
support@rational.com
http://www.rational.com

Rational the e-development company™

Using Data Modeler

Rational Rose® 2001

VERSION: 2001.03.00

PART NUMBER: 800-023926-000



COPYRIGHT NOTICE

Copyright � 2000 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY
TO RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY
PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY
RIGHTS TO REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL
ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN
CONSENT OF RATIONAL.

U.S. GOVERNMENT RIGHTS NOTICE

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR
52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, and Rational Rose are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries.

Visual C++, Visual Basic, and SQL Server are trademarks or registered trademarks of the Microsoft
Corporation. Java is a trademark of Sun Microsystems Inc. DB2 is a trademark of the IBM Corporation. All
other names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies. Portions of Rational Rose include source code from Compaq Computer Corporation;
Copyright 2000 Compaq Computer Corporation.

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed under Sun Microsystems Inc.'s
U.S. Pat. No. 5,404,499. Other U.S. and foreign patents pending. Printed in the U.S.A.



Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Other Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Contacting Rational Technical Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii
Contacting Rational Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii

1 Introduction: Unifying the Team . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Team Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Business Analyst Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Application Designer Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Database Designer Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Role Dependencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
The Data Modeler Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 UML and Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
UML Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Why UML for Data Modeling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Data Modeling Profile Added to UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Advantages of the UML Data Modeling Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Advantages of Rose UML and Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
The Data Model Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Reusing Data Modeling Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Modeler’s Transformation and Engineering Features. . . . . . . . . . . . . . . . . . 9

3 Logical Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Using Rose for Logical Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Standardized Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Mapping Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Mapping an Object Model to a Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Mapping Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Mapping Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Mapping Packages to Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mapping Classes to Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
iii



Mapping Attributes to Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mapping Composite Aggregations to Identifying Relationships . . . . . . . . . . . . . 17
Mapping Aggregations and Associations to Non-Identifying Relationships . . . . 18
Mapping Association Classes to Intersection Tables . . . . . . . . . . . . . . . . . . . . . 20
Mapping Qualified Associations to Intersection Tables. . . . . . . . . . . . . . . . . . . . 21
Mapping Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Transforming the Object Model to the Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Why Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
The Transformation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Physical Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Building a New Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Create a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Create a Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Create a Data Model Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Create Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Create Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Create Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Create Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Create Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Define Referential Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Create Custom Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Create Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Reverse Engineering to Create a Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Reverse Engineering Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Reverse Engineering DB2 Databases or DDL . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Reverse Engineering Oracle Databases or DDL . . . . . . . . . . . . . . . . . . . . . . . . 44
Reverse Engineering SQL Server Databases or DDL . . . . . . . . . . . . . . . . . . . . 45
Reverse Engineering Sybase Databases or DDL. . . . . . . . . . . . . . . . . . . . . . . . 45
After Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

After Building the Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Mapping the Physical Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . 47
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Mapping the Data Model to an Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Mapping Schemas to Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
iv Contents



Mapping Domains to Attribute Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Mapping Tables to Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Mapping Columns to Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Mapping Enumerated Check Constraints to Classes. . . . . . . . . . . . . . . . . . . . . 49
Mapping Identifying Relationships to Composite Aggregations . . . . . . . . . . . . . 50
Mapping Non-Identifying Relationships to Associations . . . . . . . . . . . . . . . . . . 51
Mapping Intersection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Mapping Supertype/Subtype Structures to Inheritance Structures . . . . . . . . . . 55

Transforming a Data Model to an Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Why Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
The Transformation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Implementing the Physical Data Model. . . . . . . . . . . . . . . . . . . . . . 59
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Forward Engineering a Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Forward Engineering Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Forward Engineering to the ANSI SQL 92 DDL . . . . . . . . . . . . . . . . . . . . . . . . . 60
Forward Engineering to a DB2 Database or DDL . . . . . . . . . . . . . . . . . . . . . . . 61
Forward Engineering to an Oracle Database or DDL. . . . . . . . . . . . . . . . . . . . . 61
Forward Engineering to a SQL Server Database or DDL . . . . . . . . . . . . . . . . . 61
Forward Engineering to a Sybase Database or DDL . . . . . . . . . . . . . . . . . . . . . 62

Comparing and Synchronizing a Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Synchronization Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
UML Data Modeling Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Object to Data Model Data Type Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Data to Object Model Data Type Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Database Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Oracle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Sybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Contents v



Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
vi Contents



Figures vii

Figure 1 A Data Model Diagram in Rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2 A Class Diagram in Rose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3 Classes Map to Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4 Attributes Map to Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5 ID-based Columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6 Domain Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7 Composite Aggregations Map to Identifying Relationships . . . . . . . . . . 18
Figure 8 Associations Map to Non-Identifying Relationships. . . . . . . . . . . . . . . . 19
Figure 9 Many-to-Many Associations Map to Intersection Tables . . . . . . . . . . . . 20
Figure 10 Association Classes Map to Intersection Tables . . . . . . . . . . . . . . . . . . 21
Figure 11 Qualified Associations Map to Intersection Tables . . . . . . . . . . . . . . . . 22
Figure 12 Inheritance Maps to Separate Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 13 Transform Object Model to Data Model Dialog Box . . . . . . . . . . . . . . . . 25
Figure 14 A Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 15 A Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 16 An Identifying Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 17 A Non-Identifying Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 18 A Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 19 An Intersection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 20 A Self-Referencing Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 21 Domain Columns Map to Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 22 Tables Map to Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23 Columns Map to Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 24 Enumerated Check Constraints Map to Classes with <<ENUM>> . . . . 50
Figure 25 Identifying Relationships Map to Composite Aggregations . . . . . . . . . . 51
Figure 26 Non-Identifying Relationships Map to Associations. . . . . . . . . . . . . . . . 52
Figure 27 Intersection Tables Map to Many-to-Many Associations . . . . . . . . . . . . 53
Figure 28 Intersection Tables Map to Qualified Associations . . . . . . . . . . . . . . . . 54
Figure 29 Intersection Tables Map to Association Classes . . . . . . . . . . . . . . . . . . 55
Figure 30 Transform Data Model to Object Model Dialog Box . . . . . . . . . . . . . . . . 57

Figures





Tables ix

Table 1 Cardinalities for Foreign Key Constraints. . . . . . . . . . . . . . . . . . . . . . 37
Table 2 UML Data Modeling Profile Stereotypes . . . . . . . . . . . . . . . . . . . . . . 65
Table 3 Analysis Object to Data Model Data Type Mapping . . . . . . . . . . . . . 68
Table 4 Java Object to Data Model Data Type Mapping. . . . . . . . . . . . . . . . . 69
Table 5 Visual Basic Object to Data Model Data Type Mapping . . . . . . . . . . 70
Table 6 SQL 92 Data Model to Object Model Data Type Mapping. . . . . . . . . 72
Table 7 DB2 Data to Object Model Data Type Mapping . . . . . . . . . . . . . . . . . 73
Table 8 Oracle Data to Object Model Data Type Mapping . . . . . . . . . . . . . . . 74
Table 9 SQL Server Data to Object Model Data Type Mapping . . . . . . . . . . . 75
Table 10 Sybase Data to Object Data Type Mapping. . . . . . . . . . . . . . . . . . . . 77

Tables





Preface
Rational Rose®, hereafter referred to as Rose, is a comprehensive, integrated
programming environment that supports the development of complex software
systems. This manual presents the concepts needed to use specific functionalities of
Rose in a data modeling environment.

Audience

This manual is intended for:

� Database developers and administrators

� Software system architects

� Software engineers and programmers

� Anyone who makes design, architecture, configuration management, and testing
decisions

This manual assumes you are familiar with database modeling concepts and the
life-cycle of a software development project.

Other Resources

� Online Help is available for Rational Suite.

From a Suite tool, select an option from the Help menu.

� All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

� For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.
xi



Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name

� Your computer’s make and model

� Your operating system and version number

� Product release number and serial number

� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xii Preface



1Introduction: Unifying the
Team
What truly makes a team is a group of people working together to accomplish a
common overall goal. Sometimes the team consists of only two people, other times it
consists of hundreds, but regardless of the number, the team must be unified in its
efforts. A development team is a specialized team in which the various members hold
different responsibilities in the development life cycle. In solving business problems,
there are three distinct roles in a development team—the business analyst, the
application designer, and the database designer.

Team Roles

For the scope of this book, the role of business analyst is performed by
business-process analysts, systems analysts, and those who capture and review
requirements for a business process. The role of application designer is performed by
application developers, software engineers, and those who design and review
application designs. The role of database designer is performed by data developers,
database administrators (DBAs), data analysts, and those who design and review
relational databases.

Business Analyst Role

In the development process, the business analyst’s responsibility is to interview the
end-user or client to understand the overall business problem, analyze the business as
it currently is, identify the defects in the current processes that are causing the overall
business problem, and model the business as it could be. The business analyst
captures the end-users requirements and the process improvements in business
models. Business models divide the process into components of events, people or
things, and order the process using use-case, sequence, and activity models.

Application Designer Role

The responsibility of the application designer is to generate code and build an
application based on the business analyst’s business models. The application designer
uses object-oriented conceptual models and creates classes from the use cases,
organizing the classes into an object model structure using class models. Then the
1



application designer assigns the class model structure to a component and generates
code, building an application. The application designer is also responsible for creating
classes that can access the data in the database.

Database Designer Role

The responsibility of the database designer is to provide a storage container for all
data applying to the built application, and provide a method to maintain the data
structure’s integrity, based on the business analyst’s business models. The database
designer uses logical and physical data models; creates schemas, tables, and other
database elements from the use cases or classes; and organizes the schemas, tables,
and database elements into a data model structure. Then, using the data model
structure, the database designer selects a database management system (DBMS) and
generates a data-defined language (DDL) script, building a database. The database
designer must also ensure the application designer can map the application classes to
the correct tables to access the data for the application.

Role Dependencies

Due to their differences in responsibilities and knowledge, each team member solves
a business problem using a different method. The business analyst solves the problem
by revising the processes; the application designer solves the problem by generating
code; and the database designer solves the problem by controlling the database and
data accepted into it. For any one of these methods to solve the overall business
problem, the other two methods must be included in the planning.

A dependency exists between each of the different roles to solve the overall business
problem. Modeling the business processes alone, does not physically solve the
business problem. Generating code is useless without the database to host the data.
Data is meaningless without an application to access it. Each role is dependent on the
other; no one role can completely solve the business problem. The application
designer and database designer need the business models with the modeled
requirements. The business analyst needs to confirm that the database design meets
all the required business rules. If the application designer needs an additional field,
the database designer needs to illustrate what impact such a change would have on
the database structure.

These dependencies are especially evident in iterative development, where change is
constant and communication between the teams is essential. However, when each of
these roles is using a different notation, communication is difficult. A unified
language between the teams can reduce miscommunication and development time
while improving quality.
2 Chapter 1 - Introduction: Unifying the Team



The Data Modeler Solution

Rose unified the roles of business analyst and application designer in the previous
releases of the Rose software. With the addition of Data Modeler, Rose unifies all three
roles of the development team, allowing them to communicate freely through their
individual models using the common language of UML.
The Data Modeler Solution 3





2UML and Data Modeling
Contents

This chapter is organized as follows:

� UML Introduction on page 5
� Why UML for Data Modeling? on page 5
� Advantages of Rose UML and Data Modeling on page 7

UML Introduction

Teams need one tool, one methodology, and one notation. Since its inception, the
Unified Modeling Language (UML) has been unifying members of a development
team for faster and higher quality applications. But UML allowed only business
analysts and application designers to communicate with each other, database
designers were excluded because they used a different kind of notation. Rose adds a
UML profile to accommodate entity/relationship (E/R) notation with the addition of
Data Modeler, allowing the database designer to communicate with the business
analyst and application designer, making the UML a truly unifying language.

Why UML for Data Modeling?

The UML offers a standard notation very similar to Peter Chen’s E/R notation. Like
Chen’s E/R the UML is based on building structures using entities that relate to one
another. By adding the data modeling profile, UML’s ability to model an entire system
is increased, allowing you to model not only logical models, but physical data models
too, mapping your applications and your databases.

Data Modeling Profile Added to UML

A UML profile is an Object Management Group (OMG) approved method of adding
to UML for a specific subject, without altering the UML metamodel. UML profiles
added to UML use customized stereotypes and tagged values based on their subject’s
concepts and terminology.
5



The UML data modeling profile allows you to model databases based on data
modeling stereotypes added to existing UML structures. Stereotypes added to UML
structures such as components, packages, and classes allow you to model databases,
schemas, and tables. Stereotypes added to UML associations allow you to model
relationships. Strong relationships are modeled with the addition of stereotypes to
composite aggregations. Finally, stereotypes added to UML operations allow you to
model primary key constraints, foreign key constraints, unique constraints, and
additional database concepts such as check constraints, triggers, and stored
procedures. Refer to Appendix A for a listing of database concepts and the UML data
modeling profile stereotypes.

Advantages of the UML Data Modeling Profile

The UML data modeling profile has four distinct advantages consisting primarily of
its compatibility with business modeling and applications. First, the UML focuses on
the overall architecture of the system allowing you to model high-level business
processes, applications, and their implementation.

Second, the UML separates logical and physical design, making mapping your
database to your application, and change management easier. When you separate the
physical design from the logical design, you can customize the physical design to
accommodate your specific database management system (DBMS) and appropriate
levels of normalization, while the logical design remains a high-level design
appropriate for an overall view of your database or application. The separate designs
also allow you to see the effect changes have on the design before the changes are
committed. The change may be applied easily to the logical design, but specific DBMS
structures may restrict the same change when it is applied in the physical model;
therefore, the change would not be acceptable for the physical design.

Third, the UML addresses behavior modeling, allowing you to model operations and
constraints, including business rules.

Finally, the UML is compatible with object-oriented notation. It is the difference in the
object-oriented notation for some applications and E/R notation for databases that
hinders communication between the database designer and the other team members.
Database designers are isolated, often excluded from the communication of crucial
design decisions, and not able to communicate to other team members design
decisions that they themselves make. The UML eliminates this communication failure
by allowing all the team members to communicate their design decisions in the same
notation. This UML data modeling profile enables Rose to create a UML-based data
model.
Why UML for Data Modeling? 6



Advantages of Rose UML and Data Modeling

Rose UML offers distinct advantages when data modeling. These advantages are the
introduction of the data model diagram to Rose’s set of UML diagrams, reusability of
data modeling elements, and Data Modeler’s engineering capabilities.

The Data Model Diagram

For each type of development model—that is business models, application models,
and data models—Rose uses a specific type of diagram.

� Business models—Use case diagram, activity diagram, sequence diagram

� Application models or logical data models— Class diagram

� Physical data models—Data model diagram

An advantage the data model diagram offers database designers is the ability to
model using terms and structures already familiar to them, such as columns, tables,
and relationships. Also, the data model diagram completes Rose’s set of diagrams to
model the whole system, closing the chasm in development between database
designers and application developers.

The data model diagram visually represents the physical data model, so to work in
your physical data model you must create a new or activate an existing data model
diagram. Rose provides this additional diagram to reduce the confusion between
object model and data model items, and to support features unique only to Data
Modeler such as supported DBMSs, key migration, and schema migration.
Advantages of Rose UML and Data Modeling 7



Figure 1 A Data Model Diagram in Rose

Reusing Data Modeling Elements

Another advantage of using Rose is it enables you to reuse your modeling elements to
apply to other modeling needs. You can do this by using frameworks. Frameworks are
files that act as templates for other models. You can create a framework based on your
entire .mdl file using the Frameworks Wizard. Because frameworks work as a
template, you can create standard frameworks used for your business. Frameworks
are especially useful when the model contains domains, because domains can enforce
your business standards at the column level. It is the combination of frameworks
containing standard entities and domains that act as a foundation to enforce specific
standards of your business. For example when modeling the business process of a
clinic you need certain entities like patient, physician and clinic, but you will also
need to specify that each patient’s first name cannot exceed 20 characters and each
physician must have a social security number of numeric value and exactly 9 digits in
length. Creating a framework that contains these entities and domains that support
these standards will allow you to reuse these standards repeatedly.
8 Chapter 2 - UML and Data Modeling



Data Modeler’s Transformation and Engineering Features

With the UML data modeling profile, Data Modeler can map from the data model
diagram known as the data model to the class diagram known as the object model and
vice versa. This mapping enables Data Modeler’s transformation and engineering
features to create a round-trip engineering effect.

Transformation Between the Object Model and Data Model

The relationship between logical classes and physical tables provides the basis for the
mapping between a logical data model and a physical data model. This mapping
automatically occurs when you use the Transform Object Model to Data Model or
Transform Data Model to Object Model features. These features map the classes and
tables in a one-to-one mapping, with the exception of denormalization issues and
DBMS restrictions.

Forward and Reverse Engineering the Data Model

The relationship between logical classes and physical tables can also act as a mapping
between a DBMS and an object-oriented language like Java or C++, using forward
engineering or reverse engineering features. When you reverse engineer a DBMS
schema to a data model and then transform that data model to an object model, the
object model transforms to the Analysis language. By reassigning the language of
your object model from Analysis to Java or C++, Rose maps your DBMS database to
an application model that can be used to build an application. The same process
applies to mapping the application to the database— the object model that built the
application using a C++ language, can be reassigned to the Analysis language. Then
that object model can be transformed to a data model, and that data model can be
forward engineered to create a schema in a DBMS.

Comparing and Synchronizing the Data Model

If you are working with a legacy DBMS database and application, you can still use
these round-trip engineering features. However, instead of forward engineering to a
DBMS, you can use Data Modeler’s Compare and Synchronization feature to update
your existing DBMS database, synchronizing your DBMS database with the
transformed object model that built the application.

All of Data Modeler’s features working together create a round-trip engineering effect
with the mapping of logical classes to physical tables being the key to mapping the
database to the application.
Advantages of Rose UML and Data Modeling 9





3Logical Data Modeling
Contents

This chapter is organized as follows:

� Introduction on page 11
� Using Rose for Logical Data Modeling on page 11
� Mapping an Object Model to a Data Model on page 13
� Transforming the Object Model to the Data Model on page 24

Introduction

Logical data modeling is an essential step in modeling a database. The logical data
model gives an overall view of the captured business requirements as they pertain to
data entities. You can use Rose for logical data modeling and customize your logical
data model to transform to a physical data model.

Using Rose for Logical Data Modeling

The previous chapter discussed the advantages of using Rose and the UML in general
for data modeling. This chapter discusses the advantages of using Rose and the UML
for logical data modeling. These advantages are Rose’s ability to graphically depict a
logical data model using the class diagram, and Rose’s standardized notation and
mapping capabilities.

Class Diagram

The class diagram can graphically depict a logical data model because it uses a
structure similar to a logical data model. When you create a logical data model, you
start by identifying high-level entities. The class diagram also identifies high-level
entities. In UML terminology these entities are called classes. Rose allows you to
assign the stereotype <<entity>> to these classes for further distinction.
11



The next step is to assign attributes to these entities to identify them to the system.
This is the same step you take when modeling in the class diagram; you assign
attributes to the classes.

The final step that both the logical data model and the class diagram share is to relate
these entities or classes to other entities or classes using associations.

Figure 2 A Class Diagram in Rose

Standardized Notation

Another advantage is Rose uses the common notation of the UML. As was discussed
in Chapter 2, UML and Data Modeling, the UML data modeling profile added
stereotypes to UML elements relating to data modeling terminology. These same
UML elements are used in the class diagram and with these stereotypes you can
understand the mapping from the logical data model to the physical data model.

Mapping Capabilities

In Rose data modeling terminology, a class diagram is also known as an object model.
Object models serve two purposes. A class diagram or object model can act as a
logical data model, but an object model can also act as a model to capture a conceptual
12 Chapter 3 - Logical Data Modeling



view of an application. An object model is necessary if you want to map an
application to a database. It is the object model mapping to the physical data model
that is the basis for mapping the application to the database.

Mapping an Object Model to a Data Model

Rose allows you to take a step beyond identifying high-level entities, attributes, and
associations. It allows you to create a robust logical data model that can map more
precisely to a physical database. Customizing the object model for your database
helps to manage change, thereby decreasing the impact a change of requirements can
have on the existing model. If the object model maps to the data model, and changes
or enhancements are made to the object model, the same changes or enhancements
can be applied to the data model. You can model your object model specifically to
map to a database by modeling your object model elements—with the exception of
components and operations—to map to data model elements.

Mapping Components

Components represent the actual application language. In Rose terminology, a
component represents a software module (source code, binary code, executable, or
DDL) with a well-defined interface. According to the UML Data Modeling profile, a
component maps to a database, but this mapping is only for reference purposes; in
actual object model to data model transformation, components are ignored.

Although Rose gives you the option of several component languages to assign to your
logical package, the Data Modeler add-in is compatible with only three of those
component languages—Java, Visual Basic, and Analysis. The classes that you want to
map to tables in the data model must use one of these three component languages to
be transformed to a data model. If you want to use a component language not
compatible with Data Modeler, it is recommended you create a separate object model
using your desired component language, and map that model to an Analysis object
model that is used for transformation purposes.

Mapping Operations

According to the UML Data Modeling profile, operations map to various constraints;
however, just like components, operations are ignored in the transformation process.
Operations are the behavior of a class, and can be useful to database designers
because they can be used as a basis for identifying index items, possible triggers, and
other constraints.
Mapping an Object Model to a Data Model 13



Mapping Packages to Schemas

In a class diagram, a logical package is an optional element, but when using Data
Modeler, a logical package is required. A logical package is considered to be the
primary container of your object model, so it is the level at which Data Modeler
initiates the transformation process. You must group your classes in a logical package
to transform them to a data model. Data Modeler allows you to transform one logical
package at a time and generates one schema for each logical package transformed.

Mapping Classes to Tables

Classes are high-level entities that can have two states of existence—transient and
persistent. It is the persistent classes that map to physical tables, because persistent
classes can work as persistent data storage, existing even after the application has
completed its process. All persistent classes can map to tables using a one-to-one
mapping, unless you are using an inheritance structure in your model, then the
mapping could be a one-to-many mapping.

Figure 3 Classes Map to Tables

Mapping Attributes to Columns

Persistent attributes map to columns in a one-to-one mapping. In your model, you
may have multiple attributes that map to one column, but in the transformation, Data
Modeler transforms one-to-one for every attribute. Data Modeler ignores
non-persistent attributes like derived values.
14 Chapter 3 - Logical Data Modeling



Figure 4 Attributes Map to Columns

Rose allows you to customize your attribute mapping by mapping specific attributes
to speciality columns like primary key columns, ID-based columns, or domain
columns, and to map attribute types to specific DBMS data types.

Primary Keys

You can map an attribute to be a primary key column by assigning the attribute to be
a candidate key. A candidate key is an attribute tagged as part of object identity, which
Data Modeler transforms to a primary key in a table during the object to data model
transformation process. You can assign one or more attributes to be candidate keys. If
you assign more than one candidate key to a class, those attributes will transform to a
composite primary key in the data model.

ID-based Columns

If you do not designate a candidate key in your parent classes, Data Modeler will
automatically generate a primary key for each parent class when you transform your
object model to a data model. Data Modeler generates this key by adding an
additional column to the table (called an ID-based column) and assigns it as a primary
key. An ID-based column uses unique system-generated values.
Mapping an Object Model to a Data Model 15



Figure 5 ID-based Columns

ID-based Key vs. Candidate Key

An ID-based key is considered to have distinct advantages over a candidate key, when
choosing a unique identifier for a table. One of these advantages is an ID-based key’s
ability to maintain a constant size, because it is a system-generated value.

Another advantage is that an ID-based key uses one column, whereas a candidate key
may need to use multiple columns to uniquely identify the table. Using a single
column results in a simpler, cleaner database design, because in relationships only one
column not multiple columns migrates as a foreign key.

Using multiple columns also makes it more difficult to ensure unique entries in the
table. For example, in the T_Physician table you may use name and address as
candidate keys, but you may encounter duplications if one physician has the same
name as another physician who lives at the same address, such as would occur in a
mother-daughter situation. To avoid this you may use ssn as the candidate key, but
then there is a greater likelihood of this information being entered incorrectly. A
system-generated ID-based key reduces these problems.

Domain Columns

You can map attributes to domains if you already have a domain defined in your data
model. Refer to Chapter 4, Physical Data Modeling for more information on creating
domains in the data model. Domains can act as a user-defined data type
corresponding to a specific DBMS language. It is important that you assign your
domain to the same DBMS language that you will use for your data model, so your
domain will be compatible with your database.

You map attributes to domains by setting the attribute type to the name of your
domain. In the transformation process, the attribute transforms to a column using the
domain name as the data type, thereby using the domain’s defined data type and
settings.
16 Chapter 3 - Logical Data Modeling



Figure 6 Domain Columns

Data Type

Data Modeler automatically maps your attribute type to an appropriate column data
type of your DBMS or the ANSI SQL 92 standard. If you want your attribute to
transform to a particular data type in the data model, you need to designate the
correct attribute type that maps to your desired data type. Refer to Appendix B for a
listing of the data type mapping. Furthermore, if you want to specify a default value
for your column, you can specify it in the attribute’s initial value which maps to a
column’s default value.

Mapping Composite Aggregations to Identifying Relationships

Aggregations by value, known as composite aggregations, map to identifying
relationships in the data model. Composite aggregations consist of a whole and a part,
indicating a “strong” relationship, wherein the part cannot exist without the whole.
You use a composite aggregation when you have one instance of a parent class that
owns a dependent class. The dependent class is defined as the part and must be
accompanied by a whole or parent class. If the parent class is deleted its composite
parts must be deleted also, therefore the parent class must use the multiplicity of 1.
Mapping an Object Model to a Data Model 17



Figure 7 Composite Aggregations Map to Identifying Relationships

Mapping Aggregations and Associations to Non-Identifying
Relationships

Aggregations by reference (known as aggregations) and associations map to
non-identifying relationships, with the exception of many-to-many associations. Both
of these join two classes without using a “strong” relationship. You use an
aggregation when you have multiple instances of a parent class owning a dependent
class. You use an association when you have classes that are independent of each
other. An aggregate or association can be mandatory, where a parent class is required,
by using a multiplicity of 1 or 1..n. An association can also be optional, where a parent
class is not required, by using a multiplicity of 0..n.
18 Chapter 3 - Logical Data Modeling



Figure 8 Associations Map to Non-Identifying Relationships

Many-to-Many Associations

Many-to-many associations map to intersection table structures where all the columns
of the intersection table are primary/foreign keys. In the transformation process, Data
Modeler reads the two classes in the many-to-many relationship and creates two
separate tables, then it joins these two tables with two identifying relationships to a
system-generated table called an intersection table. As part of generating the
identifying relationships, the two tables’ primary keys migrate to the intersection
table as primary/foreign keys.
Mapping an Object Model to a Data Model 19



Figure 9 Many-to-Many Associations Map to Intersection Tables

Mapping Association Classes to Intersection Tables

An association class that links to a many-to-many association maps to an intersection
table structure where the intersection table contains one or more additional columns
that are not primary/foreign keys. An association class is an additional class attached
to an association that can store properties and operations shared by the two
individual classes of the association. The reason the classes share these properties and
operations is because they cannot be stored in either of the classes. Data Modeler
transforms association classes and their properties, but association class operations
are ignored by Data Modeler. In the object to data model transformation, Data
Modeler transforms the two classes to tables and joins them to an intersection table
with two identifying relationships, migrating the primary keys of each individual
table to the intersection table as primary/foreign keys. Then Data Modeler adds the
attributes of the association class as columns in the intersection table.
20 Chapter 3 - Logical Data Modeling



Figure 10 Association Classes Map to Intersection Tables

Mapping Qualified Associations to Intersection Tables

A qualified association maps to an intersection table that contains an additional primary
key. Qualified associations are many-to-many associations that use qualifiers. A
qualifier is an attribute applied to one side of an association that works as an identifier
to return a specific set of objects at the opposite end of the association. Similar to the
transformation process of association classes, the two classes in a qualified association
transform to individual classes and are joined with identifying relationships to the
intersection table. The qualifier of the qualified association is transformed to a
Mapping an Object Model to a Data Model 21



primary key in the intersection table. The intersection table then contains the
primary/foreign keys of the two tables, and the additional primary key column
generated by the transformation of the qualifier.

Figure 11 Qualified Associations Map to Intersection Tables

Mapping Inheritance

Inheritance structures or, in UML terminology, generalization structures can map to
separate tables or one table; however, Data Modeler only transforms inheritance
structures to separate tables. Inheritance structures associate a general parent class
with more specific child classes. The child classes share the same attributes of the
parent class and add additional attributes that affect only their specific class.
22 Chapter 3 - Logical Data Modeling



When Data Modeler transforms an inheritance structure to separate tables, one table
is created for each participating class. The parent table is joined to each of the child
tables with a zero-to-one or one identifying relationship. Therefore, each child table
contains a primary/foreign key related to the parent table’s primary key.

Figure 12 Inheritance Maps to Separate Tables

You can manually map an inheritance structure to one class after you transform your
object model to a data model. You do this by deleting the two identifying
relationships between the tables; this deletes the primary/foreign keys in your tables.
Then, you move the individual columns from the two child tables to the intersection
table. Finally, you set the child classes in your object model to transient.

Important: If you manually map your inheritance structure to one table, you will have
to repeat this process each time you transform your object model to the data model or
vice versa. If you do not manually remap your models each time you transform, you
may encounter conflicts with your application and DBMS mapping.
Mapping an Object Model to a Data Model 23



Transforming the Object Model to the Data Model

After customizing your object model to map to a data model, you can transform your
object model to generate a data model that reflects the mapping you specified. You
transform the object model to a data model for various reasons, but regardless of the
reason the process is the same.

Why Transform

You can transform an object model to generate a new DBMS database, or to
synchronize the object model and the data model, sharing information with data
designers.

Transformation is a necessary step in generating a new database that supports the
application. When you transform the object model, a data model is generated. This
data model can then be forward engineered to create a DBMS database.

Also, when you transform the object model to a data model you are synchronizing the
models, because each of the generated elements in the data model map to one or more
elements in the object model. This synchronization creates consistency in the system
and allows for the sharing of information between the application designers and the
database designers through the object model.

The database designer is dependent on the object model of the application, because it
is through this structure that the data is accessed. Therefore the transformation of the
object model to the data model can be the means of communicating application
changes that may affect the DBMS database. The application designer can share
information, especially changes, by transforming the changed object model to a data
model. The database designer can review the changes and see the impact such
changes would have on the DBMS database without updating the database. You can
share the object model changes with the database designer by using the Data Modeler
Transform Object Model to Data Model feature.

The Transformation Process

All the object model elements mentioned in the mapping section of this chapter
transform to the data model items they are mapped to, except components and
operations.

Even though components map to a database, components themselves do not
transform to the data model. In fact, in place of a component, you must create a new
database before transforming your object model to a data model. When you create a
new database, you can specify a database name and assign the database target to a
supported DBMS or the ANSI SQL 92 standard. Refer to Chapter 4 Physical Data
Modeling for information on creating a new database.
24 Chapter 3 - Logical Data Modeling



Transform Object Model to Data Model Dialog Box

The process of transforming an object model begins from the Transform Object Model to Data
Model dialog box. From this dialog box, you can select or specify a schema name for
your data model, the database name you will be using, prefixes for your tables, and
whether or not you want to create indexes for your foreign keys.

Figure 13 Transform Object Model to Data Model Dialog Box

Destination Schema

If you select an existing schema name, that existing schema will be overwritten by the
new schema generated from your object model. If you specify a new schema name,
Data Modeler will generate a new schema using that name without overwriting any
existing schema you may have assigned to your database.
Transforming the Object Model to the Data Model 25



Target Database

When you specify a Target, which is the database name, you must select a name from
the list. If you leave the Target blank, your specification dialog boxes will be
unavailable to you after the transformation is complete.

Prefixes

You can distinguish your new tables from the classes in your object model by
assigning a prefix to them. It is recommended you use a prefix. The prefix will appear
before each of your tables’ names and will help you avoid drawing relationships
between a table and a class or vice versa, making your object model or data model
invalid.

Indexes for Foreign Keys

As an additional convenience, you can specify to have an index built for every foreign
key in your new data model. When you click OK on this dialog box, the actual
transformation process begins.

Transforming Packages, Classes, and Associations

In the actual transformation process, Data Modeler generates a schema or executes a
destructive rewrite using the schema name you designated in the Transform Object Model
to Data Model dialog box. Then Data Modeler reads the object model package looking for
persistent classes and relationships between persistent classes. These classes are
transformed to tables in the data model.

At this point, Data Modeler looks for any attributes assigned as candidate keys in the
persistent classes. If there are attributes assigned as candidate keys, each of these keys
are transformed to primary keys and are added to the table’s primary key constraint
with unique indexes being created for each constraint. If none of the attributes are
assigned as a candidate key, Data Modeler adds an ID-based column to the parent
tables and assigns that column as the primary key for the table. This process ensures
that all the parent tables have a primary key, so all relationships will be valid.
Thereafter, all other attributes are added to the table as columns.

Once the tables are established, Data Modeler transforms the object model
associations to data model relationships. Each of the relationships receives the
appropriate cardinality and roles as designated in the object model. Also, each of the
relationships migrates a foreign key to the child table based on the primary key in the
parent table. If you specified to have an index built for each foreign key, these indexes
are generated after the foreign key migrates from the parent to the child table. This
also includes any special structures like those that transform to intersection tables.
26 Chapter 3 - Logical Data Modeling



The entire processing time of the transformation depends on the number of classes to
be transformed in your object model.

After the Transformation Process

When the transformation process is complete you can make any changes necessary in
the data model to map the object and data model more precisely. You can also see the
object model to data model mapping using the Mapped From property in the data
model’s Table or Column Specifications.

Mapped From

When you transform an object model or a data model the Mapped From text box is
automatically populated with the name of the referencing object model element. This
is a protected field so you cannot control it manually. When you are working with a
data model you can know which class or attribute a table or column maps to, even if
the class has been renamed, by reviewing the Mapped From text box for your particular
table or column. This property is also helpful because mapping object model elements
to data model elements is not always a one-to-one mapping. You can have instances
where your data model is denormalized and a class and a table loses their one-to-one
mapping, because of the movement of columns between tables. In an instance like
this, the Mapped From text box can help you track the source of an entity regardless of
the changes made to it.
Transforming the Object Model to the Data Model 27





4Physical Data Modeling
Contents

This chapter is organized as follows:

� Introduction on page 29
� Data Models on page 29
� Building a New Data Model on page 30
� Reverse Engineering to Create a Data Model on page 44
� After Building the Data Model on page 45

Introduction

Physical data modeling is the next step in modeling a database. The physical data
model uses the logical data model’s captured requirements, and applies them to
specific database management system (DBMS) languages. Physical data models also
capture the lower-level detail of a DBMS database. Rose Data Modeler calls this
physical data model, the “data model.”

Data Models

When working with Data Modeler, the physical data model is known as a data model
and is graphically represented in the data model diagram. The data model diagram is
customized from other UML diagrams allowing the database designer to work with
already familiar concepts and terminology.

Using Rose you can create a data model in a variety of ways. The previous chapter
explained how to create a data model by transforming an object model, but you can
also create a data model by building a new model, or by reverse engineering a
database or DDL file.
29



Building a New Data Model

You can build a new data model by manually creating the elements of a data model.
This section describes the process of building a data model using Data Modeler.

Create a Database

A database is the implementation component for a data model. Each database is
assigned to a target. The target refers to the actual ANSI SQL 92 standard or supported
DBMS and DBMS version you want to use. You can specify your target using the
Database Specification. The default target is ANSI SQL 92. When you designate a
target only the elements supported by your designated DBMS version or ANSI SQL
92 standard are supported in your data model.

Also when you create a database, a Schemas folder is automatically created for you in
your Rose browser, so you can store your schemas. Each database can contain one or
more schemas.

Create a Schema

A schema is the primary container for a data model and contains all the tables of the
data model. Data Modeler requires a schema for the data model to exist. Therefore, all
elements in a data model, with the exception of domains are required to be assigned
to a schema.

Before you create tables for your schema, you should assign your schema to a
database. When you assign your schema to a database, only the elements supported
by your database’s designated DBMS version or ANSI SQL 92 standard are
supported. If you do not assign your schema to a database, your schema will use the
ANSI SQL 92 standard as a default.

Create a Data Model Diagram

It is necessary for you to create a data model diagram if you want to create
relationships, because you must draw your relationships on the data model diagram.
When you create a data model diagram and enable it, Data Modeler’s customized tool
set and the corresponding menu commands are made available to you. Refer to
Chapter 2, Data Modeling and UML for more information on data model diagrams.

Create Domains

Domains act as a template for columns you use frequently and can be applied to
columns and attributes alike as a customized data type. For example, when modeling
tables for employees, the social security number will always be needed. Instead of
30 Chapter 4 - Physical Data Modeling



recreating the ssn column settings repeatedly, you can create a domain that contains
the social security number settings and assign that domain as the data type for the
column. Refer to Figure 14 on page 31.

Creating a domain is optional and is dependent upon the domain support for your
DBMS. When you create a domain, you must first create a domain package as a
container for your domain. You can assign your domain package to a specific DBMS.
Then you can create your domain and assign your domain to the domain package.
Assigning your domain to a domain package means your domain will only support
the data types supported by the domain package’s DBMS. You can also tag your
domain as server-generated for forward engineering purposes.

Figure 14 A Domain

Create Tables

A table identifies an entity. Each table can contain columns, constraints, triggers, and
indexes. Tables are joined together through relationships. A table can belong to only
one schema, however a schema may contain zero or more tables. You can also indicate
the tablespace name for your table.

When you create a table, your table name must be unique within the schema to which
it belongs, and must meet your specified DBMS’s naming requirements. It is
recommended you use a prefix to distinguish the tables in your data model from the
classes in your object model.
Building a New Data Model 31



Figure 15 A Table

Create Columns

A column defines the characteristics of a table. The tables are linked by their columns.
Column names must be unique within the table and column values are controlled by
constraints. You can specify a column type, data type, precision, length, scale (if
required), and whether the column is part of a key constraint and is nullable.

Column Types

Each column is assigned a column type. Data Modeler supports two column
types—data columns and computed columns.

Data Column

A data column stores any data information except derived values. You can assign
your data column to a data type supported by your target DBMS, or to an existing
domain. If you specify a data type, your data type may require you to enter a length
or precision and an accompanying scale. You can assign a default value to your data
column. You can also assign constraints to your data column, specifying if it is a
primary key, unique key, and whether NULL values are accepted. Data columns also
support SQL Server’s Identity property and DB2’s ForBitData.

Computed Column

A computed column uses a SQL expression to derive and store its values. Because
they are derived, and do not use unique values, computed columns cannot be
assigned as a primary key or unique key. As part of optimization efforts to increase
query speed, you can create an index on a computed column.
32 Chapter 4 - Physical Data Modeling



Create Constraints

There are two types of constraints—key constraints and check constraints. Key
constraints restrict data in a column or group of columns to uniquely identify a row
and enforce referential integrity within a relationship. Check constraints restrict the
adding to or modifying of a table’s data to enforce business rules.

Key Constraints

There are three types of key constraints—primary key, unique, and foreign key.
However, also included as a type of key constraint is indexes. Indexes are included as
a type of key constraint because they relate directly to the other key constraints, and
use a key column list. Each table can have only one primary key constraint and can
contain zero or more unique and foreign key constraints. To enforce the key
constraints, the database server creates a unique index.

Primary Key Constraint

If you assign a primary key for one of your columns, a primary key constraint is
automatically created for you consisting of that column and any other columns you
assign as a primary key. Primary key constraints do not allow any two rows of a table
to have the same non-NULL values in any primary key column, and do not allow any
primary keys to have NULL values. Primary keys control the characteristics of all
corresponding foreign keys and can identify the parent table in a relationship.

Primary key constraints can consist of one primary key or a composite primary key.
The composite primary key can consist of primary keys and/or primary/foreign
keys. Primary/foreign keys are embedded keys that enforce the referential integrity of
a relationship, and therefore cannot have NULL values. Primary/foreign keys are
created through identifying relationships, so you cannot manually control a
primary/foreign key. Refer to Embedded Primary/Foreign Key on page 35 for more
information on primary/foreign keys.

Unique Constraint

Unique constraints also known as alternate constraints consist of one or more unique
columns. Unique constraints do not allow any two rows of a table to have the same
non-NULL values in any unique constraint columns. NULL values are not allowed
for this constraint, with the exception of the SQL Server DBMS. SQL Server allows
NULL values for unique constraints.
Building a New Data Model 33



Foreign Key Constraint

Foreign key constraints consist of one or more foreign keys. Foreign keys are
read-only with the exception of the foreign key name and default value. Each foreign
key is generated by creating a relationship between two tables, thereby migrating the
primary or unique key from the parent table. Any changes made to the parent table’s
primary or unique keys cascade to the foreign keys in the child table. NULL and
unique constraints on foreign keys are controlled by the relationship’s cardinality.
Refer to Cardinality on page 37 for more information.

Index

Indexes consist of a key list of columns that provide quick access to any given value by
searching only that key list of columns. Each index must have a unique name. You can
cluster your index, however Data Modeler only allows one clustered index per table.
Clustering an index increases the efficiency of an index by physically storing the index
with the data. You should always use a clustered index when you are creating an
index for a child table that participates in an identifying relationship.

You can also specify a fill factor/percent free for your index. The fill factor/percent
free specifies the percentage of rows each index page can contain. Specifying a low fill
factor allows for flexibility in your index. Specifying a high fill factor allows for little
change to the records in the index.

Creating Key Constraints

You can create key constraints by specifying the name of the key constraint, and what
type of constraint it is—either primary key, unique, or an index. You can also select
columns to include in your key constraint. If you are creating an index you can specify
if you want the index to be unique; the key constraints that automatically generate
their indexes are set as unique indexes.

Check Constraints

A check constraint restricts actions to a table’s data, by using SQL predicate
expressions. If the SQL expression returns false when it is executed, the table’s data is
not altered. You can create a check constraint for tables or domains using the Check
Constraints tab on the Table or Domain Specification. You can specify a check constraint
name and a SQL expression, and if you are using Oracle as your target DBMS you can
also specify deferrable or non-deferrable.
34 Chapter 4 - Physical Data Modeling



Deferrable vs. Non-deferrable (Oracle only)

Check constraints for the Oracle DBMS can be identified as non-deferrable or
deferrable. Non-deferrable check constraints verify the validity of an action at the end
of the SQL statement. Deferrable check constraints verify the validity of an action
either at the end of the statement using Initially Immediate, or at the end of the
transaction before it is committed using Initially Deferred.

Create Relationships

Relationships relate tables to one another in a data model using two types of
relationships—identifying and non-identifying. You can also define the cardinality and
roles for a relationship, and you can use them in different relationship structures.

Identifying Relationships

An identifying relationship specifies that a child table cannot exist without the parent
table. When you use an identifying relationship, the primary key of the parent table
migrates to the child table as a foreign key. The foreign key is embedded in the child
table’s existing primary key constraint as a primary/foreign key. If the child table
does not have an existing primary key constraint, the migrating foreign key is
assigned as a primary/foreign key creating both a foreign key and a primary key
constraint.

Figure 16 An Identifying Relationship

Embedded Primary/Foreign Key

When the foreign key is embedded, it appears as a primary/foreign key in the table.
Embedding the foreign key in the primary key enforces the referential integrity of the
relationship. This embedding prevents orphan records in the child table by requiring
the deletion of the record in the child table first, before deleting the record in the
parent table. It also prevents you from reassigning the primary key to another column
Building a New Data Model 35



in the parent table, because such a reassignment would create orphan records in the
child table. It is the embedded primary/foreign key that distinguishes the
relationship as an identifying relationship as opposed to it being a non-identifying
relationship.

Non-Identifying Relationships

Non-identifying relationships are relationships in which there is no interdependency
between child and parent tables, hence the foreign key is not embedded in the child
table’s primary key constraint. There are two kinds of non-identifying
relationships—optional and mandatory. In an optional non-identifying relationship the
parent table is not required, therefore the parent table of the relationship uses the
cardinality of 0..1. In a mandatory non-identifying relationship, a parent table is
required and uses the cardinality of 1 or 1..n.

Figure 17 A Non-Identifying Relationship

Mandatory Non-Identifying Relationships vs. Identifying Relationships

Because both mandatory non-identifying relationships and identifying relationships
require a parent table, it may be difficult to know when to use them. When making
this decision, consider first if the tables have a dependency of part-to-whole, where
the part would have no meaning without the whole. If they do, then you should use
an identifying relationship. For instance in the Clinic model, the Address table has
addresses, but no names of patients who live at those addresses; therefore the
addresses themselves have no meaning, they must be related to a patient’s name.

Another important factor to consider is whether the foreign key can be nullable. In a
mandatory non-identifying relationship the foreign key can be null, because it is not
part of the primary key constraint. This allows for more flexibility in the relationship.
36 Chapter 4 - Physical Data Modeling



Cardinality

Cardinality is the minimum and maximum number of possible instantiations of a
relationship between two tables. Cardinality is used to enforce referential integrity. If
a table has a cardinality of 1, then that signifies the table must exist in the relationship.
This cardinality is especially important for parent tables to prevent orphan records in
the child tables.

Cardinality can also determine if a foreign key is unique and can be nullable. It is the
foreign key’s ability to be NULL that can determine if you should use an identifying
or non-identifying relationship. If the parent table has a cardinality of one or more the
foreign key cannot be NULL. Below is a table specifying the necessary cardinalities to
make a foreign key nullable and/or unique.

Table 1 Cardinalities for Foreign Key Constraints

Roles

Roles in a relationship explain how the table acts in the relationship, giving meaning to
cardinality. You can apply roles to either one table or both tables in a relationship.
Roles combined with cardinality create a grammatical statement of what is occurring
in the relationship. So as each parent table in a relationship acts as a noun, the role acts
as a verb and the child table acts as a direct object, and vice versa. For example in
Figure 18 on page 38 the role of the relationship between a clinic and the services it
provides is stated: One clinic provides one or more services.

Required Constraints
Parent Table
Cardinality

Child Table
Cardinality

Foreign key is nullable and unique 0..1 0..1 or 1

Foreign key is nullable and not unique 0..1 0..* or 1..*

Foreign key is not nullable and not unique 1 1..* or 0..*

Foreign key is not nullable, but is unique 1 0..1 or 1
Building a New Data Model 37



Figure 18 A Role

This helps when trying to transform business requirements to modeled elements in
the data model, and communicates to the business analyst that the business
requirements have been met.

Relationship Structures

Using identifying and non-identifying relationships you can create different
relationship structures. One of these structures is an intersection table. The other
structure is a self-referencing structure.

Intersection Tables

Although, an intersection table is by definition a table, the specific relationship
structure it participates in is what really defines it. An intersection table is a
relationship structure in which one child table is related to two parent tables with two
1:n identifying relationships. When such a structure is created the child table contains
primary/foreign keys corresponding to the parent tables’ primary keys, therefore any
updates made to the child table will affect both parent tables. This kind of relationship
structure can be used for supertype/subtype structures.
38 Chapter 4 - Physical Data Modeling



Figure 19 An Intersection Table

Self-referencing

Another relationship structure is a self-referencing structure. A self-referencing
structure uses only one table, relating the table to itself with a non-identifying
relationship. You use a self-referencing structure when you have an instance of a table
that must be related with another instance of the same table. This kind of relationship
structure can be used for recursive relationships.
Building a New Data Model 39



Figure 20 A Self-Referencing Relationship

Define Referential Integrity

Referential integrity ensures the integrity of your data when you update or delete the
parent table of a relationship. It does this by applying specific actions to its
corresponding child tables or by preventing the parent table itself from being updated
or deleted.

Data Modeler offers two methods to support referential integrity actions: declarative
referential integrity (DRI) and system-generated referential integrity (RI) triggers. With
these two methods you can perform the following actions:

� Cascade – deletes/updates all associated children
� Restrict – prevents deletion/update of the parent
� Set NULL – sets all child foreign keys to NULL
� No Action – no action taken
� Set Default – sets all child foreign keys to a default value

Declarative Referential Integrity

DRI specifies the referential integrity action as part of the foreign key clause when the
data model is forward engineered. Although it is considered the most efficient
method and easiest method, DRI is DBMS dependent and not all DRI actions are
supported for each DBMS.

System-generated Referential Integrity Triggers

System-generated RI triggers specify the referential integrity actions by generating
system triggers. System-generated RI triggers are better supported by each DBMS. As
an additional integrity measure you can specify Child Restrict to prevent the insertion
of orphan records.
40 Chapter 4 - Physical Data Modeling



Create Custom Triggers

Custom triggers execute a set of SQL statements when you update, insert, or delete
data in your database. You can use a trigger to enforce business rules for multiple
tables, because triggers can prevent specific data modifications. It is important to use
triggers as a method of enforcing business rules, because it ensures that the
application designer and the database designer complete the same business processes
using the same logic.

Trigger Events

When creating a trigger you must decide on an event or combination of events which
will fire the trigger. A trigger event is a specific action such as update, insert, and delete
that modifies the data.

Additional Trigger Settings for DB2 and Oracle

Along with trigger events Data Modeler supports additional trigger settings available
only to DB2 and Oracle DBMSs. These settings are trigger type, granularity,
referencing, and using the WhenClause.

Trigger Type

Data Modeler defines a trigger type as the determination of when the trigger statement
is verified before the trigger event, after the trigger event, or if the trigger is fired
instead of the event occurring.

If the trigger statement is verified before the trigger event, the trigger can verify if the
condition of the modification is appropriate for the database, before the modification
occurs. For example, if you are using a before trigger and attempt to insert a new
patient record that does not meet the specified requirements in the SQL statement, the
insert action is rejected, and the database is not modified.

If the trigger statement is verified after the trigger event, the trigger can verify if the
condition of the modification is appropriate for the database after the modification
occurs. Using the after trigger type you can determine a level of granularity and
reference alias names, so you can see the results the modification would make to your
data before committing it. This is important for the application designer, who can
create a call that points to the old database if an error occurs, or to the new database if
no error occurs.

If the trigger is fired instead of the trigger event occurring, the proposed modification
does not occur. In place of the proposed modification, the trigger fires, creating its
own modification.
Building a New Data Model 41



Trigger Granularity

Trigger granularity determines how often the trigger is executed—after each row or
after each statement. This distinction is important if you have a situation in which the
modification condition would be considered invalid, unless first some other column
or row was modified, for example updating a child table would require the parent
table to be updated first, so you would want to execute only after each statement
instead of each row. Whereas granularity of each row is a more detailed level and will
verify the SQL conditions more often. It is the granularity that determines your level
for trigger referencing whether by table or by row.

Trigger Referencing

Trigger referencing allows you to assign an alias name to your table or row before it is
modified, or to your table or row after its modification. If you are using Oracle as your
target DBMS, you can assign an alias name for the old row and the modified row. If
you are using DB2 as your target DBMS, you can assign an alias name for the old table
or row and the modified table or row. Such referencing gives you two views of the
same table or row, which can be used by multiple applications depending on your
business processes and development decisions.

Trigger WhenClause

A WhenClause is an additional SQL statement indicating a search condition that can
further filter data modified in the database by the trigger. You can write this SQL
search condition statement to return true, meaning only if the statement returns true
will the modification occur. If the statement returns false, the modification will not
occur.

Create Stored Procedures

In Data Modeler terms, a stored procedure can be a stored procedure or a stored
function. Stored procedures reduce the occurrences of the same SQL statement in
your model, and allow you to call these statements from the application with one
name as opposed to coding the statements at the application level.

When you create a stored procedure, a stored procedure container is automatically
created for you, indicating to which schema you assigned your stored procedure.

Language

When determining which language to use to write your stored procedure code, you
should consider if you want your stored procedure to be internal or external. Internal
stored procedures are supported by the database, and their code can only be written
42 Chapter 4 - Physical Data Modeling



in SQL. External stored procedures are supported by the application, and you can
choose from Java and C code languages. When you use external stored procedures
you can assign them an external name consisting of the path or library name.

Parameters

Parameters are the variables of the procedure or function. Each parameter can be
assigned a data type, direction, and default value. The direction of your parameter
depends on if your parameter is an input value, an output value, or both.

Stored Procedures

You use a stored procedure when you have a routine that will not return a value. For
example you can create a stored procedure that adds new patient records when a new
patient ID is created.

Parameter Styles for DB2 Stored Procedures

You can select the parameter style DB2Dari as a convention for sending parameters to
and receiving values from a procedure that conforms to the C language.

Stored Functions

You use a stored function when your routine returns a NULL or Not NULL value. You
can specify a specific data type for the return value including that data type’s length
or precision, and scale.

You can also determine whether or not you want the function called when the
function parameters return a NULL value. If you do not want the function called
when a NULL value is returned, use Return Null. If you want the function to be called
regardless of a NULL value, use Call Procedure.

Not Deterministic

When a function is Not Deterministic the function depends on a state of values that
affect the results, so the results are not always the same. Not Deterministic functions
are used when you have a result value and a possible other value in addition to the
result value.

Parameter Styles for DB2 Stored Functions

A parameter style is the convention for sending parameters to and receiving values
from a function that conforms to a specific stored function language. Data Modeler
allows you to select the DB2 parameter style that relates to your stored function
Building a New Data Model 43



language. You can select DB2GNRL for functions that conform to C language calling
and linking, or you can select DB2SQL for functions that are defined as methods in a
Java class.

Reverse Engineering to Create a Data Model

You can create a physical data model by reverse engineering an existing DBMS
database or DDL file. Before reverse engineering, you must ensure your existing
database meets all your specific DBMS’s requirements and is a stable structure. Data
Modeler will not repair incorrect structures. This is especially important in table name
length and column name length.

Reverse Engineering Wizard

You reverse engineer your DBMS database or DDL file by using the Reverse
Engineering Wizard. The wizard guides you through and initiates the reverse
engineering process, offering you the option to include indexes, triggers, and stored
procedures in your new schema. It also guides you through your database
connectivity. Refer to Appendix D for information on connecting to your database.

If the wizard encounters any error during the reverse engineering process, Data
Modeler logs the error in the Rose Log and continues the process. When the wizard
informs you that the process is complete you need to review the Rose Log for any
errors that may have occurred.

Reverse Engineering DB2 Databases or DDL

When you reverse engineer a DB2 database or DDL file, Data Modeler reads the
system catalog, and creates a new Data Modeler schema using the database name as
the schema name. Then Data Modeler recreates your DBMS database elements in
your new schema. All of your database comments are recreated in the data model as
documentation. Each table is recreated in the data model schema including the table’s
columns, constraints, and appropriate data type settings. All distinct data types are
recreated as domains in the data model. The domain name is the name of the distinct
data type. If you are using DB2 MVS version 6.x, routines are recreated in the data
model as stored procedures, with all arguments becoming parameters.

Reverse Engineering Oracle Databases or DDL

When you reverse engineer an Oracle database or DDL file, Data Modeler reads the
user catalog, and creates a new Data Modeler schema database name as the schema
name. Then Data Modeler recreates your DBMS database elements in your new
schema. All of your database comments are recreated in the data model as
44 Chapter 4 - Physical Data Modeling



documentation. Each table is recreated in the data model schema including the table’s
columns, constraints, and appropriate data type settings. All user defined data types
are recreated as domains in the data model. The domain name is name of the
user-defined data type. Database procedures are recreated as stored procedures.

Reverse Engineering SQL Server Databases or DDL

When you reverse engineer a SQL Server database or DDL file, Data Modeler reads
the system catalog, and creates a new Data Modeler schema using the database name
as the schema name. Then Data Modeler recreates your DBMS database elements in
your new schema. All of your database comments are recreated in the data model as
documentation. Each table is recreated in the data model schema including the table’s
columns, constraints, and appropriate data type settings. All user-defined data types
are recreated as domains in the data model. The domain name is the name of the
user-defined data type. Your rules are recreated as check constraints in the data
model.

Reverse Engineering Sybase Databases or DDL

When you reverse engineer a Sybase database or DDL file, Data Modeler reads the
system catalog, and creates a new Data Modeler schema using the database name as
the schema name. Then Data Modeler recreates your DBMS database elements in
your new schema. All of your database comments are recreated in the data model as
documentation. Each table is recreated in the data model schema including the table’s
columns, constraints, and appropriate data type settings.

After Reverse Engineering

When the reverse engineering process is complete and you have reviewed the Rose
Log for errors, you can view your data model. Although your data model was
populated with your database or DDL schema you can only view that model
graphically by creating a data model diagram. Once you create your data model
diagram, you can either drag your data model elements from the logical view on to
the diagram or you can add your tables using the Query menu on the menu bar.

After Building the Data Model

When you completed the creation of your data model you can map and transform this
model to an object model to build an application from the data model’s design or you
can implement this model by forward engineering it to generate the DDL code
and/or DBMS database.
After Building the Data Model 45





5Mapping the Physical
Data Model
Contents

This chapter is organized as follows:

� Introduction on page 47
� Mapping the Data Model to an Object Model on page 47
� Transforming a Data Model to an Object Model on page 56

Introduction

If you created your physical data model manually or reverse engineered an existing
database to create a physical data model, you may want to map and transform your
physical data model to the object model. Then your object model can act either as a
robust logical data model that is synchronized with your physical data model, or it
can act as the structure for your application model, so you can build your application
using the same logic for modeling business processes as you use in your database.

Mapping the Data Model to an Object Model

Chapter 3 discussed Rose’s ability to map the object model to the data model, but you
can also map the data model to the object model. This mapping allows you to
transform your data model to an object model, using the names of the data model
elements for the names of the object model elements. You can map all data model
elements to an object model, with the exception of stored procedures, triggers, key
constraints, and check constraints that do not use enumerated clauses.

Mapping Schemas to Packages

Each data model schema maps to a logical package. Data Modeler allows you to
transform one schema at a time, and generates one package for each schema
transformed, using the schema name for the package name.
47



Mapping Domains to Attribute Types

Domains themselves do not map to an element in the object model. However, in the
transformation process, a column that uses a domain as a data type will transform to
an attribute, with an attribute type that references the domain name. For example, the
column ssn uses the domain DOM_SSN. When it transforms to the object model, it
transforms to an attribute ssn that uses DOM_SSN as its attribute type. Refer to
Figure 21 on page 48.

Figure 21 Domain Columns Map to Attributes

Mapping Tables to Classes

All tables map one-to-one to persistent classes in an object model, with the exception
of intersection tables. Intersection tables map to special association structures. The
classes can be used to build a model that can map directly to an application.
48 Chapter 5 - Mapping the Physical Data Model



Figure 22 Tables Map to Classes

Mapping Columns to Attributes

Columns map to attributes in a one-to-one mapping with the exception of computed
columns and foreign key columns. Column data types map to appropriate object
model attribute types. Refer to Appendix C for more information on data type to
attribute type mapping. Column default values map to an attribute’s initial value.
Primary key columns can map to attributes tagged as part of object identity.

However in the transformation process, other specialty columns are ignored.
Specialty columns such as computed columns are ignored because they use derived
values. Foreign key columns are ignored because they act as pointers in a relationship
referring to an existing column in another table, therefore they are redundant and
unnecessary.

Figure 23 Columns Map to Attributes

Mapping Enumerated Check Constraints to Classes

Check constraints that contain enumeration clauses such as “in” statements map to
classes with stereotype <<ENUM>>. This provides a more robust logical model that
closely resembles the physical model, giving more information on business rules.
Business analysts and application designers can know the only acceptable values for
specific columns in the logical data model, not just in the physical data model.
Mapping the Data Model to an Object Model 49



Figure 24 Enumerated Check Constraints Map to Classes with <<ENUM>>

Figure 21 on page 48 demonstrates this with the enumerated check constraint for
gender. The new class uses the name of the constraint, and creates attributes for each
item in the enumeration clause.

Mapping Identifying Relationships to Composite Aggregations

Identifying relationships map to composite aggregations, because composite
aggregations imply you cannot have a part without a corresponding whole.
Identifying relationships also support this implication through the embedded foreign
key (also called the primary/foreign key), because modifications cannot be made to a
child table with a primary/foreign key without first making that modification to the
parent table. Therefore, the child table (the part) could never have part of a record that
is not already contained in the parent table (the whole).
50 Chapter 5 - Mapping the Physical Data Model



Figure 25 Identifying Relationships Map to Composite Aggregations

Mapping Non-Identifying Relationships to Associations

Non-identifying relationships map to associations, because associations join two
classes that are independent of each other, or use a “weak” relationship. The weak
relationship is indicated by the foreign key not being embedded in the primary key
constraint.
Mapping the Data Model to an Object Model 51



Figure 26 Non-Identifying Relationships Map to Associations

Mapping Intersection Tables

Intersection tables are difficult to map because depending on the structure of the
intersection table itself, it can map up to three different object model
elements—many-to-many associations, qualified associations, and association classes.
An intersection can map to any one of these or all of them.

Many-to-Many Associations

An intersection table maps to a many-to-many association in an object model when all
the columns in the intersection table itself are primary/foreign keys. This means all
the data contained in the intersection table pertains to either one or the other table in
the relationship. Therefore, the attributes that map to the columns containing this data
must be in one or the other class in the association, but cannot be contained in both
classes.
52 Chapter 5 - Mapping the Physical Data Model



Figure 27 Intersection Tables Map to Many-to-Many Associations

Qualified Associations

An intersection table also maps to a qualified association of a many-to-many
relationship when the intersection table contains an additional primary key. This
additional primary key is specifically for the intersection table and is not received
through an identifying relationship, meaning this key is not a primary/foreign key.
Since the intersection table itself maps to the relationship between the two classes, the
association “owns” the additional primary key column. The primary key column acts
as a filter for the association, because neither class can own nor share this key. It filters
out the possible instances that do not contain this primary key information.
Mapping the Data Model to an Object Model 53



Figure 28 Intersection Tables Map to Qualified Associations

Association Classes

An intersection table also maps to an association class of a many-to-many relationship
when the intersection table contains an additional column that is not a primary key,
foreign key, or primary/foreign key. This additional column identifies the intersection
table outside of the relationship, so that neither table participating in the relationship
can own the column, yet both share the column. The association class uses the name
of the intersection table as its name.
54 Chapter 5 - Mapping the Physical Data Model



Figure 29 Intersection Tables Map to Association Classes

Mapping Supertype/Subtype Structures to Inheritance Structures

Supertype/subtype structures can map to inheritance structures, this is also known as
a generalization. However in the transformation process, Data Modeler transforms
supertype/subtype structures as separate classes. After the transformation process
you can manually delete the composite relationships and replace them with the
generalization structure also known as the inheritance tree.
Mapping the Data Model to an Object Model 55



Transforming a Data Model to an Object Model

After customizing or reviewing your data model to ensure you will receive the
desired results in your object model, you can transform your data model to an object
model.

Why Transform

As Chapter 3 explained, transforming is helpful to synchronize your physical data
and logical data models and can be a means of communication between the
development team members.

You can also transform to build an application from your database structure. When
you transform to the object model, you can take that object model and assign its
classes or entire package to an appropriate component language. Then you can create
the additional boundary classes and interfaces you need to generate the application
code in that component language.

The Transformation Process

All data model elements transform to the object models they are mapped to. In the
transformation process, Data Modeler will only transform your data model to the
Analysis component language in the object model. If you want to use a different
component language you must manually reassign your package and classes to that
other language after the transformation process is complete.

Transform Data Model to Object Model Dialog Box

The process of transforming the data model begins in the Data Model to Object Model
Transformation dialog box. In this dialog box, you can select or specify a schema name
for the object model, a prefix for each of your object model classes (it is recommended
you use a prefix to distinguish your object model classes from your data model
tables), and whether or not you want the primary key columns to be included in the
transformation.
56 Chapter 5 - Mapping the Physical Data Model



Figure 30 Transform Data Model to Object Model Dialog Box

Transforming Data Model Elements

In the actual transformation process, Data Modeler reads the data model schema, and
generates a package or executes a destructive rewrite if an existing package has the
same name as the schema you are transforming. Then, Data Modeler creates a
persistent class for each valid table in the data model with the exception of an
intersection table.

At this point all foreign key columns are removed from the classes, and all other
columns are transformed to attributes. If you designated in the Transform Data Model to
Object Model dialog box to include primary key columns, these are also transformed to
attributes. All constraints are removed from the attributes with the exception of
primary key columns; they are tagged as part of object identity. Also any check
constraints that contain enumerated clauses are transformed to classes with the
stereotype <<ENUM>>.
Transforming a Data Model to an Object Model 57



Once the classes are established, Data Modeler transforms the relationships to
associations or composite aggregations depending on the relationship type, and
assigns the appropriate multiplicity and roles as designated in the data model.

After the Transformation Process

When the transformation process is complete, you can make any changes necessary in
the object model, such as revising inheritance structures. You can also see the data
model to object model mapping using the Mapped From property in the data model’s
Table or Column Specifications. Refer to Chapter 3, Logical Data Modeling for more
information on the Mapped From property.
58 Chapter 5 - Mapping the Physical Data Model



6Implementing the
Physical Data Model
Contents

This chapter is organized as follows:

� Introduction on page 59
� Forward Engineering a Data Model on page 59
� Comparing and Synchronizing a Data Model on page 62

Introduction

The final step in modeling a database is implementing the physical data model. You
can implement a physical data model by forward engineering to create a new DDL or
database, or you can compare and synchronize your model with an existing DDL or
database, implementing only specific table changes.

Forward Engineering a Data Model

Before forward engineering your data model to a database, you must ensure your
data model meets all your specific DBMS’s requirements, especially for table name
and column name length. You must also ensure your data model structure is stable,
Data Modeler will not repair incorrect data structures.

Forward Engineering Wizard

You forward engineer your data model to a database or DDL file by using the
Forward Engineering Wizard. The wizard guides you through and initiates the
forward engineering process. It also guides you through connecting to your DBMS.
Refer to Appendix D for information on connecting to your DBMS.

If the wizard encounters any error during the forward engineering process, Data
Modeler logs the error in the Rose Log and continues the process. When the wizard
informs you that the process is complete, you need to review the Rose Log for any
errors that may have occurred.
59



Additionally the wizard offers you the option to include or ignore CREATE statements
for comments, tables, indexes, stored procedures, and triggers, and also to include or
ignore fully qualified names, quoted identifiers, and drop statements. Although all of
these are important, fully qualified names, quoted identifiers, and drop statements
can have a critical effect on your executable DDL.

Fully Qualified Names

Fully qualified names have a critical effect on your DDL because if you use fully
qualified names in your DDL, you restrict flexibility by not allowing the use of other
tools to execute your DDL. You should only use fully qualified names if you are going
to forward engineer to a database, by executing your generated DDL.

Quoted Identifiers

Quoted identifiers have a critical effect on your DDL, because they allow you to use
characters outside of the standard code set such as spaces. They allow you to use the
double byte code set (DBCS) as part of your element names, by placing your element
names in quotes. This is helpful when you must follow specific naming standards for
your business or when you are working with international alphabets.

Drop Statements

Drop statements in conjunction with CREATE Table statements have a critical effect
on your DDL, because if not specified correctly in your forward engineering they can
cause errors or cause a destructive overwrite on your DDL. If you include tables and
drop statements, all of your tables are dropped at the beginning of the DDL script and
then the CREATE Table statements are generated. If you include tables, but do not
include drop statements, your CREATE Table statements will begin at the final point
of your existing DDL script, creating possible errors because you may have duplicate
tables in your DDL. If you do not include tables, but include drop statements, all your
tables are dropped at the beginning of your DDL script and no CREATE Table

statements are generated thereafter, causing your DDL to be empty. All the DBMSs
support drop statements with the exception of SQL Server and Sybase, which use a
conditional drop statement. Refer to Forward Engineering to a SQL Server Database or
DDL on page 61 or Forward Engineering to a Sybase Database or DDL on page 62 for
more information on conditional drop statements.

Forward Engineering to the ANSI SQL 92 DDL

When you forward engineer the data model to an ANSI SQL 92 DDL file, Data
Modeler reads the data model schema, and generates DDL statements for each
modeled element. All of your documentation is recreated as comments. However,
60 Chapter 6 - Implementing the Physical Data Model



stored procedures and triggers do not forward engineer and are not included in the
DDL. A“;” acts as your statement delimiter separating the statements in your DDL
script.

Forward Engineering to a DB2 Database or DDL

When you forward engineer the data model to a DB2 database or DDL file, Data
Modeler reads the data model schema, and generates a system catalog. All of your
documentation is recreated as comments in your DBMS database. Each table is
recreated in the database or DDL including the table’s columns, selected constraints,
and data type settings. A“;” acts as your statement delimiter separating the
statements in your DDL script.

Domains are recreated as distinct data types. If the domain is tagged as
server-generated, then when it is forward engineered an additional CREATE
DISTINCT TYPE statement is included providing information such as the domain
name and data type. If the domain is not tagged as server-generated, then when it is
forward engineered the domain column in the CREATE Table statement will only
provide the data type, but not its associated domain name.

Forward Engineering to an Oracle Database or DDL

When you forward engineer the data model to an Oracle database or DDL file, Data
Modeler reads the data model schema, and generates a user catalog. Documentation
for your tables and columns is recreated as comments in your DBMS database. Each
table is recreated in the database or DDL including the table’s columns, selected
constraints, and data type settings. Clustered indexes are recreated as index
organization tables (IOT). You can specify a “;” or a “/” to act as your statement
delimiter, separating the statements in your DDL script.

Forward Engineering to a SQL Server Database or DDL

When you forward engineer the data model to a SQL Server database or DDL file,
Data Modeler reads the data model schema, and generates a system catalog. None of
your documentation forward engineers. However, each table is recreated in the
database or DDL including the table’s columns, selected constraints, and data type
settings. “Go” acts as your statement delimiter separating the statements in your DDL
script.

Domains are recreated as user-defined data types. If the domain contains enumerated
check constraints or default values, one of those check constraints is forward
engineered as a rule, all others remain check constraints. The domain default value
becomes the default for that user-defined data type. If the domain is tagged as
server-generated, then when it is forward engineered an additional EXEC
Forward Engineering a Data Model 61



sp_addtype statement is included providing information such as the domain name,
data type, and length. If the domain is not tagged server-generated, then when it is
forward engineered the domain column in the CREATE Table statement will only
provide the data type, but not the associated domain name.

If you included drop statements in your forward engineering, they will act as
conditional drop statements. If the table exists it is dropped, if it does not exist then no
drop statement is created and therefore errors do not occur in your DDL script.

Forward Engineering to a Sybase Database or DDL

When you forward engineer the data model to a Sybase database or DDL file, Data
Modeler reads the data model schema, and generates a system catalog. None of your
documentation forward engineers. However, each table is recreated in the database or
DDL including the table’s columns, selected constraints, and data type settings. “Go”
acts as your statement delimiter separating the statements in your DDL script.

Domains are recreated as user-defined data types. If the domain contains enumerated
check constraints or default values, one of those check constraints is forward
engineered as a rule, all others remain check constraints. The domain default value
becomes the default for that user-defined data type. If the domain is tagged as
server-generated, then when it is forward engineered an additional EXEC
sp_addtype statement is included providing information such as the domain name,
data type, and length. If the domain is not tagged server-generated, then when it is
forward engineered the domain column in the CREATE Table statement will only
provide the data type, but not the associated domain name.

If you included drop statements in your forward engineering, they will act as
conditional drop statements. If the table exists it is dropped, if it does not exist then no
drop statement is created and therefore errors do not occur in your DDL script.

Comparing and Synchronizing a Data Model

When implementing a data model that corresponds to an existing database, compare
and synchronization is an optimal choice, because it updates your database only with
the changes or differences per table, unlike forward engineering which makes
changes to all tables in the schema. You compare and synchronize the data model
with a database or DDL file by using the Data Model to Database Synchronization
Wizard.
62 Chapter 6 - Implementing the Physical Data Model



Synchronization Wizard

The synchronization wizard guides you through and initiates this process, offering
you the option to include comments, indexes, triggers, and stored procedures. If you
are generating a DDL, you can also include fully qualified names and quoted
identifiers. The wizard also guides you through connecting to a DBMS database. Refer
to Appendix D for information on connecting to your database. The wizard divides
this process into two parts—comparison and synchronization.

Comparison Process

In the comparison process, Data Modeler reads the data model schema and the DBMS
database. Then, Data Modeler compares these two schemas, visually listing the
differences for each database element and each data model element in the
synchronization wizard. These two lists are placed side by side, grouped by table, and
match the element names for the data model to the element names for the DBMS
database. If there is an item in the data model that does not exist in the DBMS
database, then the item is placed on a line by itself under the data model list and the
other list is left blank, and vice versa. If the difference is about an element in a table
such as a column, only that differing column and the table it belongs to are listed, the
other elements of the table are not included in the list.

The wizard allows you to set an action for each line item. These actions indicate where
an element is updated, in the data model or in the database. If you do not set any
actions, then no changes will be made to your database or your data model. If you
want to update your database schema with the element in the data model, you can set
this action to Export. However, you must consider that any changes made to a
database column or any of its characteristics will require you to first drop your
original table from the database, which may result in the loss of data. If you want to
update your data model schema with the element in the database schema, you can set
this action to Import. If you want to delete the element from both the data model and
the database schema, you can set this action to Delete. When you set an action it
applies to the entire table, but if you do not want specific elements in your table to be
synchronized, then you can indicate an Ignore action on those elements.

The synchronization wizard also allows you to save the results of this comparison to a
.txt file. You can use this .txt file as it is or you can open it using a word processing or
spreadsheet application for clearer formatted reports.

Synchronization Process

After you set the actions for each element, the wizard allows you to review your
proposed changes before beginning the actual synchronization process. The wizard
also allows you to provide a path for your DDL and gives you the option of executing
Comparing and Synchronizing a Data Model 63



your DDL after it is generated. In the synchronization process, Data Modeler reads the
synchronization options and updates the data model and DBMS database according
to the actions you specified. If there are changes to the database or DDL, a new DDL
with only those changes is created and can be executed to update the existing DBMS
database.
64 Chapter 6 - Implementing the Physical Data Model



AAppendix
UML Data Modeling Profile

This table maps database concepts to data modeling stereotypes assigned to existing
UML structures and is called the UML Data Modeling Profile.

Table 2 UML Data Modeling Profile Stereotypes

Database Concept UML Structure Data Modeling Stereotype

Database Component <<Database>>

Schema Package <<Schema>>

Table (entity) Class <<Table>>

Domain Class <<Domain>>

Relationship Association <<Non-Identifying>>

Strong Relationship Composite Aggregate <<Identifying>>

Index Operation <<Index>>

Primary Key Constraint Operation <<PK>>

Foreign Key Constraint Operation <<FK>>

Unique Constraint Operation <<Unique>>

Check Constraint Operation <<Check>>

Trigger Operation <<Trigger>>

Stored Procedure Utility Class <<SP>>
65





BAppendix
Object to Data Model Data Type Mapping

This appendix contains tables mapping each supported object model language with
each of the supported DBMS data types. This is the same mapping Data Modeler uses
when transforming an object model to a data model.

The following tables are contained:

� Analysis Object to Data Model Data Type Mapping Table 3 on page 68
� Java Object to Data Model Data Type Mapping Table 4 on page 69
� Visual Basic Object to Data Model Data Type Mapping Table 5 on page 70
67



Ta
b

le
3

A
n

al
ys

is
O

b
je

ct
to

D
at

a
M

o
d

el
D

at
a

Ty
p

e
M

ap
p

in
g

A
n

al
ys

is
A

N
S

I
S

Q
L

92
D

B
2

O
ra

cl
e

S
Q

L
S

er
ve

r
S

yb
as

e

ST
R

IN
G

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

IN
TE

G
E

R
IN

T
EG

E
R

IN
T

EG
E

R
N

U
M

BE
R

(1
0,

0)
IN

T
IN

T

D
O

U
B

L
E

D
O

U
B

L
E

PR
E

C
IS

IO
N

D
O

U
B

L
E

FL
O

A
T

FL
O

A
T

FL
O

A
T

D
A

T
E

D
A

T
E

T
IM

E
ST

A
M

P
D

A
T

E
D

A
TA

ET
IM

E
D

A
TA

ET
IM

E

B
O

O
LE

A
N

SM
A

L
L

IN
T

SM
A

L
L

IN
T

N
U

M
BE

R
(1

,0
)

B
IT

B
IT

B
Y

T
E

SM
A

L
L

IN
T

SM
A

L
L

IN
T

N
U

M
BE

R
(3

,0
)

SM
A

L
L

IN
T

SM
A

L
L

IN
T

SI
N

G
L

E
FL

O
A

T
R

E
A

L
FL

O
A

T
FL

O
A

T
FL

O
A

T

L
O

N
G

IN
T

EG
E

R
B

IG
IN

T
N

U
M

BE
R

(2
0,

0)
IN

T
IN

T

C
U

R
R

EN
C

Y
D

O
U

B
L

E
PR

E
C

IS
IO

N
D

O
U

B
L

E
FL

O
A

T
M

O
N

E
Y

M
O

N
E

Y

68 Appendix B - Appendix



Ta
b

le
4

Ja
va

O
b

je
ct

to
D

at
a

M
o

d
el

D
at

a
Ty

p
e

M
ap

p
in

g

Ja
va

A
N

S
I

S
Q

L
92

D
B

2
O

ra
cl

e
S

Q
L

S
er

ve
r

S
yb

as
e

L
O

N
G

IN
T

E
G

E
R

B
IG

IN
T

N
U

M
B

E
R

(2
0,

0)
IN

T
IN

T

C
H

A
R

C
H

A
R

G
R

A
P

H
IC

(1
)

C
H

A
R

C
H

A
R

(1
)

C
H

A
R

(1
)

IN
T

IN
T

E
G

E
R

IN
T

E
G

E
R

N
U

M
B

E
R

(1
0,

0)
IN

T
IN

T

SH
O

R
T

SM
A

LL
IN

T
SM

A
LL

IN
T

N
U

M
B

E
R

(5
,0

)
SM

A
LL

IN
T

SM
A

LL
IN

T

D
O

U
B

L
E

FL
O

A
T

D
O

U
B

L
E

FL
O

A
T

)
FL

O
A

T
FL

O
A

T

B
Y

T
E

SM
A

LL
IN

T
SM

A
LL

IN
T

N
U

M
B

E
R

(3
,0

)
SM

A
LL

IN
T

SM
A

LL
IN

T

FL
O

A
T

FL
O

A
T

R
E

A
L

FL
O

A
T

FL
O

A
T

(0
)

FL
O

A
T

B
O

O
L

E
A

N
SM

A
LL

IN
T

SM
A

LL
IN

T
N

U
M

B
E

R
(1

,0
)

B
IT

B
IT

Jja
va

.u
ti

l.D
at

e
D

A
T

E
T

IM
E

ST
A

M
P

D
A

T
E

D
A

T
E

TI
M

E
D

A
T

E
T

IM
E

ja
va

.la
ng

.S
tr

in
g

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
2

(2
55

)
C

H
A

R
(2

55
)

C
H

A
R

(2
55

)

Object to Data Model Data Type Mapping 69



Ta
b

le
5

V
is

u
al

B
as

ic
O

b
je

ct
to

D
at

a
M

o
d

el
D

at
a

Ty
p

e
M

ap
p

in
g

V
is

u
al

B
as

ic
A

N
S

I
S

Q
L

92
D

B
2

O
ra

cl
e

S
Q

L
S

er
ve

r
S

yb
as

e

ST
R

IN
G

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

V
A

R
C

H
A

R
(2

55
)

IN
T

E
G

E
R

IN
T

E
G

E
R

IN
T

E
G

E
R

N
U

M
B

E
R

(1
0,

0)
IN

T
IN

T

D
O

U
B

L
E

D
O

U
B

L
E

P
R

E
C

IS
IO

N
D

O
U

B
L

E
FL

O
A

T
FL

O
A

T
FL

O
A

T
(0

)

C
O

L
L

E
C

T
IO

N
SM

A
LL

IN
T

SM
A

LL
IN

T
N

U
M

B
E

R
(5

)
SM

A
LL

IN
T

SM
A

LL
IN

T

D
E

C
IM

A
L

FL
O

A
T

R
E

A
L

FL
O

A
T

FL
O

A
T

FL
O

A
T

B
Y

T
E

D
A

T
E

T
IM

E
ST

A
M

P
D

A
T

E
D

A
T

E
TI

M
E

D
A

T
E

T
IM

E

SI
N

G
L

E
FL

O
A

T
R

E
A

L
FL

O
A

T
FL

O
A

T
FL

O
A

T

B
O

O
L

E
A

N
SM

A
LL

IN
T

SM
A

LL
IN

T
N

U
M

B
E

R
(1

,0
)

B
IT

B
IT

B
Y

T
E

SM
A

LL
IN

T
SM

A
LL

IN
T

N
U

M
B

E
R

(3
,0

)
SM

A
LL

IN
T

SM
A

LL
IN

T

L
O

N
G

IN
T

E
G

E
R

B
IG

IN
T

N
U

M
B

E
R

(2
0,

0)
IN

T
IN

T

C
U

R
R

E
N

C
Y

D
O

U
B

L
E

P
R

E
C

IS
IO

N
D

O
U

B
L

E
FL

O
A

T
M

O
N

E
Y

M
O

N
E

Y

70 Appendix B - Appendix



CAppendix
Data to Object Model Data Type Mapping

This appendix contains tables mapping each supported DBMS’s data types with the
Analysis, Java, and Visual Basic languages. Data Modeler only transforms to the
Analysis language. The other languages are for mapping reference only.

The following tables are contained:

� ANSI SQL 92 Data to Object Model Data Type Mapping Table 6 on page 72
� DB2 Data to Object Model Data Type Mapping Table 7 on page 73
� Oracle Data to Object Model Data Type Mapping Table 8 on page 74
� SQL Server Data to Object Model Data Type Mapping Table 9 on page 75
� Sybase Data to Object Model Data Type Mapping Table 10 on page 77
71



Table 6 SQL 92 Data Model to Object Model Data Type Mapping

ANSI SQL 92 Analysis VB Java

BIT BOOLEAN BOOLEAN BOOLEAN

BIT VARYING BYTE BYTE BYTE

CHAR STRING STRING STRING

DATE DATE DATE DATE

DECIMAL BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
SHORT
INTEGER
LONG
FLOAT
DOUBLE

DOUBLE PRECISION DOUBLE DOUBLE DOUBLE

FLOAT SINGLE
DOUBLE

SINGLE
DOUBLE

SINGLE
DOUBLE

INTEGER INTEGER INTEGER INTEGER

INTERVAL STRING STRING STRING

REAL SINGLE SINGLE FLOAT

SMALLINT INTEGER INTEGER INTEGER

TIME DATE DATE DATE

TIME WITH TIME ZONE DATE DATE DATE

TIMESTAMP DATE DATE DATE

TIMESTAMP WITH TIME
ZONE

DATE DATE DATE

VARCHAR STRING STRING STRING
72 Appendix C - Appendix



Table 7 DB2 Data to Object Model Data Type Mapping

DB2 Analysis VB Java

SMALLINT BYTE
OBJECT
VARIANT

BYTE
OBJECT
COLLECTION
DECIMAL

BYTE
SHORT

INTEGER INTEGER
BOOLEAN

INTEGER
BOOLEAN

BOOLEAN
INT

BIGINT LONG LONG LONG

REAL SINGLE SINGLE FLOAT

DOUBLE DOUBLE
CURRENCY

DOUBLE DOUBLE

DECIMAL BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

CHARACTER STRING STRING STRING

VARCHAR STRING STRING STRING

LONG VARCHAR STRING STRING STRING

GRAPHIC STRING STRING CHAR

VARGRAPHIC STRING STRING
VARIANT

STRING

LONG VARGRAPHIC STRING STRING STRING

DATE DATE DATE DATE

TIME DATE DATE DATE

TIMESTAMP DATE DATE DATE

BLOB STRING STRING STRING

CLOB STRING STRING STRING

DBCLOB STRING STRING STRING
Data to Object Model Data Type Mapping 73



Table 8 Oracle Data to Object Model Data Type Mapping

Oracle Analysis VB Java

CHAR STRING STRING java.lang.String

VARCHAR2 STRING STRING java.lang.String

NCHAR STRING STRING java.lang.String

NVARCHAR2 STRING STRING java.lang.String

NUMBER (1,0) BYTE BYTE BYTE

NUMBER (3,0) BYTE BYTE BYTE

NUMBER (5,0) INTEGER INTEGER SHORT

NUMBER (10,0) LONG LONG INT

NUMBER (20,0) LONG LONG LONG

NUMBER (m, n)

(n cannot equal zero)

SINGLE
DOUBLE

SINGLE
DOUBLE

FLOAT
DOUBLE

FLOAT (n) SINGLE
DOUBLE

SINGLE
DOUBLE

FLOAT
DOUBLE

LONG STRING STRING java.lang.String

LONG RAW STRING STRING java.lang.String

RAW STRING STRING java.lang.String

DATE DATE DATE java.util.Date

BLOB STRING STRING java.lang.String

CLOB STRING STRING java.lang.String

NCLOB STRING STRING java.lang.String

BFILE STRING STRING java.lang.String

ROWID LONG LONG LONG
74 Appendix C - Appendix



Table 9 SQL Server Data to Object Model Data Type Mapping

SQL Server Analysis VB Java

BIT BOOLEAN BOOLEAN BOOLEAN

INT INTEGER
LONG

INTEGER
LONG

INT
LONG

SMALLINT BYTE
OBJECT
VARIANT

BYTE
OBJECT
COLLECTION

BYTE
SHORT

TINYINT BYTE BYTE BYTE

DECIMAL BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

NUMERIC BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

BOOLEAN

REAL SINGLE SINGLE FLOAT

MONEY CURRENCY CURRENCY DOUBLE

SMALLMONEY CURRENCY CURRENCY DOUBLE

DATETIME DATE DATE DATE

SMALLDATETIME DATE DATE DATE

TIMESTAMP LONG LONG LONG

UNIQUEIDENTIFIER LONG LONG LONG

CHAR STRING STRING STRING

VARCHAR STRING STRING STRING

TEXT STRING STRING STRING

BINARY STRING STRING STRING

VARBINARY STRING STRING STRING

IMAGE STRING STRING STRING
Data to Object Model Data Type Mapping 75



SQL 7.0 only Data to Object Attribute Type Mapping

SQL Server Analysis VB Java

NTEXT (ver. 7.0 only) STRING STRING STRING

NVARCHAR
(ver. 7.0 only)

STRING STRING
VARIANT

STRING

NCHAR (ver. 7.0 only) STRING STRING CHAR
76 Appendix C - Appendix



Table 10 Sybase Data to Object Data Type Mapping

Sybase Analysis VB Java

BIT BOOLEAN BOOLEAN BOOLEAN

INT INTEGER
LONG

INTEGER
LONG

INT
LONG

SMALLINT BYTE
OBJECT
VARIANT

BYTE
OBJECT
COLLECTION

BYTE
SHORT

TINYINT BYTE BYTE BYTE

DECIMAL BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

NUMERIC BYTE
INTEGER
LONG
SINGLE
DOUBLE

BYTE
INTEGER
LONG
SINGLE
DOUBLE

BOOLEAN

REAL SINGLE SINGLE FLOAT

MONEY CURRENCY CURRENCY DOUBLE

SMALLMONEY CURRENCY CURRENCY DOUBLE

DATETIME DATE DATE DATE

SMALLDATETIME DATE DATE DATE

TIMESTAMP LONG LONG LONG

UNIQUEIDENTIFIER LONG LONG LONG

CHAR STRING STRING STRING

VARCHAR STRING STRING STRING

TEXT STRING STRING STRING

BINARY STRING STRING STRING

VARBINARY STRING STRING STRING

IMAGE STRING STRING STRING
Data to Object Model Data Type Mapping 77





DAppendix
Database Connections

This appendix contains information on connecting to your database when using any
of Data Modeler’s engineering wizards. You can connect to any of the supported
databases when you use the reverse engineer, the forward engineer, or the
synchronize data model to database wizards. It is important that you have the correct
user privileges for each of the engineering processes. When you are reverse
engineering a database you only need read privileges for your system or master
catalog. If you are forward engineering or synchronizing the data model, you need
read/write privileges to the actual schema or database affected.

DB2

Before you connect to a DB2 database you must ensure you have your DB2 client and
ODBC driver installed. You can use the IBM DB2 ODBC driver (or other third party
DB2 ODBC drivers).

Note: Ensure you use the ODBC driver that matches your version of DB2.

You must specifically configure your ODBC driver for DB2. If your ODBC driver is
configured correctly your data source name appears in the Data Source drop-down
lists in the Data Modeler wizards. If you are configuring your ODBC driver for initial
use, test your database connection from the ODBC Data Source Administrator. For all
subsequent database connections test your connection in the Data Modeler wizards.

Connecting to DB2 Databases

Data Modeler wizards require the name of the ODBC data source, a user name, and a
password. The user name and corresponding password indicate your privileges for
reading or using the database. You will only be allowed to select the databases that are
authorized by your user name. If you are reverse engineering a DB2 UDB database
you must have read privileges to the syscat.* file. If you are reverse engineering a DB2
MVS database you must have read privileges to the sysIBM.* file.
79



If you are using DB2 7.0, you can use NT authentication for your user name and
password. You do this by leaving the user name and password blank. When you use
NT authentication Data Modeler queries your operating system for your user
identification. This method of single sign on is helpful for database administrators.

Oracle

Before you connect to an Oracle database you must ensure your Oracle client and
Oracle Config service is installed. You must configure your Oracle Net8 or Net Easy
Config.

Connecting to Oracle Databases

Data Modeler wizards require a service name, a user name, and a password. The
service name indicates the Oracle Server name or Oracle Easy Config Service name.
The user name and corresponding password indicate your privileges for reading or
using the database. You are only allowed to select the databases that are authorized by
your user name.

Note: Always test your database connection before continuing in any of the wizards.

SQL Server

Before you connect to a SQL Server database you must ensure you have the SQL
Server client. Your OLE DB driver should have been installed with your installation of
Rose. You must configure your OLE DB driver specifically for SQL Server.

Connecting to SQL Server Databases

Data Modeler wizards require a server name, database name, a user name, and a
password. The server name is the name of the server running SQL Server. If the server
name is your local machine you can leave the server name blank, or enter the local
machine name.

The user name and its associated password indicate your privileges for reading or
using the database. You are only allowed to select the databases that are authorized by
your user name. If you have system administrator privileges, you will have access to
the master database and it will appear in the drop-down list for Database Name. If you
do not have system administrator privileges you must enter the database name
manually.
80 Appendix D - Appendix



You can use NT authentication for your user name and password, if you leave the
user name and password blank and your SQL Server’s server supports NT
authentication. When you use NT authentication Data Modeler queries your
operating system for your user identification. This method of single sign on is helpful
for database administrators.

Note: Always test your database connection before continuing in any of the wizards.

Sybase

Before you connect to a Sybase database you must ensure you have your Sybase client
and ODBC driver installed. You must specifically configure your ODBC driver for
Sybase. If your ODBC driver is configured correctly your data source name appears in
the Data Source drop-down lists in the Data Modeler wizards. If you are configuring
your ODBC driver for initial use, test your database connection from the ODBC Data
Source Administrator. For all subsequent database connections test your connection
in the Data Modeler wizards.

Connecting to Sybase Databases

Data Modeler wizards require a data source, database name, a user name, and a
password. The data source is the name of the Sybase data source. The user name and
its associated password indicate your privileges for reading or using the database.
You are only allowed to select the databases that are authorized by your user name. If
you have system administrator privileges, you will have access to the master database
and it will appear in the drop-down list for Database Name. If you do not have system
administrator privileges you must enter the database name manually.

Note: Always test your connection before continuing in any of the wizards.
Database Connections 81





Index
A
aggregations 17

mapping to non-identifying relationships 18
ANSI SQL 92

data models 30
forward engineering DDL 60

application designer role 1
applications

communicating changes 24
shown in object models 12
working with legacy 9

association classes
intersection table mappings 54
mapping to intersection tables 20

associations
many-to-many 19, 52
mapping to non-identifying relationships 18
qualified 21, 53
transforming to data model relationships 26

attribute types
mapping to data types 17

attributes
as qualifiers 21
assigning to classes 12
mapping to columns 14
mapping to domains 16
transforming as columns 26

B
business analyst role 1
business requirements

and data entities 11

C
C++ 9

DB2 stored procedures 43

parameter styles for stored functions 43
stored procedures 42

candidate key columns 16
candidate keys

transforming to primary keys 26
cardinality 37

foreign keys 37
check constraints 34

mapping to classes 49
child classes 22
child tables 35

intersection tables 38
roles 37

class diagrams
components 13
described 11
mapping to data model diagrams 9

classes 11
assigning attributes 12
association 20, 54
child 22
dependent 17
mapping to tables 14
parent 17, 22
persistent 14
transforming to tables 26
transient 14

columns
candidate key 16
computed 32
creating in data model 32
data columns 32
described 32
domain 16
ID-based 15
key constraints 33
mapping to attributes 13, 49
primary keys 15

comparing data models 62
83



described 63
components

described 13
transforming 24

composite aggregations
see also aggregations 17

computed columns 32
constraints

check 33, 34
creating in data models 33
described 33
key 33
unique 33

Create Table statement 60
custom triggers

creating in data models 41
defined 41

D
data

check constraints 34
data columns 32
data model diagrams 7, 29

creating in data models 30
described 7
mapping to class diagrams 9

data model elements
transforming 57

data modeling
logical 11

data modeling profiles 5
data models 29

building new 30
comparing and synchronizing 62
defined 29
forward engineering 59
mapping to applications 12
mapping to object models 9, 13
relationships 30
reverse engineering to create 44
transforming to object models 56

data types
mapping to attributes types 17

stored parameters for stored functions 43
stored procedure parameters 43

database designer role 2
databases

assigning schemas 30
creating in data model 30
default targets 30
modeling 11
specifying for transformation 26
target 30

databases,
working with legacy 9

DB2
forward engineering to databases or DDL 61
parameter styles for stored functions 43
reverse engineering databases or DDL 44
stored procedures 43

DB2 triggers 41
DBMS 6

data types 17, 32
DB2 41, 43, 44, 61
domain columns 16
domains 31
generating new 24
mapping to languages 9
Oracle 41, 44, 61
physical data models 29
referential integrity 40
see also Oracle 35
SQL Server 45, 61
Sybase 45, 62
target databases 30
working with legacy databases 9

DDL
ANSI SQL 92 60
DB2 61
drop statements 60
fully qualified names 60
Oracle 61
quoted identifiers 60
SQL Server 61
Sybase 62

declarative referential integrity 40
deferrable check constraints 35
dependent classes 17
84 Index



diagrams
data model 7, 29, 30
mapping between data model and class 9

domain columns 16
domain packages

assigning to DBMS 31
domains

check constraints 34
creating in data models 30
data types 30
DB2 61
described 30
mapping to attribute types 48
mapping to attributes 16
server-generated 31
SQL Server 61
Sybase 62

drop statements 60
SQL Server 62
Sybase 62

E
embedded primary/foreign keys 35
entity/relationship notation 5
enumerated check constraints

mapping to classes 49
events

triggers 41

F
foreign key columns

mapping 49
foreign key constraints 34
foreign keys

cardinality 37
child tables 35
embedding 35
referential integrity 40
relationships 36
specifying indexes 26
transforming data model elements 57

forward engineering
data models 9

forward engineering data models 59
Forward Engineering Wizard 59
frameworks 8
fully qualified names 60

I
ID-based columns 15

creating in transformation 26
identifying relationships 35

mapping to aggregations 17
mapping to composite aggregations 50

In 12
indexes constraints 34
inheritance

mapping 22
intersection tables 19, 38

mapping 52
mapping to association classes 20
mapping to association structures 48
mapping to qualified associations 21

J
Java 9

parameter styles for stored functions 43
specifying for components 13
stored procedures 42

joining tables 19

K
key constraints

creating in data models 34
described 33
foreign key 34
indexes 33, 34
primary key 33

keys
embedding 35
Index 85



L
logical data modeling 11
logical data models 6
logical packages 14

M
mandatory non-identifying relationships 36
many-to-many associations

intersection table mappings 52
many-to-many relationships

association classes 54
Mapped From text box

using during transformation 27
mapping

association classes to intersection tables 20
attributes to domains 16
components to languages 13
inheritance 22
object models to data models 13
operations 13
packages 14
qualified associations to intersection

tables 21
modeling databases 11

physical data modeling 29
models

synchronizing 24
transforming 9

N
non-deferrable check constraints 35
non-identifying relationships

mandatory 36
mapping to aggregations 18
mapping to associations 18, 51
optional 36
structures 39

Not Deterministic stored functions 43
notations

entity/relationship 5

O
object models

components 13
forward engineering 9
mapping to data models 9, 13
representing applications 12
reverse engineering 9
transforming to data models 24

operations
mapping 13
transforming 24

optional non-identifying relationships 36
Oracle

check constraints 35
forward engineering to databases or DDL 61
reverse engineering databases or DDL 44

Oracle triggers 41
orphan records

preventing with referential integrity 40

P
packages 14

transforming 26
parameters

stored procedures 43
parent classes 17, 22

aggregations 18
associations 18

parent tables 35
non-identifying relationships 36
referential integrity 40
relationships 36
roles 37

persistent classes 14
physical data model

implementing 59
physical data modeling 29
physical data models 6

mapping 6
see also data models 29

physical data models, transforming 6
primary key constraints 33
primary keys 15
86 Index



and ID-based columns 15
computed columns 32
embedding 35
parent tables 35
qualified associations 53

primary/foreign keys 35, 52
profiles 5
programming languages

C 42, 43
C++ 9
Java 9, 13, 42, 43
SQL 42
Visual Basic 13

Q
qualified associations

intersection table mappings 52, 53
mapping to intersection tables 21

qualifiers 21
quoted identifiers 60

R
recursive relationships

self-referencing structures 39
referential integrity 39

actions 40
declarative (DRI) 40
parent tables 37, 40
system-generated (RI) triggers 40

relationship structures 38
relationships

cardinality 37
creating in data models 35
described 35
foreign keys 36
identifying 35
non-identifying 35, 36
parent tables 36
roles 37

reverse engineering
data models 9

reverse engineering data models 44

Reverse Engineering Wizard 44
roles

tables 37
Rose diagrams 7
rows

and indexes 34

S
schemas

assigning to databases 30
creating in data model 30
default standard 30
defined 30
mapping to packages 14, 47
reverse engineering to create 44
specifying for transformation 25
storage 30

SQL Server
forward engineering to databases or DDL 61
reverse engineering databases or DDL 45
stored procedures 42

stereotypes 5
entity 11
ENUM 49, 57

stored functions
data types 43
DB2 parameter styles 43
not deterministic 43
parameters 43

stored procedures
creating in data models 42
languages 42
parameters 43
stored functions 43

structures
mapping 55
self-referencing 39

supertype/subtype structures
mapping to inheritance structures 55

Sybase
forward engineering to databases or DDL 62
reverse engineering databases or DDL 45

Synchronization Wizard 63
Index 87



synchronizing
data models 62

synchronizing data models
described 63

system triggers
referential integrity 40

system-generated referential integrity (RI)
triggers 40

T
tables

cardinality in relationships 37
check constraints 34
creating in data models 31
described 31
intersection 19, 52
mapping to classes 14, 48
relationships 35
schemas 31
specifying prefixes for names 26

tablespace name
tables 31

tagged values 5
target databases 30

described 30
team roles

application designer 1
business analyst 1
database designer 2
dependencies 2

transformation 9
transforming

associations 26
classes 26

object model to data model 24, 25
packages 26

transforming data models to object models 56
transforming models 9
transient classes 14
trigger

events 41
granularity 42
referencing 42
types 41
WhenClauses 42

trigger events
defined 41

triggers
creating in data models 41
custom 41
referential integrity 40

U
UML 12

profiles 5
UML (Unified Modeling Language) 5
unique constraints 33

V
Visual Basic

specifying for components 13

W
WhenClause trigger 42
88 Index


	Using Data Modeler
	Contents
	Figures
	Tables
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction: Unifying the Team
	Team Roles
	Business Analyst Role
	Application Designer Role
	Database Designer Role

	Role Dependencies
	The Data Modeler Solution

	UML and Data Modeling
	Contents
	UML Introduction
	Why UML for Data Modeling?
	Data Modeling Profile Added to UML
	Advantages of the UML Data Modeling Profile

	Advantages of Rose UML and Data Modeling
	The Data Model Diagram
	Reusing Data Modeling Elements
	Data Modeler’s Transformation and Engineering Features
	Transformation Between the Object Model and Data Model
	Forward and Reverse Engineering the Data Model
	Comparing and Synchronizing the Data Model



	Logical Data Modeling
	Contents
	Introduction
	Using Rose for Logical Data Modeling
	Class Diagram
	Standardized Notation
	Mapping Capabilities

	Mapping an Object Model to a Data Model
	Mapping Components
	Mapping Operations
	Mapping Packages to Schemas
	Mapping Classes to Tables
	Mapping Attributes to Columns
	Primary Keys
	ID-based Columns
	Domain Columns
	Data Type

	Mapping Composite Aggregations to Identifying Relationships
	Mapping Aggregations and Associations to Non-Identifying Relationships
	Many-to-Many Associations

	Mapping Association Classes to Intersection Tables
	Mapping Qualified Associations to Intersection Tables
	Mapping Inheritance

	Transforming the Object Model to the Data Model
	Why Transform
	The Transformation Process
	Transform Object Model to Data Model Dialog Box
	Transforming Packages, Classes, and Associations
	After the Transformation Process



	Physical Data Modeling
	Contents
	Introduction
	Data Models
	Building a New Data Model
	Create a Database
	Create a Schema
	Create a Data Model Diagram
	Create Domains
	Create Tables
	Create Columns
	Column Types

	Create Constraints
	Key Constraints
	Check Constraints

	Create Relationships
	Identifying Relationships
	Non-Identifying Relationships
	Cardinality
	Roles
	Relationship Structures

	Define Referential Integrity
	Declarative Referential Integrity
	System-generated Referential Integrity Triggers

	Create Custom Triggers
	Trigger Events
	Additional Trigger Settings for DB2 and Oracle

	Create Stored Procedures
	Language
	Parameters
	Stored Procedures
	Stored Functions


	Reverse Engineering to Create a Data Model
	Reverse Engineering Wizard
	Reverse Engineering DB2 Databases or DDL
	Reverse Engineering Oracle Databases or DDL
	Reverse Engineering SQL Server Databases or DDL
	Reverse Engineering Sybase Databases or DDL
	After Reverse Engineering

	After Building the Data Model

	Mapping the Physical Data Model
	Contents
	Introduction
	Mapping the Data Model to an Object Model
	Mapping Schemas to Packages
	Mapping Domains to Attribute Types
	Mapping Tables to Classes
	Mapping Columns to Attributes
	Mapping Enumerated Check Constraints to Classes
	Mapping Identifying Relationships to Composite Aggregations
	Mapping Non-Identifying Relationships to Associations
	Mapping Intersection Tables
	Many-to-Many Associations
	Qualified Associations
	Association Classes

	Mapping Supertype/Subtype Structures to Inheritance Structures

	Transforming a Data Model to an Object Model
	Why Transform
	The Transformation Process
	Transform Data Model to Object Model Dialog Box
	Transforming Data Model Elements
	After the Transformation Process



	Implementing the Physical Data Model
	Contents
	Introduction
	Forward Engineering a Data Model
	Forward Engineering Wizard
	Fully Qualified Names
	Quoted Identifiers
	Drop Statements

	Forward Engineering to the ANSI SQL 92 DDL
	Forward Engineering to a DB2 Database or DDL
	Forward Engineering to an Oracle Database or DDL
	Forward Engineering to a SQL Server Database or DDL
	Forward Engineering to a Sybase Database or DDL

	Comparing and Synchronizing a Data Model
	Synchronization Wizard
	Comparison Process
	Synchronization Process



	Appendix
	UML Data Modeling Profile

	Appendix
	Object to Data Model Data Type Mapping

	Appendix
	Data to Object Model Data Type Mapping

	Appendix
	Database Connections
	DB2
	Connecting to DB2 Databases

	Oracle
	Connecting to Oracle Databases

	SQL Server
	Connecting to SQL Server Databases

	Sybase
	Connecting to Sybase Databases



	Index


