MANAGING SOFTWARE PROJECTS
WITH CLEARCASE

Release 4.1 and later

Windows Edition

Rationarl

eeeeeeeeeeeeeeeeeeeeeeeee

800-023899-000

Managing Software Projects With ClearCase
Document Number 800-023899-000 November 2000
Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice

Copyright © 1992, 2000 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California

Copyright 1984-1991 by Raima Corporation

Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks

Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, ClearDDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle? are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure ‘tc)ly the U.S. Government is subject to restrictions set forth in the applicable

Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer

This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
discllzims alFother warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments

This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contri%)utors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http:/ /www.webdav.org mod_dav/%.

Rationarl

the e-development company™

Contents

Contents

PIEIACE ..o xix
About This Manual ... Xix
Product-Specific FEaturescccoccoiiiiiiiiiiicccccccccecccenene Xix

Organizationccooeiiviiiiinii xix

ClearCase Documentation Roadmap..........cccoeeveiiiciiiiicicce, XX

ClearCase LT Documentation Roadmapc.cccoovrmrveivicneieinccnreccnen Xxi
Typographical Conventionsccoceueueiiiiieieiniicccce e xxii

Online Documentationccoeeeirreereinnieieinineeecseeeeeeeeereeeenenenes xxiii

Technical SUPPOTtcuoviiii e xxiv

1. Choosing Between UCM and Base ClearCasec.ccevenernennennieneeieneeeneenennenes 1
1.1 Differences Between UCM and Base ClearCase............cccoeovvvvviiiniiininnnnnnnn. 1
Branching.........cccocciiiiiiiii e 2

Creating and Using Baselines.........c.ccccccccieiiiciiiiecceeeeeeeeeeenenes 3

Managing ActiVIities........ccooeiiiiiiiiiniiiccc 4

Enforcing Development POLICIES........c.cccceueueiiiiiiiiiiiiieceeeeceeeeeeenenes 5

1.2 Using Base ClearCase Tools with UCM.........ccccooooiiiiiiiiiiie, 5

Part 1. Working in UCM

2. UNderstanding UCM ...ttt sttt ettt ettt b st s be b sae 9
2.1 The Project Management Cycle..........cccoociiiiiiiiiiiiiiiciicccceeeennas 9

2.2 Creating the Project.........cooiiiiiiiiiiiic 12
Creating @a PVOB ... 12

Organizing Directories and Files into Components.........c.ccccccoceueiinnnnen. 13

Shared and Private Work Areas.........cccooevviieieiniicniiiicceecce, 13

Starting from a Baselinecccooeuiiiiiiiiiiiiiic 14

Setting POLICIESc.cueuiiiiiiiiiicccc e 14

Setting Up the UCM-ClearQuest Integration...........c.c.ccoerueieiiirieieiinnnen, 15

ii

2.3 Integrating Work into the Project (MultiSite)...........ccooeviiiiiriiii 16
2.4 Making a New Baseline ..o 17
2.5 Promoting the Baseline.........cccccoooiiiiiiii 18
2.6 Overview of the UCM-ClearQuest Integration............ccccccevveieviiincnncnnes 20
Associating UCM and ClearQuest Objectscooooreiiiiiiiiiiiiie, 20
UCM-Enabled Schema..........ccocovreiiiiiiiiiiiiicceee 21

State TYPES .ot e 21
Queries in a UCM-Enabled ClearQuest Schema..........c.ccooeeveeveeereeeecneennnne. 22

3. Planning the PrOJECE ...ttt sttt 23
3.1 Using the System Architecture as the Starting Pointcccccoeveiaae 23
Mapping System Architecture to Components............cccooeeieieiiiiiieiiinnne, 24
Deciding What to Place Under Version Control...........ccccccccvuvviiirinininnnnns 24
Mapping Components to Projects........cccoeeuiiiieiiiiicieiicccce, 25

Size Of the SYStem......c.ccuiiiiiiiiiiiiirccccccc e 25

Amount of Integration...........ccccoeuevviviiiiiiiiiiiiis 25

Need for Parallel Releases..........cccccovuviiiiiiiiininiiiniiicins 25

EXQMIPLE ..o 26
Components and VOBScccccceuiiiiiiiiiiiiiics 26

3.2 Organizing COMPONENLESccoviiriiiiiiiii s 27
Considering VOB Capacitycccccoeeiviviniiiiiiiiiiiniiiicicniccnncseean 27
Identifying Additional Componentscccoovvviiiiviiiieniniiiiine, 28
Defining the Directory Structure...........ccccocviviviviiiiiiinniniiiiiiinnns 28
Identifying Read-Only COMPONENtSc.cceueueueurueueueerererneiciereeeeeeeeeeeeeenes 29

3.3 Specifying a Baseline Strategyccccooviiiiniiiiiiiniiic 30
When to Create Baselinescccooviviiiiiiininins 30
Identifying the Initial Baselinecccccccceviiiininniniiinniiiinne 31

Ongoing Baselinesccocueiiiiciiieiicecc s 31

Defining a Naming Conventioncccccccceerrriicninnineciierreeeeeeeeens 32
Identifying Promotion Levels to Reflect State of Development 32
Planning How to Test Baselinesccccccccccuiueiiiniiiiiinnniiccrcceeeeene 32

3.4 Planning PVOBS........cooiiiiii e 33
Deciding How Many PVOBS t0 Use.........cccccevuviriiiiiiinniniiiciiceeceeeeeeens 33

Managing Software Projects with ClearCase

Contents

3.5 Identifying Special Element Typesccccceiiiiiiiiicciiiiecccccennes 35
Nonmerging Elements.............cooorueiiiiiiieiiiicieccc e 35
Nonautomerging Elements...........cccccccciiiiiiiiiiiiiccciccceeeeennes 36
Defining the Scope of Element Typesccccoeioiiiiiiiiieiice, 36

3.6 Planning How to Use the UCM-ClearQuest Integrationc.c.cccccu..c... 36
Mapping PVOBs to ClearQuest User Databasesccccceeueirieriiinnnen. 37

All Enabled Projects in a PVOB Must Link to the Same Database37
Projects Linked to Same Database Must Have Unique Names.......... 37
Use One Schema Repository for Linked Databases............c.cccocco...... 38
Deciding Which Schema to USeccccoceuiuiiiiiiiiiiiccccccceceennes 39
Overview of the UnifiedChangeManagement Schema....................... 40
Enabling a Schema for UCMcccoooeiiiininiiiciicccc e, 41

3.7 Considering Which Development Policies to Enforce...........cccccceiuinnie. 42

Policies Available in UCM.........cccoooiiiiiiiiiiiiiiiiccccnsisnnes 42
Recommended Baselines...........ccccovuirmiiiinincniieiniiieecees 42
Modifiable COMPONENLSccceuiviiimiiiiiiiiiiiiiciiccccianes 42
Default View TYPEeScocueviieiiieiieiiciccc e 42
Rebase Before Deliver...........coviiviiiiiiniiicecnaes 43
Allow Deliveries from Stream with Pending Checkouts.................... 43

Policies Available in UCM-ClearQuest Integration.............cccocoevvvvvinrnnan. 44
Check Before Work On.........ccccccciiiiiiiiiiicicccccccccceecnes 44
Check Before ClearCase Delivery.........ccccooemeieiiicieiiiiicicieccc 44
Do ClearQuest Action After Delivery ... 44

4. Setting Up a ClearQuest User Databaseccccocoveiiininiinenieeeeteeeeeeeeieee s 47

41 Using the Predefined UCM-Enabled Schemascccccocoeiuiiiciiiccnnes 47

42 Enabling a Schema to Work with UCM..........ccccooi 48
Requirements for Enabling Custom Record Types........ccccceeeiecuiccnnnns 51
Setting State TYPeSccuovirueieiiicie e 51
State Transition Default Action Requirements for Record Types............. 52

43 Customizing ClearQuest Project POliciesc.ccooviiiiiiiiiniciiicce 54

44 Associating Child Activity Records with a Parent Activity Record......... 54

v

Understanding the Role of the Administrative VOB..............ccccccoi. 34

Using Parent/Child COntrolscccccoeviiiiiiiininiiiiiiiccins 55

4.5 Creating USeTS.......cccoviviiiiiiiiiiiiiiiccic s 55
5. Setting UP the PrOJECT ...ttt 57
51 Creating a Project from Scratchooooveeiiiiiii, 58
Creating the Project VOB..........ccooiiiie 58
Creating COmMPONENtSsccccvviuiiiiiniiiiii s 59
Creating the Project ... 60
Defining Promotion Levels...........ccccccoiiiiiiiiiiiiiiciccceeeeene 61

Creating an Integration VIew ..o 62
Creating the Directory Structureccccocceueeiveiiiiciinneccceeceeeeeeene 63
Importing Directories and Files from Outside ClearCase............cccccueunuene 64

52 Creating a Project Based on an Existing ClearCase Configuration........... 64
Creating the PVOB ..o 65
Making a VOB into a Component...........ccccccueueueurieieirrnireeeenrceeeeeeeens 65
Making a Baseline from a Labelccccoooo 65
Creating the Projectcccccciiiiiiiiiiccccccccceecceeeeeeeae 66
Creating an Integration VIew ..o 66

5.3 Creating a Project Based on an Existing Project..........ccccooevnininininincnnnnes 66
Reusing Existing PVYOB and Components.............cooceeiiiineeiiiccicieinane, 66
Creating the Projectcccccciiiiiiiiiiccccccccccecceeeeeeeeae 66
Creating an Integration VIew ..., 67

5.4 Enabling a Project to Use the UCM-ClearQuest Integration...................... 67
Migrating ACHVIIEScoeveviiiiiiiieiiii 68
Setting Project POLICIEScceuiuiiriiiiiiiciriiciccccccccceeeceeeeeeeeae 69
AssSigNINg ACVITIES ...c.cvoviviiiiiiiii 70
Disabling the Link Between a Project and a ClearQuest User Database..70
Fixing Projects That Contain Linked and Unlinked Activities.................. 71
Detecting the Problemc.cccccocciiiiiiiiicceeeeeeeeeeeeeee 71
Correcting the Problem ... 71

5.5 Working with Rational Suite..........ccoooiiii 72
5.6 Creating a Development Stream for Testing Baselines............ccccevevunce. 72

vi

Managing Software Projects with ClearCase

Contents

6. Managing the PrOJECT ..ottt 75

6.1 Adding COMPONENLSccoevvveririririiiiririrrrr e 75
Updating Snapshot View Load Rulescccccooriiiiiiiie, 76

6.2 Integrating the Projectcccocvvvviiirnciinrrnnce e 77
Finding Work That Is Ready to Be Delivered ..o, 77
Completing Remote Deliver Operationsccccccoceeccciiccccecencnns 78
Undoing a Deliver Operation.............cccoeeieieieiiiccieicicceece e, 78

6.3 Creating a New Baselinecccccovviriniinnnnncnnree e 79
Locking the Integration Stream............cccooiiiiiiiiiicieiciccec e, 79
Verifying That the Code Base Is Stable.............ccccooeiiiiiiiiniiiiienn, 79
Making the New Baselineccccooooiiiiiiiiiice, 80
Making a Baseline for a Set of Activitiesccoovvvvniiiniinnnins 81
Unlocking the Integration Stream............cccccceuiiiiiiiiiiiiiiccccena, 81

6.4 Testing the Baselinec.cccccoiiiiiiiiiiiiiiiiic s 81
Fixing Problems.........ccccoiiiiiiiiiiiiiiiccccccnes 82

6.5 Promoting or Demoting the Baseline..........c.cccococovuvirirrnnnnnnnnrreene. 83
6.6 Tracking the Project ..., 84
Comparing Baselines ..o, 84
Querying ClearQuest User Databases............cccoooerueiniiinieiiiniicciccen, 87
Using ClearCase RepOrItscccoviiiiiiiiiiiniiiiiicnce s 88

6.7 Cleaning Up the Project.........ccccovvviiiiniinninininnininnnncnccnn, 89
Removing Unused Objects..........ccooviiniiiiiiiiicc, 89
PIOJECtS....viviiiiciccc e 90

SHEAIMS ...t 90
COMPONENLES....oovvriiirteieietetctete st 90

BaSelinesc.ccuiuiiiiiiiiiiiiiicic e 90
ACHVIHIES.coviiiic 91

Locking and Making Obsolete the Project and Streams..........ccccccccucueeee. 91

7. Managing Parallel Releases of Multiple Projects ... 93
7.1 Managing a Current Project and a Follow-On Project Simultaneously ...93
EXaMPIe ..o 94
Performing Interproject Rebase Operations..........ccoocovvvveereivcciereinccnnnnn, 95

7.2 Incorporating a Patch Release into a New Version of the Project............. 96
vii

EXAMPLe .o e 96

Merging Work to Another Project........ccccccccuiivviiiinniiiccccecene 98
7.3 Additional Merging SCeNarios..........cocoeeueiirueieiiiiecieieeecee e 99
Merging from a Project to a Non-UCM Branchcccccccceiiiiiinnnns 99
Merging to a System Project...........cooriiiii e, 99

Part 2: Working in Base ClearCase

8. Managing Projects in Base ClarCasecccceeverierieieieeeieeee et senns 103
8.1 Setting Up the Project........cccccoviviviviiiiiiiniiiiiiiiiiiciiiiicicccncccesceeens 104
Creating and Populating VOBSc.cccccceiiinieiiiceccceeeeeeeeeenes 104
Planning a Branching Strategyccccccoviiiiiiiiiiiiiiiiccs 104
Branch Names ... 105

Branches and ClearCase MultiSite..........c.cccoovviiiiiiiiniiiiiicnnen 105

Creating Shared Views and Standard Config Specsccccccooiriieinne, 106
Recommendations for View Namesccccocvvvviiniiiiineniicnns 106

8.2 Implementing Development POLCIesccceueieiiuriiiiiiciieiccie 107
USING Labelsc.cvoviiiiiiiiiiiiiiccccceccecee e 107
Using Attributes, Hyperlinks, Triggers, and Locks.........ccccooiriiiiinnns, 107
GlODAl TYPES....vviiiiiiciiicicicccee e 108
Generating RePOTtS.......c.cooiiueveiiiiiiicci 109

8.3 Integrating Changes..........cccceerririiiririririiceeeeeeeeeeeee e 109
9. DefiNiNG PrOJECE VIBWS ...ttt sre s s reesae e eaessa e sesssensens 111
9.1 How Config Specs WOrK ... 111
9.2 Default Config SPeC.......covuriuriririeiiieiiiece s 112
The Standard Configuration Rulescccoeeveiiiiiiiiiieeeenes 112
Omitting the Standard Configuration Rules...........c.cccccoooiinii. 113

9.3 Config Spec Include Files ..o 113
9.4 Project Environment for Sample Config Specsccoceueiviiiieiiiicncnnnn. 114
9.5 Views for Project Development...........ccooeiiininiininininninrcccceaes 115
View for New Development on a Branch ... 116
Variation That Uses a Time Rule..........cccccoovvivniiniiniiiin, 116

viii Managing Software Projects with ClearCase

Contents

View to Modify an Old Configuration.............ccooeeeiiiiiiicii 116

Omitting the \main\LATEST Rule........ccccccccccecevniinnnnninnnnnne 118

Variation That Uses a Time Ruleccccoovviiniinnnne. 118

View to Implement Multiple-Level Branching............ccccccooiiiii 118

View to Restrict Changes to a Single Directorycccoooevvvrnriviicnnnnns 120

9.6 Views to Monitor Project Status...........cocoeeueiiiiiiiciiiiiccc 120
View That Uses Attributes to Select Versions...........cccccoeeveivirnriinicnnnnns 120
Pitfalls of Using This Configuration for Development 122

View That Shows Changes of One Developerccccoovenininininencnne. 123
Historical View Defined by a Version Label...........c.ccccooiii, 123
Historical View Defined by a Time Ruleccccccceiiiiiinniiiinn, 124

9.7 Views for Project Buildscooooiiiiiiii 124
View That Uses Results of a Nightly Buildccooiiine. 125
Variations That Select Versions of Project Librariescccccccooeeeii 126

View That Selects Versions of Application Subsystems...........c.cccccuucucee. 126

View That Selects Versions That Built a Particular Program................... 127
Configuring the Makefile.........ccccccoeueiiiinniiiicceeeeeeeeees 127

Fixing Bugs in the Programcccccccvviiiiiinnnniiiiiiiccnne 128

Selecting Versions That Built a Set of Programs............ccccoovnnien 128

9.8 Sharing Config Specs Between UNIX and Windowscccccevvecace. 129
Pathname Separators ..o 129
Pathnames in Config Spec Element Rules............cccccccceeuiiinnniinnnnn, 130
Config Spec Compilation ... 130
EXQMIPLE ... 130

10. Implementing Project Development POlICIES ccoveiiieniieneiccercercencenne 133
10.1 Good Documentation of Changes Is Required..........cccoooevevvvrnrivnicnnnnn. 133
10.2 All Source Files Require a Progress Indicator............coceueveiiiiciiiinnnnnn 134
10.3 Label All Versions Used in Key Configurations............ccccccoccuiuiuiicnennne 135
10.4 Isolate Work on Release Bugs to a Branch...........c.c.cccoooo 136
10.5 Avoid Disrupting the Work of Other Developers............cccccoceuiiennnne. 137
10.6 Deny Access to Project Data When Necessarycccoovveeiiirininnnnnnnn. 138
10.7 Notify Team Members of Relevant Changescccccccceecciiiiiiccnnnn 138
10.8 All Source Files Must Meet Project Standards.........c.cccooevriiiiniinnnnnnn. 140
ix

10.9 Associate Changes with Change Orders..........c.cocooooiiiiiiiininiiiccn, 140

10.10 Associate Project Requirements with Source Filescccooiiinnnne. 141
10.11 Prevent Use of Certain Commandscccceeiiiiiiiiiiiiiiinen, 143
10.12 Certain Branches Are Shared Among MultiSite Sites...........ccccccceeeennene. 144
10.13 Sharing Triggers Between UNIX and Windows.............coceieiiiiniiiiinnes 145
Using Different Pathnames or Different Scriptsccccccceeevviiicnnnns 145
Using the Same Script ..o 146
INOEES .ot 146

11. Integrating ChANQES ..ottt ettt re et s aesreesbe s s e beessessaessenseensanns 147
11.1 How Merging WOTKScccoiiiiiiiiiiiiiccccccccccceeenes 147
Using the GUI to Merge Elementsccoooiiiiiiiiciccce 149
Using the Command Line to Merge Elements..........c.c..cococeiiniiiinnininnns 150

112 Common Merge SCENATIOSocrurieiiirerieieiicieie et 151
Scenario: Selective Merge from a Subbranch.............cccccccecuiiivniiinnnns 151
Scenario: Removing the Contributions of Some Versions............c.ccceu.... 152
Scenario: Merging All Project Workcccccceiiiiiiiniiiiiiccs 153

All Project Work Is Isolated on a Branch ... 153

All Project Work Isolated in @ View........ccccceucueueiviviciennccicceee 153

Scenario: Merging a New Release of an Entire Source Tree..................... 154
Scenario: Merging Directory Versions..........cccevvciinniccinniciinnencnns 157

11.3 Using Your Own Merge Tools..........ccccoiiiiiiiiiiiiiiiccccccens 158
12. Using Element Types to Customize Processing of File Elements 161
12.1 File Types in a Typical Project ... 161
12.2 How ClearCase Assigns Element Types..........cccccceiiiiiiiccciccccnenne. 162
12.3 Element Types and Type Managers............ccococueueieiirieieinicicieieiccieeeae 163
Other Applications of Element TYPesccccccvueueueueierininiccieeicceiennns 165
Using Element Types to Configure a Viewcccoeeeiiniiinicccnnnn 165
Processing Files by Element Type.........ccccooiiriiiiiiiiiicce 166

12.4 Predefined and User-Defined Element Types........cccccoeiiiiiniiiicnnne 166

Managing Software Projects with ClearCase

Contents

13. Using ClearCase Throughout the Development Cycle cccoccncoincencnncnennene 167

13.1 Project OVeIVIEW ..o 167
13.2 Development Strategycccooceioiimieieiiiicieicce s 169
Project Manager and ClearCase Administrator...........cccccceevvviirnrinenns 169

Use Of Branches ... 169
Creating Project VIEWS ... 172

13.3 Creating Branch Typesccoceioiiiiiiiiiiiiicc 172
13.4 Creating Standard Config SPecs ..o 173
13.5 Creating, Configuring, and Registering Views...........ccccccocouveriiininnnnn 173
13.6 Development BeGINs...........cccocoiiiiiiiiiiiiiiccceeeecceeeeeeenenes 174
Techniques for Isolating Your Workccooi, 174

13.7 Creating Baseline 1........ccccccooioiiiiiiiiiiiiccccccceceeceeee s 175
Merging Two Branches ..., 175
Integration and Test.........ccccccieiiiiiiiiniiicccccc e 176
Labeling SOUICES........ceuiiiuiieieiiici e 176
Removing the Integration VIew ... 177

13.8 Merging Ongoing Development Work...........cccooeeiiiiiiniiiciic 177
Preparing to Mergeccovivviiiiiiiiiiiciciceecn e 178
Merging WOIK ..o 179

13.9 Creating Baseline 2.........cccccceiiiiiiiiiiiicccccccceeeeeeee s 181
Merging from the r1_fix Branch...........cccooo, 182
Preparing to Merge from the major Branch ..., 182
Merging from the major Branch...........cccooooi, 183
Decommissioning the major Branchccccccoceeiiiiiiinnniiicn, 184
Integration and Test ..o, 184

13.10 Final Validation: Creating Release 2.0..........ccccccceeueceiuicccccceccnenennn. 185
Labeling SOUICES........coueiiiieieiicci e 185
Restricting Use of the main Branch ..., 186
Setting Up the Test VIeW.........coooriiiiiiiiicc e 186
Setting Up the Trigger to Monitor Bugfixing...........cccccceeevvvnninnnnns 187
Fixing a FiNal BUg.......cooviiii 187
Rebuilding from Labels.........ccccccceiiiiiiniiiiiiccccccceeeeeceees 188
WIapping Up ..o 188

Xi

A. Moving from View Profiles t0 UCM ..ot 189

A1l View Profiles and UCM..........c.cccooviiiiiiiiiniiicccc e 189
Feature COmMPAariSON.........cocueueiiirieieiiccie e 189
Branches and Streams............cccoeeeiiieiiiiiiiiiii 189

Moving Work Among Branches or Streams...........ccccceeuvuvuriciiicicnnnne 190

VOBS and Components...........cccoueverurieiiiicicieicce e 190
Checkpoints and Baselines.........c.ccccecceueueuiieieieieieieieeeeeeeeeeeeees 190

A.2 How to Move View Profile Information to UCM..........ccccovvininininncnne 191
Preparing Your View Profile Projectcccccccceeeeiiveeeiccincccceennns 191
Moving the View Profile Informationcccccoceviviviiiiiiniiiiiinns 191

B. ClearCase-ClearQuest INtegrationScccccecevierieieiieieieieeeesese e ssessesseaenees 193
B.1 Understanding the ClearCase-ClearQuest Integrations............c.cccocc...... 193
Managing Coexisting Integrations............cccceceevvniiiinniiinnicnn, 194
SChema ... 194
Presentation ... 194

C. Customizing ClearCase REPOITS cccoeireeneireirieirtetereeeretereseeveseesesnesessesessenennes 197
C.1 How ClearCase Reports Works..........cocoooviiiiiiiiiiccce, 197
C.2 What You Can Customize in ClearCase Reports........c.ccccouerrreriiirnennne. 198
Run-Time Processing Sequence for Reports Programming Interface.....200
Configuring Shared Report Directories...........ccccocevvieiiieiiininieiiiciieinns 203
Adding Report Procedures to Source Controlcccccceueueicucucnnnnne 204

Setting the Report Builder to the Customized Directory 204

Default Directory Structure for ClearCase Reports.........cccccceueueeeucueueuennns 204
Populating the Report Builder Tree Panecccccoeeviiiiiiiinicciieicne, 205

C.3 Report Procedure Interface Specifications..........ccocoveeveeererererenncncrcrcncncncnee 207
Interface Specification for All_Views.prl......cccccccoovriininninnnnn 208

Interface Specification for test_null.prlcccocooviiiiii 209

Interface Specification for test2_null.prl........c.cccccoeeiiiiiicicnnnes 209
Description Specification...........ccccccieieiiiiiiiiininiiiiiii 209

Help ID SpecifiCationcccccueueueucueueieueieieicieieieieieieieeieieieneneneeesenenenenenenenes 209
Parameters Specification...........ccccccciiiiiiiiiiiniiiiii 210

Xii Managing Software Projects with ClearCase

Contents

C4

Rightclick Specificationoocrueieiiicieic e
Fields Specificationcccccccueueuciiiiiiinininiciccceeccceeeeeeeeeeeeeeeeae
field_type CONVeNtions...........cccceueuviviiiiiiiniiiiiiiiiiicciccscseas
Parameter ChOOSEIScovuiiiiiiiiiiiiicic e
Path ChOOSETc.coiiiiiiiiicicicicccc e
UCM Targets ChOOSETccovirueiiiicieieeci s
TYPe ChOOSEToovviiiit e
Date/Time ChOOSETccccouviiiiiiiiiiiiicicicicircicieeeeas
Text ChOOSETccvviiiiiiiiiic e
Viewing the RePOTt ...
Saving Report Datacccueviiiriciiic e
Report Programming Examples.........cccccccoceueriniiiinnniccnneceeeeens
Example 1: Adding a Column to Report Outputccorriiiiiiinnin,
Processing LOGIC.......oeiiiiiieiiiiicicccc s
Interface Specificationcccccceueiviiiiiiininiiiiie
Changes Required..........cooeueiiiiiiiiiiiic
Modified Report Procedure.........c.ccccceucueurunieiiicninineiiceeeeeeeeeeee

Example 2: Changing Report Directory Organization,
Report Description, and Report Outputcccoveeeiiiiiiiiiiine,

Processing LOZIC......ccoceeieieieieiiiiiiiieiieiiee
Interface Specificationccccceeeiiiciiinniiicccccreeeeeee
Changes Required..........cccccoviiiiiiiiiiiiiiiiiiiiiiics
Modified Report Procedure...........cccocoeuieininiiininicieiciecececes

Example 3: Changing Report Description, Parameter Types,
and Report Output.......cccccciiiiiiiiiiiiiicca

Processing LOZIC.......ccooueieieieieiiiiieiiicicii
Interface Specificationccccceeueueicieeennieceereeeeeeeeeeeeee
Changes Required..........cccccoeuiiiiiiiiiiiiiiiiiiriiiicccccccreecee
Modified Report Procedure...........cccccoouviviiiniiiniiininiiiiiiiicicins

Example 4: Changing the Shortcut Menu for the Right-Click
Handling MechaniSmcccccceeuiiiiininiiiiciieecceeeeeeeeeeeeeeeeeeees

Interface Specificationccccceeiviiiiiiiiiiiiniiiiicii

Changes Required..........ccooeueioiiiiiiiiic

xiii

Xiv

C5

C.o6

Modified Report Procedure............cccccoeueiiiininiiininiiiiiniiiiins 237
Example 5: Adding a New Command to the Report Viewer

ShOTtCUt MENU.....oiieiiiiiiic e 239
Interface Specification..........ccccceueieiiiiiiiiiiiiiiii 240
Changes Requiredccoorueiiiiiiiiicc e 240
Modified Report Procedurec.cccccccucueuiiiiiiiiiiiiiiiicccccciceees 240

TroubleShOOtINg.........cueiiiiiei 244

Errors in the Interface Specification...........ccccccceeecciiiiiiciiiicccns 245

Coding High-Level Languages Other Than ccperl.........cccccooiiinne, 247

.. 249

Managing Software Projects with ClearCase

Figures

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Branching Hierarchy in Base ClearCase............coocoeueioiiriniiiinniecccee 2
Branching Hierarchy Under UCM Streams..........cccoccucueucmeucueieiciccncencnccnenenes 3
Project Management and Development Cycles in UCMc.cccccooeueee. 11
Baselines of Two COMPONENLS.........ccceuririririririririrrrrrrreee e 14
Rebase Operation ... 18
Promoting Baselines ..o 19
Association of UCM and ClearQuest Objects in Integration........................ 20
Components Used by Transaction Builder Project..........cccccoeoeiiiiiiinnnes 26
Mapping Components to Projects........ccoceueiieieioiiiciccce, 27
Using a Read-Only Component...........cccccciiiiiiiiiicceeeeceeeeeenenes 30
Related Projects Sharing One PVOB ..o, 34
Projects in Multiple PVOBs Linked to the Same ClearQuest Database.......38
Using the Same Schema Repository for Multiple ClearQuest Databases ...39
UCM Tab of Record Form for a UCM-Enabled Record Type.............cc....... 40
Main Tab of Record Form for the BaseCMActivity Record Type................. 41
Associating a User Database with a UCM-Enabled Schema......................... 48
Adding the UCMPolicyScripts Package to a Schema..........ccccooooriiiiinnnn, 49
Assigning State Types to a Record Type’s States..........cccccoceiiiiccccccnnes 50
Navigating to Record Type’s State Transition MatrixX.........cccccoeerieieiiinnnen. 50
State Transition Diagram for UCM-enabled BaseCMActivity
ReCOTA TYPE..ovviiiiiiiiiciic s 53
Navigating to Integration Stream in Project Explorer..........cccocooviiinnnnnns 62
Step 2 of New Project Wizard ..o, 67
Enabling a Project to Work with a ClearQuest User Database...................... 69
Navigating to the UCMProjects QUETYccccoiiiiiiiiccieicccecccennes 70
Add Baseline Dialog BoXccouoiiiiiiiiicieieiccc e, 76
Find Posted Deliveries Dialog BoX..........cccccocuiuiiiiiiiiiiicceiccccceeenenes 78
Make Baseline Dialog BOXcoooiuiiiiiiiiiicc e, 80
ClearCase Component Tree BroWSETcccciuiiiiiiiiiiiceeiccceceeenenes 85
Comparing Baselines by Activitycccocoeoiiiiiiiiiiiie, 86
XV

XVi

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59

Comparing Baselines by Version..........cccciinniiinnicncniiiccccicceenns 87

ClearCase Report Builder...........c.ooooiuiiiii e 89
Managing a Follow-on Release ... 94
Incorporating a Patch Releaseooueiiiiiiiiiiiice, 97
Making a Change to an Old Version...........cccovvniininnncncninnenncnreeceenes 117
Multiple-Level Auto-Make-Branch ..., 119
Development Config Spec vs. QA Config Spec.......ccovvvvvivirinineneninenincnccnes 121
Checking Out a Branch of an Elementcccoooooiii, 122
Requirements Tracing.........ccccoevviivieiniiiiiiicc s 143
Versions Involved in a Typical Mergeccooeueueiiiiiiiiiiccicccee 148
ClearCase Merge AlgOrithm..........cccocooiiiiiiiiininiiic e 149
Selective Merge from a Subbranch ... 151
Removing the Contributions of Some Versionscccccceevuvvvriccnnnns 152
Merging a New Release of an Entire Source Tree ..o, 155
Data Handling: File Type, Element Type, Type Managerc.ccccceueueuce. 164
Project Plan for Release 2.0 Developmentc.ccoooeriiiiiincininiiniciene, 168
Development Milestones: Evolution of a Typical Element.......................... 171
Creating Baseline ©..........ccoooiiiiiiii e 175
Updating Major Enhancements Developmentcccoeeeevinnininnnnnncncne. 178
Merging Baseline 1 Changes into the major Branch ...l 180
BaSEliNe 2cuouviiiiiiic e 181
Element Structure After the Pre-Baseline-2 Mergeccocoeueieiiriiieinncne, 184
Final Test and Releasecccoeuiiiiiiiiiiiiiiiiiccccecec e 185
Change Sets in ClearQuest GUI............coooiuiiiiiiice 195
Customizable Areas of Report Builder Interface........ccccccovvvniininincncnne. 199
Customizable Interface for Report Viewer Windowcccccoeeiiiininnne, 200
Run-Time Processing SEQUENCEccccviviiiiiiinininiiiiiicccccnes 202
Report Builder User Interface............cooomeieioiiiiii 206
Report Viewer WINAOWcccccuiiriiiiiiininiiicicceicceeeeeeneeeeeeeeneeeneaeenes 219
Report Builder Window with Invalid Parameterscccocoiiiiiinnnne, 246

Managing Software Projects with ClearCase

Tables

Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

Recommended Directory Structure for Components..........c.cccooooeueieininnnnen. 28
State Types in UCM-Enabled Schema ... 52
Queries in UCM-Enabled Schema..........cccocveiiiiieiinieieceeieceee e 87
Files Used in a Typical Project ... 162
View Profile Features and Their UCM Counterparts..........ccccoouereieieinnne. 190
Parameters Supplied with ClearCase Reports..........coeeiiiriniiniinincncncnnes 211
Fields MOdIfiers ..o 214
Field Type Supplied with ClearCase Reports...........ccoeeveiirininicinincncncnnes 215
Xvii

Xviii Managing Software Projects with ClearCase

Preface

Preface

Rational ClearCase, a configuration management system, is designed to help software
development teams track the objects used in software builds. You can use base ClearCase to
create a customized configuration management environment, or you can adopt the Unified
Change Management (UCM) process.

About This Manual

This manual shows project managers how to set up and manage a configuration management
environment for their development team using either UCM or the customizable features of base
ClearCase.

Product-Specific Features

This manual describes ClearCase and ClearCase LT. ClearCase LT does not include all features
available in ClearCase. In addition, some user interfaces are different in the two products. This
manual uses the following label to call out differences: PRODUCT NOTE. When used outside of a
PRODUCT NOTE section, ClearCase refers to both products.

Organization

The manual is divided into two parts:

O Part 1: Working in UCM. Read this part if you plan to use UCM to implement your team’s
development process.

O Part 2: Working in Base ClearCase. Read this part if you plan to use the base ClearCase
features to implement a customized development process for your team.

Xix

ClearCase Documentation Roadmap

Orientation

Introduction to ClearCase
ClearCase and MultiSite Release Notes
ClearCase Tutorials

Project
Development)

Management

Developing Software with ClearCase Managing Software Projects with ClearCase

More Information
ClearCase Reference Manual

ClearCase Online Help
clearcase.rational.com

Build
Management

ClearCase
Administration

ClearCase OMAKE Manual (Windows)

Administering ClearCase
Building Software with ClearCase

ClearCase Product Family Installation Notes
— ClearCase MultiSite Manual

XX Managing Software Projects with ClearCase

ClearCase LT Documentation Roadmap

Orientation

Introducing Rational ClearCase LT
ClearCase LT Release Notes
ClearCase Tutorials

Project

Development Management

See online help. Managing Software Projects
with ClearCase

More Information

ClearCase Reference Manual
ClearCase Online Help
clearcase.rational.com

ClearCase
Administration

Administering ClearCase LT

Preface

XXi

XXii

Typographical Conventions

This manual uses the following typographical conventions:

O

ccase-home-dir represents the directory into which the ClearCase Product Family has been
installed. By default, this directory is /usr/atria on UNIX and
C:\Program Files\Rational\ClearCase on Windows.

attache-home-dir represents the directory into which ClearCase Attache has been installed.
By default, this directory is C:\Program Files\Rational\ Attache, except on Windows 3.x,
where it is C:\RATIONAL\ATTACHE.

Bold is used for names the user can enter; for example, all command names, file names, and
branch names.

Italic is used for variables, document titles, glossary terms, and emphasis.

A monospaced font is used for examples. Where user input needs to be distinguished
from program output, bold is used for user input.

Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.
Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.
[1 Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format and syntax
descriptions.

I A vertical bar separates items in a list of choices.

In a syntax description, an ellipsis indicates you can repeat the preceding item or line
one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar
to “*” or “?”. See the wildcards_ccase reference page for more information.

If a command or option name has a short form, a “medial dot” (O) character indicates the
shortest legal abbreviation. For example:

1sc-heckout

This means that you can truncate the command name to Isc or any of its intermediate
spellings (Isch, 1sche, Ischec, and so on).

Managing Software Projects with ClearCase

Online Documentation
The ClearCase graphical interface includes a standard Windows help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or
the F1 key. Help>Help Topics provides access to the complete set of ClearCase online
documentation. For help on a particular context, press F1. Use the Help button on various dialog
boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase
commands, utilities, and data structures) with the cleartool man subcommand. Without any
argument, cleartool man displays the cleartool overview reference page. Specifying a command
name as an argument gives information about using the specified command. For example:

> cleartool man (display the cleartool overview page)
> cleartool man man (display the cleartool man reference page)
> cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s —help command option or help command displays individual subcommand syntax.
Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout —help are equivalent.

> cleartool uncheckout —help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s

environment, along with a step-by-step tour through ClearCase’s most important features. To
start the ClearCase Tutorial, choose Tutorial in the ClearCase folder off the Start menu.

Preface XXiii

XXV

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical
Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link
on the Rational Web site at www.rational.com.

Your Location

Telephone

Facsimile

Electronic Mail

North America

800-433-5444
toll free or
408-863-4000
Cupertino, CA

408-863-4194
Cupertino, CA
781-676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, and Africa

+31-(0)20-4546-200
Netherlands

+31-(0)20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific

61-2-9419-0111
Australia

61-2-9419-0123
Australia

support@apac.rational.com

Managing Software Projects with ClearCase

Choosing Between UCM and Base
ClearCase

Before you can start to use ClearCase to manage the version control and configuration needs of
your development project, you need to decide whether to use the out-of-the-box Unified Change
Management (UCM) process or base ClearCase. This chapter describes the main differences
between the two methods from the project management perspective.

The rest of this manual is organized into two parts. Part 1 describes how to manage a project
using UCM. Part 2 describes how to manage a project using the various tools in base ClearCase.

1.1 Differences Between UCM and Base ClearCase

Base ClearCase consists of a set of powerful tools to establish an environment in which
developers can work in parallel on a shared set of files, and project managers can define policies
that govern how developers work together.

UCM is one prescribed method of using ClearCase for version control and configuration
management. UCM is layered on base ClearCase. Therefore, it is possible to work efficiently in
UCM without having to master the details of base ClearCase.

UCM offers the convenience of an out-of-the-box solution; base ClearCase offers the flexibility to

implement virtually any configuration management solution that you deem appropriate for
your environment.

1 - Choosing Between UCM and Base ClearCase 1

Branching

Base ClearCase uses branches to enable parallel development. A branch is an object that specifies
a linear sequence of versions of an element. Every element has one main branch, which represents
the principal line of development, and may have multiple subbranches, each of which represents
a separate line of development. For example, a project team may use the main branch for new
development work while using a subbranch simultaneously for fixing a bug.

Subbranches can have subbranches. For example, a project team may designate a subbranch for
porting a product to a different platform. The team may then decide to create a bug-fixing
subbranch off that porting subbranch. Base ClearCase allows you to create complex branch
hierarchies. Figure 1 illustrates a multilevel branch hierarchy. As a project manager in such an
environment, you need to ensure that developers are working on the correct branches. To do that,
you must tell them which rules to include in their config specs so that their views access the
appropriate set of versions.

Figure 1 ~ Branching Hierarchy in Base ClearCase

Managing Software Projects with ClearCase

UCM uses branches also, but you do not have to manipulate them directly because it layers
streams over the branches. A stream is a ClearCase object that maintains a list of activities and
determines which versions of elements appear in a developer’s view. In UCM, a project contains
one integration stream, which records the project’s shared set of elements, and multiple
development streams, in which developers work on their parts of the project in isolation from the
team. UCM does not allow for complex branch hierarchies. The project’s integration stream uses
one branch. Each development stream uses its own branch, which is a subbranch of the
integration stream’s branch. Development stream branches cannot have subbranches. Figure 2
illustrates the simple branching hierarchy that supports UCM streams.

As project manager of a UCM project, you need not write rules for config specs. Streams
configure developers’ views to access the appropriate versions on the appropriate branches.

Figure 2 Branching Hierarchy Under UCM Streams

| developer 1} | developer 2|

Creating and Using Baselines

Both base ClearCase and UCM allow you to create baselines. UCM automates the creation
process and provides additional support for performing operations on baselines. A baseline
identifies the set of versions of files that represent a project at a particular milestone. For example,
you may create a baseline called betal to identify an early snapshot of a project’s source files.

1 - Choosing Between UCM and Base ClearCase 3

Baselines provide two main benefits:
0 The ability to reproduce an earlier release of a software project

0 The ability to tie together the complete set of files related to a project, such as source files, a
product requirements document, a documentation plan, functional and design
specifications, and test plans

In base ClearCase, you can create a baseline by creating a version label and applying that label
to a set of versions.

In UCM, baseline support appears throughout the user interface because UCM requires that you
use baselines. When developers join a project, they must first populate their work areas with the
contents of the project’s recommended baseline. This method ensures that all team members
start with the same set of shared files. In addition, UCM lets you set a property on the baseline
to indicate the quality level of the versions that the baseline represents. Examples of quality
levels include “project builds without errors,” “passes initial testing,” and “passes regression
testing.” By changing the quality-level property of a baseline to reflect a higher degree of
stability, you can, in effect, promote the baseline.

Managing Activities

In base ClearCase, you work at the version and file level. UCM provides a higher level of
abstraction: activities. An activity is a ClearCase object that you use to record the work required
to complete a development task. For example, an activity may be to change a graphical user
interface (GUI). You may need to edit several files to make the changes. UCM records the set of
versions that you create to complete the activity in a change set. Because activities appear
throughout the UCM user interface, you can perform operations on sets of related versions by
identifying activities rather than having to identify numerous versions.

Because activities correspond to significant project tasks, you can track the progress of a project
more easily. For example, you can determine which activities were completed in which baselines.
If you use the UCM-ClearQuest integration, you gain additional project management control,
such as the ability to assign states and state transitions to activities. You can then generate reports
by issuing queries such as “show me all activities assigned to Pat that are in the Ready state.”

Managing Software Projects with ClearCase

Enforcing Development Policies

A key part of managing the configuration management aspect of a software project is
establishing and enforcing development policies. In a parallel development environment, it is
crucial to establish rules that govern how team members access and update shared sets of files.
Such policies are helpful in two ways:

0 They minimize project build problems by identifying conflicting changes made by multiple
developers as early as possible.

O They establish greater communication among team members.

These are examples of common development policies:

0 Developers must synchronize their private work areas with the project’s recommended
baseline before delivering their work to the project’s shared work area.

0 Developers must notify other team members by e-mail when they deliver work to the
project’s shared work area.

In base ClearCase, you can use tools such as triggers and attributes to create mechanisms to
enforce development policies. UCM includes a set of common development policies, which you
can set through the GUI or command-line interface (CLI).

1.2 Using Base ClearCase Tools with UCM

This manual is organized into two parts: Part 1 for UCM and Part 2 for base ClearCase. If you are
managing a UCM project, you may occasionally want to extend UCM by using some of the tools
in base ClearCase. In particular, you may want to use ClearCase attributes, triggers, and
hyperlinks to customize development policies.

1 - Choosing Between UCM and Base ClearCase 5

Managing Software Projects with ClearCase

Part 1: Working in UCM

The following chapters describe how to plan, set up, and manage a
UCM project to implement your team’s development process.

Understanding UCM

This chapter provides an overview of Unified Change Management (UCM). Specifically, it
introduces the main UCM objects and describes the tasks involved in managing a UCM project.
Subsequent chapters describe the detailed steps required to perform these tasks.

2.1 The Project Management Cycle

o

Project Create Integrate \ Promote
Manager project work D baseline
Make new
baseline

In UCM, your work follows a cycle that complements an iterative software development process.
Members of a project team work in a UCM project. A project is the object that contains the
configuration information needed to manage a significant development effort, such as a product
release. A project contains one shared work area and typically multiple private work areas.
Private work areas allow developers to work on activities in isolation. As project manager, you
are responsible for maintaining the project’s shared work area. Work within a project progresses
as follows:

2 - Understanding UCM 9

10

10.

You create a project and identify an initial set of baselines of one or more components. A
component is a group of related directory and file elements, which you develop, integrate, and
release together. A baseline is a version of a component.

Developers join the project by creating their private work areas and populating them with
the contents of the project’s baselines.

Developers create activities and work on one activity at a time. An activity records the set of
files that a developer creates or modifies to complete a development task, such as fixing a
bug. This set of files associated with an activity is known as a change set.

When developers complete activities, and build and test their work in their private work
areas, they share their work with the project team by performing deliver operations. A deliver
operation merges work from the developer’s private work area to the project’s shared work
area.

In the shared work area, you integrate the work delivered by developers.

Periodically, you create new baselines in the shared work area that incorporate the delivered
work.

You perform quick validation tests to make sure that the new baselines build and appear to
work correctly. A team of software quality engineers performs more extensive testing.

Periodically, as the quality and stability of baselines improve, you adjust the promotion level
attribute of baselines to reflect appropriate milestones, such as Built, Tested, or Released.
When the new baselines pass a sufficient level of testing, you designate them as the
recommended set of baselines.

Developers perform rebase operations to update their private work areas to include the set of
versions represented by the new recommended baselines.

Developers continue the cycle of working on activities, delivering completed activities,
updating their private work areas with new baselines.

This list of UCM tasks can be seen as two cycles: project management and development. Figure 3
illustrates the connection between these cycles.

Managing Software Projects with ClearCase

Figure 3 Project Management and Development Cycles in UCM

Make
baselines

Rebase
work area

Deliver Work on

activities activities
Integrate Promote
work Development cycle baselines

Project management cycle

2 - Understanding UCM

11

12

2.2

Creating the Project

Q

> gD S D
Project ~ Create Integrate \ Promote
Manager ~Project work D baseline
Make new
Create a Setup ClearQuest baseline
PVOB integration
Create Set
components policies
Create
baseline

To create and set up a project, you must perform the following tasks:

Create a repository for storing project information

Create components that contain the set of files the developers work on

Create baselines that identify the versions of files with which the developers start their work
Select the development policies you want to enforce

Oo0ooo

To use UCM with ClearQuest, you must perform additional setup steps.

Creating a PVOB

ClearCase stores file elements, directory elements, derived objects, and metadata in a repository
called a versioned object base (VOB). In UCM, each project must have a project VOB (PVOB). A
PVOB is a special kind of VOB that stores UCM objects, such as projects, activities, and change
sets. A PVOB must exist before you can create a project. Check with your site’s ClearCase
administrator to see whether a PVOB has already been created. For details on creating a PVOB,
see Creating the Project VOB on page 58.

Managing Software Projects with ClearCase

Organizing Directories and Files into Components

As the number of files and directories in your system grows, you need a way to reduce the
complexity of managing them. Components are the UCM mechanism for simplifying the
organization of your files and directories. The elements that you group into a component
typically implement a reusable piece of your system architecture. By organizing related files and
directories into components, you can view your system as a small number of identifiable
components, rather than one large set of directories and files.

Within a component, you organize directory and file elements into a directory tree. The
component’s root directory must be the root directory of a VOB. You can convert existing VOBs
into components, or you can create a component from scratch. For details on creating a
component from scratch, see Creating Components on page 59. For details on converting a VOB
into a component, see Making a VOB into a Component on page 65.

Shared and Private Work Areas

A work area consists of a view and a stream. A view is a directory tree that shows a single version
of each file in your project. A stream is a ClearCase object that maintains a list of activities and
determines which versions of elements appear in your view.

A project contains one integration stream, which records the project’s baselines and enables access
to versions of the project’s shared elements. The integration stream and a corresponding
integration view represent the project’s shared work area.

Each developer on the project has a private work area, which consists of a development stream
and a corresponding development view. The development stream maintains a list of the
developer’s activities and determines which versions of elements appear in the developer’s
view.

When you create a project from the UCM GUI, ClearCase creates the integration stream for you.
If you create a project from the command-line interface, you need to create the integration stream
explicitly. Developers create their development streams and development views when they join
the project. See Developing Software with ClearCase for information on joining a project.

2 - Understanding UCM 13

14

Starting from a Baseline

After you create project components or select existing components, you must identify the
baseline or baselines that serve as the starting point for the team’s developers. A baseline
identifies one version of every element visible in a component. Figure 4 shows baselines named
BL1 and BL2 that identify versions in Component A and Component B, respectively.

The project’s integration stream records the baselines. When developers join the project, they
populate their work areas with the versions of directory and file elements represented by the
baselines. This practice ensures that all members of the project team start with the same set of
files.

Figure 4 Baselines of Two Components

Integration stream
Element Element

Version
@ ©
Q
I .
Component A Component B
Baseline BL1 Baseline BL2

Setting Policies

UCM includes a set of policies that you can set to enforce development practices among
members of the project team. By setting policies, you can improve communication among project
team members and minimize the problems you may encounter when integrating their work. For
example, you can set a policy that requires developers to update their work areas with the

Managing Software Projects with ClearCase

project’s latest recommended baseline before they deliver work to the integration stream. This
practice reduces the likelihood that developers will need to work through complex merges when
they deliver their work. For a description of all policies you can set in UCM, see Considering
Which Development Policies to Enforce on page 42.

Setting Up the UCM-ClearQuest Integration

You can use UCM without Rational ClearQuest, the change request management tool. The
integration with ClearQuest adds significant project management and activity management
capabilities. When you set up a UCM project to work with ClearQuest, the integration links all
project activities to ClearQuest records. You can then take advantage of UCM’s state transition
model and ClearQuest’s query, reporting, and charting features. These features allow you to do
the following;:

Assign activities to developers

Assign states and state transition rules to activities
Generate reports based on database queries

Select additional development policies to be enforced

O
O
O
O
To set up the UCM-ClearQuest integration:

1. Enable a ClearQuest schema to work with UCM or use a predefined UCM-enabled schema.

2. Create or upgrade a ClearQuest user database to use the schema.

3. Enable your UCM project to work with ClearQuest.

See Overview of the UCM-ClearQuest Integration on page 20 for additional information about the
integration.

2 - Understanding UCM 15

2.3

Integrating Work into the Project (MultiSite)

g DO—B—
Project Create Integrate\ / Promote
Manager project work D baseline

Make new
baseline

PRODUCT NOTE: ClearCase LT does not currently support ClearCase MultiSite.

In most cases, developers complete the deliver operations that they start. If your project uses
ClearCase MultiSite, you may need to complete some deliver operations. Many ClearCase
customers use MultiSite, a product layered on ClearCase, to support parallel software
development across geographically distributed project teams. MultiSite lets developers work on
the same VOB concurrently at different locations. Each location works on its own copy of the
VOB, known as a replica.

To avoid conflicts, MultiSite uses an exclusive-right-to-modify scheme, called mastership. VOB
objects, such as streams and branches, are assigned a master replica. The master replica has the
exclusive right to modify or delete these objects.

In a MultiSite configuration, a team of developers may work at a remote site, and the project’s
integration stream may be mastered at a different replica than the developers” development
streams. In this situation, the developers cannot complete deliver operations to the integration
stream. As project manager, you must complete these deliver operations. UCM provides a
variation of the deliver operation called a remote deliver. When UCM detects a stream mastership
situation, it makes the deliver operation a remote deliver, which starts the deliver operation but
does not merge any versions. You then complete the deliver operation.

For details on completing remote deliver operations, see Integrating the Project on page 77.

Managing Software Projects with ClearCase

2.4

Making a New Baseline

DD
Project Create Integrate\ / Promote
Manager project work - baseline

Make new
baseline

To ensure that developers stay in sync with each other’s work, make new baselines regularly. A
new baseline includes the work developers have delivered to the integration stream since the last
baseline. To make a new baseline:

1. Lock the integration stream to prevent developers from delivering work while you create the
baseline. Developers can continue to work on activities in their development streams.

2. Verify the stability of the project by building and testing its components.
3. Make the baseline.

4. Unlock the integration stream so that developers can deliver work.

After your team of software quality engineers test the new baseline more extensively and
determine that it is stable, make the baseline the recommended baseline. Developers then update
their work areas with the new baseline by performing a rebase operation, which merges files and
directories from the integration stream to the development stream.

Figure 5illustrates a rebase operation from baseline BL1 to BL2. For details on making baselines,
see Creating a New Baseline on page 79.

2 - Understanding UCM 17

18

Figure 5 Rebase Operation

Integration stream
Pat's development Pat's development

work area work area after rebase

0%
'ZW?W’#
RUAIATN
LKA
R,
A,
R,
o
LDBIKEAN
AL

K
(K
R i
Ry
RO
s
/450

0
U

2.5

Promoting the Baseline

‘ o— [o—

Project Create Integrate \ Promote
Manager project work D baseline
Make new
baseline

As work on your project progresses and the quality and stability of the components improve,
change the baseline’s promotion level attribute to reflect important milestones. The promotion
level attribute typically indicates a level of testing. For example, Figure 6 shows the evolution of
baselines through three levels of testing; the BL8 baseline is ready for production.

You can use promotion levels in development policies. For example, you can set a policy to make
a baseline the recommended baseline when it reaches a particular promotion level, such as
“tested.” You can set another policy that requires developers to rebase their development
streams to the set of recommended baselines before they deliver work. These policies help to

Managing Software Projects with ClearCase

ensure that developers update their work areas whenever a baseline passes an acceptable level

of testing.
For details on promoting baselines, see Promoting or Demoting the Baseline on page 83

Figure 6 Promoting Baselines

Production

Acceptance tested
BL6

System tested

Integration tested

BL1

2 - Understanding UCM

19

20

2.6

Overview of the UCM-ClearQuest Integration
This section describes the following UCM-ClearQuest integration concepts:

Association of UCM and ClearQuest objects
UCM-enabled schema
Queries

0
0
0
O State types

Associating UCM and ClearQuest Objects

Setting up the integration links UCM and ClearQuest objects. Figure 7 shows the bidirectional
linking of these objects.

Figure 7 Association of UCM and ClearQuest Objects in Integration

PVOB P ClearQuest User Database

m UCM_Project

Record

Record 2

_/v

When you enable a project to link to a ClearQuest user database, the integration stores a reference
to that database in the project’s PVOB.

Every ClearQuest-enabled project is linked to a project record of record type UCM_Project in the
ClearQuest user database.

Every activity in a ClearQuest-enabled project is linked to a record in the database. An activity’s
title is linked to the headline field in its corresponding ClearQuest record. If you change an

Managing Software Projects with ClearCase

activity’s title in ClearCase, the integration changes the headline in ClearQuest to match the new
title, and the reverse is also true. Similarly, an activity’s name is linked to the ID field in its
ClearQuest record.

It is possible for a ClearQuest user database to contain some records that are linked to activities
and some records that are not linked. Record 2 in Figure 7 is not linked to an activity. You may
encounter this situation if you have a ClearQuest user database in place before you adopt UCM.
Asyou create activities, the integration creates corresponding ClearQuest records. However, any
records that existed in that user database before you enabled it to work with UCM remain
unlinked.

UCM-Enabled Schema

In ClearQuest, a schema is the definition of a database. To use the integration, you must create
or upgrade a ClearQuest user database that is based on a UCM-enabled schema. A UCM-enabled
schema contains certain fields, scripts, actions, and state types. ClearQuest includes two
predefined UCM-enabled schemas, which you can use. You can also enable a custom schema or
another predefined schema to work with UCM. For details on UCM-enabled schemas, see
Deciding Which Schema to Use on page 39.

State Types

ClearQuest uses states to track the progress of change requests from submission to completion.
A state represents a particular stage in this progression. Each movement from one state to another
is a state transition. The integration uses a particular state transition model. To implement this
model, the integration uses state types. A state type is a template that defines actions and other
attributes of a state. You can define as many states as you want, but all states in a UCM-enabled
record type must be based on one of the following state types:

Waiting
Ready
Active
Complete

Oo0ooo

For each state type, you can have multiple states. However, you must define at least one path of
transitions between states of state types as follows: Waiting to Ready to Active to Complete. For
details on state types, see Setting State Types on page 51.

2 - Understanding UCM 21

22

Queries in a UCM-Enabled ClearQuest Schema

A UCM-enabled schema includes six queries. When you create or upgrade a ClearQuest user
database to use a UCM-enabled schema, the integration installs these queries in two subfolders
of the Public Queries folder in the user database’s workspace. These queries make it easy for
developers to see which activities are assigned to them and for project managers to see which
activities are active in a particular project. For details on these queries, see Querying ClearQuest
User Databases on page 87

Managing Software Projects with ClearCase

Planning the Project

This chapter describes the issues you need to consider in planning to use one or more UCM
projects as your configuration management environment. We strongly recommend that you
write a configuration management plan before you begin creating projects and other UCM
objects. After you create your plan, see Chapter 5, Setting Up the Project for information on how
to implement it.

3.1 Using the System Architecture as the Starting Point

Essential to developing and maintaining high-quality software is the definition of the system’s
architecture. The Rational Unified Process states that defining and using a system architecture is
one of the six best practices to follow in developing software. A system architecture is the highest
level concept of a system in its environment. The Rational Unified Process states that a system
architecture encompasses the following:

0 The significant decisions about the organization of a software system

O The selection of the structural elements and their interfaces of which the system is
composed, together with their behavior as specified in the collaboration among those
elements

O The composition of the structural and behavioral elements into progressively larger
subsystems

0 The architectural style that guides this organization, these elements, and their interfaces,
their collaborations, and their composition

3 - Planning the Project 23

24

A well-documented system architecture improves the software development process. It is also
the ideal starting point for defining the structure of your configuration management
environment.

Mapping System Architecture to Components

Just as different types of blueprints represent different aspects of a building’s architecture (floor
plans, electrical wiring, plumbing, and so on), a good software system architecture contains
different views to represent its different aspects. The Rational Unified Process defines an
architectural view as a simplified description (an abstraction) of a system from a particular
perspective or vantage point, covering particular concerns and omitting entities that are not
relevant to this perspective.

The Rational Unified Process suggests using five architectural views. Of these, the
implementation view is most important for configuration management. The implementation
view identifies the physical files and directories that implement the system’s logical packages,
objects, or modules. For example, your system architecture may include a licensing module. The
implementation view identifies the directories and files that make up the licensing module.

From the implementation view, you should be able to identify the set of UCM components you
need for your system. Components are groups of related directory and file elements, which you
develop, integrate, and release together. Large systems typically contain many components. A
small system may contain one component.

Deciding What to Place Under Version Control

In deciding what to place under version control, do not limit yourself to source code files and
directories. The power of configuration management is that you can record a history of your
project as it evolves so that you can re-create the project quickly and easily at any point in time.
To record a full picture of the project, include all files and directories connected with it. These
include, but are not limited to the following:

Source code files and directories
Model files, such as Rational Rose files
Libraries

Executable files

Interfaces

Test scripts

Project plans

Oo0oo0oogoao

Managing Software Projects with ClearCase

0 System and user documentation
0 Requirements documents

Mapping Components to Projects

After mapping your system architecture to a set of components and identifying the full set of files
and directories to place under version control, you need to determine whether to use one project
or multiple projects. In general, think of a project as the configuration management environment
for a project team. Team members work together to develop, integrate, test, and release a set of
related components. For many systems, all work can be done in one project. For some systems,
work must be separated into multiple projects. In deciding how many projects to use, consider
the following factors:

O Size of the system
0 Amount of integration required
0 Whether you need to release multiple versions of the product concurrently

Size of the System

Consider the number of developers working on the system and the number of components. For
a small system that consists of two or three components being developed by a dozen developers,
one project probably makes sense. For a large system that consists of 20 components being
developed by 100 developers, it may be wise to use several projects.

Amount of Integration

Determine the relationships between the various components. Related components that require
a high degree of integration belong to the same project. By including related components in the
same project, you can build and test them together frequently, thus avoiding the problems that
can arise when you integrate components late in the development cycle.

Need for Parallel Releases

If you need to develop multiple versions of your system in parallel, consider using separate
projects, one for each version. For example, your organization may need to work on a patch
release and a new release at the same time. In this situation, both projects use mostly the same
set of components. (Note that multiple projects can modify the same set of components.) When
work on the patch release project is complete, you integrate it with the new release project.

3 - Planning the Project 25

Example

Figure 8 shows the initial set of components planned for the Transaction Builder system. A team
of 30 developers work on the system. Because a high degree of integration between components
is required, and most developers work on several components, the project manager included all
components in one project.

Figure 8 Components Used by Transaction Builder Project

Transaction Builder Project

D

Customer GUI Admin GUI

Rgjuginging

Modeler Admin Security Reporting

Components and VOBs
ClearCase implements components as versioned object bases (VOBs), the repositories for versions

of file elements, directory elements, derived objects, and metadata associated with them.
Figure 9 illustrates this implementation. In Figure 9, both Project] and Project2 use Component2.

26 Managing Software Projects with ClearCase

Figure 9 Mapping Components to Projects

PVOB

K>\/

VOB Componentl
VOB Component2 ‘

3.2 Organizing Components

After you map your system architecture to an initial set of components and determine which
projects will access those components, refine your plan by performing the following tasks:

Ensure that your components are a suitable size for VOBs
Identify any additional components

Define the component directory structures

Identify read-only components

Identify nonmerging elements

O0o0ooao

Considering VOB Capacity
Because ClearCase implements components as VOBs, you must ensure that the contents of each

planned component do not exceed the capacity of a VOB. See Administering ClearCase for details
on VOB capacity.

3 - Planning the Project 27

Identifying Additional Components

Although you should be able to identify nearly all necessary components by examining your
system architecture, you may overlook a few. For example:

System component

Testing component

Deployment component

It is a good idea to designate one component for storing
system-level files. These items include project plans,
requirements documents, and system model files and other
architecture documents.

Consider using a separate component for storing files related to
testing the system. This component includes files such as test
scripts, test results and logs, and test documentation.

At the end of a development cycle, you need a separate
component to store the generated files that you plan to ship with
the system or deploy inhouse. These files include executable files,
libraries, interfaces, and user documentation.

Defining the Directory Structure

After you complete your list of components, you need to define the directory structures within
those components. We recommend that you start with a directory structure similar to the one
shown in Table 1; then modify the structure to suit your system’s needs.

In Table 1, Component_1 through Component_n refers to the components that map to the set of
logical packages in your system architecture.

Tablel Recommended Directory Structure for Components

Component Directories Typical Contents

System plans Project plans, mission statement, and so on
requirements Requirements documents
models Rose files, other architecture documents
documentation System documentation

28

Managing Software Projects with ClearCase

Tablel Recommended Directory Structure for Components

Component Directories Typical Contents
Component_1 requirements Component requirements
through)
Component_n models Component model files
source Sourece files for this component
interfaces Component public interfaces
binaries Executable and other binary files for this
component
libraries Libraries used by this component
tests Test scripts and related documents for this
component
Test scripts Test scripts
results Test results and logs
documentation Test documentation
Deployment binaries Deployed executable files
libraries Deployed libraries
interfaces Deployed interfaces
documentation User documentation

Identifying Read-Only Components

When you create a project, you must indicate whether each component is modifiable in the

context of that project. In most cases, you make them modifiable. However, in some cases you
want to make a component read-only, which prevents project team members from changing its

elements. Components can be used in multiple projects. Therefore, one project team may be

responsible for maintaining a component, and another project team may use that component to

build other components.

For example, in Figure 10, Project A team members maintain a set of library files. Project B team
members reference some of those libraries when they build their components. In Project A, the

3 - Planning the Project

29

cm_libs component is modifiable. In Project B, the same component is read-only. With respect to
the cm_libs component, Project A and Project B have a producer-consumer relationship.

¢

read-only ‘ i ?

Figure 10 Using a Read-Only Component

Project A

cm_libs
modifiable

3.3

Specifying a Baseline Strategy

After you organize the project’s components, determine your strategy for creating baselines of
those components. The baseline strategy must define the following:

When to create baselines
How to name baselines
The set of promotion levels
How to test baselines

Oo0ooo

When to Create Baselines
At the beginning of a project, you must identify the baseline or baselines that represent the

starting point for new development. As work on the project progresses, you need to create new
baselines periodically.

Managing Software Projects with ClearCase

Identifying the Initial Baseline

If your project represents a new version of an existing project, you probably want to start work
from the latest baselines of the existing project’s components. For example, if you are starting
work on version 3.2 of the Transaction Builder project, identify the baselines that represent the
released, or production, versions of its version 3.1 components.

If you are converting a base ClearCase configuration to a project, you can make baselines from
existing labeled versions. Check whether the latest stable versions are labeled. If they are not, you
need to create a label type and apply it to the versions that you plan to include in your project.

Ongoing Baselines

After developers start working on the new project and making changes, create baselines on a
frequent (nightly or weekly) basis. This practice has several benefits:

0 Developers stay in sync with each other’s work.

It is critical to good configuration management that developers have private work areas
where they can work on a set of files in isolation. Yet extended periods of isolation cause
problems. Developers are unaware of each other’s work until you incorporate delivered
changes into a new baseline, and they rebase their development streams.

0 The amount of time required to merge versions is minimized.

When developers rebase their development streams, they may need to resolve merge
conflicts between files that the new baseline selects and the work in their private work areas.
When you create baselines frequently, they contain fewer changes, and developers spend
less time merging versions.

0 Integration problems are identified early.

When you create a baseline, you first build and test the project by incorporating the work
delivered to the integration stream since the last baseline. By creating baselines frequently,
you have more opportunities to discover any serious problems that a developer may
introduce to the project inadvertently. By identifying a serious problem early, you can
localize it and minimize the amount of work required to fix the problem.

3 - Planning the Project 31

32

Defining a Naming Convention

Because baselines are an important tool for managing a project, define a meaningful convention
for naming them. A useful baseline name provides this information:

O Project name
0 Milestone or phase of development schedule
0 Date created

For example: V4.0TRANS_BL2_990519

Identifying Promotion Levels to Reflect State of Development

A promotion level is an attribute of a baseline that you can use to indicate the quality or stability
of the baseline. ClearCase provides the following default promotion levels:

Rejected
Initial
Built
Tested
Released

O0Oo0ooao

You can use some or all of the default promotion levels, and you can define your own. The levels
are ordered to reflect a progression from lowest to highest quality. You can use promotion levels
in development policies for the project. For example, you can set a policy that makes a baseline
the recommended baseline when it has a certain promotion level or a higher one. By default, when
developers join the project or rebase their development streams, they use the recommended
baselines. Determine the set of promotion levels for your project and the criteria for setting each
level.

Planning How to Test Baselines

Typically, software development teams perform several levels of testing. An initial test, known
as a validation test, checks to see that the software builds without errors and appears to work as
it should. A more comprehensive type of testing, such as regression testing, takes much longer
and is usually performed by a team of software quality engineers.

Managing Software Projects with ClearCase

When you make a new baseline, you need to lock the integration stream to prevent developers
from delivering additional changes. This allows you to build and test a static set of files. Because
validation tests are not exhaustive, you probably do not need to lock the integration stream for a
long time. However, more extensive testing requires substantially more time.

Keeping the integration stream locked for a long time is not a good practice because it prevents
developers from delivering completed work. One solution to this problem is to create a
development stream to be used solely for extensive testing. After you create a new baseline that
passes a validation test, your testing team can rebase the designated testing development stream
to the new baseline. When the baseline passes the next level of testing, promote it. When you are
confident that the baseline is stable, make it the recommended baseline so that developers can
rebase their development streams to it.

For information on creating a testing development stream, see Creating a Development Stream for
Testing Baselines on page 72.

3.4 Planning PVOBs

ClearCase stores UCM objects such as projects, streams, activities, and change sets in project
VOBs (PVOBs). In addition to storing objects, PVOBs can function as administrative VOBs. You
need to decide how many PVOB:s to use for your system and whether to take advantage of the
administrative capabilities of the PVOB.

Deciding How Many PVOBs to Use

PRODUCT NOTE: This section does not apply to ClearCase LT because ClearCase LT allows for
only one PVOB per ClearCase LT server.

Projects that use the same PVOB have access to the same set of components. If developers on
different projects need to work on some of the same components, use one PVOB for those
projects. For example, Figure 11 shows concurrent development of two versions of the
Webotrans product. While most members of the team work on the 4.0 release in one project, a
small group works on the 4.0.1 release in a separate project. Both projects use the same
components, so they use one PVOB.

3 - Planning the Project 33

34

Figure 11 Related Projects Sharing One PVOB

V4.0 _Webotrans V4.0.1_Webotrans

Webotrans
PVOB

Consider using multiple PVOBs only when one or more of the following conditions applies:

0 The projects do not share components, and you anticipate that they will never need to share
components.

O The projects are so large that PVOB capacity becomes an issue. For information on VOB
capacity, see Administering ClearCase.

O You plan to use the UCM-ClearQuest integration, and you want to link projects to different
ClearQuest user databases. See Planning How to Use the UCM-ClearQuest Integration on
page 36 for information on the role of the PVOB in the integration.

Understanding the Role of the Administrative VOB

An administrative VOB stores global type definitions. VOBs that are joined to the administrative
VOB with AdminVOB hyperlinks share the same type definitions without having to define them
in each VOB. For example, you can define element types, attribute types, hyperlink types, and so
on in an administrative VOB. Any VOB linked to that administrative VOB can then use those
type definitions to make elements, attributes, and hyperlinks.

Managing Software Projects with ClearCase

If you currently use an administrative VOB, you can associate it with your PVOB when you
create the PVOB. ClearCase then creates an AdminVOB hyperlink between the PVOB and the
administrative VOB. Thereafter, when you create components, ClearCase creates AdminVOB
hyperlinks between the components and the administrative VOB so that the components can use
the administrative VOB’s global type definitions.

If you do not currently use an administrative VOB, do not create one. When you create
components, ClearCase makes AdminVOB hyperlinks between the components and the PVOB,
and the PVOB assumes the role of administrative VOB.

For details on administrative VOBs and global types, see Administering ClearCase.

3.5 Identifying Special Element Types

The concept of element types allows ClearCase to handle each class of elements differently. An
element type is a class of file elements. ClearCase includes predefined element types, such as file
and text_file, and lets you define your own. When you create an element type for use in UCM
projects, you can specify a mergetype attribute, which determines how deliver and rebase
operations handle merging of files of that element type.

When ClearCase encounters a merge situation during a deliver or rebase operation, it attempts
to merge versions of the element. ClearCase requires user interaction only if it cannot reconcile
differences between the versions. For certain types of files, you may want to impose different
merging behavior.

Nonmerging Elements

Some types of files never need to be merged. For these files, you may want to ensure that no one
attempts to merge them accidentally. For example, the deployment, or staging, component
contains the executable files that you ship to customers or install in-house. These files are not
under development; they are the product of the development phase of the project cycle. For these
types of files, you can create an element type and specify never merge behavior.

NOTE: If you do not specify never merge behavior for these elements, developers could
encounter problems when they attempt to deliver work to the project’s integration stream.
Developers create executable files when they build and test their work prior to delivering it. If
these files are under version control as derived objects, they are included in the current activity’s
change set. During a deliver operation, ClearCase attempts to merge these executable files to the

3 - Planning the Project 35

integration stream unless the files are of an element type for which never merge behavior is
specified.

Nonautomerging Elements

For some types of files, you may want to merge versions manually rather than let ClearCase
merge them. One example is a Visual Basic form file, which is a generated text file. Visual Basic
generates the form file based on the form that a developer creates in the Visual Basic GUI. Rather
than let ClearCase change the form file during a merge operation, you want to regenerate the
form file from the Visual Basic GUI.

For these types of files, you can create an element type and specify user merge behavior. For
information on creating element types, see Chapter 12, Using Element Types to Customize
Processing of File Elements, and the mkeltype reference page in ClearCase Reference Manual.

Defining the Scope of Element Types

When you define an element type, its scope can be ordinary or global. By default, the element

type is ordinary; it is available only to the VOB in which you create it. If you create the element
type in an administrative VOB and define its scope as global, other VOBs that have AdminVOB
hyperlinks to that administrative VOB can use the element type. If you want to define an element

type globally, and you do not currently use an administrative VOB, define the element type in
the PVOB.

3.6

Planning How to Use the UCM-ClearQuest Integration

Before you can set up the UCM-ClearQuest integration, you need to make some decisions, which
fall into two general categories:

0 How to map PVOBs to ClearQuest user databases
O Which schema to use for the ClearQuest user databases

Managing Software Projects with ClearCase

Mapping PVOBs to ClearQuest User Databases

This section describes three issues that you need to consider in deciding how many PVOBs to use
for projects that link to ClearQuest user databases.

All Enabled Projects in a PVOB Must Link to the Same Database

When you enable a project to link to a ClearQuest user database, the integration stores a reference
to that database in the project’s PVOB. Any other projects in that PVOB that you enable must use
the same database. Therefore, be careful when choosing projects to store in a PVOB. If you plan
to link projects to different databases, use different PVOBs.

PRODUCT NOTE: ClearCase LT allows for only one PVOB per ClearCase LT server.

NOTE: If you use ClearCase MultiSite, all PVOB replicas must have access to the ClearQuest user
database.

Projects Linked to Same Database Must Have Unigue Names

Although UCM allows you to create projects with the same name in different PVOBs, you cannot
link those projects to the same ClearQuest user database. Figure 12 illustrates this naming
requirement.

3 - Planning the Project 37

38

Figure 12 Projects in Multiple PVOBs Linked to the Same ClearQuest Database

PVOB1

ClearQuest User
Database

UCM_Projectl

UCM_Project2

UCM_Project3
vj

Use One Schema Repository for Linked Databases

If some developers on your team work on multiple projects, we recommend that you store the
schemas for the ClearQuest user databases that are linked to those projects in one schema
repository, as shown in Figure 13. This allows developers to switch between projects easily. If you
store the schemas in different schema repositories, developers must use the ClearQuest
Maintenance Tool to connect to a different schema repository whenever they switch projects.

Managing Software Projects with ClearCase

Figure 13 Using the Same Schema Repository for Multiple ClearQuest Databases

ClearQuest User
PVOB1 Databasel

Schema Repository

Projectl

oo

QP 8schemar
ClearQuest U Vows
earQuest User
PVOB2 Database 2 o ‘
/= Schema2 =\
J S - e & |/

Project2

Qe

\/

y-

Deciding Which Schema to Use

To use the integration, you must create or upgrade a ClearQuest user database that is based on
a UCM-enabled schema. A UCM-enabled schema meets the following requirements:

0 The UnifiedChangeManagement package has been applied to the schema. A package
contains metadata, such as records, fields, and states, that define specific functionality.
Applying a package to a schema provides a way to add functionality quickly so that you do
not have to build the functionality from scratch.

0 The UnifiedChangeManagement package has been applied to at least one record type. This
package adds fields and scripts to the record type, and adds the Unified Change
Management tab to the record type’s forms. Figure 14 shows the Unified Change
Management tab.

0 The UCMPolicyScripts package has been applied to the schema. This package contains the

scripts for three ClearQuest development policies that you can enforce.

3 - Planning the Project 39

40

ClearQuest includes two predefined UCM-enabled schemas, named
UnifiedChangeManagement and Enterprise. You can start using the integration right away by
using one of these schemas, or you can use the ClearQuest Designer and the ClearQuest Package
Wizard to enable a custom schema or another predefined schema to work with UCM. You can
also use one of the predefined UCM-enabled schemas as a starting point and then modify it to
suit your needs.

Figure 14 UCM Tab of Record Form for a UCM-Enabled Record Type

hain Unified Change Management |

UJCM Project: Stream:
| =
Wiew:

Change Set:

Change Set

Overview of the UnifiedChangeManagement Schema

The UnifiedChangeManagement schema includes the following record types:

O BaseCMActivity
This is a lightweight record type that you can use to store information about activities that
do not require additional fields. Figure 15 shows the Main tab of the BaseCMActivity
record form. You may want to use this record type as a starting point and then modify it to
include additional fields and states.

O Defect
This record type is identical to the record type of the same name that is included in
ClearQuest’s other predefined schemas, with one exception: it is enabled to work with
UCM. The Defect record type contains more fields and form tabs than the Activity record
type to allow you to record detailed information.

O UCMUtilityActivity
This record type is not intended for general use. The integration uses this record type when
it needs to create records for itself, such as when you link a project that contains activities to
a ClearQuest user database. You cannot modify this record type.

Managing Software Projects with ClearCase

Figure 15 Main Tab of Record Form for the BaseCMActivity Record Type

hdain | Unified Change Managementl

InR Chieniar:

| | =
| |

Headline:

Description;

Enabling a Schema for UCM

If you decide not to use one of the predefined UCM-enabled schemas, you need to do some
additional work to enable your schema to work with UCM. Before you can do this, you need to
answer the following questions:

0 Which record types are you enabling for UCM? You do not need to enable all record types
in your schema, but you can link only records of UCM-enabled record types to activities.

0 For each UCM-enabled record type:

O Which state type does each state map to? You must map each state to one of the four
UCM state types: Waiting, Ready, Active, Complete. See Setting State Types on page 51.

0 Which default actions are you using to transition records from one state to another? See
State Transition Default Action Requirements for Record Types on page 52.

0 Which policies do you want to enforce? The integration includes policies that you can
set to enforce certain development practices. You can also edit the policy scripts to
change the policies. See Policies Available in UCM-ClearQuest Integration on page 44 for
details.

3 - Planning the Project 41

42

3.7

Considering Which Development Policies to Enforce

UCM includes policies that you can set to enforce certain development practices within a project.
Some policies are available only if you enable the project to work with ClearQuest.

Policies Available in UCM

This section describes the policies that are available regardless of whether you enable the project
to work with ClearQuest.

Recommended Baselines

Recommended baselines are the set of baselines that project team members use to rebase their
development streams. In addition, when developers join the project, their development work
areas are initialized with the recommended baselines. Select the promotion level at which
baselines become recommended baselines.

NOTE: If a component does not contain a baseline whose promotion level is at or above the
recommended baseline promotion level, ClearCase uses the component’s foundation baseline
for the project when developers attempt to rebase their development streams or join the project.

Modifiable Components

In most cases, you want components to be modifiable. For information on when to use read-only
components, see Identifying Read-Only Components on page 29 .

Default View Types

When developers join a project, they use the Join Project Wizard to create their development
views, integration views, and development streams. They use a development view and a
development stream to work in isolation from the project team. They use an integration view to
build and test their work against the latest work delivered to the integration stream by other
developers. ClearCase provides two kinds of views: dynamic and snapshot. Decide which type
of view to use as the default for development and integration views.

PRODUCT NOTE: ClearCase LT supports only snapshot views.

Dynamic views use the ClearCase multiversion file system (MVFS) to provide immediate,
transparent access to files and directories stored in VOBs. ClearCase maps a dynamic view to a

Managing Software Projects with ClearCase

drive letter in Windows Explorer. Snapshot views copy files and directories from VOBs to a
directory on your computer.

We recommend that you use dynamic views as the default view type for integration views.
Dynamic views ensure that when developers deliver work to the integration stream, they build
and test their work against the latest work that other developers have delivered since the last
baseline was created. Snapshot views require developers to copy the latest delivered files and
directories to their computer (a snapshot view update operation), which they may forget to do.

Rebase Before Deliver

This policy requires developers to rebase their development streams to the project’s current
recommended baselines before they deliver work to the integration stream. The goal of this policy
is to have developers build and test their work in their development work areas against the work
included in the most recent stable baselines before they deliver to the integration stream. This
practice minimizes the amount of merging that developers must do when they perform deliver
operations.

Allow Deliveries from Stream with Pending Checkouts

This policy allows developers to deliver work to the integration stream even if some files remain
checked out in the development stream. If you do not set this policy, developers must check in
all files in their development streams before delivering work. You may want to require
developers to check in files to avoid the following situation:

1. A developer completes work on an activity, but forgets to check in the files associated with
that activity.

2. The developer works on other activities.

3. Having completed several activities, the developer delivers them to the integration stream.
Because the files associated with the first activity are still checked out, they are not included
in the deliver operation. Even though the developer may build and test the changes
successfully in the development work area, the changes delivered to the integration may fail
because they do not include the checked-out files.

3 - Planning the Project 43

44

Policies Available in UCM-ClearQuest Integration

This section describes the policies that are available only when you enable the project to work
with ClearQuest. ClearQuest uses scripts to implement these policies. You can modify a policy’s
behavior by editing its script. See Customizing ClearQuest Project Policies on page 54.

Check Before Work On

ClearQuest invokes this policy when a developer attempts to work on an activity. The default
policy script checks to see whether the developer’s user name matches the name in the
ClearQuest record’s Owner field. If the names match, the developer can work on the activity. If
the names do not match, the Work On action fails.

The intent of this policy is to ensure that all criteria are met before a developer can start working
on an activity. You may want to modify the policy to check for additional criteria.

Check Before ClearCase Delivery

This default policy script is a placeholder: it does nothing. ClearCase invokes this policy when a
developer attempts to deliver an activity in a UCM-enabled project. We recommend that you edit
the script to implement an approval process to control deliver operations. For example, you may
want to add an Approved check box to the activity’s record type and require that the project
manager select it before allowing developers to deliver activities.

Do ClearQuest Action After Delivery

ClearCase calls this policy at the end of a deliver operation for each activity included in the
deliver operation. The default policy script uses the activity’s default action to transition the
activity to a Complete type state. If the default action requires entries in certain fields of the
activity’s record, and one of those fields is empty, the script returns an error and leaves the
deliver operation in an uncompleted state. This state prevents the developer from performing
another deliver operation, but it does not affect the current one. It does not roll back changes
made during the merging of versions.

To recover from an error, the developer needs to fill in the required fields in the activity’s record
and resume the deliver operation.

The integration runs this script for each activity in the deliver operation. The script may return
success for any number of activities before returning an error on an activity. For the successful
activities, the script may change their state when it invokes the default action. When you recover
from an error and rerun the deliver operation, the script looks at all activities again. For those

Managing Software Projects with ClearCase

that succeeded previously, the script does not attempt to change state. If you modify the script,
be sure that it adheres to this behavior. ClearQuest returns an error if you attempt to change the
state of a record to its current state.

3 - Planning the Project 45

46

Managing Software Projects with ClearCase

Setting Up a ClearQuest User
Database

This chapter describes how to set up a ClearQuest user database so that you can use the
UCM-ClearQuest integration for your project. The steps in this chapter are typically completed
by the ClearQuest database administrator. ClearQuest includes predefined schemas that are
ready for use with UCM. You can also enable a custom schema, or another predefined schema,
to work with UCM. See Planning How to Use the UCM-ClearQuest Integration on page 36 for
information on the decisions you need to make before setting up the integration.

4.1 Using the Predefined UCM-Enabled Schemas

The predefined UCM schemas, named UnifiedChangeManagement and Enterprise, include the
record type, field, form, state, and other definitions necessary to work with a UCM project. To set
up a ClearQuest user database to work with UCM:

1. Create a user database that is associated with one of the predefined UCM-enabled schemas.
In the ClearQuest Designer, click Database>New Database to start the New Database
Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to associate with the
new database. Scroll the list of schema names and select the new schema, as shown in
Figure 16.

3. Click Finish.

4 - Setting Up a ClearQuest User Database 47

48

Figure 16 Associating a User Database with a UCM-Enabled Schema

Schema Scherma| Checked| Check
MNarme Yersion Out OW_I
4 |AnalystStudio 1 Mo
5 |DevelopmentStudio 1 Mo
B |Test=tudio 1 Mo
1

-1

Enterprise

4]

Mo
'ﬁ UnifiedChangeManagement _E_H;l
»

4.2

Enabling a Schema to Work with UCM

The predefined UCM schemas let you use the UCM-ClearQuest integration right away, but you
may prefer to design a custom schema to track your project’s activities and change requests, or
you may prefer to use a different predefined schema. To enable a schema to work with UCM:

1. Ensure that the schema does not contain a record type named UCM_Project, which is a
reserved name used by the UCM-ClearQuest integration.

2. Inthe ClearQuest Designer, click Package>Package Wizard to start the Package Wizard, as
shown in Figure 17.

3. Add the UCMPolicyScripts package to your schema. If this package is not listed in the first
page of the wizard, it has not been installed in your schema repository. To add the package
to your schema repository, click More Packages to open the Install Packages dialog box;
select the highest version of the package, and click OK. In the wizard, select the package, as
shown in Figure 17. Click Next.

Managing Software Projects with ClearCase

Figure 17 Adding the UCMPolicyScripts Package to a Schema
Package Wizard - Install/Select Pﬁc'ﬁage

Selecta package to install into your schema:

Fackage Mame | Yersion]
History 1.0

MNotes 1.0

FQC 1.0

Froject 1.0

Fepositary 0z

RequisitePro 0.z

Fesalution 1.0

TeamTest 0.1

<] | B

tMore Packages... | Efnar Lo |

< Eack I Mext > | Cancel | Help |

4. Onthe second page of the wizard, select your schema, and click Finish. To make the changes
to the schema, ClearQuest checks out the schema for you. Check in the schema by clicking
File>Check In. ClearQuest creates a new version of the schema.

5. Optionally, you can use the Package Wizard to apply the BaseCMActivity package to your
schema. The BaseCMActivity package adds the BaseCMActivity record type to your
schema. The BaseCMActivity record type is a lightweight activity record type. You may want
to use the BaseCMActivity record type as a starting point and then modify it to include
additional fields, states, and so on.

6. Apply the UnifiedChangeManagement package to the schema. Start the Package Wizard.
Select UnifiedChangeManagement, and click Next.

7. In the second page of the wizard, select your schema. Click Next.

8. The third page of the wizard prompts you to specify the schema’s record types. Select the
check boxes of the record types that you want to enable. Click Next. All selected record types
must meet the requirements listed in Requirements for Enabling Custom Record Types on
page 51.

9. Inthe fourth page of the wizard, you must assign state types to the states for each record type
that you choose to enable. For each state, click in the adjacent state type cell to display the
list of available state types, as shown in Figure 18, and select one. To enable another record

4 - Setting Up a ClearQuest User Database 49

type, click the arrow in the Record Type list to see the available record types. See Setting State
Types on page 51 for a description of the four state types, and the rules for setting them.

When you are finished, click Finish to check out the schema.

Figure 18 Assigning State Types to a Record Type’s States

Fackage Wizard - Setup State Types

A
Packages: IUnifiedChangeManagement—1.D j
Becard Type: IDefel:i j

Select a state type for a state:

States State Type
Subrnitted |VWaiting

Aszzigned |Ready
Opened | Acti
Resalved |[{
Claged

-
Civiulin ke |

| »

| = oo ra| —

10. Before you can check in your schema, you must set default actions for the states of each
enabled record type. Default actions are state transition actions that ClearQuest takes when
a developer begins to work on an activity or delivers an activity. In the ClearQuest Designer
workspace, navigate to the record type’s state transition matrix, as shown in Figure 19.

Figure 19 Navigating to Record Type’s State Transition Matrix

=-£3 Testl, version 4

[Schema Properties
=3 Record Types
S Activity
2 Fields
- States and Actions
1 State Transition katrix
w4 Actions
. P Behaviors
#-[1 Forms
w88 Record Scripts

Double-click State Transition Matrix to display the matrix. Right-click the state column
heading, and select Properties from its shortcut menu. Click the Default Action tab. Select

50 Managing Software Projects with ClearCase

the default action. See State Transition Default Action Requirements for Record Types on page 52
for default action requirements. Before you can set default actions, you may need to add
some actions to the record type. To do so, double-click Actions to display the Actions grid,
and then click Edit>Add Action.

11. In the ClearQuest Designer workspace, navigate to the record type’s Behaviors.
Double-click Behaviors to display the Behaviors grid. Verify that the Headline field is set to
Mandatory for all states. Verify that the Owner field is set to Mandatory for all Ready and
Active state types.

12. Validate the schema changes by clicking File>Validate. Fix any errors that ClearQuest
displays, and then check in the schema by clicking File>Check In.

13. Upgrade the user database so that it is associated with the UCM-enabled version of the
schema by clicking Database>Upgrade Database.

Requirements for Enabling Custom Record Types

Before you can apply the UnifiedChangeManagement package to a custom record type, the
record type must meet the following requirements:

0 It contains a field named Headline defined as a SHORT_STRING, and a field named
Owner defined as a REFERENCE to the ClearQuest-supplied users record type. The
Headline field must be at least 120 characters long.

0 It does not contain fields with these names:

ucm_vob_object
ucm_stream
ucm_stream_object
ucm_view

Oo0ooo

0 It contains an action named Modify of type Modity.

Setting State Types

The integration uses a state transition model to help you monitor the progress of activities. To
implement this model, the integration adds state types to UCM-enabled schemas. Table 2 lists
and describes the four state types. You must assign each state to a state type. You must have at

4 - Setting Up a ClearQuest User Database 51

least one state definition of state type Waiting, one of state type Ready, one of state type Active,
and one of state type Complete.

Table 2 State Types in UCM-Enabled Schema

State Type

Description

Waiting

The activity is not ready to be worked on, either because it has not
been assigned or it has not satisfied a dependency.

Ready

The activity is ready to be worked on. It has been assigned, and
all dependencies have been satisfied.

Active

The developer has started work on the activity but has not
completed it.

Complete

The developer has either worked on and completed the activity,
or not worked on and abandoned the activity.

State Transition Default Action Requirements for Record Types

Record types can include numerous state definitions. However, UCM-enabled record types must
have at least one path of transitions among state types as follows: Waiting to Ready to Active to
Complete. The transition from one state to the next must be made by a default action.

For example, Figure 20 shows the actions and default actions between the states defined in the
UCM-enabled BaseCMActivity record type included in the predefined UCM schema. The
default actions are identified with an asterisk (*). The state types are in uppercase letters enclosed
in brackets. The states appear immediately above their state types.

52

Managing Software Projects with ClearCase

Figure 20 State Transition Diagram for UCM-enabled BaseCMActivity Record Type

Postpone

Postpone

Submitted Active

[\
[WAITING]

LT

Complete

[READY]

Lo _Gf

[ACTIVE]

|3, |[COMPLETE]
Ge_Gd [y,

*Activate *Complete

Re-open

In addition to this single path requirement, states must adhere to the following rules:

O All Waiting type states must have a default action that transitions to another Waiting type
state or to either a Ready or Active type state.

O If a Ready type state has an action that transitions directly to a Waiting type state, that
Waiting type state must have a default action that transitions directly to that Ready type
state.

0 AllReady type states must have a default action that transitions to another Ready type state
or to an Active type state.

0 All Ready type states must have at least one action that transitions directly to a Waiting type
state.

0 For the BaseCMActivity record type, its initial state must be a Waiting type.

4 - Setting Up a ClearQuest User Database 53

54

4.3

Customizing ClearQuest Project Policies

To implement the project policies, the integration adds the following pairs of scripts to a
UCM-enabled schema:

0 UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver Def
0 UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def
0 UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

Each policy has two scripts: a base script and a default script. The default scripts have _Def
appended to their names and are installed by the UnifiedChangeManagement package. The
integration invokes the base scripts, which are installed by the UCMPolicyScripts package. The
base script calls the corresponding default script, which contains the logic for the default
behavior. To modify the behavior of a policy, remove the call to the default script from the base
script. Then add logic for the new behavior to the base script. Adhere to the rules stated in the
base script.

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts have a UCM
prefix. The Perl scripts have a UCU prefix. For ClearQuest clients on Windows NT, the
integration uses the Visual Basic scripts. For ClearQuest clients on UNIX, the integration uses the
Perl scripts. If you modify a policy’s behavior and your environment includes ClearQuest clients
on both platforms, be sure to make the same changes in both the Visual Basic and Perl versions
of the policy’s script. Otherwise, the policy will behave differently for ClearQuest clients on
UNIX and Windows NT.

For descriptions of these policies, see Policies Available in UCM-ClearQuest Integration on page 44.

4.4

Associating Child Activity Records with a Parent Activity
Record

As project manager, you may assign activities for large tasks to developers. When the developers
research their activities, they may determine that they need to perform several separate activities
to complete one large activity.

For example, an “Add customer verification functionality” activity may require significant work

in the product’s GUI, the command-line interface, and a library. To more accurately track the
progress of the activity, you can decompose it into three separate activities.

Managing Software Projects with ClearCase

By using the parent/child controls in ClearQuest , you can accomplish this decomposition and
tie the child activities back to the parent activity.

Using Parent/Child Controls

In ClearQuest, you use controls to display fields in record forms. A parent/child control, when
used with a reference or reference list field, lets you link related records. By adding a
parent/child control to the record form of a UCM-enabled record type, you can provide the
developers on your team with the ability to decompose a parent activity into several child
activities.

To have ClearQuest change the state of the parent activity to Complete when all child activities
have been completed, you need to write a hook. See Administering Rational ClearQuest for an
example of such a hook.

4.5 Creating Users

Before you can assign activities to the developers on your project team, you must create user
account profiles for each developer in ClearQuest. To do so:

1. In ClearQuest Designer, click Tools>User Administration.
2. Click Add.

3. Complete the User Information dialog box.

See Administering Rational ClearQuest and the ClearQuest Designer online help for details on
creating user profiles.

4 - Setting Up a ClearQuest User Database 55

56

Managing Software Projects with ClearCase

Setting Up the Project

This chapter describes how to set up a project so that a team of developers can work in the
Unified Change Management (UCM) environment. Before you set up a project, be sure to plan
the project. See Chapter 3, Planning the Project, for information on what to include in a
configuration management plan.

The chapter presents the following scenarios:

Creating a project from scratch

Creating a project based on an existing base ClearCase configuration
Creating a project based on an existing project

Enabling a project to use the UCM-ClearQuest integration

Working with Rational Suite

Creating a development stream reserved for testing new baselines

O0Oo0oooaag

5 - Setting Up the Project 57

58

5.1

Creating a Project from Scratch

Q

= o
Project ~ Setup Integrate \ Promote
Manager ~Project work D baseline
Make new
Create a Create baseline
PVOB directory structure
Create Create
components integration view
Create a
project

This section describes how to create and set up a new project that is not based on an existing
project or on an existing set of ClearCase VOBs.

Creating the Project VOB

PRODUCT NOTE: This task does not apply to ClearCase LT users. The ClearCase administrator
creates the PVOB during the installation.

To create a PVOB:

1. Click Start>Programs>Rational ClearCase Administration>Create VOB. The VOB
Creation Wizard appears.

2. InStep 1 of the VOB Creation Wizard, enter a name for the PVOB. Enter a comment to
describe the purpose of the PVOB. Leave the Create VOB as a UCM component box clear.
Although you can use one VOB as the PVOB and a component, we recommend against
doing so unless your project is very small and you anticipate that it will remain small. Select
the UCM project data check box.

Managing Software Projects with ClearCase

3.

In Step 2, specify the PVOB'’s storage directory. A PVOB storage directory is a directory tree
that serves as the repository for the PVOB’s contents. A PVOB's storage directory contains
the same subdirectories as a VOB'’s storage directory. (For details about VOB storage
directory structure, see Administering ClearCase.) You can choose one of the recommended
locations or enter the universal naming convention (UNC) path of a different location. Click
Browse to search the network for shared resource locations.

Step 3 prompts you to choose an administrative VOB to be associated with the PVOB.
Because you are creating a project from scratch and do not currently use an administrative
VOB, scroll to the top of the list and select none. When you create components, ClearCase
makes AdminVOB hyperlinks between the components and the PVOB, and the PVOB
assumes the role of administrative VOB.

Creating Components

PRODUCT NOTE: The process for creating components is slightly different for ClearCase and
ClearCase LT.

To create a component in ClearCase:

1.

2.

Start the VOB Creation Wizard.

In Step 1, enter a name for the component. Enter a comment to describe the purpose of the
component. Select the Create VOB as a UCM component check box.

In Step 2, specify where to store the component. You can choose one of the recommended
locations or enter the UNC path of a different location. Click Browse to search the network
for shared resource locations.

Step 3 prompts you to identify the PVOB that will store the project information about the
component. Click the arrow to see the list of available PVOBs. Select the PVOB that you
previously created.

ClearCase creates the component with an initial baseline that points to the \main\0 version
of the component’s root directory.

To create a component in ClearCase LT:

1.

Click Start>Programs>Rational ClearCase LT Server>ClearCase Create VOB. The VOB
Creation Wizard appears.

5 - Setting Up the Project 59

60

2. InStep 1, enter a name for the component. Enter a comment to describe the purpose of the
component. Because ClearCase LT assumes that you are using UCM, the VOB Creation
Wizard creates the VOB as a component.

3. In Step 2, select one of the available storage locations for the VOB’s storage directory. This
page of the wizard lists the VOB storage locations created by your ClearCase administrator.
If only one VOB storage location exists, the VOB Creation Wizard skips this step and uses
that VOB storage location.

Creating the Project

This section shows how to create a project by using the Project Explorer and the New Project
Wizard. For information on creating a project from the command-line interface (CLI), see the
cleartool mkproject, mkstream, and mkfolder Reference pages. To create a project:

1. In the left pane of ClearCase Explorer, click UCM and then click Project Explorer. The
Project Explorer appears. The Project Explorer is the graphical user interface (GUI) through
which you create, manage, and view information about projects.

2. The left pane of the Project Explorer lists root folders for all PVOBs in the local ClearCase
domain. Each PVOB has its own root folder. ClearCase creates the root folder using the name
of the PVOB.

ClearCase also creates a folder called Components, which contains entries for each
component in the PVOB. Folders can contain projects and other folders. Select the root folder
for the PVOB that you want to use for storing project information.

3. Click File>New>Folder to create a project folder. You do not need to create a project folder,
but it is a good idea. As the number of projects grows, project folders are helpful in
organizing related projects.

4. In the left pane, select the project folder or root folder. Click File>New>Project. The New
Project Wizard appears.

5. InStep 1 of the New Project Wizard, enter a descriptive name for the project in the Project
Title box. Enter a comment in the Description box to describe the purpose of this project.

6. Step 2 asks whether you want to create the project based on an existing project. Because you
are creating a project from scratch, click No.

Managing Software Projects with ClearCase

7. Step 3 asks you to choose the baselines that the project will use. These baselines are known
as foundation baselines because they are the foundation upon which all work within the
project is built.

Click Add to open the Add Baseline dialog box. In the Component list, select one of the
components that you previously created. The component’s initial baseline appears in the
Baselines list. Select the baseline. Be sure that the Allow project to modify the component
check box is selected unless you want the component to be read-only. (See Identifying
Read-Only Components on page 29 for information on when you may want to use read-only
components.) Click OK. The baseline now appears in the list in Step 3. Continue to use the
Add Baseline dialog box until the project contains its full set of foundation baselines.

8. Step 4 prompts you to specify the development policies to enforce for this project. Select the
check boxes for the policies you want to enforce. See Considering Which Development Policies
to Enforce on page 42 for information about each policy.

9. Step 5 asks whether to configure the project to work with the ClearQuest integration. To
enable the project to work with ClearQuest, click Yes and select a ClearQuest user database
from the list. See Enabling a Project to Use the UCM-ClearQuest Integration on page 67 for
details about the integration.

Defining Promotion Levels

ClearCase provides five baseline promotion levels. You can keep some or all of them, and you
can define your own promotion levels. To define the promotion levels that your project uses:

1. Inthe Project Explorer, select the PVOB root folder that contains your project, and then click
Tools>Define Promotion Level. All projects that use that PVOB have access to the same set
of promotion levels.

2. The Define Promotion Levels dialog box appears. To remove an existing promotion level,
select it and click Remove. To change the order of promotion levels, select a promotion level
and use the Move Up or Move Down buttons.

3. To add a new promotion level, click Add. The Add Promotion Level dialog box appears.
Enter the name of the new promotion level and click OK. The new promotion level appears
in the list of promotion levels in the Define Promotion Levels dialog box. Move it to the
desired place in the order.

4. When you finalize the set and order of promotion levels, select one to be the initial promotion
level for new baselines. The initial promotion level is the level assigned by default when you
create a baseline.

5 - Setting Up the Project 61

62

For information on defining promotion levels from the CLI, see the cleartool setplevel Reference
page.

Creating an Integration View

When you create a project, ClearCase creates the project’s integration stream for you. To see and
make changes to the project’s shared elements, you need an integration view. To create an
integration view:

1. In the Project Explorer, navigate to the integration stream by moving down the object
hierarchy:

a. Root Folder

b. Project Folder

c. Project

d. Stream

Figure 21 illustrates this hierarchy.

Figure 21 Navigating to Integration Stream in Project Explorer

F] - Exploring ClearCase Projects

File View Tools Help g
F* Integration M : L (e = o=
! o = e 5% |
-2 ktessier_upvab2 MNamea | winer
[Components B deliver bert_newproject? on 08/23/93 144411, ktessier
ED newproj_folder E deliver bert_newproject? on 08/23/99 146414, ktessier

- newprojectl
=% n ewproject?
~& hert_newproject?
[Integration

2. Select the integration stream and click File>New>View.

3. The View Creation Wizard appears. Accept the default values to create an integration view
associated with the integration stream. By default, the View Creation Wizard uses this
convention for the integration view name: username_project-name_integration.

Managing Software Projects with ClearCase

ClearCase supports two kinds of views:

O Dynamic views, which use the ClearCase multiversion file system (MVES) to provide
immediate, transparent access to files and directories stored in VOBs. ClearCase maps a
dynamic view to a drive letter in Windows Explorer.

O Snapshot views, which copy files and directories from VOBs to a directory on your
computer.

PRODUCT NOTE: ClearCase LT supports only snapshot views.

We recommend that you make the integration view a dynamic view to ensure that you
always see the correct version of files and directories that developers deliver to the
integration stream. With a snapshot view, you have to perform an update operation to copy
the latest delivered files and directories to your computer. For more information about
dynamic and snapshot views, see Developing Software with ClearCase.

Creating the Directory Structure

Because you are creating the project from scratch, you need to create the directory elements
within the project’s components to implement the directory structure that you define during the
planning phase. See Defining the Directory Structure on page 28. To add a directory element to a
component:

1. In Windows Explorer, navigate to the integration view. Double-click the component to
display its contents.

2. Create a folder.
3. Right-click the folder to display the shortcut menu. Click ClearCase>Add to Source Control.

4. When prompted, specify an activity to be associated with the addition of the new directory
element.

For additional information about creating directory and file elements, see Developing Software
with ClearCase and the mkelem reference page.

5 - Setting Up the Project 63

64

Importing Directories and Files from Outside ClearCase

If you have a large number of files and directories that you want to place under ClearCase
version control, you can speed the process by using the clearexport and clearimport
command-line utilities. These two utilities allow you to migrate an existing set of directories and
files from another version control software system, such as SourceSafe or PVCS, to ClearCase.
You can also use clearexport and clearimport to place directories and files that are not currently
under any version control under ClearCase control.

To migrate source files into a component:

1. Create and set a non-UCM view by using the View Creation Wizard. To start the View
Creation Wizard, from ClearCase Explorer click Base ClearCase>Create View.

2. From within the view, run clearexport to generate a data file from your source files.

3. From within the view, run clearimport to populate the component with the files and
directories from the data file.

4. In the component, create a baseline from a labeled set of versions. If the versions that you
want to include in the baseline are not labeled, create a label type and apply it to the versions.
See Making a Baseline from a Label on page 65 for details.

As an alternative, you can use clearexport and clearimport on VOBs, and then convert the VOBs
to components. See Creating a Project Based on an Existing ClearCase Configuration on page 64 for
details on converting VOBs into components.

For details on using clearexport and clearimport, see Administering ClearCase and the clearexport
and clearimport reference pages.

PRODUCT NOTE: ClearCase LT provides the Import Wizard, a GUI that you can use as an
alternative to the clearexport and clearimport commands. You can start the Import Wizard from
the Server Setup Wizard.

5.2

Creating a Project Based on an Existing ClearCase
Configuration

If you have existing VOBs, you may want to convert them into components so that you can
include them in projects. This section describes how to set up a project based on existing VOBs.

Managing Software Projects with ClearCase

Creating the PVOB

Use the VOB Creation Wizard, as described in Creating the Project VOB on page 58, to create the
PVOB. In Step 3, if you currently use an administrative VOB, select it in the list. ClearCase creates
an AdminVOB hyperlink between the PVOB and the administrative VOB. When you create
components, they use the existing administrative VOB. If you do not currently use an
administrative VOB, select none.

Making a VOB into a Component

To make a VOB into a component:

1. Inthe Project Explorer, select the PVOB. Click Tools>Import VOB. The Import VOB dialog
box appears.

2. Inthe Available VOBs list, select the VOB that you want to make into a component. Click
Add to move the VOB to the VOBs to Import list. You can add more VOBs to the VOBs to
Import list. If you change your mind, you can select a VOB in the VOBs to Import list and
click Remove to move it back to the Available VOBs list. When you are finished, click
Import.

Making a Baseline from a Label

After you convert an existing VOB into a component, to access the directories and files in that
component, you must create a baseline from the set of versions identified by a label type. To
create the baseline:

1. Ifthesetof versions that you want to use are not already labeled, use the Apply Label Wizard
to make and apply a label type. To start the Apply Label Wizard, click
Start>Programs>Rational ClearCase>Apply Label.

2. In the Project Explorer, select the PVOB. Click Tools>Import Label. Step 1 of the Import
Label Wizard appears.

3. Inthe Available Components list, select the component that contains the label from which
you want to create a baseline. Click Add to move that component to the Selected
Components list. If you change your mind, select a component in the Selected Components
list and click Remove to move the component back to the Available Components list.

5 - Setting Up the Project 65

66

4. In Step #2, select the label type that you want to import, and enter the name of the baseline
that you want to create for the versions identified by that label type. Then select the
baseline’s promotion level.

Creating the Project

Use the New Project Wizard to create the project as described in Creating the Project on page 60.

Creating an Integration View

Create an integration view as described in Creating an Integration View on page 62.

5.3

Creating a Project Based on an Existing Project

As you create new projects, you may need to create new versions of existing projects. For
example, suppose you have released version 3.0 of the Webotrans project and are planning for
version 3.1. You anticipate that version 3.1 will use the same components as version 3.0.
Therefore, you want to use the latest baselines in the version 3.0 components as the foundation
baselines for version 3.1 development.

Reusing Existing PVOB and Components

Because your project is a new version of an existing project and uses the same components as the
existing project, do not create a new PVOB for this project. Continue to use the existing PVOB.

Creating the Project
Start the New Project Wizard, as described in Creating the Project on page 60, to create the project.
In Step 2 of the wizard, select Yes to indicate that the project begins from the baselines in an

existing project. Then navigate to the project that contains those baselines. Figure 22 shows that
the new project is based on the baselines in newproject2.

Managing Software Projects with ClearCase

Figure 22 Step 2 of New Project Wizard

New Project - Step 2

Will this project begin from the set of baselines created by an

i’. . \’.0 existing UCM praject?
%(" NQ

 Yes, seed this project with the baseline list from
the project T selected below:

=3 ktessier_upvob2
=0 newproj_folder
i?? nesvproject]
Bl rcvnrojoct?

Step 3 lists the latest baselines in the project that you select in Step 2. You can add baselines from
components that are not part of the existing project by clicking Add to open the Add Baseline
dialog box. Similarly, you can remove a baseline by selecting it and clicking Remove.

Finish the remaining steps in the wizard as described in Creating the Project on page 60.

Creating an Integration View

When you create a new project, ClearCase creates a new integration stream for you. Therefore,
you need to create a new integration view to access elements in the integration stream. Create an
integration view as described in Creating an Integration View on page 62.

5.4 Enabling a Project to Use the UCM-ClearQuest Integration

Before you can connect a project to a ClearQuest user database, you must set up the database to
use a UCM-enabled schema. See Chapter 4, Setting Up a ClearQuest User Database.

To enable a project to work with a ClearQuest user database:

5 - Setting Up the Project 67

1. In the left pane of the Project Explorer, right-click the project to display its shortcut menu.
Click Properties to display its property sheet.

2. C(lick the ClearQuest tab and then select the Project is ClearQuest-enabled check box. Select
the user database from the list, as shown in Figure 23. The first time that you enable a project,
ClearQuest opens its Login dialog box. Enter your user name, password, and the name of
the database to which you are linking the project.

3. Select the development policies that you want to enforce. See Policies Available in
UCM-ClearQuest Integration on page 44 for a description of these policies. Click OK when
you are finished.

If you are creating a new project, you can enable the project to work with ClearQuest by selecting
Project is ClearQuest-enabled and selecting the user database in Step 5 of the New Project
Wizard.

ClearCase does not require you to enable all projects in the PVOB to work with ClearQuest.
However, all enabled projects in the same PVOB must use the same ClearQuest database.
Therefore, give careful consideration to choosing the ClearQuest database. See Mapping PVOBs
to ClearQuest User Databases on page 37 for details.

After you enable a UCM project to work with a ClearQuest user database, you may decide to link
the project to a different user database. You can switch databases by selecting a different one on
the ClearQuest tab of the project’s property sheet if no other project in the same PVOB is
ClearQuest-enabled, and no activities have been created.

Migrating Activities

If your project contains activities when you enable it to work with a ClearQuest database, the
integration creates records for each of those activities by using the UCMUtility Activity record
type. If you want to store all of your project’s activities in records of some other record type,
enable the project when you create it, before team members create any activities. After the
migration is complete, any new activities that you create can link to records of any UCM-enabled
record type.

Managing Software Projects with ClearCase

Figure 23 Enabling a Project to Work with a ClearQuest User Database

newproject3 Properties HE

Generall Policy Clearuest | Custuml Lock I

¥ Erojectis ClearCuest-enahled:

Link to this ClearCluest User Database: Wekho j

ClearQuest Falicies
v Check Assignment Before WWork On

[” Check Before ClearCase Daliverny

[" Do ClearCuest Action After Delivery

Setting Project Policies

A UCM-enabled schema includes three policies that you can set from either ClearCase or
ClearQuest.

In ClearCase, set the policies by selecting check boxes on the ClearQuest tab of the project’s
property sheet, as shown in Figure 23.

To set policies from ClearQuest:

1. Start the ClearQuest client by clicking Start>Programs>Rational ClearQuest 2.0>Rational
ClearQuest. In the ClearQuest client workspace, navigate to the UCMProjects query, as
shown in Figure 24.

2. Double-click the query to display all UCM-enabled projects.
3. Select a project from the Results set. The project’s form appears.

4. On the form, click Actions and select Modify. Select the check boxes for the policies you
want to set.

5 - Setting Up the Project 69

70

See Policies Available in UCM-ClearQuest Integration on page 44 for descriptions of the policies.

Figure 24 Navigating to the UCMProjects Query

=l
E-g Wiorkspace: Cueries, Charts, Reports

-7 Personal Queries
=& Public Queries

B UCMSystemQueries

¢ L UCMCustamQueny1

& UCMUserQueries

Assigning Activities
To create and assign activities in ClearQuest:
1. Start the ClearQuest client, and log in to the user database connected to the project.

2. Click Actions>New. The Choose a record type dialog box appears. Select a UCM-enabled
record type, and click OK.

3. The Submit form appears. Fill in the boxes on each tab. On the Main tab, you must fill in at
least the Headline and Owner boxes. On the Unified Change Management tab, select the
project. When you finish filling in the boxes, click OK. ClearQuest creates the record.

User account profiles must exist in ClearQuest for the developers to whom you assign activities.
See Creating Users on page 55 for details on creating user account profiles.

Disabling the Link Between a Project and a ClearQuest User Database

There may be times when you want to disable the link between a project and a ClearQuest user
database. If another project in the same PVOB is ClearQuest-enabled or if activities have been
created, you must first disable the link between each ClearQuest-enabled project in the PVOB
and the user database. To disable the links:

Managing Software Projects with ClearCase

1. On the ClearQuest tab of the project’s property sheet, clear the Project is
ClearQuest-enabled check box.

2. Click OK on the ClearQuest tab. The integration disables the link between the project and
the ClearQuest database. The integration also removes any existing links between activities
and their corresponding ClearQuest records.

3. Display the project’s property sheet again, select the Project is ClearQuest-enabled check
box, and select another user database if you want to link the project to a different user
database.

NOTE: If you select the same user database that you just unlinked, the integration creates new
ClearQuest records for the project’s activities; it does not link the activities to the ClearQuest
records with which they were previously linked.

Fixing Projects That Contain Linked and Unlinked Activities

It is possible that after you enable a project to work with ClearQuest, some of the project’s
activities remain unlinked to ClearQuest records. Similarly, when you disable the link between
a project and ClearQuest, some activities may remain linked. Two scenarios can cause your
project to be in this inconsistent state:

O A network failure or a general system crash occurs during the enabling or disabling
operation and interrupts the activity migration.

0 The project’s PVOB is in a ClearCase MultiSite configuration, and unlinked activities were
added by a MultiSite synchronization operation to the local PVOB'’s project, which is
enabled to work with ClearQuest.

Detecting the Problem

If a developer attempts to take an action, such as modifying an unlinked activity in an enabled
project, the integration displays an error and disallows the action.

Correcting the Problem

To restore the project to a consistent state:

1. In the Project Explorer, display the project’s property sheet, and click the ClearQuest tab.

5 - Setting Up the Project 71

72

2. Click Ensure all Activities are Linked. The integration checks all the project’s activities. If
the project is enabled, the integration links any unlinked activities. The integration then
displays the following summary information:

O Number of activities that had to be linked.
O Number of activities that were previously linked.

O Number of activities that could not be linked because they are not mastered in the
current PVOB replica. In this case, the integration also displays a list of replicas on which
you must run the Ensure all Activities are Linked operation again to correct the
problem.

5.5

Working with Rational Suite

If you are using UCM with Rational Suite, you can store RequisitePro projects, Rational Rose
models, and Rational Test datastores in UCM components and include them in baselines. To
enable this integration, use the Rational Administrator GUI to create and configure a Rational
project. A Rational project associates your UCM project with a RequisitePro project, Rose
models, and Rational Test datastores. For details on setting up this integration, see Using UCM
and Rational Suite.

5.6

Creating a Development Stream for Testing Baselines

When you make a new baseline, we recommend that you lock the integration stream so that you
can build and test a static set of files. Otherwise, developers can inadvertently cause confusion
by delivering changes while you are building and testing. Locking the integration stream for a
short period of time is acceptable; locking the integration stream for several days can result in a
backlog of completed but undelivered activities. To avoid locking out developers for a long
period of time, you may want to create a development stream and use it for extensive testing of
baselines.

To create a development stream:

1. In ClearCase Project Explorer, right-click the project, and select New>Stream from the
shortcut menu.

Managing Software Projects with ClearCase

6.

The Create a Development Stream dialog box appears.

By default, ClearCase uses the set of recommended baselines when creating a development
stream. Because the new baseline has not been tested extensively, you probably have not yet
promoted it to the level associated with recommended baselines. To create the development
stream with baselines other than the recommended baselines, click Advanced Options.

The Change Baseline dialog box appears.

In the Change Baseline dialog box, select the component that contains the baseline you want
to test. Click Change.

A second Change Baseline dialog box appears, listing all baselines for the component.

Select the baseline that you want to test, and click OK. If you need to test the baseline of
another component, select it in the first Change Baseline dialog box and repeat the process.
When you are finished, click OK in the first Change Baseline dialog box.

In the Create a Development Stream dialog box, be sure that the Prompt me to create a View
for this stream check box is selected. Click OK.

The View Creation Wizard appears.

Complete the steps of the View Creation Wizard to create a view for the development stream.

Now the development stream is configured so that you can build and test the new baselines, and
developers can deliver changes to the integration stream without being concerned about
interfering with the building and testing process.

5 - Setting Up the Project 73

74

Managing Software Projects with ClearCase

Managing the Project

After you create and set up a project, developers join the project, work on activities, and deliver
completed activities to the integration stream. As project manager, you need to maintain the
project so that developers do not get out of sync with each other’s work. This chapter describes
the following maintenance tasks:

Adding components

Integrating work delivered by the remote deliver model
Making new baselines

Testing baselines

Promoting and demoting baselines

Tracking the progress of the project

Cleaning up the project

Oo0oo0oogoago

6.1 Adding Components

Over time, the scope of your project typically broadens, and you may need to add components.
To add a component to a project’s integration stream:

1. In the left pane of ClearCase Explorer, click UCM and then click Project Explorer.

2. Intheright pane of the Project Explorer, right-click the project’s integration stream to display
its shortcut menu. Click Properties to open the integration stream’s Properties dialog box.

3. Click the Configuration tab, and then click Add. The Add Baseline dialog box appears.

6 - Managing the Project 75

4. In the Component list, select the component that you want to add. The component’s

baselines appear in the Baselines list. Figure 25 shows the baselines available in the
kmt_testvob component.

Figure 25 Add Baseline Dialog Box

Add Baseline]

Companent: Ikmt_testvob j oK |
EBaselines: Cancel |
Title | Created On Help |
RELY 08/2049917:43.31
krmt_testyob_[MITIL.. 08/20/9917:32:.03 Flimii= |

¥ Allow project to modify the component

Project YOB: I\ktessier_upVDbE j

5. In the Baselines list, select the baseline that you want to add to the project.

6. Click OK. The Add Baseline dialog box closes, and the baseline that you chose appears on

the Configuration tab.

7. Click OK to close the integration stream’s Properties dialog box.

The Rebase Stream Preview dialog box appears. To modify the integration stream’s
configuration to include the new foundation baseline, UCM needs to rebase the integration

stream.
8. C(lick OK in the Rebase Stream Preview dialog box.

9. Click Complete to finish the rebase operation.

Updating Snapshot View Load Rules

If your integration view is a snapshot view, you need to edit the view’s load rules to include the
components that you add to the integration stream. A snapshot view’s load rules specify which

components ClearCase loads into the view. To edit the integration view’s load rules:

Managing Software Projects with ClearCase

1. Inthe Project Explorer, select the integration stream, and click File>Properties to display the
integration stream’s property sheet.

2. In the property sheet, click the Load Rules tab.
3. Select the component or components that you added to the integration stream.

4. Click Add. Click OK to close the property sheet.

In addition, you need to know whether any developers working on the project use snapshot
views for their development views. When a developer who uses a snapshot view rebases to a
baseline that contains a new component, ClearCase updates the snapshot view’s config spec, but
it does not update the view’s load rules. When you add a component, notify developers who use
snapshot views that they need to update the load rules for their development views after they
rebase their development streams to the new baseline.

6.2 Integrating the Project

In most cases, developers complete their deliver operations. However, in a MultiSite
configuration in which the project’s integration stream is mastered at a different replica than the
developer’s development stream, the developer cannot complete deliver operations. When
ClearCase detects such a stream mastership situation, it makes the deliver operation a remote
deliver operation.

In a remote deliver operation, ClearCase starts the deliver operation but leaves it in the posted
state. It is up to you, as project manager, to find and complete deliver operations in the posted
state. Developers who have deliver operations in the posted state cannot deliver from, or rebase,
their development streams until you complete or cancel their deliver operations.

PRODUCT NOTE: ClearCase LT does not support MultiSite.

Finding Work That Is Ready to Be Delivered

To find all deliver operations that are in the posted state:

1. Inthe Project Explorer, select the project.

6 - Managing the Project 77

78

2. Click Tools>Find Posted Deliveries. The Find Posted Deliveries dialog box appears, as
shown in Figure 26, and lists all development streams within the project that contain deliver
operations in the posted state.

Figure 26 Find Posted Deliveries Dialog Box

Find Posted Deliveries

The streams below hawve drliveries posted to the Deliver |
newproject? project: —

Mo posted deliveries were found.

To resume (or cancel) any of these deliveries,
click 'Deliver'.

Completing Remote Deliver Operations

To complete remote deliver operations for a development stream:
1. Select the development stream from the list in the Find Posted Deliveries dialog box.

2. Click Deliver. The Deliver dialog box appears. Click Resume to resume the deliver
operation. Click Cancel to cancel the deliver operation. See Developing Software with ClearCase
for details on completing the deliver operation.

Undoing a Deliver Operation

In addition to the remote deliver scenario, there is another case where you may need to help
developers with their deliver operations. At any time before developers complete the deliver
operation, they can back out of it and undo any changes made, but if they check in their versions
to the integration view, they cannot undo the changes easily. When this happens, you may need
to remove the checked-in versions by using the cleartool rmver —xhlink command.

Managing Software Projects with ClearCase

NOTE: The rmver command erases part of your organization’s development history, and it may
have unintended consequences. Therefore, be very conservative in using this command,
especially with the —xhlink option. See the rmver reference page in ClearCase Reference Manual
for details.

Note that removing a version does not guarantee that the change is really gone. If a successor
version was created or if the version was merged before you removed the version, the change
still exists. You may need to check out the file, edit it to remove the change, and check the file
back in.

6.3 Creating a New Baseline

As developers deliver work to the integration stream, it is important that you make new
baselines frequently to record the changes. Developers can then rebase to the new baselines and
stay current with each other’s changes.

Locking the Integration Stream

Before you make a new baseline, lock the integration stream to prevent developers from
delivering work. This ensures that you are dealing with a static set of files. To lock the integration
stream:

1. In the Project Explorer, select the integration stream.
2. Click File>Properties to display the integration stream’s property sheet.
3. Click the Lock tab.

4. C(Click Locked and then click OK.

Verifying That the Code Base Is Stable

After you lock the integration stream, we recommend that you build and test the project’s

executable files to make sure that the changes delivered by developers since the last baseline do
not contain any bugs. For information on performing builds, see Building Software with ClearCase.
Because you lock the integration stream when you build and test in it, we recommend that you

6 - Managing the Project 79

80

use a separate development stream for extensive testing of new baselines. Perform only quick
validation tests in the integration stream so that it is not locked for an extended period of time.
See Testing the Baseline on page 81 for information about using a development stream for testing
new baselines.

Making the New Baseline

To make a new baseline:
1. In the Project Explorer, select the project’s integration stream.

2. Click Tools>Make Baseline. The Make Baseline dialog box appears, as shown in Figure 27.
Figure 27 Make Baseline Dialog Box

Make Baseline

B aseline Title: IBrinks1 0_05 25 00

Dezcription: Caniel

diil.

Help

Bazeling Tupe: I Incremental * I

Praject/Strear: IBlinks'I .O/lhteqration

Yiew Context: Iktessier_Brinks‘I 0_2_inteqgratio j

Components to include:
[kmit_compl
[kmit_comp3
[kmt_compd

3. Enter a name in the Baseline Title box. By default, ClearCase names the baseline by
appending the date to the project’s name.

4. Choose the type of baseline to create.

An incremental baseline is a baseline that ClearCase creates by recording the last full baseline
and those versions that have changed since the last full baseline was created.

Managing Software Projects with ClearCase

A full baseline is a baseline that ClearCase creates by recording all versions below the
component’s root directory.

Generally, incremental baselines are faster to create than full baselines; however, ClearCase
can look up the contents of a full baseline faster than it can look up the contents of an
incremental baseline.

5. Specify which components to include in the baseline. By default, ClearCase applies the
baseline to all project components. If a component has not changed since the current
baseline, ClearCase does not create a new baseline for it.

Making a Baseline for a Set of Activities

By default, all activities modified since the last baseline was made are included in the new
baseline. There might be times when you want to create a baseline that includes only certain
activities. To do so, use the cleartool mkbl command and specify the activities parameter. See
the mkbl page in ClearCase Reference Manual for details.

Unlocking the Integration Stream

After you create a new baseline, unlock the integration stream so that developers can resume
delivering work to the integration stream. To unlock the integration stream:

1. In the Project Explorer, select the integration stream.
2. Click File>Properties to display the integration stream’s property sheet.
3. Click the Lock tab.

4. C(Click Unlocked and then click OK.

6.4

Testing the Baseline

To avoid locking the integration stream for an extended period of time, we recommend that you
use a separate development stream for performing extensive testing, such as system, regression,
and acceptance tests, on new baselines. See Creating a Development Stream for Testing Baselines on
page 72 for information on creating a development stream.

6 - Managing the Project 81

82

After you create a new baseline and verify that it builds and passes an initial validation test in
the integration stream, rebase the development stream:

1.

In the Project Explorer, select the development stream and click Tools>Rebase Stream.
The Rebase Stream Preview dialog box appears.

By default, ClearCase rebases your development stream to the recommended baselines.
Because the new baseline has not been tested extensively, you probably have not yet
promoted it to the level associated with recommended baselines. To rebase to the baseline,
or baselines, you want to test, click Change.

The Change Rebase Configuration dialog box appears.

Select a component that contains a baseline you want to test. Click Change.

The Change Baseline dialog box appears, listing all baselines for the component.
Select the baseline that you want to test, and click OK.

Select another component in the Change Rebase Configuration dialog box and repeat the
process. When you finish selecting baselines, click OK to close the Change Rebase
Configuration dialog box.

Click OK in the Rebase Stream Preview dialog box to continue the rebase operation. See
online help or Developing Software with ClearCase for details on rebasing a development
stream. When you finish rebasing the development stream, you are ready to begin testing the
new baselines.

Fixing Problems

If you discover a problem with a baseline while testing it, fix the affected files and deliver the
changes to the integration stream as follows:

1.

From the development view attached to the development stream, check out the files you
need to fix. When you check out a file, you need to specify an activity.

Make the necessary changes to the files and check them in.
Build and test the changes in the development view.

When you are confident that the changes work, deliver the activity to the integration stream.

Managing Software Projects with ClearCase

5. In the Project Explorer, make a new baseline that includes the fixes you delivered plus
changes that other developers have delivered since you created the last baseline. See Creating
a New Baseline on page 79.

6.5

Promoting or Demoting the Baseline

As work on your project progresses and the quality and stability of the components improve,
change the baseline’s promotion level attribute to reflect a level of testing that the baseline has
passed.

To promote a baseline’s promotion level to the level specified for recommended baselines:
1. In the Project Explorer, select the integration stream.

2. Click Tools>Recommend Baselines.

To change a baseline’s promotion level to something other than the level specified for
recommended baselines:

1. In the Project Explorer, right-click the project’s integration stream to display its shortcut
menu. Click Properties to open the integration stream’s Properties dialog box.

2. Click the Baselines tab.

3. Inthe Components list, select the component that contains the baseline you want to
promote. In the Baselines list, select the baseline. Click Properties. The baseline’s Properties
dialog box appears.

4. Click the arrow in the Promotion Level list to display all available promotion levels. Select
the new promotion level.

On occasion, you may need to demote a baseline by changing its promotion level to one that is
lower in the promotion level order. For example, suppose that after you create a new baseline,
you discover that it contains a major bug. To prevent developers from introducing this bug to
their development streams by rebasing, you can change the baseline’s promotion level to
Rejected.

6 - Managing the Project 83

84

6.6

Tracking the Project

ClearCase provides several tools to help you track the progress of your project. This section
describes how to use those tools.

Comparing Baselines

The ClearCase Component Tree Browser is a GUI that displays the baseline history of a
component. You can use it to compare the contents of two baselines. To start the Component Tree
Browser:

1. Start the Project Explorer, and navigate to the component whose baseline history you want
to see.

2. Right-click the component to display its shortcut menu. Select Browse Baselines.

The Component Tree Browser appears, as shown in Figure 28.

Managing Software Projects with ClearCase

Figure 28 ClearCase Component Tree Browser

' mt_comp - ClearCase anmpunent Tree Browser
File iew Tools Help

| =] 05 5| W]

| ! e

v

kmt_téllump

PN
E] lmt_corp INITIAL 144

M
hert_newg;rojeth Integration [project : newproject2]

|
B deitvierbl bert newproject? 00970 19930523 {44411 157

| PN
] hewprofect? 08 23 99193
deitverbl bert newproject? 00970 9930523 145414 157 |
*

=]
|

*
|

The Component Tree Browser shows the lines of development for the component and each
stream that uses the component. In Figure 28, kmt_comp_INITIAL.144 is the initial baseline that
was created when the project manager created the kmt_comp component. The .144 is a unique
identifier that ClearCase appends to the baseline. REL2.144 is the first baseline that the project
manager created after creating the component. It is the foundation baseline for the integration
stream and the development stream named bert_newproject2. When Bert joined the project,
ClearCase populated his development work area with the contents of the REL2.144 baseline.

The deliverbl.bert_newproject2_n entries are baselines that ClearCase creates in the
development stream during deliver operations. The integration arrows from the development
stream to the integration stream represent deliver operations. The newproject2_08_23_99.195
baseline includes the work from the first deliver operation. The newproject2_latest.195 baseline
includes the work from the second deliver operation.

The integration arrow from the integration stream to the development stream represents a rebase
operation.

To compare two baselines, select a baseline by clicking its icon. Then click Tools>Compare>with
Another Baseline. Click the second baseline’s icon. The Compare Baselines window appears, as

6 - Managing the Project 85

shown in Figure 29. Alternatively, you can click Tools>Compare>with Previous Baseline to
compare a baseline with its immediate predecessor.

Figure 29 Comparing Baselines by Activity

Compare Baselines H=] B3
File Wiew Help k
00|

Baseline 1: newprajectz_08_23_99

Hame | Headline | Chwiner |

1 B Activities I:Y‘v’ersions |

Baseline 2: newproject?_latest

Marme | Headline
2 Fix_copyright_dates_03828 Fix copyright dates

2 deliverbert_newproject?_00970.19990823 145414 deliver bert_newproject? on 08/23/93 14:54:14.

| Chwerier |
ktessier
ktessier

y B Activities ISY\f’ersions |

The Compare Baselines window in Figure 29 shows the results of a comparison of the
newproject2_08_23_99.195 and newproject2_latest.195 baselines. The more recent baseline
contains the Fix copyright dates activity. The Compare Baselines window also lists the
integration activity that ClearCase created during the deliver operation.

To see the change sets associated with the activities, click Versions. Figure 30 shows the versions
associated with the Fix copyright dates and integration activities.

86 Managing Software Projects with ClearCase

Figure 30 Comparing Baselines by Version

Baseline 2 newpraject?_latest

Fathname | Activity MName | Activity Headline |
Ykmt_complinclude@ @ mainyIntegration_1626341 deliverber_.. deliver hert_newproject? on 08,23/99 ...
Ykmit_comphinclude@ @\ mainihert_newproject?_0097041 Fix_copyright.. Fix copyright dates
Ykmt_comphinclude’loop @& main Integration_1626941 deliverber_.. deliver ber_newproject? on 08723799 .

Ykrnt_comphincludeloop ta@E maint bert_newproject?_0097041 Fix_copyright.. Fix copyright dates

¥ Activiies 4 Versions I

Querying ClearQuest User Databases

If you use the UCM-ClearQuest integration, you can use ClearQuest queries to retrieve
information about the state of your project. When you create or upgrade a ClearQuest user
database to use a UCM-enabled schema, the integration installs six queries in two subfolders of
the Public Queries folder in the user database’s workspace. These queries make it easy for
developers to see which activities are assigned to them and for project managers to see which
activities are active in a particular project. Table 3 lists and describes the queries.

Table 3 Queries in UCM-Enabled Schema

Query Description

ActiveForProject For one or more specified projects, selects all activities in an active
state type.

ActiveForStream For one or more specified streams, selects all activities in an active
state type.

ActiveForUser For one or more specified developers, selects all assigned
activities in an active state type.

MyToDoList Selects all activities in an active or ready state type assigned to the
developer running the query.

6 - Managing the Project

87

88

Table 3 Queries in UCM-Enabled Schema

Query Description
UCMProjects Selects all projects linked to the ClearQuest user database.
UCMCustomQuery1 This query is not intended to be used by users; the integration

uses it. When a developer checks out or checks in a file, or adds a
file to source control and is prompted to select an activity, the
integration calls this query to display the list of activities
available in the stream associated with the developer’s view.

You can also create your own queries by clicking Query>New Query within the ClearQuest
client. In the Choose a record type dialog box that appears, select All_UCM_Activities if you
want the query to search all UCM-enabled record types.

Using ClearCase Reports

The ClearCase Reports applications (Report Builder and Report Viewer) allow you to generate
and view reports specific to your project environment. Use the Report Builder to select and
define a report’s parameters. Use the Report Viewer to see the report output.

PRODUCT NOTE: To start the ClearCase Report Builder:

0 InClearCase, click Start>Programs>Rational ClearCase Administration>ClearCase
Report Builder.

O InClearCase LT, click Start>Programs>Rational ClearCase LT Server>ClearCase Report
Builder.

The ClearCase Report Builder categorizes its reports based on object types, such as UCM projects
and streams. When you select a category in the left pane, the Report Builder lists the reports
available for that category in the upper right pane. When you select a report, the Report Builder
prompts you for parameters in the lower right pane. For example, in Figure 31, with the
Activities Delivered Since Date report selected, the Report Builder prompts for the name of an
integration stream and a date.

For details on using the Report Builder and the Report Viewer, see their online help.

Managing Software Projects with ClearCase

ClearCase Reports includes a set of hooks into the Report Builder and Report Viewer
applications. These hooks, known as report procedures, implement all the operations necessary
to generate and view a specific report. The ClearCase Reports Programming Interface allows you
to customize report procedures. For details on doing so, see Appendix C, Customizing ClearCase
Reports.

Figure 31 ClearCase Report Builder

Ef ClearCase Report Builder =] E3
Beport Help

J W R Repor «F Exit k? Help

=1 “Reports Reports I

{:l ClearCaze Tools Activities Delivered But in Mo Baseline

D Elemments z Delivered Since Date
|:| LICH Projects Activities in Steams

2 1UCM Streams Eumpleted .é'.CllI\fIFIES.II"l Streams
(] vOB Continued Activities in Streams
; e Activities in Streams

: £ Mew Activities in St

(] Views Perding Activities in Streams

Select Integration Stream in UCM Process VOB
Since datestime

6.7 Cleaning Up the Project

When your team finishes work on a project and releases or deploys the new software, you should
clean up the project environment before creating the next version of the project. Cleaning up
involves removing any unused objects, and locking and hiding the project and its streams. This
process reduces clutter and makes it easier to navigate in the Project Explorer.

Removing Unused Objects

During the life of the project, you or a developer might create an object and then decide not to
use it. Perhaps you decide to use a different naming convention, and you create a new object
instead of renaming the existing one. To avoid confusion and reduce clutter, remove these
unused objects.

6 - Managing the Project 89

To delete a project, stream, component, or activity, select the object in the Project Explorer, and
click File>Delete. To delete a baseline, use the cleartool rmbl command.

Projects

You can delete a project only if it does not contain any streams. When you create a project with
the Project Creation Wizard, the wizard also creates an integration stream. Therefore, you can
delete a project only if you created it with the cleartool mkproject command, or if you first delete
the integration stream. For more information on removing projects, see the rmproject reference
page in ClearCase Reference Manual.

Streams

You can delete a development stream or an integration stream only if all of the following
conditions are true:

0 The stream contains no activities.
0 No baselines have been created in the stream.
0 No views are attached to the stream.

In addition, you cannot delete an integration stream if the project contains any development
streams. For more information on removing streams, see the rmstream reference page in
ClearCase Reference Manual.

Components

You can delete a component only if all of the following conditions are true:

O No baselines of the component other than its initial baseline exist.
0 The component’s initial baseline does not serve as a foundation baseline for another stream.

For more information on removing components, see the rmcomp reference page in ClearCase
Reference Manual.

Baselines

You can delete a baseline only if all of the following conditions are true:

The baseline does not serve as a foundation baseline.

The baseline is not a component’s initial baseline.

A stream has not made changes to the baseline.

The baseline is not used as the basis for an incremental baseline.

Oo0ooo

Managing Software Projects with ClearCase

For more information on removing baselines, see the rmbl reference page in ClearCase Reference
Manual.

Activities
You can delete an activity only if both of the following conditions are true:

O The activity has no versions in its change set.
O No view is currently set to the activity.

For more information on removing activities, see the rmactivity reference page in ClearCase
Reference Manual.

Locking and Making Obsolete the Project and Streams

To prevent a project or a stream from appearing in the Project Explorer, lock the object and use
the obsolete option. The obsolete option hides the object.

1. In the Project Explorer, select the stream or project that you want to hide, and click
File>Properties to display its property sheet.

2. Click the Lock tab, and select Obsolete. Click OK.

To see objects that you have made obsolete, click View>Show Obsolete Items in the Project
Explorer.

6 - Managing the Project 91

92

Managing Software Projects with ClearCase

Managing Parallel Releases of
Multiple Projects

The previous chapters describe how to manage a single project. However, you may need to
manage multiple releases of a project simultaneously. To do so, you need to merge changes from
one project to another. This chapter describes how to accomplish that merging in two common
scenarios:

0 Managing a current project and a follow-on project simultaneously
0 Incorporating a patch release into a new release of the project

This chapter also describes other scenarios in which you can use these merging techniques
between projects.

7.1 Managing a Current Project and a Follow-On Project
Simultaneously

Given the tight software development schedules that most organizations operate within, it is
common practice to begin development of the next release of a project before work on the current
release is completed. The next release may add new features, or it may involve porting the
current release to a different platform.

7 - Managing Parallel Releases of Multiple Projects 93

Example

Figure 32 illustrates the flow of a current project, Webotrans 4.0, and a follow-on project,

Webotrans 4.1.

Figure 32 Managing a Follow-on Release

Project Webotrans 4.0
Integration stream A/////%///

Activity //////

— \

Project Webotrans 4.1

Create project \

/

(%%7

N

O

TN

0

W

— (’/}/////////{//

Rebase h-A‘//%

.
integration stream

= 1\

Managing Software Projects with ClearCase

In this example:

0 The project manager for the follow-on project created the Webotrans 4.1 project based on
the Beta baselines of the components used in the Webotrans 4.0 project. Developers on both
project teams then continued to make changes, and the 4.0 and 4.1 project managers
continued to create new baselines that incorporate those changes.

O When the 4.0 team completed its work, the project manager created the final baselines,
named FCS. The 4.1 project manager then rebased the 4.1 integration stream to the FCS
baselines.

Performing Interproject Rebase Operations

To rebase an integration stream to a set of baselines in another project’s integration stream, you
must use the CLI:

1. Navigate to an integration view attached to the integration stream that you want to rebase.

2. For each component, issue the cleartool rebase command, specifying the component’s
baseline. For example:

% cleartool rebase —baseline FCS.195 —gmerge

Changed config spec for view “webotrans4.1_integration” to reflect its
stream’s new configuration.

Build and test are necessary to ensure that the merges were completed
correctly.

When build and test are confirmed, run “cleartool rebase —resume —
complete”.

3. ClearCase merges nonconflicting changes automatically. You must resolve the changes that
ClearCase cannot merge automatically. The —gmerge option directs ClearCase to start Diff
Merge, a graphical tool to help you resolve conflicting changes. For details on using Diff
Merge, see the Diff Merge online help and Developing Software with ClearCase.

4. When you finish the merge, build and test the changes before completing the rebase
operation.

5. Complete the rebase operation. For example:

% cleartool rebase —resume —complete

7 - Managing Parallel Releases of Multiple Projects 95

96

In the example shown above, FCS.195 is the full name of the baseline for one of the components
in the Webotrans 4.0 integration stream. To determine a baseline’s full name:

1. In the Project Explorer, select the integration stream.

2. Click File>Properties. The integration stream’s property sheet appears.

3. (Click the Baselines tab.

4. Inthe Components list, select the component that contains the desired baseline.

5. In the Baselines list, select the root name of the baseline. Click Properties. The baseline’s
property sheet appears. The Name box identifies the full baseline name.

Note that you can rebase your project’s integration stream only if the baseline to which you are
rebasing is a successor of your integration stream’s current foundation baseline. In the above
example, the FCS baseline is a successor to the Beta baseline, which is the current foundation
baseline for the Webotrans 4.1 integration stream.

7.2

Incorporating a Patch Release into a New Version of the Project

Another common parallel development scenario involves working on a patch release and a new
release of a project at the same time. This section describes this scenario.

Example

Figure 33 illustrates the flow of a patch release and a new release. In this example:

O Both the Webotrans 3.0 Patch and Webotrans 4.0 projects use the FCS baselines of the
components in the Webotrans 3.0 project as their foundation baselines. The purpose of the
patch release is to fix a problem detected after Webotrans 3.0 was released. Webotrans 4.0
represents the next major release of the Webotrans product.

O Development continues in both the 3.0 Patch and 4.0 projects, with the project managers
creating baselines periodically.

0 The developers working on the 3.0 Patch project finish their work, and the project manager
incorporates the final changes in the BL2 baseline. The project manager then needs to merge

Managing Software Projects with ClearCase

those changes from the 3.0 Patch integration stream to the 4.0 integration stream so that the
4.0 project contains the fix.

Figure 33 Incorporating a Patch Release

Project Webotrans 3.0 Project Webotrans 4.0

Y

. Create projects

i <

FC
-

Project Webotrans 3.0

\

(L N\

merge

7 - Managing Parallel Releases of Multiple Projects 97

98

Merging Work to Another Project

UCM does not support interproject deliver operations. However, you can simulate a deliver
operation by running a script such as the one shown here, which uses base ClearCase
functionality to merge changes.

Sample Perl script for delivering contents of one UCM project to another,
or to a nonUCM project. Run this script while set to the integration

view of the destination project.

#

Usage: Perl <this-script> <project-name> <project-vob>

use strict;

my $mergeopts = '—print’;

my $project = shift @ARGV;

my $pvob = shift @ARGV;

my $bl;

chdir ($pvob) or die("can’t cd to project VOB '$pvob™);

print("##HE#H#H## Getting recommended baselines for project '$project\n”);
my @recbls = split(* ', ‘cleartool Isproject —fmt "%][rec_bls]p" $project’);

foreach $bl (@recbils) {

my $comp = ‘cleartool Isbl —fmt "%[component]p” $bl’;
my $vob = ‘cleartool Iscomp —fmt "%[root_dir]p" $comp’;

print("##HHH#H#H# Merging changes from baseline '$bl' of $vob\n®);

my $st = system(“cleartool findmerge $vob —fver $bl $mergeopts");
$st == 0 or die("findmerge error");

}

exit 0;

The script finds the recommended baselines for the integration stream from which you are
merging. It then uses the cleartool findmerge command to find differences between the versions
represented by those recommended baselines and the latest versions in the target integration
stream. For details on findmerge, see the findmerge reference page.

Managing Software Projects with ClearCase

We recommend that you add error handling and other logic appropriate for your site to this
script before using it.

7.3 Additional Merging Scenarios

This section describes two additional scenarios for which you may want to use a script similar to
the one shown in Merging Work to Another Project on page 98.

Merging from a Project to a Non-UCM Branch

You may be in a situation in which part of the development team works in a project, and the rest
of the team works in base ClearCase. If you are a longtime ClearCase user, you may decide to use
UCM initially on a small part of your system. This approach would allow you to migrate from
base ClearCase to UCM gradually, rather than all at once.

In this case, you need to merge work periodically from the project’s integration stream to the
branch that serves as the integration branch for the system. To do so, use a script similar to the
one shown in Merging Work to Another Project on page 98.

Merging to a System Project

If you have a very large system, you may decide to use multiple projects with each project team
working on a different part of the system. In this scenario, you would typically create an
additional project to serve as the system project. The system project is the integration location for
the system. When project managers for each of the projects create stable baselines, the system’s
project manager merges those baselines to the system project’s integration stream.

To do this merging, use the script as shown in Merging Work to Another Project on page 98.

7 - Managing Parallel Releases of Multiple Projects 99

100 Managing Software Projects with ClearCase

Part 2: Working in Base ClearCase

The following chapters describe how to use base ClearCase features to
set up and manage a customized development environment for your
project team.

Managing Projects in Base
ClearCase

As a project manager, you are responsible for planning, staffing, and managing the technical
aspects of a software development project. You decide what will be worked on, assign work to
the project’s team members, establish the work schedule, and perhaps the policies and
procedures for doing the work.

When development is underway, you monitor progress and generate project status reports. You
may also approve the specific work items included in a build and subsequently a baseline.

You may also be the project integrator, responsible for incorporating work that each developer
completes into a deliverable and buildable system. You create the project’s baselines and
establish the quality level of those baselines.

Base ClearCase offers many features to make this work easier. Before development begins, you
need to complete several planning and setup tasks:

O Setting up the project environment
0 Implementing development policies
0 Defining and implementing an integration policy

This chapter introduces these topics. The remaining chapters cover the implementation details.
Chapter 13, Using ClearCase Throughout the Development Cycle, follows a project throughout the

development cycle to show how you can use ClearCase.

Before reading this part of the manual, read Developing Software with ClearCase to become familiar
with the concepts of VOBs, views, and config specs.

8 - Managing Projects in Base ClearCase 103

104

8.1

Setting Up the Project

This section describes the planning and setup work you need to do before development begins.

Creating and Populating VOBs

If your project is migrating to ClearCase from another version control product or is adopting a
configuration and change management plan for the first time, you must populate the VOBs for
your project with an initial collection of data (file and directory elements). If your site has a
dedicated ClearCase administrator, he or she may be responsible for creating and maintaining
VOBs, but not for importing data into them.

Administering ClearCase includes detailed information on these topics.

Planning a Branching Strategy

ClearCase uses branches to enable parallel development. A branch is an object that specifies a
linear sequence of versions of an element. Every element has one main branch, which represents
the principal line of development, and may have multiple subbranches, each of which represents
a separate line of development. For example, a project team can use two branches concurrently:
the main branch for new development work and a subbranch to fix a bug. The aggregated main
branches of all elements constitutes the main branch of a code base.

Subbranches can have subbranches. For example, a project team designates a subbranch for
porting a product to a different platform; the team then decides to create a bug-fixing subbranch
off that porting subbranch. ClearCase allows you to create complex branch hierarchies. See
Figure 1 for an illustration of a multilevel branching hierarchy. As a project manager in such an
environment, you need to ensure that developers are working on the correct branches. To do that,
you must tell them which rules to include in their config specs so that their views access the
appropriate set of versions.

Chapter 9, Defining Project Views, describes config specs and branches in detail. Before you read
it, a little background on branching strategies may be helpful.

Branching policy is influenced by the development objectives of the project and provides a
mechanism to control the evolution of the code base. There are as many variations of branching
policy as organizations that use ClearCase. But there are also similarities that reflect common
adherence to best practices. Some of the more common branch types and uses are presented here.

Managing Software Projects with ClearCase

Task branches are short-lived, typically involve a small percentage of files, and are merged into
their parent branch after the task is completed. Task branches promote accountability by leaving
a permanent audit trail that associates a set of changes with a particular task; they also make it
easy to identify the task artifacts, such as views and derived objects, that can be removed when
they are no longer needed. If individual tasks don’t require changes to the same files, it is easy to
merge a task branch to its parent.

Private development branches are useful when a group of developers need to make a more
comprehensive set of changes on a common code base. By branching as much of the main branch
as needed, developers can work in isolation as long as necessary. Merging back to the main
branch can be simplified if, before merging, each developer merges the main branch to the
private branch to resolve any differences there before checking in the changed files.

Integration branches provide a buffer between private development branches and the main
branch and can be useful if you delegate the integration task to one person, rather than making
developers responsible for integrating their own work.

Branch Names

It’s a good idea to establish naming conventions that indicate the work the branch contains. For
example, rel2.1_main is the branch on which all code for Release 2.1 ultimately resides,
rel2.1_feature_abc contains changes specific to the ABC feature, and rel2.1_bl2 is the second
stable baseline of Release 2.1 code. (If necessary, branch names can be much longer and more
descriptive, but long branch names can crowd a version tree display.)

NOTE: Make sure that you do not create a branch type with the same name as a label type. This
can cause problems when config specs use labels in version selectors. For example, make all
branch names lowercase, and make all label names uppercase.

Branches and ClearCase MultiSite
PRODUCT NOTE: ClearCase LT does not support MultiSite.

Branches are particularly important when your team works in VOBs that have been replicated to
other sites with the ClearCase MultiSite product. Developers at different sites work on different
branches of an element. This scheme prevents collisions—for example, developers at two sites
creating version /main/17 of the same element. In some cases, versions of files cannot or should
not be merged, and developers at different sites must share branches. For more information, see
Certain Branches Are Shared Among MultiSite Sites on page 144.

8 - Managing Projects in Base ClearCase 105

106

Creating Shared Views and Standard Config Specs

As a project manager, you want to control the config specs that determine how branches are
created when developers check out files. There are several ways to handle this task:

O Create a config spec template that each developer must use. Developers can either paste the
template into their individual config specs or use the ClearCase include file facility to get
the config spec from a common source.

O Create a view that developers will share. This is usually a good way to provide an
integration view for developers to use when they check in work that has evolved in
isolation on a private branch.

NOTE: Working in a single shared view is not recommended because doing so can degrade
system performance.

0 Use the ClearCase View Profiles mechanism to configure views that the project team will
use. The View Profile tools promote a specific model for the effective use of ClearCase.
Project teams that adhere to this model can take advantage of several areas of automated
support, significantly simplifying their ability to exploit some of the more advanced
features of ClearCase. For more information on View Profiles, see the online help.

0 To ensure that all team members configure their views the same way, you can create files
that contain standard config specs. For example:

O \\vulcan\c\public\c_specs\abc contains the ABC team’s config spec

O \\vulcan\c\public\c_specs\xyz contains the XYZ team’s config spec

Store these config spec files in a standard directory outside a VOB, to ensure that all developers
get the same version.

Recommendations for View Names

You may want to establish naming conventions for views for the same reason that you do for
branches: it is easier to associate a view with the task it is used for. The ClearCase view-creation
tools suggest appropriate view names, but you may want to use something different. For
example, you can require all view names (called view-tags) to include the owner’s name and the
task (bill_V4.0_bugfix) or the name of the machine hosting the view (platinum_V4.0_int).

Managing Software Projects with ClearCase

8.2 Implementing Development Policies

To enforce development policies, you can create ClearCase metadata to preserve information
about the status of versions. To monitor the progress of the project, you can generate a variety of
reports from this data and from the information that ClearCase captures in event records.

Using Labels

A label is a user-defined name that can be attached to a version. Labels are a powerful tool for
project managers and system integrators. By applying labels to groups of elements, you can
define and preserve the relationship of a set of file and directory versions to each other at a given
point in the development lifecycle. For example, you can apply labels to these versions:

0 All versions considered stable after integration and testing. Use this baseline label as the
foundation for new work.

0 All versions that are partially stable or contain some usable subset of functionality. Use this
checkpoint label for intermediate testing or as a point to which development can be rolled
back in the event that subsequent changes result in regressions or instability.

0 All versions that contain changes to implement a particular feature or that are part of a
patch release.

Using Attributes, Hyperlinks, Triggers, and Locks

Attributes are name/value pairs that allow you to capture information about the state of a
version from various perspectives. For example, you can attach an attribute named
CommentDensity to each version of a source file, to indicate how well the code is commented.
Each such attribute can have the value unacceptable, low, medium, or high.

Hyperlinks allow you identify and preserve relationships between elements in one or more
VOBs. This capability can be used to address process-control needs, such as requirements
tracing, by allowing you to link a source file to a requirements document.

Triggers allow you to control the behavior of cleartool commands and ClearCase operations by

arranging for a specific program or executable script to run before or after the command
executes. Virtually any operation that modifies an element can fire a trigger. Special environment

8 - Managing Projects in Base ClearCase 107

108

variables make the relevant information available to the script or program that implements the
procedure.

Preoperation triggers fire before the designated ClearCase command is executed. A preoperation
trigger on checkin can prompt the developer to add an appropriate comment. Postoperation
triggers fire after a command has exited and can take advantage of the command’s exit status.
For example, a postoperation trigger on the checkin command can send an e-mail message to the
QA department, indicating that a particular developer modified a particular element.

Triggers can also automate a variety of process management functions. For example:
0 Applying attributes or attaching labels to objects when they are modified
0 Logging information that is not included in the ClearCase event records

O Initiating a build and/or source code analysis whenever particular objects are modified

For more information on these mechanisms, see Chapter 10, Implementing Project Development
Policies.

Alock on an element or directory prevents all developers (except those included on an exception
list) from modifying it. Locks are useful for implementing temporary restrictions. For example,
during an integration period, a lock on a single object—the main branch type—prevents all users
who are not on the integration team from making any changes.

The effect of alock can be small or large. A lock can prevent any new development on a particular
branch of a particular element; another lock can apply to the entire VOB, preventing developers
from creating any new element of type compressed_file or using the version label RLS_1.3.

Locks can also be used to retire names, views, and VOBs that are no longer used. For this
purpose, the locked objects can be tagged as obsolete, effectively making them invisible to most
commands.

Global Types

The ClearCase global type facility makes it easy for you to ensure that the branch, label, attribute,
hyperlink, and element types they need are present in all VOBs your project uses. The manual
Administering ClearCase has more information about creating and using global types.

Managing Software Projects with ClearCase

Generating Reports

ClearCase creates and stores an event record each time an element is modified or merged. Many
ClearCase commands include selection and filtering options that you can use to create reports
based on these records. The scope of such reports can cover a single element, for a set of objects,
or for entire VOBs.

Chapter 10, Implementing Project Development Policies, provides more detail on using event
records and metadata to implement project policies. Event records and other metadata can also
be useful if you need to generate reports on activities managed by ClearCase (for example, the
complete history of changes to an element). ClearCase provides a variety of report-generation
tools. For more information on this topic, see the fmt_ccase reference page in the ClearCase
Reference Manual.

8.3 Integrating Changes

During the lifetime of a project, the contents of individual elements diverge as they are branched
and usually converge in a merge operation. Typically, the project manager periodically merges
most branches back to the main branch to ensure that the code base maintains a high degree of
integrity and to have a single “latest” version of each element from which new versions can
safely branch. Without regular merges, the code base quickly develops a number of dangling
branches, each with slightly different contents. In such situations, a change made to one version
must be propagated by hand to other versions, a tedious process that is prone to error.

As a project manager, you must establish merge policies for your project. Typical policies include
the following;:

0 Developers merge their changes to the main branch. This can work well when the number
of developers and/or the number of changed files is small and the developers are familiar
with the mechanics of merging. Developers must also understand the nature of other
changes they may encounter when the merge target is not the immediate predecessor of the
version being merged, which happens when several developers are working on the same
file in parallel.

0 Developers merge their changes to an integration branch. This provides a buffer between
individual developers’ merges and the main branch. The project manager or system
integrator then merges the integration branch to the main branch.

8 - Managing Projects in Base ClearCase 109

0 Developers must merge from the main branch to their development branch before merging
to the main branch or integration branch. This type of merge promotes greater stability by
forcing merge-related instability to the developers’ private branches, where problems can
be resolved before they affect the rest of the team.

0 The project manager designates “slots” for developer merges to the main branch. This is a
variation on several of the mechanisms already described. It provides an additional level of

control in situations where parallel development is going on.

There are other scenarios as well. Chapter 11, Integrating Changes, describes merging in detail.

110 Managing Software Projects with ClearCase

Defining Project Views

This chapter explains how config specs work and provides sample config specs useful for project
development work, for nondevelopment tasks such as monitoring progress and doing research,
and for running project builds. It also explains how to share config specs between Windows and
UNIX systems.

9.1 How Config Specs Work

When you create views for your project, you must prepare one or more config specs (configuration
specifications). Config specs allow you to achieve the degree of control that you need to have
over project work by controlling which versions developers see and what operations they can
perform in specific views. You can narrow a view to a specific branch or open it to an entire VOB.
You can also disallow checkouts of all selected versions or restrict checkouts to specific branches.

A config spec contains a series of rules that ClearCase uses to select the versions that appear in
the view. When team members use a view, they see the versions that match at least one of the
rules in the config spec. ClearCase searches the version tree of each element for the first version
that matches the first rule in the config spec. If no versions match the first rule, ClearCase
searches for a version that matches the second rule. If no versions of an element match any rule
in the config spec, no versions of the element appear in the view.

The order in which rules appear in the config spec determine which version of a given element

is selected. The various examples in this chapter examine this behavior in different contexts. For
details about preparing config specs, see the config_spec reference page.

9 - Defining Project Views 111

1)
@

112

9.2

Default Config Spec

This config spec defines a dynamic configuration, which selects changes made on the main
branch of every element throughout the entire source tree, by any developer:

element * CHECKEDOUT
element * \main\LATEST

This is the default config spec, to which each newly created view is initialized. When you create a
view with the mkview command or the View Creation Wizard, the contents of file
default_config_spec (located in ccase-home-dir) become the new view’s config spec.

A view with this config spec provides a private work area that selects your checked-out versions
(Rule 1). By default, when you check out a file, you check out from the latest version on the main
branch (Rule 2). While an element is checked out to you, you can change it without affecting
anyone else’s work. As soon as you check in the new version, the changes are available to
developers whose views select \main\LATEST versions.

The view also selects all other elements (that is, all elements that you have not checked out), on
aread-only basis. If another user checks in a new version on the main branch of such an element,
the new LATEST version appears in this dynamic view immediately.

By default, snapshot views also include the two version-selection rules shown above. In addition,
snapshot view config specs include load rules, which specify which elements or subtrees to load
into the snapshot view. See Developing Software with ClearCase or online help for details on
creating snapshot views.

PRODUCT NOTE: ClearCase LT supports only snapshot views.

The Standard Configuration Rules

The two configuration rules in the default config spec appear in many of this chapter’s examples.
The CHECKEDOUT rule allows you to modify existing elements. If you try to check out
elements in a view that omits this rule, you can do so, but cleartool generates this warning:

Managing Software Projects with ClearCase

@

Z:\vob_pr3\src> cleartool checkout —-nc cmd.c

cleartool: Warning: Unable to rename "cmd.c" to "cmd.c.keep": Read-only
filesystem.

cleartool: Error: Checked out version, but could not copy to "cmd.c": File
exists.

Correct the condition, then uncheckout and re-checkout the element.
cleartool: Warning: Copied checked out version to "cmd.c.checkedout".
cleartool: Warning: Checked-out version is not selected by view.
Checked out "cmd.c" from version "\main\7".

In this example, the config spec continues to select version 7 of element cmd.c, which is
read-only. A read-write copy of this version, cmd.c.checkedout, is created in view-private
storage. (This is not a recommended way of working.)

The \main\LATEST rule selects the most recent version on the main branch to appear in the
view.

In addition, a \main\LATEST rule is required to create new elements in a view. If you create a
new element when this rule is omitted, your view cannot “see” that element. (Creating an
element involves creating a main branch and an empty version, \main\0.)

Omitting the Standard Configuration Rules

It makes sense to omit one or both of the standard configuration rules only if a view is not going
to be used to modify data. For example, you can configure a historical view, to be used only for
browsing old data. Similarly, you can configure a view in which to compile and test only or to
verify that sources have been labeled properly.

9.3

Config Spec Include Files

ClearCase supports an include file facility, which makes it easy to ensure that all team members
are using the same config spec. For example, the configuration rules in this config spec can be
placed in file \\main_svr\public\c_specs\major.csp. Each developer then needs a one-line
config spec:

include \\main_svr\public\c_specs\major.csp

NOTE: If you are sharing config specs between UNIX and Windows NT computers where the
VOB-tags are different, you must have two sources, or you must store the config spec in a UNIX
directory that is accessible from both machines.

9 - Defining Project Views 113

114

If you want to modify this config spec (for example, to adopt the no-directory-branching policy),
only the contents of major.csp need to change. You can use this command to reconfigure your
view with the modified config spec:

Z:\> cleartool setcs —current

9.4

Project Environment for Sample Config Specs

You can use different config specs for different kinds of development and management tasks.
The three sections that follow present sample config specs useful for various aspects of project
development, project management and research, and project builds. This section presents the
development environment that these config specs are based on.

Developers use a VOB whose VOB-tag is \monet, which has this structure:

\monet (VOB-tag)
src\ (C language source files)
include\ (C language header files)
lib\ (project’s libraries)

For the purposes of this chapter, suppose that the lib directory has this substructure:
lib\

libcalc.lib (checked-in staged version of library)
libecmd.lib (checked-in staged version of library)
libparse.lib (checked-in staged version of library)
libpub.lib (checked-in staged version of library)
libaux1.lib (checked-in staged version of library)
libaux2.lib (checked-in staged version of library)
libcalc\ (sources for calc library)

libemd\ (sources for cmd library)

libparse\ (sources for parse library)

libpub\ (sources for pub library)

libaux1\ (sources for aux1 library)
libaux2\ (sources for aux2 library)

Sources for libraries are located in subdirectories of lib. After a library is built in its source
directory, it can be staged to \monet\lib. You can use the libraries in this directory (the library

Managing Software Projects with ClearCase

staging area) instead of a more standard location by setting the LIB environment variable or by
changing the makefile.

The following labels are assigned to versions of monet elements.

Version Labels Description

R1.0 First customer release

R2_BL1 Baseline 1 prior to second customer release
R2_BL2 Baseline 2 prior to second customer release
R2.0 Second customer release

These version labels have been assigned to versions on the main branch of each element. Most
project development work takes place on the main branch. For some special tasks, development
takes places on a subbranch.

Subbranches Description

major Used for work on the application’s graphical user interface, certain
computational algorithms, and other major enhancements

rl_fix Used for fixing bugs in Release 1.0

NOTE: Config specs allow absolute VOB pathnames—absolute pathnames that begin with a
VOB-tag but do not include drive letter or view-tag prefixes. This form of pathname is required
to specify VOB elements without regard for current drive assignments or active views. For

example:

\vob_gopher\lib* (absolute VOB pathname, where \vob_gopher is the VOB-tag)
\monet\src* (absolute VOB pathname, where \monet is the VOB-tag)
Z:\monet\src* (drive-specific pathname; not recommended)
M:\myview\vob_gophen\lib* (view-extended pathname; not recommended)

9.5 Views for Project Development

The config specs in this section are useful for project development because they enforce various
branching policies.

9 - Defining Project Views 115

1)
)
©)
4

)
&)
©)
4

1)
@
®

116

View for New Development on a Branch
You can use this config spec for work to be isolated on branches named major:

element * CHECKEDOUT

element * ..\major\LATEST

element * BASELINE_X —mkbranch major
element * \main\LATEST —mkbranch major

In this scheme, all checkouts occur on branches named major (Rule 2).

major branches are created at versions that constitute a consistent baseline: a major release, a
minor release, or a set of versions that produces a working version of the application. In this
config spec, the baseline is defined by the version label BASELINE_X.

Variation That Uses a Time Rule

Sometimes, other developers check in versions that become visible in your view, but are
incompatible with your own work. In such cases, you can continue to work on sources as they
existed before those changes were made. For example, Rule 2 in this config spec selects the latest
version on the main branch as of 4:00 P.M. on November 12:

element * CHECKEDOUT

element * ..\major\LATEST —time 12-Nov.16:00
element * BASELINE_X —mkbranch major
element * \main\LATEST —mkbranch major

Note that this rule has no effect on your own checkouts.

View to Modify an Old Configuration

This config spec allows developers to modify a configuration defined with version labels:

element * CHECKEDOUT
element * ..\rl_fixX\LATEST
element * R1.0 —mkbranch r1_fix
Note the following:

0 Elements can be checked out (Rule 1).

Managing Software Projects with ClearCase

O The checkout command creates a branch named r1_fix at the initially selected version (the
auto-make-branch clause in Rule 3).

A key aspect of this scheme is that the same branch name, r1_fix, is used in every modified
element. The only administrative overhead is the creation of a single branch type, r1_fix, with the
mkbrtype command.

This config spec is efficient: two rules (Rules 2 and 3) configure the appropriate versions of all
elements:

0 For elements that have been modified, this version is the most recent on the r1_fix
subbranch (Rule 2).

O For elements that have not been modified, this version is the one labeled R1.0 (Rule 3).

Figure 34 illustrates these elements. The r1_fix branch is a subbranch of the main branch. But
Rule 2 handles the more general case, too: the ... wildcard allows the r1_fix branch to occur
anywhere in any element’s version tree, and at different locations in the version trees of different
elements.

Figure 34 Making a Change to an Old Version

element that has not been element that has been
modified in this configuration modified in this configuration

main

Rule 3:

version that was 1
labeled R1.0 1 fix

Rule 2:

most recent modification
to the old version

9 - Defining Project Views 117

1)
)
©)
4

1)
&)
©)

@)
&)
3
“4)
®)

118

Omitting the \main\LATEST Rule

The config spec in View to Modify an Old Configuration on page 116 omits the standard
\main\LATEST rule. This rule is not useful for work with VOBs in which the version label R1.0
does not exist. In addition, it is not useful in situations where new elements are created. If your
development policy is to not create new elements during maintenance of an old configuration,
the absence of a \main\LATEST rule is appropriate.

To allow creation of new elements during the modification process, add a fourth configuration
rule:

element * CHECKEDOUT

element * \main\rl_fixX\LATEST

element * R1.0 —mkbranch r1_fix

element * \main\LATEST —mkbranch r1_fix

When a new element is created with mkelem, the -mkbranch clause in Rule 4 causes the new

element to be checked out on the r1_fix branch (which is created automatically). This rule
conforms to the scheme of localizing all changes to r1_fix branches.

Variation That Uses a Time Rule
This baseline configuration is defined with a time rule.

element * CHECKEDOUT
element * \main\rl_fixX\LATEST
element * \main\LATEST —time 4-Sep:02:00 —mkbranch r1_fix

View to Implement Multiple-Level Branching
This config spec implements and enforces consistent multiple-level branching.

element * CHECKEDOUT

element * ...\majon\autumn\LATEST

element * ..\major\LATEST —mkbranch autumn
element * BASELINE_X —mkbranch major
element * \main\LATEST —mkbranch major

A view configured with this config spec is appropriate in the following situation:

Managing Software Projects with ClearCase

0 All changes from the baseline designated by the BASELINE_X version label must be made
on a branch named major.

0 Moreover, you are working on a special project, whose changes are to be made on a
subbranch of major, named autumn.

Figure 35 shows what happens in such a view when you check out an element that has not been
modified since the baseline.

Figure 35 Multiple-Level Auto-Make-Branch

before checkout checkout creates create another branch complete checkout
Rule 4 selects branch -mkbranch Rule 3 now applies; Rule 2 now applies;
baseline version, clause in Rule 4 -mkbranch clause creates its most recent version,
labeled creates major branch at autumn branch at \main\majorautumn\0
BASELINE_X BASELINE_X version \main\majon\0 is checked out

For more on multiple-level branching, see the config_spec and checkout reference pages.

9 - Defining Project Views 119

1)
)
©)

@)
@

120

View to Restrict Changes to a Single Directory

This config spec is appropriate for a developer who can make changes in one directory only,
\monet\src:

element * CHECKEDOUT
element src* \main\LATEST
element * \main\LATEST —nocheckout

The most recent version of each element is selected (Rules 2 and 3), but Rule 3 prevents checkouts
to all elements except those in the directory specified.

Note that Rule 2 matches elements in any directory named src, in any VOB. The pattern
\monet\src* restricts matching to only one VOB.

This config spec can be extended easily with additional rules that allow additional areas of the
source tree to be modified.

9.6

Views to Monitor Project Status

The config specs presented here are useful for views used for research and monitoring project
status.

View That Uses Attributes to Select Versions

Suppose that the QA team also works on the major branch. Individual developers are
responsible for making sure that their modules pass a QA check. The QA team builds and tests
the application, using the most recent versions that have passed the check.

The QA team can work in a view that uses this config spec:

element —file src* ...\major\{QAOK=="Yes"}
element * \main\LATEST

To make this scheme work, you must create an attribute type, QAOK. Whenever a new version

that passes the QA check is checked in on the major branch, an instance of QAOK with the value
Yes is attached to that version. (This can be done manually or with a ClearCase trigger.)

Managing Software Projects with ClearCase

If an element in the \src directory has been edited on the major branch, this view selects the
branch’s most recent version that has been marked as passing the QA check (Rule 1). If no
version has been so marked or if no major branch has been created, the most recent version on
the main branch is used (Rule 2).

NOTE: Rule 1 on this config spec does not provide a match if an element has a major branch, but
no version on the branch has a QAOK attribute. This command can locate the branches that do
not have this attribute:

cleartool find . —-branch "{brtype(major) && ! attype_sub(QAOK)}" —print

The attype_sub primitive searches for attributes on an element’s versions and branches, as well
as on the element itself.

This scheme allows the QA team to monitor the progress of the rest of the group. The
development config spec always selects the most recent version on the major branch, but the QA
config spec may select an intermediate version (Figure 36).

Figure 36 Development Config Spec vs. QA Config Spec

QA config spec selects version using
attributes—it may be an intermediate version:

\main\imajor{QAOK=="Yes"}

Development config spec selects most
recent version on branch:

\main\majoLATEST

9 - Defining Project Views 121

©)
@)
@

122

Pitfalls of Using This Configuration for Development

You may be tempted to add a CHECKEDOUT rule to the above config spec, turning the QA
configuration into a development configuration:

element * CHECKEDOUT
element —file src* \main\major{QAOK=="Yes"}
element * \main\LATEST

It may seem desirable to use attributes, or other kinds of metadata, in addition to (or instead of)
branches to control version selection in a development view. But such schemes introduce
complications. Suppose that the config spec above selects version \main\major\2 of element
...\src\emd.c (Figure 37).

Figure 37 Checking Out a Branch of an Element

by config spec rule:
\main\major{QAOK=="Yes"}

a intermediate version selected
C

checkout command
always checksout most recent
b’ version on branch

Performing a checkout in this view checks out version \main\major\3, not version
\main\major\2:

cleartool: Warning: Version checked out is different from version previously
selected by view.
Checked out "cmd.c" from version "\main\major\3".

This behavior reflects the ClearCase restriction that new versions can be created only at the end
of a branch. Although such operations are possible, they are potentially confusing to other team
members. And in this situation, it is almost certainly not what the developer who checks out the
element wants to happen.

Managing Software Projects with ClearCase

©)
(0a)
@
@

)
@

@

You can avoid this problem by modifying the config spec and creating another branching level
at the version that the attribute selects. This is the new config spec:

element * CHECKEDOUT

element * \main\major\temp\LATEST

element —file src* \main\major\{QAOK=="Yes"} —mkbranch temp
element * \main\LATEST

View That Shows Changes of One Developer

This config spec makes it easy to examine all changes a developer has made since a certain
milestone:

element * \main\{created_by(jackson) && created_since(25-Apr)}'
element * \main\LATEST —time 25-Apr

NOTE: Rule 1 must be contained on a single physical text line.

A particular date, April 25, is used as the milestone. The configuration is a snapshot of the main
line of development at that date (Rule 2), overlaid with all changes that user jackson has made
on the main branch since then (Rule 1).

The output of the cleartool 1s command distinguishes jackson’s files from the others: each entry
includes an annotation as to which configuration rule applies to the selected version.

This is a research view, not a development view. The selected set of files may not be consistent:
some of jackson’s changes may rely on changes made by others, and those other changes are
excluded from this view. Thus, this config spec omits the standard CHECKEDOUT and
\main\LATEST rules.

Historical View Defined by a Version Label
This config spec defines a historical configuration:

element * R1.0 —nocheckout

This view always selects the set of versions labeled R1.0. In this scenario, all these versions are
on the main branch of their elements. If the R1.0 label type is one-per-element, not one-per-branch,

9 - Defining Project Views 123

@

124

this config spec selects the R1.0 version on a subbranch. (For more information, see the mklbtype
reference page.)

The —nocheckout qualifier prevents any element from being checked out in this view. (It also
prevents creation of new elements, because the parent directory element must be checked out.)
Thus, there is no need for the CHECKEDOUT configuration rule.

NOTE: The set of versions selected by this view can change, because version labels can be moved
and deleted. For example, using the command mklabel —-replace to move R1.0 from version 5 of
an element to version 7 changes which version appears in the view. Similarly, using rmlabel
suppresses the specified elements from the view. (The cleartool Is command lists them with a [no
version selected] annotation.) If the label type is locked with the lock command, the
configuration cannot change.

You can use this configuration to rebuild Release 1.0, verifying that all source elements have been
labeled properly. You can also use it to browse the old release.

Historical View Defined by a Time Rule
This config spec defines a frozen configuration in a slightly different way than the previous one:

element * \main\LATEST —time 4-Sep.02:00 —nocheckout

This configuration selects the version that was the most recent on the main branch on September
4 at 2 A.M. Subsequent checkouts and checkins cannot change which versions satisfy this
criterion; only deletion commands such as rmver or rmelem can change the configuration. The
—nocheckout qualifier prevents anyone from checking out or creating elements.

This configuration can be used to view a set of versions that existed at a particular point in time.
If modifications must be made to this source base, you must modify the config spec to “unfreeze”
the configuration.

9.7

Views for Project Builds

The config specs in this section are useful for running the various types of builds required for a
project.

Managing Software Projects with ClearCase

@
&)
©)
4

View That Uses Results of a Nightly Build

Many projects use scripts to run unattended software builds every night. The success or failure
of these builds determine the impact of any checked-in changes on the application. In layered
build environments, they can also provide up-to-date versions of lower-level software (libraries,
utility programs, and so on).

Suppose that every night, a script does the following:

0 Builds libraries in various subdirectories of \monet\lib
0 Checks them in as DO versions in the library staging area, \monet\lib
0 Labels the versions LAST _NIGHT

You can use this config spec if you want to use the libraries produced by the nightly builds:

element * CHECKEDOUT
element lib*.lib LAST_NIGHT
element lib*.lib R2_BL2
element * \main\LATEST

The LAST_NIGHT version of a library is selected whenever such a version exists (Rule 2). If a
nightly build fails, the previous night’s build still has the LAST_NIGHT label and is selected. If
no LAST_NIGHT version exists (the library is not currently under development), the stable
version labeled R2_BL2 is used instead (Rule 3).

For each library, selecting versions with the LAST_NIGHT label rather than the most recent
version in the staging area allows developers to stage new versions the next day, without
affecting developers who use this config spec.

9 - Defining Project Views 125

)
(2a)
(2b)
(3a)
(3b)
4

1)
)
©)
4
®)
6

1)
)
©)
4
®)

126

Variations That Select Versions of Project Libraries

The scheme described above uses version labels to select particular versions of libraries. For
more flexibility, the LAST_NIGHT version of some libraries may be selected, the R2_BL2
version of others, and the most recent version of still others:

element * CHECKEDOUT

element lib\libcmd.lib LAST_NIGHT
element lib\libparse.lib LAST_NIGHT
element lib\libcalc.lib R2_BL2
element lib*.lib \main\LATEST
element *\main\LATEST

(Rule 3b is not required here, because Rule 4 handles all other libraries. It is included for clarity
only.)

Other kinds of metadata can also be used to select library versions. For example, lib_selector
attributes can take values such as experimental, stable, and released. A config spec can mix and
match library versions like this:

element * CHECKEDOUT

element lib\libcmd.lib {lib_selector=="experimental"}
element lib\libcalc.lib {lib_selector=="experimental"}
element lib\libparse.lib {lib_selector=="stable"}
element lib*.lib {lib_selector=="released"}

element * \main\LATEST

View That Selects Versions of Application Subsystems
This config spec selects specific versions of the application’s subsystems:

element * CHECKEDOUT

element \monet\lib\... R2_BL1
element \monet\include\... R2_BL2
element \monet\src\... \main\LATEST
element * \main\LATEST

In this situation, a developer is making changes to the application’s source files on the main

branch (Rule 4). Builds of the application use the libraries in directory \lib that were used to
build Baseline 1, and the header files in directory \include that were used to build Baseline 2.

Managing Software Projects with ClearCase

View That Selects Versions That Built a Particular Program

This config spec defines a view that selects only enough files required to rebuild a particular
program or examine its sources:

Q) element * —config \monet\src\monet

All elements that were not involved in the build of monet appear in the output of ClearCase Is
with a [no version selected] annotation.

This config spec selects the versions listed in the config record (CR) of a particular derived object
(and in the config records of all its build dependencies). It can be a derived object that was built
in the current view, or another view, or it can be a DO version.

In this config spec, monet is a derived object in the current view. You can reference a derived
object in another view with an extended pathname that includes a DO-ID:

Q) element * —config \monet\src\monet@ @09-Feb.13:56.812

But typically, this kind of config spec is used to configure a view from a derived object that has
been checked in as a DO version.

Configuring the Makefile

By default, a derived object’s config record does not list the version of the makefile that was used
to build it. Instead, the CR includes a copy of the build script itself. (Why? When a new version
of the makefile is created with a revision to one target’s build script, the configuration records of
all other derived objects built with that makefile are not rendered out of date.)

But if the monet program is to be rebuilt in this view using clearmake (or omake), a version of
the makefile must be selected somehow. You can have clearmake record the makefile version in
the config record by including the special clearmake macro invocation $(MAKEFILE) in the
target’s dependency list:

monet.exe: $(MAKEFILE) monet.obj ...
link —out:monet.exe monet.obj ...

clearmake always records the versions of explicit dependencies in the CR.

Alternatively, you can configure the makefile at the source level: attach a version label to the
makefile at build time, and then use a config spec like the one in Historical View Defined by a

9 - Defining Project Views 127

@)
@
©)
4

@)
o)
®

128

Version Label on page 123 or View to Modify an Old Configuration on page 116 to configure a view
for building. You can also use the special target DEPENDENCY_IGNORED_FOR_REUSE,; for
more information, see Including a Makefile Version in a Configuration Record in Building Software
with ClearCase.

Fixing Bugs in the Program

If a bug is discovered in the monet program, as rebuilt in a view that selects only enough files
required to rebuild a particular program, it is easy to convert the view from a build configuration
to a development configuration. As usual, when making changes in old sources, follow this
strategy:

0 Create a branch at each version to be modified

0 Use the same branch name (that is, create an instance of the same branch type) in every
element

If the fix branch type is r1_fix, this modified config spec reconfigures the view for performing the
fix:

element * CHECKEDOUT

element * ..\rl_fixX\LATEST

element * —config \monet\src\monet —mkbranch r1_fix
element * \main\LATEST —mkbranch ri1_fix

Selecting Versions That Built a Set of Programs

It is easy to expand the config spec that selects only enough files required to rebuild a particular
program to configure a view with the sources used to build a set of programs, rather than a single
program:

element * —config \monet\src\monet
element * —config \monet\src\xmonet
element * —config \monet\src\monet_conf

There can be version conflicts in such configurations, however. For example, different versions
of file params.h may have been used in the builds of monet and xmonet. In this situation, the
version used in monet is configured, because its configuration rule came first. Similarly, there can
be conflicts when using a single —config rule: if the specified derived object was created by
actually building some targets and using DO versions of other targets, multiple versions of some
source files may be involved.

Managing Software Projects with ClearCase

You can modify this config spec as described in Fixing Bugs in the Program on page 128, to change
the build configuration to a development configuration.

9.8 Sharing Config Specs Between UNIX and Windows

You can, in principle, share config specs between UNIX and Windows systems. That is, users on
both systems, using views whose storage directories reside on either platform, can set and edit
the same set of config specs.

We recommend that you avoid sharing config specs across platforms. If possible, maintain
separate config specs for each platform. However, if you must share config specs, adhere to the
following requirements:

O Use slashes (/), not backslashes (\) in pathnames.

0 Use relative, not full, pathnames whenever possible, and do not use VOB-tags in
pathnames. You can ignore this restriction if your UNIX and Windows VOB-tags both use
single, identical pathname components that differ only in their leading slash characters—
\src and /src, for example.

O Always edit and set config specs on UNIX.

The following sections describe these requirements in detail.

Pathname Separators

When writing config specs to be shared by Windows and UNIX computers, you must use slash
(/), not backslash (\), as the pathname separator. ClearCase on UNIX recognizes slashes only.
(Note that cleartool recognizes both slashes and backslashes in pathnames; clearmake is less
flexible. See clearmake Makefiles and BOS Files in Building Software with ClearCase for more
information.)

9 - Defining Project Views 129

130

Pathnames in Config Spec Element Rules

Windows and UNIX network regions often use different VOB-tags to register the same VOBs.
Only single-component VOB-tag names, such as \proj1, are permitted on Windows computers;
multiple-component VOB-tags, such as /vobs/src, are common on UNIX.

When VOB-tags differ between regions, any config spec element rules that use full pathnames
(which include VOB-tags) can be resolved when the config spec is compiled (cleartool edcs and
setcs commands) but only by computers in the applicable network region. This implies a general
restriction regarding shared config specs: a given config spec must be compiled only on the
operating system for which full pathnames in element rules make sense. That is, a config spec
with full pathnames is shareable across network regions, even when VOB-tags disagree, but it
must be compiled in the right place.

The restrictions do not apply if either of the following is true (see Example on page 130):

0 The config spec’s element rules use only relative pathnames, which do not include
VOB-tags.

O Shared VOBs are registered with identical, single-component VOB-tags in both Windows
and UNIX network regions. (The VOB-tags \r3vob and /r3vob are treated as if they were
identical because they differ only in the leading slashes.)

Config Spec Compilation

A config spec that is in use exists in both text file and compiled formats. A config spec’s compiled
form is portable. The restriction is that full VOB pathnames in element rules must be resolvable
at compile time. A config spec is compiled when you edit or set it (with the cleartool edcs or
cleartool setcs command or a ClearCase GUI). If a user on the other operating system recompiles
a config spec (by issuing the edcs or setcs command or causing the GUI to execute one of these
commands) the config spec becomes unusable by any computer using that view. If this happens,
recompile the config spec on the original operating system.

Example

This config spec element rule may cause problems:

element \vob_p2\abc_proj_src* \main\rel2\LATEST

Managing Software Projects with ClearCase

If the VOB is registered with VOB-tag \vob_p2 on a Windows network region, but with VOB-tag
/vobs/vob_p2 on a UNIX network region, only Windows computers can compile the config spec.

To address the problem, do one of the following;:
O Use relative pathnames that do not include VOB-tags, for example:
element ...\abc_proj_src* \main\rel2\LATEST

0 On UNIX, change the VOB-tag so that it has a single component, /vob_p2.

9 - Defining Project Views 131

132 Managing Software Projects with ClearCase

Implementing Project Development
Policies

This chapter presents brief scenarios that show how you can implement and enforce common
development policies with ClearCase. The scenarios use various combinations of these functions
and metadata:

Attributes
Labels
Branches
Triggers
Config specs
Locks
Hyperlinks

Oooooaogoao

Sharing Triggers Between UNIX and Windows on page 145 describes how to define triggers for use
on UNIX and Windows computers.

10.1 Good Documentation of Changes Is Required
Each ClearCase command that modifies a VOB creates one or more event records. Many such
commands (for example, checkin) prompt for a comment. The event record includes the user

name, date, comment, host, and description of what was changed.

To prevent developers from subverting the system by providing empty comments, you can
create a preoperation trigger to monitor the checkin command. The trigger action script analyzes

10 - Implementing Project Development Policies 133

134

the user’s comment (passed in an environment variable), disallowing unacceptable ones (null or
empty comments, for example).

NOTE: When ClearCase fires a trigger, it proceeds based on the success or failure of the trigger
operation, as determined by the trigger script’s exit code. A .bat file returns the exit code of its
last command. Preoperation triggers are the only kind of trigger that cause the ClearCase
execution to fail.

Trigger Definition:

cleartool mktrtype —element —all —preop checkin #
—c "must enter descriptive comment" —exec \\neon\scripts\comm_pol.bat CommentPolicy

Trigger Action Script:

@echo off

rem comm_pol.bat

rem

rem Check for null comment

rem

if "% CLEARCASE_COMMENT%"=="" copy > NUL:

10.2

All Source Files Require a Progress Indicator

You may want to monitor the progress of individual files or determine which or how many files
are in a particular state. You can use attributes to preserve this information and triggers to collect
it.

In this case, you can create a string-valued attribute type, Status, which accepts a specified set of
values.

Attribute Definition:

cleartool mkattype —c "standard file levels" ~
—enum "\"inactive\",\"under_devt\",\"QA_approved\'"" Status
Created attribute type "Status".

Developers apply the Status attribute to many different versions of an element. Its value in early
versions on a branch is likely to be inactive and under_devt; on later versions, its value is
QA_approved. The same value can be used for several versions, or moved from an earlier
version to a later version.

Managing Software Projects with ClearCase

To enforce conscientious application of this attribute to versions of all source files, you can create
a CheckStatus trigger whose action script prevents developers from checking in versions that do
not have a Status attribute.

Trigger Definition:

cleartool mktrtype —element —all —preop checkin *
—c "all versions must have Status attribute" »
—exec "ccperl \\neon\scripts\check_status.pl" CheckStatus

Trigger Action Script:

$pname = SENV{'CLEARCASE_PN};
$val ="
$val = ‘cleartool describe -short -aattr Status $pname’;

if ($val eq ™) {
exit (1);
}else {

exit (0);
}

10.3 Label All Versions Used in Key Configurations

To identify which versions of which elements contributed to a particular baseline or release, you
can attach labels to these versions. For example, after Release 2 is built and tested, you can create
label type REL2, using the mklbtype command. You can then attach REL2 as a version label to
the appropriate source versions, using the mklabel command.

Which are the appropriate versions? If Release 2 was built from the bottom up in a particular
view, you can label the versions selected by that view:

Z:\vob_hw> cleartool mklbtype —c "Release 2.0 sources" REL2
Z:\vob_hw> cleartool mklabel —recurse REL2 fop-level-directory

Alternatively, you can use the configuration records of the release’s derived objects to control the
labeling process:

10 - Implementing Project Development Policies 135

Z:\vob_hw> clearmake vega

... sometime later, after QA approves the build:
Z:\vob_hw> cleartool mklabel —config vega@@17-Jun.18:05 REL2

Using configuration records to attach version labels ensures accurate and complete labeling,
even if developers have created new versions since the release build. Development work can
continue while quality-assurance and release procedures are performed.

To prevent version label REL2 from being used again, you must lock the label type:

Z:\vob_hw> cleartool lock —nusers vobadm Ibtype:REL2

The object is locked to all users except those specified with the —nusers option, in this case,
vobadm.

10.4 Isolate Work on Release Bugs to a Branch

You may want to fix bugs found in the released system on a named bugfix branch, and to begin
this work with the exact configuration of versions from that release.

This policy reflects the ClearCase baseline-plus-changes model. First, a label (REL2, for example)
must be attached to the release configuration. Then, you or any team member can create a view
with the following config spec to implement the policy:

element * CHECKEDOUT
element * ...\rel2_bugfix\\LATEST
element * REL2 -mkbranch rel2_bugfix

If all fixes are made in one or more views with this configuration, the changes are isolated on
branches of type rel2_bugfix. The -mkbranch option causes such branches to be created, as

needed, when elements are checked out.

This config spec selects versions from rel2_bugfix branches, where branches of this type exist; it
creates such a branch whenever a REL2 version is checked out.

136 Managing Software Projects with ClearCase

10.5 Avoid Disrupting the Work of Other Developers

To work productively, developers need to control when they see changes and which changes
they see. The appropriate mechanism for this purpose is a view. Developers can modify an
existing config spec or create a new one to specify exactly which changes to see and which to
exclude.

To implement this policy, you can also require developers to write and distribute the config spec
rule that filters out their checked-in changes. Some sample config specs:

O

To select your own work, plus all the versions that went into the building of Release 2:

element * CHECKEDOUT
element * REL2

To select your own work, plus the latest versions as of Sunday evening:

element * CHECKEDOUT
element * \main\LATEST -time Sunday.18:00

To select your own work, new versions created in the graphics directory, and the versions
that went into last night’s build:

element * CHECKEDOUT
element graphics* \main\LATEST
element * -config myprog@ @12-Jul.00:30

To select your own work, the versions either you (jones) or Mary has checked in today, and
the most recent quality-assurance versions:

element * CHECKEDOUT

element * \main\{ created_since(06:00) && (created_by(jones) ||
created_by(mary)) ¥

element * \main\{QAed=="TRUE"}

You can also use the config spec include facility to set up standard sets of configuration
rules for developers to add to their own config specs:

element * CHECKEDOUT
element msg.c \main\18
include C:\cspecs\rules_r2

10 - Implementing Project Development Policies 137

138

10.6 Deny Access to Project Data When Necessary
Occasionally, you may need to deny access to all or most project team members. For example,
you may want to prevent changes to public header files until further notice. The lock command
is designed to enforce such temporary policies:
0 Lock all header files in a certain directory:
cleartool> lock src\pub*.h
0 Lock the header files for all users except Mary and Fred:
cleartool> lock —nusers mary,fred src\pub*.h
0 Lock all header files in the VOB:
cleartool> lock eltype:c_header
O Lock an entire VOB:
cleartool> lock vob:\my_vob
10.7 Notify Team Members of Relevant Changes

To help team members keep track of changes that affect their own work, you can use
postoperation triggers to send notifications of various events. For example, when developers
change the GUI, an e-mail message to the doc group ensures that these changes are documented.

To enforce this policy, create a trigger type that sends mail, and then attach it to the relevant
elements.

Trigger Definition:

cleartool mktrtype —nc -element —postop checkin

—exec "ccperl \\neon\scripts\informwriters.pl" InformWriters
Created trigger type "InformWriters".

Trigger Action Script:

Managing Software Projects with ClearCase

use Net::SMTP;

my $smtp = new Net::SMTP 'neon.purpledoc.com’;
$smtp->mail('ClearCase Admin’);
$smtp->to('ClearCase Admin’);
$smtp->to('docgrp’);

$smtp->data();

$smtp->datasend("From: ClearCase Admin\n");
$smtp->datasend("To: docgrp\n");
$smtp->datasend("Subject: checkin\n");
$smtp->datasend("\n");

create variables for pathname/user/comment
$ver = SENV{CLEARCASE_XPN};

$user = SENV{'CLEARCASE_USER};

$comment = SENV{'CLEARCASE_COMMENT’};
$var = "Version: $ver\nUser: $user\nComment: $comment\n”;
$smtp->datasend($var);

$smtp->dataend();

$smtp->quit;

To attach triggers to existing elements:

1. Place the trigger on the inheritance list of all existing directory elements within the GUI source
tree:

cleartool find \gui_src -type d »
-exec "cleartool mktrigger -nattach InformWriters %CLEARCASE_PN%"

2. DPlace the trigger on the attached list of all existing file elements within the GUI source tree:

cleartool find \gui_src —type f A
—exec "cleartool mktrigger InformWriters %CLEARCASE_PN%"

10 - Implementing Project Development Policies 139

140

10.8

All Source Files Must Meet Project Standards

To ensure that developers are following coding guidelines or other standards, you can evaluate
their source files. You can create preoperation triggers to run user-defined programs, and cancel
the commands that trigger them.

For example, you may want to disallow checkin of C-language files that do not satisfy quality
metrics. Suppose that you have defined an element type, c_source, for C language files (*.c).

Trigger Definition:

cleartool mktrtype —element —all —eltype c_source *
—preop checkin —exec "\ \neon\scripts\appl_met.bat %CLEARCASE_PN%" ApplyMetrics

This trigger type ApplyMetrics applies to all elements; it fires when any element of type
c_source is checked in. (When a new c_source element is created, it is monitored.) If a developer
attempts to check in a c_source file that fails the appl_met.bat test, the checkin fails.

NOTE: The appl_met.bat file can read the value of CLEARCASE_PN from its environment. Having
it accept a file-name argument provides flexibility because the batch file can be invoked as a
trigger action, and developers can also use it manually.

10.9

Associate Changes with Change Orders

To keep track of work done in response to an engineering change order (ECO), you can use
attributes and triggers. For example, to associate a version with an ECO, define ECO as an
integer-valued attribute type:

cleartool mkattype —c "bug number associated with change" —vtype integer ECO
Created attribute type "ECO".

Then, define an all-element trigger type, EcoTrigger, which fires whenever a new version is
created and runs a script to attach the ECO attribute:

Trigger Definition:
cleartool mktrtype —element —all —postop checkin —c "associate change with bug number" »
—execunix "Perl /public/scripts/eco.pl" —execwin "ccperl \\neon\scripts\eco.pl" »

EcoTrigger
Created trigger type "EcoTrigger".

Managing Software Projects with ClearCase

Trigger Action Script:
$pname = $SENV{'CLEARCASE_XPN’};

print "Enter the bug number associated with this checkin: *;
$bugnum = <STDIN>;

chomp ($bugnum);

$command = "cleartool mkattr ECO $bugnum $pname”;

@returnvalue = ‘$command’;
$rval = join ", @returnvalue;
print "$rval”;

exit(0);

When a new version is created, the attribute is attached to the version. For example:
cleartool checkin —c "fixes for 4.0" src.c

Enter the bug number associated with this checkin: 2347

Created attribute "ECO" on "G:\dev\src.c@@\main\2".

Checked in "src.c" version "\main\2".

cleartool describe src.c@@\main\2
version "src.c@@\main\2"

Attributes:
ECO = 2347

10.10 Associate Project Requirements with Source Files

You can implement requirements tracing with hyperlinks, which associate pairs of VOB objects.
The association should be at the version level (rather than the branch or element level): each
version of a source code module must be associated with a particular version of a related design
document.

For example, the project manager creates a hyperlink type named DesignDoc, which is used to
associate source code with design documents:

cleartool mkhltype —c "associate code with design docs" »
DesignDoc@\dev DesignDoc@\design

Created hyperlink type "DesignDoc".

Created hyperlink type "DesignDoc".

10 - Implementing Project Development Policies 141

version that
inherits hyperlink->

version to which ->

hyperlink is explicitly
attached

142

The hyperlink inheritance feature makes the implementation of requirements tracing easy:

O

When the source module, hello.c, and the design document, hello_dsn.doc, are updated,
the project manager creates a new hyperlink connecting the two updated versions:

cleartool mkhlink -c "source doc" DesignDoc hello.c \design\hello_dsn.doc
Created hyperlink "DesignDoc@90@\dev".

When either the source module or the design document incorporates a minor update, no
hyperlink-level change is required: the new version inherits the hyperlink connection of its
predecessor.

cleartool checkin -c "fix bug" hello.c
Checked in "hello.c" version "\main\2".

To list the inherited hyperlink, use the —ihlink option to the describe command:

cleartool describe —ihlink DesignDoc hello.c@@\main\2

hello.c@@\main\2
Inherited hyperlinks: DesignDoc@90@\dev

\dev\hello.c@ @\main\1 ->
\doc\hello_dsn.doc@ @\main\1

When either the source module or the design document incorporates a significant update,
which renders the connection invalid, the project manager creates a null-ended hyperlink to
sever the connection:

cleartool mkhlink -c "sever connection to design doc" DesignDoc hello.c
Created hyperlink "DesignDoc@94@\dev".

Figure 38 illustrates the hyperlinks that connect the source file to the design doc.

Managing Software Projects with ClearCase

Figure 38 Requirements Tracing

source module design document

e DesighDoC p=
e DesignDoC p—
a DesignDoc

10.11 Prevent Use of Certain Commands

To control which users can execute certain commands on ClearCase objects, you can create a pair
of trigger types—one to control the use of the command on element-related objects, and one to
control the use of the command on type objects. Both trigger types use the —nuser flag to specify
the users who are allowed to use the command.

NOTE: You cannot use triggers to prevent a command from being used on an object that is not
element-related or a type object. For example, you cannot create a trigger type to prevent
operations on VOB objects or replica objects.

For a list of commands that can be triggered, see the events_ccase and mktrtype reference pages.
For example, the following commands create two trigger types that prevent all users except

stephen, hugh, and emma from running the chmaster command on element-related objects and
type objects in the current VOB:

10 - Implementing Project Development Policies 143

cleartool mktrtype —element —all —preop chmaster -nusers stephen,hugh,emma »
—execunix "Perl —e \"exit -1;\"" —execwin "ccperl —e \"exit (-1);\"" A
—c "ACL for chmaster" elem_chmaster_ ACL

cleartool mktrtype —type —preop chmaster —-nusers stephen,hugh,emma #
—execunix "Perl —e \"exit -1;\"" —execwin "ccperl —e \"exit (-1);\"" A
—attype —all —brtype —all —eltype —all -lbtype —all —hltype —all »

—c "ACL for chmaster" type_chmaster ACL

When user tony tries to run the chmaster command on a restricted object, the command fails. For
example:

cleartool chmaster —c "give mastership to london" london@\dev \
\dev\acc.c@@\main\lex_dev
cleartool: Warning: Trigger "elem_chmaster_ACL" has refused to let chmaster

proceed.
cleartool: Error: Unable to perform operation "change master" in replica "lex"
of VOB "\dev".

10.12 Certain Branches Are Shared Among MultiSite Sites

PRODUCT NOTE: ClearCase LT does not support MultiSite.

If your company uses ClearCase MultiSite to support development at different sites, you must
tailor your branching strategy to the needs of these sites. The standard MultiSite development
model is to have a replica of the VOB at each site. Each replica controls (masters) a site-specific
branch type, and developers at one site cannot work on branches mastered at another site. (See
Introduction to MultiSite in ClearCase MultiSite Manual for more information on MultiSite
mastership.)

However, sometimes you cannot, or may not want to, branch and merge an element. For
example, some file types cannot be merged, so development must occur on a single branch. In
this scenario, all developers must work on a single branch (usually, the main branch). MultiSite
allows only one replica to master a branch at any given time. Therefore, if a developer at another
site needs to work on the element, mastership of the branch must be transferred to that site.

MultiSite provides two models for transferring mastership of a branch:

0 The push model, in which the administrator at the replica that masters the branch uses the
chmaster command to give mastership to another replica.

144 Managing Software Projects with ClearCase

This model is not efficient in a branch-sharing situation, because it requires communication
with an administrator at a remote site. For more information about this model, see ClearCase
MultiSite Manual.

0 The pull model, in which the developer who needs to work on the branch uses the
reqmaster command to request mastership of it.

This model requires the MultiSite administrators to enable requests for mastership in each
replica and to authorize individual developers to request mastership. If you decide to
implement this model, you must provide the following information to your MultiSite
administrator:

O Replicated VOBs that should be enabled to handle mastership requests

0 Identities (domain names and user names) of developers who should be authorized to
request mastership

0 Branch types and branches for which mastership requests should be denied (for
example, branch types that are site specific, or branches that must remain under the
control of a single site)

Implementing Requests for Branch Mastership in ClearCase MultiSite Manual describes the
process of enabling the pull model and a scenario in which developers use the pull model.
Working On a Team in Developing Software with ClearCase describes the procedure developers
use to request mastership.

10.13 Sharing Triggers Between UNIX and Windows

You can define triggers that fire correctly on both UNIX and Windows computers. The following
sections describe two techniques. With one, you use different pathnames or different scripts;
with the other, you use the same script for both platforms.

Using Different Pathnames or Different Scripts

To define a trigger that fires on UNIX, Windows, or both, and that uses different pathnames to
point to the trigger scripts, use the —execunix and —execwin options with the mktrtype
command. These options behave the same as —exec when fired on the appropriate platform
(UNIX or Windows, respectively). On the other platform, they do nothing. This technique allows

10 - Implementing Project Development Policies 145

a single trigger type to use different paths for the same script or to use completely different
scripts on UNIX and Windows computers. For example:

cleartool mktrtype —element —all —-nc —preop checkin *
—execunix /public/scripts/precheckin.sh —execwin \\neon\scripts\precheckin.bat
pre_ci_trig

On UNIX, only the script precheckin.sh runs. On Windows, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers that specify only
—execunix always fail on Windows. Likewise, triggers that specify only —execwin fail on UNIX.

Using the Same Script

To use the same trigger script on both Windows and UNIX platforms, you must use a batch
command interpreter that runs on both operating systems. For this purpose, ClearCase includes
the ccperl program. On Windows, ccperl is a version of the Perl program available on UNIX.

The following mktrtype command creates sample trigger type pre_ci_trig and names
precheckin.pl as the executable trigger script.

cleartool mktrtype -element -all —-nc —preop checkin *
—execunix "Perl /public/scripts/precheckin.pl" »
—-execwin "ccperl \\neon\scripts\precheckin.pl" A
pre_ci_trig

Notes

0 To conditionalize script execution based on operating system, use environment variables in
Perl scripts.

0 To collect or display information interactively, you can use the clearprompt command.

0 For more information on using the —execunix and —execwin options, see the mktrtype
reference page.

146 Managing Software Projects with ClearCase

Integrating Changes

In a parallel development environment, the opposite of branching is merging. In the simplest
scenario, merging incorporates changes on a subbranch into the main branch. However, you can
merge work from any branch into any other branch. This chapter describes techniques and
scenarios for merging versions of elements and branches. ClearCase includes automated merge
facilities for handling almost any scenario.

11.1 How Merging Works

A merge combines the contents of two or more files or directories into a single new file/directory.
The ClearCase merge algorithm uses the following files during a merge (see Figure 39):

0 Contributors, which are typically one version from each branch you are merging. (You can
merge up to 15 contributors.) You specify which versions are contributors.

0 The base contributor, which is typically the closest common ancestor of the contributors.
(For selective merges, subtractive merges, and merges in an environment with complex
branch structures, the base contributor may not be the closest common ancestor.) ClearCase
determines which contributor is the base contributor.

O The target contributor, which is typically the latest version on the branch that will contain
the results of the merge. You determine which contributor is the target contributor.

0 The merge output file, which contains the results of the merge and is usually checked in as a
successor to the target contributor. By default, the merge output file is the checked-out
version of the target contributor, but you can choose a different file to contain the merge
output.

11 - Integrating Changes 147

148

Figure 39 Versions Involved in a Typical Merge

Base contributor

Target contributor

element: opt.c

Merge output

Contributor

To merge files and directories, ClearCase takes the following steps:

1.

2.

It identifies the base contributor.
It compares each contributor against the base contributor. (See Figure 40.)

For any line that is unchanged between the base contributor and any other contributor, it
copies the line to the merge output file.

For any line that has changed between the base contributor and one other contributor, it
accepts the change in the contributor; depending on how you started the merge operation,
ClearCase may copy the change to the merge output file. However, you can disable the

Managing Software Projects with ClearCase

automated merge capability for any given merge operation. If you disable this capability,
you must approve each change to the merge output file.

5. For any line that has changed between the base contributor and more than one other
contributor, ClearCase requires that you resolve the conflicting difference.

Figure 40 ClearCase Merge Algorithm

Base
contributor

A (b, c1) A (b, c2)

Source
contributors
Destination version=B + A (b, c1) + A (b, c2)

To merge versions, you can use the GUI tools, described briefly in the next section, or the
command-line interface, described in Using the Command Line to Merge Elements on page 150.

Using the GUI to Merge Elements

ClearCase provides three graphical tools to help you merge elements:

O Merge Manager
0 Diff Merge
0 Version Tree Browser

The Merge Manager manages the process of merging one or more ClearCase elements. It
automates the processes of gathering information for a merge, starting a merge, and tracking a

merge. It can also save and retrieve the state of a merge for a set of elements.

You can use the Merge Manager to merge from many directions:
0 From a branch to the main branch

0 From the main branch to another branch

0 From one branch to another branch

You can start the Merge Manager in several ways:

11 - Integrating Changes 149

O Click Start>Programs>ClearCase>Merge Manager.
0 In ClearCase Explorer, click Base ClearCase, and then click Merge Manager.

The Diff Merge utility shows the differences between two or more versions of file or directory
elements. Use this tool to compare up to 16 versions at a time, navigate through versions, merge
versions, and resolve differences between versions.

You can start Diff Merge in several ways:

O On the shortcut menu in Windows Explorer, click Compare.
0 In the Merge Manager, click Compare.

The Version Tree Browser displays the version tree for an element. The version tree is useful
when merging to do the following::

0 Locate versions or branches that have contributed to or resulted from a merge
O Start a merge by clicking on the appropriate symbol

The merge can be recorded with a merge arrow, which is implemented as a hyperlink of type
Merge.

You can start the Version Tree Browser in several ways:
O Click Start>Programs>ClearCase>Version Tree Browser

0 On the shortcut menu in Windows Explorer, click Version Tree.

Using the Command Line to Merge Elements

Use the following commands to perform merges from the command line:
O cleartool merge
O cleartool findmerge

0 cleardiff

For more information on these commands, see the ClearCase Reference Manual.

150 Managing Software Projects with ClearCase

11.2 Common Merge Scenarios

The following sections present a series of merge scenarios that require work on one branch of an
element to be incorporated into another branch. Each scenario shows the version tree of an
element that requires a merge and indicates the appropriate command to perform the merge.

Scenario: Selective Merge from a Subbranch

In this scenario, you want to incorporate the changes in version \main\r1_fix\4 into new
development. To perform the merge, you specify which versions on the r1_fix branch to include.
See Figure 41.

Figure 41 Selective Merge from a Subbranch

element: opt.c

Exclude changes
in these versions
from merge

Include changes
in this version only

Exclude changes

in these versions
from merge

]

11 - Integrating Changes 151

152

In a view configured with the default config spec, enter these commands to perform the selective
merge:

Z\avob> cleartool checkout opt.c
Z\avob> cleartool merge —to opt.c —insert —version \main\r1_fix\4

You can also specify a range of consecutive versions to be merged. For example, this command
merges only the changes in versions \main\rl_fix\2 through \main\r1_fix\4:

Z\avob> cleartool merge —to opt.c —insert —version \main\r1_fix\2 \main\rl_fix\4

No merge arrow is created for a selective merge.

Scenario: Removing the Contributions of Some Versions

A new feature, implemented in versions 14 through 16 on the main branch, will not be included
in the product. You must remove the changes made in those versions. See Figure 42.

Figure 42 Removing the Contributions of Some Versions

element: opt.c

These versions'
contributions to
be removed

Managing Software Projects with ClearCase

Enter these commands to perform this subtractive merge:

Z\avob> cleartool checkout opt.c
Z\avob> cleartool merge —to opt.c —delete —version \main\14 \main\16

No merge arrow is created for a subtractive merge.

Scenario: Merging All Project Work

Your team has been working on a branch. Now, your job is to merge all the changes into the main
branch.

The findmerge command can handle most common cases easily. It can accommodate the
following schemes for isolating the project’s work.

All Project Work Is Isolated on a Branch

The standard approach to parallel development isolates all project work on the same branch.
More precisely, all new versions of source files are created on like-named branches of their
respective elements (that is, on branches that are instances of the same branch type). This makes
it possible for a single findmerge command to locate and incorporate all the changes. Suppose
the common branch is named gopher. You can enter these commands in a view configured with
the default config spec:

Z\avob> cd root-of-source-tree
Z\avob> cleartool findmerge . —fversion ...\gopher\LATEST —merge —graphical

The —-merge —graphical syntax causes the merge to take place automatically whenever possible,
and to start the graphical merge utility if an element’s merge requires user interaction. If the
project has made changes in several VOBs, you can perform all the merges at once by specifying
several pathnames, or by using the —avobs option to findmerge.

All Project Work Isolated in a View

Some projects are organized so that all changes are made in a single view (typically, a shared
view). For such projects, use the —ftag option to findmerge. Suppose the project’s work has been
done in a view whose view-tag is goph_vu. These commands perform the merge:

Z\avob> cd root-of-source-tree
Z\avob> cleartool findmerge . —ftag goph_vu —merge —graphical

11 - Integrating Changes 153

154

NOTE: Working in a single shared view is not recommended because doing so can degrade
system performance.

Scenario: Merging a New Release of an Entire Source Tree

Your team has been using an externally supplied source-code product, maintaining the sources
in a VOB. The successive versions supplied by the vendor are checked in to the main branch and
labeled VEND_R1, VEND_R2, and VEND_RS3. Your team’s fixes and enhancements are created
on subbranch enhance. The views that your team works in are configured to branch from the
VEND_R3 baseline:

element * CHECKEDOUT
element * ...\enhance\LATEST

element * VEND_R3 -mkbranch enhance
element * \main\LATEST -mkbranch enhance

The version trees in Figure 43 show various likely cases:

O An element that your team started changing at Release 1 (enhance branch created at the
version labeled VEND_R1)

O An element that your team started changing at Release 3

O An element that your team has never changed

Managing Software Projects with ClearCase

Figure 43 Merging a New Release of an Entire Source Tree

'main’ branch used
for vendor's releases,

not for development

‘enhance’ branch used
for your organization's
changes

Release 4 has arrived, and you need to integrate this release with your team’s changes.

To prepare for the merge, add the new release to the main branch and label the versions
VEND_R4. Merging the source trees involves merging from the version labeled VEND_R4 to the
most recent version on the enhance branch; if an element has no enhance branch, nothing is
merged.

This procedure accomplishes the integration:
1. Load the vendor’s Release 4 media into a standard directory tree:

C:\> cd %TMP%
C:\> xcopy drive\path options

11 - Integrating Changes 155

156

The directory tree created is mathlib_4.0.

As the VOB owner, run clearexport_ffile, to create a datafile containing descriptions of the
new versions.

C\> cd \mathlib_4.0
C:\mathlib_4.0> clearexport_ffile
(Iots of output)

In a view configured with the default config spec, start clearimport on the file
clearexport_ffile created. This creates Release 4 versions on the main branches of elements
(and creates new elements as needed).

C:\mathlib_4.0> net use z: \\view\mainline

The command completed successfully.

C:\mathlib_4.0> z:

Z\> cd \vob_proj\mathlib

Z:\vob_proj\mathlib> clearimport %TMP% \mathlib_4.0\cvt_data

Label the new versions:

Z:\vob_proj> cleartool mklbtype —c "Release 4 of MathLib sources" VEND_R4
Created label type "VEND_R4".
Z:\vob_proj> cleartool mklabel —recurse VEND_R4 \vob_proj\mathlib

(lots of output)

Set to a view that is configured with your team’s config spec and selects the versions on the
enhance branch:

Z:\vob_proj> net use y: \\view\enh_vu

The command completed successfully.

Z:\vob_proj> y:

Y:\vob_proj>

Merge from the VEND_R4 configuration to your view:

Y:\vob_proj> cleartool findmerge -nback \vob_proj\mathlib —-fver VEND_R4 —merge
A —graphical

The —-merge —graphical syntax instructs findmerge to merge automatically if possible, but if
not, start the graphical merge tool.

Verify the merges, and check in the modified elements.

Managing Software Projects with ClearCase

You have now established Release 4 as the new baseline. Developers on your team can update
their view configurations as follows:

element * CHECKEDOUT
element * ...\enhance\LATEST

element * VEND_R4 —mkbranch enhance (change from VEND_R3 to VEND_R4)
element * \main\LATEST —mkbranch enhance

Elements that have been active continue to evolve on their enhance branches. When elements are
revised for the first time, their enhance branches are created at the VEND_R4 version.

Scenario: Merging Directory Versions

One of the most powerful features of ClearCase is versioning of directories. Each version of a
directory element catalogs a set of file elements and directory elements. In a development project,
directories change are as often as files do. Merging the changes to another branch is as easy
merging files.

Take a closer look at the source tree scenario from the previous section. Suppose you find that the
vendor has made several changes in directory M:\view1\vob_proj\mathlib\src:

O File elements Makefile, getcwd.c, and fork3.c have been revised.
O File elements readln.c and get.c have been deleted.
O A new file element, newpaths.c, has been created.

11 - Integrating Changes 157

When you use findmerge to merge the changes made in the VEND_R4 sources to the enhance
branch, the changes to both the files and the directory are handled automatically. The following
findmerge excerpt shows the directory merge activity:

* F*kkkkkkk

<<< directory 1: M:\viewl\vob_proj\mathlib\src@ @\main\3
>>> directory 2: .@ @\main\enhance\l
>>> directory 3: .

* *kkkkk

get.c 19-Dec-1991 drp |-
** Automatic: Applying REMOVE from directory 2

-| newpaths.c 08-Mar.21:49 drp
*** Automatic: Applying ADDITION from directory 2

readin.c 19-Dec-1991 drp |-
** Automatic: Applying REMOVE from directory 2
Recorded merge of ".".

If you have changes to merge from both files and directories, it may be a good idea to run
findmerge twice: first to merge directories, and then to merge files. Using the —print option to a
findmerge command does not report everything that is merged, because findmerge does not see
new files or subdirectories in the merge-from version of a directory until after the directories are
merged. To report every merge that takes place, use findmerge to merge the directories only, and
then use findmerge —print to get information about the file merges needed. Afterward, you can
cancel the directory merges by using the uncheckout command on the directories.

11.3 Using Your Own Merge Tools

You can create a merged version of an element manually or with any available analysis and
editing tools. Check out the target version, revise it, and check it in. Immediately before (or after)
the checkin, record your activity by using the merge command with the -ndata (no data) option:

158 Managing Software Projects with ClearCase

Z:\avob> cleartool checkout nextwhat.c
Checkout comments for "nextwhat.c":

merge enhance branch

Checked out "nextwhat.c" from version "\main\1".

Z:\avob> <invoke your own tools to merge data into checked-out version>

Z\avob> cleartool merge —to nextwhat.c -ndata —version ...\enhance\LATEST
Recorded merge of "nextwhat.c".

This form of the merge command does not change any file system data; it merely attaches a

merge arrow (a hyperlink of type Merge) to the specified versions. After you've made this
annotation, your merge is indistinguishable from one performed with ClearCase tools.

11 - Integrating Changes 159

160 Managing Software Projects with ClearCase

Using Element Types to Customize
Processing of File Elements

Most projects involve many different file types. For example, in a typical software release,
developers may work on C-language source files, C-language header files, document files in
binary format, and library files.

Every file that is stored in a ClearCase VOB is associated with an element type. ClearCase
provides predefined element types for various kinds of file types, and every element type has an
associated type manager, which handles the operations performed on versions of the element.

For some file types in your project, you may want to create your own element types so that you
can customize the handling of the files.

This chapter describes how ClearCase uses element types and type managers to classify and
manage files. It also describes how you can customize file classification and management.

12.1 File Types in a Typical Project

Table 4 lists the files used in a typical development project.

12 - Using Element Types to Customize Processing of File Elements 161

Table 4 Files Used in a Typical Project

Type of File Identifying Characteristic

Source Files

C-language source file .c file-name extension
C-language header file .h file-name extension
FrameMaker binary file .doc or .mif file-name extension, first line

of file begins with <Maker

Derived Files
library, shared library Aib, .dll file-name extension
compiled executable .exe file-name extension

12.2 How ClearCase Assigns Element Types

In various contexts, ClearCase determines one or more file types for an existing file-system object,
or for a name to be used for a new object. When you create a new element and do not specify an
element type, ClearCase determines the file type for the element.

The file-typing routines use predefined and user-defined magic files, as described in the cc.magic
reference page. A magic file can use many different techniques to determine a file type, including

file-name pattern-matching and stat data.

For example, the following magic file specifies several file types for each kind of file listed in

Table 4.
Sample Magic File
Q) c_src src_file text_file file: -name "*.c";
) hdr_file text_file file: -name "*.h";
3) frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;
4 library derived_file file: -name "*.lib";
5) program compressed_file: -name "*.exe" ;

162 Managing Software Projects with ClearCase

12.3 Element Types and Type Managers

ClearCase can handle different classes of files differently because it uses element types to
categorize elements. Each file element in a VOB must have an element type. An element gets its
type when it is created; you can change an element’s type subsequently, with the chtype
command. (An element is an instance of its element type, in the same way that an attribute is an
instance of an attribute type and a version label is an instance of a label type.)

Each element type has an associated type manager, a suite of programs that handle the storage and
retrieval of versions from storage pools. (See the type_manager reference page for information
on how type managers work.) Thus, the way in which a file element’s data is handled depends
on its element type.

NOTE: Each directory element also has an element type. But directory elements do not use type
managers; the contents of a directory version are stored in the VOB database itself, not in storage

pools.

Figure 44 shows how an element type is assigned to a newly created element.

12 - Using Element Types to Customize Processing of File Elements 163

164

Figure 44 Data Handling: File Type, Element Type, Type Manager

name for new
file element

mkelem command
without -eltype option

magic file(s) and
file-typing routines

|

rule from the
magic file that
matches file name

use first file type in
matching rule that
names an existing
element type

mkelem command
with -eltype option

element type for
new file element

type manager for
element type

use specified
element type

For example, a new element named monet.h is assigned an element type as follows:

1. A developer creates an element:

Z\myvob> cleartool mkelem monet.h

Managing Software Projects with ClearCase

2. Because the developer did not specify an element type (—eltype option), mkelem uses one or
more magic files to determine the file types of the specified name.

NOTE: ClearCase supports a search path facility, using the environment variable
MAGIC_PATH. See the cc.magic reference page for details.

Suppose that the magic file shown in Sample Magic File on page 162 is the first (or only) one
to be used. In this case, rule (2) is the first to match the name monet.h, yielding this list of file

types:
hdr_file text_file file

3. This list is compared with the set of element types defined for the new element’s VOB.
Suppose that text_file is the first file type that names an existing element type; in this case,
monet.h is created as an element of type text_file.

4. Data storage and retrieval for versions of element monet.h are handled by the type manager
associated with the text_file element type; its name is text_file_delta:

Z\myvob> cleartool describe eltype:text_file
element type "text_file"

type manager: text_file_delta
supertype: file
meta-type of element: file element

File-typing mechanisms are defined on a per-user or per-site basis; element types are defined on
a per-VOB basis. (To ensure that element types are consistent across VOBs, the ClearCase
administrator can use global types.) In this case, a new element, monet.h, is created as a text_file
element; in a VOB with a different set of element types, the same magic file may have created it
as a hdr_file element.

Other Applications of Element Types

Element types allow differential and customized handling of files beyond the selection of type
managers. Following are some examples.

Using Element Types to Configure a View

Creating all C-language header files as elements of type hdr_file allows flexibility in configuring
views. Suppose that one developer has reorganized the project header files, working on a branch

12 - Using Element Types to Customize Processing of File Elements 165

named header_reorg to avoid disrupting the team’s work. To compile with the new header files,
another developer can use a view reconfigured with one additional rule:

element * CHECKEDOUT
element -eltype hdr_file * \main\header_reorg\LATEST
element * \main\LATEST

Processing Files by Element Type

Suppose that a coding-standards program named check_var_names is to be executed on each
C-language source file. If all such files have element type c_src, a single cleartool command runs
the program:

cleartool> find —avobs —visible —element 'eltype(c_src)' A
—exec 'check_var_names %CLEARCASE_PN%'

12.4 Predefined and User-Defined Element Types

Some of the element types described in this chapter (for example, text_file) are predefined.
Others (for example, c_src and hdr_file) are not; the previous examples work only if user-defined
element types with these names are created with the mkeltype command.

When a new VOB is created, it contains a full set of the predefined element types. Each is
associated with one of the type managers provided with ClearCase. The mkeltype reference
page describes the predefined element types and their type managers.

When you create a new element type with mkeltype, you must specify an existing element type
as its supertype. By default, the new element type uses the same type manager as its supertype;

in this case, the only distinction between the new and old types is for the purposes described in
Other Applications of Element Types on page 165. For differential data handling, use the -manager
option to create an element type that uses a different type manager from its supertype.

166 Managing Software Projects with ClearCase

Using ClearCase Throughout the
Development Cycle

The previous chapters describe various aspects of managing a project with ClearCase. This
chapter presents one way in which you can use ClearCase to organize the work throughout a
development project. During this cycle, developers create a new release and maintain the
previous release.

This chapter describes concepts and methods to address typical organizational needs. Instead of
using command-line tools that are described here, consider using GUI tools such as the Merge
Manager to accomplish similar goals.

13.1 Project Overview
Release 2.0 development of the monet project includes the following kinds of work:
0 Patches. Several high-priority bug fixes to Release 1.0 are needed.

O Minor enhancements. Some commands need new options; some option names need to be
shortened (-recursive becomes —r); some algorithms need performance work.

O Major new features. A graphical user interface is required, as are many new commands and
internationalization support.

These three development efforts can proceed largely in parallel (Figure 45), but critical
dependencies and milestones must be considered:

O Several Release 1.0 patch releases will ship before Release 2.0 is complete.

13 - Using ClearCase Throughout the Development Cycle 167

168

O New features take longer to complete than minor enhancements.
O Some new features depend on the minor enhancements.

Figure 45 Project Plan for Release 2.0 Development

MAJ Team

major
development

= E-N | MIN Team
10 minor

development

FIX Team

Release 1
bugfixing

integration:
merge bugfixes
with minor
enhancements

Nl

Release

Baseline

integration:
merge Baseline 1
work with major
enhancements

integration:

merge major
enhancements,

minor enhancements,
and further bugfixes

1

<F\r/g\e//z\e>—> Basgllne

Release
2.0

Release

101

102

The plan uses a baseline-plus-changes approach. Periodically, developers stop writing new code,
and spend some time integrating their work, building, and testing. The result is a baseline: a
stable, working version of the application. ClearCase makes it easy to integrate product
enhancements incrementally and frequently. The more frequent the baselines, the easier the tasks

of merging work and testing the results.

After a baseline is produced, active development resumes; any new efforts begin with the set of
source versions that went into the baseline build.

You define a baseline by assigning the same version label (for example, R2_BL1 for Release 2.0,
Baseline 1) to all the versions that go into, or are produced by, the baseline build.

Managing Software Projects with ClearCase

The project team is divided into three smaller teams, each working on a different development
effort: the MAJ team (new features), the MIN team (minor enhancements), and the FIX team
(Release 1.0 bug fixes and patches).

NOTE: Some developers may belong to multiple teams. These developers work in multiple views,
each configured for the respective team’s tasks.

The development area for the monet project is shown here. At the beginning of Release 2.0
development, the most recent versions on the main branch are labeled R1.0.

\monet (project top-level directory)
src\ (sources)
include\ (include files)
lib\ (shared libraries)

13.2 Development Strategy

This section describes the ClearCase issues to be resolved before development begins.

Project Manager and ClearCase Administrator

In most development efforts, the project manager and the system administrator are different
people. The user name of the project manager is meister. The administrator is the vobadm user,
who creates and owns the monet and libpub VOBs.

Use of Branches

In general, different kinds of work is done on different branches. The Release 1.0 bug fixes, for
example, are made on a separate branch to isolate this work from new development. The FIX
team can then create patch releases that do not include any of the Release 2.0 enhancements or
incompatibilities.

Because the MIN team will produce the first baseline release on its own, the project manager
gives the main branch to this team. The MA] team will develop new features on a subbranch,

13 - Using ClearCase Throughout the Development Cycle 169

and will not be ready to integrate for a while; the FIX team will fix Release 1.0 bugs on another
subbranch and can integrate its changes at any time.

Each new feature can be developed on its own subbranch, to better manage integration and
testing work. For simplicity, this chapter assumes that work for new features is done on a single
branch.

The project manager has created the first baseline from versions on the main branches of their
elements. But this is not a requirement; you can create a release that uses versions on any branch,

or combination of branches.

Figure 46 shows the evolution of a typical element during Release 2.0 development, and
indicates correspondences to the overall project plan (Figure 45).

170 Managing Software Projects with ClearCase

Figure 46 Development Milestones: Evolution of a Typical Element

1. (All branches) Start minor and major
enhancements, along with R1.0 bug fixing

2. (main) Freeze minor enhancements work

3. (main) Merge bug fixes from Release 1.0.1
into minor enhancements

4. (main) Baseline 1 release
5. (major) Freeze major enhancements work

6. (Mmajor) Merge Baseline 1 changes into
major enhancements

7. (main) Freeze minor enhancements work

8. (main) Merge additional bugfixes into
minor enhancements

9. (major) Freeze major enhancements work

10. (main) Merge major enhancements work
with minor enhancements work

11. (main) Baseline 2 release
12. (main) Final testing period

13. (main) Release 2.0

13 - Using ClearCase Throughout the Development Cycle 171

@)
&)
3
4

)
@

@)
@
©)
4

172

Creating Project Views

The MA] team works on a branch named major and uses this config spec:

element * CHECKEDOUT

element * ..\major\LATEST

element * R1.0 —mkbranch major

element * \main\LATEST —mkbranch major

The MIN team works on the main branch and uses the default config spec:

element * CHECKEDOUT
element * ...\main\LATEST

The FIX team works on a branch named r1_fix and uses this config spec:

element * CHECKEDOUT

element * ..\rl_fixX\LATEST

element * R1.0 —mkbranch r1_fix

element * \main\LATEST —mkbranch r1_fix

For the MAJ and FIX teams, use of the auto-make-branch facility in Rule (3) and Rule (4) enforces
consistent use of subbranches. It also relieves developers of the task of creating branches
explicitly and ensures that all branches are created at the version labeled R1.0.

13.3

Creating Branch Types

The project manager creates the major and r1_fix branch types required for the config specs in
Creating Project Views on page 172:

cleartool mkbrtype —c "monet R2 major enhancements" major@\libpub major@\monet
Created branch type "major".
Created branch type "major".

cleartool mkbrtype —c "monet R1 bugfixes" r1_fix@\libpub r1_fix@\monet

Created branch type "r1_fix".
Created branch type "r1_fix".

NOTE: Because each VOB has its own set of branch types, the branch types must be created
separately in the monet VOB and the libpub VOB.

Managing Software Projects with ClearCase

13.4 Creating Standard Config Specs

To ensure that all developers in a team configure their views the same way, the project manager
creates files containing standard config specs:

O \\vulcan\c_specs\major contains the MA] team’s config spec.

O \\vulcan\c_specs\fix contains the FIX team’s config spec.

These config spec files are stored in a standard directory outside a VOB, to ensure that all
developers get the same version.

13.5 Creating, Configuring, and Registering Views

Each developer creates a view on his or her own machine. For example, developer arb enters
these commands on her local host quark:

C:\> mkdir c:\users\arb\vw_store

c\> net share users c:\users

C:\> cleartool mkview —tag arb_major \\quark\users\arb\vw_store\arb_major.vws
Created view.

Host-local path: quark:C:\users\arb\vw_store\arb_major.vws

Global path: \\quark\users\arb\vw_store\arb_major.vws

NOTE: The net share command makes arb’s view publicly accessible.

A new view has the default config spec. Thus, developers on the MAJ and FIX teams must
reconfigure their views, using the standard file for their team. arb edits her config spec with the
cleartool edcs command, deletes the existing lines, and adds the following line:

\\vulcan\c_specs\major

If the project manager changes the standard file, arb must enter the command cleartool setcs
—current to pick up the changes.

13 - Using ClearCase Throughout the Development Cycle 173

174

13.6

Development Begins

To begin the project, a developer sets a properly configured view, checks out one or more
elements, and starts work. For example, developer david on the MAJ team enters these
commands:

C:\> mn (mn is a common convention; it stands for “main”)
c\> z

Z\> cd \monet\src

Z:\monet\src> cleartool checkout —nc opt.c prs.c

Created branch "major" from "opt.c" version "\main\6".
Checked out "opt.c" from version "\main\major\0".
Created branch "major" from "prs.c" version "\main\7".
Checked out "prs.c" from version "\main\major\0".

The auto-make-branch facility causes each element to be checked out on the major branch (see
Rule 4 in the MA] team’s config spec in Creating Project Views on page 172). If a developer on the
MIN team enters this command, the elements are checked out on the main branch, with no
conflict.

ClearCase is fully compatible with standard development tools and practices. Thus, developers
use the editing, compilation, and debugging tools they prefer while working in their views.

Developers check in work periodically to make their work available to other team members (that
is, those whose views select the most recent version on the team’s branch). This allows intrateam
integration and testing to proceed throughout the development period.

Techniques for Isolating Your Work

Individual developers may need or prefer to isolate their work from the changes made by other
team members. To do so, they can use these techniques to configure their views:

O Time rules. When someone checks in an incompatible change, a developer can reconfigure
the view to select the versions at a point before those changes were made.

0 Private subbranches. A developer can create a private subbranch in one or more elements
(for example, \main\major\anne_wk). The config spec must be changed to select versions
on the \main\major\anne_wk branch instead of versions on the \main\major branch.

O Viewing only their own revisions. Developers can use a ClearCase query to configure a
view that sees only their own revisions to the source tree.

Managing Software Projects with ClearCase

13.7 Creating Baseline 1

The MIN team has implemented and tested the first group of minor enhancements, and the FIX
team has produced a patch release, whose versions are labeled R1.0.1. It is time to combine these
efforts, to produce Baseline 1 of Release 2.0 (Figure 47).

Figure 47 Creating Baseline 1

REELCN | MIN Team @ Baseline | _
10 minor 1

development

FIX Team Release
Release 1 101
bugfixing

Merging Two Branches

The project manager asks the MIN developers to merge the R1.0.1 changes from the r1_fix branch
to their own branch (main). All the changes can be merged by using the findmerge command
once. For example:

cleartool> findmerge \libpub \monet\src »
—fversion ...\r1_fix\LATEST -merge —graphical

<lots of output>

13 - Using ClearCase Throughout the Development Cycle 175

176

Integration and Test

After the merges are complete, the \main\LATEST versions of certain elements represent the
efforts of the MIN and FIX teams. Members of the MIN team now compile and test the monet
application to find and fix incompatibilities in the work of both teams.

The developers on the MIN team integrate their changes in a single, shared view. The project
manager creates the view storage area in a shared directory that is accessible from all developer
hosts:

C:\> mkdir c:\vw_store

C:\> netshare cc:\

C:\> cleartool mkview —tag basel_vu \\nt_svr\c\vw_store\basel_vu.vws
Created view.

Host-local path: nt_svr:C:\vw_store\basel_vu.vws

Global path: \\nt_svr\c\vw_store\basel vu.vws

Because all integration work takes place on the main branch, there is no need to change the
configuration of the new view from the ClearCase default. MIN developers use this view (net
use DRIVE: \\view\basel_vu) and coordinate builds and tests of the monet application.
Because they are sharing a single view, the developers are careful not to overwrite each other’s
view-private files. Any new versions created to fix inconsistencies (and other bugs) go onto the
main branch.

Labeling Sources

The monet application’s minor enhancements and bug fixes are now integrated, and a clean
build has been performed in view basel_vu. To create the baseline, the project manager assigns
the same version label, R2_BL1, to the \main\LATEST versions of all source elements. He
begins by creating an appropriate label type:

Z\> cleartool mklbtype —c "Release 2, Baseline 1" R2_BL1@\monet R2_BL1@\libpub

Created label type "R2_BL1".
Created label type "R2_BL1".

He then locks the label type, preventing all developers (except himself) from using it:
Z\> cleartool lock —nusers meister Ibtype:R2_BL1@vob:\monet Ibtype:R2_BL1@\libpub

Locked label type "R2_BL1".
Locked label type "R2_BL1".

Managing Software Projects with ClearCase

Before applying labels, he verifies that all elements are checked in on the main branch (checkouts
on other branches are still permitted):

Z\> cleartool Ischeckout —all \monet

Z\> cleartool Ischeckout —all \libpub

No output from this command indicates that all elements for the monet project are checked in.
Now;, the project manager attaches the R2_BL1 label to the currently selected version
(\main\LATEST) of every element in the two VOBs:

Z\> cleartool mklabel -recurse R2_BL1 \monet \libpub
Created label "R2_BL1" on "\monet" version "\main\1".
Created label "R2_BL1" on "\monet\src" version "\main\3".

<many more label messages>

Removing the Integration View

The view registered as basel_vu is no longer needed, so the project manager removes it:

C\> cleartool rmview —force —tag basel_vu

13.8 Merging Ongoing Development Work

After Baseline 1 is created, the MAJ team merges the Baseline 1 changes into its work (Figure 48).
The team now has access to the minor enhancements it needs for further development. Team
members also have an early opportunity to determine whether any of their changes are
incompatible.

13 - Using ClearCase Throughout the Development Cycle 177

178

Figure 48 Updating Major Enhancements Development

MAJ Team %
- Freeze
major A

development

REEEREE |[MIN Team % Baseline
1.0 minor 1

development

Accordingly, the project manager declares a freeze of major enhancements development. MA]
team members check in all elements and verify that the monet application builds and runs,
making small source changes as necessary. When all such changes have been checked in, the
team has a consistent set of \main\major\LATEST versions.

NOTE: Developers working on other major enhancements branches can merge at other times,
using the same merge procedures described here.

Preparing to Merge
1. The project manager makes sure that no element is checked out on the major branch:
Z\> cleartool Ischeckout —all \monet \libpub

NOTE: Any MA] team members who want to continue with nonmerge work can create a
subbranch at the “frozen” version (or work with a version that is checked out as unreserved).

2. The project manager performs any required directory merges:

Managing Software Projects with ClearCase

Z\> netusey: \\view\major_vu (use any MAJ team view)
Z\> y:
Y:\> cleartool findmerge \monet \libpub —type d —fversion \main\LATEST —merge
Needs merge \monet\src [automatic to \main\major\3 from \main\LATEST]
<lots of output>

Log has been written to “findmerge.log.04-Feb-99.09:58:25".

After checking in the files, the project manager determines which elements need to be
merged:

Y:\> cleartool findmerge \monet \libpub —fversion \main\LATEST —print
. <lots of output>

A ‘findmerge' log has been written to
"findmerge.log.04-Feb-99.10.01.23"

This last findmerge log file is in the form of a batch file: it contains a series of cleartool
findmerge commands, each of which performs the required merge for one element:

Y:\> type findmerge.log.04-Feb-99.10.01.23
cleartool findmerge \monet\src\opt.c@ @\main\major\1 -fver \main\LATEST -merge
cleartool findmerge \monet\src\prs.c@ @\main\major\3 -fver \main\LATEST -merge

cleartool findmerge \libpub\src\dcanon.c@ @\main\major\3 -fver \main\LATEST -merge
cleartool findmerge \libpub\src\getcwd.c@ @\main\major\2 -fver \main\LATEST -merge
cleartool findmerge \libpub\src\lineseq.c@ @\main\major\10 -fver \main\LATEST -merge

4,

The project manager locks the major branch, allowing it to be used only by the developers
who are performing the merges:

cleartool lock —nusers meister,arb,david,sakai
brtype:major@\monet brtype:major@\libpub
Locked branch type "major".

Locked branch type "major".

Merging Work

Because the MA] team is not contributing to a baseline soon, it is not necessary to merge work
(and test the results) in a shared view. MA]J developers can continue working in their own views.

13 - Using ClearCase Throughout the Development Cycle 179

Periodically, the project manager sends an excerpt from the findmerge log to an individual
developer, who executes the commands and monitors the results. (The developer can send the
resulting log files back to the project manager, as confirmation of the merge activity.)

A merged version of an element includes changes from three development efforts: Release 1.0
bug fixing, minor enhancements, and new features (Figure 49).

Figure 49 Merging Baseline 1 Changes into the major Branch

Development here when
BL1 complete

Development Freeze

The project manager verifies that no more merges are needed, by entering a findmerge command
with the -whynot option:

180 Managing Software Projects with ClearCase

Y:\> cleartool findmerge \monet \libpub —-fversion \main\LATEST —-whynot —print

No merge "\monet\src" [\main\major\4 already merged from \main\3]
No merge "\monet\src\opt.c" [\main\major\2 already merged from \main\12]

The merge period ends when the project manager removes the lock on the major branch:

Y:\> cleartool unlock brtype:major@\monet brtype:major@\libpub
Unlocked branch type "major".
Unlocked branch type "major".

13.9 Creating Baseline 2

The MIN team is ready to freeze for Baseline 2, and the MA] team will be soon (Figure 50).
Baseline 2 will integrate all three development efforts, thus requiring two sets of merges:

0 Bug fix changes from the most recent patch release (versions labeled R1.0.2) must be
merged to the main branch.

O New features must be merged from the major branch to the main branch. (This is the
opposite direction from the merges described in Merging Ongoing Development Work on
page 177.)

Figure 50 Baseline 2

Baseline |
2

o

Release
1.02

13 - Using ClearCase Throughout the Development Cycle 181

182

ClearCase supports merges from more than two directions, so both the bug fixes and the new
features can be merged to the main branch at the same time. In general, though, it is easier to
verify the results of two-way merges.

Merging from the r1_fix Branch

The first set of merges is almost identical to those described in Merging Two Branches on page 175.

Preparing to Merge from the major Branch

After the integration of the r1_fix branch is completed, the project manager prepares to manage
the merges from the major branch. These merges are performed in a tightly controlled
environment, because the Baseline 2 milestone is approaching and the major branch is to be
abandoned.

NOTE: It is probably more realistic to build and verify the application, and then apply version
labels before proceeding to the next merge.

The project manager verifies that everything is checked in on both the main branch and major
branches:

Y:\> cleartool Ischeckout —brtype main —recurse \monet \libpub
Y:\> cleartool Ischeckout —brtype major —recurse \monet \libpub
Y:\>

No output from these commands indicates that no element is checked out on either its main
branch or its major branch.

Next, the project manager determines which elements require merges:

Y:\> netuse x: \\view\minor_vu (use any MIN team view)
YA> x:

X:\> cleartool findmerge \monet \libpub —-fversion ...\major\LATEST —print

<lots of output>

A ‘findmerge' log has been written to
"findmerge.log.26-Feb-99.19.18.14"

Managing Software Projects with ClearCase

All development on the major branch will stop after this baseline. Thus, the project manager
locks the major branch to all users, except those who are performing the merges. Locking allows
ClearCase to record the merges with a hyperlink of type Merge:

X:\> cleartool lock —nusers arb,david brtype:major@\monet brtype:major@\libpub
Locked branch type "major".
Locked branch type "major".

Because the main branch will be used for Baseline 2 integration by a small group of developers,
the project manager asked vobadm to lock the main branch to everyone else:

X:\> cleartool lock -nusers meister,arb,david,sakai
brtype:main@\monet brtype:main@\libpub

Locked branch type "main".

Locked branch type "main".

(To lock the branch, you must be the branch creator, element owner, VOB owner, or a member of
the ClearCase group. See the lock reference page.)

Merging from the major Branch

Because the main branch is the destination of the merges, developers work in a view with the
default config spec. The situation is similar to the one described in Preparing to Merge on

page 178. This time, the merges take place in the opposite direction, from the major branch to the
main branch. Accordingly, the findmerge command is very similar:

X:\> cleartool findmerge \monet \libpub —fversion \main\major\LATEST A
—merge —graphical

<lots of output>

A ‘findmerge' log has been written to
"findmerge.log.23-Mar-99.14.11.53"

After checkin, the version tree of a typical merged element appears as in Figure 51.

13 - Using ClearCase Throughout the Development Cycle 183

Figure 51 Element Structure After the Pre-Baseline-2 Merge

Decommissioning the major Branch

After all data has been merged to the main branch, development on the major branch will stop.
The project manager enforces this policy by making the major branch obsolete:

X:\> cleartool lock —replace —obsolete brtype:major@\monet brtype:major@\libpub
Locked branch type "major".
Locked branch type "major".

Integration and Test

Structurally, the Baseline 2 integration-and-test phase is identical to the one for Baseline 1 (see
Integration and Test on page 176). At the end of the integration period, the project manager

184 Managing Software Projects with ClearCase

attaches version label R2_BL2 to the \main\LATEST version of each element in the monet and
libpub VOBs. (The Baseline 1 version label was R2_BL1.)

13.10 Final Validation: Creating Release 2.0

Baseline 2 has been released internally, and further testing has found only minor bugs. These
bugs have been fixed by creating new versions on the main branch (Figure 52).

Figure 52 Final Test and Release

Baseline | minor bugfixes BBl
2 2.0

Before it is shipped to customers, the monet application goes through a validation phase:
0 All editing, building, and testing is restricted to a single, shared view.

0 All builds are performed from sources with a particular version label (R2.0).

O Only the project manager has permission to make changes involving that label.

0 All labels must be moved by hand.

0 Only high-priority bugs are fixed, using this procedure:

a. The project manager authorizes a particular developer to fix the bug, by granting her
permission to create new versions (on the main branch).

b. The developer’s checkin activity is tracked by a ClearCase trigger.

C. After the bug is fixed, the project manager moves the R2.0 version label to the fixed
version and revokes the developer’s permission to create new versions.

Labeling Sources

In a view with the default config spec, the project manager creates the R2.0 label type and locks it:

13 - Using ClearCase Throughout the Development Cycle 185

186

cleartool mklbtype —c "Release 2.0" R2.0@\monet R2.0@\libpub
Created label type "R2.0".
Created label type "R2.0".

cleartool lock —nusers meister Ibtype:R2.0@\monet Ibtype:R2.0@\libpub
Locked label type "R2.0".
Locked label type "R2.0".

The project manager labels the \main\LATEST versions throughout the entire monet and
libpub development trees:

cleartool mklabel —recurse R2.0 \monet \libpub
<many label messages>

During the final test phase, the project manager moves the label forward, using mklabel
-replace, if any new versions are created.

Restricting Use of the main Branch

At this point, use of the main branch is restricted to a few users: those who performed the merges
and integration leading up to Baseline 2 (see Merging from the major Branch on page 183). Now,
the project manager asks vobadm to close down the main branch to everyone except himself,
meister:

Z\> cleartool lock —-replace —nusers meister brtype:main
Locked branch type "main".

The main branch is opened only for last-minute bug fixes (see Fixing a Final Bug on page 187.)

Setting Up the Test View

The project manager creates a new shared view, r2_vu, that is configured with a one-rule config
spec:

Z\> cleartool mkview —tag r2_vu \\nt_svr\public\integ_r2.vws
Created view.

Host-local path: nt_srv:c:\publiclinteg_r2.vws

Global path: \\nt_srv\publiclinteg_r2.vws

Z\> cleartool edcs —tag 12_vu

Managing Software Projects with ClearCase

This is the config spec:

element * R2.0

This config spec guarantees that only properly labeled versions are included in final validation
builds.

Setting Up the Trigger to Monitor Bugfixing

The project manager places a trigger on all elements in the monet and libpub VOBs; the trigger
fires whenever a new version of any element is checked in. First, he creates a script that sends
mail (for an example script, see Notify Team Members of Relevant Changes on page 138).

Then, he asks vobadm to create an all-element trigger type in the monet and libpub VOBs,
specifying the script as the trigger action:

cleartool mktrtype —nc -element all —postop checkin —brtype main #

—exec "ccperl \\neon\scripts\notify_manager.pl" r2_checkin@\monet r2_checkin@\libpub
Created trigger type "r2_checkin".

Created trigger type "r2_checkin".

Only the VOB owner or a member of the ClearCase group can create trigger types.

Fixing a Final Bug

This section demonstrates the final validation environment in action. Developer arb discovers a
serious bug and requests permission to fix it. The project manager grants her permission to create
new versions on the main branch, by having vobadm enter this command.

Z\> cleartool lock —replace —nusers arb,meister brtype:main
Locked branch type "main".

arb fixes the bug in a view with the default config spec and tests the fix there. This involves
creating two new versions of element prs.c and one new version of element opt.c. Each time arb
uses the checkin command, the r2_checkin trigger sends mail to the project manager. For
example:

Subject: Checkin \monet\src\opt.c by arb

\monet\src\opt.c@ @\main\9
Checked in by arb.

13 - Using ClearCase Throughout the Development Cycle 187

188

Comments:
fixed bug #459: made buffer larger

When regression tests verify that the bug has been fixed, the project manager revokes arb’s
permission to create new versions. Once again, the command is executed by vobadm:

Z\> cleartool lock —replace —nusers meister brtype:main
Locked branch type "main".

The project manager then moves the version labels to the new versions of prs.c and opt.c, as
indicated in the mail messages. For example:

Z\> cleartool mklabel —-replace R2.0 z:\monet\src\opt.c@@\main\9
Moved label "R2.0" on "prs.c" from version "\main\8" to "\main\9".

Rebuilding from Labels

After the labels have been moved, developers rebuild the monet application again, to verify that
a good build can be performed using only those versions labeled R2.0.

Wrapping Up

When the final build in the r2_vu passes the final test, Release 2.0 of monet is ready to ship. After
the distribution medium has been created from derived objects in the 12_vu, the project manager
asks the ClearCase administrator to clean up and prepare for the next release:

0 The ClearCase administrator removes the checkin triggers from all elements by deleting the
all-element trigger type:

cleartool rmtype trtype:r2_checkin@\monet trtype:r2_checkin@\libpub
Removed trigger type "r2_checkin".
Removed trigger type "r2_checkin".

0 The ClearCase administrator reopens the main branch:

cleartool unlock brtype:main
Unlocked branch type "main".

Managing Software Projects with ClearCase

Moving from View Profiles to UCM

This appendix compares view profile features with UCM features and describes how to move a
project from view profiles to UCM.

Al View Profiles and UCM

Base ClearCase includes a set of features called view profiles, which you can use to automate much
of the work required to set up and maintain your team'’s shared ClearCase configuration. The

Unified Change Management (UCM) process provides a more complete solution for organizing
software development teams. If you currently use view profiles, you may want to move to UCM.

Feature Comparison

This section compares the features of view profiles and UCM.

Branches and Streams

In UCM, the project and its integration stream take the place of the view profile. Views attached to
the integration stream are configured to select the project’s shared integration branch, just as a
view profile’s config spec selects a shared common branch.

In view profiles, developers can work independently by setting up private branches for
development work. In UCM, team members join a project at which time they create their own
development work areas. A development work area consists of a development stream and a
development view.

A - Moving from View Profiles to UCM 189

Moving Work Among Branches or Streams

When working on a private branch in view profiles, there is no automated way to incorporate
changes from other developers onto the private branch. In UCM, developers use the rebase
operation to update their development work areas with the latest work delivered by other
developers to the integration stream and incorporated into a baseline.

In view profiles, developers finish a private branch when they complete a task. Finishing a
private branch closes that branch and merges work to the integration branch, where it is merged
with other sources. In UCM, activities record the versions that you create to complete a
development task as change sets. The deliver operation moves activities from the development
stream to the integration stream. Your development stream remains in place after a deliver
operation, and you can continue to work in it.

VOBS and Components

View profiles contain a list of VOBs that hold project data. UCM projects organize directory and
file elements into components, and each stream keeps a list of components.

Checkpoints and Baselines

View profiles capture stable configurations of a project with checkpoints, a set of labeled
versions. UCM uses baselines, which capture a set of versions per component.

Table 5 summarizes the key differences between view profiles and UCM features.

Table 5 View Profile Features and Their UCM Counterparts

View profile construct

UCM counterpart

View profile

Project and integration stream

Integration branch

Integration stream

Private branch

Development stream

Set up private branch

Create a development stream/join project

Finish private branch

Deliver work to integration stream

Branch is closed when work is completed
and merged to integration branch.

Development stream is not closed after a
deliver operation.

Managing Software Projects with ClearCase

Table5 View Profile Features and Their UCM Counterparts

View profile construct

UCM counterpart

No automated support for updating private
branch with work from other developers.

Rebase operaton adds changes from the
integration stream to private work area.

Views are configured with information from
profiles.

Views are configured with information from
streams.

A.2 How to Move View Profile Information to UCM

This section presents some general guidelines on how to move projects from view profiles to

UCM.

Preparing Your View Profile Project

Before moving work to UCM, finish all private branches. Work on private branches cannot be
moved directly to a UCM project. After work has been merged into the integration branch, create
a checkpoint that labels all versions to be migrated to the UCM project.

Moving the View Profile Information

1. Convert each VOB of the view profile project into a component.

2. For each component, import the label used for the checkpoint created in Step #1. By
importing a label, you are creating a new baseline for each component.

3. Create a UCM project, adding each baseline created in Step #2.

Members of the project team can now join the project, creating their own development streams

and views.

For further information on creating a UCM project, see Chapter 5, Setting Up the Project.

A - Moving from View Profiles to UCM

191

192 Managing Software Projects with ClearCase

ClearCase-ClearQuest Integrations

ClearCase supports two integrations with ClearQuest. This appendix provides information that
you need to manage both integrations in the same development environment.

B.1 Understanding the ClearCase-ClearQuest Integrations

The integration of ClearQuest and ClearCase associates one or more ClearQuest records with one
or more ClearCase versions, allowing you to use features of each product. ClearCase supports
two separate integrations with ClearQuest:

O The base ClearCase-ClearQuest integration

O The UCM-ClearQuest integration

Online help that describes the base ClearCase-ClearQuest integration is available from within
the ClearQuest Integration Configuration GUI on Windows. Note that this integration cannot be
used with UCM projects.

PRODUCT NOTE: To start the ClearQuest Integration Configuration:

0 In ClearCase, click Start>Programs>Rational ClearCase
Administration>Integrations>ClearQuest Integration Configuration.

O InClearCase LT, click Start>Programs>Rational ClearCase LT Server>ClearQuest
Integration Configuration.

For further information on the UCM-ClearCase integration, see Part 1 of this book.

B - ClearCase-ClearQuest Integrations 193

194

In general, we recommend that you use the base ClearCase and UCM integrations separately,
and avoid using a common ClearQuest user database. However, it is possible for both
integrations to use the same ClearQuest user database. This can be useful if you are moving a
project to UCM and have a substantial amount of information in a ClearQuest user database that
was created with the base ClearCase-ClearQuest integration. You may want the new work in
UCM to be reflected in new ClearQuest records in the same ClearQuest user database.

The remainder of this appendix discusses considerations in managing the coexistence of the base
ClearCase-ClearQuest integration and the UCM-ClearQuest integration.

Managing Coexisting Integrations

When a ClearQuest user database that had been integrated with ClearCase previously is
configured for integration with UCM, the existing change sets are preserved intact in the
ClearQuest user database, but cannot be migrated to the UCM integration.

Change sets of existing records in the ClearQuest user database are preserved, and you can
access them from ClearQuest. To continue work on a task in a project that has been migrated to

UCM, create a new, corresponding, UCM activity and continue work there.

See Planning How to Use the UCM-ClearQuest Integration on page 36 for related information.

Schema

A ClearQuest schema can contain modifications from both the base ClearCase-ClearQuest
integration and the UCM-ClearQuest integration. A record type in such a schema would include
both the ClearCase package and the Unified Change Management package.

An individual record of that record type can store either ClearCase or UCM change set
information, but not both.

Presentation

The form for a record type that uses both integrations includes two tabs to show the change set
information associated with each integration, as shown in Figure 53. The Unified Change

Managing Software Projects with ClearCase

Management tab lists the change set for a UCM activity. The ClearCase tab shows the change set
associated with a ClearQuest record.

Figure 53 Change Sets in ClearQuest GUI

g ClearQuest - [ccog : - All UCH Activities [All_UCH_Activities]]

I:l File Edit ¥iew Actions Query Window Help -|E|ﬂ
%@Iﬁﬂ Hl é{;llﬁl [l Bun Query | ﬂlil @lk‘?” i3 Mew Defect | 4 lrl gl EI
| id Headline State | Owner | ucm_project record_type
EHE wiorkzpace: Queries, Chart
EH; Personal Queries coogl0000002 | Corect misspelings Opered |freitas Defect
- AllUCH Activiies

--EI Public HQueries

Result set 4 Query editor £ Display editor £ Sl editor f

M ain Unified Chanage Management | C|ea[Case|
UCH Project: Stream: &I
ISightings j Ifleitas_sightings — |
Yiew:

freitas_sighti
Irel a3 sightings
Change Set:

MHame I Wersions I Checked Out |

“bigfoot_projectsh. 1 Mo

“bigfoot_projectstBigfoatSightings. et 1 Mo

K] I 4 IID: ooooooot 3 I)II
4] | ©l

|Record: 1 |Count: 2 s

B - ClearCase-ClearQuest Integrations 195

196 Managing Software Projects with ClearCase

Customizing ClearCase Reports

This appendix explains how to customize ClearCase Reports. Specifically, it introduces the
ClearCase Reports Programming Interface and gives examples of how you can customize the
the report procedures and the user interface.

C.1 How ClearCase Reports Works
ClearCase Reports consists of two parts:
O The report procedures, which you can modify

0 The ClearCase Reports applications (Report Builder and Report Viewer), which you cannot
modify

The report procedures are hooks into the applications; they implement all the operations
necessary to generate and view a specific report. The applications collect user input, interpret it,
and run the appropriate report procedure. At run time, ClearCase Reports executes as two
applications: ClearCase Report Builder and ClearCase Report Viewer. The Report Builder is used
to select and define a report’s parameters; the Report Viewer is used to view the report output.

All report procedures require an interface specification. This specification determines the user
interface information presented to users in the Report Builder and Report Viewer. When users
select a folder, the Report Builder scans the interface specification of each report in the associated
subdirectory and places the contents in a temporary buffer. When users select a specific report,
Report Builder extracts from this buffer the interface information associated with the report that
is displayed in the Report Builder and Report Viewer. After users provide the required report
parameters, the Report Builder generates the report and passes the data to the Report Viewer.

C - Customizing ClearCase Reports 197

198

The commands that the Report Builder uses include an -i option, which extracts the interface
specification from the report procedure. If the report procedure does not include an interface
specification or if the structure and contents of that specification are not what the Report Builder
expects, report processing stops.

For more information on the processing sequence between the ClearCase Reports applications
and the report procedures, see Run-Time Processing Sequence for Reports Programming Interface on
page 200

C.2

What You Can Customize in ClearCase Reports

The ClearCase programming interface enables you to customize four parts of the Report Builder
user interface and two parts of the Report Viewer. You can customize by adding, changing, or
removing information for the annotated areas of the Report Builder (Figure 54):

Area 1. The name of the folders in the tree pane.

Area 2. The directory organization displayed in the tree pane.
Area 3. The report description.

Area 4. The report parameters

Oo0oo0oo

Managing Software Projects with ClearCase

Figure 54 Customizable Areas of Report Builder Interface

&+ ClearCase Report Builder | =10 x|
Feport - Help
J B :un Report W Exit k" Help
=1 “Reports Reports |
1 {7 ClearCase Tool: Activities in Projects
-] Elements Cornpleted Activities in Projects 3
2 ——3 IJCM Projects Continued Activities in Projects
3 UCM Streams Mew .fﬂ-.n:tivitigs_ i.n Projects
T Pending Activities
: Streams not Febazed
-7 Wiews

Select projects in UCM Processz VOB
4

| Y

You can customize by adding, changing, or removing information for the annotated areas of the
Report Viewer (Figure 55).

O Area 1. The position of a column heading can be moved, a column heading name can be
added, modified, or deleted and a default sort order can be added or removed from any
column heading.

0 Area 2. The commands on the shortcut menu.

C - Customizing ClearCase Reports 199

Figure 55 Customizable Interface for Report Viewer Window

E ClearCasze Repoit Yiewer - Yerzions by Date M= E3
Filter Resuiltz:; |
1 1
Yerzion Path | Yerzion Cre, =
Dhropartz_tezling_snapshot_vizwhicport_tezt_snapshotsdesigntintegrations'Wal WA CCntegration_F... 14 Jun 201
DMeports tesllnsnashutww'ﬂeuttest ma3hu:utu:|e<|n"-mterat|uns'x'~fm aEtnzin®,2 14-lun-10.1
=z ZHANE yEm 4 VAICCIntegration F.. 14-Jun-0.1
Dhre Pru:pertles of %erzion l ma|:|ohu:utxde<|gn‘untegratlnns"-.x-".¢.]x"-.-".-’-‘-.JI:I: |ntegrat|nn 5. Td-un-201
[1-rey t_snanzhnbdesigntwebdavdrat-isb-debav-versinning dn 1d-lun-MA
Dt Compare with Previous Yeisior t_snapshobvdesigninucornz-02 doc@E main'.21 15-Jun-10.0
2 Errer— Yersion Tiee I_snapshabwdesgniwebdavdrat-iet-dekay-versoning.do.. 19-lun-JULL
Dy Histan t_shapshotsdesignywwebombysebdavcoday himd@ & maintd 15-Jun-1001
[NRY 1O e t mapohuhde<|gn"-1ntegrat|nns'x\-’.-’-'-d\\-".-’-'-.JEEIntegratmn F.. 15lun-10.1

D: "arep:rts tesllng_snapshut '-.-'I='l.-'-.l"-.IE|:II:(t tezt_snapshobdesigntcleacase_ w3 N0 mvfs_mp.doc@. . 15-Jun-2001
Dhreparts_tesling_snapshot_viswieport_test_snapshobdesigntclearcase w3 0530 mvf_mp.doc@, . 15-Ju-J01
DAreportz tesling snapshot vizwhieport test snapshobudesignhclearcase w3, 00@E mainh10 15-Jun-10.1
DAreports_tesling_snapshat_wvizwhiepaort_test_snapshobdesionhcleacase_wa Dhnvfe-5 0 dociE@hmal.. 15-lun-2001
D:hreparts_tesling_snapshot_vizwheport_test_shapshotbdesignicleacaze w3 00 nviz-RFZ s dz@@hm,.. 15-Jun-J0.1
Dihreparts_tesling_shapshot_vizwhiepaort_test_shaprhobudesignicleacase w3 Dhnvie-defects wlet@igd,. .. 15-Jun-J0.1
[rhreports_tesling_snapshot_wizwhieport_test_snapshobudesignhintegrationsbeccepechSCC WebDav 2. 15-lun-101
[rhreports_tesling_snapshot_wvizwiieport_test_snapshobdesigntsunsun-80 doc@@hmainh e 15-Jun-20.1
3 I

F"u-l'. B Ty e) L T P Tt m T O o T L AR Liw TN
4

[Show Detail:
™| St Erars

Sop Bepart | Cavebs. . | Clege | Help |

[Erecuting... [Fiawis Frocessed: 121 y

For programming examples that demonstrate how you can make these customizations, see
Report Programming Examples on page 220

Run-Time Processing Sequence for Reports Programming Interface

Before you begin to customize report procedures, it is important to understand the run-time
processing flow for Report Builder and Report Viewer. Processing occurs in three phases.

In phase 1, the user opens one of the subfolders in the Reports folder. The Report Builder

processes the interface specification of all report procedures associated with the reports in that
subfolder and presents the description of each report in the reports pane of the Report Builder.

200 Managing Software Projects with ClearCase

The parameters associated with the first report listed appear in the parameters pane. This
processing is done with the command that uses the -i option.

In phase 2, the user selects a report in the reports pane. The Report Builder populates the
parameters pane with the parameters required for that report. When the user clicks a parameter,
the associated parameter chooser prompts the user to provide a value. When all parameters have
values, the user can run the report. (The Run Report button is not available until all parameters
have values.)

In phase 3, the report is generated. A command line, whose parameters are defined in the
interface specification, is passed to the Report Viewer, with the parameter values. The Report
Viewer runs the report procedure and uses either cleartool or the ClearCase Automation Library
(CAL) interface to retrieve information from the VOB. The report procedure returns the
information to the Report Viewer, which sorts, formats, and displays it. The right-click behavior
for all rows in the report (as defined in the interface specification) is now enabled, and the user
can also manipulate the report data.

Figure 56 illustrates this processing sequence.

C - Customizing ClearCase Reports 201

Figure 56 Run-Time Processing Sequence

USER ACTIONS RUN-TIME PROCESSING
Phase 1
Report Builder
. Report Builder application
Reports Description 1 L
Folder 1 D intion 2 Runs command with -i Report
ocer escription = 5. option to extract interface ¢ procedures
Folder 2 Parameter 1 specification from report in Folder 2
procedure.
Parameter 2
Phase 2
Report Builder
Reports Report 1
Folder 1 Report 2 -«
Folder 2
Parameter 1
Parameter 2
Report Builder
Reports Report 1 Report Builder application
Folder 1 Report 2 i Caches parameter values
Folder 2 and sends them to Report
Parameter 1 Viewer.
Phase 3 ¢
R Vi . L
eport Viewer Report Viewer application
Column 1 Column 2 .
Starts report procedure with p d
Row 1 a command that passes ’E ! ro;e urf 1
Command 1 parameter values. or kepor
Command 2 ~€—| Formats report data returned.
Command 3

202 Managing Software Projects with ClearCase

To execute these processing steps correctly, a report procedure must meet the following
requirements:

0 The directory that contains the report procedure must be found at known location. The
Report Builder reads the \reports\scripts directory to determine the report procedure file
names, which it calls when a user clicks the associated directory folder.

0 The report procedure must have a valid interface specification. If the expected format is not
present, the report will not run.

O The interface specification in the report procedure must use parameters and choosers
supplied by ClearCase Reports. See Parameters Supplied with ClearCase Reports on page 211.

0 The report procedure must support a command line interface that the Report Viewer can
use to pass user-defined parameter values to the report procedure.

Configuring Shared Report Directories

When ClearCase is installed on the client, the files for ClearCase Reports are installed in
ccase-home-dir\reports. Before you modify the contents of this directory, create a copy of itin a
shared location. You can then delete or rename folders and add or modify report procedures.

To create the copy, do one of the following:
0 Copy the files to a new directory.

0 Place a copy of the files under source control and create a ClearCase view to serve as the
shared location.

We recommend that you place the copy of the report procedures under source control.

You must remove the .dll and .exe files from the customization directory. The subdirectories for
\scripts,\script_tools, and \scripts_rightclick must be present. The \scripts directory becomes
the root node Reports in the Report Builder tree pane; you can modify this directory tree. We
recommend that you do not delete any files that are in \script_tools and \scripts_rightclick; you
may add your own, of course.

The help file used by the reports cannot be modified and is not included in the \reports directory.
The help file for ClearCase Reports is located in ccase-home-dir\bin\cc_reports.hlp.

C - Customizing ClearCase Reports 203

204

Adding Report Procedures to Source Control

To place a copy of ccase-home-dir\reports under source control:

1.

2.

Copy all files to a temporary directory.

In the temporary directory, enter a command of this form:

clearexport_ffile -o name-of-data-file

Copy the data file to an existing VOB.

In the \reports directory in an existing VOB, enter a command of this form:
clearimport -verbose -directory \reports\name-of-data-file

Create a dynamic or snapshot view for the ClearCase reports data that is now under source
control .

Setting the Report Builder to the Customized Directory

After you have copied the installed files for ClearCase Reports from ccase-home-dir\reports to a
shared directory location, you can set Report Builder to use this location:

1.

In the Report Builder window, click Report>Set Scripts Location to open the Configure
Reports Directory dialog box.

In the dialog box, do one of the following:

0 Type the directory path for the customized directory in the text box.
0 Click... to open the Browse for scripts location dialog box to select a directory location.

NOTE: After changing the ClearCase Reports user interface, you must restart Report Builder
to activate the changes.

Default Directory Structure for ClearCase Reports

All files for ClearCase Reports are stored in ccase-home-dir\reports. This is the directory structure:

Managing Software Projects with ClearCase

reports\
ccreportbuilder.exe
ccreportviewer.exe
cctypechooser.dll
ccpathchooser.dll

scripts\
ClearCase_Tools\
Elements\
Attributes\
Branches\
Labels\
Triggers\

UCM_Projects\

UCM_Streams\

Views\

VOBs\
scripts_rightclick\
script_tools\

Populating the Report Builder Tree Pane

As Figure 57 shows, the Report Builder window contains three panes: the left pane is the tree
pane, the top-right pane is the reports pane, and the bottom-right pane is the parameter pane.
When the user clicks any folder in the tree pane, the Report Builder runs the associated report
procedures from the command line. The -i option in the command line enables the Report
Builder to use a discovery algorithm to collect the user interface information for Report Builder.

C - Customizing ClearCase Reports 205

Figure 57 Report Builder User Interface

E# ClearCase Report Builder) 10| x|
Feport Help
‘ B :un Report ~Jt Exit k2 Help
El{:| “Feports Fepaorts |
{:l ClearCaze Toolz Checkinz Since Date by Lser
EESEE l=ments Elerments Created by User
D Attribtes Elementz with Changed Element Type
Elernents with File Mame
% ErinThES Elernents with Mew Versions Since Date
{:I TE! e Yerzsions by Date
riggers
-] UCM Projects
-] UCM Streams
{:I VOBs
- Wiews

Select pathnames in view to report on
Since datetime
Agzociated with uzer [values are non-domain-qualified)

o

The Report Builder “walks” through the \scripts subdirectory. Directories in the tree appear as
folders in the tree pane. Any files whose extensions match those listed below are listed in the

reports pane.

.exe Typically a Visual C++ application that uses ClearCase Automation Library
(CAL) to extract data

.pl Perl, executed under perl.exe from user’s PATH environment variable, for
example, ActiveState Perl

.prl ccperl

Jjs JavaScript, run under Windows Scripting Host (cscript.exe)

.vbs VBScript, run under Windows Scripting Host (cscript.exe)

206 Managing Software Projects with ClearCase

All other files are ignored. The file-name extension of report procedures supplied with ClearCase
Reports is .prl, which the Report Builder associates with ccperl.exe.

At run time, the Report Builder displays all folder names, substituting a space for the underscore
and dropping the file-name extension. There is one exception: the root directory is always named
Reports. This convention cannot be changed.

For example, for the on-disk directory tree shown here

scripts\

Admin_Reports
view_aging.prl
all_views.prl

UCM_Reports\
lagging_streams.prl
completed_acts.prl

the Report Builder displays text in the tree pane as
\Reports

Admin Reports\
UCM Reports\

C.3 Report Procedure Interface Specifications

As the Report Builder finds report procedures in the customized directory, it queries each report
procedure for its interface specification. It does this by starting a separate process with
CreateProcess(). A valid report procedure must implement an interface specification and return
formatted text to STDOUT that conforms to this specification:

C - Customizing ClearCase Reports 207

208

description : ['<text to display in description pane for this report>"]
id : <numeric help id>

helpfile : ["<full path to user-written help file for what's this report
help>"]

parameters : [<parameter_spec_1>] [<parameter_spec_2>] ...
[<parameter_spec_N>]

rightclick : [<rightclick_spec_1>] [<rightclick_spec_2>] ...
[<rightclick_spec_N>]

fields : [<field_spec_1>] [<field_spec_2> ... [<field_spec_N>]

If a serious parsing error occurs in processing the interface specification, the report does not
appear in the reports pane. The helpfile specification is reserved for future use and is not
supported in this release. For information on troubleshooting parsing errors, see Troubleshooting
on page 244.

The examples in the following sections show how the interface specification is defined in specific
report procedures.

Interface Specification for All_Views.prl
The Report Builder uses this command to run All_Views.prl:
ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\Views\All_Views.prl" -i

This is the interface specification:

description : "All Views"

id : 2001

helpfile :

parameters :

rightclick : Properties_of View(single)

fields : "View Tag"(view_tag, rightclick, initial_width 30, sort 1) "View
Owner"(user_dq)

The report interface attaches the Report Viewer to the View Tag and View Owner fields; the

right-click event in the Report Viewer window calls Properties _of_View.prl, which is based on
a data stream from the View Tag field.

Managing Software Projects with ClearCase

Interface Specification for test_null.prl
The Report Builder uses this command to run test_null.prl:
ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\samples\test_null.prl" -i

This is the interface specification:

description : "null interface"
fields : "field1"(string)

This report interface attaches the Report Viewer to the field named field1.

Interface Specification for test2_null.prl
The Report Builder uses this command to run test2_null.prl:
ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\samples\test2_null.prl" -i

This is the interface specification:
description : "null interface"

When only description is defined, a report procedure can run other graphical user interfaces (for
example, clearprompt) or otherwise interact with the user. Note, the only required line in the
interface specification is description; all other interface definitions are optional. The reports in
the \ClearCase_Tools folder define description only.

Description Specification

The description is the only required part of an interface specification. Descriptions can contain
anything other than the delimiter, a double quote (“). There is no maximum length for this
definition, but long strings do not wrap in the reports pane.

Help ID Specification

Help IDs for the description and parameter fields are supplied for the Report Builder user
interface. The help id specification is the ID that supports context-sensitive help for the

C - Customizing ClearCase Reports 209

description or parameter fields in the Report Builder user interface. The IDs are integers in the
following range:

0-999 Context help for parameters
2000-2999 Context help for report descriptions

The help file for ClearCase Reports is ccase-home-dir\bin\cc_reports.hlp. The help IDs for the
parameter and description fields are included in this file. In this version of ClearCase Reports,
you cannot add an ID for your own report.

Parameters Specification

When specifying parameters, you can use only those supplied with ClearCase Reports. Each
parameter has an associated chooser control, parameter text, and a help ID (Table 6). When you
use one of these parameters, naming it is all that is required. For example, this is the parameters
specification for the Elements Changed Between Two Labels report:

parameters : LOOKIN LABEL LABEL

The order of parameters is important. They are displayed in the parameter pane in the order of
the specification. (Each parameter appears as a link; when users click the link, they are prompted
to enter a parameter value.) At run time, the Report Viewer calls the report procedure, which
must handle the parameter values in the same order as defined in the specification.

The parameters in Table 6 that are associated with the Type Chooser must also include the
LOOKIN parameter in the interface specification. The LOOKIN parameter must have a value
before any values for other parameters that use the Type Chooser can be specified. The paths that
are the values for the LOOKIN parameter are used to build the set of VOBs that types can be read
from. At run time, if a user attempts to set a type parameter in reverse order, the Report Builder
displays this error message:

Before this parameter can be set, you must first set a value for the “Select
pathnames in view to report on” parameter.

210 Managing Software Projects with ClearCase

Table 6 Parameters Supplied with ClearCase Reports (Part 1 of 3)

Parameter Default text displayed in Help Chooser Selection
the parameter pane ID

PROJECTS Select projects in UCM 1 Path (UCM) | Multiple
Process VOB

STREAMS Select streams in UCM 2 Path (UCM) Multiple
Process VOB

ACTIVITIES Select activities in UCM 3 Path (UCM) Multiple
Process VOB

PROJECT Select project in UCM 4 Path (UCM) | Single
Process VOB

STREAM Select stream in UCM 5 Path (UCM) Single
Process VOB

ACTIVITY Select activity in UCM 6 Path (UCM) | Single
Process VOB

ISTREAM Select Integration Streamin | 7 Path (UCM) Single
UCM Process VOB

PVOB Select one Process VOB Tag | 8 Path (file Single

selection)

COMPONENT Type a single UCM 9 Text Single
component object selector
(no verification performed)

BASELEVEL Type asingle UCM baseline | 10 Text Single
object selector (no
verification performed)

ISTREAMS Select Integration Streams 11 Path (UCM) Multiple
in UCM Process VOB

PVOBS Select Process VOBs Tags 12 Path (file Multiple

selection)

C - Customizing ClearCase Reports

211

Table 6 Parameters Supplied with ClearCase Reports (Part 2 of 3)

Parameter Default text displayed in | Help Chooser Selection
the parameter pane ID
COMPONENTS Type a list of UCM 13 Text Multiple
components object
selectors (no verification
performed)
BASELEVELS Type a list of UCM 14 Text Multiple
baselines object selectors
(no verification performed)
LOOKIN Select pathnamesinviewto | 15 Path (file Multiple
report on selection)
USER Associated with user 17 Text Single
(values are
non-domain-qualified)
GROUP Associated with group 18 Text Single
(values are
non-domain-qualified)
LABEL With label 19 Type Single
ATTRIBUTE With attribute 20 Type Single
ATTRIBUTE_VALUE | With value for attribute 21 Text Single
TRIGGER With trigger 22 Type Single
BRANCH With branch 23 Type Single
ELTYPE With element type 24 Text Single
HLTYPE With hyperlink type 25 Type Single
CCTIME Since date/time 26 Date/time Single
BRANCHLEVELS With integer levels of 27 Text Single
branching
FILE_ NAME With filename 28 Text Single
PATH Enter pathname 29 Text Single

212 Managing Software Projects with ClearCase

Table 6 Parameters Supplied with ClearCase Reports (Part 3 of 3)

Parameter Default text displayed in Help Chooser Selection
the parameter pane ID

STRING With string 30 Text Single

INTEGER Enter integer 31 Text Single

REGULAR_ Enter regular expression 32 Text Single

EXPRESSION

Rightclick Specification

The rightclick specification is a list of commands available on the shortcut menu in the Report
Viewer. All right-click events are supported by a list of scripts in the \scripts_rightclick
directory. This specification allows you to control the text on the shortcut menu. At run time,

underscores in these text strings are replaced by spaces.

rightclick : properties_of_view delete_view

By default, the commands are valid for both single and multiple selections of result records in

the Report Viewer. This behavior can be controlled by using the single modifier:

rightclick : properties_of_view(single) delete_view(single)

A special string, sep, allows visual separators to group commands. At run time, these commands
appear on the shortcut menu in the order specified.

C - Customizing ClearCase Reports

213

214

Fields Specification

The fields specification defines the names of the field headings and a number of modifiers to
describe the results a report procedure returns to the Report Viewer. Table 7 describes the
supported modifiers.

Table 7 Fields Modifiers

Modifier Description

sort N Optional. Specifies the sort order for returned records. If specified, this
modifier must be a sequence of integers that begin with 1. If no sort
specification is made, the records remain in the same order as returned
from the report procedure.

Inital width N Optional. Overrides the default width for the field.

<field_type> Required.

hidden Optional. Prevents display of values for this field in the Report Viewer.
If this modifier is used, there is usually an associated sort N modifier for
the field.

rightclick Optional. The field value stream that is sent where any right-click action
g P y 11g
occurs in the Report Viewer. Only one field can be designated as the

rightclick field.

For example, the following fields specification describes a single field with the minimum
specification allowed. The field_type modifier is required.

fields: "view tag"(view_tag)

In this example, the fields specification defines two fields, view tag and last mod time, with all
the allowable modifiers:

fields: "view tag"(view_tag, rightclick, initial_width 10) "last mod
time"(time_t, hidden, sort 1)

Managing Software Projects with ClearCase

field_type Conventions

Table 8 lists the names for field_types and the kind of data represented. We encourage you to use
these definitions in your own report procedures wherever possible, but you can use your own

definitions.

Depending on the column width required to display for a user-defined field_type, the fields

specification in a report procedure may need to adjust the display column size with the

Inital_width N modifier.

Table 8 Field Type Supplied with ClearCase Reports (Part 1 of 2)
Field name Data desciption Example
project UCM Project headline name V4.1

project_objsel

UCM project object selector

Project:v4.1@\projects

stream

UCM Stream headline name

George_v4.1

stream_objsel

UCM Stream object selector

George_v4.1@\projects

activity

UCM Activity headline name

My activity

activity_objsel

UCM Activity object selector

Activity:my_act@\ projects

view_tag View-tag such as returned by Isview | main_latest_view

time_t Integer ticks since 1/1/1970 946934277

cctime Readable time, format is 20-Dec-99.16:01:12
%dfmt_ccase

User User name georgem

User_dq Domain-qualified user name atria\georgem

string Random text hello world

Host Host name georgemnt

Hpath Local machine path to view/VOB D:\ClearCase_Storage\views\jet
directory

View_sttrs View attributes snapshot, ucmview

Element_xpn

Full path to element ending in @@

s:\frontpage\accts\web\photo.htm@@

C - Customizing ClearCase Reports

215

Table 8 Field Type Supplied with ClearCase Reports (Part 2 of 2)

Field name

Data desciption

Example

Element_pn

Full path to element without @@

s:\frontpage\accts\web\photo.htm

Version_pn Version specifier, after @@ \main\v4.0.bl5_main\2
label Label instance name V4.0

Integer Integer number 5

Yes_no yes or no enumerated string Yes

Branch_xpn

Full path to branch

s:\frontpage\accts\web\photo.htm@@\main

version_xpn

Full path to version

s:\frontpage\accts\web\photo. htm@@\main\3

branch Branch name main

Attribute Attribute name normalize_html

Objsel Object selector VOB:\my_vob

Trigger Trigger name post_ci

Eltype Element type text_file

Vob_tag VOB Tag \projects
Parameter Choosers
When a user opens a folder in the Report Builder tree pane, the reports pane is populated with
the list of descriptions that the Report Builder discovered in the interface specification. When the
user selects a report, the associated parameters are loaded in the Report Builder. Each parameter
in the interface specification has associated parameter text, a help ID, and a chooser. All
parameters have an associated chooser (Table 6) These choosers are supplied with ClearCase
Reports:
0 Path Chooser
O UCM Targets Chooser
0 Types Chooser
0 Date/Time Chooser
0 Text Chooser

216 Managing Software Projects with ClearCase

For user information, click Help in any chooser dialog box.

Path Chooser
The Path Chooser is associated with the LOOKIN parameter. It presents a list of view pathnames

for users to select, and then sends the selected pathnames to the report procedure. It is also used
for the PVOB and PVOBS parameters to choose the VOB-tag of a UCM project VOB.

UCM Targets Chooser

The UCM Targets Chooser is associated with the PROJECT, PROJECTS, STREAM, STREAMS,
ACTIVITY, ACTIVITIES, ISTREAM, and ISTREAMS parameters and allows you to select
UCM objects.

Type Chooser

The Type Chooser presents values for the BRANCH, ATTRIBUTE, LABEL, HYPERLINK, and
TRIGGER parameters. All parameters that the Type Chooser supports require an initial value
LOOKIN parameter.

Date/Time Chooser

The Date/Time Chooser is used to select date/time values for the CCTIME parameter.

Text Chooser

The Text Chooser presents values for the COMPONENT, COMPONENTS, BASELINE,
BASELINES, USER, GROUP, ATTRIBUTE_VALUE, ELTYPE, BRANCHLEVELS,
FILE_NAME, PATH, STRING, INTEGER, and REGULAR_EXPRESSION parameters.

Data typed into the Text Chooser is not validated or parsed in any way by the Report Builder or
Report Viewer. The report procedure that accepts the parameter value must perform any
validation required.

For most parameters, the text above the text box is Enter value for user. For parameters that

require the name of a baseline, a component, or an element type, the text changes to reflect the
parameter. For example: Enter value for baseline.

C - Customizing ClearCase Reports 217

218

Viewing the Report

When all required parameters have values, clicking Run Report opens the Report Viewer
window (Figure 58). The Report Builder creates a command line to pass the user-defined
parameters, in the order defined by interface specification . For example, if a report procedure
asks for parameters LOOKIN LABEL, the Report Viewer passes these values as follows:

ccperl elements_with_label.prl %LOOKIN='s:\frontpage\acctst';%LABEL=V4.0;

The Report Viewer creates a process to run the report procedure using ccperl.exe for .prl, perl for
.pl, cscript.exe for .js and .vbs, and default activation for .exe. The report procedure returns
results to STDOUT. The results are separated by semicolons, in the same order, number, and type
specified in the fields definition in the interface specification.

When the report procedure has collected all its data, it exits. The report procedure must return
records to STDOUT in the most efficient manner possible; the Report Viewer sorts the results and
formats them for display. At run time, users can change the default sorting order by clicking the
column headings in the Report Viewer. Simple text sorting is used for all fields except those
whose field_type is time_t, integer, or cctime. For these three fields only, Report Viewer uses
numeric sorting.

Managing Software Projects with ClearCase

Figure 58 Report Viewer Window

ClearCase Report ¥iewer - Elements Changed in Main Since Subbran s IEllﬂ
Filter Rezultz:
Element Path | Element Haz Subbra... | Wmain Branch Mewer 7. &
C:hblesza_wiew_test_1hzourcesdata nio
C:hkflesza_wiew_test_1hzources\data'\4058updt exe nio
C:hbflesza_wiew_test_1\zourcesdata'_IMST321Ex_ nio
C:hbflesza_wiew _test_1hzources‘data'_|SDEL.EXE nio
C:hbflesza_wiew test_1hzources‘data'_SETUP.DLL nio
C:hklesza_wiew_test_1\zourcesdata'_SETUP3Z.LIB nio
C:hblesza_wiew_test_1hzources‘data‘co_gloss_pictures_only. fm nio
C: 'xtflessa wew test 'I'xsu:uuru:es'xdata'x[fl.-'i‘-.T.-'i‘-. £ o
zources data\ll P " £l "
E.'xtflessa_wew_test_'l 'xsu:uuru:es'xdata'xll Hhe e O e 0
C:A\Hlezza_ wiew_test_Tssourceshdatahb ; o
C:hbflezza_wiew_test_1hzources‘datahh '-.-'n.arsu:un Tee 0 b
Chbflezza_wiew_test_1hzources‘datahh st 0
C:AHlezza_view_test_Thsourceshdata\MENWSCHT.OLL nio
C:hkflesza_wiew_test_1\zources\data\PEGDESC.IMI nio
C:hbflesza_wiew_test_1hzources\data\SETUP.EXE nio
C:A\Hlezza_view_test_Thsourceshdata\SETUP.IMI nio =
(RO T TP Y S R hA-=ACCTIHID IKIC .
1 i | B
[Show Details
[T Show Erars
Stop Hepart | Savebs.. Cloze | Help |
|I:|:|m|:|leteu:| |Fh:uws Procezsed; 24 .

Saving Report Data

Clicking Save As in the Report Viewer window opens a standard file selection dialog box to
prompt the user to save the results in one of the following output formats:

.CSV Comma-separated, for import into Access or Excel
HTML For viewing in a Web browser
XML For viewing in Internet Explorer 5 using XSL style sheets

Saving the file is performed by the save_results.prl script in \script_tools. This script supports
two switches, -html and -csv, and the header, followed by semicolon-separated data rows. This

C - Customizing ClearCase Reports 219

script also needs a pathname value for the -out option, where pathname is the value that the Report
Viewer passes from the Path Chooser.

XML output is supported directly by the Report Viewer. You can reimplement the .CSV and
HTML output by modifying save_result.prl. You can also define additional XSL style sheets
that can be referred to in XML output. We recommend that you start with the style sheet supplied
with ClearCase Reports (\script_tools\table.xsl) to create customized XSL files.

C4 Report Programming Examples

All report procedures supplied with ClearCase Reports are written in ccperl. The programming
examples presented in this section are modifications of these report procedures. Report
procedures can be written in many other scripts and programming languages; report procedures
that use other programming languages are available from the ClearCase Customer Web site at
clearcase.rational.com/contrib/T0046/T0046.zip. The following programming examples are
presented in this section:

0 Example 1: Adding a new column to the report for Versions_byDate.prl.

0 Example 2: Changing the directory organization and report description, modifying the
version path to a use different field name, and adding an element type column to report
output for Elements_with_New_Versions_Since_Date.prl.

0 Example 3: Changing the report description, parameter types, and report output for
Elements_Created_by_User.prl.

0 Example 4: Changing the order of commands and adding a command to the shortcut menu
for Element_with_Labels.prl.

0 Example 5: Adding a user-defined command to the shortcut menu for
Element_with_Branches.prl.

In the source code listings that accompany each example, the string ### customization change
marks the changes to the original report that accomplish the task.

220 Managing Software Projects with ClearCase

Example 1: Adding a Column to Report Output

The Versions by Date report lists all versions that exist for the pathname that the user specified.
This report includes the following columns:

O Version Path
O Version Creation Time

The change to this report adds a column that lists the user name associated with each version.
The report procedure is located in
ccase-home-dir\Reports\Scripts\Elements\ Versions_by_Date.prl

Processing Logic
The processing logic of Versions_by_Date.prl is as follows:

1. The LOOKIN parameter, which is the sole parameter for this function, is received in a string
of this form:

LOOKIN = "<path1> [<path2> ...]"

This parameter specifies the list of paths with which the cleartool find command is to be
invoked.

2. The routine, when invoked, extracts the paths from the LOOKIN string and passes them to
the check_lookin() routine (located in common_script.prl).

3. check_lookin() then puts the paths into the global variable $ctfind_paths, enclosing each
path in double quotes; it also performs simple validations on the paths received.

4. Thereport procedure calls cleartool Ishistory, passing $ctfind_paths as the paths parameter,
and with a -fmt parameter to return the necessary information.

5. The report procedure executes a print statement with parameters (that is, the items to print)
of the same number and order as the list passed during interface specification processing.
The Report Builder has the information required to set up the column headings; the report
procedure must conform to this specification to print its output.

Interface Specification

This is the existing interface specification for Versions_by_Date.prl:

C - Customizing ClearCase Reports 221

222

if (I~-if) {
print "description : 'Versions by Date'\n";
print "id : 2018\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN *;
print "\n";
print_version_rightclick();
print "fields : ";
print "\"Version Path\"(version_xpn, rightclick, sort 2) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, sort 1, hidden) ";
print "\n";
exit(0);

Changes Required

To add an additional column of report output:

1. Add a properly coded print statement to the interface specification that the Report Builder
can pass to the Report Viewer.

2. Add a %Fu; to the -fmt parameter in the cleartool Ishist call, to get this information from
ClearCase.

3. Properly extract the user information into some variable after the cleartool Ishist call returns
its output, so that it can be printed.

4. Print the user variable in the same order as it appeared in the interface specification so that
it appears under the correct column heading.

Modified Report Procedure

Here is the modified version of Versions_by_Date.prl. This report procedure is examplel.prl in
clearcase.rational.com/contrib/T0046/T0046.zip.

Managing Software Projects with ClearCase

$start_dir = $0; $start_dir =~ sN\\scripts\\.*\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc =" if ($cc) {i};

$ct =" if ($ct) {;};

$debug =""; if ($debug) {;};

$skip_path_checks =""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX =" if (SCLEARCASE_XN_SFX) {;};
$ctfind_paths = "; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {

$err = join("", @_);

if ("$err" 1="") {
print STDERR "$err\n*;

}

sleep(2);

if ("$err" 1=""{
exit(1);
}else {
exit(0);

}

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_din\common.prl™);
$buf =",
while(<INCLUDE>) {
$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'‘$common_din\common.prl™);

my $args = $ARGV[0];
$args =~ s/%l/ /g;

@args = split(";", $args);
$required_args = 0;
foreach(@args) {

sIN 1+,
s/ 1+$/1;
validate_arg_length($_);
if (/7-if) {

C - Customizing ClearCase Reports 223

print "description : 'Versions by Date'\n";
print "id : 2018\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN *;
print "\n";
print_version_rightclick();
print "fields : ";
print "\"Version Path\"(version_xpn, rightclick, sort 2) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, sort 1, hidden) ";
customization change *** added following line
print "\"User'(user) ";
print "\n";
exit(0);
}
if (/A\LOOKIN[1*=[T*(.*)) {
check_lookin($1);
$required_args++;
next;
}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
if ($required_args != 1) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
SENV{"d;"} = "%od;%0";
open(CTHIST, "cleartool Ishist -fmt '%d;%e;%n\\n’ -recurse -nco $ctfind_paths

[");

224 Managing Software Projects with ClearCase

while(<CTHIST>) {
chomp;
if (/create directory version/ || /create version/) {
($date, $Sevent, $xpn) = split /;/, $_, 3;
if ($date) {;}
if ($event) {;}
if ($xpn) {;}
$timet = time_to_ticks($date);
customization change *** added following line
$user = ‘cleartool desc -fmt '%Fu' '$xpn*;
customization change *** added ";$user" to following line
print "$xpn;$date;$timet;$user\n”;
}
}

do_exit();

Example 2: Changing Report Directory Organization, Report Description,
and Report Output

The Elements with New Versions Since Date report lists all new versions for the pathname and
since the date and time specified by the user. This report includes the following columns:

0 Element Path
O Version Path
O Version Creation Time

The changes to the report procedure do the following:

0 Display in the Report Builder tree pane a new directory named
ccase-home-dir\Reports\Scripts\Elements\New_Versions directory.

0 Display a new report description: Types of Elements with New Versions Since Date.
0 Display the version path information in the version_xpn field in a different format.

0 Add a column in the report output to display a new column for Element Type.

The report procedure is located in
ccase-home-dir\Reports\Scripts\Elements\Elements_with_New_Versions_Since_Date.prl.

C - Customizing ClearCase Reports 225

226

Processing Logic

The processing logic of Elements_with_New_Versions_Since_Date.prl is as follows:

1.

When the Report Builder processes the interface specification, the report procedure yields
two parameters:

LOOKIN
CCTIME

The mechanics of the LOOKIN parameter are described in Example 1: Adding a Column to
Report Output. When the report procedure receives CCTIME, it is a string of this form:

CCTIME = "time"
This parameter specifies the times that the cleartool find command uses.

When the report procedure is invoked by the Report Viewer using a fully qualified command
line, it extracts the values from the CCTIME string and passes them to the
chooser_time_to_cctime() subroutine (located in common.prl). This routine converts the
string to the correct format (for passing to cleartool) and returns it.

The report procedure opens a pipe from a cleartool find -print command, with the converted
cctime value passed in as a created_since(<cctime>) string. created_since is a
query_language(1) predicate, which is frequently used in conjunction with the find
command.

As the values from the cleartool find are returned, the report procedure calls cleartool
describe on the output to get the version-creation time. The routine calls the time_to_ticks()
routine (in common.prl) to get the time equivalent in ticks.

The report procedure gets the path and version ID from the cleartool find output, splitting
it on the value of the SCLEARCASE_XN_SFX extended naming symbol for the host. Finally,
the report procedure prints the information in the same order as defined in the interface
specification.

Interface Specification

This is the existing interface specification for Elements_with_New_Versions_Since_Date.prl:

Managing Software Projects with ClearCase

if (I~-if) {
print "description : 'Elements with New Versions Since Date\n";
print "id : 2017\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN CCTIME";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, sort 2, rightclick) ";
print "\"Version Path\"(version_pn) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, hidden, sort 1) ";
print "\n";
exit(0);

Changes Required

To change the directory organization and report description, to modify the version path to use a
different field name, and to add an element type column to the report output:

1. Create a new folder, New_Versions, and move the report procedure there.
2. Add a properly coded print statement to the interface specification that does the following:

O Specifies how to display the report description information in the Report Builder
O Specifies how to display the report in the Report Viewer

3. Add additional processing to the cleartool find output as required to get the desired
information for element type.

4. Properly extract the new information for element type into a variable.

5. Print the new information in the proper position so that it appears under the correct column
heading.

Modified Report Procedure

Here is the modified version of Elements_with_New_Versions_Since_Date.prl. This report
procedure is example2.prl in clearcase.rational.com/contrib/T0046/T0046.zip.

C - Customizing ClearCase Reports 227

$start_dir = $0; $start_dir =~ s/\\scripts\\.*\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc =" if ($cc) {i};

$ct =" if ($ct) {;};

$debug =""; if ($debug) {;};

$skip_path_checks =""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX =" if (SCLEARCASE_XN_SFX) {;};
$ctfind_paths = "; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" 1="") {
print STDERR "$err\n*;
}
sleep(2);
if ("$err" 1=""{
exit(1);
}else {
exit(0);
}
}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_din\common.prl™);
$buf =",
while(<INCLUDE>) {
$buf =$buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'‘$common_din\common.prl™);

my $args = $ARGV[0];
$args =~ s/%/ /g;

@args = split(";", $args);
my $cctime =",
$required_args = 0;
foreach(@args) {

228 Managing Software Projects with ClearCase

s 1+,
si[1+$/1;
validate_arg_length($_);
if (/i) {
customization change *** changed following line
print "description : 'Types of Elements with New Versions Since
Date\n";
print "id : 2017\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN CCTIME";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, sort 2, rightclick) ";
customization change *** changed following line
print "\"Version Path\"(version_xpn) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, hidden, sort 1) ";
customization change *** added following line
print "\"Element Type\"(eltype) ";

print "\n";
exit(0);
}
if (/A\LOOKIN[T*=[T*(.*)) {
check_lookin($1);
$required_args++;
next;
}
if ("CCTIME[*=[[**(["*1)™)) {
$cctime = chooser_time_to_cctime($1);
$required_args++;
next;
}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}

if ($required_args !=2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

C - Customizing ClearCase Reports 229

230

open(CTFIND, "cleartool find $ctfind_paths -version ‘created_since($cctime)’
-print *);
while(<CTFIND>) {
chomp;
if (CHECKEDOUT/) {next;}
$vertime = ‘cleartool desc -fmt '%d' '$_*;
##H# customization change *** added following line
$eltype = ‘cleartool desc -fmt '%[type]p' '$_";
$vertime_t = time_to_ticks($vertime);
($path, $verid) = split SCLEARCASE_XN_SFX, $_, 2;
customization change *** changed following line
print "$_;$verid;$vertime;$vertime_t;$eltype\n”;
#print "$path;$verid;$vertime;$vertime_t\n";
}
do_exit();

Example 3: Changing Report Description, Parameter Types, and Report
Output

The Elements Created by User report lists all elements created by the user-defined user name .
This report includes the following columns:

0 Element Path
0 Creating User

The changes to this report do the following;:
0 Display a new report description: Elements with Group.
O Remove the existing user parameter and add a new parameters for group.

0 Compare the group associated with an element with the group specified in a user-defined
group parameter.

0 Add a column in the report output for Group and Yes/No. The Yes/No column will reflect
the result of the comparing whether the group associated with each element is the same as
the value of the user-defined group parameter.

The script is located in
ccase-home-dir\Reports\Scripts\Elements\Elements_Created_by_User.prl.

Managing Software Projects with ClearCase

Processing Logic
The processing logic of Elements_Created_by_User.prl is as follows:

1. When the Report Builder processes the interface specification, the report procedure yields
two parameters:

LOOKIN
USER

The mechanics of the LOOKIN parameter are described in Example 1: Adding a Column to
Report Output on page 221. The report procedure receives USER as a string of this form:

USER= "user-name”
This parameter specifies the user name that the cleartool subcommand uses.

2. The USER string is extracted and stored as $ccuser. It is then passed to the
created_by($ccuser).

3. The created_by ($ccuser) query language primitive filters the paths specified to cleartool
find and returns only those that match the predicate, in this case, those created by the user
by setting a parameter value for USER.

4. The user variable is printed in the same order specified in the interface specification so that
it appears under the correct column heading.

Interface Specification

This is the existing interface specification for Elements_Created_by_User.prl:

C - Customizing ClearCase Reports 231

if (I~-if) {
print "description : 'Elements Created by User'\n";
print "id : 2016\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN USER";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_xpn, sort 2, rightclick) ";
print "\"Creating User\"(user, sort 1) *;
print "\n";
exit(0);

Changes Required

To remove the user parameter, to add parameters for group and date/time, and to adjust the
report output for group and date/time information:

1. Change the interface specification of the report procedure to correspond to required interface
changes.

2. Change the logic in the report procedure to handle data requests for group information; add
a %Gu; to the -fmt parameter in the cleartool describe call, to get group information from
ClearCase.

3. Properly extract the group information into a variable after the cleartool describe call
returns its output, so that it can be printed.

4. Determine whether the element’s group is the same group parameter value entered by the
user and print the result of this comparison as a column heading.

5. Print the group variables in the order specified in the interface specification so that they
appear under the correct column heading.

Modified Report Procedure

Here is the modified version of Elements_Created_by_User.prl. This report procedure is
example3.prl in clearcase.rational.com/contrib/T0046/T0046.zip.

232 Managing Software Projects with ClearCase

$start_dir = $0; $start_dir =~ sN\\scripts\\.*\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc =" if ($cc)

$ct =" if ($ct) {;};

$debug =""; if ($debug) {;};

$skip_path_checks =""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX =" if (SCLEARCASE_XN_SFX) {;};
$ctfind_paths = "; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @_);
if ("$err" 1="") {
print STDERR "$err\n*;
}
sleep(2);
if ("$err" 1=""{

exit(1);

}else {
exit(0);
}

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_din\common.prl™);
$buf ="";
while(<INCLUDE>) {
$buf =$buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'‘$common_din\common.prl™);

my $args = $ARGV[0];
$args =~ s/%/ /g;

@args = split(";", $args);
my $ccuser ="";
$required_args = 0;
foreach(@args) {

sIN 1+,
s/ 1+$/1;
validate_arg_length($_);
if (/7-if) {

C - Customizing ClearCase Reports 233

##H# customization change *** changed following line
print "description : 'Elements With Group'\n";
print "id : 2016\n";
print "helpfile :\n";
print "parameters : ";
customization change *** changed following line
print "LOOKIN GROUP";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_xpn, sort 2, rightclick) ";
customization change *** added following 2 lines
print "\"Element’s Group\"(group, sort 1) *;
print "\"Same\"(yes_no) ";
customization change *** deleted following line
#print "\"Creating User\"(user, sort 1) ";
print "\n";
exit(0);
}
if (ALOOKIN[T*=[T*(.*)) {
check_lookin($1);
$required_args++;
next;
}
##H# customization change *** deleted following 2 lines
#if (IMUSER[T*=\M]*\™* ([N {
#$ccuser = $1;
customization change *** added following 2 lines
if ("GROUP[T*=[\]*\"*([™\")\"*/) {
$ccgroup = $1;
$required_args++;
customization change *** deleted following line
#validate_user($ccuser);
next;
}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
if ($required_args = 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

234 Managing Software Projects with ClearCase

##H# customization change *** deleted following 3 lines

#if (Sccuser =~ /[]+/) {

do_clearprompt(“cleartool find does not allow spaces in user names;
cannot proceed.");

#}

##H# customization change *** changed following line
open(CTFIND, "cleartool find $ctfind_paths -nxname -print |");
while(<CTFIND>) {

chomp;
customization change *** added following 6 lines

$grp = ‘cleartool desc -fmt '%Gu' '$_";

if ($grp eq $ccgroup) {
$same = "yes";
}else {
$same = "no";

}

##H# customization change *** changed following line
print "$_;$grp;$same\n”;
#print "$_;$ccuser;\n";

}

do_exit();

Example 4: Changing the Shortcut Menu for the Right-Click Handling
Mechanism

The Elements with Labels report lists all elements with labels for a user-defined pathname. This
report includes one column:

0 Element Path

The change to this report adds the Compare with Previous Version command to the shortcut
menu. Currently, these commands appear on the shortcut menu:

0 Properties of Element
O Version Tree
0 History

The report procedure is located in
ccase-home-dir\Reports\Scripts\Elements\Labels\Elements_with_Labels.prl.

C - Customizing ClearCase Reports 235

236

Interface Specification

This is the existing interface specification for Elements_with_Labels.prl:

if (I"-i) {
print "description : ";
print "Elements with Labels";
print "\n";
print "id : 2003\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN ";
print "LABEL *;
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, rightclick, sort 1)";
print "\n";
exit(0);
}

Note the call to print_element_rightclick() in the middle of the interface specification. The code
for this routine is located in\script_tools\common.prl:

sub print_element_rightclick {
print "rightclick : ";
print "Properties_of _Element(single) ";
print "sep ";
print "Version_Tree(single) ";
print "History(single) ";
print "\n";

Changes Required

A convention used in the report procedures is to put the same commands on shortcut menus for
all reports that use the same primary sort field. For example, all the reports whose primary sort
key is element or element_xpn display the same set of commands.

To make an additional command available for all reports whose primary sort key is element or

element_xpn, modify the routines stored in \script_rightclick and then edit the associated
routine in \script_tools\common.prl.

Managing Software Projects with ClearCase

To change the report procedure, copy the contents of sub print_element_rightclick (located in
\script_tools\common.prl) and paste it into the appropriate part of the interface specification.
Then, add a declaration to display the new command.

Modified Report Procedure

Here is the modified version of Elements_with_Labels.prl. This report procedure is
example4.prl in clearcase.rational.com/contrib/T0046/T0046.zip.

$start_dir = $0; $start_dir =~ s\\scripts\\.*\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc =" if ($cc) {i};

$ct =" if ($ct) {};

$debug ="; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX =" if (SCLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {

$err = join(" ", @_);

if ("Serr” 1= {
print STDERR "$err\n”;

}

sleep(2);

if ("$err* 1="") {
exit(1);
}else {
exit(0);

}

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_dir\\common.prl™);
$buf ="
while(<INCLUDE>) {
$buf = $buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'‘$common_dir\\common.prl");

my $args = $SARGVI[0];

C - Customizing ClearCase Reports 237

$args =~ s/%/ /g;
@args = split(";", $args);
my $cclabel = "";
$required_args = 0;
foreach(@args) {
sIN 1+
s/ 1+$/1;
validate_arg_length($_);
if (I~-if) {
print "description : ";
print "Elements with Labels™;
print "\n";
print "id : 2003\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN *;
print "LABEL *;
print "\n";
##H# customization change *** deleted following line
#print_element_rightclick();
customization change *** added following 7 lines
print "rightclick : ";
print "Properties_of_Element(single) ";
print "sep ";
print "Compare_with_Previous_Version(single) ";
print "Version_Tree(single) ";
print "History(single) ";
print "\n";
print "fields : ";
print "\"Element Path\"(element_pn, rightclick, sort 1)";
print "\n";
exit(0);
}
if /A\LOOKIN[1*=[J*(.*)) {
#print "paths are $1\n";
check_lookin($1);
$required_args++;
next;

}

if ("LABELL T*=[I**(I"T%)™/) {
$cclabel = $1;
#print "label is $cclabel\n”;
$required_args++;
next;

}
print STDERR "unrecognized argument: $_\n";

238 Managing Software Projects with ClearCase

print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");
}
if ($required_args != 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

}
open(CTFIND, "cleartool find $ctfind_paths -element 'Ibtype_sub($cclabel)’

-print |*);
while(<CTFIND>) {
chomp;
($path, $rest) = split SCLEARCASE_XN_SFX, $_, 2;
if ($rest) {;}
print "$path;\n";
}
do_exit();

Example 5: Adding a New Command to the Report Viewer Shortcut Menu

The Elements with Branches report lists all elements associated with a branch and pathname that
the user provides. This report includes the following columns:

0 Element Path
0 Branch

The report procedure is located in
ccase-home-dir\Reports\Scripts\Elements\Branches\Elements_with_Branches.prl.

The change to this report adds the Merge Manager command to the shortcut menu. This
command is not supplied with ClearCase Reports, so the work required to included it is different
from that in Example 4: Changing the Shortcut Menu for the Right-Click Handling Mechanism.

These commands currently appear on the shortcut menu:

0 Properties of Element
O Version Tree
0 History

C - Customizing ClearCase Reports 239

240

Interface Specification

This is the existing interface specification for Elements_with_Branches.prl:

if (/7-if) {
print "description : 'Elements with Branches\n";
print "id : 2013\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN BRANCH";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_xpn, sort 1, rightclick) ";
print "\"Branch\"(branch) ";
print "\n";
exit(0);

Changes Required

Making this modification requires a new script for the new command functions.

You must place this script in the \scripts_rightclick directory. (The script can be written in any
of the supported programming languages.) The script must be coded to receive a stream on input
from STDIN from a field that is designated by a rightclick modifier in the interface specification

of the report procedure. For example, to create my_rc.prl, which starts clearmrgman.exe (Merge
Manager), you must place my_rc.prl in \scripts_rightclick.

Modified Report Procedure

Here is the modified version of Elements_with_Branches.prl. This report procedure is
example5.prl in clearcase.rational.com/contrib/T0046/T0046.zip.

Managing Software Projects with ClearCase

$start_dir = $0; $start_dir =~ sN\\scripts\\.*\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc =" if ($cc)

$ct =" if ($ct) {;};

$debug =""; if ($debug) {;};

$skip_path_checks =""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX =""; if (fCLEARCASE_XN_SFX) {;};
$ctfind_paths = "; if ($ctfind_paths) {;};

$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {

$err = join("", @_);

if ("$err" 1="") {
print STDERR "$err\n*;

}

sleep(2);

if ("$err" 1=""{
exit(1);
}else {

exit(0);

}

}

open(INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error opening
include file '$common_din\common.prl™);
$buf ="";
while(<INCLUDE>) {
$buf =$buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'‘$common_din\common.prl™);

my $args = $ARGV[0];
$args =~ s/%/ /g;
@args = split(";", $args);
my $ccbranch ="";
$required_args = 0;
foreach(@args) {
sIN 1+,
si[1+$/1;
validate_arg_length($_);
if (I"-if) {
print "description : 'Elements with Branches'\n";

C - Customizing ClearCase Reports

241

print "id : 2013\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN BRANCH";
print "\n";
customization change *** deleted following line
#print_element_rightclick();
customization change *** added following 8 lines
print "rightclick : ";
print "my_rc(single) ;
print "Properties_of_Element(single) ";
print "sep ";
print "Compare_with_Previous_Version(single) ";
print "Version_Tree(single) ";
print "History(single) ";
print "\n";
print "fields : ";
print "\"Element Path\"(element_xpn, sort 1, rightclick) ";
print "\"Branch\"(branch) ";
print "\n";
exit(0);
}

if (ALOOKIN[T*=[1*(.*)) {
#print "paths are $1\n";
check_lookin($1);
$required_args++;
next;
}
if ("BRANCH[I*=[[**(["T)™/) {
$ccbranch = $1;
$required_args++;
next;
}
print STDERR "unrecognized argument: $_\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";
do_exit("\n");

242 Managing Software Projects with ClearCase

}

if ($required_args != 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script’s interface.\n";

do_exit("\n");
}
open(CTFIND, "cleartool find $ctfind_paths -nxname -branch 'brtype($ccbranch)’
-print *);
while(<CTFIND>) {
chomp;
print "$_;$ccbranch;\n";
}
do_exit();

Here is the new command of my_rc.prl that has been created to support a new shortcut menu
command for starting Merge Manager. This report procedure is available in
clearcase.rational.com/contrib/T0046/T0046.zip.

these are all set by set_record_vars in common_rightclick.prl

#

$CLEARCASE_PN =", $CLEARCASE_XN_SFX ="', $CLEARCASE_ID_STR ="",
$CLEARCASE_XPN ="

$CLEARCASE_BRANCH_PATH =", $CLEARCASE_VERSION_NUMBER = "";
$ELEMENT_RESULTS =", $BRANCH_RESULTS ="", $VERSION_RESULTS ="",;
$results =",

$debug = "no";

$start_dir = $0; $start_dir =~
s/\\scripts_rightclick\\.*\\scripts_rightclick/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts_rightclick/$1\\script_tools/;

open(INCLUDE, "<$common_dir\\common_rightclick.prl") or do_exit("error opening
include file '$common_din\common_rightclick.prl™);
$buf ="";
while(<INCLUDE>) {
$buf =$buf . $_;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'‘$common_dir\\common_rightclick.prl™);

if $CLEARCASE_PN) {;}

C - Customizing ClearCase Reports 243

244

if ($CLEARCASE_XN_SFX) {;}

if (SCLEARCASE_ID_STR) {;}

if (SCLEARCASE_XPN) {;}

if (SCLEARCASE_BRANCH_PATH) {;}

if (SCLEARCASE_VERSION_NUMBER) {;}
if SELEMENT_RESULTS) {;}

if $BRANCH_RESULTS) {;}

if (BVERSION_RESULTS) {;}

if ($debug) {;}

$first = "yes";

while(<STDIN>) {
chomp;
set_record_vars($);
B R R T R B S T R B B R TP R
things to be done a record at a time are done here
if ($first eq "yes") {
$first = "no";
open(COMMAND, “clearmrgman |");
while(<COMMAND>) {;}
close(COMMAND);
}
HH T R T
}

things to be done with the result set as a whole go here

$results =~ s/ $//;

#print "results are $results\n®;

C.5

Troubleshooting
There are two primary areas that you may need to troubleshoot:

0 Errors in the interface specification
0 Coding high-level languages other than ccperl

Managing Software Projects with ClearCase

Errors in the Interface Specification

These are the common errors you may make when coding the interface specification for your
report procedure:

The interface syntax used in your program does not conform to the interface specification.
Invalid parameter names are used for the parameter specification.

The rightclick specification calls a routine that does not exist in \right_click.

The print statements to STDOUT are in a different order from that defined by the fields
specification.

Oo0ooo

You can identify errors in the interface specification easily by using the testing script, ifaces.prl.
This script checks customized report procedures that have been written in ccperl. It is available
at clearcase.rational.com/contrib/ T0046/T0046.zip.

To start the testing script, use a command of this form:
ccperl ifaces.prl <path-to-script-or-directory-tree>

We recommend that you test your report procedures before checking them in to the shared
directory tree that you have configured.

If you do not run the testing script before using your report in Report Builder and a parsing error
occurs in processing the interface specification, the new report does not appear in the list of
reports in the reports pane. There is no feedback; you see the report desciption in the reports pane
or you see nothing. If you don’t see a description, the parsing error is serious. If you do see a
description, the interface specification is somewhat correct, but you may still be using an invalid
parameter, referencing a nonexistent right-click routine, or sending output in the wrong order to
STDOUT.

The Report Builder does not check for valid parameters. For example, consider the interface
specification for a new report procedure, my_custom_report.prl, with the following interface
specification:

description : "This test report asks for a three known parameters and two
unknown parameters"

id : 2500
parameters : LOOKIN UNKNOWN_1 STREAMS FOO PROJECT

rightclick :

C - Customizing ClearCase Reports 245

fields : "field 1"(string)
The second and fourth parameters of this interface specification are invalid. At run time, the
description for this report appears in the Report Builder reports pane, but the second and fourth

parameters are displayed as blank lines in the parameter pane (Figure 59).

Figure 59 Report Builder Window with Invalid Parameters

E# ClearCase Report Builder o :_ =10 x|

Feport Help |

J B Fun Report J Exit k? Help

=] “Reports Reports |
-] ClearCaze Tools thiz test repart azkz for a three known parameter and bwo unknown parameters

-] Elements
- Samples
-7 UCHM Projects
-7 UCH Streams
D VOB

- Wiews

Select pathnames in view o report on

Select gtreams in JCM Process VOB

Select project in UCK Process VOB

| 4

However, the testing script detects these errors because these parameter names are not supplied
with ClearCase Reports (see Table 6):

my_custom_report.prl:

desc: this test report asks for a three known parameter and two unknown
parameters

246 Managing Software Projects with ClearCase

id: 2500

parm: LOOKIN

*kkkkkkkhkkhhkkkkkk

ERROR: illegal parameter: UNKNOWN_1

continue? (y/n) >y

UNKNOWN_1 STREAMS

ERROR: illegal parameter: FOOBAR

continue? (y/n) >y

C.6 Coding High-Level Languages Other Than ccperl

When coding report procedures in languages other than ccperl, such as Visual C++, Java,
Javascript or Visual Basic, refer to the programming examples available in
clearcase.rational.com/contrib//T0046/T0046.zip.

C - Customizing ClearCase Reports 247

248 Managing Software Projects with ClearCase

Index

A

activities
about 10

creating and assigning in ClearQuest (procedure) 70

decomposing in ClearQuest 54

fixing ClearQuest links 71

migrating to ClearQuest integration 68

state transition after delivery 44

verifying owner of 44
administrative VOBs and PVOBs 34
assignments, verifying 22
attache-home-dir directory xxii
attributes

about 107

change request policy 140

use in config specs 120

use in monitoring project status 134

B

base ClearCase and UCM, compared 1
baselines in base ClearCase
creating, extended example 175, 181
labeling policy 135
baselines in UCM
about 14
benefits of frequent 31
comparing (procedure) 84
creating 17
creating for imported files (procedure) 65
creating new (procedures) 79
creating streams for testing (procedure) 72
fixing problems (procedure) 82
foundation 61
naming convention 32
promoting and demoting (procedure) 83
promotion levels 18
recommended, promotion policy 42
strategy for 30
test planning 32
when to delete 90

Index

branch types, example 172

branches
about 104
bug-fix policy 136
config spec rules for 116, 118
controlling creation of 106
example of project strategy 169
in MultiSite 105
mastership transfer models 144
merge policies 109
merging elements from UCM projects 99
merging to main 153
multiple levels, config specs for 118
naming conventions 105
stopping development on 184

building software, view configurations 124

C

ccase-home-dir directory xxii
change requests
See also ClearQuest integration
tracking in base ClearCase 140
tracking states 21
change sets 10
ClearCase Reports
customizable features 198
customization examples 220
how it works 197
interface specification in report procedures
parameter choosers 216
run-time processing 200
setting up shared directories 203
ClearQuest integration
about 15,20
customizing policies 54
database, setting up 47
decomposing activities 54
disabling links to project 70
enabling custom schema (procedure) 48
enabling projects to use (procedure) 67
planning issues 36
policies available 44
querying database 87

207

249

recommended use of 193
settingup 15
setting up UCM schemas (procedure) 47
Component Tree Browser 84
components
about 13
adding to integration stream (procedure) 75
ancillary 28
candidates for read-only 29
conversion of VOBs (procedure) 65
creating new (procedure) 59
design considerations 24
importing files for (procedure) 64
mapping to projects 25
organizing for project 27
recommended directory structure 28
when to delete 90
config specs
about 106,111
default, standard rulesin 112
examples for builds 124
examples for development tasks 115
examples for one project 172
examples of time rules 116, 118, 123-124
examples to monitor project 120
include file facility 113
project environment for samples 114
restricting changes to one directory 120
selecting library versions 126
sharing across platforms 129
use of element types in 165

conventions, typographical xxii

D

deliver operations

between projects 98

element types and merging 35

finding posted work (procedure) 77

MultiSite and 16, 77

pending checkouts policy 43

rebase policy 43

remote deliver 77

remote, completing (procedure) 78

state transition policy 44
development policies

See policies in base ClearCase; policies in UCM
development streams 13

creating for testing (procedure) 72

rebasing (procedure) 82

when to delete 90

directories, merging 157

directory structure
creating new (procedure) 63

250

recommended, for UCM components 28
documentation
online help description xxiii

E

element types
customizing 161
how assigned 162
predefined and user-defined 166

element types in UCM 35
event records 109

F

foundation baselines 61

G

global types 34, 108

H

hyperlinks
about 107
requirements tracking mechanism 141

importing files and directories 64

include file facility 113

integration streams
about 13
adding components (procedure) 75
locking 72
locking (procedure) 79
locking considerations 33
merging multiple 99
merging to base ClearCase branch 99
rebasing between projects (procedure) 95
unlocking (procedure) 81
updating development view load rules 76
when to delete 90

integration views
creating for UCM project (procedure) 62
recommended view type 43

Managing Software Projects with ClearCase

J 0]

Join Project Wizard 42 online help, accessing xxiii
L P
labels parallel development
about 107 base ClearCase mechanisms 104
baselines in base ClearCase 135 extended example in base ClearCase 167
use in config specs 123, 125 UCM scenarios 93
load rules, updating for integration stream 76 parent/child controls in ClearQuest 54
locks patch release in UCM project 96
about 108 policies in base ClearCase
examples 138 access to project files 138

bug-fixing on branches 136
change requests 140

M coding standards 140
documenting changes 133
main branch 104 enforcement mechanisms 107, 133
makefiles and config specs 127 labeling baselines 135
mastership monitoring state of sources 134
about 16 notification of new work 138

on merging 109

requirements tracking 141

147 restricting changes visible 137
restricting use of commands 143
transfer of branch mastership 144

models of transfer 144
merging files
how it works

merging in base ClearCase
about 109

commands for 150 POllCLeS in I{EM

directory versions 157 about .

entire source tree 154 approv.allbefore delivery 44
extended example 177,182 customizing ClearQuest 54

GUI tools for 149 defgult view types 42

how it works 147 delivery transition state 44
non-ClearCase tools 158 deliv.e.ry with pending checkouts 43
removing merged changes 152 modifiable components 42

promotion levels 18
rebase before deliver 43
recommended baselines 42

selective merge 151
to main branch 153

merging in UCM i

See deliver operations; rebase operations sett.lfng Cl.ea.rQuest (p{)ocfedurt;) k69
MultiSite verify activity owner before checkout 44

branches and 105 Project Explorer 60

ClearQuest links in PVOBs 71 projects in base ClearCase

mastership transfer models 144 branching strategy 104

remote deliver 77 config specs 106

use in UCM 16 development policies 107

extended example of lifecycle 167
generating reports 109

N merging policies 109
planning and setup 104

naming conventions views to monitor progress 120

branches 105 projects in UCM

ClearQuest schema 37 about 9

UCM baselines 32 cleanup tasks 89

views in base ClearCase 106 concurrent, managing 93

Index 251

creating 12 S
creating from existing configuration 64

creating from existing projects 66 schemas (ClearQuest)

creating new (procedure) 60 about 21

disabling links to ClearQuest database 70 enabling custom for UCM 41

factors in gauging scope 25 enabling custom for UCM (procedure) 48
fixing ClearQuest activity links 71 predefined, using 47

importing components 64 queries 22

incorporating patch release 96 requirements for UCM 39

maintenance tasks 75 storage issues 38

mapping components to 25 selective merge 151

merging multiple 99
merging to base ClearCase branches 99 smoke tests 32
planning issues 23 state types

setting up new 58 about 21 - .
tools to monitor progress 84 default transition requirements 52

promotion levels setting for custom schemas 51

about 18 streams 13
changing (procedure) 83 subtractive merge 152
default 32 system architecture 23

defining in new project (procedure) 61
policy for recommended baselines 42

PVOBs T
about 12
as administrative VOBs 34
ClearQuest links and MultiSite 71
creating from existing configuration 65
creating new (procedure) 58
mapping to ClearQuest database 37
number needed 33
requirements of ClearQuest database 68

technical support xxiv
time rules in config specs 116, 118, 123-124
triggers
about 107
checkin command example 133
example script for 138
sharing in mixed environments 145
to disallow checkins 140
Q to notify team of new work 138
to restrict use of commands 143
type managers
about 163

typographical conventions xxii

querying ClearQuest database 22, 87

R
Rational Unified Process 23-24 U

rebase operations

between projects (procedure) 95 UCM and base ClearCase, compared 1

element types and merging 35 UCMPolicyScripts package 39

policy for deliver operations 43 UnifiedChangeManagement package 39-40

updating development view load rules 77 user accounts
recommended baselines 42 creating ClearQuest profiles (procedure) 55
record types for schemas, custom 51
remote deliver operations 77-78 v
reports

fC(I)lre %I;S: ési’(eg;l(?;lseresprgjlcts 109 version control, candidates for 24

view profiles
about 106

moving to UCM 189

252 Managing Software Projects with ClearCase

views
config specs 111
configuring for builds 124
configuring for development tasks 115
configuring historical 123-124
configuring to monitor project 120
naming conventions in base ClearCase 106
policy for default types in UCM 42
restricting changes visible in 137
sharing for merges 153
VOB Creation Wizard 58
VOBs
converting to UCM components (procedure) 65
creating and populating in base ClearCase 104

w

work areas 13

Index

253

254 Managing Software Projects with ClearCase

	Managing Software Projects with ClearCase
	Contents
	Figures
	Tables
	Preface
	About This Manual
	Product-Specific Features
	Organization

	ClearCase Documentation Roadmap
	ClearCase�LT Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support
	Choosing Between UCM and Base ClearCase
	1.1 Differences Between UCM and Base ClearCase
	Branching
	Creating and Using Baselines
	Managing Activities
	Enforcing Development Policies

	1.2 Using Base ClearCase Tools with UCM

	Part 1: Working in UCM
	Understanding UCM
	2.1 The Project Management Cycle
	2.2 Creating the Project
	Creating a PVOB
	Organizing Directories and Files into Components
	Shared and Private Work Areas
	Starting from a Baseline
	Setting Policies
	Setting Up the UCM-ClearQuest Integration

	2.3 Integrating Work into the Project (MultiSite)
	2.4 Making a New Baseline
	2.5 Promoting the Baseline
	2.6 Overview of the UCM-ClearQuest Integration
	Associating UCM and ClearQuest Objects
	UCM-Enabled Schema
	State Types
	Queries in a UCM-Enabled ClearQuest Schema

	Planning the Project
	3.1 Using the System Architecture as the Starting Point
	Mapping System Architecture to Components
	Deciding What to Place Under Version Control
	Mapping Components to Projects
	Size of the System
	Amount of Integration
	Need for Parallel Releases
	Example
	Components and VOBs

	3.2 Organizing Components
	Considering VOB Capacity
	Identifying Additional Components
	Defining the Directory Structure
	Identifying Read-Only Components

	3.3 Specifying a Baseline Strategy
	When to Create Baselines
	Identifying the Initial Baseline
	Ongoing Baselines

	Defining a Naming Convention
	Identifying Promotion Levels to Reflect State of Development
	Planning How to Test Baselines

	3.4 Planning PVOBs
	Deciding How Many PVOBs to Use
	Understanding the Role of the Administrative VOB

	3.5 Identifying Special Element Types
	Nonmerging Elements
	Nonautomerging Elements
	Defining the Scope of Element Types

	3.6 Planning How to Use the UCM-ClearQuest Integration
	Mapping PVOBs to ClearQuest User Databases
	All Enabled Projects in a PVOB Must Link to the Same Database
	Projects Linked to Same Database Must Have Unique Names
	Use One Schema Repository for Linked Databases

	Deciding Which Schema to Use
	Overview of the UnifiedChangeManagement Schema
	Enabling a Schema for UCM

	3.7 Considering Which Development Policies to Enforce
	Policies Available in UCM
	Recommended Baselines
	Modifiable Components
	Default View Types
	Rebase Before Deliver
	Allow Deliveries from Stream with Pending Checkouts

	Policies Available in UCM-ClearQuest Integration
	Check Before Work On
	Check Before ClearCase Delivery
	Do ClearQuest Action After Delivery

	Setting Up a ClearQuest User Database
	4.1 Using the Predefined UCM-Enabled Schemas
	4.2 Enabling a Schema to Work with UCM
	Requirements for Enabling Custom Record Types
	Setting State Types
	State Transition Default Action Requirements for Record Types

	4.3 Customizing ClearQuest Project Policies
	4.4 Associating Child Activity Records with a Parent Activity Record
	Using Parent/Child Controls

	4.5 Creating Users
	Setting Up the Project
	5.1 Creating a Project from Scratch
	Creating the Project VOB
	Creating Components
	Creating the Project
	Defining Promotion Levels

	Creating an Integration View
	Creating the Directory Structure
	Importing Directories and Files from Outside ClearCase

	5.2 Creating a Project Based on an Existing ClearCase Configuration
	Creating the PVOB
	Making a VOB into a Component
	Making a Baseline from a Label
	Creating the Project
	Creating an Integration View

	5.3 Creating a Project Based on an Existing Project
	Reusing Existing PVOB and Components
	Creating the Project
	Creating an Integration View

	5.4 Enabling a Project to Use the UCM-ClearQuest Integration
	Migrating Activities
	Setting Project Policies
	Assigning Activities
	Disabling the Link Between a Project and a ClearQuest User Database
	Fixing Projects That Contain Linked and Unlinked Activities
	Detecting the Problem
	Correcting the Problem

	5.5 Working with Rational Suite
	5.6 Creating a Development Stream for Testing Baselines
	Managing the Project
	6.1 Adding Components
	Updating Snapshot View Load Rules

	6.2 Integrating the Project
	Finding Work That Is Ready to Be Delivered
	Completing Remote Deliver Operations
	Undoing a Deliver Operation

	6.3 Creating a New Baseline
	Locking the Integration Stream
	Verifying That the Code Base Is Stable
	Making the New Baseline
	Making a Baseline for a Set of Activities

	Unlocking the Integration Stream

	6.4 Testing the Baseline
	Fixing Problems

	6.5 Promoting or Demoting the Baseline
	6.6 Tracking the Project
	Comparing Baselines
	Querying ClearQuest User Databases
	Using ClearCase Reports

	6.7 Cleaning Up the Project
	Removing Unused Objects
	Projects
	Streams
	Components
	Baselines
	Activities

	Locking and Making Obsolete the Project and Streams

	Managing Parallel Releases of Multiple Projects
	7.1 Managing a Current Project and a Follow-On Project Simultaneously
	Example
	Performing Interproject Rebase Operations

	7.2 Incorporating a Patch Release into a New Version of the Project
	Example
	Merging Work to Another Project

	7.3 Additional Merging Scenarios
	Merging from a Project to a Non-UCM Branch
	Merging to a System Project

	Part 2: Working in Base ClearCase
	Managing Projects in Base ClearCase
	8.1 Setting Up the Project
	Creating and Populating VOBs
	Planning a Branching Strategy
	Branch Names
	Branches and ClearCase MultiSite

	Creating Shared Views and Standard Config Specs
	Recommendations for View Names

	8.2 Implementing Development Policies
	Using Labels
	Using Attributes, Hyperlinks, Triggers, and Locks
	Global Types
	Generating Reports

	8.3 Integrating Changes
	Defining Project Views
	9.1 How Config Specs Work
	9.2 Default Config Spec
	The Standard Configuration Rules
	Omitting the Standard Configuration Rules

	9.3 Config Spec Include Files
	9.4 Project Environment for Sample Config Specs
	9.5 Views for Project Development
	View for New Development on a Branch
	Variation That Uses a Time Rule

	View to Modify an Old Configuration
	Omitting the \main\LATEST Rule
	Variation That Uses a Time Rule

	View to Implement Multiple-Level Branching
	View to Restrict Changes to a Single Directory

	9.6 Views to Monitor Project Status
	View That Uses Attributes to Select Versions
	Pitfalls of Using This Configuration for Development

	View That Shows Changes of One Developer
	Historical View Defined by a Version Label
	Historical View Defined by a Time Rule

	9.7 Views for Project Builds
	View That Uses Results of a Nightly Build
	Variations That Select Versions of Project Libraries
	View That Selects Versions of Application Subsystems
	View That Selects Versions That Built a Particular Program
	Configuring the Makefile
	Fixing Bugs in the Program
	Selecting Versions That Built a Set of Programs

	9.8 Sharing Config Specs Between UNIX and Windows
	Pathname Separators
	Pathnames in Config Spec Element Rules
	Config Spec Compilation
	Example

	Implementing Project Development Policies
	10.1 Good Documentation of Changes Is Required
	10.2 All Source Files Require a Progress Indicator
	10.3 Label All Versions Used in Key Configurations
	10.4 Isolate Work on Release Bugs to a Branch
	10.5 Avoid Disrupting the Work of Other Developers
	10.6 Deny Access to Project Data When Necessary
	10.7 Notify Team Members of Relevant Changes
	10.8 All Source Files Must Meet Project Standards
	10.9 Associate Changes with Change Orders
	10.10 Associate Project Requirements with Source Files
	10.11 Prevent Use of Certain Commands
	10.12 Certain Branches Are Shared Among MultiSite Sites
	10.13 Sharing Triggers Between UNIX and Windows
	Using Different Pathnames or Different Scripts
	Using the Same Script
	Notes

	Integrating Changes
	11.1 How Merging Works
	Using the GUI to Merge Elements
	Using the Command Line to Merge Elements

	11.2 Common Merge Scenarios
	Scenario: Selective Merge from a Subbranch
	Scenario: Removing the Contributions of Some Versions
	Scenario: Merging All Project Work
	All Project Work Is Isolated on a Branch
	All Project Work Isolated in a View

	Scenario: Merging a New Release of an Entire Source Tree
	Scenario: Merging Directory Versions

	11.3 Using Your Own Merge Tools
	Using Element Types to Customize Processing of File Elements
	12.1 File Types in a Typical Project
	12.2 How ClearCase Assigns Element Types
	12.3 Element Types and Type Managers
	Other Applications of Element Types
	Using Element Types to Configure a View
	Processing Files by Element Type

	12.4 Predefined and User-Defined Element Types
	Using ClearCase Throughout the Development Cycle
	13.1 Project Overview
	13.2 Development Strategy
	Project Manager and ClearCase Administrator
	Use of Branches
	Creating Project Views

	13.3 Creating Branch Types
	13.4 Creating Standard Config Specs
	13.5 Creating, Configuring, and Registering Views
	13.6 Development Begins
	Techniques for Isolating Your Work

	13.7
Creating Baseline 1
	Merging Two Branches
	Integration and Test
	Labeling Sources
	Removing the Integration View

	13.8 Merging Ongoing Development Work
	Preparing to Merge
	Merging Work

	13.9 Creating Baseline 2
	Merging from the r1_fix Branch
	Preparing to Merge from the major Branch
	Merging from the major Branch
	Decommissioning the major Branch
	Integration and Test

	13.10 Final Validation: Creating Release 2.0
	Labeling Sources
	Restricting Use of the main Branch
	Setting Up the Test View
	Setting Up the Trigger to Monitor Bugfixing
	Fixing a Final Bug
	Rebuilding from Labels
	Wrapping Up

	Moving from View Profiles to UCM
	A.1 View Profiles and UCM
	Feature Comparison
	Branches and Streams
	Moving Work Among Branches or Streams
	VOBS and Components
	Checkpoints and Baselines

	A.2 How to Move View Profile Information to UCM
	Preparing Your View Profile Project
	Moving the View Profile Information

	ClearCase-ClearQuest Integrations
	B.1 Understanding the ClearCase-ClearQuest Integrations
	Managing Coexisting Integrations
	Schema
	Presentation

	Customizing ClearCase Reports
	C.1 How ClearCase Reports Works
	C.2 What You Can Customize in ClearCase Reports
	Run-Time Processing Sequence for Reports Programming Interface
	Configuring Shared Report Directories
	Adding Report Procedures to Source Control
	Setting the Report Builder to the Customized Directory

	Default Directory Structure for ClearCase Reports
	Populating the Report Builder Tree Pane

	C.3 Report Procedure Interface Specifications
	Interface Specification for All_Views.prl
	Interface Specification for test_null.prl
	Interface Specification for test2_null.prl
	Description Specification
	Help ID Specification
	Parameters Specification
	Rightclick Specification
	Fields Specification
	field_type Conventions

	Parameter Choosers
	Path Chooser
	UCM Targets Chooser
	Type Chooser
	Date/Time Chooser
	Text Chooser

	Viewing the Report
	Saving Report Data

	C.4 Report Programming Examples
	Example 1: Adding a Column to Report Output
	Processing Logic
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 2: Changing Report Directory Organization, Report Description, and Report Output
	Processing Logic
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 3: Changing Report Description, Parameter Types, and Report Output
	Processing Logic
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 4: Changing the Shortcut Menu for the Right-Click Handling Mechanism
	Interface Specification
	Changes Required
	Modified Report Procedure

	Example 5: Adding a New Command to the Report Viewer Shortcut Menu
	Interface Specification
	Changes Required
	Modified Report Procedure

	C.5 Troubleshooting
	Errors in the Interface Specification

	C.6 Coding High-Level Languages Other Than ccperl

	Index

