting Which Reports to Use
	Additional Reports
	Creating Reports
	Creating a Test Case Distribution Report
	Creating a Test Case Results Distribution Report
	Creating a Test Case Trend Report
	Creating a Listing Report
	Creating Performance Reports
	Opening a Report
	Running Reports
	Running a Report from the Report Bar
	Running a Report from the Menu Bar
	Changing the Reports that Run Automatically
	Changing the Reports that Run from the Report Bar
	Print, Save, or Copy a Test Case Trend or Distribution Report
	Print, Export, or Zoom a Listing Report
	Print, Save, Copy, Delete, or Export a Performance Report
	Copying Reports to a New Project
	Creating a Query

	Part 2: Functional Testing with Rational TestManager
	About Functional Tests
	Planning Functional Tests
	Identifying Functional Testing Requirements
	Setting Pass and Fail Criteria for Functional Tests

	Distributed Functional Testing
	Distributing Tests Among Different Computers
	Running Tests on a Specific Computer
	Example of a Distributed Functional Test

	Recording Considerations for Functional Tests

	Creating Functional Testing Suites
	About Suites
	Creating a Suite
	About Creating a Suite from a Wizard

	Inserting Computer Groups into a Suite
	Inserting Test Scripts into a Suite
	Preconditions
	Inserting Other Items into a Suite
	Inserting a Test Case into a Suite
	Inserting a Suite
	Inserting a Selector
	Types of Selectors

	Advanced Functional Testing
	Inserting a Scenario
	Suite or Scenario?
	Inserting a Delay
	Inserting a Synchronization Point

	Using Events and Dependencies to Coordinate Execution
	Executing Suites

	Using the Comparators
	About the Four Comparators
	Starting a Comparator
	Using the Object Properties Comparator
	The Main Window
	The Objects Hierarchy and the Properties List
	Changing the Window Focus
	Working Within the Objects Hierarchy
	Working Within the Properties List
	Loading the Current Baseline
	Locating and Comparing Differences
	Viewing Verification Point Properties
	Adding and Removing Properties
	Editing the Baseline File
	Saving the Baseline File

	Using the Text Comparator
	The Main Window
	The Text Window
	Locating and Comparing Differences
	Viewing Verification Point Properties
	Editing the Baseline File
	Saving the Baseline File

	Using the Grid Comparator
	The Main Window
	The Grid Window
	Differences List
	Setting Display Options
	Locating and Comparing Differences
	Viewing Verification Point Properties
	Using Keys to Compare Data Files
	Editing the Baseline File
	Saving the Baseline File

	Using the Image Comparator
	The Main Window
	The Image Window
	Differences List
	Mask/OCR List
	The Status Bar
	Locating and Comparing Differences
	Changing How Differences are Determined
	Changing the Color of Masks, OCR Regions, or Differences
	Moving and Zooming An Image
	Viewing Image Properties
	Working with Masks
	Working with OCR Regions
	Saving the Baseline File
	Viewing Unexpected Active Window

	Part 3: Performance Testing with Rational TestManager
	Planning Performance Tests
	About Performance Testing
	Performance Testing Basics
	Types of Tests
	Benchmark Tests
	Configuration Tests/Performance Profiling
	Load Tests
	Stress Tests
	Contention Tests
	Local and Agent Computers
	Suites

	Rational TestManager and Performance Testing
	Why Use TestManager for Performance Testing?
	The TestManager Environment

	Planning Performance Tests
	Testing Response Times
	Setting Pass and Fail Criteria for Performance Tests
	Identifying Performance Testing Requirements
	Designing a Realistic Workload

	Implementing Performance Tests
	Examples of Performance Tests
	Number of Virtual Testers Supported Under Normal Conditions
	Incrementally Increasing Virtual Testers
	How a System Performs Under Stress Conditions
	How Different System Configurations Affect Performance

	Analyzing Performance Results
	Comparing Results of Multiple Runs
	Comparing Specific Requests and Responses
	Determining the Cause of Performance Problems
	Analyzing Results Statistically
	Monitoring Computer Resources and Tuning Your System

	Creating Performance Testing Suites
	About Suites
	Creating a Suite
	About Creating a Suite from a Wizard
	About Creating a Suite from a Session

	Inserting User Groups into a Suite
	Inserting Test Scripts into a Suite
	Preconditions
	Inserting Other Items into a Suite
	Inserting a Test Case into a Suite
	Inserting a Suite
	Inserting a Scenario
	Suite or Scenario?
	Inserting a Selector
	Types of Selectors
	Inserting a Delay
	Inserting a Transactor
	Inserting a Synchronization Point

	Using Events and Dependencies to Coordinate Execution
	Executing Suites

	Working with Datapools
	What Is a Datapool?
	Datapool Tools
	Managing Datapool Files
	Datapool Cursor
	Row Access Order
	Datapool Limits
	What Kinds of Problems Does a Datapool Solve?

	Planning and Creating a Datapool
	Data Types
	Standard and User-Defined Data Types
	Finding Out Which Data Types You Need
	Creating User-Defined Data Types
	Generating Unique Values from User-Defined Data Types
	Generating Multi-Byte Characters

	Managing Datapools
	Creating a Datapool
	If There Are Errors
	Viewing Datapool Values
	Making the Datapool Available to a Test Script
	Defining Datapool Columns
	Example of Datapool Column Definition
	Example of Datapool Value Generation
	Editing Datapool Column Definitions
	Deleting a Datapool Column
	Editing Datapool Values
	Renaming or Copying a Datapool
	Deleting a Datapool
	Importing a Datapool
	Datapool Location
	Importing a Datapool from Another Project
	Exporting a Datapool

	Managing User-Defined Data Types
	Editing User-Defined Data Type Values
	Editing User-Defined Data Type Definitions
	Importing a User-Defined Data Type
	Renaming or Copying a User-Defined Data Type
	Deleting a User-Defined Data Type

	Generating and Retrieving Unique Datapool Rows
	What You Can Do to Guarantee Unique Row Retrieval

	Creating a Datapool Outside Rational Test
	Datapool Structure
	Example Datapool
	Using Microsoft Excel to Create Datapool Data
	Saving the Datapool in Excel
	Matching Datapool Columns with Test Script Variables
	Maximum Number of Imported Columns

	Creating a Column of Values Outside Rational Test
	Step 1. Create the File
	Step 2. Assign the File’s Values to the Datapool Column
	Generating Unique Values

	Reporting Performance Testing Results
	About Reports
	Running a Report
	Running a Report from the Report Bar
	Running a Report from the Menu Bar

	Customizing Reports
	Filtering Report Data
	Setting Advanced Options
	Eliminating Outliers
	Reporting on a Stable Load
	Reporting on a Dynamic Number of Virtual Testers
	Reporting on a Particular Command ID
	Mapping Computer Resource Usage onto Response Time
	Changing a Graph’s Appearance or Type
	Changing a Graph’s Appearance
	Displaying and Clearing Data Point Information
	Changing a Graph’s Type
	Enlarging and Rotating a Graph
	Changing a Graph’s Labels
	Filtering Command IDs that Appear in a Graph
	Editing the Properties of a Report

	Managing Reports
	Printing a Report
	Copying a Report
	Renaming a Report
	Deleting a Report
	Exporting Reports

	Changing Report Defaults
	Changing the Reports that Run Automatically
	Changing the Reports that Run from the Report Bar

	Types of Reports
	Performance Reports
	What’s in Performance Reports?
	About Percentiles in Performance Reports
	Compare Performance Reports
	Defining a Compare Performance Report
	What’s in Compare Performance Reports?
	Response vs. Time Reports
	What’s in Response vs. Time Reports?
	Command Status Reports
	What’s in Command Status Reports?
	Command Usage Reports
	What’s in Command Usage Reports?

	Configuring Local and Agent Computers
	Running More Than 245 Virtual Testers
	Running More Than 1000 Virtual Testers
	Running More Than 1000 Virtual Testers on One NT Computer
	Running More Than 24 Virtual Testers on a UNIX Agent
	Controlling TCP Port Numbers
	Setting Up IP Aliasing
	Assigning Values to System Environment Variables

	Standard Datapool Data Types
	Standard Data Type Table
	Data Type Ranges

	Index

