
CLEARCASE REFERENCE MANUAL

R e l e a s e 4 . 1 a n d l a t e r

Windows Edition

800-023813-000

/vobs/doc/ccase/ref/cc_ref_vol2.ntTTL.fm — August 24, 2000 10:57 am

ClearCase Reference Manual
Document Number 800-023813-000 November 2000

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice
Copyright © 1992, 2000 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation
Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks
Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, ClearDDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
disclaims all other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface ..xi

make ... 491

man ... 492

merge.. 494

mkactivity .. 508

mkattr ... 511

mkattype .. 519

mkbl.. 525

mkbranch... 531

mkbrtype.. 535

mkcomp ... 539

mkdir .. 541

mkelem... 543

mkeltype .. 551

mkfolder... 558

mkhlink.. 560

mkhltype.. 566

mklabel... 570

mklbtype.. 576

mkpool ... 580

mkproject ... 585

mkregion.. 588

mkstgloc... 590

mkstream ... 595

mktag.. 599

mktrigger ... 604

mktrtype .. 608

mkview .. 628

mkvob .. 636

mkws .. 643

mount ... 646

msdostext_mode... 650
 Contents iii

mv.. 652

mvfscache... 655

mvfslog... 658

mvfsstat .. 659

mvfsstorage.. 662

mvfstime... 664

mvfsversion ... 667

mvws .. 668

omake ... 670

pathnames_ccase... 681

permissions .. 692

profile_ccase .. 698

promote_server ... 701

protect... 702

protectvob .. 709

put ... 714

pwd ... 716

pwv ... 718

query_language... 721

quit .. 727

rebase .. 728

recoverview ... 734

reformatview ... 738

reformatvob ... 741

register .. 746

registry_ccase .. 749

relocate ... 758

rename .. 769

reqmaster.. 773

reserve .. 779

rgy_backup .. 781

rgy_check ... 784

rgy_passwd.. 788

rgy_switchover.. 790

rmactivity ... 794

rmattr .. 797
iv ClearCase Reference Manual

rmbl .. 800

rmbranch.. 802

rmcomp.. 805

rmdo ... 808

rmelem ... 812

rmfolder ... 817

rmhlink... 819

rmlabel ... 822

rmmerge... 825

rmname .. 827

rmpool.. 831

rmproject.. 834

rmregion .. 837

rmstgloc ... 839

rmstream.. 841

rmtag .. 843

rmtrigger.. 846

rmtype.. 849

rmver .. 853

rmview ... 858

rmvob ... 863

rmws... 865

schedule ... 867

scrubber.. 883

setactivity... 889

setcache .. 892

setcs... 897

setplevel ... 900

setsite .. 903

setws... 906

shell... 907

space ... 909

startview .. 915

type_manager ... 917

type_object... 923

umount... 927
 Contents v

uncheckout... 929

unlock ... 933

unregister ... 935

unreserve.. 938

update... 941

version_selector... 948

view... 952

view_scrubber ... 960

view_server.. 963

VOB... 966

vob_restore .. 973

vob_scrubber ... 977

vob_server.. 982

vob_snapshot... 984

vob_snapshot_setup... 990

vobrpc_server .. 995

wildcards.. 996

wildcards_ccase... 998

winkin... 1000

ws_helper ... 1006

wshell.. 1009

Index ..1011
vi ClearCase Reference Manual

Figures

Figure 8 Determination of the Base Contributor for a Merge...497

Figure 9 Merging from a Branch ...499

Figure 10 Merging into an Unreserved Checkout ..500

Figure 11 Selective Merge ..501

Figure 12 Data Flow in an omake Build...672

Figure 13 ClearCase MVFS Namespace...682

Figure 14 The MVFS Namespace from a Drive ..683

Figure 15 Version Tree and Extended Namespace ..688

Figure 16 Moving Relocated Element Does Not Update Symbolic Link from Source VOB......765
Figures vii

viii ClearCase Reference Manual

Tables

Table 8 Trigger Definition Operation Keywords..619

Table 9 Editable Job Properties..871

Table 10 Fields of the Job Schedule Property ..872

Table 11 Read-Only Job Properties ...873

Table 12 Task Properties...876

Table 13 Identity Types and Identities in Scheduler ACL Entries ...877

Table 14 Access Types in Scheduler ACL Entries...878

Table 15 A Comparison of View Features ...958
Tables ix

x ClearCase Reference Manual

Preface

ClearCase® is a comprehensive software configuration management system. It manages

multiple variants of evolving software systems, tracks which versions were used in software

builds, performs builds of individual programs or entire releases according to user-defined

version specifications, and enforces site-specific development policies.

ClearCase LT offers capabilities like those of ClearCase, but for the smaller software

development group.

ClearCase AttacheTM (abbreviated to “Attache” in this manual) provides a ClearCase client

solution for Microsoft® Windows® users. For more information, see the ClearCase Attache Manual.

ClearCase MultiSite® (abbreviated to “MultiSite” in this manual) is a layered product option for

ClearCase. It supports parallel software development and software reuse across project teams

that are distributed geographically.

About This Manual

This manual includes detailed reference information for ClearCase, ClearCase LT, Attache, and

MultiSite. It describes command syntax and use, and is not intended to be a learning tool. This

manual assumes you have already learned about these products through other means.

The reference pages are in alphabetical order in two volumes. Each reference page has an

Applicability section that lists the products to which the page applies. Within each reference

page, product-specific information is annotated “ClearCase only,” “ClearCase LT only,” and so

on. In this context, the term ClearCase always refers only to ClearCase, not to ClearCase LT,

ClearCase Attache, ClearCase MultiSite, nor to the ClearCase Product Family (CPF) in general.
Preface xi

ClearCase Documentation Roadmap

More Information

ClearCase Reference Manual
ClearCase Online Help
clearcase.rational.com

ClearCase
Administration

Administering ClearCase
ClearCase Product Family Installation Notes

ClearCase MultiSite Manual

Project
Management

Managing Software Projects with ClearCase

Orientation

Introduction to ClearCase
ClearCase and MultiSite Release Notes

ClearCase Tutorials

Development

Developing Software with ClearCase

Build
Management

ClearCase OMAKE Manual (Windows)
Building Software with ClearCase
xii ClearCase Reference Manual

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xiii

Command Examples

Reference pages for commands have usage examples. The examples for cleartool subcommands

and Attache commands begin with the cmd-context variable. This reflects the fact that the

commands are invoked differently, depending on the operating context:

➤ Attache — cmd-context represents the workspace prompt. If the example looks like this:

cmd-context checkin –nc hello.c

you would enter the following at the workspace prompt:

checkin –nc hello.c

➤ ClearCase in single-command mode — cmd-context indicates that you must type cleartool,
then the rest of the input, at your regular command prompt. If the example looks like this:

cmd-context checkin –nc hello.c

you would enter the following at your command prompt:

cleartool checkin –nc hello.c

➤ ClearCase in interactive cleartool mode — cmd-context represents the interactive cleartool
prompt. If the example looks like this:

cmd-context checkin –nc hello.c

you would enter the following at the cleartool> prompt (type cleartool to enter interactive

mode):

checkin –nc hello.c

If an example uses wildcards or quoting, use interactive cleartool mode so that the wildcards

and quotes will be interpreted correctly. (Many Windows NT shells do not handle wildcards

and quoting correctly.)

Online Documentation

The ClearCase Product Family (CPF) graphical interfaces include a standard Windows help

system.
xiv ClearCase Reference Manual

There are three ways to access the online help system: the Help menu, the Help button, or the F1

key. Help>Help Topics provides access to the complete set of online documentation. For help on

a particular context, press F1. Use the Help button on various dialog boxes to get information

specific to that dialog box.

CPF products also provide access to full reference pages (detailed descriptions of commands,

utilities, and data structures) using the man command. Without any argument man displays the

overview reference page for the command line interface. For information about using a

particular command, specify the command name as an argument.

Examples:

> cleartool man (display the cleartool overview page)

> clearguide man (display the man reference page)

attache-workspace> man checkout (display the Attache checkout reference page)

CPF products provide access to syntax for individual commands. The –help command option

displays individual subcommand syntax. For example:

> cleartool lsprivate –help
Usage: lsprivate [-tag view-tag] [-invob vob-selector] [-long | -short]
 [-size] [-age] [-co] [-do] [-other]

Without any argument, cleartool help displays the syntax for all cleartool commands.

Additionally, the online tutorials provide important information on setting up a user’s

environment, along with a step-by-step tour through each product’s most important features.
Preface xv

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
xvi ClearCase Reference Manual

ClearCase Reference Pages 491

make

make
Executes a make program in the current working directory of your workspace

APPLICABILITY

SYNOPSIS
make [arg ...]

DESCRIPTION

The make command executes a make program in the current working directory of your

workspace; this directory must exist locally. On Windows 3.x, the make command invokes

attache-home-dir\etc\wsmake.pif, which can be customized to run the make program of your

choice. On Windows NT and Windows 95, make looks for an environment variable named

WSMAKE. If found, make uses the value of the WSMAKE environment variable as the name of the

program to run. Otherwise, make runs nmake, which must be on your PATH.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

Make Program. Default: No arguments are passed to the make program.

arg ...

Optionally, passes one or more arguments to the make program.

EXAMPLES

• Run the make program in your workspace.

make -n -v -k

SEE ALSO

attache_command_line_interface, wshell

Product Command Type

Attache command

man
man
Displays an online reference page

APPLICABILITY

SYNOPSIS
man [command_name]

DESCRIPTION

This command does not require a product license.

The man command displays the specified online reference page in Windows Help format. For

cleartool and multitool subcommands, Attache local commands, and hybrid commands, or if

your Attache helper is running on a UNIX host, you can use any valid command abbreviation or

alias. For example:

With no arguments, man displays the product’s overview reference page. In Attache, help is a

synonym for man.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE REFERENCE PAGE. Default: Displays the overview reference page for the product.

command_name
The name (or abbreviation, or alias) of a cleartool or multitool subcommand, Attache

local or hybrid command, or the name of any other ClearCase, ClearCase LT, or

MultiSite reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

cmd-context man lscheckout (abbreviation; in Attache, valid for local or hybrid command or UNIX
only)

cmd-context man lsch (full command name)
cmd-context man lsco (alias; in Attache, valid for local or hybrid command or UNIX only)
492 ClearCase Reference Manual

man
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Display the reference page for the mkview command.

cmd-context man mkview

• Display the overview reference page for the product.

cmd-context man

SEE ALSO

attache_command_line_interface, help
ClearCase Reference Pages 493

merge
merge
Merges versions of a text-file element or a directory

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only:

merge { –out output-pname | –to contrib-&-result-pname }

[–g⋅raphical [–tin⋅y] | [–ser⋅ial_format | –dif⋅f_format | –col⋅umns n]]

[–bas⋅e pname | –ins⋅ert | –del⋅ete] [–nda⋅ta | –nar⋅rows] [–rep⋅lace]

[–q⋅uery |–abo⋅rt | –qal⋅l]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–opt⋅ions pass-through-options]

{ –ver⋅sion contrib-version-selector ... | contrib-pname ... }

• Attache only:

merge { –out output-pname | –to contrib-&-result-pname }

{ –g⋅raphical [–tin⋅y] [–nda⋅ta | –nar⋅rows] [–q⋅uery |–abo⋅rt | –qal⋅l] |
{ –nda⋅ta | –abo⋅rt [–nar⋅rows] }

[–ser⋅ial_format | –dif⋅f_format | –col⋅umns n] }

[–bas⋅e pname | –ins⋅ert | –del⋅ete] [–rep⋅lace]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–opt⋅ions pass-through-options]

{ –ver⋅sion contrib-version-selector ... | contrib-pname ... }

DESCRIPTION

ClearCase and ClearCase LT only

The merge command calls an element-type-specific program (the merge method) to merge the

contents of two or more files, or two or more directories. Typically the files are versions of the

same file element. A directory merge must involve versions of the same directory element.

When used to merge directory versions in a snapshot view, this command also updates the

directory (and subdirectories, if necessary). (See update.)

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
494 ClearCase Reference Manual

merge
You can also perform a subtractive merge, which removes from a version the changes made in

one or more of its predecessors.

merge uses the type manager mechanism to select a merge method. For details, see the

type_manager reference page. merge methods are supplied only for certain element types.

Attache only

This command merges the contents of two or more files, or two or more directories. Typically the

files are versions of the same file element. A directory merge must involve versions of the same

directory element.

merge presumes that all files are text files, using the built-in textual diff and merge, and

bypassing the type manager mechanism. Any missing file contributors are downloaded

temporarily to the workspace. For a directory merge, the text file encodings of the directories are

downloaded. If the merge is successful and should have a merge hyperlink created, a remote

merge –ndata command is issued to create the hyperlink. The merged result is not uploaded to

the view until a checkin or put of the result occurs. Local directories are not updated after a

directory merge; you must issue get commands to update merged directories.

You can also perform a subtractive merge, which removes from a version the changes made in

one or more of its predecessors.

FILE MERGE ALGORITHM

A merge is a straightforward extension of a file comparison. Instead of displaying the

differences, the merge method (ClearCase and ClearCase LT) or merge (Attache) analyzes them

(sometimes with your help) and copies sections of text to the output file:

• Sections in which there are no differences among the contributors are copied to the output

file.

• For differences in which exactly one contributor differs from the base contributor, the merge
method (ClearCase and ClearCase LT) or merge (Attache) accepts the change and copies

the contributor’s modified section to the output file:

(In ClearCase and ClearCase LT, the –qall option turns off automatic acceptance of this kind

of change.)

• (ClearCase and ClearCase LT only) For differences in which two or more contributors differ

from the base contributor, the merge method detects the conflict, and prompts you to

------------[changed 3-4]----|--------[changed to 3-4 file 2]---
now is the thyme | now is the time
for all good men | for all good people

 -|-
*** Automatic: Applying CHANGE from file 2 [lines 3-4]
============
ClearCase Reference Pages 495

merge
resolve it. It displays all contributor differences, and allows you to accept or reject each one

for inclusion in the output file.

Be sure to verify that the changes you accept produce consistent merged output. For

example, after performing a merge involving file util.c, you can compare files util.c.contrib
(which contains its previous contents) and the new util.c (which contains the merge output).

• (Attache only) Be sure to verify that the changes you accept produce consistent merged

output. For example, if you perform a merge involving a file util.c immediately after you

check out the file, you can use the diff command with the –pred option to compare the new

util.c in the workspace (containing the merge output) with the original util.c in the view.

However, if you’ve made changes to the file since you checked it out, you can make a copy

of the modified local file in your workspace before performing the merge. After the merge,

you can compare the new util.c with the premerge local copy.

Determination of the Base Contributor

If all the contributors are versions of the same element, merge determines the base contributor

automatically. It examines the element’s “merge-enhanced” version tree, which is the directed

graph consisting of the actual version tree along with all the merge arrows created by previous

merge operations. This examination reveals the relationships among versions from the

standpoint of their contents (which versions contributed their data to me?), rather than from the

standpoint of their creation order (which versions were created before me?). merge selects the

closest common ancestor in this enhanced version tree as the base contributor.

If no merges have been performed in the element, the actual common ancestor (A) of the

contributors (C) in the version tree is selected to be the base contributor. Figure 8 illustrates some

common cases.

[changed 10] | [changed to 10 file 2]---
cent | sent

-|-
[changed 10] | [changed to 10 file 3]---

cent | scent
|-

Do you want the CHANGE made in file 2? [yes] no
Do you want the CHANGE made in file 3? [yes] yes
Applying CHANGE from file 3 [line 10]
============
496 ClearCase Reference Manual

merge
Figure 8 Determination of the Base Contributor for a Merge

If the contributors are not all versions of the same element, there is no base contributor. This

means that you must resolve all discrepancies among the contributors. In ClearCase and

ClearCase LT only, the –qall option is enabled automatically.

Recording of Merge Arrows

Under certain circumstances, cleartool or Attache records the merge by creating one or more

merge arrows (hyperlinks of type Merge):

• All contributor files must be versions of the same file element.

• One of the contributors must be a checked-out version, and you must specify this version as

the target to be overwritten with the merge output (–to option). (Alternatively, you can use

the –ndata option to create merge arrows without performing a merge; in this case, you do

not need to check out any of the contributors.)

• You must not use the –narrows option, which suppresses creation of merge arrows.

• You must not use any of these options: –insert, –delete, –base.

bugfixbugfix

bugfix

C

C

C

C

C

C

C

A

A

A

A

C

test

windows

merge

ports

merge
merge

merge

.

.

.

.

.

.

.

.

.

.

.

.

ClearCase Reference Pages 497

merge
If all these conditions hold, cleartool or Attache draws an arrow from each contributor version

(except the base contributor) to the target version.

In ClearCase and ClearCase LT, you can view merge arrows with the Version Tree Browser by

clicking Versions > Show version tree.

The find and lsvtree –merge commands can locate versions with Merge hyperlinks. The

describe command lists all of a version’s hyperlinks, including merge arrows:

cmd-context describe util.c@@\main\3
version "util.c@@\main\3"

.

.

.
Hyperlinks:
Merge@278@\vob_3 \vob_3\src\util.c@@\main\rel2_bugfix\1
-> \vob_3\src\util.c@@\main\3

DIRECTORY MERGE ALGORITHM

Each version of a ClearCase or ClearCase LT directory element contains the names of certain file

elements, directory elements, and VOB symbolic links. merge can process two or more versions

of the same directory element, producing a directory version that reflects the contents of all the

contributors. The algorithm is similar to that for a file merge: merge compares a base contributor

(common ancestor) version with each other contributor, producing a set of differences. It applies

these differences to the base contributor as automatically as possible, prompting for user

interaction only when two or more of the contributors are in conflict. (See the diff reference page

for more on this algorithm.)

One of the directory versions—the merge target, specified with the –to option—must be checked

out. (Typically, it is the version in your view.) merge updates the checked-out directory by

adding, removing, and changing names of elements and/or links.

NOTE: In ClearCase and ClearCase LT, a directory merge does not leave behind a .contrib file,

with the premerge contents of the target version.

We recommend that you use this procedure when merging directories:

1. Make sure that all contributor versions of the directory are checked in.

2. Check out the target version of the directory.

3. Perform the directory merge immediately, without making any other changes to the

checked-out version.

This procedure makes it easy to determine exactly what the merge accomplished: enter a diff
–predecessor command on the checked-out version, which has just been updated by merge.
498 ClearCase Reference Manual

merge
Using ln and rmname to Implement a Merge

ClearCase, ClearCase LT, and Attache implement directory merges using VOB hard links. You

can use the ln and rmname commands to perform full or partial merges manually. See the ln and

rmname reference pages for details.

COMMON SCENARIOS

This section presents common scenarios for performing merges.

Case 1: Merging from a Branch

A common use of this command is to combine the changes made on a subbranch (for example,

a bugfix branch) of a file element with changes made on the main branch. Figure 9 shows such

a merge.

The target is C1, the checked-out version on the main branch, and the other contributor is C2, the

latest version on a bugfix branch. cleartool or Attache determines that version B is the common

ancestor, to be used as the base file. The merged result replaces the contents of the target, C1.

Figure 9 Merging from a Branch

Case 2: Merging to an Unreserved Checkout

Another common use of this command arises from the unreserved checkout capability: you

perform an unreserved checkout and edit the file, but someone else checks in a successor version

ahead of you. You can check in your work only if you first merge with the version that was

already checked in.

Figure 10 shows a merge in which the target is C1, an unreserved, checked-out version. The other

contributor is C2, the version that was checked before C1. cleartool or Attache determines that

version B is the common ancestor, to be used as the base file. The result of the merge replaces the

main branch
of file foo.c

base file

bugfix branch

contributor

target and contributor

B

C1

C2

merge command:

merge –to foo.c foo.c@@\main\bugfix\LATEST
ClearCase Reference Pages 499

merge
contents of the target, C1. cleartool or Attache allows C1 to be checked in when it sees the merge

arrow from C2 to C1.

Figure 10 Merging into an Unreserved Checkout

SPECIAL MERGE SCENARIOS

merge has options that invoke special kinds of merges: selective and subtractive.

Selective Merges

By default, merge takes into account an entire, cumulative sequence of changes. For example, a

merge from version\main\bugfix\4 to the main branch involves the changes made in version

3, and also the changes made in versions 2 and 1 on that branch. In some cases, however, you

may want to incorporate only the changes made in one specific version (or a range of versions),

disregarding the changes made in its predecessors. The –insert option implements a selective

merge capability, as illustrated in Figure 11. In each merge, the shaded versions are the ones

whose changes are merged to the main branch. (The commands in the following examples are

wrapped to conserve space. Enter commands on a single line.)

main branch
of file foo.c

base file

a subsequent checkin command creates

your unreserved checkout

successor version

B

C2

C1

merge command:

merge –to foo.c foo.c@@\main\LATEST
checked in by
someone else
(contributor)

(target and contributor)

successor to C2, with merged contents
500 ClearCase Reference Manual

merge
Figure 11 Selective Merge

In a selective merge, no merge arrow is created; merge arrows indicate that all of a version’s data

has been merged.

Subtractive Merges

The –delete option invokes a subtractive merge, which is the opposite of a selective merge:

• A selective merge adds to the checked-out version the changes made in one or more other

versions.

• A subtractive merge removes from the checked-out version the changes made in one or

more of its predecessors.

For example, to undo the changes made in versions 5 – 9 of file foo.c, while retaining all the

changes made before version 5 and after version 9, you can issue this command:

cmd-context merge –to foo.c –delete –ver \main\5 \main\9 (ClearCase and ClearCase LT
only)

cmd-context merge –abort –to foo.c –delete –ver \main\5 \main\9 (Attache only)

PERMISSIONS AND LOCKS

Permissions Checking: Special permissions apply for creation of a merge arrow only. For each

object processed, you must be one of the following: element group member, element owner, VOB

owner, member of the ClearCase group (ClearCase), local administrator of the ClearCase LT

server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, hyperlink type.

bugfix

...

...

checked out

standard
merge

bugfix

...

...

checked out

selective
merge

bugfix

...

...

checked out

selective
merge

selective merge: one version:
merge –to foo.c –insert –ver
\main\bugfix\3

standard merge:
merge –to foo.c –ver
\main\bugfix\3

selective merge: range of versions:
merge –insert –to foo.c –ver
\main\bugfix\2 \main\bugfix\3
ClearCase Reference Pages 501

merge
OPTIONS AND ARGUMENTS

DESTINATION OF MERGE OUTPUT. Default: None.

–out output-pname
(File merge only) Specifies a view-private or workspace file or non-MVFS file to be the

merge target. output-pname is not used as a contributor, and no merge arrows are created.

Use this option to perform a merge that does not overwrite any of its contributors. An

error occurs if output-pname already exists.

(Attache only) Note that output-pname is not uploaded to the vie. If it corresponds to a

checked-out version, it remains in the workspace until it is checked in.

–to contrib-&-result-pname
Specifies a version of a file or directory element to be the merge target: one of the

contributors to the merge, and also the location where the merged output is stored.

merge proceeds as follows:

PERFORMING A GRAPHICAL MERGE. Default: Performs the merge in the command window and

uses the default display font.

–g⋅raphical [–tin⋅y]

Performs the merge graphically. With –tiny, a smaller font is used to increase the amount

of text displayed in each display pane.

1. (ClearCase and ClearCase LT file merge only) Preserves the target’s current

contents in view-private file contrib-&-result-pname.contrib. The file name may get

a .n extension, to prevent a name collision.

2. Stores the merged output in the workspace in contrib-&-result-pname.

You can suppress these data-manipulation steps by using –ndata; you must do so

to avoid an error if the file is not checked out:

cleartool: Error: ...
Only a checked out version can be modified to have the data
resulting from the merge.

3. Creates a merge arrow (hyperlink of type Merge) from all other contributors to

the checked-out version. You can suppress this step by using the –narrows option.

In ClearCase and ClearCase LT, if the merge target cannot be overwritten, merge
saves its work in the view-private file contrib-&-result-pname.merge The file name

may have a .n extension, to prevent a name collision.

In Attache, if the merge target cannot be overwritten, merge saves its work in the

workspace file contrib-&-result-pname.mrg, or if that extension exists, .m00 , .m01 ,

and so on.
502 ClearCase Reference Manual

merge
INTERACTIVE MERGES NOT SUPPORTED IN ATTACHE. You must specify –ndata or –abort from

below.

OUTPUT FORMAT. Default: Displays output in the format described in the diff reference page.

–ser⋅ial_format
Reports differences with each line containing output from one contributor, instead of in

a side-by-side format.

–dif⋅f_format
Displays output in the same style as the UNIX diff(1) utility.

–col⋅umns n
Establishes the overall width of side-by-side output. The default width is 80; only the

first 40 or so characters of corresponding difference lines appear. If n does not exceed the

default width, this option is ignored.

SPECIFYING THE BASE CONTRIBUTOR. Default: Uses the procedure described in Determination of the
Base Contributor on page 496.

–bas⋅e pname
Specifies pname as the base contributor for the merge. You cannot use the –version option

to specify this argument; use a version-extended pathname.

SPECIFYING SPECIAL MERGES. Default: A standard merge is performed: all the differences between

the base contributor and each non-base contributor are taken into account.

–ins⋅ert
Invokes a selective merge of the changes made in one or more versions. See Selective
Merges on page 500 for a description. If you specify one contributor with –version or a

pname argument, only that version’s changes are merged. Specifying two contributors

defines an inclusive range of versions; only the changes made in that range of versions

are merged.

No merge arrow is created in a selective merge.

RESTRICTIONS: You must specify the target version with the –to option. No version

specified with –version or a pname argument can be a predecessor of the target version.

–del⋅ete
Invokes a subtractive merge of the changes made in one or more versions. See Subtractive
Merges on page 501 for a description. If you specify one contributor with –version or a

pname argument, only that version’s changes are removed. Specifying two contributors

defines an inclusive range of versions; only the changes made in that range of versions

are removed.

No merge arrow is created in a subtractive merge.
ClearCase Reference Pages 503

merge
RESTRICTIONS: You must specify the target version with the –to option. All versions

specified with –version or a pname argument must be predecessors of the target version.

SUPPRESSING PARTS OF THE MERGE PROCESS. Default: merge stores its results in the workspace

location specified by –to or –out; with –to, it also creates merge arrows.

–nda⋅ta
(Use only with –to) Suppresses the merge, but creates the corresponding merge arrows.

An error occurs if you use –ndata along with –out; together, the two options leave merge
with no work to do.

–nar⋅rows
(For use with –to; invoked by –out) Performs the merge, but suppresses the creation of

merge arrows.

REPLACING A PREVIOUS MERGE. Default: An error occurs if a merge arrow is already attached to

any version where merge would create one.

–rep⋅lace
Allows creation of new merge arrows to replace existing ones.

CONTROLLING USER INTERACTION. Default: Works as automatically as possible, prompting you to

make a choice only when two or more non-base contributors differ from the base contributor.

NOTE: In Attache, the –query and –qall options are available only when performing a graphical

merge (–graphical).

–q⋅uery
Turns off automatic merging for nontrivial merges and prompts you to proceed with

every change in the from-versions. Changes in the to-version are automatically accepted

unless a conflict exists. When you specify the –out option, cleartool uses the last

pathname on the command line as the to-version.

–abo⋅rt
Cancels the command instead of engaging in a user interaction; a merge takes place only

if it is completely automatic. If two or more nonbase contributors differ from the base

contributor, a warning is issued and the command is canceled. This command is useful

in shell scripts that batch many merges (for example, all file elements in a directory) into

a single procedure.

–qal⋅l
Turns off automated merging. merge prompts you to make a choice every time a

nonbase contributor differs from the base contributor. This option is turned on

automatically if merge cannot determine a common ancestor (or other base contributor),

and you do not use –base.
504 ClearCase Reference Manual

merge
SPECIFYING A COMMENT FOR THE MERGE ARROW. Default: Attaches a comment to each merge

arrow (hyperlink of type Merge) with commenting controlled by your .clearcase_profile file

(default: –nc). See CUSTOMIZING COMMENT HANDLING in the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

PASSING THROUGH OPTIONS TO THE ’MERGE’ METHOD. Default: Does not pass any special options

to the underlying merge method (in ClearCase and ClearCase LT, implemented by the cleardiff
utility for all predefined element types).

–opt⋅ions pass-through-options
Allows you to specify merge options that are not directly supported on the merge
command line.

If you are specifying more than one pass-through option, enclose them in quotes; merge
must see them as a single command-line argument.

For descriptions of the options valid for ClearCase and ClearCase LT, see the cleardiff
reference page.

For example, this cleartool command passes through the –quiet and –blank_ignore
options:

cmd-context merge –options "–qui –b" –to util.c \main\bugfix\LATEST\main\3

Attache accepts the following pass-through options:

–hea⋅ders_only
–qui⋅et (mutually exclusive)

–headers_only lists only the header line of each difference. The

difference lines themselves are omitted.

–quiet suppresses the file summary from the beginning of the report.

–b⋅lank_ignore
Ignores extra white space characters in text lines: leading and trailing white

space is ignored; internal runs of white space are treated like a single SPACE

character.

–vst⋅ack
–hst⋅ack

–vst⋅ack stacks the difference panes vertically, with the base contributor at the

top.

–hst⋅ack displays the difference panes horizontally, with the base contributor

on the left (the default behavior).
ClearCase Reference Pages 505

merge
For example, this Attache command passes through the –quiet and –blank_ignore
options:

cmd-context merge –ndata –options "–qui –b" –to util.c \main\bugfix\LATEST
\main\3

SPECIFYING THE DATA TO BE MERGED. Default: None.

–ver⋅sion contrib-version-selector ...

(For use only if all contributors are versions of the same element) If you use the –to
option to specify one contributor, you can specify the others with –ver followed by one

or more version selectors. (See the version_selector reference page.)

contrib-pname ...

One or more pathnames, indicating the objects to be merged: versions of file elements,

versions of directory elements, or any other files. If you don’t use –to, you must specify

at least two contrib-pname arguments.

These two commands are equivalent:

(ClearCase and ClearCase LT only)

cmd-context merge –to foo.c –version \main\bugfix\LATEST \main\3

cmd-context merge –to foo.c foo.c@@\main\bugfix\LATEST foo.c@@\main\3

(Attache only)

cmd-context merge –nda –to foo.c –version \main\bugfix\LATEST \main\3

cmd-context merge –nda –to foo.c foo.c@@\main\bugfix\LATEST foo.c@@\main\3

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Merge the version of file util.c in the current view or workspace with the most recent

versions on the rel2_bugfix and test branches; suppress the creation of merge arrows.

cmd-context merge –to util.c –narrows –version \main\rel2_bugfix\LATEST ^
\main\test\LATEST (ClearCase and ClearCase LT
only)

cmd-context merge –to util.c –abort –narrows –version \main\rel2_bugfix\LATEST
\main\test\LATEST (Attache only/this command must be entered on a single line)
506 ClearCase Reference Manual

merge
• Merge the version of file util.c, in view jk_fix, to version 3 on the main branch, placing the

merged output in a temporary file.

cmd-context merge –out \tmp\proj.out util.c@@\main\3 \jk_fix\users_hw\src\util.c

• Merge the version of file util.c to version 3 on the main branch, placing the merged output

in a temporary file.

cmd-context merge –abort –out /tmp/proj.out util.c@@\main\3 util.c

• Subtractive merge: remove the changes made in version 3 from file util.c.

cmd-context merge –to util.c –abort –delete –version util.c@@\main\3

• (Attache only) Use merge –graphical to merge the file util.c in the current workspace with

the most recent version on the rel2_bugfix branch.

cmd-context merge –to util.c –graphical –version \main\rel2_bugfix\LATEST

SEE ALSO

describe, diff, find, findmerge, rmmerge, update
ClearCase Reference Pages 507

mkactivity
mkactivity
Creates a UCM activity

APPLICABILITY

SYNOPSIS
mkact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–hea⋅dline headline] [–in stream-selector] [–nset] [–force] [activity-selector ...]

DESCRIPTION

The mkactivity command creates a UCM activity. Activities track the work you do in completing

a development task. An activity consists of a headline, which describes the task, and a change

set, which identifies all versions of elements that are created or modified by work on the activity.

Each stream can have one current activity, which records any changes being made. Use –nset if
you do not want to use an activity immediately. To begin recording changes in an activity, issue

a setactivity command from a view that is attached to the activity’s stream.

Behavior for ClearQuest-enabled Projects

When executed in a view that is associated with a ClearQuest-enabled project, this command

generates an error. The correct way to create an activity is to use the setactivity command,

specifying a ClearQuest record-ID as the activity-selector.

PERMISSIONS AND LOCKS

Permissions Checking: None.

Locks: An error occurs if there are locks on the following objects: the activity’s UCM project VOB.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

ASSIGNING A HEADLINE TO AN ACTIVITY. Default: The activity’s name as specified by the

activity-selector argument.

–hea⋅dline headline
Specifies a description of the activity. The headline argument can be a character string of

any length. Enclose a headline with special characters in double quotes. The headline is

applied to all activities created with this invocation of the command.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
508 ClearCase Reference Manual

mkactivity
SPECIFYING THE STREAM. Default: The stream attached to the current view.

–in stream-selector
Specifies that the activity be created in this stream.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

SETTING THE CURRENT ACTIVITY. Default: If one activity is created with this command: the newly

created activity. If more than one activity is created or any number of activities is created outside

a view context: none.

–nset
Specifies that the new activity not be set as the current activity for the view.

CONFIRMATION STEP. Default: Prompts for confirmation of a generated name for the activity if no

name is specified by activity-selector.

–force
Suppresses the confirmation step.

NAMING THE ACTIVITY. Default: If one activity is created with this command: a generated name.

If more than one activity is created: none.

activity-selector ...
Specifies one or more activities to create. The specifier must be unique within the project

VOB.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create an activity, but do not set it to be the current activity for the view.

cmd-context mkact –nset
ClearCase Reference Pages 509

mkactivity
Create activity with automatically generated name? [yes] yes
Created activity "activity990917.133218".

• Create an activity. The activity is created in the stream attached to the current view. Its name

is generated automatically.

cmd-context mkact new_activity

Created activity "new_activity".
Set activity "new_activity" in view "java_int".

• Create an activity whose name is generated automatically. You are not prompted for

confirmation.

cmd-context mkact -f

Created activity "activity990917.134751".
Set activity "activity990917.134751" in view "java_int".

• Create an activity with the headline “Create directories”.

cmd-context mkactivity -headline "Create directories" create_directories

Created activity "create_directories".
Set activity "create_directories" in view "webo_integ".

SEE ALSO

chactivity, lsactivity, rmactivity, setactivity
510 ClearCase Reference Manual

mkattr
mkattr
Attaches attributes to objects

APPLICABILITY

SYNOPSIS

• Attach attributes to specified file-system objects:

mkattr [–rep⋅lace] [–r⋅ecurse] [–ver⋅sion version-selector]

[–pna⋅me] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
{ attribute-type-selector value | –def⋅ault attribute-type-selector }

pname ...

• Attach attributes to specified non-file-system objects:

mkattr [–rep⋅lace] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
{ attribute-type-selector value | –def⋅ault attribute-type-selector }

object-selector ...

• Attach attributes to versions listed in configuration record:

mkattr [–rep⋅lace] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–sel⋅ect do-leaf-pattern] [–ci] [–typ⋅e { f | d } ...]

[–nam⋅e tail-pattern] –con⋅fig do-pname
{ attribute-type-selector value | –def⋅ault attribute-type-selector }

DESCRIPTION

The mkattr command attaches an attribute to one or more objects. You can specify the objects

themselves on the command line, or you can specify a particular derived object. In the latter case,

mkattr attaches attributes to versions only—some or all the versions that were used to build that

derived object.

An attribute is a name/value pair:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 511

mkattr
Restrictions on Attribute Use

In several situations, attempting to attach a new attribute causes a collision with an existing

attribute:

• You want to change the value of an existing attribute on an object.

• (If the attribute type was created with mkattype –vpbranch) An attribute is attached to a

version, and you want to attach an attribute of the same type to another version on the same

branch.

• (If the attribute type was created with mkattype –vpelement) An attribute is attached to a

version, and you want to attach an attribute of the same type to any other version of the

element.

A collision causes mkattr to fail and report an error, unless you use the –replace option, which

first removes the existing attribute.

Referencing Objects by Their Attributes

The find command can locate objects by their attributes. Examples:

• List all elements in the current working directory for which some version has been assigned

a BugNum attribute.

cmd-context find . –element attype_sub(BugNum)–print

• List the version of element util.c to which the attribute BugNum has been assigned with the

value 4059 .

cmd-context find util.c –version BugNum==4059 –print

• List the version of all elements in the current working directory to which the attribute

Tested has been assigned with the string value "TRUE" .

cmd-context find . –version 'Tested=="TRUE"' –print

More generally, queries written in the query language can access objects using attribute types

and attribute values. See the query_language reference page for details.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, object group member, object owner, VOB owner, member of the

BugNum / 455 (integer-valued attribute)
BenchMark / 12.9 (real-valued attribute)
ProjectID / "orange" (string-valued attribute)
DueOn / 5-Jan (date-value attribute)
512 ClearCase Reference Manual

mkattr
ClearCase group (ClearCase), local administrator of the ClearCase LT server host

(ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, attribute type, object to which the attribute is being attached (for

non-file-system objects).

OPTIONS AND ARGUMENTS

MOVING AN ATTRIBUTE OR CHANGING ITS VALUE. Default: An error occurs if an attribute collision

occurs (see Restrictions on Attribute Use on page 512).

–rep⋅lace
Removes an existing attribute of the same type before attaching the new one, thus

avoiding the collision. (No error occurs if a collision would not have occurred.)

SPECIFYING THE ATTRIBUTE TYPE AND VALUE. Default: None. You must specify an existing

attribute type; you must also indicate a value, either directly or with the –default option.

attribute-type-selector
An attribute type, previously created with mkattype. The attribute type must exist in

each VOB containing objects to which you are applying attributes, or (if

attribute-type-selector is a global type) in the Admin VOB hierarchy associated with each

VOB. Specify attribute-type-selector in the form [attype:]type-name[@vob-selector]

–def⋅ault
If the attribute type was created with a default value (mkattype –default), you can use

–default attribute-type-name to specify the name/value pair. An error occurs if the

attribute type was not created with a default value.

value
Specifies the attribute’s value. The definition of the attribute type specifies the required

form of this argument (for example, to an integer). It may also restrict the permissible

values (for example, to values in the range 0–7).

type-name Name of the attribute type

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any files-ystem

object within the VOB (if the VOB is mounted)

Value Type Input Format
integer Any integer that can be parsed by the strtol system call

real Any real number that can be parsed by the strtod system call
ClearCase Reference Pages 513

mkattr
DIRECTLY SPECIFYING THE OBJECTS. The options and arguments in this section specify objects to

be assigned attributes directly on the command line. Do not use these options and arguments

when using a derived object to provide a list of versions to be assigned attributes.

object-selector ...

(Required) One or more names of objects to be assigned attributes. Specify object-selector
in one of the following forms:

date A date-time string in one of the following formats:

date.time | date | time | now
where

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today | yesterday | Sunday |...| Saturday |
Sun |...| Sat

long-date := d[d]-month[-[yy]yy]

month := January |... |December |Jan |... |Dec
Specify time in 24-hour format, relative to the local time zone. If you

omit the time, the default value is 00:00:00. If you omit date, the default

is today. If you omit the century, year, or a specific date, the most recent

one is used. Specify UTC if you want to resolve the time to the same

moment in time regardless of time zone. Use the plus (+) or minus (-)

operator to specify a positive or negative offset to the UTC time. If you

specify UTC without hour or minute offsets,Greenwich Mean Time

(GMT) is used. (Dates before January 1, 1970 UTC are invalid.)

string Any string in standard C-language string literal format. It can include

escape sequences: \n, \t, and so on.

NOTE: The Windows shell removes double quotes, so to pass them

through to the cleartool command processor, you must precede them

with a backslash character on the command line:

c:\> cleartool mkattr QAed \"TRUE\" hello.c
opaque A word consisting of an even number of hexadecimal digits (for

example, 04a58f or FFFB). The value is stored as a byte sequence in a

host-specific format.

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.
514 ClearCase Reference Manual

mkattr
[–pna⋅me] pname ...

(Required) One or more pathnames, indicating objects to be assigned attributes. If pname
has the form of an object selector, you must include the –pname option to indicate that

pname is a pathname.

Use –version to override these interpretations of pname.

–ver⋅sion version-selector
For each pname, attaches the attribute to the version specified by version-selector. This

option overrides both version-selection by the view and version-extended naming. See

the version_selector reference page for syntax details.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). VOB symbolic links are not traversed during the recursive descent into the

subtree.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies an element, branch, or version,

independent of view.

Examples:
foo.c
M:\gamma\usr\project\src\foo.c
ffoo.c@@\main\5
foo.c@@\REL3
foo.c@@
foo.c@@\main

(version of ’foo.c’ selected by current view)
(version of ’foo.c’ selected by another view)
(version 5 on main branch of ’foo.c’)
(version of ’foo.c’ with version label ’REL3’)
(the element ’foo.c’)
(the main branch of element ’foo.c’)
ClearCase Reference Pages 515

mkattr
NOTE: mkattr differs from some other commands in its default handling of directory

element pname arguments: it assigns an attribute to the directory element itself; it does

not assign attributes to the elements cataloged in the directory.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

USING A DERIVED OBJECT TO SPECIFY VERSIONS. The options and arguments in this section

specify versions to be assigned attributes by selecting them from the configuration records

associated with a particular derived object. Do not use these options when specifying objects to

be assigned attributes directly on the command line.

–con⋅fig do-pname
(Required) Specifies one derived object. A standard pathname or view-extended

pathname specifies the DO that currently appears in a view. To specify a DO

independent of view, use an extended name that includes a DO-ID (for example,

hello.o@@24–Mar.11:32.412) or a version-extended pathname to a DO version.

With the exception of checked-out versions, mkattr attaches attributes to all the versions

that would be included in a catcr –flat listing of that derived object. Note that this

includes any DO created by the build and subsequently checked in as a DO version.

If the DO’s configuration includes multiple versions of the same element, the attribute is

attached only to the most recent version.

Use the following options to modify the list of versions to which attributes are attached.

–sel⋅ect do-leaf-pattern
–ci
–nam⋅e tail-pattern
–typ⋅e { f | d } ...

Modify the set of versions to be assigned attributes in the same way that these options

modify a catcr listing. For details, see the catcr reference page and the EXAMPLES
section.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.
516 ClearCase Reference Manual

mkattr
In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create an attribute type named BugNum. Then, attach that attribute with the value 21 to

the version of util.c that fixes bug 21.

cmd-context mkattype –nc –vtype integer BugNum
Created attribute type "BugNum".

cmd-context mkattr BugNum 21 util.c
Created attribute "BugNum" on "util.c@@\main\maintenance\3".

• Attach a TESTED attribute to the version of hello.h in the view, assigning it the value

"TRUE" .

cmd-context mkattr TESTED \"TRUE\" hello.h
Created attribute "TESTED" on "hello.h@@\main\2".

• Update the value of the TESTED attribute on hello.h to "FALSE". This example shows that

to overwrite an existing attribute value, you must use the –replace option.

cmd-context mkattr –replace TESTED \"FALSE\" hello.h
Created attribute "TESTED" on "hello.h@@\main\2".

• Attach a RESPONSIBLE attribute to the element (not a particular version) hello.c.

cmd-context mkattr RESPONSIBLE \"Anne\" hello.c@@
Created attribute "RESPONSIBLE" on "hello.c@@".

• Attach a TESTED_BY attribute to the version of util.c in the view, assigning it the value of

the USERNAME environment variable.

cmd-context mkattr TESTED_BY \"%USERNAME%\" util.c
Created attribute "TESTED_BY" on "util.c@@\main\5".

• Attach a TESTED attribute to the version of foo.c in the current view, specifying an

attribute string value that includes a space.

cmd-context mkattr TESTED "\"NOT TRUE\"" foo.c
Created attribute "TESTED" on "foo.c@@\main\CHECKEDOUT".

• In cleartool interactive mode, attach an OWNER attribute to the version of bar.c in the

current view.

cleartool> mkattr OWNER ’"jpm"’ bar.c
Created attribute "OWNER" on bar.c

The same command in cleartool single-command mode shows the difference in quoting.

cleartool mkattr OWNER \"jpm\" bar.c
Created attribute "OWNER" on bar.c
ClearCase Reference Pages 517

mkattr
• Attach a TESTED attribute with the default value to each version that was used to build

derived object hello.obj. Note that the attribute is assigned to versions of both files and

directories.

cmd-context mkattr –config hello.obj -default TESTED Created attribute "TESTED"
on "\usr\hw\@@\main\1".
Created attribute "TESTED" on "\usr\hw\src@@\main\2".
Created attribute "TESTED" on "\usr\hw\src\hello.c@@\main\3".
Created attribute "TESTED" on "\usr\hw\src\hello.h@@\main\1".

• Attach a TESTED attribute with the value "FALSE" to those versions that were used to

build hello.exe, and whose pathnames match the *.c tail pattern.

cmd-context mkattr –config hello.exe –name '*.c' TESTED \"FALSE\"
Created attribute "TESTED" on "\usr\hw\src\hello.c@@\main\3".
Created attribute "TESTED" on "\usr\hw\src\util.c@@\main\1".

• Attach a TESTED attribute with the value "TRUE" to all versions in the VOB mounted at

\src\lib that were used to build hello.exe.

cmd-context mkattr –config hello.exe –name '\src\lib\...' TESTED \"TRUE\"
Created attribute "TESTED" on "\src\lib\hello.c@@\main\8".
Created attribute "TESTED" on "\src\lib\util.c@@\main\5".
Created attribute "TESTED" on "\src\lib\hello.h@@\main\1".

SEE ALSO

describe, mkattype, query_language, rmattr
518 ClearCase Reference Manual

mkattype
mkattype
Creates or updates an attribute type object

APPLICABILITY

SYNOPSIS
mkattype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary]

[–vpe⋅lement | –vpb⋅ranch | –vpv⋅ersion] [–sha⋅red]

[–vty⋅pe { integer | real | time | string | opaque }]

[[–gt low-val | –ge low-val] [–lt high-val | –le high-val]
| –enu⋅m value[,...]]

[–def⋅ault default-val]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

attribute-type-selector ...

DESCRIPTION

The mkattype command creates one or more attribute types for future use within a VOB. After

creating an attribute type in a VOB, you can use mkattr to attach attributes of that type to objects

in that VOB.

Attributes as Name/Value Pairs

An attribute is a name/value pair. When creating an attribute type, you must specify the kind of

value (integer, string, and so on). You can also restrict the possible values to a particular list or

range. For example:

• Attributes of type FUNC_TYPE could be restricted to integer values in the range 1–5

• Attributes of type QAed colud be restricted to the string values TRUE and FALSE.

Predefined Attribute Types

Each new VOB is created with two string-valued attributes types, named HlinkFromText and

HlinkToText. When you enter a mkhlink –ftext command, the from-text you specify is stored as

an instance of HlinkFromText on the hyperlink object. Similarly, an HlinkToText attribute

implements the to-text of a hyperlink.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 519

mkattype
PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following (for –replace
only): type owner, VOB owner, member of the ClearCase group (ClearCase), local administrator

of the ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, attribute type (for –replace
only).

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if an attribute type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults

(Exception: the type’s scope does not change; you must explicitly specify –global or

–ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

SPECIFYING THE SCOPE OF THE ATTRIBUTE TYPE. Default: Creates an ordinary attribute type that

can be used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates an attribute type that can be used as a global resource by client VOBs in the

• If there are existing attributes of this type, you cannot change the –vtype value.

• If there are existing attributes of this type or if the containing VOB is replicated,

you cannot replace a less restrictive –vpelement, –vpbranch, or –vpversion
specification with a more restrictive one. (–vpelement is the most restrictive.)

• You cannot replace the predefined attribute types HlinkFromText and

HlinkToText.
• When replacing an attribute type that was created with the –shared option, you

must use –shared again; that is, you cannot convert an attribute type from shared

to unshared.

• When converting a global type to ordinary, you must specify the global type as

the attribute-type-selector argument. You cannot specify a local copy of the global

type.
520 ClearCase Reference Manual

mkattype
administrative VOB hierarchy. With –acquire, mkattype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see Administering ClearCase.

–ord⋅inary
Creates an attribute type that can be used only in the current VOB.

INSTANCE CONSTRAINTS. Default: In a given element, one attribute of the new type can be

attached to each version, to each branch, and to the element itself. One attribute of the type can

be attached to other types of VOB objects.

–vpe⋅lement
Attributes of this type can be attached only to versions; and only one version of a given

element can get an attribute of this type.

–vpb⋅ranch
Attributes of this type can be attached only to versions; and only one version on each

branch of a given element can get an attribute of this type.

–vpv⋅ersion
Attributes of this type can be attached only to versions; within a given element, all

versions can get an attribute of this type.

SPECIFYING THE KIND OF VALUE. Default: One or more string-valued attribute types are created.

–vty⋅pe integer
Attributes of this type can be assigned integer values. You can use these options to

restrict the possible values: –gt, –ge, –lt, –le, –enum.

–vty⋅pe real
Attributes of this type can be assigned floating-point values. You can use these options

to restrict the possible values: –gt, –ge, –lt, –le, –enum.

–vty⋅pe time
Attributes of this type can be assigned values in the date-time format described in the

mkattr reference page. You can use these options to restrict the possible values: –gt, –ge,

–lt, –le, –enum.

–vty⋅pe string
Attributes of this type can be assigned character-string values. You can use the –enum
option to restrict the possible values.

–vty⋅pe opaque
Attributes of this type can be assigned arbitrary byte sequences as values.
ClearCase Reference Pages 521

mkattype
MASTERSHIP OF THE ATTRIBUTE TYPE. Default: Attempts to attach or remove attributes of this type

succeeda only in the VOB replica that is the current master of the attribute type. The VOB replica

in which the new attribute type is created becomes its initial master.

–sha⋅red
If you specify –vpbranch, –vpelement, or –vpversion, ClearCase and ClearCase LT

check the mastership of the branch, element, or version’s branch to which you attach or

remove the attribute when you invoke the mkattr or rmattr command. If you do not

specify –vpbranch, –vpelement, or –vpversion, and the object to which you attach or

remove the attribute is a version, mastership of the branch is checked when you invoke

the mkattr or rmattr command. If you do not specify –vpbranch, –vpelement, or

–vpversion, and the object to which you attach or remove the attribute is not a version,

the mastership of the object is checked when you invoke the mkattr or rmattr command.

RESTRICTING THE POSSIBLE VALUES. Default: The values that can be assigned to attributes of the

new type are unrestricted within the basic value type (any integer, any string, and so on). You

can specify a list of permitted values, using –enum; alternatively, you can specify a range using

–gt or –ge to specify the lower bound, and –lt or –le to specify the upper bound.

–gt low-val or –ge low-val
Lower bound of an integer, real, or time value. –gt means greater than. –ge means greater

than or equal to.

–lt high-val or –le high-val
Upper bound of an integer, real, or time value. –lt means less than. –le means less than

or equal to.

–enu⋅m value[,...]

Comma-separated list (no white space allowed) of permitted values for any value type.

See the description of the value argument in the mkattr reference page for details on how

to enter the various kinds of value arguments.

SPECIFYING A DEFAULT ATTRIBUTE VALUE. Default: You cannot use mkattr –default to create an

instance of this attribute type; you must specify an attribute value on the command line.

–def⋅ault default-val
Specifies a default attribute value; entering a mkattr –default command creates an

attribute with the value default-val.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.
522 ClearCase Reference Manual

mkattype
NAMING THE ATTRIBUTE TYPES. Default: The attribute type is created in the VOB that contains the

current working directory unless you specify another VOB with the @vob-selector argument.

attribute-type-selector ...

Names of the attribute type(s) to be created. Specify attribute-type-selector in the form

[attype:]type-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a string-valued attribute type named Responsible.

cmd-context mkattype -nc Responsible
Created attribute type "Responsible".

• Create an integer-valued attribute type named Confidence_Level, with a low value of 1 and

a high value of 10. Constrain its use to one per branch.

cmd-context mkattype -nc -vpbranch -vtype integer -gt 0 -le 10 Confidence_Level
Created attribute type "Confidence_Level".

• Create a string-valued attribute type named QAed, with an enumerated list of valid values.

cmd-context mkattype -nc -enum '"TRUE","FALSE","in progress"' QAed
Created attribute type "QAed".

• In cleartool interactive mode, create an enumerated attribute type, with a default value,

called Released.

cleartool> mkattype -nc -enum "TRUE","FALSE" -default "FALSE" Released
Created attribute type "Released".

type-name Name of the attribute type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
ClearCase Reference Pages 523

mkattype
The same command in cleartool single-command mode shows the difference in quoting.

cleartool mkattype -nc -enum \"TRUE\",\"FALSE\" -default \"FALSE\" Released
Created attribute type "Released".

• Create a time-valued attribute type named QA_date, with the current date as the default

value. Provide a comment on the command line.

cmd-context mkattype -c "attribute for QA date" -vtype time -default today QA_date
Created attribute type "QA_date".

• Change the default value of an existing attribute type named TESTED. Provide a comment

on the command line.

cmd-context mkattype -replace -default '"TRUE"' -c "changing default value" TESTED
Replaced definition of attribute type "TESTED".

SEE ALSO

lstype, mkattr, rename, rmattr, type_object
524 ClearCase Reference Manual

mkbl
mkbl
Creates a UCM baseline or set of baselines

APPLICABILITY

SYNOPSIS

• Create a baseline of a component or set of baselines of components:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

[–vie⋅w view-tag]

[–com⋅ponent component-selector[,...] | –all | –act⋅ivities activity-selector[,...]]

[–ide⋅ntical]
[–nlabel | –inc⋅remental | –fu⋅ll]
baseline-root-name

• Create a baseline by importing a label type:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

–imp⋅ort label-type-selector ...

DESCRIPTION

The mkbl command creates a baseline or set of baselines. A baseline represents a snapshot of the

changes made to a particular component in the context of a particular stream—it is a version of

a component. For each element in the component, the baseline records the version of that element

selected by the stream’s configuration at the time the mkbl operation is executed. The baseline

also records the list of activities in the stream whose changes sets contain versions of the

component’s elements.

A baseline selects one version of each element of a component. You can create multiple baselines

per component, just as you can create multiple versions of an element. A baseline is associated

with only one component and you can only create one baseline per component per invocation of

mkbl.

By default, all components that have been modified since the last full baseline are considered as

candidates for new baselines. You can also create baselines for a subset of components in the

stream or for components modified by specific activities.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 525

mkbl
Initial Baseline

When you create a component, it includes an initial baseline whose name is of the form

component-name_INITIAL. This baseline selects the /main/0 version of the component's root

directory and serves as a starting point for successive baselines of the component.

Creating a Baseline for an Unmodified Component

Use the –identical option to create a new baseline for a component that has not been modified.

This can be useful in working with several components. You can create new baselines for a set of

components independent of whether they have been modified.

Creating Baselines that Include a Set of Activities

By default, all activities modified since the last baseline was made are captured in new baselines.

You can select a subset of activities for inclusion in the baseline. If there are dependencies

between the change sets of activities, you may not be able to include just the activity you want;

you’ll also need to include those activities that it depends on.

A single baseline is created if the selected activities are part of the same component. If an activity

modifies more than one component, a new baseline is created for each component it modifies.

Creating a Baseline by Importing a Label

You can recognize a VOB as a component with the mkcomp command. When you do this, the

VOB is given an initial baseline that selects the /main/0 version of the component root directory.

However, this baseline does not give you access to files and directories that are already in the

VOB.

You can create a new baseline that corresponds to a set of labeled versions in the VOB. To do this,

use the –import option, specifying a label-type-selector. The mkbl command creates a baseline

that selects the labeled versions, making them accessible to the UCM project.

Before creating the baseline, be sure that the label is unlocked and ordinary (not global) and that

labeled elements are checked in. The label is locked when the baseline is created and you cannot

move the label later. Be certain the label selects a version of all visible elements.

Baseline Names

Baseline identifiers are made up of two parts: a user-specifiable root name and a generated,

unique numeric extension. The same root name can be used for baselines of more than one

component. However, a root name can be used only once per component per stream.

When you create a baseline by importing a label, the root name is derived from the label’s type

selector. For example, the label-type selector REL1@/vobs/baz generates a baseline root name of

REL1 whose scope is the baz component.
526 ClearCase Reference Manual

mkbl
Baseline Labels

You can choose whether versions of the baseline are to be labeled when the baseline is created.

Baselines can be unlabeled, incrementally labeled, or fully labeled.

All baselines record a component’s current configuration in a stream, but only labeled baselines

can be used to configure other streams (via the rebase operation or mkstream).

Choose a labeling scheme that suits your project’s structure. Incremental baselines are typically

faster to create than full baselines. Specifically, the time required to create a baseline is as follows:

• For a full baseline, it is proportional to the number of elements in the component.

• For an incremental baseline, the time is proportional to the number of elements changed

since the last full baseline.

These options control labeling during baseline creation:

• The –nlabel option, which creates an unlabeled baseline. Unlabeled baselines cannot be

used as foundation baselines to configure a stream. They can be used with the diffbl
command.

• The –incremental option, which labels versions of elements that have changed since the last

full baseline was created.

• The –full option, which creates a baseline by selecting and labeling a version of each

element in the component.

You can change the labeling status for a baseline with the chbl command.

Promotion Levels

Baselines are marked with a promotion level that signifies the quality of the baseline. When

created, a project VOB is assigned an ordered set of promotion levels, one of which is designated

the default promotion level, the level assigned to new baselines when they are created.

See the setplevel command for further information.

PERMISSIONS

Permissions Checking: No special permissions are required.

Locks: An error is generated if there are locks on any of the following objects: UCM project VOB,

component, containing stream, label.

Mastership: The master replica of the indicated objects must match the replica (originally)

performing the operation.
ClearCase Reference Pages 527

mkbl
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cq). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VIEW AND STREAM. Default: The stream to which the current view is attached.

⋅–vie⋅w view-tag
Specifies the view from which to create baselines. Baselines are created in the stream that

the view is attached to.

For example, if you are working in coyne_dev_view, but want to create a baseline from

the configuration specified by the view coyne_integration_view, use –view
coyne_integration_view. This creates a baseline in the project’s integration stream that

includes all the checked-in versions contained in coyne_integration_view. If you do not

specify view-tag, the current view is used.

SPECIFYING THE COMPONENTS OR ACTIVITIES. Default: –all.

–com⋅ponent component-selector[,...]

Specifies the components for which baselines are made.

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

–all
Creates a baseline for each component in the project that has been modified since the last

baseline.

–ide⋅ntical
Creates new baselines for all components, regardless of whether they have been

modified.

–act⋅ivities activity-selector, ...
Specifies a list of activities to include in the new baselines.

activity-selector is of the form: [activity:]activity-name[@vob-selector] where vob is the

activity’s UCM project VOB.

By default, all activities with changes that are not recorded in the last baselines are

recorded in the new baselines. You can use this option to include only a subset of the

unrecorded changes in the new baselines. A baseline is created for each component that

has unrecorded changes in the specified list of activities.
528 ClearCase Reference Manual

mkbl
The list of activities must be complete. That is, they must not depend on the inclusion of

any other activities. Activity A2 is dependent on activity A1 if they both contain versions

of the same element and A2 contains a later version than A1. If the list of activities is

incomplete, the required activities are listed and the operation fails.

SELECTING LABELING BEHAVIOR. Default: –incremental.

–nla⋅bel
Specifies that versions for this baseline are not labeled. Unlabeled baselines cannot be

used as foundation baselines, but can be used by the diffbl command and labeled later.

–inc⋅remental
Labels only versions that have changed since the last full baseline was created.

–fu⋅ll
Labels all versions visible below the component's root directory.

SPECIFYING THE BASELINE ROOT. Default: None.

baseline-root-name
Specifies the root portion of the baseline name. See Baseline Names on page 526.

SPECIFYING A LABEL TO IMPORT. Default: None.

–imp⋅ort label-type-selector
Creates a baseline using versions marked with the specified label-type-selector. The label

type must be applied to the component's root directory and to every element below the

root directory that you want to include in the component. Baselines are created as

successors to the initial baseline. The scope of the label type must be ordinary, not global.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Create a baseline for a component xroutines by importing a label type.

cmd-context mkbl -c “Import BL2 label” –import BL2@\xroutines

• Create baselines for all components in the project that have been modified since the last

baseline was created.

cmd-context mkbl BL1
ClearCase Reference Pages 529

mkbl
Created baseline "BL1.119" in component "webo_modeler".
Begin incrementally labeling baseline "BL1.119".
Done incrementally labeling baseline "BL1.119".
Created baseline "BL1.120" in component "webo_gui".
Begin incrementally labeling baseline "BL1.120".
Done incrementally labeling baseline "BL1.120".

• Create baselines for the components modified by a particular activity.

cmd-context mkbl -activities line-lib@\pvob1

SEE ALSO

chbl, diffbl, lsbl, rmbl
530 ClearCase Reference Manual

mkbranch
mkbranch
Creates a new branch in the version tree of an element

APPLICABILITY

SYNOPSIS
mkbranch [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–nwa⋅rn]

[–nco] [–ver⋅sion version-selector] branch-type-selector pname ...

DESCRIPTION

The mkbranch command creates a new branch in the version trees of one or more elements. The

new branch is checked out, unless you use the –nco option. In Attache, after the command is

executed, any files checked out successfully are downloaded to the workspace.

Auto-Make-Branch

The checkout command sometimes invokes mkbranch automatically. If the view’s version of an

element is selected by a config spec rule with a –mkbranch branch-type clause, checkout does the

following:

1. Creates a branch of type branch-type.

2. Checks out (version 0 on) the newly created branch.

Similarly, entering a mkbranch command explicitly can invoke one or more additional
branch-creation operations. See Multiple-Level Auto-Make-Branch in the checkout reference page.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, branch type,

element, pool (nondirectory elements only).

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 531

mkbranch
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SUPPRESSING WARNING MESSAGES Default: Warning messages are displayed.

–nwa⋅rn
Suppresses warning messages.

CHECKOUT OF THE NEW BRANCH. Default: The newly created branch is checked out. Additional

checkouts may ensue; see the Auto-Make-Branch section.

–nco
Suppresses automatic checkout of the branch. In Attache, this option also suppresses

downloading of the files to the workspace.

SPECIFYING THE BRANCH TYPE. Default: None.

branch-type-selector
An existing branch type, previously created with mkbrtype. The branch type must exist

in each VOB in which you are creating a branch, or (if branch-type-selector is a global type)

in the Admin VOB hierarchy associated with each VOB. Specify branch-type-selector in

the form [brtype:]type-name[@vob-selector]

SPECIFYING THE BRANCH POINTS. Default: None.

–ver⋅sion version-selector
For each pname, creates the branch at the version specified by version-selector. This option

overrides both version-selection by the view and version-extended naming. See the

version_selector reference page for syntax details.

pname ...

One or more pathnames, indicating the versions at which branches are to be created.

type-name Name of the branch type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
532 ClearCase Reference Manual

mkbranch
Use –version to override these interpretations of pname.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a branch type named bugfix. Then, set a view drive (in Attache, a workspace) with a

config spec that prefers versions on the bugfix branch, and create a branch of that type in

file util.h.

cmd-context mkbrtype –c "bugfixing branch" bugfix

Created branch type "bugfix".

> net use y: \\view\smg_bugfix (ClearCase and ClearCase LT only)
...
> y:

cmd-context setws smg_bugfix (Attache only)

cmd-context mkbranch –nc bugfix util.h

Created branch "bugfix" from "util.h" version "\main\1".
Checked out "util.h" from version "\main\bugfix\0".

• Create a branch named rel2_bugfix off the version of hello.c in the view, and check out the

initial version on the branch.

cmd-context mkbranch –nc rel2_bugfix hello.c

Created branch "rel2_bugfix" from "hello.c" version "\main\4".
Checked out "hello.c" from version "\main\rel2_bugfix\0".

• Create a branch named maintenance off version \main\1 of file util.c. Do not check out the

initial version on the branch.

cmd-context mkbranch –version \main\1 –nco –nc maintenance util.c

Created branch "maintenance" from "util.c" version "\main\1".

• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies a version, independent of view.
ClearCase Reference Pages 533

mkbranch
• Create a branch named bugfix off version \main\3 of file hello.c, and check out the initial

version on the branch. Use a version-extended pathname to specify the version.

cmd-context mkbranch –nc bugfix hello.c@@\main\3
Created branch "bugfix" from "hello.c" version "\main\3
Checked out "hello.c" from version "\main\bugfix\0".

• For each file with a .c extension, create a branch named patch2 at the currently selected

version, but do not check out the initial version on the new branch. Provide a comment on

the command line.

cmd-context mkbranch –nco –c "release 2 code patches" patch2 *.c

Created branch "patch2" from "cm_add.c" version "\main\1".
Created branch "patch2" from "cm_fill.c" version "\main\3".
Created branch "patch2" from "msg.c" version "\main\2".
Created branch "patch2" from "util.c" version "\main\1".

SEE ALSO

mkbrtype, rename
534 ClearCase Reference Manual

mkbrtype
mkbrtype
Creates/updates a branch type object

APPLICABILITY

SYNOPSIS
mkbrtype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary] [–pbr⋅anch]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

branch-type-selector ...

DESCRIPTION

The mkbrtype command creates one or more branch types with the specified names for future use

within a particular VOB. After creating a branch type in a VOB, you can create branches of that

type in that VOB’s elements, using mkbranch.

Instance Constraints

The version-extended naming scheme requires that a branch of a version tree have at most one

subbranch of a given type. (If there were two bugfix subbranches of the main branch, the

version-extended pathname foo.c@@\main\bugfix\cleartool3 would be ambiguous.)

However, by default only one branch of this type can be created in an element’s entire version

tree. The –pbranch option loosens this constraint.

Recommended Naming Convention

A VOB cannot contain a branch type and a label type with the same name. For this reason, we

strongly recommend that you adopt this convention:

• Make all letters in names of branch types lowercase (a – z).

• Make all letters in names of label types uppercase (A – Z).

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following (with –replace
only): type owner, VOB owner, member of the ClearCase group (ClearCase), local administrator

of the ClearCase LT server host (ClearCase LT). See the permissions reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 535

mkbrtype
Locks: An error occurs if any of the following objects are locked: VOB, branch type (with –replace
only).

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if a branch type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults

(Exception: the type’s scope does not change; you must explicitly specify –global or

–ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

SPECIFYING THE SCOPE OF THE BRANCH TYPE. Default: Creates an ordinary branch type that can be

used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates a branch type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mkbrtype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see Administering ClearCase.

–ord⋅inary
Creates a branch type that can be used only in the current VOB.

INSTANCE CONSTRAINTS. Default: Only one branch of the new type can be created in a given

element’s version tree.

• You cannot replace the predefined branch type main.

• If there are existing branches of this type or if the containing VOB is replicated,

you cannot replace a less constrained definition (–pbranch specified) with a more

constrained definition (omitting the –pbranch option).

• When converting a global type to ordinary, you must specify the global type as

the branch-type-selector argument. You cannot specify a local copy of the global

type.
536 ClearCase Reference Manual

mkbrtype
–pbr⋅anch
Multiple branches of the same type can be created in the version tree, but they must be

created off different branches.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE BRANCH TYPES. Default: The branch type is created in the VOB that contains the

current working directory unless you specify another VOB with the @vob-selector argument.

branch-type-selector...
Names of the branch types to be created. Specify branch-type-selector in the form

[brtype:]type-name[@vob-selector]

Also see the section Recommended Naming Convention on page 535.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a branch type named bugfix_v1, which can be used only once in an element’s

version tree. Provide a comment on the command line.

cmd-context mkbrtype –c "bugfix development branch for V1" bugfix_v1

Created branch type "bugfix_v1".

type-name Name of the branch type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
ClearCase Reference Pages 537

mkbrtype
• Create two branch types for working on program patches, and a bugfix branch for release 2.

Constrain their use to one per branch.

cmd-context mkbrtype –nc –pbranch patch2 patch3 rel2_bugfix
Created branch type "patch2".
Created branch type "patch3".
Created branch type "rel2_bugfix".

• Change the constraint on an existing branch type so that it can be used only once per

branch. Provide a comment on the command line.

cmd-context mkbrtype -replace -pbranch -c "change to one per branch" bugfix_v1
Replaced definition of branch type "bugfix_v1".

SEE ALSO

chtype, describe, lstype, mkbranch, rename, rmtype, type_object
538 ClearCase Reference Manual

mkcomp
mkcomp
Creates a component object

APPLICABILITY

SYNOPSIS
mkcomp [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –nc⋅omment]

–root dir-pname component-selector

DESCRIPTION

The mkcomp command creates a UCM component. A component groups directories and file

elements. The scope of a UCM project is declared in terms of components. A project must contain

at least one component, and it can contain multiple components. Projects can share components.

This command must be used within a view context.

Component objects live in project VOBs, and point to directory elements. All elements below the

directory root are in the component.

An initial baseline is automatically created when you create a component. This baseline selects

the /main/0 version of the component's root directory. Use this as a starting point for making

changes to the component.

PERMISSIONS

Permissions: No special permissions are required to create a component.

Locks: An error occurs if there are locks on the following objects: UCM project VOB.

Mastership: The master replica of the indicated objects must match the replica (originally)

performing the operation

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 539

mkcomp
The comment is stored in the creation event of the component object.

SPECIFYING A COMPONENT SELECTOR AND LOCATION.

–root dir-pname
Specifies the root directory pathname for this component. The directory-pathname must

be the root directory of a VOB. A VOB directory can be referenced only by one

component in one project VOB.

component-selector
Identifies the component.

component-selector is of the form [component:]component-name[@vob-selector] where vob is

the component’s UCM project VOB.

If no vob-selector is given, the component is created in the project VOB if it contains the

current working directory, otherwise the component is not created.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Create a component.

cmd-context mkcomp -c "modeling component" ^
-root \webo_modeler webo_modeler@\webo_pvob

Set Admin VOB for component "webo_modeler"
Created component "webo_modeler".

SEE ALSO

lscomp, mkbl, rmcomp
540 ClearCase Reference Manual

mkdir
mkdir
Creates a directory element

APPLICABILITY

SYNOPSIS
mkdir [–nco] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] dir-pname ...

DESCRIPTION

NOTE: A new directory element can be created only if its parent directory is checked out. mkdir
appends an appropriate line to the parent directory’s checkout comment.

The mkdir command creates one or more directory elements. (You can also use the standard

Windows mkdir command, but that creates view-private directories, not elements.) Unless you

specify the –nco (no checkout) option, the new directory is checked out automatically. A

directory element must be checked out before you can create elements and VOB links within it.

The mkelem –eltype directory command is equivalent to this command.

The new directory element is associated with the same storage pools (source, derived object, and

cleartext) as its parent directory element. You can assign the directory to different pools with the

chpool command. Note that the directory itself is stored in the database, but files created in the

directory are stored in the pools associated with the directory.

In a snapshot view, this command also updates the directory element.

Converting View-Private Directories

You cannot create a directory element with the same name as an existing view-private file or

directory, and you cannot use mkdir to convert an existing view-private directory structure into

directory and file elements. To accomplish this task, use the clearexport_ffile and clearimport
utilities.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. An error occurs if any of the following

objects are locked: VOB, element type.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 541

mkdir
OPTIONS AND ARGUMENTS

CHECKOUT OF THE NEW DIRECTORY. Default: mkdir checks out the new directory element.

–nco
Suppresses checkout of the new directory element.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE DIRECTORIES. Default: None.

dir-pname ...

One or more pathnames, specifying directories to be created.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a subdirectory named subd, and check out the directory to the current view.

cmd-context mkdir –nc subd
Created directory element "subd".
Checked out "subd" from version "\main\0".

• Create a subdirectory named release, but do not check it out. Provide a comment on the

command line.

cmd-context mkdir -nco -c "Storage directory for released files" release
Created directory element "release".

SEE ALSO

checkout, mv, protect, pwd, rmelem, update
542 ClearCase Reference Manual

mkelem
mkelem
Creates a file or directory element

APPLICABILITY

SYNOPSIS
mkelem [–elt⋅ype element-type-name] [–nco | –ci [–pti⋅me]] [–master] [–nwa⋅rn]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

element-pname ...

DESCRIPTION

The mkelem command creates one or more new elements. A new element can be created in a

directory only if that directory is checked out. mkelem appends an appropriate line to the

directory’s checkout comment.

In Attache, any corresponding local files are uploaded before the command is executed remotely.

Wildcards are expanded locally by searching in the workspace, rather than remotely.

mkelem processes each element as follows:

1. Determines an element type from the specified –eltype option or by performing file-typing

(see File Types and Element Types)

2. Creates an element object with that element type in the appropriate VOB database

3. Initializes the element’s version tree by creating a single branch (named main), and a single,

empty version (version 0) on that branch

4. Does one of the following:

• By default, checks out the element to your view.

NOTE: At this point, other views see an empty file when they look at the element.

• With the –nco option, does nothing.

• With the –ci option, creates version 1 by copying a view-private file or an uploaded

view-private file.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 543

mkelem
In Attache, if elements are checked out, the corresponding files are downloaded to your

workspace if they did not exist locally, or the local files are made writable.

5. Assigns the element to the same source storage pool, cleartext storage pool, and (for new

directory elements only) derived object storage pool as its parent directory element

6. In a snapshot view, updates the newly created element

NOTE: Error messages appear if your config spec lacks a \main\LATEST rule. The mkelem
command succeeds in creating version \main\0. However, because your view does not have a

rule to select this version, you cannot see or check out the element.

The following sections provide more information on each of these steps.

File Types and Element Types

Each element is an instance of an element type (just as each version label is an instance of a label

type, each attribute is an instance of an attribute type, and so on). You can specify an element type

with the –eltype option. (The lstype –kind eltype command lists a VOB’s element types.) The

element type must already exist in the VOB in which you are creating the new element, or must

exist in the Admin VOB hierarchy associated with the VOB in which you are creating the new

element. A mkelem –eltype directory command is equivalent to a mkdir command.

If you do not specify an element type on the command line, mkelem determines one by using

the magic files to perform file-typing. This involves matching patterns in the new element’s name

(and examining the existing view-private file with that name, if one exists; see the section

Converting View-Private or Workspace Files to Elements). If file-typing fails, an error occurs and no

element is created:

cleartool: Error: Can’t pick element type from rules in ...

For more on file-typing, see the cc.magic reference page.

Access Mode

A file element’s write access settings are essentially irrelevant; modifications to elements are

controlled by ClearCase or ClearCase LT permissions, as described in the permissions reference

page. When your view selects a checked-in version of a file element, all of its write permissions

are turned off, corresponding to the fact that the element is read-only. When you check out an

element, write permissions are added to the view-private copy. (See the checkout reference page

for details.)

When you convert a view-private file to an element (see Converting View-Private or Workspace Files
to Elements), it is changed to read-only. To add execute permission for an executable element, use

protect –chmod +x (see the protect reference page).
544 ClearCase Reference Manual

mkelem
Converting View-Private or Workspace Files to Elements

You can use the mkelem command to convert a view-private or workspace local file to a file

element with the same name. There are several cases:

• By default, mkelem creates an empty version 0 of the new element, then checks out the new

element to your view. The view-private file becomes the checked-out version of the new

element.

• If you use the –ci option (check in), mkelem does all of the above, then proceeds to check in

version 1 of the new element. Thus, version 1 has the contents of the view-private file. With

–ptime, mkelem preserves the modification time of the file being checked in.

• If you use the –nco option (no check out), mkelem just creates an empty version 0 of the

new element.

• (Attache only) If the file exists locally, it is uploaded to the view.

• (Attache only) If you do not use the –nco option and the file did not exist locally, it is

downloaded to your workspace. If the file exists locally, it is made writable.

During the element-creation process, mkelem renames the view-private or uploaded

view-private file to prevent a name collision that would affect other ClearCase, ClearCase LT, or

Attache software (for example, triggers on the mkelem operation). If this renaming fails, a

warning message appears. There are two renaming procedures:

• If a checkout is performed on the new element, mkelem temporarily renames the

view-private or uploaded view-private file, using a .mkelem (or possibly, .mkelem.n)

suffix. After the new element has been created and checked out, mkelem restores the

original name. This produces the intended effect: the data formerly in a view-private file is

now accessible through an element with the same name.

• If no checkout is performed on the new element, mkelem alerts you that the view-private

or uploaded view-private file has been renamed, using a .keep (or possibly, .keep.n)

extension. Note that the view-private file has not really been converted to an element — it

has been moved out of the way to allow creation of an element in its place.

NOTE: If mkelem does not complete correctly, your view-private file or uploaded view-private

file may be left under the .mkelem file name. In Attache, the file in your workspace is not

renamed.

Converting Nonshareable Derived Objects to Elements

mkelem does not perform any special processing for a nonshareable DO. The process is the same

as for a shareable DO, as described in Converting View-Private or Workspace Files to Elements.

However, when you check in version 1 of the new element (with the –ci option or the checkin
command), the command converts the nonshareable DO to a shareable DO, then checks it in. For
ClearCase Reference Pages 545

mkelem
more information, see Working with Derived Objects and Configuration Records in Building Software
with ClearCase.

NOTE: When a nonshareable DO is converted to a shareable DO, its DO-ID changes. For more

information, see Derived Objects and Configuration Records in Building Software with ClearCase.

Creating Directory Elements

To create a new directory element, use mkelem –eltype directory or mkdir. You cannot create a

directory element with the same name as an existing view-private file or directory, and you

cannot use mkelem to convert an existing view-private directory structure into directory and file

elements. To accomplish this task, use the clearexport_ffile and clearimport utilities.

Auto-Make-Branch During Element Creation

If your config spec has a \main\LATEST rule with a –mkbranch clause, mkelem checks out a

subbranch instead of the main branch. For example, suppose your view has this config spec

when checked out:

element * CHECKEDOUT
element * ...\gopher_port\LATEST
element * V1.0.1 -mkbranch gopher_port
element * \main\LATEST -mkbranch gopher_port

In this case, a gopher_port branchis created a for the new element, and this branch is checked out

instead of main:

cmd-context mkelem –c "new element for Gopher porting work" base.h
Created element "base.h" (type "text_file").
Created branch "gopher_port" from "base.h" version "\main\0".
Checked out "base.h" from version "\main\gopher_port\0".

The auto-make-branch facility is not invoked if you use the –nco option to suppress checkout of

the new element. For more on this facility, see the checkout and config_spec reference pages.

Creating Elements in Replicated VOBs

By default, when you create an element in a replicated VOB, mkelem assigns mastership of the

element’s main branch to the VOB replica that masters the branch type main. If this replica is not

your current replica, you cannot create versions on the main branch. (You can create versions on

other branches if they are mastered by the current replica.)

To assign mastership of a new element’s main branch to the current replica, use the –master
option. The –master option also allows auto-make-branch during element creation, even if the

branch type specified in your config spec is not mastered by the current replica. In this case,

mkelem assigns mastership of newly created branches to the current replica. For example,

suppose your view has the following config spec:
546 ClearCase Reference Manual

mkelem
element * CHECKEDOUT
element * ...\gms_dev\LATEST
element * \main\LATEST -mkbranch gms_dev

When you create a new element with mkelem –master and do not use the –nco option, mkelem
creates the branches main and gms_dev and assigns their mastership to the current replica.

NOTE: If you use the –nco option with –master, only the main branch is mastered by the current

replica, because it is the only branch created by mkelem.

Referencing Element Objects and Their Versions

You sometimes need to distinguish an element itself from the particular version of the element

that is selected by your view. In general:

• Appending the extended naming symbol (by default, @@) to an element’s name references

the element itself.

• A simple name (no extended naming symbol) is a reference to the version in the view.

For example, msg.c@@ references an element, whereas msg.c references a version of that

element. In many contexts (for example, checkin and lsvtree), ClearCase and ClearCase LT allow

you to ignore the distinction. But there are ambiguous contexts in which you need to be careful.

For example, you can attach attributes and hyperlinks either to version objects or to element

objects. Thus, these two commands are different:

cmd-context mkattr BugNum 403 msg.c (attaches attribute to version)

cmd-context mkattr BugNum 403 msg.c@@ (attaches attribute to element)

CAUTION: Do not create elements whose names end with the extended naming symbol.

ClearCase, ClearCase LT, and Attache cannot handle such elements.

Storage Pools

Physical storage for an element’s versions (data containers) is allocated in the storage pools that

mkelem assigns. You can change pool assignments with the chpool command.

(ClearCase and ClearCase LT only) Group Membership Restriction

Each VOB has a group list. You can create an element in a VOB only if your principal groupis on

this list. See the protectvob reference page for more on this topic.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: An error occurs if any of the

following objects are locked: VOB, element type, pool (nondirectory elements only).

OPTIONS AND ARGUMENTS

SPECIFYING THE ELEMENT TYPE. Default: mkelem performs file-typing to select an element type.

If file-typing fails, an error occurs. See the cc.magic reference page for details on file-typing.
ClearCase Reference Pages 547

mkelem
–elt⋅ype element-type-name
Specifies the type of element to be created. The element type must be a predefined type,

or a user-defined type created with the mkeltype command. The element type must exist

in each VOB in which you are creating a new element, or (if element-type-selector is a

global type) in the Admin VOB hierarchy associated with each VOB. Specifying –eltype
directory is equivalent to using the mkdir command.

CHECKOUT OF THE NEW ELEMENT. Default: mkelem checks out the new element. If a view-private

file already exists at that pathname, it becomes the checked-out version of the element.

Otherwise, an empty view-private file is created and becomes the checked-out version. In

Attache, if neither the –nco or –ci option is specified, the checked-out files are downloaded if they

did not exist locally, or the local files are made writable.

–nco
Suppresses automatic checkout; mkelem creates the new element, along with the main
branch and version \main\0, but does not check it out. If element-pname exists, it is

moved aside to a .keep file, as explained earlier.

–ci [–pti⋅me]

Creates the new element and version \main\0, performs a checkout, and checks in a

new version containing the data in view-private file or DO element-pname, which must

exist. In Attache, local files corresponding to successfully checked-in versions are made

read-only. You cannot use this option when creating a directory element.

With –ptime, mkelem preserves the modification time of the file being checked in. If you

omit this option, the modification time of the new version is set to the checkin time.

MASTERSHIP OF THE MAIN BRANCH. Default: Assigns mastership of the element’s main branch to

the VOB replica that masters the main branch type.

–master
Assigns mastership of the main branch of the element to the VOB replica in which you

execute the mkelem command. If your config spec includes –mkbranch lines or

mkbranch rules that apply to the element, and you do not use the –nco option, mkelem
creates these branches and assigns their mastership to the current VOB replica. mkelem
also prints a note that these branches are explicitly mastered by the current replica; the

output also displays the master replica of each associated branch type.

SUPPRESSING WARNING MESSAGES Default: Warning messages are displayed.

–nwa⋅rn
Suppresses warning messages.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.
548 ClearCase Reference Manual

mkelem
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS. Default: None.

element-pname ...

The pathnames of one or more elements to be created. If you also specify the –ci option,

each element-pname must name an existing view-private object. You cannot create a

directory element with the same name as an existing view-private file or directory.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a file element named rotate.c of type compressed_text_file, and check out the initial

version (version 0).

cmd-context mkelem –nc –eltype compressed_text_file rotate.c
Created element "rotate.c" (type "compressed_text_file").
Checked out "rotate.c" from version "\main\0".

• Create three file elements, cm_add.c, cm_fill.c, and msg.c, allowing the file-typing

mechanism to determine the element types. Do not check out the initial versions.

cmd-context mkelem –nc –nco cm_add.c cm_fill.c msg.c
Created element "cm_add.c" (type "text_file").
Created element "cm_fill.c" (type "text_file").
Created element "msg.c" (type "text_file").

• Convert a view-private file named test_cmd.c, to an element, and check in the initial

version.

cmd-context mkelem –nc –ci test_cmd.c
Created element "test_cmd.c" (type "text_file").
Checked in "test_cmd.c" version "\main\1".

• Create two directory elements and check out the initial version of each.

cmd-context mkelem –nc –eltype directory libs include
Created element "libs" (type "directory").
Checked out "libs" from version "\main\0".
Created element "include" (type "directory").
Checked out "include" from version "\main\0".
ClearCase Reference Pages 549

mkelem
• Create an element type named lib for library files, with the predefined binary_delta_file as

its supertype. Then, change to the libs directory, check it out, and create two elements of

type lib without checking them out.

cmd-context mkeltype –nc –supertype binary_delta_file lib
Created element type "lib".

cmd-context cd libs

cmd-context co –nc .
Checked out "." from version "\main\1".

cmd-context mkelem –nc –nco –eltype lib libntx.lib libpvt.lib
Created element "libntx.lib" (type "lib").
Created element "libpvt.lib" (type "lib").

SEE ALSO

cc.magic, checkin, checkout, chpool, config_spec, lstype, mkdir, mkeltype, mkpool, protect,
update
550 ClearCase Reference Manual

mkeltype
mkeltype
Creates or updates an element type object

APPLICABILITY

SYNOPSIS
mkeltype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary]

–sup⋅ertype elem-type-selector [–man⋅ager mgr-name]

[–pti⋅me] [–att⋅ype attr-type-selector[,...]]

[–mer⋅getype { auto | user | never }]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

element-type-selector ...

DESCRIPTION

The mkeltype command creates one or more user-defined element types for future use within a

VOB. User-defined element types are variants of the predefined types. (See complete list in the

section Predefined Element Types.) After creating an element type, you can create elements of that

type using mkelem, or change an existing element’s type using chtype. To remove an element

type, use the rmtype command.

NOTE: You cannot remove an element type from a replicated VOB.

Setting Merge Behavior for an Element Type

In some cases, you can select the merge behavior of an element type when you create it. This is

true for element types of elements used in a UCM deliver or rebase operation. (See the deliver
and rebase reference pages). There are three kinds of behaviors, described here with their

associated keywords.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Keyword Behavior

auto (default) A ClearCase or ClearCase LT findmerge operation

attempts to merge elements of this type.

user A ClearCase or ClearCase LT findmerge operation

performs trivial merges only. Nontrivial merges must be

made manually.
ClearCase Reference Pages 551

mkeltype
To specify a behavior, use one of the keywords as the argument to the –mergetype option. If the

option is not specified, automatic merge behavior is in effect for elements of this element type.

Element Supertypes

When you create a new element type, you must specify an existing element type as its supertype.

The new element type inherits the type manager of the supertype, unless you use the –manager
option. The type manager performs such tasks as storing/retrieving the contents of the element’s

versions. (See the type_manager reference page.)

For example, you create an element type c_source, with text_file as the supertype; c_source
inherits the type manager associated with the text_file supertype—the text_file_delta manager.

You can use the lstype command to list both the supertype and the type manager of an element

type.

Predefined Element Types

Each VOB is created with the following element types:

never A ClearCase or ClearCase LT findmerge operation

ignores elements of this type. The never attribute is

useful for working with files such as binary files or

bitmap graphics images.

file Versions can contain any kind of data (text, binary, bitmap, and so

on). Uses the whole_copy type manager.

compressed_file Versions can contain any kind of data. Uses the z_whole_copy type

manager.

text_file All versions must contain text (multibyte text characters are

allowed). Null bytes are not permitted (a byte of all zeros); no line can

contain more than 8,000 characters. Uses the text_file_delta type

manager.

compressed_text_file All versions must contain text; no line can contain more than 8,000

characters. Uses the z_text_file_delta type manager.

binary_delta_file Versions can contain any kind of data. Uses the binary_delta type

manager.

html Subtype of the text_file element type. Uses the _html type manager.

ms_word Subtype of the file element type. All versions must be Microsoft

Word files. Uses the _ms_word type manager.

rose Subtype of the text_file element type. Uses the _rose type manager.

xml Subtype of the text_file element type. Uses the _xml type manager.

Keyword Behavior
552 ClearCase Reference Manual

mkeltype
You can use any of these element types as the –supertype specification.

Text Files, Cleartext, and a View’s Text Mode

This section applies to the element types text_file and compressed_text_file, to all subtypes of these

types, and to all user-defined element types derived from them through the supertype

mechanism.

When a load operation is issued from a snapshot view, or a user program accesses a version

through a dynamic view, the type manager handles it as follows:

1. Extracts the text lines of that particular version from the data container.

2. Stores the extracted lines in a cleartext file, within the cleartext storage pool directory

associated with the element.

3. Arranges for the program to access the cleartext file (not the structured data container).

On subsequent accesses to the same version, steps 1 and 2 are skipped; the program accesses the

existing cleartext file, which is cached in the cleartext storage pool.

Operating systems vary in their use of text-file line terminators. To avoid confusion, each

ClearCase and ClearCase LT view has a text mode, which determines the line terminator for text

files in that view. (See the mkview reference page.) After the type manager constructs a cleartext

file for a version, its line terminators may be adjusted before the version is presented to the

calling program. Adjustment of line terminators can also occur when the checkout command

copies a version of a text file element, creating a view-private file (the checked-out version).

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following (with –replace
only): type owner, VOB owner, member of the ClearCase group (ClearCase), local administrator

of the ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type (with

–replace only).

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if an element type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

directory Versions of a directory element catalog (list the names of) elements

and VOB symbolic links. Uses the directory type manager, which

compares and merges versions of directory elements.

file_system_object Generic element type, with no associated type manager.
ClearCase Reference Pages 553

mkeltype
options from the existing definition, their values are replaced with the defaults.

(Exception: the type’s scope does not change unless you explicitly specify a –global or

–ordinary option.)

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it will not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

You cannot change the following:

Also, when converting a global type to ordinary, you must specify the global type as the

element-type-selector argument. You cannot specify a local copy of the global type.

SPECIFYING THE SCOPE OF THE ELEMENT TYPE. Default: Creates an ordinary element type that can

be used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates an element type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mkeltype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see Administering ClearCase.

–ord⋅inary
Creates an element type that can be used only in the current VOB.

SUPERTYPE / TYPE MANAGER INHERITANCE. Default: None. You must specify a supertype; the new

element type inherits the type manager of this supertype, unless you use the –manager option.

–sup⋅ertype elem-type-selector
The name of an existing element type, predefined or user-defined. Predefined element

types are listed in Predefined Element Types on page 552. You can specify –supertype
file_system_object only if you also specify a type manager with –manager.

Specify element-type-selector in the form [eltype:]type-name[@vob-selector]

• The type manager (–manager or –supertype option) if there are existing elements

of type type-name
• The definition of a predefined element type (such as file or text_file)

type-name Name of the element type

See the Object Names section in the cleartool reference page

for rules about composing names.
554 ClearCase Reference Manual

mkeltype
The lstype command lists a VOB’s existing element types.

–man⋅ager mgr-name
Specifies the type manager for the new element type, overriding inheritance from the

supertype. Predefined Element Types on page 552 lists the type managers. For more

information about these type managers, see the type_manager reference page.

CONTROLLING VERSION-CREATION TIME. Default: For all elements of the newly created type:

when a new version is checked in, its time stamp is set to the checkin time.

–pti⋅me
For all elements of the newly created type: preserves the time stamp of the checked-out

version during checkin. In effect, this establishes checkin –ptime as the default for

elements of this type.

MERGETYPE. Default: Instantiations of the new element type use automatic merging.

–mer⋅getype keyword
Specifies the merge behavior for an element type. This is in effect only when the element

type is used in a UCM deliver or rebase operation. There are three types of merge

behavior: automatic, for which a findmerge operation attempts to automatically merge

elements; user-controlled, for which a findmerge operation performs trivial merges only

(other merges must be made manually); and never, meaning findmerge ignores

elements of this type. The corresponding keyword arguments are auto, user, and never;
auto is the default.

SUGGESTED ATTRIBUTES. Default: The new element type has no list of suggested attributes.

–att⋅ype attr-type-selector[,...]

A comma-separated list (no white space) of existing attribute types. Use this option to

inform users of suggested attributes for use with elements of the newly created type.

This does not restrict users from using other attributes. (Users can view the list with

describe or lstype.) Specify attribute-type-selector in the form

[attype:]type-name[@vob-selector]

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

type-name Name of the attribute type

See the Object Names section in the cleartool reference page

for rules about composing names.
ClearCase Reference Pages 555

mkeltype
EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE ELEMENT TYPES. Default: The element type is created in the VOB that contains the

current working directory unless you specify another VOB with the @vob-selector argument.

type-name ...

Names of the element types to be created. Specify element-type-selector in the form

[eltype:]type-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create an element type named c_source using the predefined text_file element type as the

supertype.

cmd-context mkeltype –supertype text_file –nc c_source
Created element type "c_source".

• Create an element type for storing binary data named bin_file, using the predefined file
element type as the supertype.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

type-name Name of the element type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)
556 ClearCase Reference Manual

mkeltype
cmd-context mkeltype –supertype file –nc bin_file
Created element type "bin_file".

• Create an element type based on the user-defined element type bin_file (from previous

example) for storing executable files. Include an attribute list.

cmd-context mkeltype –supertype bin_file –attype Confidence_Level,QAed –nc exe_file
Created element type "exe_file".

• Create a "directory of include files" element type, using the predefined directory element

type as the supertype. Provide a comment on the command line.

cmd-context mkeltype –supertype directory –c "directory type for include files" incl_dir
Created element type "incl_dir".

• Change the checkin default for an existing element type so that it preserves the file

modification time. Provide a comment on the command line.

cmd-context mkeltype –replace –supertype bin_file –ptime ^
–c "change archive mod time default" archive
Replaced definition of element type "archive".

• Create an element type for storing binary data named grph_file, using the predefined file
element type as the supertype. Specify the merge type as never. Merge type information is

applied when an element of this type is used in a UCM deliver or rebase operation.

cmd-context mkeltype –supertype file –mergetype never –nc grph_file
Created element type "grph_file".

SEE ALSO

checkin, chtype, describe, lstype, mkelem, rmtype, rename, type_manager, type_object
ClearCase Reference Pages 557

mkfolder
mkfolder
Creates a folder for a UCM project

APPLICABILITY

SYNOPSIS
mkfolder [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe ach | –nc omment]

[–title title] –in parent-folder-selector [folder-selector ...]

DESCRIPTION

The mkfolder command creates a folder for a UCM project. Folders have these characteristics:

• They can contain projects or other folders.

• They must reside in a UCM project VOB.

• Each folder must have a parent folder.

The parent folder for a top-level folder is named RootFolder, a predefined object.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: An error occurs if there are locks on any of the following objects: UCM project VOB.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE FOLDER TITLE. Default: The folder’s name, specified as part of the folder-selector
argument.

–title title
Specifies a descriptive title displayed in output and the graphical interface for all folders

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
558 ClearCase Reference Manual

mkfolder
created. The title argument can be a character string of any length. Use double quotes to

enclose titles with spaces or special characters.

SPECIFYING THE PARENT FOLDER. Default: None.

–in parent-folder-selector
Specifies a parent folder for the new folder. To create a top-level folder, you must specify

the predefined folder object RootFolder as its parent folder.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

SPECIFYING THE FOLDER NAME. Default: A generated name.

folder-selector ...
Identifies one or more new folders.Each folder must reside in the same UCM project

VOB as its parent folder and is created in the folder specified by the –in option.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Creates a top-level folder whose parent is the predefined object RootFolder.

cmd-context mkfolder -title "webo projects" -in ^
RootFolder@\webo_pvob webo_projects@\webo_pvob

Created folder "webo_projects".

SEE ALSO

chfolder, lsfolder, mkproject, rmfolder
ClearCase Reference Pages 559

mkhlink
mkhlink
Attaches a hyperlink to an object

APPLICABILITY

SYNOPSIS
mkhlink [–uni⋅dir] [–tte⋅xt to-text] [–fte⋅xt from-text]

[–fpn⋅ame] [–tpn⋅ame]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

hlink-type-selector from-obj-selector [to-obj-selector]

DESCRIPTION

The mkhlink command creates a hyperlink between two objects, each of which may be an element,
branch, version, VOB symbolic link, or non-file-system VOB object (except another hyperlink).

Logically, a hyperlink is an “arrow” attached to one or two VOB-database objects:

• A bidirectional hyperlink connects two objects, in the same VOB or in different VOBs, with

optional text annotations at either end. It can be navigated in either direction: from-object →
to-object or to-object → from-object.

• A unidirectional hyperlink connects two objects in different VOBs, with optional text

annotations at either end. It can be navigated only in the from-object → to-object direction.

• A text-only hyperlink associates one object with a user-defined text string (for example, an

element that implements a particular algorithm with the name of a document that describes

it).

• A null-ended hyperlink has only a from-object. Use this kind of hyperlink to suppress

hyperlink inheritance (see the Hyperlink Inheritance section).

Contrast with Other Kinds of Metadata

Like other kinds of metadata annotations—version labels, attributes, and triggers—a hyperlink

is an instance of a type object: the mkhlink command creates an instance of an existing

hyperlink type object. However, hyperlinks differ from other kinds of metadata annotations:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
560 ClearCase Reference Manual

mkhlink
• The hyperlink created by mkhlink is also an object in itself. Each hyperlink object has a

unique ID (see the Hyperlink-IDs section) and can itself be annotated with attributes. By

contrast, a mklabel, mkattr, or mktrigger command does not create a new object; it simply

annotates an existing object.

• You can attach several hyperlinks of the same type to one object, but only one instance of a

particular label, attribute, or trigger type. (For example, you can attach two different

DesignFor hyperlinks to the same object, but not two different ECOnum attributes.)

Hyperlink-IDs

Each new hyperlink object gets a unique identifier, its hyperlink-ID. You can specify any

hyperlink by appending its hyperlink-ID to the name of the hyperlink type. Following are some

examples.

cmd-context describe hlink:DesignFor@52179@\doctn_vb

In this example, DesignFor is the name of a hyperlink type, and @52179@\doctn_vb is the

hyperlink-ID. Note that the hyperlink-ID includes a pathname: the VOB-tag of the VOB in which

the hyperlink is created. When specifying a hyperlink, you can omit the pathname if the current

working directory is in that VOB:

cd \doctn_vb\src

cmd-context describe hlink:DesignFor@52179

A hyperlink-ID is unique in that it is guaranteed to differ from the hyperlink-ID of all other

hyperlinks. But it can change over time; when a VOB’s database is processed with reformatvob,

the numeric suffixes of all hyperlink-IDs change:

before ’reformatvob’: @52179@\doctn_vb
after ’reformatvob’: @8883@\doctn_vb

Similarly, the VOB-tag part of a hyperlink-ID can change over time and can vary from host to

host.

Hyperlink Inheritance

By default, a version implicitly inherits a hyperlink attached to any of its ancestor versions, on

the same branch or on a parent branch. Inherited hyperlinks are listed by the describe command

only if you use the –ihlink option.

A hyperlink stops being passed down to its descendents if it is superseded by another hyperlink

of the same type, explicitly attached to some descendent version. You can use a null-ended
hyperlink (from-object, but no to-object) as the superseding hyperlink to effectively cancel

hyperlink inheritance.
ClearCase Reference Pages 561

mkhlink
PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, object group member, object owner, VOB owner, member of the

ClearCase group (ClearCase), local administrator of the ClearCase LT server host

(ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, hyperlink type, object or object type (for non-file-system objects).

OPTIONS AND ARGUMENTS

UNIDIRECTIONAL/BIDIRECTIONAL. Default: Creates a bidirectional hyperlink. If the objects being

linked are in different VOBs, a notation is made in the VOB database of the to-object, making it

possible to see the hyperlink from either VOB.

–uni⋅dir
Creates a unidirectional hyperlink; no notation is made in the VOB database of the

to-object (if that object is in a different VOB).

NOTE: In all cases, a single hyperlink object is created, in the VOB of the from-object.

TEXT ANNOTATIONS. Default: The hyperlink has no text annotations.

–tte⋅xt to-text
Text associated with the to-end of a hyperlink. If you also specify to-obj-pname, the text is

associated with that object. If you do not specify to-obj-pname, cleartool creates a text-only
hyperlink, originating from from-obj-pname. If you omit both –ttext and to-obj-pname,

cleartool creates a null-ended hyperlink.

–fte⋅xt from-text
Text associated with the from-end of a hyperlink.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE HYPERLINK TYPE. Default: None.

hlink-type-selector
An existing hyperlink type. The hyperlink type must exist in each VOB containing an

object to be hyperlinked, or (if hlink-type-selector is a global type) in the Admin VOB

hierarchy associated with each VOB. Specify hlink-type-selector in the form

[hltype:]type-name[@vob-selector]

type-name Name of the hyperlink type
562 ClearCase Reference Manual

mkhlink
OBJECTS TO BE HYPERLINKED. Default: None. You must specify at least one object.

[–fpn⋅ame] from-obj-selector
[–tpn⋅ame] to-obj-selector

from-obj-selector specifies the from-object, and to-obj-selector specifies the to-object.

to-obj-selector is optional; omitting it creates a text-only hyperlink (if you use –ttext) or a

null-ended hyperlink (if you don’t).

NOTE: An error occurs if you try to make a unidirectional hyperlink whose to-obj-selector
is a checked-out version in another VOB.

Specify from-obj-selector and to-obj-selector in one of the following forms:

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

pname
• A standard or view-extended pathname to an element specifies the version

in the view.

• A version-extended pathname specifies an element, branch, or version,

independent of view.

• The pathname of a VOB symbolic link.

NOTE: If pname has the form of an object selector, you must include the –fpname
or –tpname option to indicate that pname is a pathname.

Examples:

foo.c
M:\gamma\usr\project\src\foo.c
foo.c@@\main\5
foo.c@@\REL3
foo.c@@
foo.c@@\main

(version of ’foo.c’ selected by current view)
(version of ’foo.c’ selected by another view)
(version 5 on main branch of ’foo.c’)
(version of ’foo.c’ with version label ’REL3’)
(the element ’foo.c’)
(the main branch of element ’foo.c’)

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of

the VOB-tag (whether or not the VOB

is mounted) or of any filesystem object

within the VOB (if the VOB is

mounted). It cannot be the pathname

of the VOB storage directory.

attribute-type-selector attype:type-name[@vob-selector]
ClearCase Reference Pages 563

mkhlink
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Create a hyperlink type. Then create a unidirectional, element-to-element hyperlink between an

executable and its GUI counterpart in another VOB.

cmd-context mkhltype -nc gui_tool
Created hyperlink type "gui_tool".

cmd-context mkhlink -unidir gui_tool monet@@ \gui_vob\bin\xmonet@@
Created hyperlink "gui_tool@1239@\users_hw".

• Create a hyperlink of type design_spec connecting the versions of a source file and design

document labeled REL2.

cmd-context mkhlink design_spec util.c@@\REL2 \users_hw\doc\util.doc@@\REL2
Created hyperlink "design_spec@685@\users_hw".

• Create three hyperlinks of the same type from the same version of a design document; each

hyperlink points to a different source file element.

cmd-context mkhlink design_for sortmerge.doc ..\src\sort.c
Created hyperlink "design_for@4249@\proj_vob".

cmd-context mkhlink design_for sortmerge.doc ..\src\merge.c
Created hyperlink "design_for@4254@\proj_vob".

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
564 ClearCase Reference Manual

mkhlink
cmd-context mkhlink design_for sortmerge.doc ..\src\sortmerge.h
Created hyperlink "design_for@4261@\proj_vob".

• Create an element-to-element hyperlink between a source file and a script that tests it.

Specify both from-text and to-text for further annotation.

cmd-context mkhlink -ttext "regression A" -ftext "edge effects" ^
tested_by cm_add.c@@ edge.sh@@
Created hyperlink "tested_by@714@\users_hw".

• Create a hyperlink of type fixes between the version of util.c in your view and the element

bug.report.21. Use to-text to indicate the bug number (“fixes bug 21”).

cmd-context mkhlink -ttext "fixes bug 21" fixes util.c ^
m:\myview\users_hw\bugs\bug.report.21@@
Created hyperlink "fixes@714@\users_hw".

• Create a text only hyperlink of type design_spec to associate the algorithm convolution.c
with the third-party document describing that algorithm. Make the hyperlink between the

element convolution.c and the to-text that describes it.

cmd-context mkhlink -ttext "Wilson: Digital Filtering, p42-50" ^
design_spec convolution.c@@
Created hyperlink "design_spec@753@\users_hw".

SEE ALSO

describe, lstype, mkhltype, rename, rmhlink
ClearCase Reference Pages 565

mkhltype
mkhltype
Creates or updates a hyperlink type object

APPLICABILITY

SYNOPSIS
mkhltype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary]

[–att⋅ype attr-type-selector[,...]] [–sha⋅red]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

hlink-type-selector ...

DESCRIPTION

Th mkhltype command creates one or more hyperlink types for future use within a VOB. After

creating a hyperlink type, you can connect pairs of objects with hyperlinks of that type, using

mkhlink.

Conceptually, a hyperlink is an “arrow” from one VOB-database object (version, branch, element,

or VOB symbolic link) to another. To enable objects in two different VOBs to be connected, a

hyperlink type with the same name must be created in both VOBs.

For example, you create a hyperlink type named design_spec, for use in linking source code files

to the associated design documents. Later, you can use mkhlink to create a hyperlink of this type

between my_prog.c and my_prog.dsn.

Predefined Hyperlink Types

The following predefined hyperlink types are created in a new VOB:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Merge Merge hyperlinks record a merge of two or more versions of

an element (performed by the merge command) with one or

more merge arrows. Each merge arrow is actually a

hyperlink of type Merge, connecting one of the contributors

to the target version.

GlobalDefinition GlobalDefinition hyperlinks record the relationship

between a global definition and a local instance of a global

type. (See the type_object reference page.)
566 ClearCase Reference Manual

mkhltype
PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following (with –replace
only): type owner, VOB owner, member of the ClearCase group (ClearCase), local administrator

of the ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, hyperlink type (with

–replace only).

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if a hyperlink type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults

(Exception: the type’s global scope does not change; you must explicitly specify –global
or –ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

SPECIFYING THE SCOPE OF THE HYPERLINK TYPE. Default: Creates an ordinary hyperlink type that

can be used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates a hyperlink type that can be used as a global resource by client VOBs in the

AdminVOB AdminVOB hyperlinks record a VOB’s administration VOB.

RelocationVOB RelocationVOB hyperlinks point from VOBs to which

objects have been relocated to the VOBs in which the objects

were originally located. These hyperlinks occur only

between VOB objects. (See the relocate reference page.)

• You cannot replace predefined hyperlink types.

• When replacing a hyperlink type that was created with the –shared option, you

must use –shared again; that is, you cannot convert a hyperlink type from shared

to unshared.

• When converting a global type to ordinary, you must specify the global type as

the hlink-type-selector argument. You cannot specify a local copy of the global type.
ClearCase Reference Pages 567

mkhltype
administrative VOB hierarchy. With –acquire, mkhltype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see Administering ClearCase.

–ord⋅inary
Creates a hyperlink type that can be used only in the current VOB.

SUGGESTED ATTRIBUTES. (Advisory only, not restrictive) Default: The new hyperlink type has no

list of suggested attributes.

–att⋅ype attr-type-selector[,...]

A comma-separated list (no white space) of existing attribute types. Use this option to

inform users of suggested attributes for use with hyperlinks of the newly created type.

(Users can view the list with describe or lstype.) See the mkattype and mkattr reference

pages for more information about attributes.

MASTERSHIP OF THE HYPERLINK TYPE. Default: Attempts to attach hyperlinks of this type succeed

only in the VOB replica that is the current master of the hyperlink type. The VOB replica in which

the new hyperlink type is created becomes its initial master.

–sha⋅red
Hyperlinks of this type can be created in any VOB replica. (You can delete a hyperlink of

this type only at the master site.)

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE HYPERLINK TYPES. Default: The hyperlink type is created in the VOB that contains

the current working directory unless you specify another VOB with the @vob-selector argument.

hlink-type-selector ...

Names of the hyperlink types to be created. Specify hlink-type-selector in the form

[hltype:]type-name[@vob-selector]

type-name Name of the hyperlink type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)
568 ClearCase Reference Manual

mkhltype
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Create a hyperlink type named tested_by.

cmd-context mkhltype -nc tested_by

Created hyperlink type "tested_by".

• Create a hyperlink type named design_spec in the \docs VOB, and provide a comment on

the command line.

cmd-context mkhltype -c "source to design document" design_spec@\docs

Created hyperlink type "design_spec".

• Create a hyperlink type named test_script, providing a suggested-attribute list.

cmd-context mkhltype -nc -attype run_overnight,error_rate test_script

Created hyperlink type "test_script".

SEE ALSO

describe, lstype, mkhlink, rename, rmtype, type_object
ClearCase Reference Pages 569

mklabel
mklabel
Attaches version labels to versions of elements

APPLICABILITY

SYNOPSIS

• Attach label to specified versions:

mklabel [–rep⋅lace] [–r⋅ecurse] [–ver⋅sion version-selector]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

label-type-selector pname ...

• Attach label to versions listed in configuration record:

mklabel [–rep⋅lace] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–sel⋅ect do-leaf-pattern] [–ci] [–typ⋅e { f | d } ...]

[–nam⋅e tail-pattern] –con⋅fig do-pname label-type-selector

DESCRIPTION

The mklabel command attaches a version label to one or more versions. You can attach a label to

only one version of a particular element. You can specify the versions themselves on the

command line, or you can specify a particular derived object. In the latter case, mklabel labels

some or all the versions that were used to build that derived object.

Referencing Labeled Versions

Labeling a version of an element can affect the way the element appears in views. It also provides

a new way to access the version with a version-extended pathname.

Version Selection by Views. A typical config spec rule uses version labels to select versions:

element * BASELEVEL_1

If you attach version label BASELEVEL_1 to a version of element foo.c, any view configured

with this rule selects the labeled version (unless some rule earlier in the config spec matches

another version of foo.c).

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
570 ClearCase Reference Manual

mklabel
Version Labels in Version-Extended Pathnames. Labeling a version effectively adds a new hard
link to the version in the extended namespace. If you attach version label R4.1A to

version\main\rls4\12 of element bar.c, these pathnames are equivalent:

bar.c@@\main\rls4\12
bar.c@@\main\rls4\R4.1A

In addition, a third pathname is usually equivalent:

barc@@\R4.1A

This version-extended pathname is valid if it is unambiguous, that is, if no other version of bar.c
is currently labeled R4.1A. (This is usually the case because, by default, label types are restricted

to being used once per element. See the description of the –pbranch option in the mklbtype
reference page.)

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, label type.

OPTIONS AND ARGUMENTS

MOVING A VERSION LABEL. Default: An error occurs if a version label of this type is already

attached to some other version of the same element.

–rep⋅lace
Removes an existing label of the same type from another version of the element:

No error occurs if there is no such label to remove, but the label is attached to all versions

specified in the command.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

• From another version on the same branch, if label-type-name was created with

mklbtype –pbranch
• From another version anywhere in the element’s version tree, if label-type-name

was not created with mklbtype –pbranch
ClearCase Reference Pages 571

mklabel
SPECIFYING THE LABEL TYPE. Default: None.

label-type-selector
A label type, previously created with mklbtype. The label type must exist in each VOB

containing a version to be labeled, or (if label-type-selector is a global type) in the Admin

VOB hierarchy associated with each VOB. Specify label-type-selector in the form

[lbtype:]type-name[@vob-selector]

DIRECTLY SPECIFYING THE VERSIONS TO BE LABELED. The options and arguments in this section

specify elements and their versions directly on the command line. Do not use these options and

arguments when using a derived object to provide a list of versions.

pname ...

(Required) One or more pathnames, indicating versions to be labeled:

Use –version to override these interpretations of pname.

NOTE: mklabel differs from some other commands in its default handling of directory

element pname arguments: it labels the directory element itself; it does not label the

elements cataloged in the directory (unless you specify -recurse).

–ver⋅sion version-selector
For each pname, attaches the label to the version specified by version-selector. This option

overrides both version-selection and version-extended naming. See the version_selector
reference page for syntax details.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). VOB symbolic links are not traversed during the recursive descent into the

subtree.

type-name Name of the label type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

• A standard or view-extended pathname to an element specifies the version

selected in the view.

• A version-extended pathname specifies a version, independent of view.
572 ClearCase Reference Manual

mklabel
USING A DERIVED OBJECT TO SPECIFY THE VERSIONS TO BE LABELED. The options and arguments

in this section specify versions by selecting them from the configuration records associated with

a particular derived object. Do not use these options when specifying elements and versions

directly on the command line.

NOTE: Derived objects are created only in dynamic views.

–con⋅fig do-pname
(Required) Specifies one derived object. A standard pathname or view-extended

pathname specifies the DO that currently appears in a view. To specify a DO

independent of view, use an extended name that includes a DO-ID (for example,

hello.obj@@24–Mar.11:32.412) or a version-extended pathname to a DO version.

With the exception of checked-out versions, mklabel labels all the versions that would

be included in a catcr –long –flat –element_only listing of that derived object. Note that

this includes the following objects:

If the DO’s configuration includes multiple versions of the same element, only the most

recent version is labeled.

Use the following options to modify the list of versions to be labeled.

–sel⋅ect do-leaf-pattern
–ci
–typ⋅e { f | d } ...

–nam⋅e tail-pattern
Modify the set of versions to be labeled in the same way that these options modify a catcr
listing. See the catcr reference page for details, and also the EXAMPLES section.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a label type named REL6. Attach that label to the version of the current directory

selected by your view, and to the currently selected version of each element in and below

the current directory.

• Any DO created by the build and subsequently checked in as a DO version.

• Any file in the CR that was view-private at the time of the build, was converted

to an element after the creation of the CR, and has at least one checked-in version.
ClearCase Reference Pages 573

mklabel
cmd-context mklbtype –nc REL6
Created label type "REL6".

cmd-context mklabel –recurse REL6 .

Created label "REL6" on "." version "\main\4".
Created label "REL6" on ".\bin" version "\main\1".
Created label "REL6" on ".\include" version "\main\1".
Created label "REL6" on ".\libs" version "\main\2".
Created label "REL6" on ".\lost+found" version "\main\0".
Created label "REL6" on ".\release" version "\main\1".
Created label "REL6" on ".\src" version "\main\6".
Created label "REL6" on ".\src\Makefile" version "\main\2".
Created label "REL6" on ".\src\cm_add.c" version "\main\1".
Created label "REL6" on ".\src\convolution.c" version "\main\4".
Created label "REL6" on ".\src\edge.sh" version "\main\1".
.
.
.

• Attach label REL1 to the version of msg.c in the view.

cmd-context mklabel REL1 msg.c

Created label "REL1" on "msg.c" version "\main\1".

• Attach label REL2 to version 3 on the rel2_bugfix branch of file util.c.

cmd-context mklabel –version \main\rel2_bugfix\3 REL2 util.c
Created label "REL2" on "util.c" version "\main\rel2_bugfix\3".

• Move label REL2 to a different version of element hello.c, using a version-extended

pathname to indicate that version.

cmd-context mklabel –replace REL2 hello.c@@\main\4
Moved label "REL2" on "hello.c" from version "\main\3" to "\main\4".

• Attach label REL3 to each version that was used to build derived object .hello.obj. Note

that both directories and files are labeled.

cmd-context mklabel –config hello.obj REL3
Created label "REL3" on "\users_hw\" version "\main\1".
Created label "REL3" on "\users_hw\src" version "\main\2".
Created label "REL3" on "\users_hw\src\hello.c" version "\main\3".
Created label "REL3" on "\users_hw\src\hello.h" version "\main\1".

• Attach label REL5 to each C-language source file version that was used to build derived

object hello.exe.
574 ClearCase Reference Manual

mklabel
cmd-context mklabel –config hello.exe –name '*.c' REL5
Created label "REL5" on "\users_hw\src\hello.c" version "\main\3".
Created label "REL5" on "\users_hw\src\util.c" version "\main\1".

• Attach label REL5 to all versions in the VOB mounted at \users_hw that were used to build

derived object hello.exe.

cmd-context mklabel –config hello.exe –name '\users_hw\...' REL5
Created label "REL5" on "\users_hw\" version "\main\1".
Created label "REL5" on "\users_hw\src" version "\main\2".
Created label "REL5" on "\users_hw\src\hello.c" version "\main\3".
Created label "REL5" on "\users_hw\src\hello.h" version "\main\1".
Created label "REL5" on "\users_hw\src\util.c" version "\main\1".

SEE ALSO

mklbtype, rmlabel
ClearCase Reference Pages 575

mklbtype
mklbtype
Creates or updates a label type object

APPLICABILITY

SYNOPSIS
mklbtype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary] [–pbr⋅anch] [–sha⋅red]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

label-type-selector ...

DESCRIPTION

The mklbtype command creates one or more label types with the specified names for future use

within a VOB. After creating a label type in a VOB, you can attach labels of that type to versions

of that VOB’s elements, using mklabel.

Instance Constraints

The same version label can be attached to multiple versions of the same element. (The versions

must all be on different branches. If two versions were labeled JOHN_TMP on branch

\main\bugfix, the version-extended pathname foo.c@@\main\bugfix\JOHN_TMP would be

ambiguous.) However, there are drawbacks to using the same version label several times in the

same element:

• It is potentially confusing.

• In a version-extended pathname, you must always include a full branch pathname along

with the version label (for example, foo.c@@\main\new_port\JOHN_TMP).

By default, a new label type is constrained to use on only one version in an element’s entire

version tree. This allows you to omit the branch pathname portion of a version-extended

pathname (for example, foo.c@@\JOHN_TMP). The –pbranch option relaxes this constraint,

allowing the label type to be used once per branch.

Recommended Naming Convention

A VOB cannot contain a branch type and a label type with the same name. For this reason, we

strongly recommend that you adopt this convention:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
576 ClearCase Reference Manual

mklbtype
• Make all letters in names of branch types lowercase (a – z).

• Make all letters in names of label types uppercase (A – Z).

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: (with –replace
only): type owner, VOB owner, , member of the ClearCase group (ClearCase), local administrator

of the ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, label type (with –replace
only).

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if a label type named type-name already

exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values will be replaced with the defaults

(Exception: the type’s global scope does not change; you must explicitly specify –global
or –ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

SPECIFYING THE SCOPE OF THE LABEL TYPE. Default: Creates an ordinary label type that can be used

only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates a label type that can be used as a global resource by client VOBs in the

• You cannot replace either of the predefined label types LATEST and

CHECKEDOUT.

• If there are existing labels of this type or if the containing VOB is replicated, you

cannot replace a less constrained definition (–pbranch specified) with a more

constrained definition. (The default is once per element.)

• When replacing a label type that was created with the –shared option, you must

use –shared again; that is, you cannot convert a label type from shared to

unshared.

• When converting a global type to ordinary, you must specify the global type as

the label-type-selector argument. You cannot specify a local copy of the global type.
ClearCase Reference Pages 577

mklbtype
administrative VOB hierarchy. With –acquire, mklbtype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see Administering ClearCase.

–ord⋅inary
Creates a label type that can be used only in the current VOB.

INSTANCE CONSTRAINTS. Default: A label of the new type can be attached to only one version of

a given element.

–pbr⋅anch
Relaxes the default constraint, allowing the label type to be used once per branch in a

given element’s version tree. You cannot attach the same version label to multiple

versions on the same branch.

MASTERSHIP OF THE LABEL TYPE. Default: Attempts to attach or remove labels of this type succeed

only in the VOB replica that is the current master of the label type. The VOB replica in which the

new label type is created becomes its initial master.

–sha⋅red
Allows you to create or delete labels of this type at any replica in the VOB family. If you

also specify –pbranch, the replica must master the branch of the version you specify in

the mklabel or rmlabel command. If you do not specify –pbranch, the replica must

master the element of the version you specify in the mklabel or rmlabel command.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE LABEL TYPES. Default: The label type is created in the VOB that contains the current

working directory unless you specify another VOB with the @vob-selector argument.

label-type-selector ...

Names of the label types to be created. Specify label-type-selector in the form

[lbtype:]type-name[@vob-selector]

type-name Name of the label type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifierf

Specify vob-selector in the form [vob:]pname-in-vob
578 ClearCase Reference Manual

mklbtype
See the section Recommended Naming Convention on page 576.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a label type that can be used only once per element. Provide a comment on the

command line.

cmd-context mklbtype –c "Version label for V2.7.1 sources" V2.7.1

Created label type "V2.7.1".

• Create a label type that can be used once per branch in any element’s version tree.

cmd-context mklbtype –nc –pbranch REL3

Created label type "REL3".

• Change the constraint on an existing label type so that it can be used once per branch. (This

change does not affect existing labels of this type.)

cmd-context mklbtype –replace –pbranch –c "allow use on multiple branches" V2.7.1

Replaced definition of label type "V2.7.1".

SEE ALSO

describe, lstype, mklabel, rename, rmtype, type_object

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
ClearCase Reference Pages 579

mkpool
mkpool
Creates a VOB storage pool or modifies its scrubbing parameters

APPLICABILITY

SYNOPSIS

• Create source pool:

mkpool –sou⋅rce
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

• Create derived object pool or cleartext pool:

mkpool { –der⋅ived | –cle⋅artext }
[–siz⋅e max-kbytes reclaim-kbytes [–age hours] [–ale⋅rt command]]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

• Update pool parameters:

mkpool –upd⋅ate [–siz⋅e max-kbytes reclaim-kbytes] [–age hours] [–ale⋅rt command]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

DESCRIPTION

The mkpool command creates a source storage pool, derived object storage pool, or cleartext storage
pool, and initializes the pool’s scrubbing parameters. You can also use this command to update the

scrubbing parameters of an existing storage pool.

Storage pools are directories used as physical storage areas for different kinds of data:

• A source storage pool stores the data containers that contain versions of elements.

• A derived object storage pool stores shared derived objects—those that are referenced by more

than one view.

• A cleartext storage pool is a cache of text files. If an element’s versions are stored in a

compressed format, accessing a particular version involves some processing overhead; a

Product Command Type

ClearCase cleartool subcommand

Attache command
580 ClearCase Reference Manual

mkpool
type manager program is invoked to extract the cleartext of that version from the data

container. As a performance optimization, the extracted version is cached as a file in a

cleartext storage pool. The next access to that same version uses the cached copy, saving the

cost of extracting the version from the data container again.

Creating a new VOB with the mkvob command creates one default pool of each kind: sdft
(source pool), ddft (derived object pool), and cdft (cleartext pool).

mkpool creates a storage pool as a directory within the VOB storage area. Source pools are

always created within subdirectory s of the VOB storage directory; derived object pools are

created within subdirectory d; cleartext pools are created within subdirectory c.

Pool Allocation and Inheritance

Each file element is assigned to one source pool and one cleartext pool. The source pool provides

permanent storage, in one or more data container files, for all of the element’s versions. If the

element’s versions are stored in a compressed format, the cleartext pool is used to cache extracted

versions of that element, as described earlier. (If each version is stored uncompressed in a

separate data container, the cleartext pool is not used.)

Each directory element is also assigned to one source pool and one cleartext pool. But directory

versions themselves are not stored in these pools. (They are stored directly in the VOB database.)

Rather, a directory’s pool assignments are used solely for pool inheritance: each element created

within the directory inherits its source and cleartext pool assignments.

Each directory element is also assigned to one derived object pool. All shared derived objects

with pathnames in that directory are stored in that pool. A new directory element inherits the

derived object pool of its parent, along with the source and cleartext pools.

The pool inheritance scheme begins at the VOB root directory (top-level directory element)

created by mkvob, which is automatically assigned to the default pools.

You can change any of an element’s pool assignments with the chpool command.

Scrubbing

Scrubbing is the process of reclaiming space in a derived object pool or cleartext pool. (Source

pools are not subject to scrubbing.) This process is performed by the scrubber utility. mkpool
initializes or updates these scrubbing parameters:

The default settings for the scrubbing parameters are max-kbytes = 0, reclaim-kbytes = 0, hours = 96.

See the scrubber reference page for details on how these parameters are interpreted.

maximum size (max-kbytes) Maximum pool size

reclaim size (reclaim-kbytes) Size to which scrubber attempts to reduce the pool

age (hours) Threshold to prevent premature scrubbing of recently referenced

objects
ClearCase Reference Pages 581

mkpool
By default, the scheduler runs scrubber periodically. See the schedule reference page for

information on describing and changing scheduled jobs.

Getting Information on Storage Pools

The lspool command lists a VOB’s storage pools. If you include the –long option, the current

settings of the scrubbing parameters are listed, as well. (The describe –pool command displays

the same information as lspool –long.)

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: VOB owner,

member of the ClearCase group. See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, pool (for -update only).

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF STORAGE POOL / SPECIFYING AN UPDATE. Default: You must specify the

kind of pool, unless you use –update and name an existing pool. The following options are

mutually exclusive.

–sou⋅rce
Creates a source pool.

–der⋅ived
Creates a derived object pool.

–cle⋅artext
Creates a cleartext pool.

–upd⋅ate
Asserts that the parameters of an existing pool are to be updated. You must also use a

–size and/or –age option.

SPECIFYING NEW PARAMETERS. Default: For a new derived object or cleartext pool: the maximum
size and reclaim size parameters are set to 0, which enables a special scrubbing procedure. (See the

scrubber reference page.) The age parameter is set to 96 (hours). These parameters are

meaningless for a source pool.

When updating an existing pool, you must use at least one of –size and –age.

–siz⋅e max-kbytes reclaim-kbytes
Specifies that the pool is scrubbed if its size exceeds max-kbytes KB; scrubbing will

continues until the pool reaches the goal size of reclaim-kbytes KB.

–age hours
Prevents scrubbing of derived objects or cleartext files that have been referenced within

the specified number of hours. Specifying –age 0 restores the default age setting (96

hours).
582 ClearCase Reference Manual

mkpool
SCRUBBER FAILURE PROCESSING. Default: If scrubber fails to scrub a pool below its max-kbytes
level, it logs a warning message in the event log, but takes no other action.

–ale⋅rt command
Causes scrubber to run the specified command (typically, a batch file) whenever it fails

to scrub a pool below its max-kbytes level. If you invoke a command built in to the

Windows shell (for example, cd, del, dir, or copy) instead of a batch file, you must invoke

the shell with cmd /c. For example:

–alert 'cmd /c cd \tmp & del *.*'

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE POOL. Default: Creates or updates a pool in the VOB containing the current

working directory unless you specify another VOB with the @vob-selector suffix.

pool-selector ...

One or more names for the storage pools to be created. Specify pool-selector in the form

[pool:]pool-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a source pool that uses the default pool parameters.

pool-name Name of the storage pool

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
ClearCase Reference Pages 583

mkpool
cmd-context mkpool –source –c "pool for c source files" c_pool

Created pool "c_pool".

• Create a derived object pool with a maximum size of 10,000 KB (10 MB) and a reclaim size

of 8,000 KB (8 MB). Allow the age parameter to assume its default value.

cmd-context mkpool –derived –nc –size 10000 8000 do1

Created pool "do1".

• Update the derived object pool created in the previous example, so that any derived object

referenced within the last week (168 hours) is not scrubbed.

cmd-context mkpool –nc –update –age 168 do1

Updated pool "do1".

• Create a cleartext pool named my_ctpool that uses the default pool parameters. Then,

change all elements using pool cdft (the default cleartext pool) to use my_ctpool instead.

cmd-context mkpool -cleartext -c "alternate cleartext pool" my_ctpool

Created pool "my_ctpool".

cmd-context find . -all -element ’pool(cdft)’ -exec ’cleartool chpool ^
-force my_ctpool $CLEARCASE_PN’

Changed pool for "\users_hw" to "my_ctpool".
Changed pool for "\users_hw\bin" to "my_ctpool".
Changed pool for "\users_hw\bin\hello" to "my_ctpool".
Changed pool for "\users_hw\bugs" to "my_ctpool".
Changed pool for "\users_hw\bugs\bug.report.21" to "my_ctpool".
Changed pool for "\users_hw\doc" to "my_ctpool".
Changed pool for "\users_hw\doc\util.doc" to "my_ctpool".
Changed pool for "\users_hw\include" to "my_ctpool".
Changed pool for "\users_hw\libs" to "my_ctpool".
Changed pool for "\users_hw\libs\libntx.a" to "my_ctpool".
Changed pool for "\users_hw\libs\libpvt.a" to "my_ctpool"
.
.
.

SEE ALSO

chpool, find, lspool, mkvob, schedule, scrubber
584 ClearCase Reference Manual

mkproject
mkproject
Create a UCM project

APPLICABILITY

SYNOPSIS
mkproj⋅ect [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tit⋅le title] [–mod⋅comp component-selector[,...]]

–in folder-selector
[–crm⋅enable ClearQuest-user-database-name]

[project-selector ...]

DESCRIPTION

The mkproject command creates a UCM project. A project includes policy information and

configuration information.

Projects are created in UCM folders. A folder or folder hierarchy should be in place before you

create a project. If no folder exists, you can specify RootFolder as the folder selector with the –in
option. RootFolder is a predefined object representing the parent folder of a UCM folder

hierarchy. See mkfolder for more information.

Projects maintain a list of components that can be modified within the project. You can specify

these with the –modcomp option. Streams in the project can make changes, such as checking out

files, only in modifiable components; all other components are read-only.

See chproject for information on setting policy for a project.

Using Rational ClearQuest with UCM projects

Optionally, you can link a project to a Rational ClearQuest database. The schema of the

ClearQuest database must be UCM-enabled, and your system must be configured for the correct

schema repository. All ClearQuest-enabled projects in the same project VOB must link to the

same ClearQuest user database.

 See chproject for related information.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 585

mkproject
Locks: An error occurs if any of the following objects are locked: UCM project VOB.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING A TITLE FOR THE PROJECT. Default: The project’s name, as specified by the

project-selector argument.

–tit⋅le title
Specifies a project title applied to all projects created with this command. The title
argument can be a character string of any length. Use double quotes to enclose a

multiple-word title or a title with special characters.

SPECIFYING A FOLDER FOR THE PROJECT. Default: None.

–in folder-selector
Specifies a folder.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

SPECIFYING MODIFIABLE COMPONENTS. Default: None.

–mod⋅comp component-selector[,...]

Specifies the components that can be modified by this project.

SPECIFYING A LINK TO THE CLEARQUEST DATABASE. Default: None.

–crm⋅enable ClearQuest-user-database-name

Enables a link from the project to the specified Rational ClearQuest database. The

schema of the ClearQuest database must be UCM-enabled and your system must be

configured for the correct schema repository.

SPECIFYING THE PROJECT NAME. Default: A generated name.

project-selector
Specifies the project.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.
586 ClearCase Reference Manual

mkproject
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

 Create a project in the RootFolder of the project VOB webo_pvob.

cmd-context mkproject -c "creating webo project release 1" ^
-title webo_proj1 -in webo_projects@\webo_pvob webo_proj1@\webo_pvob

Created project "webo_proj1".

SEE ALSO

chproject, lsproject, mkfolder, rmproject
ClearCase Reference Pages 587

mkregion
mkregion
Registers a new ClearCase network region

APPLICABILITY

SYNOPSIS
mkregion –tag region-tag [–tco⋅mment tag-comment] [–rep⋅lace]

DESCRIPTION

The mkregion command registers a new network region by adding a new region-tag (region

name) and, optionally, a comment to the file ccase-home-dir\var\rgy\regions on the ClearCase

registry server host. Use the lsregion command to display the region-tags contained in regions.

After creating a new region, you can create VOB-tags and view-tags for the region with mktag,

mkvob, and mkview.

A ClearCase client host (which may also be an Attache helper host) can belong to only one

region. Use the hostinfo –long command to display the client host’s registry region. See

registry_ccase and Administering ClearCase for more information on ClearCase network regions.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE REGION TAG. Default: None. You must name the region.

–tag region-tag
Names the region. region-tag can be up to 32 characters.

–tco⋅mment tag-comment
Adds a comment to the region-tag’s entry in the registry file. Use lsregion –long to display the

tag-comment.

OVERWRITING AN EXISTING TAG. Default: An error occurs if mkregion names a region-tag that

already exists.

–rep⋅lace
Replaces the tag-comment of an existing region-tag. No error occurs if the region-tag does

not exist. You cannot use –replace to change an existing region-tag; to do so, you must

Product Command Type

ClearCase cleartool subcommand

Attache command
588 ClearCase Reference Manual

mkregion
first delete the existing tag with rmregion –tag, and then create a new one with

mkregion –tag.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Register a new region with tag us_east.

cmd-context mkregion –tag us_east –tcomment "all east coast ClearCase hosts"

• Change the comment stored with region-tag us_east.

cmd-context mkregion –tag us_east –tcomment "east coast development hosts" –replace

FILES

ccase-home-dir\var\rgy\regions

SEE ALSO

lsregion, lsview, mktag, mkview, mkvob, registry_ccase, rmregion
ClearCase Reference Pages 589

mkstgloc
mkstgloc
Creates a server storage location for views or VOBs.

APPLICABILITY

SYNOPSIS

• ClearCase only:

mkstgloc { –vie⋅w | –vob } [–f⋅orce] [–c⋅omment comment]
[–reg⋅ion network-region]

[–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname
| –ngp⋅ath [–hos⋅t hostname –hpa⋅th host-storage-pname]]

stgloc-name stgloc-pname

• ClearCase LT only:

mkstgloc { –vie⋅w | -vob } [–f⋅orce] [–c⋅omment comment]
stgloc-name stgloc-pname

DESCRIPTION

The mkstgloc command creates and registers a named server storage location for view- or

VOB-storage directories. By “creates and registers” we mean the command initializes a physical

directory and writes information describing that directory to the ClearCase or ClearCase LT

registry. For information on the registry, see the registry_ccase reference page.

Other Uses for mkstgloc

In addition to creating new server storage locations, you can use mkstgloc to

• Adopt an existing directory as a server storage location—an existing directory is adopted if

stgloc-pname specifies that directory.

• (ClearCase only) Register an existing server storage location in a new region—a server

storage location is registered in a new region if stgloc-pname specifies an existing server

storage location. Specify new arguments for options such as –region and –host as

appropriate for the region in which you are registering the server storage location.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
590 ClearCase Reference Manual

mkstgloc
Default Selection of Server Storage Locations During View and VOB Creation

Refer to the mkview and mkvob reference pages for information on the default selection of

server storage locations in view and VOB creation.

ClearCase Only—File System Connectivity Considerations

Before creating a server storage location for a ClearCase view or VOB, determine whether there

is file system connectivity between the server storage location’s host and its clients in the regions

that advertise the server storage location. File system connectivity determines how you can use

the server storage location, as follows:

ClearCase Only—Derived and Explicitly Specified Client Accessibility Information

To be accessible to its clients, a ClearCase server storage location needs to be registered with the

following information:

• The name of the host where the server storage location resides.

• A host-local pathname to the server storage location.

• For dynamic views or VOBs accessed through dynamic views, a global pathname to the

server storage location relative to the host’s network region.

• The network region in which the host resides.

In many cases, ClearCase heuristically derives appropriate accessibility information from the

stgloc-pname argument. In cases where there is no file-system connectivity between the server

storage location and its clients, ClearCase derives the host name and host-local path, but because

no meaningful global path can be derived, you must specify –ngpath to unset the global path

information.

Server Storage Location Use File System Connectivity

Dynamic views Required (a global path to the server storage

location must exist)

VOB to be accessed through dynamic views Required (a global path to the server storage

location must exist)

Snapshot views Not required

VOB to be accessed only through snapshot

views

Not required
ClearCase Reference Pages 591

mkstgloc
An unusual network configuration may defeat the heuristic by which accessibility information

is derived, thereby preventing access to the server storage location by some or all ClearCase

clients. In such cases, set the registry information explicitly, following these guidelines:

• To create a server storage location for dynamic views or for VOBs intended to be accessed

through dynamic views, use the option set, –host –hpath –gpath.

• To create a server storage location for snapshot views or for VOBs intended to be accessed

only through snapshot views, use:

• –host –hpath –gpath when there is file-system connectivity between the server storage

location host and its clients.

• –ngpath –host –hpath when there is no file-system connectivity between the server

storage location host and its clients.

ClearCase LT Only—File System Connectivity and Client Accessibility

For ClearCase LT, issues related to file system connectivity and client accessibility to server

storage locations are not as complex as they can be for ClearCase. ClearCase LT assumes there is

no filesystem connectivity such as that provided by NFS, so there are no command options or

arguments related to the presence or absence of file system connectivity.

All server storage locations reside at the ClearCase LT server host and its clients learn the name

of that host at client-install time. In rare cases, the host chosen to serve as the ClearCase LT server

host is a “multihome” host—a host that is known by different names through different network

interfaces. However, ClearCase LT requires that the ClearCase LT server host be known to all its

clients by the same host name. Therefore, you must set up the host’s network configuration to

ensure that a single host name maps to different network addresses that are appropriate for the

various client hosts of the server. See Administering ClearCase for more information.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE OBJECT TYPE FOR WHICH A SERVER STORAGE LOCATION IS TOBE CREATED. Default:
None.

–vie⋅w
Specifies that the server storage location is for view storage directories.

–vob
Specifies that the server storage location is for VOB storage directories.

CONFIRMATION STEP. Default: Prompts for confirmation that the server storage location is to be

created as specified only if you are adopting an existing directory (see Other Uses for mkstgloc).
592 ClearCase Reference Manual

mkstgloc
–f⋅orce
Suppresses the confirmation step.

COMMENTS. Default: None.

–c⋅omment comment
Specifies a comment for the server storage location’s entry in the registry. Use lsstgloc to

display the comment.

SPECIFYING A NETWORK REGION. Default: The host’s network region.

–reg⋅ion network-region
Causes the server storage location to be registered in the specified network region. An

error occurs if the region does not exist.

SPECIFYING NETWORK ACCESSIBILITY. Default: A host name, host-local path, and global path are

derived from the specified stgloc-pname.

–hos⋅t hostname
–hpa⋅th host-storage-pname
–gpa⋅th global-storage-pname
–ngp⋅ath

Use these options only after you have determined that you need to explicitly set a server

storage location’s registry information (see ClearCase Only—Derived and Explicitly
Specified Client Accessibility Information). The information is written to the registry exactly

as you specify it.

You must either specify the –host, –hpath, and –gpath options as a set; or use –ngpath
and optionally specify –host and –hpath.

–host hostname—The name of the host where the server storage location is to reside.

–hpath host-storage-pname—A standard full pathname to the server storage location that

is valid on the specified host.

–gpath global-storage-pname—A standard full pathname to the server storage location

that is valid in the target network region for all client hosts that are to access the server

storage location.

–ngp⋅ath—Specifies that in the target region there is no global path by which the server

storage location can be accessed.

SPECIFYING A NAME AND PATH FOR THE SERVER STORAGE LOCATION. Default: None.

stgloc-name
Specifies the name under which the server storage location is to be registered. The name

must be unique within the target region.
ClearCase Reference Pages 593

mkstgloc
stgloc-pname
Specifies the path to the server storage location. stgloc-pname must not be within a

Windows special share, such as the share that is designated by driveletter$ and that

allows administrators to access the drive over the network.

ClearCase only—stgloc-pname must specify a location on a host where there is an

installation of ClearCase that is not a client-only installation. For storage intended for

dynamic views or VOBs they access, stgloc-pname must be a UNC name. For storage

intended for snapshot views or VOBs to be accessed only through snapshot views,

stgloc-pname must be a UNC name if and only if there is a global path to the server

storage location (that is, you did not specify –ngpath).

ClearCase LT only—stgloc-pname must be located on the ClearCase LT server host and

must be must be a UNC name.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a server storage location for a VOB that only snapshot views will access.

cmd-context mkstgloc –vob –ngpath store1 C:\store1
Created and advertised Server Storage Location.
Host-local path: peroxide: C:\store1
Global path: <no-gpath>

SEE ALSO

lsstgloc, mkview, mkvob, registry_ccase, rmstgloc
594 ClearCase Reference Manual

mkstream
mkstream
Creates a stream for a UCM project

APPLICABILITY

SYNOPSIS

mkstream [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–tit⋅le title] [–int⋅egration]

[–bas⋅eline baseline-selector[,...]]

–in project-selector [stream-selector...]

DESCRIPTION

The mkstream command creates a stream for use with a UCM project. A stream consists of a title,

a set of baselines that configure the stream, and a record of the set of activities associated with

the stream.

There are two kinds of streams with UCM projects:

• As a shared work area for integrating work from different sources. This is called the

project’s integration stream. Each project has exactly one integration stream.

• As an isolated work area for use in active code development. This is called a development
stream. A project can have any number of development streams.

To create a stream, you must specify its project and whether it is an integration stream or

development stream. Note that a project’s integration stream must be present before a

development stream can be created.

Optionally, you can assign the stream a title and a set of foundation baselines. Foundation baselines

specify a stream’s configuration by selecting the file and directory versions that are accessible in

the stream.

Streams are accessed through views (see mkview –stream). Typically, a project’s integration

stream has a view for each developer, whereas each development stream has a single view.

A stream can have more than one view attached to it. In general, because project members work

with a common integration stream, the stream has several views attached to it. A development

stream usually has only one view attached to it.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 595

mkstream
PERMISSIONS AND LOCKS

Permissions Checking: None.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the project.

Mastership: There are no mastership requirements.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE STREAM TITLE. Default: A generated title.

–tit⋅le title
Assigns the specified title to all streams created.

STREAM CONFIGURATION. Default: The stream’s configuration is empty (that is, it has no

foundation baselines).

–baseline baseline-selector[,...]

Specifies one or more baselines to use as the stream's initial configuration—you can

subsequently use rebase to change the stream’s configuration.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

The following restrictions apply to the specified baselines:

• For a development stream, all foundation baseline must either be baselines created in the

project’s integration stream, or serve as the integration stream’s foundation baselines.

• For an integration stream, all foundation baselines must be either baselines created in

other projects’ integration streams, or be import or initial baselines. You cannot use

baselines created in development streams.

SPECIFYING THE STREAM’S ROLE IN THE PROJECT. Default: Development stream.

–int⋅egration
Creates an integration stream, which is used for shared elements on a project and as a

source for recording baselines. Each project can have one integration stream.

SPECIFYING THE STREAM’S PROJECT. Default: None.
596 ClearCase Reference Manual

mkstream
–in project-selector
Specifies the stream’s project.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

SPECIFYING THE STREAM NAME. Default: A generated name.

stream-selector ...
Specifies a stream name.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

 Create a development stream for the webo project.

cmd-context mkstream -title chris_webo_dev ^
-in webo_proj1@\webo_pvob chris_webo_dev@\webo_pvob

Created stream "chris_webo_dev".

• Create an integration stream.

cmd-context mkstream -title integration -integration ^
-in webo_proj1 integration@\webo_pvob

Created stream "integration".

• Join a project. This example shows the sequence of commands to follow to join a UCM

project.

a. Find the project-selector for the project you want to join. For example:

cmd-context lsproject –invob \webo_pvob

01-Mar-00.16:31:33 webo_proj1 ktessier "webo_proj1"
05-Jun-00.12:31:33 webo_proj2 ktessier "webo_proj2"
ClearCase Reference Pages 597

mkstream
b. Create your development stream. For example:

cmd-context mkstream –title chris_webo_dev ^
-in webo_proj1@\webo_pvob –baseline BL3@\webo_pvob ^
chris_webo_dev@\webo_pvob

Created stream "chris_webo_dev".

c. Create a view attached to your development stream:

cmd-context mkview -stream chris_webo_dev@\webo_pvob ^
-tag chris_webo_dev \\venus\views\chris_webo_dev.vws

Created view.
Host-local path: venus:C:\USERS\views\chris_webo_dev.vws
Global path: \\venus\views\chris_webo_dev.vws
Attached view to stream "chris_webo_dev".

d. Create a view attached to the project’s integration stream:

cmd-context mkview -stream integration@\webo_pvob ^
-tag webo_integ \\venus\views\webo_integ.vws

SEE ALSO

chstream, lsstream, rebase, rmstream
598 ClearCase Reference Manual

mktag
mktag
Creates a tag for a view or VOB

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Create a tag for a dynamic view:

mktag –vie⋅w –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–nst⋅art]
[–hos⋅t hostname –gpa⋅th global-storage-pname] dynamic-view-storage-pname

• ClearCase and Attache only—Create a tag for a snapshot view:

mktag –vie⋅w –tag snapshot-view-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–nst⋅art]
[–hos⋅t hostname –gpa⋅th global-storage-pname
| –ngpath [–host hostname]] snapshot-view-storage-pname

• ClearCase and Attache only—Create a VOB-tag:

mktag –vob –tag vob-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–opt⋅ions mount-options]

[–pub⋅lic] [–pas⋅sword tag-registry-password]

[–hos⋅t hostname –gpa⋅th global-storage-pname
| –ngp⋅ath [–hos⋅t hostname]] vob-storage-pname

• ClearCase LT only—Create a view-tag:

mktag –vie⋅w –tag view-tag [–tco⋅mment tag-comment] [–rep⋅lace] [–nst⋅art]
snapshot-view-storage-pname

• ClearCase LT only—Create a VOB-tag:

mktag –vob –tag vob-tag [–tco⋅mment tag-comment] [–rep⋅lace] vob-storage-pname

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 599

mktag
DESCRIPTION

For an existing view or VOB, the mktag command creates or replaces an entry in the registry. A

view or VOB gets one tag when it is created with mkview or mkvob.

ClearCase and Attache Only—Using mktag

In ClearCase and Attache, you can use mktag to create additional tags, enabling access from

multiple network regions. Each network region needs its own tag for a view or VOB. A single

region cannot have multiple tags for the same VOB. (Multiple tags for a view are valid, but not

recommended.) However, a single tag can be assigned to multiple regions with multiple mktag
commands. See the registry_ccase reference page for a discussion of network regions.

By default, creating a view-tag activates the view on your host, by implicitly performing a

startview command. This does not occur if your host is not in the tag’s assigned network region,

or if you use the –nstart option. For a dynamic view, creating the view-tag also activates the view.

However, creating a VOB-tag does not activate the VOB; use mount for this purpose.

ClearCase LT Only—Using mktag

In ClearCase LT, mktag is used to replace a tag. mktag –view activates the view unless you use

the –nstart option.

PERMISSIONS AND LOCKS

Permissions checking: In ClearCase and Attache, you must be the VOB owner to create a private

VOB-tag. In ClearCase LT, no special permissions are required.

Locks: None apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TAG TO REPLACE. Default: None.

–vie⋅w
Specifies a view-tag.

–vob
Specifies a VOB-tag.

SPECIFYING THE TAG. Default: None.

–tag dynamic-view-tag | snapshot-view-tag
A name for the view, in the form of simple filename.

–tag vob-tag
ClearCase and Attache only—Either a standard full pathname, which specifies the

location at which the VOB will be mounted; or a name for the VOB, in the form of an

absolute single-component pathname (for example, \big_vob). If the region is a
600 ClearCase Reference Manual

mktag
ClearCase LT region (these regions are named CCLT), then the VOB tag must be in the

form of an absolute single-component pathname.

ClearCase LT—a name for the VOB, in the form of an absolute single-component

pathname; for example, \big_vob.

–tco⋅mment tag-comment
Adds a comment to the tag’s entry in the registry. Use the –long option with lsvob or

lsview to display the tag comment.

OVERWRITING AN EXISTING TAG. Default: None.

–rep⋅lace
Replaces an existing tag registry entry with a new entry. (No error occurs if the tag does

not exist.) You can use this option to change the tag comment and access paths. You

cannot use –replace to change an existing tag’s name; to do this, delete the tag with

rmtag and then use mktag.

ClearCase and Attache only—This option also enables you to convert private VOBs to

public and vice versa, and to change startview behavior. (To change a private VOB to

public, you must provide the tag-registry password. To change a public VOB to private,

you must be the VOB owner.)

STARTING THE VIEW. Default for ClearCase and Attache: Starts the view_server process on the host

where the view storage location resides, if it isn’t already running. For a dynamic view, creating

a view tag also makes the view active on your host, making the view tag appear as a directory

entry in the viewroot directory (by default, M:\). Default for ClearCase LT: Starts the view_server
process on the ClearCase LT server host.

–nst⋅art
Suppresses starting of the view_server process.

SPECIFYING A NETWORK REGION. Default: Creates a tag in the local host’s network region. (Use

the hostinfo –long command to list a host’s network region.) See the registry_ccase reference

page for a discussion of network regions.

–reg⋅ion network-region
Creates the tag in the specified network region. An error occurs if the region does not

already exist. An error occurs if the VOB already has a tag in the specified network

region.

SPECIFYING MOUNT OPTIONS. Default: No mount options are included in the VOB registry entry

for a new VOB-tag.

–opt⋅ions mount-options
(VOB-tags only. You must be a member of the ClearCase group to use this option.)
ClearCase Reference Pages 601

mktag
Specifies mount options to be invoked when the VOB is activated through this VOB-tag.

See the mount reference page for syntax details.

PUBLIC VS. PRIVATE VOB. Default: Creates a private VOB-tag (does not apply to view-tags). An

error occurs if you are not the VOB owner.

–pub⋅lic
Creates a public VOB-tag. See the mkvob reference page for a discussion of public and

private VOBs.

–pas⋅sword tag-registry-password
Specifies the VOB-tag password, which is required to create a public tag or to create a

private tag when you include suid as an argument to –options.

In these cases, if you do not include a password, you are prompted for it. The value you

specify is checked against the tag registry password; an error occurs if there is no match.

For more information, see the registry_ccase reference page.

NOTE: The VOB-tags for a given VOB must all be private, or all be public.

SPECIFYING CLIENT ACCESSIBILITY INFORMATION. Default: Derived from

dynamic-view-storage-pname or snapshot-view-storage-pname for a view tag, or from

vob-storage-pname for a VOB tag.

–hos⋅t hostname
–gpa⋅th global-pname
–ngp⋅ath

See the mkstgloc reference page for general information on these options; note, however,

that the view or VOB for which you are making a tag need not necessarily reside in a

server storage location created with mkstgloc.

The information you provide is written to the registry exactly as you specify it.

SPECIFYING THE PATH TO THE VOB OR VIEW STORAGE. Default: None.

dynamic-view-storage-pname

snapshot-view-storage-pname
vob-storage-pname

Specifies the path to an existing storage directory for a view or a VOB (the directory may

be in a server storage location; see mkstgloc). The pathname must not be within a

Windows special share, such as the share that is designated by driveletter$ and that

allows administrators to access the drive over the network.

ClearCase and Attache only—The pathname must specify a location on a host where

there is an installation of ClearCase that is not a client-only installation. For storage

intended for dynamic views or VOBs they access, the pathname must be a UNC name.

For storage intended for snapshot views or VOBs to be accessed only through snapshot
602 ClearCase Reference Manual

mktag
views, the pathname must be a UNC name if and only if there is a global path to the

server storage location (that is, you have not specified –ngpath).

ClearCase LT only—The pathname must be located on the ClearCase LT server host and

must be must be a UNC name.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

For the network region europe, assign the new view-tag view5 to an existing view storage area.

cmd-context mktag -view -tag view5 -region europe \\pluto\vw_store\view5.vws

• For the network region europe, register an existing VOB with a public VOB-tag.

cmd-context mktag -vob -tag \us_east1 -region europe -public -password tagPword ^
\\earth\vb_store\vob1.vbs

• Convert a private VOB to a public VOB, by replacing its private VOB-tag with a public one.

cmd-context mktag -vob -tag \publicvob -replace -public ^
-pass tagPword \\saturn\vobs\private.vbs

SEE ALSO

lsview, lsvob, mkstgloc, mkview, mkvob, registry_ccase, rmtag, startview, view_server,
vob_server
ClearCase Reference Pages 603

mktrigger
mktrigger
Attaches a trigger to an element

APPLICABILITY

SYNOPSIS
mktrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–r⋅ecurse] [–nin⋅herit | –nat⋅tach] [–f⋅orce]

trigger-type-selector pname ...

DESCRIPTION

Prerequisite: A trigger type object, created with mktrtype –element, must already exist in the

VOBs containing the specified elements.

The mktrigger command attaches a trigger to one or more elements. An attached trigger fires
(executes the trigger action) when the element or any of its versions is involved in an operation

specified in the trigger type definition. For example, if a trigger type is defined to fire on a

checkin command, the attached trigger fires when the specified element is checked in. If a VOB

operation causes multiple attached triggers to fire, the order of firing is undefined.

Trigger Inheritance

By means of a trigger inheritance scheme, newly created elements (but not existing elements)

inherit the triggers that are currently associated with their parent directory element. But a simple

inherit-all-triggers strategy does not suit the needs of many sites. For example:

• You may want some of a directory’s triggers not to propagate to its subtree.

• You may want some triggers to fire only for file elements, not for directory elements.

To enable such flexibility, each directory element has two independent lists of trigger types:

• Its attached list specifies triggers that fire on operations involving the directory element.

• Its inheritance list specifies triggers that elements created within the directory inherit.

By default, attaching a trigger to a directory element updates both lists:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
604 ClearCase Reference Manual

mktrigger
cmd-context mktrigger trig_co proj

Added trigger "trig_co" to inheritance list of "proj".
Added trigger "trig_co" to attached list of "proj".

Each file element has only an attached list:

cmd-context mktrigger trig_co util.c

Added trigger "trig_co" to attached list of "util.c".

You can use the –ninherit and –nattach options to control exactly which triggers on a directory

element are inherited. (And you can make adjustments using the –ninherit and –nattach options

of the rmtrigger command.)

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

trigger type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ATTACHING TRIGGERS TO AN ENTIRE SUBDIRECTORY TREE. Default: If a pname argument names a

directory element, the trigger is attached only to the element itself, not to any of the existing

elements within it.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself).

CONTROLLING TRIGGER INHERITANCE. Default: For a directory element, the specified trigger type

is placed both on the element’s attached list and its inheritance list. (For a file element, the trigger

type is placed on its attached list, which is its only trigger-related list.) The following options

apply to directory elements only.

–nin⋅herit
The trigger is placed on the element’s attached list, but not on its inheritance list. This
ClearCase Reference Pages 605

mktrigger
option is useful when you want to monitor operations on a directory, but not operations

on the files within the directory.

–nat⋅tach
The trigger is placed on the element’s inheritance list, but not on its attached list. This

option is useful when you want to monitor operations on the files within a directory, but

not operations on the directory itself.

OBSERVING ELEMENT TYPE RESTRICTIONS. Default: If trigger-type-name is defined with a restriction

to one or more element types, mktrigger refuses to process an element of another type.

–f⋅orce
Attaches a trigger to an element whose type does not match the definition of the trigger

type. Such a trigger does not fire unless you change the element’s type (chtype) or you

redefine the trigger type (mktrtype –replace).

SPECIFYING THE TRIGGER TYPE. Default: None.

trigger-type-selector
The name of an existing element trigger type. Specify trigger-type-selector in the form

[trtype:]type-name[@vob-selector]

SPECIFYING THE ELEMENTS. Default: None.

pname ...

One or more pathnames, specifying elements to which the specified trigger type is to be

attached.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Attach a trigger to element hello.c.

type-name Name of the trigger type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
606 ClearCase Reference Manual

mktrigger
cmd-context mktrigger trig1 hello.c
Added trigger "trig1" to attached list of "hello.c".

• Attach a trigger to element util.c, even if its element type does not appear in the trigger

type’s restriction list.

cmd-context mktrigger -force trig1 util.c
Added trigger "trig1" to attached list of "util.c".

• Attach a trigger to directory element src.

cmd-context mktrigger trig1 src
Added trigger "trig1" to attached list of "src".
Added trigger "trig1" to inheritance list of "src".

• Add a trigger to the release directory’s inheritance list, but not to its attached list.

cmd-context mktrigger -nattach trig1 release
Added trigger "trig1" to inheritance list of "release".

SEE ALSO

describe, mktrtype, rmtrigger
ClearCase Reference Pages 607

mktrtype
mktrtype
Creates a trigger type object

APPLICABILITY

SYNOPSIS

• Create element trigger type:

mktrtype –ele⋅ment [–a⋅ll] [–rep⋅lace]

{ –pre⋅op | –pos⋅top } opkind[,...] [–nus⋅ers login-name[,...]]

{ –exe⋅c command
|–execu⋅nix command
| –execw⋅in command
| –mkl⋅abel label-type-selector
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

[restriction-list]
[–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• Create type trigger type:

mktrtype –typ⋅e [–rep⋅lace] { –pre⋅op | –pos⋅top } opkind[,...]

[–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command
| –execw⋅in command
| –mkl⋅abel label-type-selector
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

inclusion-list [–pri⋅nt]

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
608 ClearCase Reference Manual

mktrtype
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• A restriction-list contains one or more of:

NOTE: –xxtype aaa,bbb is equivalent to –xxtype aaa –xxtype bbb.

• An inclusion-list contains one or more of:

NOTE: –xxtype aaa,bbb is equivalent to –xxtype aaa –xxtype bbb.

DESCRIPTION

The mktrtype command creates one or more trigger types for use within a VOB. A trigger type

defines a sequence of one or more trigger actions to be performed when a specified ClearCase,

ClearCase LT, or Attache operation occurs. The set of operations that initiates each trigger

action—causes the trigger to fire—can be very limited (for example, checkout only) or quite

general (for example, any operation that modifies an element). You can use a restriction list to
further limit the circumstances under which a trigger action is performed.

Only a VOB’s owner or a member of the ClearCase group can create a trigger type.

There are three kinds of trigger types:

• An element trigger type works like a label type or attribute type: an instance of the type (that

is, a trigger) must be explicitly attached to one or more individual elements with the

mktrigger command. The trigger actions are performed when the specified operation is

invoked on any of those elements. An element must exist before the trigger can be attached.

(This means that putting a trigger on a mkelem operation has no effect.)

• A variant of the above, called an all-element trigger type, is associated with the entire VOB.

(Hence, no mktrigger command is required.) In effect, an instance of the type is implicitly

attached to each element in the VOB, even those created after this command is executed.

This trigger type is useful for disallowing creation of elements that have certain

characteristics.

–att⋅ype attr-type-selector[,...] –hlt⋅ype hlink-type-selector[,...]

–brt⋅ype branch-type-selector[,...] –lbt⋅ype label-type-selector[,...]

–elt⋅ype elem-type-selector[,...] –trt⋅ype trigger-type-selector[,...]

–att⋅ype attr-type-selector[,...] or –att⋅ype –all
–brt⋅ype branch-type-selector[,...] or –brt⋅ype –all
–elt⋅ype elem-type-selector[,...] or –elt⋅ype –all
–hlt⋅ype hlink-type-selector[,...] or –hlt⋅ype –all
–lbt⋅ype label-type-selector[,...] or –lbt⋅ype –all
–trt⋅ype trigger-type-selector[,...] or –trt⋅ype –all
ClearCase Reference Pages 609

mktrtype
• A type trigger type is associated with one or more type objects. The trigger actions are

performed when any of those type objects is created or modified.

Unlike other types, trigger types cannot be global.

Trigger Firing

Causing a set of trigger actions to be performed is termed firing a trigger. Each trigger action can

be either of the following:

• Any command (or sequence of commands) that can be invoked from a command prompt. A

command can use special environment variables (EVs), described in the Trigger Environment
Variables section, to retrieve information about the operation.

• Any of several built-in actions defined by mktrtype. The built-in actions attach metadata

annotations to the object involved in the operation.

Trigger actions execute with the user-ID of the process that caused the trigger to fire.

Interactive Trigger Action Scripts. A batch file, Perl script, or other program executed as (part

of) a trigger action can interact with the user. The clearprompt utility is designed for use in such

programs; it can handle several kinds of CLI-style and GUI-style user interactions.

Multiple Trigger Firings. A single operation can cause any number of triggers to fire. The firing

order of such simultaneous triggers is indeterminate. If multiple trigger operations must be

executed in a particular order, use a single trigger defining all of the operations their order of

execution.

It is also possible for triggers to create a chain reaction. For example, a checkin operation fires a

trigger that attaches an attribute to the checked-in version; the attach attribute operation, in turn,

fires a trigger that writes a comment to a file. You can use the CLEARCASE_PPID environment

variable to help synchronize multiple firings (for more information, see Trigger Environment
Variables on page 620).

If a trigger is defined to fire on a hyperlink operation, and the hyperlink connects two elements,

the trigger fires twice—once for each end of the hyperlink.

Suppressing Trigger Firing. The firing of a trigger can be suppressed when the associated

operation is performed by certain users. Firing of an all-element trigger is suppressed if the

trigger type has been made obsolete. (See the lock reference page).

Trigger Interoperation

The –execunix and –execwin options allow a single trigger type to have different paths for the

same script, or completely different scripts, on UNIX and Windows hosts. When the trigger is

fired on UNIX, the command specified with –execunix runs; when the trigger is fired on

Windows, the command specified with –execwin runs.
610 ClearCase Reference Manual

mktrtype
Triggers with only –execunix commands always fail on Windows. Likewise, triggers that only

have –execwin commands fail when they fire on UNIX.

The –exec option, whose command will run on both platforms, can be used in combination with

the platform-specific options. For example, you can cascade options:

–exec arg1 –execunix arg2 –execwin arg3 –mklabel arg4 ...

PREOPERATION AND POSTOPERATION TRIGGERS

A preoperation trigger (–preop option) fires before the corresponding operation begins. The one

or more actions you’ve specified take place in their order on the command line.

This type of trigger is useful for enforcing policies:

• If any trigger action returns a nonzero exit status, the operation is canceled.

• If all trigger actions return a zero exit status, the operation proceeds.

For example, a preoperation trigger can prohibit checkin of an element that fails to pass a

code-quality test.

A postoperation trigger (–postop option) fires after completion of the corresponding operation.

The one or more actions you’ve specified take place in their order on the command line. This kind

of trigger is useful for recording—in the VOB or outside it—the occurrence of the operation. If a

postoperation trigger action returns a nonzero exit status, ClearCase, ClearCase LT and Attache

display a failed exit status warning message, but continues to perform other trigger actions,

if any.

For example, a post-operation trigger on checkin attaches an attribute to the checked-in version

and sends a mail message to interested users and/or managers.

RESTRICTION LISTS AND INCLUSION LISTS

You can define an element trigger type or all-element trigger type with a restriction list, which

limits the scope of the operation specified with –preop or –postop. The trigger fires only if the

operation involves particular type objects.

A type trigger type is not associated with element objects, but with one or more type objects.

When creating a type trigger type, you must specify an inclusion list, naming the type objects to

be associated with the new trigger type. (Hence, it is unnecessary to use mktrigger to create the

association.) The special keyword –all allows you to associate a type trigger type with every type

object of a particular kind (for example, all branch type objects), even those objects created after

you enter this command.

TRIGGER ENVIRONMENT VARIABLES

When a trigger fires, the trigger action executes in a special environment whose EVs make

information available to –exec, –execunix, and –execwin routines: what operation caused the
ClearCase Reference Pages 611

mktrtype
trigger to fire, what object was involved in the operation, and so on. The complete set of EVs is

listed in TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES on page 618.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: type owner

(applies to –replace only), VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, trigger type (applies to

–replace only).

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TRIGGER TYPE. Default: None.

–ele⋅ment
Creates an element trigger type, which can be attached to individual elements with

mktrigger.

–ele⋅ment –a⋅ll
Creates an all-element trigger type, which is effectively attached to the entire VOB.

–typ⋅e
Creates a type trigger type, and associates it with specific type objects and/or kinds of

type objects.

HANDLING OF NAME COLLISIONS. Default: An error occurs if a trigger type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults.

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraint: If an instance of an element trigger type is currently attached to any element,

the replacement definition must also be of an element trigger type (but not an all-element

trigger type). You can remove an existing trigger type and all of its attached instances

using the rmtype command.

SPECIFYING THE OPERATIONS TO BE MONITORED. Default: None.

–pre⋅op opkind[,...]

Specifies one or more operations that cause the trigger to fire before the operation starts.
612 ClearCase Reference Manual

mktrtype
The exit status of the trigger actions is significant: for each trigger action, a zero exit

status allows the operation to proceed; a nonzero exit status cancels the operation.

–pos⋅top opkind[,...]

Specifies one or more operations that cause the trigger to fire after the operation

completes. The exit status of the trigger action is not significant.

For both –preop and –postop, you must specify a comma-separated list of operations, any of

which fire the trigger. Many of the operation keywords have the same names as cleartool
subcommands (for example, checkout and unlock). Uppercase keywords (for example,

MODIFY_ELEM) identify groups of operations. See the TRIGGER OPERATIONS AND
TRIGGER ENVIRONMENT VARIABLES section for a list of operation keywords.

SUPPRESSING TRIGGER FIRING FOR CERTAIN USERS. Default: Triggers fire regardless of who

performs the operation.

–nus⋅ers login-name[,...]

Suppresses trigger firing when any user on the comma-separated login-name list

performs the operation.

SPECIFYING THE TRIGGER ACTION. Default: None. Specify one or more of the following options to

indicate the action to be performed when the trigger fires; you can use more than one option of

the same kind. With multiple options, the trigger actions are performed in the specified

sequence.

–exe⋅c command
Executes the specified command in a shell when the trigger fires. If command includes

one or more arguments, quote the entire string. Use single quotes ('command ') if the

command includes ClearCase, ClearCase LT, or Attache environment variables, to delay

interpretation until trigger firing time. If you do not run mktrtype from the cleartool
prompt, enclose command—and any single quotes—in double quotes (" ' command ' "). See

also the section COMMAND-LINE PROCESSING on page 215 in the cleartool reference

page.

If you invoke a command built in to the Windows shell (for example, cd, del, dir, or

copy), you must invoke the shell with cmd /c. For example:

–exec 'cmd /c copy %CLEARCASE_PN% %HOME%'

–execu⋅nix command
–execw⋅in command

These options have the same behavior as –exec when fired on the appropriate platform

(UNIX or Windows, respectively). When fired on the other platform, they do nothing;

however, triggers with only –execunix commands always fail on Windows, and triggers

that only have –execwin commands always fail on UNIX.
ClearCase Reference Pages 613

mktrtype
–mkl⋅abel label-type-selector
(With –postop only) Attaches the specified version label to the version involved in the

operation that caused trigger firing. If the label type is a global type, a local copy of the

type must exist in the VOB in which you are creating the trigger type. Specify

label-type-selector in the form [lbtype:]type-name[@vob-selector]

–mka⋅ttr attribute-type-selector=value
(With –postop only) Attaches the specified attribute name/value pair to the object

involved in the operation that caused trigger firing. If the attribute type is a global type,

a local copy of the type must exist in the VOB in which you are creating the trigger type.

Specify attribute-type-selector in the form [attype:]type-name[@vob-selector]

–mkh⋅link hlink-type-selector,to=pname
(With –postop only) Creates a hyperlink from the object involved in the operation that

caused the trigger to fire to the object specified by pname. If the hyperlink type is a global

type, a local copy of the type must exist in the VOB in which you are creating the trigger

type. Specify hlink-type-selector in the form [hltype:]type-name[@vob-selector]

type-name Name of the label type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the attribute type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the hyperlink type

See the Object Names section in the cleartool reference page

for rules about composing names.
614 ClearCase Reference Manual

mktrtype
–mkh⋅link hlink-type-selector,from=pname
(With –postop only) Creates a hyperlink from the object specified by pname to the object

involved in the operation that caused the trigger to fire. If the hyperlink type is a global

type, a local copy of the type must exist in the VOB in which you are creating the trigger

type. Specify hlink-type-selector in the form [hltype:]type-name[@vob-selector]

NOTES: With the built-in actions –mklabel, –mkattr, and –mkhlink, you can specify the

information either literally or using environment variables:

The built-in actions never cause additional triggers to fire. However, programs invoked

with –exec may cause such chain reactions. For example, a mklabel command in a

program can cause another trigger to fire, but the corresponding –mklabel trigger action

cannot.

ELEMENT TRIGGER TYPES: SPECIFYING A RESTRICTION LIST. Default: No restrictions; triggers fire

when any of the specified operations occurs, no matter what type objects are involved.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the hyperlink type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

–mklabel RLS_2.3 (literal)
–mklabel RLS_%RLSNUM% (depends on value of EV at trigger firing time)
–mklabel %THIS_RLS% (depends on value of EV at trigger firing time)
–mkattr ECO=437 (literal)
–mkattr ECO=%ECONUM% (depends on value of EV at trigger firing time)
ClearCase Reference Pages 615

mktrtype
–att⋅ype attr-type-selector[,...]

–brt⋅ype branch-type-selector[,...]

–elt⋅ype elem-type-selector[,...]

–hlt⋅ype hlink-type-selector[,...]

–lbt⋅ype label-type-selector[,...]

–trt⋅ype trigger-type-selector[,...]

Use one or more of the above options (or multiple options of the same kind) to specify a

set of type objects for the restriction list. If the type object is an ordinary type, it must

already exist. If a type object is a global type and a local copy does not exist in the VOB,

a local copy is created automatically.

Repeated options, such as –elt text_file –elt c_source, are equivalent to a single option:

–elt text_file,c_source. Wildcarding (–eltype ‘*file’) is not supported.

At trigger firing time, the items on the restriction list form a logical condition. If the

condition is met, the trigger fires.

Specify the type-selector arguments in the form [type-kind:]type-name[@vob-selector]

NOTE: Suppressing the firing of a preoperation trigger means that the operation is

allowed to proceed.

Here is a simple condition:

If the list includes multiple type objects, they are combined into a compound condition:

type objects of the same kind are grouped with logical OR; objects (or groups) of

different kinds are then logically ANDed.

type-kind One of

attype attribute type

brtype branch type

eltype element type

hltype hyperlink type

lbtype label type

trtype trigger type

type-name Name of the type object

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

–brtype rel2_bugfix Fire the trigger only if the operation

involves a branch of type rel2_bugfix.
616 ClearCase Reference Manual

mktrtype
In forming the condition, a type object is ignored if it could not possibly be affected by

the operation. (The relevant information is included in the TRIGGER OPERATIONS
AND TRIGGER ENVIRONMENT VARIABLES section.) For example, the restriction list

–lbtype REL2,REL2.01 applies only to the operations chtype, mklabel, and rmlabel.

TYPE TRIGGER TYPES: SPECIFYING AN INCLUSION LIST. Default: None. You must specify at least one

item for the inclusion list of a type trigger type.

You must specify at least one existing type object, or at least one kind of type object,

using the special keyword –all. The trigger fires only if the inclusion list contains the

type object that is being modified or used by the operation.

TRACING TRIGGER EXECUTION. Default: At trigger firing time, if environment variable

CLEARCASE_TRACE_TRIGGERS is set to a nonnull value in the process that causes the trigger to fire,

a message that includes the trigger type name is sent to stdout when the trigger fires; a similar

message is generated when the trigger action completes.

–pri⋅nt
Causes the messages to be generated at trigger firing time, whether or not

CLEARCASE_TRACE_TRIGGERS is set.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE TRIGGER TYPE. Default: The trigger type is created in the VOB that contains the

current working directory unless you use the @vob-selector suffix to specify another VOB.

–brtype rel2_bugfix –eltype
text_file,c_source

Fire the trigger only if the operation

involves a branch of type rel2_bugfix AND

it involves either an element of type text_file
OR of an element of type c_source.

–att⋅ype attr-type-selector[,...] or –att⋅ype -all
–brt⋅ype branch-type-selector[,...] or –brt⋅ype -all
–elt⋅ype elem-type-selector[,...] or –elt⋅ype -all
–hlt⋅ype hlink-type-selector[,...] or –hlt⋅ype -all
–lbt⋅ype label-type-selector[,...] or –lbt⋅ype -all
–trt⋅ype trigger-type-selector[,...] or –trt⋅ype -all
ClearCase Reference Pages 617

mktrtype
type-selector ...

One or more names for the trigger types to be created. Specify trigger-type-selector in the

form [trtype:]type-name[@vob-selector]

TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES

Trigger Operations for Type Trigger Types

The following list shows the operation keywords (opkind) for use in definitions of type trigger

types (mktrtype –type).

NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls. See the events_ccase reference page for a list of which commands cause which operations.

MODIFY_TYPE

mktype (see following NOTE)

rmtype
rntype
lock
unlock
chevent
chmaster

NOTE: If you specify mktype, the corresponding inclusion list cannot specify individual type

objects; all relevant options must use the –all keyword. For example:

... –postop mktype –eltype –all –brtype -all ...

Trigger Operations for Element and All-Element Trigger Types

Table 8 lists the operation keywords (opkind) for use in definitions of element and all-element

trigger types (–element and –element –all). See also the events_ccase reference page.

type-name Name of the trigger type

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
618 ClearCase Reference Manual

mktrtype
NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls. See the events_ccase reference page for a list of which commands cause which operations.

Table 8 Trigger Definition Operation Keywords

Operation Keyword Restrictions Checked when Trigger Fires

MODIFY_ELEM

checkout Element type, branch type

reserve Element type, branch type

uncheckout Element type, branch type

unreserve Element type, branch type

MODIFY_DATA

checkin Element type, branch type

chevent See NOTE at end of table

chtype All type objects

lnname Element type, branch type

lock See NOTE at end of table

mkbranch Element type, branch type

mkelem Element type

mkslink N/A

protect See NOTE at end of table

rmbranch Element type, branch type

rmelem Element type

rmname N/A

rmver Element type, branch type

unlock See NOTE at end of table

MODIFY_MD
ClearCase Reference Pages 619

mktrtype
NOTE: The operation fires a trigger only if the affected object is one of the following:

• A branch object or version object (in this case, only element type and branch type

restrictions apply)

• An element object (in this case, only element type restrictions apply)

• A type object (in this case, only restrictions on that kind of type object apply)

Trigger Environment Variables

The following list shows the EVs that are set in the environment in which a trigger action batch

file runs. The words in parentheses at the beginning of the description indicate which operations

cause the EV to be set to a significant string; for all other operations, the EV is set to the null

string. (See the events_ccase reference page for a list of which commands cause which

operations.)

CLEARCASE_ATTACH

(mktrigger, rmtrigger) Set to 1 if an element trigger type (except an all-element trigger
type) is on the affected element’s attached list; set to 0 if it is on a directory element’s

inheritance list. See the mktrigger reference page for a description of these lists.

chevent see NOTE at end of table

chmaster See NOTE at end of table

mkattr Element type, attribute type, branch type

mkhlink Element type, hyperlink type, branch type

mklabel Element type, label type, branch type

mktrigger Element type, trigger type

rmattr Element type, attribute type, branch type

rmhlink Element type, hyperlink type, branch type

rmlabel Element type, label type

rmtrigger Element type, trigger type

Table 8 Trigger Definition Operation Keywords

Operation Keyword Restrictions Checked when Trigger Fires
620 ClearCase Reference Manual

mktrtype
CLEARCASE_ATTYPE

(All operations that can be restricted by attribute type) Attribute type involved in

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed attribute type object.

CLEARCASE_BRTYPE

(All operations that can be restricted by branch type) Branch type involved in the

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed branch type object.

CLEARCASE_CHGRP

(protect) New group of the reprotected object as specified in the command line; unset if

not specified.

CLEARCASE_CHMOD

(protect) New protection of the reprotected object as specified in the command line;

unset if not specified.

CLEARCASE_CHOWN

(protect) New owner of the reprotected object as specified in the command line; unset if

not specified.

CLEARCASE_CI_FPN

(checkin) Pathname in checkin –from.

CLEARCASE_CMDLINE

(All operations initiated through use of the cleartool command) A string specifying the

cleartool subcommand and any options and arguments included on the command line.

NOTES:

CLEARCASE_COMMENT

(All operation kinds that support comments) Comment string for the command that

caused the trigger to fire.

CLEARCASE_ELTYPE

(All operations that can be restricted by element type) Element type of the element

involved in the operation that caused the trigger to fire. In a rename operation, the old

name of the renamed element type object.

• This EV’s value is set by the cleartool command, and only by that command. If a

trigger is fired by any other means (through the use of a ClearCase or

ClearCase LT GUI, for example) the EV is not set.

• The EV’s value may be garbled if the command line contains nested quotes.
ClearCase Reference Pages 621

mktrtype
CLEARCASE_FREPLICA

(chmaster) The old master replica, or “from-replica”: the replica that mastered the object

at the time the command was entered.

When the command chmaster –default brtype:branch-type-name is run at the site of the

replica that masters the branch type, CLEARCASE_FREPLICA is set to the name of the

current replica. If the command is run at a site that does not master the branch type, the

command fails, but CLEARCASE_FREPLICA is set to the name of the replica that masters the

branch type.

When the command chmaster –default branch-name is run, CLEARCASE_FREPLICA is set to

the name of the current replica. (If the command is run at a site that does not master the

branch, it fails.)

CLEARCASE_FTEXT

(mkhlink, rmhlink) Text associated with hyperlink from-object.

CLEARCASE_FVOB_PN

(mkhlink, rmhlink) Pathname of VOB containing hyperlink from-object.

CLEARCASE_FXPN

(mkhlink, rmhlink) VOB-extended pathname of hyperlink from-object.

CLEARCASE_HLTYPE

(All operations that can be restricted by hyperlink type) Hyperlink type involved in

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed hyperlink type object.

CLEARCASE_ID_STR

(checkin, checkout, mkattr, mkbranch, mkhlink, mklabel, rmattr, rmhlink, rmlabel,
rmver) Version-ID of version, or branch pathname of branch, involved in the operation.

CLEARCASE_IS_FROM

(mkhlink, rmhlink) Set to 1 if CLEARCASE_PN contains name of hyperlink from-object;

set to 0 if CLEARCASE_PN contains name of hyperlink to-object.

CLEARCASE_LBTYPE

(All operations that can be restricted by label type) Label type involved in the operation

that caused the trigger to fire. In a rename operation, the old name of the renamed label

type object.

CLEARCASE_MTYPE

(All) Kind of object involved in the operation that caused the trigger to fire: element type,

branch type, directory version, and so on.

CLEARCASE_NEW_TYPE

(rename) New name of the renamed type object.
622 ClearCase Reference Manual

mktrtype
CLEARCASE_OP_KIND

(All) Actual operation that caused the trigger to fire.

CLEARCASE_OUT_PN

(checkout) Pathname in checkout –out. (Same as CLEARCASE_PN if –out not used.)

CLEARCASE_PN

(All operations; element triggers only) Name of element specified in the command that

caused the trigger to fire.

NOTES:

CLEARCASE_PN2

(lnname)

CLEARCASE_POP_KIND

(mkelem, mkslink, lnname, rmname) Parent operation kind. The mkelem and mkslink
operations both cause an lnname operation. If lnname happens as a result of either of

these parent operations, CLEARCASE_POP_KIND is set to mkelem or mkslink,

respectively. Note that both the parent operations (mkelem and mkslink) and the child

operation (lnname) set CLEARCASE_POP_KIND to the applicable parent operation value—

mkelem or mkslink.

• With an all-element trigger, a pathname in the top-level directory of a VOB is

reported with an extra (but still correct) “\.” pathname component:

\proj1\.\releasedir (if VOB-tag is \proj1)
• Some cleartool and Attache commands rename files during their execution.

Usually, such manipulations are unnoticeable, but you may need to adjust your

trigger batch files accordingly. For example, the batch file for a preoperation

mkelem trigger may need to operate on file name “%CLEARCASE_PN%.mkelem”

instead of “%CLEARCASE_PN%”.

• If the file does not exist (for example, the checked-out file was removed), the value

of CLEARCASE_PN is different from its value when the file exists.

• When a side-effect of a mkelem operation, gets the same value as CLEARCASE_PN.

• When a side-effect of a mv operation, gets the old pathname of the element.

User Commands that Cause
Multiple Operations

Operations CLEARCASE_POP_KIND value

mkelem mkelem
lnname

mkelem
mkelem

ln –s mkslink
lnname

mkslink
mkslink
ClearCase Reference Pages 623

mktrtype
The move or mv command is a special case because there is no move operation.

Therefore, the CLEARCASE_POP_KIND environment variable is set to the values rmname
and lnname to show that those operations were part of the command execution.

CLEARCASE_PPID

(All) Parent Process-ID: the process-ID of the ClearCase or ClearCase LT program (for

example, cleartool) that invoked the trigger. This is useful for constructing unique

names for temporary files that will pass data between a preoperation trigger and a

postoperation trigger, or between successive parts of a multipart trigger action.

CLEARCASE_PPID is not useful for Attache clients.

CLEARCASE_RESERVED

(checkin, checkout) Set to 1 if user requested a reserved checkout; set to 0 if user

requested an unreserved checkout.

CLEARCASE_SLNKTXT

(mkslink; that is, the ln –s command) Text of the new VOB symbolic link.

CLEARCASE_TREPLICA

(chmaster) The new master replica, or “to-replica”: the replica specified to receive

mastership.

When the command chmaster –default brtype:branch-type-name is run at the site of the

replica that masters the branch type, CLEARCASE_TREPLICA is set to the name of the

current replica. If the command is run at a site that does not master the branch type, the

command fails, but CLEARCASE_TREPLICA is set to the name of the current replica.

When the command chmaster –default branch-name is run, CLEARCASE_TREPLICA is set

to the name of the replica that masters the branch type. (If the command is run at a site

that does not master the branch, it fails.)

CLEARCASE_TRTYPE

(All operations that can be restricted by trigger type) Trigger type involved in the

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed trigger type object.

CLEARCASE_TTEXT

(mkhlink, rmhlink) Text associated with hyperlink to-object.

CLEARCASE_TVOB_PN

(mkhlink, rmhlink) Pathname of VOB containing hyperlink to-object.

move | mv lnname
rmname

rmname
lnname

User Commands that Cause
Multiple Operations

Operations CLEARCASE_POP_KIND value
624 ClearCase Reference Manual

mktrtype
CLEARCASE_TXPN

(mkhlink, rmhlink) VOB-extended pathname of hyperlink to-object.

CLEARCASE_USER

(All) The user who issued the command that caused the trigger to fire; derived from the

Windows-level user-ID.

CLEARCASE_VAL

(mkattr) String representation of attribute value for CLEARCASE_ATTYPE (for example,

"Yes" or 4657).

CLEARCASE_VIEW_TAG

(All) View-tag of the view in which the operation that caused the trigger to fire took

place.

CLEARCASE_VOB_PN

(All) VOB-tag of the VOB whose object was involved in the operation that caused the

trigger to fire.

CLEARCASE_VTYPE

(mkattr) Value type of the attribute in CLEARCASE_ATTYPE (for example, string or

integer).

CLEARCASE_XN_SFX

(All) Extended naming symbol (such as @@) for host on which the operation took place.

CLEARCASE_XPN

(All operations; element triggers only) Same as CLEARCASE_ID_STR, but prepended with

CLEARCASE_PN and CLEARCASE_XN_SFX values, to form a complete VOB-extended

pathname of the object involved in the operation.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create an element type named batfile for use with batch files. Then, create an all-element

trigger type, chmod_a_plus_x, that makes newlycreated elements of type batfile
executable. Convert a view-private file to an element of this type.

cmd-context mkeltype -supertype text_file -c "batch file" batfile

Created element type "batfile".
ClearCase Reference Pages 625

mktrtype
cmd-context mktrtype -element -all -postop mkelem -eltype batfile -nc -exec ^
’c:\Program Files\Rational\ClearCase\bin\cleartool protect -chmod a+x ^
%CLEARCASE_PN%’ chmod_a_plus_x

Created trigger type "chmod_a_plus_x".

cmd-context mkelem -eltype batfile -ci -nc cleanup.bat

Created element "cleanup.bat" (type "batfile").
Changed protection on "\users_hw\src\cleanup.bat".
Checked in "cleanup.bat" version "\main\1".

• Create an all-element trigger type, to prevent files with certain extensions from being made

into elements.

cmd-context mktrtype -element -all -nc -preop mkelem -exec ^
‘M:\%CLEARCASE_VIEW_TAG%\%CLEARCASE_VOB_PN%\trigs\check_ext %CLEARCASE_PN%’ ^
check_ext

Created trigger type “check_ext”.

• Create an element trigger type that runs a script when a mkbranch command is executed.

Specify different scripts for UNIX and Windows platforms.

cmd-context mktrtype –element –postop mkbranch –nc ^
–execunix /net/neon/scripts/branch_log.sh ^
–execwin \\photon\triggers\branch_log.bat branch_log
Created trigger type "branch_log".

• Create an all-element trigger type to monitor checkins of elements of type c_source. Firing

the trigger runs a test program on the file being checked in, and may cancel the checkin.

cmd-context mktrtype -element -all -nc -preop checkin -exec ^
’M:\%CLEARCASE_VIEW_TAG%\%CLEARCASE_VOB_PN%\trigs\metrics_test %CLEARCASE_PN%’ ^
-eltype c_source metrics_trigger

Created trigger type "metrics_trigger".

Use of environment variable CLEARCASE_VOB_PN causes the test program to be retrieved

from a location in the current VOB.

• Create a type trigger type to monitor the creation of new label types. The trigger aborts the

label-type-creation operation if the specified name does not conform to standards.

cmd-context mktrtype -type -nc -preop mktype -lbtype -all -exec ^
’M:\%CLEARCASE_VIEW_TAG%\%CLEARCASE_VOB_PN%\trigs\check_label_name’ ^
check_label_trigger

Created trigger type "check_label_trigger".

• Create an element trigger type that, when attached to an element, fires whenever a new

version of that element is checked in. Firing the trigger attaches attribute TestedBy to the
626 ClearCase Reference Manual

mktrtype
version, assigning it the value of the CLEARCASE_USER environment variable as a

double-quoted string.

NOTE: In this example, the single quotes preserve the double quotes on the string literal. The

CLEARCASE_USER environment variable is evaluated at firing time.

cmd-context mktrtype -element -postop checkin ^
-c "set attribute to record which user checked in this version" ^
-mkattr ’TestedBy="%CLEARCASE_USER%"’ trig_who_didit

Created trigger type "trig_who_didit".

• Create an all-element trigger type and a type trigger type that prevent all users except

stephen, hugh, and emma from running the chmaster command on element-related objects

and type objects in the current VOB:

cleartool mktrtype –element –all –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype –type –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–attype –all –brtype –all –eltype –all –lbtype –all –hltype –all ^
–c "ACL for chmaster" type_chmaster_ACL

SEE ALSO

events_ccase, lstype, mktrigger, rmtype, type_object
ClearCase Reference Pages 627

mkview
mkview
Creates and registers a view

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Create and register a dynamic view:

mkview –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–reg⋅ion network-region] [–cac⋅hesize size]

[–sha⋅reable_dos | –nsh⋅areable_dos] [–str⋅eam stream-selector]

{ –stg⋅loc { view-stgloc-name | –aut⋅o }

| [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

dynamic-view-storage-pname }

• ClearCase and Attache only—Create and register a snapshot view:

mkview –sna⋅pshot [–tag snapshot-view-tag] [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–cac⋅hesize size] [–pti⋅me] [–str⋅eam stream-selector]

[–stg⋅loc view-stgloc-name
| –col⋅ocated_server [–hos⋅t hostname –hpa⋅th host-snapshot-view-pname
–gpa⋅th global-snapshot-view-pname]] snapshot-view-pname

• ClearCase LT only—Create and register a snapshot view:

mkview [–sna⋅pshot] [–tag view-tag] [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–pti⋅me] [–str⋅eam stream-selector]

[–stg⋅loc view-stgloc-name] snapshot-view-pname

DESCRIPTION

The mkview command creates a new view as follows:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
628 ClearCase Reference Manual

mkview
• Creates a view storage directory at a specified network location or in a server storage

location previously created with the mkstgloc command. In ClearCase LT, these locations

are always on the ClearCase LT server host. The view storage directory maintains

information about the view. Along with other files and directories, the directory contains

the view’s config spec and the view database. See the view reference page for details.

• Creates a view-tag, the name by which users access a dynamic view. Snapshot views also

have view-tags, but users access snapshot views by setting the snapshot view directory, as

with cd.

• For a snapshot view, creates the snapshot view directory. This is the directory into which

your files are loaded when you populate the view using update.

• Places entries in the network’s view registry; use the lsview command to list view tags.

• Starts a view_server process on the host where the view storage directory physically

resides. The view_server process manages activity in a particular view. It communicates

with VOBs during checkout, checkin, update, and other operations.

Interop Text Modes

Operating systems use different character sequences to terminate lines of text files. In UNIX, the

line terminator for text files is a single <LF> character. On Windows systems, the standard line

terminator is <CR><LF>. Each view has an interop text mode—specified by the –tmode option—

that determines the line terminator sequence for text files in that view. The interop text mode also

determines whether line terminators are adjusted before a text file is presented to the view (at

checkout time, for example). For example, a text file element created by a Windows client that is

accessed through a UNIX view would be stripped of <CR> characters, and the <CR> characters

would be reinserted when the file was written to the VOB as a new version.

In Attache, when you use mkws to create a workspace, you can create an associated view at the

same time. The mkws command does not take the –tmode option, but the Attache client has a

preference you can set to specify the interop text mode for any views created on behalf of a

workspace.

For more information, see Administering ClearCase and the reference pages for msdostext_mode
and mkeltype.

Views and UCM Streams

Views are attached to streams in the UCM model. Only views can modify a UCM stream. Views

cannot be moved between streams or detached from a stream without removing the view.

Setting the Cache Size for Views

Although both kinds of views use caches, cache size is more significant for a dynamic view than

it is for a snapshot view. The dynamic view’s cache size determines the number of VOB lookups
ClearCase Reference Pages 629

mkview
that can be stored. You can set the size of the cache with the –cachesize option. This creates the

following line in the .view file for the view:

–cache size

When a view_server process is started, it uses this value. For more information on the

view_server cache and changing its size, see the view_server, setcache, and chview reference

pages.

ClearCase and Attache Dynamic Views Only—Using Express Builds

You can configure a dynamic view to use the express builds feature by creating the view with the

–nshareable_dos option. When you invoke clearmake or omake in this kind of view, clearmake
or omake builds nonshareable derived objects (DOs). Information about these DOs is not written

into the VOB, so the build is faster; however, nonshareable DOs cannot be winked in by other

views.

If you do not specify –sha⋅reable_dos or –nsh⋅areable_dos, mkview uses the site-wide default

set in the registry (with the setsite command). If there is no site-wide default, mkview configures

the view so that builds in the view create shareable DOs.

To change the DO property for an existing view, use the chview command. For more information

on shareable and nonshareable DOs, see Building Software with ClearCase.

ClearCase and Attache Dynamic Views Only—Activating a View

Creating a view-tag also executes the startview command, which activates the dynamic view on

the current host (unless the tag’s target network region does not include the local host.) It also

places an entry in the host’s dynamic-views root directory (by default, M:\). (For example,

specifying –tag gamma creates the entry gamma.)

After a dynamic view is activated, you can assign it to a drive letter with the net use command

or by clicking Tools➔Map Network Drive in Windows Explorer; it can also be accessed with

view-extended naming. (For details, see the startview, view, and pathnames_ccase reference

pages.)

ClearCase, Attache, and ClearCase LT Snapshot Views Only—Activating a View

Snapshot views cannot be explicitly activated and cannot be accessed with view-extended

naming. However, a snapshot view becomes active when you change to the view directory and

issue a ClearCase or ClearCase LT command.

Reconfiguring a View

A view’s associated view_server process reads a configuration file when it starts up. You can

revise this file—for example, to make the view read-only. See the view_server reference page for

details.
630 ClearCase Reference Manual

mkview
Backing Up a View

For information about performing view backups, see Administering ClearCase.

If you create a snapshot view in which the view-storage directory is located outside the snapshot

view, you must back up recursively both the view storage directory and the snapshot view’s root

directory.

Deleting a View

The view created by this command is the root of a standard directory tree; but a view must be

deleted only with the rmview command, never with del. See the rmview reference page for

details.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW-TAG. Default for ClearCase and Attache dynamic views: None. Default for
ClearCase LT and ClearCase/Attache snapshot views: A generated tag.

–tag view-tag
Dynamic view—Specifies a name for the view, in the form of a simple file name. This

name appears in the local host’s file system as a subdirectory of the root directory (by

default, M:\). For example, the view experiment appears as M:\experiment.

Snapshot view—Specifies a name for the view as it is recorded in the registry.

ClearCase and Attache only—If your network has multiple regions, use the mktag
command to create an additional view-tag for each additional region.

–tco⋅mment tag-comment
Adds a comment to the view-tag’s entry in the view_tag registry. Use lsview –long to

display the tag comment.

SPECIFYING THE KIND OF VIEW. Default for ClearCase and Attache: Dynamic view. Default for
ClearCase LT: –snapshot (the ClearCase LT synopsis for this command retains this option, even

though it is the default, for easier migration of view-creation scripts from ClearCase LT to

ClearCase).

–sna⋅pshot
Specifies a snapshot view. See the view reference page for a discussion of views and the

differences between snapshot and dynamic views.

SPECIFYING THE INTEROP TEXT MODE. Default: –tmode transparent for views created on UNIX

machines or those created through the MSDOS command line. –tmode transparent is also the

default for views created through the Windows GUI unless a different site-wide interop text

mode has been set with setsite.
ClearCase Reference Pages 631

mkview
NOTE: VOBs that are to be accessed by interop text mode views must be enabled to support such

views. See the vob and msdostext_mode reference pages.

–tmo⋅de transparent
A transparent interop text mode view is created. The line terminator for text files is a

single <NL> character. The view does not transform text file line terminators in any way.

–tmo⋅de insert_cr
Creates an insert_cr interop text mode view. The view converts <NL> line terminators to

the <CR><NL> sequence when reading from a VOB, and <CR><NL> line terminators to

single <NL> characters when writing to the VOB.

–tmo⋅de strip_cr
Creates a strip_cr interop text mode view. The view converts <CR><NL> line terminators

to <NL> when reading from a VOB, and <NL> line terminators back to the <CR><NL>

sequence when writing to the VOB.

SPECIFYING A NETWORK REGION. Default: The local host’s network region, as listed by the

hostinfo –long command. See the registry_ccase reference page for a discussion of network

regions.

–reg⋅ion network-region
Creates the view-tag in the specified network region. An error occurs if the region does

not already exist.

CAUTION: The view-tag created with mkview must be for the network region to which

the view server host belongs. Thus, use this option only when you are logged in to a

remote host that is in another region. Moreover, a view-tag for the view’s home region

must always exist.

SETTING THE CACHE SIZE. Default: Set to the value of the site-wide default (set with setcache
–view –site); if this default is not set, the cache size is set to 500 KB for a 32-bit platform and 1

MB for a 64-bit platform.

–cac⋅hesize size
Specifies a size for the view_server cache. size is an integer number of bytes, optionally

followed by the letter k to specify kilobytes or m to specify megabytes; for example, 800k
or 3m.

SPECIFYING THE KIND OF DERIVED OBJECTS TO CREATE IN A DYNAMIC VIEW. Default: mkview uses

the site-wide default. If a site-wide default is not set, mkview configures the view to create

shareable DOs.

–sha⋅reable_dos
Specifies that DOs created in the dynamic view can be winked in by other views.
632 ClearCase Reference Manual

mkview
–nsh⋅areable_dos
Specifies that DOs created in the dynamic view cannot be winked in by other views.

SETTING AN INITIAL DEFAULT FOR MODIFICATION TIMESTAMPS FOR A SNAPSHOT VIEW. Default: The

initial default for the time stamps of files copied into the view as part of the snapshot view

update operation is the time at which the file is copied into the view. Using the update command,

users can change the default time-stamp mode: the most recently used time scheme is retained

as part of the view’s state and is used as the default behavior for the next update.

–pti⋅me
Changes the initial default for file time stamps copied into the snapshot view to the time

at which the version was created (as recorded in the VOB).

ATTACHING A VIEW TO A STREAM. Default: None.

–str⋅eam stream-selector
Specifies a UCM stream. The view being created is attached to this stream.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

SPECIFYING THE VIEW STORAGE DIRECTORY LOCATION. Either dynamic-view-pname or

snapshot-view-pname is always a required argument. In addition, default behavior related to

specifying view storage location is as follows:

Default for ClearCase and Attache dynamic views: None; a server storage location must be specified

explicitly using –stgloc or indirectly using –auto.

For dynamic views, automatic server storage selection proceeds as follows:

1. Server storage locations that have no global path (–ngpath) are disqualified.

2. Server storage locations on heterogenous hosts are disqualified.

3. Local server storage locations are preferred over remote ones.

4. A server storage location is selected at random from the remaining candidates.

Default for ClearCase and Attache snapshot views: An automatically selected server storage location,

if any can be found; else –colocated_server.

Default for ClearCase LT (snapshot) views: An automatically selected server storage location.

For snapshot views, automatic server storage selection proceeds as follows:

1. Server storage locations with global paths (–gpath) that reside on heterogeneous hosts are

disqualified.

2. Local server storage locations are preferred over remote ones.

3. A server storage location is selected at random from the remaining candidates.
ClearCase Reference Pages 633

mkview
–stg⋅loc { view-stgloc-name | –aut⋅o }

Specifies a server storage location to hold the view storage directory (you must have

previously used mkstgloc to create the server storage location). Either specify the server

storage location by name, or specify –auto to indicate a server storage location is to be

automatically selected as described previously.

When creating a snapshot view for disconnected use, use a server storage location; this

way, the view can be moved without the need to use register to change registry

information about the view’s location.

You cannot create a view on a remote heterogeneous host unless the view is a snapshot

views that is to be created in no-global-path (–ngpath) server storage location.

–col⋅ocated_server
Specifies that snapshot view’s view storage directory (view-stg) is to be created as a

subdirectory of snapshot-view-pname. We recommend you use –stgloc rather than this

option whenever possible.

–hos⋅t hostname
–hpa⋅th local-pname
–gpa⋅th global-pname

See the mkstgloc reference page for information on these options.

NOTE: When you use one or more of the –host/–hpath/–gpath options in combination

with –colocated_server, the values you specify for –host/–hpath/–gpath must

correspond to snapshot-view-pname, not the colocated view storage directory.

dynamic-view-storage-pname
The location at which a new view storage directory is to be created for a dynamic view.

dynamic-view-storage-pname must be a UNC name. (An error occurs if something already

exists at this pathname.) You can create a view storage directory at any location in the

file system where operating system permissions allow you to create a subdirectory, with

these restrictions:

snapshot-view-pname
The location at which a new view storage directory is to be created for a snapshot view.

• You cannot create a view storage directory within a VOB, within another view, or

within the root of the view’s root directory.

• dynamic-view-storage-dir-pname must specify a location on a host where ClearCase

has been installed; the view database files must physically reside on a ClearCase

host to enable access by the view_server process.

• The directory must not be within a Windows special share, such as the share that

is designated by driveletter$ and that allows administrators to access the drive

over the network.
634 ClearCase Reference Manual

mkview
This argument must be a UNC name if and only if the storage is colocated (colocated

storage can be the default in the circumstances described previously). (An error occurs

if something already exists at this pathname.) You can create a view storage directory at

any location in the file system where operating system permissions allow you to create

a subdirectory, with these restrictions:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Create a dynamic view and assign it the view-tag main_r2. This example assumes that host

pluto shares its C: drive via sharename c_share.

cmd-context mkview -tag main_r2 \\pluto\c_share\vw_store\winproj\main_r2.vws

Created view.
Host: pluto
Local path: c:\vw_store\winproj\main_r2.vws
Global path: \\pluto\c_share\vw_store\winproj\main_r2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• Create a dynamic view, assign it the view-tag smg_bigvw, and specify a large cache size.

cmd-context mkview –tag smg_bigvw –cachesize 1m \\neon\vws\smg_bigvw.vws

Created view.
Host-local path: neon:C:\USERS\vws\smg_bigvw.vws
Global path: \\neon\vws\smg_bigvw.vws

SEE ALSO

chflevel, chview, endview, lsview, mkstream, mkstgloc, mktag, registry_ccase, rmtag, rmview,

setcache, , startview, , unregister, update, view, view_server

• You cannot create a view storage directory within a VOB, within another view, or

within the root of the view’s root directory.

• For a colocated server, the directory must not be within a Windows special share,

such as the share that is designated by driveletter$ and that allows administrators

to access the drive over the network.
ClearCase Reference Pages 635

mkvob
mkvob
Creates and registers a versioned object base (VOB)

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only:

mkvob –tag vob-tag [–ucm⋅project]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tco⋅mment tag-comment] [–reg⋅ion network-region]

[–opt⋅ions mount-options] [–pub⋅lic] [–pas⋅sword tag-registry-password]

{ [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

vob-storage-pname
| -stgloc { vob-stgloc-name | –auto } }

• ClearCase LT only:

mkvob –tag vob-tag [–ucm⋅project]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tco⋅mment tag-comment] [-stg⋅loc vob-stgloc-name]

NOTE: In ClearCase LT, you can run this command only on the ClearCase LT server host.

DESCRIPTION

The mkvob command creates a new versioned object base, or VOB, as follows:

• Creates a VOB storage directory at a specified path or in a VOB server storage location

created with mkstgloc.

• Creates a VOB-tag with which the VOB is accessed by users.

• Places entries in the network’s VOB registries; use the lsvob command to list registered

VOBs.

• Starts a VOB server process on the host where the VOB storage directory physically resides.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
636 ClearCase Reference Manual

mkvob
A VOB storage directory is the root of a directory tree whose principal contents are a VOB

database and a set of storage pools. See the mkstgloc and vob reference page for details.

VOB Directory Elements

mkvob creates the following directory elements in a VOB:

• VOB root directory — A mkdir command is implicitly executed to create a directory

element—the VOB root directory—in the new VOB. Activating a VOB makes its root

directory accessible at the pathname specified by the VOB-tag.

• lost+found directory—In ClearCase and Attache dynamic views only, mkvob also creates a

special directory element, lost+found, as a subdirectory of the VOB root directory. In this

directory are placed elements that are no longer entered in any versioned directory.

lost+found is not accessible from a snapshot view.

See the vob reference page for more information on these directories.

Default Storage Pools

Each VOB storage directory is created with default storage pool subdirectories:

Permissions

In considering access permissions, it is important to distinguish these two top-level directories:

• VOB storage directory — The standard directory created by this command, which is at the

top level of a server storage location for VOBs.

• VOB root directory — The ClearCase or ClearCase LT directory element accessed at the

VOB-tag.

When you create a VOB, your operating system-level user name and the clearcase group name

are assigned to the VOB storage and the default storage pools. All users can read and search the

storage pools, but only the VOB owner and ClearCase or ClearCase LT server processes can

modify them.

WARNING: Do not use operating system permission-setting utilities on a VOB storage directory.

This creates inconsistencies and causes confusion.

ClearCase, ClearCase LT, and Attache implement their own access scheme that goes beyond the

standard operating system facilities. When you create a VOB, you become its VOB owner and

your primary group becomes the VOB’s assigned group. These settings control access to many

operations involving the VOB; they can be changed with the protectvob command.

sdft default source storage pool

cdft default cleartext storage pool

ddft default derived object storage pool (ClearCase and Attache dynamic views

only)
ClearCase Reference Pages 637

mkvob
See also the protect reference page (this command affects access to individual elements and

shared derived objects) and Administering ClearCase.

Interop Text Mode Support

By default, VOBs are created with interop text mode support enabled. In this mode, the VOB

database keeps track of the number of lines in all versions of each text file. This mode is required

to support access to the VOB by interop text mode views (see the mkview reference page). To

change the state of a VOB’s interop text mode support, use the msdostext_mode utility. For more

information, see Administering ClearCase.

ClearCase and Attache Only—Regional Tags

mkvob creates exactly one VOB-tag for the newly created VOB. This tag applies to the local

host’s network region by default. To make additional VOB-tags for other regions, use the mktag
command. In general, the VOB-tags for a given VOB should all be public or all private.

ClearCase and Attache Dynamic Views Only—Public and Private VOBs

Some VOBs are to be shared, and others are to be used primarily by their creators. Accordingly,

there are two kinds of VOB-tags: public and private.

PUBLIC VOB TAGS. A public VOB can be activated with the following command:

cmd-context mount –all

Usually, the system administrator automates this command for users in either of two ways:

• By adding it to the startup script for ClearCase or Attache users.

• By supplying it in a batch file for use in each user’s Startup folder.

This technique is particularly useful because, in its role as a network provider, the MVFS

deactivates all VOBs and views on the local host at user login time. That is, each time a user logs

in, the dynamic-views drive (by default, M:) is empty until VOBs and views are reactivated.

See the mount reference page for information on persistent VOB mounting.

When creating a public VOB-tag with mkvob or mktag, you must supply the network’s VOB-tag

password; if you don’t use the –password option, you are prompted to type one. See rgy_passwd
for information on how to create or change the VOB registry password.

PRIVATE VOB TAGS. Any user can mount any VOB, public or private. The private designation

means only that a VOB must be mounted separately, by name.

PRIVATE-TO-PUBLIC CONVERSION. To convert a private VOB to a public VOB, use a command like

this:

cmd-context mktag -vob -tag \vob3.p -replace -public \\saturn\users\vbstore\private3.vbs
638 ClearCase Reference Manual

mkvob
This replaces the VOB’s private VOB-tag with a public one. mktag prompts you to enter the

VOB-tag password.

ClearCase, Attache, and ClearCase LT Snapshot Views Only—Accessing Public and Private VOBs

For an explanation of public and private VOBs, see ClearCase and Attache Dynamic Views Only—
Activating the VOB on page 639.

• ClearCase and Attache—Snapshot views make no distinction between public and private

VOBs: you can access private VOBs from a snapshot view regardless of who owns them.

• ClearCase LT—All VOBs are private and can be accessed from any view.

ClearCase and Attache Dynamic Views Only—Activating the VOB

A VOB cannot be used for development work in a dynamic view until it is activated with the

cleartool or Attache mount command. This causes the VOB’s storage directory to be mounted

on the host at the VOB-tag location, as a file system of type MVFS. See the mount reference page

for details.

CAUTION: After you create a VOB, do not move the VOB database directory (db) to another host.

The VOB database directory must be on the host where the VOB storage directory physically

resides. Moving the VOB database directory can negatively affect both VOB performance and

ClearCase’s ability to ensure the integrity of the VOB database by recovering from interrupted

transactions.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VOB-TAG. Default: None.

–tag vob-tag
VOB tags are names for VOBs of the form \dirname. The backslash is required. The VOB

tag is entered in the registry and is where the VOB appears under the view root.

ClearCase and Attache only—If your network has multiple regions from which the VOB

is to be accessed, use mktag to create an additional VOB-tag for each region.

SPECIFYING THE KIND OF VOB. Default: A standard (that is, nonproject) VOB.

–ucm⋅project
Creates a UCM project VOB for storing UCM-related objects including activities,

baselines, components, folders, projects, and streams. Typically, a single project VOB is

shared by multiple source VOBs—those that store versioned source code, documents,

and so on.

ClearCase LT only—You cannot create more than one project VOB.
ClearCase Reference Pages 639

mkvob
EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

–tco⋅mment tag-comment
Adds a comment to the VOB-tag’s entry in the vob_tag registry file. Use lsvob –long to

display the tag comment.

SPECIFYING A NETWORK REGION. Default: Creates the VOB-tag in the local host’s network region.

(Use the hostinfo –long command to display the network region.) See the registry_ccase
reference page for a discussion of network regions.

–reg⋅ion network-region
Creates the VOB-tag in the specified network region. An error occurs if the region does

not already exist.

CAUTION: The VOB-tag created with mkvob must be for the network region to which the

VOB host belongs. Thus, use this option only when you are logged in to a remote host

that is in another region. Moreover, a VOB-tag for the VOB’s home region must always

exist.

SPECIFYING MOUNT OPTIONS. Default: Mounts each VOB using the –options field in its vob_tag
registry file.

–opt⋅ions mount-options
(You must be a member of the ClearCase group to use this option.) Specifies mount

options to be invoked when the VOB is activated through this VOB-tag. See mount for

details.

PUBLIC VS. PRIVATE VOB. Default: A private VOB.

–pub⋅lic
Creates a public VOB. See ClearCase and Attache Dynamic Views Only—Activating the VOB
on page 639.

–pas⋅sword tag-registry-password
A password is required to create a public tag or to create a private tag when you include

suid as an argument to –options.

In these cases, if you do not include the VOB-tag password, mkvob prompts for it. See

the registry_ccase reference page. An error occurs if there is no match. Note that the VOB

is created, but without a VOB-tag. Use mktag to supply a public or private VOB-tag.

CAUTION: This is a potential security breach, because the password remains visible on

the screen.
640 ClearCase Reference Manual

mkvob
SPECIFYING THE VOB’S LOCATION AND NETWORK ACCESSIBILITY. Default for ClearCase and Attache:
None. Default for ClearCase LT: The server storage location on the ClearCase LT server host with

the most free space.

–hos⋅t hostname
–hpa⋅th host-storage-pname
–gpa⋅th global-storage-pname

See the mkstgloc reference page for information on these options.

vob-storage-pname
The location at which a new VOB storage directory is to be created; this must be a UNC

name. (An error occurs if something already exists at this pathname.) You can create a

VOB at any location where the operating system allows you to create a subdirectory,

with these restrictions:

–stg⋅loc { vob-stgloc-name | –aut⋅o }

Specifies a server storage location in which the VOB storage directory is to be created.

The server storage location must have been created previously with mkstgloc. You can

specify the name of the VOB server storage location explicitly as vob-stgloc-name, or

specify –auto to direct mkvob to select one.

If you specify –auto, a server storage location for the VOB is selected as follows:

a. Server storage locations that have no global path (mkstgloc –ngpath) and that reside on

remote hosts are disqualified.

b. Server storage locations on heterogenous hosts are disqualified.

c. Local server storage locations are preferred over remote ones.

d. Globally accessible server storage locations (mkstgloc –gpath) are preferred over those

that are not (mkstgloc –ngpath).

e. The server storage location with the most free space is selected.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

• You cannot create a VOB within an existing VOB storage directory.

• You cannot create a VOB under an existing VOB-tag (VOB mount point).

• You cannot create a VOB within the viewroot directory (by default, M:\).

• vob-storage-pname must specify a location on a host where ClearCase or has been

installed. The VOB database (located in subdirectory db of the VOB storage

directory) must physically reside on a ClearCase host, where it is accessed by

ClearCase server programs running locally.
ClearCase Reference Pages 641

mkvob
In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Create a private VOB storage directory, project3.vbs, in the C:\users\vbstore directory on local

host venus, and give it the VOB-tag \project3. Assume c:\users is shared as \\venus\users.

Then, mount the VOB on the local host.

cmd-context mkvob -tag \project3 -c "main development sources" ^
\\venus\users\vbstore\project3.vbs

Created versioned object base.
Host: venus
Local path: C:\users\vbstore\project3.vbs
Global path: \\venus\users\vbstore\project3.vbs
VOB ownership:
 owner anne
 group dev

cmd-context mount \project3 (mount VOB as file system of type MVFS)

• Create a public VOB, which will be mounted at startup time (by all hosts in the current

host’s network region).

cmd-context mkvob -tag \src1 -public -password tagPword \\saturn\vbstore\src1.vbs

Created versioned object base.
Host: saturn
Local path: C:\vbstore\src1.vbs
Global path: \\saturn\vbstore\src1.vbs
.
.
.

SEE ALSO

chpool, lsvob, mkpool, mkstgloc, mount, protectvob, registry_ccase, rgy_passwd, rmvob,

uncheckout, umount, vob
642 ClearCase Reference Manual

mkws
mkws
Makes a workspace associated with a dynamic view

APPLICABILITY

SYNOPSIS

• Make and register a workspace and associate it with an existing dynamic view:

mkws [–sho⋅st hostname] –tag tagname ws-stg-pname

• Make and register a workspace and a create a new associated dynamic view:

mkws –hos⋅t hostname –hpa⋅th host-stg-pname –gpa⋅th global-stg-pname
[–sho⋅st hostname] –tag tagname ws-stg-pname

DESCRIPTION

The mkws command creates and adds a workspace to the local workspace registry and either

associates it with an existing dynamic view or creates a new associated dynamic view.

ws-stg-pname specifies the location of the workspace storage directory. tagname specifies the

workspace name which is also the associated view’s tag. A username and password combination

for the workspace helper host are required. You are prompted for this information if it has not

already been requested, or previously stored using the Login info command on the Options
menu. After the workspace is created, it becomes the current workspace.

Attache’s Client Process Startup Directory

There is a separate startup directory associated with the Attache client process. This directory

changes depending upon how Attache is started. For example, it is the “working directory”

specified in Attache’s program item properties if Attache is started from the icon. Once the

Attache client process is started, this directory never changes. The pathname of a new workspace
storage directory (if not specified absolutely) is relative to the Attache startup directory, not your

workspace working directory. For this reason, we recommend that you always specify a full local
pathname for your workspace storage directory.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE ATTACHE HELPER’S LOCATION. Default: View host.

Product Command Type

Attache command
ClearCase Reference Pages 643

mkws
–sho⋅st hostname
Specifies the name of the ClearCase host on which the associated Attache helper process

will run.

SPECIFYING THE WORKSPACE NAME. Default: None.

–tag tagname
Specifies the name of the workspace and dynamic view, in the form of a simple helper host
file name. tagname specifies both the view-tag name and the workspace name, which are

created if they do not exist.

SPECIFYING THE WORKSPACE STORAGE DIRECTORY. Default: None. You must specify a location for

the workspace storage directory.

ws-stg-pname
Specifies the name of the workspace storage directory: full pathname, relative pathname,

or simple directory name. This directory can already exist, but if it doesn’t, it is created.

As with any operating-system directory-creation command, the entire directory tree

above the workspace storage directory name must already exist. A relative pathname or

simple directory name begins from Attache’s startup directory, not the working

directory.

SPECIFYING THE NEW DYNAMIC VIEW’S LOCATION. Default: None..

–hos⋅t hostname
–hpa⋅th host-stg-pname
–gpa⋅th global-stg-pname

See the mkstgloc reference page for descriptions of how to use these options and

arguments to specify VOB and view storage directories.

Values of other view creation options (–tcomment, –tmode, –ln, –region) are provided

by default. To control these attributes of view creation, use mkview instead and then use

mkws to connect to this dynamic view. The default behavior for text mode can also be

specified with the Preferences command on the Options menu.

EXAMPLES

• Make a workspace and associate it with the existing dynamic view jo_doc. At an Attache

prompt:

mkws –shost darkover –tag jo_doc c:\users\jo\doc

• Make a workspace and create a new dynamic view named lee_main to associate with it.

This command must be entered on a single line. At an Attache prompt:

mkws –host oz -hpath c:\vws\mn.vws –gpath \\pluto\c.share\vws\mn.vws –tag
lee_main c:\users\lee\main
644 ClearCase Reference Manual

mkws
SEE ALSO

attache_graphical_interface, attache_command_line_interface, lsview, lsws, mkview, rmws,

setws
ClearCase Reference Pages 645

mount
mount
Activates a VOB at its VOB-tag directory

APPLICABILITY

SYNOPSIS

• Mount a single VOB:

mount [–per⋅sistent] [–opt⋅ions mount-options] vob-tag

• Mount all public VOBs:

mount [–per⋅sistent] –a⋅ll

DESCRIPTION

Prerequisite: The VOB being activated must already have a VOB-tag for your host’s network

region in the ClearCase registry. See the mkvob and mktag reference pages.

The mount command activates one or more VOBs on the local host. The mount command

mounts a VOB as a file system of type MVFS (multiversion file system) and is inapplicable to

non-MVFS installations.

Mounting All VOBs

The mount –all command mounts all public VOBs listed for your host’s network region in the

VOB registry. (It does not mount private VOBs or VOBs whose tag entries include the mount

option noauto.)

Mounting of Public and Private VOBs

A public VOB can be activated with the following command:

cmd-context mount –all

Usually, the system administrator automates this command for ClearCase users at login time.

Private VOB-Tags

Any user can mount any VOB, public or private. The private designation means only that a VOB

must be mounted separately, by name.

Product Command Type

ClearCase cleartool subcommand

Attache command
646 ClearCase Reference Manual

mount
Only a member of the ClearCase group can use –options to specify mount options on the

command line. See the permissions reference page.

See the mkvob reference page for a discussion of public and private VOBs.

VOB-TAGS AND THE VOB STORAGE REGISTRY

You reference a VOB by its VOB-tag (the full pathname of its mount point), not by its storage area

pathname. The mount command uses the VOB-tag to retrieve all necessary information from the

ClearCase registry: pathname of VOB storage area, pathname of mount point, and mount options.

PERMISSIONS AND LOCKS

Permissions Checking: See Mounting of Public and Private VOBs. Locks: No locks apply.

OPTIONS AND ARGUMENTS

MAKING A MOUNT PERSISTENT. Default: The VOB does not stay mounted across reboots.

–per⋅sistent
The VOB is mounted after a reboot.

SPECIFYING MOUNT OPTIONS. Default: Mounts each VOB using the –options field in its vob_tag
registry file.

–opt⋅ions mount-options
(member of the ClearCase group only; mutually exclusive with –all) Ignores the –options
field in the vob_tag registry file entry and uses the specified set of options, which can

include these:

suid (applicable only for a tag used to mount a VOB on UNIX), ro, rw, soft, hard, intr,
nointr, timeo, retrans, noauto, nodnlc, noac, acdirmin, acdirmax, acregmin, acregmax,

actimeo, poolmap

Use commas to separate multiple options, not commas and white space. Options that

take numeric arguments take the form option=n. Enclose the entire option list in quotes

if it contains white space.

ro/rw Read-only or read-write. VOBs are mounted rw by default.

soft/hard Soft mount operations time out and return an error if the server

does not respond; hard mount operations (the default) will block

until successful completion, or until interrupted (see also intr).

intr/nointr By default, a VOB is mounted in no-interrupt mode. This means

that operations on MVFS files cannot be interrupted by typing

the interrupt character (typically, CTRL+C or CTRL+BREAK). To

enable keyboard interrupts of such operations, use the intr
mount option.
ClearCase Reference Pages 647

mount
SPECIFYING THE VOB(S). Default: None.

vob-tag
Mounts the VOB with this VOB-tag, which must be specified exactly as it appears in the

vob_tag registry file. Use lsvob to list VOBs.

–a⋅ll
(Mutually exclusive with –options) Mounts all public VOBs listed for your host’s

network region in the VOB registry, using the mount options in their vob_tag registry

entries. (Including the mount option noauto in a VOB-tag’s registry entry prevents the

VOB from being mounted by mount –all.)

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Mount the VOB storage directory that is registered with VOB-tag \Rel4_vob.

cmd-context mount \Rel4_vob

• Mount all VOBs registered with public VOB-tags.

cmd-context mount –all

timeo/retrans If you don’t specify a time-out or retransmission option, default

values are used: timeo=5 (seconds); retrans=7 (retries).

noauto Prevents a public VOB from being mounted by a cleartool mount
–all command.

nodnlc Turns off the MVFS name cache. See also mvfscache.

noac Turns off the MVFS attribute cache. See also mvfscache.

acdirmin/

acdirmax
Set minimum and maximum time-out values for directory name

lookups in the MVFS attribute cache. See also mvfscache.

acregmin/

acregmax
Set minimum and maximum time-out values for file name

lookups in the MVFS attribute cache. See also mvfscache.

actimeo Sets a single cache timeout value for all four parameters

acdirmin, acdirmax, acregmin, and acregmax. Setting one of

these specific values overrides the value in actimeo.

poolmap Supports remote storage pools on UNIX VOB hosts. See

Administering ClearCase for details.
648 ClearCase Reference Manual

mount
SEE ALSO

lsvob, mkvob, mktag, register, registry_ccase, umount
ClearCase Reference Pages 649

msdostext_mode
msdostext_mode
Enables or disables a VOB’s interop text mode support

APPLICABILITY

SYNOPSIS

ccase-home-dir\etc\utils\msdostext_mode [–c | –d] vob-stg-pname

DESCRIPTION

Before a VOB can be accessed from an interop text-mode view, the VOB must be enabled for

interop text mode support. The msdostext_mode utility enables or disables the ability of a VOB

to support interop text mode views. This utility does not physically convert or modify files in any

way; rather, it affects the information recorded for text file versions in the VOB database.

To enable a replicated VOB for access by MS-DOS text-mode views:

1. Synchronize all replicas in the VOB family.

2. At each site, lock the VOB using the following command:

cleartool lock –nuser member-of-ClearCase group-or-vob-owner vob:pname-in-vob

3. As a member of the ClearCase group or VOB owner, run msdostext_mode on all replica

storage directories.

4. Unlock all replicas.

For a detailed discussion of interop text mode, see Administering ClearCase.

PERMISSIONS AND LOCKS

Permissions Checking: You must be one of the following: VOB owner, a member of the ClearCase

group (ClearCase), the local administrator of the ClearCase LT server host (ClearCase LT). See

the permissions reference page.

Locks: The command fails if the VOB is locked for the user running msdostext_mode.

OPTIONS AND ARGUMENTS

With no options, msdostext_mode does the following:

1. Directs the VOB to store line counts in the VOB database for all versions of all elements of

type text_file and compressed_text_file (and any element types derived from these).

Product Command Type

ClearCase command

ClearCase LT command
650 ClearCase Reference Manual

msdostext_mode
2. Enables interop text mode support, so that line counts can be recorded for newly created

versions.

–c
Converts the VOB but does not enable interop text mode support. Running

msdostext_mode periodically (as an at job, for example) with –c enabled offers a small

performance advantage over having the VOB continually track file sizes for all new

versions. The disadvantage is that recorded file sizes become increasingly inaccurate as

new versions are checked in between invocations of msdostext_mode –c For this reason,

we do not recommend this usage of the utility..

Do not use this option for the initial conversion of a VOB. This option is intended to

allow for conversions of a replicated VOB subsequent to its initial conversion so that any

elements replayed from a VOB that is not enabled for interop text mode support can get

line counts.

–d
Disables interop text mode support.

vob-stg-pname
Storage directory pathname of the VOB.

SEE ALSO

mkview, Administering ClearCase
ClearCase Reference Pages 651

mv
mv
Moves or renames an element or VOB link

APPLICABILITY

SYNOPSIS

• Rename:

mv | move [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment] pname target-pname

• Move to another directory:

mv | move [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment] pname [pname ...] target-dir-pname

DESCRIPTION

NOTE: The directory where the element to be moved or renamed resides must be checked out. The

destination directory must also be checked out; this directory may be the same as the source

directory. mv appends an appropriate line to the checkout comment for all relevant directories.

The mv command changes the name or location of an element or VOB symbolic link. For a file

element that is checked out to your view, it relocates the checked-out version, also. (That is, it

moves the view-private file with the same name as the element.) If the version is checked out to

another view, it issues a warning:

cleartool: Warning: Moved element with checkouts to "overview.doc";
view private data may need to be moved.

The mv command can move an element only within the same VOB. To move an element to

another VOB, use the relocate command.

NOTE: The mv command does not affect the previous versions of the directory containing the

element. If you set your config spec to select a previous version of the directory, you see the old

name of the element.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
652 ClearCase Reference Manual

mv
Moving in Attache

In Attache, if the move operation would overwrite an existing writable file or directory subtree

containing writable files in the workspace, a confirming query is issued. Otherwise, local files or

directories corresponding to successfully renamed elements in the view are moved or renamed

as well.

Moving in Snapshot Views

When you move a file element in a snapshot view, only the to/from pathnames you specify are

updated in the view. If the view contains multiple copies of the element (because VOB symbolic

links or hard links exist), the copies are not updated. To update the copies, you must use the

update command.

If the move operation would overwrite a writable file or directory subtree containing writable

files, mv renames the files to filename.renamed.

Moving View-Private or Attache Workspace Objects

This command is for VOB-database objects. To rename or move view-private files, use the

Windows rename or move command. To rename or move local files in the Attache workspace,

use the Windows rename or move command in a DOS window or in the File Manager.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. An error occurs if the VOB is locked.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE EXISTING OBJECTS. Default: None.

pname
One or more pathnames, specifying elements or VOB links. If you specify more than one

pname, you must specify a directory (target-pname) as the new location.

SPECIFYING THE NEW LOCATION. Default: None.

target-pname
The new location for the single element or VOB link specified by pname. Both pname and

target-pname must specify locations in the same VOB. An error occurs if an object already

exists at target-pname.
ClearCase Reference Pages 653

mv
target-dir-pname
The pathname of an existing directory element, to which the elements or links are to be

moved. This directory must be located in the same VOB as the objects being moved.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

NOTE: In all the examples, all directories involved must be checked out.

• Rename a C-language source file from hello.c to hello_1.c.

cmd-context mv hello.c hello_1.c
Moved "hello.c" to "hello_1.c".

• Move all files with a .c extension into the src directory.

cmd-context move *.c src

Moved "cm_add.c" to "src\cm_add.c".
Moved "cm_fill.c" to "src\cm_fill.c".
Moved "convolution.c" to "src\convolution.c".
Moved "hello.c" to "src\hello.c".
Moved "hello_old.c" to "src\hello_old.c".
Moved "messages.c" to "src\messages.c".
Moved "msg.c" to "src\msg.c".
Moved "util.c" to "src\util.c".

SEE ALSO

checkout, cd, ln, ls, relocate, update
654 ClearCase Reference Manual

mvfscache
mvfscache
Controls and monitors MVFS caches (dynamic view only)

APPLICABILITY

SYNOPSIS

• Determine cache status:

mvfscache [cache_name]

• Control cache operation:

mvfscache { –e cache_list | –d cache_list | –f cache_list }

• Display name cache contents:

mvfscache –p [–n name] [–v dbid] [–i]

DESCRIPTION

NOTE: This utility is not intended for general use. It is intended primarily to help ClearCase

engineering and Rational Technical Support personnel diagnose problems with the MVFS. For

information on user-level cache commands, see the getcache and setcache reference pages.

mvfscache manipulates a dynamic view host’s MVFS caches, which are used to optimize file

system performance. The local administrator or a member of the Administrators group can

enable or disable a cache. Any user can flush a cache.

OPTIONS AND ARGUMENTS

DETERMINING CACHE STATUS. With no options or arguments, mvfscache displays the

enabled/disabled status of all MVFS caches. If you don’t use any of the options, but specify a

cache name as an argument, mvfscache does not display any output; it returns an appropriate

exit status:

CONTROLLING CACHE OPERATION. Use one of the following options to control a cache, a set of

caches, or cache-related behavior.

–e cache-list
(Must be Administrator) Enables the specified caches and (with cto) cache-related

Product Command Type

ClearCase command

0 specified cache is enabled

1 specified cache is disabled
ClearCase Reference Pages 655

mvfscache
behavior. Descriptions of these caching parameters are in Administering ClearCase. The

cache-list must be comma-separated, with no white space, and can include one or more

of the following keywords.

–d cache-list
(Must be Administrator) Disables the specified caches and cache-related behavior. The

syntax is the same as for –e.

–f cache-list
Flushes the specified caches. Use this option only under direction from Rational

Technical Support. The cache-list can include any number of the following keywords; the

list must be comma-separated, with no white space.

DISPLAYING NAME CACHE CONTENTS. Use –p by itself or with one or more of –n, –v, and –i. The

name cache contains the name lookup translations for recently accessed files and directories. The

first line of a name lookup translation has this form:

–p
Prints the contents of the name cache.

attr Attribute cache. Caches information on recently accessed file-system

objects.

name Name cache. Caches name lookup translations for recently accessed

files and directories.

slink Symbolic link text cache. Caches the contents of recently accessed

symbolic links.

rvc VOB root version cache. Caches VOB mount point data for each

dynamic view.

cto (cache-related behavior) Close-to-open consistency behavior. Forces

a ”get file info” operation to the view_server on every

operating-system open operation.

Disabling this behavior may boost performance if mvfsstat or

mvfstime shows heavy cto activity and the user is not sharing views.

However, disabling this behavior may result in consistency loss.

mnode Mnode freelist cache. Flushes the attr and slink caches, open

freelist files, and mnode storage for all freelist mnodes.

name Name cache.

rvc VOB root version cache.

lcred Global credentials cache for cleartext lookup permissions.

VOB-tag view:directory-dbid name ==> view:lookup-dbid
656 ClearCase Reference Manual

mvfscache
–n name
Prints only the entries in the name cache that match name.

–v dbid
Prints only the entries in the name cache that match directory-dbid (database-ID for the

directory in which name is found) or lookup-dbid (database-ID for the result of the

lookup).

–i
Includes invalidated name cache entries in the output. These are entries that have been

marked bad and are not used in lookups, but are retained for statistical purposes. This

helps determine how often invalid entries are replaced with new data. Invalidations

usually happen when cleartool or clearmake changes something in the VOB and knows

that the MVFS needs to refetch that information for its cache.

EXAMPLES

• Determine the status of all caches.

mvfscache
Attr: on
Name: on
Rvc: on
Slink: on
Cto: on

• Clear busy mount points, to prepare for unmounting VOBs.

mvfscache –f mnode

• Enable the name and attr caches:

mvfscache –e name,attr

SEE ALSO

mvfslog, mvfsstat, mvfsstorage, mvfstime, mvfsversion
ClearCase Reference Pages 657

658 ClearCase Reference Manual

mvfslog

mvfslog
Sets or displays MVFS console error logging level

APPLICABILITY

SYNOPSIS
mvfslog [none | error | warn | info | stale | debug]

DESCRIPTION

The mvfslog commandsets or displays the verbosity level for MVFS console error logging and

displays the location where errors are logged (by default, c:\mvfslogs). The initial setting is

error, in which only RPC errors and actual MVFS errors are logged; warnings and diagnostics are

suppressed.

Each logging level includes messages from the previous levels. For example, info includes

messages from error and warn.

PERMISSIONS AND LOCKS

Permissions: Any user can display the logging level and location. or locationyou must be local

administrator or a member of the Administrators group.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

SETTING THE LOGGING LEVEL. Default: Displays the current error logging level. Use one of the

following keywords to specify a new level; none is the least verbose; debug is the most verbose.

SEE ALSO

mvfscache, mvfsstat, mvfsstorage, mvfstime, mvfsversion

Product Command Type

ClearCase command

none RPC errors only.

error MVFS errors are logged (default setting).

warn MVFS warnings are logged.

info MVFS diagnostics on some expected errors are logged.

stale MVFS diagnostics related to ESTALE errors are logged.

debug Verbose information on many expected errors.

mvfsstat
mvfsstat
Displays MVFS statistics

APPLICABILITY

SYNOPSIS
mvfsstat [–iIcrvVhalzAd] [–o outfile] [time] [count]

DESCRIPTION

NOTE: This utility is not intended for general use. It is intended primarily to help ClearCase

engineering and Rational Technical Support personnel diagnose problems with the MVFS. For

information on improving ClearCase client performance, see Administering ClearCase.

The mvfsstat command displays MVFS usage and operating statistics, including cumulative

statistics on MVFS cache usage, rpc statistics, cleartext I/O counts, vnode operation counts, and

VFS operation counts. This data is useful for evaluating file-system performance and

determining whether MVFS cache sizes require adjustment.

MVFS CACHE STATISTICS

The –c option reports on the usage of the host’s MVFS caches. This report is cumulative, covering

the entire period since the MVFS was reloaded. The following example covers a 23-day period:

----------------- Fri Jul 16 16:20:16 1999 ---------------------
dnlc: 2267082 2229727(98.4%) hit 1301984 dot 846301 dir 62901 reg 18541 noent

37355(1.6%) miss 25099 events
42761(1.9%) add 27820 dir 7368 reg 7573 noent

attr: 2355186 2349946(99.8%) hit 120 lvut
5240(0.2%) miss (3902cto+0gen+970timo+74new,294ev;35lvut)

 57302 updates 5546unexp+2206exp mod, 2295 vmod

The following sections describe the particular statistics that are useful in tuning MVFS

performance on a ClearCase client host.

Directory Name Lookup Cache (dnlc)

The dnlc section reports on usage of a name-lookup cache that maps pathnames to ClearCase

identifiers. Note that the value precedes the keyword. For example, 1301984 dot means that the

reported value of the "dot" statistic is 1301984.

Cache Hits. The hit line reports on the number of times an entry type was found in the cache

(hit):

Product Command Type

ClearCase command
ClearCase Reference Pages 659

mvfsstat
This cache has low hit rates (around 50%) for activities that walk a large tree—for example, a find
command, or a recursive clearmake that examines many files and determines that nothing needs

to be built.

Cache Misses. The miss line reports on total cache misses. The events value is the number of

cache misses that occurred because of a significant VOB event, a time-out of the entry, or vnode

recycling. Cache misses can occur because there was no entry in the cache. The total number of

cache misses equals the events value plus the number of misses occurring because there was no

entry in the cache.

Cache Additions. The add line reports on cache misses that occurred because a new entry was

being added to the cache. The additions are categorized as directory entries (dir), file entries

(reg), and ENOENT entries (noent).

Attribute Cache

The attr section reports on usage of a cache of object status inquiry records. This cache generally

has hit rates comparable to that for the directory name lookup cache.

OPTIONS AND ARGUMENTS

time
Time in seconds between samples. Display deltas on each sample. If you omit this

option, only the absolute values of all information are printed.

count
Number of samples. If omitted, defaults to “infinite”.

–o outfile
Writes the output to outfile.

–i
Display cleartext I/O counts and wait times.

–I
Display count and wait times for the NT I/O Request Packets that the MVFS has

processed.

–c
Display statistics for the MVFS caches, as described in MVFS CACHE STATISTICS
above.

dot Number of times the current working directory was looked up (always a

cache hit)

dir Number of times a directory object entry was found in the cache.

reg Number of times a file object entry was found in the cache.

noent Number of times a cached File not found (ENOENT) entry was found.
660 ClearCase Reference Manual

mvfsstat
–r
Display MVFS remote-procedure-call (RPC) statistics. These statistics include both

counts and real-time waited. Real-time waited may be greater than 100% of a sample

period in two cases:

In general, real-time percentages are meaningful only when a single process is accessing

a VOB.

–v
Displayscounts of vnode operations.

–V
Displays counts of vfs operations.

–h
Displays an RPC histogram. Cleartext fetch RPCs are tallied separately from all other

RPCs.

–a
Displays auditing statistics.

–l
Adds more detail to the statistics generated by –c, –r, –i, –I, –v, and/or –V, by providing

a breakdown by individual operations. With –c, also provides per-cache-entry hit ratios.

–z
Must be local administrator or a member of the Administrators group. Resets all running

counters to zero.

–A
Displays all statistics.

–d
With –c or –A, displays additional debugging information for use in diagnosing

problems. Use this option only under direction from Rational Technical Support.

SEE ALSO

mvfscache, mvfslog, mvfsstorage, mvfstime, mvfsversion

• When an operation took longer to complete than the sample period; for example,

60 seconds of wait time is recorded in a 30-second sample.

• Multiple processes are waiting at the same time.
ClearCase Reference Pages 661

mvfsstorage
mvfsstorage
Lists data container pathname for MVFS file

APPLICABILITY

SYNOPSIS

• Display pathname of data container:

mvfsstorage [–a | –k | –u] pname ...

• Display help on command options:

mvfsstorage –h

DESCRIPTION

mvfsstorage lists the pathname of an MVFS file’s data container. The pathname may be within

view-private storage, the source pool, or the cleartext pool, depending on the kind of file.

Product Command Type

ClearCase command

For a ... mvfsstorage displays

View-private file (including checked-out

versions, unshared derived objects, and

nonshareable derived objects)

Pathname to the data container in the view’s

private storage area

Version whose element uses a single data

container file

Pathname to the data container in the VOB

cleartext storage pool

NOTE: If you have accessed the version

recently, this is the actual pathname of the data

container. If you have not accessed the version

recently, this is the pathname to which

ClearCase would extract the version.

Version whose element uses a separate data

container file for each version

Pathname to the data container in the VOB

source storage pool
662 ClearCase Reference Manual

mvfsstorage
mvfsstorage is intended for use in finding discrepancies in OS-level access rights between the

view and the underlying MVFS storage. Such discrepancies may occur when you do not have

access rights to the remote underlying storage. If you encounter a permissions error that seems

unfounded, run this utility as a diagnostic and ensure that you have valid access to the remote

storage directory and specifically to the underlying data container pathname.

OPTIONS AND ARGUMENTS

With no options, mvfsstorage displays the pathname in user mode format.

–h
Displays help on command options.

–a
Displays both kernel and UNC/drive letter pathnames.

–k
Displays pathname in kernel mode format, which includes the device name.

–u
Displays the pathname in user mode format. The path is displayed in drive letter form

for local paths and automounted NFS volumes, and in UNC form for remote SMB or

nonautomounted NFS paths.

pname ...

One or more names of files whose pathnames are under a VOB-tag (an MVFS object). For

directories and non-MVFS objects, mvfsstorage echos the pathnames you give it.

EXAMPLES

• For a local view-private file, return data on the file’s underlying storage location.

Z:\myvob\mydir> mvfsstorage util.c
D:\myviews\anneview.vws\.s\0008\016D.2E2F.util.c

• For a remote VOB file, return data on the file’s underlying storage location.

C:\users> mvfsstorage z:\vob1\src\foo.c
\\neon\usr3\vobs\vob1.vbs\c\cdft\24\27\2cf992fb839477d2b77300018909a766

SEE ALSO

mvfscache, mvfslog, mvfsstat, mvfstime, mvfsversion
ClearCase Reference Pages 663

mvfstime
mvfstime
Summarizes MVFS activity while a command is executing

APPLICABILITY

SYNOPSIS
mvfstime [–icrvVhalzAd] [–o outfile] [time] [count] command [args]

DESCRIPTION

The mvfstime command executes a command and prints a report consisting of:

• Timing statistics

• MVFS usage statistics, similar to those generated by mvfsstat.

Use this command to perform timing experiments for applications running in a ClearCase

environment.

IMPORTANT: The statistics gathered while command is running under mvfstime are systemwide

statistics for that time period and are not limited to that command’s activities. To get an accurate

reading of the MVFS activity of command, make sure that no other activity is taking place on the

machine when you invoke mvfstime.

See the mvfsstat reference page for an explanation of MVFS statistics.

OPTIONS AND ARGUMENTS

See the mvfsstat reference page for a description of the command-line options.

EXAMPLES

• Generate timing statistics for an invocation of the omake program.

Product Command Type

ClearCase command
664 ClearCase Reference Manual

mvfstime
G:\smg_bld> mvfstime –iclr omake
copy test.txt test
 1 file(s) copied.
Child process created on 07/19/1999 at 10:52:20.488
Child process ended on 07/19/1999 at 10:52:25.855
time: 0.1u 0.2s 0:05 6%
Directory Name Cache: 102 calls
 88 (86.3%) hit:
 1 current directory
 40/40 directories (100.0%)
 26/30 regular files (86.7%)
 21/28 name not found (75.0%)
 14 (13.7%) miss
 1 event misses
 11 (10.8%) add:
 0 directories
 4 regular files
 7 name not found
Attribute cache: 250 calls
 234 (93.6%) hit: 0 lvut-generated
 16 (6.4%) miss:
 13 close-to-open
 0 build generation mismatch
 0 timed out
 0 new
 3 vob/view event;
 0 lvut also missed
 45 updates
 4 unexpected modifications
 4 expected modifications
 0 VOB/view cache modifications
Cleartext I/O:
 Cleartext layer:
 -------clriotype------calls---c/s------rt--rt/call-rt%
 get 4 0.72 0.010 0.003 0%
 create 2 0.36 0.000 0.000 0%
 read 7 1.27 0.000 0.000 0%
 write 7 1.27 0.000 0.000 0%
 open 13 2.35 0.000 0.000 0%
 clrio total: 33 5.97 0.010 0%

 MVFS layer:
 -------clriotype------calls---c/s------rt--rt/call-rt%--mvfs%
 cto_getattr 13 2.35 0.030 0.002 1%
 read 7 1.27 0.000 0.000 0% 0%
 write 7 1.27 0.000 0.000 0% 0%
ClearCase Reference Pages 665

mvfstime
 get/open/cto 41 7.42 0.060 0.001 1% 60%

Remote calls to view server:
 ----------rpc-------calls---c/s------rt--rt/call
 setattr 5 0.90 0.010 0.002 0%
 create 2 0.36 0.020 0.010 0%
 remove 1 0.18 0.000 0.000 0%
 rename 1 0.18 0.010 0.010 0%
 readdir 8 1.45 0.010 0.001 0%
 chg oid 7 1.27 0.060 0.009 1%
 revalidate 8 1.45 0.010 0.001 0%
 ch mtype 1 0.18 0.010 0.010 0%
 lookup 6 1.09 0.010 0.002 0%
 getattr 16 2.89 0.030 0.002 1%
 rpc total: 55 9.95 0.170 3% 0
retransmissions

RPC handles:
 gets 55
 creates 0 (0% of gets)
 destroys 0
Largest excessive RPC delay: 0 seconds

SEE ALSO

mvfscache, mvfslog, mvfsstat, mvfsstorage, mvfsversion
666 ClearCase Reference Manual

ClearCase Reference Pages 667

mvfsversion

mvfsversion
Displays MVFS version string

APPLICABILITY

SYNOPSIS
mvfsversion [–r] [–s]

DESCRIPTION

The mvfsversion command displays the version string of your host’s MVFS, in RCS or SCCS

format. This string also appears at operating system startup.

OPTIONS AND ARGUMENTS

Default: The MVFS version string is displayed in SCCS format.

–s
Same as default.

–r
Displays the version string in RCS format.

EXAMPLES

• Display the MVFS version string in RCS format.

mvfsversion –r
$Header: MVFS version 4.0 (Jan 29 1999 23:22:23) $

SEE ALSO

mvfscache, mvfslog, mvfsstat, mvfsstorage, mvfstime

Product Command Type

ClearCase command

mvws
mvws
Move or rename current workspace

APPLICABILITY

SYNOPSIS
mvws ws-dir-name

DESCRIPTION

The mvws command changes the name of the current workspace storage directory or moves it to a

new parent directory in the local file system.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE WORKSPACE’S NEW LOCATION. Default: None. You must specify a new location for

the workspace storage directory.

ws-dir-name
If ws-dir-name already exists, it specifies the parent directory into which the workspace

storage directory will be moved. If ws-dir-name does not already exist, it specifies the new

name for the workspace storage directory.

EXAMPLES

• Show a listing of the current workspace, and then move its storage directory to the bin
directory. At an Attache prompt:

lsws

mvws c:\users\jo\bin

lsws

Product Command Type

Attache command

Workspace name Local storage directory Server host

 jed_ws C:\users\jo\jed_ws agora

Workspace name Local storage directory Server host

 jed_ws C:\users\jo\bin\jed_ws agora
668 ClearCase Reference Manual

mvws
• Show a listing of the current workspace, and then rename its storage directory. At an

Attache prompt:

lsws

mvws c:\users\rdc\darren_ws

lsws

SEE ALSO

attache_command_line_interface, mkws, lsws, rmws

Workspace name Local storage directory Server host

 rdc_ws C:\users\rdc\rdc_ws neon

Workspace name Local storage directory Server host

 darren_ws C:\users\rdc\darren_ws neon
ClearCase Reference Pages 669

omake
omake
ClearCase build utility — maintain, update, and regenerate groups of programs

APPLICABILITY

SYNOPSIS
omake [–f makefile ...] [–b builtins-file ...]

[–akinservdphzADGM] [–x file] [-OLWT]
[-EN | -EP | -EO] [-#1] [-#2] [-#4] [-#8]
[macro=value ...] [target_name ...]

DESCRIPTION

omake is a ClearCase utility for making (building) software. It includes many of the

configuration management (CM) facilities provided by the clearmake utility. It also features

emulation modes, which enable you to use omake with makefiles that were constructed for use

with other popular make variants, including Microsoft NMAKE, Borland Make and the PVCS

Configuration Builder (Polymake).

NOTE: omake is intended for use in dynamic views. You can use omake in a snapshot view, but none

of the features that distinguish it from ordinary make programs — build avoidance, build

auditing, derived object sharing, and so on — works in snapshot views. The rest of the

information in this reference page assumes you are using omake in a dynamic view.

omake features a number of ClearCase extensions:

• Configuration Lookup — a build-avoidance scheme that is more sophisticated than the

standard scheme based on the time-modified stamps of built objects. For example, this

guarantees correct build behavior as C-language header files change, even if the header files

are not listed as dependencies in the makefile.

• Derived Object Sharing — developers working in different views can share the files

created by omake builds.

• Creation of Configuration Records — software bill-of-materials records that fully

document a build and support rebuildability; also includes automatic dependency detection.

Related Reference Pages

The following reference pages include information related to omake operations and results:

Product Command Type

ClearCase command
670 ClearCase Reference Manual

omake
See also Building Software with ClearCase.

View Context Required

For a build that uses the data in one or more VOBs, the command interpreter from which you

invoke omake must have a view context—you must be on a drive assigned to a view or the

dynamic-views drive (default: M:\). If you want derived objects to be shared among views, you

should be on a drive assigned to a view.

You can build objects in a standard directory, without a view context, but this disables many of

omake’s special features.

omake AND MAKEFILES

omake is designed to read makefiles in a way that is compatible with other make variants. For

details, see the ClearCase OMAKE Manual.

HOW BUILDS WORK

In many ways, ClearCase builds adhere closely to the standard make paradigm:

1. You invoke omake, optionally specifying the names of one or more targets. (Such

explicitly-specified targets are termed goal targets.)

2. omake reads zero or more makefiles each of which contains targets and their associated build
scripts.

3. omake supplements the makefile-based software build instructions with its own built-in
rules. (And when it runs in a compatibility mode, omake also defines built-in rules specific

to that mode.)

4. For each target, omake performs build avoidance, determining whether it actually needs to

execute the associated build script (“perform a target rebuild”). It takes into account both

source dependencies (“have any changes occurred in source files used in building the target?”)

and build dependencies (“must other targets be updated before this one?”).

The sources can be on the dependency list, or may be detected by omake. A source is a target

or file that must exist and be up-to-date before the target is built. The dependency list is used

clearmake Alternative make utility - provides the same functionality as the

clearmake tool in the UNIX version of ClearCase.

clearaudit Alternative to make utilities, for performing audited builds without

makefiles.

lsdo cleartool subcommand to list derived objects created by omake or

clearaudit.
catcr, diffcr cleartool subcommands to display and compare configuration

records created by omake or clearaudit.
rmdo cleartool subcommand to remove a derived object from a VOB.
ClearCase Reference Pages 671

omake
to make decisions about build ordering (which targets need to be built and in which order).

Detected dependencies (source dependencies detected automatically by omake) are also

used to determine if a DO can be reused or is out of date.

Like detected dependencies, predefined dependencies are used for DO reuse questions, but

they are also used for determining which files should be built and when they should be built.

For example, for a .exe file, you must predefine all the .obj files to ensure that they are built

first; for an .obj file, you list the .c or .cpp files, but header files can be left off and omake still

detects them.

The difference is very important for a first build, when there are no existing DOs and only

the makefile exists to define the dependencies and what target depends on what other target.

5. If it decides to perform a target rebuild, omake executes its build script.

The following sections describe special omake build features in more detail. Figure 12 illustrates

the associated data flow.

Figure 12 Data Flow in an omake Build

CONFIGURATION RECORDS AND DERIVED OBJECTS

In conjunction with the MVFS file system, omake audits the execution of all build scripts,

keeping track of file usage at the OS-system-call level. For each execution of a build script, it

creates a configuration record (CR), which includes the versions of files and directories used in the

build, the build script, build options, (for example, macro assignments) and other related

information. A copy of the CR is stored in the VOB database of each VOB in which the script has

built new objects.

A file created within a VOB by a build script is called a derived object (DO), and it can be shareable

or nonshareable. When a shareable derived object is built in a view, a corresponding VOB

source
data
files

existing

new

configuration
environment

makefile(s)

new

omake

variables

configuration
records

derived
objects

records
672 ClearCase Reference Manual

omake
database object is also created. This enables any view to access and possibly share (subject to

access permissions) any derived object, no matter what view it was originally created in. When

a build tool creates a nonshareable derived object, the tool does not write any information about

the DO to the VOB. Therefore, the DO is invisible to other views and cannot be winked in by

them. Builds that create nonshareable DOs are called express builds. For more information about

using express builds, see Preventing Winkin to Other Views on page 674.

For each build script execution, ClearCase logically associates each DO that was created in that

execution with the build script’s CR.

You can suppress the creation of CRs and derived objects with the –L option and

ClearCase-specific directives. See Building Software with ClearCase for details on CRs and derived

objects, and see the ClearCase OMAKE Manual for information on ClearCase-specific directives.

(Files created in non-VOB directories are not derived objects — see the MVFS FILES AND
OBJECTS OUTSIDE THE MVFS section.)

Configuration Record Hierarchies

A typical makefile has a hierarchical structure. Thus, a single invocation of omake to build a

high-level target can cause multiple build scripts to be executed and, accordingly, multiple CRs

to be created.

CONFIGURATION LOOKUP AND WINKIN

For directory targets, omake uses standard make logic.

When a target names a non-directory file in a VOB, omake (by default) uses configuration lookup
to determine whether a build is required. This involves a comparison of the CRs of existing

derived objects with the current build configuration:

• the versions of elements selected by the view’s config spec

• the build options to be applied, as specified on the omake command line, in the

environment, or in the makefile(s)

• the build script to be executed

In performing configuration lookup, omake considers a DO version (a derived object that has

been checked in as a version of an element) only if the version was created in place. That is, if you

copy a DO to a different location from where it was created and check it in there, omake will not

consider the DO version.

omake first tries to avoid rebuilding by reusing a DO in the current view; this succeeds only if the

CR of the candidate DO matches the current build configuration. For the purpose of rebuilding,

a branch\0 version of a file selected by a view is considered to match its non-zero predecessor

version in a CR.
ClearCase Reference Pages 673

omake
omake can also avoid rebuilding by finding another DO, built in another view, whose CR

matches the current build configuration. In this case, it will winkin that derived object, causing it

to be shared among views. Other derived objects created by the same build script (termed siblings)

are winked in at the same time. omake rebuilds a target only if it is unable to locate any existing

derived object that matches the current build configuration.

NOTE: Certain special targets may prevent winkin even if the build configuration conditions are

exactly the same. For example, if you are using .pdb files in Visual C++, winkin of any target that

has a .pdb for a sibling will not occur, even though all versions of dependencies in the config

record are selected by the view in which the build occurs.

The .cmake.state File

The .cmake.state file is a view-private cache of config records for derived objects built in the view

during a particular build. omake creates this file in the directory that was current when the build

started. During subsequent builds in the view, omake references the file instead of

communicating with the VOB. This makes configuration lookup faster, improving omake
performance.

You can delete .cmake.state files if they get too large. If omake looks for a .cmake.state file and

it doesn’t exist, no errors occur and omake creates a new file.

Suppressing Configuration Lookup

You can override the default configuration lookup behavior with command options and

ClearCase-specific directives (see the ClearCase OMAKE Manual for information on these

directives). For example, –L turns off configuration lookup, basing rebuild decisions on

time-modified stamps, and –W disables winkin of DOs from other views.

Preventing Winkin to Other Views

You can prevent derived objects that you create from being winked in to other views. For more

information, see Working with Derived Objects and Configuration Records in Building Software with
ClearCase.

CACHING UNAVAILABLE VIEWS

When omake shops for a derived object to wink in to a build, it may find DOs from a view that

is unavailable (because the view server host is down, the albd_server is not running on the server

host, and so on). Attempting to fetch the DO’s configuration record from the view causes a long

time-out, and the build may attempt to contact the same view multiple times.

omake maintains a cache of tags of inaccessible views. For each view-tag, omake records the

time of the first unsuccessful contact. Before trying to access a view, omake checks the cache. If

the view’s tag is not listed in the cache, omake tries to contact the view. If the view’s tag is listed

in the cache, omake compares the time elapsed since the last attempt with the time-out period

specified by the CCASE_DNVW_RETRY environment variable. If the elapsed time is greater than the

time-out period, omake removes the view-tag from the cache and tries to contact the view again.
674 ClearCase Reference Manual

omake
NOTE: The cache is not persistent across omake sessions. Each recursive or individual invocation

of omake attempts to contact a view whose tag may have been cached in a previous invocation.

The default time-out period is 60 minutes. To specify a different timeout period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

MVFS FILES AND OBJECTS OUTSIDE THE MVFS

All files with pathnames below a VOB-tag (VOB mount point) are termed MVFS files:

• checked-in versions of file elements (data stored in VOB)

• checked-out versions of file elements (data stored in view)

• other view-private files

• derived objects

Conversely, a non-MVFS object is any file or directory whose pathname is not under a VOB-tag;

such objects are not version controlled. By default, non-MVFS objects are not audited during

omake builds.

OPTIONS AND ARGUMENTS

omake supports the options below. In general, standard make options are lowercase characters;

omake extensions are uppercase. Options that do not take arguments can be ganged on the

command line (for example, –rOi).

–f makefile
Use makefile as the input file. If you omit this option, omake looks for input files named

makefile and Makefile (in that order) in the current working directory. You can use more

than one –f makefile argument pair. Multiple input files are effectively concatenated.

–b file
Specify an initialization (built-ins) file to be read instead of the default. If file is the empty

string, omake does not read an initialization file. Valid empty strings are "–b " (one

space), –b" ", or –b "".

NOTE: If you do not include the –b option, omake uses the file named by the OMAKECFG

environment variable. If this environment variable is not set, omake looks for a file

called make.ini in (in order) the current directory, ccase-home-dir\bin, and in directories

specified by the INIT environment variable.

–a
Rebuild all goal targets specified on the command line, along with the recursive closure

of their dependencies, regardless of whether or not they need to be rebuilt.
ClearCase Reference Pages 675

omake
–k
Abandon work on the current entry if it fails, but continue on other targets that do not

depend on that entry.

–i
Ignore error codes returned by commands.

–n
(no-execute) List command lines from the makefile for targets which need to be rebuilt,

but do not execute them. Even lines beginning with an at-sign (@) character are listed.

To override this option for a recursive make, use the .MAKE target attribute. For

example:

nt .MAKE :
cd nt.dir & $(MAKE) $(MFLAGS)

Typing the command omake –n nt does a cd nt.dir , then a recursive make with omake

–n . Without the .MAKE attribute, omake would display but not execute the (cd nt.dir &
$(MAKE) $(MFLAGS) line.

–s
(silent) Do not list command lines before executing them.

–e
Environment variables override macro assignments within the makefile. (But

macro=value assignments on the command line override environment variables.)

–r
Do not use the built-in rules.

–v
(verbose) Slightly more verbose than the default output mode. Particularly useful

features of verbose mode include:

–d
(debug) Quite verbose; appropriate only for debugging makefiles.

–p
Lists all target descriptions and all macro definitions, including target-specific macro

definitions and implicit rules.

• listing of why omake does not reuse a DO that already appears in your view (for

example, because its CR does not match your build configuration, or because

your view does not have a DO at that pathname)

• listing of the names of DOs being created
676 ClearCase Reference Manual

omake
–h
Displays the command-line syntax.

–x file
Redirects error messages into file. If file is “ -” , the error messages are redirected to

standard output.

–z
Ignore the MFLAGS macro.

–A
Use automatic dependencies. This option is enabled only if you are not using

configuration lookup (because you are processing non-MVFS files or using the –W
option).

–D
Keep-directory mode. The first access of a directory to look for a file results in the

directory being read into memory.

–G
Restricts dependency checking to makefile dependencies only — those dependencies

declared explicitly in the makefile or inferred from an inference rule. All detected
dependencies are ignored. For safety, this automatically disables winkin of DOs from other

views; it is quite likely that other views select different versions of detected

dependencies.

For example, a derived object in your view may be reused even if it was built with a

different version of a header file than is currently selected by your view. This option is

mutually exclusive with –W.

–M
Makes the makefile before reading it.

–EN
Emulates Microsoft NMAKE utility.

–EP
Emulates PVCS Configuration Builder (PolyMake) utility.

–EO
Default emulation mode (that is, no emulation).

For details on emulation features, see the ClearCase OMAKE Manual.

–O
–L (mutually exclusive)

–O compares only the names and versions of objects listed in the targets’ CRs; it does
ClearCase Reference Pages 677

omake
not compare build scripts or build options. This is useful when this extra level of

checking would force a rebuild that you do not want. Examples:

–L makes rebuild decisions using the standard algorithm, based on time-modified

stamps; configuration lookup is disabled. Also suppresses creation of configuration

records. All MVFS files created during the build will be view-private files, not derived

objects.

–W
Restricts configuration lookup to the current view only. Winkin of DOs from other views

is disabled.

–T
Examines sibling derived objects (objects created by the same build rule that created the

target) when determining whether a target object in a VOB can be reused (is up to date).

By default, when determining whether a target can be reused, omake ignores

modifications to sibling derived objects. –T directs omake to consider a target out of date

if its siblings have been modified or deleted.

–#1
Read-time debugging mode. Displays omake reading makefiles and interpreting

conditional directives.

–#2
Displays a warning when omake tries to expand the value of an undefined macro.

–#4
Displays a warning when omake reads a makefile line that it can’t understand.

–#8
Do not delete generated response files and batch files.

MAKE MACROS AND ENVIRONMENT VARIABLES

String-valued variables called make macros can be used anywhere in a makefile: in target lists, in

dependency lists, and/or in build scripts. For example, the value of make macro CFLAGS can be

incorporated into a build script as follows:

cl $(CFLAGS) msg.c

• The only change from the previous build is the setting or canceling of a

“compile-for-debugging” option.

• A target was built using a makefile in the current working directory. Now, you

want to reuse it in a build to be performed in the parent directory, where a

different makefile builds the target (with a different script, which typically

references the target using a different pathname).
678 ClearCase Reference Manual

omake
Conflict Resolution

Conflicts can occur in specifications of make macros and environment variables. For example,

the same make macro might be specified both in a makefile and on the command line; or the

same name might be specified both as a make macro and as an environment variable.

omake resolves such conflicts similarly to other make variants:

• Make macros specified on the command line override any other settings.

• Make macros specified in a makefile or make.ini file have the next highest priority.

• Builtin macros override EVs, which in turn have the lowest priority.

Using the –e option changes the precedence rules — EVs get higher priority than make macros

specified in a makefile.

CONFLICT RESOLUTION DETAILS. The following discussion treats this topic more precisely (but

less concisely).

omake starts by converting all EVs in its environment to make macros. These EVs will also be

placed in the environment of the command interpreter process in which a build script executes.

Then, it adds in the make macros declared in the makefile. If this produces name conflicts, they

are resolved as follows:

• If omake was not invoked with the –e option, the make macro wins: the macro value

overwrites the EV value in the environment.

• If omake was invoked with the –e option, the EV wins: the EV value becomes the value of

the make macro.

Finally, omake adds make macros specified on the command line; these settings are also added

to the environment. These assignments always override any others that conflict.

omake reads the following environment variable at startup:

CCASE_AUDIT_TMPDIR (or CLEARCASE_BLD_AUDIT_TMPDIR)

Sets the directory where omake creates temporary build audit files. If this variable is not

set, omake creates these files in %tmp%. All temporary files are deleted when omake
exits. CCASE_AUDIT_TMPDIR must not name a directory under a VOB-tag; if it does,

omake prints an error message and exits.

BUILD REFERENCE TIME AND BUILD SESSIONS

omake takes into account the fact that software builds are not instantaneous. As your build

progresses, other developers can continue to work on their files, and may check in new versions

of elements that your build uses. If your build takes an hour to complete, you would not want

build scripts executed early in the build to use version 6 of a header file, and scripts executed
ClearCase Reference Pages 679

omake
later to use version 7 or 8. To prevent such inconsistencies, omake locks out any version that

meets both these conditions:

• The version is selected by a config spec rule that includes the LATEST version label.

• The version was checked in after the time the build began (the build reference time).

This reference-time facility applies to checked-in versions of elements only; it does not lock out

changes to checked-out versions, other view-private files, and non-MVFS objects. omake
automatically adjusts for the fact that the system clocks on different hosts in a network may be

somewhat out of sync (clock skew).

For more information, see Pointers on Using ClearCase Build Tools in Building Software with
ClearCase.

EXIT STATUS

omake returns a zero exit status if all goal targets are successfully processed. It returns various

nonzero exit status values when the build is not successful. See the ClearCase OMAKE Manual.

EXAMPLES

• Build target hello.exe without checking build scripts or build options during configuration

lookup. Be moderately verbose in generating status messages.

> omake –v –O hello.exe

• Build the default target in the default makefile, with a particular value of make macro

INCL_DIR.

> omake INCL_DIR=c:\src\include_test

• Build target bgrs.exe, restricting configuration lookup to the current view only. Have

environment variables override makefile macro assignments.

> omake –e –W bgrs.exe

• Unconditionally build the default target in a particular makefile, along with all its

dependent targets.

> omake –a –f project.mk

FILES

ccase-home-dir\bin\builtins.cb
ccase-home-dir\bin\builtins.nm
ccase-home-dir\bin\make.ini

SEE ALSO

Building Software with ClearCase, ClearCase OMAKE Manual, clearmake, clearaudit, cleartool,
config_spec, promote_server, scrubber
680 ClearCase Reference Manual

pathnames_ccase
pathnames_ccase
Pathname resolution, dynamic view context, and extended namespace

APPLICABILITY

SYNOPSIS

• VOB-extended pathname:

• Absolute VOB pathname (dynamic views only):

\vob-tag\pname-in-vob

• View-extended pathname (dynamic views only):

drive-letter:\view-tag\vob-tag\pname-in-vob

DESCRIPTION

This reference page describes ClearCase and ClearCase LT extensions to the standard

file/directory namespace provided by the operating system. These extensions can be used as

follows:

• From a dynamic view, you can use the pathname forms described here as arguments to any

cleartool command that takes a pathname.

• From a snapshot view, you can use the VOB-extended pathname forms as arguments to those

cleartool commands that return information about elements and versions (for example,

describe, ls, lshistory, and diff). Such operations do not require the MVFS. However, you

cannot use VOB-extended pathnames forms to check out an element version that is not

loaded into your view.

NOTE: cleartool is case-sensitive. In cleartool subcommands, pathnames to MVFS objects,

including view-private files in the MVFS namespace, must be case-correct.

Product Command Type

ClearCase general information

ClearCase LT general information

Element: element-pname@@
Branch: element-pname@@branch-pname
Version: element-pname@@version-selector
VOB symbolic link: link-pname
Derived object: derived-object-pname@@derived-object-ID
ClearCase Reference Pages 681

pathnames_ccase
DYNAMIC VIEW CONTEXTS

A pathname can access ClearCase or ClearCase LT data only if it has a view context:

• WORKING DIRECTORY VIEW CONTEXT — You can change the current working directory of a

process to a view-extended pathname:

% cd \view\david\vobs\proj

Such a process is said to have a working directory view context.

• VIEW-EXTENDED PATHNAME — A pathname can specify its own view context, regardless of

the current working directory view context, if any.

DYNAMIC VIEW ACCESS MODEL

All ClearCase data is accessed through the MVFS, which, by default, occupies drive M: on each

ClearCase host. Each active view’s view-tag appears in the root directory of M:, and each active
VOB’s VOB-tag appears as a subdirectory under each active view.

See Figure 13.

Figure 13 ClearCase MVFS Namespace

From the M: drive, you can access VOBs using view-specific pathnames of the form

\view-tag\vob-tag\pname-in-vob. Typically, however, you do not work directly on the M: drive,

but on a drive you have assigned to a view.

Figure 14 shows how the MVFS namespace looks from a drive assigned to a view with the net
use command or by clicking Tools>Map Network Drive in Windows Explorer.

M: ...

MVFS

Active
View-tags

Active
VOB-tags

...F:E:

\view1 \view2 \view3

\vob1
\vob2

\vob3

...

\vob1
\vob2

\vob3 \vob1
\vob2

\vob3

Z:Y:
682 ClearCase Reference Manual

pathnames_ccase
Figure 14 The MVFS Namespace from a Drive

From any drive, you can specify view-extended pathnames of the form

M:\viewtag\vobtag\rest-of-path. If you move to the M: drive, you are in view-extended namespace,

and all VOB access is via view-extended pathnames.

To eliminate any confusion that msy result from unintentional use of view-extended pathnames,

we recommend that you work from a drive letter assigned to a view. This permits you to use VOB

pathnames of the form \myvob\vob-object-pname in both cleartool and standard operating

system commands, from any view. Furthermore, this approach is required if you want to share

DOs between views at build time.

KINDS OF PATHNAMES

The following sections describe the kinds of pathnames you can use with ClearCase and

ClearCase LT.

Standard Pathnames

A standard pathname is either full or relative:

• A full pathname begins with an optional drive letter and a backslash (DRIVE:\, or just \).

The following full pathnames all refer to the same VOB object, main.c, using view1. The

element main.c resides in a vob with VOB-tag \vob3.

M:\view1\vob3\src\main.c
\view1\vob3\src\main.c (current drive is M:)
Z:\vob3\src\main.c (Z: assigned to M:\view1)
\vob3\src\main.c (current drive is Z:)

Full pathnames to non-VOB objects:

m: ...

MVFS

Active
Views

Active
VOBs

...f:e:

anne view2 main

vob1
vob2

vob3

...

vob1
vob2

vob3 vob1
vob2

vob3

z:

y:

net use z: \\view\anne

(Z: assigned to M:\anne)

vob1
vob2

vob3

z:
ClearCase Reference Pages 683

pathnames_ccase
C:\users\anne\bin\myperl.exe
Z:\vob3\src\viewPriv.c (view-private file: an MVFS object, but not in a VOB)
\users\anne (current drive is C:)

• A relative pathname does not begin with a backslash character, nor with DRIVE:\:

main.c
..\src\main.c
Z:main.c

A standard pathname can reference any kind of file system object. Typically, you use the net use
command or click Tools > Map Network Drive in Windows Explorer to set a working view

(myview, for example), and then work from the drive assigned to M:\myview. In this case, a

pathname like \vob1\proj\bar references “file system object named bar, as seen through the

current view.” The referenced object can be any of the following:

• VERSION — If BAR names an element, the pathname references the version of that element

selected by the current view’s config spec.

• VOB SYMBOLIC LINK — BAR can name a VOB symbolic link that is visible in the current

view. Depending on the command, the link may or may not be traversed.

• DERIVED OBJECT — BAR can name a derived object that was built in the current view or was

winked in to the view.

• VIEW-PRIVATE OBJECT — BAR can name a view-private object (including a checked-out

version) located in the current view’s private storage area.

• NON-MVFS OBJECT — BAR can name an object that is not under ClearCase or ClearCase LT

control, such as objects in your home directory or on other machines (for example,

\\hyperion\c\misc\files.txt.

Using standard pathnames to reference MVFS objects is termed transparency: a view’s

view_server process resolves the standard pathname into a reference to the appropriate MVFS

object. In essence, transparency makes a VOB appear to be a standard directory tree.

NOTE: Most ClearCase and ClearCase LT utilities, including cleartool, accept a slash (/) or

backslash (\) as pathname separators. That is, the following pathnames, when used as

arguments to ClearCase or ClearCase LT programs, are equivalent:

Z:\myvob\src\test.h
Z:/myvob/src/text.h

Absolute VOB Pathnames

An absolute VOB pathname is full pathname that starts with a VOB-tag.

Z:\myvob\src\main.c (full pathname to VOB object—Z: drive assigned to some view)

\myvob\src\main.c (absolute VOB pathname— begins with a VOB-tag (\myvob)
684 ClearCase Reference Manual

pathnames_ccase
Absolute VOB pathnames are legal only if the current drive is assigned to a view. (Manually

attaching a drive letter to M:\view-tag with the subst command also enables absolute VOB

pathnames.) This form of pathname is commonly used in config specs (see config_spec), and it

is also the form in which configurations records store references to MVFS objects.

Extended Pathnames

The MVFS supports two kinds of extensions to the standard pathname scheme:

• You can add a view-tag prefix to any MVFS object pathname, turning it into a view-extended
pathname:

M:\dri_view\proj_vob\foo.c (view-extended full pathname)
\dri_view\proj_vob\foo.c (view-extended full pathname; M: is the current drive)

• In certain situations, a relative pathname can include a view specification:

..\..\dri_view\proj_vob\foo.c (view-extended relative pathname)

• You can add characters to the end of a relative or full pathname, turning it into a

VOB-extended pathname. VOB-extended pathnames that specify versions of elements are the

most commonly used; they are termed version-extended pathnames.

foo.c@@\main\12 (version-extended pathname)

\proj_vob\foo.c@@\main\bugfix\4 (version-extended pathname)

foo.c@@\RLS4.3 (version-extended pathname)

foo.c@@\main (VOB-extended pathname to a branch)

foo.c@@ (VOB-extended pathname to an element)

hello.o@@15-Sep.08:10.439 (VOB-extended pathname to a derived object)

VIEW-EXTENDED PATHNAMES

A view-extended pathname is a standard pathname that references a VOB object or view-private

object via a specific view. For example, M:\dri_view\proj_vob\BAR references file-system

object named BAR, as seen through view dri_view. A view-extended pathname can access any

kind of file-system object, as described in Standard Pathnames on page 683.

NOTE: In general, you perform ClearCase and ClearCase LT operations in a view, on a drive

assigned to a view with the net use command. It is rare to work directly on drive M:. It is common

to use view-extended pathnames that include the M:\view-tag prefix. If you work directly on M:,

you are in view-extended namespace.

The MVFS Directory / View-Tags

Most view-extended pathnames are full pathnames that begin with the view-tag of a particular

view. Unless you are working explicitly on M:, the view-extended pathname also includes the M:
prefix. Each view is made accessible to standard programs and ClearCase programs through a
ClearCase Reference Pages 685

pathnames_ccase
view-tag entry on the dynamic-views drive, M:. No standard command or program can modify

the dynamic-views drive’s root directory. Only a few ClearCase commands use or modify it:

mkview, mktag, rmtag, rmview, startview.

SYMBOLIC LINKS AND THE VIEW-EXTENDED NAMESPACE

Pathnames are resolved component-by-component by the operating system kernel and the

MVFS. When a VOB symbolic link is traversed, a full pathname needs a view context to access

ClearCase data. Thus, a symbolic link whose text is an absolute VOB pathname such as

\aardvark -> \all_projects\aardvark

is interpreted in the current view context. If the process has no view context (the current drive is

not assigned to M:\some-view-tag), traversing such a symbolic link will fail.

VOB-EXTENDED PATHNAMES

The transparency feature enables you to use standard pathnames to access version-controlled

data; the view_server does the work of locating the data. But you can also bypass transparency

and do the work yourself:

• You can access any version of an element by using its version-ID, which specifies its exact

version-tree location:

sort.c@@\main\bugfix\4

• If a version has been assigned a version label, you can access it using the label:

Typically, you can use the label, without having to specify the branch on which the labeled

version resides; see Version Labels in Extended Namespace.

• You can access any element object or branch object directly:

• You can access any derived object directly, regardless of the view it was created in:

The pathnames in the above examples are termed VOB-extended pathnames. A VOB’s

file/directory namespace is extended in two ways from the standard namespace: one extension

enables direct access to elements, branches, and versions; the other enables direct access to

sort.c@@\main\bugfix\RLS_1.3 (branch and version label)
sort.c@@\RLS_1.3 (version label only)

sort.c@@ (element object)
sort.c@@\main (branch object)
sort.c@@\main\bugfix (branch object)

sort.obj@@13-Aug.09:45.569 (derived object created on 13-Aug)
sort.obj@@23-Sep.19:09.743 (derived object created on 23-Sep)
686 ClearCase Reference Manual

pathnames_ccase
derived objects. Both extensions allow you to access objects not visible in your own view (and

perhaps not currently visible in any other view, either).

Extended Namespace for Elements, Branches, and Versions

An element’s version tree has the same form as a standard directory tree (see Figure 15).

Component of
Version Tree

Component of Directory Tree in Extended Namespace

element Root of tree: The element itself appears to be a directory, which

contains a single subdirectory, corresponding to the main branch. (It

can also contain some version label; see Version Labels in Extended
Namespace.)

branch Subdirectory: Each branch appears to be a directory, which contains

files (individual versions and version labels), directories

(subbranches), and links (version labels).

version Leaf name: Each version appears to be a leaf of a directory tree. For a

file element, the leaf contains text lines or binary data, and can be

processed with standard commands like type, comp, and fc. For a

directory element, the leaf contains a directory structure, and can be

processed with standard commands like dir and cd.
ClearCase Reference Pages 687

pathnames_ccase
Figure 15 Version Tree and Extended Namespace

Accordingly, any location within an element’s version tree can be identified by a pathname in

this extended namespace:

Extended Naming Symbol

The previous pathname examples incorporate the extended naming symbol (@@). This symbol is

required to effect a switch from the standard file/directory namespace to the extended

element/branch/version namespace. There are two equivalent ways to think of @@

• When appended to the name of any element, the extended naming symbol turns off

transparency (automatic version-selection). Thus, you must specify one of the element’s

versions explicitly.

sort.c@@ (specifies an element)
sort.c@@\main (specifies a branch)
sort.c@@\main\branch1 (specifies a branch)
sort.c@@\main\branch1\2 (specifies a version)
doctn\.@@\main\3 (special case: extra component is required in VOB’s

top-level directory)

main

branch2

branch1

main

branch1 branch2
688 ClearCase Reference Manual

pathnames_ccase
• The extended naming symbol is part of an element’s official name. For example, foo.c is the

name of a version (the particular version that appears in the view); foo.c@@ is the name of

the element itself.

NOTE: The establishment of @@ as the extended naming symbol occurs at system startup time

with a file system table entry. Thus, different symbols may be used on different hosts.

Version Labels in Extended Namespace

Version labels appear in the extended namespace as additional files. If version \main\4 of an

element is labeled RLS_1, the extended namespace directory corresponding to the element’s

main branch lists both 4 and RLS_1:

Z:\myvob\src> dir sort.c@@\main
11/10/98 05:34p 1846 4

...
11/10/98 05:34p 1846 RLS_1

If the label type was created with the once-per-element restriction, an additional entry for the

labeled version appears in the element’s top-level directory:

Z:\myvob\src> dir sort.c@@
11/10/98 05:34p 1846 RLS_1

In this case, all the following are equivalent extended pathnames to the labeled version:

sort.c@@\RLS_1 (version label at top level of element)
sort.c@@\main\4 (version-ID)
sort.c@@\main\RLS_1 (version label at branch level)

(The once-per-element restriction is the mklbtype default. A mklbtype –pbranch command

creates a label type that can be used once on each branch of an element.)

Pathnames Involving More Than One Element

A VOB can implement a deep directory structure. Thus, a pathname can involve several

elements. For example:

\proj_vob\src\include\sort.h

If proj_vob is the VOB’s root directory element, then src and include also name directory

elements, and sort.h names a file element.

After a pathname crosses over into the extended namespace with @@, you must specify a version

for each succeeding element in the pathname. For example:

\proj_vob\src\include@@\main\4\sort.h\main\LATEST

To automatically select versions for elements proj and src: cross over to extended namespace at

directory element include, specifying a version of include and a version of sort.h:
ClearCase Reference Pages 689

pathnames_ccase
\proj_vob\src@@\RLS_1\include\RLS_1\sort.h\RLS_1

To automatically select versions for element proj only: cross over to extended namespace at

directory element src, specifying the version labeled RLS_1 of each succeeding element:

\proj_vob@@\main\1\src\main\4 (invalid)
\ proj_vob\.@@\main\1\src\main\4 (valid)

SPECIAL CASE: When crossing over into extended namespace at the VOB root directory (that is, at

the VOB-tag or VOB mount point), you must use \.@@ instead of @@.

The extended naming symbol need be used only once in a pathname, to indicate the crossover

into extended namespace. You can, however, append it to any element name:

\proj_vob\src@@\RLS_1\include@@\RLS_1\sort.h@@\RLS_1

Reading and Writing in the Extended Namespace

A VOB-extended pathname references an object in a VOB database. The reference can either read

or write the database—that is, either query metadata or modify metadata:

Z:\myvob> cleartool mklabel RLS2.1 util.c@@\RLS2.0 (attach an additional label to a version)
Z:\myvob> cleartool rmattr BugNum util.c@@\main\3 (remove an attribute)

For a version, an extended pathname can also read the version’s data, but cannot write or delete

it:

Z:\myvob\src> find "env" util.c@@\main\rel2_bugfix\1 (valid)
Z:\myvob\src> del util.c@@\main\rel2_bugfix\1 (invalid)

Access is denied.

Extended Namespace for Derived Objects

The extended namespace allows multiple derived objects to exist at the same standard

pathname. Multiple versions of an element also exist at the same standard pathname, but the two

extensions work differently. Derived objects created at the same location are distinguished by

their unique derived object identifiers, or DO-IDs:

sort.obj@@14-Sep.09:54.418
sort.obj@@13-Sep.09:30.404
sort.obj@@02-Sep.16:23.353
.
.
.

An extended name provides access only to the derived object’s metadata in the VOB database—

principally, its configuration record. DO-IDs can be used only with ClearCase commands; they

cannot be used in non-ClearCase programs (for example, editors or compilers).
690 ClearCase Reference Manual

pathnames_ccase
Navigating the VOB-Extended Namespace

You can use standard directory-navigation commands (for example, cd and dir) in a VOB’s

extended namespace. For example, these are two equivalent ways to display the contents of an

old version:

• Use a version-extended pathname from a standard directory:

Z:\myvob\src> type util.c@@\main\rel2_bugfix\1

• Change to branch “directory” in the VOB-extended namespace, and then display the

version:

Z:\myvob\src> cd util.c@@\main\rel2_bugfix

Z:\myvob\src> type 1

In VOB-extended namespace, elements and branches are directories; you can change to such

directories with cd; you can lists their contents—branches and versions—with dir.

You can access versions of file elements as ordinary files, with type, comp, and so on—even

executing versions that happen to be compiled programs or scripts.

SPECIAL “@@” VIEW-TAGS VISIBLE ON M:. When you activate a view, a subdirectory, view-tag,

appears on the M: drive for that view. If you enter version-extended namespace while in that

view, a parallel subdirectory, view-tag@@, also appears on M:. For example:

C:\> net use f: \\view\myview
...

C:\> dir M:\
11/15/98 10:24p <DIR> myview

C:\> f:
F:\> cd \dev\lib@@
F:\dev\lib@@> dir M:
11/15/98 10:24p <DIR> myview
11/15/98 10:24p <DIR> myview@@

SEE ALSO

query_language, version_selector, wildcards_ccase
ClearCase Reference Pages 691

permissions
permissions
Permissions checking

APPLICABILITY

DESCRIPTION

In general, only commands that modify (write to) a VOB are subjected to permissions checking.

The following hierarchy (in order from most privileged to least privileged) is used, in a

command-specific manner, to determine whether a command can proceed or be canceled:

• member of the ClearCase group (ClearCase), or local administrator of the ClearCase LT

server host (ClearCase LT)

NOTE: We strongly recommend that you do not make ordinary ClearCase users members of

the ClearCase group, nor allow ClearCase LT users to become the local administrator at the

ClearCase LT server host. ClearCase grants these identities special administrative privileges

(for example, the ability to delete elements without being the owner of the element or VOB).

If you need this special access in ClearCase, do one of the following:

• Log on to a user account that is a member of the ClearCase group. You can either create

a new ClearCase account that is a member of the ClearCase group or add an existing

account (such as the account of your VOB administrator) to the ClearCase group.

• Log on as the ClearCase ALBD user (typically named clearcase_albd), which is already

a member of the ClearCase group.

• VOB owner

• Owner of the relevant element (for modifications to branches and versions)

• Owner of the relevant type object (for modifications to objects of that type)

• Creator of a version or derived object

• Owner of the object (pool, hyperlink, replica, activity, checkpoint, domain, role, state, user)

• User associated with an event

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

MultiSite general information
692 ClearCase Reference Manual

permissions
• Members of an object’s group (same group-ID)

For example, a member of the ClearCase group (ClearCase) and the local administrator of the

ClearCase LT server host (ClearCase LT) always have permission to use commands that modify

a VOB. However, if you try to modify an element that you do not own, and you are not the VOB

owner or a member of the ClearCase group or the local administrator of the ClearCase LT server

host, the command fails.

Both file-system and non-file-system objects have an owner and a group; this information is

stored with the object. When an object is created, its owner and group are set to that of the user

who created it. Use the protect command to change the owner (–chown) or group (–chgrp) of the

object. The describe command displays the owner and group of the object.

The scheduler maintains its own access control list (ACL),which determines who is allowed

access to the scheduler and to the ACL itself. See the schedule reference page for more

information.

The reference page for a command lists the permissions required to use the command.

The sections below list all cleartool subcommands and Attache commands, categorized by their

permissions requirements.
ClearCase Reference Pages 693

permissions
None

annotate

catcr

catcs

cd

checkvob (except

with –fix or –hlink)

describe

diff

diffcr

dospace 1

edcs

endview (except with

-server)

file

find

findmerge 2

get

getcache

getlog

help

hostinfo

import 3

ln 4

ls

lsactivity

lscheckout

lsclients

lsdo

lshistory

lslocal

lslock

lsmaster

lspool

lsprivate

lsregion

lsreplica

lssite

lsstgloc

lstype

lsview

lsvob

lsvtree

lsws

make

man

mkattype 5

mkbrtype 5

mkdir 4

mkelem 4

mkeltype 5

mkhltype 5

mklbtype 5

mkregion

mkstgloc

mktag 6

mkview 7

mkvob 7

mkws

mount

mv 4

mvws

put

pwd

pwv

quit

recoverview

reformatview

register

reqmaster
(requesting

mastership only) 9

rmname 4 8

rmregion

rmstgloc

rmtag

rmws

setcs

setsite

setws

shell

space 1

startview

umount

unregister

update

winkin

wshell
1 Except with –update or –generate
2 No permissions required for “search” functionality
3 For created elements only
4 One or more directory elements must be checked out
5 Except with –replace
6 Except for private VOB-tag
7 tandard Windows NT ACL permissions for creating a subdirectory required
8 Except with –nco
9 Must be on ACL at master replica
694 ClearCase Reference Manual

permissions
one of: element group member, element owner, VOB owner, member of the ClearCase group;
(for commands that operate on objects) object group member, object owner , VOB owner, member of the
ClearCase group

one of: version creator, element owner, VOB owner, member of the ClearCase group

one of: element owner, VOB owner, member of the ClearCase group

one of: user associated with event, object owner, VOB owner, member of the ClearCase group

chevent

one of: branch creator, element owner, VOB owner, member of the ClearCase group

one of: type owner, VOB owner, member of the ClearCase group

one of: pool owner, VOB owner, member of the ClearCase group

one of: DO group member, DO owner, VOB owner, member of the ClearCase group

rmdo

checkout

checkvob –hlink

import 1

merge 2

mkattr

mkbranch

mkhlink

mklabel

mktrigger

reserve

rmattr

rmhlink

rmlabel

rmmerge

rmtrigger

unreserve
1 For checked-out directories only
2 Applies to creation of merge arrows only, not to data

checkin

rmver

uncheckout

chtype (element)

lock (element)

rmelem

unlock (element)

chtype (branch)

lock (branch)

rmbranch

unlock (branch)

lock (type object)

mkattype –replace

mkbrtype –replace

mkeltype –replace

mkhltype –replace

mklbtype –replace

mktrtype –replace

rename (type object)

rmtype

unlock (type object)

rename (pool) rmpool
ClearCase Reference Pages 695

permissions
NOTE: Only the VOB owner and members of the ClearCase group can delete a shared derived

object.

one of: view owner, member of the ClearCase group

one of: owner, VOB owner, member of the ClearCase group

one of: VOB owner, member of the ClearCase group

VOB owner

mktag (private VOB-tag) view owner

chview

member of the ClearCase group

same permissions as for creating the type object with a mk**type command

cptype

permissions controlled by the scheduler ACL

endview -server

rmview

setcache –view

space –view –generate

chmaster

chuser

protect

checkvob –fix

chpool

dospace –generate

ln –nco

lock (pool or VOB)

mkpool

mktrtype 1

protectvob2

reformatvob

relocate

reqmaster (to set access controls)

rmname –nco

rmvob

space –vob –generate

unlock (pool or VOB)

1 except with –replace
2 local administrators can also run this command

setcache –host setcache –mvfs

dospace –update

schedule

space –update
696 ClearCase Reference Manual

permissions
SEE ALSO

Reference pages for individual commands
ClearCase Reference Pages 697

profile_ccase
profile_ccase
cleartool user profile: .clearcase_profile

APPLICABILITY

SYNOPSIS

command_name flag
.
.
.

DESCRIPTION

The cleartool user profile (.clearcase_profile) is an ordered set of rules that determine certain

command option defaults for one or more cleartool commands. An option you supply in a

command line overrides the command option default specified in .clearcase_profile.

For example, many cleartool commands accept user comments with the –c, –cfile, –cq, –cqe, or

–nc option. If you specify none of these options, cleartool invokes one of them by default. The

option invoked varies from command to command, but is always one of –cq, –cqe, or –nc. If

cleartool finds a file named .clearcase_profile in your home directory, it checks to see whether it

contains a comment rule that applies to the current command. If so, it invokes the comment

option indicated by that rule. No error occurs if this file does not exist; cleartool invokes the

command’s standard comment default.

An alternate name for the user profile can be specified with the environment variable

CLEARCASE_PROFILE. Its value should be a full pathname.

HOW cleartool SELECTS A RULE

For a given command, cleartool consults the user profile to determine which rule, if any, applies

to a command. The method is similar to the one used by the view_server process to evaluate a

config spec:

• cleartool examines the first rule in the user profile and decides whether it applies to the

specified command.

• If the rule does not apply, cleartool goes on to the next rule in the file; it repeats this step for

each succeeding rule until the last.

Product Command Type

ClearCase data structure

ClearCase LT data structure
698 ClearCase Reference Manual

profile_ccase
• If no rule applies, cleartool invokes the standard default for the command option.

cleartool uses the first rule that applies. Therefore, the order of rules in the user profile is

significant. For example, to ensure that you are always prompted for a comment when you create

a directory element, you must place a rule for the mkdir command before any more general rule

that may also apply to mkdir, such as * –nc.

RULE SYNTAX

Rules must be placed on separate lines. Extra white space (space, tab) is ignored.

Comments begin with a number sign (#). For example:

#element rules
mkelem -cqe #prompt for comment for each new element being created

Each rule consists of two tokens, separated by white space:

command_name flag

COMMENT RULES

When specifying a comment rule:

• command_name must be one of these or an asterisk (*), which matches all of them:

• flag must be one of these: –nc, –cqe, –cq. The –c and –cfile options are not valid here.

If you do not provide a comment rule for one of these commands, cleartool uses –cqe as its

default comment option. cleartool uses –nc as the default for all other commands that accept

comments.

RULES FOR CHECKED-OUT VERSION STATES

When specifying a rule for the state of a checked-out version:

• command_name must be checkout.

• flag must be -reserved or -unreserved.

If one rule only is specified, all checkouts are reserved or unreserved by default. If the rules are

specified as

checkout -reserved
checkout -unreserved

checkin

checkout

mkattype

mkbrtype

mkdir

mkelem

mkeltype

mkhltype

mklbtype

mkpool

mktrtype

mkvob
ClearCase Reference Pages 699

profile_ccase
then a reserved checkout is attempted. If there is a conflict, an unreserved checkout is performed.

RULE FOR INTERACTIVE RESOLUTION OF CHECKOUT PROBLEMS

When specifying the rule for the interactive resolution of checkout problems:

• command_name must be checkout.

• flag must be -query.

When this rule is specified, you are queried about how to proceed when checkout encounters

certain kinds of checkout problems.

EXAMPLES

• Never prompt for a comment.

* –nc

• During a checkin operation, prompt for a comment for each element. During a make

directory operation, prompt for a single comment to be applied to all the new directories. In

all other cases, do not prompt at all.

• Make all checkouts unreserved.

checkout -unreserved

• Ask how to proceed in the event of a checkout problem.

checkout -query

SEE ALSO

checkout, cleartool, comments, config_spec

checkin –cqe
mkdir –cq
* –nc
700 ClearCase Reference Manual

ClearCase Reference Pages 701

promote_server

promote_server
Changes storage location of derived object data container

APPLICABILITY

SYNOPSIS

Invoked by clearmake, omake, or winkin, if necessary, when it winks in a derived object

DESCRIPTION

NOTE: Never run promote_server manually. It must be invoked only by clearmake or omake. See

the view_scrubber reference page for information on transferring a derived object’s data

container to VOB storage.

The promote_server program migrates a derived object’s data container file from private storage

to shared storage. When clearmake or omake winks in a derived object (DO) that was previously

unshared, it invokes promote_server to copy the data container file from view-private storage to

a VOB storage pool.

NOTE: clearmake or omake also migrates a DO’s configuration record from private storage to

shared storage at the same time. This work is performed by clearmake or omake itself, not by

promote_server.

The destination storage pool is determined by the DO’s pathname. By definition, this pathname

is under a VOB-tag; that is, the DO is in some VOB directory. The DO storage pool to which the

directory element is assigned is the destination of the promotion.

clearmake or omake invokes promote_server by making a request to the ClearCase master

server, albd_server. promote_server runs as user clearcase, guaranteeing read access to the data

container.

After promoting a DO, the promote_server remains active for several minutes to ensure that

subsequent promotions from the same view are processed with the least overhead. During this

time, the promote_server remains associated with the view from which the DO was promoted;

if two users try to promote DOs from the same view, at the same time, they share (serially) the

same promote_server.

SEE ALSO

albd_server, clearmake, omake, view_scrubber, view_server

Product Command Type

ClearCase command

protect
protect
Changes permissions or ownership of a VOB object

APPLICABILITY

SYNOPSIS
protect [–cho⋅wn login-name] [–chg⋅rp group-name] [–chm⋅od permissions]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–fil⋅e | –d⋅irectory] [–r⋅ecurse] [–pna⋅me] pname ...

| object-selector ...

}

DESCRIPTION

The protect command sets the owner, group, or permissions for one or more elements, shared

derived objects, or named VOB objects. This information is maintained in the VOB database.

NOTE: This command does not apply to files loaded in a snapshot view.

The main use of protect is to control access by standard programs to an element or object’s data.

For example, you may make some elements readable by anyone, and make others readable by

only their group members.

Modifying the permissions of an element changes the permissions of all of its source containers

and (if applicable) cleartext containers. That is, the change affects all versions, not just the version

selected by the current view. There is no way to change the permissions of an individual version.

Some forms of protect affect ClearCase and ClearCase LT access. For example, a checkout or

checkin is permitted only if the user is the element’s owner, or is a member of the element’s

group.

View-Private Objects

This command does not affect view-private objects. For this reason, entering a protect command

sometimes seems to have no effect:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
702 ClearCase Reference Manual

protect
• Changing an element’s permissions has no effect on its checked-out versions. After you

check in the element, your view selects the checked-in version, thus making the updated

permissions appear.

• Changing a DO’s permission has no effect on the way the DO appears in the view where it

was originally created, or in the dynamic views where it has been winked in. To have your

dynamic view use a shared DO with updated permissions:

a. Use protect to change the permissions on the DO in the VOB database.

b. Use rm to remove the DO from your view.

c. Use clearmake or the winkin command to wink in the DO, with its new permissions.

You can change the permissions on any view-private object (including a checked-out version),

with the standard Windows commands. In particular, you can switch a view-private file between

read-write and read-only states with the attrib command’s -R and +R options.

A winked-in DO is not really a view-private object, but it behaves like one (so that users in

different views can build software independently). Moreover, changing the permissions of a

winked-in DO actually converts it to a view-private file in your view. See Building Software with
ClearCase.

Owner Setting

The initial owner of an element is the user who creates it with mkelem or mkdir. The initial

owner of a named VOB object is the user who creates it. The initial owner of a derived object is

the user who builds it with clearmake. When the derived object is winked in and becomes shared,

its data container is promoted to a VOB storage pool. This process preserves the derived object’s

ownership, no matter who performs the build that causes the winkin.

See the permissions reference page for a list of operations that can be performed by an element’s

owner.

Group Setting

The initial group of an element or named VOB object is the primary group of its creator. The new

group specified in a protect –chgrp command must be one of the groups on the VOB’s group list.

See the permissions reference page for a list of operations that can be performed by members of

an element’s or derived object’s group.

Read and Execute Permissions

The read and execute permissions of an element or shared derived object control access to its data

in the standard manner. The permissions are also applied to all its associated data containers.

NOTE: protect sometimes adds group-read permission to your specification. This ensures that the

owner of an element always retains read permission to its data containers.
ClearCase Reference Pages 703

protect
Write Permission

The meaning of the write permission varies with the kind of object:

• For a file element, write permission settings are ignored. To obtain write permission to a file

element, you must check it out (see the checkout reference page).

• For a directory element, write permission allows view-private files to be created within it.

ClearCase or ClearCase LT permissions control changes to the directory element itself. (See

the permissions reference page.)

• For a shared derived object, write permission allows it to be overwritten with a new

derived object during a target rebuild. (The shared derived object is not actually affected;

rather, the view sees the new, unshared derived object in its place.)

Protection of Global Types and Local Copies

Changing the protection of a global type or a local copy of a global type changes the protection

of the global type and all its local copies. You must have permission to change the protection of

the global type.

If the protection cannot be changed on one or more of the local copies, the operation fails and the

global type’s protection is not changed. You must fix the problem and run the protect command

again.

For more information, see Administering ClearCase.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: owner, VOB

owner, or one of the following product-specific identities: member of the ClearCase group

(ClearCase) or the local administrator of the ClearCase LT server host (ClearCase LT). See the

permissions reference page.

NOTE: With protect –chgrp, you must be a member of the new group, and it must also be in the

VOB’s group list.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element, pool

(non-directory elements only). For named objects, an error occurs if the VOB, object, or object’s

type is locked.

Mastership Checking: (replicated VOBs only) If the current replica is ownership-preserving, an

error occurs if the current replica does not master the object being processed. If the current replica

is non-ownership-preserving, no mastership restrictions apply.

OPTIONS AND ARGUMENTS

SPECIFYING PERMISSION CHANGES. Default: None.
704 ClearCase Reference Manual

protect
–cho⋅wn login-name
New owner for the elements or VOB objects. The login-name must specify a domainwide

user account.

–chg⋅rp group
New group for the elements or VOB objects. The group must be registered in the

domainwide account database.

–chm⋅od permissions
New permissions—owner, group, other (world)—for the elements or VOB objects. Both

symbolic and absolute codes are valid, such as go–x (symbolic) or 666 (absolute).

Specify symbolic permissions in one or more of the following forms:

[identity]+permission
[identity]-permission
[identity]=permission

where identity is any combination of

When identity is unspecified, its default value is a.

permission can be any combination of

To combine the forms, separate them with a comma (no white space). For example, to

specify read and write permissions for an element’s owner and no access by group or

other:

cmd-context protect –chmod u=rw,go-rwx test.txt

Absolute permissions are constructed from the OR of any of the following octal

numbers:

u user/owner

g group

o other

a all (owner, group, and other)

r read

w write

x execute

400 read by owner

200 write by owner

100 execute (and directory search) by owner

700 read, write, and execute (and directory search) by owner

040 read by group
ClearCase Reference Pages 705

protect
For example, the value 600 specifies read/write permission for the owner and no access

by any other identity. The value 764 gives all permissions to the owner, read/write

permissions to the group, and read permission to others.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE OBJECTS. Default: None.

–fil⋅e
Restricts the command to changing file elements only. This option is especially useful in

combination with the –recurse option.

–d⋅irectory
Restricts the command to changing directory elements only. This option is especially

useful in combination with the –recurse option.

[–pna⋅me] pname ...

One or more pathnames, each of which specifies an element or shared derived object. If

pname has the form of an object selector, you must use the –pname option to indicate that

pname is a pathname. An extended pathname to a version or branch is valid, but keep in

mind that protect affects the entire element. Shared derived objects can be referenced by

DO-ID.

If you specify multiple pname arguments, but you do not have permission to change the

permissions on a particular object, protect quits as soon as it encounters this error.

object-selector ...

One or more named VOB objects. Specify object-selector in one of the following forms:

020 write by group

010 execute (and directory search) by group

070 read, write, and execute (and directory search) by group

004 read by others

002 write by others

001 execute (and directory search) by others

007 read, write, and execute (and directory search) by others

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]
706 ClearCase Reference Manual

protect
PROCESSING OF DIRECTORY ELEMENTS. Default: Any pname argument that specifies a directory

causes the directory element itself to be changed.

–r⋅ecurse
Changes the entire tree of elements including and below any pname argument specifying

a directory element. (Use –file or –directory to restrict the changes to one kind of

element.)

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Add read permission to the file element hello.c, for all users.

cmd-context protect –chmod +r hello.c
Changed protection on "hello.c".

• Change the group-ID for all elements in the src directory to user.

cmd-context protect –recurse –chgrp user src
Changed protection on "src".
Changed protection on "src\cm_fill.c".
Changed protection on "src\convolution.c".
Changed protection on "src\hello.c".
Changed protection on "src\msg.c".
Changed protection on "src\util.c".

• Change the owner of the branch type qa_test to tester.

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
ClearCase Reference Pages 707

protect
cmd-context protect –chown tester brtype:qa_test
Changed protection on "qa_test".

• Allow users in the same group to read/write/execute the shared derived object hello, but

disable all access by others. Use an absolute permission specification.

cmd-context protect –chmod 770 hello
Changed protection on "hello".

SEE ALSO

protectvob
708 ClearCase Reference Manual

protectvob
protectvob
Changes owner or groups of a VOB

APPLICABILITY

SYNOPSIS
protectvob [–f⋅orce] [–cho⋅wn user] [–chg⋅rp group]

[–add⋅_group group[,...] [–del⋅ete_group group[,...]]

vob-storage-pname ...

DESCRIPTION

Before executing this command, log in to the host where the VOB storage directory resides, as

local administrator (ClearCase and ClearCase LT) , VOB owner, or a member of the ClearCase

group (ClearCase only). Execute this command only when there are no active users of the VOB;

it stops and restarts the associated vob_server process, which prevents access to storage pools.

protectvob manages the ownership and group membership of the files and directories in a VOB,

by changing the OS-level permissions on files and directories within the VOB storage area.

VOB Owner and VOB Group List

A new VOB, created with mkvob, takes the following permission settings:

• The creator becomes the VOB owner.

• The creator’s principal group becomes the VOB’s principal group.

• The VOB’s supplementary group list is empty.

The VOB owner can perform almost any operation involving that VOB. The VOB owner owns

all the VOB’s data containers and storage pools. All data container manipulations are performed

by a vob_server process, which runs with the identity of the albd_server. All files and directories

in a ClearCase VOB are assigned the ACL that grants full access rights to the Clearcase group.

NOTE: The albd_server runs as domain-name\clearcase_albd, a member of the

domain-name\clearcase group. For more information, see Administering ClearCase.

The VOB’s supplementary group list simulates a Windows feature that enables a user to belong

to several groups.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 709

protectvob
Groups and Access Control

The VOB’s set of groups controls write access on the VOB; a user’s principal group must be one

of the VOB’s groups—principal or supplementary—for the user to create an element or derived

object.

Access Control at the Individual Object Level

A VOB’s owner and group list are VOB-wide settings. Similar settings are maintained at the

individual object level:

• Each element in a VOB has POSIX access attributes:

• User (that is, the element’s owner)

• Group (only one, not several)

• Read-write-execute permissions (access mode)

These attributes control access by standard Windows programs to the element’s data. For

example, some elements may be made readable by anyone, while others are made readable

only by group members. An element’s POSIX attributes apply to all of its versions.

• Similarly, POSIX access attributes are maintained for each shared derived object in the VOB

(whose data container is in a VOB storage pool).

The protect command controls the POSIX access attributes of elements and shared derived

objects. An element’s access attributes apply to all its source containers and (if applicable)

cleartext containers.

The identity.sd File

The cleartool describe vob:vob-tag command lists a VOB’s owner and its group list. This

information is recorded in the Security Descriptor on the VOB storage directory root (on NTFS

only), the identity.sd file, and the groups.sd file in the VOB storage directory. See the vob
reference page for a description of the contents of the identity.sd and groups.sd files.

CAUTION: Do not manipulate these files by any means other than the protectvob command.

Inconsistent settings cause errors.

Pool Protections

Each storage pool directory (sdft, ddft, cdft, and each user-defined pool) typically has a large

number of subdirectories. protectvob can verify and/or change the protections of each such

subdirectory, but this can be time consuming. To save time, you can have protectvob check only

the top-level directory of each pool; if no change is required to this directory, protectvob does not

process the pool’s entire directory tree. To disable this feature, answer yes at the prompt:

Do you wish to protect the pools that appear not to need protection?
710 ClearCase Reference Manual

protectvob
PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be local administrator of the VOB

server host (ClearCase and ClearCase LT), VOB owner, or a member of the ClearCase group

(ClearCase only). See the permissions reference page.

Locks: An error occurs if the VOB is locked.

Mastership Checking: (replicated VOBs only) If the current replica is ownership-preserving, an

error occurs if the current replica does not master the VOB object being processed. If the current

replica is non-ownership-preserving, no mastership restrictions apply.

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: protectvob asks for confirmation before changing the permissions

in one or more storage pools.

–for⋅ce
Suppresses the confirmation step.

CHANGING VOB OWNERSHIP. Default: None. You can use –chown by itself, or in combination with

–chgrp.

NOTE: A member of the Backup Operators or Administrators group can change ownership of

any VOB with protectvob –chown. If you are the VOB owner, you can change ownership of that

VOB by running protectvob –chown user as yourself, andthen logging in as user and running

protectvob –force vob-storage-pname with no other options.

–cho⋅wn user
Specifies a new VOB owner. user can be either a login name or the numeric user-ID

displayed by ccase-home-dir\etc\utils\creds username (this is not the same as the

Windows NT Security Identifier). That user becomes the owner of all the VOB’s storage

pools and all of the data containers in them.

protectvob rebuilds the Security Descriptor on the VOB root directory (on NTFS only)

and the identity.sd and group.sd files in the VOB storage directory, reflecting the new

VOB owner’s user-ID, group-ID, and additional groups (if any).

–ch⋅grp group
Specifies a new principal group for the VOB. group can be either a group name or the

numeric group-ID displayed by ccase-home-dir\etc\utils\creds –g groupname.

MAINTAINING THE SECONDARY GROUP LIST. Default: None. You can use –add_group and

–delete_group singly, or together.

–add⋅_group group[,...]

Adds one or more groups to the VOB’s secondary group list. group can be either a group
ClearCase Reference Pages 711

protectvob
name or the numeric group-ID displayed by ccase-home-dir\etc\utils\creds
–g groupname. You must enclose group names that contain spaces in double quotes.

–del⋅ete_group group[,...]

Deletes one or more groups from the VOB’s secondary group list. group can be either a

group name or the numeric group-ID displayed by

ccase-home-dir\etc\utils\creds –g groupname. You must enclose group names that

contain spaces in double quotes.

SPECIFYING THE VOB. Default: None.

vob-storage-pname
Local pathname of a VOB storage directory.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Make user smg the owner of the VOB whose storage area is c:\vobs\docs.vbs.

cmd-context protectvob –chown smg c:\vobs\docs.vbs
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
Pool “sdft” appears to be protected correctly.
Pool “ddft” appears to be protected correctly.
Pool “cdft” appears to be protected correctly.
Protect versioned object base “c:\vobs\docs.vbs”? [no] yes
Do you wish to protect the pools that appear not to need protection? [no]
no
VOB ownership:

owner smg
group user

Additional groups:
group Backup Operators

• Add the group Doc Group to a VOB’s group list.
712 ClearCase Reference Manual

protectvob
cmd-context protectvob –add_group "Doc Group" c:\vobs\docs.vbs
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
Pool “sdft” appears to be protected correctly.
Pool “ddft” appears to be protected correctly.
Pool “cdft” appears to be protected correctly.
Protect versioned object base “c:\vobs\docs.vbs”? [no] yes
Do you wish to protect the pools that appear not to need protection? [no]
no
VOB ownership:

owner smg
group user

Additional groups:
group Backup Operators
group Doc Group

SEE ALSO

chpool, mkpool, mkvob, protect, albd_server, vob, vob_server
ClearCase Reference Pages 713

put
put
Uploads writable files from the workspace to the view

APPLICABILITY

SYNOPSIS
put [–r⋅ecurse] [–compress] [–pti⋅me] [–to to-name] [–log pname] pname...

DESCRIPTION

The put command uploads the specified writable files from the workspace to the associated view.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE FILES TO BE UPLOADED. Default: None.

pname...

Specifies the files and/or directories to be uploaded. Wildcard patterns apply to the

workspace contents; / (slash) denotes the root of the workspace.For example, /*.c refers

to all of the .c files in the workspace root. In addition, arguments of the form @pname can

be used to add the contents of the local file pname as pathname arguments. The pathname

arguments can contain wildcards, and must be listed in the file one per line, or also be of

the form @pname. Specifying a relative pathname for @pname begins from Attache’s

startup directory, not the working directory, so a full local pathname is recommended.

SPECIFYING HOW THE FILES ARE TO BE UPLOADED. Default: When a directory is specified, its file

contents are uploaded. Only writable files are uploaded, and only if the file does not exist in the

view or it is different from the source file.

–to to-name
Specifies a destination file name or directory. If the specified destination is a directory, it

becomes a prefix for each uploaded filename. If the specified destination is a file, or does

not exist, then only one source argument can be specified, and it must be a file.

–pti⋅me
Applies the last-modified time stamp of the source file to the destination file. –ptime has

no effect on directories.

Product Command Type

Attache command
714 ClearCase Reference Manual

put
–compress
Causes files to be compressed while being uploaded and uncompressed after the

transfer to improve performance over slow communications lines. The default behavior

for this option can be set with the Preferences command on the Options menu.

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

put uploads the contents of that directory, but not the contents of any of its subdirectories.

–r⋅ecurse
Includes writable files from the entire subtree below any subdirectory pname. Directories

are created as necessary and specified patterns are relative to the current directory.

SPECIFYING A FILE TRANSFER LOG. Default: None.

–log pname
Specifies a log file for the operation. The log file lists the workspace-relative pathname

of each file transferred by the put command, as well as an indication of any errors that

occur during the operation. Log file pathnames are absolute, not relative to the current

workspace root.

Each line in a log file is a comment line, except for the names of files that were not

transferred. Log files, therefore, can be used as indirect files to redo a file transfer

operation.

EXAMPLES

• Upload the writable file hello.c to the view, naming it hello_new.c and preserving the time

stamp. At an Attache prompt:

put –to hello_new.c –ptime hello.c

• Upload to the view all of the writable files and subdirectories beneath the directory src. At

an Attache prompt:

put –r src

• Upload to the view all of the writable files listed in the file c:\users\jed\prj_files. At an

Attache prompt:

put @c:\users\jed\prj_files

SEE ALSO

attache_command_line_interface, attache_graphical_interface, get, checkin, checkout,
wildcards
ClearCase Reference Pages 715

pwd
pwd
Prints working directory

APPLICABILITY

SYNOPSIS
pwd

DESCRIPTION

The pwd command lists the current working directory. This command is intended for use in

interactive cleartool and multitool sessions, and in batch files that simulate interactive sessions.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the name of the current working directory.

cmd-context pwd
M:\view1\users_hw

• (ClearCase and ClearCase LT only) Use a view-extended pathname to go to the

\users_hw\src directory in the context of the jackson_old view, and then list the name of

the directory.

cleartool> cd M:\jackson_old\users_hw\src

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand
716 ClearCase Reference Manual

pwd
cleartool> pwd
M:\jackson_old\users_hw\src

SEE ALSO

cd, pwv
ClearCase Reference Pages 717

pwv
pwv
Prints the working view

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only:

pwv [–s⋅hort] [–wdv⋅iew | –set⋅view | –root]

• ClearCase LT only:

pwv [–s⋅hort] [–wdv⋅iew | –root]

DESCRIPTION

This command does not require a product license.

The pwv command lists the view-tag of your current view context, or ** NONE ** if there is none.

Dynamic View

You can establish or change your dynamic view context by changing to a view drive, or by

changing your working directory to a view-extended pathname.

If you change to a version-extended pathname, pwv adds the extended naming symbol to the

view-tag (see the EXAMPLES section).

Snapshot View

You can establish or change your snapshot view context when you change to the snapshot view

directory.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: The annotation Working directory view: or Set view: precedes a

view’s view-tag.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
718 ClearCase Reference Manual

pwv
–s⋅hort
Omits the annotation string. Specifying –short invokes –wdview also, unless you use

–setview.

WORKING DIRECTORY VIEW VS. SET VIEW. Default: Lists both your working directory view and

your set view, unless you specify –short.

–wdv⋅iew
Lists your working directory view only.

–set⋅view
Lists your set view only. There is no notion of a set snapshot view, so when you work in

a snapshot view, the set view is always ** NONE ** .

MISCELLANEOUS

–root
Returns the root directory path of the current working view. This root is the portion of

an element’s absolute path that precedes the VOB tag.

If you start a dynamic view (see startview) and then change to the view, this option

returns the extended view path. This option returns nothing when issued from a

dynamic view path or a snapshot view path that has been mapped to a drive (using the

subst command) that is your current drive.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display the current view.

cmd-context pwv
Working directory view: jackson_vu
Set view: jackson_vu

• List the current view after changing to a version-extended namespace directory. Use the

short format to list the view name only.

cd src@@

cmd-context pwv –short
jackson_vu@@
ClearCase Reference Pages 719

pwv
SEE ALSO

cd, startview, pathnames_ccase
720 ClearCase Reference Manual

query_language
query_language
Selects objects by their metadata

APPLICABILITY

SYNOPSIS
Query Primitives:

query-function (arg-list)
attribute-type-name comparison-operator value

Compound Queries:

query && query
query || query
! query
(query)

DESCRIPTION

The query language is used to formulate queries on VOBs. It includes logical operators similar

to those in the C programming language. A query searches one or more VOBs and returns the

names of objects: versions, branches, and/or elements. A query may return a single object, many

objects, or no objects at all.

A query primitive evaluates to TRUEor FALSE. A TRUEvalue selects an object, such as an element,

branch, or version; a FALSE value excludes it.

A query must be enclosed in quotes if it includes spaces. You may also need to enclose a query

in quotes to prevent shell-level interpretation of characters such as ((open parenthesis); using

interactive cleartool removes this need. Quoting parentheses in config specs is not required.

Queries in Version Selectors

You can use a query in a version selector in these contexts:

• Command-line options in the following cleartool commands:

describe, merge, mkattr, mkbranch, mklabel, rmattr, rmlabel, rmver

• Configuration rules; see the config_spec reference page

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information
ClearCase Reference Pages 721

query_language
• Version-extended pathnames in ClearCase, ClearCase LT, and Attache commands; see the

pathnames_ccase reference page

A query in a version selector must be enclosed in braces ({}).

When a query is applied to a single branch, ClearCase and ClearCase LT select the most recent

version on that branch that satisfies the query. For example:

cmd-context describe -ver "\main\{attype(QAed)}" util.c

Using a query without a branch pathname causes an element’s entire version tree to be searched.

If the query returns a single version, the version-selection operation succeeds; the operation fails

if the query returns no version (not found) or returns more than one version (ambiguous). For

example:

cmd-context describe -ver "{attype(QAed)}" util.c
cleartool: Error: Ambiguous query: "{attype(QAed)}"

Queries in the find and findmerge Commands

You can also use queries in the find and findmerge commands. In this context, the query can be

enclosed in braces ({...}). The query returns the names of all matching objects. For example:

cleartool find util.c -ver "attype(QAed)" -print
util.c@@\main\1
util.c@@\main\3

QUERY PRIMITIVES

The query language includes these primitives:

attribute-type-name comparison-operator value

comparison-operator is one of the following:

== != < <= > >=

Examples:

BugNum==4053
BugNum>=4000
Status!="tested"

This primitive is TRUE if the object itself has an attribute of that type and the value

comparison is true. To test whether an object or its subobjects has a particular attribute

(for example, an element or its branches and versions), use the attr_sub primitive.

NOTE: If no attribute named BugNum has been attached to an object, then

!BugNum==671 is TRUE, but BugNum!=671 is FALSE. The second query would be true if

an attribute of type BugNum existed, but had a different value.

attr_sub (attribute-type-name, comparison-operator, value)
722 ClearCase Reference Manual

query_language
attype (attribute-type-name)

attype_sub (attribute-type-name)

brtype (branch-type-name)

created_by (login-name)

In all cases, TRUE if the object was created by the user login-name (as shown by the describe
command).

created_since (date-time)

In all cases, TRUE if the object was created since date-time. The date-time argument can

have any of the following formats:

date.time | date | time | now
where:

With elements TRUE if the element or any of its branches or versions has an

attribute of type attribute-type-name that satisfies the specified

comparison with value.

With branches TRUE if the branch or any of its versions has an attribute of type

attribute-type-name that satisfies the specified comparison with

value.

With versions TRUEif the version itself has an attribute of type attribute-type-name
that satisfies the specified comparison with value.

With elements TRUEif the element itself has an attribute of type attribute-type-name.

With branches TRUEif the branch itself has an attribute of type attribute-type-name.

With versions TRUEif the version itself has an attribute of type attribute-type-name.

With elements TRUE if the element or any of its branches or versions has an

attribute of type attribute-type-name.

With branches TRUE if the branch or any of its versions has an attribute of type

attribute-type-name.

With versions TRUEif the version itself has an attribute of type attribute-type-name.

With elements TRUE if the element has a branch named branch-type-name.

With branches TRUE if the branch is named branch-type-name.

With versions TRUE if the version is on a branch named branch-type-name.

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]
ClearCase Reference Pages 723

query_language
Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default is today. If you omit the

century, year, or a specific date, the most recent one is used. Specify UTC if you want to

resolve the time to the same moment in time regardless of time zone. Use the plus (+) or

minus (-) operator to specify a positive or negative offset to the UTC time. If you specify

UTC without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates

before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

eltype (element-type-name)

In all cases, TRUE if the element to which the object belongs is of type element-type-name.

hltype (hlink-type-name)

hltype (hlink-type-name , ->)

hltype (hlink-type-name , <-)
In all cases, TRUE if the object is either end of a hyperlink (first form) named

hlink-type-name, or is the from-end of a hyperlink (second form), or is the to-end of a

hyperlink (third form)

lbtype (label-type-name)

In all cases, TRUE if the object itself is labeled label-type-name. (Because elements and branches

cannot have labels, this primitive can be true only for versions.)

lbtype_sub (label-type-name)

pool (pool-name)

In all cases, TRUE if the element to which the object belongs has a source pool or cleartext pool
named pool-name.

trtype (trigger-type-name)

In all cases, TRUE if the element to which the object belongs has an attached or inherited trigger

named trigger-type-name.

version (version-selector)

Note that in this context, version-selector cannot itself contain a query. For example,

version(REL1) is valid, but version(lbtype(REL1)) is not.

month := January |... |December |Jan |... |Dec

With elements TRUE if the element has a version that is labeled label-type-name.

With branches TRUE if the branch has a version that is labeled label-type-name.

With versions TRUE if the version itself is labeled label-type-name.

With elements TRUE if the element has a version with the specified version-selector.
With branches TRUE if the branch has a version with the specified version-selector.
With versions TRUE if the version itself has the specified version-selector.
724 ClearCase Reference Manual

query_language
COMPOUND QUERIES

Primitives can be combined into expressions with logical operators. An expression can take any

of these forms, where query is a primitive or another expression:

OPERATOR PRECEDENCE

The precedence and associativity of the operators for attribute comparisons and formation of

logical expressions are the same as in the C programming language:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Attach the label REL6 to the version of test.c that is already labeled REL5.

Z:\vob2\src> cleartool mklabel -ver "{lbtype(REL5)}" REL6 test.c
Created label "REL6" on "test.c" version "\main\4".

• Attach an attribute to the latest version of test.c created since yesterday at 1 P.M. by user

asd. Note the use of backslashes (\) to escape quote characters (") required to specify a

string argument to mkattr.

cleartool> mkattr -ver "{created_since(yesterday.13:00)&&created_by(asd)}" QAed ^
\"No\" test.c
Created attribute "QAed" on "test.c@@\main\5".

• List each branch named rel2_bugfix that occurs in an element to which a trigger named

mail_all has been attached.

query || query (logical OR)
query && query (logical AND)
! query (logical NOT)
(query) (grouping to override precedence)

highest precedence: ! (right associative)
lower precedence: < <= > >= (left associative)
lower precedence: == != (left associative)
lower precedence: && (left associative)
lowest precedence: || (left associative)
ClearCase Reference Pages 725

query_language
Z:\vob2\src> cleartool find . -branch "brtype(rel2_bugfix)&&trtype(mail_all)" -print
.\util.c@@\main\rel2_bugfix

SEE ALSO

config_spec, pathnames_ccase, version_selector
726 ClearCase Reference Manual

ClearCase Reference Pages 727

quit

quit
Quits an interactive or Attache session

APPLICABILITY

SYNOPSIS
q⋅uit

DESCRIPTION

The quit command ends an interactive cleartool or multitool session or an Attache session,

returning control to the parent process. In Attache, the ws_helper program exits as well. In

ClearCase, ClearCase LT and MultiSite, you can also exit by entering the exit command.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

EXAMPLES

• End a cleartool interactive session.

cleartool> quit

• End a multitool interactive session with the quit synonym, exit.

multitool> exit

• End an Attache session and exit the ws_helper program.

cmd-context quit

SEE ALSO

(Attache only) attache_command_line_interface, attache_graphical_interface

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

rebase
rebase
Changes the configuration of a UCM stream

APPLICABILITY

SYNOPSIS

• Begin a rebase operation using the graphical user interface:

rebase –gr⋅aphical [–vie⋅w rebase-view-tag]

• Cancel or check the status of a rebase operation:

rebase { –can⋅cel | –sta⋅tus [–l⋅ong] } [–vie⋅w rebase-view-tag]

• Preview a rebase operation:

rebase –pre⋅view [–s⋅hort | –l⋅ong] [–vie⋅w rebase-view-tag]

{ –rec⋅ommended | { –bas⋅eline baseline-selector [,...] –dba⋅seline baseline-selector [,...] } }

• Begin a rebase operation:

rebase
{ –rec⋅ommended | { –bas⋅eline baseline-selector [,...] –dba⋅seline baseline-selector [,...] } }

[–vie⋅w rebase-view-tag] [–com⋅plete] [–gm ⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l]
[–ser⋅ial] [–f⋅orce]

• Resume or complete a rebase operation:

rebase { –res⋅ume | –com⋅plete } [–vie⋅w rebase-view-tag]

[–gm⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l] [–ser⋅ial] [–f⋅orce]

DESCRIPTION

The rebase command reconfigures a stream by adding, dropping, or replacing one or more of the

stream’s foundation baselines. The file and directory versions selected by those new baselines

(and thus their associated activities) then become visible in the stream’s views.

Only labeled baselines can serve as foundation baselines.

Any changes made in the stream prior to a rebase operation are preserved during the rebase. For

any file modified in the stream, rebase merges any changes that are present in versions of that

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
728 ClearCase Reference Manual

rebase
file in the new foundation baselines into the latest version of that file in the stream, thereby

creating a new version. All such merged versions are captured in the change set of an integration

activity that rebase creates. This integration activity becomes the view’s current activity until the

rebase operation is completed or canceled.

You must perform a rebase operation in a view belonging to the stream that is being rebased.

Before starting the rebase operation, check in all files in that view. This way, you avoid potential

problems caused by rebase merging changes into an already-checked out file—rebase cannot

reliably unmerge those changes should you cancel the rebase operation.

As a rule, you should rebase development streams often to pick up changes in the project’s

recommended baselines. By doing so you can find integration problems early, when they are

easier to fix. In addition, rebasing just before performing a deliver operation should reduce or

eliminate the need for manual merging during the delivery.

Rules for Development Streams

A development stream can only be rebased to baselines that were created in its project’s

integration stream, or that serve as the integration stream’s foundation baselines. This rule

ensures that changes made in the development stream are based on the same line of

development as the rest of its project’s streams.

rebase is typically used to advance a stream’s configuration; that is, to replace its current

foundation baselines with more recent ones. However, you can also use rebase to:

• Revert to earlier baselines.

• Add baselines for components not currently in the stream’s configuration.

• Drop components from the stream’s configuration.

You cannot revert or drop a component that has been modified (that is, new versions have been

created) in the development stream. Without this rule, rebase could potentially leave stranded

the changes made against baselines that are no longer in the stream’s configuration.

rebase allows different baselines to be moved in different directions—you can advance one

baseline while reverting another.

Rules for Integration Streams

An integration stream can only be rebased to baselines created in other projects’ integration

streams (not development streams), or to import or initial baselines. See the mkcomp and mkbl
reference pages for information about import and initial baselines.

Just as for development streams, rebase can advance or revert baselines in an integration

stream’s configuration, and add or drop components. It can also switch to another baseline that

originates from a project different from the current foundation baseline; that is, a baseline that is

neither an ancestor nor a descendant of the current foundation.
ClearCase Reference Pages 729

rebase
You cannot revert, switch, or drop baselines for components that are in the project’s modifiable

component list. This rule prevents rebase from leaving stranded the changes made to those

components in the integration stream, as well as in the project’s development streams.

PERMISSIONS AND LOCKS

Permissions Checking: None.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the development stream.

Mastership: The current replica must master the development stream.

OPTIONS AND ARGUMENTS

INVOKING THE GRAPHICAL USER INTERFACE. Default: Command-line interface.

–gr⋅aphical
Invokes the graphical user interface for the rebase operation.

SPECIFYING THE REBASE VIEW. Default: The current working UCM view.

–vie⋅w rebase-view_tag
Specifies the UCM view in which to execute the rebase command. The view must be

associated with a UCM stream that is the stream to be rebased.

CANCELLING A REBASE OPERATION.

–can⋅cel

Cancels a rebase operation and restores the stream’s prior configuration. The option

deletes the integration activity and any versions created by the rebase operation that are

not yet checked in.

If any new versions have been checked in, the cancellation is halted and you are

informed of completed merges and any checked in versions that resulted from the rebase

activity. After undoing the merges and check-ins, you must issue the rebase –cancel
command again to cancel the rebase operation.

OBTAINING THE STATUS OF A REBASE OPERATION.

–sta⋅tus
Displays the status of a rebase operation. You are informed whether a rebase operation

is in progress in the specified stream; and if so, this option displays the new foundation

baselines and the list of new activities being brought into the stream.

PREVIEWING THE RESULTS OF A REBASE OPERATION.

–pre⋅view
Shows what baselines would change and what new activities would be brought into the
730 ClearCase Reference Manual

rebase
stream if a rebase operation were to be executed in nonpreview mode. –preview fails if

a rebase operation is in progress.

CONTROLLING OUTPUT VERBOSITY. Default: Varies according to the kind of output that the

options described here modify: see the descriptions of –status and –preview.

–l⋅ong

As a modifier of –status, displays a list of activities and change sets, and a list of elements

that will require merging, in addition to the default information displayed by –status.

As a modifier of –preview, displays a list of versions that potentially require merging, in

addition to the default information displayed by –preview.

–s⋅hort
Modifies the –preview option. Displays only a list of the activities.

SPECIFYING BASELINES. Default: None.

–rec⋅ommended
Specifies that a development stream is to be rebased to its project’s recommended

baseline

–bas⋅eline baseline-selector[,...]

Specifies one or more baselines to use as new foundation baselines for the stream. See

Rules for Development Streams and Rules for Integration Streams for criteria for specifying

baselines.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

–dba⋅seline baseline-selector[,...]

Specifies one or more baselines to remove from the stream’s configuration. Files in those

baseline’s components are subsequently no longer visible or modifiable in the stream.

See Rules for Development Streams and Rules for Integration Streams for criteria for

specifying baselines.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

RESUMING A REBASE OPERATION. Default: None.

–res⋅ume
Restarts a rebase operation from the point at which it has been suspended. A rebase

operation can be interrupted with CTRL+C or when it encounters an external error or

condition that requires more information. To continue the operation, reissue the rebase

command with the –resume option. However, you cannot resume a rebase operation

that has been successfully halted with the –cancel option.
ClearCase Reference Pages 731

rebase
COMPLETING A REBASE OPERATION. Default: None.

–com⋅plete
Completes a rebase operation. Checking in merged versions in the development view

does not complete the rebase operation—you must use –complete to complete a rebase

operation. You can use this option after a rebase has been suspended, for example, to

resolve file conflicts. It resumes the command process, verifies that needed merges were

done, checks in any versions that are checked out, and records changes in the change set

for the rebase activity.

MERGE OPTIONS. Default: Works as automatically as possible, prompting you to make a choice in

cases where two or more nonbase contributors differ from the base contributor. For general

information, see the findmerge reference page.

-ok
Pauses for verification on each element to be merged, allowing you to process some

elements and skip others. This option does not remain in effect after a rebase operation

is interrupted.

–gm ⋅erge
 Performs a graphical merge for each element that requires it. This option does not

remain in effect after a rebase operation is interrupted.

–q⋅uery
Turns off automated merging for nontrivial merges and prompts you to proceed with

every change in the from-versions. Changes in the to-version are automatically accepted

unless a conflict exists. This option does not remain in effect after a rebase operation is

interrupted.

–abo⋅rt
Cancels a merge if it is not completely automatic. This option does not remain in effect

after a rebase operation is interrupted.

–qal⋅l
Turns off all automated merging. Prompts you to determine whether you want to

proceed with each change. This option does not remain in effect after a rebase operation

is interrupted.

–ser⋅ ial
Reports differences with each line containing output from one contributor, instead of in

a side-by-side format. This option does not remain in effect after a rebase operation is

interrupted.

CONTROLLING COMMAND-LINE PROMPTS. Default: Prompt for user input.

–f⋅orce
Suppresses prompting for user input during the course of a rebase operation. The –force
732 ClearCase Reference Manual

rebase
option does not remain in effect if the rebase is interrupted: you must respecify it when

you restart the rebase operation with –resume or –complete. The merge options to the

rebase command are not affected by the –force option.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Start a rebase operation.

cmd-context rebase –recommended
Advancing to baseline "BL1.119" of component "webo_modeler"
Updating rebase view’s config spec...
Creating integration activity...
Setting integration activity...
Merging files...
No versions require merging in stream "chris_webo_dev".
Build and test are necessary to ensure that the merges were completed
correctly.
When build and test are confirmed, run "cleartool rebase -complete".

• Complete a rebase operation.

cmd-context rebase –complete
Rebase in progress on stream "chris_webo_dev".
Started by "ktessier" at 06/06/00 15:36:42.
Merging files...
No versions require merging in stream "chris_webo_dev".
Checking in files...
Clearing integration activity...
Updating stream’s configuration...
Cleaning up...
Rebase completed.

SEE ALSO

checkin, checkout, deliver, findmerge, setactivity
ClearCase Reference Pages 733

recoverview
recoverview
Recovers a dynamic view database

APPLICABILITY

SYNOPSIS

• Recover files associated with deleted VOB or deleted directory:

recoverview [–f⋅orce] { –vob vob-identifier | –dir dir-identifier }

{ –tag view-tag | view-storage-dir-pname }

• Synchronize a view with one or more VOBs, moving stranded objects to a known location:

recoverview –syn⋅chronize [–vob pname-in-vob]

{ –tag view-tag | view-storage-dir-pname }

DESCRIPTION

The recoverview command repairs a view database and the associated private storage area of a

dynamic view (a snapshot view has no private storage in the same sense as does a dynamic view).

Typically, you use this command after a system crash or similar mishap. You may also want to

use this command to regain access to stranded view-private files. (See the RECOVERING
VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY section.)

Automatic Recovery

When necessary, recoverview is invoked by a dynamic view’s associated view_server process.

Enter this command yourself if messages in the view log (ccase-home-dir\log\view_log) suggest

view database corruption (for example, INTERNAL VIEW DB ERROR).

Possible Data Loss

recoverview uses reformatview;that is, recovery involves a dump/load of the view database.

(See the view reference page.) recoverview deletes the old, invalid view database, which

reformatview has renamed to db.dumped.

Depending on the state of the view database, this process may cause certain information to be

lost. After a view is recovered, consult ccase-home-dir\log\view_log to investigate possible data

loss. See the reformatview reference page for more information.

Product Command Type

ClearCase cleartool subcommand

Attache command
734 ClearCase Reference Manual

recoverview
RECOVERING VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY

NOTE: Snapshot views do not have lost+found directories.

A file in view-private storage is normally accessed through a VOB pathname. That is, the file

appears to be located in the VOB, but is actually stored in the view. But this view-VOB

correspondence can be disrupted:

• A VOB can become temporarily unavailable—for example, by being unmounted.

• A VOB can become permanently unavailable, by being deleted.

• A particular VOB directory can become unavailable permanently, by being deleted with an

rmelem command.

In all these cases, view-private files that are accessed through the unavailable VOB structure

become stranded; the files cannot be used for normal ClearCase operations, because there are no

VOB pathnames through which they can be accessed. You can resynchronize your view with the

available VOBs with the –vob and –dir options. This recovers stranded files by moving them into

the view’s lost-and-found area, located at view-storage-dir-pname\.s\lost+found. Recovered files

remain inaccessible to normal ClearCase operations; you can access them through the view

storage directory, using standard operating system utilities and commands.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SYNCHRONIZING A VIEW WITH ONE OR MORE VOBS. The following option synchronizes the

dynamic view with one or more VOBs. With this option, recoverview moves all stranded files to

the dynamic view’s lost and found subdirectory, .s\lost+found. A typical time to synchronize is

after performing a relocate operation.

–syn⋅chronize [–vob pname-in-vob]

Synchronizes the view with all VOBs in which the view has created view-private files.

With –vob, synchronizes the view only with the VOB specified by pname-in-vob.

FORCING RECOVERY. Default: recoverview displays a Recovery not needed warning message

and exits immediately if the view database does not need to be recovered.

–f⋅orce
Performs a view database recovery, whether or not it’s needed. Suppresses the warning

message in the situation described above.

SPECIFYING THE VIEW. Default: None.

–tag view-tag
The view-tag of any registered dynamic view.
ClearCase Reference Pages 735

recoverview
view-storage-dir-pname
The pathname of a dynamic view storage directory. Use the lsview command to list a

view’s storage directory.

CAUTION: Make sure that the current working directory is not the same as, or anywhere

below view-storage-dir-pname.

RECOVERING VIEW-PRIVATE STORAGE. The following options take ClearCase-internal identifiers

for a VOB or a VOB directory (vob-identifier and dir-identifier) as arguments. The lsprivate
command uses these identifiers when listing an inaccessible VOB or VOB directory.

–vob vob-identifier
Moves all view-private files that correspond to the specified VOB to the dynamic view’s

lost+found directory.

–dir dir-identifier
Moves all view-private files that correspond to the specified directory element to the

dynamic view’s lost+found directory.

CAUTION: If the VOB or directory is still accessible, using these options is probably incorrect; it

will unsynchronize the view and VOB, not synchronize them.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

NOTE: recoverview writes status messages to the view_log file in ccase-home-dir\log; it does not

print status messages on the standard output device.

• Synchronize the dynamic view jackson_fix with all VOBs in which it has created

view-private files.

cmd-context recoverview –synchronize –tag jackson_fix

• Synchronize a dynamic view whose storage directory is

c:\users\jackson\ccviews\std.vws with the \dvt VOB.

cmd-context recoverview –synchronize –vob \dvt c:\users\jackson\ccviews\std.vws

• For dynamic view cp_bugfix, recover view-private files from a deleted VOB.
736 ClearCase Reference Manual

recoverview
cmd-context lsprivate –tag cp_bugfix
...
cleartool: Warning: VOB is unavailable -- using name:
"<Unavailable-VOB-1>".

If it has been deleted use ’recoverview -vob <uuid>’
VOB UUID is 1127d379.428211cd.b3fa.08:00:69:06:af:65

...

cmd-context recoverview –vob 1127d379.428211cd.b3fa.08:00:69:06:af:65 –tag cp_bugfix

SEE ALSO

reformatview, view
ClearCase Reference Pages 737

reformatview
reformatview
Updates the format of a view database

APPLICABILITY

SYNOPSIS
reformatview [–dum⋅p | –loa⋅d] { –tag view-tag | view-storage-dir-pname }

DESCRIPTION

The reformatview command changes the format of a view database from that used in a previous

release of ClearCase or ClearCase LT to the current format. A view database is a set of binary files

in the db subdirectory of the view storage directory. A new release may use a different database

format to support new product features, to enhance storage efficiency, or to improve

performance.

View database conversion involves two major steps:

• Dumping the existing database to a set of ASCII files. This step invalidates the view

database, which is renamed to db.dumped. You cannot use the view until its database is

reloaded.

• Loading the ASCII files into a new database that uses the new format.

NOTE: This does not overwrite the old, invalid view database; it remains in the view storage

directory, as db.dumped, until you explicitly delete it with a standard operating system

command.

A view’s view_server process detects the need for reformatting and displays a message to this

effect. reformatview itself writes status messages to ccase-home-dir\var\log\view_log, not to

stdout or stderr.

You can also use reformatview to move a view storage area between hosts of different

architectures—that is, hosts on which there are differences in the binary files that implement the

view database.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
738 ClearCase Reference Manual

reformatview
Possible Data Loss

In the case of a dynamic view, if the view database requires recovery, some information may be

lost in the dump/load process. In addition, some view-private files may be moved into the

view’s lost+found directory. See the recoverview reference page for details.

In the case of a snapshot view, the lost information may included loaded files as well as

view-private files (and snapshot views have no lost+found directories).

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

FORCING A DUMP. Default: If a view’s database does not require reformatting (it is up to date),

reformatview displays a message and takes no other action; if the database is out of date,

reformatview performs a dump, then a load.

–dum⋅p
Performs only the first step—creating an ASCII dump of the view database in file

view_db.dump_file in the view storage directory.

–loa⋅d
Performs only the second step—replacing the old view database with a new one, using

the contents of a previously created ASCII dump file.

SPECIFYING THE VIEW. Default: None.

–tag view-tag
The view-tag of any registered view.

view-storage-dir-pname
The pathname of a view storage directory.

CAUTION: Make sure that the current working directory is not the same as, or anywhere

below, view-storage-dir-pname.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Reformat a view whose view-tag is jackson_old.

cmd-context reformatview –tag jackson_old
ClearCase Reference Pages 739

reformatview
• Reformat a view whose storage directory is C:\home\jackson\ccviews\fix.vws.

cmd-context reformatview C:\home\jackson\ccviews\fix.vws

FILES

ccase-home-dir\var\log\view_log

SEE ALSO

errorlogs_ccase, recoverview
740 ClearCase Reference Manual

reformatvob
reformatvob
Updates the format of a VOB database.

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only:

reformatvob [–dum⋅p | –loa⋅d] [–rm] [–f⋅orce]

[–hos⋅t hostname –hpa⋅th local-pname –gpa⋅th global-pname]

vob-storage-dir-pname

• ClearCase LT only:

reformatvob [–dum⋅p | –loa⋅d] [–rm] [–f⋅orce] vob-storage-dir-pname

DESCRIPTION

NOTE: Always back up a VOB’s storage directory before using this command.

reformatvob is a one-way command. The dump and load phases must be allowed to complete

(although they can take place at different times). You cannot abort and undo a reformat

operation after you have started it; you can only restart and complete the operation.

reformatvob changes the format of a VOB database from a format used in a previous release of

ClearCase or ClearCase LT to the current format. A new release may use a different database

format to support new product features, to enhance storage efficiency, or to improve

performance.

reformatvob also performs the actions of the checkvob –setup command. This checkvob setup

processing must be completed to use the checkvob command. If this processing is interrupted

during the reformatvob command execution, you must run the checkvob command manually.

(See the checkvob reference page for details.)

You can also use reformatvob for other purposes:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 741

reformatvob
• In ClearCase and Attache, to move a VOB storage directory between hosts of different

architectures, that is, hosts with different binary formats for the files that implement the

VOB database

• In ClearCase, Attache, and ClearCase LT, to clean up a VOB database, physically deleting

records that have been logically deleted by vob_scrubber

In both cases, the VOB database has the same internal format, and checkvob –setup is not

invoked.

reformatvob locks the VOB before reformatting it. If the VOB is already locked, reformatvob
proceeds with the reformatting and then unlocks the VOB.

NOTE: reformatvob does not overwrite the old, invalid VOB database; it renames the old

database to db.date. The old database remains in the VOB storage directory until you delete it

with a standard operating system command.

Dumping and Loading

VOB database reformatting involves two phases:

• Dumping the existing VOB database to a set of ASCII files. This phase is performed by the

db_dumper program. reformatvob evaluates disk-space availability before beginning its

work, and displays a message if disk space is insufficient. See the Working with Limited Disk
Space section.

• Loading the ASCII files into a new VOB database that uses the current format. This phase is

performed by the db_loader program.

By default, both phases are performed at the same time. The –dump and –load options enable

you to perform them separately.

See the db_dumper reference page for more information.

Registering the VOB (Again)

reformatvob updates (or creates, if necessary) the VOB’s entry in the network’s vob_object
registry file. However, reformatvob does not affect the vob_tag registry file. If the reformatted

VOB does not have an appropriate VOB-tag registry entry, reformatvob displays a message

advising you to create one or more VOB-tags with mktag. For more information on VOB-tags

and registries, see the mkvob and registry_ccase reference pages.

Working with Limited Disk Space

Running reformatvob can substantially increase the amount of disk space that the VOB storage

directory uses. By default, the old VOB database is preserved in a renamed subdirectory of the

VOB storage directory. You can use the –rm option to discard the old VOB database.

Alternatively, you can use a standard operating system utility to discard it at a later time—for

example, after you have mounted the reformatted VOB and verified its accessibility.
742 ClearCase Reference Manual

reformatvob
Following are reformatvob’s disk-space requirements, based on the size of the existing VOB

database as the unit:

Thus, if you do not use –rm, reformatvob’s disk-space needs are approximately 210% of the size

of the VOB database.

Restarting an Interrupted Reformat

There are no ill effects if a reformatvob command is interrupted (for example, by a system crash).

Enter the command again to complete the reformatting. If reformatvob is interrupted after the

dump phase completes, reentering the command starts with the load phase.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: VOB owner,

member of the ClearCase group (ClearCase) or local administrator of the ClearCase LT server

host (ClearCase LT). See the permissions reference page.

Locks: No locks apply.

Other Restrictions: In ClearCase and Attache, the VOB storage directory must physically reside

on the host where you enter this command. In ClearCase LT, you must enter this command at the

ClearCase LT server host.

In all cases, The current working directory must not be at or below the VOB storage directory.

Your command interpreter must not have a view context—neither set view nor working

directory view.

OPTIONS AND ARGUMENTS

PARTIAL REFORMAT. Default: Performs a complete reformat, including both the dump and load

phases.

–dum⋅p
Performs only the first phase of the reformatting process—creating an ASCII dump of

the current VOB database.

–loa⋅d
Performs only the second phase of the reformatting process—creating a new VOB

database using a previously created ASCII dump.

PRESERVING A BACKUP OF THE VOB DATABASE. Default: The original VOB database directory

(subdirectory db of the VOB storage directory) is preserved through renaming. During the dump

Data Structure Space Required Need for Space Eliminated by

Existing VOB database 100% –rm
ASCII dump files 100% (Always required)

Elbow room 10% (Always required)
ClearCase Reference Pages 743

reformatvob
phase, it is renamed to db.reformat; during the load phase, it is renamed again, to a name that

includes a date stamp (for example, db.02.18).

–rm
Deletes the original VOB database during the load phase.

CONFIRMATION STEP. Default: Before beginning its work, reformatvob prompts you to confirm

that you want to reformat the VOB database.

–f⋅orce
Suppresses the confirmation step.

VOB REGISTRY OPTIONS. Default: Using the vob-storage-dir-pname argument, reformatvob creates

or updates the vob_object registry file; it leaves the vob_tag registry file unchanged. The

following options update the VOB-tag entry.

–hos⋅t hostname
–hpa⋅th local-pname
–gpa⋅th global-pname

See the mkstgloc reference page for information on these options.

SPECIFYING THE VOB. Default: None.

vob-storage-dir-pname
The pathname of a VOB storage directory. If you use ClearCase or Attache, also refer to

the descriptions of –host, –hpath, and –gpath in the mkstgloc reference page.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Reformat a VOB whose storage directory is C:\users\jones\tut\tut.vbs.

NOTE: This example shows selected status messages only; reformatvob actually produces

more verbose messages. See the checkvob reference page for the setup output.

cmd-context reformatvob C:\users\jones\tut\tut.vbs
744 ClearCase Reference Manual

reformatvob
Reformat versioned object base "C:\users\jones\tut\tut.vbs"? [no] y
Dumping database...
Dumper done.
Dumped versioned object base "C:\users\jones\tut\tut.vbs".
Loading database...
Loader done.
Loaded versioned object base "C:\users\jones\tut\tut.vbs".

SEE ALSO

checkvob, db_dumper, lsvob, mktag, mkvob, mount, register, registry_ccase, vob,

vob_scrubber
ClearCase Reference Pages 745

register
register
Creates an entry in the VOB or view object registry.

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Register a view:

reg⋅ister –vie⋅w [–rep⋅lace]

[–hos⋅t hostname –hpa⋅th host-storage-pname]

view-storage-pname

• ClearCase and Attache only—Register a VOB:

reg⋅ister –vob [–ucm⋅project] [–rep⋅lace]

[–hos⋅t hostname –hpa⋅th host-storage-pname]

vob-storage-pname

• ClearCase LT only—Register a view:

reg⋅ister –vie⋅w [–rep⋅lace] view-storage-pname

• ClearCase LT only—Register a VOB:

register –vob [–ucmproject] [–replace] vob-storage-pname

DESCRIPTION

The register command creates or replaces an entry in VOB or view object registries. The registries

enable clients to determine the physical storage locations of VOBs and views they access. Note

that register has no effect on the VOB or view tag registries. You can also use register to update

an existing registry entry, or to re-register a VOB or view that was temporarily removed from

service with unregister.

Other Commands that Affect Registries

The mkview and mkvob commands add an entry to the appropriate registry; the rmview and

rmvob commands remove registry entries. You can use the unregister command to remove an

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
746 ClearCase Reference Manual

register
existing entry. The reformatvob command updates a VOB’s object registry entry (or creates one,

if necessary).

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

VIEW/VOB SPECIFICATION. Default: None.

–vob
Registers a VOB storage directory.

–ucm⋅project
Marks a VOB as a UCM project VOB in the registry.

–vie⋅w
Registers a view storage directory.

OVERWRITING AN EXISTING ENTRY. Default: An error occurs if the view or VOB storage directory

already has an entry in the registry.

–rep⋅lace
Replaces an existing registry entry. (No error occurs if there is no preexisting entry.)

SPECIFYING THE LOCATION OF THE STORAGE DIRECTORY. Default: None.

view-storage-pname
The path to the view storage; to determine the path, use lsview.

vob-storage-pname
The path to the VOB storage; to determine the path, use lsvob.

SPECIFYING NETWORK ACCESSIBILITY. Default: Values are derived from the view-storage-pname or

vob-storage-pname arguments.

–hos⋅t hostname
–hpa⋅th local-pname

See the mkstgloc reference page for descriptions of how to use these options.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.
ClearCase Reference Pages 747

register
• Register a VOB storage directory that was previously unregistered with the unregister –vob
command.

cmd-context register –vob \\host1\vbstore\vob2.vbs

• Register a view storage directory.

cmd-context register –view –host host2 –hpath C:\vw_store\view3.vws ^
–gpath \\host2\vw_store\view3.vws \\host2\vw_store\view3.vws

SEE ALSO

mktag, mkview, mkvob, mount, umount, unregister, registry_ccase
748 ClearCase Reference Manual

registry_ccase
registry_ccase
Storage registry for VOBs and views

APPLICABILITY

SYNOPSIS

• Registry directory:

ccase-home-dir\var\rgy

• Registry backup directory (on backup registry hosts only—ClearCase only)

ccase-home-dir\var\rgy\backup

• VOB registry files:

vob_object
vob_tag

• View registry files:

view_object
view_tag

• Region registry file (meaningful in ClearCase only because ClearCase LT installations are

limited to a single region):

regions

• Storage path registry file:

storage_path

• Request base registry files (ClearTrack sites only):

bbase_object
bbase_tag

• Site configuration registry file:

site_config

• ClearCase registry configuration values stored in the Windows Registry:

Product Command Type

ClearCase data structure

ClearCase LT data structure
ClearCase Reference Pages 749

registry_ccase
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\InteropRegion
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security\RegPasswd

DESCRIPTION

The network’s registry server host includes a registry directory, ccase-home-dir\var\rgy.In
ClearCase LT, the registry server host is always the ClearCase LT server host. The registry

directory contains information on all the VOBs and views in the local area network, organized

into the following files:

Never edit the registry files on the registry server host manually. Use the following cleartool
subcommands to add, delete, or modify registry file entries:

vob_object Registry of VOB storage directories

vob_tag Registry of VOB-tags

view_object Registry of view storage directories

view_tag Registry of view-tags

regions Registry of network region names (significant only for ClearCase

installations)

storage_path Registry of default VOB and view storage locations

site_config Registry of local configuration parameters

bbase_object (optional) Registry of ClearTrack request base storage directories

bbase_tag (optional) Registry of ClearTrack request base tags

Command Name Registry Files Affected Change

mktag -view view_tag Add or replace entry

mktag -vob vob_tag Add or replace entry

rmtag -view view_tag Delete entry

rmtag -vob vob_tag Delete entry

mkregion regions Add entry

mkreplica vob_tag Add entry

vob_object Add entry

mkstgloc vob_tag Add entry

view_tag Add entry

regions Add entry (ClearCase only)

mkview view_tag Add entry

view_object Add entry
750 ClearCase Reference Manual

registry_ccase
The lsview, lsvob, lsregion, lssite, getcache, and hostinfo –long commands read and report

information from the registry files. The rgy_check utility performs various registry file

consistency checks.

CLEARCASE ONLY—REGISTRY SERVER

You designate one host in the local area network to be the registry server host. (In fact, there can

be more than one, but VOBs and views cannot be shared between clients whose VOBs and views

are registered on different registry server hosts.) On each host in the network, the name of the

registry server host must appear in

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy. You set this

value in the ClearCase Control Panel on the Registry tab.

The registry server host can be either a Windows host or UNIX host.

The ClearCase albd_server program running on the registry server host acts as the registry

server process: it fields remote procedure call (RPC) requests for registry information from

ClearCase client programs (and other server programs) around the network.

rmview view_object Delete entry

view_tag Delete entry

mkvob vob_tag Add entry

vob_object Add entry

rmregion regions Delete entry

rmreplica vob_tag Delete entry

vob_object Delete entry

rmstgloc vob_tag Delete entry

view_tag Delete entry

regions Delete entry (ClearCase only)

rmvob vob_tag Delete entry

vob_object Delete entry

register –view view_object Add or replace entry

register –vob vob_object Add or replace entry

setcache –view site_config Add or replace entry

setsite site_config Add or replace entry

unregister –view view_object Delete entry

unregister –vob vob_object Delete entry

Command Name Registry Files Affected Change
ClearCase Reference Pages 751

registry_ccase
CLEARCASE ONLY—BACKUP REGISTRY SERVERS

You can designate one or more ClearCase hosts as backup registry server hosts. If the primary

registry server fails, you can run rgy_switchover to activate a backup registry server and reset

all client hosts accordingly.

A backup registry server host takes periodic snapshots of the primary registry host’s registry files

(see rgy_backup) and client list, and it stores these snapshot files in the directory

ccase-home-dir\var\rgy\backup.

The Windows Registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup contains

the backup registry host name (or the string Unknown, if no backup host has been designated).

You can set this value on the Registry tab in the ClearCase Control Panel.

The backup registry server host can be either a Windows host or a UNIX host.

See also rgy_backup and rgy_switchover.

CLEARCASE ONLY—NETWORK REGIONS

You can conceptually partition a local area network into multiple ClearCase network regions. Each

region is a consistent naming domain: all hosts in the same region must be able to access all VOB

storage directories and view storage directories using the same full pathnames. For example, all

hosts in one network region might access a view storage directory on host mars using this

pathname:

\\mars\shared_views\mainline.vws

Hosts in another network region may use a different name to access the same view storage

directory:

/net/mars/usr1/shared_views/mainline.vws

Each host exists in exactly one network region and specifies that region on the Registry tab in the

ClearCase Control Panel. (This value is stored in the registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region.)The hostinfo
–long command lists a host’s network region.

Conceptually, each network region has its own view-tag registry and VOB-tag registry. However,

the registry server host stores the only copies of the view-tag and VOB-tag files; each view-tag

and VOB-tag entry includes a –region field, which assigns the tag to a particular region. It is

common for a single VOB or view object to have multiple entries in the tag registry—one for each

region in which it is registered.

NOTE: All VOBs and views that reside on a host must have tags in the host’s network region.

Network regions are registered in the regions file in the rgy subdirectory on the registry host. Use

the mkregion, lsregion, and rmregion commands to create, list, and remove regions.
752 ClearCase Reference Manual

registry_ccase
FORMAT OF REGISTRY FILES

The following sections describe the fields in the various registry files.

vob_object

Each VOB storage directory in the network has one entry in the vob_object file. The entry is a

single text line with these fields:

vob_tag

Each VOB storage directory in the network can have one VOB-tag per network region, and each

VOB-tag has an entry in the vob_tag file. The entry is a single text line with these fields:

view_object

Each view storage directory in the network can have one entry per network region in the

view_object file. The entry is a single text line with these fields:

–entry vob_object

–hostname Host on which the VOB storage directory resides.

–local_path Standard full pathname to the VOB storage directory on that host.

–vob_replica Unique identifier (UUID) of the VOB. (For a replicated VOB, maintained

by ClearCase MultiSite, this VOB replica UUID identifies the particular

VOB replica at your site.)

–vob_family VOB family UUID, which is shared by all replicas of the same VOB.

Replicas are created and maintained by ClearCase MultiSite. Even if the

VOB is not replicated, this UUID is different from the VOB replica UUID.

–entry vob_tag

–tag VOB-tag, which is a full pathname. A VOB’s tag is the same as its mount

point.

–global_path Standard full pathname to the VOB storage directory that is valid on all

hosts within the network region.

–hostname Host on which the VOB storage directory resides.

–mount_access Keyword: private or public.

–mount_options System-dependent character string that records options to be invoked

when you mount the VOB.

–region Network region.

–vob_replica Same as the like-named field in the vob_object file.

–title (optional) Tag comment supplied with a –tcomment option on mkvob or

mktag

–entry view_object

–hostname Host on which the view storage directory resides.
ClearCase Reference Pages 753

registry_ccase
view_tag

Each view storage directory in the network can have one or more entries per network region (one

per region is recommended) in the view_tag file. The entry is a single text line with these fields:

regions

Each network region has exactly one entry in the regions file. The entry is a single text line with

these fields:

storage_path

Each default location for a VOB or view storage directory has exactly one entry in the

storage_path file. The entry is a single text line with these fields:

–local_path Standard full pathname to the view storage directory on that host.

–view_uuid View’s unique identifier (UUID).

–owner User name of the view’s creator

–entry view_tag

–tag View-tag, which takes the form of a simple file name. When a dynamic view
is active on a host, its view-tag appears as an entry in the host’s view.root
directory (by default, M:\)

–hostname Host on which the view storage directory resides.

–global_path For all machines in this network region, the full pathname of the view

storage directory.

–region Network region.

–view_uuid View’s unique identifier (UUID).

–title (optional) Tag comment supplied with a –tcomment option on mkview or

mktag.

–entry regions

–tag Region name (character string <= 32 characters)

–title (optional) Region comment; see lsregion for details.

–entry storage_path

–type Type of storage location (vob or view).

–hostname Host on which the storage location resides.

–region Network region.

–global_path The full pathname of the storage location, valid on all hosts within the

network region.
754 ClearCase Reference Manual

registry_ccase
bbase_object

(ClearTrack sites only) Each ClearTrack request base in the network can have one entry per

network region in the bbase_object file. The entry is a single text line with these fields:

bbase_tag

(ClearTrack sites only) Each ClearTrack request base in the network can have one tag per

network region, and each request base tag has an entry in the bbase_tag file. The entry is a single

text line with these fields:

site_config

Stores local configuration parameters. See setsite for these parameters. The entry for each

parameter is a single text line with these fields:

CLEARCASE ONLY—REGISTRY CONFIGURATION VALUES

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy

The name of the primary registry server host. This key value must exist on every ClearCase host.

Set this value on the Registry tab in the ClearCase Control Panel.

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\InteropRegion

A single word (32 characters maximum, no white space) specifying the UNIX region whose

VOBs will be accessed from Windows machines. Set this value on the Registry tab in the

ClearCase Control Panel.

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup

The name of the backup registry server host. Set this value on the Registry tab in the ClearCase

Control Panel.

–entry bbase_object

–hostname Host on which the request base resides.

–local_path Standard full pathname to the request base on the local host.

–entry bbase_tag

–tag Request base tag.

–hostname Host on which the request base resides.

–global_path For all machines in this network region, the full pathname of the request

base.

–region Network region.

–entry site_config

–name Name of the parameter (such as view_cache_size).

–value Default value for the parameter.
ClearCase Reference Pages 755

registry_ccase
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region

A single word (32 characters maximum, no white space) specifying the host’s network region.

Each ClearCase host belongs to a single network region. All hosts in a network region access

VOB and view storage directories using the same global (that is, network) pathnames. Set this

value on the Registry tab in the ClearCase Control Panel.

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType

On the primary registry server host, this value stores the single keyword master.

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security\RegPasswd

The network’s VOB-tag password, an encrypted character string. You must specify this password

to create a public VOB-tag with mkvob or mktag, or to remove a public VOB-tag with rmtag.

The Security subkey and RegPasswd value exist only on the registry server host. If the Security
subkey is nonexistent, create it with the rgy_passwd utility. For example:

C:\> rgy_passwd (invoke encrypted-password utility)
Password: <enter VOB-tag password>

The administrator should apply a security ACL to the Security subkey to prevent users from

directly editing the password in the registry. We recommend that you assign full control to

authorized users (users who allowed to change the password; for example, the network

administrator), and read permissions to all other users.

FILES

ccase-home-dir\var\rgy\vob_object
ccase-home-dir\var\rgy\view_object
ccase-home-dir\var\rgy\vob_tag
ccase-home-dir\var\rgy\view_tag
ccase-home-dir\var\rgy\regions
ccase-home-dir\var\rgy\storage_path
ccase-home-dir\var\rgy\bbase_object
ccase-home-dir\var\rgy\bbase_tag
ccase-home-dir\var\rgy\site_config

WINDOWS NT REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\InteropRegion
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security\RegPasswd
756 ClearCase Reference Manual

registry_ccase
SEE ALSO

albd_server, hostinfo, lsclients, lsregion, lssite, lsstgloc, lsview, lsvob, mkregion, mkstgloc,

mktag, mkview, mkvob, mount, register, rgy_backup, rgy_check, rgy_passwd,

rgy_switchover, rmregion, rmstgloc, rmview, rmvob, setcache, setsite, umount, unregister
ClearCase Reference Pages 757

relocate
relocate
Moves elements and directory trees from one VOB to another

APPLICABILITY

SYNOPSIS
relocate [–f⋅orce] [–qal⋅l] [–log log-pname] [–upd⋅ate]

pname [pname ...] target-dir-pname

DESCRIPTION

The relocate command moves elements, including directory trees, from one VOB to another. All

related VOB database entries and data containers are moved to the target VOB. relocate
preserves the “move from” VOB’s namespace by substituting VOB symbolic links for moved

elements.

NOTE: In Attache, after moving elements from one VOB to another, relocate does not move the

corresponding elements in the workspace.

The more common use of relocate involves splitting a piece from one VOB and moving it to a

newly created VOB. However, you can move an arbitrary collection of elements from one VOB

to a location in any other VOB. You cannot use relocate to move an element to a new location in

the same VOB. Use cleartool mv for this purpose.

For a dynamic view, view-private files and nonversioned DOs are not relocated. If a relocated

directory contains view-private files, they are stranded; DOs are removed. See also Relocating
Derived Objects and Using recoverview –sync to Recover View-Private Objects and DO Data Files.

WARNING: The relocate command makes irreversible changes to at least two VOBs and their

event histories. We recommend that you not use it frivolously or routinely for minor

adjustments. Furthermore, you are advised to stop VOB update activity before and during a

relocate operation.

Overview of a Relocate Operation

Primary relocate processing phases:

• Select/checkout from source VOB

• Copy elements to target VOB

• Catalog elements in target VOB

Product Command Type

ClearCase cleartool subcommand

Attache command
758 ClearCase Reference Manual

relocate
• Update hyperlinks

• Remove elements from source VOB

When moving elements from one VOB to another, relocate does the following:

1. Locks all elements in the relocate set. (These locks are held until relocate removes the

elements from the source VOB, or until you abort relocate and release them manually.)

2. Checks out source files and directories, and checks out the target directory.

3. Copies all elements into the target directory, creating a temporary, flat directory of

OID-prefixed element names.

4. Copies metadata types to target VOB (label, attribute, element, attribute, trigger, and

hyperlink type objects).

Name collisions result in new type names of the form type-name.n (label type REL3.1, or

branch type r2_bugfix.1, for example).

5. Converts flat target directory to directory tree by cataloging elements in their containing

directories.

6. For borderline elements being relocated (these, by definition, are cataloged in at least one

nonrelocated directory): replaces original catalog entries in source VOB directory versions

with VOB symbolic links. Each link’s text is a relative pathname. For example:

..\..\newhome

7. Rebuilds event history for all elements.

8. Applies nonhyperlink metadata to target VOB elements (labels, attributes, and triggers).

9. Adjusts hyperlinks. Preserves all bidirectional hyperlinks, including merge links. (relocate
does not preserve unidirectional hyperlinks whose targets are relocated.) See also mkhlink.

Adds hyperlink of type RelocationVOB to the target VOB. (catcr uses such hyperlinks to

resolve references to relocated objects.)

10. Removes elements from source VOB.

11. Checks in target directory, and checks in source directories from which elements were

relocated.

Invoking relocate

Because relocate performs checkouts, creates new elements, and removes elements, invoke it

from a view configured to perform these actions on the source and target VOBs. In particular,

make sure your config spec can check out the elements to be relocated. For example, a view or

config spec without a CHECKEDOUT rule is inappropriate for the purposes of relocate. See the

config_spec reference page for more information on view configuration.

WARNING: Do not run multiple relocate commands in the same view in the same directory.

Because relocate checks out and checks in files in the directory, simultaneous commands will
ClearCase Reference Pages 759

relocate
interfere with each other. To ensure no interference, we recommend that you run only one

relocate command at a time in a VOB.

Perform a relocate operation in the same view, or with the same config spec, that you will use to

adjust makefiles, rebuild libraries, reset config specs, modify development tools, or complete any

other work that may accompany the relocation task. See also AFTER RELOCATION.

If you are using ClearCase MultiSite, see Relocating Elements from Replicated VOBs.

Selecting Elements to Relocate

The term selection set refers to the complete collection of file and directory elements implied by

your pname arguments to relocate, irrespective of your view. For example, the command relocate
file1 dir2 \newhome yields a selection set that includes file1, dir2, and all files and directories

cataloged in all versions of dir2 and its subdirectories. (Note that this means the selection set can

include elements for which your current config spec does not select any version.) relocate scans

the selection set and extracts a subset, the relocate set, which it moves to the target VOB.

Often, the selection set and relocate set are identical. By default, relocate scans the selection set

and adds these elements to the relocate set:

• Each element visible in the current view

• Each element cataloged only by a directory in the selection set

In other words, relocate leaves behind any element that is not visible in the current view and is

cataloged in a directory outside the selection set. For example, suppose you relocate directory

element lib2, which catalogs file element file.c (that is, at least one version of lib2 catalogs file.c).

Your view does not select any version of file.c. Directory element lib4, which you are not

relocating, does catalog file.c. By default, file.c stays behind.

The –qall option permits you to interactively confirm or override relocate’s default handling of

each borderline element: it does not query on all elements in the selection set. A borderline

element is one that is cataloged both in a directory being relocated and in a directory not being

relocated. relocate’s default handling of a borderline element depends on whether the element

is visible to your current view: a visible element (config spec selects a version) moves by default.

An invisible element (config spec selects no version) does not.

Running relocate in Update Mode

Because relocate locks elements to be moved, relocating elements from a production VOB

prevents users from working on them. If the elements to be moved must remain in use during

the relocation, you can use relocate’s update mode (relocate –update). You can also use update

mode to update the target VOB incrementally with changes that have occurred since relocate
was last run. However, we recommend that you use update mode sparingly.
760 ClearCase Reference Manual

relocate
You cannot switch from using update mode to not using it. We recommend you not use update

mode if you plan to leave some elements in the original VOB. (If you do use it in this situation,

you must clean up the original elements and create symbolic links manually.)

CAUTION: If you use update mode, you must not make any changes to the relocated elements in

the target VOB until you have stopped using the originals.

In update mode, relocate works as follows:

• Does not create symbolic links in the source VOB to replace existing catalogs; it leaves the

catalogs in place

• Allows you to relocate the VOB root and lost+found directories

• Does not stop relocation when it encounters a nonlocally mastered element; it relocates the

element

• Does not remove the elements from the source VOB

• Does not check out or modify the source directory

• Does not lock the elements in the relocate set

When you use update mode incrementally, relocate rescans all elements to update them with

any changes. In regular mode, relocate determines where it left off and continues, assuming that

elements it has already relocated do not need further processing. In update mode, relocate does

not make this assumption: because update mode is used incrementally and no locks are put on

the original elements, the elements may have changed since the last time relocate –update was

run.

There are certain changes (usually deletions of objects) that cause relocate to fail when updating

existing elements. If you perform rmver, rmbranch, or rmelem operations on the original

elements, these changes are not reflected in the destination VOB. relocate creates objects; it does

not remove them.

In addition, a deletion combined with a replacement creation can cause an error. For example, if

a branch named foo is removed in the original VOB and a new branch named foo is created to

replace it, relocate fails when it tries to update the destination element. Because relocate did not

remove the old branch, it cannot create the new one. To work around this problem, remove the

destination element; on the next run of relocate, the element is re-created.

Relocating Derived Objects

NOTE: Derived objects are created only in dynamic views.

You can relocate checked-in derived objects as you do any element. Configuration records (CRs)

for these DOs move to the target VOB’s database.
ClearCase Reference Pages 761

relocate
All nonversioned DOs (shared and view-private)—and their config records—are deleted when

relocate removes their containing directory from the source VOB. That is, DO and config record

objects are deleted from the VOB database (not moved) with the equivalent of rmdo operations.

See also Using recoverview –sync to Recover View-Private Objects and DO Data Files.

Relocating Elements to an Existing VOB

When moving elements to a VOB that is not currently empty (new), be careful to avoid the

following problems:

• Target VOB locks on branches, types, or elements (use lock –replace –nuser to work around

this problem)

• Name collisions

Relocating Elements from Replicated VOBs

When relocating elements from one replica of a replicated VOB to another VOB, observe the

following rules and guidelines:

• You must be an element’s master to relocate it.

• You must replicate the target VOB at each site that includes the source VOB. Relocate

elements from VOB1 replica to VOB2 at local site; then replicate VOB2 at each VOB1 replica

site.

After a relocate operation at site A, cross-VOB hyperlinks will “dangle” at site B’s replica if

either site B does not include a replica of the target VOB used at site A, or site B has not been

updated by a syncreplica operation since the relocate operation at site A.

• You must coordinate the relocate operation with the administrators of all of the VOB’s

replicas. For example, if replica A is locked for relocate, and a checkin happens at replica B

in the meantime, that checkin is lost to replica A.

• You may need to adjust mastership for metadata type objects. When relocate copies them to

the target VOB, it creates them with local mastership.

Relocation and Event History

For each relocated element, two events record the relocate event:

• In the source VOB, a remove element event on the VOB object

• In the target VOB, a relocate event on the relocated element

Relocated element event histories are otherwise preserved nearly intact. (Some minor events are

lost.)
762 ClearCase Reference Manual

relocate
Relocate Log File

By default, relocate creates a log file in the current directory with the name relocate.log.date-time.

You can use –log to send log output to another location.

Interrupting and Restarting relocate

In general, you can interrupt and restart relocate operation, if you take these precautions:

• Do not release locks that relocate sets in the source VOB.

• Do not modify elements in the selection set (check them in, apply labels to them, and so on).

• Record your answers to –qall queries the first time through.

If restarted with an identical command line, relocate can determine where to resume processing.

The final phase in a relocate operation, removing elements from the source VOB, is not

restartable. The relocate log file records the OIDs of elements to be removed. If you interrupt

relocate during this phase, you must use the logged OIDs to remove elements manually (rmelem
accepts arguments of the form oid:oid).

AFTER RELOCATION

Modifying Views/Config Specs to Find Relocated Elements

In some cases, config specs for existing views may require changes to find elements that have

been relocated. In source VOB directory versions that catalog relocated elements, relocate
replaces the original catalog entry for a relocated element with a VOB symbolic link. Each link’s

text is a relative pathname, ..\..\newhome, for example . Views left to access elements via

symbolic links may run into problems. For example, you cannot check out a VOB symbolic link,

even if it points to an element. There are several ways around this limitation, providing a view

with a more direct path to elements in the target VOB:

• Reset views to use pathnames to the new VOB.

• Add labels to relocated versions, and configure the view to select these elements with a

label-based rule.

• Apply a particular branch type to relocated elements, and configure the view to select this

branch.

Similarly, you will want to examine your build scripts, triggers, and other tools that may need

adjustments to accommodate relocated elements.

NOTE: In the source VOB, relocate completes its operation by checking in the parent directories

of all relocated elements. Unlike all preceding directory versions, this last checked-in directory

version does not include symbolic links to relocated elements. Presumably, the view in which

you ran relocate selects this version, and to this view, relocated elements appear simply
ClearCase Reference Pages 763

relocate
removed. Working in this view affords an opportunity to track tools, builds, and other

potentially “broken” references to the relocated elements.

Fixing Incorrect Symbolic Links

After relocating some elements, the corresponding symbolic links are not always correct for all

views in which they may appear. To help resolve such problems, the HyperSlink hyperlink type

links symbolic links to their objects. Use describe to get information on the problematic symbolic

link; the HyperSlink makes evident how to fix the link.

Using recoverview –sync to Recover View-Private Objects and DO Data Files

relocate does not move view-private objects when it relocates their containing directories. If you

do not move or back up these objects, they are effectively lost. However, you can use

recoverview –sync view-tag to move view-private files to the dynamic view’s lost+found
directory, under names like OID_file3.c.

relocate deletes all nonversioned DOs (both shared and view-private)—and their config

records—when it relocates their containing directories. A stranded DO data file (its status as a

VOB object is now gone, along with its corresponding VOB database entries) can be recovered

by a view that still references it with recoverview –sync view-tag. This command moves all

view-private files and referenced DOs to the dynamic view’s lost+found directory.

Cataloging Relocated Elements in Multiple Versions of the Target Directory

relocate checks out the target VOB directory, relocates elements, and checks in the target

directory. This means that relocated elements are cataloged only in the latest version of the target

directory, giving these elements a sense of newness that may not be desirable. For example, if the

target VOB has been in existence for some time, you may want previous target directory versions

to catalog the relocated elements. In this case, you can use the cleartool or Attache ln –nco to add

VOB symbolic links to non-LATEST directory versions—cataloging relocated elements in

previous versions of target-dir-pname.

If you want relocated elements to be cataloged in the latest versions of target-dir-pname on

multiple branches:

1. Set your config spec to select a branch of target-dir-pname, /main/relocate_work, for example.

2. Run relocate.

3. Perform directory merge operations from /main/relocate_work to other branches.

Moving a Relocated Element

If you move a relocated element with mv, a VOB symbolic link to the element from the source

VOB is not updated. Instead, the link is left pointing at a nonexistent target (thereby making the

link invisible to directory listings and other file-system read operations).
764 ClearCase Reference Manual

relocate
Figure 16 Moving Relocated Element Does Not Update Symbolic Link from Source VOB

RESTRICTIONS

Permissions Checking: You must be the VOB owner (for both VOBs) , a member of the ClearCase

group (ClearCase), or the local administrator of the ClearCase LT server host (ClearCase LT) to

execute this command.

Locks: relocate first locks all elements to be moved from the source VOB. Then, it creates

elements, element types, branch types, and so on in the destination VOB, as required to re-create

all moved elements and their metadata. Therefore, relocate returns an error if any of the

following objects are locked in the source VOB: VOB, element. It returns an error if any of the

following objects are locked in the destination VOB: VOB, element, branch type, element type,

label type, hyperlink type, attribute type. See the permissions reference page.

Other Restrictions: relocate cannot move checked-out elements. It fails during the selection phase

if it finds any checked-out files among the ones it is going to move.

Also, relocate may fail if there are restrictive triggers on checkout, checkin, and rmelem
commands. Because relocate runs these commands, triggers on these operations are also

executed. If these triggers cause relocate to fail, you must disable the triggers or remove them

from those operations, and run relocate again.

OPTIONS AND ARGUMENTS

SUPPRESSING THE CONFIRMATION QUERY. Default: After displaying the relocate set, relocate asks

you to confirm that these are the elements you want to relocate.

–f⋅orce
Suppresses the confirmation step.

CONTROLLING SPECIAL CASE HANDLING. Default: relocate filters the selection set as described

above in the subsection Selecting Elements to Relocate.

–qal⋅l
Prompts user to affirm or reject relocate’s handling of each borderline element—one that

is cataloged both in a directory being relocated and in a directory not being relocated.

The default answer in an individual case depends on the element’s visibility in the

current view: yes if the view selects some version of the element; no otherwise.

VOB1 VOB2

mvrelocate

symbolic link

mv operation breaks
symbolic link
ClearCase Reference Pages 765

relocate
If you reject these defaults, the result is nonfunctional links that you must repair. If a

version of an element is visible in the current view and you indicate it is not to be

relocated, the result is a bad link in the target VOB. If a version of an element is not

visible in the view and you indicate that it is to be relocated, the result is a bad link in the

source VOB.

WRITING A LOG FILE. Default: relocate creates a log file in the current directory with the name

relocate.log.date-time.

–log log-pname
Creates a relocate log file at location log-pname.

RELOCATING IN UPDATE MODE. Default: relocate proceeds as described in Overview of a Relocate
Operation on page 758.

–upd⋅ate
relocate runs in update mode, as described in Running relocate in Update Mode on

page 760.

SPECIFYING WHICH FILES TO RELOCATE. Default: None. You must specify one or more elements to

relocate, the selection set. relocate filters the selection set to construct a relocate set as described

earlier in Selecting Elements to Relocate.

pname ...

Specifies the elements to be relocated. A pname can be a file element, directory element,

or VOB symbolic link.

SPECIFYING A TARGET VOB AND DIRECTORY. Default: None. You must supply a target directory in

a second VOB.

target-dir-pname
Specifies the directory in the target, or destination, VOB that will store the relocated

elements. relocate checks out and modifies the version of this directory that is selected

by your current view. The target directory must be in the same view as the source

pathname (that is, you cannot specify a view-extended pathname for target-dir-pname).

This pathname must be drive-relative (non-drive-specific):

Valid Invalid

\foo\bar m:\foo\bar
foo f:foo
..\foo g:..\foo
766 ClearCase Reference Manual

relocate
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Move subdirectory glib (and its one file, file.c) from \vob_lib to the newly created VOB

\vob_gui. Query on borderline elements. To illustrate how relocate replaces element names

with symbolic links in the source VOB, the example uses a relative pathname to specify the target

VOB.

After relocating glib, examine the RelocationVOB hyperlink added to \vob_gui.

> cd \vob_lib

cmd-context setcs –default

cmd-context relocate -qall .\glib_src ..\vob_gui
Logfile is "relocate.log.09-Apr-99.14.11.37".
Selected "glib".
Selected "glib\file.c".
Do you want to relocate these objects? [no] yes
Checked out "." from version "\main\3".
Checked out "\vob_gui" from version "\main\0".
Locking selected objects
Locked "glib"
Locked "glib\file.c"
Recreating selected objects
Created "glib"
updated branch "\main"

updated version "\main\0"
created version "\main\1"
Created "glib\file.c"

updated branch "\main"
updated version "\main\0"
created version "\main\1"

Cataloging new objects
cataloged symbolic link "\vob_lib\glib\.@@\main\2\glib" ->
ClearCase Reference Pages 767

relocate
"..\vob_gui\glib"
cataloged symbolic link "\vob_lib\glib\.@@\main\3\glib" ->

"..\vob_gui\glib"
cataloged "\vob_lib\.@@\main\CHECKEDOUT.32\glib"
cataloged symbolic link "\vob_lib\glib\.@@\main\1\file.c" ->

"..\vob_gui\glib\file.c"
cataloged symbolic link "\vob_lib\glib\.@@\main\2\file.c" ->

"..\vob_gui\glib\file.c"
cataloged "\vob_gui\glib@@\main\1\file.c"

Removing original objects
removed "glib\file.c"
removed "glib"

Checked in "\vob_lib\." version "\main\4".
Checked in "\vob_gui\." version "\main\1".

cmd-context describe vob:\vob_gui
versioned object base "\vob_gui"

created 09-Apr-99.13:50:16 by clearadm.adm@propane
"relocate target for former directory \vob_lib"
VOB storage host:pathname "propane:\vobstore\gui.vbs"
VOB storage global pathname "\\propane\vobstore\gui.vbs"
VOB ownership:

owner clearadm
group sys

Hyperlinks:
RelocationVOB@33@\vob_gui vob:\vob_gui -> vob:\vob_lib

FILES

relocate.log.date-time

SEE ALSO

ln, mkvob, mv
768 ClearCase Reference Manual

rename
rename
Assigns a new name to an existing object.

APPLICABILITY

SYNOPSIS
rename [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ old-object-selector new-object-selector | –gen⋅erate old-object-selector }

DESCRIPTION

NOTE: To move or change the name of a ClearCase or ClearCase LT file or directory element, use

the mv command.

The rename command renames a ClearCase, ClearCase LT or MultiSite object—for example, a

VOB storage pool, a replica, or a type object such as an activity type.

If you are renaming a pool, no data container in the pool is affected.

If you are renaming a replica, the name change is propagated to other replicas, through the

standard synchronization mechanism. This command is valid only at the replica that masters the

VOB-replica object being renamed.

If you are renaming a type object, all instances of the type object, throughout the VOB, are also

renamed. If the type object is global, all local copies of the type object are renamed. For example,

if you rename a branch type from bugfix to rel1.3_fixes, all existing bugfix branches are also

renamed to rel1.3_fixes. (For more information about global type renaming, see Administering
ClearCase.)

RESTRICTION: A VOB cannot contain a branch type and a label type with the same name.

NOTE: Do not use this command to rename an instance of a type, for example to rename a

particular branch of a particular element. For that purpose, use chtype.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand
ClearCase Reference Pages 769

rename
PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: replica creator

(for renaming a replica only), object owner, VOB owner, a member of the ClearCase group

(ClearCase), or the local administrator of the ClearCase LT server host (ClearCase LT). See the

permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, object.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE OLD AND NEW NAMES. Default: None.

old-object-selector
new-object-selector

The name of an existing object and a new name for it. Specify object-selector in one of the

following forms:

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

The following object selectors apply to UCM:
770 ClearCase Reference Manual

rename
For more information about object selectors, see the cleartool reference page.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Rename one of the current VOB’s pools from c_pool to c_source_pool.

cmd-context rename -c "make pool name clearer" pool:c_pool pool:c_source_pool
Renamed pool from "c_pool" to "c_source_pool".

• List existing pools in the current VOB. Then, rename pool do1 to do_staged.

cmd-context lspool –short
c_source_pool
cdft
ddft
do1
my_ctpool
sdft

cmd-context rename pool:do1 pool:do_staged
Renamed pool from "do1" to "do_staged".

• Rename a branch type from rel2_bugfix to r2_maint. First, show the version tree for util.c
with the lsvtree command. Then rename the branch type, and show the version tree again.

cmd-context lsvtree –short util.c
util.c@@\main\1
util.c@@\main\rel2_bugfix
util.c@@\main\rel2_bugfix\1
util.c@@\main\3

activity-selector activity:actvity-name[@vob-selector]

baseline-selector baseline:baseline-name[@vob-selector]

component-selector component:component-name[@vob-selector]

folder-selector folder:folder-name[@vob-selector]

project-selector project:project-name[@vob-selector]
stream-selector stream:stream-name[@vob-selector]
ClearCase Reference Pages 771

rename
cmd-context rename brtype:rel2_bugfix brtype:r2_maint
Renamed type from "rel2_bugfix" to "r2_maint".

cmd-context lsvtree –short util.c
util.c@@\main\1
util.c@@\main\r2_maint
util.c@@\main\r2_maint\1
util.c@@\main\3

• Rename the element type of msg.c and hello.c from text_file to source_file. (Note warning

about renaming a predefined type.)

cmd-context rename eltype:text_file eltype:source_file
cleartool: Warning: Renaming a predefined object!
Renamed type from "text_file" to "source_file".

• Rename an attribute attached to a version of element msg.c from TESTED to QAed. Use

describe to show the name/value association before and after the name change.

cmd-context describe –aattr TESTED msg.c
msg.c@@\main\3
 Attributes:
 TESTED = "TRUE"

cmd-context rename attype:TESTED attype:QAed
Renamed type from "TESTED" to "QAed".

cmd-context describe –aattr QAed msg.c
msg.c@@\main\3
 Attributes:
 QAed = "TRUE"

• Rename replica paris to paris_louvre.

cmd-context rename replica:paris paris_louvre
Renamed replica "paris" to "paris_louvre".

SEE ALSO

chactivity, chchkpt, chevent, chpool, chtype, describe, lspool, lstype, mkpool, mkreplica (in

the ClearCase MultiSite Manual), rmpool, rmtype
772 ClearCase Reference Manual

reqmaster
reqmaster
Sets access controls for mastership requests or requests mastership of a branch

APPLICABILITY

SYNOPSIS

• Display or set the ACL for mastership requests:

reqmaster –acl [–edi⋅t | –set pname | –get] vob-selector

• Set access controls for the replica or for branches:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
{ { –enable | –dis⋅able } vob-selector
| { –den⋅y | –allow } –inst⋅ances branch-type-selector ...
| { –den⋅y | –allow } branch-pname ...
}

• Request mastership of a branch:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
[–lis⋅t] branch-pname ...

DESCRIPTION

This command has three forms: two forms to configure access controls for mastership requests

and one form to request mastership of a branch from the replica that masters the branch. For

more information, see ClearCase MultiSite Manual.

SETTING ACCESS CONTROLS

To allow requests for mastership, the MultiSite administrator must set access controls at each

replica:

• Add developers to the replica’s access control list (ACL). Use the –acl option with –edit or

–set to edit the ACL.

• Enable replica-level access. By default, replica-level access is not enabled. To enable it, use

the –enable option.

Product Command Type

ClearCase cleartool subcommand

MultiSite multitool subcommand
ClearCase Reference Pages 773

reqmaster
Also, the branch type must allow mastership requests for branches of that type, and the branch

object must allow mastership requests for the branch. By default, type-level and branch-level

access are enabled. You can enable replica-level access, but deny requests for mastership of

specific branches or for mastership of all branches of a specific type. Even if replica-level access

is enabled, the reqmaster command fails if requests for mastership are denied at the type level

or object level. Use the –deny option to deny requests at the type and branch level.

REQUESTING MASTERSHIP OF A BRANCH

This form of the reqmaster command contacts a sibling replica and requests that the replica

transfer mastership of a branch to the current replica. You can also use reqmaster to display

information about whether a mastership request for the branch will succeed.

If you specify multiple branches and the request fails for one or more branches, reqmaster prints

error messages for the failures and continues processing the other branches.

TROUBLESHOOTING

If the reqmaster command fails, the error message indicates whether the failure occurred at the

current replica or the sibling replica.

If the reqmaster command fails with the message can’t get handle , enter the command again.

If it continues to fail, contact the administrator of the sibling replica.

When you request mastership of a branch, the reqmaster command may complete successfully,

but the mastership is not transferred to your current replica. In this case, verify that the

synchronization packet was sent from the sibling replica and that your current replica imported

it successfully.

Errors that occur during the mastership request process, including errors occurring during the

synchronization export, are written to the msadm log file. To view this log, use the cleartool
getlog command or the ClearCase Administration Console (available only on Windows

computers).

For more information on error messages from the reqmaster command, see ClearCase MultiSite
Manual.

RESTRICTIONS

Restrictions for setting access controls:

Permissions:

• To set the ACL, you must be VOB owner, root user (UNIX), a member of the ClearCase
group (Windows), or have write permission on the ACL.

• To enable mastership requests at the replica level, you must be VOB owner, root user

(UNIX) or a member of the ClearCase group (Windows).
774 ClearCase Reference Manual

reqmaster
Anyone can display the ACL with reqmaster –acl –get. See the permissions reference page

in the ClearCase Reference Manual.

Locks: No locks apply.

Mastership: The replica must be self-mastering. For you to allow or deny mastership requests

for a branch, your current replica must master the branch.

Restrictions for requesting mastership of a branch:

Permissions: You must be on the replica’s ACL.

Locks: The reqmaster command fails if the branch, branch type, or VOB is locked.

Other restrictions: The reqmaster command fails in any of the following cases:

• Mastership requests are denied at any of the following levels: replica, type object, object.

• There are checkouts on the branch (except for unreserved, nonmastered checkouts).

• You specify a branch associated with a UCM stream.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See the comments reference

page. To edit a comment, use chevent.

–c⋅omment comment | –cq⋅uery | –nc⋅omment
Overrides the default with one of the MultiSite comment options.

DISPLAYING OR SETTING ACCESS CONTROLS. Default: None. You must specify access controls.

Specifying –acl with no other option displays the ACL for the current replica in the VOB family

specified by vob-selector.

–acl [–edi⋅t | –set pname | –get] vob-selector
By default or with –get, displays the ACL for the current replica in the VOB family

specified by vob-selector. With –edit, opens the ACL for the current replica in the editor

specified by (in order) the WINEDITOR (UNIX only), VISUAL, or EDITOR environment

variable. With –set, uses the contents of pname to set the ACL for the current replica.

Specify vob-selector in the form vob:pname-in-vob

–enable vob-selector
Allows mastership requests to be made to the current replica in the VOB family specified

by vob-selector.

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
ClearCase Reference Pages 775

reqmaster
–dis⋅able vob-selector
Denies all mastership requests made to the current replica in the VOB family specified

by vob-selector.

{ –deny | –allow } –inst⋅ances branch-type-selector ...

Denies or allows requests for mastership of all branches of the specified type. Specify

branch-type-selector in the form brtype:type-name[@vob-selector]

{ –deny | –allow } branch-pname ...

Denies or allows requests for mastership of the specified branch. Specify branch-pname in

the form file-pname@@branch. For example:

foo.c@@/main/v3.8
header.h@@\main\v1\bugfix

REQUESTING MASTERSHIP OF A BRANCH. Default: Sends a request for mastership to the master

replica of the branch.

–lis⋅t
Does not request the mastership change; instead, displays branch type, and master

replica of the branch, and whether a request would succeed.

branch-pname
Branch whose mastership you are requesting. For example:

foo.c@@/main/v3.8
header.h@@\main\v1\bugfix

EXAMPLES

• Display the ACL for the current replica in the VOB family \dev, and then change it to give

full access to ccadmin and permission to request mastership to susank and johng.

multitool reqmaster –acl –get vob:\dev
Replica hosmer@\dev
Request for Mastership ACL:
Everyone: Read

Create a file (for example, c:\tmp\hosmer_aclfile) containing the following lines:

type-name Name of the branch type

vob-selector VOB specifier; can be omitted if the current working

directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
776 ClearCase Reference Manual

reqmaster
Replica hosmer@\dev
Request for Mastership ACL:
User:foobar/ccadmin Full
User:foobar/susank Change
User:foobar/johng Change

multitool reqmaster –acl –set c:\tmp\hosmer_aclfile vob:\dev

multitool reqmaster –acl –get vob:\dev
Replica hosmer@\dev
Request for Mastership ACL:
User:foobar/ccadmin Full
User:foobar/susank Change
User:foobar/johng Change

• Allow requests for mastership for all branches mastered by the current replica in VOB

family \test_dev, except for branches of type v2.6_beta.

multitool reqmaster –enable vob:\test_dev
Requests for mastership enabled in the replica object for "vob:\test_dev"

multitool reqmaster –deny –instances brtype:v2.6_beta
Requests for mastership denied for all instances of "brtype:v2.6_beta"

• Allow requests for mastership for all branches mastered by the current replica, except for

the branch cmdsyn.m@@\main\v2.6_integ.

multitool reqmaster –enable vob:\dev
Requests for mastership enabled in the replica object for "vob:\dev"

multitool reqmaster –deny cmdsyn.m@@\main\v2.6_integ
Requests for mastership denied for branch "cmdsyn.m@@\main\v2.6_integ"

• Deny requests for mastership for all branches mastered by the current replica.

multitool reqmaster –disable vob:\doc
Requests for mastership disabled in the replica object for "vob:\doc"

• Request mastership of the branch cmdsyn.m@@\main\v2.6_dev.

multitool reqmaster cmdsyn.m@@\main\v2.6_dev

• Display mastership information about the branches include.h@@\main\integ and

acc.c@@\main.

multitool reqmaster –list include.h@@\main\integ acc.c@@\main
multitool: Error: The following errors will be encountered
multitool: Error: acc.c@@\main
Request Mastership remote "reqmaster" operation (host "neon") would fail:
the requested operation is denied.
ClearCase Reference Pages 777

reqmaster
SEE ALSO

chmaster

ClearCase MultiSite Manual
778 ClearCase Reference Manual

reserve
reserve
Converts an unreserved checkout to reserved

APPLICABILITY

SYNOPSIS
res⋅erve [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

 [–cact] pname ...

DESCRIPTION

The reserve command changes the checkout status of a checked-out version of an element to

reserved. A temporary reserve checkout of version event record is written to the VOB

database.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, a member of the ClearCase group (ClearCase), or the local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch.

Other restrictions: The following conditions must all be true:

• There are no reserved checkouts of the branch.

• The latest version on the branch is the predecessor version of your checked-out version.

• (If you checked out the branch with –nmaster) The current VOB replica masters the branch.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 779

reserve
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS. Default: None.

–cwo⋅rk
(UCM) Reserves each checked-out version in the change set of the current activity in

your view.

pname ...

One or more pathnames, each of which specifies an element. The checkout in the current

view is changed, unless you use a view-extended pathname to specify another view.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change the checkout status of an element to reserved.

cmd-context reserve util.c
Changed checkout to reserved for "util.c" branch "\main".

• Verify that you are the only user with a checkout of a certain file, and then convert your

checkout from unreserved to reserved.

cmd-context lscheckout util.c
14 Mar.13:48 drp checkout version "util.c" from \main\3
(unreserved)
 "experiment with algorithm for returning time"

cmd-context reserve util.c
Changed checkout to reserved for "util.c" branch "\main".

SEE ALSO

checkin, checkout, lscheckout, uncheckout, unreserve
780 ClearCase Reference Manual

rgy_backup
rgy_backup
Copies registry files and client list from primary registry server host to backup registry server

host

APPLICABILITY

SYNOPSIS
rgy_backup

DESCRIPTION

By default, the ClearCase scheduler runs rgy_backup periodically. See the schedule reference

page for information on describing and changing scheduled jobs.

When it runs on a host that is not a backup registry host, rgy_backup checks the backup server

configuration and exits. When it runs on a backup registry server host, rgy_backup takes two

snapshots:

• ClearCase registry files, ccase-home-dir\var\rgy*, on the primary registry server host (see

also registry_ccase)

• Primary registry host’s client list, which is maintained by the registry server host’s

albd_server

rgy_backup stores these snapshot files in the directory ccase-home-dir\var\rgy\backup on the

backup registry server host. rgy_backup removes files older than 96 hours.

rgy_backup names the snapshot file after the original file and appends a time stamp to the file

name. rgy_backup also creates a file, with the same name as the original file, that contains the

full, time-stamp-extended name of the most recent snapshot file. For example, for registry file

vob_tag, rgy_backup creates in the backup directory:

• vob_tag.17-Jul-99.18:30:15

• A file named vob_tag that contains the string vob_tag.17-Jul-99.18:30:15

If the primary registry server fails, you can run rgy_switchover to activate the backup registry

server and reset all client hosts accordingly. The backup server must be running the same release

of ClearCase as that running on the primary server.

rgy_backup logs its snapshot activity in the Windows event log.

Product Command Type

ClearCase command
ClearCase Reference Pages 781

rgy_backup
Designating a Backup Registry Host

The Windows Registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup contains

the name of the backup registry server host (or the string Unknown, if no backup host has been

designated). You can change this key value on the Registry tab in the ClearCase Control Panel.

Typically, a backup registry server host is specified for each client when ClearCase is installed

(although designating the backup registry host is not part of the installation procedure itself).

To change the backup registry server host:

1. Change the backup server designated at the primary registry server host.

2. Stop and restart ClearCase.

The next time rgy_backup runs, the primary registry server host updates the name of the backup

registry server for all its clients.

Do not designate a backup registry host that is unsuitable to serve as primary registry server host

in an emergency.

If your site uses multiple ClearCase registries, you cannot configure one primary registry server

as the backup server for a different registry.

PERMISSIONS AND LOCKS

Permissions Checking: You must have write permission to the directory ccase-home-dir\var\rgy.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

None.

EXAMPLES

• On a backup registry host, take a snapshot of the ClearCase registry files manually.

rgy_backup

FILES

ccase-home-dir\var\rgy*
ccase-home-dir\var\rgy\backup*

WINDOWS REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup
782 ClearCase Reference Manual

rgy_backup
SEE ALSO

lsclients, registry_ccase, rgy_switchover, schedule
ClearCase Reference Pages 783

rgy_check
rgy_check
Check registry files for inconsistencies

APPLICABILITY

SYNOPSIS

• ClearCase only:

rgy_check { –vie⋅ws | –vob⋅s } ... [–reg⋅ion region] [–sto⋅rage]

• ClearCase LT only:

rgy_check { –vie⋅ws | –vob⋅s } ... [–hst⋅orage]

DESCRIPTION

The rgy_check command examines the contents of ClearCase or ClearCase LT VOB and/or view

registries, and reports any errors or inconsistencies.

Registry problems have various causes:

• Editing registry entries directly, as with Notepad.

• Improper administration procedures; for example, removing a VOB with del rather than

with rmvob

• Faulty upgrade procedures; for example, migrating a VOB to a new release that introduces

a database schema change without reformatting the VOB (using reformatvob)

• Defects in older releases of ClearCase or ClearCase LT

If rgy_check finds errors or inconsistencies, it displays a line like the following at the end of its

output:

Error: 21 total registry errors/inconsistencies detected.

For each problematic registry entry, rgy_check displays the registry entry and a warning or error

message.

General Problems

rgy_check reports the following general problems:

Product Command Type

ClearCase command

ClearCase LT command
784 ClearCase Reference Manual

rgy_check
• Duplicate entries in the registry

• Malformed entries in the registry

Registration Anomalies

rgy_check reports the following VOB or view registration anomalies:

• Objects with no UUID

• Two objects with same UUID

• Objects with no host name

• Objects with no local (server) pathname

• Two objects pointing to same host-local-path
• Tags with no UUIDs

• Tags with UUIDs that do not match any object (stranded tag)

• Tag registry entries with no tag

Region-Related Problems

Region-related problems are more likely to occur ClearCase than in ClearCase LT because

ClearCase installations are not restricted to a single region. However, in either case, rgy_check
may report these problems:

• Objects with no associated tags in any region (stranded object)

• Tags in regions that are not in the region registry

• Tags with no global pathname

• Two tags in one region pointing to same object UUID

• Duplicate tags in the same region

• Tags in one region with duplicate global pathnames

Storage-Related Problems

In ClearCase, if you specify the –storage option, rgy_check also reports these problems:

• View-tags that point to global paths with missing or incorrect .view files:

• Missing .view file (usually a missing view)

• .view file with invalid contents

• .view file that contains an incorrect view UUID (that is, the UUID points to wrong view)

• VOB-tags that point to global paths with missing or incorrect replica_uuid files:

• Missing replica_uuid file (usually a missing VOB)

• replica_uuid file with invalid contents

• replica_uuid file with an incorrect UUID (that is, the UUID points to wrong VOB)

In ClearCase LT, if you specify the –storage option, rgy_check reports the same kinds of

problems that ClearCase reports when you use –storage, except that view and VOB objects

(rather than tags) are checked.
ClearCase Reference Pages 785

rgy_check
PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF REGISTRY ENTRIES TO DISPLAY. Default: None.

–vie⋅ws
Checks the contents of the view-tag and/or view-object registries.

–vob⋅s
Checks the contents of the vob-tag and/or vob-object registries.

SPECIFYING THE REGION. Default: All regions.

–reg⋅ion region
Specifies the network region for which registry entries are to be checked.

CHECKING STORAGE. Default: None.

–sto⋅rage
Checks for the existence of registered VOB and/or view storage directories. Given a

storage directory’s existence, rgy_check looks for basic storage configuration problems

as well. Typically, registered storage pathnames for multiple network regions are not

accessible from a single host. It is common practice to use –region to confine storage

checks to the current host’s network region.

–hst⋅orage
Checks for the existence of registered VOB and/or view storage directories on the

ClearCase LT server host. Given a storage directory’s existence, rgy_check looks for

basic storage configuration problems as well. You must run rgy_check at the

ClearCase LT server host when you use this option.

EXAMPLES

• Check the VOB registry for errors and anomalies.

rgy_check -vobs
No registry errors/inconsistencies detected.

• Check VOB and view registries in the devel region (which includes the local host). Include

storage directory checks. In this example, rgy_check finds a tutorial VOB from which the

user has removed the VOB’s replica_uuid information.
786 ClearCase Reference Manual

rgy_check
rgy_check -vobs -views -region devel -storage
rgy_check: Error: The VOB storage at \\io\alh\ccasetut\tut.vbs has no
replica_uuid file.
This tag:
-tag = "\alh_IO_hw"
-global_path = "\\io\alh\ccasetut\tut.vbs"
-hostname = "io"
-mount_access = "private"
-mount_options = ""
-region = "devel"
-vob_replica = "7d7031db.6dfb11cf.a398.00:80:c8:81:fa:e0"

rgy_check: Error: 1 total registry errors/inconsistencies detected.

SEE ALSO

registry_ccase, Administering ClearCase
ClearCase Reference Pages 787

rgy_passwd
rgy_passwd
Creates or changes encrypted VOB-tag registry password

APPLICABILITY

SYNOPSIS

rgy_passwd [–pas⋅sword tag-registry-password]

DESCRIPTION

The command creates a Security subkey in the Windows Registry and places an encrypted

VOB-tag password in

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security\RegPasswd.
The Security subkey and RegPasswd value exist only on the registry server host.

Knowledge of this password enables a user to create public VOBs. See the mkvob, mktag, and

mount reference pages for more information on public VOBs.

Security Restrictions

You must run rgy_passwd on the registry server host.

The administrator should apply a security access control list (ACL) to the Security subkey to

prevent users from directly editing the password in the registry. We recommend that you assign

full control to authorized users (users allowed to change the password; for example, the network

administrator), and read permissions to all other users.

OPTIONS AND ARGUMENTS

By default, rgy_passwd prompts you to type the new password.

–pas⋅sword tag-registry-password
Specifies the password on the command line.

CAUTION: This is a potential security breach because the password remains visible on the

screen.

DIAGNOSTICS

rgy_passwd: Error: Not a registry server.

This command must be executed on the network’s registry server host.

Product Command Type

ClearCase command

ClearCase LT command
788 ClearCase Reference Manual

rgy_passwd
No permission ...

You do not have permission to create or access the Security subkey.

EXAMPLE

• Create a VOB-tag registry password interactively.

rgy_passwd
Password: <enter VOB-tag password>

SEE ALSO

mktag, mkvob, mount, registry_ccase
ClearCase Reference Pages 789

rgy_switchover
rgy_switchover
Makes a backup registry server host the primary registry server host

APPLICABILITY

SYNOPSIS
rgy_switchover [–time file-timestamp]

[–backup new-backup-host-list] old-rgy-host new-rgy-host

DESCRIPTION

The rgy_switchover command upgrades a backup registry server host (see rgy_backup) to

primary registry server host and resets ClearCase clients to use the new primary registry server

host.

rgy_switchover old-rgy-host new-rgy-host does the following:

1. On new-rgy-host, copies the ccase-home-dir\var\rgy\backup directory to

ccase-home-dir\var\rgy.

2. On new-rgy-host, notifies the albd_server process that it is now running on a registry server

host.

3. Uses the client list snapshot to inform clients of the change.

4. Reconfigures each client to recognize the new primary registry server host.

5. Reports an error for any client it cannot update. Update these clients manually when they

become accessible. Update a client by selecting the Registry tab in the ClearCase Control

Panel to reset its Use registry server on host field.

If a host is down and misses the switchover reconfiguration, it operates in degraded mode

when it comes back until you or the host’s owner updates it manually. In degraded mode, a

client tries to access the primary registry server host, and when that fails, it tries to access the

backup registry server host (which is now the primary registry server host to clients

successfully reconfigured by rgy_switchover).

rgy_switchover logs its activities to the Windows event log.

NOTE: You must ensure that only one registry server is active at any time. When the failed

primary registry server host returns, or if it is still running when you invoke rgy_switchover,
login on old-rgy-host and revoke its status as primary registry server host:

1. Open the ClearCase Control Panel.

Product Command Type

ClearCase command
790 ClearCase Reference Manual

rgy_switchover
2. On the Startup tab, click Shutdown ClearCase.

3. On the Registry tab, select the Use registry server on host option, specify the new registry

host, and click OK.

4. Restart ClearCase.

SAMPLE SWITCHOVER PROCEDURE

In this sample procedure, primary registry server host rgy1 fails, and the ClearCase

administrator makes backup registry server host rgy2 the new primary registry server host. This

assumes rgy_backup has been executing successfully on rgy2 . While rgy1 is down and rgy2 is

the primary registry server host, rgy3 becomes the backup registry server host. Later, rgy1
becomes available again and the administrator reverts to rgy1 as the primary registry server host.

1. Make rgy2 the primary registry server host. Make rgy3 the new backup registry server host.

Make rgy1 a provisional backup registry server host, so that when it returns to life, it takes a

registry snapshot in preparation for returning to its role as primary registry server host:

rgy_switchover –backup "rgy3 rgy1" rgy1 rgy2

2. Record the names of any client hosts for which the switchover fails. Reset these hosts by

hand when they become available (or have their owners do so). Note that ClearCase hosts

with client-only installations and ClearCase Attache clients cannot be reconfigured

automatically and always appear on the returned list of “unreachable” clients.

When a failed client becomes available, use the Registry tab in the ClearCase Control Panel

to reset the Use registry server on host field to rgy2.

3. Host rgy1 becomes available again.

4. rgy1 is still configured as a primary registry server host. Reconfigure it to recognize rgy2 as

the primary registry server host:

a. Log in to rgy1.

b. Open the ClearCase Control Panel.

c. On the Startup tab, click Shutdown ClearCase.

d. On the Registry tab, select the Use registry server on host option, type rgy2, and click

OK.

e. Restart ClearCase.

5. Run rgy_backup manually on rgy1, forcing it to take a snapshot of the active registry files on

rgy2 in preparation for returning rgy1 to service as the primary registry server host:

rgy_backup

NOTE: Running rgy_backup does not cause a snapshot operation unless rgy1 is configured

as a backup registry server host on the primary registry server host (rgy2). rgy1 is correctly

configured because it was named in the –backup argument in Step #1.
ClearCase Reference Pages 791

rgy_switchover
6. Stop registry service on rgy2:

a. Log in to rgy2.

b. Open the ClearCase Control Panel.

c. On the Startup tab, click Shutdown ClearCase.

d. On the Registry tab, select the Use registry server on host option, type rgy1, and click

OK.

e. Restart ClearCase.

7. Make rgy1 the primary registry server host. Return rgy2 to its former role as the backup

registry host:

rgy_switchover –backup "rgy2" rgy2 rgy1

PERMISSIONS AND LOCKS

Permissions Checking: You must be the domain Administrator to execute this command. See the

permissions reference page.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE NEW BACKUP REGISTRY SERVER. Default: rgy_switchover does not configure a

new backup registry host.

–backup new-backup-host-list
Configures the hosts named in new-backup-host-list as backup registry server hosts, after

switching the current backup registry server host to primary registry server host. If you

specify multiple backup registry server hosts, enclose the space-separated host names in

quotes, like this: "venus mars"

SPECIFYING A TIME STAMP. Default: rgy_switchover uses the most recent registry backup files in

the new-primary-rgy-host’s ccase-home-dir\var\rgy\backup directory.

–time file-timestamp
Activates an alternate set of backup registry files. The file-timestamp much match an

existing set of time-stamped files in ccase-home-dir\var\rgy\backup. By default, the

ClearCase scheduler runs rgy_backup periodically and deletes backed-up registry files

more than three days old.

SPECIFYING THE OLD AND NEW PRIMARY REGISTRY SERVERS. Default: None. You must specify the

current and target primary registry server hosts.

old-rgy-host
The current primary registry server host.
792 ClearCase Reference Manual

rgy_switchover
new-rgy-host
The current backup registry server host that will become the new primary registry server

host.

EXAMPLES

• Make backup registry host beta the new primary registry host.

rgy_switchover alpha beta

• Same as previous example, but make omega the new backup registry host.

rgy_switchover –backup omega alpha beta

• Same as previous example, but add alpha to the backup host list. This approach is

recommended when the primary registry host (alpha) failed, prompting the switchover, but

you plan to return it to primary registry host status when it becomes available again.

rgy_switchover –backup "omega alpha" alpha beta

FILES

ccase-home-dir\var\rgy*
ccase-home-dir\var\rgy\backup*

WINDOWS REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup

SEE ALSO

lsclients, registry_ccase, rgy_backup, rgy_passwd, schedule
ClearCase Reference Pages 793

rmactivity
rmactivity
Deletes a UCM activity

APPLICABILITY

SYNOPSIS
rmact⋅ivity [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –nc⋅omment]

[–f⋅orce] activity-selector ...

DESCRIPTION

The rmactivity command deletes one or more UCM activities. The following restrictions apply:

• The activity can have no versions in its change set.

• The activity cannot be set as the current activity for a view.

If versions exist in the change set, you can delete the versions or move the versions to another

change set with chactivity –fcset –tcset.

ClearQuest-enabled Projects

When executed in a view that is associated with a ClearQuest-enabled project, this command

unlinks the activity from its associated ClearQuest record and deletes the activity but it does not

delete the ClearQuest record.

PERMISSIONS AND LOCKS

Permissions Checking: You must be the owner of the activity, the VOB owner, or one of the

following: a member of the ClearCase group (ClearCase) or the local administrator of the

ClearCase LT server host (ClearCase LT).

Locks: An error occurs if there is a lock on any of the following objects: the UCM project VOB or

the activity.

Mastership: The current replica must master the activity.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
794 ClearCase Reference Manual

rmactivity
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed activity is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE ACTIVITY. Default: None.

activity-selector ...
Specifies one or more activities to delete.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove an activity that is set as the current activity in a view.

a. Issue an rmactivity command. The error message tells you that the specified activity is

in use by the view java_parser_int:

cmd-context rmactivity -f new_object_tree@\usr1\tmp\foo_project
cleartool: Error: Activity
"activity:new_object_tree@\usr1\tmp\foo_project" is setworked in view
"java_parser_int".

cleartool: Error: Unable to remove activity
"new_object_tree@\usr1\tmp\foo_project".

b. Go to the view in which the activity is set and unset it:

cmd-context setact – none
Cleared current activity from view java_parser_int.

c. Reissue the rmactivity command:
ClearCase Reference Pages 795

rmactivity
cmd-context rmactivity -f new_object_tree@\usr1\tmp\foo_project
Removed activity "new_object_tree@\usr1\tmp\foo_project".

SEE ALSO

chactivity, lsactivity, mkactivity, setactivity
796 ClearCase Reference Manual

rmattr
rmattr
Removes an attribute from an object

APPLICABILITY

SYNOPSIS
rmattr [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–ver⋅sion version-selector] [–pna⋅me]

attribute-type-selector pname ...

| attribute-type-selector object-selector ... }

DESCRIPTION

The rmattr command removes one or more attributes from VOB-database objects. Attributes can

be attached to objects by the mkattr command and by triggers (mktrtype – mkattr). See the

mkattr reference page for a list of objects to which attributes can be attached.

rmattr deletes an instance of an attribute type object. To delete the attribute type object itself or to

delete the type object and all its instances, use the rmtype command.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, object group member, object owner, VOB owner, a member of the

ClearCase group (ClearCase), or the local administrator of the ClearCase LT server host

(ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, object type, object, attribute type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 797

rmattr
SPECIFYING THE ATTRIBUTE TO BE REMOVED. Default: None.

attribute-type-selector
An existing attribute type. Specify attribute-type-selector in the form

[attype:]type-name[@vob-selector]

SPECIFYING AN OBJECT. Default: None.

pname ...

One or more pathnames, indicating file-system objects from which attributes are to be

removed. If you don’t use the –version option:

See the mkattr reference page for examples of pname arguments.

–pna⋅me
Indicates that pname is a pathname. You must use this option if pname has the form of an

object selector.

–ver⋅sion version-selector
Specifies the version from which the attribute is to be removed. See the version_selector
reference page for syntax details.

object-selector ...

One or more names of non-file-system objects from which attributes are to be removed.

Specify object-selector in one of the following forms:

type-name Name of the attribute type

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted).

• A standard or view-extended pathname to an element specifies the version in the

view.

• A VOB-extended pathname specifies an element, branch, or version—

independent of view.

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]
798 ClearCase Reference Manual

rmattr
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove the Confidence_Level attribute from the version of msg.c in the view.

cmd-context rmattr Confidence_Level msg.c Removed attribute "Confidence_Level"
from "msg.c@@\main\1".

• Remove the attribute TESTED from the most recent version of hello.h on the main branch

that has the attribute value "FALSE" .

cmd-context rmattr –version ’\main\{TESTED=="FALSE"}’ TESTED hello.h

Removed attribute "TESTED" from "hello.h@@\main\2".

• Remove the Responsible attribute from the main branch of hello.c.

cmd-context rmattr Responsible hello.c@@\main

Removed attribute "Responsible" from "hello.c@@\main".

• Remove the Author attribute from a hyperlink of type DesignDoc.

cmd-context rmattr Author hlink:DesignDoc@393@\users_hw

Removed attribute "Author" from "DesignDoc@393@\users_hw".

SEE ALSO

lstype, mkattr, mkattype, rename, rmtype

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
ClearCase Reference Pages 799

rmbl
rmbl
Removes a UCM baseline

APPLICABILITY

SYNOPSIS
rmbl [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–f⋅orce] baseline-selector ...

DESCRIPTION

The rmbl command deletes one or more UCM baselines. Versions associated with the baseline

are not deleted, only the baseline relationship among the versions. The following restrictions

apply:

• The baseline cannot serve as a foundation baseline for any stream.

• The baseline cannot be an initial baseline for a component.

• The baseline cannot be deleted if it is a full baseline and serves as the backstop for any

incremental baseline.

PERMISSIONS AND LOCKS

Permissions Checking: You must be the owner of the baseline, the VOB owner, a member of the

ClearCase group (ClearCase), or the local administrator of the ClearCase LT server host

(ClearCase LT).

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the baseline.

Mastership: The current replica must master the baseline.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
800 ClearCase Reference Manual

rmbl
The comment is stored in a deletion event on the VOB object.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed baselevel is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE BASELINE. Default: None.

baseline-selector ...

Specifies one or more baselines to delete.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

 EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove a baseline.

cmd-context rmbl -f START.109@\usr1\tmp\foo_project
Removed baseline "START.109@\usr1\tmp\foo_project".

SEE ALSO

diffbl, lsbl, mkbl
ClearCase Reference Pages 801

rmbranch
rmbranch
Removes a branch from the version tree of an element

APPLICABILITY

SYNOPSIS
rmbranch [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–f⋅orce] pname ...

DESCRIPTION

This command destroys information irretrievably. Using it carelessly may compromise your

organization’s ability to support old releases.

The rmbranch command deletes one or more branches from their elements. For each branch,

deletion entails the following:

• Removal from the entire branch structure from the VOB database: branch object and version

objects

• Removal of all metadata items (labels, attributes, hyperlinks, and triggers) that were

attached to the deleted objects

• Removal of all event records for the deleted objects

• (File elements only) Removal of the data containers that hold the deleted versions’

file-system data

• Creation of a destroy sub–branch event record for the parent branch of the deleted branch

NOTE: If all of an element’s versions are stored in a single data container, the deleted versions are

removed logically, not physically.

To delete all instances of a branch and the branch type object, use the rmtype command.

Restrictions

You cannot delete these branches:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
802 ClearCase Reference Manual

rmbranch
• A branch that is checked out

• An element’s main branch

• A branch from which someone has checked out elements (see the reference page for

uncheckout)

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: branch creator,

element owner, VOB owner, or a member of the ClearCase group (ClearCase), or the local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, pool (nondirectory elements only).

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: rmbranch prompts for confirmation before deleting anything.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE BRANCHES TO BE REMOVED. Default: None.

pname ...

One or more VOB-extended pathnames, indicating the branches to be deleted.

Examples:

foo.c@@\main\bugfix
\proj1\include\proj.h@@\main\temp_482

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Delete the maintenance branch of element util.c.
ClearCase Reference Pages 803

rmbranch
cmd-context rmbranch util.c@@\main\maintenance

Branch "util.c@@\main\maintenance" has 0 sub-branches, 2 sub-versions
Remove branch, all its sub-branches and sub-versions? [no] yes
Removed branch "util.c@@\main\maintenance".

• Verify, with the lsvtree command, that element msg.c has a patch2 branch. Then, delete that

branch without prompting for confirmation.

cmd-context lsvtree –branch \main\patch2 msg.c

msg.c@@\main\patch2
msg.c@@\main\patch2\1

cmd-context rmbranch –force msg.c@@\main\patch2

Removed branch "msg.c@@\main\patch2".

SEE ALSO

lsvtree, mkbranch, mkbrtype, rmtype, rmver
804 ClearCase Reference Manual

rmcomp
rmcomp
Removes a UCM component

APPLICABILITY

SYNOPSIS
rmcomp [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |

–nc⋅omment] [–f⋅orce] component-selector ...

DESCRIPTION

The rmcomp command deletes a UCM component object. Elements of the component and the

VOB associated with the component are not deleted. The following restrictions apply:

• There cannot be any baselines of the component other than the initial baseline

• The component’s initial baseline cannot be in use as a foundation baseline for a stream.

PERMISSIONS AND LOCKS

Permissions Checking: You must be the owner of the component, the VOB owner, a member of the

ClearCase group (ClearCase), or the local administrator of the ClearCase LT server host

(ClearCase LT).

Locks: An error occurs if there are locks on any of the following objects: component, UCM project

VOB.

Mastership: The current replica must master the component.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed component is to be

deleted.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 805

rmcomp
–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE COMPONENT TO BE DELETED. Default: None.

component-selector ...
Specifies one or more components to delete

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove a component that contains baselines.

a. Issue the rmcomp command for a specified component:

cmd-context rmcomp parser@/usr1/tmp/foo_project
Remove component "parser@/usr1/tmp/foo_project"? [no] yes

cleartool: Error: Cannot remove component that has baselines other than
the initial baseline.

cleartool: Error: Unable to remove component
"parser@/usr1/tmp/foo_project".

b. Use the lsbl command to find the baselines associated with the component:

cmd-context lsbl –component parser@/usr1/tmp/foo_project
07-Sep-99.10:47:47 parser_INITIAL.109 bill "parser_INITIAL"
 component: parser

07-Sep-99.10:49:06 START.109 bill "START"
 component: parser

c. Remove the baseline:

cmd-context rmbl –f START.109@/usr1/tmp/foo_project
Removed baseline "START.109@/usr1/tmp/foo_project".

d. Reissue the rmcomp command:

cmd-context rmcomp –f parser@/usr1/tmp/foo_project
Removed component "parser@/usr1/tmp/foo_project".
806 ClearCase Reference Manual

rmcomp
SEE ALSO

lscomp, mkcomp, rmbl
ClearCase Reference Pages 807

rmdo
rmdo
Removes a derived object from a VOB

APPLICABILITY

SYNOPSIS

• Remove individual derived objects:

rmdo do-pname ...

• Remove collections of derived objects:

rmdo { –a⋅ll | –zer⋅o } [pname ...]

DESCRIPTION

The rmdo command deletes one or more derived objects (DOs). Use rmdo to remove DOs (for

example, damaged DOs or DOs that were built incorrectly) so that other users do not use them

inadvertently.

NOTE: This command does not apply to snapshot views.

The details of the removal process depend on the kind of DO (use lsdo –long to determine the

kind of DO):

• For a shared derived object whose data container is in VOB storage, rmdo deletes the entry in

the VOB database, and also deletes the data container file (from one of the VOB’s derived

object storage pools).

CAUTION: If you need to remove a shared DO, use lsdo –long to identify the views that

reference the DO. Ask the owner of each view to remove the DO from the view with the

Windows del command or by running make clean or an equivalent command. If the DO is

not removed from the referencing views before you use rmdo, error messages appear. For

example, when users try to access the DO from the referencing views, the view_server logs

VOB warnings. Also, you may see INTERNAL ERRORmessages in the ClearCase error_log file;

these messages are generated when clearmake or an OS-level command tries to access the

DO. The derived object’s name is removed from the directory by the OS-level access; thus,

subsequent accesses return not found errors.

Product Command Type

ClearCase cleartool subcommand

Attache command
808 ClearCase Reference Manual

rmdo
• For an unshared derived object whose data container is in view-private storage, rmdo deletes

the entry from the VOB database, but does not delete the data container from view storage.

The data container is an ordinary file that can still be listed, executed, and so on, but it

cannot be a candidate for configuration lookup. The ls –long command lists it with a [no

config record] annotation. To delete the data file, use the Windows del command.

• For a nonshareable derived object, which does not have an entry in the VOB database, rmdo
converts the DO into an ordinary view-private file. To delete the file, use the Windows del
command.

In each case, rmdo also deletes the associated configuration record if it is no longer needed. Both

of the following conditions must be true:

• No other sibling DO (created in the same build script execution) still exists.

• The DO is not a build dependency (subtarget) of another DO that still exists.

rmdo does not delete DO versions. To delete a DO that has been checked in as a version of an

element, use rmver.

SCRUBBING OF DERIVED OBJECTS

ClearCase includes a utility, scrubber, that deletes shareable DOs. scrubber deletes the entries in

the VOB database and (for shared DOs) the data containers in the VOB’s storage pools. By

default, the ClearCase scheduler runs scrubber periodically. See the schedule reference page for

information on describing and changing scheduled jobs.

Each DO pool has scrubbing parameters, which you can modify with the mkpool –update
command.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: DO group

member, DO owner, VOB owner, member of the ClearCase group. To delete a shared DO, you

must be the VOB owner or a member of the ClearCase group. See the permissions reference page.

Locks: An error occurs if the VOB or pool is locked.

OPTIONS AND ARGUMENTS

HANDLING OF LIKE-NAMED DERIVED OBJECTS. Default: Deletes at most one DO for each file name

specified with command arguments. A file name with a DO-ID (for example,

hello.obj@@24–Mar.11:32.412) specifies exactly which DO to delete. A standard or

view-extended pathname specifies the DO that appears in the view.

To determine the DO-IDs of derived objects, use lsdo.

–a⋅ll
Deletes all DOs at a given pathname, regardless of the view they were created in or

currently appear in. (However, see the CAUTION on page 808.)
ClearCase Reference Pages 809

rmdo
–zer⋅o
Similar to –all, but deletes only those DOs with zero reference counts.

SPECIFYING DERIVED OBJECTS. Default: With –all or –zero, the default is to list all DOs in the

current working directory. If you do not specify one of these options, you must supply at least

one argument.

do-pname ...

Pathnames of one or more individual DOs. A name with a DO-ID, such as

foo@@10-Nov.10:14.27672, specifies a particular DO, irrespective of view. A standard

Windows NT pathname or view-extended pathname specifies the DO that appears in a

view.

pname ...

(use with –all or –zero) One or more standard or view-extended pathnames, each of

which can name a file or directory:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Delete the derived object hello.obj@@24-Mar.11:32.412.

cmd-context rmdo hello.obj@@24-Mar.11:32.412
Removed derived object "hello.obj@@24-Mar.11:32.412".

• Delete all derived objects named hello in the current working directory.

cmd-context rmdo –all hello.exe
Removed derived object "hello.exe@@23-Mar.14:16.178".
Removed derived object "hello.exe@@23-Mar.19:25.394".

• Delete all zero-referenced derived objects in the hworld directory.

cmd-context rmdo –zero hworld

• A file name specifies a collection of DOs built at the same pathname.

• A directory name is equivalent to a list of all the file names of DOs built in that

directory, including file names that do not currently appear in the view (perhaps

after a make clean).
810 ClearCase Reference Manual

rmdo
Removed derived object "hworld\hello.o@@23-Mar.20:42.373".
Removed derived object "hworld\hello.o@@23-Mar.20:36.228".
Removed derived object "hworld\hello@@23-Mar.20:42.382".
Removed derived object "hworld\hello@@23-Mar.20:36.234".
Removed derived object "hworld\util.o@@23-Mar.20:42.376".
Removed derived object "hworld\util.o@@23-Mar.20:36.231".

SEE ALSO

clearmake, lsdo, scrubber

Building Software with ClearCase
ClearCase Reference Pages 811

rmelem
rmelem
Removes an element or symbolic link from a VOB

APPLICABILITY

SYNOPSIS
rmelem [–f⋅orce] [–c⋅omment comment | –cfi⋅le comment-file-pname

|–cq⋅uery | –cqe⋅ach | –nc⋅omment] pname ...

DESCRIPTION

The rmelem command completely deletes one or more elements or symbolic links. In a snapshot

view, rmelem also unloads the element from the view.

This command destroys information irretrievably. Using it carelessly may compromise your

organization’s ability to support old releases. In many cases, it is better to use the rmname
command.

For each element, rmelem does the following:

• Removes the entire version tree structure from the VOB database: element object, branch

objects, and version objects.

• Removes all metadata items (labels, attributes, hyperlinks, and triggers) that were attached

to the element.

• Removes all event records for the element.

• (File elements only) Removes the data containers that hold the element’s file-system data

from its source storage pool.

• Removes all references to the element from versions of the VOB’s directory elements. (This

means that subsequent listings and comparisons of those directory versions will be

historically inaccurate.)

• (Attache only) Removes read-only workspace local files/directories corresponding to

successfully removed elements in the view. Local writable files, including any in a

directory’s subtrees, cause a confirming query to be issued.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
812 ClearCase Reference Manual

rmelem
• Creates a destroy element event record on the element’s VOB; this event record is

displayed by the lshistory vob: command.

RESTRICTION: You cannot remove an element if any of its versions are checked out. (It is not

necessary to check out the parent directory before removing one of its elements.)

For each symbolic link, rmelem does the following:

• Removes the symbolic link and link object from the VOB.

• Removes all metadata items (attributes and hyperlinks) that were attached to the symbolic

link .

• Removes all event records for the symbolic link.

• Removes all references to the symbolic link from versions of the VOB’s directory elements.

(This means that subsequent listings and comparisons of those directory versions will be

historically inaccurate.)

• (Attache only) Removes read-only workspace local files/directories corresponding to

successfully removed symbolic links in the view. Local writable files, including any in a

directory’s subtrees, cause a confirming query to be issued.

NOTE: rmelem does not create an event record when you remove a symbolic link.

rmelem deletes an instance of an element type object. To delete the element type object itself or

to delete the type object and all its instances, use the rmtype command.

Deleting a Directory Element

NOTE: Only dynamic views have lost+found directories and derived objects.

Deleting a directory element may cause some other elements (and symbolic links, if the VOB is

replicated) to be orphaned: no longer cataloged in any version of any directory. rmelem displays

a message and moves an orphaned element or symbolic link to the VOB’s lost+found directory:

cleartool: Warning: Object "foo.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory
as "foo.c.a0650992e2b911ccb4bc08006906af65".

(See the mkvob reference page for a description of this directory.)

Each derived object in the deleted directory is also moved to lost+found. The derived object has

no data, but you can use it in such commands as lsdo and catcr. View-private objects in the

deleted directory are temporarily stranded, but can be transferred to the view’s own lost+found
directory, as follows:

1. Use lsprivate to locate stranded files and to determine the ClearCase identifier of the deleted

directory element:
ClearCase Reference Pages 813

rmelem
cmd-context lsprivate –invob \david_phobos_hw
.
.
.

#<Unavailable-VOB-1>\<DIR-c8051152.e2ba11cc.b4c0.08:00:69:06:af:65>\myfile

2. Use recoverview to move all the stranded files for the deleted directory:

cmd-context recoverview –dir c8051152.e2ba11cc.b4c0.08:00:69:06:af:65 –tag myview

Moved file c:\users\david\myview.vws\.s\lost+found\5ECC880E.00A5.myfile

Deleting Elements and Symbolic Links from the lost+found Directory

Use rmelem to delete unwanted elements or symbolic links from the lost+found directory

(lost+found is associated with dynamic views only). If you need an element in lost+found,

catalog it in a versioned directory using mv.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element

owner, symbolic link owner, VOB owner, a member of the ClearCase group (ClearCase), or the

local administrator of the ClearCase LT server host (ClearCase LT). See the permissions
reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element, pool

(nondirectory elements only).

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: rmelem prompts for confirmation before deleting anything.

–f⋅orce
(ClearCase and ClearCase LT only) Suppresses the confirmation step.

(Attache only) Suppresses the confirmation step for deleting anything in the view or

VOB. The confirmation for local writable files still pertains.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS TO BE REMOVED. Default: None.

pname ...

One or more pathnames, indicating the elements or symbolic links to be deleted. An
814 ClearCase Reference Manual

rmelem
extended pathname to a particular version or branch of an element references the

element itself.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Delete the file element rotate.c.

cmd-context rmelem rotate.c
Element "rotate.c" has 1 branches, 2 versions, and is entered
in 6 directory versions.
Remove element, all its branches and versions and modify all directory
versions containing element? [no] yes
Removed element "rotate.c".

• Delete the directory element release. Note that an orphaned element, hello, is moved to the

VOB’s lost+found directory. (The view context is dynamic.)

cmd-context rmelem release
Element "release" has 1 branches, 9 versions, and is entered
in 35 directory versions.
Remove element, all its branches and versions and modify all directory
versions containing element? [no] yes
cleartool: Warning: Object "hello" no longer referenced.
Object moved to vob lost+found directory as
 "hello.5d400002090711cba06a080069061935".
Removed element "release".

• Delete the symbolic link text.c from the lost+found directory. (The view context is

dynamic.)

cmd-context rmelem \dev\lost+found\text.c
CAUTION! This will destroy the symbolic link, and will remove the
symbolic link from all directory versions that now contain it. Once you
destroy the symbolic link, it will be hard to restore it to its current
state. If you want to preserve the symbolic link, but remove references
to it from future directory versions, use the “rmname” command.
Symbolic link ”text.c” is entered in 3 directory versions.
Destroy symbolic link? yes
Removed symbolic link ”text.c”.
ClearCase Reference Pages 815

rmelem
SEE ALSO

mkelem, mkvob, rmbranch, rmname, rmtype, rmver
816 ClearCase Reference Manual

rmfolder
rmfolder
Remove a UCM folder

APPLICABILITY

SYNOPSIS
rmfolder [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |

–nc⋅omment]
[–f⋅orce] folder-selector ...

DESCRIPTION

The rmfolder command deletes one or more UCM folders. You cannot delete a folder if it

contains any projects, other folders, or is the RootFolder.

PERMISSIONS AND LOCKS

Permissions Checking: You must be the folder’s owner, the VOB owner,a member of the ClearCase

group (ClearCase), or the local administrator of the ClearCase LT server host (ClearCase LT).

Locks: An error occurs if there are locks on any of the following objects: the folder.

Mastership: The current replica must master the folder.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed folder is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE FOLDER. Default: None.

folder-selector ...
Specifies one or more folders to delete.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 817

rmfolder
folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove a folder that contains a subfolder, moving the subfolder to a new location.

a. Issue the rmfolder command:

cmd-context rmfolder –f top
cleartool: Error: Cannot remove folder that has sub projects or folders.
cleartool: Error: Unable to remove folder "top".

b. Use lsfolder to find subprojects or folders for the specified folder:

cmd-context lsfolder –l top
folder "top"
 07-Sep-99.10:20:08 by Smith
 "My Top Level Folder."
 owner: Smith
 group: user
 title: Top
 contains folders:
 parsers
 contains projects:

c. Move the subfolder to a new location:

cmd-context chfolder –to RootFolder parsers
Changed folder "parsers".

d. Reissue the rmfolder command:

cmd-context rmfolder top
Remove folder "top"? [no] yes
Removed folder "top".

SEE ALSO

chfolder, lsfolder, mkfolder, rmproject
818 ClearCase Reference Manual

rmhlink
rmhlink
Removed a hyperlink object

APPLICABILITY

SYNOPSIS
rmhlink [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] hlink-selector ...

DESCRIPTION

The rmhlink command removes one or more hyperlinks from VOB-database objects. Hyperlinks

can be attached to objects by the mkhlink command and by triggers (mktrtype –mkhlink). See

the mkhlink reference page for a list of objects to which hyperlinks can be attached.

rmhlink deletes a reference to a hyperlink type object. To delete the hyperlink type object itself

or the type object and all its instances, use the rmtype command.

To list existing hyperlinks, use the describe command, or use the find command with the hltype
primitive.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, object group member, object owner, VOB owner, a member of the

ClearCase group (ClearCase), or the local administrator of the ClearCase LT server host

(ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, hyperlink type. For non-file-system objects, an error occurs if the VOB,

object, object type, or hyperlink type is locked.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 819

rmhlink
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE HYPERLINKS TO BE REMOVED. Default: None.

hlink-selector ...

One or more names of hyperlink objects, in this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects; you cannot specify them with command

interpreter wildcards. The final component is required only for a hyperlink in another

VOB. For example:

DesignFor@598f
RelatesTo@58843@\monet

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove a hyperlink of type tested_by from the element cm_add.c. Use describe to

determine the hyperlink selector.

cmd-context describe –long cm_add.c@@

file element "cm_add.c@@"
 created 08-Dec-98.12:12:52 by Chuck Jackson (test user)
(jackson.dvt@oxygen)
 element type: c_source

Protection:
User : jackson : r-x
Group: dvt : r-x
Other: : r-x

source pool: sdft cleartext pool: cltxt2
 Hyperlinks:
 tested_by@714@\users_hw \users_hw\src\cm_add.c@@

"edge effects" -> \users_hw\src\edge.sh@@ "regression A"

cmd-context rmhlink tested_by@714

Removed hyperlink "tested_by@714".
820 ClearCase Reference Manual

rmhlink
• Remove two hyperlinks from the src directory. Use describe to determine the hyperlink

selectors.

cmd-context describe –long src

directory version "src@@\main\9"
created 08-Dec-98.12:23:46 by Chuck Jackson (test user)

(jackson.dvt@oxygen)
Element Protection:

User : jackson : rwx
Group: dev : rwx
Other: : rwx

element type: directory
Hyperlinks:
h3@1320@\users_hw \users_hw\src@@\main\9 ->
h1@1324@\users_hw \users_hw\src\hello@@\main\1 -> \users_hw\src@@\main\9
h2@1329@\users_hw \users_hw\bin@@\main\1 -> \users_hw\src@@\main\9

cmd-context rmhlink h1@1324 h2@1329

Removed hyperlink "h1@1324".
Removed hyperlink "h2@1329".

SEE ALSO

describe, lshistory, mkhlink, rmtype
ClearCase Reference Pages 821

rmlabel
rmlabel
Removes a version label from a version

APPLICABILITY

SYNOPSIS
rmlabel [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–ver⋅sion version-selector] label-type-selector pname ...

DESCRIPTION

The rmlabel command removes one or more version labels from versions of elements. Labels can

be attached to versions by the mklabel command and by triggers (mktrtype –mklabel).

rmlabel deletes a reference to a label type object. To delete the label type object itself or the type

object and all its instances, use the rmtype command.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, a member of the ClearCase group (ClearCase), or the local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, label type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VERSIONS TO BE UNLABELED. Default: None.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
822 ClearCase Reference Manual

rmlabel
pname ...

One or more pathnames, indicating versions from which the label is to be removed.

What kind of pathname is valid depends on how the label has been used:

If the label has been used only once in an element’s version tree, you can specify the

element itself, or any of its branches or versions:

If the label has been used multiple times, you must specify either the version to which

the label is attached, or the branch on which that version resides.

Using the –version option modifies the way in which this argument is interpreted.

–ver⋅sion version-selector
Specifies the version from which the label is to be removed. See the version_selector
reference page for syntax details. Using this option overrides a version-extended

pathname. For example:

SPECIFYING THE LABEL TO BE REMOVED. Default: None.

label-type-selector
An existing label type. Specify label-type-selector in the form

[lbtype:]type-name[@vob-selector]

foo.c (version selected by view)
foo.c@@ (element itself)
foo.c@@\main\rel2_bugfix (branch of element)

foo.c (version selected by view)
foo.c@@\REL1 (version specified by label)
foo.c@@\main\rel2_bugfix\3 (version specified by version-ID)
foo.c@@\main\rel2_bugfix (branch on which version resides)

cmd-context rmlabel XXX util.c@@\REL1 (removes label from version
REL1)

cmd-context rmlabel -ver \main\3 XXX util.c@@\REL1 (removes label from version
\main\3)

type-name Name of the label type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
ClearCase Reference Pages 823

rmlabel
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove the label REL3 from a version of msg.c without specifying which version (assumes

the label is attached to one version only).

cmd-context rmlabel REL3 msg.c

Removed label "REL3" from "msg.c" version "\main\1".

• Remove the label REL2 from the version of element util.c specified by a version selector.

cmd-context rmlabel –version \main\REL2 REL2 util.c

Removed label "REL2" from "util.c" version "\main\1".

• Remove the label REL1.1 from version 1 on the maintenance branch of file element util.c.

Use a version-extended pathname to indicate the version.

cmd-context rmlabel REL1.1 util.c@@\main\maintenance\1

Removed label "REL1.1" from "util.c" version "\main\maintenance\1".

SEE ALSO

lstype, mklabel, rename, rmtype
824 ClearCase Reference Manual

rmmerge
rmmerge
Removes a merge arrow from an element’s version tree

APPLICABILITY

SYNOPSIS
rmmerge [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
from-pname to-pname

DESCRIPTION

The rmmerge command deletes an existing merge arrow (a hyperlink of the predefined type

Merge) between two versions of an element. Thus, this command is a specialized form of the

rmhlink command. The two commands have an identical result; they differ only in the way you

specify the merge arrow:

• With rmhlink, you specify the merge arrow itself, using a hyperlink selector.

• With rmmerge, you specify the versions linked by the merge arrow.

To list existing merge arrows, use the describe command, or use the find command with the

hltype primitive. For example:

cmd-context describe util.c
version "util.c@@\main\3"
 created 05-Apr-99.17:01:12 by Allison (akp.user@starfield)
 element type: text_file
 Hyperlinks:
 Merge@148@\users\tmp\poolwk

c:\users\tmp\poolwk\src\util.c@@\main\rel2_bugfix\1 ->
c:\users\tmp\poolwk\src\util.c

Renaming the Merge Hyperlink Type

Renaming the predefined hyperlink type for merge arrows does not defeat rmmerge. You

specify the element’s versions; rmmerge then determines the hyperlink type used for merge

arrows in that element’s VOB.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 825

rmmerge
PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, a member of the ClearCase group (ClearCase), or the local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, hyperlink type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VERSIONS. Default: None.

from-pname, to-pname
Extended pathnames of the versions connected by the merge arrow. The order in which

you specify the versions is important: the source version first, the target version second.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove the merge arrow between the latest version on the rel2_bugfix branch and the

version of util.c in the view.

cmd-context rmmerge util.c@@\main\rel2_bugfix\LATEST util.c
Removed merge from "util.c@@\main\rel2_bugfix\1" to "util.c".

SEE ALSO

merge, rmhlink
826 ClearCase Reference Manual

rmname
rmname
Removes the name of an element or VOB symbolic link from a directory version

APPLICABILITY

SYNOPSIS
rm⋅name [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–nco [–f⋅orce]] pname ...

DESCRIPTION

By default, a name can be removed from a directory only if that directory is checked out. rmname
appends an appropriate line to the directory’s checkout comment.

rmname modifies one or more checked-out directories by removing the names of elements
and/or VOB symbolic links. Old versions of the directories do not change; the names continue to

be cataloged in the old versions.

To remove a name from a checked-in directory version, you can use the –nco option. For

example, you may want to remove an old symbolic link that points to a file that has been

removed. You must be the VOB owner, a member of the ClearCase group (ClearCase), or the

local administrator of the ClearCase LT server host (ClearCase LT) to use this option, and the

VOB must not be replicated.

In Attache, for all successfully removed names in the view, any corresponding read-only local

files and directories are deleted in the workspace; local writable files, including any in a

directory’s subtrees, cause a confirming query to be issued.

In a snapshot view, this command implicitly executes an update operation on the affected

elements.

Example: Suppose you checked out version 3 of a directory named a.dir. Only your view or

workspace sees this directory version while it is checked out. The command rmname foo.c
deletes the name foo.c from the checked-out version of the directory and from your Attache

workspace, but leaves references to foo.c in earlier versions (if any) intact. When you check in the

directory, all views can access the new version 4, which does not include foo.c.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 827

rmname
Keep the following points in mind:

• rmname does not delete elements themselves, only references to elements. Use rmelem
(very carefully) to delete elements and all their names from their VOBs.

• Removing the last reference to an element name causes the element to be orphaned. Such

elements are moved to the VOB’s lost+found directory. (See the mkvob command for

details.)

• Removing the last reference to a VOB symbolic link works differently depending on

whether the VOB is replicated:

• If the VOB is unreplicated, the link object is deleted.

• If the VOB is replicated, the link object is moved to the VOB’s lost+found directory.

Undoing the rmname Command

To restore a directory entry for an element that has been removed with rmname, use the ln
command to create a VOB hard link to the element’s entry in any previous version of the directory.

For example:

If there are no entries for the element in any previous version of the directory, the element is

orphaned; ClearCase or Attache has moved it to its VOB’s lost+found directory. You can

move/rename the element to its proper location with the cleartool or Attache mv command.

(You cannot use ln to link elements that are in the lost+found directory.)

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required if directory is checked out; see checkout
permissions. To use the –nco option, you must be one of the following: VOB owner, a member of

the ClearCase group (ClearCase), the local administrator of the ClearCase LT server host

(ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: –nc. Creates one or more event records, with

commenting controlled by your home directory’s .clearcase_profile file (ClearCase and

ClearCase LT) or your remote home directory’s .clearcase_profile file (Attache). See

CUSTOMIZING COMMENT HANDLING in the comments reference page. Comments can be

edited with chevent.

cmd-context checkout src (checkout parent directory)
cmd-context rmname src\msg.c (oops!)
cmd-context ln src@@\main\LATEST\msg.c src\msg.c (restore deleted name)
828 ClearCase Reference Manual

rmname
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

REMOVING A NAME FROM A CHECKED-IN DIRECTORY VERSION. Default: You must check out a

directory to remove a name and/or VOB symbolic link from it.

–nco [–f⋅orce]

Prompts for confirmation, then removes the name or link from the checked-in directory

version that you specify. Use the –force option to suppress the confirmation step.

NOTE: You cannot use –nco in a replicated VOB.

SPECIFYING THE NAMES TO BE REMOVED. Default: None.

pname ...

One or more pathnames, specifying the elements and/or VOB symbolic links whose

names are to be removed from their parent directory. In ClearCase and ClearCase LT,

you can specify an element itself, or any of its branches or versions.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

NOTE: Examples assume that the current working directory is checked out.

• Delete the name util.c from the current directory version. (In Attache, this also removes the

local writable file util.c from the workspace.)

cmd-context rmname util.c

Removed "util.c".

• Delete the last reference to the directory element subd from the current directory version.

cmd-context rmname subd

cleartool: Warning: Object "subd" no longer referenced.
Object moved to vob lost+found as
 "subd.5a200007ed11f0d709066505efe922a8".
Removed "subd".

• As a member of the ClearCase group, delete the name hello.h from the directory version

.@@\main\2.

cmd-context rmname –nco –force .@@\main\2\hello.h
ClearCase Reference Pages 829

rmname
Removed “.@@\main\2\hello.h”.

SEE ALSO

ln, mv, rmelem, rmver, update
830 ClearCase Reference Manual

rmpool
rmpool
Removes a VOB storage pool

APPLICABILITY

SYNOPSIS
rmpool [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

DESCRIPTION

The rmpool command deletes one or more storage pool directories from a VOB, along with all the

data container files stored within them.

Restrictions

Before removing a storage pool, you must reassign all its currently assigned elements to a

different pool, using the chpool command. Otherwise, rmpool aborts with an elements using

pool error. To list all the elements in a source or cleartext pool, use a find command. For example:

cmd-context find -all -element pool(source_2) –print

This command does not work with derived object pools.

Deleting Derived Object Pools

There is no way to move a shared derived object from one pool to another. Thus, you can delete

a derived object pool only if either condition is true:

• No directory elements have been assigned to the pool.

• All data containers in the pool have been removed by the scrubber program or rmdo
commands, and each directory element that currently uses the pool has been assigned to a

different derived object pool.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: pool owner,

VOB owner, member of the ClearCase group. See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, pool.

Product Command Type

ClearCase cleartool subcommand

Attache command
ClearCase Reference Pages 831

rmpool
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE POOLS TO BE REMOVED. Default: Removes a pool from the VOB containing the

current working directory unless you specify another VOB with the @vob-selector suffix.

pool-selector ...

One or more names of existing storage pools. Specify pool-selector in the form

[pool:]pool-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change all elements using the c_source_pool to use the default source pool (sdft) instead.

Then, delete c_source_pool.

cmd-context find . –all –element 'pool(c_source_pool)' –exec 'cleartool chpool ^
–force sdft %CLEARCASE_PN%'

Changed pool for "\users_hw\src" to "sdft".
Changed pool for "\users_hw\src\libutil.a" to "sdft".

.

.

.

pool-name Name of the storage pool

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
832 ClearCase Reference Manual

rmpool
cmd-context rmpool c_source_pool

Removed pool "c_source_pool".

SEE ALSO

describe, chpool, find, lspool, mkpool, rmdo, rename, scrubber
ClearCase Reference Pages 833

rmproject
rmproject
Removes a UCM project

APPLICABILITY

SYNOPSIS
rmproj⋅ect [–c⋅omm ent comment | –cfi⋅le comment-file-pname |–cq⋅uery | –nc⋅omment]

[–f⋅orce] project-selector ...

DESCRIPTION

The rmproject command deletes one or more UCM projects.

All streams must be removed before deleting a project. You cannot delete a project that contains

a stream.

ClearQuest-Enabled Projects

When you delete a project that uses the UCM-ClearQuest integration, the project is unlinked

from its associated ClearQuest record, but the ClearQuest record is not deleted.

PERMISSIONS AND LOCKS

Permissions Checking: You must be the project’s owner, the VOB owner,a member of the ClearCase

group (ClearCase), or the local administrator of the ClearCase LT server host (ClearCase LT).

Locks: An error occurs if there are locks on any of the following objects: the project.

Mastership: The current replica must master the project.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed project is to be deleted.

–f⋅orce
Suppresses the confirmation step.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
834 ClearCase Reference Manual

rmproject
SPECIFYING THE PROJECT. Default: None.

project-selector ...
Specifies one or more projects to delete.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove a project that contains a stream.

a. Issue the rmproject command:

cmd-context rmproject html_parser
Remove project "html_parser"? [no] yes
cleartool: Error: Cannot remove project that has streams.
cleartool: Error: Unable to remove project "html_parser".

b. Use lsproject –long to see a detailed description of the project, including a list of any

streams contained by the project:

cmd-context lsproject – long html_parser
cleartool lsproject -l html_parser
project "html_parser"
 07-Sep-99.11:24:27 by Bsmith
 owner: bsmith
 group: user
 folder: parsers
 title: html_parser
 integration stream: html_parser_int
 development streams:
 html_parser_int
 modifiable components:
 default rebase promotion level: INITIAL
 recommended baselines:

c. Remove the stream. The –force option bypasses the confirmation step.

cmd-context rmstream -force html_parser_int
Removed stream "html_parser_int".

d. Reissue the rmproject command:
ClearCase Reference Pages 835

rmproject
cmd-context rmproject -force html_parser
Removed project "html_parser".

SEE ALSO

lsproject, lsstream, mkproject, rmstream
836 ClearCase Reference Manual

rmregion
rmregion
Unregisters a ClearCase network region

APPLICABILITY

SYNOPSIS

rmregion –tag region-tag [–rma⋅ll [–pas⋅sword tag-registry-password]]

DESCRIPTION

The rmregion command removes a region entry from the ClearCase registry’s regions file.

rmregion modifies the ClearCase registry only. It does not affect client host region assignments.

If you remove a region to which ClearCase client hosts are assigned, those clients receive error

messages.

To reassign a client host to a new region, open the ClearCase Control Panel on the client, click the

Registry tab, and enter the new region name in the Windows NT Region field.

See registry_ccase and Administering ClearCase for more information on ClearCase network

regions.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE REGION TAGS. Default: None. You must specify the name of the region to

unregister.

–tag region-tag
Specifies a region to unregister.

–rma⋅ll [–pas⋅sword tag-registry-password]

Removes the region specified with –tag, along with any view-tags and VOB-tags in that

region. If the region contains VOB-tags, you must supply the VOB-tag registry password

(either with the –password option or at the prompt).

Product Command Type

ClearCase cleartool subcommand

Attache command
ClearCase Reference Pages 837

rmregion
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove region devel3 from the ClearCase registry.

cmd-context rmregion –tag devel3

• Remove all tags for the test1 region.

cmd-context rmregion –tag test1 –rmall

FILES

ccase-home-dir\var\rgy\regions

SEE ALSO

mkregion, registry_ccase
838 ClearCase Reference Manual

rmstgloc
rmstgloc
Removes registry entries for server storage locations.

APPLICABILITY

SYNOPSIS

• ClearCase only:

rmstgloc [–all] [–reg⋅ion network-region] { stgloc-name | –sto⋅rage stgloc-pname }

• ClearCase LT only:

rmstgloc { stgloc-name | –sto⋅rage stgloc-pname }

DESCRIPTION

The rmstgloc command deletes registrations for view and VOB server storage location

registrations for views and VOBs. The associated physical storage is not deleted, and views and

VOBs residing at the server storage location continue to be accessible. However, no views or

VOBs may be created at the server storage location after you have removed its registry entries.

To remove view or VOB physical storage (and their registrations), always use rmview or rmvob,

never an operating system command.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply. Other restrictions:
The specified server storage locations must not contain any views or VOBs.

OPTIONS AND ARGUMENTS

SPECIFYING ALL QUALIFYING SERVER STORAGE LOCATIONS. Default: None.

–all
Deletes all server storage locations that are selected by other options and arguments you

specify. For example, rmstgloc –all stgloc-name deletes all server storage locations with

names that match stgloc-name, regardless of region.

SPECIFYING THE NETWORK REGION. Default: The local host’s network region. (Use the hostinfo
–long command to display the network region.) See the registry_ccase reference page for a

discussion of network regions.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 839

rmstgloc
–reg⋅ion network-region
Specifies a network region where a server storage location that is to be deleted resides.

An error occurs if the region does not already exist.

SPECIFYING THE SERVER STORAGE LOCATION. Default: None.

stgloc-name
Unregisters the server storage location with the specified name.

–sto⋅rage stgloc-pname
Unregisters the server storage location specified by the given path.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove the server storage location named stgloc_vob1.

cmd-context rmstgloc stgloc_vob1
cleartool: Warning: The storage location has only been removed from the
ClearCase registry. You must manually remove the physical storage location
directory.

SEE ALSO

lsstgloc, mkstgloc, mkview, mkvob, registry_ccase
840 ClearCase Reference Manual

rmstream
rmstream
Remove a UCM stream

APPLICABILITY

SYNOPSIS
rmstream [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach |

–nc⋅omment] [–f⋅orce] stream-selector ...

DESCRIPTION

The rmstream command deletes one or more UCM streams.

The following restrictions apply:

• The stream cannot contain activities.

• The stream can have no baselines other than the set of initial baselines associated with it.

• No views can be attached to the stream.

In addition, a project’s integration stream cannot be removed while other project streams exist.

PERMISSIONS AND LOCKS

Permissions Checking: You must be the stream owner, the VOB owner, a member of the ClearCase

group (ClearCase), or the local administrator of the ClearCase LT server host (ClearCase LT).

Locks: An error occurs if there are locks on any of the following objects: the stream.

Mastership: The current replica must master the stream.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specifed stream is to be deleted.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 841

rmstream
–f⋅orce
Suppresses the confirmation step.

SPECIFY THE STREAM TO BE REMOVED. Default: None.

stream-selector ..
Specifies one or more streams to delete.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

SEE ALSO

lsstream, mkstream
842 ClearCase Reference Manual

rmtag
rmtag
Removes a view-tag or a VOB-tag from the networkwide storage registry

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Remove a view-tag:

rmtag –vie⋅w [–reg⋅ion network-region | –a⋅ll] view-tag ...

• ClearCase and Attache only—Remove a VOB-tag:

rmtag –vob [–reg⋅ion network-region | –a⋅ll]
[–pas⋅sword tag-registry-password] vob-tag ...

• ClearCase LT only—Remove a view- or VOB-tag:

rmtag { –vie⋅w view-tag ... | –vob vob-tag ... }

DESCRIPTION

The rmtag command removes one or more entries from the network’s view-tag registry or

vob-tag registry. See the registry_ccase reference page for a discussion of the registries. You

cannot remove a tag that is currently in use.

CleasrCase and Attache Only—Using rmtag

A VOB-tag is in use if the VOB is active on any host in the network region. Use the cleartool or

Attache umount command to deactivate a VOB on all hosts in the region before removing its tag.

A view-tag for a dynamic view is in use if any user process is set to the view specified by this tag,

or if any user process has a current working directory that is a view-extended pathname based on

this tag.

A VOB or view must always have a tag in its home region: the network region of the host where

the VOB or view storage directory physically resides. If you remove a home-region tag, create a

new one immediately.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 843

rmtag
You must supply the network’s VOB-tag password when deleting a public VOB-tag; if you don’t

use the –password option, you are prompted for the password. See the rgy_passwd and

registry_ccase reference pages for information on the VOB-tag password.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply. OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TAG. Default: None.

–vie⋅w
Removes one or more view-tags.

–vob
Removes one or more VOB-tags.

SPECIFYING A NETWORK REGION. Default: Removes tags that are defined for the local host’s

network region. (Use the hostinfo –long command to list a host’s network region.) See the

registry_ccase reference page for a discussion of network regions.

–reg⋅ion network-region
Removes a tag defined for the specified network region. An error occurs if the region does

not already exist.

–a⋅ll
Removes a tag from all network regions for which it is defined.

SPECIFYING THE VOB-TAG PASSWORD. Default: If you attempt to remove a public VOB-tag, rmtag
prompts you for the VOB-tag password. (See also rgy_passwd.)

–pas⋅sword tag-registry-password
Specifies the password on the command line.

CAUTION: This is a potential security breach, because the password remains visible on

your display buffer.

SPECIFYING THE TAGS. Default: None.

view-tag ..

One or more view-tags to be removed.

vob-tag ..

One or more VOB-tags to be removed.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.
844 ClearCase Reference Manual

rmtag
In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Remove the view-tag R2alpha from the view registry.

cmd-context rmtag –view R2alpha

• Remove the VOB-tag \tests from all network regions.

cmd-context rmtag –vob –all –password mypassword \tests

SEE ALSO

mktag, mkview, mkvob, registry_ccase, rgy_passwd, rmview, rmvob
ClearCase Reference Pages 845

rmtrigger
rmtrigger
Removes trigger from an element

APPLICABILITY

SYNOPSIS
rmtrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–nin⋅herit | –nat⋅tach] [–r⋅ecurse] trigger-type-selector pname ...

DESCRIPTION

The rmtrigger command removes an attached trigger from one or more elements. By default,

rmtrigger removes the trigger from both the attached list and the inheritance list (if a directory

element). You can modify the default action for directory elements with the –ninherit and

–nattach options.

The specified trigger-type-selector is not affected by rmtrigger. To delete the trigger type, use the

rmtype command. Note that you can remove an attached trigger from an element even if the

trigger type is obsolete.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, a member of the ClearCase group (ClearCase), or the local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

trigger type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
846 ClearCase Reference Manual

rmtrigger
MANIPULATING THE TRIGGER LISTS OF A DIRECTORY ELEMENT. Default: The trigger is removed

from both of a directory element’s trigger lists: its attached list and its inheritance list.

–nin⋅herit
(Directory element only) The trigger is removed from the directory’s attached list, but

remains on its inheritance list. The trigger does not fire when the monitored operation is

performed on the directory itself, but new elements created in that directory inherit the

trigger.

–nat⋅tach
(Directory element only) The trigger is removed from the directory’s inheritance list, but

remains on its attached list. The trigger continues to fire when the monitored operation

is performed on the directory itself, but new elements created in that directory do not

inherit the trigger.

REMOVING TRIGGERS FROM AN ENTIRE SUBDIRECTORY TREE. Default: If a pname argument names

a directory element, the trigger is removed only from the element itself, not from any of the

existing elements within it.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself).

SPECIFYING THE TRIGGER TYPE. Default: None.

trigger-type-selector
The name of an existing element trigger type. Specify trigger-type-selector in the form

[trtype:]type-name[@vob-selector]

SPECIFYING THE ELEMENTS. Default: None.

pname ...

One or more pathnames, specifying elements from which triggers (instances of the

specified trigger type) are to be removed.

type-name Name of the trigger type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
ClearCase Reference Pages 847

rmtrigger
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Remove an attached trigger from hello.c.

cmd-context rmtrigger trig1 hello.c
Removed trigger "trig1" from attached list of "hello.c".

• Remove an attached trigger from the src directory’s attached list, but leave it in the

inheritance list.

cmd-context rmtrigger –ninherit trig1 src
Removed trigger "trig1" from attached list of "src".

• Remove an attached trigger from the release directory’s inheritance list, but leave it in the

attached list.

cmd-context rmtrigger –nattach trig1 release
Removed trigger "trig1" from inheritance list of "release".

SEE ALSO

describe, mktrigger, mktrtype, rmtype, unlock
848 ClearCase Reference Manual

rmtype
rmtype
Removes a type object from a VOB

APPLICABILITY

SYNOPSIS
rmtype [–ign⋅ore] [–rma⋅ll [–f⋅orce]]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

DESCRIPTION

The rmtype command removes one or more type objects from a VOB.

RESTRICTION: You cannot remove a type object if there are any instances of that type. For

example, if any version of any element is labeled REL1, you cannot remove the REL1 label type

(unless you specify the –rmall option).

RESTRICTION: You cannot remove an element type from a replicated VOB.

The file vista.tjf records updates to the VOB that result from rmtype operations. vista.tjf can

grow very large. To limit its size, read about the file db.conf in the config_ccase reference page.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: type owner,

VOB owner, a member of the ClearCase group (ClearCase), or the local administrator of the

ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, type.

OPTIONS AND ARGUMENTS

REMOVING INSTANCES OF THE TYPE. Default: If there are any instances of a specified type object,

rmtype does not remove the type object.

–rma⋅ll
Removes all instances of a type, and then proceeds to remove the type object itself. If the

type object is a global type, or is a local copy of a global type, rmtype removes the global

type and all local copies of the type.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 849

rmtype
CAUTION: If the rmtype –rmall command fails for any reason, you must address the

causes of the failure and enter the command again. You must persist until the command

completes successfully and the type is removed. Failure to do so will result in

inconsistent metadata.

CAUTION: This option potentially destroys a great deal of data.

–f⋅orce (for use with –rmall only)

By default, rmtype prompts for confirmation when you use the –rmall option to request

removal of all instances of a type. The –force option suppresses the confirmation step.

–ign⋅ore (for use with trigger types only)

Removes a trigger type even if a previously defined preoperation trigger would

otherwise prevent it from being removed.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE TYPE OBJECTS TO BE REMOVED. Default: Removes types from the VOB that

contains the current working directory unless you specify another VOB with the @vob-selector
suffix.

type-selector ...

One or more names of existing type objects, of the specified kind. Specify type-selector in

the form type-kind:type-name[@vob-selector]

type-kind oOne of

attype Attribute type

brtype Branch type

eltype Element type

hltype Hyperlink type

lbtype Label type

trtype Trigger type

type-name Name of the type object

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
850 ClearCase Reference Manual

rmtype
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Delete the branch type patch3.

cmd-context rmtype brtype:patch3
Removed attribute type "patch3".

• Delete the attribute type QA_date in the VOB \tests.

cmd-context rmtype attype:QA_date@\tests
Removed attribute type "QA_date".

• Delete all branches of type expmnt3 (along with all the versions on those branches and any

subbranches); then delete the expmnt3 branch type itself.

cmd-context rmtype –rmall brtype:expmnt3
There are 1 branches of type "expmnt3".
Remove branches (including all sub-branches and sub-versions)? [no] yes
Removed branches of type "expmnt3".
Removed branch type "expmnt3".

• Delete the hyperlink type design_doc.

cmd-context rmtype hltype:design_doc
Removed hyperlink type "design_doc".

• Remove all instances of the label type REL2; then delete the label type.

cmd-context rmtype –rmall lbtype:REL2
There are 7 labels of type "REL2".
Remove labels? [no] yes
Removed labels of type "REL2".
Removed label type "REL2".

• Delete the trigger type trig1. Use the –ignore option to ensure that the command executes

without interference from a previously defined trigger.

cmd-context rmtype –ignore trtype:trig1
Removed trigger type "trig1".
ClearCase Reference Pages 851

rmtype
SEE ALSO

config_ccase, describe, lshistory, lstype, mkattype, mkbrtype, mkeltype, mkhltype, mklbtype,

mktrtype, rename
852 ClearCase Reference Manual

rmver
rmver
Removes a version from the version tree of an element

APPLICABILITY

SYNOPSIS
rmver [–f⋅orce] [–xbr⋅anch] [–xla⋅bel] [–xat⋅tr] [–xhl⋅ink] [–dat⋅a]

[–ver⋅sion version-selector | –vra⋅nge low-version high-version]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pname ...

DESCRIPTION

This command destroys information irretrievably. Using it carelessly may compromise your

organization’s ability to support old releases.

rmver deletes one or more versions from their elements. For each version, this entails the

following:

• Removal of the version object from the VOB database

• Removal of all metadata items (labels, attributes, hyperlinks, and triggers) that were

attached to the deleted version

• Removal of all event records for the deleted version

• (File elements only) Removal of the data containers that hold the deleted version’s file

system data

A destroy version event record is created for the element.

In general, a removed version is physically deleted from the VOB source pool. However, a

removed version is logically deleted if it has a descendant and is managed by the

z_text_file_delta or text_file_delta type managers. See the type_manager reference page for

more information on the type managers.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 853

rmver
Behavior in Snapshot Views

In a snapshot view, rmver does not unload the element, but leaves a view-private copy of the

element in the view. In other respects, rmver behaves the same in a snapshot view as it does in a

dynamic view.

Restrictions

You cannot delete a version from which someone currently has a checkout. You cannot delete

version 0 on a branch, except by deleting the entire branch. (See rmbranch.)

Deleted Version-IDs

The version-ID of a deleted version is never reused. There is no way to collapse a branch to fill

the gaps left by deleted versions. If a deleted version was the last version on a branch (say,

version 6), the next checkin on that branch creates version 7.

A reference to a deleted version produces a not found or no such file or directory error.

Controlling the Size of the vista.tjf File

The file vista.tjf records updates to the VOB that result from rmver operations. vista.tjf can grow

very large. To limit its size, read about the file db.conf in the config_ccase reference page.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: version creator,

element owner, VOB owner, a member of the ClearCase group (ClearCase), or the local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch, pool (non-directory elements only).

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: rmver prompts for confirmation before deleting anything.

–f⋅orce
Suppresses the confirmation step.

DELETING INTERESTING VERSIONS. Default: rmver does not delete a version to which a version

label, attribute, or hyperlink is attached, or at which a branch begins.

–xbr⋅anch
Deletes a version even if one or more branches begin there. In the process, those branches

(including all their versions and subbranches) are also deleted.

–xla⋅bel
Deletes a version even if it has one or more version labels.
854 ClearCase Reference Manual

rmver
–xat⋅tr
Deletes a version even if it has one or more attributes.

–xhl⋅ink
Deletes a version even if it has one or more hyperlinks. This also destroys the hyperlink

object, thus modifying the other object to which the hyperlink was attached.

CAUTION: Using this option can delete merge arrows (hyperlinks of type Merge) created

by the merge command. This may destroy essential metadata.

DATA-ONLY DELETION. Default: rmver deletes both the version object in the VOB database along

with associated metadata, and the corresponding data container in a source storage pool.

–dat⋅a
Deletes only the data for the specified version, leaving the version object, its

subbranches, and its associated metadata intact. In particular, this option preserves

event records and enables continued access to the configuration record of a DO version.

CAUTION: Using this option implicitly invokes the –xbranch, –xlabel, –xattr, and –xhlink
options, as well. That is, the data container is deleted even if the version has a label,

attribute, or hyperlink attached or has a branch sprouting from it.

SPECIFYING THE VERSIONS TO BE REMOVED. Default: None.

–ver⋅sion version-selector
For each pname, removes the version specified by version-selector. This option overrides

both version-selection by the view and version-extended naming. See the

version_selector reference page for syntax details.

–vra⋅nge low-version high-version
For each pname, removes all versions between (but not including) the two specified

versions. low-version and high-version must be on the same branch, and are specified in

the same way as version-selector.

pname ...

(Required) One or more pathnames, indicating versions to be removed:

Use –version or –vrange to override these interpretations of pname.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies a version, independent of view.
ClearCase Reference Pages 855

rmver
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Delete the version of msg.c in the view.

cmd-context rmver msg.c
Removing these versions of "msg.c":

\main\1
Remove versions? [no] yes
Removed versions of "msg.c".

• Delete version 1 on the rel2_bugfix branch of element util.c, using a version selector to

specify the version, suppressing confirmation prompts.

cmd-context rmver -force -version \main\rel2_bugfix\1 util.c
Removing these versions of "util.c":
 \main\rel2_bugfix\1
Removed versions of "util.c".

• Delete version 3 on the main branch of element Makefile, even if it has labels and/or

attributes. Use a version-extended pathname to specify the version.

cmd-context rmver -xlabel -xattr Makefile@@\main\3
Removing these versions of "Makefile":
 \main\3 (has: labels, attributes)
Remove versions? [no] yes
Removed versions of "Makefile".

• Delete all versions between 0 and LATEST on the main branch of element hello.c.

cmd-context rmver -vrange \main\0 \main\LATEST hello.c
Removing these versions of "hello.c":
 \main\1
 \main\2
Remove versions? [no] yes
Removed versions of "hello.c".

• Delete version 2 on the main branch of util.c, even if there are one or more subbranches off

that version. (The subbranches, if any, are also deleted.)
856 ClearCase Reference Manual

rmver
cmd-context rmver -xbranch util.c@@\main\2
Removing these versions of "util.c":
 \main\2 (has: subbranches)
Remove versions? [no] yes
Removed versions of "util.c".

SEE ALSO

config_ccase, describe, lshistory, lsvtree, rmbranch, rmelem, rmname, type_manager
ClearCase Reference Pages 857

rmview
rmview
Removes a view or removes view-related records from a VOB

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Remove a dynamic view view and its related records:

rmview [–f⋅orce] { –tag dynamic-view-tag | dynamic-view-storage-pname }

• Remove a snapshot view and its related records:

rmview [–f⋅orce] { snapshot-view-pname | snapshot-view-storage-pname }

• Remove only view-related records from a VOB:

rmview [–f⋅orce] [–vob vob-selector | –avo⋅bs | –a⋅ll] –uui⋅d view-uuid

DESCRIPTION

The rmview command performs different, but related, tasks:

• Removing a view and its related records from a VOB

• Removing only the view-related records from a VOB

Removing a View and Its Related Records

Use this form of the command to remove a view completely. Complete removal of a view entails:

• Removing the view-storage directory

• Removing view-related records for that view from all accessible VOBs: checkout records,

derived object records (ClearCase and Attache dynamic views only)

• Killing its associated view_server process, if the view is currently active

• For a snapshot view, also removing recursively the snapshot view’s root directory, which is

the directory tree of loaded versions and view-private objects

• For a dynamic view, removing its entry in the dynamic-views root directory

• Removing the view’s information from the view registry

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
858 ClearCase Reference Manual

rmview
Be sure that the current working directory is not within the view storage area that you are

deleting.

By default, rmview refuses to delete a view if any element is checked out to that view. You can

override this behavior with the –force option.

NOTE: rmview does not allow you to remove your current set view or working directory view (the

view in which you are executing rmview). However, you can remove a view (set view or

working directory view) that you are currently using if you issue the rmview command from a

shell in which you are not using the view.

Purging View-Related Records Only

Use this form of the command in either of these situations:

• Complete purging of view-related records from all VOBs is not possible. (For example,

some of the VOBs may be offline when you remove the view.)

• A view storage area cannot be deleted with rmview, because it has become unavailable for

another reason: disk crash, accidental deletion with del, and so on.

To remove view-related records only, use rmview and specify a view by its UUID (universal

unique identifier; see the View UUIDs section). Despite being invoked as rmview, this form of the

command has no effect on any view or view_server process, only on the specified VOBs.

Caution

Incorrect results occur if a VOB loses synchronization with its views. To avoid this problem:

• Never remove a view with del; always use the rmview command.

• If a view still exists, do not use rmview –uuid to delete records relating to it from any VOB.

Make sure that the view need not be used again before using this command.

View UUIDs

Each view has a universal unique identifier. For example:

52000002.4ac711cb.a391.08:00:69:02:18:22

The listing produced by a describe –long vob: command includes the UUIDs of all views for

which the VOB holds checkout records and derived object records.

Controlling the Size of the vista.tjf File

The file vista.tjf records updates to the VOB that result from rmview operations. vista.tjf can

grow very large. To limit its size, read about the file db.conf in the config_ccase reference page.
ClearCase Reference Pages 859

rmview
PERMISSIONS AND LOCKS

Permissions Checking: You must be the view owner, a member of the ClearCase group

(ClearCase), or the local administrator of the ClearCase LT server host (ClearCase LT). See the

permissions reference page

Locks: No locks apply.

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: Prompt for confirmation of the specified rmview operation.

–f⋅orce
Suppresses confirmation prompts for:

SPECIFYING A VIEW. Default: None.

–tag dynamic-view-tag

Specifies the dynamic view to be removed. dynamic-view-tag specifies the view-tag of a

dynamic view. rmview removes the view storage directory and all relevant entries from

the network’s view registry.

dynamic-view-storage-dir-pname
Specifies the storage location directory where the dynamic view resides. Be sure that the

current working directory is not anywhere within this view storage area.

snapshot-view-pname
Specifies the path to your snapshot view. This is the directory in which you load your

files and do your work. rmview removes the view storage directory and all relevant entries

from the network’s view registry. Be sure that the current working directory is not

anywhere within this view storage area.

snapshot-view-storage-dir-pname
NOTE: This option is intended fordeleting view storage associated with a snapshot view

that was deleted using an operating system command such as del. Only rmview
effectively deletes a view, and in normal circumstances, you should specify

snapshot-view-pname rather than this argument to delete a snapshot view.

Specifies the directory within a storage location where the snapshot view resides.

rmview removes the view storage directory and all relevant entries from the network’s

• Complete view removal: confirmation is needed to proceed if some elements are

checked out to the view. Proceeding has the effect of canceling the checkouts and

destroying the work items: rmview removes the checkout records from the

appropriate VOBs.

• Remove view-related records: confirmation is needed to proceed if the view still

exists.
860 ClearCase Reference Manual

rmview
view registry. Be sure that the current working directory is not anywhere within this view

storage area.

SPECIFYING VIEW-RELATED RECORDS. Default: None.

–vob vob-selector
Specifies the VOB from which view-related records are to be removed. If you omit this

option, cleartool or Attache uses the VOB containing the current working directory.

Specify vob-selector in the form [vob:]pname-in-vob

–avo⋅bs
Specifies that view-related records are to be removed from the VOBs specified by the

environment variable CLEARCASE_AVOBS, or if this variable is unset, from all VOBs

mounted on the current host (ClearCase and Attache) or all VOBs residing on the

ClearCase LT server host.

–a⋅ll
Specifies that the view-related records are to be removed from all VOBs in which such

records can be found.

–uui⋅d view-uuid
Specifies the view whose records are to be removed from one or more VOBs.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Delete the view storage area at C:\vw_store\Rel2.vws.

cmd-context rmview C:\vw_store\Rel2.vws

• Delete the view storage area whose view-tag is anneRel2.

cmd-context rmview –tag anneRel2

• Delete the checkout and DO records for a deleted view from the current VOB. Suppress the

confirmation prompt.

cmd-context rmview –force –uuid 249356fe.d50f11cb.a3fd.00:01:56:01:0a:4f

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
ClearCase Reference Pages 861

rmview
Removed references to VIEW "host2:\users\vbstore\tut\old.vws"
from VOB "\users_hw".

• Delete the snapshot view, rdc_3.2, for which the root directory is E:\library\rdc_3.2.

cmd-context rmview -tag E:\library\rdc_3.2

SEE ALSO

config_ccase, env_ccase, lsview, mktag, mkview, registry_ccase, rmtag, unregister
862 ClearCase Reference Manual

rmvob
rmvob
Removes a VOB storage directory

APPLICABILITY

SYNOPSIS
rmvob [–f⋅orce] vob-storage-dir-pname ...

DESCRIPTION

The rmvob command deletes one or more VOB storage directories. Confirmation for each VOB is

required, unless you use the –force option.

In addition to removing the VOB storage directory, rmvob removes all relevant entries from the

network’s VOB registry. However, rmvob does not unmount the VOBs. Before removing a VOB

storage area:

1. Inform users that you are going to unmount the VOB and stop ClearCase or ClearCase LT

on the host.

2. Unmount the VOB with the umount command.

3. Stop and restart ClearCase or ClearCase LT on the VOB storage host.

CAUTION: Be sure that the current working directory is not within the VOB storage area that you

are deleting.

NOTE: If you remove a VOB storage area with standard Windows commands, you must

unregister the VOB with the rmtag and unregister commands.

REMOVING REPLICATED VOBS

To remove a replicated VOB, you must follow the procedure in the ClearCase MultiSite Manual.
rmvob fails if the VOB replica masters any objects, unless you specify the –force option.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: VOB owner, a

member of the ClearCase group (ClearCase), or the local administrator of the ClearCase LT

server host (ClearCase LT). See the permissions reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 863

rmvob
Locks: No locks apply.

OPTIONS AND ARGUMENTS

–f⋅orce
Suppresses the confirmation step. If the VOB is replicated, this option allows rmvob to

remove the VOB storage directory even if the replica masters any objects.

vob-storage-dir-pname ...

The pathnames of one or more VOB storage directories to be removed.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Unmount and delete the VOB storage area c:\users\vbstore\project.vbs mounted on

\project.

cmd-context umount \project

cmd-context rmvob c:\users\vbstore\project.vbs
Remove versioned object base "c:\users\vbstore\project.vbs"? [no] yes
Removed versioned object base "c:\users\vbstore\project.vbs".

SEE ALSO

mkvob, registry_ccase, umount
864 ClearCase Reference Manual

rmws
rmws
Removes and unregisters a workspace

APPLICABILITY

SYNOPSIS
rmws [–f⋅orce] [ws-name]

DESCRIPTION

The rmws command removes the specified workspace and all of its local files and

subdirectories.The workspace’s storage directory is removed even if it is being shared with

another workspace. If the associated view still exists and was created with the mkws command,

it is removed as well. The –force option is applied to the rmview command; prompts are always

issued for removal of local writable files.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE WORKSPACE. Default: Current workspace.

ws-name
Specifies the workspace name or view-tag name of the workspace to be deleted

CONFIRMATION STEP. Default: If the view is being deleted, rmview prompts for confirmation

before deleting anything.

–f⋅orce
Automatically responds yes to confirmation requests that rmview would otherwise

make:

EXAMPLES

• Remove the current workspace. At an Attache prompt:

rmws

Product Command Type

Attache command

• Deleting a view-storage directory: confirmation is needed to proceed if some

elements are checked-out to the view. Proceeding has the effect of canceling the

checkouts: rmview removes the checkout records from the appropriate VOBs.
ClearCase Reference Pages 865

rmws
• Remove the workspace containing writable files, corresponding to the view with view-tag

jed_main. At an Attache prompt:

rmws jed_main
\tmp\agora_hw\src\hello.c may have been modified
\tmp\agora_hw\bin\hello.exe may have been modified
OK to remove \jed_main? [no] yes
Removing references from VOB “/tmp/agora_hw” . . .
Removed references to view “/net/agora/usr/jed/views/jed_main.vws” from
VOB “/tmp/agora_hw”.

SEE ALSO

attache_command_line_interface, attache_graphical_interface, mkws, lsws, rmview
866 ClearCase Reference Manual

schedule
schedule
Schedules and manages jobs to be run one or more times

APPLICABILITY

SYNOPSIS

• ClearCase only—Display information about jobs, tasks, or protection:

sched⋅ule [–f⋅orce] [–hos⋅t hostname] –get
[–sch⋅edule | –job job-id-or-name | –tas⋅ks | –acl]

• ClearCase only—Edit a schedule or the scheduler’s protection information:

sched⋅ule [–f⋅orce] [–hos⋅t hostname] –edi⋅t [–sch⋅edule | –acl]

• ClearCase only—Set a schedule or protection using definitions in a file:

sched⋅ule [–f⋅orce] [–hos⋅t hostname] –set
[–sch⋅edule | –acl] defn-file-pname

• ClearCase only—Perform an operation on a scheduled job:

sched⋅ule [–f⋅orce] [–hos⋅t hostname]

[–del⋅ete | –run | –wai⋅t | –sta⋅tus] job-id-or-name

• ClearCase LT only—Display information about jobs, tasks, or protection:

sched⋅ule [–f⋅orce] –get [–sch⋅edule | –job job-id-or-name | –tas⋅ks | –acl]

• ClearCase LT only—Edit a schedule or the scheduler’s protection information:

sched⋅ule [–f⋅orce] –edi⋅t [–sch⋅edule | –acl]

• ClearCase LT only—Set a schedule or protection using definitions in a file:

sched⋅ule [–f⋅orce] –set [–sch⋅edule | –acl] defn-file-pname

• ClearCase LT only—Perform an operation on a scheduled job:

sched⋅ule [–f⋅orce] [–del⋅ete | –run | –wai⋅t | –sta⋅tus] job-id-or-name

DESCRIPTION

The schedule command creates and manages ClearCase and ClearCase LT-related jobs and

arranges to execute them at specified times. A job consists of an executable program, or task, that

the scheduler runs one or more times with a given set of arguments.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 867

schedule
In ClearCase, the scheduler is available on any host that runs the albd_server. In ClearCase LT,

the scheduler is available on the ClearCase LT server host only.

Task and Job Storage

The scheduler relies on two data repositories:

• A database of tasks available for scheduling

• A database of jobs, or scheduled tasks

A task must be defined in the task database before you can schedule it. The task database is a

single text file, ccase-home-dir\var\scheduler\tasks\task_registry.

You can add task definitions to the task database by editing this file using a text editor. You must

not change the definitions of standard tasks, but you can add your own task definitions at the

end of the file. For more information, see Task Definition Syntax on page 875.

Standard tasks reside in the directory ccase-home-dir\config\scheduler\tasks. These tasks are

not editable.

Tasks that you define can reside anywhere in the file system, but the recommended location is

the directory ccase-home-dir\var\scheduler\tasks. This directory contains a task,

ccase_local_day.bat, that is intended for user-defined operations to be run daily. The directory

contains another task, ccase_local_wk.bat, that is intended for user-defined tasks to be run

weekly. You can customize these two tasks using a text editor or can create entirely new tasks.

The database of jobs is the file ccase-home-dir\var\scheduler\db. This is a binary file that you can

read and edit only by using the schedule command or the scheduling user interface. When you

use the schedule command to change the job database, you use the job definition language

described in Job Definition Syntax on page 870.

Task and Job Database Initialization

ClearCase and ClearCase LT install a template for an initial task database, containing definitions

for standard tasks, as the file ccase-home-dir\config\scheduler\tasks\templates\task_registry.

The albd_server uses this template to create the first version of the actual task database,

ccase-home-dir\var\scheduler\tasks\task_registry.

Templates are installed for two customized tasks, ccase_local_day.bat and ccase_local_wk.bat,
in the directory ccase-home-dir\config\scheduler\tasks\templates. The albd_server uses these

templates to create initial versions of these tasks in the directory

ccase-home-dir\var\scheduler\tasks.

ClearCase and ClearCase LT install an initial set of job definitions as the text file

ccase-home-dir\config\scheduler\initial_schedule. These job definitions rely on task definitions

in the task registry template. The albd_server uses these job definitions to create the first version

of the job database, ccase-home-dir\var\scheduler\db.
868 ClearCase Reference Manual

schedule
NOTE: Do not edit or delete any files in the directory tree whose root is

ccase-home-dir\config\scheduler.

Default Schedule

When no job database exists, the albd_server uses the initial set of job definitions in the file

ccase-home-dir\config\scheduler\initial_schedule to create a default schedule. This schedule

consists of some jobs run daily and other jobs run weekly.

Daily jobs:

• Scrub cleartext and derived object storage pools of all local VOBs, using scrubber.
• Copy the VOB database for all local VOBs that are configured for snapshots, using

vob_snapshot.
• Copy the ClearCase registry from the primary registry server host (when run on a backup

registry server host), using rgy_backup.

• Run user-defined daily operations in

ccase-home-dir\var\scheduler\tasks\ccase_local_day.bat.
• Generate and cache data on disk space used by all local views, using space.

• Generate and cache data on disk space used by all local VOBs, using space.

Weekly jobs:

• Scrub some logs (see errorlogs_ccase).

• Scrub the databases of all local VOBs, using vob_scrubber.
• Run user-defined weekly operations in

ccase-home-dir\var\scheduler\tasks\ccase_local_wk.bat.
• Generate and cache data on disk space used by derived objects in all local VOBs, using

dospace.

The default schedule also includes three jobs to automate the synchronization of MultiSite

replicas. These jobs are designed to run daily but are disabled by default, whether or not

MultiSite is installed. For more information on these jobs and how to enable them for use with

MultiSite, see ClearCase MultiSite Manual.

Job Timing Options

You can arrange for a job to run under a variety of schedules:

• Run daily or every n days, starting at a specified time of day and possibly repeating at a

specified time interval during the day.

• Run weekly or every n weeks, on one or more days of each week, starting at a specified time

of day and possibly repeating at a specified time interval during the day.

• Run monthly or every n months, on a specified day of the month, starting at a specified time

of day and possibly repeating at a specified time interval during the day.
ClearCase Reference Pages 869

schedule
• Run immediately after another job finishes.

For daily, weekly, and monthly schedules, you can specify starting and ending dates for the job.

To run a job one time, you can specify a daily schedule with identical start and end dates.

Job Definition Syntax

The –edit and –set options create or modify jobs using a declarative job definition language. The

–get option displays a textual representation of currently defined jobs using the same language.

The job definition language has the following general features:

• Each statement must occupy a single line, though job descriptions and output messages can

occupy more than one line.

• The language is case insensitive.

• Leading white space, lines beginning with a number sign (#), and blank lines are ignored,

except within job descriptions.

• The quotation character is double quote (").

A job definition file consists of a sequence of job definitions. Each job definition begins with the

statement Job.Begin and ends with the statement Job.End. Between these statements are other

statements that define job properties. A statement that defines a job property has the following

form:

Job.property_name: value

Some properties have fields. In this case the definition of a property consists of a sequence of

statements, one for each field, with the following form:

Job.property_name.field: value

Some fields themselves have subfields.

The value portion of some property definitions can contain a sequence of individual values

separated by commas. No white space can appear before or after a comma that separates two

values in a sequence. For the Args property, individual values are separated by white space.

Job properties are of two types:

• Editable. You can define or modify the property. Some properties and fields are required;

others are optional and have default values. When you define or modify a property, you

must specify fields and subfields of that property in the order listed in Table 9 and Table 10.

• Read-only. The scheduler defines the property, and you cannot define or modify it. When

you create a job definition, the scheduler ignores all definitions of read-only properties.

When you edit an existing job definition, the scheduler ignores all definitions of read-only
870 ClearCase Reference Manual

schedule
properties except for Id. When you edit an existing job definition, the scheduler uses the Id,

if present (and if not present, the Name), to identify the job to modify.

Table 9 lists editable job properties.

Table 10 lists fields of the Schedule property. Schedules are of two types:

Table 9 Editable Job Properties

Property Field Value Default

Name name_string (quoted if it contains white

space; must be unique across jobs)

No default; a

value is

required.

Description Begin desc_string (on subsequent lines only;

maximum 255 characters)

""

End (none)

Schedule (see Table 10) (see Table 10) No default; a

value is

required.

Task task_id (unsigned) | task_name (string) No default; a

value is

required.

Args arg_string [...]
(arg_string quoted if it contains white space)

No args

DeleteWhenCompleted TRUE | FALSE FALSE

NotifyInfo OnEvents JobBegin | JobEndOK |

JobEndOKWithMsgs | JobEndFail |
JobDeleted | JobModified [,...]

If no

NotifyInfo
field is

specified, no

notifications are

issued; if any

NotifyInfo
field is

specified, all

must be

specified.

Using email

Recipients address [,...]
ClearCase Reference Pages 871

schedule
• Periodic. The job runs on one or more days specified by the Monthly, Weekly, or Daily
field.

• Sequential. The job runs following completion of another job specified by the Sequential
field.

The Monthly, Weekly, Daily, and Sequential fields are mutually exclusive; each job must have

one and only one of these fields.

The StartDate, LastDate, FirstStartTime, StartTimeRestartFrequency, and LastStartTime fields

are optional. One or more of these fields can appear along with a Monthly, Weekly, or Daily
field. StartDate and LastDate determine the first and last dates the job is eligible to run on its

monthly, weekly, or daily schedule. FirstStartTime determines what time the job first runs on

each day it is scheduled. StartTimeRestartFrequency is the time interval between subsequent

invocations of the job, if any, on each day it is scheduled. LastStartTime is meaningful only with

StartTimeRestartFrequency; it determines the last time the job is eligible to run on each day it is

scheduled.

All dates and times are local to the host on which the scheduler is running.

Table 10 Fields of the Job Schedule Property

Schedule Field Subfield Value Default

Monthly Frequency every_n_months (unsigned) No default; if

any Monthly
subfield is

specified, all

must be

specified.

Day day_number | ordinal_spec day_spec

(day_number ::= 1 ... 31)

(ordinal_spec ::= First | Second | Third |

Fourth | Last)

(day_spec ::= Mon | Tue | Wed | Thu | Fri |

Sat |Sun | Weekday | Weekendday | Day)

Weekly Frequency every_n_weeks (unsigned) No default; if

any Weekly
subfield is

specified, all

must be

specified.

Days Mon | Tue | Wed | Thu | Fri | Sat | Sun
[,...]

Daily Frequency every_n_days (unsigned) No default

StartDate [d]d–month–[yy]yy

(month ::= January ... December | Jan ... Dec)

Today
872 ClearCase Reference Manual

schedule
Table 11 lists read-only job properties. For the LastCompletionInfo property, ExitStatus is the

value returned by the wait() system call on UNIX or by the GetExitCodeProcess() function on

Windows. Only the first 511 bytes of standard output and error messages are displayed.

LastDate StartDate | [d]d–month–[yy]yy

(month ::= January ... December | Jan ... Dec)

No last date

FirstStartTime [h]h:[m]m:[s]s (24-hour format) Now

StartTimeRestartFrequency [h]h:[m]m:[s]s (24-hour format) No restart

LastStartTime [h]h:[m]m:[s]s (24-hour format) Midnight

Sequential FollowsJob job_id (unsigned) | job_name (string) No default

Table 11 Read-Only Job Properties

Property Field Value

Id job_id (unsigned)

Predefined TRUE | FALSE

Created dd–month–yy.hh:mm:ss by user.group@host

LastModified dd–month–yy.hh:mm:ss by user.group@host

NextRunTime dd–month–yy.hh:mm:ss

RunningStatus ProcessId process_id (unsigned)

Started dd–month–yy.hh:mm:ss

Table 10 Fields of the Job Schedule Property

Schedule Field Subfield Value Default
ClearCase Reference Pages 873

schedule
Following is an example definition you can use with the –edit or –set option to create a job

scheduled to run daily:

Job.Begin
Job.Name: "Daily VOB Pool Scrubbing"
Job.Description.Begin:

Scrub the cleartext and derived object storage pools of all local VOBs.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.StartDate: 11-Mar-99
Job.Schedule.FirstStartTime: 04:30:00
Job.Task: "VOB Pool Scrubber"

Job.End

Following is an example definition the scheduler could display with the –get option for a job

scheduled to run sequentially, including job properties defined by the scheduler:

LastCompletionInfo ProcessId process_id (unsigned)

Started dd–month–yy.hh:mm:ss

Ended dd–month–yy.hh:mm:ss

ExitStatus exit_status (hexadecimal)

Begin output_and_error_messages (on subsequent

lines only)

End (None)

Table 11 Read-Only Job Properties

Property Field Value
874 ClearCase Reference Manual

schedule
Job.Begin
Job.Id: 8
Job.Name: "Weekly VOB Database Scrubbing"
Job.Description.Begin:

Scrub the VOB database of all local VOBs.
Job.Description.End:
Job.Schedule.Sequential.FollowsJob: 7
Job.Schedule.Sequential.FollowsJob: "Weekly MVFS Log Scrubbing"
Job.DeleteWhenCompleted: FALSE
Job.Task: 4
Job.Task: "VOB DB Scrubber"
Job.Args:
Job.Created: 11-Mar-99.14:12:59 by fran@acme
Job.LastModified: 11-Mar-99.14:12:59 by fred@acme
Job.LastCompletionInfo.ProcessId: 394
Job.LastCompletionInfo.Started: 21-Mar-99.00:30:08
Job.LastCompletionInfo.Ended: 21-Mar-99.00:31:08
Job.LastCompletionInfo.ExitStatus: 0x0

Job.End

Task Definition Syntax

A task must be defined in the task database before you can schedule the task. The task database

is a text file, which you can edit using a text editor. The task database contains definitions that

use a declarative task definition language similar to the job definition language.

The task definition language has the following general features:

• Each statement must occupy a single line.

• The language is case insensitive.

• Leading white space, lines beginning with a number sign (#), and blank lines are ignored.

• The quotation character is double quote (").

The task database file consists of a sequence of task definitions. Each task definition begins with

the statement Task.Begin and ends with the statement Task.End. Between these statements are

other statements that define task properties. A statement that defines a task property has the

following form:

Task.property_name: value

In the task database, definitions of standard tasks appear first. You must not change or delete any

of these definitions. You can add task definitions of your own at the end of the task database file.

Table 12 lists task properties.
ClearCase Reference Pages 875

schedule
The scheduler uses the task Id property in a job definition to identify the task to run. If any

scheduled jobs use a task Id, you must be careful not to change the task’s Id property in the task

database without also changing all references to that property in the database of scheduled jobs.

The Pathname value is the pathname of the executable to be invoked when the task is run. The

pathname can be relative or absolute. If it is relative, the scheduler looks first for the task in

ccase-home-dir\config\scheduler\tasks and then in ccase-home-dir\var\scheduler\tasks.

The optional UIInfo property describes the task’s command-line interface, such as the types of

arguments the task can take. This property is used internally by ClearCase and ClearCase LT; do

not specify it for a user-defined task.

Following is an example read-only definition for a standard task:

Task.Begin
Task.Id: 2
Task.Name: "View Space"
Task.Pathname: view_space.bat
Task.UIInfo: "view-spec"

Task.End

Following is an example definition for a user-defined task:

Task.Begin
Task.Id: 100
Task.Name: "Daily Local Tasks"
Task.Pathname: ccase_local_day.bat

Task.End

Table 12 Task Properties

Property Value

Id task_id (unsigned; must be unique across tasks; for

user-defined tasks, must be 100 or greater)

Name name_string (quoted if it contains white space; must be

unique across tasks)

Pathname pathname_string (quoted if it contains white space)

UIInfo info_string (private to ClearCase and ClearCase LT)
876 ClearCase Reference Manual

schedule
Job Execution Environment

Each task runs in a separate process started by the albd_server. A task has the following

execution environment:

• The user identity of the task is the same as that of the albd_server (typically, the

clearcase_albd account).

• The standard input stream is closed.

• Standard output and error messages are redirected to a file and captured by the scheduler

as part of the job’s LastCompletionInfo property.

• The current directory is undefined.

• Environment variables are those in effect for the albd_server. In addition, ATRIAHOME is set

to ccase-home-dir.

PERMISSIONS AND LOCKS

The scheduler maintains a single access control list (ACL). The ACL determines who is allowed

access to the scheduler and to the ACL itself.

The –edit –acl and –set –acl options modify the ACL using a declarative ACL definition

language. The –get –acl option displays the current ACL.

The ACL definition consists of a sequence of ACL entries. Each ACL entry must occupy a single

line. Leading white space, lines beginning with number sign (#), and blank lines are ignored.

Each ACL entry has the following form:

identity_type:identity access_type

Table 13 lists the identity types and identities allowed in ACL entries. The identity types are case

insensitive.

In the identity portion of an ACL entry, the domain_name is an NIS domain for UNIX clients of the

scheduler and a Windows NT Server domain for Windows clients of the scheduler. Note that you

Table 13 Identity Types and Identities in Scheduler ACL Entries

Identity Type Identity

Everyone (None)

Domain domain_name

Group domain_name/group_name | domain_name\group_name

User domain_name/user_name | domain_name\user_name
ClearCase Reference Pages 877

schedule
must supply a domain in the identity portion of a Group or User ACL entry. For an ACL entry

with a Windows NT Server domain, group_name must be a global group, and user_name must be

a domain user account. Names of domains, groups, and users are case insensitive for the

scheduler.

Note that no white space can appear anywhere in an identity_type:identity specification.

Table 14 lists the access types allowed in ACL entries. The access types are case insensitive.

Each combination of domain and group or of domain and user represents a single identity. (Note

that NIS domains differ from Windows NT Server domains, so a group or user in an NIS domain

represents a different identity from the same group or user in a Windows NT Server domain.)

Each single identity can have only one access type. However, access rights are inherited from

Everyone to Domain to Group to User in such a way that each user has the least restrictive of all

these access rights that apply to that user. For example, if a user’s ACL entry specifies Read
access but the ACL entry for the user’s group specifies Change access, the user has Change
access. The order of ACL entries is not significant.

In ClearCase, a member of the ClearCase group always has Full access to the scheduler on the

local host (the computer where that user is logged on). In ClearCase LT, Full access is granted to

the local administrator of the ClearCase LT server host. Access rights of a member of the

ClearCase group to a scheduler on a remote host are determined by the scheduler’s ACL. The

default ACL is as follows:

Everyone: Read

This means that by default, everyone can read the schedule, but only a member of the ClearCase

group (ClearCase) or the local administrator (ClearCase LT) logged on to the computer where

the scheduler is running can modify the schedule or the ACL.

Following is an example ACL definition:

Table 14 Access Types in Scheduler ACL Entries

Access Type Access to Schedule Access to ACL

Read Read only Read only

Change Read and write; can start jobs Read only

Full Read and write; can start jobs Read and write
878 ClearCase Reference Manual

schedule
NIS domain acme.com
Domain:acme.com Read
Windows NT Server domain acme
Domain:acme Read
Group:acme\users Change
User:acme.com\fran Full
User:acme\fran Full

OPTIONS AND ARGUMENTS

Specifying the Host

–hos⋅t hostname
Specifies the host whose schedule the command operates on. The ClearCase default is

the local host. The ClearCase LT default is the ClearCase LT server host.

Disabling Prompts for Confirmation

–f⋅orce
Suppresses all prompts to confirm changes. By default, the command asks for

confirmation before changing a schedule or ACL.

Displaying Information about Jobs, Tasks, or ACL

–get [–sch⋅edule]

Displays currently scheduled jobs using the scheduler’s job definition language. For

more information, see Job Definition Syntax on page 870. This is the default action for the

–get option.

–get –job job-id-or-name
Displays the currently scheduled job identified by job-id-or-name, which is either a

number representing the job-ID or a string representing the job name. The job display

uses the scheduler’s job definition language. For more information, see Job Definition
Syntax on page 870.

–get –tas⋅ks
Displays the tasks defined in the task database using the scheduler’s task definition

language. For more information, see Task Definition Syntax on page 875.

–get –acl
Displays the scheduler’s access control list (ACL) using the scheduler’s ACL definition

language. For more information, see PERMISSIONS AND LOCKS on page 877.

Editing a Schedule or ACL

–edi⋅t [–sch⋅edule]

Opens a text editor containing definitions of currently scheduled jobs using the

scheduler’s job definition language. You can use the editor to add, delete, or modify job

definitions. When you are finished, save the modified schedule and exit the text editor.
ClearCase Reference Pages 879

schedule
The scheduler then replaces the current schedule with the edited version. For more

information, see Job Definition Syntax on page 870. This is the default action for the –edit
option.

–edi⋅t –acl
Opens a text editor containing current ACL entries using the scheduler’s ACL definition

language. You can use the editor to add, delete, or modify ACL entries. When you are

finished, save the modified ACL and exit the text editor. The scheduler then replaces the

current ACL with the edited version. For more information, see PERMISSIONS AND
LOCKS on page 877.

Setting a Schedule or ACL Using Definitions in a File

–set [–sch⋅edule] defn-file-pname
Replaces all currently scheduled jobs with the jobs defined in the file whose pathname

is defn-file-pname. The definitions in the file use the scheduler’s job definition language.

For more information, see Job Definition Syntax on page 870. This is the default action for

the –set option.

–set –acl defn-file-pname
Replaces the current ACL with the ACL defined in the file whose pathname is

defn-file-pname. The definitions in the file use the scheduler’s ACL definition language.

For more information, see PERMISSIONS AND LOCKS on page 877.

Operating on a Scheduled Job

–del⋅ete job-id-or-name
Deletes the scheduled job identified by job-id-or-name, which is either a number

representing the job-ID or a string representing the job name.

–run job-id-or-name
Immediately executes the scheduled job identified by job-id-or-name, which is either a

number representing the job-ID or a string representing the job name. The job is run in

the scheduler’s job execution environment. For more information, see Job Execution
Environment on page 877.

–wai⋅t job-id-or-name
Waits for completion and displays status of the scheduled job identified by

job-id-or-name, which is either a number representing the job-ID or a string representing

the job name. This option has no effect if the job is not running.

–sta⋅tus job-id-or-name
Displays the status of the scheduled job identified by job-id-or-name, which is either a

number representing the job-ID or a string representing the job name. Displays the most

recent process-ID, start time, end time, and exit status for the job.
880 ClearCase Reference Manual

schedule
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Display the scheduled job whose name is "Weekly VOB Database Scrubbing".

cmd-context schedule –get –job "Weekly VOB Database Scrubbing"
Job.Begin

Job.Id: 8
Job.Name: "Weekly VOB Database Scrubbing"
Job.Description.Begin:

Scrub the VOB database of all local VOBs.
Job.Description.End:
Job.Schedule.Sequential.FollowsJob: 7
Job.Schedule.Sequential.FollowsJob: "Weekly MVFS Log Scrubbing"
Job.DeleteWhenCompleted: FALSE
Job.Task: 4
Job.Task: "VOB DB Scrubber"
Job.Args:
Job.Created: 11-Mar-99.14:12:59 by fran@acme
Job.LastModified: 11-Mar-99.14:12:59 by fred@acme
Job.LastCompletionInfo.ProcessId: 394
Job.LastCompletionInfo.Started: 21-Mar-99.00:30:08
Job.LastCompletionInfo.Ended: 21-Mar-99.00:31:08
Job.LastCompletionInfo.ExitStatus: 0x0

Job.End

• Edit the scheduler ACL.

cmd-context schedule –edit –acl
Replace the ACL? [yes]

• Set the schedule on host acme1 from job definitions in the file jobdefs.txt.

cmd-context schedule –host acme1 –set jobdefs.txt
Replace the entire schedule? [yes]

• Display the status of the scheduled job whose ID is 1.
ClearCase Reference Pages 881

schedule
cmd-context schedule –status 1
Job is not currently running.

RunningJob.CompletionInfo.ProcessId: 380
RunningJob.CompletionInfo.Started: 25-Mar-99.04:30:01
RunningJob.CompletionInfo.Ended: 25-Mar-99.04:31:00
RunningJob.CompletionInfo.ExitStatus: 0x0

FILES

ccase-home-dir\config\scheduler\initial_schedule
ccase-home-dir\config\scheduler\tasks\templates\task_registry
ccase-home-dir\config\scheduler\tasks\templates\ccase_local_day.bat
ccase-home-dir\config\scheduler\tasks\templates\ccase_local_wk.bat
ccase-home-dir\var\scheduler\db
ccase-home-dir\var\scheduler\tasks\task_registry
ccase-home-dir\var\scheduler\tasks\ccase_local_day.bat
ccase-home-dir\var\scheduler\tasks\ccase_local_wk.bat

SEE ALSO

albd_server, dospace, errorlogs_ccase, rgy_backup, scrubber, space, vob_scrubber,
vob_snapshot
882 ClearCase Reference Manual

scrubber
scrubber
Removes data containers from VOB storage pools and removes DOs from VOB database

APPLICABILITY

SYNOPSIS
scrubber [–e | –f | –o] [–p pool[,...] | –k kind[,...]]

[–a | vob-storage-dir-pname ...]

DESCRIPTION

The scrubber program deletes (scrubs) data container files from the cleartext storage pools and

derived object (DO) storage pools of one or more VOBs. It also deletes corresponding (DOs) from

a VOB database. Only cleartext pools and DO pools are affected; scrubbing is not defined for

source pools.

NOTE: DOs are associated with dynamic views only; they are not applicable to snapshot views.

Scrubbing Algorithms

scrubber implements the following scrubbing algorithms:

• Heuristic scrubbing

By default or with the –o option, scrubber uses a free-space-analysis heuristic: it compares

the current free-space level of a disk partition with a lower limit computed during its

previous execution. This lower limit is stored in file

ccase-home-dir\var\cache\scrubber_fs_info.

• If the free-space level is still above the computed limit, scrubber does no scrubbing in

that partition, regardless of the state of the storage pools within it. This performance

optimization allows a quick check to take place frequently (for example, once an hour),

without much system overhead.

• If the free-space level has fallen below the limit, scrubber performs parameter-driven

scrubbing of each storage pool in the partition.

• Parameter-driven scrubbing

Product Command Type

ClearCase command

ClearCase LT command
ClearCase Reference Pages 883

scrubber
With the –f option, scrubber removes data container files from a storage pool according to

the pool’s scrubbing parameter settings. (The heuristic scrubbing algorithm can also fall

through to this algorithm.)

When a derived object pool or cleartext pool is created with mkvob or mkpool, its scrubbing

parameters are set to user-specified or default values:

Parameter-driven scrubbing proceeds as follows:

a. Files are removed from a pool only if its current size exceeds its maximum size setting. In

this case, scrubber begins deleting data containers that have not been referenced within

age hours, proceeding on a least-recently-referenced basis.

b. The data container for a derived object is deleted only if the DO’s reference count is zero.

In this case, the derived object in the VOB database is deleted, too. The associated

configuration record is also deleted if no other derived object is associated with it.

c. Cleartext data containers do not have reference counts; they are deleted solely on the

basis of recent use.

d. Scrubbing stops when the pool’s size falls below its reclaim size setting. But in no case

does scrubber delete any object that has been referenced within the last age hours.

A maximum size of zero is a special case: it instructs scrubber to delete all data containers

that have not been referenced within age hours, regardless of the reclaim size setting.

NOTE: The scrubber considers access time rather than modification time. If your backup

utility changes the access time on objects, scrubber does not delete the object if the backup

utility ran within the period of time specified by age.

• Everything-goes scrubbing

With the –e option, scrubber ignores a pool’s scrubbing parameters, and deletes these files:

• All files from each cleartext pool

• All files with zero reference counts from each derived object pool

To avoid deleting files that are currently being used, scrubber does not delete any file that

has been accessed in the preceding two minutes.

maximum size Maximum pool size (specified in KB; default=0)

reclaim size Size to which scrubber attempts to reduce the pool (specified in KB;

default=0)

age Threshold to prevent premature scrubbing of recently referenced

objects (specified in hours; default=96)
884 ClearCase Reference Manual

scrubber
Automatic Scrubbing

By default, the scheduler runs scrubber periodically with the –f option, so that each pool is

examined individually. See the schedule reference page for information on describing and

changing scheduled jobs.

You can scrub one or more pools manually at any time.

Scrubber Log File

scrubber documents its work in the host’s scrubber log file,

ccase-home-dir\var\log\scrubber_log. For example, the following partial report describes the

results of scrubbing a derived object pool.

04/27/99 08:03:00 Stats for VOB betelgeuse:\usr1\vobstorage\orange.vbs
Pool ddft:

04/27/99 08:03:00 Get cntr tm 918.928979
04/27/99 08:03:00 Setup tm 10631.121127
04/27/99 08:03:00 Scrub tm 1207.099240
04/27/99 08:03:00 Total tm 12757.149346
04/27/99 08:03:00 Start size 404789 Deleted 3921 Limit size 0
04/27/99 08:03:00 Start files 20349 Deleted 121 Subdir dels 0
04/27/99 08:03:00 Statistics for scrub of DO Pool ddft:
04/27/99 08:03:00 DO’s 3671 Scrubs 121 Strands 1760
04/27/99 08:03:00 Lost refs 1790 No DO’s 20228
04/27/99 08:03:00 No fscntrs 2

The first six lines, which contain elapsed times and file statistics, are included in the report for

every pool. The last four lines are specific to DO pools.

Get cntr tm Elapsed time for first scrubbing phase: walk the file-system tree to get

pathname, size, and referenced-time information for each container in

the pool.

Setup tm Elapsed time for second scrubbing phase: perform setup processing

specific to the kind of storage pool. For a cleartext pool, no setup is

required. For a DO pool, setup is complicated; see Processing of Derived
Object Pools.

Scrub tm Elapsed time for third scrubbing phase: determine which containers to

delete, and then delete them.

Start size Total size (KB) of all the container files in the storage pool directory before

this scrubbing.

Deleted Amount of storage (KB) reclaimed by this scrubbing.

Limit size Desired size of the pool (KB), as specified by the pool’s maximum size
parameter.
ClearCase Reference Pages 885

scrubber
Processing of Derived Object Pools

For a DO pool, scrubber does more than delete old, unreferenced data containers.

• It finds and deletes all stranded DOs from the VOB database: DOs that were never shared,

and whose data containers have been deleted from view-private storage. (The VOB

database is not updated when the DO’s data file is removed or overwritten in the view, due

to implementation restrictions.) There are no data containers in the DO storage pool for

such DOs, because they were never shared. This occurs during the second phase of

scrubbing.

• It finds and deletes all lost DO reference counts from the VOB database. Such entries are an

implementation artifact; they correspond to files that were created during a build, but

deleted before the build completed. This occurs during the second phase of scrubbing.

Start files Total number of container files in the storage pool directory before this

scrubbing.

Deleted Number of container files deleted by this scrubbing.

Subdir dels Number of empty subdirectories of the storage pool directory deleted by

this scrubbing.

DO’s Total number of zero-reference-count DOs in the VOB database before

scrubbing.

Scrubs Total number of shared zero-reference-count DOs deleted by this

scrubbing. (This number equals the "Deleted" count, unless the scrubber
removed shared zero-reference-count DOs that were missing their

file-system containers.)

Strands Total number of stranded DOs deleted by this scrubbing. (These are

described below.)

Lost refs Total number of lost DO reference counts deleted by this scrubbing. (These

are described below.)

No DO’s Total number of containers in the DO pool before scrubbing that are not

associated with a zero-reference-count shared DO. (Each is presumably

associated with a DO that is still referenced by some view, and hence

cannot be scrubbed).

No fscntrs Total number of shared zero-reference-count DOs that were missing their

file-system containers.

This statistic is printed only when this condition occurs; also, the

scrubber_log displays warning messages like this one:
04/21/99 10:11:17 scrubber: Warning: Unable to remove
“d/do_pool2/21/5/73f1f66679f611cea15c080009935288”: No such
file or directory.
886 ClearCase Reference Manual

scrubber
• It deletes the derived object in the VOB database corresponding to the data container, and

possibly its associated configuration record as well. This occurs during the third phase of

scrubbing.

• It finds and deletes all stranded configuration records: CRs that do not correspond to any

existing derived object.

Derived Statistics

Some interesting results can be derived from these statistics:

• Total number of derived object data containers in this pool after scrubbing:

Start files - scrubs

• Total number of unreferenced data containers in this pool after scrubbing:

Start files - scrubs - No DO’s

• Total size (KB) of the storage pool after scrubbing:

Start size - deleted

Controlling the Size of the vista.tjf File

The file vista.tjf records updates to the VOB that result from scrubber operations. vista.tjf can

grow very large. To limit its size, read about the file db.conf in the config_ccase reference page.

OPTIONS AND ARGUMENTS

SPECIFYING THE SCRUBBING ALGORITHM. Default: Invokes the free-space-analysis heuristic

described above, instead of examining pools individually.

–f
Examines all specified pools individually, using the parameter-driven algorithm. This

does not guarantee that any objects will be removed from the pools.

–e
Examines all specified pools individually (as with –f), using the everything-goes

scrubbing algorithm.

–o
Same as default.

SPECIFYING THE POOLS. Default: All of a VOB’s cleartext and derived object pools are scrubbed.

–p pool[,...]
Restricts scrubbing to pools with the specified names, which may occur in multiple

VOBs. The list of pool names must be comma-separated, with no white space.
ClearCase Reference Pages 887

scrubber
–k kind[,...]

Restricts scrubbing to pools of the specified kinds. Valid kinds are do and cltxt. The list

of kinds must be comma-separated, with no white space.

SPECIFYING THE VOBS. Default: None.

–a
Scrubs all VOBs listed in the storage registry whose storage directories reside on the local

host. An error occurs if a VOB is listed in the registry, but cannot be found on the local

host.

vob-storage-dir-pname ...

One or more pathnames of VOB storage directories, indicating the particular VOBs to be

scrubbed.

EXAMPLES

• Force scrubbing of all mounted VOBs with a storage directory on the local host.

scrubber –f –a

• Scrub cleartext pools in the VOB whose storage directory is \vobstore\project.vbs, using

the free-space analysis heuristic.

scrubber –o –k cltxt \vobstore\project.vbs

• Force scrubbing of the default derived object pool (ddft) and the pool named do_staged in

all mounted VOBs with a storage directory on the local host.

scrubber –f –p ddft,do_staged –a

SEE ALSO

checkvob, config_ccase, schedule, view_scrubber, vob_scrubber
888 ClearCase Reference Manual

setactivity
setactivity
Specifies the current UCM activity for your view

APPLICABILITY

SYNOPSIS
setact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –nc⋅omment]

[–vie⋅w view-tag] { –none | activity-selector }

DESCRIPTION

The setactivity command sets or unsets a current activity for a view. The current activity is one

whose change set records your current work. Each view can have no more than one current

activity. When you check out an element, it is associated with the current activity.

Before resetting to another activity, the setactivity command checks on whether any elements of

the current activity are checked out in the view and, if found, issues a warning before proceeding.

You can set an activity for a view while the activity is being delivered, but the changes made to

the activity when the deliver operation is in progress are not delivered.

To clear the current activity, specify a new activity or use the –none option.

You cannot reset an integration activity that is in use as part of a deliver or rebase operation (nor

can you clear it with –none).

Behavior for ClearQuest-enabled projects

When executed in a view that is associated with a ClearQuest-enabled project, this command

takes an activity-selector that is a ClearQuest record-ID (for example, SAMPL123456) of an

existing ClearQuest record. If the ClearQuest record is not already linked to an activity, the

command causes an activity to be created and linked to the ClearQuest record.

When you have finished working on an activity

You can stop work on an activity in these ways:

• Deliver the activity to the project’s integration stream.

• Issue another setactivity command, specifying a different activity selector.

• Use the –none option to unset the current activity in your view.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
ClearCase Reference Pages 889

setactivity
PERMISSIONS AND LOCKS

Permissions Checking: None.

Locks: An error occurs if there are locks on the following objects: UCM project VOB or the activity.

Mastership: The current replica must master the activity.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CHOOSING A VIEW. Default: Current view context.

–vie⋅w view-tag
Specifies a view and stream context for the command.

SPECIFYING THE ACTIVITY. Default: No default.

–none
Unsets the current activity, removing it from your work area.

activity-selector
Identifies the activity to be set.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Unset the current activity.

cmd-context setactivity -none
890 ClearCase Reference Manual

setactivity
Cleared current activity from view java_int.

• Set an activity to be the current activity.

cmd-context setactivity create_directories
Set activity "create_directories" in view "webo_integ".

SEE ALSO

chactivity, lsactivity, mkactivity, rmactivity
ClearCase Reference Pages 891

setcache
setcache
Changes cache settings

APPLICABILITY

SYNOPSIS

• Specify the cache size for a single view:

setcache –vie⋅w { –def⋅ault | –cac⋅hesize size } { –cvi⋅ew | view-tag }

• Specify the cache size for a host:

setcache –vie⋅w –hos⋅t { –def⋅ault | –cac⋅hesize size }

• Specify the site-wide view cache size:

setcache –vie⋅w –sit⋅e { –def⋅ault | –cac⋅hesize size }

[–pas⋅sword registry-password]

• ClearCase and Attache dynamic views only—Specify MVFS cache sizes:

setcache –mvfs { –reg⋅dnc cnt | –noe⋅ntdnc cnt | –dir⋅dnc cnt
| –vob⋅free cnt | –cvp⋅free cnt | –rpc⋅handles cnt } ...

DESCRIPTION

The setcache command sets view cache sizes. Although both dynamic and snapshot views use

caches, cache size is more significant for a dynamic view than for a snapshot view.

ClearCase and Attache Only—View Caches

The dynamic view caches consist mostly of data retrieved from the VOB and enable the

view_server to respond faster to RPCs from client machines. When a view_server process is

started, it chooses its cache size from the first of the following sources to yield a value:

• The dynamic view’s cache size, which is set with mkview –cachesize or setcache –view
–cachesize and stored in the file view-storage-dir\.view (on the –cache line)

• The view_server host’s default cache size, which is set with setcache –view –host and

stored as a decimal number in the file ccase-home-dir\var\config\view_cache_size

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
892 ClearCase Reference Manual

setcache
• The site-wide cache default, which is set with setcache –view –site or setsite and stored in

the site config registry

• The default value: 500 KB on 32-bit platforms, 1 MB on 64-bit platforms

NOTE: If your view uses the host value or the site-wide value and that value is changed, your

view’s cache size does not change until you invoke setcache –view –default or restart the

view_server (with endview –server or a reboot).

The dynamic view cache size is allocated among the individual caches. When specifying a cache

size, keep the following guidelines in mind:

• The value cannot be smaller than 50 KB for 32-bit platforms or 100 KB for 64-bit platforms.

• Do not specify a value larger than the amount of physical memory on the server host that

you want to dedicate to this view.

• Values greater than approximately 4 MB do not help much in most cases.

• Verify your changes by using getcache to check the hit rates and utilization percentages

periodically to see whether they have improved.

ClearCase and Attache Dynamic Views Only—MVFS Caches

A host’s MVFS caches are used to optimize file-system performance:

• The directory name cache accelerates name translation. This cache is partitioned into three

areas, each of which can be tuned with one of the setcache –mvfs options:

• Directory files (–dirdnc)

• Nondirectory files (–regdnc)

• Names not found (ENOENT) (–noentdnc)

NOTE: If processes are actively using the directory name cache, you may see the following

error message when trying to resize it:

cleartool: Error: Operation “view_mfs_set_cache_sizes” failed: Device
busy.

Ask users to stop using ClearCase actively (that is, keep their view contexts, but stop

manipulating files) and enter the setcache command again.

• The attribute cache accelerates access to file metadata (for example, by the stat and access
system calls, which are frequently called during make or clearmake operations). The

–vobfree option sets the size of the attribute cache for VOB and view-private files that are

not currently open.
ClearCase Reference Pages 893

setcache
• The cleartext cache accelerates the open system call for files in a VOB and view-private files.

The –cvpfree option sets the size of this cache. This cache is never larger than the size of the

attribute cache.

• The RPC handles cache accelerates RPCs to the dynamic view. The –rpchandles option sets

the size of this cache; the value ought to be the maximum simultaneous number of RPCs

expected from your host. If this value is too small, the getcache –mvfs command

recommends that you adjust its size.

Values set with setcache –mvfs are reset when you reboot your machine. To change the values

permanently, see Administering ClearCase.

For more information on optimizing performance, see the chapters on performance tuning in

Administering ClearCase.

PERMISSIONS AND LOCKS

Permissions Checking:

• With setcache –view, you must be the view owner.

• With setcache –view –host, you must have create/delete/write permissions on the file

ccase-home-dir\var\config\view_cache_size.

• With setcache –mvfs, you must be local administrator or a member of the Administrators

group.

• With setcache –view –site, you must know the registry password.

Locks: No locks apply. See the permissions reference page.

OPTIONS AND ARGUMENTS

SPECIFYING THE CACHE INFORMATION TO CHANGE. Default: None.

–vie⋅w
Sets the cache size for a single view. This immediately changes the cache size; you do not

need to kill and restart the view_server.

–vie⋅w –hos⋅t
Sets the default cache size for the current host.

–vie⋅w –sit⋅e
Sets the site-wide default size for view caches.

–mvfs
Temporarily sets cache sizes for the MVFS. These values are reset when you reboot your

machine.

SETTING THE CACHE SIZE. Default: None.
894 ClearCase Reference Manual

setcache
–def⋅ault
With –view: removes the –cache line from the .view file. This immediately sets the size

of the view cache to (in priority order) the host size, the site-wide size, or the default size,

as described in the DESCRIPTION section.

With –view –host: deletes the ccase-home-dir\var\config\view_cache_size file.

With –view –site: removes the value for the site-wide cache from the registry.

–cac⋅hesize size
Specifies a size for the view_server cache. size must be an integer value of bytes,

optionally followed by the letter k to specify kilobytes or m to specify megabytes; for

example, 800k or 3m.

SPECIFYING THE VIEW. Default: None.

–cvi⋅ew
Sets the cache size for the current view.

view-tag
Specifies the view for which the cache size is changed.

SPECIFYING THE REGISTRY PASSWORD. Default: When you set the site-wide view cache size with

–view –site, setcache prompts you for the registry password.

–pas⋅sword registry-password
Specifies the site-wide registry password.

SPECIFYING MVFS PARAMETERS (NOT APPLICABLE TO SNAPSHOT VIEWS). Default: None. You must

specify at least one option. cnt must be an integer value; see Administering ClearCase for

information on default and suggested values and instructions on setting the values permanently.

–reg⋅dnc cnt
Sets the number of regular file DNC entries.

–noe⋅ntdnc cnt
Sets the number of ENOENT (file not found) DNC entries.

–dir⋅dnc cnt
Sets the number of directory DNC entries.

–vob⋅free cnt
Sets the number of entries in the attribute cache.

–cvp⋅free cnt
Sets the number of entries in the cleartext cache.

–rpc⋅handles cnt
Sets the number of RPC handles cached by the MVFS.
ClearCase Reference Pages 895

setcache
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change the cache size for view smg_test.

cmd-context setcache –view –cachesize 800k smg_test
The new view server cache limits are:
Lookup cache: 78624 bytes
Readdir cache: 327680 bytes
File stats cache: 137592 bytes
Object cache: 275184 bytes
Total cache size: 819200 bytes

• Set the site-wide cache size.

cmd-context setcache –view –site –cachesize 2m
Registry password: <enter registry password><ENTER>
...

• Set the number of RPC handles cached by the MVFS to 10 (dynamic views only).

cmd-context setcache –mvfs –rpchandles 10

SEE ALSO

getcache, mvfscache, setsite, view, view_server
896 ClearCase Reference Manual

setcs
setcs
Sets the config spec of a view

APPLICABILITY

SYNOPSIS
setcs [–tag view-tag] { –cur⋅rent | –def⋅ault | pname | –stre⋅am }

DESCRIPTION

This command does not require a product license.

The setcs command changes the config spec of a view to the contents of a user-specified or

system-default file, or causes the view’s associated view_server process to flush its caches and

reevaluate the current config spec. The Attache workspace is not updated to reflect any changes

in the view’s contents.

• For UCM views, the setcs command checks that the view’s configuration matches the

configuration defined by the stream it is attached to and, if needed, reconfigures the view.

Load rules already in the view’s configuration are preserved.

• In a snapshot view, setcs initiates an update -noverwrite operation for the current view.

• In Attache, if the specified file has a corresponding local file in the workspace, it is uploaded

before the remote command is executed.

See the pwv reference page for more on view contexts. See the config_spec reference page for a

complete discussion of config specs.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: Reconfigures the current view.

–tag view-tag
The view-tag of any dynamic view; the view need not be active. To set the config spec of

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 897

setcs
a snapshot view,you must be in or under the snapshot view root directory (and

accordingly you do not use this option). However, you can use this option to set the

config spec of a dynamic view from within a snapshot view.

SPECIFYING THE KIND OF CHANGE. Default: None.

–cur⋅rent
Causes the view_server to flush its caches and reevaluate the current config spec, which

is stored in file config_spec in the view storage directory. This includes:

–def⋅ault
Resets the view’s config spec to the contents of ccase-home-dir\ default_config_spec, the

host’s default config spec (ClearCase and ClearCase LT) or the helper host’s default

config spec (Attache).

pname
Specifies a text file whose contents are to become the view’s new config spec.

–stre⋅am
For a UCM view, sets the view’s config spec to that defined by the stream it is attached

to. This operation preserves any load rules already in the view’s config spec.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change the config spec of the current view to the contents of file cspec_REL3.

cmd-context setcs cspec_REL3

• Change the config spec of the view whose view-tag is jackson_vu to the default config spec.

cmd-context setcs –tag jackson_vu –default

• Have the view_server of the current view reread its config spec.

cmd-context setcs –current

• Reevaluating time rules with nonabsolute specifications (for example, now,

Tuesday)

• Reevaluating –config rules, possibly selecting different derived objects than

previously

• Re-reading files named in include rules
898 ClearCase Reference Manual

setcs
SEE ALSO

attache_command_line_interface, catcs, config_spec, lsview, mktag, mkview, pwv, update,

view_server
ClearCase Reference Pages 899

setplevel
setplevel
Changes the list of promotion levels in a UCM project VOB

APPLICABILITY

SYNOPSIS
setplevel [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –nc⋅omment]

[–inv⋅ob vob-selector] –def⋅ault default-promotion-level promotion-level ...

DESCRIPTION

The setplevel command allows you to redefine the list of baseline promotion levels for a UCM

project VOB and to designate one of these levels as the default promotion level for new baselines.

Each UCM project VOB includes an ordered set of promotion levels. Promotion levels are

ordered from lowest to highest and can be assigned to baselines to indicate the quality or degree

of completeness of the activities and versions represented by the baseline. When a project VOB

is created, it includes the following ordered set of promotion levels: REJECTED, INITIAL,

BUILT, TESTED, RELEASED. The default promotion level is INITIAL. This is the level that is

assigned to newly created baselines.

A baseline’s promotion level is used in computing a project’s list of recommended baselines. The

recommended baseline for a component is the latest baseline of that component in the project’s

integration stream that has a promotion level greater than or equal to the project’s recommended

promotion level (see the chproject reference page).

Ordered promotion levels can be used to filter lists of baselines. Promotion level is also used to

populate the default list of baselines during a rebase operation on a stream. Each project defines

a default rebase level. When a project is created, the default rebase level is set to the project VOB’s

default promotion level. See mkproject and chproject for more information.

When you delete a level that is in use, it is not completely removed from the project VOB. Instead,

its place in order is changed so that it is considered to be lower than the lowest defined level. You

can list information for baselines labeled with such a promotion level lsbl –level command.

The promotion levels available in a VOB can be listed by running the describe command on the

UCM project VOB object. Promotion levels can be used to filter lsbl output—see the lsbl
reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
900 ClearCase Reference Manual

setplevel
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE PROJECT VOB. Default: The project VOB containing the current working directory.

–invo⋅b vob-selector
Specifies the UCM project VOB for the project whose promotion levels are being

modified.

SPECIFYING THE NEW PROMOTION LEVELS. Default: None.

–def⋅ault default-promotion-level
Specifies the new default promotion level. Project baselines are given the default

promotion level INITIAL when they are created. default-promotion-level must be one of

the specified promotion levels.

promotion-level ...
An ordered list of promotion levels that defines the promotion level set for a project

VOB. List elements are ordered from lowest to highest. All elements of the set must be

given.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• From the project VOB directory, modify a new project VOB’s set of promotion levels by

removing the INITIAL level and adding a START level. Change the default level for new

baselines to BUILT.

cmd-context setplevel -default BUILT REJECTED START BUILT TESTED

• Replace the promotion level UNIT_TEST with U_TEST.

a. Add the new level to the current set of promotion levels:

cmd-context setplevel -default NEW NEW BUILT UNIT_TEST U_TEST

b. Find baselines that use the old promotion level:
ClearCase Reference Pages 901

setplevel
cmd-context lsbl -level UNIT_TEST mybaseline

c. Change the promotion level from UNIT_TEST to U_TEST:

cmd-context chbl -level U_TEST the-baselines-listed-by-step-b.

d. Remove the obsolete promotion level from the project VOB:

cmd-context setplevel -default NEW NEW BUILT U_TEST

SEE ALSO

chbl, chproject, describe, lsbl, mkproject
902 ClearCase Reference Manual

setsite
setsite
Sets or unsets site-wide properties in the site config registry

APPLICABILITY

SYNOPSIS

• Set a site-wide property:

setsite [–pas⋅sword registry-password] property-name=value ...

• Unset a property:

setsite [–pas⋅sword registry-password] property-name= ...

DESCRIPTION

The site config registry contains site-wide properties for ClearCase and ClearCase LT. ClearCase

and ClearCase LT use the value for a site-wide property when you perform an operation that

uses that property and you don’t specify the property’s value. For example, when you create a

view and do not specify one of the shareable DOs options, ClearCase uses the site-wide value.

If you don’t set a site-wide property in the registry, or you unset a property, the property’s default

value is used. To list the properties you can set and their default values, use the lssite –inquire
command.

You can set the following properties in the registry:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

view_cache_size=value When a view_server process is started and cannot find a

cache size associated with the view or the view host, it

uses the value of view_cache_size.

value must be an integer value of bytes.
ClearCase Reference Pages 903

setsite
PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE REGISTRY PASSWORD. Default: setsite prompts you for the registry password.

–pas⋅sword registry-password
Specifies the site-wide registry password.

SETTING A PROPERTY’S VALUE. Default: None.

property-name=value
Sets property-name in the registry.

view_interop_text_mode=value When a user creates a view through the Windows GUI

and does not specify the text mode, the value of

view_interop_text_mode is used.

value must be TRUE (equivalent to –tmode insert_cr) or

FALSE (equivalent to –tmode transparent).

NOTE: The value set for this property does not affect views

created on UNIX machines or through the MSDOS

command line.

view_shareable_dos=value When a user creates a view and does not specify one of

the options –nshareable_dos or –shareable_dos,

ClearCase uses the value of view_shareable_dos.

value must be either TRUE or FALSE.

NOTE: Changing the site-wide property for shareable DOs

does not change the property for existing views. To

change an existing view’s property, use the chview
command.

rfm_gui_visibility=value (ClearCase only; for use only if your site uses MultiSite)

This property controls the display of request for

mastership features in the graphical interface. If value is

FALSE, the Request Mastership menu item does not

appear on shortcut menus in the Version Tree Browser,

the Merge Manager, or the Find Checkouts window, and

you cannot use the Properties Browser to request

mastership of a branch. If value is TRUE, these features

appear in the graphical interface.
904 ClearCase Reference Manual

setsite
property-name=
Unsets property-name in the registry.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Set the site-wide view cache size to 2 MB.

cmd-context setsite –password p5d82xy9 view_cache_size=2m
Set site-wide default view_cache_size=2m.

• Set the site-wide view cache size to 4 MB, and set the site-wide value for DOs to

nonshareable.

cmd-context setsite view_cache_size=4m view_shareable_dos=FALSE
Registry password: p5d82xy9
Set site-wide default view_cache_size=4m.
Set site-wide default view_shareable_dos=FALSE.

• Unset the site-wide value for shareable DOs.

cmd-context setsite –password 9yx28d5p view_shareable_dos=
Unset site-wide default view_shareable_dos (was 'FALSE')

SEE ALSO

lssite, setcache

ClearCase MultiSite Manual
ClearCase Reference Pages 905

906 ClearCase Reference Manual

setws

setws
Selects a workspace

APPLICABILITY

SYNOPSIS
setws ws-name

DESCRIPTION

The setws command selects a workspace and an associated view. The initial working directory is the

workspace root. A username and password combination for the workspace helper host are required.

You are prompted for this information if it has not already been requested, or previously stored

using the Login info command on the Options menu.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

ws-name
Specifies the workspace name or the view-tag name of an existing workspace.

EXAMPLES

• List the existing workspaces and change to a different workspace. At a workspace prompt:

lsws
Workspace name Local storage directory Server host

jed_ws C:\users\jo\jed_ws agora
jo_main C:\users\jo\jo_main agora

setws jo_main

SEE ALSO

attache_command_line_interface, attache_graphical_interface, mkws, lsws

Product Command Type

Attache command

shell
shell
Creates a subprocess to run a shell or other program

APPLICABILITY

SYNOPSIS
sh⋅ell | ! [command [arg ...]]

DESCRIPTION

The shell command creates a subshell. The shell command is intended for use in cleartool and

multitool interactive mode. If you are using single-command mode, there is no need for this

command.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

PROGRAM TO RUN IN SUBPROCESS. Default: Runs the shell program indicated by your ComSpec
environment variable (or cmd.exe, if your environment does not include ComSpec). The shell

runs interactively until you exit from it.

NOTE: Changing the ComSpec variable to a value other than cmd.exe may have undesirable side

effects elsewhere in your work environment. To avoid this problem, you can invoke the

alternative shell explicitly from cmd.exe, after executing shell.

command [arg ...]

Runs a noninteractive shell which, in turn, invokes the program command, (and,

optionally, passes it one or more arguments). The subshell exits immediately after

executing command.

EXAMPLES

• Create an interactive subshell, and then run a dir command in that shell.

cleartool shell

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand
ClearCase Reference Pages 907

shell
> dir *.c

...

> exit

• Create an noninteractive subshell that runs a dir command.

cleartool shell dir *.c

...

SEE ALSO

pwv
908 ClearCase Reference Manual

space
space
Reports on disk space use for views, VOBs, or file-system files or directories

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Report disk space used by a view or VOB:

space { –vie⋅w | –vob } [–a⋅ll] [–upd⋅ate] [–reg⋅ion network-region]

{ –host hostname | tag ... }

• ClearCase LT only—Report disk space used by a view or VOB:

space { –vie⋅w | –vob } [–a⋅ll] [–upd⋅ate]

• Report disk space used by file-system files or directories:

space –dir⋅ectory pname ...

• Generate and cache data on disk space use for local views or VOBs:

space { –vie⋅w | –vob } –gen⋅erate [–scr⋅ub days] [tag ...]

DESCRIPTION

The space command displays data on disk space use for views, VOBs, or file-system files or

directories. Reports are organized by disk partition, with disk-use statistics listed both in

absolute units (megabytes) and as a percentage of the capacity of the disk partition containing

the storage directory.

• The report for a view includes view-private storage and administration data, as well as the

space occupied by the view database. For a snapshot view, the report does not include the

space occupied by the snapshot view directory tree. To display that information, use the

–directory option and specify the root directory of the snapshot view.

• The report for a VOB includes disk use information for the VOB database and for each storage
pool. Among other statistics, it includes information on backup VOB databases left behind

when reformatvob was used.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 909

space
With the –view or –vob option, space uses by default previously generated, cached data for a

view or VOB. The –update option generates fresh data and updates the cache before displaying

the report. With the –directory option, space does not use cached data.

The –generate option is intended for use by scheduled jobs. By default, the scheduler

periodically runs space with the –generate option to generate and cache data on disk space use

for all local views and VOBs. See the schedule reference page for information on describing and

changing scheduled jobs.

NOTE: On Windows 95 and Windows 98 machines, output from the space command is incorrect

for disk volumes larger than 2 GB. The total file-system size is limited to 2048 MB, and the in-use

value for the file system is wrong.

PERMISSIONS AND LOCKS

Permissions Checking: For the –update option, you must have Change or Full access in the

scheduler ACL on the host where each VOB storage directory resides (ClearCase and Attache),

or the same access in the scheduler ACL on the ClearCase LT server host (ClearCase LT). See the

schedule reference page.

For the –vob –generate option, you must be one of the following for each VOB: VOB owner,

member of the ClearCase group (ClearCase), local administrator of the ClearCase LT server host

(ClearCase LT). For the –view –generate option, you must be one of the following for each view:

view owner, member of the ClearCase group (ClearCase), local administrator of the

ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE DATA STRUCTURES. Default: If no –view, –vob, or –directory option is specified,

the default is –vob. For the –generate option with no specified view or VOB tag, the default for

is all local views or VOBs (ClearCase and Attache), or all views or VOBs (ClearCase LT).

–vie⋅w
ClearCase and Attache—Reports on one or more views, identified either as those whose

storage directories reside on the host specified by –host or as those indicated by the

specified tags.

ClearCase LT—Reports on all views.

 –vob
ClearCase and Attache—Reports on one or more VOBs, identified either as those whose

storage directories reside on the host specified by –host or as those indicated by the

specified tags.

ClearCase LT—Reports on all VOBs.
910 ClearCase Reference Manual

space
–host hostname
Reports on all views or VOBs whose storage directories reside on the specified host.

tag ...
One or more tags, interpreted as view tags if you specify –view or as VOB-tags if you

specify –vob. Each tag must be valid in the region specified by –region.

–reg⋅ion network-region
Specifies the network region in which each tag resides. The default is the region of the local

host.

–dir⋅ectory pname ...

One or more pathnames, specifying files or directories in a file system.

REPORT FORMAT. Default: In a report on a view or VOB storage directory, storage items that are

known to be small are not listed. (The contribution of these files is still included in the disk-use

total.)

–a⋅ll
In addition to the default report, lists storage items known to be small, such as .pid.

DISPLAYING AND CACHING UP-TO-DATE DATA. Default: Use cached data.

–upd⋅ate
Computes and caches data on disk-space use at the time the command is issued, instead

of using cached data, and then displays a report. The computation can take a few

minutes.

GENERATING, CACHING, AND SCRUBBING DATA. Default: None.

–gen⋅erate
Computes and caches data on disk space use at the time the command is issued but does

not display a report. The computation can take a few minutes. This option is intended to

be used by periodic jobs run by the scheduler.

ClearCase and Attache only—The VOB or view storage directories for all specified VOBs

or views must reside on the local host. If no tag argument is specified, the command

generates data for all VOBs or views on the local host.

–scr⋅ub days
Deletes cached records of data on disk space use that are older than the specified number

of days. A value of –1 deletes cached records other than the one generated by the current

invocation of the command, if any. Although most records are deleted, one data set per

month is retained for historical purposes. This option is intended to be used in

conjunction with the –generate option by periodic jobs run by the scheduler. The default

scheduled job specifies a value of 30 for the –scrub option.
ClearCase Reference Pages 911

space
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Report disk space use for a VOB, using cached data.

cmd-context space –vob \bigapp

Use(Mb) %Use Directory
0.0 0% administration data g:\vobs\bigapp_vob\admin
0.0 0% cleartext pool storage g:\vobs\bigapp_vob\c

100.6 0% derived object pool storage g:\vobs\bigapp_vob\d
263.2 1% VOB database g:\vobs\bigapp_vob\db
189.0 1% source pool storage g:\vobs\bigapp_vob\s

0.0 0% cleartext pool g:\vobs\bigapp_vob\c\cdft
100.6 0% derived object pool g:\vobs\bigapp_vob\d\ddft
189.0 1% source pool g:\vobs\bigapp_vob\s\sdft

-------- ---- ---
842.5 2% Subtotal

8968.5 26% Filesystem srv1:g: (capacity 34712.0 Mb)

Total usage 27-Jul-99.04:36:01 for vob "\bigapp" is 842.5 Mb

• Report disk space use for all views on a host, using cached data.

cmd-context space –view –host machine1
912 ClearCase Reference Manual

space
Use(Mb) %Use Directory
0.1 0% View private storage C:\Storage\kim_mainline.vws\.s
0.1 0% View database C:\Storage\kim_mainline.vws\db
0.0 0% View administration data C:\Storage\kim_mainline.vws\admin
1.4 0% View private storage C:\Storage\kim_v3.2.vws\.s
0.1 0% View database C:\Storage\kim_v3.2.vws\db
0.0 0% View administration data C:\Storage\kim_v3.2.vws\admin

103.8 5% View private storage C:\Storage\kim_win32_nt.vws\.s
0.3 0% Database dump file C:\Storage\kim_win32_nt.vws\db.dumped
0.4 0% View database C:\Storage\kim_win32_nt.vws\db
0.0 0% View administration data C:\Storage\kim_win32_nt.vws\admin
0.6 0% View private storage C:\Storage\kim_win32_nt2.vws\.s
0.0 0% View database C:\Storage\kim_win32_nt2.vws\db
0.0 0% View administration data

C:\Storage\kim_win32_nt2.vws\admin
0.0 0% View private storage C:\Storage\kim_mainline_snap\.s
0.3 0% View database C:\Storage\kim_mainline_snap\db
0.0 0% View administration data

C:\Storage\kim_mainline_snap\admin
-------- ---- ---

107.2 5% Subtotal
2000.9 98% Filesystem machine1:c:\ (capacity 2047.0 Mb)

Total usage 07-Jul-99.04:40:00 for view "kim_mainline" is 0.2 Mb
Total usage 07-Jul-99.04:40:00 for view "kim_v3.2" is 1.5 Mb
Total usage 07-Jul-99.04:40:01 for view "kim_win32_nt" is 104.6 Mb
Total usage 07-Jul-99.04:40:03 for view "kim_win32_nt2" is 0.6 Mb
Total usage 07-Jul-99.04:40:03 for view "kim_mainline_snap" is 0.3 Mb

• Generate and cache disk space use data for a view and then display a report.

cmd-context space –view –update fred_1

Updating space information for "fred_1" on host "machine1".
Job is running on remote host ("machine1"), waiting for it to finish.
............
Job completed successfully on remote host ("machine1").

Use(Mb) %Use Directory
9.4 0% View private storage D:\CCstore\fred_1.vws\.s
0.0 0% View administration data D:\CCstore\fred_1.vws\admin
0.1 0% View database D:\CCstore\fred_1.vws\db

-------- ---- ---
9.5 0% Subtotal

2518.3 62% Filesystem machine1:d:\ (capacity 4086.8 Mb)

Total usage 05-Aug-99.10:28:51 for view "fred_1" is 9.5 Mb
ClearCase Reference Pages 913

space
• Report disk space use for a file-system directory.

cmd-context space –directory D:\users\sue

Use(Mb) %Use Directory
38.8 1% D:\users\sue

-------- ---- ---
38.8 1% Subtotal

2546.7 62% Filesystem machine1:d:\ (capacity 4086.8 Mb)

SEE ALSO

dospace, mkview, mkvob, reformatvob, schedule
914 ClearCase Reference Manual

startview
startview
Starts or connects to a dynamic view’s view_server process

APPLICABILITY

SYNOPSIS
startview view-tag ...

DESCRIPTION

Prerequisite: The dynamic view being started must already have a view-tag in the network’s

view-tag registry file. See the mkview and mktag reference pages.

The startview command enables processes on the local host to access a dynamic view, as follows:

• Establishes an RPC connection between the local host’s MVFS (ClearCase multiversion file

system) and the dynamic view’s view_server process.

• Creates a view-tag entry in the local host’s viewroot directory. If a view_server process is

not already running, startview invokes one on the host where the view storage area

physically resides.

The default name of the viewroot directory is M:\. Thus, starting a dynamic view that has been

registered with view-tag main creates the directory entry M:\main. After this directory entry is

created, any process on the local host can access the view through view-extended pathnames.

The dynamic view’s view-tag must already be registered, which is accomplished either at view

creation time (with a mkview command) or subsequently (with mktag –view).

NOTE: startview is not applicable to a snapshot view. To activate a snapshot view, change to the

views’s view-storage directory and issue a ClearCase command.

When to Use startview

Both mkview and mktag invoke startview. Typically, startview is used to establish

view-extended naming access. There are two main cases:

• Because mkview and mktag invoke startview on the local host only, remote users who

want only view-extended naming access to the dynamic view must use startview.

Product Command Type

ClearCase cleartool subcommand

Attache command
ClearCase Reference Pages 915

startview
• After your system has been stopped and restarted (see EXAMPLES on page 916), both local

and remote users can use startview to reestablish view-extended naming access to a

dynamic view.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: None.

view-tag ...

One or more currently registered view tags (that is, view tags visible to lsview).

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• The dynamic view anne_Rel2 is registered, but its view_server process went down in a

system crash. Restart anne_Rel2, and make it the working directory view.

cmd-context startview anne_Rel2

C:\> M:

M:\> cd \anne_Rel2\vob_pr2

• Create a dynamic view on the local host, then start the view on host3.

cmd-context mkview –tag mainRel2 \\pluto\vw_store\mainRel2.vws
Created view...

On host3, enter the following command:

cmd-context startview mainRel2

SEE ALSO

endview, lsview, registry_ccase, view_server
916 ClearCase Reference Manual

type_manager
type_manager
Program for managing contents of element versions

APPLICABILITY

SYNOPSIS

• Type manager map file:

ccase-home-dir\lib\mgrs\map

• Methods, some or all of which are supported by each type manager:

annotate, compare, construct_version, create_branch, create_element, create_version,

delete_branches_versions, get_cont_info, merge, xcompare, xmerge

DESCRIPTION

A type manager is a suite of programs that manipulates files with a particular data format;

different type managers process files with different formats. A directory type manager provides

programs that compare and/or merge versions of directory elements. ClearCase and

ClearCase LT provide several type managers.

Several version-control commands for file elements are implemented in two phases:

1. Updating of the VOB database. This phase is independent of the element’s data format, and

is handled directly by cleartool.

2. Manipulation of the element’s data. In this phase, the data format is extremely significant,

and so is handled by a particular type manager. The type manager is invoked as a separate

program, rather than as a subroutine. This provides flexibility and openness, allowing users

to integrate their own data-manipulation routines with ClearCase or ClearCase LT.

For example, checking in a text_file element involves:

• Storing information in the VOB database about who created the new version, when it was

created, and so on

• Computing and storing the delta (incremental difference) between the new version and its

predecessor.

Product Command Type

ClearCase data structure

ClearCase LT data structure
ClearCase Reference Pages 917

type_manager
For a different type of element—for example, a bitmap file—the delta is computed differently, or

not at all, and so requires a different type manager.

TYPE MANAGERS

These are the type managers:

Type Manager Function

whole_copy Stores any data. Stores a whole copy of each version in a separate data

container file.

z_whole_copy Stores any data. Stores each version in a separate, compressed data

container file using the gzip compression program.

Note that compressed files generally take more time to check in (because

they must be compressed), and reconstruct when first accessed (first

cleartext fetch).

text_file_delta Stores text files only (including those with multibyte text characters).

Stores all versions in a single structured data container file. Uses

incremental file differences to reconstruct individual versions on the fly.

z_text_file_delta Stores text files only. Stores all versions in a single structured data

container file, in compressed format using both the gzip compression

program and deltas.

binary_delta Stores any data. Stores each branch’s versions in a separate, structured

compressed data container file using gzip. Uses incremental file

differences to reconstruct individual versions on the fly. Version deltas are

determined by comparing files on a per-byte basis.

_html Stores HTML source. Stores information and reconstructs versions in the

same way as the text_file_delta manager from which it is derived. Has its

own compare, xcompare, merge and xmerge methods.

_ms_word Stores Microsoft Word documents. Stores information and reconstructs

versions in the same way as the z_whole_copy manager from which it is

derived. On Windows, has its own xcompare and xmerge methods.

_rose Stores Rational Rose artifacts. Stores information and reconstructs

versions in the same way as the text_file_delta manager from which it is

derived. On Windows, has its own compare, xcompare, merge, and

xmerge methods for which it invokes a tool specialized for Rose files.
918 ClearCase Reference Manual

type_manager
USING A TYPE MANAGER

To have a particular file element use a particular type manager, you must establish two

connections:

type manager <---- element type <---- file element

1. Make sure the VOB has an element type that is associated with the desired type manager.

Use the lstype command to identify an existing element type. Alternatively, use the

mkeltype –manager command to create a new element type that is associated with the

desired type manager.

2. Create the file element, specifying the element type with the –eltype option. If the file

element already exists, use the chtype command to change its element type.

You can automate the assignment of the new element type to newly created elements using the

file-typing facility, driven by .magic files. See the cc.magic reference page for details.

TYPE MANAGER STRUCTURE

A type manager uses different methods to manipulate ClearCase and ClearCase LT data.

Methods are invoked at the appropriate time by a version-control command.

A type manager can include these methods:

_xml Stores XML source. Stores information and reconstructs versions in the

same way as the text_file_delta manager from which it is derived. On

Windows, has its own compare, xcompare, merge, and xmerge methods

for which it invokes a tool specialized for XML files.

directory Not involved in storing/retrieving directory versions, which reside in the

VOB database, not in a source storage pool. This type manager compares

and merges versions of the same directory element.

create_element Invoked by mkelem to create an element’s initial data

container.

create_branch Invoked by mkbranch to create a branch in an element’s

version tree.

create_version Invoked by checkin to store a new version of an element.

annotate Invoked by annotate to produce an annotated listing of a

version’s contents.

Type Manager Function
ClearCase Reference Pages 919

type_manager
A type manager need not implement every method. For example, a type manager for bitmap

graphics images may omit the merge method, because the operation doesn’t make sense for that

file format. In this case, the command cleartool merge produces an error when invoked on an

element that uses this type manager.

The Type Manager Map File

The map file, located in the ccase-home-dir\lib\mgrs directory, associates type manager methods

with the programs that carry them out. A map file entry has three fields: type manager, method,

and program. Below are some example entries from the map file:

When a type manager is invoked by a ClearCase or ClearCase LT command, it scans through the

map file, finds the matching type manager and method in the first and second fields, then runs

the program specified in the third field. Note that the entry in the third field must be either a

pathname relative to ccase-home-dir\lib\mgrs; for example, ..\..\bin\cleardiff.exe, a Windows

construct_version Invoked by a view’s view_server process when a file element

is opened, from versions stored in delta or compressed

format. This method constructs a readable, cleartext copy of a

particular version.

After the cleartext version is constructed, its line terminators

may be adjusted by the view_server, according to the view’s

text mode. See Text Files, Cleartext, and a View’s Text Mode in

the mkeltype reference page, and also mkview.

get_cont_info Invoked by checkvob to determine the contents of a

container. This method must be implemented to enable

checkvob to fix container problems for the type manager.

delete_branches_versions Invoked by rmver and rmbranch to delete versions of an

element.

compare, xcompare Invoked by diff to run a file-comparison program that is

specific to the element’s data format.

merge, xmerge Invoked by merge to run a file-merge program that is specific

to the element’s data format.

Type Manager Method Implementing Program

text_file_delta construct_version ..\..\bin\tfdmgr.exe
text_file_delta compare ..\..\bin\cleardiff.exe
z_whole_copy create_branch ..\..\bin\zmgr.exe
_rose xmerge HKEY_LOCAL_MACHINE\SOFTWARE\

Rational Software\Rose\AddIns\
Rose Model Integrator\Install Path
920 ClearCase Reference Manual

type_manager
Registry key under HKEY_LOCAL_MACHINE that points to an absolute pathname, or an absolute

pathname.

Data Containers

Type managers process data containers, each of which stores the actual data for one or more

versions of some element. (Although growth may cause a container to split, versions never span

container boundaries.) All data containers are standard Windows files, and are stored in the

VOB’s source pools, which are standard Windows directories. Only type managers deal with

data containers directly; users always manipulate data using the names of elements.

Performing the data manipulation for a version-control operation involves several programs. For

example, when ClearCase or ClearCase LT create a new version of an element:

1. The pathname (within a source pool) is generated for a new data container.

2. On the VOB host (where the VOB storage area resides), a vob_server process creates an

empty file at that pathname.

3. On the client host (where the user is working), the type manager fills the new data container

with the data for the new version. (If the type manager implements deltas, it writes the data

for one or more other versions to the new container, too.)

4. The vob_server changes the access mode of the new data container, making it unwritable.

5. The db_server updates the VOB database to reference the new container.

6. Using the MGR_DELETE_KEEP_JUST_NEW exit status returned by the type manager, the

vob_server deletes the old data container.

NOTE: Even with a type manager that implements deltas, a new data container is created each

time a new version is created. In this case, the old container (which may have stored 27 versions)

is replaced by the new container (which stores 28 versions). A type manager must never write to

an old container or delete a old container (it usually does not have rights to do so).

Source Pool Data Container Names

A container leaf name includes a type manager ID to aid checkvob in salvaging nonreferenced

containers. Here is the format of a source pool data container name (in s\sdft, for example):

.\nn\nn\type-mgr-id–orig-oid-str–xx

type-mrg-id is a one-, two-, or three-character string. One-character values correspond to the

predefined type managers. Two-digit values correspond to type managers with names that begin

with underscore (_), and three-digit values are computed by hashing user-defined type manager

names.

NOTE: Names of user-defined type managers must not begin with underscore.

FILES

ccase-home-dir\lib\mgrs\map
ClearCase Reference Pages 921

type_manager
SEE ALSO

mkelem, mkeltype, cc.magic, gzip
922 ClearCase Reference Manual

type_object
type_object
Prototype for data items stored in a VOB

APPLICABILITY

DESCRIPTION

A type object is a prototype for one or more data items stored in a VOB database. A user creates

the data items by entering commands that create instances of the type object.

For example, to attach the version label BASELEVEL_4.2 to the current versions of a set of source

files:

• Verify that there exists a type object that defines the version label. Or, you create such a label

type object (mklbtype command).

• Create the individual version labels as instances of the BASELEVEL_4.2 label type object

(mklabel command).

NOTE: The phrase “type object” is sometimes shortened to “type” in this documentation.

INSTANCES OF TYPE OBJECTS

Creating an instance of a type object is not a copy operation. Rather, the instance is a reference to

the type object. In the example above, attaching version label BASELEVEL_4.2 to a particular

version does not make a copy of the BASELEVEL_4.2 type object. Instead, it establishes a

connection between the version object and the label type object.

This scheme makes it easy to administer type objects and their instances. For example, renaming

the label type object from BASELEVEL_4.2 to BL4.2 renames all its existing instances.

NOTE: Creating an instance does not make a copy of the type object, but in certain cases it does

create a new object. For example, the mkbranch command creates a new branch object and

creates a reference connecting the new branch object to an existing branch type object. See

PREDEFINED AND USER-DEFINED TYPE OBJECTS for information on which types are

associated with objects.

Product Command Type

ClearCase data structure

ClearCase LT data structure

Attache data structure
ClearCase Reference Pages 923

type_object
KINDS OF TYPE OBJECTS

To support different kinds of data items (version labels, attributes, branches, hyperlinks, and so

on), there are different kinds of type objects:

Attribute type (mnemonic: attype)

Instances are attributes. The following kinds of objects can have one or more attributes

attached to them: elements, branches, versions, hyperlinks, VOBs, VOB replicas, any

type object.

Branch type (mnemonic: brtype)

Instances are branches, which are objects in their own right.

Element type (mnemonic: eltype)

Instances are elements, which are objects in their own right.

Hyperlink type (mnemonic: hltype)

Instances are hyperlinks, which are objects in their own right.

Label type (mnemonic: lbtype)

Instances are version labels. One or more version labels can be attached to any version

object.

Trigger type (mnemonic: trtype)

Instances are triggers.

The mnemonics listed above are useful as object-selector prefixes in ClearCase product family

commands. By default, many commands consider an unprefixed name to be a reference to a file

system object, typically a version of an element:

cmd-context describe hoople
(describe the file named ‘hoople’ in the current working directory)

cmd-context describe brtype:hoople
(describe the branch type object named ‘hoople’)

PREDEFINED AND USER-DEFINED TYPE OBJECTS

Each VOB is created with a set of predefined type objects. Users can create additional type

objects.

• Predefined element types:

file_system_object (internal only; cannot be used in a mkelem command)

directory
file
binary_delta_file
compressed_file
924 ClearCase Reference Manual

type_object
text_file
compressed_text_file

• Predefined branch type: main

• Predefined label types:

CHECKEDOUT
LATEST

• Predefined attribute types:

HlinkFromText
HlinkToText

• Predefined hyperlink types:

AdminVOB
GlobalDefinition
Merge
RelocationVOB

SCOPE OF TYPE OBJECTS

Each VOB has its own set of type objects, for use in creating instances of the types in that

particular VOB. For example, you can attach RLS7.0 version labels within a particular VOB only

if label type RLS7.0 already exists in that VOB. Exception: The global type object facility creates

type objects on demand by copying them from a networwide repository. See GLOBAL TYPES
AND ADMINISTRATIVE VOBS for details.

GLOBAL TYPES AND ADMINISTRATIVE VOBS

You can use the global type facility to effectively increase the scope of a type object from a single

VOB to a group of VOBs—perhaps all the VOBs in your local area network. You can create any

number of global type objects in one or more central administrative VOBs.

For more information about using global types, see Administering ClearCase.

OPERATIONS ON TYPE OBJECTS

The following commands operate on type objects. For more information about the commands,

see ClearCase Reference Manual. For more information about how these commands work with

global types, see Administering ClearCase.

Purpose Commands

Type object creation mkattype, mkbrtype, mkeltype, mkhltype, mklbtype, mktrtype
Instance creation mkactivity, mkattr, mkbranch, mkelem, mkhlink, mklabel,

mktrigger
Renaming rename
ClearCase Reference Pages 925

type_object
SEE ALSO

describe, mk**type, rename, rmtype

Copying cptype
Deleting rmtype
Describing/listing describe, lstype
Lock/unlock lock, unlock

Purpose Commands
926 ClearCase Reference Manual

umount
umount
Deactivates a VOB

APPLICABILITY

SYNOPSIS
umount { vob-tag | –a⋅ll }

DESCRIPTION

The umount command deactivates one or more VOBs on your host by unmounting them as

Windows-level file systems. A VOB is activated on a host by mounting it as a file system of type

MVFS (ClearCase multiversion file system type). The VOB-tag by which an individual VOB is

referenced is the same as the full pathname to its mount point.

Note that umount has no impact on a VOB’s entries in the vob_object and vob_tag registry files.

Unmounting of Public and Private VOBs

Any user can unmount any VOB, public or private.

See the mkvob reference page for a discussion of public and private VOBs.

Unmounting All VOBs

umount –all unmounts all public VOBs listed in the VOB registry and all private VOBs owned

by the user.

PERMISSIONS AND LOCKS

Permissions Checking: See Unmounting of Public and Private VOBs. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VOB. Default: None.

vob-tag
Unmounts the VOB with this VOB-tag, which you must specify exactly as it appears in

the vob_tag registry file.

–a⋅ll
Unmounts all public VOBs listed in the VOB registry.

Product Command Type

ClearCase cleartool subcommand

Attache command
ClearCase Reference Pages 927

umount
EXAMPLES

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Unmount the VOB storage directory that is registered with VOB-tag \rel4.

cmd-context umount \rel4

• Unmount all VOBs registered with public VOB-tags.

cmd-context umount –all

SEE ALSO

lsvob, mkvob, mount, register, registry_ccase
928 ClearCase Reference Manual

uncheckout
uncheckout
Cancels a checkout of an element

APPLICABILITY

SYNOPSIS
uncheck⋅out | unco [–kee⋅p | –rm] [–cact] pname ...

DESCRIPTION

The uncheckout command cancels a checkout for one or more elements, deleting the

checked-out version. Any metadata (for example, attributes) that you attached to a checked-out

version is lost. After you cancel a checkout:

• A dynamic view reverts to selecting a checked-in version of each element.

• A snapshot view performs an update operation for each unchecked-out element. (For

snapshot views, there is an exception for the canceling of a directory checkout; see Canceling
a Directory Checkout for more information).

In Attache, if –rm is not specified, any corresponding local files are uploaded before the

uncheckout command is executed remotely, so that they can be kept in the view if –keep is

specified or if the keep query receives a yes answer. Local files that correspond to canceled

checkouts are updated from the version selected by the view after the checkouts are canceled,

and are made read-only.

The checkout version event record for each element is removed from its VOB’s database. (There

is no uncheckout event record.) Reserve and unreserve records are also removed.

If you checked out a file under an alternate name (checkout –out), you cannot use the alternate

name to cancel the checkout—you must use the element name listed by ls –vob_only.

Canceling a Checkout in an Inaccessible View

(ClearCase and ClearCase LT only) You can cancel another dynamic view’s checkout by using a

view-extended pathname to the element. For a snapshot view, or in the case where a dynamic view

is no longer accessible (for example, it was deleted accidentally), a view-extended pathname

does not work. Instead, do the following:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 929

uncheckout
1. Enter the command describe –long vob:pname-in-vob, where pname-in-vob is the VOB-tag of

the VOB containing the checked-out file. The output of this command includes a list of views

with checkouts in the VOB.

2. Look for the view-storage pathname of the inaccessible view, and note the view’s unique

identifier (UUID).

3. Use the uuid in the command rmview –uuid uuid to remove all of the view’s checkout

records from the VOB.

4. Repeat Step #3 in each VOB that may have been accessed with the view.

You can also change reserved checkouts in that view to unreserved. There is no way to cancel

checkouts in an inaccessible view.

Canceling a Directory Checkout

If you cancel a directory’s checkout in a dynamic view after changing its contents, the changes

made with rmname, mv, and ln are lost. Any new elements that were created (with mkelem or

mkdir) become orphaned; such elements are moved to the VOB’s lost+found directory, stored

under names of this form:

element-name.UUID

uncheckout displays a message in such cases:

cleartool: Warning: Object "foo.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as
 "foo.c.5f6815a0a2ce11cca54708006906af65".

When you use uncheckout in a snapshot view, the changes made with rmname, mv, and ln are

lost in the VOB because there is no lost+found directory, but the snapshot view does not reflect

the VOB contents until you invoke update.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: version creator,

element owner, VOB owner, member of the ClearCase group (ClearCase), local administrator of

the ClearCase LT server host (ClearCase LT). See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch.

OPTIONS AND ARGUMENTS

HANDLING OF THE FILE. Default: For file elements only, uncheckout prompts you to decide

whether to preserve a copy of the checked-out version of the element:

Save private copy of "util.c"? [yes]
930 ClearCase Reference Manual

uncheckout
A yes answer is equivalent to specifying the –keep option; a no answer is equivalent to

specifying the –rm option.

–kee⋅p
Preserves the contents of the checked-out version (in Attache, in the view) under a

file-name of the form element-name.keep (or, to prevent name collisions,

element-name.keep.1, element-name.keep.2, and so on). This file is not downloaded to the

Attache workspace.

–rm
Does not preserve the contents of the checked-out version. Thus, any edits that had been

made to the checked-out version are lost.

–cact
Cancels the checkout for each checked out version in the current activity.

SPECIFYING THE ELEMENT. Default: None.

pname ...

One or more pathnames, each of which specifies an element. The checkout in the current

view is canceled, unless you use a view-extended pathname to specify another view.

NOTE: Avoid using a version-extended pathname. For example, you cannot use

hello.c@@\main\sub1 to cancel another view’s checkout on the sub1 branch of element

hello.c.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Cancel the checkout of file element util.c.

cmd-context uncheckout util.c

Save private copy of "util.c"? [yes] no
Checkout cancelled for "util.c".

• (Dynamic view only) Cancel the checkout of file hello.h in the jackson_fix view, and delete

the view-private copy.

cmd-context uncheckout –rm M:\jackson_fix\users_hw\src\hello.h

Checkout cancelled for "M :\jackson_fix\users_hw\src\hello.h".
ClearCase Reference Pages 931

uncheckout
• Cancel the checkout of directory subd after creating a new element named conv.c. Because

the context for this command is a dynamic view, the element is moved to the VOB’s

lost+found directory.

cmd-context uncheckout subd

cleartool: Warning: Object “conv.c” no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as
 "conv.c.3d90000112fc11cba70e0800690605d8".
Checkout cancelled for "subd".

SEE ALSO

checkin, checkout, lscheckout, mkview, reserve, unreserve, update,

attache_command_line_interface, attache_graphical_interface
932 ClearCase Reference Manual

unlock
unlock
Unlocks an object

APPLICABILITY

SYNOPSIS
unlock [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–pna⋅me] pname ... | object-selector ... }

DESCRIPTION

The unlock command removes an existing lock from an entire VOB, or from one or more objects,

type objects, or VOB storage pools. See the lock reference page for a description of locks.

PERMISSIONS AND LOCKS

See the lock reference page for a description of restrictions.

OPTIONS AND ARGUMENTS

See the lock reference page for a description of the options to the unlock command.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Unlock the label types REL1 and REL2.

cmd-context unlock lbtype:REL1 lbtype:REL2

Unlocked label type "REL1".
Unlocked label type "REL2".

• Unlock the v3_bugfix branch.

cmd-context unlock cmd.h@@\main\v3_bugfix

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 933

unlock
SEE ALSO

lock, lshistory, lslock, protect
934 ClearCase Reference Manual

unregister
unregister
Removes an entry from the vob_object or view_object registry

APPLICABILITY

SYNOPSIS

• Unregister a VOB:

unreg⋅ister –vob { –uui⋅d uuid | vob-storage-dir-pname }

• Unregister a view:

unreg⋅ister –view { –uui⋅d uuid | view-storage-dir-pname }

DESCRIPTION

The unregister command removes the entry for a particular VOB or view from the network’s

vob_object or view_object registry. This does not affect VOB-tag or view-tag registry entries,

and it does not affect the contents of the physical storage directories. See the registry_ccase
reference page for a discussion of the registry.

If you remove a VOB or view storage directory with an operating system command (del, for

example), instead of rmvob or rmview, the VOB or view remains unregistered. In this case, you

must use the –uuid option to unregister the associated storage directory (and use rmtag to

remove relevant tag entries, if any still exist).

Other Commands that Affect Storage Registries

The mkview and mkvob commands add an entry to the appropriate registry; the rmview and

rmvob commands remove registry entries (and the actual storage directories as well). You can

use the register command to update an existing entry, or to re-register a VOB or view that has

been unregistered.

The reformatvob command updates a VOB’s object registry entry (or creates one, if necessary),

but does not affect its tag registry entries.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 935

unregister
OPTIONS AND ARGUMENTS

UNREGISTERING VIEWS AND VOBS. Default: None.

–vob vob-storage-dir-pname
–vob –uui⋅d vob-uuid

Use either form to specify the VOB whose vob_object registry entry is to be deleted. Use

the VOB replica UUID reported by lsvob –long (not the VOB family UUID).

–view view-storage-dir-pname
–view –uui⋅d view-uuid

Use either form to specify the view whose view_object registry entry is to be deleted.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Unregister a VOB storage directory.

cmd-context unregister –vob c:\vbstore\vob2.vbs

• Unregister a view storage directory.

cmd-context unregister –view k:\vw_store\view5.vws

• Using the –uuid option, unregister a VOB storage directory that was deleted with del
instead of rmvob. In this example, the VOB replica UUID (do not use the VOB family UUID)

is found in the output from lsvob –long. After unregistering the storage directory, remove

the VOB-tag. If the VOB has tag registry entries for more than one network region, the –all
option removes them all.

cmd-context lsvob –long \src (find the VOB replica uuid)

Tag: \src
 Global path: \\neptune\vbstore\src.
. . .
Vob replica uuid: cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

dir \\neptune\vbstore\src.vbs (verify storage directory was removed)

ERROR: Cannot access \\neptune\vbstore\src.vbs: No such file or directory

cmd-context unregister -vob -uuid cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

cmd-context rmtag –vob –all \src
936 ClearCase Reference Manual

unregister
• As in the previous example, unregister a removed, but still registered, VOB storage

directory. In this example, the VOB-tag has already been removed. Therefore, use the

ccase-home-dir\log\scrubber_log, not lsvob, to find the VOB replica UUID. (lsvob lists only

VOBs that have registered VOB-tags.) The scrubber utility, which runs nightly by default,

reports the required UUID in an error message after failing to find the registered storage

directory.

Z:\> type "c:\Program Files\Rational\ClearCase\log\scrubber_log"

.

.

.
05/27/99 04:30:58 scrubber: Error: Unable to get VOB tag registry
information for

replica uuid "cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3": ClearCase object
not found
05/27/99 04:30:58 scrubber: Error: unable to access VOB
\\neptune\vbstore\src.vbs:
 ClearCase object not found
05/27/99 04:30:58 scrubber: Warning: skipping VOB
\\neptune\vbstore\src.vbs errors
.
.
.

cmd-context unregister –vob –uuid cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

SEE ALSO

mktag, mkview, mkvob, mount, register, registry_ccase, umount
ClearCase Reference Pages 937

unreserve
unreserve
Changes a reserved checkout to unreserved

APPLICABILITY

SYNOPSIS
unres⋅erve [–vie⋅w view-storage-dir-pname] [–cact]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pname ...

DESCRIPTION

The unreserve command changes the checkout status of a checked-out version of an element to

unreserved. A temporary unreserve checkout of version event record is written to the VOB

database.

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: element group

member, element owner, VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT). See the permissions reference

page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

branch type, branch.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: The current view’s checkout is changed (unless you specify an

element with a view-extended pathname).

–vie⋅w view-storage-dir-pname
Specifies the view whose checkout is to be changed. For view-storage-dir-pname, use the

view storage directory pathname listed by the lscheckout –long command.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
938 ClearCase Reference Manual

unreserve
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS. Default: None.

–cact
(UCM) Unreserves each checked-out version in the change set of the current activity in

your view.

pname ...
One or more pathnames, each of which specifies an element. The checkout in the current

view is changed, unless you use a view-extended pathname to specify another view.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change the checkout status of an element to unreserved.

cmd-context unreserve util.c

Changed checkout to unreserved for "util.c" branch "\main".

• Change the checkout status of an element in another view to unreserved. Note that the

view’s storage area is on a remote host.

cmd-context lscheckout –long hello.c

10-Aug-98.16:59:25 Ellie Jackson (jackson.user@oxygen)
checkout version “hello.c” from \main\37 (reserved)
by view: jackson_fix (“oxygen:C:\users\jackson\ccviews\fix.vws”)
“merge from bugfix branch”

cmd-context unreserve –view oxygen:C:\users\jackson\ccviews\fix.vws hello.c

Changed checkout to unreserved for "hello.c" branch "\main".

• Check out an element, check its status, and change its status to unreserved.

cmd-context co –nc edge.c

Checked out "edge.c" from version "\main\1".

cmd-context lscheckout edge.c

08-Dec.12:17 jackson checkout version "edge.c" from \main\1 (reserved)
ClearCase Reference Pages 939

unreserve
cmd-context unreserve edge.c

Changed checkout to unreserved for "edge.c" branch "\main".

SEE ALSO

checkin, checkout, lscheckout, reserve, uncheckout
940 ClearCase Reference Manual

update
update
Updates elements in a snapshot view or Attache workspace

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only—Update elements using the graphical update tool:

update –g⋅raphical [pname ...]

• ClearCase and ClearCase LT only—Update elements from the command line:

update [–print] [–f⋅orce] [–ove⋅rwrite | –nov⋅erwrite | –ren⋅ame]

[–cti⋅me | –pti⋅me] [–log pname] [pname ...]

• ClearCase and ClearCase LT only—Load elements from the command line by specifying

one or more load rules:

update –add⋅_loadrules [–print] [–f⋅orce] [–ove⋅rwrite | –nov⋅erwrite | –ren⋅ame]

[–cti⋅me | –pti⋅me] [–log pname] pname [pname ...]

• Attache:

update { [–print [–since date_time] |

[–all |–since date_time]

[–ove⋅rwrite | –nov⋅erwrite] [–pti⋅me] [–compress] }

[–r⋅ecurse] [–log pname] pname...

DESCRIPTION

ClearCase and ClearCase LT—Updating Loaded Elements

For one or more loaded elements, the update command does the following:

• Reevaluates the config spec to select a versions of loaded elements in the VOB, and loads

them if they differ from the currently loaded element versions

• Unloads the file or directory from the view if a loaded element is no longer visible (that is, a

new directory version doesn’t have an entry for the element). To unload a directory

element, ClearCase and ClearCase LT

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
ClearCase Reference Pages 941

update
• Recursively delete all loaded elements

• Rename the directory to directory-name.unloaded if necessary, thus preserving all

view-private files and view-private directories.

• If the version in the snapshot view is different from the version in the VOB selected by the

config spec, copies the version selected by the config spec into the view. The version in the

view can be different if, for example, the selected version in the VOB is newer, or if a label is

attached to the selected version in the VOB, but not to the version in the view

update does not apply to files or directories that are checked out to the current view.

If update cannot access a VOB (perhaps due to problems in the network), any elements from that

VOB remain loaded, but are put in a special state (rule unavailable).

The update command accounts for the fact that VOB elements specified by your config spec may

change while an update is in progress. To avoid loading an inconsistent set of element versions,

update ignores versions that meet both of the following criteria:

• The version is selected by a config spec rule that specifies the LATEST version label.

• The version was checked in after the moment the update operation began.

update also accounts for the fact that the system clocks on different hosts may not be

synchronized.

When issued from a snapshot view,the following cleartool commands invoke update at the

completion of the command:

• edcs
• findmerge (only when used to merge versions of a directory)

• ln
• merge (only when used to merge versions of a directory)

• mkdir
• mkelem
• mv
• rmname
• setcs
• uncheckout

ClearCase and ClearCase LT—Loading New Elements

The form of the update command that specifies the –add_loadrules option enables you to add

new load rules to your config_spec and load the elements that those rules specify.

Attache

This command downloads the specified files to the workspace.
942 ClearCase Reference Manual

update
PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

ClearCase and ClearCase LT

USING THE GRAPHICAL UPDATE TOOL. Default: The update is performed in the command window.

–g⋅raphical
Invokes the graphical update tool.

USING THE PREVIEW MODE. Default: None.

–print
Produces a preview of the update operation: instead of copying or removing files,

update prints a report to standard output of the actions it would take for each specified

element.

CONFIRMATION STEP. Default: update prompts for confirmation of the elements to be updated.

However, update does not in all circumstances prompt you to confirm all the elements to be

updated. Sometimes there are no confirmation prompts when you update elements, even though

you have not specified –force.

–f⋅orce
Suppresses the confirmation prompts.

HANDLING HIJACKED FILES. Default: Leaves all hijacked files in the view with their current

modifications (–noverwrite).

–ove⋅rwrite
Overwrites all hijacked files with the version selected by the config spec.

–nov⋅erwrite
Leaves all hijacked files in the view with their current modifications.

–ren⋅ame⋅
Renames hijacked files to filename.keep and copies the version in the VOB selected by the

config spec into the view.

DETERMINING THE MODIFICATION TIMESTAMP. Default: The initial default is set by the mkview
command. Thereafter, the most recently used time scheme is retained as part of the

view’s state and is used as the default behavior for the next update.

–cti⋅me
Sets the time stamp of a file element to the current time, that is, the time at which the

version is copied into the view. –ctime has no effect on directories (directories always use

the current time).
ClearCase Reference Pages 943

update
–pti⋅me
Sets the time stamp of a file element to the time at which the version was checked in to

the VOB. –ptime has no effect on directories. (Directories always use the current time.)

SPECIFYING A FILE TRANSFER LOG. Default: update generates a log file and writes it to the root

directory of the snapshot view.

–log pname
Specifies a log file for the operation. The log file lists the actions taken by the update
command, as well as an indication of any errors that occur during the operation. Use

-log NUL to suppress generation of the log file.

SPECIFYING NEW LOAD RULES. Default: None.

–add_loadrules
Specifies that the pname argument is a new load rule. The new rule is appended to the

view’s config spec, and the elements it specifies are loaded.

SPECIFYING THE ELEMENTS TO BE UPDATED OR ADDED. Default: If you do not specify

–add_loadrules, the current snapshot view; if you specify –add_loadrules, none.

pname ...

If you do not specify –add_loadrules, this argument specifies the files and/or

directories to update. All specified directories, including the root directory of the

snapshot view, are updated recursively.

If you specify –add_loadrules, this argument is interpreted as a new load rule. The

elements specified by the rule are loaded and the rule is appended to the config spec of

the current view. pname must be either a pathname relative to your current location in

the directory structure of the snapshot view or an absolute path that includes the

snapshot view path.

Attache

SPECIFYING THE FILES TO BE UPDATED. Default: None.

pname...

Specifies the files, directories, and/or links to be updated. For a pname containing a

symbolic link, Attache updates a copy of the file or directory the link points to, rather

than the link itself. Wildcard patterns are expanded with reference to the view. In

addition, arguments of the form @pname can be used to add the contents of the local file

pname as pathname arguments. The pathname arguments can contain wildcards (most

useful for excluding particular files; see the wildcards reference page), and must be

listed in the file one per line, or also be of the form @pname. Specifying a relative

pathname for @pname begins from Attache’s start-up directory, not the working

directory, so a full local pathname is recommended.
944 ClearCase Reference Manual

update
–all
Specifies that all files are to be downloaded to the Attache workspace.

–since date_time
Downloads to the Attache workspace all files checked in since the time specified in

date_time.

DISPLAY FILES TO BE UPDATED. Default: None.

–print [–since date_time]

Displays the files that need updating, but does not update them in the Attache

workspace. If –print is used, a reference time must be specified. –since displays files

updated since date_time. A project config file which has been used to do an update can

also be specified. The config file is specified as @filename for the pname argument. For

each config file used to do an update, Attache remembers the last update time and uses

it for the next update with that config file.

SPECIFYING HOW THE FILES ARE TO BE UPDATED. Default: When a directory is specified, its file

contents are updated. If a destination file already exists that is identical in contents with the

source file, it is not overwritten. If an existing destination file is read-only and differs from the

source, it is always overwritten. If the destination file exists and is writable, an overwrite query

is issued.

–ove⋅rwrite
Suppresses the query and causes all writable files to be overwritten.

–nov⋅erwrite
Suppresses the query and causes no writable file to be overwritten.

–pti⋅me
Causes the last-modified time stamp of the destination file to be set to that of the source

file. –ptime has no effect on directories.

–compress
Causes files to be compressed while being uploaded and uncompressed after the

transfer to improve performance over slow communications lines. The default behavior

for this option can be set in the Preferences item of the Options menu.

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

update downloads to the Attache workspace the contents of that directory, but not the contents

of any of its subdirectories.

–r⋅ecurse
Includes files from the entire subtree below any subdirectory included in the top-level

listing. Directories are created as necessary and the current directory is taken into

account if relative patterns are given.
ClearCase Reference Pages 945

update
SPECIFYING A FILE TRANSFER LOG. Default: None.

–log pname
Specifies a log file for the operation. The log file lists the workspace-relative pathname

of each file transferred by the Attache update command, as well as an indication of any

errors that occur during the operation. Log file pathnames are absolute, not relative to

the current workspace root.

The log file can be used as an indirect file in a get command if there are errors which

prevent the updating of all files.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

ClearCase and ClearCase LT

• Preview an update of the view darren_3.2 and produce a log file in the C:\temp directory.

cmd-context update –print –log C:\temp E:\views\darren_3.2

• Update the file .\foo.c using the current time as the time stamp.

cmd-context update –ctime foo.c

• Update the current directory; if there are any hijacked files, rename them filename.keep and

copy the VOB versions specified by the config spec into the view.

cmd-context update –rename

• Load into the current view the new elements in .\vobs\doc\user_manual, adding the rule

load \vobs\doc\user_manual to the view’s config spec.

cmd-context update –add_loadrules vobs\doc\user_manual

Attache

• Determine which files have been changed since yesterday in the \proj_vob VOB.

cmd-context update –print –since yesterday –r \proj_vob

• Update all files changed since yesterday in the \proj_vob VOB, overwriting any writable

files in the workspace.

cmd-context update –since yesterday –r –overwrite \proj_vob
946 ClearCase Reference Manual

update
• Download all files specified by the c:\users\jed\proj.ws project config file.

cmd-context update –all –r @c:\users\jed\proj.ws

• Update any files changed since the last update using the c:\users\jed\proj.ws project

config file, logging results to the c:\users\jed\proj.log file.

cmd-context update –r –log c:\users\jed\proj.log @c:\users\jed\proj.ws

SEE ALSO

checkin, checkout, config_spec, edcs, get, findmerge, ln, merge, mkdir, mkelem, mv, rmname,

setcs, uncheckout
ClearCase Reference Pages 947

version_selector
version_selector
Version-selector syntax

APPLICABILITY

SYNOPSIS

branch-pathname\version-number
[branch-pathname] \label
[branch-pathname\] { query }

DESCRIPTION

A version selector identifies a version of an element in a version tree. You can use it with the

–version command-line option, as part of a rule in a config spec, and as part of a version-extended
pathname. The version selector has three general forms. Each identifies a version in a different

way:

• By version-ID

• By the version label attached to it

• By a query on the meta-data attached to it, or some other version characteristic

A version selector selects one version of an element, no version of an element, or generates an

error, if ambiguous.

Branch Pathnames

The branch pathname in a version selector identifies the branch on which a version resides. A

branch pathname consists of a series of branch type names separated by backslashes (\). The root

of a version tree is the main branch (default name: \main), which must be the first entry in the

branch pathname unless you use the ellipsis wildcard (not valid in version-extended

pathnames). Examples:

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

\main (main branch)
\main\bugfix (bugfix branch, off the main branch)
\main\win32\bugfix (bugfix branch, off the \main\win32 branch)
\main\win32\bugfix\anne (jpb branch, off the \main\win32\bugfix branch)
948 ClearCase Reference Manual

version_selector
SELECTION BY VERSION-ID

branch-pathname\ version-number

Selects the version with the specified version-ID. This form requires a branch pathname.

Examples:

In a version-extended pathname, the version-ID follows the element name and extended naming
symbol (default: @@). For example:

RESTRICTION: In a version-extended pathname, you cannot use the ellipsis wildcard (...):

SELECTION BY VERSION LABEL

[branch-pathname]\ label

Selects the version with the specified label. The branch pathname is optional, but the backslash is

required. Examples:

RESTRICTION: In a version-extended pathname, you cannot use the ellipsis wildcard (...):

The label LATEST is predefined; it evaluates to the most recent version on each branch of an

element. If the most recent version on the main branch is version 4, these two version selectors

identify the same version:

\main\LATEST
\main\4

\main\2 (version 2 on main branch)
\main\bugfix\5 (version 5 on bugfix branch off main branch)
\main\gopher\bugfix\1 (version 1 on subbranch of \main\gopher branch)

hello.c@@\main\4 (version 4 on main branch of file ’hello.c’)
include@@\main\4\hello.h\main\3 (version 3 on the main branch of file ’hello.h’, in

version 4 on the main branch of directory ’include’)

include.h@@\...\bugfix\REL2 (is not valid)

\main\LATEST (most recent version on main branch)
...\bugfix\REL2 (version labeled REL2 on a branch named bugfix, at

any branching level)
\main\bugfix\REL2 (version labeled REL2 on a bugfix branch that is a

subbranch of main)
\main\sunport\openlook\BUG3 (version labeled BUG3 on a particular third-level

branch)
REL2 (version labeled REL2 on any branch)

include.h@@\...\bugfix\REL2 (is not valid)
ClearCase Reference Pages 949

version_selector
A version selector can consist of a standalone label, such as REL2. Standalone labels can be

ambiguous, however. For example, \main\bugfix\REL2 and REL2 may or may not be

equivalent for a given element:

• If the REL2 label type was created as one-per-element (default), the two version selectors

must be equivalent.

• If REL2 was created with mklbtype –pbranch, however, the label can be used once per

branch. If the label is actually attached to two or more versions of an element, an error

occurs. No error occurs for elements that happen to have only one instance of a

one-per-branch label type.

Version Labels As File Names

Version labels appear as additional file-system objects in an element’s directory tree in

version-extended namespace. (See the pathnames_ccase reference page.) If a version label was

defined to be one-per-element, an additional filesystem object appears at the top level of an

element’s directory tree. For example, if BL3 is a one-per-element label, these version-extended

pathnames are both unambiguous references to the same version:

hello.c@@\BL3
hello.c@@\main\bugfix\patch2\BL3

In effect, this feature allows you to reference a version without knowing its exact location in the

version tree.

If a label was defined with the –pbranch option, it does not appear in the element’s top-level

extended namespace directory (as implied earlier). Thus, if the one-per-element label, BL3, and

the one-per-branch label, TEST_LBT, was attached to version \main\1 of file hello.c, its

top-level extended namespace directory would look like this:

Z:\myvob\pr1> cd hello.c@@

Z:\myvob\pr1> dir

BL3 main

SELECTION BY QUERY

[branch-pathname\] {query}

Selects the version that satisfies the specified query. The branch pathname is optional.

The query expression consists of one or more query primitives and operators, organized

according to the syntax rules listed in the query_language reference page. Enclose the query

expression in braces ({ }).

Additional quoting and/or character escaping conventions must be used, depending on the

command interpreter you are using and whether or not you are using interactive mode cleartool.
950 ClearCase Reference Manual

version_selector
The following examples assume interactive mode cleartool (cleartool> prompt), which

removes the command interpreter’s command-line processing behavior from consideration. In

general, enclose the entire version selector in quotes if it includes spaces, and make sure to

enclose string literals in double-quotes within the query expression.

If the version selector includes a branch pathname, the view_server selects the latest version on

the branch that satisfies the query. If the version selector does not include a branch pathname,

the view_server selects the version on any branch that satisfies the query. However, without a

branch pathname, a query is ambiguous when more than one version of the element satisfies the

query; versions on different branches, or two versions on the same branch, for example.

The version-selection operation fails if the query selects no version or is ambiguous.

A version-extended pathname can include a query, but is subject to the same restrictions as other

version selectors of this form. That is, the query must select exactly one version to succeed. For

example, this command displays the most recent version that has an attribute of type TESTED:

Z:\vob_incl> type include.h@@\"{attype(TESTED)}"

Note the use of quotes to prevent the command interpreter from interpreting the brace and

parenthesis characters. As an alternative, you can quote the entire pathname:

Z:\vob_incl> type "include.h@@\{attype(TESTED)}"

If multiple branches have versions with a TESTED attribute, the version selector used in the

examples above is ambiguous, and an error occurs.

RESTRICTION: In a version-extended pathname, you cannot use both a branch pathname and a

query:

Z:\vob_incl> type "include.h@@\main\{attype(TESTED)}" (is not valid)

Z:\vob_incl> type "include.h@@\main\rel2_bugfix\{attype(TESTED)}"(is not valid)

SEE ALSO

config_spec, pathnames_ccase, query_language

\main\{TESTED=="yes"} (the latest version on main branch for which
’TESTED’ attr has value ’yes)

“{hltype(design_spec,<-)}” (on any branch, version that’s the ’to’ end of a
hyperlink of type ’design_spec’)

\main\bugfix\”{!lbtype(REL2)}” (on bugfix branch, the latest version that is not
labeled ’REL2’)

“{created_by(anne)&&pool(sr1)}” (on any branch, the version created by user ’anne’
and stored in the ’sr1’ storage pool)
ClearCase Reference Pages 951

view
view
Data structure for views

APPLICABILITY

SYNOPSIS

Windows NT directory tree created by mkview command

DESCRIPTION

A view provides a workspace in which users can access versions of elements and other

file-system objects that are outside of ClearCase or ClearCase LT source control. There are two

kinds of views:

• Dynamic views, which provide transparent access to versions of elements in the VOB and to

view-private objects. Each time you access an element through a dynamic view, the view’s

view_server process evaluates the view’s config spec and selects a particular version of the

element. Thus, such a view updates itself with new versions created in other views. Only

ClearCase and Attache support dynamic views.

• Snapshot views, which contain copies of versions of specified elements, along with

view-private objects. The view never updates itself with new versions created from other

views. Instead, the update command reevaluates the view’s config spec and loads the

newly selected versions into the view. ClearCase LT supports only snapshot views.

This reference page discusses both a view’s physical data structures and the way file system data

appears to a user process through a view. Each type of view is discussed separately.

Dynamic Views—The File System

A dynamic view is an MVFS (multiversion file system) directory tree that enables dynamic

access to VOB elements.

Dynamic Views—View Storage Directory

A dynamic view is implemented as a standard directory tree, whose top-level directory is termed

the view storage directory. The directory contains these files and subdirectories:

Product Command Type

ClearCase data structure

ClearCase LT data structure

Attache data structure
952 ClearCase Reference Manual

view
Dynamic Views—Private Storage Area

Subdirectory .s of the view storage directory is the root of a subtree that implements the view’s

private storage area. The private storage area holds several kinds of objects:

VIEW-PRIVATE OBJECTS. A view-private object is a file-system object—file or directory—created by

a standard program within a VOB directory. Such objects are stored only within the view’s

private storage area. No VOB maintains any record of such objects.

CHECKED-OUT FILES. A checked-out version is a file created by the checkout command. This file

is an editable copy of the version being checked out.

A checked-out version is very much like a view-private file, except that there is a corresponding

object in the VOB database: the special “placeholder” version with the CHECKEDOUT version

label.

.access_info A file of view access event information that is periodically updated by the

view server.

.pid A one-line text file that lists the process-ID of the associated view_server
process, currently running on the host where the view storage directory

resides.

.view A file that lists the view’s universal unique identifier (UUID) and

attribute

For descriptions of the other lines in this file, see VIEW
CONFIGURATION in the view_server reference page.

admin A directory that contains administrative data related to the amount of

disk space a view is using. Use space –view to list this data.

config_spec A file that stores the view’s current config spec, in the form displayed by

catcs.

.compiled_spec A modified version of config_spec, which includes accounting

information.

identity.sd (FAT file systems only) On NTFS file systems, a security descriptor is

attached to the view storage directory. This security descriptor includes a

Windows ACL that assigns full control (all permissions) to the view

owner and also to the group-ID ClearCase (the ClearCase or

ClearCase LT servers run under this user ID). On FAT file systems, the

binary data file identity.sd contains the “flat file” equivalent of an NTFS

security descriptor for the view storage directory.

.s A subdirectory that implements the view’s private storage area. See the

Dynamic Views—Private Storage Area section.

db A subdirectory containing the files that implement the view’s embedded

database. See Dynamic Views—View Database.
ClearCase Reference Pages 953

view
UNSHARED DERIVED OBJECTS. An unshared derived object is a data container created by

execution of a makefile build script by clearmake, omake, or by any program invoked by

clearaudit. A corresponding derived object is created in the VOB database if you are using a

dynamic view.

NOTE: An unshared derived object remains in the view’s private storage area even after the DO

becomes shared. Promotion of the DO involves copying, not moving, the data container. The

winkin command and view_scrubber utility remove unshared derived objects from a view’s

private storage area.

NONSHAREABLE DERIVED OBJECTS. A nonshareable derived object is a data container created by

execution of a makefile build script by clearmake, omake, or by any program invoked by

clearaudit, from a dynamic view. No information about the DO is stored in the VOB database.

When you use winkin or view_scrubber –p to convert a nonshareable DO to a shareable DO, the

command promotes the DO’s data container to the VOB, and removes the data container from

view storage.

CONFIGURATION RECORDS. The file view_db.crs_file in the .s subdirectory is actually part of the

view’s database, as described in the following section. It is the part that stores the configuration

records of derived objects built in the view.

STRANDED FILES. The directory lost+found in the .s subdirectory contains stranded files, that is,

files that were view-private and are no longer accessible through normal ClearCase or Attache

operations. (Only dynamic views have lost+found directories.) A file becomes stranded when

there is no VOB pathname through which it can be accessed. For example:

• A VOB can become temporarily unavailable, for example, by being unmounted.

• A VOB can become permanently unavailable, for example, by being deleted.

• A VOB directory can become permanently unavailable, by being deleted with a rmelem
command.

See the description of the recoverview command for more information about recovering

stranded files (recoverview does not apply to snapshot views.)

Dynamic Views—View Database

The view database subdirectory, db, contains these files:

view_db.dbd A compiled database schema, used by embedded DBMS

routines for database access. The schema describes the

structure of the view database. The mkview command

creates this file by copying

ccase-home-dir\bin\view_db.dbd.
954 ClearCase Reference Manual

view
The view database keeps track of the objects in its private storage area: view-private objects (files,

directories, and links), checked-out versions, nonshareable derived objects, and unshared

derived objects.

Snapshot Views—The File System

The snapshot view directory tree is part of the native file system (as opposed to the directory tree

of a dynamic view, which is part of the MVFS, or multiversion file system). In addition to copies

of ClearCase and ClearCase LT elements, the root of this directory tree (referred to as the

snapshot view’s root directory) contains the following files and subdirectories:

NOTE: When referring to a snapshot view, many ClearCase and ClearCase LT commands require

the snapshot-view-directory-pname argument (rather than an argument specifying the view-tag).

By reading the view’s view.dat file, which is in the root directory of the snapshot view, ClearCase

and ClearCase LT can find the view storage directory.

view_db_schema_version A schema version file, used by embedded DBMS routines to

verify that the compiled schema file is at the expected

revision level. The mkview command creates this file by

copying ccase-home-dir\bin\view_db_schema_version.

view_db.d0n
view_db.k01

Files in which the database’s contents are stored.

vista.* Database control files and transaction logs.

view_db.crs_file Stores the configuration records of nonshareable and

unshared derived objects. This file resides in subdirectory .s
of the view storage directory, allowing it to be remote.

Compressed copies of the configuration records are cached

in a view-private file, .cmake.state, located in the directory

that was current when the build started. This speeds up

configuration lookup during subsequent builds in the view.

view.dat A read-only text file used to identify the current directory as part of a

view.

view.stg or a

generated

directory name

A hidden directory used to maintain the view. For a colocated view

storage directory only, the default name of this directory is named

view.stg; for a noncolocated view storage directory, this directory has a

generated name. Certain view configurations require that this directory

be located somewhere outside the snapshot view’s root directory. (Refer

to the mkview reference entry for information on view configurations.)
ClearCase Reference Pages 955

view
Snapshot Views—View-Storage Directory

The snapshot view’s view-storage directory is used by ClearCase and ClearCase LT to maintain

the view. It contains the following files and subdirectories:

Snapshot Views—View Database

The view database subdirectory, db, contains these files:

.access_info A file of view access event information that is periodically updated by the

view server.

admin A directory that contains administrative data related to the amount of

disk space a view is using. Use space –view to list this data.

.pid A one-line text file that lists the process-ID of the associated view_server
process, currently running on the host where the view storage directory

resides.

.view A file that lists the view’s universal unique identifier (UUID) and

attributes.

config_spec A file that stores the view’s current config spec, in the form displayed by

catcs.

.compiled_spec A modified version of config_spec, which includes accounting

information.

identity.sd (FAT file systems only) On NTFS file systems, ClearCase and

ClearCase LT attach a security descriptor to the view storage directory.

This security descriptor includes a Windows ACL that assigns full

control (all permissions) to the view owner and also to the group-ID

ClearCase (the ClearCase and ClearCase LT servers run under this

user-ID). On FAT file systems, the binary data file identity.sd contains the

“flat file” equivalent of an NTFS security descriptor for the view storage

directory.

.s A subdirectory containing empty subdirectories.

db A subdirectory containing the files that implement the view’s embedded

database. See Snapshot Views—View Database.

view_db.state A file that records the current state of the view.

view_db.dbd A compiled database schema, used by embedded DBMS

routines for database access. The schema describes the

structure of the view database. The mkview command

creates this file by copying

.ccase-home-dir\bin\view_db.dbd.
956 ClearCase Reference Manual

view
For a snapshot view, the view database keeps track of the loaded VOB objects and checked-out

versions in the view.

ClearCase and Attache Only—Comparison of Dynamic and Snapshot Views

The information in this section is intended for ClearCase and Attache users, who can choose

between dynamic and snapshot views.

Snapshot views:

• Require an update operation periodically

• Provide optimal performance for developing source files and for prototype builds

• Facilitate working from a remote location

• Use the update command to copy a specified set of source files into the view

Work in a snapshot view when any of these conditions is true:

• You want to optimize build performance to achieve native build speed.

• You want to work with source files under ClearCase control when you are either

disconnected from the network or connected to the network intermittently from a remote

location.

• You want to access a view from a computer that is not a ClearCase host.

• Your development task doesn’t require the ClearCase build auditing and build avoidance
features.

Dynamic views:

• Show changes to elements in the VOB as they are made (and thus do not require an update

operation)

• Support the ClearCase build auditing and build avoidance features

• Provide access to all elements in all mounted VOBs without using update

Work in a dynamic view when any of these conditions is true:

• Your development task requires audited builds.

view_db_schema_version A schema version file, used by embedded DBMS routines to

verify that the compiled schema file is at the expected

revision level. The mkview command creates this file by

copying ccase-home-dir\bin\view_db_schema_version.

view_db.d0n
view_db.k01

Files in which the database’s contents are stored.

vista.* Database control files and transaction logs.
ClearCase Reference Pages 957

view
• You want to enable derived object sharing.

You can use express builds to enable DO reuse in your view, but not allow the DOs to be

winked in by other views. For more information, see Derived Objects and Configuration Records
in Building Software with ClearCase.

• You prefer to use a view that is updated during development.

Table 15 compares features of snapshot views and dynamic views.

Table 15 A Comparison of View Features

Feature For dynamic views For snapshot views

Storage

requirements

You need enough disk space to store any

view-private files or view-private

directories.

You need enough disk space to store the

copies of the loaded elements and any

view-private files or view-private

directories.

To access ClearCase

elements

You start the view and mount VOBs on

your computer.

Your view’s config spec loads elements

into the view.

Assigning views to

drive letter

You can start a view and assign it to a drive

letter at the same time.

Because you do not start a snapshot view,

you must assign the view to a drive letter.

Version selection For any element in a mounted VOB, the

view always selects the version specified

by the config spec.

You can traverse the view-extended
namespace to see any version of any element

in any mounted VOB.

You use the update command to update

the elements loaded into the view.

You can see only the version of an element

that is loaded into your view.

VOB symbolic links

and VOB hard links

The link is traversed each time you access

the object.

The version to which the link resolves at

update time is copied into the view.

Version that is

checked out

By default, the checkout operation checks

out the latest version on a branch,

regardless of what the config spec specifies.

The checkout operation checks out the file

loaded in your view, which may not be the

latest version on a branch.
958 ClearCase Reference Manual

view
SEE ALSO

config_spec, endview, lsview, mkview, mvfsstorage, recoverview, reformatview,

registry_ccase, scrubber, startview, update, view_scrubber, vob

Build features You can use the clearmake and omake
features of build auditing and build

avoidance.

You can use clearmake or omake, but the

build auditing and build avoidance

features are disabled.

Sharing the views

with other team

members

View objects are accessible to other team

members through ClearCase’s

view-extended namespace.

View objects are accessible to other team

members if you make the root directory of

the view a shared folder in the Windows

file system. Snapshot views are not

accessible through ClearCase’s

view-extended namespace.

Table 15 A Comparison of View Features

Feature For dynamic views For snapshot views
ClearCase Reference Pages 959

view_scrubber
view_scrubber
Remove derived object data containers from dynamic view storage

APPLICABILITY

SYNOPSIS

view_scrubber [–p] [–k] [–n] [DO-pname ...]

DESCRIPTION

The view_scrubber program cleans a view’s private storage area by removing data containers

for derived objects (DOs). view_scrubber scrubs only the files that are piped to its stdin stream.

See the EXAMPLES section for an example.

NOTE: This command does not apply to snapshot views because derived objects can be created

only in dynamic views.

WARNING: This command modifies the way in which view-resident objects are combined with

VOB-resident objects to produce a virtual workspace. To avoid errors, make sure that no

application or development tool is using the view’s files when this command is executed.

Scrubbing is useful in the situations described in the following sections.

Cleaning Up after a Winkin

When a clearmake or omake build winks in a shareable DO for the first time, the DO’s data

container is copied from the private storage area of the view in which it was built to the VOB

storage pool. At this point:

• The view where the DO was originally built continues to use the data container in view

storage.

• Any other view to which the DO is subsequently winked in uses the data container in VOB

storage.

Running view_scrubber in the view where the DO was built simplifies the situation.

view_scrubber performs the following steps:

1. Removes the DO with del. This deletes the data container from view storage.

2. Winks in the DO to the view, which establishes a link to the data container in VOB storage.

Now, all views that share the DO access the data container in VOB storage. This eliminates the

redundant, space-consuming data container in view storage.

Product Command Type

ClearCase command
960 ClearCase Reference Manual

view_scrubber
Self-Winkin

By default, the data container for a nonshareable DO or an unshared DO remains in view storage

until the DO is deleted or overwritten. view_scrubber –p transfers the data container to VOB

storage, thus freeing space in the view storage area. In essence, this involves winking in the DO

to the same view. view_scrubber –p performs the following steps:

1. (Nonshareable DO only) Converts the DO to a shareable DO by writing information about

the DO into the VOB.

If the DO has any sub-DOs or siblings, view_scrubber –p makes them shareable.

2. Promotes the data container from view storage to VOB storage.

3. Removes the DO with del, which deletes the data container from view storage.

4. Winks in the DO to the view, which establishes a link to the data container in VOB storage.

You can also use the winkin command to accomplish this scenario.

NOTE: When a nonshareable DO is converted to a shareable DO, its DO-ID changes. For more

information, see Derived Objects and Configuration Records in Building Software with ClearCase.

OPTIONS AND ARGUMENTS

PREPROCESSING WITH A PROMOTION. Default: view_scrubber removes view-resident data

containers, then restores the derived objects to the view through winkin. Requirement: The

derived objects’ data containers must already be in VOB storage.

–p
Before performing the default processing described above, promotes (copies) the

derived objects’ data containers from view storage to VOB storage. This removes the

requirement that the data containers be in VOB storage.

ERROR RECOVERY. Default: view_scrubber aborts if it is unable to complete its work on any

derived object.

–k
Keeps going, even if one or more derived objects cannot be processed successfully.

NO-EXECUTE OPTION. Default: view_scrubber performs its work and displays appropriate

messages.

–n
Suppresses the actual processing of data containers. view_scrubber displays messages

describing the work it would have performed.

DERIVED OBJECTS TO PROCESS. Default: If you don’t specify any DOs as command arguments,

view_scrubber reads a one-per-line list of pathnames from stdin, which must be a pipe.
ClearCase Reference Pages 961

view_scrubber
DO-pname ...

One or more standard pathnames of derived objects.

EXAMPLES

• Make the view to be scrubbed the current working view, and move to the directory of

interest. Then scrub DO containers for the entire directory tree, using a pipe.

C:\> Z: (change to a view drive)

Z:\> cd \vob_src\pr1

Z:\vob_src\pr1> dir /s /b *.obj | view_scrubber

• Scrub two DOs, promoting the data containers to VOB storage.

> view_scrubber –p e:\devel\lib\cmd.h g:\devel\lib\cmd_api.h

SEE ALSO

clearmake, promote_server, scrubber, winkin
962 ClearCase Reference Manual

view_server
view_server
Server process that performs version selection for a view

APPLICABILITY

DESCRIPTION

A view_server is a long-lived process that manages activity in a particular view. It interprets the

rules in the view’s config spec, and (for dynamic views) tracks modifications to view-private files

for other ClearCase and ClearCase LT software.

Each view requires a dedicated view_server on the host where the view storage area resides. The

view_server is started by its host’s albd_server process when necessary. It runs with the identity

of the albd_server (typically, user clearcase_albd and group clearcase.) A view_server remains

active until it is terminated by an endview –server command or a system shutdown.

For a dynamic view, a view_server handles MVFS file-system requests (such as create, delete,

and rename) by querying one or more VOB databases and comparing them against the view’s

own database. Using the view’s config spec, it selects versions of file elements and directory

elements to be in the view. It also handles requests from cleartool, clearmake, and clearaudit to

look up VOB-database objects and/or names.

The view_server’s procedure for resolving element names to versions is as follows:

1. User-level software (for example, an invocation of the C compiler) references a pathname.

The ClearCase MVFS, which processes all pathnames within VOBs, passes the pathname to

the appropriate view_server process.

2. The view_server attempts to locate a version of the element that matches the first rule in the

config spec. If this fails, it proceeds to the next rule and, if necessary, to succeeding rules until

it locates a matching version.

3. When it finds a matching version, the view_server selects it and has the MVFS pass a handle

to that version back to the user-level software.

The view_server and the MVFS use caching techniques to reduce the computational

requirements of this scheme. See VIEW CACHES on page 965.

Product Command Type

ClearCase command

ClearCase LT command
ClearCase Reference Pages 963

view_server
For a dynamic view, a view_server manages its view’s database by tracking changes to objects

in the view against the related objects in VOB databases (for example, the file in the view that

corresponds to the checked-out version of a file element).

VIEW CONFIGURATION

When it begins execution, a view_server reads configuration information from the .view file in

the view-storage directory. This is a text file that contains this information:

• Line 1: the location of the view storage directory, in hostname:pathname format

• Line 2: the view’s UUID (unique identifier), which must not be changed

• Line 3: the hostname specified in line 1

NOTE: Lines 1 and 3 are placed in the .view file when the view is created, but the view_server
ignores these lines thereafter.

The configuration file can include additional entries, each on a separate line:

–nshareable_dos
Specifies that builds in the view create nonshareable DOs. You can modify this property

with the chview command.

–cache size-in-bytes
Sets the total size of the view_server caches to be size-in-bytes. The default is 500 KB for

32-bit platforms and 1 MB for 64-bit platforms. See VIEW CACHES on page 965.

–textmode { insert_cr | transparent | strip_cr }

Specifies the interop text mode of the view. See the mkview reference page for more

information.

–readonly
Applicable to dynamic views only. Prevents modification of the view’s private

data-storage area. A read-only view cannot be used for checkouts or for builds, because

these operations create new files in view-private storage. (A checkout command will

succeed in creating a checked-out version in the VOB database, but cannot create the

corresponding view-private file.) You can modify this property with the chview
command.

Snapshot views do not implement the private data-storage area, so -readonly does not

prevent the view from being used for checkouts.

NOTE: –readonly does not prevent users from changing a view’s config spec. Use view

access permissions to implement this kind of restriction. (See the mkview reference page

for details.)

–snapshot
Applicable to snapshot views only. Specifies that the view is a snapshot view.
964 ClearCase Reference Manual

view_server
–ptime
Applicable to snapshot views only. Specifies that time stamps on files copied into the

view should show the time at which the version was created (rather than the current

time).

VIEW CACHES

The view_server maintains a number of caches, consisting mostly of data retrieved from the

VOB, to respond faster to RPCs from client machines. These are the view caches:

• Object cache, which facilitates retrieval of VOB and view objects (for example, versions and

branches)

• Directory cache, which facilitates file system directory (readdir) access

• Stat cache, which stores file attributes

• Name cache, which stores names (of existing files and names that do not exist in a directory)

and accelerates name lookups

When a view_server process is started, it chooses its cache size from the first one of these that

yields a value:

• –cache directive in .view file (set with mkview –cachesize or setcache –view –cachesize)

• Contents of the file ccase-home-dir\var\config\view_cache_size (decimal number; set with

setcache –view –host)

• Site-wide cache default stored in the registry (set with setcache –view –site)

• Default value: 500 KB on 32-bit platforms, 1 MB on 64-bit platforms

The cache size is allocated among the individual caches.

See the setcache reference page for information about setting the cache size for a view and for a

site, and the getcache reference page for information about displaying cache information. For

more information on optimizing performance, see the chapters on performance tuning in

Administering ClearCase.

SEE ALSO

albd_server, endview, mkview, setcache, startview, view
ClearCase Reference Pages 965

VOB
VOB
Versioned object base data structures

APPLICABILITY

SYNOPSIS

Windows directory tree created by mkvob command

DESCRIPTION

A VOB (versioned object base) is a data repository for a directory tree. Users access a VOB through

a dynamic or snapshot view (see the view reference page). This reference page discusses both a

VOB’s physical data structures and its logical structures, as seen by a user process through a

view.

A VOB is implemented as a standard directory tree, whose top-level directory is the VOB storage

directory. The directory contains files and subdirectories:

Product Command Type

ClearCase data structure

ClearCase LT data structure

Attache data structure

.pid A one-line text file that lists the process-ID of the associated vob_server
process, currently running on the host where the VOB storage directory

resides.

admin A directory that contains administrative data related to the amount of disk

space a VOB and its derived objects are using. Use space –vob to list this

data.

vob_oid A one-line text file that lists the VOB’s universal unique identifier(UUID).

(OID means "object identifier".) This UUID is the same for all the replicas

in a VOB family (ClearCase MultiSite). This file is also stored in the VOB’s

database; do not edit it.

replica_uuid A one-line text file that lists the replica UUID of this particular replica of

the VOB. Different replicas created with ClearCase MultiSite have

different identifiers.

identity.sd Binary data file that contains the security descriptor for the VOB storage

directory. This security descriptor includes a Windows ACL that assigns

full control (all permissions) to the VOB owner and also to the group ID

ClearCase (the ClearCase or ClearCase LT servers run under this user ID).
966 ClearCase Reference Manual

VOB
The sections that follow discuss the more significant files and subdirectories in a VOB.

VOB Storage Pools

Each VOB storage directory is created with default storage pools, located within the directories

listed above.

For more information on storage pools, see the mkvob, mkpool, and chpool reference pages.

VOB Database

The VOB database subdirectory, db, contains these files:

groups.sd List of supplementary groups for the VOB.

s A subdirectory in which all of the VOB’s local source storage pools reside.

d A subdirectory in which all of the VOB’s local derived object storage pools

reside (dynamic views only).

c A subdirectory in which all of the VOB’s local cleartext storage pools

reside.

See VOB Storage Pools below.

db A subdirectory containing the files that implement the VOB’s embedded

database. See VOB Database on page 967.

vob_server.conf A text file that records configuration information for the vob_server; read

at vob_server startup. This file contains the setting for deferred deletion

of source containers; deferred deletion is activated if you have turned on

semi-live backup. See the vob_snapshot_setup reference page for more

information.

s\sdft Default source storage pool, for permanent storage of versions’ file system

data.

c\cdft Default cleartext storage pool, for temporary storage of the cleartext versions

currently in use (for example, reconstructed versions of text_file elements).

d\ddft Default derived object storage pool, for storage of promoted/shared derived

objects (dynamic views only).

vob_db.dbd A compiled database schema, used by embedded DBMS routines

for database access. The schema describes the structure of the

VOB database. The mkvob command creates this file by copying

ccase-home-dir\bin\vob_db.dbd.

vob_db_schema_version A schema version file, used by embedded DBMS routines to

verify that the compiled schema file is at the expected revision

level. The mkvob command creates this file by copying

ccase-home-dir\bin\vob_db_schema_version.
ClearCase Reference Pages 967

VOB
CAUTION: Do not move the VOB database directory (db) to another host. Two server processes,

db_server and vobrpc_server access a VOB’s database. These two server processes and the VOB

database directory must be on the host where the VOB storage directory physically resides.

Moving the VOB database directory can negatively affect VOB performance and the integrity of

the VOB database by recovering from interrupted transactions.

BACKUP DATABASE SUBDIRECTORIES. reformatvob does its work by creating a new VOB database.

By default, it preserves the old database by moving it aside to a date-stamped name. Thus, a VOB

storage directory may contain old (and usually unneeded) VOB database subdirectories, with

names like db.0318. If reformatvob is interrupted, it may leave a partially reformatted database

with the name db.reformat.

LOGICAL DATA STRUCTURES

From the user’s standpoint, a VOB contains file system objects and metadata. Some metadata is

stored in the form of objects; other metadata is stored as records or annotations attached to

objects.

The VOB Object and Replica Objects

Each VOB database contains a VOB object that represents the VOB itself. The VOB object

provides a handle for certain operations. For example:

• Listing event records of operations that affect the entire VOB (see the lshistory command).

This includes creation and deletion of type objects, removal of elements, and so on.

• Placing a lock on the entire VOB (see the lock command).

Using ClearCase MultiSite, you can create any number of replicas of a VOB at different sites.

Each VOB replica is represented in the VOB database by a replica object.

vob_db.d0n
vob_db.k0n

Files in which the database’s contents are stored.

vista.* Database control files and transaction logs.

db_dumper A copy of ccase-home-dir\bin\db_dumper.exe. This is an

executable program, invoked during the reformatvob
command’s dump phase. Each VOB gets its own copy of

db_dumper so that it can always dump itself to ASCII files.

(Typically, it needs to be dumped after a newer release of

ClearCase or ClearCase LT has already been installed on the

host; with this strategy, the ccase-home-dir\bin\db_dumper
program in the newer release need not know about the older

VOB database format.)

vob_db.str_file Database string file that stores long strings.
968 ClearCase Reference Manual

VOB
File System Objects

A VOB database keeps track of users’ file system objects using the following database objects:

Type Objects

A VOB can store several kinds of type objects:

Instances of Type Objects

After a type object is created, users can create any number of instances of the type.

File element An object with a version tree, consisting of branches and versions. Each

version of a file element has file system data: a sequence of bytes.

Certain element types constrain the nature of the versions’ file

system data; for example, versions of text_file elements must contain

text lines, not binary data.

Directory element An object with a version tree, consisting of branches and versions. Each

version of a directory element catalogs a set of file elements, directory

elements (subdirectories), and VOB symbolic links. An extra name

for an element that is already entered in some other directory version

is termed a VOB hard link.

VOB symbolic link An object that contains a text string.

Element type Defines a class of elements within the VOB.

Branch type Defines a set of like-named branches in some or all of the VOB’s elements.

Label type Defines a mnemonic name that can be attached to a set of versions, thus

defining a configuration of the VOB’s elements.

Attribute type Defines a name to be used in attaching name/value pairs to

VOB-database objects.

Hyperlink type Defines a class of logical arrow that can be used to connect pairs of

objects.

Trigger type Defines a monitor on operations that modify the VOB’s objects.

Element Each file or directory element in a VOB is created by mkelem or mkdir as

an instance of an existing element type in that VOB.

Branch Each branch in an element is created by mkbranch as an instance of an

existing branch type in that element’s VOB.

Version label The mklabel command annotates a version with a version label, by

creating an instance of an existing label type.

Attribute The mkattr command annotates a version, branch, element, VOB

symbolic link, or hyperlink with an attribute, by creating an instance of

an existing attribute type. Each instance of an attribute has a particular

value—a string, an integer, and so on.
ClearCase Reference Pages 969

VOB
ClearCase Dynamic Views Only—Derived Objects

A VOB’s database stores information on all the shareable derived objects (DOs) created at

pathnames within the VOB. For each DO, the database catalogs this information:

• The directory element, along with the location of the DO within the directory (for example,

util.o or proj\util.o)

• The DO’s unique identifier, its DO-ID

• Shopping information for the DO

DOs are accessible only through a dynamic view. For more information, see Derived Objects and
Configuration Records in Building Software with ClearCase.

ClearCase Dynamic Views Only—Configuration Records

A VOB’s database stores the configuration records (CRs) associated with shareable derived

objects and DO versions (derived objects that have been checked in as versions of elements).

Each CR documents a single target-rebuild, which typically involves execution of one build

script. For more information, see Derived Objects and Configuration Records in Building Software
with ClearCase.

Event Records

Nearly every operation that modifies the VOB creates an event record in the VOB database. See

the events_ccase reference page for more information.

The vob_scrubber utility deletes unneeded event records. By default, the scheduler runs

vob_scrubber periodically. See the schedule reference page for information on describing and

changing scheduled jobs.

The VOB Root and lost+found Directories

When it is first created by the mkvob command, a VOB appears to users as an almost-empty

directory tree. It contains no files, and only two directories: the VOB root (ClearCase,

ClearCase LT, and Attache) and lost+found (ClearCase and Attache only).

VOB Root Directory — mkvob executes a mkdir command to create a directory element, the

VOB root directory, in the new VOB. Mounting a VOB makes its root directory accessible at the

VOB-tag (VOB mount point) pathname.

Hyperlink The mkhlink command creates a hyperlink object, which is an instance

of an existing hyperlink type. A typical hyperlink connects two objects,

in the same VOB or in different VOBs.

Trigger The mktrigger command creates a trigger object, which is an instance of

an existing trigger type. The trigger becomes attached to one or more

elements.
970 ClearCase Reference Manual

VOB
For most purposes, the VOB root directory is like any other directory element you subsequently

create within the VOB. But there are differences in certain contexts:

• The file-name pattern in a config spec rule cannot be a relative pathname that begins at a

VOB root directory. A relative pathname must start below a VOB root directory. See the

config_spec reference page for details.

• You must use a special syntax for a version-extended name that specifies a location in the

version tree of a VOB’s root directory:

dir \src\proj@@\main\3 (invalid if directory ’proj’ is VOB root)

dir \src\proj\.@@\main\3 (valid)

The VOB root directory is assigned to the three default storage pools. All newly created file and

directory elements are assigned to the default storage pools until new pools are created and

assigned.

The lost+found Directory — mkvob also creates a special directory element, lost+found, as a

subdirectory of the VOB root directory. (Only dynamic views can access lost+found.) ClearCase

and Attache place elements that are no longer cataloged in any directory version in this directory.

This occurs when you do any of the following:

• Create new elements, and then uncheckout the directory in which they were created

• Delete the last reference to an element with the rmname command

• Delete the last reference to an element by deleting a directory version with the rmver,
rmbranch, or rmelem command

When an element is moved to lost+found, it gets a name of the form

element_leaf_name.id-number

The id-number is a unique hexadecimal number, such as

41a00000bcaa11caacd0080069021c7

The lost+found directory has several unique properties:

• It cannot be checked out.

• It can be modified.

• No branches can be created within it.

To move an element from the lost+found directory to another directory within the VOB, use the

cleartool mv command. To move an element from the lost+found directory to another VOB, use

the relocate command.

To conserve disk space, periodically clean up the lost+found directory:
ClearCase Reference Pages 971

VOB
1. If you need an element in lost+found, catalog it in a versioned directory using mv.

2. Use rmelem command to remove unneeded elements.

VOB TEXT MODES

Each VOB can operate in either of two modes:

• Standard Mode — In this mode, no special provision is made in the VOB for correctly

reporting the sizes of text files stored in views created with mkview -tmode msdos. All

VOBs are initially created in this mode.

• MS-DOS-Enabled Mode — In this mode, the VOB database tracks the number of text lines

in each version of each text file. A utility program, msdostext_mode.exe, places a VOB in

this mode (or restores it to standard mode).

See Administering ClearCase for detailed information on MS-DOS text mode.

VOB REGISTRY AND VOB ACTIVATION

Each VOB is registered in the network wide storage registry, as described in the registry_ccase
reference page. The mount command activates a registered VOB by mounting it as a type-MVFS

file system (ClearCase and Attache dynamic views only). See the (cleartool) mount reference

page for details.

SEE ALSO

chpool, config_spec, events_ccase, lsvob, mkvob, mkdir, mkelem, mkpool, mount,
mvfsstorage, protectvob, registry_ccase, schedule, scrubber, view, vob_scrubber
972 ClearCase Reference Manual

vob_restore
vob_restore
Restores a VOB from backup media.

APPLICABILITY

SYNOPSIS
ccase-home-dir\etc\vob_restore [–restart restart-path] vob-tag

DESCRIPTION

The vob_restore command restore a damaged VOB. It prompts for all required input and

displays explanatory text at each step. If you quit vob_restore before it completes, you can use

the –restart option to resume VOB restoration at the point where you stopped it.

NOTE: We strongly recommended that you do not retrieve VOB storage from backup until

prompted to do so by vob_restore. If you get the VOB storage directory from backup media

before running vob_restore, you must either unregister the VOB before retrieving the backup or

stop ClearCase or ClearCase LT before retrieval and restart it afterward. If you wait until

prompted, vob_restore performs the necessary steps, safeguarding the integrity of your restored

VOB.

Restoring a VOB from Separate Database Snapshot and VOB Storage Directories

If the VOB to be restored is backed up using the scenario described in vob_snapshot, the most

comprehensive recovery operation requires you to do the following:

• Retrieve a damaged VOB’s storage directory from backup media and load it into a

temporary disk storage area

• Retrieve the damaged VOB’s database from backup media and/or point to the on-disk

snapshot location

In this case, vob_restore does all of the following:

• Runs the db_check utility on the database snapshot, if the snapshot was taken from an

unlocked VOB and the db_check was not run at snapshot time

• Copies the snapshot directory to a temporary storage location, overwriting the VOB

database that was (most likely) restored from the VOB storage directory backup

Product Command Type

ClearCase command

ClearCase LT command

Attache command
ClearCase Reference Pages 973

vob_restore
• Unregisters the VOB from the local host’s network region

• Stops ClearCase or ClearCase LT on the local host

• Prompts you to move or remove the VOB storage at the original storage location, if it exists

• Copies the restored VOB storage directory from its temporary storage location to the VOB’s

registered location

• (Optional) Runs checkvob to find and fix inconsistencies between the data containers in

VOB storage pools and the VOB database

• (ClearCase MultiSite only) If the VOB is replicated, indicates that you should run

restorereplica

If You Are Not Restoring a VOB Database Snapshot

If the damaged VOB is not currently being processed by vob_snapshot, do not supply a snapshot

directory when prompted for one. A VOB database was backed up as part of the VOB storage

directory backup, and you will restore the entire VOB as a single unit.

In this case, if the VOB was backed up while unlocked, vob_restore forces a potentially

time-consuming db_check operation on the VOB database.

If There Is No Need to Preserve the Damaged Storage Area

If the VOB storage directory is irretrievably missing or damaged, or if you do not have sufficient

disk space for two copies of the VOB storage directory, you can copy the VOB storage backup

directly to the VOB’s registered storage location. Do not supply a temporary storage location

when prompted for one.

PERMISSIONS AND LOCKS

Permissions Checking: You must have the appropriate permissions to stop and start ClearCase or

ClearCase LT (typically, you must be administrator or a member of the Administrators group) to

execute this command.

Locks: If the VOB is still accessible, lock it to prevent any further changes. vob_restore leaves the

VOB locked when it completes.

OPTIONS AND ARGUMENTS

If you do not specify all required command line arguments, vob_restore prompts for input.

SPECIFYING THE VOB. Default: None. You must supply a VOB-tag. vob_restore prompts for all

additional information.

vob-tag
The VOB’s VOB-tag, as specified in mkvob or mktag –vob.
974 ClearCase Reference Manual

vob_restore
SPECIFYING A RESTART FILE. Default: None. If you omit this option, vob_restore does not attempt

to find a restart-state file that may have resulted from an earlier, aborted vob_restore invocation

on the same VOB-tag.

–restart restart-path
Specifies the pathname of the restart file saved during a previous invocation. Always

record the restart-path that is reported by vob_restore when you stop VOB restoration

before it has completed.

SAMPLE RECOVER PROCEDURE

This sample recover procedure merges a VOB database snapshot and a VOB storage directory

backup to restore the damaged VOB \vob_src.

1. Log in to the VOB host as a member of the ClearCase group if you use ClearCase, or log into

the ClearCase LT server host as the local administrator if you use ClearCase LT.

2. As a precaution, lock the VOB, so that no further changes can be made. Note that read access

can continue if the VOB is in a readable state (damaged database only, for example).

cleartool lock –c "vob recover required" vob:\vob_src

3. Retrieve the most recent VOB database snapshot and storage directory from backup media.

a. Retrieve the most recent VOB database snapshot directory,

\\saturn\bigdisk\snaps\vob_src.

NOTE: The most recent snapshot may still be on disk, or it may be on backup media.

b. Use cleartool lsvob \vob_src to identify the storage directory pathname:

cleartool lsvob \vob_src
\vob_src \\io\vobstore\vob_src.vbs

c. Retrieve the VOB storage directory from backup media, and place it in temporary

storage location \\io\vobstore\temp.vbs. (If no users are reading the damaged VOB,

and it is presumed destroyed, you may choose to restore the VOB storage backup

directly to its registered location, rather than to a temporary area.)

4. Run vob_restore to merge the VOB database and storage directory:

ccase-home-dir\etc\vob_restore \vob_src

vob_restore prompts for all necessary input and displays explanatory text.

5. Restart ClearCase or ClearCase LT on the local host.

6. Re-register \vob_src:

cleartool mktag –vob –tag \vob_src \\io\vobstore\vob_src.vbs

cleartool register –vob \\io\vobstore\vob_src.vbs
ClearCase Reference Pages 975

vob_restore
EXAMPLES

• Restore VOB \vob_src. To complete the recovery, run checkvob to find and fix

inconsistencies between the restored VOB database and the restored VOB storage pools.

vob_restore prompts for all required information.

NOTE: In this example, as is recommended, the restored data is not retrieved from backup

media before running vob_restore.

cd c:\Program Files\Rational\ClearCase\etc

vob_restore \vob_src

SEE ALSO

checkvob, vob_snapshot, vob_snapshot_setup
976 ClearCase Reference Manual

vob_scrubber
vob_scrubber
Remove event records and oplog entries from VOB database

APPLICABILITY

SYNOPSIS
vob_scrubber [–stats_only] [–long] [–nlog]

{ –lvobs | vob-storage-dir-pname ... }

DESCRIPTION

The vob_scrubber program deletes old event records and MultiSite oplog entries from a VOB

database. This retards VOB growth by logically deleting the items, freeing space in the VOB

database for storage of new event records and oplog entries. (Physical deletion requires

processing with the reformatvob command.)

vob_scrubber does not need to run in a view and does not require the VOB it processes to be

mounted.

CLEARCASE AND ClearCase LT EVENTS

ClearCase and ClearCase LT create a meta-data item called an event record in a VOB database

almost every time it modifies the database—for example, to record the checkin of a new version,

the attaching of an attribute to an element, or the creation of a new branch type. Each event

record consumes 300–400 bytes. Some event records, like those for element and version creation,

are valuable indefinitely; however, many minor event records are not. For example, the removal

of a version label from a collection of versions creates a minor event record for each affected

object. Over time, such minor event records occupy more space as they become less useful. (After

a month or a year, no one is likely to care who removed the version labels, especially if the label

type itself has also been deleted.)

Event Record Scrubbing

vob_scrubber marks certain event records as logically deleted. As with any metadata removal,

the deletion does not physically reduce the amount of disk space used by the VOB database; it

merely frees up space in the database, making it available for future use. To actually reduce the

size of the database, you must run reformatvob, which discards the logically deleted data as it

reconstructs the VOB database. Thus, regular use of vob_scrubber minimizes VOB database

growth, but does not recover disk space.

Product Command Type

ClearCase command

ClearCase LT command
ClearCase Reference Pages 977

vob_scrubber
What Event Records Are Deleted

These obsolete event records are always deleted, regardless of scrubbing parameters:

• Creation event records for derived objects.

• Event records whose operations are mkattr, mkhlink, mklabel, mktrigger, rmlabel,
rmhlink, rmattr, or rmtrigger (if the type object associated with the event has been deleted

with rmtype).

These event records are never deleted:

• The most recent 1000 event records physically added to the VOB (regardless of logical event

time). These are needed by views for cache invalidation.

• The most recent lock event record (for an object that is locked).

• Event records for operations not annotated with an S in Table 4 in the events_ccase
reference page.

All other event records are preserved or deleted according to the configuration file specifications

described in VOB-SPECIFIC EVENT-RECORD SCRUBBING PARAMETERS.

MULTISITE OPLOG ENTRIES

In each replicated VOB, cleartool creates oplog (operation log) entries, which store all the

information required to repeat the changes in some other replica of the VOB.

Each oplog entry logically includes this information:

• The identity of the replica where the change originally took place.

• The VOB-database-level change—for example, creation of a new element, checkin of a new

version, attaching of an attribute, and so on.

• The storage-pool-level change, if any—for example, the contents of a new version.

• The event record generated for the change.

• An integer sequence number—1 for the first change originating at a particular replica, 2 for

the next change, and so on. This is the epoch number of the oplog entry.

Like event records, oplog entries are stored in the VOB database and can be scrubbed.

WARNING: Oplog entries play an essential role in the MultiSite replica-synchronization scheme.

It is extremely important that oplog entries be retained until they are no longer needed for

synchronization. For this reason, the standard retention period for oplog entries is infinite (oplog
–keep forever).
978 ClearCase Reference Manual

vob_scrubber
MULTISITE EXPORT_SYNC ENTRIES

When you export an update packet from a replicated VOB, MultiSite creates one export_sync

record for each target replica. These records are stored in the VOB database and are used by the

recoverpacket command to reset a replica’s epoch matrix. You can scrub these records, but

scrubbing old records limits the date range over which recoverpacket can operate.

NOTE: export_sync records are distinct from exportsync events, which are listed by the lshistory
command and graphical History Browser. You can scrub export_sync records without losing

export history for a replica.

AUTOMATIC SCRUBBING

By default, the scheduler runs vob_scrubber periodically. See the schedule reference page for

information on describing and changing scheduled jobs. A configuration file,

vob_scrubber_params, provides control over which event records and oplog entries are deleted.

You can run vob_scrubber manually as needed.

OPTIONS AND ARGUMENTS

REPORT FORMAT. Default: Event statistics are listed briefly, categorized by kind of object. For

example, all event records for branch objects are grouped.

–long
Produces a detailed report of the event statistics, categorized by kind of object, kind of

event, and kind of operation.

REPORT DESTINATION. Default: The report is sent to the standard log file,

ccase-home-dir\var\log\vob_scrubber_log.

–nlog
Sends the report to stdout instead of the log file.

DELETION CONTROL. Default: Delete event/oplog records and report statistics on the number of

objects, the number of records before deletion, the number of records deleted, and the number of

records after deletion.

–stats_only
Suppresses deletion of records; the report includes statistics on the number of objects,

event records, and oplog entries in the VOB.

VOBS TO BE PROCESSED. Default: None.

–lvobs
Scrubs event records and oplog entries from all mounted VOBs that reside on the local

host.

vob-storage-dir-pname
Scrubs the VOB whose storage directory is at the specified pathname.
ClearCase Reference Pages 979

vob_scrubber
VOB-SPECIFIC EVENT-RECORD SCRUBBING PARAMETERS

A host-wide configuration file controls the operation of vob_scrubber; each VOB can have its

own configuration file, which overrides the systemwide settings:

The event-scrubbing configuration file is a text file. A line that begins with a number sign (#) is a

comment. All other lines control how one kind of event is to be scrubbed—how long to keep the

most recent one, and how long to keep other events of that kind:

event operation –keep_all { n | forever } [–keep_last { n | forever }]

These are the components of an event-scrubbing control line:

event
A keyword that indicates that the remaining components of the control line apply to the

event records created by a particular CM operation. (See the events_ccase reference page

for a list of operations and the associated object to which event records are attached.)

operation
Kind of event, specified by the operation that creates the event record. (See the

events_ccase reference page for a list of operations and the associated objects to which

event records are attached.)

–keep_all { n | forever }

For each object: keep event records created by the specified operation for at least n days,

or forever. If –keep_last is also specified, this period applies to all but the most recent

such event; otherwise, the period applies to all such events, including the most recent

one.

–keep_last { n | forever }

(Optional) For each object: keep the most recent event record created by the operation

for at least n days, or forever. The keep_last period must be at least as long as the

keep_all period. The meaning of “most recent event” depends on the operation; see the

events_ccase reference page for a list of operations and the associated objects to which

event records are attached.

OPERATION LOG AND EXPORT RECORD SCRUBBING

The vob_scrubber_params files also control scrubbing of oplog entries and export records. The

syntax for these lines follows. (Do not begin these lines with the keyword event.)

oplog –keep { n | forever }

Specifies the number of days an oplog entry is kept in the VOB database. You must

preserve oplog entries long enough to guarantee delivery of synchronization updates

based on them. The default is forever.

Host-wide config file ccase-home-dir\config\vob\vob_scrubber_params
Per-VOB config file vob-storage-dir-pname\vob_scrubber_params
980 ClearCase Reference Manual

vob_scrubber
export_sync –keep { n | forever }

Specifies number of days an export synchronization record is kept in the VOB database.

By default, this line is not included in the vob_scrubber_params file, and the records are

scrubbed with the same frequency as the oplog entries.

SCRUBBING DEFAULTS

If the configuration file includes no control line for a particular operation, all event records

created by the operation are kept forever. Therefore, an empty configuration file preserves all

event records (except obsolete ones, which are always discarded; see What Event Records Are
Deleted). The calculated times are always compared to the logical event creation time (as shown

by lshistory), rather than the physical event creation time. These can differ if the event records

were created by an exporter, such as clearexport_pvcs.

If the configuration file includes no –oplog control line, then oplog entries are kept forever.

EXAMPLES

• For unlock events in all VOBs on the local host: keep the event record if the event occurred

within the past 7 days (but keep an event that occurred within the past 30 days if it is the

most recent event on a particular object). Otherwise, delete the event record.

In ccase-home-dir\config\vob\vob_scrubber_params:

event unlock -keep_all 7 -keep_last 30

• In the VOB replica whose storage directory is G:\vobstore\tromba.vbs, retain oplog entries

for a year.

In G:\vobstore\tromba.vbs\vob_scrubber_params:

oplog -keep 365

FILES

ccase-home-dir\config\vob\vob_scrubber_params
ccase-home-dir\var\log\vob_scrubber_log

SEE ALSO

reformatvob, lshistory, events_ccase, scrubber, schedule
ClearCase Reference Pages 981

vob_server
vob_server
Server program for VOB storage pool access

APPLICABILITY

SYNOPSIS
Invoked as needed by the albd_server program

DESCRIPTION

For each VOB, a long-lived vob_server process runs on the VOB host, with the user-ID of the

VOB owner (see protectvob). This process maintains the VOB’s storage pools in response to

requests from client processes. This includes creating, deleting, and controlling the

Windows-level permissions of the pools’ data containers.

The vob_server is the only process that ever creates or deletes data containers; the VOB owner is

the only user who can modify data containers and storage pools. These severe restrictions protect

VOB data against careless or malicious users.

A vob_server process is started as needed by albd_server. It remains active until the operating

system is restarted or the VOB is deleted with the rmvob command

CONFIGURATION FILE

The configuration file for the vob_server is named vob_server.conf and is stored in the VOB

storage directory. vob_server.conf is a text file and is read when the vob_server starts up. This

file contains the setting for deferred deletion of source containers. Deferred deletion is activated

if you have enabled VOB database snapshot activity for the VOB with the vob_snapshot_setup
utility.

Deferred Source Container Deletion

Deferred deletion ensures that the source pool will contain all needed containers when a backup

program archives an active VOB. When a container is replaced by new version data (for example,

during a checkin), the new container is created and the client requests the vob_server to remove

the old container. If deferred deletion is deactivated, the container is immediately removed. If

deferred deletion is enabled, the old container is added to a list of pending deletions, and it is

removed in 30 minutes. Keeping source data containers for 30 minutes increases disk space

requirements. The increase can be substantial during any 30-minute interval of heavy VOB

checkin activity.

Product Command Type

ClearCase command

ClearCase LT command
982 ClearCase Reference Manual

vob_server
When checkvob examines source pools, it reports containers on the deferred deletion list.

The deferred deletion list is written every five minutes to the file delete_list.db in the VOB

storage directory. To force deletion of all containers on the deferred list:

1. Edit vob_server.conf and deactivate deferred deletion.

2. Wait five minutes.

3. Edit vob_server.conf and reenable deferred deletion.

ERROR LOG

The vob_server process sends warning and error messages to the event log.

SEE ALSO

albd_server, checkvob, db_server, vob, vobrpc_server
ClearCase Reference Pages 983

vob_snapshot
vob_snapshot
Copies the VOB databases of all local VOBs or replicas configured for database snapshot

APPLICABILITY

SYNOPSIS
ccase-home-dir\etc\vob_snapshot

DESCRIPTION

The vob_snapshot command makes an on-disk copy of a local, locked VOB database. Using this

command reduces the amount of time a VOB database needs to be locked when you back up the

VOB. Later, as part of your standard system backup procedure, the VOB storage directory

(minus the VOB database directory) and the VOB database snapshot can be backed up without

locking the VOB. Because the database snapshot and VOB storage pool backups occur at

different times, they are likely to be slightly out of sync. To correct this skew, the checkvob utility

resynchronizes the VOB database and storage pools when you run vob_restore.

By default, the scheduler runs vob_snapshot periodically. See the schedule reference page for

information on describing and changing scheduled jobs. If no locally stored VOBs are configured

for database snapshot, vob_snapshot exits silently.

A local VOB’s database is copied only if snapshot parameters have been applied to it with the

vob_snapshot_setup utility. See Per VOB (or Replica) Snapshot Parameters.

Per VOB (or Replica) Snapshot Parameters

When vob_snapshot runs on a VOB host, it checks each locally stored VOB for the existence of

a multipart string attribute that specifies snapshot parameters. An administrator uses the

vob_snapshot_setup utility to apply the vob_snapshot_parameters attribute to each VOB or

replica for which snapshots will be taken. The attribute string’s individual components specify

the following:

• Where to put the VOB database snapshot

A disk location that will store the snapshot. Typically, this location gets backed up later

(along with the VOB storage directory as part of normal backup operations), and it is

overwritten by the next snapshot.

Product Command Type

ClearCase command

ClearCase LT command

Attache command
984 ClearCase Reference Manual

vob_snapshot
• Whether to run db_check on the VOB database snapshot

The db_check utility performs fundamental database consistency and integrity checks.

(Later, at recover time, checkvob may examine the VOB database looking for ClearCase or

ClearCase LT anomalies.) The db_check pass occurs after all snapshots are complete on the

local host.

See vob_snapshot_setup for more information on setting these parameters for a particular VOB.

Database Snapshot Details

When vob_snapshot encounters a VOB that is configured for database snapshot, it performs the

following steps (logging messages in the ccase-home-dir\var\log\snap_log file along the way):

1. Verifies that the snapshot target directory exists and is writable.

2. Locks the VOB. If vob_snapshot cannot lock the VOB, it proceeds with the snapshot, but logs

the snapshot’s status as questionable.

3. Checks the VOB’s specified snapshot target directory for sufficient disk space.

4. Creates a subdirectory whose name is the VOB’s replica UUID. If a directory with that name

already exists, remove it first (that is, remove the previous snapshot).

5. Copies the VOB database directory tree (using xcopy) to the subdirectory created in Step #3.

6. Unlocks the VOB.

7. Repeats Step #1 through Step #6 for the next VOB.

8. Runs db_check on all VOBs configured for this check.

NOTE: If the log reveals a failed db_check, check the log for obvious errors. If you cannot

resolve the problem, contact Rational Technical Support.

If You Do Not Use vob_snapshot

You must lock the VOB and back up the entire VOB storage directory. Such a backup avoids the

issue of skew between VOB database snapshot and VOB storage pools (which are typically

backed up some time after the snapshot), but it requires that the VOB remain locked during the

entire backup operation.

PERMISSIONS AND LOCKS

Permissions Checking: You must have the appropriate permissions to lock the VOB. See the

permissions reference page.

Locks: The VOB must be locked to guarantee the integrity of a database snapshot. If

vob_snapshot cannot lock the VOB (because it is run with insufficient permissions, or another

user locked the VOB), it proceeds with the copy operation but logs the snapshot’s status as

"questionable." This status is upgraded to "successful" if the optional post-snapshot db_check
pass succeeds.
ClearCase Reference Pages 985

vob_snapshot
OPTIONS AND ARGUMENTS

None.

EXAMPLE VOB BACKUP AND RECOVER SCENARIO USING vob_snapshot

This sample backup/recover scenario uses the utilities vob_snapshot_setup, vob_snapshot, and

vob_restore.

1. Log in to the VOB host.

2. Configure the VOB \vob_src for daily database snapshots:

"c:\Program Files\Rational\ClearCase\etc\vob_snapshot_setup" modparam ^
–dbcheck yes –snap_to \\saturn\bigdisk\snaps\vob_src \vob_src

The VOB database is copied to a subdirectory of the –snap_to directory you specify. The

subdirectory name matches the VOB’s replica UUID (which you can display with

vob_snapshot_setup lsvob –long). In this example, the snapshot is stored in

...\snaps\vob_src\replica-uuid.

NOTE: If run without command line options, vob_snapshot_setup modparam prompts for

all necessary input and displays explanatory text.

3. Confirm that \vob_src is in the local host’s snapshot list:

"c:\Program Files\Rational\ClearCase\etc\vob_snapshot_setup" lsvob

\vob_src
...

4. Make sure the –snap_to directory \\saturn\bigdisk\snaps\vob_src and the VOB storage

directory are saved by your normal backup routine.

NOTE: Although \vob_src must be locked at database snapshot time, it need not be locked

when your normal backup routine saves the snapshot and VOB storage directory.

5. Let VOB \vob_src be locked and its database copied to disk by the standard vob_snapshot
job run by the scheduler. Also, let your backup procedure capture the VOB storage directory

and VOB database snapshot.

A common routine is to run vob_snapshot early in the morning or at lunch time, when the

VOB lock is least likely to interfere with nightly builds, and to back up VOB storage

directories at night.

(End backup scenario)

6. \vob_src fails (corrupt or lost database, corrupt or lost storage pools, and so on).

(Begin recover scenario)

7. Log in to the VOB host as a user with permission to lock the VOB and stop and start

ClearCase.
986 ClearCase Reference Manual

vob_snapshot
8. As a precaution, lock the VOB, so that no further changes can be made. Note that read access

can continue if the VOB is in a readable state (damaged database only, for example).

cmd-context lock –c "vob recover required" vob:\vob_src

9. Retrieve the most recent VOB database snapshot and storage directory from backup media.

a. Retrieve the most recent VOB database snapshot directory,

\\saturn\bigdisk\snaps\vob_src.

NOTE: The most recent snapshot may still be on disk, or it may be on backup media.

b. Use lsvob \vob_src to identify the storage directory pathname:

c. Retrieve the VOB storage directory from backup media, and place it in temporary

storage location \\io\vobstore\temp.vbs. (If no users are reading the damaged VOB,

and it is presumed destroyed, you may choose to restore the VOB storage backup

directly to its registered location, rather than to a temporary area.)

10. Run vob_restore to merge the VOB database and storage directory:

"c:\Program Files\Rational\ClearCase\etc\vob_restore" \vob_src

NOTE: If run without command line options, vob_restore prompts for all necessary input and

displays explanatory text.

vob_restore does the following:

• Moves the snapshot directory to a temporary storage location, overwriting the VOB

database that was (most likely) restored from the VOB storage directory backup

• Unregisters \vob_src from the local host’s network region

• Stops ClearCase or ClearCase LT on the local host

• Prompts you to move or remove the VOB storage at the original storage location, if it

exists

• Copies the restored VOB storage directory from its temporary storage location to the

VOB’s registered location

• (Optional) Runs checkvob to find and fix inconsistencies between the data containers in

VOB storage pools and the VOB database

11. Restart ClearCase or ClearCase LT on the local host.

12. Re-register \vob_src:

cmd-context mktag –vob –tag \vob_src \\io\vobstore\vob_src.vbs

cmd-context lsvob \vob_src
\vob_src \\io\vobstore\vob_src.vbs
ClearCase Reference Pages 987

vob_snapshot
cmd-context register –vob \\io\vobstore\vob_src.vbs

End recover scenario

See also vob_snapshot_setup and vob_restore.

THE SNAPSHOT LOG

vob_snapshot’s operation is recorded in the log file ccase-home-dir\var\log\snap_log. Here are

some common error and status messages from snap_log:

Successful snapshot messages:

NOTE: VobTag: \vob_src
NOTE: Replica UUID: 0b9ccb24.8dc211cf.af59.00:01:80:73:db:6f
NOTE: Family UUID: 0b9ccb20.8dc211cf.af59.00:01:80:73:db:6f
NOTE: Dbcheck succeeded
NOTE: SNAPSHOT COMPLETED SUCCESSFULLY

The following messages may be generated when vob_snapshot runs on an unlocked VOB. If the

database check passes, the snapshot is upgraded from “questionable” to “successful.” You

should always lock a VOB before copying its VOB database with vob_snapshot.

ERROR: Could not lock the replica for the copy. Copied anyway.
ERROR: The snap was done without the vob lock in place.

ERROR: SNAPSHOT QUESTIONABLE
NOTE : The snap was done unlocked but the database checked ok

The following error occurs if the user account under which vob_snapshot executes does not have

permission to overwrite the directory supplied as a –snap_to argument to vob_snapshot_setup:

ERROR: The snap_to directory for vob \vob_src is not writable

EXAMPLES

• List all VOBs on the local host’s snapshot list (VOBs to which snapshot parameters have

been applied with vob_snapshot_setup modparam). Then, take VOB database snapshots

for all VOBs in the list.

cd "c:\Program Files\Rational\ClearCase\etc"

vob_snapshot_setup lsvob

\vob_src
\vob_lib

vob_snapshot

• Add local VOB \vob_prj to the current host’s snapshot list. Then, take VOB database

snapshots for all VOBs in the list.

cd "c:\Program Files\Rational\ClearCase\etc"
988 ClearCase Reference Manual

vob_snapshot
vob_snapshot_setup modparam –dbcheck yes –snap_to \\saturn\bigdisk\snaps\proj1
\vob_prj1

vob_snapshot

FILES

ccase-home-dir\var\log\snap_log

WINDOWS NT REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\snapshot

SEE ALSO

checkvob, schedule, vob_restore, vob_snapshot_setup
ClearCase Reference Pages 989

vob_snapshot_setup
vob_snapshot_setup
Sets or displays VOB database snapshot parameters

APPLICABILITY

SYNOPSIS

• List local VOBs that are currently processed by vob_snapshot:

ccase-home-dir\etc\vob_snapshot_setup lsvob [–short | –long] [vob-tag ...]

• Configure a VOB for vob_snapshot processing:

ccase-home-dir\etc\vob_snapshot_setup modparam –snap_to snap-dir-pname
{ –dbcheck yes |–dbcheck no } vob-tag

• Remove a VOB from the database snapshot list:

ccase-home-dir\etc\vob_snapshot_setup rmparam vob-tag

DESCRIPTION

Use vob_snapshot_setup to control VOB database snapshot activity on each VOB host. By

default, the scheduler runs vob_snapshot periodically. When vob_snapshot runs on a VOB

host, it checks each locally stored VOB for the existence of a multipart string attribute that

specifies snapshot parameters. A VOB’s database is copied by vob_snapshot only if this attribute

has been applied to the VOB with vob_snapshot_setup.

Use vob_snapshot_setup lsvob to list the local VOBs currently processed by vob_snapshot and,

with –long, to display the snapshot parameters for each VOB in the list.

Use vob_snapshot_setup modparam to add a VOB to the database snapshot list, or to change

snapshot parameters for a VOB already on the list. (You cannot modify individual parameters

with modparam, but must replace them all.)

Use vob_snapshot_setup rmparam to remove a VOB from the snapshot list.

See also vob_snapshot and vob_restore.

Product Command Type

ClearCase command

ClearCase LT command

Attache command
990 ClearCase Reference Manual

vob_snapshot_setup
WARNING: If you are using a homegrown or third-party type manager, code that implements the

get_cont_info method must be added to the type manager, or elements managed by the type

manager cannot be processed by checkvob at vob_restore time.

Setting VOB Snapshot Parameters

An administrator uses vob_snapshot_setup modparam to apply the following snapshot

parameters to each VOB or replica for which database snapshots are to be taken:

These parameters are combined to form a single string attribute of type

vob_snapshot_parameters, which vob_snapshot_setup attaches to the VOB.

Here is how these parameters may appear in a vob_snapshot_setup lsvob –long listing:

VobTag: \vob_src
...
Dbcheck Enabled: yes
Snap To: \\saturn\bigdisk\snapshot
...

See the –snap_to and –dbcheck options for further details.

Disk Space Usage

The VOB snapshot backup/restore scenario requires additional disk space, both at restore time

and during daily operation:

• At restore time, checkvob may require substantial disk space. See the checkvob reference

page.

• Enabling VOB snapshots for a VOB also enables a deferred source container deletion

mechanism, which typically increases source pool size. See vob_server for a description of

deferred deletion.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required.

Locks: A modparam or rmparam operation fails if any of the following objects are locked: VOB,

vob_snapshot_parameters attribute type.

Mastership: If the VOB is replicated, it must be self-mastering.

Parameter Legal Values Default Value

–snap_to existing, writable directory pathname no default

–dbcheck yes | no no
ClearCase Reference Pages 991

vob_snapshot_setup
OPTIONS AND ARGUMENTS

VOB LISTING REPORT FORMAT. Default: vob_snapshot_setup lsvob lists the VOB-tag of each local

VOB currently configured for database snapshot.

–short
Same as default.

–long
In addition to the VOB-tag, vob_snapshot_setup lsvob lists each VOB’s snapshot

parameters and additional VOB identity details. If multiple VOBs use the same parent

–snap_to directory, use the replica UUID returned by –long to find a particular snapshot

in the parent directory.

vob-tag ...
Space-separated list of VOBs; restricts listing to one or more local VOBs.

SPECIFYING THE VOB. Default: None. modparam and rmparam operations require a VOB-tag

argument.

vob-tag
The VOB’s VOB-tag, as specified in mkvob or mktag –vob.

SETTING SNAPSHOT PARAMETERS. Default: With modparam, you must specify a VOB-tag; if you

specify no other options or arguments, modparam prompts for all necessary input and displays

explanatory text. If you specify both a VOB-tag and a snapshot target directory, modparam does

not prompt for additional parameters: vob_snapshot does not run the db_check operation.

–snap_to snap-dir-pname
A disk location to store the snapshot. vob_snapshot appends the VOB’s replica UUID to

the –snap_to directory to create a subdirectory, then copies the VOB database to the

subdirectory (after checking for sufficient disk space).

The replica UUID subdirectory that stores a VOB’s database snapshot is overwritten the

next time vob_snapshot processes that VOB.

Typically, the –snap_to directory gets backed up as part of normal backup operations

some time after the snapshots are taken.

–dbcheck yes
–dbcheck no

Specifies whether to run the db_check utility on each snapshot.

vob_snapshot runs db_check to perform fundamental database consistency and

integrity checks. (Later, at restore time, checkvob may examine the VOB database

looking for ClearCase and ClearCase LT anomalies.) The db_check pass occurs after all

snapshots are completed on the local host. Because this check can be time-consuming, it

is disabled by default.
992 ClearCase Reference Manual

vob_snapshot_setup
If vob_snapshot cannot lock the database and db_check is disabled, db_check runs on

the snapshot at vob_restore time. Running db_check earlier, at snapshot time, may

expose problems you would prefer not to encounter at recover time.

EXAMPLES

• List all VOBs on the local host that are currently configured for processing by

vob_snapshot.

cd c:\Program Files\Rational\ClearCase\etc

vob_snapshot_setup lsvob
\vob_src
\vob_lib

• Same as previous example, but expand the output to include each VOB’s replica UUID and

snapshot parameters.

cd c:\Program Files\Rational\ClearCase\etc

vob_snapshot_setup lsvob –long
VobTag: \vob_src
Replica Name: original
Replica Uuid: 4a6bbe5d88d511cfa9b400018073db6f
Family Uuid: 4a6bbe5988d511cfa9b400018073db6f
Dbcheck Enabled: yes
Snap To: \\saturn\bigdisk\snapshot
Deferred Deletes: Enabled

VobTag: \vob_lib
Replica Name: original
Replica Uuid: 5fec90f48db911cfab9800018073db6f
Family Uuid: 5fec90f08db911cfab9800018073db6f
Dbcheck Enabled: no
Snap To: \\saturn\bigdisk\snapshot
Deferred Deletes: Enabled

• Add VOB \vob_src to the local host’s snapshot list.

cd c:\Program Files\Rational\ClearCase\etc

vob_snapshot_setup modparam –dbcheck yes
–snap_to \\saturn\bigdisk\snaps\vob_src \vob_src

• Add \vob_src to the local host’s snapshot list, as in the previous example, but this time run

vob_snapshot_setup modparam in interactive mode.

vob_snapshot_setup modparam /vob/src\vob_src
ClearCase Reference Pages 993

vob_snapshot_setup
Supply a directory to contain the snapshot data for this vob. The
directory must exist and be writable.
(Full pathname: there is no default) \\saturn\bigdisk\snaps\vob_src

Do you want a data base check to be performed on this vob after all
snapshot operations on this host are completed?
Valid responses are (yes,no)
The default is no: yes

• Remove VOB \vob_src from the local host’s snapshot list.

cd c:\Program Files\Rational\ClearCase\etc

vob_snapshot_setup rmparam \vob_src

FILES

ccase-home-dir\var\log\snap_log

WINDOWS NT REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\snapshot

SEE ALSO

checkvob, schedule, vob_restore, vob_snapshot
994 ClearCase Reference Manual

ClearCase Reference Pages 995

vobrpc_server

vobrpc_server
ClearCase database server program

APPLICABILITY

SYNOPSIS
Invoked as needed by the albd_server program

DESCRIPTION

Each VOB host runs up to five vobrpc_server processes for each of its VOBs. Each process

handles requests from view_server processes throughout the network. The request can generate

both metadata (VOB database) and file-system data (storage pool) activity. The vobrpc_server
accesses the VOB database in exactly the same way as a db_server. It forwards storage pool

access requests to the vob_server.

Multiple server processes are started by albd_server, which also routes new requests to the

least-busy servers and terminates unneeded vobrpc_server processes when the system is lightly

loaded.

ERROR LOG

The vobrpc_server process sends warning and error messages to the event log.

SEE ALSO

albd_server, db_server, vob, vob_server

Product Command Type

ClearCase command

ClearCase LT command

wildcards
wildcards
Pattern-matching characters for Attache pathnames

APPLICABILITY

NOTE: For ClearCase and ELCC, see the wildcards_ccase reference page.

SYNOPSIS

? * ~ [...] ... ~username

DESCRIPTION

Attache recognizes wildcard (pattern-matching) characters in these contexts:

• Attache commands — Attache expands wildcards in command pathnames with respect to

the view, except in three cases—import, lslocal, and put—in which wildcards are expanded

with respect to the workspace. In addition, various commands accept pattern arguments

that can include wildcards; for example, see find –name, and lsvob vob-tag-pattern. In one of

these arguments, a wildcard pattern must be quoted to protect it from evaluation by the

command processor itself. For example:

• Config spec rules — The pathname pattern in a config spec rule is interpreted by a view’s

associated view_server process.

Attache recognizes these wildcard characters:

Product Command Type

Attache general information

cmd-context lsvob –region "dev*" "*src*" (“pattern” arg; quotes required)
cmd-context ls *.c (standard pname arg; no quotes required)

? Matches any single character.

* Matches zero or more characters.

~ Indicates your home directory on the helper host, except for put, import, and

lslocal commands.

[xyz] Matches any of the listed characters.

[x-y] Matches any character whose ASCII code falls between that of x and that of y,

inclusive.
996 ClearCase Reference Manual

wildcards
See the config_spec reference page for more information, including restrictions.

. . . (Ellipsis, a ClearCase extension) Matches zero or more directory levels.

For example:

foo\...\bar matches any of the following pathnames:

foo\bar
foo\usr\src\bar
foo\rel3\bar

and

foo\... matches the foo directory itself, along with the entire directory tree

under it.
ClearCase Reference Pages 997

wildcards_ccase
wildcards_ccase
Pattern-matching characters for ClearCase and ClearCase LT pathnames

APPLICABILITY

NOTE: For Attache, see the wildcards reference page.

SYNOPSIS

? * ~ [...] ...

DESCRIPTION

Wildcard (pattern-matching) characters are recognized in these contexts:

• cleartool single-command mode—The command shell, not cleartool, interprets pathnames

and expands wildcards. Therefore, unless you are using a command shell that expands

pathname wildcards (cmd.exe does not), these wildcards are disallowed. You can, however,

use wildcards in special pattern arguments in some cleartool subcommands (catcr –select,
find –name, and lsvob). For example:

• cleartool interactive mode—cleartool expands wildcards in pathnames. In cleartool
commands that accept pattern arguments (catcr –select, find –name, and lsvob), you must

quote a wildcard pattern to protect it from evaluation by cleartool itself. For example:

• Config spec rules — The pathname pattern in a config spec rule is interpreted by a view’s

associated view_server process.

ClearCase and ClearCase LT recognize these wildcard characters:

Product Command Type

ClearCase general information

ClearCase LT general information

Z:\> cleartool ls *.c (fails; command shell does not understand wildcards)
Z:\> cleartool lsvob *src* (“pattern” arg wildcards OK; no quotes required because

cleartool does not expand the command line)

cleartool> lsvob –region "dev*" "*src*" (“pattern” arg; quotes required)
cleartool> ls *.c (standard pname arg; no quotes required)

? Matches any single character.

* Matches zero or more characters.

~ Indicates your home directory.
998 ClearCase Reference Manual

wildcards_ccase
See the config_spec reference page for more information, including restrictions.

[xyz] Matches any of the listed characters.

[x-y] Matches any character whose ASCII code falls between that of x and that of y,

inclusive.

. . . Ellipsis; matches zero or more directory levels.

For example:

foo\...\bar matches any of the following pathnames:

foo\bar
foo\usr\src\bar
foo\rel3\bar

and:

foo\... matches the foo directory itself, along with the entire directory tree

under it.
ClearCase Reference Pages 999

winkin
winkin
Accesses one or more derived objects (DOs) from a dynamic view, or converts a nonshareable

derived object to a shareable (promoted) derived object

APPLICABILITY

SYNOPSIS

• Wink in a single DO or a list of explicitly named DOs:

winkin [–pri⋅nt] [–nov⋅erwrite] [–sib⋅lings [–adi⋅rs]]

[–out pname] do-pname ...

• Recursively wink in a DO and all of its subtargets:

winkin [–pri⋅nt] [–nov⋅erwrite] [–r⋅ecurse [–adi⋅rs] [–sel⋅ect do-leaf-pattern] [–ci]]
do-pname ...

DESCRIPTION

The winkin command enables you to access the data of any existing DO, even if it does not

match your view’s build configuration (and, thus, would not be winked in by a clearmake build).

Note that you cannot access a DO’s file-system data directly, using a version-extended pathname,

such as hello.exe@@21-Dec.16:18.397. Instead, you must wink it in to a dynamic view, and then

access it using that view.

winkin also converts nonshareable DOs to shareable (promoted) DOs. If you specify a

nonshareable DO, winkin first advertises the DO by writing information about it to the VOB,

and then promotes it by copying its data container into the VOB and moving its configuration

record into the VOB. Because a shareable DO cannot have nonshareable sub-DOs or sibling DOs,

winking in a nonshareable DO also advertises its sub-DOs and siblings, converting them to

shareable DOs. With –siblings, winkin advertises and promotes the DO’s siblings.

NOTE: When a nonshareable DO is converted to a shareable DO, its DO-ID changes. For more

information, see Derived Objects and Configuration Records in Building Software with ClearCase.

Effect on View-Resident DO Data Containers

If you specify a shared DO while working in the view where it was originally built, and if a

view-resident data container for the DO in that view still exists, then the view-resident data

Product Command Type

ClearCase cleartool subcommand

Attache command
1000 ClearCase Reference Manual

winkin
container is scrubbed, and your view accesses the shared data container in VOB storage. This is

equivalent to executing a view_scrubber command.

If you specify an unshared DO or nonshareable DO in your view, the data container is promoted

to the VOB. The view-resident data container is scrubbed, and your view accesses the data

container in VOB storage. This is equivalent to executing a view_scrubber –p command.

When you need to process a large number of DOs, use view_scrubber rather than winkin.

PERMISSIONS AND LOCKS

No special permissions are required at the VOB database level. No locks apply. At the file-system

level, you must have read permission on the DO to be winked in.

OPTIONS AND ARGUMENTS

LISTING RESULTS INSTEAD OF PERFORMING THE WINKIN. Default: The listed derived objects are

winked in.

–pri⋅nt
Lists the names of DOs that would be winked in without winking them in. This option

is useful for previewing what will happen before committing to a winkin operation that

could overwrite a large number of derived objects in the view.

PRESERVING UNSHARED DERIVED OBJECTS IN YOUR VIEW. Default: winkin overwrites any

unshared DOs in your view.

–nov⋅erwrite
Preserves the unshared DOs in your view. Unshared DOs are often a result of

checked-out source files. This option is useful to help limit winkins over DOs that were

created from those source files.

WINKING IN SIBLING DERIVED OBJECTS. Default: Only the listed DOs are winked in, without their

siblings (DOs created by the same build script that created the DO to be winked in). Note that

you do not need to use –siblings with –recurse, which always winks in siblings.

–sib⋅lings
Winks in the siblings of this derived object in addition to the derived object itself.

WINKING IN DERIVED OBJECT SUBTARGETS. Default: Only the listed derived objects are winked in,

without any derived objects that are subtargets of these objects. Only derived objects in

directories rooted at the current working directory are winked in.

–r⋅ecurse
Recursively winks in all subtargets of the listed derived objects (subject to the

restrictions specified by other options). This option works by recursively walking the

configuration records containing those DOs, gathering information about which
ClearCase Reference Pages 1001

winkin
subtargets to wink in, and weeding out duplicates. The gathered names are then winked

in.

If multiple versions of the same object appear in a derived object’s configuration, only

the most recent version is winked in. A warning tells you which version is being

skipped.

winkin –recurse keeps going even if the winkin of one or more of the items in the

configuration record hierarchy fails, though the command issues errors for the ones that

failed.

Because this command winks in derived objects without regard to any makefile

information, it is usually a good idea to run clearmake after performing this operation,

to bring everything up to date.

–adi⋅rs
Allows winkin to directories other than those rooted at the current directory.

–adirs only has effect with –recurse or –siblings.

–sel⋅ect do-leaf-pattern
(For use in recursive winkins only) Starts gathering the list of files to wink in at the

subtargets of do-pname that match the specified pattern. do-leaf-pattern can be a pattern

(see the ClearCase wildcards_ccase or Attache wildcards reference pages) that matches

a simple filename; it must not include a slash (/) or the ellipsis wildcard (...).
Alternatively, it can be a standard pathname of a derived object.

This option is useful for isolating a derived object that was built as a dependency of

another one. For example, this command winks in derived objects starting at the

hello.obj that was used to build hello.exe in the current view:

cmd-context winkin –recurse –select hello.obj hello.exe

–select only has effect with –recurse.

–ci
(For use in recursive winkins only) By default, recursive winkins stop at DO versions:

DOs that have been checked in as versions of elements, and used as sources during the

build. This option allows you to recurse into the CRs of DO versions. –ci only has effect

with –recurse.

SPECIFYING AN ALTERNATIVE PATHNAME. Default: A derived object is winked in to your view at

the pathname you specify with a DO-pname argument, minus any DO-ID. For example, if you

specify the DO-pname ..\src\hello.exe@@21-Dec.16:18.397, then by default, it is winked in at

pathname ..\src\hello.exe. Any object at the destination pathname is overwritten, subject to

standard permissions-checking. (Overwriting a shared DO decrements its reference count; no

file system data is actually deleted.)
1002 ClearCase Reference Manual

winkin
–out pname
An alternative pathname at which to wink in the DO. You must specify exactly one DO

in this case, and pname must be in the same VOB as the DO being winked in.

In either case, an error occurs if an object already exists at the destination. –out only has

effect without the –recurse option.

NOTE: You must use –out if you are not using –recurse and specify another view’s DO,

using a view-extended pathname, and you intend to wink in the DO to your own view.

SPECIFYING THE DERIVED OBJECT. Default: None.

do-pname ...

One or more pathnames that specify derived objects. A standard pathname names a DO

in the current view; you can also use a view-extended pathname and/or a

VOB-extended pathname:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Wink in another view’s DO into your view, using a view-extended pathname. The –out
option is required in this case.

cmd-context winkin –out . m:\george\users_hw\hello.obj
Winked in derived object "hello.obj"

• Wink in a DO, using its DO-ID, and saving it under another file name.

cmd-context lsdo hello.exe
02-Mar.20:02 "hello.exe@@02-Mar.20:02.376"
01-Mar.09:06 "hello.exe@@01-Mar.09:06.365"

• If pname is a directory, the DO is winked in to that directory, with the same leaf

name as the original DO.

• Otherwise, pname is treated as a file name.

m:\george\users_hw\hello.exe (view-extended pathname)
hello.exe@@21-Dec.16:18.397 (VOB-extended pathname,

including DO-ID)
m:\george\users_hw\hello.exe@@05-Jan.09:16:788 (combination)
ClearCase Reference Pages 1003

winkin
cmd-context winkin –out hello.March1 hello.exe@@01-Mar.09:06.365
Promoting unshared derived object "hello.exe@@01-Mar.09:06.365"
Winked in derived object "hello.March1"

• Create a new derived object and promote it to VOB storage.

clearmake hello.exe

cmd-context winkin hello.exe
Promoting unshared derived object "hello.exe"
Winked in derived object "hello.exe"

• Wink in derived object main.obj and all of its siblings.

cmd-context lsdo main.obj
04-Sep.16:14 “main.obj@@04-Sep.16:14.49”

cmd-context winkin –siblings main.obj@@04-Sep.16:14.49
Promoting unshared derived object “\mg_test\main.obj”.
Winked in derived object “\mg_test\main.obj”
Promoting unshared derived object “\mg_test\sibling.exe”.
Winked in derived object “\mg_test\sibling.exe”

• Recursively wink in derived object main.exe and all of its subtargets.

cmd-context winkin –recurse main.exe@@04-Sep.16:03.34
Promoting unshared derived object “\mg_test\main.exe”
Winked in derived object “\mg_test\main.exe
Promoting unshared derived object “\mg_test\main.obj”
Winked in derived object “\mg_test\main.obj”
Promoting unshared derived object “\mg_test\sibling.exe”
Winked in derived object “\mg_test\sibling.exe”
Promoting unshared derived object “\mg_test\test.obj”
Winked in derived object “\mg_test\test.obj”

NOTE: When you use –recurse, you can also specify the DO to wink in by using its

view-extended pathname. The DO and its subtargets are recursively winked in to the current

(dynamic) view. For example:

cmd-context winkin –recurse m:\cep\mg_test\main.exe

• List the DOs that would be winked in during a recursive winkin of derived object main.exe.

cmd-context winkin –print –recurse main@@04-Sep.16:03.34
Would wink in derived object “\mg_test\main.exe”
Would wink in derived object “\mg_test\main.obj”
Would wink in derived object “\mg_test\test.obj”

• Recursively wink in derived object main.exe and all of its subtargets, preserving the

unshared DOs in your view.
1004 ClearCase Reference Manual

winkin
cmd-context winkin –noverwrite –recurse \testvw\mg_test\main.exe
Winked in derived object “\mg_test\main.exe”
Winked in derived object “\mg_test\main.obj”
Winked in derived object “\mg_test\sibling.exe”
Will not wink in over unshared derived object “\mg_test\test.obj”

SEE ALSO

clearmake, scrubber, view_scrubber
ClearCase Reference Pages 1005

ws_helper
ws_helper
Server process connecting an Attache workspace to a ClearCase view

APPLICABILITY

SYNOPSIS
Invoked on the helper host by the albd_server as a result of the mkws or setws commands

DESCRIPTION

The workspace helper program is the process managing the connection between the Attache

workspace and ClearCase views and VOBs. There is a one-to-one mapping between Attache

workspace users and workspace helper processes. Executing a mkws or setws command starts

ws_helper on the helper host, which remains active until you exit the workspace. The –shost
option of the mkws command specifies the host on which ws_helper runs. By default this is the

view host, if the view can be found in the ClearCase registry.

ws_helper provides the following basic services:

• ClearCase command execution

• File transfer between the workspace and the view

• Wildcard lookup

• Other file-system support

ws_helper is invoked by the albd_server and inherits its environment. Then ws_helper assumes

the identity of the user whose identity you provide; however, it does not acquire the user’s

environment automatically.

On UNIX hosts, ws_helper sets its umask to zero, adds the directory ccase-home-dir/bin to the

PATH environment variable, and sets the HOME, LOGNAME, USER, and SHELL environment

variables after a user has been successfully authorized. On Windows NT hosts, ws_helper adds

the directory ccase-home-dir\bin to the PATH environment variable, and sets the HOME

environment variable (if the user’s domain account specifies a home directory and the HOME

environment variable is not already set as a system variable).

CONFIGURING THE HELPER ENVIRONMENT

You can create a program or script in the bin subdirectory of ccase-home-dir on the helper host to

set up and configure the environment in which the Attache helper is invoked. On a UNIX host,

the program or script must be named ws_startup; on a Windows NT host, the program or script

Product Command Type

Attache command
1006 ClearCase Reference Manual

ws_helper
must be named ws_startup.ext, where ext is bat, com, exe, or any other extension that cmd.exe
recognizes to be executable. This program or script can be used to perform security checks, config

spec validation, or to set the environment variables needed by any program ws_startup invokes.

NOTE: If ws_startup is a UNIX script, it must be executable for all Attache users, and the first line

must be: #! shell, where shell is the path name to the appropriate shell, for example, /bin/csh.

ws_startup can also make use of the environment variables set before it is run, namely:

• ATTACHE_USER, the authorized user’s user name

• ATTACHE_VIEW_TAG, the view tag (or workspace name) to which the helper has been set

• ATTACHE_ENV_PN, the name of the temporary file in which a user’s environment variables

can be set

To set user-specific environment variables, for example, those needed to run triggers, you must

have a properly configured file on the helper host:

• If there is a predefined set of environment variables, you can create a file named

.attache.env in the user’s home directory.

On Windows NT, the helper determines where the user’s home directory is by going to the

domain controller, which validates the logon and checks the user’s profile for a directory

path under “Home Directory”. For the helper to get to the user’s home directory, the

directory must be a UNC path because the user’s home directory is not necessarily local to

the helper host.

• If the information is dynamic, you can have ws_startup create the temporary file whose

name can be read from ATTACHE_ENV_PN, and write the environment variables to it.

The workspace helper program attemptsto read environment settings first from the file named

in ATTACHE_ENV_PN and, only if that file does not exist, from .attache.env.

Entries in the file must appear one per line. For each environment variable ENV_NAME you want

to set to the value val, add an entry of the form ENV_NAME=val. For each environment variable

you want to unset, add an entry of the form ENV_NAME=.

For UNIX helper hosts, you can also control the umask of the helper process by adding an entry

of the form umask=val, where val must be expressed in C integer constant format. That is, val can

be a decimal number beginning with the integers 1–9, an octal number beginning with zero, or a

hexadecimal number beginning with 0x or 0X (a zero followed by an “x”). Instead of setting an

environment variable, the helper sets its own umask to val. On Windows NT helpers, this entry

type is ignored.

PERMISSIONS

Certain permissions are required to use the ws_helper program on Windows NT:
ClearCase Reference Pages 1007

ws_helper
• The identity under which the albd_server (Atria Location Broker) runs must have local

Administrator privileges. This is necessary so that the helper program can create services

with the Service Control Manager.

• Any authorization identity given to Attache by a client must have “logon as a service”

privileges on the helper host.

See the ClearCase Attache Installation and Release Notes for details.

ERROR LOG

The ws_helper sends warning and error messages to the event log on Windows NT hosts, or to

/var/adm/atria/log/ws_helper_log on UNIX hosts.

SEE ALSO

mkws, setws, albd_server, attache
1008 ClearCase Reference Manual

wshell
wshell
Executes a local shell in the current working directory of the workspace

APPLICABILITY

SYNOPSIS
wsh⋅ell [command [arg ...]]

DESCRIPTION

Thw wshell command executes a local shell in the current working directory; this directory must

exist locally. An initial command can be specified. The shell runs interactively until you exit from

it. On Windows 3.x, the wshell command invokes attache-home-dir\etc\wshell.pif which can be

customized to run the shell of your choice. On Windows NT and Windows 95, wshell looks for

an environment variable named COMSPEC. If found, the value of the COMSPEC environment

variable is used as the name of the shell program to run. Otherwise, wshell runs cmd.exe, which

must be found on your PATH.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

Initial Command. Default: wshell runs no initial command by default.

command [arg ...]

The interactive shell invokes the program command, (and, optionally, passes it one or

more arguments). The shell remains after the command is executed.

EXAMPLES

• Create a new window running an interactive shell.

/vob/src> pwd
/vob/src
/vob/src> wshell

• Create a new window running an interactive shell that runs a dir command.

/vob/src> pwd
/vob/src

/vob/src> wshell dir *.c

Product Command Type

Attache command
ClearCase Reference Pages 1009

wshell
SEE ALSO

shell, make, attache_command_line_interface
1010 ClearCase Reference Manual

Index

character, in lsprivate output 452

* wildcard
using in Attache 996
using in ClearCase 998

... wildcard
using in Attache 997
using in ClearCase 999

.cmake.state file 193, 227, 674, 955

? wildcard
using in Attache 996
using in ClearCase 998

~ wildcard
using in Attache 996
using in ClearCase 998

A

abbreviations
for Attache commands 17
for cleartool subcommands 212

access controls
changing 702
changing for view 118
displaying 264
elements’ 544
finding discrepancies between, for view and MVFS storage 662
VOB objects’ 702, 710

ACLs
mastership requests 773

activities
comments, changing 85
creating 508
listing 404
listing information 404
modifying 54
removing 794
setting 889
types of, changing 113

activity migration
ClearQuest 107

activity properties
listing information 404
Index

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX
adding licenses 380

administrative VOBs 925

AdminVOB hyperlink type 567

aliases
for Attache commands 17
for cleartool subcommands 212

all-element trigger types 609

annotate method 919

appending new comments to existing ones 86

architectures
moving views between 738
moving VOBs between 741

arguments, specifying in commands 212

assigning elements to pools 103

associating
elements with type managers 919
files with element types 46

* wildcard
using in Attache 996
using in ClearCase 998

ATRIAHOME environment variable 304

AtriaRegy registry key 755

Attache
client program 12
command tool 13
command window 16
commands 10, 15
exiting 28
helper program 1006
pathnames in commands 18
starting 12
start-up directory 14
workspaces, attaching to ClearCase views 643

attached lists 604
removing triggers from 846

attache-home-dir directory xiii

attaching
attributes 511
hyperlinks 560
labels 570
triggers 604
1011

.fm — August 24, 2000 1:24 pm

attr_sub query primitive 722

attribute types
copying 244
creating 519
history 427
locking 388
locks 437
predefined 925
renaming 769
unlocking 933
updating 519

attributes
attaching to objects 511
comments for, changing 85
creating 511
removing 797

attype query primitive 723

attype_sub query primitive 723

auditing
builds 121
commands 121
license activity 382

auto-make-branch 69

automating
scrubbing 885

B

backing up
registry files 781
VOBs 984

backslashes, using in cleartool subcommands 213

backup registry host
specifying 782
upgrading to primary 790

base contributor
determining 496
specifying 503

baselines
comparing 283
creating 525
listing 407
modifying 57, 94
removing 800

bbase_object registry file 755

bbase_tag registry file 755

binary_delta type manager 918

binary_delta_file element type 552

BOS (build options specification) files 194
specifying for clearmake builds 203

branch types
copying 244
creating 535

history 427
locking 388
locks 437
naming conventions 535
predefined 925
renaming 769
unlocking 933
updating 535

branch/0 version, reusing with clearmake 192, 673

branches
comments for, changing 85
creating automatically 69, 531, 546
creating manually 531
mastership, requesting 773
merging from 499
removing 802
renaming 113
reserving 72
searching for 321, 721
unlocking 933
version trees 486

brtype query primitive 723

build avoidance
in omake 673

build avoidance in clearmake 191–192

build configuration
comparing to CRs, in clearmake 192
comparing to CRs, in omake 673

build options specification file, See BOS files
build scripts

using environment variables in 200

building
behavior in dynamic and snapshot views 959
optimizing performance 957

builds
audit files, specifying location for 121, 202
auditing 121
BOS files, specifying 203
clearmake 189
compatibility modes for 198, 203
CRs 224
DOs created by 261
exit status 196
lock status, checking VOBs for 194, 203
logging level, specifying 203
omake 670
unavailable views during 195, 674

C

caches
changing sizes of 892
comment 307
displaying 364
1012 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

MVFS 655
statistics for 659
version-selection algorithm used 963
view 118, 629, 965

canceling checkouts 929

case-preservation by clearimport 179

CCASE_AUDIT_TMPDIR environment variable 121, 202, 304

CCASE_BLD_NOWAIT environment variable 202, 305

CCASE_BLD_VOBS environment variable 203, 305

CCASE_DNVW_RETRY environment variable 195, 203, 305, 674

CCASE_MAKE_CFG_DIR environment variable 203, 305

CCASE_MAKE_COMPAT environment variable 203, 305

CCASE_MAKEFLAGS environment variable 305

CCASE_OPTS_SPECS environment variable 203, 306

CCASE_SHELL_FLAGS environment variable 203, 306

CCASE_SHELL_REQUIRED environment variable 203, 306

CCASE_VERBOSITY environment variable 203, 306

ccase-home-dir directory xiii

ccase-home-dir\config\services directory 222

ccase-home-dir\var\cache directory 222

ccase-home-dir\var\config directory 222

ccase-home-dir\var\rgy directory 222

changing
cache settings 892
checkouts to unreserved 938
comments in event records 85
config specs 298, 897
element’s storage method 113
locked object to obsoleted 391
non-LATEST versions 68
obsoleted object to locked 391
permissions for VOB objects 702
pool assignments 103
promotion levels 900
scrubbing parameters for pools 580
storage method for an element 113
tags 599
VOB groups 709
VOB owner 709
working directory 51

checkedout but eclipsed annotation 398

checkedout but removed annotation 71, 398

checking
permissions 692
registry files 784

checking in 60
CRs 63
DOs 62
identical versions 64
modification time, preserving 64
reserved checkouts 61
unreserved checkouts 61

checking out 66
behavior in dynamic and snapshot views 958
DO versions 68
modification time, preserving 73
reserved 67
unreserved 67

checkouts
canceling 929
changing to reserved 779
changing to unreserved 938
listing 410
records 66, 858
unreserved, merging into 499

CLEARAUDIT_SHELL environment variable 121, 306

CLEARCASE_ATTACH environment variable 620

CLEARCASE_ATTYPE environment variable 621

CLEARCASE_AVOBS environment variable 306

CLEARCASE_BLD_AUDIT_TMPDIR, See
CCASE_AUDIT_TMPDIR environment variable

CLEARCASE_BLD_OPTIONS_SPECS environment variable, See
CCASE_OPTS_SPECS environment variable

CLEARCASE_BLD_SHELL_FLAGS environment variable, See
CCASE_SHELL_FLAGS environment variable

CLEARCASE_BLD_VERBOSITY environment variable, See
CCASE_VERBOSITY environment variable

CLEARCASE_BRTYPE environment variable 621

CLEARCASE_CI_FPN environment variable 621

CLEARCASE_CMNT_PN environment variable 307

CLEARCASE_COMMENT environment variable 621

CLEARCASE_ELTYPE environment variable 621

CLEARCASE_FREPLICA environment variable 622

CLEARCASE_FTEXT environment variable 622

CLEARCASE_FVOB_PN environment variable 622

CLEARCASE_FXPN environment variable 622

CLEARCASE_HLTYPE environment variable 622

CLEARCASE_ID_STR environment variable 622

CLEARCASE_IS_FROM environment variable 622

CLEARCASE_LBTYPE environment variable 622

CLEARCASE_MAKE_COMPAT environment variable, See
CCASE_MAKE_COMPAT environment variable

CLEARCASE_MAKE_CONFIG_DIR environment variable, See
CCASE_MAKE_CFG_DIR environment variable

CLEARCASE_MTYPE environment variable 622

CLEARCASE_NEW_TYPE environment variable 622

CLEARCASE_OBSO_SYN environment variable 307

CLEARCASE_OP_KIND environment variable 623

CLEARCASE_OUT_PN environment variable 623

CLEARCASE_PN environment variable 623

CLEARCASE_PN2 environment variable 623

CLEARCASE_POP_KIND environment variable 623

CLEARCASE_PPID environment variable 624
Index 1013

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

CLEARCASE_PRIMARY_GROUP environment variable 307

CLEARCASE_PROFILE environment variable 307, 698

.clearcase_profile file 220, 698

CLEARCASE_RESERVED environment variable 624

CLEARCASE_SLNKTXT environment variable 624

CLEARCASE_TAB_SIZE environment variable 307

CLEARCASE_TRACE_TRIGGERS environment variable 307

CLEARCASE_TREPLICA environment variable 624

CLEARCASE_TRTYPE environment variable 624

CLEARCASE_TTEXT environment variable 624

CLEARCASE_TVOB_PN environment variable 624

CLEARCASE_TXPN environment variable 625

CLEARCASE_USER environment variable 625

CLEARCASE_VAL environment variable 625

CLEARCASE_VIEW_TAG environment variable 625

CLEARCASE_VOB_PN environment variable 625

CLEARCASE_VOBLOCKWAIT environment variable 308

CLEARCASE_VTYPE environment variable 625

CLEARCASE_XN_SFX environment variable 625

CLEARCASE_XPN environment variable 625

ClearQuest 585

ClearQuest-enable a project 585

cleartext files 553

cleartext storage pools, See pools
cleartool

command syntax 211
subcommands 209

clients
Attache 10

command-line interface 15
graphical interface 22
start-up directories 52, 643

cache information 364
cache settings 892
configuration data 375
listing for server hosts 415
logs 368
MVFS activities 664
MVFS caches 655
MVFS statistics 659
MVFS version 667
reassigning to new ClearCase regions 837

CLIs (command-line interfaces)
Attache 10
cleartool command 209

.cmake.state file 193, 227, 674, 955

CMAKE_PNAME_SEP environment variable 204, 308

cmd.exe
expansion of environment variables 215

cmd-context variable xiv

command modes
in Attache 35
in cleartool 211

command output, formatting 345

command shell, specifying 308

command window, in Attache 16

command-line interfaces, See CLIs
commands

abbreviating 212
aliases 212
arguments 212
Attache

abbreviations 17
aliases 17
processing of symbolic links 19
using 15

auditing 121
options 211

Attache 17
specifying for clearmake 305–306, 309

reference pages for 492
slashes and backslashes in 213
usage help 372

comments 218
appending 86
caching 307
changing 85
customizing handling 220
defaults 220
description 218
options 218
specifying default option 698

compare method 920

comparing
config records with build configuration

in clearmake 192
in omake 673

CRs 285
directories 275
files 125, 275
versions 125, 275
Windows NT and UNIX user/group information 247

compatibility
NMAKE and omake 677
PolyMake and omake 677
specifying mode for builds 198, 203

components
creating 539
listing 418, 456
removing 805

composing
object names 215
1014 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

compressed_file element type 552

compressed_text_file element type 552

COMSPEC environment variable 121, 308

config lookup, See configuration lookup
config specs

branches, creating automatically 69
displaying 44
editing 298
setting 897

config\services directory 222

configuration data, displaying for hosts 375

configuration files 221
albd.conf 3
project, in Attache 27
user profiles 698
vob_server.conf 967, 982

configuration lookup
clearmake 192
omake 673
suppressing in clearmake 193

configuration records, See CRs
configuring

views 964
VOB servers 982

construct_version method 920

controlling
VOB growth 977

conventions, typographical xiii

conversion specifications 346

converting
elements to different types 113
flat files to ClearCase 142
private VOBs to public 638
PVCS files to ClearCase 147
RCS files to ClearCase 135, 153
SCCS files to ClearCase 161
SourceSafe files to ClearCase 169
view-private files to elements 545
views to new format 738
VOBs to new format 741
workspace files to elements 545

copying
ClearCase data to a different VOB 128
file versions into snapshot views 360
type objects 244
VOB databases 984

correcting comments in event records 85

corruption, fixing
in views 734
in VOB databases 76

create_branch method 919

create_element method 919

create_version method 919

created_by query primitive 723

created_since query primitive 723

creating
activities 508
attribute types 519
attributes 511
baselines 525
branch types 535
branches 531

automatically 69
components 539
directory elements 541
element types 551
elements 543
elements in Attache workspace 377
folders 558
hyperlink types 566
hyperlinks 560
label types 576
labels 570
pools 580
projects 585
PVOBs (ClearGuide only) 639
regions 588
streams 595
subprocesses 907
tags 599
trigger types 608
triggers 604
versions 60
view-private files 66
views 628
view-tags 599
VOBs 636
VOB-tags 599
workspaces 643

credentials, displaying 249

CRs (configuration records) 224
checking in 63
comparing 285
comparing to build configuration in clearmake 192
comparing to build configuration in omake 673
contents 224
creating 121, 191, 672
displaying 36
DOs 261
hierarchies 226
multiple 226
storage 227

CurrentVersion registry key 221

customizing
comment handling 220
Index 1015

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

D

daemon, location broker 2

data containers
deleting 883
pathnames 662
removing 883
scrubbing 883

databases
license 380
server 995
views 954, 956

format 738
VOBs, See VOBs, databases

date-time format 430

deactivating
views 301
VOBs 927

defining
jobs 870
tasks 875

delete_branches_versions method 920

deleting, See removing
derived object storage pools, See pools
derived objects, See DOs
describing VOB objects 263

directories
Attache start-up 14, 52
canceling checkouts of 930
ccase-home-dir\config\services 222
ccase-home-dir\var\cache 222
ccase-home-dir\var\config 222
ccase-home-dir\var\rgy 222
comparing 275
creating 541
downloading to Attache workspace 360, 377
for build audit files 202
home, specifying 309
installation, environment variable for 304
listing 397
lost+found 637, 813, 971
managing versions of 917
registry 749
removing names from 827
uploading from Attache workspace 714
versions

checking out 67
modifying 67
removing names from 827

view storage 956
VOB root 637, 970
working

changing 51
displaying 716

directory element type 553

directory elements
creating 543

directory type manager 553, 919

disabling
comment caching 307
MVFS caches 655
write operations to VOBs 388

disk space requirements
for dynamic and snapshot views 958

disks, displaying space usage on 909

displaying
See also listing
access modes 264
build information 36
cache information 364
checkouts 410
client list for license/registry server hosts 415
config specs 44
configuration data for hosts 375
contents of directories 397
CRs 36
description of an object 124
disk space usage 909
error logging level for MVFS 658
event records 176, 317, 427
group information 247, 249
help on command usage 210, 372
history for a VOB object 176
history for VOB object 427
host configuration data 375
information about VOB objects 263
license host for a client 415
license information 183
list of logs 368
logs 368
man pages 492
MVFS caches 364, 655
MVFS version string 667
pathnames of data containers 662
permissions 264
properties of an object 124
protections 264
reference pages 492
reference pages for Attache 372
registry information for a client 415
syntax for Attache commands 17
syntax for cleartool subcommands 211, 372
usage statistics 659
user information 247, 249
view, current 718
view-private files 451
VOB snapshot parameters 990
working directory 716
1016 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

disputed checkout annotation 398

distributed building
Seeparallel building

DO versions, creating 62

documentation
online help description xiv

domains in ClearGuide
comments for 85

DOs (derived objects) 261
checking in 62
comparing CRs to build configuration in clearmake 192
comparing CRs to build configuration in omake 673
converting to elements 545
creating

links to 384
with clearmake 191
with omake 672

CRs for 224
comparing 285
creating 121
displaying 36

data container 701
deleting 883
disk space usage 292
extended pathnames 690
listing 420, 451
moving 761
no config record annotation 398
nonshareable 954
permissions, changing 702
promoting 701, 1000
removed with white out annotation 398
removing 808, 858, 883, 960
reusing 189, 670
scrubbing 809, 883, 960
shared

location of 103
removing 808

sharing 189, 670, 1000
unshared 954

listing 451
removing 809

versions
checking out 68
considering in clearmake builds 192

view property for, changing 118
winking in 1000

downloading
files to Attache workspace 360

drive letters, mapping to views
behavior in dynamic and snapshot views 958

dumping
VOB databases 251

E

eclipsed annotation 397

eclipsed by checkout annotation 398

EDITOR environment variable 308

element trigger types 609

element types
changing 113
copying 244
creating 551
determining for files 319
determining for new elements 544
history 427
list of predefined 552
locking 388
locks 437
predefined 924
renaming 769
type managers for 552
unlocking 933
updating 551

elements
access modes 544
associating with type managers 919
attaching triggers to 604
branches, See branches
checked out but eclipsed annotation 398
checked out but removed annotation 398
checkouts

canceling 929
changing to unreserved 938
listing 410, 451

creating 543
determining file type 46
in Attache workspace 377

deleted version annotation 399
directories, creating 541
disputed checkout annotation 398
eclipsed annotation 397
eclipsed by checkout annotation 398
error on reference annotation 398
hijacked annotation 399
loaded but missing annotation 399
mastership 181, 548
merges, searching for required 330
moving 652
moving out of lost+found directory 971
moving to different VOB 758
no versions selected annotation 398
nocheckout annotation 399
not loaded annotation 399
orphaned 813
overridden annotation 399
permissions 544

changing 702
pools, See pools
Index 1017

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

recovering 385
relocating to different VOB 758
removing 812
removing from lost+found directory 971
removing names from directory versions 827
renaming 652
searching for 321, 721
special selection annotation 399
specifying 547
triggers

attaching 604
removing 846

unlocking 933
version trees, listing 486
versions

attaching labels to 570
changing checkouts to reserved 779
creating 60
deleting 853
managing contents 917
merging 494

elements using pools error 831

... wildcard
using in Attache 997
using in ClearCase 999

eltype query primitive 724

emulating
native make programs 198
NMAKE utility 677
PolyMake utility 677

enabling
comment caching 307
MSDOS text mode 650
MVFS caches 655

environment variables 304–310
CCASE_AUDIT_TMPDIR 121, 202
CCASE_BLD_NOWAIT 202
CCASE_BLD_VOBS 203
CCASE_DNVW_RETRY 195, 203, 305, 674
CCASE_MAKE_CFG_DIR 203
CCASE_MAKE_COMPAT 203
CCASE_OPTS_SPECS 203
CCASE_SHELL_FLAGS 203
CCASE_SHELL_REQUIRED 203, 306
CCASE_VERBOSITY 203
CLEARAUDIT_SHELL 121
CLEARCASE_ATTACH 620
CLEARCASE_ATTYPE 621
CLEARCASE_BRTYPE 621
CLEARCASE_CI_FPN 621
CLEARCASE_COMMENT 621
CLEARCASE_ELTYPE 621
CLEARCASE_FREPLICA 622
CLEARCASE_FTEXT 622
CLEARCASE_FVOB_PN 622
CLEARCASE_FXPN 622

CLEARCASE_HLTYPE 622
CLEARCASE_ID_STR 622
CLEARCASE_IS_FROM 622
CLEARCASE_LBTYPE 622
CLEARCASE_MTYPE 622
CLEARCASE_NEW_TYPE 622
CLEARCASE_OP_KIND 623
CLEARCASE_OUT_PN 623
CLEARCASE_PN 623
CLEARCASE_PN2 623
CLEARCASE_POP_KIND 623
CLEARCASE_PPID 624
CLEARCASE_PROFILE 698
CLEARCASE_RESERVED 624
CLEARCASE_SLNKTXT 624
CLEARCASE_TREPLICA 624
CLEARCASE_TRTYPE 624
CLEARCASE_TTEXT 624
CLEARCASE_TVOB_PN 624
CLEARCASE_TXPN 625
CLEARCASE_USER 625
CLEARCASE_VAL 625
CLEARCASE_VIEW_TAG 625
CLEARCASE_VOB_PN 625
CLEARCASE_VTYPE 625
CLEARCASE_XN_SFX 625
CLEARCASE_XPN 625
CMAKE_PNAME_SEP 204, 308
COMSPEC 121
expansion

in cleartool subcommands 215
in cmd.exe 215

in makefiles and build scripts 200
MAGIC_PATH 47
MAKEFLAGS 201
SHELL, in builds 201
TMP 121
trigger 620

error on reference annotation 398

errors
logging level, setting for MVFS 658
logs

Attache 14
database transaction 252

event records 312
comments 218

changing 85
contents 312
created by clearimport 178
listing 317, 427
removing 977
scrubbing 977

EVs, See environment variables
excluding

users from a lock 392
users from trigger firing 613
1018 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

executing
local shell in Attache 1009
local shell in ClearCase 907
triggers 610

exiting
from attcmd 35
from interactive mode 727

expiration of licenses 185

EXPORT_REPLACE_CHAR environment variable 308

EXPORT_REPLACE_COMM environment variable 308

EXPORT_REPLACE_STRING environment variable 308

exporting
ClearCase data to a different VOB 128
flat files to ClearCase 142
PVCS files to ClearCase 147
RCS files to ClearCase 135, 153
replacing invalid characters 308
replacing invalid strings 308
SCCS files to ClearCase 161
SourceSafe files to ClearCase 169

F

feature levels 91

file element type 552

file_system_object element type 553

files
cleartext 553
comparing 125, 275
converting to ClearCase 142
copying into snapshot views 360
downloading to Attache workspace 360
element type associated with 319
elements, creating 543
importing to Attache workspace 377
listing 397
merging 125, 494
types

determining 46
typing rules 46
uploading from Attache workspace 714
user profile 307
using as comments 218

file-system objects
specifying in cleartool subcommands 213

filtering searches, See finding
finding

elements that require merges 330
objects by specifying attributes 512
relocated elements 763
VOB objects 321

firing triggers 610

fixing
view databases 734
views 734

flushing MVFS caches 655

folders
creating 558
removing 817

formats of versions 917

formatting
annotation output 6
command output 345
CR output 36

full pathnames 213, 683

G

generating
timing statistics 664
usage statistics 659

get_cont_info method 920

GID, displaying 247

global storage paths
registering 746
unregistering 935

global types 925
problems, fixing 76

GlobalDefinition hyperlink type 566

Gnu make, emulating 198

graphical user interfaces, See GUIs
groups

displaying information about 247, 249
for VOBs 710
specifying for VOB objects 702

GUIs
Attache 22

H

help
for Attache commands 17
for clearguide subcommands 372
for cleartool subcommands 210, 372
for multitool subcommands 372

helper host (Attache only)
displaying 490

hierarchies
of CRs 226

history
listing 427

hltype query primitive 724
Index 1019

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

home directory
specifying 309

HOME environment variable 309

hosts
configuration data 375
view cache size 364

html element type 552

_html type manager 552, 918

hyperlink types
copying 244
creating 566
history 427
list of predefined 566
locking 388
locks 437
predefined 925
renaming 769
unlocking 933
updating 566

hyperlinks
attaching to objects 560
checking 76
comments for, changing 85
creating 560
fixing 76
IDs 561
inheritance 561
listing event records 427
listing history 427
merge

creating 497
removing 825

removing 819

I

importing
directories to Attache workspaces 377
files to Attache workspace 377
flat files 177
PVCS files 177
RCS files 177
SCCS files 177
SourceSafe files 177

increasing
cache sizes 892
number of VOBs active on a host 396
size of lock manager queue 395

inheritance
hyperlinks 561
lists, removing triggers from 846
pools 581
triggers 604

inheritance lists 604

input, prompting for 205

installation directory
Attache 12
environment variable for 304

integrations
Attache Integration Client 13

interactive mode
cleartool 211
displaying working directory 716
quitting 727
starting a shell 907
using wildcards in 998

interoperation
MSDOS text mode 650
VOB text modes 638

InteropRegion registry key 755

J

jobs
defining 870
scheduling 867

L

label types
copying 244
creating 576
history 427
locking 388
locks 437
naming conventions 576
predefined 925
renaming 769
unlocking 933
updating 576

labels
attaching to versions 570
comments for, changing 85
creating 570
removing 822

lbtype query primitive 724

lbtype_sub query primitive 724

LicenseKeys registry key value 183

licensing
acquiring a license 184
adding licenses 380
auditing 382
displaying client list for license host 415
displaying usage 183
errors 187
excluding users 382
1020 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

expiration 185
getting a license 184
license database 380
license server hosts 183
license server program 3
losing a license 184
monitoring 183
priority 183
releasing licenses 183
setting user priority 381
specifying license server host 380
time-out period 184
time-outs 382
user priority 183
using UNIX hosts 183

links
copied to a snapshot view 240
creating 383
downloading to Attache workspace 360
symbolic

moving 652
processing in Attache commands 19
processing in cleartool subcommands 215
removing names from directory versions 827
renaming 652
searching for 321, 721

listing
activities 404
activity information 404
baselines 407
checkouts 410
components 418
directories 397
DOs 420
elements that require a merge 330
event records 176, 317, 427
files in Attache workspace 435
history for VOB objects 176, 427
license host for a client 415
locks 437
network regions 459
obsolete pools 449
obsolete type objects 437, 472
pools 104, 448
projects 456
regions 459
registry host for a client 415
registry region for a client 415
replicas 461
streams 469
type objects 472
version trees 486
view-private objects 397, 451
views 477
VOB objects 321, 397
VOBs 482

workspaces (Attache) 490

loading
rules for in a snapshot view 240
VOB databases 251

local files
listing 435

locating, See finding
locking

obsoleting 391
VOB objects 388

locks
excluding users from 392
listing 437
monitoring during builds 194
removing 933

logs
database transactions 252
displaying list of 368
for VOB snapshots 988
MVFS 311
scrubber 885
setting logging level for MVFS 658
specifying logging level for clearmake 203

lost+found directory 637, 813, 971
moving files into 736
recovering stranded files 735
removing elements from 814

lsmaster command 443

M

macros
defining in BOS files 194
make

in omake 678
make, in clearmake 200

magic files 46
specifying directories to search for 309

MAGIC_PATH environment variable 309
use in file-typing 47

make (standard)
emulation 198

make macros
in clearmake 200
in omake 678

make programs
Attache make 491
auditing 122
emulating

with clearmake 198
with omake 677

makefiles
hierarchies, reflected in CRs 226
using environment variables 200
Index 1021

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

MAKEFLAGS environment variable 201, 309

man pages, See reference pages
managing

contents of versions 917

master replica
displaying 354

mastership
chmaster command description 97
kind, displaying for types 354
listing objects by replica 443
requesting 773

menu items
Attache (table) 25

merge arrows
creating 497
removing 825
suppressing 504

Merge hyperlink type 566

merge method 920

merging 330, 494
base contributor 496, 503
before checking in 62
directories 498
files 495
from a branch 499
manually 499
merge arrows 497, 504
removing changes 501
scenarios 499
selectively 500
specified changes 500
subtracting changes 501
suppressing parts 504
text files 125
unreserved checkouts 499
versions 125, 506

metadata
attached to checked-in versions 61
queries on 721

methods 919

migrating
views to new format 738
VOBs to new format 741

modification time
preserving on checkin 64
preserving on checkout 73

modifying, See changing
monitoring

license activity 382
locks during builds 194

mounting
specifying options 640, 647
VOBs 646

moving
elements 652
elements to different VOB 758
relocated elements 764
symbolic links 652
view storage areas 738
views between architectures 738
VOBs between architectures 741
workspaces 668

ms_word element type 552

_ms_word type manager 552, 918

MSDOS text mode 629, 638, 972

multiversion file system, See MVFS
MVFS

activity summary 664
caches 655

changing 892
displaying 364

caching techniques 963
error logging level 658
log 311
pathnames of data containers 662
statistics 659
version string 667

N

names
composing for objects 215
removing from directory versions 827

namespaces
entering version-extended 51

network regions, See regions
NMAKE utility

emulating 677

no config record annotation 398

no such file or directory error 854

no version selected annotation 398

non-file-system VOB objects
specifying in cleartool subcommands 214

not found error 854

O

object selectors 214

objects
file-system

specifying in cleartool commands 213
locking 388
non-file-system

specifying in cleartool subcommands 214
obsolete 391
1022 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

rules for composing names 215
searching for 321
unlocking 933

obsolete syntax
detecting 307

obsolete type objects
listing 437

obsoleting VOB objects 391

online documentation
for Attache 14, 17
reference pages 492

online help, accessing xiv

operations
generating event records 313
on type objects 925

oplog entries
scrubbing 977

options
for Attache commands 17
for cleartool subcommands 211
specifying for build script commands 203
specifying for clearmake 305, 309

orphaned elements 813

output
formatting 345

ownership
changing 702

P

passwords
VOB-tag registry 788

PATH environment variable 309

pathname separator
specifying for clearmake 204, 308

pathnames 681
absolute VOB 684
displaying for data containers 662
extended 685
full 213, 683
in Attache commands 18
relative 213, 684
standard 683
version-extended 685–686
view-extended 685

patterns
in Attache 996
in ClearCase 998

performance
changing cache sizes 892
MVFS caches 655
usage statistics 659, 664

permissions 692
checked-out files 70
checking during checkin 62
displaying 264
elements 544
pools 710
VOB objects 702
VOBs 637, 709

PolyMake utility
emulating 677

pool query primitive 724

pools 967
changing 103
checking 76
creating 580
deleting 831
displaying disk space usage 909
DO

removing 831
element assignments 581
fixing 76
inheritance 581
listing 104, 448
listing event records 427
listing history 427
listing locks on 437
locking 388
protections 710
removing 831
removing data containers 883
renaming 769
scrubbing 581, 883
scrubbing parameters 580
unlocking 933

postoperation triggers 611

character
in lsprivate output 452

predefined types, list of 924

preoperation triggers 611

preserving
case with clearimport 179
modification time on checkin 64
modification time on checkout 73

preventing
winkin to other views 674

primary group
displaying 247
overriding 307

printing
disk space usage 909
warnings on obsolete syntax 307

priorities
licensing 183
Index 1023

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

private VOBs 638
See Also VOBs, private
converting to public 638

privileges, See access controls; permissions
ProductHome registry key 309

profiles, user 698

projects
creating 585
removing 834

promoting DOs 1000
data containers 701

promotion level
setting 900

prompting for user input 205

protections, See permissions
public VOBs 638

removing tags 844

PVCS files
converting to ClearCase 147

PVOBs
creating 639

Q

queries on metadata
about 721
list of primitives for 722

? wildcard
using in Attache 996
using in ClearCase 998

quitting
Attache session 727
attcmd 35
interactive mode 727

R

RCS files, converting to ClearCase 135, 153

reconfiguring
backup registry host as primary 790

recovering
deleted elements 385
views 734
VOBs from backup 973

reference pages
displaying for Attache 17, 372
displaying for ClearCase 211, 492

reformatting
views 738
VOBs 741

RegBackup registry key 755

Region registry key 756

regions 752
creating 588
listing 459
registering 588
removing 837
replacing tags 588
unregistering 837

regions registry file 754

registering
regions 588
views 628, 746
VOBs 636, 746
workspaces 643

registry 749
backing up 781
backup server 752
checking 784
displaying client lists for server hosts 415
files 753
keys

AtriaRegy 755
CurrentVersion 221
InteropRegion 755
ProductHome 309
RegBackup 755
Region 756
RegPasswd 756
Security 222
ServerType 756
used in ClearCase 221

removing entries from files 935
removing region entries from 837
removing tags from 843
replacing entries 747
server 751
server program 3
switching backup to primary 790
verifying 784
view 477

listing entries 477
VOBs

removing entries 863

RegPasswd registry key 756

relative pathnames 213, 684

relocated elements
finding 763
fixing incorrect symbolic links 764
moving 764

RelocationVOB hyperlink type 567

remote pathnames
in Attache commands 18

removed with white out annotation 398

removing
activities 794
1024 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

attributes 797
branches 802
components 805
DO pools 831
DOs 808, 883, 960
elements 812
entries from registry files 935
entries from VOB registry 863
event records 977
folders 817
hyperlinks 819
labels 822
locks 933
merge arrows 825
merge changes 501
names from directory versions 827
oplog entries 977
pools 831
projects 834
regions 837
streams 841
tags 843
triggers 846
types 849
versions 853
views 858
view-tags 843
VOBs 863
VOB-tags 843
workspaces 865

renaming
branches 113
elements 652
pools 769
replicas 769
symbolic links 652
types 769
VOB objects 769
VOBs 769
workspaces 668

repairing, See fixing
replacing

comments in event records 85
region tags 588
registry entries 747
tags 599
trigger types 612

replicas
checkouts in, listing 412
event records, listing 427
listing 461
listing objects mastered by 443
locks 437
relocating elements from 762
renaming 769

reports
disk space usage 292, 909
formatting with –fmt option 345
licensing 185

reserved checkouts 67
changing to unreserved 938

restoring
names removed with rmname 828
VOBs from backup 973

restricting
operations on VOB objects 388
scope of trigger operations 611

restrictions
on locked pools 390

resynchronizing, See synchronizing
retrieving

VOBs from backup 973

reusing DOs
in clearmake 192
in omake 673

Revision Control System files, See RCS files
roles

comments 85

rose element type 552

_rose type manager 552, 918

rules
CHECKEDOUT, special requirements in snapshot views 230
file-typing 47
for loading elements in a snapshot view 240
object names 215

running
local shell in Attache 1009

S

SCCS files, converting to ClearCase 161

schedule 867

scripts, prompting for user input 205

scrubber_log log file 885

scrubbing 883
automatically 885
DOs 883
parameters

modifying for pools 580
pools 581
views 960

search paths 309
for magic files 47, 309

searching for
See also finding
elements that require merges 330
VOB objects 321
Index 1025

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

Security registry key 222

selecting
elements to load in a snapshot view 240
versions 570
workspaces 906

selective merges 500

servers
admin_server 1
albd_server 2
license 183
promote_server 701
registry 751
registry backup 752, 781
view 963
views

stopping 301
vob_server 982
vobrpc_server 995
ws_helper (Attache) 1006

ServerType registry key 756

setting
caches 892
clearmake logging level 203
config specs 897
error logging level for MVFS 658
text editor environment variable 308
time-outs for licenses 382
VOB snapshot parameters 991
workspaces 906

shared DOs, See DOs, shared
sharing

DOs 1000

SHELL environment variable 309
in builds 201

shell program
specifying default 309

shells
executing in Attache 1009
starting 907

single-command mode 211
using wildcards in 998

site_config registry file 755
properties in, displaying 464

site-wide properties
displaying 464
setting 903

slashes
using in cleartool subcommands 213

sleep-check cycles
turning off 202

snapshot views
about 952
copying files into 360
rules required for config specs 230

updating elements in 941
when to use 957

snapshots 984
setting up 990

Source Code Control System files, See SCCS files
source storage pools, See pools
SourceSafe files, converting to ClearCase 169

space
reporting on 909

special characters
in Attache commands 20
in cleartool subcommands 216

specifying
backup registry host 782
base contributors in merges 503
BOS files 203
cache size 892
clearmake command options 305, 309
command options for clearmake 203
comment options 698
comments 218
compatibility modes for builds 203
default shell program 308–309
format of output 345
home directory 309
license time-out 382
location for build audit files 202
logging level for clearmake 203
mount options 640
number of concurrent users 395
options for build script commands 203
options in BOS files 194
pathname separator for clearmake 204, 308
permissions for VOB objects 702
program for clearaudit to run 306
search path for magic files 309
tab width for cleardiff/annotate output 307
text editor 308
type objects associated with new trigger types 611
versions 570
VOBs, list of 306

splitting VOBs 758

starting
Attache client program 12
local shell in Attache 1009
shells 907
views 915

start-up directory (Attache) 643

states
changing comments 85

statistics
licenses 186

stopping
view_server 301
views 301
1026 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

storage pools, See pools
storage_path registry file 754

stranded files 451, 734

streams
creating 595
listing information for 469
modifying 111
reconfiguring to recommended baselines 728
removing 841

subprocesses
creating 907

subshells
creating 907

supertypes 552

suppressing
configuration lookup

in omake 674

switching
backup registry host to primary 790

symbolic links, See links, symbolic
synchronizing

views with VOBs 734
Windows NT and UNIX user/group information 247

syntax
displaying for Attache commands 17
displaying for cleartool subcommands 211
displaying for commands 372
obsolete

detecting 307

T

tab width
specifying 307

tags
changing 599
creating 599
region

creating 588
replacing 588

removing from all regions 844
replacing 599
updating 599
view, See views, tags
VOB, See VOBs, tags

tasks
defining 875
scheduling 867

technical support xvi

text editor
specifying 308

text modes 553, 629, 638
enabling MSDOS 650
specifying 631

VOBs 972

text_file element type 552

text_file_delta type manager 552, 918

~ wildcard
using in Attache 996
using in ClearCase 998

time format 430

time-out period
for licenses 184
specifying for licenses 382

timing statistics
displaying for MVFS 664

TMP environment variable 121

toolbars
Attache (table) 23

translating
PVCS symbols to ClearCase labels and branches 149
RCS symbols to ClearCase types 137, 155
SCCS branch names to ClearCase branches 164
SourceSafe labels to ClearCase labels and branches 170

translation file
using in ClearCase data export 130
using in PVCS data conversion 149
using in RCS data conversion 137, 155
using in SCCS data conversion 164
using in SourceSafe data conversion 170

trigger types
all-element 609
copying 244
creating 608
displaying kind 352
element 609
history 427
locking 388
locks 437
renaming 769
replacing 612
type 610
unlocking 933
updating 608

triggers
attaching 604
comments for, changing 85
creating 604
environment variables 620–625
firing 610
inclusion lists 611
inheriting 604
messages during firing of, printing automatically 307
preoperation and postoperation 611
prompting for user input 205
removing 846
restriction lists 611
scope, limiting 611
Index 1027

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

trtype query primitive 724

type managers 555, 917
associating elements with 919
map file 920
methods 919

type objects 923
global 925
list of predefined 924
operations on 925
unlocking 933
user-defined 924

type trigger types 610

types
See also specific type names
changing permissions 702
copying 244
history 427
listing 472
listing event records 427
locking 388
locks 437
obsolete, listing 472
removing 849
renaming 769
restrictions when locked 389
scope, displaying 352
vs. type objects 923

typographical conventions xiii

TZ environment variable 310

U

UCM project integration with 107, 585

UID, displaying 247

Unavailable-VOB prefix
in lsprivate output 452

undoing
merge changes 501

unloading elements from snapshot views 942

unmounting VOBs 927

unregistering
regions 837
views 935
VOBs 935
workspaces 865

unreserved checkouts 67, 938
merging into 499

updating
See also changing
branch types 535
element types 551
elements from others still under development 131
elements from PVCS files 150

elements from RCS files 138, 157
elements from SCCS files 165
elements from SourceSafe files 172
hyperlink types 566
label types 576
registry entries 746
scrubbing parameters for pools 580
snapshot views 941
tags 599
view format 738
VOB databases 251
VOB format 741

upgrading
backup registry host to primary 790

uploading
directories from Attache workspace 714
files from Attache workspace 714

usage
Attache commands 17
displaying for commands 372
displaying statistics for MVFS 659

user information
displaying 247, 249

user input, prompting for 205

user profile file 220, 307

users
comments 85
excluding from licenses 382
excluding from trigger firing 613
profiles 698
specifying concurrent number supported 395

V

var\cache directory 222

var\rgy directory 222

varconfig directory 222

verifying
registry files 784
Windows NT and UNIX user/group information 247

version information
displaying for Attache 34
displaying for ClearCase 209

version labels, See labels
version query primitive 724

version string
displaying for MVFS 667

version trees
branches

creating manually 531
removing 802

deleting versions from 853
listing 486
1028 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

versioned object bases, See VOBs
version-extended namespace

entering 51

version-extended pathnames 685–686
in lsprivate output 452

versions
annotating 4
attaching labels to 570
changing comments 85
checked out but eclipsed annotation 398
checked out but removed annotation 398
checked-out

listing 451
storage of 953

checking out non-LATEST 68
checkouts

canceling 929
changing to reserved 779
changing unreserved 938

comments, changing 85
comparing 125, 275
copying into snapshot views 360
creating 60
deleting 853
displaying pathnames of data containers 662
disputed checkout annotation 398
eclipsed annotation 397
eclipsed by checkout annotation 398
error on reference annotation 398
how selected in dynamic and snapshot views 958
listing contents 4
managing contents 917
merging 125, 494
modifying non-LATEST 68
no version selected annotation 398
removing 853
removing labels from 822
removing merge arrows from 825
searching for 321, 721
selecting

using labels 570

view context
displaying 718

view registry 477
removing entries from 935

view_object registry file 477, 746, 753

view_server
changing caches 892
stopping process 301

view_tag registry file 477, 754

view-extended pathnames 685

view-private files
converting to elements 545
creating 66
displaying pathnames of data containers 662

keeping on checkin 63
listing 451
recovering 735
removing on checkin 63
with version-extended pathnames 452

views
about 952
access mode, changing 118
accessing 682, 915
caches 629, 892, 965

changing 118
displaying 364

caches, setting 903
config specs 897

displaying 44
editing 298
setting 897

configuring 964
connecting to Attache workspaces 1006
contexts 682
creating 628
database 954, 956
deactivating 301
deleting 858
disk space usage 909
displaying cache information 364
displaying current 718
DO properties 903
DO property, changing 118
DOs

disk space usage 292
drives 682
dynamic and snapshot, compared 958
editing config specs 298
enabling VOBs for access by MSDOS text mode 650
global storage paths 746, 935
inaccessible

canceling checkouts in 929
listing 477
listing view-private objects 451
moving between architectures 738
moving storage areas 738
preventing winkin 193, 674
properties, changing 118
recovering 734
registering 628, 746
registry 477, 749

checking for problems 784
removing entries from 935

removing 858
removing entries from registry file 935
repairing 734
replacing registry entries 747
scrubbing 960
server 963
starting 915
stopping 301
Index 1029

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

storage directory 956
stranded files 451
tags

creating 599
removing 843

text modes 553, 629, 631, 903
types of 952
unavailable, caching during builds 195, 674
updating format 738
uploading files/directories from Attache workspace 714
view-private storage (dynamic views) 953
when to use dynamic 957
when to use snapshot 957
winking in DOs 1000
working

changing 51
displaying 718

working directory
changing 51

view-tags, See views, tags
VISUAL environment variable 308

VOB databases, See VOBs, databases
VOB links

behavior in dynamic and snapshot views 958

VOB objects, See VOBs, objects
VOB registry, See VOBs, registry
VOB replicas, See replicas
VOB storage directories, See VOBs, storage directories
vob_object file 482

vob_object registry file 746, 753

vob_server.conf configuration file 967, 982

vob_tag file 482

vob_tag registry file 753

VOB-extended pathnames 686

VOB-replica objects, See replicas
VOBs 966

accessing from workspaces 12
activating 646
administrative 925
attributes

removing 797
backing up 984
checkouts, listing 410
converting private to public 638
creating 636
databases

checking 76
compacting 741
contents 967
copying 984
dumping 251
fixing inconsistencies 76
format 741
loading 251

lock manager process 395
deactivating 927
deleting 863
directories, See VOBs, storage directories
disk space usage 909
DOs

disk space usage 292
listing 420
removing 808, 883

elements
removing 812

enabling MSDOS text mode 650
event records, listing 427
global storage paths 746, 935
groups 710

changing 709
growth, controlling 977
history, listing 427
increasing number that can be active on a host 396
increasing the size of the lock manager queue 395
links

creating 383
list of, specifying 306
listing 482
locking 388
locks

listing 437
locks on

monitoring during builds 194, 203
lost+found directory 637
mount options, specifying 640
mounting 646
moving between architectures 741
moving elements between 758
MSDOS text mode 972
non-file-system objects 214
objects

attaching hyperlinks to 560
changing permissions 702
describing 263
searching for 321

owner, changing 709
permissions 637, 709
pools 967
pools, See pools
private 638
public 638

mounting automatically 638
querying 721
recovering

completing recovery process 76
reformatting 741
registering 636, 746
registry 749

checking for problems 784
listing entries 482
removing entries from 935
replacing entries in 747
1030 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

removing 863
removing data containers from 883
removing event records from 977
removing oplog entries from 977
removing view-related records from 858
renaming 769
repairing 76
replica name, displaying 354
replicas, See replicas
replication status, displaying 354
restoring

completing recovery process 76
from backup 973

root directory 637, 970
scrubbing 883, 977
server program 982

configuring 982
snapshots 984

setting up 990
splitting 758
storage directories

contents 966
displaying disk space usage 909

tags
creating 599
deleting 843
removing 843
replacing 599
updating 599

text modes 638, 972
type objects 923

listing 472
types

deleting 849
unmounting 927
updating format of 741

VOB-tags, See VOBs, tags

W

whole_copy type manager 552, 918

wildcards 996, 998

Windows NT user information
comparing with UNIX information 247
displaying 249

winkin 192, 673
DOs 1000
preventing 193, 674

working directory
changing 51
displaying 716

working directory view
changing 51
displaying 718

workspaces (Attache)
connecting to ClearCase views 1006
creating 643
creating elements in 377
deleting 865
downloading files to 360
files, converting to elements 545
helper program for 1006
listing 490
listing files in 435
moving 668
registering 643
removing 865
renaming 668
selecting 906
setting 906
unregistering 865
uploading files/directories from 714

X

xcompare method 920

xmerge method 920

xml element type 552

_xml type manager 552, 919

Z

z_text_file_delta type manager 552, 918

z_whole_copy type manager 552, 918
Index 1031

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

1032 ClearCase Reference Manual

/vobs/doc/ccase/ref/cc_ref_vol2.ntIX.fm — August 24, 2000 1:24 pm

	ClearCase Reference Manual
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Command Examples
	Online Documentation
	Technical Support

	make
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	man
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	merge
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and ClearCase�LT only
	Attache only

	FILE MERGE ALGORITHM
	Determination of the Base Contributor
	Recording of Merge Arrows

	DIRECTORY MERGE ALGORITHM
	Using ln and rmname to Implement a Merge

	COMMON SCENARIOS
	Case 1: Merging from a Branch
	Case 2: Merging to an Unreserved Checkout

	SPECIAL MERGE SCENARIOS
	Selective Merges
	Subtractive Merges

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior for ClearQuest-enabled Projects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkattr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Restrictions on Attribute Use
	Referencing Objects by Their Attributes

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkattype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Attributes as Name/Value Pairs
	Predefined Attribute Types

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Initial Baseline
	Creating a Baseline for an Unmodified Component
	Creating Baselines that Include a Set of Activities
	Creating a Baseline by Importing a Label
	Baseline Names
	Baseline Labels
	Promotion Levels

	PERMISSIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbranch
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Auto-Make-Branch

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbrtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Instance Constraints
	Recommended Naming Convention

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkcomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkdir
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Converting View-Private Directories

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkelem
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	File Types and Element Types
	Access Mode
	Converting View-Private or Workspace Files to Elements
	Converting Nonshareable Derived Objects to Elements
	Creating Directory Elements
	Auto-Make-Branch During Element Creation
	Creating Elements in Replicated VOBs
	Referencing Element Objects and Their Versions
	Storage Pools
	(ClearCase and ClearCase�LT only) Group Membership Restriction

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkeltype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Setting Merge Behavior for an Element Type
	Element Supertypes
	Predefined Element Types
	Text Files, Cleartext, and a View’s Text Mode

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkhlink
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Contrast with Other Kinds of Metadata
	Hyperlink-IDs
	Hyperlink Inheritance

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkhltype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Predefined Hyperlink Types
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mklabel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Referencing Labeled Versions

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mklbtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Instance Constraints

	Recommended Naming Convention
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkpool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Pool Allocation and Inheritance
	Scrubbing
	Getting Information on Storage Pools

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Using Rational ClearQuest with UCM projects
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkregion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	mkstgloc
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Other Uses for mkstgloc
	Default Selection of Server Storage Locations During View and VOB Creation
	ClearCase Only—File System Connectivity Considerations
	ClearCase Only—Derived and Explicitly Specified Client Accessibility Information
	ClearCase�LT Only—File System Connectivity and Client Accessibility

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktag
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache Only—Using mktag
	ClearCase�LT Only—Using mktag

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktrigger
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Trigger Inheritance

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktrtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Trigger Firing
	Trigger Interoperation

	PREOPERATION AND POSTOPERATION TRIGGERS
	RESTRICTION LISTS AND INCLUSION LISTS
	TRIGGER ENVIRONMENT VARIABLES
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES
	Trigger Operations for Type Trigger Types
	Trigger Operations for Element and All-Element Trigger Types
	Trigger Environment Variables

	EXAMPLES
	SEE ALSO

	mkview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Interop Text Modes
	Views and UCM Streams
	Setting the Cache Size for Views
	ClearCase and Attache Dynamic Views Only—Using Express Builds
	ClearCase and Attache Dynamic Views Only—Activating a View
	ClearCase, Attache, and ClearCase�LT Snapshot Views Only—Activating a View
	Reconfiguring a View
	Backing Up a View
	Deleting a View

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VOB Directory Elements
	Default Storage Pools
	Permissions
	Interop Text Mode Support
	ClearCase and Attache Only—Regional Tags
	ClearCase and Attache Dynamic Views Only—Public and Private VOBs
	ClearCase, Attache, and ClearCase�LT Snapshot Views Only—Accessing Public and Private VOBs
	ClearCase and Attache Dynamic Views Only—Activating the VOB

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES�
	SEE ALSO

	mkws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Attache’s Client Process Startup Directory

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mount
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Mounting All VOBs
	Mounting of Public and Private VOBs
	Private VOB-Tags

	VOB-TAGS AND THE VOB STORAGE REGISTRY
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	msdostext_mode
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	SEE ALSO

	mv
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Moving in Attache
	Moving in Snapshot Views
	Moving View-Private or Attache Workspace Objects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfscache
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfslog
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	SEE ALSO

	mvfsstat
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	MVFS CACHE STATISTICS
	Directory Name Lookup Cache (dnlc)
	Attribute Cache

	OPTIONS AND ARGUMENTS
	SEE ALSO

	mvfsstorage
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfstime
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfsversion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	omake
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Related Reference Pages
	View Context Required

	omake AND MAKEFILES
	HOW BUILDS WORK
	CONFIGURATION RECORDS AND DERIVED OBJECTS
	Configuration Record Hierarchies

	CONFIGURATION LOOKUP AND WINKIN
	The .cmake.state File
	Suppressing Configuration Lookup
	Preventing Winkin to Other Views

	CACHING UNAVAILABLE VIEWS
	MVFS FILES AND OBJECTS OUTSIDE THE MVFS
	OPTIONS AND ARGUMENTS
	MAKE MACROS AND ENVIRONMENT VARIABLES
	Conflict Resolution

	BUILD REFERENCE TIME AND BUILD SESSIONS
	EXIT STATUS
	EXAMPLES
	FILES
	SEE ALSO

	pathnames_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	DYNAMIC VIEW CONTEXTS
	DYNAMIC VIEW ACCESS MODEL
	KINDS OF PATHNAMES
	Standard Pathnames
	Absolute VOB Pathnames
	Extended Pathnames

	VIEW-EXTENDED PATHNAMES
	The MVFS Directory / View-Tags

	SYMBOLIC LINKS AND THE VIEW-EXTENDED NAMESPACE
	VOB-EXTENDED PATHNAMES
	Extended Namespace for Elements, Branches, and Versions
	Extended Naming Symbol
	Version Labels in Extended Namespace
	Pathnames Involving More Than One Element
	Reading and Writing in the Extended Namespace
	Extended Namespace for Derived Objects
	Navigating the VOB-Extended Namespace

	SEE ALSO

	permissions
	APPLICABILITY
	DESCRIPTION
	None
	one of: element group member, element owner, VOB owner, member of the ClearCase group; (for comma...
	one of: version creator, element owner, VOB owner, member of the ClearCase group
	one of: element owner, VOB owner, member of the ClearCase group
	one of: user associated with event, object owner, VOB owner, member of the ClearCase group
	one of: branch creator, element owner, VOB owner, member of the ClearCase group
	one of: type owner, VOB owner, member of the ClearCase group
	one of: pool owner, VOB owner, member of the ClearCase group
	one of: DO group member, DO owner, VOB owner, member of the ClearCase group
	one of: view owner, member of the ClearCase group
	one of: owner, VOB owner, member of the ClearCase group
	one of: VOB owner, member of the ClearCase group
	VOB owner
	mktag (private VOB-tag) view owner
	member of the ClearCase group
	same permissions as for creating the type object with a mk**type command
	permissions controlled by the scheduler ACL

	SEE ALSO

	profile_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	HOW cleartool SELECTS A RULE
	RULE SYNTAX
	COMMENT RULES
	RULES FOR CHECKED-OUT VERSION STATES
	RULE FOR INTERACTIVE RESOLUTION OF CHECKOUT PROBLEMS
	EXAMPLES
	SEE ALSO

	promote_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	protect
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	View-Private Objects
	Owner Setting
	Group Setting
	Read and Execute Permissions
	Write Permission
	Protection of Global Types and Local Copies

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	protectvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VOB Owner and VOB Group List
	Groups and Access Control
	Access Control at the Individual Object Level
	The identity.sd File
	Pool Protections

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	put
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	pwd
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	EXAMPLES
	SEE ALSO

	pwv
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Dynamic View
	Snapshot View

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	query_language
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Queries in Version Selectors
	Queries in the find and findmerge Commands

	QUERY PRIMITIVES
	COMPOUND QUERIES
	OPERATOR PRECEDENCE
	EXAMPLES
	SEE ALSO

	quit
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	EXAMPLES
	SEE ALSO

	rebase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Rules for Development Streams
	Rules for Integration Streams

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	recoverview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Automatic Recovery
	Possible Data Loss

	RECOVERING VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reformatview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Possible Data Loss

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	reformatvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Dumping and Loading
	Registering the VOB (Again)
	Working with Limited Disk Space
	Restarting an Interrupted Reformat

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	register
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Other Commands that Affect Registries

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	registry_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CLEARCASE ONLY—REGISTRY SERVER
	CLEARCASE ONLY—BACKUP REGISTRY SERVERS
	CLEARCASE ONLY—NETWORK REGIONS
	FORMAT OF REGISTRY FILES
	vob_object
	vob_tag
	view_object
	view_tag
	regions
	storage_path
	bbase_object
	bbase_tag
	site_config

	CLEARCASE ONLY—REGISTRY CONFIGURATION VALUES
	HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
	HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\InteropRegion
	HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup
	HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region
	HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
	HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security\RegPasswd

	FILES
	WINDOWS NT REGISTRY KEYS
	SEE ALSO

	relocate
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Overview of a Relocate Operation
	Invoking relocate
	Selecting Elements to Relocate
	Running relocate in Update Mode
	Relocating Derived Objects
	Relocating Elements to an Existing VOB
	Relocating Elements from Replicated VOBs
	Relocation and Event History
	Relocate Log File
	Interrupting and Restarting relocate

	AFTER RELOCATION
	Modifying Views/Config Specs to Find Relocated Elements
	Fixing Incorrect Symbolic Links
	Using recoverview –sync to Recover View-Private Objects and DO Data Files
	Cataloging Relocated Elements in Multiple Versions of the Target Directory
	Moving a Relocated Element

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	rename
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reqmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SETTING ACCESS CONTROLS
	REQUESTING MASTERSHIP OF A BRANCH
	TROUBLESHOOTING
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reserve
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rgy_backup
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Designating a Backup Registry Host

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	rgy_check
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	General Problems
	Registration Anomalies
	Region-Related Problems
	Storage-Related Problems

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rgy_passwd
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Security Restrictions

	OPTIONS AND ARGUMENTS
	DIAGNOSTICS
	EXAMPLE
	SEE ALSO

	rgy_switchover
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SAMPLE SWITCHOVER PROCEDURE
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	rmactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearQuest-enabled Projects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmattr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmbranch
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Restrictions

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmcomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmdo
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SCRUBBING OF DERIVED OBJECTS
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmelem
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Deleting a Directory Element
	Deleting Elements and Symbolic Links from the lost+found Directory

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmhlink
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmlabel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmmerge
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Renaming the Merge Hyperlink Type

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmname
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Undoing the rmname Command

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmpool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Restrictions
	Deleting Derived Object Pools

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearQuest-Enabled Projects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmregion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	rmstgloc
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtag
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CleasrCase and Attache Only—Using rmtag

	PERMISSIONS AND LOCKS
	Permissions Checking: No special permissions required. Locks: No locks apply. OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtrigger
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmver
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior in Snapshot Views
	Restrictions
	Deleted Version-IDs
	Controlling the Size of the vista.tjf File

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Removing a View and Its Related Records
	Purging View-Related Records Only
	Caution
	View UUIDs
	Controlling the Size of the vista.tjf File

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	REMOVING REPLICATED VOBS
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	schedule
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Task and Job Storage
	Task and Job Database Initialization
	Default Schedule
	Job Timing Options
	Job Definition Syntax
	Task Definition Syntax
	Job Execution Environment

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	Specifying the Host
	Disabling Prompts for Confirmation
	Displaying Information about Jobs, Tasks, or ACL
	Editing a Schedule or ACL
	Setting a Schedule or ACL Using Definitions in a File
	Operating on a Scheduled Job

	EXAMPLES
	FILES
	SEE ALSO

	scrubber
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Scrubbing Algorithms
	Automatic Scrubbing
	Scrubber Log File
	Processing of Derived Object Pools
	Derived Statistics
	Controlling the Size of the vista.tjf File

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior for ClearQuest-enabled projects
	When you have finished working on an activity

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setcache
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache Only—View Caches
	ClearCase and Attache Dynamic Views Only—MVFS Caches

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setcs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setplevel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setsite
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	shell
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	space
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	startview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	When to Use startview

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	type_manager
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	TYPE MANAGERS
	USING A TYPE MANAGER
	TYPE MANAGER STRUCTURE
	The Type Manager Map File
	Data Containers

	FILES
	SEE ALSO

	type_object
	APPLICABILITY
	DESCRIPTION
	INSTANCES OF TYPE OBJECTS
	KINDS OF TYPE OBJECTS
	PREDEFINED AND USER-DEFINED TYPE OBJECTS
	SCOPE OF TYPE OBJECTS
	GLOBAL TYPES AND ADMINISTRATIVE VOBS
	OPERATIONS ON TYPE OBJECTS
	SEE ALSO

	umount
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Unmounting of Public and Private VOBs
	Unmounting All VOBs

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	uncheckout
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Canceling a Checkout in an Inaccessible View
	Canceling a Directory Checkout

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	unlock
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	unregister
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Other Commands that Affect Storage Registries

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	unreserve
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	update
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and ClearCase�LT—Updating Loaded Elements
	ClearCase and ClearCase�LT—Loading New Elements
	Attache

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	ClearCase and ClearCase�LT
	Attache

	EXAMPLES
	ClearCase and ClearCase�LT
	Attache

	SEE ALSO

	version_selector
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Branch Pathnames

	SELECTION BY VERSION-ID
	SELECTION BY VERSION LABEL
	Version Labels As File Names

	SELECTION BY QUERY
	SEE ALSO

	view
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Dynamic Views—The File System
	Dynamic Views—View Storage Directory
	Dynamic Views—Private Storage Area
	Dynamic Views—View Database
	Snapshot Views—The File System
	Snapshot Views—View-Storage Directory
	Snapshot Views—View Database
	ClearCase and Attache Only—Comparison of Dynamic and Snapshot Views

	SEE ALSO

	view_scrubber
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Cleaning Up after a Winkin
	Self-Winkin

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	view_server
	APPLICABILITY
	DESCRIPTION
	VIEW CONFIGURATION
	VIEW CACHES
	SEE ALSO

	VOB
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VOB Storage Pools
	VOB Database

	LOGICAL DATA STRUCTURES
	The VOB Object and Replica Objects
	File System Objects
	Type Objects
	Instances of Type Objects
	ClearCase Dynamic Views Only—Derived Objects
	ClearCase Dynamic Views Only—Configuration Records
	Event Records
	The VOB Root and lost+found Directories

	VOB TEXT MODES
	VOB REGISTRY AND VOB ACTIVATION
	SEE ALSO

	vob_restore
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Restoring a VOB from Separate Database Snapshot and VOB Storage Directories
	If You Are Not Restoring a VOB Database Snapshot
	If There Is No Need to Preserve the Damaged Storage Area

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	SAMPLE RECOVER PROCEDURE
	EXAMPLES
	SEE ALSO

	vob_scrubber
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CLEARCASE AND ClearCase�LT EVENTS
	Event Record Scrubbing
	What Event Records Are Deleted

	MULTISITE OPLOG ENTRIES
	MULTISITE EXPORT_SYNC ENTRIES
	AUTOMATIC SCRUBBING
	OPTIONS AND ARGUMENTS
	VOB-SPECIFIC EVENT-RECORD SCRUBBING PARAMETERS
	OPERATION LOG AND EXPORT RECORD SCRUBBING
	SCRUBBING DEFAULTS
	EXAMPLES
	FILES
	SEE ALSO

	vob_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CONFIGURATION FILE
	Deferred Source Container Deletion

	ERROR LOG
	SEE ALSO

	vob_snapshot
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Per VOB (or Replica) Snapshot Parameters
	Database Snapshot Details
	If You Do Not Use vob_snapshot

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLE VOB BACKUP AND RECOVER SCENARIO USING vob_snapshot
	THE SNAPSHOT LOG
	EXAMPLES
	FILES
	WINDOWS NT REGISTRY KEYS
	SEE ALSO

	vob_snapshot_setup
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Setting VOB Snapshot Parameters
	Disk Space Usage

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	WINDOWS NT REGISTRY KEYS
	SEE ALSO

	vobrpc_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ERROR LOG
	SEE ALSO

	wildcards
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION

	wildcards_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION

	winkin
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Effect on View-Resident DO Data Containers

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	ws_helper
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CONFIGURING THE HELPER ENVIRONMENT
	PERMISSIONS
	ERROR LOG
	SEE ALSO

	wshell
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	Index

