VU Language
Reference

Version 2000.02.10

Rational

the e-development company™

VU Language Reference

Copyright 0 1999-2000 Rationa Software Corporation. All rightsreserved. T he contents of this
manud and the associated software are the property of Rationd Software Corporation and are
copyrighted. Any reproduction in whole or in part is strictly prohibited. For additiona copies of this
manud or software, please contact Rationd Software Corporation.

Rationd, the Rationa logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and Object Testing are trademarks or registered trademarks of Rationd
Software Corporation in the U nited Statesand in other countries. Javaand al Java-based marksare
trademarks or registered trademarks of Sun Microsystems, Inc. in the U nited States and other
countries. All other names are used for identification purposesonly and are trademarks or registered
trademarks of their respective companies.

U.S. GOVERMENT RIGHTS. U s, duplication, or disclosure by the U .S. Government issubject to
regtrictions set forth in the gpplicable Rationd License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(8) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR
52.227-19, or FAR 52.227-14, as gpplicable.

Revised 04/2000

Thismanud prepared by:
Rationad Software Corporation
20 M aguire Road

Lexington, MA 02421

U.SA.

Phone:
800-433-5444
408-863-4000

E-mall: support@rationd.com
Web: http://www.rationa.com

P/N 800-023370-000

Part |

Contents

Preface
RESOUICES. . . . e XV
UsngtheVU Help ... oo XV
Contacting Rationd T echnica Publications. XVi
Contacting Rationd Technica Support, XVi

Introducing VU
What IsVU?

Automated Script Generation 1-1
Workingwith SCripts.o 1-2
Your Work Environmentt e 1-2
Sourceand RuntimeFiles. i i 1-3
VU AdditionstotheC Languageccovviiiiii i 1-3
SQABasic ScriptingLanguage. oo v 1-4
Functional List
HTTP Emulaion Commandsand Functions. 2-1
SQL Emulation Commandsand Functions., 2-2
VU Toolkit FUNCLIONS. e 2-3
TUXEDO Emulation Commandsand Functions 2-4
[IOP Emulation Commandsand Functions 2-6
Socket Emulation Commandsand Functions. 2-6
Emulation Commands That Can Be U sed with Any Protocol 2-7
Flow Control Commands.ttt 2-7
/O ROULINES. . .ot e e e e e e e 2-8

Contents

Part 11

ConverSon ROULINES.ot e et e et 2-8
SN ROULINGES e e e e 2-9
Random Number Routines i 2-10
TIMINGROULINES e e e e e 2-10
MiscellaneousROULINES i e 2-10
Synchronization FUNCLioNS. 2-11
Dagpool FUNCLIONS. 2-11
Environment Control Commands. ..o, 2-11
A EMENtS . .o e 2-12
Using VU
VU Fundamentals
DA A T YPES . o o ettt 31
1o 3-2
S 1 o 3-2
BanK. .. 3-2
Language Elementsot 3-3
ldentifiers 3-3
CONS AN . o e e 33
(@ o = o] 3-6
Operator Precedence and Associativity. ..., 3-14
EXPr eSS ONS. .« ottt 3-15
A M ENIS . ..ot e 3-16
COMMENES . oot 3-18
AT Y S oo e 3-18
Array CoNStantsSo e 3-18
Declaringan Arrayooo i 3-19
Initidizingan Arrayt 3-20
Array SUDSCIIPES . . .o 3-22
Array OPEraiOrS . .. oottt e 3-22
Flow Control 324
LOOPS. - oot e e 3-24
Breskand Continue. i i e 324

VU Language Reference

Contents

Contents

Scopeof Variables. 3-25
Shared Variables 3-25
Perdstent Variables. 3-26
EXAMPIES . oo e e 3-27

Initid Valuesof Variables. i 3-28

VU Regular EXPressioNS ..o oot vt ettt ie it 3-29
Generd RUles oo 3-29
Single-Character Regular Expression Operators.ovunn... 3-29
Other Regular Expression Operators.oovvvveii i iie e 330
Regular Expresson Examples. 3-31
Regular EXPression Errorso v 332

How aVU Script RepresentsU nprintebleDataot 334
Unprintable Stringand Character Congtants.. 3-34
UnprintebleHTTPor SocketData.ccooiviiii.., 3-35

Scripts, Subroutines, and C Libraries

Program SITUCKTUINEo e e 4-1

Header Files o 4-2
VU N 4-2
VU tUX . 4-3
smeldatah 4-3
smeffileh 4-3

Preprocessor FEatUIESo e 4-3
Token Replacement i i e 4-3
CreatingaScript That Has M orethan One SourceFile 4-4
CompilingPartsof aScript ... 4-4

Defining Your Own Subroutines 4-6
DefiningaFunction i 4-6
CdlingaFunction. 4-7
EXaMPIE. . e 4-7
DefiningaProcedure i 4-8
CdlingaProcedure. 4-8
EXample. .. 4-8

Contents

Accessing Externd C Dataand Functions.o, 4-9
Externd C Variables. 4-9
Declaring Externd C Subroutines. oo, 4-10
Accessing Vdues Returned from C Functions. 4-10
Passing Argumentsto Externd C Functions 4-11
Memory Managementof VU Data. 4-13
Memory Managementof CData ..., 4-13
Specifying Externd C Libraries. ...ty 4-13
CreatingaDynamic-Link Library on WindowsNT 4-14
CreatingaShared Libracyon UNIX.ot 4-15

5 User Emulation

Emulation Commands 51
HTTPEmulaionCommands ..., 5-2
SQL EmulaionCommandst 5-5
VU Toolkit Functions: Filel/O i 5-6
TUXEDO EmulationCommands.ooiiiiniinennan.. 5-7
[IOP Emulation Commands.ttt 5-11
Socket Emulation Commands.o 5-17

Emulation FUNCLIONS. o 5-18

VU Environment Variables. i 5-18
Changing Environment VariablesWithinaScript................. 5-21
Initidizing Environment Variablesthrough aSchedule 5-21
Client/Server Environment Varidbles. 5-21
Connect Environment Variables. o il 5-25
Exit Sequence Environment Variables 5-26
HTTP-Relaed e 5-29
HOP-Relaed.o e 5-30
Private Environment Variables il 5-31
Reporting Environment Variables. 5-32
Response Timeout Environment Variables 5-40
Think TimeVaridbleso i i 5-42

Read-Only Variables 5-48
Initidization of Read-Only Variables 5-52
EXample. . 5-52

Vi VU Language Reference

Part 11

Contents

Contents

Supplying aScript with Meaningful Data. 5-53
DaAaPO0lS. . .ot e 5-53
DynamicDataCorrelaion. ... 5-53

Command Reference

Command Reference

S L 6-2
APPENAD A v v et e 6-2
0 6-4
DK . . 6-5
break ... 6-6
CINOEX .ot 6-7
baseb4 decode()o 6-7
baseb4 encode() 6-8
ClOSE. o 6-9
COMEINMUE oottt e e e e e e 6-9
COOKIE CACHE ...ttt e e 6-11
ClOS. ottt 6-12
datapool_CloSe. . .. oo 6-13
DATAPOOL_CONFIG. ..o e 6-13
datapool_fetch. 6-20
datapool_OPEN. ..o 6-21
datapool_rewind. 6-23
datapool_vaue 6-24
QElaY. .o 6-25
0 o] - Y 6-25
do-While . .. 6-26
Bl it 6-27
BMUIAE . . 6-28
BVl L 6-31
EXPIre COOKIE . ..o 6-31
fEOf. o 6-32
U L 6-33
110 (o 6-34
vii

Contents

viii

0 6-34
fpUtC, fPULS . . o 6-35
FrefAlIDaa . .o o vttt e 6-36
FreeData.o 6-37
FOBEK L 6-38
=, 6-39
LT | - - 6-40
G DAL . . oot 6-41
DO NV L ot e 6-42
hex2mixedstring.o oo 6-42
http disconnect 6-43
http_find_values. 6-44
http header info........ ... i 6-46
http_header recv. 6-47
D NrECV .. 6-50
04 T = 6-51
http request o 6-53
http_url_encode. 6-54
L= = 6-56
op_bind 6-57
0P INVOKE. . ottt e e e 6-58
1] oI === = 6-60
IndexedField. e 6-61
IndexedSUbField o 6-63
0 = P 6-65
[CINdEX ..o 6-65
(OO M. oo 6-66
[SNOEX. .« e 6-67
A CN L. 6-68
MIXEAZNEXSITING. . . o oo 6-69
MKprintable 6-70
LT = o 6-71
NextField 6-71
NeXtSUBFIEld. 6-74
670 6-75

VU Language Reference

Contents

Contents

1] 6-77
PriNE . L 6-78
printf, fprintf, sprintf 6-79
PUSN . ettt e 6-80
PULENIV e e 6-82
=1 6-82
ReadLine.o 6-83
1 6-85
S0 = 6-86
= 6-87
SAVED A . . . oo 6-88
scanf, fscanf, sscanf. 6-89
S o 110 > 6-91
S 6-92
S COOKIE . .ttt 6-92
SHARED_READ . . .ot 6-93
0N o 6-95
SNAEX .. 6-96
SOCK _COMNECL. . ..ttt e et et e 6-97
SOCK CrBaE . ..ottt e e 6-98
SOCK _diSCONNECE .. oot 6-99
SOCK_fAOPEN . .o 6-99
SOCK _ISINPUL .o 6-100
SOCK NPECV. ottt ittt e e e et e e 6-101
SOCK OPEN . oo 6-102
SOCK FCV . .\ ottt ettt e e 6-103
OCK_SENd .. 6-104
lAIOC CUISOr . . 6-105
glaloc staement. 6-106
HICIOSE CUISOr .« .o 6-107
SOICOMMUL . o o 6-108
ICONNECE . . . o 6-109
S 0| LoD o g (011 = o 6-111
leursor_setopltion 6-112
ldeclare CUIrSOr ..o 6-113
ix

Contents

SOldelete CUrSOr . ..o e 6-114
SOIAISCONNECt e 6-115
S EXEC. . . et 6-116
sglfetch cursor.o e 6-124
SrEE CUMSOr . e 6-126
sglfree Staement e 6-127
SOINSEIt CUMSOr . e e e e e e e 6-128
SOHONGrECY . . . 6-129
S o {0 = o 6-130
SOIOPEN CUISOF . ettt e e et e e e e 6-132
SOIPOSEION_CUISOr . .ottt e e e et 6-134
S PrEPAE. . o e 6-135
SOIrefresh _CUISOr . ..o e 6-137
slrollback ... 6-139
SISt OPtiON . e 6-139
SOlsySeMINfO . ..o 6-141
SOIUPAE CUISOr ..ot e e e 6-143
S 0 1= 1 6-144
S AN . e 6-146
At tmMe . . 6-147
SO . et 6-149
SOP M .« o e 6-150
LS =0 6-151
S T o 6-151
S =/ 6-152
LS (= PP 6-153
A AN . . o 6-154
Al o e 6-155
SUBfiEd . .. 6-155
SUDSE 6-156
SYNC POINE .« 6-157
Y < 0 6-158
EMIPNAM. . . e 6-159
LSS o7 S 6-160
M. 6-161

VU Language Reference

Contents

Contents

B0 . e 6-162
BFBNS. 6-162
tux dlochuf ... 6-163
tux_alochuf typed. 6-164
X DO . 6-165
tux freebuf ... 6-166
tux_getbuf_asCii ... 6-166
tux_getbuf_int. ... 6-167
tux_gethbuf string. ... 6-168
tux redlochuf. 6-168
tux_sethbuf asCii ... 6-169
tux_setbuf int. e 6-170
tux_sethbuf string ... 6-170
tux_sizeofbuf 6-171
TUX EPabOrt . 6-172
tux_tpacal 6-173
tUX tpalloC. . .o 6-174
tUX_EPbegIN . . .o 6-175
tux_tpbroadcast. 6-176
tux_tpcall. ..o 6-177
UX EPCaNCE .. 6-178
tux_tpchkauth. 6-178
TUX_EPCOMIMIL . o 6-179
TUX_EPCONNECEot e e 6-180
tUX_tPAEqUEUE . .. e 6-180
TUX_EPAISCON « . o 6-182
TUX_EPENQUEBUE . . . oottt e e 6-182
UX EPfrEe . 6-184
TUX EPOELIPIY. oo e 6-184
TUX EPINIt. . 6-185
tUX_EPNOLITY. . o 6-186
TUX EPPOSE .« . et 6-187
tuX_tpredloc. . ..o 6-188
TUX EPIECV .« ottt e e 6-189
UX EPrESUME . .. 6-190
Xi

Contents

TUX EPSOMT . 6-191
UX IPSENd .o e 6-191
L0 DG ¥ 15" Lo 6-192
tUX_tPSUBSCIIDE .. 6-193
TUX_EPSUSPENd ..o 6-194
UX IR L e 6-194
TUX IR PES . .« et 6-195
tux_tpunsubscribe o 6-196
tux_typeofbuf. e 6-196
TUX USENIOQ. . . oot 6-197
UNGEIC . .« ottt et et et e e e e e 6-198
UNITOrmM. 6-199
UNHNK . 6-200
USEE Xt . oottt 6-200
USErgroUp_MEMbEY ... e e e 6-202
USEIOrOUD _SZE. .t ot ettt et e e e e e e e ettt 6-202
WA L 6-203
WhIlE . L 6-207
Part IV Appendixes
A Jolt-Specific VU Functions
It OVEIVIBIW . o ot e A-1
PerformanceStudio/Jolt Function Overviewt A-2
Request Congtruction Functions.t ennn.. A-2
Message Congtruction Functions A-3
Response QUery FUNCLIONSo A-3
Message Query FUNCLiONSo A-3
Session Control FUNCLIONS. oo A-4
Application Service Functions. i A-4
Request Congtructioncovviei i e A-5
REPONE QUEIY . .ot A-7
PerformanceStudio/Jolt Function Reference. A-8
Request Congruction Functions., A-8
Message Congtruction Functions A-8

Xii VU Language Reference

Contents

Contents

Attribute List Construction Functions A-9
Parameter Ligt Congtruction Functions.oooun. .. A-11
Response Query FUNCLions A-12
Message QuUEry FUNCLIONSot i e A-12
Response Attribute Query Functions, A-13
Response Parameter Query Functionsoovu... A-14

B SAP-Specific VU Functions

Event M anipulation and Communication B-2
FUNCLIONS. ..ot e e e B-2

BVENt SIrUCTUINE ACCESS. .« . o it e e e et e e e B-4
FUNCLIONS. ..o e e e e B-5

UtItiES . . ot e B-6
FUNCLIONS. ..o e e e B-6

Glossary

Index

Xiii

Contents

Xiv VU Language Reference

»»»> Preface

Thismanua describesthe statementsand conventionsof the VU scripting language.
VU includes mogt of the syntax rules and core statementsfound in the C language.

Thismanud isintended to help application developers and system testersread

and customize virtua user scriptsgenerated with Rationa Robot. Familiarity with
Robot and other Rationd Suite software isassumed. Familiarity with programming
language practicesisdso assumed.

Other Resources

>

Thisproduct containscompleteonlineH elp. For information, seethefollowing
section.

All manudsfor thisproduct are available onlinein PDF format. The manuds
are on the Rationd Sdutionsfar WindowsOnline D ocumentation CD.

For information about training opportunities, see the Rationa U niversity
Web site: http://www.rationd.com/university.

Using the VU Help

You can accessthe VU Help in avariety of ways

>

From the Start menu, click VU Language Reference in theingdlation
directory of your Rationa product (typicdly, Retiond Test).

From within Robot, click Help > VU Language Reference.

While you are editing ascript in Robot, you can display context-senditive
information about aparticular VU command. To do so:

Place the insertion point immediately before, after, or anywhere within the
command name.

Press F1.

If asingle H elp topic is associated with the command name, reference
information about that command appearsimmediately.

If multiple H elp topics are associated with the command, the topics are listed
in the T opics Found dialog box. Select the topic you want and click Display.

XV

Preface

Contacting Rational Technical Publications

T o send feedback about documentation for Rationa products, please send e-mail
to our technica publications department a techpubs@raiond.com.

Contacting Rational Technical Support

If you have quegtions about ingtdling, using, or maintaining this product,
contact Rationd Technica Support asfollows:

XVi

Rational Technical Support

Location

Contact Information

Notes

North America

Telephone:
800-433-5444
408-863-4000

E-mail:
support@rational.com

Europe

Telephone:

+31 (0) 20 4546 200

E-mail:
support@europe.rational.com

Asia Pacific

Telephone:
+61-2-9419-0111

E-mail:
support@apac.rational.com

Please be prepared to supply
the following information:

— Your name, telephone number,
and company name

— Computer make and model

— Operating system and
version number

— Product release number
and serial number

— Your Case ID number (if you
are calling about a previously
reported problem)

World Wide Web

http://www.rational.com

Click the Technical Support link.

> Part |

Introducing VU

»»» CHAPTER 1

What Is VU?

TheVU languageisthe Rationa Software corporation language for building virtud
user scripts.

The VU language is based on the C progranming language. In addition to
supporting many C language features, VU includes commands and environment
variables specificaly designed for usein Rationd Performance Studio scripts.

Automated Script Generation

When you record client/server conversations, Rationd Robot automaticaly
generatesascript for you in the VU language. You can either play back the script as
it was generated, or you can make modificationsin Robot.

During virtual user recording, Robot “listens in” on the client/server conversation.
Robot translates the raw conversation into a series of VU commands and stores them
in the script.

SELECT * FROM PRODUCTS WHERE . . . _|
-« ¢ P -

ﬁi Rational
*ﬁr Robot
1

Client

Server

stmt_2 2 =sql prepare ["CD ORDEO13"] " SELECT * FROMPRODUCTS WHERE “. . .

1-1

What IsVU?

Working with Scripts

Although Robot generatescomplete, executable scripts, sometimesyou may want to
edit a recorded script — for example, to:

» Addfor,whil e, anddo-whi | e loops to simplify repetitive actions.
» Add conditional branching.
» Modify think time variables.

» Respond to runtime errors.

Your Work Environment

With VU as your scripting language, you view, edit, and compile scripts in Robot.

P i G S iy e ek v e izl
L L1 * L ¥ #nE
a T [q
T = = 38 S Bal Lim 5 P N L &
= = .
[
P
= ki
1 b ! - 1 1
i ey
' = [i dwws HT|r
L .|.I:I
1!-1—.!!_—.!
D i e

You play back virtual user scripts through a Rational LoadTest schedule. However,
if you are in Robot and want to play back a script, dfikk - Playback. Robot
automatically creates a schedule for you and invokes LoadTest so you can play back
the schedule for that script.

1-2

Source and Runtime Files

Source and Runtime Files

The VU language supportsthe following kinds of files:

File type Extension Location

Script files .S The Script directory of your repository and project.

Watch files .wch The Session directory of your repository and project.

(adso cdled

session files)

H eader files .h The VU .h file shipped with LoadT est islocated in
\Rationa\Rationd T est 7\Include by default.

VU Additions to the C Language

The VU language containsanumber of commandsin addition to standard C
programming language commands. T he following categories of commands are
provided to help you test your gpplicationsand andyze the results:

Environment control commands — Enable you to control a virtual user’s
environment by changing the VU environment variables. For example, you can set
the level of detail logged or the number of times to try a connection.

Flow control statements — Enable you to add conditional execution structures and
looping structures to your virtual user script. The flow control statements behave
like their C counterparts, with enhancements adddxd &ak andcont i nue.

Library routines — Provide your virtual user script with predefined functions that
handle file 1/0, string manipulation, and conversion of data types and formats.

Send and receive emulation commands — Emulate client activity and evaluate the
server's responses, as well as performing communication and timing operations. You
can log emulation commands in a log file.

Emulation functions — Like emulation commands, emulation functions emulate
client activity and evaluate the server’s responses. However, emulation functions do
not perform communication and timing operations, and they are not logged in a log
file.

1-3

What IsVU?

Datapool functions — Retrieve data from a datapoold&tapool is a source of data

that you can use to access variable data from a script. This enables a script that is
executed more than once to use different values for each execution. You create the
datapool with Robot or TestManager.

VU toolkit functions — These functions, which come with PerformanceStudio,
enable you to parse data returnedshy nr ecv into rows and columns.

SQABasic Scripting Language

1-4

Because the VU scripting language lets you capture client/server conversations, it is
the language to use for testing how your client/server system performs.

But for testing GU | objects, you need to record a user’s keyboard and mouse actions.
You also need to insert verification points into the script to compare the way GU|
objects look and work across successive builds of the application. The SQ ABasic
scripting language is required for testing GU | objects.

For more information about the SQ ABasic scripting language, seaXABasc
L anguace Rference

»»» CHAPTER 2

Functional List

This chapter organizesthe VU commandsinto functiond categories. For
information on the VU commands pertaining to Jolt and SAP, see Appendixes
A and B.

HTTP Emulation Commands and Functions

HTTP Send Emulation Commands

htt p_request Sendsan HT TP request to aWeb server.

HTTP Receive Emulation Commands

htt p_header_recv Receives header metadatafrom aWeb server.

http_nrecv Receivesauser-specified number of bytesfrom aWeb server.

http_recv Receivesdatafrom aWeb server until the specified text string
occurs.

HTTP Emulation Functions

htt p_di sconnect Closesthe connection to aWeb server.

http_find_vaues Searches for the specified vdues on the current connection.
http_header _info Getsindividua header valuesfrom header metadata
http_url _encode Prepares strings for incluson in an HTTP requedt.

expi re_cooki e Expiresacookiein the cookie cache.

set _cooki e Adds acookie to the cookie cache.

2-1

Functional List

SQL Emulation Commands and Functions

2-2

SQL Send Emulation Commands

sql cl ose_cursor

sql decl are_cur sor

sql del et e_cursor
sql exec

sql open_cur sor

sql position_cursor
sql prepare

sql refresh_cursor
sql updat e_cur sor

sql systemni nfo

Closestheindicated cursor.

Associatesa SQL statement with acursor 1D, which is
required to open the cursor.

Deletesthe current row using the indicated cursor.
Executes SQL statements.

Opensthe specified cursor.

Positionsacursor within aresult set.

Preparesa SQL statement for execution.
Refreshesthe result set of acursor.

U pdatesthe current row of the indicated cursor.

Queriesthe server for system information.

SQL Receive Emulation Commands

sql fetch_cursor
sql | ongrecv

sql nrecv

Fetchesthe requested rowsfrom the cursor indicated.
Retrieveslongbinary and longchar results.

Retrievesrow results after sql exec isexecuted.

SQL Emulation Functions

sql al | oc_cur sor

sql al | oc_st at enent
sql commi t

sql connect

sql cur sor _r owt ag

sql cursor_setoption
sql di sconnect

sql free_cursor

Allocatesacursor for usein cursor-oriented SQL emulation
commandsand functions.

Allocatesacursor dataareafor Oracle playback.
Commitsthe current transaction.

Logson to aSQL database server.
Returnsthe tag of the last row fetched.
SetsaSQL cursor option.

Closesthe specified connection.

Freesacursor.

sql free_st at enent

sql i nsert_cursor
sql rol | back

sql setopti on

VU Toolkit Functions

Freesdl of the client and server resources for aprepared
saement.

Insertsrows viaacursor.
Rollsback the current transaction.

SetsaSQL daabase server option.

NOTE: SeeVU Tadkit Fundions Datafor additiona SQL emulation functions.

VU Toolkit Functions

VU Toolkit Functions:

AppendDat a

FreeAl | Dat a
Fr eeDat a

CGet Dat a
Cet Dat al

SaveDat a

VU Toolkit Functions:

| ndexedFi el d
| ndexedSubFi el d

Next Fi el d
Next SubFi el d

ReadLi ne

SHARED_READ

Data

Addsthe datareturned by sqgl nr ecv to the specified daa
et.

Freesdl datasetssaved with SaveDat a and AppendDat a.

Frees gecified data sets saved with SaveDat a and
AppendDat a.

Retrieves a specific row from the data set crested with
SaveDat a or AppendDat a.

Retrievesavauein thefirst row of adataset created with
SaveDat a or AppendDat a.

Storesthe datareturned by the most recent sql nrecv
command into adata set.

File 110

Parsesthelineread by the ReadLi ne function and returns
the field designated by i ndex.

Parsesthefield set by the Next Fi el d or | ndexedFi el d
function and returnsthe subfield designated by i ndex.

Parsesthelineread by the ReadLi ne function.

Parsesthefield returned by the most recent cal to
Next Fi el d or | ndexedFi el d.

Reads aline from the open file designated by
file_descriptor.

Allows multiple usersto share afile.

2-3

Functional List

TUXEDO Emulation Commands and Functions

TUXEDO Send Emulation Commands

tux_bq QueuesaUN IX command for background processng.
tux_t pabort Abortsthe current transaction.

tux_t pacal | Sendsaservice request.

t ux_t pbr oadcast Broadcasts notification by name.

tux_tpcal l Sends aservice request and awaitsitsreply.

tux_t pcomit Commitsthe current transection.

t ux_t pconnect Establishes aconversationa service connection.

t ux_t pdequeue Removes amessage from aqueue.

t ux_t pdi scon Takesdown aconversationa service connection.

t ux_t penqueue Queues amessage.

tux_tpgetrply Getsareply from apreviousrequest.

tux_tpinit Joins an gpplication.

tux_tpnotify Sends notification by client identifier.

t ux_t ppost Posts an event.

tux_t precv Receives amessage in aconversationd service connection.
tux_t presune Resumesagloba transaction.

tux_t psend Sendsamessage in aconversationd service connection.
t ux_t psubscri be Subscribesto an event.

t ux_t psuspend Suspendsagloba transaction.

tux_tpterm Leaves an gpplication.

t ux_t punsubscri be U nsubscribesto an event.

TUXEDO Receive Emulation Commands

N one.

2-4

TUXEDO Emulation Commands and Functions

TUXEDO Emulation Functions

tux_al | ocbuf

tux_al | ocbuf _typed

t ux_freebuf

tux_get buf _ascii

t ux_get buf _i nt

tux_getbuf _string

t ux_real | ocbuf
tux_set buf _ascii
tux_setbuf _int

tux_set buf _string

t ux_si zeof buf
tux_tpalloc
t ux_t pbegin
t ux_t pcancel

t ux_t pchkaut h

tux_tpfree
tux_tprealloc
tux_tpscnt
tux_tpsprio
tux_t ptypes

t ux_t ypeof buf

tux_userl og

Allocates afree buffer.
AllocatesaTU XED O-typed buffer.
Dedlocaesafree buffer.

Getsafree buffer or buffer member and convertsit into a
gring.

Getsafree buffer or buffer member and convertsit into an
VU integer.

Getsafree buffer or buffer member and convertsit into a
string without converting nonprintable characters.

Resizes afree buffer.
Writesastring vdue into abuffer or buffer member.
Setsafreebuffer or buffer member with an VU integer value.

Setsafree buffer or buffer member with an VU stringvdue,
without converting nonprintable characters.

Returnsthe size of abuffer.

Allocates TU XED O-typed buffers.
Beginsatransaction.

Cancelsacal descriptor for an outstanding reply.

Checkswhether authentication isrequired to join an
goplicaion.

Freesatyped buffer.

Changesthe sze of atyped buffer.
Setswhen t pconmi t () should return.
Setsthe service request priority.
Providesinformation about atyped buffer.
Returnsthe type of abuffer.

Writesamessage to the TU XED O centrd event log.

2-5

Functional List

[IOP Emulation Commands and Functions

[IOP Send Emulation Commands

iiop_bind Binds an interface name to an Object Reference pseudo-
object.
iiop_invoke Initiates asynchronous 1 1OP request to an interface

implementation.

[IOP Emulation Functions

iiop_rel ease Releases storage associated with apseudo-object.

Socket Emulation Commands and Functions

Socket Send Emulation Commands

sock_send Sends daato the server.

Socket Receive Emulation Commands

sock_nrecv Receives n bytes from the server.

sock_recv Receives datauntil the specified delimiter stringisfound.

Socket Emulation Functions

sock_connect Opensasocket connection.

sock create Creates asocket to which another process may connect.
sock_di sconnect Disconnects asocket connection.

sock_f dopen Associates afile descriptor with asocket connection.
sock_i si nput Checksfor available input on asocket connection.
sock_open Waitsfor asocket connection from another process.

2-6

Emulation Commands That Can Be Used with Any Protocol

Emulation Commands That Can Be Used with Any Protocol

Send Emulation Commands

enul ate

Provides generic emulation command servicesto support a
proprietary protocol.

Other Emulation Commands

start _tinme
stop_time

t est case

Flow Control Commands

Marksthe start of ablock of actionsto be timed.
M arksthe end of ablock of actionsbeing timed.

Checksaresponse for specific results, and reportsand logs
them.

br eak

conti nue

do-whil e

el se-if

for

if-else
script_exit

user_exit

whi | e

Stopsexecution of f or , whi | e, and do- whi | e statements.

Skipsremaining statementsin aloop and continueswith the
next iteration of the loop.

Repeaedly executesaVU statement whileacondition istrue.
Conditionadly executesaVU staement.

Repeaedly executesaVU statement.

Conditiondly executesaVU staement.

Exitsfrom ascript.

Exitsan entire virtud user emulation from within any point
in avirtuad user script.

Repeaedly executesaVU statement.

2-7

Functional List

/O Routines

cl ose

f eof

fflush
fgetc

printf, fprintf,
sprintf

fputc, fputs
fseek

ftel

open

scanf, fscanf,
sscanf

t empnam
ungetc

unl i nk

Conversion Routines

Writes out buffered datato afile and then closesthefile.

Returnsavaueindicatingwhether or not theend of afilehas
been encountered.

Causes any buffered datafor afileto be written to that file.
Providesunformatted character input capability.

Writes specified output to afile, standard output, or astring
veriable.

Write unformatted output for charactersor strings.
Repodtionsthe file pointer.

Returns the file pointer’s offset in the specified file.
Opens afile for reading or writing.

Reads specified input from standard input, a file, or a string
expression.

Generates unigue temporary file names.
Provides unformatted character input capability.

Removes files.

2-8

at oi

base64 decode
base64 _encode
ctos

hex2m xedstring
itoa

nm xed2hexstring

stoc

Converts strings to integers.

Decodes a base 64—encoded string.

Encodes a string using base-64 encoding.
Converts characters to strings.

Returns a mixed ascii/lhex version of a VU string.
Converts integers to strings.

Returns a pure hex version of a VU string.

Returns a selected character from a string argument.

String Routines

String Routines

ci ndex

| ci ndex

mat ch

nmkprint abl e

si ndex

sqtrans

strlen

strneg

strrep
strset
strstr

strspan

subfield

substr

trans

Returnsthe position within st r of thefirst occurrenceof the
character char .

Returnstheposition of thelast occurrence of auser-supplied
character.

Determines whether a subject string matches a specified
pattern.

Createsprintable versons of stringsthat contain
nonprintable characters.

Returnsthe postion of the first occurrence of any character
from aspecified set.

Creates string expressions based on character trandations of
string expressions, squeezing out any repeated characters.

Returnsthe length of astring expression.

Createsastring expression based on character set negation
(complements).

Createsastring expression based on character repetition.
Cregtesadring expression based on user-supplied characters.
Searchesfor one string within another.

Returnsthe length of theinitid segment within astring
expression, beginning a the specified position.

Extracts substrings from string expressions based on field
position.

Extracts substrings from string expressions based on
character position.

Subgtitutes or deletes selected charactersin agtring
expression.

2-9

Functional List

Random Number Routines

negexp Returnsarandom integer from anegetive exponentia
digribution with the specified mean.

rand Returnsarandom integer in the range 0 to 32767.

srand Reseeds the random number generator, essentialy resetting
it to agpecific starting place.

uni form Returnsarandom integer uniformly distributed in the
specified range.

Timing Routines

del ay Delays script execution for aspecified time period.
tinme Returnsthe current timein integer forma.
tod Returnsthe current timein string format.

Miscellaneous Routines

abs Returnsthe absolute vaue of itsargument as an integer.

bank Creates bank expressionsfor assgnmentsto the bank
environment varidblesEscape_seq and Logout _seq.

display Providesastring to the monitor for display in message view.

get env Obtansthe vaues of WindowsN T or UN X environment
variablesfrom within avirtud user script.

| og_nsg Writesmessagesto the log filewith astandard header format.

put env Setsthevauesof Windows N T or UN X environment
variablesfrom within avirtud user script.

system Allowsan escape mechanism to the U N IX shell from within
avirtua user script runningon aU N X system.

user gr oup_nenber Returnsthe postion of avirtua user within auser group

user group_si ze Returnsthe number of membersin auser group.

2-10

Synchronization Functions

Synchronization Functions

wai t Blocksavirtud user from further execution until auser-
defined globa event occurs.

sync_poi nt Waitsfor usersin aLoadT est schedule to synchronize.

Datapool Functions

dat apool _cl ose Closes an open datapool.

dat apool _fetch M ovesthe datgpool cursor to the next record.
dat apool _open Opensadaapool.

dat apool _rew nd Resetsthe cursor for the datgpool.

dat apool _val ue Retrievesthe vaue of aspecified column.

Environment Control Commands

eval Returnsthe vdue and datatype a the top of avVU
environment variable’s stack.

pop Removes the value of a VU environment variable from the
top of the stack.

push Pushes the value of a VU environment variable to the top of
the stack.

reset Changes the current value of a VU environment variable to
its default value, and discards all other values in the stack.

restore Makes the saved value of a VU environment variable the
current value.

save Saves the value of a VU environment variable.

set Sets a VU environment variable to the specified expression.

show Writes the current values of the specified VU environment

variables to standard output.

2-11

Functional List

Statements

COOKI E_CACHE

DATAPCOOL_CONFI G

print

2-12

Indicatesthe state of the cookie cache at the beginning of a
session.
Provides configuration information about adatgpool.

Writesto standard output when the formatting capability of
printf isnotrequired.

Part Il

Using VU

»»» CHAPTER 3

VU Fundamentals

The fundamentds of the VU scripting language are similar to the C programming
language. T his chapter describesthe following features of VU program scripting:

Daatypes

Language elements
Expressions

Statements

Comments

Arrays

Flow control

Scope of variables

Initid vaues of varigbles

VU regular expressions

vV vV v v v v vV v v v Vv

How aVU script represents unprintable data

Data Types

The VU language supportsthe following datatypes:
» Integer

» String

» Bank

Mixing different datatypesin asingle expression isgenerdly not alowed. For
example, an integer expression cannot be compared to astring expression, nor can a
character constant be assigned to astring expression. Expressionsformed with the
comma(,) and conditiona (?:) operators, however, do alow you to mix daatypes.

3-1

VU Fundamentals

Integer

String

Bank

3-2

Thedatatypeof avariable or function can be declared or isan integer by default. The
datatype of an expression is predefined in the VU language or dependson itsown
operators and operands.

An integer can be of any class, but only integerscan be shared. Charactersand shared
variables are specia cases of the integer datatype. Integer expressions, including
character constants, have 32-bit integer values. Although the default type of avaridble
isinteger, avariable can be explicitly declared integer for clarity.

int int_name_1, int_nane2;

Thedringdaatypeisabasic VU daatype, just likei nt . In the C language, astring
isan array of characters, but the VU programmer need not dlocate or dealocate
storage. Thevaue of astring expression isaset of characters. Thefollowing
statement declarestwo variables asthe string datatype:

string string_nane_1, string_nane_2,

A bank isanonscdar (composite) daatype that consists of acollection of zero or
more scalar dataitems (integers, strings, or both). The position of dataitemswithin
abank issignificant only within dataitems of the same datatype; the position is
insignificant within dataitemsof different datatypes. Bank expressionsare used with
theenvironment varidblesEscape_seq, Logout _seq, and Mybst ack. TheVU
language does not dlow you to define bank variables or bank functions.

Bank expressions can be created in the following ways:
» With the built-in function bank.

» By evduatingthe vaue of abank environment varigble with the eval
environment control command.

» By creaingaunion of two bank expressonswith the + operator.
Information about the contents of abank expression can be determined asfollows:
» bank_exp[i nt] returnsthe number of integer dataitemsin bank_exp.

» bank_exp[string] returnsthe number of sring dataitemsin bank_exp.

Language Elements

» bank_exp[i nt][n] returnsthe nth integer dataitem in bank_exp, wheren
isan integer expression such that 0< n< bank_exp[i nt].If nisoutsdethis
range, aVU runtime error isgeneraed.

» bank_exp[string][n] returnsthe nth stringdataitem in bank_exp, where
nisan integer expression such that 0< n < bank_exp[string].If nis
outsidethisrange, aVU runtime error isgenerated.

Language Elements

Identifiers

Constants

A VU <cript containsidentifiers, constants, operators, and keywords. For alist of
keywords, see Appendix A, Kewards

Identifiers are named by the programmer. An identifier must begin with an
dphabetic character, and it consists of any combination of dphabetic characters,
underscores (), and digits. U ppercase and lowercase dphabetic charactersare
differentiated, so, for example, RATI ONAL andr at i onal are both unique
identifiers.

Identifiers are used to represent:

» Variables

» Namesof functionsand procedures

» Argumentsof functionsor procedures

» Datgpools

The VU language supportsinteger, character, string, and array constants. For
information about arraysand array constants, see Arrayson page 3-18.

Integer Constants

Integer constantscan be specified in decimd, octd, or hexadecima format. A leading
0 (zero) on an integer constant means octd; aleading Ox or 0X means hexadecimal;
otherwise, theinteger constant is considered decimal. For example, decimd 63
written as 63 in decimal, 077 in octd, or Ox3F, 0X3F, 0x3f, or 0X3f in hexadecimd
format. All integer constants are treated as 32-bit integers. N egative numbersare
obtained by prefacing the integer constant with the unary negation operaor (-).

3-3

VU Fundamentals

3-4

Character Constants

Character congtants are specified by enclosing the constant in single quotation
marks. A character constant dways representsasingle character.

String Constants

The VU language dlowstwo types of string constants. standard and pattern. The
difference between standard and pattern string constantsisin how they treat the
backdash character. Pattern string constantsallow you to usethe backdash character
to specify patterns.

T o specify astandard string constant, enclosethe constant in double quotation marks
(""). To specify apattern string constant, enclose the constant in single quotation
marks ("). If anull character (\O) isplaced in astring constant, the null character
and al remaining charactersin the string constant areignored. A double quotation
mark can beincluded in astandard string constant by prefacing the quotation mark
with abackdash (\).

For standard string and character constants, the backslash character isrepresented by
two backdashes (\\). A single backdash isignored unlessit occursin asequence. For
patern string constants, the backslash character isnever ignored. If it ispart of a
sequence, the escape sequence (including the backdash itself) representsthe
corresponding ASCII character. If it precedesthe single quotation mark, it indicates
that the quotaion mark ispart of the string instead of the fina string delimiter. For
example, the backsash and single quotation mark represent asingle quotaion mark.
Otherwise, the backdash and the character that follow it have no specid
interpretation.

Since both pattern string congtants and character constants are delimited by single
guotaion marks, the charactersinside the quotation marks determine whether the
constant isacharacter constant or apattern string constant. If the charactersenclosed
by the quotation marks can be interpreted as representing asingle character, the
constant isacharacter constant. Otherwise, it isapatern string constant.

Adjacent string constants are concatenated a compiletimeasin AN S| C.

For example, "good-bye," "cruel world" isequivdent to "good-bye,
cruel world" . Thisisuseful for splitting long string constants across multiple
lines, and gppliesto both standard and pattern string constants, or to any
combination of the two types.

Examples of Constants

Language Elements

Thefollowing table lists examples of character constants, standard string constants,
and pattern string congtants:

Constant Type Description

a’ character Simplest form of character congtant.

\? character Representsasingle quotation mark. It is preceded
by abackdash.

‘ab’ pattern string Simple two-character patern string constant.

\7’ character Representsthe character constant with ASCI|
vdue7 (bell). Thereisno way to specify the two-
character pattern string\7 . A gring containing
these characterscan be specified with the standard
string constant "\7"

9’ character Representsthe character 9 sncethe backdash is
ignored.

AN pattern string The patern string constant containsthe three
characters 7\ .

A\Y character Representsthe backdash character.

\141 character Equivdentto’a’ sincethe ASCII vdueof a is
141.

\148’ pattern string The pattern string containstwo characters: form
feed (ASCII 014) and 8. Thisisnot interpreted as
acharacter constant asthe previous example
because 148 isnot an octd number.

‘a\r\8\b’ pattern string The pattern string constant containsfive
characters: a, carriage return, backsash, 8, and
backspace.

"“\a\r\8\b" standard string Equivdent to the pattern string constant of the
previous example.

"\a\r" "\8\b’ concaenaed Also equivaent to the previous example, using

string string constant concatenation of astandard string

congtant and apattern string constant.

3-5

VU Fundamentals

Operators

3-6

(Continued)

Constant Type Description

\Wn? pattern string The patern string constant containsthree
characters: backsash, backdash, and newline.

\n’ pattern string The patern string constant containsthree

characters: backdash, backdash, and n. Thisisnot
interpreted as abackslash followed by newline,

since — processing left to right — the second
backslash is associated with the first backslash, and
not then.

The VU language offersafull range of operatorsfor integer, string, and bank
expressions. N ot al operators are valid with al expressons. When used with
expressonswhose datatypeisinteger, the VU operatorsgenerally perform the same
asoperatorsin C, except that VU integersare dways 32 bitsin size. To smplify
common string operations, the VU language dso defines operators on string

expressionsthat are not provided in C.

For information about operatorsthat work with arrays, see Array Opaatarson page
3-22. Thefollowing conventions are used in this section:

» intl,int2 andint3refertoabitrary integer expressons.

» Strl1,str2,and str3referto arbitrary string expressions.

» expl,exp2, exp3,and exp4 refer to arbitrary expressionsof either integer or

grin

gtype.

» bank_expl and bank_exp2 refer to arbitrary bank expressions.

» any_expland any_expZ2 refer to arbitrary expressons of any type such as:

integer
string
array
bank

Language Elements

Binary Arithmetic Operators

Thebinary arithmetic operatorsare +, -, *, /, and %. T he daatype of an expression
containingabinary arithmetic operator isthe same asthetype of theoperands. N one
of these operators change the vaues of their operands. Binary arithmetic operators
require two operands of the same datatype.

Operators for Integers

Thebinary arithmetic operators+, -, *, /, % support integer operands. T hey provide
32-bit addition, subtraction, multiplication, integer divison, and modulus(i nt 1 %
i nt 2= theremander of / nt 1 divided by i nt 2).

Operators for Strings

Theonly binary arithmetic operator to support string operandsisthe concatenation
operator + . The dringexpression st r 1+ str2returnsst r 2 concatenated to
str1.Thedringexpression str3= str1+ strZ2isequivdenttotheC
saement strcat (st rcpy(str3,str1),str2).

Operators for Bank Expressions

Theonly binary arithmetic operator to support bank operandsisthe union operator,
+ . Thebank expresson bank_expl+ bank_exp?2 returnsabank containing al
of the integer and string dataitems of both bank_exp1 and bank _exp2. For
example, if bank_explisequivdent to bank(1, "ab",2,"xy") and

bank _expZ2isequivdenttobank("def", 3, 4, "ghi ") ,then bank_expl +
bank_expZ2isequivdent tobank(1, 2, 3, 4, "ab", "xy", "def","ghi").

Ordering among dataitems of the sametypeisretained; therefore, the + operator is
not commutative for the bank operands.

Binary Bitwise Operators

The binary bitwise operatorsrequire two integer operandsand dways operate on al
32 bits of each operand. The operations are identicad to that of their C language
counterpartswhen operating on unsigned 32-bit quantities. T he datatype of an
expression containing abinary bitwise operator isinteger. N one of these operators
change the values of their operands.

3-7

VU Fundamentals

3-8

The following table showsthe binary bitwise operators:

Operator

Description

&

bitwise AN D
int1&int2hasbitssettoltha aesettolinbothi nt 1andi nt 2,
theremaining bitsare set to 0.

bitwiss OR
int1l]int2hashitssettoltha aesettolineitherint 1orint2;
theremaining bitsare set to 0.

bitwise exclusve OR
int1” |nt2hasbitssettolin each bit position wherei nt 1 and
i nt 2 have different bits, theremaining bitsare set to 0.

left shift
intl<< jnt2hasthevaueof int1 shifted left by i nt 2 bit
positions, filling vacated bitswith 0; i nt 2 must be positive.

right shift
int1>> jnt2hasthevdueof i nt 1 shifted right by i nt 2 bit
positions, filling vacated bitswith 0; i/ nt 2 must be positive.

Assignment Operators

Assgnment operatorsrequire two operands of the same type. The first operand of

an assignment operator must be avariable. The type and vaue of an expresson

containing an assignment operator isaways equivdent to the type and vaue of its

second (rightmost) operand.

Thevdueon theleft of theoperator (i nt 1) changesto thevaue specified; thevdue

on theright of the operator (i nt 2) doesnot change.

If you arereading and updating ashared variable, your read-and-update operation is

mutually exclusive of any other virtual user’s update of that variable.

Language Elements

The following table showsthe assignment operators:

Operator Description

= i nt 1= i nt 2 changesthevadueof i nt 1 tothat of i nt 2.

+= int1+=int2changesthevdueofintltothaofintl+ int2.

-= int1-=int2changesthevdueofintltothaofintl-int2.

= int1=jnt2changesthevadueofintltothaofintl*int2.

/= int1/=int2changesthevdueofintltothaofintl/int2.

%= i nt1%= int2changesthevdueofintltothaofintl%int?2.

&= int1&= int2changesthevdueofintltothaofintl&int2.

|= intl|=int2changesthevaueofintltothaofintl| int2.

A= int1” = int2changesthevdueofintltothaofintl” int2.

<<= i nt 1<<=int2changesthevdueofi nt 1totha of i nt 1<< i nt 2.

>>= i nt1>>=int2changesthevdueofi nt 1tothaof i nt 1>> i nt 2.

= str1=str2changesthevaueof srltotha of str2;str2is
unchanged.

+= str 1+ =str2changesthevdueof st r 1totheconcaenationof st r 1

and st r2; st r 2isunchanged.

3-9

VU Fundamentals

3-10

Unary Operators

U nary operaorsrequire one integer or string operand. Thetype of an expression
containing aunary operaor isthe type of the operand.

The following table describesthe unary operaors.

Operator Description

! logicd negation
If thevaueof i nt 1 isnonzero, !i nt 1 equasQ; if thevdueof i nt 1is
0,!i nt 1 equasl. In either case, i nt 1 isunchanged.

& address of
The & operator isvdid in an externa C function expecting the passed
address of avariable and in the following function cdls
» fscanf
» scanf
» sscanf
» mat ch
> wait
» sprintf
For integer operands, &/ nt 1 equastheaddressof i nt 1;int 1is
unchanged. The operand of & must be an integer variable or integer
aray element. Semanticdly, theinteger operand of & must be anorma
integer variable (or array element) or ashared integer variable, depending
on the associated function definition.
For string operands, & st r 1 equasthe addressof st r1;str1is
unchanged. The operand of & must be astring variable or string array
element.

++ increment

(++ i nt 1) equasi nt 1+1 when evduaed in an expression; (i nt 1++)
equasi nt 1 when evduated, and isincremented after evduation. The
operand must be avariable or integer array element.

If you are reading and incrementing ashared variable, your read-and-
update operation ismutudly exclusive of any other virtua user’supdate
of that varigble.

(Continued)
Operator

Language Elements

Description

decrement

(--i nt 1) equdsi nt 1-1 when evauated in an expression; (i nt 1--)
equasi nt 1 when evduated, and isdecremented &fter evduation. The
operand must be avariable or integer array element.

If you are reading and decrementing ashared variable, your read-and-
update operation is mutually exclusive of any other virtual user’s update
of that variable.

negation
-i nt 1 equals the additive inverseiofit 1. i nt 1 is unchanged.

bitwise one’s complement

sets bits to one that are zerdiint 1; the remaining bits are set to zero.
i nt 1is unchanged.

Relational Operators

Therelaiond operatorsconsist of &&, | | , >, <, >=,<=,==,and ! =. Thedaatype
of an expression containing arelaiond operator isawaysinteger. N one of the
relationd operators change their operands. Relationd operators require two
operands of the same datatype.

Asin C, theimplementationsof & and | | guaranteeleft-to-right evauation and do
not perform unnecessary operand evaduation. In other words, the second operand of
&& isnot evduated if thefirst operand hasthe vaue0; likewise, the second operand
of | | isnot evduated if the first operand hasanonzero vdue.

The following table showsthe relationa operaorsfor integer operands:

Operator

Description

&&

logical AND

int1&&int2equalslifboth nt1andint2have nonzero values.
Otherwise, it equals 0.

logical OR

intl1l]]|int2equalsOifboth nt1andi nt2 have the value 0.
Otherwise, it equals 1.

greater than

int1>jnt2equalslifint1isgreaterthannt 2. Otherwise, it
equals 0.

3-11

VU Fundamentals

3-12

(Continued)

Operator Description

< lessthan
intl<int2equdslifintlislessthani nt2.Otherwise,itequasO.

>= greater than or equd to
intl1>=jnt2equaslifintlisnotlessthanint2. Otherwise, it
equasO.

<= lessthan or equad to

intl<=int2equdslifintlisnotgreaerthanint2. Otherwise,
it equasO.

equdlity
intl==jnt2equdslifintlandint2havethesamevdue.
Otherwise, it equasO.

inequdity

int1l!=|nt2equds0ifintl1andint2havethesamevdue.
Otherwise, it equas 1.

The following table showsthe relationd operaorsfor string operands:

Operator Description

> greater than
str1> str2equdslifstr1isgreater (based on the machine’s
collating sequence) that r 2. Otherwise, it equals 0. Equivalent to the
C expression (1 ==strcnp(str1,str?2)).

< less than
strl< str2equalsliktrlisless (based onthe machine’s collating
sequence) thast r 2. Otherwise, it equals 0. Equivalent to the C
expression (-1 ==strcnp(str1,str?2)).

>= greater than or equal to
strl>= str2equalslifstrlisnotlessthastr2. Otherwise, it
equals 0. Equivalent to the C expression (-t cnp(st r 1,str 2)).

<= less than or equal to

strl1<= str2equalslifstrlisnotgreater thaat r 2. Otherwise,
it equals 0. Equivalent to the C expression (5t cnp(st r 1,st r 2)).

Language Elements

(Continued)
Operator Description

== equdlity

strl== str2equdslifstrlandstr2haethesamevdue.
Otherwise, it equas0. Equivdent to the C expression
(Istrcnp(stri,str?2)).

I= inequdity

str1!= str2equdsO0if strl1andstr2havethesamevdue.
Otherwise, it equds 1. Equivadent to the C expression
(strcnp(stri,str2)).

Other Operators

The VU language offers two additional operators — the comma operator (,) and the
conditional operator (?:). The following table describes these operators:

Operator Description

) comma

Thecomma operator dlows operands of different types. For any two
expressonsexpl and exp2,theresultingvdueof the"expl, exp2'isthe
vdueof exp2, and theresulting typeisthetype of exp2. T he operands of
the commaoperaor are not changed. The commaoperator isused only in
thef or saement, asinf or (expl; exp2; exp3,exp4) and cannot have
bank expressonsasitsoperand. The commaisadso used asagrammaticd
symbol in other places in the VU language — for example, to separate
arguments in a function call.

2 Theconditional operator requires three operands. The expressioh1
? any_expl: any_exp2 hasthe value and typeafy _explifint 1
isnonzero. Otherwise, the expression has the value and tgpg oéxp2.
any_expl andany_exp2 must have the same type. N one of
any_expl, any_exp2,orint 1 are changed.

3-13

VU Fundamentals

Operator Precedence and Associativity

The following table showsthe operator precedence and associativity of each VU

operator. (“Associativity” is the order in which operators of the same precedence are
evaluated.) Operators in the same row have the same precedence. The precedence
decreases with each row.

U se parentheses to change the order of evaluation of an expression. An expression
inside parentheses is always evaluated first, and the extra parentheses are ignored.

Operator Associativity
O I1] left-to-right
-(unay) ! ~ & (addressof) ++ -- right-to-left
* | % left-to-right
+ - (binary) left-to-right
>> << left-to-right
> >= < <= left-to-right
== I= left-to-right
& (bitwise AND) left-to-right
N left-to-right
| left-to-right
&& left-to-right
| left-to-right
2 right-to-left
= += .= %= = U= &= | =N =<<=>>= right-to-left
, left-to-right

3-14

Expressions

Expressions

An expression containsone or more VU identifiers, congtants, keywords, and
operators. Every expresson hasadatatype and avaue. The datatype of an
expression determines how itsvaueisinterpreted. Each of the following VU
language congructsisan expresson:

>

vV vV v v v v vV Vv Vv vV VvV v Vv Vv Y

v

Congant

Variable

Argument

Read-only variable

eval environnent_vari abl e
unary_operator expression

expressi on unary_operator

expressi on bi nary_operator expression
expressi on ? expression : expression
bank _expression[int]

bank _expressi on[string]

bank _expression[int][int_expression]
bank _expression[string][int_expression]
array_vari abl e[i nt _expressi on]
array_vari abl e[i nt _expressi on][i nt _expressi on]

array_vari abl e[i nt _expressi on][i nt _expressi on]
[i nt_expression]

Function (afunction invocetion or cdl)
Emulation command

limtof aray

3-15

VU Fundamentals

Statements

3-16

Statements contain one or more VU expressions. N ot dl saementsarevaid
everywherein aVU script. For example, argument assignmentsand r et ur n
saementsareinvaid outside of function or procedures, and the br eak and
cont i nue statementsareinvaid outside of loops.

The following table showsthe VU satements:

Statement

Description

N ull satement.

vari abl e asgn_op exp;

Variable assgnment.
asgn_op isany assignment operator;
exp isan integer or string expression.

int_exp;

i nt_expisan integer expression, which
includesinteger function calsand emulation
commands. (String function cals cannot be
used asVU gtatements by themselves, but
only asapart of aVU expression.)

envi ronnment _cont rol _command
env_var;

push, pop, etc.
env_var isany environment varigble.

envi ronnment _cont rol _command
[env_var_list];

push, pop, etc.
env_var_l i st isacomma separated ligt of
one or more environment variables.

br eak; Break.
br eak i nt eger_const ant; Multilevel break.
conti nue; Continue.

conti nue i nteger_constant;

Multilevel continue.

DATAPOOL_CONFI G

See DATAPOOL_CONFIG on page 6-13
for detailed syntax.

COOKI E_CACHE

See COOKIE_CACHE on page 6-11 for
detailed syntax.

i f (i nt_exp) st at enent

i nt_expisan integer expression;
st at enent isany vdid statement form,
defined recursively.

i f (i nt_exp) st at enent
el se st at enent

i nt_expisan integer expression;
st at enent isany vdid statement form,
defined recursively.

Statements

(Continued)
Statement Description
procedure_nane (exp_Iist); Procedure cdl.

exp_l i st isacommaseparated list of O or
more expressons.

print exp_list;

exp_l i st isacommaseparated lig of one
Or more expressons.

return;

Return

return exp;

exp isan integer, array, or string expresson
tha isreturned to the cdling function or
procedure.

sync_poi nt string_const

string_const isthenameof a
synchronization point.

whi | e (i nt _exp) st at enent

i nt_expisan integer expression;
st at enent isany vdid statement form,
defined recursively.

do st at enent whi | e (i nt_exp);

st at enent isany vdid statement form,
defined recursively;
i nt_expisan integer expression.

for (exp_list;int_exp ;
exp_list)
st at enent

exp_l i st isacommaseparated list of zero
Or more expressons,

i nt_expisan optiond integer expresson;
st at enent isany vaid statement form,
defined recursively.

{ decl aration_Ilist
statenent _|ist}

decl aration_|i st contansOor more
declarétions.

statenent_|i st contansOor more
staements.

decl aration

cl ass type nane_list:

» cl ass (optiond) can be: shar ed,
persi stent,orext ernal _C. Only
typei nt may be shared.

» typemaybeint orstring.typemay
be omitted for integer declaraions.

» name_[i st isacomma-separated list of
one or more identifiers; each identifier is
optiondly followed by theinitidizer
= const ant ,where const ant isthe
sametype astheidentifier.

3-17

VU Fundamentals

Comments

Arrays

Commentsaredelimited by thecharacters/ * and */ . Thefollowing example shows
aone-line comment and atwo-line comment:

/* This is the main body of the script */

/* This coment contains

nore than one line */

Comments cannot include other comments.

The VU language supports arrays of up to three dimensions of dl scalar datatypes,
such asinteger and string.

Array elementsare referenced by integer expression subscripts enclosed in brackets
([1)- Array indexingis zero based. Thefirst element of an array isreferenced by
index 0. M ultidimensionad arrays are subscripted by multiple pairs of brackets.
Arrays are declared as afixed size or as expandable. Expandable arrays grow as
necessary up to an optiona maximum size.

Array Constants

3-18

Array congantsare specified asalist of scdar constantsenclosed in braces. All scaar
congtantsin thelist must be of the same type. For example, { 1, 2, 3, 4 }is
an array congtant of four integers. A multidimensiona array constant is specified as

alig of array congantsenclosed in braces:
{ { "this", "is" },
{ "a", "two", "dinmensional", "array" },
{ "of", "strings" } }
All arraysin amultidimensiona array congtant must be of the same type but not
necessarily the same size.

You can usetherepeat operator (:) to specify repetition of acongtant element array.
The array congtant:

{ 1.5, 2:3, 3:4}

contains 12 elements and isthe same asthe congant:
{1,1,1,1,1,2,2,2,3,3,3,3}

The repeat operator isaso used to repeat array constants.
{{{2:3 2.2}, {5:61}:3}:21}

Arrays

isthe same as.
{{

Pt e e L P
goaRpoaoaarE
ooaRpoaoaarE
goaRroaoaarE
ooanpaoan
soanaaan
-
oo goag-
B e el e e

1)
Array constants are dlowed only astheright-hand side of an array assignment or in
an array initidization.

Declaring an Array
An array declaration hasthe form:
class type name [m.Mg];
G1553 (Ype nanme Lmo Mgl [mopa) 1m. M)
The declaration hasthese parts:
» cl assisoptiond (only per si st ent and ext er nal _Caredlowed).
» [ypeisthescda type, which can bei nt or stri ng.
» naneisthenameof thearray.

» [m .M gjisadimension specification. It indicatesthe minimum and
maximum number of elementsthe array can contain, and agrowth size.

— mis an integer constant that specifies the minimum (initial) size of the array.
The minimum initial size of a dimension is useful when combined with
initialization as described below.

— Mis an integer constant that specifies the maximum size of the array.

— gis an integer constant that specifies the growth size of the array. For
efficiency, declare a expandable array with a growth size, which specifies the
number of elements by which to grow the array.

3-19

VU Fundamentals

m M g can be combined in the following ways:

Combination Meaning

(M fixed size

[1 no limit, growth determined at runtime

[m.M initid sze m limit M growth determined & runtime

[M g] no minimum, first accessalocatesaminimum of g elements
[m.Md] initid size m limit M grow by g elements

[g] no limit, grow by g elements

[m.] initid size m no limit, growth determined a runtime

[m., 3] initid size m no limit, grow by g elements

In dl cases, up to three independent setsof [m . Mg] are dlowed, one per
dimension.

Arrays can be declared persigent:
persistent type name [m.Mg]...;

Arrays cannot be declared shared.

Initializing an Array

3-20

Arraysof dl typescan beinitidized by specifying an array constant of the appropriate
type and number of dimensionsin the declaraion.

int a[5] ={ 1, 2, 3, 4, 5};

If theinitidizer hasfewer elementsthan the array veriable, the remaining elements
are undefined.

Initidized arrayswith anon-fixed sze are created at least large enough to hold al of
the elementsin theinitidizer.

If array initidizersaretoo largeto fit in the declared array, afaa compilation error
results.

An array initidlizer constant can contain one or more occurrences of the colon ()
repeat operator. Therepeat operator specifies repetition of aconstant element. Itis
abinary operator with the following form:

constant_el ement : n_reps

Arrays

The operator hasthese parts:

» constant_el enent isascda or array constant of the sametype asthe array
initialized.

» N_repsisaninteger constant specifying the number of times
const ant _el enent isrepeated.

If n_repsisan agterisk (*), const ant _el enent isrepeated asmany times
asnecessary until therest of the array has been initidized. With arrays of non-

fixedsize, const ant _el enent isrepeated until therest of theminimum size
of thearray isinitidized. If the minimum size of the array isdready initidized,
* hasno effect.

Example of Array Initialization

Thefollowingdeclaration initidizesthefirst 5 elementsof a to the vaues 1 through
5 and the next 95 elements (therest of the array) to 0.

int a[100] ={ 1, 2, 3, 4, 5, 0:95};
Thefollowing declarationsinitiaize all elementsof the arraysto O.

int a[100] = { 0:* };
int b[10..50] = { 0:* };

Notethat b[10. . 50] declaresb with aminimum size of 10 and amaximum of 50
elements. The initialization sets elements 0-8 tf 0. All other elements df are
undefined.

In the following example, arraya above is initialized such thaa[x] [0] ==
andaa[x][1] == Oforall 0 <= x <= 4. All other elements cda are
undefined.

All types of array initializers can use the repeat operator, including array constants.

string sa[10] ={ "hello", "world", "":* };
int aa[10][3] = { {1, 0}:5 };

The following array initialization:
int a[10] = { 1, 2, 0:* };
is the same as:
int af10] ={ 1, 2, 0, 0, 0, O, O, 0, 0, 0 };
The following two-dimensional array initialization:
int aa[7][] ={ { 1, 2, 3, 4}:3, { 0 }:* };

3-21

VU Fundamentals

isthesame as.
int aa[7]1[] ={ { 1, 2, 3, 4},

{1, 2, 3, 4},
{1, 2, 3, 4},
{0},
{ 0},
{ 0},
{0}k

The following three-dimensiond array initidization initidizes al 1000 elements of

aaato O:
int aaa[10][10][10] = { { { O:* }:* }:* };

Thefollowing string array initidizations:

string sa[10] = { "abc", "123", "":* };
string saa[7][] ={ { "one", "two", “three", “"four" }:3, { "" }:* };
aethesameas:
string sa[10] = { "abc", "123", "", "¢, v,
string saa[7][] =
{ "one", "two", "three", "four"},
{ "one", "two", "three", "four"},
{ "one", "two", "three", "four"},
AL
{ b
£)
{"" 1t h

Thisdeclaration initidizesall 1000 elementsof saaato"":

string saaa[10][210][10] = { { { "":* }:* }:* };

Array Subscripts

Array elements are selected by enclosing an integer expression in brackets([]). The
first element isselected by subscript 0. M ultidimensiond arrays can be subscripted
by adjacent subscripts, each enclosed in brackets.

string saa[7][] ={ { "one", "two", "three", "four" }:3, { "" }:* };

saa[0] isaone-dimensionad array of sringswith vdue{ "one","two",
"three","four" }.

saal 4] [0] isastringwith vaue"".

saa[4] [1] isan undefined string.

Array Operators

Inthissection, ar y1 and ar y2 are arbitrary arrays of any type and any number of
dimensions.

3-22

Arrays

Binary Concatenation Operator for Arrays

The only binary arithmetic operaor to support array operandsisthe concatenation
operator + . Thearay expression ar y1 + ary2 returnsan array containing al of
the elementsof ar y 1 followed by dl of the elementsof ar y2. The elements of
arylandary2aenotchanged. ar y1 and ar y2 must be array expressions of the
same number of dimensions and same base type.

Assignment Operators for Arrays
The assgnment operatorsthat support array operandsare= and + =,

aryl= aryZ2changesthevduedl elementsin ar y 1 to thevauesof the
corresponding elementsin ar y 2, including any undefined elements. The elements
of ar y2 are not changed.

aryl+= ary2isequivdenttoaryl= aryl+ (ary2).

Unary limitof Operator for Arrays

i mtof istheonly unary operator with an array operand. It returnsthe vaue of
the highest subscript of any defined element in the operand. For multidimensiona
arrays, | i m t of returnsthe maximum defined subscript of the outermogt (first)
dimension. When used on asubarray, | i m t of returnsthe maximum subscript for
the subarray. If dl elementsof an array are undefined, | i mi t of returns-1.

The maximum defined subscript returned by | i i t of meansthat no larger
subscript has adefined vaue, nat that al smaller subscripts of the same array have
defined vaues. ThisVU script clarifiestheuseof | i mi t of :

{

int a[25];

int b[][];

a[10] = 1;

a[8] = 2;

b[3][20] = 5;

b[2][15] = 7;

printf("limtof ais %\n", limtof a);
printf("limtof bis %\n", limtof b);
printf("limtof b[3] subarray= %\n", linmtof b[3])
printf("limtof b[2] subarray= %\n", limtof b[2])
printf("limtof b[1l] subarray= %\n", linmtof b[1])

3-23

VU Fundamentals

The output is:
is 10
is 3

] subarray= 20
] subarray= 15
] subarray= -1

(oo oo

PNW™T ™

Arrays as Subroutine Arguments

U ser-defined functions and procedures can have array arguments. An array
argument isdeclared thesameasan array variable. Array argumentsare dways passed
by address, not by vaue. Functions and procedures can freely modify the elements
of any array argument.

Flow Control

Loops

The VU language offerstwo types of flow control: conditiona execution (thei f -
el seandel se-if sructures) and looping (f or , whi | e, and do- whi | e
sructures). The VU language dso featuresbr eak and cont i nue statementsto
dlow for controlled exit from aloop. Except for enhancementsadded to br eak and
cont i nue, the VU control structures behave like their C counterparts.

VU loopsdlow VU statementsto be executed repeatedly. Loopsincludef or,
whi | e, and do- whi | e.

Break and Continue

3-24

TheVU br eak and cont i nue statementsadlow for moreflexible control over the
execution of f or , whi | e, and do- whi | e loops. Asin C, if the br eak saement
isencountered asone of the statementsin af or , whi | e, or do- whi | e loop,
execution of tha loop sopsimmediately. Also, asin C, if thecont i nue statement
isencountered asone of the statementsin awhi | e or do- whi | e loop, the
remaining satementsin the loop are skipped, and execution continueswith the
evauation step of the loop.

U nlike C, however, the VU br eak and cont i nue statements have an optionad
argument, which specifiesthe nested loop level wherethe br eak or cont i nue
statement is executed.

Scope of Variables

Scope of Variables

By default, the scope of avariable islimited to oneruntime instance of ascript for
onevirtua user. H owever, you can declare avariable as shared or persistent.

The following table lists the differences between shared variables and persistent

variables.

Shared Variable Persistent Variable

One copy for al virtua usersto access. Each virtuad user hasits own copy.

Maintainsitsvdue acrossal scripts. Maintainsits vaue across scripts of that
virtud user only.

Datatype must beinteger. Datatypeisan integer or gtring, or isan
aray of integersand strings.

Other VU variablesand functionsare globd in scope within aruntime ingance of a
script but private to each virtual user. Subroutine arguments are loca to that
subroutine and are unknown to therest of the script.

Shared Variables

A shared variableis an integer variable. Any discussion of integer variables adso
appliesto shared variables, and you can use ashared variable anywhere you can use
an integer variable except asthe operand for the address-of operator (&).

You can use ashared varigble to:

» Setloop maximumswhen you repeat operations, to set transaction rates, and to
set average delay times.

» Block avirtud user from further execution until agloba event occurs. For
example, if you arere-indexing a SQL table, you would want to block accessto
that table until theindexing iscomplete. You can usethewai t library function
with ashared varigble to do this.

» Pause a script’s execution until a specified number of virtual users arrive at that
point. However, it is simpler to use the synchronization functions to do this.

You create a shared variable within a VU script.

3-25

VU Fundamentals

To declare shared variables, use the shar ed keyword. You do not need to declare
the shared variable asinteger because al shared variables are integer variables. The
following two examplesdeclareboth f i r st _shar ed and second_shar ed as
shared variables, but the second exampleincludesthe keyword i nt for
documentation:

shared first_shared, second_shared;

shared int first_shared, second_shared;
Shared variables have an initid vaue of O for arun. You can set adifferent initid
vaduein the schedule, and you can modify theinitid vaue anywherein aVU script.

The following example modifiesthevaueof fi r st _shar ed to 17:

shared first_shared;

first_shared = 17;
Once you have started playing back the script, you can change the value of ashared
variable when you monitor the schedule.

A variable tha isnot declared shared isloca to both the script and the virtud user,
and isunrelated to any shared variable of the same name in other scripts.

U pdating ashared varidble takesmore time than updating anormd integer variable.
Thisisbecauseif two virtual userstry to update ashared variable, extra
communication isnecessary to make surethat the variable islocked from the second

user until the first user’s update completes. If the schedule run involves Agent
computers, further communication is necessary to coordinate access among multiple

computers.

Reading a shared variable takes the same amount of time as reading a normal integer

variable if the schedule is run only on the Master computer. However, if the
schedule run involves Agent computers, extra communication is necessary to

coordinate access among multiple computers, and thus reading a shared variable will

take more time.

Persistent Variables

3-26

Persistent variables are useful when you want to retain the value of a variable
between scripts. For example:

» You have opened afile in persistent mode, and you want subsequent scripts to
access the file without reopening it. You could use a persistent integer variable

to hold the return value frompen.

» You want a virtual user to randomly choose a record from a file. You could
declare a persistent array of integers, and load the keys into that array.

Examples

Scope of Variables

The initid vaue of apersistent variable in ascript is determined asfollows:

1. If apersgtent variable hasthe same name (and type) in apreviousy executed
script in the session (by that virtud user), theinitid value of the persistent
variablein the current script isinherited from the find vaue of that persistent
variablein the most recently executed script in which it was declared.
Otherwise:

2. Ifthedeclaraion of the persstent variableincluded an initidizer, then theinitia
vaueistaken from theinitidizer. Otherwise:

3. Theinitid vaueisundefined (like any non-persistent variable).
A persistent variable must be declared persistent in any script that accessesit.
A non-shared variable declared persistent without atypeisinteger by default.

Avaiablethat isnot declared persstent islocd to that script and isunrelated to any
persistent variables of the same namein other scripts.

Shared variablesand function or procedure argumentscannot be declared persistent.

If apersigtent variable hasatype conflict with apersistent variable of the same name
but in apreviousingtance of the same script, afaa error occurs.

The commentsin the following examplesillustrate many of the pointsmade in the
preceding section. T hese examples are based on the assumption that the scripts are
runintheorder A, B, C.

Script A

persistent fd;
persistent string user_nickname, sl1, s2;
persistent int where_ami;

fd = open("foo", "pw+"); /* open persistent */
user _ni cknane = "Slick";
sl = "hello world";

3-27

VU Fundamentals

Script B

persistent fd;

persi stent string user_ni ckname, s2;

persi stent pl=10;

string si; /* not persistent */

/* fd contains the file descriptor returned by

* script A's open call. user_nickname == "Slick"
s2 is undefined. pl==10;

sl is not persistent and therefore does not
inherit the final value of sl fromthe
previous script, thus it is undefined.

* % F % ok

sl = "good-bye world";

Script C

persistent string sl= "ignored_val ue";
int where_ami;
/* s1 == "hello world" (fromscript A)
* int where_am.i is undefined and unrel ated
* to int where_ami fromscript A
*
/
{ ...}

Initial Values of Variables

3-28

You set theinitid vaduesfor unshared variablesin ascript. Thereisno default vdue
for unshared variables.

You can initidize avariable when you declareit. In thisexample, i is5,s1 and, s2
ae"hello0",s3is"there",andfirst_sharedisO:

int i =5;

string sl1, s2 = "hello", s3 = "there";

shared first_shared;
You can set theinitial valuesfor shared variableswhen you run aschedule. H owever,
if you do not declare avdue for ashared variable, itsvaueisO.

You get aruntime error if an expresson contains an undefined variable or an
uninitialized, declared variable.

For information about initidizing an array variable, see Initidizingan Array on page
3-20.

VU Regular Expressions

VU Regular Expressions

A regular expresson isadtring that pecifiesapattern of characters. The mat ch
library routine, for example, accepts sringstha areinterpreted asregular
expressions.

VU regular expressionsarelike U N IX regular expressions. VU , however, offerstwo
additiond operators: ? and | . In addition, VU regular expressionscan include ASCI|
control charactersin therange 0to 7F hex (0 to 127 decimd).

General Rules
VU regular expressions have the following characteristics:

» Theconcatenation of single-character operators matchesthe concatenation of
the charactersindividualy matched by each of the single-character operators.

» Parentheses() can be used within aregular expresson for grouping single-
character operators. A graup of single-character operators can be used anywhere
one single-character operator can be used — for example, as the operand of the
* operator.

» Parentheses and the following non-ordinary operators have special meanings in
regular expressions. They must be preceded by a backslash if they are to
represent themselves:

— The” operator must be preceded by a backslash when it is the first operator
of aregular expression or the first character inside brackets.

— The $ operator must be proceeded by a backslash when it is the last
operator of a regular expression or it immediately follows a right
parenthesis.

— Operators inside brackets do not need to be preceded by a backslash.

Single-Character Regular Expression Operators

The following rules apply to single-character regular expression operators, which
match at most a single character:

» Anyordinary character (any character not described below) is a single-character
operator that matches itself.

» The\ (backslash) operator and any following character match that character.

3-29

VU Fundamentals

>

>

The brackets operator [st r], where st r isanon-empty string, machesany
single character contained in st r, unlessthefirst character of st r is”
(circumflex), in which case the operator matches any single character except
thosein str.

A range of characters can berepresented in st r using adash character (-) —

for example[a- z] matches all lowercase alphabetic charactersolfcurs
either as the first (or after an initfa) or last character oft r, it specifies itself
rather than arange.]lfoccurs as the first (or after an initiglcharacter irst r,

it specifies itself rather than ending the brackets operator. The characters .
(period),* (asterisk)) (backslash)? (question mark)|, (pipe),()
(parentheses], (left bracket), and (plus) lose their special meaningssihr
and therefore are not preceded by a backslash.

The . (period) operator matches any single character.

Other Regular Expression Operators

The following rules apply to all other regular expression operators, which operate on
single-character operators or groups of single-character operators:

3-30

>

The” (circumflex) operator, only when it is the first operator, indicates that the
next operator must match the first character of the string matched.

The$ (dollar sign) operator, only when it is the last operator, indicates that the
preceding operator must match the last character of the string matched.

The* (asterisk) operator and a preceding single-character operator match zero
or more occurrences of any character matched by that operator.

The+ (plus) operator and a preceding single-character operator match one or
more occurrences of any character matched by that operator.

The {m n} (braces) operator, whera< = n <= 254, and a preceding single-
character operator match fromto n occurrences of any character matched by
that operator. Matching exactiyoccurrences of the operators specified iy {
{m} indicatesmor more occurrences.

The? (question mark) operator and a preceding single-character operator
match zero or one occurrence of any character matched by that operator.
Therefore? is equivalent to {0,1}.

The| (pipe) operator indicates alternation. When placed betwegoups of
operators, it matches the characters matched by the left group of operators that
matches a non-empty set of characters.

Regular Expression Examples

VU Regular Expressions

The following examples show the use of VU regular expressions.

VU Regular Expression

Matches

"ab?c"

Thedtrings" abc” and" ac" , aswell asthe
srings" def abcghi " and " 123acc",
sincetheregular expression need not specify
the entire string to match. H owever, the
strings" ab" and " abbc" do not match.

"Mab?c$"

Only thestrings" abc" and " ac".

[A-Za-z]{1,5}y "

Any blank-surrounded word of threeto
seven charactersending with | y.

"A[~aei oUAEl QU] +$"

Any sequence of charactersthat does not
contain avowel.

"[0-9] +"

Any integer.

"Aldr]etract$"

Only the words detract and retract.

"((Mon)| (Tues)| (Wednes) | (Thurs)
| (Fri)| (Satur)]| (Sun))day"

Any day of the week.

"(abc\\ (){1,2}"

One or two occurrences of the string
"abc(".Becausethe patern isspecified as
astandard string constant, two backdashes
must be used to escape the specia meaning
of (. The pattern could dso be specified as
‘(abc\(){1,2}¥ using apattern sring
constant.

"((abbcc)|(a+b+c)|(abc+))0"

If the string matched is"abc" |, the second
dternative ("at+b+c") ismached and the
gring" abc" isreturned. If the string
matched is"aabbcc" , thefirs dternative
ismatched, and the sring "abbcc” is
returned. If the string matched is

"abccec" | thethird dternativeismatched
andthestring"abccec" isreturned. If the
sring matched is"abbbcc” , none of the
dternatives match.

3-31

VU Fundamentals

(Continued)
VU Regular Expression

Matches

"(to+ chea[pt].*){2}"

Thedrings"We woul d rat her sell
too cheap than to cheat" and
"Expect one to cheat who is too
cheap", aswell as" ‘too cheat’

makes no more sense than ‘to

cheap™

""$(([0-9){200}){50}){100.}"

Any sequence of amillion or more digits
garting with $.

"[a-fA-FO-9]{1,4}"

Any hexadecimd number with adecima
vauein the range 0 to 65535.

"[ACF-IK-PR-W][a-y}{2,4}
[a-y][CDIIMVY]?[a-z[{0,7}"

The name of any gtate in the U nited States.

"((K[a-zA-Z]*)$0
(D[a-zA-Z]*)$1
(S[a-zA-Z]%)$2)
|((S[a-zA-Z]*)$0
(J[a-zA-Z]%)$1
(D[a-zA-Z]*)$2)"

Thefull name(first, middle, and last names)
of anyone with theinitidsKDSor SD,
provided the name containsonly dphabetic
characters. Strings maching thefirg,
middle, and last names are returned.

"M([a-zA-Z]+)|([0-9]+))$"

Any string containing only aphabetic or
only numeric characters. Theoutermost set
of parenthesesis necessary because the $
operaor hasprecedenceover the| operator.

Regular Expression Errors

3-32

If aVU regular expresson containsan error, when you run aschedule, LoadT est
writesthe message to st der r output prefixed with the following header:

sqa7vui #xxx: fatal orig type error: tnanme: snane, |ine [ineno

where #xxx identifiesthe user ID (not present if 0), f at al signifiesthat error
recovery isnot possible (otherwise not present), or i g specifiestheerror origination
(user, system, server, or program), and t ype specifiesthe genera error category
(initidization, argument parsing, script initidization, or runtime).

If the error occurred during execution of ascript (run-time category), t nane
specifiesthe name of the script being executed when the error occurred, snane
specifiesthe name of the VU sourcefilethat containsthe VU statement causingthe
error,and / i neno specifiesthelinenumber of thisVU statement in the sourcefile.

N ote that the source file information will not be available if the script’s source cross-
reference section has been stripped.

VU Regular Expressions

If arun-time error occursdue to an improper regular expresson pattern in the
mat ch library function, adiagnostic message of the following form followsthe
header:

Regul ar Expression Error = errno)
where er r noisan error code which indicates the type of regular expression error.

Thefollowing table liststhe possible er r no vaues and explans each.

errno Explanation

2 Illegd assgnment form. Character after) $ must be adigit.
Example: " ([0- 9] +) $x"

3 Illegd character inside braces. Expecting adigit.
Example: "x{1, z}"

11 Exceeded maximum alowable assignments. Only $0 through $9 are valid.
Example: " ([0- 9] +) $10"

30 Missing operand to arangeoperator (? {mn} + *).
Example: " ?a"

31 Rangeoperaors(? {m n} + *) must notimmediaely follow aleft
parenthess.
Example: " (?b) "

32 Two consecutive range operators(? {m n} + *) arenot dlowed.

Example: " [0- 9] +?"

34 Rangeoperaors(? {m n} + *) mug notimmediately follow an
assignment operation.

Example: " ([0- 9] +) $0{ 1- 4} "

Correction: " (([0- 9] +) $0) { 1- 4} "

36 Range level exceeds 254.
Example: " [0- 9] { 1- 255} "

39 Range nesting depth exceeded maximum of 18 during matching of subject
sring.

41 Pattern must have non-zero length.
Example: " "

42 Cadl nesting depth exceeded 80 during matching of subject string.

44 Extracommanot alowed within braces.

Example:"[0-9]{3, 4, }"

46 Lower range parameter exceeds upper range parameter.
Example:"[0-9] {4, 3}"

3-33

VU Fundamentals

errno Explanation

49 ‘0’ not dlowed within brackets, or missng right bracket.
Example: "[\0] or [0-9"

55 Parenthesis nesting depth exceeds maximum of 18.
Example: " (((((CCCCCCCCCccccccmmmmmmm)”

56 U nbdanced parentheses. M oreright parenthesesthan left parentheses.
Example: "([0-9]+)$1)"

57 Program error. Please report.

70 Program error. Please report.

90 U nbdanced parentheses. M ore left parentheses than right parentheses.
Example: "(([0-9]+)$1"

91 Program error. Please report.

100 Program error. Please report.

How a VU Script Represents Unprintable Data

A VU script can contain unprintable data For example, you can include acarriage
return in astring or character constant. A session that recorded HT TP or socket

traffic can generae scriptsthat contain binary data The following sections describe

how unprintable datais represented within aVU script.

Unprintable String and Character Constants

The following table shows how you represent unprintable charactersin astring or
character constant. The VU compiler interpretsthe character sequence asasingle

3-34

character:
Character Description ASCII value (octal)
Sequence
\r A single character representing acarriage ASCII 015
return.
\f A single character representing aform feed. ASCII 014
\n A single character representing anewline. ASCII 012

How a VU Script Represents Unprintable Data

(Continued)

Character Description ASCII value (octal)

Sequence

\t A single character representing ahorizonta tab. ASCII 011

\b A single character representing abackspace. ASCII 010

\0 Thenull charecter (the character with value 0).

\ ddd A single character representing the character ddd represents 1, 2,

ddd. or 3digits; for

example, \141
repreentsthe
character a

Unprintable HTTP or Socket Data

If you areworkingwith HT T P dataor raw socket data, in addition to carriagereturns

and form feeds, you can send or receive binary data— images, sounds, and so on.
With string arguments in the following HTTP and socket emulation commands,
binary data can be represented within the string data through embedded hex strings:

» http_request, http_recv,andhttp_nrecv
» sock_send,sock_recv, andsock_nrecv

An embedded hex string represents binary characters by their two-character
hexadecimal values. The entire hexadecimal string is delimited by grave accent (
characters.

Similarly, if you are codingaVU script by hand, you can represent binary characters
by using atwo-character hex format and delimiting the string with agrave accent.
The string can contain these characters. 0123456789ABCDEFabcdef . To
represent agrave accent, use\\' or ‘60'

3-35

VU Fundamentals

3-36

»»» CHAPTER 4

Scripts, Subroutines, and C Libraries

Thischapter describesthe script and header filesthat Robot compilesafter recording
or editing. It dso describesthe externd library filestha you can create and maintain
outside of the Robot environment, aswell asthe subroutinesthat you can add to
scriptsand externa files. T he chapter includesthe following topics:

vV v vy

Program structure

Preprocessor features

Defining your own subroutines
Accessing externa C dataand functions

Program Structure

VU program structureissimilar to the structure of the C programming language.

The following sample of code showsthe structure of aVVU script. Your script isnot
required to have dl of the elementsin the sample. For example, if your script does

not include another sourcefile, it would not usethe#i ncl ude filenamedirectives.
If your script doesnot contain any user-defined procedures, it would not includethe
pr oc section.

#i ncl ude <VU. h>

#i ncl ude <VU_t ux. h>

/* Use either of these forms to include another source file */
#i ncl ude <fil ename>

#include "fil ename"

#define orig_ident new token

/* Any user-defined procedures would be here*/
proc proc_nane()

{ I* body of procedure */ }

/* Any user-defined functions would be here*/
func function_nane()

{ /I* body of function */ }

/* additional procedures and functions */

/* main body of script follows: */

string decl arati ons;
shared decl arations
/* VU code goes here*/

}

4-1

Scripts, Subroutines, and C Libraries

You mugt define al subroutines before they are referenced; otherwise, you will
get asyntax error. Subroutinesincluded after the main body of the script are not
referenced. They areignored if they are syntacticaly correct.

Header Files

VU.h

4-2

VU header filescontain acollection of definitionsand macros. VU. h isautomaticaly
included in scriptsgenerated from recording HT TP, SQL, and socket sessions.
VU _t ux. h isautomaticaly included in scripts generated from recording a
TUXEDO session.

If you are manudly writing ascript, include the following preprocessor statement:
#i ncl ude <VU. h>

If you are manudly writing ascript that accessesaTU XED O gpplication, include
both VU _t ux. h and VU. h as preprocessor statements:

#i ncl ude <VU. h>
#i ncl ude <VU_tux. h>

TheVU. h fileincludes definitionsfor:

» TheEOF vauereturned by various VU functions.

» Thefiledescriptorsfor the standard files.

» ENV_VARS, which letsyou operate on the environment variables asaunit.

» TheHOURS, M NUTES, and SECONDS macros, which enable you to specify
time units other than milliseconds.

— HOURS(A) returns the milliseconds iA hours.
— M NUTES(A) returns the milliseconds iA minutes.
— SECONDS(A) returns the milliseconds iA seconds.
The valueAmust be an integer expression.
» Allerror codes (error) that are not provided by the SQ L database server.

» All options recognized bgql set opti on() .

Some constants definedVWf. h are vendor-specific. For example, the names of

Oracle-specific values begin witbRA_; the names of Sybase-specific values
begin withSYB_.

Preprocessor Features

VU _tux.h

TheVU _t ux. h fileincludesdefinitionsfor symbolic constantsand flag vaues used
with TUXEDO emulation commandsand functions.

sme/data.h

Thesne/ dat a. h fileincludes definitions for functionstha come with Rationa
Suite PerformanceStudio. Thesefunctionslet you parse datareturned by

sql nrecv into rowsand columns. Typicaly, thisisuseful in dynamic data
correlation for SQL, where you extract datafrom queries and use that datain
subsequent statements.

sme/file.h

Thesne/ fil e. hfileincludesdefinitionsfor functionsthat read alineof datafrom
afile, parsethelinetha wasread, and then reset the pointer to the next line of data,
s0 that each emulated user can parse aline. Typicdly, thisisuseful asan dternative
to datapools.

Preprocessor Features

LoadT et comeswith the GN U C preprocessor. The preprocessor commands
enable you to:

» Replacetokens.
» Include morethan one sourcefilein ascript.

» Compilepartsof ascript.

Token Replacement

Token replacement and macro substitution can be specified with the #def i ne
preprocessor command. T o indicate ssimple replacement throughout the entire
script, useacommand of theform:

#define orig_ident new_token

Thisreplacesdl occurrences of the identifier ori g_i dent with the token
new_t oken.

T o specify amacro definition with arguments, use acommand of the form:

#define macro_nane (argl, arg2,...) macro_defn

4-3

Scripts, Subroutines, and C Libraries

Subsequent occurrencesof nacr o_nane(var 1, var 2, ...) aereplaced by

macr o_def n, and occurrencesof ar g1, ar g2,... indde the macro definition are
replaced by the corresponding var x. T o continue adefinition on the next line, put
abackdash (\) a theend of theline.

Example

This example subgtitutesvar 1 for x, var 2 for y, and assignsvar 3 the greater of
var 1 and var 2:

#define greater(x,y) ((
#define lesser(x,y) ((

var3 = greater(varl,var2);

Creating a Script That Has More than One Source File

The#i ncl ude preprocessor command letsyou include another sourcefilein your
script a compiletime. Thiscommand hastwo forms:

#i ncl ude <filenanme>

#i nclude "filenane”
Thefirst form looksonly in astandard location for fi | enane. The sandard
location isnot specified in the VU language; it isthe same set of directories used by
the C preprocessor. The second form checksthe current directory for fi | enane
before searchingthe standard location. In both cases, the contentsof i | enane are
inserted into the script at the point wherethe#i ncl ude appears.

Compiling Parts of a Script

4-4

Conditiona compilation commandsdlow you to conditiondly compile parts of a
script. There arethree waysto specify conditiona compilation:

» #if-#el se-#endif

» #ifdef-#el se-#endif
» #ifndef-#el se-#endif
Thefirst hasthe form:

#if constl1
t_stmt1

t stmtn
#el se
f_stmmt1

f stmmtm
#endi f

Preprocessor Features

where const 1 must be acongant (or an expression which hasavdue a compile
time),and t _st mmt 1through t _stmmtnand f_st mmt 1 through f_st Mt m
areany VU gaements or preprocessor commands. If thevaue of const 1 is
nonzero, t _st nmt 1 through t_st rmt n are compiled; otherwise: f _st mmt 1
through f_st nrmt n are compiled. You can omit the#el seand f_stmmt 1
through f_st rmt n if no compilation isdesired when const 1 hasthe vaueO.

The other two forms compile aportion of codeif the token has been set through a
#def i ne or through LoadTestBools - Options. Click theVU Compilation tab
and enter the name of the tokens unilefines. They are:

#i fdef tokenl

d_stmmt 1

d stmtn

#el se

n_stmt 1

n_stmtm

#endi f

and

#i f ndef tokenl
n_stmt 1

n_stmtn
#el se
d stmt 1
d_stmmtm
#endi f

t okenl must be an identifier andl st rmt 1 throughd_st rmt nandn_st rmt 1
throughn_st nmt n are any VU statements or preprocessor commands.

If the#i f def format is usedd st nrmt 1 throughd_st nrmt n are compiled if
t okenl was defined; otherwise, st nrmt 1 throughn_st rmt mare compiled.

If the#i f ndef format is usedn_st nmt 1 throughn_st nmt n are compiled if
t okenl has not been defined; otherwige,st rmt 1 throughd_st nrmt mare
compiled.

Asin the#i f command, you can omit theel se portion in either of these forms.

4-5

Scripts, Subroutines, and C Libraries

Defining Your Own Subroutines

The VU language letsyou define the following kinds of subroutines:

» Functions — Subroutines that return a value througtetaiur n statement.
You define functions with theunc keyword.

» Procedures — Subroutines that do not return a value. You define procedures
with thepr oc keyword.

Defining a Function

4-6

You can declare an integer function, which returns an integer value, or a string
function, which returns a string value. An array function can return a value which is
an array of integers or strings.

To define a function, use the following format:

[type] func fnane [array_spec] (arg_list)
arg_decl ar;

stmmt 1,
stmt 2;
stmt n;
return ret_exp;
}
You can defing ype asi nt orstri ng. The default i$ nt, so you can omit it if
you are declaring an integer function.

f nane is the name of the function you want to define.

array_spec, used only in array functions, is a list of integer constants that specify
the size of the first, second, and third dimensions of the array. Each integer constant
is enclosed in brackets. A one-dimensional array is [c1], a two-dimensional array is
[c1] [c2], and a three-dimensional array is [c1] [c2] [c3].

arg_li st lists the function’s arguments. If the function has more than one
argument, separate them by commas. If the function has no arguments, follow the
name of the function with a pair of empty parentheses, sufchrasl() .

arg_decl ar isthe declaration of the arguments. Arguments whose datatype is not
integer must be declared before the opening brace of the function.

stmmt 1, st rmt 2, st omt n are the VU language statements in the function. If the
function contains only one statement, you can omit the braces.

Afunction must have at least onet ur n statement. If a function has more than
oner et ur n statement, only one is executed per call. The return is executed before
the function completes execution.

Defining Your Own Subroutines

ret _expisan expresson whose type matchesthe type of the function. If you have
defined an array function, the number of dimensionsof r et _exp must match the
number of dimensonsof the function. Useanull ret _exp (return "";)to
return anull gring from astring function.

Theorder and datatype of theargumentsin thefunction cal must coincidewith the
order and datatype of the argumentsin the function definition. If they do not
coincide, acompilation error results.

You might get awarningmessageif thenumber of argumentsin thefunction cal and
function definition do not match. If you have extraargumentsin the function
definition, you arenot ableto referencethem whilethefunction isexecuting. If there
are extraargumentsin the function cadl, they areignored.

Thevauereturned by afunction must match thetype of the function. For example,
the expression following ther et ur n must have an integer valueif the function is
an integer function and astring vaue if the function isastring function.

Calling a Function

Example

To cal afunction, smply use the function name and the argument list:
fname (arg_list)

where f nane specifiesthe name of thefunction, and arg _/ i st liststhe
arguments of the function cdl.

The following example defines afunction with more than oner et ur n statement.
Thefunction, cdled st r conp, comparestwo strings:

func strconp(strl, str2)
string strl, str2;

if (strl == str2)
return O;

else if (strl < str2)
return -1;

el se
return 1;

4-7

Scripts, Subroutines, and C Libraries

Defining a Procedure

T o define aprocedure, use the following format:

proc pnane (arg_list)
arg_decl ar;

stmmt 1,
stmt 2;

stmtn;

pname isthe name of the procedure you want to define.

arg_Ii st isalist ofthe procedure’s arguments. Ifthe procedure has more than one
argument, separate them by commas. If the procedure has no arguments, follow the
name of the procedure with a pair of empty parentheses, spcloasdl1() .

arg_decl ar isthe declaration of the arguments. Arguments whose datatype is not
integer must be declared before the opening brace of the procedure.

stmt 1,st it 2, st omt n are the VU language statements in the procedure. If the
procedure contains only one statement, you can omit the braces.

Although procedures do not return values, you can include the stateetemtn;
to return control to the caller.

Calling a Procedure

To call a procedure, simply use the procedure name and the argument list:

pname (arg_list)

Example

The following example defines the proceddies_t i me, which displays the time
and sounds a tone (ASCII 007). The procedure then returns control to the calling
program:

proc dis_tinme(time_str)
string tinme_str;

printf("At the tone%c, the time will be %s", \007’, time_str);
return;

}

4-8

Accessing External C Data and Functions

Accessing External C Data and Functions

The VU language supportsaccessto externd C dataand functions. A VU script can
cdl functionswritten in C and pass vaues as argumentsto the C functions.

C functionscan return valuesto VU scripts. Externa C objectsare declared in VU
using the keyword ext er nal _C.

VU integers are signed 32-bit integers. These are usudly declared in C asi nt or

| ong (thissection refersto them as C typei nt). VU stringshave no exact C
counterpart but are accessed as C character pointers(char *).VU araysare
accessed in C asapointer to ablock of dataof the appropriatetype. M ultidimensiona
arraysare passed asapointer to ablock of contiguousmemory containing thedatain
row-mgor (norma C) order.

External C Variables

A C pointer can accessaVU array of 1, 2, or 3dimensions.

Thefollowing table showsthe C datatypesthat can be accessed by VU . Other data
types are not supported and give unpredictable results.

C Variable Type VU Variable Type

i nt int

char * string /* read only */

char * string: naxsize |* witable */

int * int [],int[]J[],int[][]1[]

char ** string [],string [1[].,string [][1]1]

An externa C char *, or array of char , must be null terminated. VU interprets
theseasstrings. VU doesnot perform memory management on externd C stringsor
externd C string arrays.

In ascript an externa C gtringisread-only unlessits VU declaration includesits
maximum size. The C code must dlocate space for the string greater than or equa
to maxsi ze bytes. The maximum size must include room for the C null-
terminator character \O’ ; it isspecified with acolon and an integer congtant, asin:

external _C string: 81 extc_line;
Space for the string might be declared in C as

char extc_space[81];
char *extc_line = extc_space;

4-9

Scripts, Subroutines, and C Libraries

In the preceding example, VU could write up to 80 characterstoext c_I i ne. An
attempt to write more than 80 characters causesaruntime error.

VU declarationsof C variablesthat are pointerstoi nt or char * must be declared
as VU arrayswith afixed size and must have no more than 3 dimensons. The data
pointed to by the C variableisinterpreted asaVVU array of the declared type. VU
does not perform memory management on the C pointers.

Externa C datacannot be declared per si st ent or shar ed. Vduesof externd C
variables persist for the duration of the run.

Declaring External C Subroutines

An externa C subroutineisdeclared the same way asaVVU function or procedure,
with an empty statement block for the body.

Thefollowing VU declarations.

external _C func foo(i, s)
string s;

external _C proc bar(limt, ia)

int limt;

int ia[];

external _C int func[10][20] afunc()
{}

are used for the C functions whose prototypes are:
int foo(int, char *);
void bar(int, int *);
int *afunc(void);

The VU compiler performstype and number checking for argument variables
between their declaration and their use.

An externd C function iscaled in the same way that aVU function or procedureis
cdled. Any VU daatype can be passed to an externa C subroutine.

Accessing Values Returned from C Functions

4-10

A C function returnsapointer accessed asaVU array of 1, 2, or 3 dimensions.

Accessing External C Data and Functions

The following table showsthe only C datatypesthat can be returned from an
externd C function. Other datatypesare explicitly not supported, and give
unpredictable results.

C Return Type VU Return Type
voi d proc
i nt int func
char * string func
int * int func[],int func[][],int func[][][]
char ** string func[],string func[][],
string func[][][]

A char * returned by aC function must point to anull terminated block of
characters. VU interpretsthisasastring and does not attempt to perform memory
management on stringsreturned from C functions.

VU declarations of C functionsthat return pointerstoi nt or char * must be
declared as VU functionsthat return arrayswith afixed size, and have no morethan
three dimensions. The datapointed to by the actud return vaueisinterpreted asa
VU array of the declared type. VU doesnot attempt to perform any memory
management on thereturned pointers.

Passing Arguments to External C Functions

Arguments are passed to externa C functions by value or by reference. The default
isto pass arguments by value. Arguments declared with the keyword r ef er ence
are passed by reference (address). Reference argumentsare passed as pointersto the
gopropriate types. Arrays are dways passed as apointer to ablock of dataof the
gppropriate type. Argumentsdeclared r ef er ence are passed with the & operator,
dlowing the VU compiler to type-check the arguments.

Arraysare dways passed by reference; you should not usether ef er ence keyword
and the & operator with array arguments.

When passing VU argumentsto externd C functions, the datatype of the
corresponding C argument must match thislist. Other datatypesare not supported,
and yield unpredictable results.

4-11

Scripts, Subroutines, and C Libraries

4-12

The following table shows how VU arguments are passed:

VU Data Type Is Passed as C Data Type
i nt int
string char *
reference int s32 *
reference string char **
int [] s32 *
string [] char **
int [11 1 s32 *
string [][1 char **
int [0 10 1] s32 *
string [I1[1[1 char **
Integers

Integer arguments behave exactly asin C, except for integer arrays.

Strings
The nearest equivdent C typetoaVU dringisachar *.

A nonreference sring argument is passed as a pointer to acopy of the null-
terminated string data. T he externd C function can locdly change charactersin this
copy, but these changesdo not affect the origina string vdue upon return to the VU
script. In addition, the externa C function must not attempt to modify storage
beyond the end of the string, including the null terminator.

Areference string argument allows the C function to change the VU string’s
characters and also to reassign the actual pointer. If you want the external C function
to modify the contents of the VU string, you must pass the string by reference. You
must also pass a string by reference if the C function reassigns the string’s pointer in
order to cause a VU string to become longer. For more informatiolV eeay
Managament of VU Dataon page 4-13.

An array of strings is passed as a pointer to a block of character pointers.

Accessing External C Data and Functions

Arrays

An array ispassed as apointer to ablock of dataof the gppropriaetype (i nt,
char *) just asC programmers expect to passarrays.

A multidimensiond array is passed asapointer to ablock of contiguous memory
containing the datain row-mgor (norma C) order.

Memory Management of VU Data

Data created in VU is “owned” by VU . VU performs memory management on all of
its data.

Strings that VU creates pointtal | oc’ed data, and VU can free them at any time.

C functions that use VU strings as arguments must not save the value of a VU string
in static (global) C variables, or unpredictable results occur. In addition, a C function
modifying a reference argument originating from a string created by VU should free
or reallocate the original pointer, and the new value must be the result of a call to
real l oc ormal | oc.

The same is true for pointers to VU array data. The storage is managed by VU,
and C functions must not save the values of such pointers in static variables. The
elements of a VU array are essentially passed by reference, and may be treated as
such. String array elements may be treated as reference strings.

All VU variables and scalar array elements are created in an undefined state and have
no value. When passed to C functions as reference arguments, these values are
converted to default values. U ndefined strings are passed as NULL, integers as 0.
Upon return from the C function, strings with value N U LL are again considered
undefined. U pon return from the C functi@tl,integers are considered defined. If

the C function did not assign a value to such an argument, it retains the default value
of 0.

Memory Management of C Data

Data created in C modules, and all pointer values returned from C functions or
external C variables, are “owned” by C. VU does not perform any memory
management on this data— all memory management must be performed by C
modules.

Specifying External C Libraries

You can specify external C libraries for use by all VU scripts in a PerformanceStudio
project. In LoadT est, sele€bols - Options, and then click th¥U Compilation
tab. UndefExternal C Libraries, select the libraries you want to add and chick

4-13

Scripts, Subroutines, and C Libraries

Tomakealibrary availableto aparticular script, modify the script propertiesfor that
script. You can modify script propertiesusing TestM anager, Robot, or LoadT est. In
LoadT egt, open aschedulethat includesthe script, right-click on the script, and then
select Script Properties from the menu. Click the VU Compilation tab. U nder
External C Libraries, click Add, and then enter the name of thelibrary you want to
add.

It isrecommended that you enter the name of thelibrary without the. DLL
extension. Thisway the script can berun on U N IX Agent computersby pogting the
library to the Agent.

Creating a Dynamic-Link Library on Windows NT

4-14

ToaccessC codeand datafrom aVU script, compilethe C codeinto adynamic-link
library (DLL).

NOTE: On WindowsN T systems, in order for VU scriptsto access dataitems
defined in .DLLs, you must provide afunction that returnsthe address of the data
item. T he function must be named the same asthe dataitem with addr _ added
to the beginning of the function name.

Therearethree stepsinvolved in creatingaDLL:
1. Write and compilethe C source codeto be caled from your VU script.

2. ExaminetheVU script, and note which functionsand veriablesthe script needs
to access.

3. CreatetheDLL, and export the necessary symbols.

Thefollowing arethe genera stepsyou take to create the externd library file
C_pr og and makeit available to ascript:

1. Writec_pr og. ¢, which contains code tha you want to cdl from your script,
scri pt. s. Invokethe Microsoft C compiler to compile c_pr og. ¢ and
producec_pr og. obj :

cl /c c_prog.c

2. Examineyour VU script scri pt . s. Theexample script on page 4-16 uses
externd C notation to indicate that the symbolss_f unc, af unc, and
addr _nessage aredefined in aC module.

3. Issuethel i nk command to create aDLL and export the externa C symbols.
The following command producesc_prog. | i b,c_prog. exp and
c_prog.dll,andexportss_func, af unc, and addr _nessage:

link c_prog.obj /dll /export:s_func /export:afunc
/ export: addr_nmessage

Accessing External C Data and Functions

4. Onceyou have created the DLL, copy it to each project that needsto accessit.
Thedirectory location is.

Proj ect\ proj ect_nane. ..\ Script\externC

For more detailed information on creatingaDLL, consult the documentation for a
Microsoft C development tool such as Microsoft Visua Studio.

Creating a Shared Library on UNIX

ToaccessC codeand datafrom aVU script, compilethe C codeinto ashared library
or shared object. C source (. ¢) filesare compiled into object (. 0) filesby cc(2),
then one or moreobject filesarecombined into ashared library (. so) byl d(1). The
cc and | d optionsare sysem-dependent; seecc(1) and | d(1) for more
information. T he following example shows how to compile aprogram and create a
shared library:

$ cc -Kpic -O-c foo.c

$ cc -Kpic -O-c bar.c

$1d -dy -G -Bsynbolic foo.o bar.o -0 foo.so -lc
$

Or, equivdently (on most systems),

$ cc -KPIC -O -dy -G -Bsynbolic foo.c bar.c -0 foo.so -lc
$

The- c option specifiesthat cc generatesan . o file, and the- KPI Coption requests
position-independent code. The - dy option of | d specifies dynamic linking; the

- Goption specifiesthat | d should produce ashared object; the - Bsynbol i ¢
option bindsreferencesto globa symbolsto their definitionswithin the object; and
the- | ¢ option isneeded in conjunction with the - Bsynbol i ¢ option to resolve
referencesto the C library.

Onceyou have created the shared library, copy it to each U N X Agent that needsto
accessit. The default directory location is/ t np/ ext er nC. You can change the
directory through Load Test. Open aschedule, click the Computers button, and
changethelLocal Directory name. You must create an ext er nCsubdirectory under
theloca directory name.

Libraries can be shared only across the same UN IX operating system vendor’s
agents. You must create a shared library version for each distinct U N IX operating
system type.

4-15

Scripts, Subroutines, and C Libraries

4-16

Examples

NOTE: DLLs on Windows NT systems cannot print directly to the virtual user’s
st dout orst derr files. Therefore, the following script produces different
output on UNIX Agents than on Windows NT Agents.

Cmodule:lib/c_script.c

VU

include <stdlib.h>
static int table[10][20];
char nsg_dat a[100];

char *message = msg_dat a;
char **addr_nmessage()

return &mressage;
int foo(int i, char **s)

*s, 18): malloc(18);

*s = *s? real | oc(
lo fromC land");

strcpy(*s, "hel
return 10 * i;

}

void bar(int max, int *a)

int i;
printf("message in bar(): [%]\n", message);
for (i =0; i <= max; i++)

afi] =1i;

char *s_func(char *s)

{

printf("C output: [%]\n", s);
return "s_func return val ue";
int *afunc(void)

Eeturn &(table[0][0]);

module: script.s

external _C string: 100 nessage;
external _C func foo(i, s)
reference string s;

{}

external _C proc bar(limt, ia)
int limt;

int ia[];

{}

ﬁ(t ernal _C int func[10][20] afunc()

external _C string func s_func(s)
string s;

{}

Accessing External C Data and Functions

string vs, s;
int ary[10][100];

vs = "hello world";
s = s_func(vs);

nessage = s + ", this is a test.";
ary = afunc();

foo_res = foo(5, &vs);

printf("result of foo: %\ n", foo_res);
printf("message = [%]\n", nessage);

size = limtof ary[5];

bar (size, ary[5]);

for (i =0; i <= size; i++)
frintf("ary[S]["/ﬂ] =9d\n", i, ary[5][i]);

Createthe shared library:
$cdlib
g cg -KPIC -O -dy -G -Bsynbolic c_script.c -0 c_script.so -lc
cd ..
Run the schedule.

Contents of user output on UN IX Agents:

C output: [hello world]
result of foo: 50

nmessage = [s_func return value, this is a test.]
nessage in bar(): [hello world, this is a test.]
ary[5][0] =0
ary[5][1] =1
ary[5][2] = 2
ary[5][3] =3
ary[5][4] = 4
ary[5][5] =5
ary[5][6] = 6
ary[5][7] =7
ary[5][8] =8
ary[5][9] =9
ary[5][10] = 10
ary[5][11] = 11
ary[5][12] = 12
ary[5][13] = 13
ary[5][14] = 14
ary[5][15] = 15
ary[5][16] = 16
ary[5][17] = 17
ary[5][18] = 18
ary[5][19] = 19

4-17

Scripts, Subroutines, and C Libraries

Contents of user output on N T Agents:

result of foo: 50

nmessage = [s_func return value, this is a test.]
ary[5][0] =0
ary[5][1] =1
ary[5][2] = 2
ary[5][3] =3
ary[5][4] = 4
ary[5][5] =5
ary[5][6] = 6
ary[5][7] =7
ary[5][8] =8
ary[5][9] =9
ary[5][10] = 10
ary[5][11] = 11
ary[5][12] = 12
ary[5][13] = 13
ary[5][14] = 14
ary[5][15] = 15
ary[5][16] = 16
ary[5][17] = 17
ary[5][18] = 18
ary[5][19] = 19

4-18

»»» CHAPTER 5

User Emulation

In addition to its C-like features, VU provides features designed to emulate actud
usersrunning client gpplications and sending requeststo aserver. T his chapter
describes these featuresin the following topics:

Emulation commands

Emulation functions

VU environment variables

Read-only variables

Supplying ascript with meaningful data

vV vV v v VY

Emulation Commands

An emulaion command causes ascript to communicate with aserver in the same
manner asan actud client gpplication. The communication may involve sending one
or more requeststo aserver, or involve receiving and evauating responses from it.
The specific communication isrecorded during script creation, or possibly added
during subsequent script editing. An exampleisto query for arow of data. Emulation
commands consist of:

HTTP emulation commandsfor emulaing H T TP clients.
SQL emulation commandsfor emulating database client gpplications.

TUXEDO emulaion commandsfor emulating TUXEDO clients.

vV vV v VY

IIOP emulaion commandsfor emulating IIOP clientsthat communicae with
CORBA components.

» Socket emulation commandsfor emulaing raw socket clients.

5-1

User Emulation

Thereareanumber of emulation commandsthat you can add to your scripts. These
provide measurement timers, customization of test cases, and inclusion of externa
C. These emulation commands are independent of the particular type of client (for
example, HTTP, SQL, or socket), so the same additions can be used for dl script
types. The commandsare asfollows:

» Thestart_tineandstop_time commands You can insert these
commands during recording through the Robot Insert menu. With these
commands, you can time ablock of user actions, typicaly for asngle user level
transection.

» Thet est case command. Thiscommand letsyou customize your own test
cases. For example, you can check aresponse for specific resultsand have the
success or falure logged in the LoadT et report output.

» Theemul at e command. Thiscommand letsyou use externd C linkage to
support aproprietary protocol or interface. You can wragp VU or externd C
function calswith theenul at e command, and thus obtain the full set of
servicesnormaly associated with the sandard emulation commands, including
time stamping and reporting on successor falure.

Emulation commandstha succeed return avaue of 1 or greater. Emulation
commandsthat fail return avalue of O or less.

HTTP Emulation Commands

5-2

If you have recorded Web traffic, your resulting script will contain VU emuléation
commandsand functionspertainingtoH T T P. T hese commandsand functionshave
the prefix ht t p.

In generd, you will not haveto dter an HT TP script extengvely; it should typicaly
run without errors.

HTTP Commands that You Insert Manually

LoadT est dso providesH T TP emulation commands and functionsthat you can
insert manudly into your script. These are:

» http_header_i nfo. Thisfunction letsyou retrieve the vaues of the header
information. For example, you can retrieve the content length of the page or
when the page was last modified.

» http_recv. Thiscommand enablesthe script to receive datauntil aspecified
string appearsin the data. At the end of the specified string, the script stops
reading data

Emulation Commands

Monitoring Computer Resources

Tomonitor computer resourcesfor HT TP servers, you must add an | NFO SERVER
declaration for tha computer in a least one VU script in the schedule.

The syntax for this statement isasfollows:
I NFO SERVER | abel =addr [, |abel=addr]

| abel isadringthat givesthelogicd name of the server. Thisisthe nameyou see
associated with the resource datain LoadT est reports and graphs.

addr isadringthat givesthe network name or | P address of the Web server.

Although you can add thislinein the script anywhereyou can declareaVVU variable,
you should generdly add it a the start of the script (after the opening brace) or
immediately beforethefirst ht t p_r equest that communicatesto that server. If
you add it beforethefirstht t p_r equest , enclosethel NFO SERVER declaration
in braces.

You need to add adeclaration for each different HT T P server you want to monitor.
You can declarethe same | NFO SERVERIn different scripts; however the
definitionsmus be consigtent for dl scriptsincluded in aLoadT est schedule. T here
isno requirement that thel NFO SERVER declaration occur in each HT T P script,
or for that matter in an HT TP script a dl (aslong asit occursin at least one VU

script included in the schedule). In fact, you could create a special “servers” script
just for this purpose, and assign that “declaration-only” script to any (or all) user

groups in the schedule. However, the advantage of putting the apprdiisde

SERVERdeclarations in each HT TP script is that less maintenance is involved when
creating schedules since you don't have to be concerned with which scripts access

which HTTP servers.

5-3

User Emulation

Example

Thefollowing example showsaportion of an HT TP script, with commentsand two
| NFO SERVER declaraionsadded. Onel NFO SERVER declaration isét the start
of the script and oneisbeforethefirst htt p_r equest (enclosed in braces).

Each server makestwo requests— one for each page of data received. Only the first
request contains the connection parameters. The second request uses the existing
connection specified by thH&er ver _connect i on environment variable.

{
| NFO SERVER " CAPRI CORN_WEB" = "capri corn-web";
CAPRI CORN_WEB 80 = http_request "CAPRI CORN- WEB: 80",
HTTP_CONN_DI RECT,
"GET / HTTP/1.0\r\n"
"Accept: application/vnd. ns-excel, application/ mw"
"rd, application/vnd. ms- powerpoint, 1nage/gif, img"
"el/ x-xbi t map, immge/jpeg, imagel/pjpeg, */*\r\in"
"Accept - Language: en\r\n"
"UA- pi xel s: 1152x864\r\n"
"UA-col or: color8\r\n"
"UA-OS: W ndows NT\r\n"
"UA- CPU: x86\r\n"
"User-Agent: Mozilla/2.0 (conpatible; MSIE 3.01; Wndows NT)\r\n"
"Host: capricorn-web\r\n” “Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);

I NFO SERVER"GEMINI_WEB" = "gemini-web";

HTTP_CONN_DIRECT,
"GET / HTTP/1.0\r\n"
"Accept: application/vnd.ms-excel, application/mswo"
"rd, application/vnd.ms-powerpoint, image/qgif, imag"
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\n\n"
"Accept-Language: en\r\n"
"UA-pixels: 1152x864\r\n"
"UA-color: color8\r\n"
"UA-OS: Windows NT\r\n"
"UA-CPU: x86\r\n"
"User-Agent: Mozilla/2.0 (compatible; MSIE3.01; Windows NT)\r\n"
"Host: capricorn-web\r\n” “Connection: Keep-Alive\r\n\r\n";
set Server_connection = GEMINI_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(GEMINI_WEB_80);
}

Emulation Commands

SQL Emulation Commands

If you haverecorded aSQL agpplication, your resulting script containsVU emulaion
commands and functions pertaining to SQL. These commands and functions have
the prefix sql .

A script that smply reads recordswill probably play back without errors. H owever,

if you read the same record from the database over and over, your script technicaly
“works,” but may not reflect a realistic workload. This is because the database will
cache the record, which may or may not be desirable, depending on whether or not
cached records reflect the workload you are emulating.

You probably need to alter a script that inserts records in or deletes records from a
database before it plays back as intended. This is because if one virtual user deletes a
record and does not restore the database, the second virtual user’s delete fails because
the record is already deleted.

Processing Data from SQL Queries

Thesqgl nrecv command reads the data returned from the database, but it does not
parse it into rows and columns. The following VU toolkit functions, which come
with Rational Suite PerformanceStudio, enable you parse data returned by

sql nrecv into rows and columns.

» proc SaveDat a(data_nane)

» proc AppendDat a(dat a_nane)

» proc FreeData(data _nane)

» proc FreeAllData()

» string func GetData(data_nane, row, colunnm)
» string func GetDatal(data nanme, col unm)

SaveDat a stores the data returned by the most recent sqinrecv command, tagging
it with the value of th&lat a_nane argument.

AppendDat a adds data to an existing named dataleteDat a and

Fr eeAl | Dat a release the data and associated storage for the named set of data or
for all sets of data respectivelget Dat a retrieves the specified row and column

from the data associated wittat a_nane.

CGet Dat al is similar toGet Dat a, butGet Dat al always retrieves the specified
column from the first data row.

5-5

User Emulation

SQL Error Conditions

SQL emulation commandsreturn avalueof >=1 if execution wasnormal, or <=0
if an error occurred (that is, Ti meout _val expired or _err or hasanonzero
vaue). SQL emulation commandsset _error and _error _t ext toindicaethe
status of the emulated SQL statements. If _error hasanonzero vaue and
Log |l evel issetto" ALL" or " ERROR" thelogfileentry indicatesthat the
command faled, and thevaluesof _error and_error _t ext arelogged.

You can also set the SQL emulation commands to “expect” certain errors. The
EXPECT_ERROR clause causes the emulation command to “pass” (match the
expected response) if the expected error occurs. Conversely, if the SQL statement
producesno error, but an error is expected, the emulation command “fails” (does not
match the expected response), and is logged and recorded accordingly.

VU Toolkit Functions: File I1/0

A common task in performance testing is to read a set of data from afile, parse the
line read, and then use the fields of data as send parameters. The VU toolbar
functions provide a set of routines and variables to implement this process, and
include the capability of processing comments in the input file. The variables are:

» string Last_Line
» string Last_Field
» string Last_Subfield

These contain the most recently read line, field, and subfield as produced by the
following functions:

func ReadLine(file _descriptor)
string func NextField()

string func | ndexedFi el d(/ ndex)
string func Next SubFi el d()

vV vV v v VY

string func | ndexedSubFi el d(/ ndex)
» SHARED READ(filenane, prefix)

TheReadLi ne function reads a line from the currently open file designated by
fil e descriptor.Thefunction has manyoptionsto define commentlines, field
delimiters, and end-of-file behavior.

TheNext Fi el d function parses the line read BgadLi ne. Each successive call
returns the next field on the line. The variabésst _Fi el d contains the string
returned by the most recent call to this function.

5-6

Emulation Commands

Thel ndexedFi el d function parsesthelineread by ReadLi ne and returnsthe
field indicated by the i ndex argument. A cadl to | ndexedFi el d resetsthefield
pointer so that asubsequent cdl to Next Fi el d returnsthefield followingthe
index. Thevariable Last _Fi el d containsthe string returned by the most recent
cdl to thisfunction.

The Next SubFi el d function parsesthe field returned by the mos recent cal to
Next Fi el d or | ndexedFi el d. Each successve cdl returnsthe next subfield
within thefield. ThevaridbleLast _Subf i el d containsthe stringreturned by the
most recent cdl to thisfunction.

Thel ndexedSubFi el d function parsesthefield returned by the most recent cal
to Next Fi el d or | ndexedFi el d, returningthe subfield indicated by i ndex. A
cdl tol ndexedSubFi el d resetsthe field pointer so that asubsequent cdl to
Next Fi el d returnsthefield followingtheindex. Thevariable Last _Subfi el d
containsthe gring returned by the most recent cdl to thisfunction.

SHARED READdlowsmultipleuserstosharefi | enane, sotha notwo usersread
the sameline. It dependson two externdly defined shared variables named
prefix | ockandprefix_offset.

TUXEDO Emulation Commands

If you recorded aT U XED O application, your resulting script contains VU
emulation commands and functions pertainingto TU XEDO.

The namesfor VU emulation commandsfollow the names of the TU XEDO API
cdls, but they havethe prefacet ux_. So, for example, the VU emulation command
t ux_t pacal | correspondstothe TUXEDO API cadl t pacal I .

There are two basic types of commands:

» Commandsthat return apass/fail indicator. These commandsreturn 1 (logicd
true) if the commands succeeds, and O (logica fa<se) if it fails.

» Thecommandsthat return avaue tha other commandsuse later. If these
commandsfall, they return -1.

How VU Represents TUXEDO Pointers

SomeTU XEDO API cdlsuse pointers. H owever, pointersare not supported in the
VU language. T herefore, the VU language uses freebuffersto represent pointers.

A free buffer can be simple, representing asingle buffer member, or composite,
containing many individualy named buffer members. Within VU and TU XEDO,
free bufferscan represent smple datatypes, such aspass-by-referencelongintegers,
aswell ascompodte datatypes, such asnested C structuresand TU XED O typed
buffers.

5-7

User Emulation

5-8

Since smple buffers have no members, you should use an empty string (" ")
whenever asmple buffer member nameisrequired.

For composdte buffers, use the following syntax to specify amember:
nane [“." name ["." nane] ... 1 [":" instance]

where name isthe name string given to the member, and i nst ance isan integer
vaue representing the cardina occurrence of amultiply defined member name.
Instance numbers begin with zero.

Thefollowing exampleloadsthe " nsgi d" string of the" gqct | " member of a
BUFTYP_TPEVCTL buffer for t ux_t psubscri be:

tpevctl = tux_all ocbuf (BUFTYP_TPEVCTL) ;

tux_set buf _string(tpevctl, "qctl.nsgid", "soneval ue");

Thefollowing exampleloadsthefourth occurrence of thefield named " QUANTI TY"
(converting vdueto an integer) from an FM L buffer named odat a_ populated by
tux_tpcall:

guantity = tux_getbuf_int(odata_, "QUANTITY:3");

With FM L buffers, omitting i nst ance impliesthefirs occurrence of that member
name. For example, " QUANTI TY: 0" and " QUANTI TY" are equivaent.

Thefreebuffer types, their member names, and the corresponding VU datatypesare
asfollows:

Buffer Type/Member Names VU Data Type Equivalent

BUFTYP_CARRAY stri ng (user-defined maximum length).
N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

BUFTYP_CLI ENTI D (composite)
"clientdat a0" i nt
"clientdatal" i nt
"clientdata2" i nt
"clientdata3" i nt
BUFTYP_FM. (composite)
U ser-defined field namesand values
BUFTYP_FM_32 (composite)
U ser-defined field namesand values
BUFTYP_REVENT i nt
BUFTYP_STRI NG stri ng (user-defined maximum length)

(Continued)
Buffer Type/Member Names

Emulation Commands

VU Data Type Equivalent

BUFTYP_SUBTYPE

string (maximum length = 15)

BUFTYP_TPEVCTL (composite)

"flags" i nt

"namel" string (maximum length = 31)

"name2" string (maximum length = 31)

"qctl" stri ng. Nonprintable charactersare
converted to hexadecimd strings delimited
by grave accent characters.

"qctl.flags" i nt

"qctl.deq_tinme" i nt

"qctl.priority" i nt

"qctl.di agnostic" i nt

"qctl.nsgid" string (maximum length = 31)

"qctl.corrid" string (maximum length = 31)

"qctl.repl yqueue" string (maximum length = 15)

"qctl.failurequeue" string (maximum length = 15)

"qctl.cltid" stri ng. Nonprintable charactersare
converted to hexadecimd strings delimited
by grave accent characters.

"qctl.cltid.clientdata0" i nt

"qctl.cltid.clientdatal" i nt

"qctl.cltid.clientdata2" i nt

"qctl.cltid.clientdata3" i nt

"qctl.urcode" i nt

"qctl . appkey” i nt

BUFTYP_TPI NI T (composite)

"usrnane"” string (maximum length = 30)

"cl t nane"” stri ng (maximum length = 30)

" passwd” string (maximum length = 30)

"gr pnane"” stri ng (maximum length = 30)

"flags" i nt

"dat al en" i nt

"dat a" stri ng (user-defined maximum length).

N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

5-9

User Emulation

5-10

(Continued)
Buffer Type/Member Names

VU Data Type Equivalent

BUFTYP_TPQCTL
"flags"
"deq_time"
"priority"

"di agnostic"
"msgi d"
“corrid"

"repl yqueue"
"failurequeue"
"cltid"

(composite)

i nt

i nt

i nt

i nt

string (maximum length = 31)
string (maximum length = 31)
stri ng (maximum length = 15)
string (maximum length = 15)
stri ng. Nonprintable charactersare
converted to hexadecimd strings delimited
by grave accent characters.

"cltid.clientdata0" i nt
"cltid.clientdatal" i nt
"cltid.clientdata2" i nt
"cltid.clientdata3" i nt
"ur code" i nt
"appkey" i nt
BUFTYP_TPTRANI D (composite)
"i nf 00" i nt
"infol" i nt
"info2" i nt
"info3" i nt
"i nf 04" i nt
"i nf 05" i nt

BUFTYP_TYPE

string (maximum length = 7)

BUFTYP_VI EW

stri ng (user-defined maximum length).
N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

BUFTYP_VI EWB2

stri ng (user-defined maximum length).
N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

BUFTYP_X_C_COVVON

stri ng (user-defined maximum length).
N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

Emulation Commands

(Continued)
Buffer Type/Member Names VU Data Type Equivalent

BUFTYP_X C TYPE stri ng (user-defined maximum length).
N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

BUFTYP_X_OCTET stri ng (user-defined maximum length).
N onprintable characters are converted to
hexadecima strings delimited by grave
accent characters.

Freebuffersare dlocated with thet ux_al | ocbuf andt ux_al | ocbuf typed
functions, which return abuffer handle that can be used to reference the dlocation
by other API cals. Once afree buffer isno longer needed, dedlocate it with the

t ux_freebuf function. Functionsfor loading, unloading, resizing, and describing
buffersand buffer membersdso are available.

TUXEDO Error Conditions

Error conditions differ dightly between TU XED O and the VU language.
Consgent with theVU language, TU XED O emulaion commandssetthe _er r or
and _error _text read-only varidbles. They dsoset _error _type, avaiale
used only with TU XED O. Although you need to check thevalueof _err or or the
return vaueto determine whether an error occurred, you should then check the
_error_type,whichindicaeshow to interpret thevaduein _err or. For
example, _error _typetellsyouif thevauein _error isaTUXEDO sysem
error code or an FM L error code. T o see the actua message, you read
_error_text,just aswith any other VU emulaion command.

Four VU emulation commands(t ux_t pcal | ,t ux_t pgetrply,
tux_tprecv,andt ux_t psend) updatetheread-only varidble

_tux_t purcode. Thisvariable containsthe sameinformation asthe TU XEDO
globa varidblet pur code, and will help diagnose playback errorsrelated to afailure
in the server.

[IOP Emulation Commands

Thissection describeshow the VU language emulatesInternet Inter-ORB Protocol
(I1OP) ectivity. VU's IIOP emulation commands and functions currently support
the CORBA model.

5-11

User Emulation

Interfaces, Interface Implementations and Operations

CORBA (Common Object Request Broker Architecture) definesan architecturefor
remote method invocation between distributed objects. The methodsof an object in
the CORBA model are exposed to other objectsviaitsIDL interface definition, or
interface. Once areference to an object isobtained, operations (methods) may be
invoked on that object. Remote invocation occursviallOP request messages.

Within this section the termsobject and interface implementation may be used
interchangeably. Likewisethetermsmethod and operation are equivaent. H owever,
VU/IIOP is concerned only with the CORBA/IIOP interface model and not the
larger CORBA object model. T herefore object model terminology isonly used
when it servesto clarify asubject.

Request Contexts and Result Sets

Within VU/IIOP, every operation invocation isassociated with arequest context that
encgpsulatesdl of theinformation required to perform the operation. T hisincludes
dl of theinformation needed to congtruct an 110P Request message (object key,
operation name, parameters, service context, requesting principa, and so on) aswell
astheinformation required to retrieve the response (request 1D, and so on).

Theoperaion’s response data, known as the result set, is also encapsulated within its
associated request context. This includes any operation out parameters, the return
value and any exception information that may have been returned in the response.

Therefore all interactions with an interface implementation are done through a
request context. VU/IIOP implements request contexts via Request pseudo-obijects.

VU/I1OP Pseudo-Objects

VU uses a number of abstract data types to represent collections of data that cannot
be represented by the native VU language scalars (such as ints and strings). These
types, callegseudo-objects, are referenced by their pseudo-object handles.

Handles are integer values that uniquely identify pseudo-objects and their associated
variables.

Two pseudo-objects supporting IIOP messaging are:
» Object Reference

» Request

5-12

Emulation Commands

Object Reference Pseudo-Objects

An Object Reference pseudo-object represents areference to an interface
implementation that implementsthe operations of aspecific interface. Once an
interface specification isbound to an active interface implementation by the

i i op_bi nd emulaion command, apseudo-object representing thisbinding is
created and assigned aunique handle. The handle may then be used by the
emulation commandsto send operation requeststo the interface implementation.

When an interface bindingisno longer needed, that O bject Reference pseudo-object
may then bereleased by the i i op_r el ease emulation function. Once released,
the binding to the object implementation is destroyed.

Request Pseudo-Objects

A Request pseudo-object represents an active request context. They are created by
thei i op_i nvoke emulaion command.

Once created aRequest pseudo-object persistsuntil it isexplicitly destroyed by acal
toi i op_r el ease, ater which all request context information associated with that
pseudo-object isdestroyed and its handle becomesinvdid.

Parameter Expressions

A parameter expression isastring expression used to specify the names, input values

and output binding variablesfor an operaion’sargument list and corresponding

result set members (collectively known as the operation’s parameters). Parameter
expressions are used by all emulation commands that invoke operations on an
interface implementation.

The syntax for a parameter expression is:

par anet er - nane-expr “":" [input-bind-expr] [":" &output-bind-var]
where

par anet er - nane- expr is a string naming the parameter to be bound.

i nput - bi nd- expr is an optional VU language expression specifying the input
value to the named parameter, which must be an IDL “in” or “inout” parameter.

out put - bi nd- var is an optional VU variable that will contain the output value
of the named parameter, which must be an IDL “inout” or “out” parameter.

5-13

User Emulation

5-14

Parameter Name Expressions

Parametersthat represent single datavaues are known asscalar parameters.
Parametersthat represent datastructures containing multiple datavaluesare known
asaggregate parameters. VU/IIOP can addressany ID L basicdatatype, or any IDL
basic datatype member of any ID L constructed datatype, used asascdar or aggregate
operation argument, result value or exception when identified with aparameter
name expresson.

The parameter name expression form for ascalar operation argument or exception
member issmply:

par anet er - nane

where par anet er - nane isthe IDL operation argument or exception member
name. The name for an operation result value isthe empty string (" ").

There arefour aggregate IDL constructed datatypes: sruct, union, array, and
sequence. The expresson form for identifying an aggregate parameter’s member is

nenber - expr [menber - expr. . .|

where nenber - expr hasfour possble forms:

» ForIDL basctypestheform is.
menber - nane

where nember - nane isthe name of the member, which may be the name of
the parameter if it isthe topmost node.

» For struct typesthe form for identifying struct membersis:
struct-nanme". " nenber - expr

where st r uct - nane isthe name of the struct, which may be the name of the
parameter if it isthe topmogt node or the name of amember if it isembedded.

» For union typesthe expression form for identifying union membersis:
uni on- nane": " di scri m nat or - val ue" . " menmber - expr

where uni on- nane isthe name of the union, which may be the name of the
parameter if it isthe topmost node or the name of amember if it isembedded,
and di scri ni nat or - val ueisthevaue of theIDL union

switch _type spec for the member being referenced.

» For array and sequencetypesthe member expresson form for identifying array
and sequence membersis.

menber-expr"[" el enent-id']"

where el enent - i d isan integer identifying the ordina position of the
member within the array or sequence, starting at O.

Emulation Commands

Interface Definition Language (IDL)

You must provide accessto the IDL for your application to LoadTest. The IDL for
an gpplication usualy consists of severd fileswith a.idl extension. Thesefiles
describe the operations and parametersthat the objects of your application support.
Developerscan create the IDL manudly using atext editor. The IDL can dso be
generated from amodeling tool such as Rationad Rose.

Without accesstotheIDL, LoadT est can createonly opaque scripts. An opague script
showsthe names of the operations, but it does not show parameter names. For
example, the command below specifies that the deposit operation isto be invoked,
but it does so opaquely:
iiop_invoke ["deposit"] "deposit", objref_2,
"I OP_RETURN'" : : & iop_return,
" (10000007d000000";
If you load the IDL by clicking Tools - Interfaces in Robot, before recording a
script, Robot will creste more meaningful scripts. T he followingisan example of an
operation created with an IDL available:
iiop_invoke ["deposit"] "deposit", objref_2,
"account_number" : "2938845",
"amount" : "125";
If explicit path information isnot provided within #i ncl ude directivesin IDL files,
not dl IDL may beloaded. To ensurethat dl IDL files are loaded, create auser
environment variable caled | DLI NCLUDE. Set | DLI NCLUDE to the path for IDL
files accessed by #i ncl ude. For example:

d:\idl; d:\sysidl
Exceptions and Errors

Any operation may return an exception instead of itsnormal result set.

Error reporting takes advantage of the three error-related VU read-only variables:
_error,_error_typeand_error_text:

_error contansthe status code of the most recent VU /I1OP emulation command.
If the command completes successfully, error issettol | OP_CK. If the
command fals, _error containsavdue greater than 0.T he exact interpretation of
_error isthen determined by thevdueof _error _type._error _t ext contans
atextud definition of anon-zero _er r or code.

5-15

User Emulation

5-16

The VU language recognizes three types of errors:

» server-reported CORBA system exceptions.

CORBA definesaset of sandard exception definitionsused by ORBsto report

system-level error events.

» server-reported CORBA user exceptions.

» LoadTed-reported errors. Theseerrorsarein the _er r or read-only varigble,.

LoadT est reportserror conditionsthat do not fal under the classification of

CORBA exceptions.

Thefollowing table lists the server-reported CORBA system exceptions.

if _error_typeis1and _erroris

then _error_text is

1 11 OP_BAD_PARAM

an invdid parameter was passed

|1 OP_NO_MEMORY

dynamic memory dlocation falure

I[TOP_IMP_LIMT

violated implementation limit

| | OP_COWM FAI LURE

communication failure

invaid object reference

11 OP_NO_PERM SSI ON

no permission for attempted operation

I 1 OP_I NTERNAL

ORB Internd error

I 1 OP_MARSHAL

error marshaling parameter/result

2
3
4
5 11 0P_I NV_OBJREF
6
7
8
9

I'1CP_I NI TIALI ZE

ORB initidization falure

10 11 OP_NO_I MPLEVENT

operaion implementation unavailable

11 11 OP_BAD TYPECODEL

bad typecode

12 11 OP_BAD_OPERATI ON

invaid operation

13 11 OP_NO_RESOURCES

insufficient resourcesfor request

14 11 0OP_NO_RESPONSE

response to request not yet available

15 11 OP_PERSI ST_STORE

persistent storage failure

16 110OP_BAD_| NV_ORDER

routine invocations out of order

17 11 OP_TRANSI ENT

transient failure, reissue request

18 |1 OP_FREE_MEM

cannot free memory

19 110P_I NV_I DENT

invdid identifier syntax

(Continued)
if _error_typeis1and _erroris

Emulation Commands

then _error_text is

20

11 OP_I N\V_FLAG

invdid flag was specified

21

I 1 OP_| NTF_REPCS

error accessing interface repostory

22

| | OP_BAD_CONTEXT

error processing context object

23

| | OP_OBJ_ADAPTER

falure detected by object adapter

24

| | OP_DATA_CONVERSI ON

dataconversion error

25

| | OP_OBJECT_NOT_EXI ST

nonexistent object, delete reference

26

| | OP_TRANSACTI ON_REQUI RED

transaction required

27

I 1 OP_TRANSACTI ON_ROLLEDBACK

transaction rolled back

28

I'1 OP_I NVALI D_TRANSACTI ON

invdid transaction

29

I 1 OP_UNKNOVWN

unknown exception

Thefollowing table lists the server-reported CORBA user exceptions:

if _error_typeis2 and _error is

‘ then _error_text is

1 11 OP_USER EXCEPTI ON

‘ user exception

Thefollowing table liststhe LoadT est-reported errors:

if _error_typeis3 and _error is

then _error_text is

1 11 OP_TI MEOUT

command timed out

2 |1 OP_BI NDFAI L

unable to bind with any modus

3 || OP_OP_UNKNOWN

Socket Emulation Commands

If you have recorded an unsupported protocol asastream of bytes, your resulting
script will contain VU emulaion commandsand functionspertaining to raw socket
data. These commands and functions have the prefix sock.

operation not found in IDL information

5-17

User Emulation

Although socket recording will capture network traffic, you need to be familiar with
the network protocol to obtain ascript you can work with and understand. If the
protocol isclear text, the processisfarly straightforward. If the protocol isnot clear
text, you must understand the structure of the protocol messages.

NOTE: VU supports the Jolt protocol by using macros and user-defined VU
functions that call socket emulation commands. For information about the Jolt
protocol, see Appendix A.

Emulation Functions

Like emulation commands, the VU emulation functions are related to virtua user
emulation. However, emulation functionsdiffer from emulation commandsin the
following ways.

» Emulation functionsdo not increment the emulation command count
(_cndcnt).

» Emulation functionsare neither logged in the standard log file nor recorded in
the standard reault files, hence they are not available to LoadT est reports.

» Emulation functionsdo not generate think time delays nor do they time out.

VU Environment Variables

Environment varigblesspecify the virtual users’environments. For example, you can
use an environment variable to specify:

» Avirtual user’s average think time, the maximum think time, and how the think
time is mathematically distributed around a mean value.

» How long to wait for a response from the server before timing out.
» The level of information that is logged and is available to reports.

The following table summarizes the VU environment variables:

Environment Variable Category Values Default

CS_bl ocksi ze

client/server integer 1 - 32767 1

Check_unr ead

reporting string " FI RST_I NPUT_CMD" " FI RST_I NPUT_CMD"
" OFF" "EVERY_| NPUT_CMD'

Col utm_header s

client/server sring" ON' " OFF" " ON

Connect _retries connect integer 0-2000000000 100

5-18

VU Environment Variables

(Continued)
Environment Variable Category Values Default
Connect _retry_interval | connect integer 0-2000000000 ms 200
Cursor_id client/server integer: avauereturned by 0
sql decl are_cur sor,
sql open_cur sor, or
sql al oc_cursor
Del ay_dly_scale think time integer 0-2000000000 percent | 100
Escape_seq exit sequence any bank expression; two null bank expression
optiond integer expressions
Ht t p_control HTTP-related integer indicating 0 or more 0
of:
0 (exact match)
HTTP_PARTI AL_OK
HTTP_PERM REDI RECT_OK
HTTP_TEMP_REDI RECT_OK
HTTP_REDI RECT_OK
HTTP_CACHE_OK
I'i op_bi nd_nodi IIOP-related colon-separated list of oneor | null string
more of the following strings:
"File" "Naneservice"
"1 OR" "Visibroker"
Li ne_speed HTTP-related integer indicating bits per 0 (nodelay)
second: 0-2000000000
Log_| evel reporting sring" ALL" " TI MEOUT" " TI MEQUT"
"OFF" " ERROR'
" UNEXPECTED"
Logout _seq exit sequence any bank expression; two null bank expression
optiond integer expressions
Max_nr ecv_saved reporting integer 0-2000000000 2000000000
Mybst ack private abank expression NULL (empty)
Msst ack private asgtring expresson "
Myst ack private an integer expression 0
Record_I evel reporting "M N MAL" " Tl MER' " COVIVAND"
"FAlI LURE" " COMVAND"
"ALL"
Server _connecti on client/server A vduereturned by 1

sql connect

5-19

User Emulation

(Continued)
Environment Variable Category Values Default
Sql exec_control _oracle | client/server gring"" " STATI C_BI ND"
Sql exec_control _ client/server sring " LANGUAGE" " RPC' " LANGUAGE"
sql server
Sql exec_control _sybase | client/server string " LANGUAGE" " RPC" " LANGUAGE"
" | MVEDI ATE"
Sql nrecv_| ong client/server integer 0-2000000000 20
Staterment _id client/server integer O, or avauereturned | O
by sql prepare or
sql al | oc_st at enent
Suspend_check reporting sring" ON' " OFF" " ON'
Tabl e_boundari es client/server sring" ON' " OFF" " OFF"
Thi nk_avg think time integer 0-2000000000 ms 5000
Thi nk_cpu_t hreshol d think time integer 0-2000000000 ms 0
Think_cpu_dly_scal e think time integer 0-2000000000 ms 100
Thi nk_def think time fring"FS" "LS" "FR "LR'
"LR'" "FC' "LC'
Thi nk_di st think time string " CONSTANT" " CONSTANT"
"UNI FORM' " NEGEXP"
Think_dly_scal e think time integer 0-2000000000 ms 100
Thi nk_max think time integer 0-2000000000 ms 2000000000
Thi nk_sd think time integer 0-2000000000 ms 0
Ti meout _act responsetimeout | string" 1 GNORE" " FATAL" " | GNORE"
Ti meout _scal e responsetimeout | integer 0-2000000000 ms 100
Ti meout _val responsetimeout | integer 0-2000000000 ms 120000 ms

5-20

VU Environment Variables

Changing Environment Variables Within a Script

Environment control commands allow a VU script to control a virtual user’s
environment by operating on the environment variables. The environment control
commands areval , pop, push,reset,restore,save, set, andshow.

Every environment variable has, instead of a single value, a group of values: a default
value, a saved value, and a current value.

>

default — The value of an environment variable before any commands are
applied to it. Environment variables are automatically initialized to a default
value, and, like persistent variables, retain their values across scripte 3éte
command resets the default value, as listed in the previous table.

saved — The saved value of an environment variable can be used as one way to
retain the present value of the environment variable for later usesavesand
rest or e commands manipulate the saved value.

current — The VU language supports a last-in-first-out “value stack” for each
environment variable. The current value of an environment variable is simply
the top element of that stack. The current value is used by all of the commands.
Thepush andpop commands manipulate the stack.

Initializing Environment Variables through a Schedule

In addition to changing VU environment variables directly within a script, you can
also initialize the most commonly used environment variables through a schedule.
To initialize the values through a schedule, display the schedule and cli¢gkehe
Settings button.

The environment variable values that you set in a schedule are in effect until the
script changes that value.

Client/Server Environment Variables

This section discusses the client/server environment variables.

Column_headers

This string environment variable, useddal nr ecv andsql f et ch_cur sor,
indicates whether column headers should be included with the retrieved data. Values
are" ON' (the default) ot OFF." When the value i5ON," sql nrecv or

sql fetch_cursor includes column names iral | t ext and in the log file.
_response never includes column headers.

5-21

User Emulation

5-22

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Cursor_id

Thisinteger environment variable hasadefault value of 0 and may contain any value
returned by sqgl decl are_cur sor, sql open_cur sor,or
sql al | oc_cursor.

If thevalue of Cur sor _i d iszero, then sql decl ar e_cur sor dlocates new
resourcesfor acursor and returnsthe cursor id associated with thoseresources. If the
vaue of Cur sor _i d isnon-zero, sql decl are_cur sor doesnot dlocae new
resources, and instead reuses the resources associated with that cursor.

Thesql open_cur sor command behavesthe same way when it isgiven aSQL
satement. If sql open_cur sor isgiven aCur sor _i d aagument, Cur sor _i d
has no effect.

CS blocksize

Thisinteger environment variable, used by sgl nrecv andsql f et ch_cur sor,
specifiesthe maximum number of rowsto receive with asingle SQL database
request. If sgl nrecv or sqgl f et ch_cur sor must retrieve more than the
number of rows specified by CS_bl ocksi ze, therowsareretrieved by multiple
requests.

The minimum and default vaueis 1 row. Although the maximum vaueis 32767
rows, your sysem resources or database server may limit you to aconsiderably
smaller maximum vaue.

Thisenvironment variable affects syssem performance and response time
measurements. You should set it to the same valuethat the client gpplication uses.
This may vary from one command to another.

If you set CS_bl ocksi ze too small, your system performstoo many fetch
commands. If you et it too large, your system performstoo few fetch commands.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

VU Environment Variables

Server_connection

Thisinteger environment variable identifiesthe current server connection over
which emulation commands operate. Vaues are integer expressions obtained by
cdlingsql connect ,http_request,or sock_connect.

If Record_| evel is" COMWAND' or " ALL," Server_connecti onis
recorded. Thisistoinform LoadT est reportswhich Ser ver _connecti on an
emulation command uses.

You can initidize thisenvironment variable only by editing ascript.

Sglexec_control variables

These gtring environment variables, used by sql exec, control the method used to
transmit the SQL statement to the SQL database server.

The Sql exec_control vaiablesareasfollows:

Variable Description
Sql exec_control _sybase Vdues can be:
» LANGUAGE. Default. Commandsare sent as
regular SQL text.

» RPC.Commandsareinitiated and executed asa
remote procedure cal. Arguments are optiond.

» | MVEDI ATE. Commands are executed as
dynamically prepared statements, with or
without arguments.

Sql exec_control _sql server | Vauescan be:
» LANGUAGE. Default. Commandsare sent as
regular SQL text.

» RPC.Commandsareinitiated and executed asa
remote procedure cal. Arguments are optiond.

Sql exec_control _oracl e Vduescan be:

» "".Default. Argumentsare bound for each call
tosqgl exec.

» STATI C_BI ND. Argumentsare bound to a
gaticmemory location, and argument vauesare
copied to tha location for execution by
sql exec.

You can initidize thisenvironment variable only by editing ascript.

5-23

User Emulation

5-24

Sginrecv_long

Thisinteger environment variable, which isused by sql nrecv and

sql fet ch_cursor, specifiesthe number of bytes of longbinary and longchar
columnsto befetched from the server, andincluded in the _r esponse read-only
variable and logged.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Statement _id

St at enent _i d dlowsyou to reuse cursor structures. You can dlocate it once
(usng sql al | oc_st at enent) and then prepare different SQL statementson
the same gtructure, by settingthe St at ement _i d environment varigbleto the
vaduereturned from sql al | oc_cur sor . Thisimproves performance on the
database by taking up fewer resources.

St at enent _i d holdsthe statement IDsreturned by sql pr epar e and

sql al | oc_st at ement . TheseIDscan beused by sql exec, aswell asthe
sglcursor commands, in place of astring representation of aSQL statement.
Statenent i disdsousedbysql free_stat enent, and afectssql nrecv
andsqgl | ongrecv.

Example 1

stnmtid_1 = sqglalloc_statenent();

set Statnent_id = stntid_1;

/* since we set Statenent_id = stntid_1, sql prepare will operate on
that id

instead of creating a

new one */

sqgl prepare "select * from enpl oyees"”;

sql exec stntid_1;

/* this statement will also operate on the stntid_1 instead of
creating a

new structure since Statenent_id is still set */

sql prepare "select * from users";

sqgl exec stntid_1;

Example 2

The St at ement _i d dso dlowsyou to interleave sql exec and sql nrecv
commands. U p until now, it hasdwaysbeen arequirement tha sqgl nr ecv
commands immediately follow sql exec commands. If you usethe

St at enent _i d environment variable, you can do an exec on one statement
(stntid_1),doaprepare, exec, and fetch on another ssatement (st nt i d_2),
and then go back and do afetchonstntid_1.

VU Environment Variables

For example:

stnmtid_1 = sqglalloc_statenent();
stntid_2 = sqglalloc_statenment();

set Statenment_id = stntid_1;

/* this operates on stntid_1 */
sqgl prepare "select * from enpl oyees"”;

sqgl exec stntid_1;
set Statenent_id = stntid_2;

/* this operates on stntid_2 */
sql prepare "select * from users";

sqgl exec stntid_2;

/* this operates on stntid_2 since that is what Statenment _id is set
to */

sql nrecv ALL_ROWS;

set Statenment_id = stntid_1;

/* this operates on stntid_1 since that is what Statement _id is now
set to

*/

sqgl nrecv ALL_RONS;

Table _boundaries

This string environment variable, used by sql nrecv andsql f et ch_cur sor,
hdtsdataretrieva a table boundaries. Vduesare" ON' or " OFF."

When thevdueis" ON':

» sql nrecv hdtsat theend of the current table, even if fewer than nrowswere
retrieved. The next cal to sql nr ecv retrievesthe next table.

» sqlfetch_cursor doesnot crosstable boundarieswhen fetching from a
multitable result set.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Connect Environment Variables

This section describes the connect environment variables. T his group of
environment variables gppliesto H T TP and socket schedulerunsonly. Specificaly,
these environment variablesgpply tothe ht t p_r equest and sock_connect
emulaion commands.

5-25

User Emulation

Connect_retries

Connect _retri es isthenumber of retries before giving up the connection. Its
values are 0—2000000000; the default is 100.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Connect_retry _interval

Connect _retry_interval isthe delay (in milliseconds) after a connection
failure before the next connection attempt. Its values are 0—2000000000; the default
is 200.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Exit Sequence Environment Variables

5-26

This section describes the exit sequence environment variables. This group of
environment variables applies to SQL schedule runs only.

Escape_seq and Logout_seq

The environment variablé&scape_seq andLogout _seq make the exit from an
SQL schedule run as graceful as possible. These variables each specify a SQL
command to be sent to the SQL database serveqbgxec when certain
circumstances occur.

The values oEscape_seq andLogout _seq are bank expressions, consisting of

» Arequired string expression containing the SQL statements that you want to
send to the server througlyl exec.

» An optional integer expression to temporarily overrideThenk_avg value
when sending the sequence to the SQL database server.

» Asecond optional integer expression to temporarily override the
Server _connect i on value, which is the default value used if there are
multiple open connections.

Escape_seq andLogout _seq both have as a default value a bank expression
containing a null string and no optional integer override values.

VU Environment Variables

Example

This example begins adatabase transaction and then pushes an escape sequence of
"rol | back wor k" usingathink timevaue of O seconds. After thetransaction is
complete, the escape sequenceisrestored to itsorigind vaue by pop.

#i ncl ude <VU. h>

éqi exec "begin transaction";
push Escape_seq = bank("roll back work", 0);

éqi exec "conmit wor k" ;
pop Escape_seq;

When Exit Sequence Variables Are Sent

Thefollowing list describes the circumstances under which Escape_seq and
Logout _seq aresent tothe server.

>

Both Escape_seq and Logout _seq are sent if:

The virtual user is executing a script when a schedule run is to be
terminated and the LoadTest optidser _t er m node has the value

" COVWAND. " The sending dEscape_seq andLogout _seq isdelayed
until the virtual user completes the current or next emulation command.

The library routinaiser _exi t is called with a negative status value.

OnlyLogout _seq is sent if:

The virtual user terminates normally after completing his last assigned
script.

The virtual user is executing a script when a schedule run is to be
terminated and the LoadTest optidser _t er m node has the value
"SCRI PT." The sending dfogout _seq is delayed until the virtual user
completes the current script.

The library routinaiser _exi t is called with a zero status value.

N eitherEscape_seq norLogout _seq are sent if:

Emulation has not started before the termination is triggered; that is, an
initialization error occurred before the first instruction in the first script was
executed.

The virtual user has not run any SQL emulation commands.
Afatal runtime error, other than a fatal receive command time-out, occurs.

The library routinaiser _exi t is called with a positive status value.

5-27

User Emulation

5-28

>

Escape_seq or Logout _seq may be sent partidly or not at dl if aschedule
run isterminaing, the virtua user is executing ascript, and the time period
specified in the Cl eanup_t i me option expires before or during the time that
Escape_seq or Logout _seq are sent. To avoid this, be sure that

O eanup_ti e isset long enough.

Given that either or both of the sequences are sent to the server, the following
conditions apply:

>

>

If both Escape_seq and Logout _seq aresent, Escape_seq issent first.

Escape_seq isexecuted viasql exec for the connection indicated by each
Server _connecti on if anon-null Escape_seq stringisdefined. The
current value of Escape_seq isexecuted first, followed by each successive
Escape_seq sringon the stack until the Escape_seq environment stack is
empty.

Logout _seq isexecuted viasql exec for each connection for which anon-
null Logout _seq stringisdefined. The current vdue of Logout _seq is
executed firgt, followed by each successive Logout _seq string on the stack
until that Logout _seq environment stack isempty.

Thesql exec command usesthe current environment varigbles

(Thi nk_avg, Thi nk_di st, Thi nk_def, Thi nk_sd,

Thi nk_dly_scal e, Thi nk_nmax, Log | evel ,and Record_I evel),
when it submitsthe sequences, except:

— Ifan optionalThi nk_avg override value was provided with the sequence,
it temporarily replaces the currentii nk_avg value and additionally
enforces dhi nk_di st of" CONSTANT" (for the specific sequence only).

— No attempt is made to receive any results from the SQL database server for
the sequences. Therefore, for both sequencekj ifik_def is"LR" or
"FR" itis changed td CONSTANT" after the very first string of either
sequence was sent.

VU Environment Variables

HTTP-Related

T his section discussesthe HT TP environment variables.

Http_control

Thisinteger environment variable controlswhich status vaues are acceptable when
avirtua user script isplayed back. A value of 0, the default, indicatesthat only exact
matches are accepted. H owever, you can set thisveriable so that a script plays back
successfully even if

» Theresponse was cached during record or playback.
» Theserver respondswith partid or full page dataduring record or playback.
» Thescript wasredirected to another http server during playback.

Ht t p_cont r ol can have one or more of the following values:

A value of Indicates that playback script will accept
0 exact matchesonly

HTTP_PARTI AL_OK 206 for 200 and 200 for 206
HTTP_PERM REDI RECT_CK 301 for 200 and 200 for 301
HTTP_TEMP_REDI RECT_CK 302 for 200 and 200 for 302

HTTP_REDI RECT_OK 301 and 302 for 200, and 200 for 301 and 302
HTTP_CACHE_CK 304 for 200 and 200 for 304

Youcanset Ht t p_cont rol to accept multiple vdues— for example:
Http_control = HTTP_REDI RECT_OK | HTTP_CACHE OK;

You can initialize this environment variable by clicking ther Settings button in
aschedule, or in a script—either by editing the script or by setting the option before
you record. The values you set in the schedule are in effect until the script changes
that value.

NOTE: For information on how to set this option before you record, see

Catrdlingthe Values Aaxpted When an HT TP Saipt IsPlayed Badk on page 3-20 of
theUsngRationa L cedTet manual.

5-29

User Emulation

Line_speed

When you play back ascript, the datais sent and received a network speed, with no
delays. Thisinteger environment variable enables you to emulate auser who is
sending and receiving datathrough amodem.

Different userscan use different line speeds; in fact different connections can be set
up with different line speeds. T hisvariable isuseful to gauge the effect of did-up
versus direct network connection line speeds on user reponse times.

You can set Li ne_speed to any integer from 0 to 2000000000 bits per second.
A vaue of 0 meansthat the datais sent and received a network speed.

[IOP-Related

5-30

T his section discussesthe | 1O P-related environment variables.

liop_bind_modi

To send requeststo an interface implementation, it must be bound to the requestor.
The VU emulation commandi i op_bi nd establishesabinding method, caled a
bind modus, for al subsequent emulation commands. T he default bind modusfor
i i op_bi ndislOR (Interoperable Object Reference), which dependson the
optiona argument i or .

The gtring environment varigble | i op_bi nd_nodi containsalist of bind modi
to be used. Each item in thelist is separated with avertica bar. Each modusistried
in the order given. If amappingisfound, it isused and the search ends.

Thefollowingtableliststhe valuesof | i op_bi nd_nodi :

Value Description
File (Filenane) A CSV-formatted file of interface name/IOR pairs.
I OR An |OR specification (that is, astring representation of an

object reference).

NanmeServi ce (I OR) A CORBA-compliant N ame Serviceinterface
implementation.

Vi si br oker Visibroker osagent locator service (vendor-specific).

Vi si br oker NaneSer vi ce | Usesthe Visbroker osagent location service to accessthe
N ameService.

VU Environment Variables

Private Environment Variables

This section describesthe private environment variables.

Mystack, Mybstack, and Mysstack

Theenvironment varidblesMyst ack, Mybst ack,and Mysst ack areprivate stack
variablesfor each of thethree VU datatypes (integer, bank, and string). Thesethree
variables are not used by any of the emulation commands, alowing you complete
freedom in their use. These variables can be manipulated and accessed by the
environment control commandsin amanner identicd to the other environment
variables.

Like persistent variables, private stack varidbles are an effective meansto preserve
datavduesfor avirtua user across scripts, since environment variables are
maintained across scriptsfor the duration of the emulation. Thisexample measures
aturn-around timethat spans multiple scripts:

/* start time of EV1 is recorded & saved on stack */

set Mystack = start_tine ["EV1"];

... /* one or nore script executions el apse */ .

endtinme = time(); /* actual end tinme of "EV1": */

/* start time re-recorded fromstack to satisfy

"same script" requirenent: */

start _time eval Mystack;

/* "EV1" start/end times recorded: */

stop_tinme ["EV1"] endtine;
Although arrays are recommended as more convenient and efficient, apotentid use
of Mybst ack isfor quick accessto smal tables of integer or string data. For
example, the following code fragment setsup atable of 20 user names:

/* initialize table; preserve Mybstack with push*/

push Mybstack = bank("RUSSELL", "EADIE", "BRI GGS", "RYAN', "COUNTS",
"KWOR', "ALLAN', "BROWN', "WALTON', "HARDING');

/* prepare query */
sql prepare "select * from Student where Surnane = ?";
for (1 =1; i <= 10; i++)

/* run the query with the selected name */
sql exec _statenent_id, eval Mybstack[string][i];

/* return to old environment */

pop Mybst ack;
Asindicated in this example, you can initidize and accessonetablein agiven
environment. By usingthesave and r est or e environment control commands,
you can initidize, maintain, and accesstwo tables per environment. H owever, you
cannot access datafrom more than two tables per environment.

5-31

User Emulation

Reporting Environment Variables

5-32

This section discussesthe reporting environment variables.

Check_unread

Check_unr ead controlswhen sql exec commandsshould check for unread row
resultsfrom the previoussql exec.

Thevaue of Check_unr ead isone of three string expressions:
» "OFF"—Do not check for unread row results.

» 'FIRST_INPUT_CMD" (default) — The firssgl exec following asql nr ecv
checks for unread row results from the previsgbkexec.

» 'EVERY_INPUT_CMD"—Everysql exec checks for unread row results from
the previousql exec.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Max_nrecv_saved

Max_nrecv_saved lets you control the maximum number of rows (SQL) or
bytes (HTTP and socket) saved by the receive emulation commands.

Max_nrecv_saved is an integer environment variable that affects the behavior of
thesql nrecv,sql | ongrecv,sql fetch_cursor, http_header_recv,
http_recv,http_nrecv,sock_recv, andsock_nr ecv emulation

commands.

Its default value is 2000000000; the range is 0—2000000000.

The typical reason for usiidax_nr ecv_saved is to save memory and disk space
by not having to store and log the results of a very large database query — for
example, one that returns thousands of rows.

Max_nrecv_saved does not affect the data actually retrieved from the server.
Therefore:

» The_nrecv read-only variable still contains the number of rows or bytes
processed by the last receive emulation command

» _total _rows still contains the total number of rows actually received

» _total _nrecv still holds the total number of bytes actually received.

VU Environment Variables

If the number of rows or bytesyou receive exceeds Max_nr ecv_saved:
» Theemulation command doesnot necessarily fail.

» IfyourLog_| evel isALL,thelogfileentrywill noteboth the number of rows
or bytesreceived and the number of rows or byteslogged.

» Anyexcessrowsarediscarded instead of being saved in _r esponse.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Log_level

Thevdueof Log | evel determineswha information iswritten to the gandard
log file, in the log'sper f dat a directory. The log file is calledxxx, wherexxx is
auserID.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

The values oLog_| evel are as follows:

» "OFF"—NothingisloggedLog_| evel can also be given the valtl ©FF"
during a portion of the emulation so that no log entries are made for that
portion.

» 'TIMEOUT" (default) — Logs emulation command timeouts. If a receive
emulation command fails due to a timeout, the precedigbexec,
htt p_request,orsock_send command is logged, followed by an entry for
the failed receive emulation command. If thaeg | evel is" TI MEQUT" and
if the scripts for a virtual user contain no emulattmmmands that timed out,
no log file is created.

For thet est case andenul at e commandsfai /| _stri ngislogged. If
thereisndail _string,| og stringislogged.

» '"UNEXPECTED" - Logs timeouts and unexpected responses from SQL
emulation commands.

For all other emulation command$NEXPECTED" is equivalent to
"TI MEQUT."

» '"ERROR"-Logs all SQL emulation commands that sedr r or to a nonzero
value. All timeouts also are logged, as describetl IREQUT. All log entries
include_error and_error _text. Their values typically are supplied by the
SQL database server.

5-33

User Emulation

5-34

For dl other emulation commands, " ERROR" isequivaent to" TI MEQUT."

» "ALL"- Signifies that complete logging is to be done. Alog entry is made for

every emulation command. This log entry contains the following:
— The type of emulation command and any command ID associated with it.
— Identification of the VU script and source file containing the command.

— Theline number of the command in the source file and the emulation
command count of the VU script. The emulation command count is
incremented for every emulation command. When you monitor a schedule,
it is useful to distinguish between executions of the same command on
different loop iterations, since the script line number would be identical for
each iteration.

— The command-specific information listed in the following table. If the
scripts for a virtual user contain no emulation commands, no log file is

created.

Command Specific Information Logged

http_nrecv Theresponse from the server. If response is unexpected, the
number of EXPECTED characters and the number of
RECEI VED characters are both logged.

http_recv Theresponse from the server. If response is unexpected, the
number of EXPECTED characters and the number of
RECEI VED characters are both logged.

htt p_request Oneline &fter the header indicating the success or failure of
the connection, and one line containing the request data
transmitted to the server.

htt p_header _recv Oneline containing the status from the HT T P header.

iiop_bind Therepository id string, the ingtanceid gtring, the IOR string
if present, and the modus actudly used to create the binding.

iiop_invoke Connection information if aconnection was established for
this operation, followed by the operation, dl input (or input/
output) parameter values, and either the values of dl output
(or input/output) parameters, or the values of dl exception
parameters.

Jolt-related VU Jolt emulation isimplemented by the emulation commands

commands sock_send and sock_nrecv.

SAP-related VU SAP emulation isimplemented by externa C functionsand

commands theemul at e command.

(Continued)
Command

VU Environment Variables

Specific Information Logged

sock_send

The characters submitted to the server. Any datathat is not
printable and cannot be represented by astandard C escape
sequence (graphic images, for example) isrepresented asan
embedded hex string.

sock_nrecv

Theresponsefrom the server. If aresponseisunexpected, the
number of EXPECTED characters and the number of

RECEI VED characters are both logged. Any datathat isnot
printable and cannot be represented by astandard C escape
sequence (graphic images, for example) isrepresented asan
embedded hex string.

sock _recv

Theresponsefrom the server. If aresponseisunexpected, the
expected characters (in sandard string constant format) are
preceded by EXPECT=, and the actua responseispreceded by
ACTUAL=. Any datathat isnot printable and cannot be
represented by astandard C escape sequence (graphicimages,
for example) isrepresented as an embedded hex gring.

sql prepare

Thegaement ID returned and the SQL statementsthat were
prepared.

sql cl ose_cursor

Thecursor ID and the SQL statements (including the
statement ID for prepared satements).

sql decl are_cur sor
sql del et e_cursor

The SQL statements(includingthe statement ID for prepared
statements), any arguments supplied, the number of rows
processed (_t ot al _r ows), and thecursor ID.

sql exec

The SQL statements(includingthe statement ID for prepared
statements), any arguments supplied, and the number of rows
processed (_t ot al _r ows). If present, theargumentsare
logged asacomma separated list of vduesenclosed in brackets
[]. String arguments are enclosed in single quotation marks
(" val ue’) and integer argumentsare shown in decima
without quotation marks (12345). T he vaues of named
arguments are preceded by their names; positiona argument
vaues are logged without any prefix.

sqlfetch_cursor

The SQL statements(includingthe statement ID for prepared
statements), any arguments supplied, the number of rows
processed (_total_rows), thecursor ID, the number of
rowsreceived, thenumber of rowslogged if different from the
number received, and the number of tablesread to fetch the
requested number of rows.

5-35

User Emulation

(Continued)
Command

Specific Information Logged

sqlinsert_cursor

The SQL statements(includingthe statement ID for prepared
statements), any argument supplied, the argument vaues, the
number of rowsprocessed (_t ot al _r ows), and the cursor
ID.

sql open_cur sor

The SQL statements(includingthe statement ID for prepared
statements), any argumentssupplied, theargument vaues, the
number of rowsprocessed (_t ot al _r ows), the cursor ID,
and the number of rowsreceived.

sql nrecv

The number of rowsreceived, atwo-line column header
(_col uim_header s) if the value of the environment
variable Col unm_header s is" QN," and acharacter
representation of therowsreceived (_r esponse).

If thenumber of rowsreceived (_nr ows) exceedsthe va ue of
Max_nr ecv_saved, thelogfile entry notes both the
number of rowsreceived and the number of rowslogged. For
example:

10439 rows received (1000 | ogged) from1
tabl e

sql posi tion_cursor

The SQL statements(includingthe statement ID for prepared
statements), thenumber of rowsprocessed (_t ot al _r ows),
and the cursor ID.

sql refresh_cursor

The SQL statements(includingthe statement ID for prepared
statements), thenumber of rowsprocessed (_t ot al _r ows),
and thecursor ID.

sql systemi nfo

The operation, dl theargument vaues given for tha
operation, the number of rows processed (_t ot al _r ows),
and the cursor ID.

sql updat e_cur sor

The SQL statements(includingthe statement ID for prepared
statements), any argumentssupplied, theargument vaues, the
number of rowsprocessed (_t ot al _r ows), and the cursor
ID.

TUXEDO commands

5-36

Any arguments supplied and their argument values.

T uxedo buffer commandsinclude the type and vaue of the
buffer.

VU Environment Variables

(Continued)

Command Specific Information Logged

start_time N o logging done.

stop_tine

test case If no/ og_stri ngisspecified, nothingislogged. If

emul ate log _stringbutnofail_stringisspecified,
I og_stringislogged. If both are specified, | og_stri ng
islogged if the command succeeds, otherwise,
fai |l _stringislogged.

Example

The sample SQL script for sql exec (page 6-123) producesthe following log file.
In thisexample, the log file entries are designed to be easily accessible. The script is
doc andthesourcefileisdoc. s. When thevdueof _error isnot zero, <<< and
>>> arereplaced by * * * | so that these occurrences are quickly located. The
command ID (if any) isshown in brackets after the command. The numbersin
parentheses after the script and script namesare the emulation command count and
the source line number. In this example, the first emulation command began on
sourceline 22.

<<< sqgl exec[school]: script = doc(1), source = doc.s(22) >>>
use school

0 rows processed

<<< sqgl exec[]: script = doc(2), source = doc.s(24) >>>

sel ect Empnum Enpname, Roommum from Enpl oyee where Rank=' TUTOR
0 rows processed

<<< sqglnrecv[Tutors]: script = doc(3), source = doc.s(28) >>>
10 rows received from1l table

Enmpnum Empnane Roomum
78062 CRESSVAN 2005
79069 PEARSON 2220
80075 BOSTVAN 2220
80079 ROW.ANDS 2005
80166 WOCDLEY 1307
81494 DI XON 1180
81931 CAMPBEL L 2111
82631 FESSERVAN 2111
83418 PORTER 1307
84229 KRAEMER 1307

*** ggl nrecv[Tutors]: script = doc(4), source = doc.s(28) ***
5 rows received from1 table
EXPECTED 10 rows

5-37

User Emulation

ERROR 40012: End of results

Enmpnum Enmpnane Roomum

84555 SEARLE 2005

85082 NORRI S 2111

85609 O DONNELL 1180

85718 ASHE 1180

86080 PALMVER 2220

<<< sqgl exec[]: script = doc(5), source = doc.s(35) >>>

sel ect * from Dept

0 rows processed

<<< sqgl nrecv[dept (a)]: script = doc(6), source = doc.s(36) >>>
4 rows received from1 table

DEPTNO DNAME LOC
10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES CH CAGO
40 OPERATI ONS BOSTON

<<< sql prepare[prep inser]: script = doc(7), source = doc.s(39) >>>
1= insert into Dept values (:no, :nane, :place)

<<< sql exec[]: script = doc(8), source = doc.s(42) >>>

(1) insert into Dept values (:no, :nane, :place) [:no="50
:nanme="testing , :place="Raleigh]

1 row processed

<<< sqgl exec[]: script = doc(9), source = doc.s(42) >>>

(1) insert into Dept values (:no, :nanme, :place) [:no= 60
:nanme=" shi pping’, :place=" Durham]
1 row processed

<<< sqgl exec[]: script = doc(10), source = doc.s(42) >>>
(1) insert into Dept values (:no, :nane, :place) [:no="70
:name='receiving', :place="Chapel Hll']

1 row processed

<<< sqgl exec[]: script = doc(1l1l), source = doc.s(45) >>>

sel ect * from Dept

0 rows processed

<<< sqgl nrecv[dept (b)]: script = doc(12), source = doc.s(46) >>>
7 rows received from1 table

DEPTNO DNAME LoC
10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES CHI CAGO
40 OPERATI ONS BOSTON
50 testing Ral ei gh
60 shi ppi ng Dur ham
70 recel ving Chapel Hil
<<< sqgl exec[]: script = doc(13), source = doc.s(49) >>>

del ete from Dept where deptno >= 50

3 rows processed

<<< sqgl exec[]: script = doc(14), source = doc.s(51) >>>

select * from Dept

0 rows processed

<<< sqgl nrecv[dept (c)]: script = doc(15), source = doc.s(52) >>>
4 rows received from1l table

DEPTNO DNAME LOC
10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES CHI CAGO
40 OPERATI ONS BOSTON

5-38

VU Environment Variables

Record_level

Thevdueof Record_| evel determineswhat information iswritten to the
standard result file, in the log'sper f dat a directory. The result file is calledx xx,
wherexxx is auser ID. Since the result file is in binary form, it is not directly
readable; instead, it is input to LoadT est reports.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Record_| evel can be set to one of the following strings:

» "M N MAL" — Record only items necessary for reports to run. However, the
reports will contain no real data. U se this value when you do not want the user’s
activity included in the reports.

» "TIMER' — M N MAL plusstart _tine andstop_ti nme emulation
commands. Your reports will not contain response times for each emulation
command, and an emulation command failure will not show up as aafailure. In
addition, the result file for each virtual user will be small. A small result file
means that disk consumption and CPU overhead for each virtual user is less,
results are retrieved quickly from Agent computers, and you can run reportsin
arelatively short time. S&ecor d_| evel to this value if you are not
concerned with the response times or pass/fail status of an individual emulation
command.

» "FAILURE" —Tl MER plus emulation command failures and some
environment variable changes. Settor d_| evel to this value if you want
the advantages of a small result file but you also want to make sure that no
emulation command failed.

» "COMWAND' — FAI LURE plus emulation command successes and some
environment variable changes (default).

» "ALL" — COMVAND plus all environment variable changes. Complete
recording is done. Abinary entry is written to the result file for every emulation
command and for theet , r eset , r est or e, push, andpop environment
control commands. You can view these entries in Trace report output.

NOTE: Most report output is the same witiALL" or" COVWAND." The
exception is the Trace report output. WItALL," the Trace report output
includes every emulation command as well astéte, r eset ,r est or e, push,
andpop environment control commands. WiICOMVAND," the Trace report
output includes every emulation command but includes#ier eset ,

rest or e, push, andpop environment control commands only when they
affect theSer ver _connect i on environment variable.

5-39

User Emulation

Suspend_check

The string environment varieble Suspend_check controlswhether you can
suspend avirtud user from aM onitor view. The vaue of Suspend_check must
be one of the following strings:

» "ON"(default) — Normal suspend checking is performed (A suspend request is
checked before beginning the think time interval by each send emulation
command.)

» "OFF"-Disables suspend checking. Checking resumes only after the value of
Suspend_check is changed t6 ON," and the next think time interval is
encountered.

You can us&uspend_check to encapsulate a critical portion of the script where
you do not want it to stop. You can also @sespend_check on a script run by a
single virtual user and then suspend all virtual users through the Monitor. The single
virtual user is not suspended.

UseSuspend_check carefully. In particular, be careful to pgiush andpop
operations, and to sBuspend_check back ta" ON" after temporarily changing it
to" OFF."

Response Timeout Environment Variables

5-40

This section describes the response timeout environment variables. This group of
environment variables appliesto HTTP, SQL, IIOP, and socket schedule runs.

Specifically, the response timeout environment variables affect the following
commands:

» HTTP send emulation commands: htt p_r equest

» HTTP receive emulation commands: htt p_header _recv,http_recyv,
http_nrecv

» SQL send emulation commands: sql pr epar e, sql exec,
sql decl are_cur sor, sqgl open_cursor,sql del ete_cursor,
sql updat e_cur sor,sqgl cl ose_cursor,sql position_cursor,
sql refresh_cursor,sqglinsert_cursor.

» SQL receive emulation commands: sql nrecv, sql | ongr ecv,
sql fetch_cursor

» |IOP send emulation commands:ii op_bind,ii op_i nvoke

VU Environment Variables

» Socket receive emulation commands: sock_recv, sock_nrecv

» Other send emulation commands: enul at e

NOTE: The socket send emulation command, sock _send, doesnot wait for a
server response, and therefore the response timeout environment variables do not
affect it.

An emulation command generdly waitsfor aresponse from the server. If aresponse
isreceived, the gppropriate logging and recording isdone, and the emulation
continueswith the execution of the next satement. On the other hand, if the elapsed
time an emulation command has been waiting exceedsthe vadue of Ti meout _val
(subjecttoscdingby Ti meout _scal e), theemulation commandtimesout. In this
case, after appropriate logging and recordingisdone, thevaueof Ti meout _act is
examined to determine whether thistimeout isignored and emulaion continued
normaly, or whether thistimeout isconsidered afata error, resultingin stepstaken
to end the emulation.

Timeout_act
Thevauesfor Ti meout _act arethedrings” | GNORE" and " FATAL."

If thevaue of Ti neout _act is" | GNORE," the emulaion continuesnormaly,
after the appropriate logging and recording, when atimeout occurs. Recdl that an
emulation command that returns0 signasthat atimeout has occurred, alowingthe
script to dynamically react as appropriate to an unexpected response.

If thevaueof Ti meout _act is" FATAL," thetimeout of an emulation command
isconsidered afatd runtime error. The appropriate logging and recording is done,
followed by termination of the virtua user.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Timeout_scale

Thisinteger environment variable controls the percentage multiplier goplied to the
time-out delay (Ti meout _val). Thedefault vaue of 100% representsno change.
A vaue of 50% means one-hdf the delay, which istwice asfast; 200% meanstwice
the delay, which ishaf asfast asthe original.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

5-41

User Emulation

Timeout_val

Thevaueof Ti meout _val can beany integer in the range 0 t015000000. T his
vaue specifiesin milliseconds, garting from when the emulation command begins
communication with the server, thetime an emulation command waitsfor aserver
response before it times out. The default value of Ti neout _val is120000
milliseconds (2 minutes).

Choosethevaue of Ti meout _val with care. If it istoo smal, commands
requesting large anounts of dataor complex operationstime out, even though the
server may respond correctly.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Think Time Variables

5-42

The think time environment variables control the virtual user’s “think time”
behavior. This is simply the time that a typical user would delay, or think, between
submitting commands.

In avirtual user script, thEhi nk_avg is usually set before eatht p_r equest
emulation command, eadyl exec andsql pr epar e emulation command, all
TUXEDO emulation commands, and eaadck _send emulation command. You

need to decide whether to preserve the think times as is, or vary the think times. To
preserve the think times, simply run the script.

You can truncate think times that are too long. For example, you might examine a
script and see afew very long setting$loif nk_avg. To truncate these think times,
set the value ofhi nk_nmax to your maximum acceptable think time.

If you are using the script for a multiuser run, you may also want to set the
Thi nk_di st environment variable toNEGEXP" rather thart' CONSTANT" so
that each virtual user does not pause the same amount of time between each
command.

You may decide to further refine your script by dividing the think time into user
think time and CPU think time. To do this, set tpai_t hr eshol d environment
variable.

VU Environment Variables

Delay dly scale

Thisinteger environment variableglobaly scdesthedelay timesof dl del ay library
routines by applying apercentage multiplier. A value of 100%, which isthe default,
means no change. A value of 50% means one-half the delay, which istwice asfast as
theorigina, 200% meanstwicethedelay, which ishaf asfast. A value of zero means
no delay.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Think_avg

Specifies the duration, in milliseconds, of the “average” think time interval. The
value of Thi nk_avg can be any integer in the range 0-2000000000. The default
value is 5000 milliseconds.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think_cpu_dly scale

This integer environment variable enables you “change” from a slower computer to
a faster computer, and vice versa by multiplying the CPU think time value by a
percentage. Avalue of 100%, which is the default, means no change. Avalue of 50%
means one-half the delay, which is twice as fast as the original; 200% means twice the
delay, which is half as fast. Avalue of zero means no delay. Delay scaling is performed
before truncation (if any) byhi nk_max.

For user think timesThi nk_avg is greater that or equal to
Thi nk_cpu_t hreshol d), Thi nk_dl y_scal e is used instead.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

5-43

User Emulation

5-44

Think_cpu_threshold
There are actually two kinds of delays — user think time and CPU processing time.

User think time is the time atypical user delays, or thinks, between submitting
commands. CPU processing time is the time it takes for the application to generate
internal commands from the user’s data.

For example, an actual user may pause to think before selecting a student name from
a SQL database. This is recorded as user think time. Once the user clicks on the
student name, the time spent generating the SQL command and accessing the
database is a CPU delay.

Similarly, when a user thinks about which Web page to access, this delay is user think
time. Once the user provides the URL for the desired Web page, the CPU must
issue commands to get that Web page and display it to the user. This delayisa CPU
processing delay.

The environment variablehi nk_cpu_t hr eshol d lets you to divide delay time
into user think time delays and CPU processing time delays. You then scale each
time individually with the environment variablési nk_cpu_del ay_scal eand

Thi nk_dly_scal e.

If the value ofThi nk_avg is greater thaifhi nk_cpu_t hr eshol d, the delay is
considered user think time. The valueloi nk_dl y_scal e is used to calculate
the think time.

If the value ofThi nk_avg is less tharThi nk_cpu_t hr eshol d, the delay is
considered CPU think time. With CPU think time:

» The value ofThi nk_cpu_dl y_scal e is used to calculate the delay. This
allows CPU processing delays to be scaled differently from user think time
delays. For example, typical usage would be to “change” the CPU from a 486 to
a Pentium by scaling the CPU processing delays downward.

» The value ofThi nk_di st isignored. All application CPU processing delays
are assumed to BE&ONSTANT." This allows user think time distributions to be
used without affecting the calculation of CPU processing delays.

You can initialize this environment variable by clicking theer Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

VU Environment Variables

Think_def

Specifiesthe starting point of the think timeinterva. The vauesfor Thi nk_def
can be thefollowing string expressions:

» "FS" - Thethink timeinterva for the current send emulation command begins
a thetimethe previous send emulaion command is submitted.

» "LS"- Thethink timeinterva for the current send emulaion command begins
a thetimethe previous send emulaion command is completed.

» 'FR"-Thethink timeintervd for the current send emulation command begins
a thetimethefirst dataof the previousreceive emulation command isreceived.
If therewasno intervening receive emulation command, thethink timeinterva
beginswhen the previous send emulaion command is completed.

» 'LR"- Thethinktimeintervd for the current send emulation command begins
a thetimethelast dataof the previousreceive emulation command isreceived.
If therewasno intervening receive emulation command, thethink timeinterva
beginswhen the previous send emulaion command is completed.

» 'FC"- Thethinktimeinterva for the current send emulation command begins
a thetimethe previousHT TP connection (ht t p_r equest with address
information) or socket connection (sock_connect) issubmitted. " FC'
(“first connect”) uses thef c¢_t s integer read-only variable.

» "LC"-Thethinktimeintervd for the current send emulation command begins
a thetimethe previousHT TP connection (ht t p_r equest with address
information) or socket connection (sock _connect) iscompleted. " LC"
(“last connect”) uses thel ¢_t s integer read-only variable.

If you are running SQ L-based script, you will probably not want to change the
default value ofrhi nk_def . This is because the valu€s, LS, andFR for
sql exec andsql pr epar e are usually almost equivalent.

The following figure shows how the different starting points produce a longer or
shorter think time interval:

"ES

g

"ER"

"LR" (default)

First Sent Last Sent First Recv Last Recv First Sent

5-45

User Emulation

5-46

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Think_dist

Specifiesthink timedistribution for virtud user think times. It hasno effect for CPU
thinktimes. TheThi nk_di st environment variable can havethefollowingvdues:

» "CONSTANT" - Setsacongant think time interva equd to the vdue of
Thi nk_avg. Thisisthe default vdue.

» "UNIFORM" - Setsarandom think time intervd distributed uniformly in the
range: [Thi nk_avg - Thi nk_sd, Thi nk_avg + Thi nk_sd]

» 'NEGEXP"- Thisistherecommended setting for multiuser runs. It providesa
random think timeinterval and approximatesabell curve around the think
average that you have set. The average think time and standard deviation are
equd. In mathematica terms, this setting suppliesarandom think timeinterva
from anegative exponentid distribution with amean equd to the vaue of
Thi nk_avg.

The random number generator used to generae think timesfor the " UNI FORM'
and " NEGEXP" think time distributionsis nat reseeded by default a each script
invocation with an identica seed for each virtud user. T o modify default behavior of
therandom number generator, set the Seed and Seed Flags optionsin the schedule.
By default, Seed generatesthe same sequence of random numbers. H owever, it sets
unique seedsfor each virtud user so that each virtual user will have adifferent
random number sequence.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Think_dly_scale

Thisinteger environment variable controlsthe percentage multiplier to be applied
totheuser think timevaue. A vdue of 100%, which isthe default, meansno change.
A vdue of 50% meansone-hdf the delay, which istwice asfast asthe origind; 200%
means twice the delay, which ishdf asfast. A vdue of zero meansno delay. Delay
scaling is performed before truncation (if any) by Thi nk_max.

For CPU think times(Thi nk_avg islessthan Thi nk_cpu_t hr eshol d),
Thi nk_cpu_dl y_scal e isused instead.

VU Environment Variables

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou et in the schedule are in effect
until the script changesthat vaue.

Think_max

Provides amaximum threshold for think times. Thi nk_nmax specifies, in
milliseconds, the maximum vaue that agenerated think time can have. If the
normaly generaed think time vadue (asdefined by Thi nk_avg, Thi nk_di st
Thi nk_dl y_scal e, and optiondly Thi nk_sd) exceeds Thi nk_nax, itisset to
thevaue of Thi nk_nmax. Thedefault value of Thi nk_nmax is2,000,000,000
milliseconds, which effectively disablesthe truncation.

Thi nk_nax isuseful with scriptstha mimic the actud user think times. You can
truncate longer-than-desired think times, which speedsup playback, without having
to search for and edit each long think time. Thi nk_nmax hasthe additiona benefit
of keeping the origind think times. T o restore these times, smply remove or
comment out the linesthat modified the default vaue of Thi nk_nax.

Thi nk_nax isadso useful with the Thi nk_di st value of " NEGEXP" (which
ordinarily producesnegative exponentidly generated think times) to instead produce
truncated negeative exponentialy generated think times.

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

Think_sd

Specifiesthe think time standard deviation. Thi nk_sd hasmeaning only when the
vadueof Thi nk_di st is" UNI FORM" Otherwise, Thi nk_sd hasno effect.

Thevadueof Thi nk_sd isan integer in the range 0-2000000000. T he default vadue
isO. Thisvalue specifiesarange around themean think timeinterva (Thi nk_avg).
The actud think timeintervas are distributed uniformly throughout thisrange.

If thevdueof Thi nk_di st is" UNI FORM' and thevadueof Thi nk_sd isgreater
than the value of Thi nk_avg, then thethink timeintervasare till distributed
uniformly throughout the range, and any resulting negative think timeintervdsare
treated as having azero value (no delay).

You can initidize thisenvironment variable by clicking the U ser Settings button in
aschedule, or by editing the script. The vduesyou set in the schedule are in effect
until the script changesthat vaue.

5-47

User Emulation

Examples of Think Time Variables

The following examplesfurther describe the use of the think time variables.

sql exec "select * from publishers”;
sql nrecv ALL_ROWS;

set Thi nk_avg = 3000;

set Thi nk_def = "LS";

set Think_di st = "CONSTANT";

sqgl exec "select * from authors”;
sql nrecv ALL_ROWS;

Assumetha thesql exec "sel ect * from publishers" command was
completed a time 12000 and that thesql exec "sel ect * from aut hors"
command wasinvoked at time 13750. T herefore, the second sql exec would wait
gpproximately 1250 milliseconds (that is, 3000 - (13750 - 12000)) before submitting
thesel ect * from aut hor s command.

The following example usesthe macros SECONDS and M NUTES defined in the
VU. h header file. SECONDS convertsits argument from secondsto milliseconds;
M NUTES convertsitsargument from minutesto milliseconds. For details, seeVVU .h
on page 4-2.

#i ncl ude <VU. h>

sql exec "select * from publishers”;
sqgl nrecv ALL_RONS;

set Think_avg = M NUTES(2);

set Think_dist = "UNI FORM';

set Thi nk_sd = SECONDS(30);

sql exec "select * from authors";
sql nrecv ALL_ROWS;

sql exec "select * fromtitles";

sql nrecv ALL_ROWS;

Thethink timeintervalsfor thesel ect * from aut hors andsel ect *
fromtitl es commandsisuniformly distributed in the range [90000,150000]
milliseconds (90000 = 120000 - 30000, 150000 = 120000 + 30000). Sincethe
default valueof " LR" isused for Thi nk_def , thethink timeintervasfor thesetwo

commands begin when the end of the result set isreceived by the previous
sql nrecv command.

Read-Only Variables

5-48

The VU read-only variables provide accessto dataitems collected during the
schedule run. These dataitems provide information about the commands and
regponses submitted and received during the emulation, plusinformation about the
progressof theemulation. In fact, dl of thelogfileinformationin st d/ og and most
of thereault fileinformation in st dr ec ismaintainable directly from theread-only
variables. Therefore, by using the read-only variables, you can customize log or
result filesto perform detailed logging and recording.

Read-Only Variables

All read-only variablesbegin with the underscore character (_). They can beusedin
expressionsin the same way avariable of the same type could be used, except that
they cannot be used asthefirst operand of any assignment operator, nor asthe
operand of the & ++, or - - operators.

The following table showsthe string-vaued read-only veriables:

Variable Contains

_alltext Thesameas_r esponse.

_cmd_id TheID of the most recent emulaion command.
_comand Thetext of the most recent:

» http_request

» sgl prepare,sql exec,sql decl are_cursor,
sql fetch_cursor,sql open_cursor,
sql del et e_cur sor, sql updat e_cursor,
sql cl ose_cursor

» tux_bg,tux_tpabort,tux_tpacall,
t ux_t pbroadcast,tux_t pcal | ,tux_t pconnect,
t ux_t pdequeue, t ux_t penqueue,t ux_t ppost,
t ux_t psubscri be

» sock_send

» Theoperation of themost recenti i op_i nvoke

_col um_headers

Thetwo-line column header if Col um_header s isON;

otherwisg, it contains™ " .

_error_text

The full text of the error from the last emulation command. If
_error is0O,_error_text returns"" . For an SQL database
or TUXEDO error, thetext isprovided by the server.

_host

The host name of the computer on which the script isrunning.

_response

Thetext of up to the vdue of Max_nrecv_saved

» rowsreceived in the mog recent sql nrecv,
sql I ongrecv,orsql fetch_cursor

» bytesreceived in themost recent ht t p_header _recv,
http_recv,http_nrecv

» bytesreceived in themost recent sock_nrecv or
sock_recv

Thisread-only variableisthesameas_al | t ext .

5-49

User Emulation

(Continued)
Variable Contains
_script The name of the VU script currently being executed.

_source_file

Thenameof thefilethat wasthe sourcefor theportion of the VU
script being executed.

_user_group

The name of the user group (from the schedule) of the user
running the script.

_version

The full version string of LoadT est (for example 7.5.0.1045).

The following table showsthe integer-vaued read-only variables:

Variable Contains

_cndent A running count of the number of emulation commandsthe script
has executed.

_cursor_id Thelast cursor declared by sqgl decl ar e_cur sor or opened by
sql open_cursor.

_error The status of the last emulation command. M ost values for

_error aresupplied by the server.

_error_type

If you areemulatingaTU XEDO sessonand _er r or isnonzero,
error_t ype contansone of the following vaues:

(noerror)

VU/TU X U sage Error
TUXEDO System/T Error
TUXEDO FML Error
TUXEDO FML32Error
SUT Error

VU/TUX Internd Error

If you are emulaingan I|OP session and _er r or isnonzero,
error_type contansone of the following vaues:

ga b W N P O]

(o]

(no error)
IIOP_EXCEPTION_SYSTEM
IIOP_EXCEPTION_U SER
IIOP_ERROR

w N B O

_fc_ts

5-50

The “first connect” timestamp fdrt t p_r equest and
sock_connect.

Read-Only Variables

(Continued)
Variable Contains
_lc_ts The “last connect” timestamp fouit t p_r equest and

sock_connect.

_total _nrecv

The total number of bytes received for all HT TP and socket receive
emulation commands issued on a particular connection.

_fr ts

The timestamp of the first received dataqgf nr ecv,
http_nrecv,http_recv,http_header_recv,

sock_nrecv, orsock_recv. Forsqgl exec and

sql prepare,_fr_tsissettothetime the SQL database server
responded to the SQL statement.

_fs_ts

The time the SQL statement was submitted to the server by
sql exec orsql pr epar e, or the time when the first data was
submitted to the server Iy t p_r equest orsock_send.

_lineno

The line number in sour ce_fi | e of the previously executed
emulation command.

lr_ts

The timestamp of the last received datasfql nr ecv,
http_nrecv,http_recv,http_header_recv,

sock_nrecv, orsock_recv. Forsgl exec and

sql prepare, | r_tsissettothetime the SQL database server
responded to the SQL statement.

_Is_ts

The time the SQL statement was submitted to the server by
sql exec orsql prepar e, or the time the last data was
submitted to the server It t p_r equest orsock_send.

_nrecv

The number of rows processed by thedagtnr ecv, or the
number of bytes received by the lastt p_nrecv,http_recv,
sock _nrecv, orsock_recv.

_nusers

The number of total users in the current LoadT est session.

_nxmt

The total number of characters contained in the SQL statements
transmitted to the server in the lastl exec orsql prepare
command, or the number of bytes transmitted by the last

htt p_request orsock_send.

_staterent _id

The value assigned as the prepared statement ID, which is returned
bysqgl prepare and sql al | oc_st at enent .

5-51

User Emulation

(Continued)
Variable Contains

_tux_tpurcode TUXEDO user return code, which mirrorsthe TU XEDO API
globd variablet pur code. It can beset only by thet ux_t pcal I,
tux_tpgetrply,tux_tprecv,andtux_t psend emulaion
commands.

_total _rows Set to the number of rowsprocessed by the SQL statements. If the
SQL statementsdo not affect anyrows, _t ot al _rows issettoO.
If the SQL statementsreturn row results, _total rowsissetto
Obysql exec,thenincremented by sgl nr ecv astherow results
areretrieved.

_uid ThenumericID of the current virtua user.

Initialization of Read-Only Variables
At the beginning of aschedule run, before the execution of the first script:

» Thetimestampvariables, fs ts, Is_ ts, fr_ts, Ir_ts, fc_ts,
and | c_ts,aeinitidized tothe current time.

» _ui disinitidized to the correct user ID. All other integer read-only variables
areinitidized to 0.

» All string read-only variables are initialized to null strings.

After ascript executes, read-only variablesarereinitiaized, except for thetimestamp
variables. By default, timestamp variables carry over their vauesfrom the previous
script. H owever, thetimestamp variables arereinitidized if you open aschedule,
click the Runtime button, and check Initialize timestamps for each script.

Example

Besides supporting customized logging and recording, the read-only variables serve
other purposeswithin ascript. For example, aparticularly useful gpplication of _ui d
isto creste acommon script with commandsand responsestailored to specificvirtua
users. Thefollowing example showsacommon login script, which isidentica for
each user except for SQL database user IDsand passwords:

string nane;

nane = "usr"+itoa(_uid);

con=sql connect ("", name, "pswd" +itoa(_uid),"","");
set Server_connection = con;

sql exec "insert into sales values ("+nanme +", 12, 10.00)";

5-52

Supplying a Script with Meaningful Data

In thissegment, it isassumed that usr xxx and pswdxxx arethe SQL database
server ID and password stringsfor user xxx. For example, thelogin ID and
password of virtua user 12 would be usr 12 and pswd12.

Supplying a Script with Meaningful Data

Datapools

When you play back a script, the script usesthe exact vauestha you recorded.
Assume, for example, that you record ascript that addsarecord with aprimary key
of John Doeto adatabase. When you play back the script, to emulate thousands of
users, you will get errorséafter the first John Doeisadded. To correct thissituation,
you use datapools, which supply unique test vauesto the server.

Although varying test values may work for those transactionsthat depend on the
result of an earlier transaction, other transactions may depend on vauesreceived
from the server. If ascript containsthese transactions, you must manudly edit the
script to replace some of the missing client logic so tha the values correlate
dynamicdly. Thisiscdled dynamic data correlation.

A datapool is aconvenient way to supply variable datavaduesto ascript. Typicaly,
you use adatapool with ascript so that:

» Each virtud user that runsthe script can send redistic vaues, including unique
values, to the server.

» Asdinglevirtud user that performsthe sametransaction multiple timescan send
redistic valuesto the server in each transaction.

If you do not use adatapool with ascript, each virtua user sendsthe samevauesto
the server (which are the vauesyou provided when you recorded the script).

U sudly, you create adatgpool immediately after you record avirtual user script,
using the datapool capability in Rationa Robot.

For moreinformation about creating and managing datapools, see the UdngRational
LoadT et manud.

Dynamic Data Correlation

Dynamic datacorrelaion isatechnique to supply variable datavauesto ascript
when the transactionsin ascript depend on vaues supplied from the server.

For example, when you record an http script, the Web server may send back aunique
string, or session 1D, to your browser. T he next time your browser makesareques,
it must send back the same sesson ID to authenticate itself with the server.

5-53

User Emulation

5-54

The session ID can be stored in three places:

» IntheCookiefield of theHTTP header.

» Inan arbitrarily named field of the H T TP header.

» Inan arbitrary hidden field in an actua HTML page.

Rationd Suite PerformanceStudio findsthe session ID s (and other correlated
variables) and, when you run the schedule, automaticdly generatesthe proper script
commandsto extract their actua vaues.

Beforeyou record ascript, you can choosewhether PerformanceStudio correlatesal
possible vaues (the default), does not correlate any vaues, or correlatesonly a
specific list of variablesthat you provide.

»»»> Part Il

Command Reference

»»» CHAPTER 6

Command Reference

This command reference containsthe following categories of information:

>

Environment control commands — Enable you to control a virtual user’s
environment by changing the VU environment variables. For example, you can
set the level of detail logged or the number of times to try a connection.

Flow control statements — Enable you to add conditional execution structures
and looping structures to your virtual user script. The flow control statements
behave like their C counterparts, with enhancements addatetk and

conti nue.

Library routines — Provide your virtual user script with predefined functions
that handle file 1/O, string manipulation, and conversion of data types and
formats.

Send and receive emulation commands — Emulate client activity and evaluate
the server’s responses. These commands also perform communication and
timing operations. You can log emulation commands in a log file.

Emulation functions — Like emulation commands, emulation functions

emulate client activity and evaluate the server’s responses. However, emulation
functions do not perform communication and timing operations, and they are
not logged in a log file.

Synchronization statement — Causes a script to pause execution until all
participating virtual users rendezvous. Generally, you control synchronization
points through a LoadTest schedule, but you can use theyid poi nt
statement to insert a synchronization point anywhere in a script.

Datapool functions — Retrieve data from a datapool and assign the individual
values to script variables. This enables a script that is executed more than once
to use different values in each execution.

VU toolkit functions — These functions, which come with Rational Suite
PerformanceStudio, enable you to parse data returnexdybyr ecv into
rows and columns.

6-1

abs

abs
Library Routine

Description Returnsthe absolute value of its argument.

Syntax int abs (int)
Syntax Element ’ Description
int ‘ The integer expression for which to return an absolute value.

Comments N one.

Example This example printsthe absolute vaues of the integers 34 and - 10:

int varl = 34,

int var2 = -10;

int result;

result = abs(varl)

printf ("The absolute value of % is %\ n", varl, result);
resul t abs(var2)

printf ("The absolute value of % is %\ n", varl, result);

See Also N one.

1

AppendData

VU Toolkit Function: Data

Description Addsthedatareturned by sqgl nr ecv to the specified dataset.
Syntax #i ncl ude <sne/ data. h>

string func AppendDat a(dat a_nane)
string data_nane;

Syntax Element ‘Description

dat a_nane Thename of the data set to receive the datafrom
sql nrecei ve.

Comments The AppendDat a function addsthe datareturned by the most recent sql nr ecv
command to the dataset specified by the dat a_name argument. Before datacan be
added to aset, the set must be created with acal to SaveDat a. N o check ismade
to ensuretha the datato be added hasthe same structure asthe existing datastored
under that name. If they do not match, avalid return isgeneraed, but subsequent
resultsare undefined.

6-2 VU Language Reference

AppendData

If the specified dataset doesnot exist, the function cdls SaveDat a to create adata
set with the matching characterigtics. In either casg, it returnsthe length of the data
set including the datajust gppended.

Because datais stored using only the results of the most recent sql nrecv
command, any VU environment variablesthat affect the datareturned dso affect this
function. In particular, it assumesthat only one table was fetched. If

Tabl e_boundari es issetto” OFF" and multipletablesareretrieved, theresults
of thisfunction and subsequent datacommands on the stored data have undefined
results.

Example This example first frees any previously saved data from the “parts” text buffer. Aloop
is started to query the database five times. The script then obtains the next record
from afile being shared by all virtual users that execute this script. The record is
parsed by selection of the first field and direct selection of the third field, skipping
the second field. The third field is composed of four or more subfields. Parsing of
the third field continues by selection of the first subfield, which provides a count of
the number of remaining subfields. O ne of the remaining subfields is selected at
random to form a part of the query. After the query is performed, the returned rows
are saved. If this is the first iteration of the loop, the rows are saved to the “parts” text
buffer. Subsequent iterations of the loop append the data from the returned rows to
the “parts” text buffer.

#i ncl ude <VU. h>

#i ncl ude <sne/ data. h>
#i ncl ude <sne/fileio.h>

{

shared int file_tag_l ock, file_tag_offset;
string product_id, part_id, subassm.id;
string tenp_str;
int subassmcnt;
/* This script assunes a connection was nmade to the database. */
/* Record | ayout of "nyfile" */
/* product | part | subassmcnt ; subassm 1; subassm 2 ; subassm 3;
Lox
/* There will be a m ni numof three subassenblies in each record. */
FreeDat a("parts");
/* Performb5 queries for parts. */
for (i=0; i<=4; i++)
{
SHARED READ ("mnyfile", file_tag);

/* Parse the record. */
product _id = NextField();

tenp_str = | ndexedFi el d(3);

/* Note: The entire unparsed field is returned but it is not
used directly. So the returned text string is not used. */

Command Reference 6-3

atoi

See Also

atoi

Library Routine

subassm cnt = atoi (Next SubFi el d());
subassm.id = | ndexSubFi el d(uni form 2, subassmcnt+1));

/* Query for the part. */

sqgl exec ["test_001"]
"sel ect part_nanme from product_db "
"wher e product=""+product _i d+"’
"and subassenbl y='"+subassm.id+"'";

sgl nrecv ["test_002"] ALL_ROW5;

if i =0
SaveDat a("parts");

el se
AppendDat a("parts");

}
FreeAll Data FreeData GetData Cet Datal SaveDat a

Description
Syntax

Comments

Example

6-4

Convertsstringsto integers.

int atoi (str)

Syntax Element ‘Description

str ‘ A gring expression of digitsto convert.

Theat oi routine behaveslikethe C at oi function, returning an integer
corresponding to asequence of ASCII digits (0to 9).

Theat oi routine beginsthe conversion with the first character in st r and
continues converting until it encountersthe end of the gring st r or until anon-
digitisfound. If thefirst character isanegativesign, at oi returnsanegativeinteger.
Leadingtabs, spaces, and zerosin st r areignored. If thefirst character of st r isnot
adigit, space, tab, or negativesign, at oi returnstheinteger valueO. In al other cases
it returnstheinteger corresponding to the digit string.

Theat oi routineisaso useful for stripping leading zeros from astring. Execute
at oi onthesdring, and then runi t oa on the vaue returned.

Thisexample returnsthe integer vaue 9302:
atoi (" 9302");
Thisexample returnsthe integer vaue 32:

atoi ("32.1");

VU Language Reference

bank

Thisexample returnsthe integer vaue 1023:
atoi ("102" + "3yz");

See Also itoa

bank

Library Routine

Description Creates bank expressionsfor assignmentsto the bank environment variables
Escape_seq and Logout _seq.

Syntax bank bank (exprl1, expr2,... exprN

Syntax Element ‘Description

exprl, expr2, exprN A collection of zero or more integer expressions, string
expressions, or both.

Comments The bank routine returns abank expression consisting of the collection of its
arguments. The position of argumentsisimportant only within the sasme expression
type (that is, integer or string). For example, in thefollowingthreecalsto bank, the
first two calsreturn equivdent bank expressons; the third cal doesnot:

bank(intl, int2, strl, str2)
bank(strl, intl, int2, str2)
bank(intl, int2, str2, strl)

A single cdl to bank islimited by the maximum number of arguments per VU
subroutine. U sethe arithmetic operator (+) to create aunion of bank expressions.

Example Thesetwo examplesreturn abank expression containing thethree strings " ab",
"cd",and" ef " (intha specific order) and the single integer 4:

bank("ab", 4, "cd", "ef");
bank("ab") + bank (4) + bank ("cd", "ef");

This example returnsan empty (null) bank expron:
bank();
This example returnsabank expression containing no strings and the integer 149:
bank(atoi ("149"))
See Also N one.

Command Reference 6-5

break

break
Flow Control Statement

Description Stopsexecution of f or , whi | e, and do- whi | e satements.

Syntax break [/evel _constant]
Syntax Element ’ Description
| evel _const ant An optiond integer that specifiesthe number of nested loop
levelsto bresk out of.

Comments The br eak statement enablesyou to control the execution of f or , whi | e, and
do- whi | e loops. Asin C, if the br eak statement isencountered as one of the
saementsin af or , whi | e, or do- whi | e loop, execution of that loop stops
immediately.

U nlike C, however, br eak can be specified with an optiona argument, which
dlowsit to affect agpecified level of nested looping structures. Without this
argument, or if theargument is1, it behaveslike its counterpart in C.

Example In thisexample, if thevaueof | evel _const ant is1, execution of the br eak
satement causesthe do- whi | e loop to end, and the next statement executed is
print "Conpleted do-while." Ifthevdueof| evel constant is2,
execution of both the do- whi | e and whi | e loops stops and the next statement
executed isthepri nt f statement. If thevaueof | evel _const ant is3or
greater, execution of thedo- whi | e, whi | e, and f or loops stopsand the next
statement executed iscnt *= 7.

cnt = inner_cnt = 0;

for (i =0; i < 10; i++) {
cnt ++;
j =0;
while (j < cnt) {
j++;
inner_cnt = j;
do {
i nner _cnt ++;
break | evel _constant;
} while (inner_cnt <= 4);
print "Conpleted do-while";

}
printf ("Now on iteration %", i);
cnt *= 7,

See Also for while do-while continue

6-6 VU Language Reference

cindex

cindex
Library Routine

Description Returnsthe position within st r of the first occurrence of the character char .

Syntax int cindex (str, char)
Syntax Element Description
str The gtring to search.
char The character to search for within st r.

Comments Theci ndex (character index) routinereturnsthe integer zero if no occurrences of
char arefound.

Theci ndex, | ci ndex, si ndex, and | si ndex routinesreturn postiona
information about either thefirst or last occurrence of aspecified character or set of
characterswithin astring expression. The st r span routine returnsdistance
information about the span length of aset of characterswithin astring expression.

Example Thisexample returnsthe integer vaue 1, because a isthefirgt letter in the string
aar dvar k:

ci ndex("aardvark", 'a’);

Thisexample returnsthe integer vaue 0, because the letter b does not occur in the
sringaar dvar k:

ci ndex("aardvark", 'b’);

See Also | ci ndex si ndex | si ndex strspan strstr

base64 decode()

Library Routine

Description Decodes a base 64—-encoded string.

Syntax string base64_decode(str)
Syntax Element ’ Description
str1 ‘Astring expresson contaning the encoded text.

Command Reference 6-7

base64_encode()

Comments Thebase64_decode() function returnsthe clear text string equivaent of the
given base64—encoded string.bHse64_decode() fails, it returns an empty
string," "

Example This example usdsase64_decode() to extract the login ID and password
contained in the given request text.

string auth_str, key, |og_pass, request_text;
int start, end;

key = "Authori zation: Basic";

start = strstr(request_text, key);

start += strlen(key);

auth_str = substr(request_text, start, 10000);
end = strstr(auth_str, "\r\n");

auth_str = substr(auth_str, 1, end — 1);

log_pass= base64_decode(auth_str);

See Also base64_encode()

base64 encode()
Library Routine

Description Encodes astring using base-64 encoding.

Syntax string base64_encode(str)
Syntax Element ‘ Description
str ’Astring expresson containing the clear text.

Comments Thebase64_encode() function returns the base 64—encoded string equivalent of
the given string. Ibase64_encode() fails, it returns an empty string;' .

This function allows users to parameterize http login IDs and passwords.

Example This example usdsase64_encode() to build an authorization string for a login
ID and password and then incorporates the result intd ap_r equest .
string auth_str;
auth_str = base64_encode("nyl og" +":"+ "mypass");
if (auth_str == ")
user_exit(1,"Can’t convert login/password\n");
rational_com_80 = http_request["HTTP_lo~004"]
"rational.com:80", HTTP_CON_DIRECT,
"GET/HTTP/1.0\r\n",

"Authorization:Basic" + auth_str + "\r\n"
"\n\n";

See Also base64_decode()

6-8 VU Language Reference

close

close
Library Routine

Description Writesout buffered datato afile and then closesthefile.

Syntax int close(file_des)
Syntax Element ’ Description
file_des An integer expression specifyingthefiletoclose. fi l e_des

isthefile descriptor returned by open.

Comments Thecl ose routinereturns0when it closesafile successfully; otherwise, aruntime
error isgeneraed. Specifying an arbitrary integer not corresponding to afile
descriptor asfi | e_des causescl ose to generae aruntime error.

Any non-persstent open filesnot closed by cl ose are automaticaly closed when
thevirtua user script completes. All open files, including persistent files, are closed
a theend of arun. Your script cannot close standard input, output, error, record, and
log files, any attempt to close one of them generates aruntime error.

Example Thisexample declaresthe variablet hel i ne asagring. It then doesthe following:
» Opensdata_fil e forreadingand assignsit thefile descriptor fi | el.

» Podtionsthe character pointer so that each user readsadifferent line. File
pointer for user 1is80 (_ui d* 80) bytesfrom the beginning of thefile, file
pointer for user 2 is 160 bytesfrom the beginning of the file, and so on.

» Readsan entireline (anything but anew linefollowed by anew line) and stores
itint hel i ne.
string theline;
filel=open("data_file","r");
fseek(filel, (_uid*80),0);

fscanf(filel, "% ™\ n]\n", &heline);
close(filel);

See Also open

continue
Flow Control Statement

Description Skipsremaining statementsin aloop and continueswith the next iteration of the
loop.

Command Reference 6-9

continue

Syntax

Comments

Example

See Also

6-10

continue [[/evel _constant]

Syntax Element ‘ Description
I evel _const ant An optiond integer that specifieshow many nested loop levels
to break out of.

Thecont i nue statement enablesyou to control the execution of f or ,whi | e, and
do- whi | e loops.

Asin C,ifthecont i nue statementisencounteredin awhi | e or do- whi | e loop,
theremaining statementsin theloop are skipped, and execution continueswith the
evauation step of theloop. If thecont i nue staement isencountered in af or
loop, theremaining statementsin theloop are skipped, and execution continueswith
the increment step.

Unlike C, however, cont i nue is specified with an optiond argument, which
dlowsit to affect aspecified level of nested looping structures. Without this
argument, or if theargument is1, it behaveslike its counterpart in C.

In thisexample, if thevaueof | evel _const ant is1, theconti nue saement
causesthe program execution to skip execution of | oop_cnt = i nner_cnt.
Execution continuesa i nner _cnt <= 4,

If thevdueof | evel _const ant is2,thedo- whi | e loop ends, the pri nt
"Conpl et ed do-whil e" statement isskipped, and execution continues at
j < cnt.

If thevalueof | evel _const ant is3, boththedo- whi | e andwhi | e loopsstop,
thepri nt f statement is skipped, and execution continuesat i ++.

cnt = inner_cnt = 0;
for (i =0; i < 10; i++) {
cnt ++;
i =0;
while (j < cnt) {
|+
inner_cnt = j;
do {
i nner _cnt ++;
continue |evel _constant;
| oop_cnt = inner_cnt;
} while (inner_cnt <= 4);
print "Conpl eted do-while";

}
printf ("Now on iteration 9%d", i);
cnt *= 7,

for whil e do-whil e br eak

VU Language Reference

COOKIE_CACHE

COOKIE_CACHE

Statement

Description Indicatesthe state of the cookie cache at the beginning of asession.
Syntax COOKI E_CACHE
{

name = val ue, domain, path [, secure];

}

Syntax Element Description

name A gring congtant giving the name of the cookie.

val ue A string constant giving the vaue of the cookie.

domai n A gtring constant giving the domain for which the cookieis
vaid.

pat h A gtring congtant giving the path for which the cookieisvaid.

secure An optiond string expression tha, if given, providesthe
secure modifier for the cookie. T he vaue of this parameter
should be" secure".

Comments When you begin recording an http session, LoadT est queriesyour browser for any
cookiestha it has stored. These cookies are loaded into memory during script
playback, thus making playback more accurate with respect to initid cookie values.
This occursautomaticdly, but your VU script will contain a COOKI E_CACHE
section.

This COOKI E_CACHE section reflectsthe state of the cookie cache at the beginning
of arecording session. Automaticaly generated scriptshavethissection a theend of
the script, but it may gppear anywhere outside the main body of the script.

The cookiesin the COOKI E_CACHE section are added to the user’s cookie cache
automaticaly before any commandsin the script are executed. Cookies are created
with expiraion datessufficiently in thefutureto ensurethat they do not expirewhen
you play back the script.

Command Reference 6-11

ctos

Example A cookie with the following data:

Nane: <AA002>
Val ue: <00932743683-101023411/ 933952959>
Pat h: <avenuea. con >
Secure: <0>
Coment : <*>
Expi re: <Monday, 20-Jul-2009 00: 00: 00 GMT>
Create: <Friday, 23-Jul-1999 15:27:31 GMVI>

Appearsin the COOKI E_CACHE as:

COOKI E_CACHE
" AADO2" = "00932743683- 101023411/ 933952959",
"avenuea. cont, "/";
}
See Also expi re_cooki e set _cooki e

ctos
Library Routine

Description Convertscharactersto strings.

Syntax string ctos (char)
Syntax Element ‘ Description
char ’ An integer expression representing the character to convert.

Comments Thect os (character to string) routine returnsastring of length one, containing
the character char if char isnonzero; otherwise, ct os returnsasring of length
ZefO (II n).

The st oc routineisthe converse of ct 0s; st oc convertsstringsto characters.

Example These examplesreturn thestring" a" :

ctos("a");
ct 0s(256 + ‘a’);

Thisexamplereturnsthe string"\ n" :
ct os(\n’);

These examplesreturn the string™ " :

ct os(\0Y);
ct 0os(0);

See Also st oc

6-12 VU Language Reference

datapool_close

datapool close
Datapool Function

Description
Syntax

Comments

Example

See Also

Closes an open datgpool.

i nt datapool cl ose(datapool id)

Syntax Element ’Description

dat apool _i d An integer expression returned by dat apool _open
ecifying the datapool to close.

If dat apool _cl ose completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaue of 0.

Thisexampleopensr epo_pool intherepostory and then closesit:

dp_id = datapool _open ("repo_pool ");
dat apool _cl ose (dp_id);

dat apool _open

DATAPOOL_CONFHG

Statement
Description Controlsdaapool creation and datagpool access.
Syntax DATAPOOL_CONFI G dat apool _nane fl ags

directive, "col_nane" [,"data type" [,"data_value"]];

directi ve, "col _nane" [,"data_type" [,"data_value"l];

}

Syntax Element ‘Description

dat apool _nane ’ A string constant specifying the datapool name.

Command Reference 6-13

DATAPOOL_CONFIG

(Continued)

Syntax Element

Description

flags

6-14

Vauesthat define the datapool access method. Choose a
most one vaue from each of the following four groups:

DP_WRAP or DP_NORAP

Specifieswhat happens after the last row in the datapool row

access order isreached:

» DP_NOWRAP —End access to the datapool. This is the
default.
If you attempt to retrieve a datapool value after the end of
the datapool is reached, a runtime error occurs.

» DP_WRAP — Resume at the beginning of the access order.

To ensure that unique datapool rows are fetched, specify
DP_NOWRAP, and make sure that the datapool has at least as
many rows as the number of users (and user iterations) that
will request rows at runtime.

DP_SHARED or DP_PRI VATE

Specifies whether the datapool cursor is shared by all users
accessing the datapo®@®_SHARED) or is unique to each
user DP_PRI VATE):

» DP_SHARED- With a shared cursor, all users work from
the same access order. For example, if the access order for
a Colors column is Red, Blue, and Green, the first user to
request avalue is assigned Red, the second is assigned Blue,
and the third is assigned Green. This is the default.
Ashared cursor can also be persistent across schedule runs.
U se theDP_PERSI STENT flag to make a shared cursor
persistent.

» DP_PRI VATE — With a private cursor, each user starts at
the top of its access order. Witi*_ RANDOMor
DP_SHUFFLE, the access order is unique for each user and
operates independently of the others. With
DP_SEQUENTI AL, the access order is the same for each
user (ranging from the first row in the file to the last).

VU Language Reference

(Continued)

Syntax Element

DATAPOOL_CONFIG

Description

>

>

DP_SEQUENTIAL,DP_RANDOM, or

DP_SHUFFLE

D etermines datgpool row access order (the sequencein

which daapool rows are accessed):

DP_SEQUENTIAL — Rows are accessed in the order in
which they are physically stored in the datapool file,
beginning with the first row in the file and ending with the
last. This is the default.

DP_RANDOM — Rows are accessed in any order, and any
given row can be accessed multiple times or not at all.
DP_SHUFFLE — Each time LoadTest rearranges, or
“shuffles,” the access order of all datapool rows, a unique
sequence results. Each row is referenced in a shuffled
sequence only once.

DP_PERSI STENT

Specifies that the datapool cursor is persistent across schedule
runs. For example, if both tHaP_PERSI STENT and
DP_SEQUENTI AL flags are set, and datapool row number

100 was the last row accessed in the last schedule run, the first
row accessed in the next schedule run is 101.

A persistent cursor resumes row access based on the last time
the cursor was accessed gerdgent cursor. For example,
suppose a cursor is persistent, and the last row accessed for
that cursor in aschedule run is 100. Then, the same schedule
is run again, but the cursor is now private. Row access ends at
50. If the cursor is set back to persistent the next time the
schedule is run, row access resumes with row 101, not 51.
DP_PERSI STENT is only valid when th®P_SHARED flag

exists and when either tiP_SEQUENTI AL or

DP_SHUFFLE flag exists.

Command Reference

OVERRI DE or EXCLUDE

Specifies whether you want to use an optional global directive
to override the individual directives specifieddnr ect i ve:

>

>

OVERRI DE — TheOVERRI DE directive is applied globally
to all datapool columns. This is the default.

EXCLUDE — TheEXCLUDE directive is applied globally to
all datapool columns.

Thesevauesdlow the script to ignoredat apool _open
anddat apool _f et ch cdls. Asaresult, these vadueslet you
run the script even if the datapool fileismissng.

Seethedi rect i ve argument for moreinformation about
these values.

6-15

DATAPOOL_CONFIG

(Continued)

Syntax Element

Description

directive

A keyword that specifiesthe columnsto add to the datapool as
well asthe source of valuesreturned by the function

dat apool _val ue:

» | NCLUDE

— During datapool creation, creates a datapool column for
col _nane. The column is assigned the same name.

— During schedule runtiméat apool _val ue returns
avalue forcol _nane from the corresponding datapool
column.

» EXCLUDE

— During datapool creation, does not create a datapool
column forcol _nane.
When thef | ags value contain&XCLUDE, no
datapool is created.

— During schedule runtiméat apool _val ue returns
avalue forcol _nane from the recorded value in
dat a_val ue, not from the datapool.

» OVERRI DE
— During datapool creation, creates a datapool column for
col _name. The column is assigned the same name.

— During schedule runtiméat apool _val ue returns
avalue forcol _nane from the recorded value in
dat a_val ue, not from the datapool.
You can override all of the directives in this column by
specifying thef | ags valueOVERRI DE or EXCLUDE. These
global values treat all columns in the configuration section as
eitherOVERRI DE or EXCLUDE.

col _nane

The name of the datapool item. If a datapool column is
created for this item (ifli r ect i ve is eitherl NCLUDE or
OVERRI DE), the datapool column is assigned the same name.

data_type

The data type of the value oat a_val ue column. The
value is alwayst ri ng.

dat a_val ue

Avalue that was provided during recording. The function
dat apool _val ue suppliescol/ _nane with a recorded
value rather than a datapool value if the dirediVERRI DE
or EXCLUDE is specified.

Comments If you select Use datapools on the Generator tab of the Virtua U ser Record
Optionsdiaogbox, Robot automaticaly includesaDATAPOOL _ CONFI Gstatement
in the script that it generates after recording.

6-16

VU Language Reference

DATAPOOL_CONFIG

To edit aDATAPOOL_CONFI G statement through the Robot user interface, click
Edit - Datapool Information.

Think of non-sequentid access order (DP_SHUFFLE and DP_RANDOM as being

like ashuffled deck of cards. With DP_SHUFFLE, each time you pick acard (access

arow), you placethe card at the bottom of the pack. But with DP_RANDOM the

selected card is returned anywhere in the pack — which means that one card might
be selected multiple times before another is selected once.

Also, with DP_SHUFFLE, after each card has been selected once, you either resume
selecting from the top of the same access ordler W\RAP), or no more selections
are made@P_NOARAP).

With DP_RANDOM you never reach the end of the pack (there is no end-of-file
condition, sodDP_\WRAP andDP_NOWRAP are ignored).

In a private cursor witbP_SEQUENTI AL access order, you typically have each user
run multiple instances of the script. If each user runs a single iteration of the script,
each would access the same datapool row (the first row in the datapool).

The following are the possibfd ags combinations that affect datapool access.
These combinations include &ll ags values excep®VERRI DE andEXCL UDE.

» DP_SHARED DP_SHUFFLE DP_WRAP

LoadTest calculates a unique row access order for all users to share. After a user
reaches the last row in the access order, the next user resumes access with the
first row.

» DP_SHARED DP_SHUFFLE DP_WRAP DP_PERSI STENT

Same as above, but the cursor is also persistent across schedule runs. For
example, suppose row number 14 immediately follows row number 128 in the
shuffled access order. If the last row accessed in the current schedule run is row
128, the first row accessed in the next schedule run is 14.

» DP_SHARED DP_SHUFFLE DP_NOWARAP

LoadTest calculates a unique row access order for all users to share. After the last
row in the access order is reached, access to the datapool ends.

» DP_SHARED DP_SHUFFLE DP_NOWRAP DP_PERSI STENT

Same as above, but the cursor is also persistent across schedule runs. For
example, suppose row number 14 immediately follows row number 128 in the
shuffled access order. If the last row accessed in the current schedule run is row
128, the first row accessed in the next schedule run is 14.

Command Reference 6-17

DATAPOOL_CONFIG

6-18

DP_PRI VATE DP_SHUFFLE DP_WRAP

Loadtest cdculatesaunique row accessorder for each user. After auser reaches
thelast row in its access order, it resumes access with the first row.

DP_PRI VATE DP_SHUFFLE DP_NOARAP

LoadT et cdculatesauniquerow accessorder for each user. After auser reaches
thelast row in its access order, accessto the datgpool ends.

DP_SHARED DP_RANDOM

LoadT et cdculatesarandom access order tha dl usersshare. A given row can
gppear in the access order multiple times. Because no end-of-file condition is
possible, DP_WRAP and DP_NOARAP areignored.

DP_PRI VATE DP_RANDOM

LoadT et calculatesauniquerandom accessorder for each user. A given row can
gppear in the access order multiple times. Because no end-of-file condition is
possible, DP_WRAP and DP_NOARAP areignored.

DP_SHARED DP_SEQUENTI AL DP_\\RAP

LoadT et providesdl userswith the same sequentid accessto datapool rows,
sarting with thefirst row in the datgpool file and ending with the last. After a
user reachesthe last row in the datgpool, the next user resumes access with the
first row.

DP_SHARED DP_SEQUENTI AL DP_W\RAP DP_PERS| STENT

Same as above, but the cursor isaso persistent across schedule runs. For
example, if thelast row accessed in the current schedulerun isrow 128, thefirst
row accessed in the next schedule run is129.

DP_SHARED DP_SEQUENTI AL DP_NOARAP

LoadT et providesdl userswith the same sequentid accessto datapool rows,
sarting with thefirst row in the datgpool file and ending with the last. After the
last row in the sequenceis reached, accessto the datgpool ends.

DP_SHARED DP_SEQUENTI AL DP_NOWRAP DP_PERS| STENT

Same as above, but the cursor isaso persistent across schedule runs. For
example, if thelast row accessed in the current schedulerun isrow 128, thefirst
row accessed in the next schedule run is129.

VU Language Reference

DATAPOOL_CONFIG

» DP_PRI VATE DP_SEQUENTI AL DP_WRAP

LoadT et provides each user with individua sequentid accessto datgpool rows,
sarting with thefirst row in the datgpool file and ending with the lagt. After a
user accessesthelast row in the sequence, it resumesaccesswith thefirst row in
the sequence.

» DP_PRI VATE DP_SEQUENTI AL DP_NOWRAP

LoadT et provides each user with individua sequentid accessto datgpool rows,
sarting with thefirst row in the datgpool file and ending with the last. After a
user accesses the last row in the sequence, the user’s access to the datapool ends.

Comments are not allowed in tBATAPOOL_CONFI Gsection of a script.

Commas (,) double-quotes ("), and carriage return and line feed characters cannot
be used in keywords, names, or recorded values iDARAPOOL_CONFI Gsection
of a script.

Example This example showsATAPOOL _CONFI Gstatement for a datapool named
CD_ORDER. The datapool is accessed by an application that lets a customer order
CDs from a music retailer.

This first line of the example contains the datapool name and the flags that define
how the datapool is accessed when the script is played back in LoadTest.

Each subsequent line has four columns of information, separated by commas. These
lines serve as adatapool blueprint, giving Robot the information it needs to create the
datapool. During script playback, these lines also tell Loadtest where to look for
values to assign the variables in the script.

Command Reference 6-19

datapool_fetch

In thisexample, adatgpool column isgenerated for every variable listed except the

last one, x VO10. Also, during script playback, LoadT est assignsadatgpool vaueto

each variable listed except for x V006 and xV010. Thesetwo variables are assigned
thevdues12/ 31/ 99 and Or der | ni ti at ed, respectively, each timethescript is
executed.

DATAPOOL_CONFI G " CD ORDER' DP_NOWRAP DP_SEQUENTI AL DP_SHARED
{

I NCLUDE, "CUSTID', "string", "329781";

I NCLUDE, " PRODUCTS_COWPCSER', "string", "Bach";

I NCLUDE, " PRODUCTS COWPCSER 4", "string", "Schubert";
I NCLUDE, " PRODUCTS _COWMPCSER 3", "string", "Mdzart";

I NCLUDE, " PRODUCTS_COWPCSER 2", "string", "Haydn";

I NCLUDE, " PRODUCTS_COWPCSER 1", "string", "Beethoven";
I NCLUDE, "xV001", "string", "33822";

I NCLUDE, "xV001_2", "string", "87";

I NCLUDE, "xV001_1", "string", "99383";

I NCLUDE, "xV002", "string", "2";

I NCLUDE, "xV003", "string", "10-APR-1998";

I NCLUDE, "xV004", "string", "MasterCard";

I NCLUDE, "xV005", "string", "1234567890000";

OVERRI DE, "xV006", "string", "12/31/99";

I NCLUDE, "xV007", "string", "99383";

I NCLUDE, "xV008", "string", "2";

I NCLUDE, "xV009", "string", "$35.98";

EXCLUDE, "xV010", "string", "Order Initiated";

}
See Also dat apool _open

datapool fetch
Datapool Function

Description Movesthe datapool cursor to the next row.

Syntax i nt dat apool _fetch(datapool _id)
Syntax Element ‘ Description
dat apool _i d An integer expression returned by dat apool _open and

representing an open datapool.

Comments If dat apool _f et ch completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaue of O.

dat apool _f et ch retrieves the next row in the datapool. The “next row” in the
datapool is determined by tlié ags you set in th®ATAPOOL_ CONFI Gsection of
the script or in thelat apool _open command.

6-20 VU Language Reference

Example

See Also

datapool_open

If cursor wrapping is disabled, and the last row of the datapool has been retrieved, a
cdl todat apool _f et ch returnsan error. If dat apool _val ue isthen cdled, a
runtime error occurs. (Cursor wrapping isdisabled when the f | ags argument of
DATAPOOL_CONFI Gor dat apool _open includes DP_NOARAP.)

This example opens adatapool, fetchesthe next record in the datagpool, and then

closesthe datgpool:
dp_id = datapool _open ("repo_pool ");
dat apool _fetch(dp_id);
dat apool _cl ose (dp_id);

dat apool _open dat apool _rew nd dat apool _val ue

datapool _open
Datapool Function

Description

Syntax

Opens the specified datapool and defines the datapool’s row access order.

i nt datapool open (datapool _nanme [, flags])

Syntax Element Description
dat apool _nane The name of the datapool to open.
fl ags Flagsthat define how the datapool isaccessed when the script

isplayed back in aLoadT est schedule.

If you do not specify any vduesfor f | ags, row access order
isdetermined by the f | ags vadue of DATAPOOL_CONFI G
Thisisthe preferred method for providing f / ags vaues.

If you do define f | ags in dat apool _open, it cannot
contradict the values set in DATAPOCOL_CONFI G

For example, if DATAPOOL_ CONFI Gdoes not specify the
datgpool access method (DP_SEQUENTI AL or
DP_RANDOM), you can specify itasDP_SHUFFLE in the
dat apool _open. However, if DATAPOOL_CONFI G
declaresadaapool cursor asDR_PRI VATE, you cannot open
it with DP_SHARED.

For detalls about f | ags vaues, see the description of this
argument in the DATAPOCOL_ CONFI Gstatement.

Command Reference 6-21

datapool_open

Comments dat apool _open returnsadatgpool identifier that other datgpool functionsuseto
perform operationson the datgpool. U pon falure, the function returns 0.

The cursor for adatapool opened for shared access (DP_SHARED) isinitidized by

LoadT est once for an entire schedule run. When initiaizing adatapool cursor

opened for both shared and persigent access(DP_SHARED and DP_PERSI STENT),
LoadTest sets the row pointer to the next row in the row access order — that is, to
the row that immediately follows the last row accessed in the last schedule run where
the cursor was persistent.

The cursor for a datapool opened for private acd@sKRI VATE) is initialized by

each user once for an entire schedule run. When initializing a datapool cursor
opened for private access, LoadTest sets the row-pointer to the first datapool row in
the row access order.

With a private-access datapool, closing the datapoolddthapool _cl ose, and

then reopening the same datapool with another cdhitapool _open with the

same flags and in the same or a subsequent script, resumes access to the datapool as
if it had never been closed.

If multiple users (GU 1 users and/or virtual users) access the same datapool in a
LoadTest schedule, the datapool cursor is managed as follows:

» For shared cursors, the first calldat apool _open initializes the cursor. In
the same schedule run (and, with B PERSI STENT flag, in subsequent
schedule runs), users that subsequentlydedliapool _open to open the
same datapool share the initialized cursor.

» For private cursors, the first call ttat apool _open initializes the user’s
private cursor. In the user’s subsequent caltkdbapool _open in the same
schedule run, the cursor is set to the last row accessed by that user.

Example This example declares a datapool from the customer file. At declaration, access to the
datapool is sequential, aflP_WWRAP or DP_NOARAP is unspecified. The datapool
is opened to reuse records:

DATAPOOL_CONFI G "repo_pool " DP_SHARED DP_SEQUENTI AL
I NCLUDE, "col um1", "string";

I NCLUDE, "col um?2", "string";
I NCLUDE, "col um3", "string";

}
dp_id = datapool _open ("repo_pool", DP_WRAP);

See Also DATAPQOOL_CONFI G dat apool _fetch dat apool _val ue
dat apool _cl ose dat apool _rew nd

6-22 VU Language Reference

datapool_rewind

datapool rewind
Datapool Function

Description
Syntax

Comments

Example

See Also

Resetsthe datapool cursor to the gart of the datapool access order.

i nt datapool rew nd(datapool id)

Syntax Element ’Description

dat apool _i d An integer expression returned by dat apool _open and
representing an open datapool.

This command rewindsthe private cursor for the datgpool referenced by the
datgpool_id. If dat apool _r ewi nd completessuccessfully, it returnsavaue of 1.
Otherwise, it returnsavaue of 0.

The datapool isrewound asfollows:

» For datgpoolsopened DP_SEQUENTI AL, dat apool _r ewi nd resetsthe
cursor to thefirst record in the datgpoal file.

» For datapoolsopened DP_RANDOMor DP_SHUFFLE, dat apool _r ewi nd
regartsthe random number sequence.

» For datgpoolsopened DP_SHARED, dat apool _r ewi nd hasno effect.
At the gtart of aschedule, datgpool cursors aways point to the first row.

If you rewind the datapool during aschedule run, previoudy accessed rows are
fetched again.

This example shows adaapool configured with the defaults, opened for privae
access, and then rewound.
DATAPOOL_CONFI G "r epo_pool " DP_NOARAP DP_SEQUENTI AL
I NCLUDE, "col um1", "string";

I NCLUDE, "col um?2", "string";
I NCLUDE, "col um3", "string";

}

dp_id = datapool _open ("repo_pool", DP_PRIVATE);
dat apool _rew nd (dp_id);

dat apool _fetch

Command Reference 6-23

datapool_value

datapool value
Datapool Function

Description Retrievesthe vaue of the specified datapool column.

Syntax string datapool val ue(datapool id, colum)
Syntax Element Description
dat apool _i d An integer expression returned by dat apool _open and

representing an open datapool.

col unm A gring that specifiesthe name of the datapool column to
retrieve. The name must match adaapool column name
listed in the TestM anager Datapool Specification didog box.
Column names are case senstive.

Comments dat apool _val ue returnsthe string vaue of the specified column.

If cursor wrapping is disabled, and the last row of the datapool has been retrieved, a
cdl todat apool _f et ch returnsan error. If dat apool _val ue isthen cdled, a
runtime error occurs. (Cursor wrapping isdisabled when the f | ags argument of
DATAPOOL_CONFI Gor dat apool _open includes DP_NOARAP.)

You can retrieve avadue even if the datapool column has been excluded from the
datapool (through the EXCLUDE directivein DATAPOOL_CONFI G). Inthiscase, the
vaueretrieved istherecorded value contained inthe dat a_val ue argument of the
DATAPQOOL _CONFI G statement.

Example Thisexampleretrievesthevdue of " col um3" and soresitin dp_val ue:
DATAPOOL_CONFI G "repo_pool " DP_NOARAP DP_SHARED DP_SEQUENTI AL
{
I NCLUDE, "col umil", "string";

I NCLUDE, "col um?2", "string";
I NCLUDE, "col um3", "string";

dp_id = datapool _open ("repo_pool" DP_WRAP);
dat apool _fetch(dp_id);
dp_val ue = datapool _val ue(dp_id, "colum3");

See Also dat apool _fetch

6-24 VU Language Reference

delay

Library Routine

delay

Description
Syntax

Comments

Example

See Also

display

Library Routine

Delays script execution for aspecified time period.

int delay (mtine)

Syntax Element ’Description

mtine An integer expression specifying the delay in milliseconds.
Thisissubject to scding by the environment variable
Del ay_dl y_scal e.

The del ay routinereturns, asan integer, the number of milliseconds actudly
delayed. If m ti neis<0, del ay returns0immediately.

The del ay routine delays script execution for aspecified time period before
continuing. When thistime period has elapsed, execution continueswith the next
statement.

Your system may round the delay to alower resolution, typicaly in therange of 10
to 20 milliseconds.

Thisexample setsarandom delay. It first definesamaximum delay of 10 seconds,
and then delays arandom amount of time from 0 to 10 seconds:

#defi ne MaxDel ay 10

delay_time = rand() % (MaxDel ay + 1);
del ay(del ay_time * 1000);

N one.

Description
Syntax

Provides astring to the monitor for display in message view.
int display (str)

Syntax Element ‘Description

str ‘Astring expression to be displayed by monitor.

Command Reference 6-25

do-while

Comments

Example
See Also

do-while

Thedi spl ay routine dwaysreturns 1 for success. di spl ay accepts any string
expression, but thelength of thestringistruncated to 20 characterswhen monitoring
aschedule.

Thisfunction ismost useful asascript debugging tool because it dlowsashort
message to be easily viewed in red time.

di spl ay ("beginning transaction");

N one.

Flow Control Statement

Description
Syntax

Comments

Example

See Also

6-26

Repeatedly executesaVU statement while acondition istrue.

do
statenent 1;
while (expl);
Syntax Element Description
statenent 1 Oneor more VU language statements enclosed in braces.
expl Theinteger expression to evauate.

Thedo- whi | e loop isexecuted in the following steps:
1. statenent1isexecuted.
2. explisevduated.

3. Ifthevaueof explisnot0, stepsland 2 arerepeated. If the vadue of exp1isO,
execution of thewhi | e loop ends.

This example reads and printsastring from afile whose file descriptor is
fil e_des. Execution continuesuntil theend of thefileisreached.

do

{
if (fscanf(file_des, "9%", &key)==1)
printf("Key is <%>\n" key);

}V\/nile (!feof (file_des))

for whil e

VU Language Reference

else-if

else-if
Flow Control Statement

Description Conditiondly executesaVU statement.

Syntax if (expl)
statenent 1;
else if (exp2)
St at enent 2;

el se if (expn)
St at ement n;,

el se
St at enent x;

Syntax Element Description

expl, exp2, expn An integer expresson whose value determines whether the
corresponding statement is executed. If the vaueisO, the
gaement is not executed.

statenent1, VU language staementstha are executed conditionaly.

st at enent 2,

St at enent n,

St at enent x

Comments Theel se-i f gructurefollowsthese conventions:
» Ifthevaueof explisnot O, only st at enent 1 isexecuted.

» If explisOandthevdueof exp2isnotO,only st at enent 2 isexecuted.

» Ifexpl, exp2 ... expn-1ae0andthevadueof expnisnotO, only
St at enent n isexecuted.
» |Ifdlof expl, exp2 ... expnaeO,thenonlystatenent x isexecuted.
Thefind el se isomitted if no action isrequired when dl of exp1, exp2
expn aeO.

Aswiththei f - el se structure, if astaiement isreplaced by multiple VU language
statements, al statements are enclosed in braces.

The indentation isoptiond but recommended.

Command Reference 6-27

emulate

Example In thisexample, one of three optionsare possible. If x islessthent ar get, the
string “too small” is printed. Ik is greater thah ar get , the string “too large” is
printed; otherwise, the string “just right!” is printed.

if (x < target)
printf("too small\n");

else if (x > target)
printf("too large\n");

el se
printf("just right!\n");

See Also if-else

emulate
Send Emulation Command

Description Provides generic emulation command services to support a proprietary protocol.

Syntax int enulate [cnd _id] condition [, |og string
[, fail_string]]

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

condition An integer expression. If thevaueof condi ti onis> 0,the
emul at e command passes, otherwisg, it fals. enul at e
returnsthe vaueof condi t i on.

Typicdly, condi ti on isaVU function or an externa C
function.

condi t i onisexecuted beforeevauationof / og_string
and fail_string.Therefore, either string could contan
variables set during execution of condi t i on.

log_string An optiond string expression used when logging a passed
enul at e command, or afaled, emul at e command if
fail _stringisnotprovided. If | og_stri ngisnot
specified, no log entry isgenerated for ermul at e.

Either/ og_stringorfail_stringisevduaed, but not
both.

fail_string An optiond string expression used when logging afailed
emul at e command. If fai | _st ri ngisnot specified,

I og_stringisused for both passand fal cases.

Either / og_stringorfail_stringisevduated, but not
both.

6-28 VU Language Reference

emulate

Comments Theenul at e command returnsthe vaueof condi ti on.

The enul at e command provides generic emulation command servicesto VU

or externd C function cdls. Thisextends VU emulation support to proprietary
protocolsor interfaces. You can usethe emnul at e command asawrgpper for
externa C function cdls, and thus obtain the full set of services associated with the
standard emulation commands.

NOTE: VU supports the SAP protocol by using external C functions and the
enmul at e command. For information about the SAP protocol, see Appendix B.

Theexternd C dynamic-link library (shared library on UN [X Agents) containsthe
C functionsto perform the desired client-side API functionsthat accessthe server.
These C functionsare wrapped in the enul at e command, so that the resultsand
timing of the API functions are paced, recorded, logged, and made available for
andysisby LoadT est reports.

The C code generaly performsresponse verification and error detection, and passes
an integer return codeto errul at e.

Theenul at e command isaffected by thefollowing VU environment variables. the
think timevariables, Log_| evel ,Record_| evel , Suspend_check,
Ti meout _val , Ti meout _scal e,and Ti meout _act.

For moreinformation, see Aaessing External C D ata and Fundionson page 4-9.

Example In thissmple example, api _x iscaled with two string constants and an integer
congtant. N o loggingisperformed, but if api _x returnsavdue> 0, thecommand
is recorded as passed in the virtual user’s record file; otherwise, it is recorded as
failed. The label associated with the commanakisi on 1. The response time is
the time from callin@pi _x until it returns.

ermul ate["action 1"] api _x("John Doe", "$100.43", 4);

In this more complete example, an API has been linked into a dynamic-link library.
The virtual user script calls the APl with amul at e wrapper.

The APl is a simple interface to a school database. The API consists of:

» An open function, which takes a student’s name and returns a handle to that
student’s record.

» Acnd function, which performs operations on the records.
» Acl ose function, which releases the record handle.

The actual C code for the shared library includes a wrapper C function for each API
call; each call has the prefiy. The dynamic-link library creates the log message for
each API call.

Command Reference 6-29

emulate

The header file, my API . h, isincluded in thevirtud user script. T he header file
definesthree congtantsthat are used by the API, and makesthe C string
api _| ognsg, and functionsnyapi _open, nmyapi _cnd, and myapi _cl ose
availableto the virtua user script:

#define REG STER CLASS 1

#define ASSI GN_ GRADE 2
#define REVI SE_GRADE 3

external _c string api_| ognsg;
external _c func nyapi _open(nane, student_handl e)

string nane;
reference int student_handl e;

{}
external _C func myapi _cnd(student _handl e, command, sval, ival)
i nt student_handl e;
int command;
string sval;
int val;
{}

external _C func myapi _cl ose(student_handl e)
i nt student_handl e;
{}

Thevirtua user script hasan enul at e command for each API cdl, and references
the shared externd C stringapi _| ognsg to log theresults. T he script opensthe

record for Joe Smith, returnsthe handle needed by subsequent cdls (handl e_1),

assignstwo grades, and closesthe record. A think time has been added to smulate

user processing:

#i ncl ude <VU. h>
#i ncl ude <nyAPI . h>

{

set Thi nk_avg = 3000;

enmul ate ["step001"] mnyapi _open("Joe Smith", &handle_1), api_| ognsg;
ermul ate ["step002"] myapi _cnd(handl e_1, ASSI GN_GRADE, "Bi ol ogy",
94), api _| ognsg;

enmul ate ["step003"] mnyapi _cnd(handl e_1, ASSI GN_GRADE, "Chenistry",
82), api_l ognsg;

fm.ll ate ["step004"] nyapi _close(handl e_1), api_I|ognsg;

See Also testcase

6-30 VU Language Reference

eval

eval

Environment Control Command

Description
Syntax

Comments

Example

See Also

Returns the value and data type at the top of a VU environment variable’s stack.

type eval env_var;

Syntax Element Description

type i nt,string,or bank depending on type of env_var.

env_var Any VU environment variable defined as ainteger, string, or
bank.

Theeval command returns an expression having the same typevas/ar
(integer, string, or bank) and the current valuemf_var. The value oénv_var
is not altered.

In this example, values fdr neout _val andLog | evel are set. The integer
value 2000 is assigned to the variabld hen, the integer value 1 is assigned to the
variablee, because the expressit@val Log | evel == "ALL")istrue. The
value ofTi neout _val andLog | evel remain unchanged.

set [Tinmeout_val = 2000, Log_level ="ALL"];

t = eval Timeout_val;
e=(eval Log_|level =="ALL");

N one.

expire_cookie
Emulation Function

Description
Syntax

Expires a cookie in the cookie cache.

expi re_cooki e(name, donmi n, path)

Syntax Element Description

name A string expression that specifies the name of the cookie.

domai n A gtring expression tha specifiesthe domain for which this
cookieisvdid.

path A gtring expression tha specifies the path for which this
cookieisvaid.

Command Reference 6-31

feof

Comments Theexpi re_cooki e function causesthe named cookie to no longer be vdid for
the given domain and path. This effectively removesthe cookie from the cache.

Example This example expiresthe cookie named AA002 for doman avenuea. comand
pah /.
expire_cooki e("AA002", ".avenuea.com', "/");
See Also COOKI E_CACHE set _cooki e
feof

Library Routine

Description Determinesif the end of afile was encountered.

Syntax int feof (file_des)
Syntax Element ‘ Description
file_des The integer file descriptor of the file to check. Thefile

descriptor wasreturned from open.

Comments Thef eof routine returnsanonzero valueif the end of file has previoudy been
detected reading the named input file; otherwise, f eof returnszero.

Therelated routinesf seek repodstionsthefile pointer andf t el | returns
information on the file pointer.

Example In thisexample, if the filewith the descriptor i nf i | e_des containsthe characters
abcde, then the charactersabcde arewritten to the file whose descriptor is
out fil e_des ten times. At the end of the example, the variables copi es and
t ot al havevauesof 10 and 50, respectively:
fseek(file_des, 0, 2);
for (copies = total = 0; copies < 10; copies++)
while (1)
{

c = fgetc(infile_des);
if (feof (infile_des))

{
total += ftell(infile_des);
fseek(infile_des, 0, 0); /* rewind */
br eak;

el se
fputc(c, outfile_des);

}
}
See Also f seek ftell

6-32 VU Language Reference

fflush

fflush

Library Routine

Description Causesany buffered datafor afileto be written to that file.

Syntax int fflush (file_des)
Syntax Element ’ Description
file_des The integer file descriptor, obtained from the open, thefile
to flush.

Comments Thef f I ush routinereturns zero for success, or EOF (asdefined in the standard
VU header file) upon encountering an error. All VU filesexcept standard error are
buffered for efficiency.

f f 1 ush temporearily overrides the buffering mechanism by writing the buffered
datato thenamed file. Thisisparticularly useful for ensuring timely output of status
messages, as shown in the following example.

Example Thisexamplewritesthe rings"” Pr ocessi ng Phase 1", "2 ", "3 ",
"4 ", "5 ", and" DONE\ n" to be successively written to the standard output

fileimmediaely aseach respective phaseisprocessed, instead of waiting until thefile
isclosed or the current output buffer isfilled.
for (phase_no = 1; phase_no <= 5; phase_no++)
if (phase_no == 1)
printf("Processing Phase ");
printf("% ", phase_no);
fflush(stdout);
do_phase(phase_no);

}
printf("DONE\Nn");
fflush(stdout);

See Also N one.

Command Reference 6-33

fgetc

fgetc

Library Routine

Description
Syntax

Comments

Example

See Also

for

Provides unformatted character input capability.
int fgetc (file_des)

Syntax Element ’ Description
file_des Theinteger filedescriptor, obtained from open, that refersto
thefileto read.

Thef get c routinereturnsthe next character, asan integer, from the named file.
Thisprovidesashortened, more efficient dternativeto thef scanf routinefor the
case where only asingle character needsinput. f get ¢ returnsEOF (asdefined in
the standard VU header file) a end-of-file or upon an error.

In thisexample, assume the file with the descriptor i nf i | e_des contansthe
characters ABZ14. The characters ABZ are written to the file whose descriptor is
out fil e_des, and thecharacter 1isreturned to theinput buffer associated with
infile_des.

#i ncl ude <VU. h>

while ((c = fgetc(infile_des)) != EOF)

if (€ >='A’ && ¢ <='Z))

fputc(c, outfile_des);
else

ungetc(c, infile_des);
break;

}

unget ¢

Flow Control Statement

Description

6-34

Repeatedly executesaVU statement.

VU Language Reference

fputc, fputs

Syntax for (expl, exp2; exp3)
statenent 1;

Syntax Element Description

expl, exp3 A VU language expression.

exp2 An integer expression to evauate.

statenent 1 A VU language statement. You can include multiple VU
language satementsif al of the statementsare enclosed in
braces and terminaed by semicolons.

Comments The execution of thef or loop occursin the following steps:
1. explisevauated.

2. expZ2isevauated andif itsvaueisnot O, st at enent 1 isexecuted. If itsvaueis
0, execution of thef or loop ends.

3. If theexecution of thef or loop hasnot ended, exp3 isevaduated.
4. Steps2and 3 are repeated until execution of thef or loop ends.

Example Thisexample printsout aline 10 times:

for (i=0; i<10; i++)
printf ("this line is displayed 10 tinmes\n");

See Also while do-while

fputc, fputs

Library Routine

Description Writesunformatted output for charactersor strings.

Syntax int fputc (out_char, file_des)
int fputs (out_str, file_des)

Syntax Element Description

out _char An integer expression (interpreted as acharacter) that
ecifiesthe character to write.

out_str A gtring expression tha specifiesthe string to write.

file_des Theinteger filedescriptor, obtained from open, of thefileto
receive the output.

Command Reference 6-35

FreeAllData

Comments Thef put c and f put s routines provide ashortened, more efficient dternative to
thef pri nt f routine when only asingle character or string needsto be output.
Example In thisexample, assumethat the value of char 1 isM Therefore, the character Mis
written to the filewhose descriptor isout fi | e_des.
fputc(charl, outfile_des);
In thisexample, assume that the value of the string expression st r 1 isxyz.
Therefore, the charactersxyz are written to the file whose descriptor is
outfile_des.
fputs(strl, outfile_des);
See Also fprintf
FreeAllData
VU Toolkit Function: Data
Description Freesal datasets saved with SaveDat a and AppendDat a.
Syntax #i ncl ude <sne/ data. h>
proc FreeAll Data()
Comments TheFr eeAl | Dat a procedure frees dl data sets saved using SaveDat a and
AppendDat a.
Example Thisexample savesthedatain thet np_r esul t s buffer, storesthe second field in
accessprofile_id,thenfreesdl thedata
#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>
string accessprofile_id;
sqgl exec ["test_gr003"]
"sel ect PASSWORD, ACCESSPROFI LEID, | NACTI VE,
"PW_UPDATE_DT from USERACCOUNT where NAME = 'davidj™;
sqlnrecv ["test_gr004"] ALL_ROWS;
SaveData ("tmp_results");
accessprofile_id = GetDatal("tmp_results", 2);
FreeAl | Dat a ();
sqlexec [“test_gr005"]
"select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
"ACCESSPROFILE where ACCESSPROFILEID =™
+ accessprofile_id;
See Also AppendDat a FreeData CetData Cet Datal SaveData
6-36 VU Language Reference

FreeData

FreeData

VU Toolkit Function: Data

Description
Syntax

Comments

Example

See Also

Frees specified data sets saved with SaveDat a and AppendDat a.
#i ncl ude <sne/ data. h>

proc FreeDat a(data_nane)
string data_nane;

Syntax Element ‘Description

dat a_nane ’The name of the data set to free.

The Fr eeDat a function freesthe dataset associated with dat a_nane, wherethe
named data set was created using the SaveDat a or AppendDat a functions.

Thisexample savesthedatain thet np_r esul t s buffer, storesthe second field in
accessprofile_id,thenfreestnp results.

#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>

string accessprofile_id;

sqgl exec ["test_gr003"]
"sel ect PASSWORD, ACCESSPROFI LEI D, | NACTI VE,
"PW_UPDATE_DT from USERACCOUNT where NAME = 'davidj™;
sqlnrecv ["test_gr004"] ALL_ROWS;

SaveData ("tmp_results");
accessprofile_id = GetDatal("tmp_results", 2);
Fr eeDat a ("tmp_results");

sglexec [“test_gr005"]
"select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
"ACCESSPROFILE where ACCESSPROFILEID ="
+ accessprofile_id;

AppendDat a FreeAl | Data GCetData Get Datal SaveDat a

Command Reference 6-37

fseek

fseek
Library Routine

Description Repositionsthefile pointer.

Syntax int fseek (file_des, offset, position)

Syntax Element Description

file_des The integer file descriptor, obtained from open, of thefile
whose pointer you want to repostion.

of fset An integer expresson that indicatesthe number of bytestha
thefile pointer isto move. The offset can be anegative
number.

posi tion An integer expression that indicateswhether the offsetisfrom

the beginning of thefile (if posi t i on equas0), from the
current postion (if posi t i on equas1), or from the end of
thefile (if posi ti on equas?2).

Comments Thef seek routinereturnszero for successful seeks, and nonzero for unsuccessful
seeks.

Therelated routinesf eof andft el | returninformation about thefile pointer.

Example In thisexample, f seek repositionsthefile pointer of the file whose descriptor is
fil e_des tothebeginning of thefile:

fseek(file_des, 0, 0);

In thisexample, if the current file pointer offset is45, f seek repositionsthefile
pointer of the filewhose descriptor isf i | e_des to an offset of 35:

fseek(file_des, -10, 1);

In thisexample, f seek repositionsthefile pointer of the file whose descriptor is
fil e_des totheend of thefile:

fseek(file_des, 0, 2);
See Also feof ftell

6-38 VU Language Reference

ftell

Library Routine

ftell

Description
Syntax

Comments

Example

See Also

Returns the file pointer’s offset in the specified file.

int ftell (file_des)

Syntax Element ’Description

file_des The integer file descriptor, obtained from open, of thefile
whose pointer you want to obtain.

Theftell routine returns the current byte’s offset on the named file. This offset
is relative to the beginning of the file.

The related routinelsseek repositions the file pointer arfceof returns
information on the file pointer.

In this example, if the file with the descriptonf i | e_des contains the characters
abcde, then the characteabcde are written to the file whose descriptor is

out fil e_des ten times. At the end of the example, the variabtgs es and

t ot al have values of 10 and 50, respectively:

fseek(file_des, 0, 2);

for (copies = total = 0; copies < 10; copies++)
while (1)
{
c = fgetc(infile_des)
if (feof(infile_des))
{

total += ftell(infile_des);
fseek(infile_des, 0, 0); /* rewind */
br eak;

el se
fputc(c, outfile_des);

}

f eof f seek

Command Reference 6-39

GetData

GetData
VU Toolkit Function: Data

Description Retrievesaspecific row from the dataset created with SaveDat a or AppendDat a.

Syntax #i ncl ude <sne/ data. h>
string func GetData(data_name, row, columm)
string data_nane;

int row

int col unm
Syntax Element Description
dat a_nane Thename of the data set to retrieve.
row Therow of dat a_nane to retrieve.
col urm The column of dat a_nane to retrieve.

Comments The Get Dat a function retrieves adatavaue from aspecific row and column of a
dataset created with the SaveDat a or AppendDat a functions. Regardless of the
database definition of the column, thereturned vaueisastring. Returned vduesare
of variable length, with any trailing white space trimmed from the end of the vaue.

Anull gringisreturned if no datais saved under thisname, or if therow or column
vaues exceed the limits of the stored data

Example Thisexample savesthe datain thet np_r esul t s buffer, and getsthe second field
inthefirstrowof tnp_resul ts.

#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>

string accessprofile_id;

sqgl exec ["test_gr003"]
"sel ect PASSWORD, ACCESSPROFI LEI D, | NACTI VE,
"PW_UPDATE_DT from USERACCOUNT where NAME = 'davidj™;
sqlnrecv ["test_gr004"] ALL_ROWS;

SaveData ("tmp_results");
accessprofile_id - Get Dat a("tmp_results”, 1, 2);
FreeData ("tmp_results");

sglexec [“test_gr005"]
"select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "

"ACCESSPROFILE where ACCESSPROFILEID ="
+ accessprofile_id;

See Also AppendDat a FreeAl | Data FreeData GCetDatal SaveData

6-40 VU Language Reference

GetDatal

GetDatal

VU Toolkit Function: Data

Description

Syntax

Comments

Example

See Also

Retrievesavduein the first row of adataset created with SaveDat a or
AppendDat a.

#i ncl ude <sne/data. h>
string func GetDatal(data nane, col umm)
string data_nang;

int col unm

Syntax Element Description

dat a_nane The name of the dataset to retrieve.

col unm The column of dat a_nane to retrieve.

The Get Dat al function retrieves adatavaue from aspecific column of the first
row of adataset created with the SaveDat a or AppendDat a functions. To
retrieve datafrom adifferent row, use the Get Dat a function. Regardless of the
database definition of the column, thereturned vaueisastring. Returned vduesare
of variable length, with any trailing white space trimmed from the end of the value.

Anull gringisreturned if no datais saved under thisname, or if therow or column
vaues exceed the limits of the stored data

Thisexample savesthe datain thet np_r esul t s buffer, and getsthe second field
inthefirstrowof tnp_results.

#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>

string accessprofile_id;

sql exec ["test_gr003"]
"sel ect PASSWORD, ACCESSPROFI LEI D, | NACTI VE,
"PW_UPDATE_DT from USERACCOUNT where NAME = "david;™;
sqlnrecv ["test_gr004"] ALL_ROWS;

SaveData ("tmp_results");
accessprofile_id - Get Dat al("tmp_results", 2);
FreeData ("tmp_results");

sglexec [“test_gr005"]
"select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
"ACCESSPROFILE where ACCESSPROFILEID ="
+ accessprofile_id;

AppendDat a FreeData FreeAllData GCetData SaveDat a

Command Reference 6-41

getenv

getenv
Library Routine

Description Obtansthe vaduesof WindowsN T or U N IX environment variablesfrom within a
virtud user script.

Syntax string getenv (nane)
Syntax Element ’ Description
name A string expression specifying the environment variable

whose vdueisreturned asastring.

Comments The get env routine behaveslike the C routine of the same name.

If astring of theform nane=val ue is not found in the virtual user’s environment
list or if val ue is null (zero-length)get env returns a string of zero length.

Example This example printsarandom number in therangd 1 o t , where i mi t isthe
value (after conversion to an integer) of tHeM T environment variable if defined;
otherwise] i m t equals 100:

string val ue;

if ((value = getenv("LIMT")) == "")
/* set default value if LIMT is undefined */
limt = 100;

el se
limt = atoi(value);

print unifornm(1, limt);

See Also put env

hex2mixedstring
Library Routine

Description Returns a mixed ASCIl/hexadecimal version of a VU string.

Syntax string hex2m xedstring(str)
Syntax Element ‘Description
str ’VU string expresson

6-42 VU Language Reference

Comments

Example

See Also

http_disconnect

The returned string consists of printable ASCII characters mixed with hexadecimd
characterswhere astring of consecutive hexadecima charactersare surrounded by
grave accent (') characters. Stringsused (and returned) by VU with socket and
HTTP emulation commandsare in mixed ASCII and hexadecima format.

#i ncl ude <VU. h>
string func buil d_new_request(s)

string s;

/* code to create a request out of an earlier response */

string hexstr;
string mxstr;
cal vin_700 = http_request ["cal 001"] "calvin:700", "", 2,

"GET / HTTP/1.0\r\n"

"Connection: Keep-Alive\r\n"

"User-Agent: Mozilla/4.03 [en] (X11; I; SunOS 5.5.1 sund4u)\r\n"
"Pragma: no-cache\r\n"

"Host: cal vin:700\r\n"

"Accept: inmmge/gif, imagel/x-xbitmap, inage/jpeg, inagel/pjpey,

[\r\n"

"Accept - Language: en\r\n"
"Accept - Charset: iso0-8859-1,*, utf-8\r\n"
"\r\n";

set Server_connection = cal vin_700;
http_header_recv ["cal 002"] 200;/* OK */
http_nrecv ["cal 003"] 100 %6 ; /* 1316 bytes */

hexstr = m xed2hexstring(_response);

hexstr = build_new_request (hexstr);

m xstr = hex2m xedstring(hexstr);

cal vin_700 = http_request ["cal 011"] "cal vin: 700", "", 2, m xstr;

set Server_connection = cal vin_700;
http_header_recv ["cal 012"] 200;/* OK */
http_nrecv ["cal 013"] 100 %% ;

htt p_di sconnect (cal vi n_700) ;

m xed2hexstring http_request http_nrecv http_recv

http _disconnect

Emulation Function

Description

Syntax

Command Reference

Closesthe connection to a\Web server.

int http_disconnect (connection_id)

Syntax Element ‘Description

connection_id An integer expression specifying aconnection number

returned by htt p_r equest , and not previousy
disconnected with ht t p_di sconnect ().

6-43

http_find_values

Comments Thehtt p_di sconnect function returns1 for successand O for failure. If
connection_idisinvdid, htt p_di sconnect generatesafaa runtime error.

Example This example connectsto aWeb server, setsthe server connection, and then closes

the connection:
#i ncl ude <VU. h>
{
CAPRI CORN_VEB_80

http_request " CAPRI CORN \\EB: 80",

HTTP_CONN_DI RECT,
"GET / HTTP/1.0\r\n"

"Accept:

"rd,

"e/ x- xbi t map,

appl i cation/vnd. ms-excel , application/nswo"
application/vnd. ms- power poi nt, inage/gif, inmg"
i mage/ j peg, imagel/pjpeg, */*\r\n"

"Accept - Language: en\r\n"

" UA- pi xel s:
"UA-col or:

1152x864\r\ n"
color8\r\n"

"UA-OS: Wndows NT\r\n"
"UA- CPU: x86\r\n"

"User - Agent :
"Host :
" Connecti on:

Mozilla/2.0 (conpatible; MSIE 3.01; Wndows NT)\r\n"
capricorn-web\r\n"
Keep-Alive\r\n\r\n";

set Server_connection = CAPRI CORN_WEB 80;
htt p_header _recv 200;/* OK */
/* nore data (4853) than expected >> 100 % */

http_nrecv 100 %% ;

/* 4853/ 4051 bytes */

ht t p_di sconnect (CAPRI CORN_WEB_80) ;
}

See Also N one.

http_find_values
Emulation Function

Description Searchesfor the specified vaues on the current connection.

Syntax string[] http_find_val ues(nane, type, tag

[, nane, type,

Syntax Element

tag ... 1)

Description

nane

A gring expression that specifiesthe name of the
desired value.

type

tag

6-44

An integer expression that specifiesthetype of thevaue. The
vaue of type should be one of: HTTP_FORM _DATA,
HTTP_HREF_DATA, or HTTP_COCOKI E_DATA. These
vauesare defined in VU .h

An integer expresson that specifieswhich instance of
thevalueisrequested.

VU Language Reference

Comments

Example

http_find_values

Thehtt p_find_val ues() function may occur in aVU script if you have told
Robot to correlate al or some of your http data You typicdly will not need to
program thisfunction yourself.

Thisfunction returnsan array of strings containing the values specified. Each set of
name, type and tag specifiesasingle requested vaue. U p to 21 values may be
requestedinacdltohtt p_fi nd_val ues(). If any of therequested values cannot

be found, the corresponding element of theresultsarray is" " .

Thehtt p_fi nd_val ues() function can be used to extract FORM HREF, or Set -
Cooki e vaues.

FORMdata gppearsin the response as:
<I NPUT TYPE=xxx [xxx] NAME=yyy [xxx]VALUE=zzz[XXXXXXXX]>

Given the above datain theresponse, htt p_fi nd_val ues("yyy",
HTTP_FORM DATA, 1) returns{"zzz"}.

HREF data gppearsin the response as.

Given the above datain theresponse, htt p_fi nd_val ues("yyy",
HTTP_HREF_DATA, 1, "ylyl", HTTP_HREF_DATA, 1) returns
{"zzz","z1z1"}.

Set - Cooki e dataappearsin theresponse as.
Set - Cooki e: yyy=zzz[; ylyl=z1z1]\r\n

Given the above datain theresponse, ht t p_fi nd_val ues("yyy",
HTTP_COCKI E_DATA, 1, "ylyl", HTTP_COOKI E_DATA, 1) returns
“zzz","z1z1"}.

All available datafor the current connection (specified by the

Server _connecti on VU environment variable) is searched regardless of
whether or not that data has been processed by an http receive command.

Thisexample findsthe first occurrence of the FORMdataidentified by f oo and the
second occurrence of the HREF dataidentified by homepage. Assuming that the
response datafor the current connection contains

<I NPUT TYPE=xxx NAME=foo VALUE=John>

A HREF=\ " xxxx?nnnnn=&honepage=www. nyhone2. com " >

Command Reference 6-45

http_header_info

Thefollowing call returnsan array of stringsequd to { " John",
"www. myhone2. coni'} and assignsit to thearray SgenRes_001.
string SgenRes_001[];
SgenRes_001 = http_find_val ues("foo", HTTP_FORM DATA, 1,
"honmepage", HITP_HREF_DATA, 2);

See Also htt p_request http_recv

http_header_info

Emulation Function

Description Getsindividuad header vauesfrom header metadata

Syntax string http_header _info "header_var_nane"
Syntax Element ‘ Description
header _var_nane A gringtha isthenameof aheader metadatafield. T hisstring

is case-insensitive.

Comments Thehtt p_header _i nf o function scansthe headersreceived by
htt p_header _recv tolocate linesbeginning with the requested atribute, and
returnsastring containing the value of thisattribute. It returnsan empty string (" ")
on error.

If an attributeislisted more than once, only one vaueisreturned.

Example Assumethat ht t p_header _r ecv readsthefollowing header information:

HTTP/ 1.1 200 OK

Date: Mon, 24 Nov 1997 22:57:44 GMI

Server: Apache/1.2.4

Last-Mdified: Fri, 21 Nov 1997 20:45:11 GVI
ETag: "7a398-cf1-3475f2d7"

Content - Lengt h: 3313

Accept - Ranges: bytes

Keep- Al'i ve: tinmeout=15, max=100

Connection: Keep-Alive

Content - Type: text/htm

Thefollowing cal returns3313:

http_header _info ("Content-Length")

See Also htt p_header _recv

6-46 VU Language Reference

http_header_recv

http_header_recv
Receive Emulation Command

Description Receives header metadatafrom aWeb server.

Syntax int http_header _recv [cnd_id] status_code
Syntax Element ’ Description
cml_id The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

Command Reference

6-47

http_header_recv

(Continued)
Syntax Element Description
stat us_code The expected HT TP status code for thisresponse. You can

use either the code number or the equivaent text string. The
gatus codes are defined asfollows:

100 " Conti nue”

101 "Switching Protocol s"

200 "K"

201 "Created

202 " Accept ed"

203 "Non- Aut horitative Information”
204 "No Content"

205 "Reset Content”

206 "Partial Content"

300 "Mul ti pl e Choices"

301 "Moved Pernmanent|y"

302 "Mved Tenporarily"

303 "See O her"

304 "Not Modified"

305 "Use Proxy"

307 "Tenporary Redirect”

400 "Bad Request™

401 "Unaut hori zed"

402 "Paynent Required"”

403 " For bi dden”

404 "Not Found"

405 "Met hod Not Al | owed"

406 "Not Acceptabl e”

407 "Proxy Authentication Required"
408 "Request Tine-out"

409 "Conflict"

410 " Gone"

411 "Length Required"

412 "Precondition Fail ed"

413 "Request Entity Too Large"
414 "Request-URl Too Large"
415 "Unsupported Media Type"
500 "Internal Server Error"
501 "Not | npl ement ed"

502 "Bad Gat eway"

503 "Service Unavail abl e"

504 "Gateway Ti me-out"

505 "HTTP Versi on not supported"

6-48 VU Language Reference

Comments

Example

http_header_recv

If htt p_header _r ecv completessuccessfully, it returnsavadue of 1. Otherwise,
it returnsavaue of 0.

Thiscommand occursin responseto an ht t p_r equest command.

Themetadataissent from the Web server when aclient requestsapage. For example,
metadatamight contain protocol; type; U RL address; size of page; date created, date
last modified, and date last updated; aswell asan indication of the security status of
your connection.

The metadatareceived isstored in theread-only variable _r esponse and is
overwritten when you issue other receive emulation commands.

Thehtt p_header _r ecv emulation command is affected by the following VU
environment variables Ht t p_cont r ol , Ti meout _act, Ti neout _val ,
Ti meout _scal e,Log_| evel ,Record_I evel ,and Server _connecti on.

TheHtt p_control environment variable can affect how the
htt p_header _recv emulation command interpretsthe received status. For
moreinformation, see Http_ocontrd on page 5-29.

This example connectsto aWeb server, setsthe server connection, receivesthe
header information, and then receives acomplete page of data (100 percent of the
page, asindicated by 100 %%).

#i ncl ude <VU. h>

{

CAPRI CORN_WEB 80 = http_request "CAPRI CORN-VEB: 80",
HTTP_CONN_DI RECT,
"GET / HTTP/1.0\r\n"
"Accept: application/vnd. ns-excel, application/ mw"
"rd, application/vnd. ns- power point, inmage/gif, inmg"
"e/ x-xbi t map, image/jpeg, imagel/pjpeg, */*\r\in"
"Accept - Language: en\r\n"
"UA- pi xel s;: 1152x864\r\n"
"UA-col or: color8\r\n"
"UA-CS: Wndows NT\r\n"
"UA- CPU: x86\r\n"

"User-Agent: Mzilla/2.0 (conpatible; MSIE 3.01; Wndows NT)\r\n"

"Host: capricorn-web\r\n"
"Connection: Keep-Alive\r\n\r\n";

set Server_connecti on = CAPRI CORN_VEB_80;

htt p_header _recv 200;/* OK */

/* nore data (4853) than expected >> 100 % */

http_nrecv 100 %6 ; /* 4853/ 4051 bytes */

ht t p_di sconnect (CAPRI CORN_WEB_80) ;

}

Command Reference 6-49

http_nrecv

See Also

The header information received lookslike the following:

HTTP/ 1.1 200 OK

Date: Mon, 24 Nov 1997 22:57:44 GMI

Server: Apache/1.2.4

Last-Mdified: Fri, 21 Nov 1997 20:45:11 GVl
ETag: "7a398-cf1-3475f2d7"

Content - Lengt h: 3313

Accept - Ranges: bytes

Keep- Al'i ve: tinmeout=15, max=100

Connection: Keep-Alive

Content - Type: text/htm

htt p_request

http_nrecv
Receive Emulation Command

Description

Syntax

Comments

6-50

Receives a user-specified number of bytesfrom aWeb server.

int http_nrecv [cnd_id] {count | count 9%

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

count The number of bytesto receive from the connection.

count 986 The number of bytesto receive as apercentage of the size of
the last page processed. The sizeiscaculaed from the
information in the last header processed for the connection.

If ht t p_nr ecv completessuccessfully, it returnsavaueof 1. Otherwisg, it returns
avaueof 0.

Thehtt p_nrecv emulaion command succeedswhen it receives count bytes
from the server. Binary dataistrandated into embedded hexadecimd strings. See
UnprintableHTTP o Socket D ata on page 3-35.

Theht t p_nr ecv command sets the “first received’f(r _t s) and “last received”
(_l'r_ts)read-only variables.

The datareceived is stored in the read-only variabéssponse and is overwritten
when you issue another receive emulation command.

If Ti meout _val (subject to scaling) milliseconds elapses beforétttgp_nr ecv
is satisfiedht t p_nr ecv fails and returns 0. Otherwidet, t p_nr ecv passes and
returns 1.

VU Language Reference

http_recv

Thehtt p_nrecv emulation command is affected by the following VU
environment variables: Ti neout _act, Ti meout _val , Ti meout _scal e,
Log | evel ,Record_| evel ,Max_nrecv_saved, and

Server _connection.Max_nrecv_saved gopliesto the actuad datareceived,
before any binary dataistrandated into embedded hexadecimal strings.

Example This example setsthe server connection, receivesthe header metadata, and then

receives acomplete page of data (100 percent of the page, asindicated by 100 %%).
set Server_connection = CONN1;
htt p_header _recv 200;
http_nrecv 100 %%

See Also http_recv

http_recv

Receive Emulation Command

Description Receives datafrom aWeb server until the specified text string occurs.

Syntax int http_recv [cnd _id] recv_str
Syntax Element Description
cmd_i d The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

recv_str A gring that marksthe point a which to sop retrieving data

Comments Thedaareceived isstored in theread-only varidble _r esponse and isoverwritten
when you issue other receive emulation commands.

If Ti meout _val (subject to scding) millisecondselgpsesbeforetheht t p_nr ecv
issatisfied, ht t p_r ecv falsand returns0. Otherwise, ht t p_nr ecv passesand
returnsi.

Theht t p_nrecv command sets the “first received’f(r _t s) and “last received”
(_I'r_ts)read-only variables.

Thehtt p_recv emulation command is affected by the following VU
environment variablegi neout _act, Ti meout _val , Ti meout _scal e,

Log | evel ,Record_| evel ,Max_nrecv_saved, and

Server _connection.Max_nrecv_saved applies to the actual data received,
before any binary data is translated into embedded hexadecimal strings.

Command Reference 6-51

http_recv

Example

See Also

6-52

This example reads until the end of the connection or atimeout.
http_recv ["cnd003r"] "$";

This example matchesas soon as EXCEL Home Page</titl e>\r\nisfound
anywhere within the response;

Set Server_connection = connil;
http_recv ["cnd001r"] "“EXCEL Honme Page</title>\r\n";

Thisexamplereadsuntil the end of the connection, and passesonly if _r esponse
isexactly equd to " EXCEL Hone Page</titl e>\r\n".Thisisbecausethe”
forcesthe comparison to begin at the start of _r esponse, and the $ forcesthe
comparison to begin at the start of _r esponse.

http_recv ["cnd002r"] "~EXCEL Hone Page</title>\r\n$";

Thisexamplematchesonly if thefirst 5 charactersof _r esponse =="EXCEL" . If
thefirst 5 charactersdo not match, htt p_r ecv continuesto read until the end of
the connection or atimeout.

http_recv ["cnd003r"] "~EXCEL";
http_nrecv

VU Language Reference

http_request

http_request

Send Emulation Command

Description Sendsan HT TP request to aWeb server.

Syntax int http request [cnd _id] prinmary _addr [, secondary addr]
[, flags], text
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

primary_addr A gring expression that containsthe host computer nameand
port number of the Web server to which you are connecting.

secondary_addr A string expression that containsthe host computer name and
port number of the Web server. If f/ ag is
HTTP_CONN_DI RECT, thisfield isnot used.

flags An integer expression that indicates:

» Thetype of connection (HTTP_CONN_DI RECT,
HTTP_CONN_PROXY, HTTP_CONN_GATEWAY,
HTTP_CONN_TUNNEL). HTTP_CONN_GATEWAY and
HTTP_CONN_TUNNEL are currently unused.

» Whether or not the connection is secure and the strength
of theencryption (HTTP_CONN_SECURE,
HTTP_CONN_SECURE_40, HTTP_CONN_SECURE_56,
HTTP_CONN_SECURE_128)

These connection flags are defined in the VU. h file.

t ext A dgring that containstherequest headers. If you are sending
information, this string dso contains the request body. For
example, if you fill in aform, theinformation you providein
the form isthe request body.

Comments Theht t p_request command returnsaconnection ID that isused asareference
for subsequent interactionswith the Web server until theht t p_di sconnect is
issued. It returns an integer value: O or lessfor failure, or aunique connection
number greater than or equd to 1 for success.

Thiscommand emulatesal HT TP protocol request primitives: GET, HEAD, POST,
PUT, TRACE, LI NK, UNLI NK, DELETE, OPTI ONS, COPY.

Binary dataistrandated into embedded hexadecima strings. See U nprintableHTTP
a Soke Dataon page 3-35.

Command Reference 6-53

http_url_encode

Thehtt p_request command sets the “first connectf(c_t s), “last connect”
(_lc_ts),firstsent”(_fs_ts), and “last sent” (I s_t s) read-only variables.

Thehtt p_request command is affected by the following VU environment
variablesConnect _retries,Connect _retry_interval,the think time
variables,Ti meout _val , Ti meout _scal e, Ti neout _act,Log_| evel ,
Record_l evel , and Suspend_check. The think time is applied before the
connect, and suspend checking is done (as normal) after the think time delay.

Thehtt p_request command automatically parameterizes cookie information
during script playback. When dynamic cookie information is available from a server,
that cookie value replaces the values in the VU script. Otherwise, the scripted value
is used.

Example This example connects to a Web server. The var{ahiRiRl CORN_WVEB_80 holds
the returned ID for the connection

#i ncl ude <VU. h>

{

CAPRI CORN_WEB 80 = http_request "CAPRI CORN-VEB: 80",
HTTP_CONN_DI RECT,
"GET / HTTP/1.0\r\n"
"Accept: application/vnd. ns-excel, application/ mw"
"rd, application/vnd. ns- power point, inmage/gif, inmg"
"el/ x-xbi tmap, immgel/jpeg, imagel/pjpeg, */*\r\in"
"Accept - Language: en\r\n"
"UA- pi xel s;: 1152x864\r\n"
"UA-col or: color8\r\n"
"UA-CS: Wndows NT\r\n"
"UA- CPU: x86\r\n"

"User-Agent: Mzilla/2.0 (conpatible; MSIE 3.01; Wndows NT)\r\n"

"Host: capricorn-web\r\n"
"Connection: Keep-Alive\r\n\r\n";

set Server_connection = CAPRI CORN_VEB_80;

htt p_header _recv 200;/* OK */

http_nrecv 100 %6 ; /* 4051 bytes */

ht t p_di sconnect (CAPRI CORN_WEB_80) ;

}

See Also None.

http_url_encode
Emulation Function

Description Prepares a VU string for inclusion it t p_r equest data.

Syntax string http_url _encode(str)
Syntax Element ‘Description
str ’VU string expression.

6-54 VU Language Reference

http_url_encode

Comments The returned string consists of the originad VU string expresson with dl HTTP
specid charactersin the proper escape sequence format.

If your recording containsH T T Ptraffic, and datapoolingisenabled, then your script
containsacdl totheht t p_ur| _encode function for every cdl to the
dat apool _val ue function to ensurethat the datasent to the Web server isin the

correct format.

Example This example script fragment sendsa POST request containing datapool vauesto a
previoudly established connection, and then closes the connection.

set Server_connection = bonnie_rational _com 80
http_request ["NewHttp058"] /* Keep-Alive request */
"POST /cgi-bin/ww/ prcat.cgi HTTP/1.1\r\n"
"Accept: application/vnd. ns-excel, application/msword"
"appl i cation/vnd. ms- power poi nt, inmage/gif, img"
"el/ x-xbi t map, image/|peg, imagel/pjpeg, */*\r\in"
"Referer: http://ww.rational.com world/press/rel eases/\r\n"
"Accept - Language: en-us\r\n"
"User-Agent: Mozilla/4.0 (conpatible; MSIE 4.0; Wndows NT) \r\n"
Host: www.rational.comr\n"
Content-Length: 28\r\n"
"\r\n"
"financial s="
+http_url _encode(dat apool _val ue(DP1, "“financial")) +
" &chapt er ="
+htt p_url _encode(dat apool _val ue(DP1, "chapter")) +

http_dﬁsconnect (bonni e_rational _com 80);

See Also htt p_request dat apool _val ue

Command Reference 6-55

if-else

if-else

Flow Control Statement

Description

Syntax

Comments

Example

See Also

6-56

Conditionadly executesaVU statement.

if (expl)

statement 1;

el se

st at enent 2,

Syntax Element

Description

expl

An integer expression to be evduated.

statenent 1

AVU language statement that isexecuted if thevaueof exp1
isnot 0.

statenent 2

AVU language statement that isexecuted if thevaueof exp1
isO.

M ultiple statements can appear in braces, such as:

if (expl) {

st at ement 3;
st at enent 4,
st at enent 5;

} else {

st at enent 6;
st atenent 7;
st at ement 8;

}
It isadvisable to indent statementsfor readability.

This example aborts script execution if the string is ERROR. If the string is not
ERROR, the script continues processing and writes amessage to the log file:

if (stringl=="ERROR")

user _exit(-1,

el se

"Fatal Error - Aborting");

| og_nsg("Emul ati on proceeding nornal ly");

el se-if

VU Language Reference

iiop_bind

Send Emulation Command

iiop_bind

Description Bindsan interface naneto an Object Reference pseudo-object.

Syntax int iiop_bind [cnd id] repository id, instance id [,ior]

Syntax Element

Description

cnd id

Theoptiond command ID availablein dl emulation
commands. cnd_i d hastheform [stri ng_exp].

repository id

A gring congtant specifying the name of the interface to bind
to. It isinvdid to passthe empty string (") if i or isnot
specified. Theonly interface specification format supported is
the CORBA IDL Repositoryld format.

Thereposi t ory_i d consstsof three components, separated
by colons:

» The first component is the format name, “IDL.”

» The second component is a list of identifiers, separated by
“/" characters. These identifiers are arbitrarily long
sequences of alphabetic, digit, underscore (“_"), hyphen (*-
"), and period (“.”) characters. Typically, the first identifier
isaunique prefix, and the rest are the OMG IDL Identifiers

that make up the scoped name of the definition.

» The third component is made up of major and minor
version numbers, in decimal format, separated by a “.".
When two interfaces haveeposi t or y_i ds differing only
in minor version number, you can assume that the
definition with the higher version number is upwardly
compatible with the one with the lower minor version
number.

instance_id

A string expression identifying a particular instance of an
interface implementation. Some ORBs require this string to
identify persistent implementations. An empty string (")
means any instance is acceptable.

ior

An optional string expression specifyingan IO P Interoperable
Object Reference (IOR) to be used by the IOR bind modus.

Comments Ifii op_bi nd completes successfully, it returnsahandleto the Object Reference
pseudo-object bound to the interface implementation specified by the
reposi tory id.Otherwiseit returnsNULL_HANDLE.

Command Reference

6-57

iiop_invoke

Thei i op_bi nd command binds an interfaceimplementation, identified by
reposi tory_id,toan Object Reference pseudo-object. The result of bindingis
ahandleto an Object Reference pseudo- object which contains (among other things)
an 110OP object key used in later 11OP requeststo the implementation.

The actual mechanism used by the playback engine to execute the bind isORB
vendor-dependent.

Thei i op_bi nd command setsthefirst sent (_ fs_ts),lastsent (I s_ts),firs
received (_fr_ts),last received (_I s_t s), and error information
(_error_type, error, and_error _text)read-only varigbles.

Thei i op_bi nd command isaffected by thefollowing VU environment varigbles:
Ti meout _val , Ti neout _scal e, Ti meout _act,Log_| evel ,
Record_| evel ,and Suspend_check.

Example Thisexamplebindsan interface nameto an Object Reference pseudo-object. O bject
references are the only way for aclient to reach target objects. Thei i op_bi nd
command takesinformation about an object and usesit to try and obtain areference
to the object for use in invoking methods on the object.

objref = iiop_bind ["bind001"]
"1 DL: Bank/ BranchManager: 1. 0", "Branchl5", " "

See Also N one.

liop_invoke
Send Emulation Command

Description Initiatesasynchronous|IOP request to an interface implementation
Syntax Form 1: initidize and invoke a Request pseudo-object
int iiop_invoke [cnd _id] [&request,]
obj ect _ref, operation,
[paraneter_expr, ...]

Form 2: reuse aRequest pseudo-object

int iiop_invoke [cnd _id] request

[, parameter_expr, ...]
Syntax Element Description
cmd_i d The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

request An integer variable for the handle of the created request.

6-58 VU Language Reference

Comments

iiop_invoke

(Continued)

Syntax Element Description

obj ect _ref An integer handleto the Object Reference pseudo-object
bound to the interface implementation to be invoked.
obj ect _r ef cannot be NULL_HANDLE.

operation A gring expression containing the name of the interface
operdion to beinvoked.

par amet er_expr An optiond list of oneor more parameter binding expressions
fortheIN,INOUT, and OUT argumentsand return value
of theinvoked operation.

Thei i op_i nvoke emulaion command hastwo forms. Thefirst form constructs
an 11OP Request message by creating and initidizing anew Request pseudo-object.
The second form congtructs an 11OP Request message by overriding an existing
Request pseudo-object with anew set of parameters.

In thefirg form, specifying the optiond request argument causesthe handle of the
new Request pseudo-object to be stored in the VU integer varigble referenced by
request. The pseudo-object referenced by the handle persistsuntil it isreleased by a
cdltoi i op_rel ease. If therequest aslgument isnot supplied, then atemporary
interna Request pseudo-object is creaed to store the request context and is
automaticdly released before the command returns.

Inthesecond form, therequest argument isthe handleto the Request pseudo-object
to bereused for storing the request context.

After the message is congtructed, it is sent to the interface implementation and the
command then awaitsitsreply. After successful completion, theassociated | NOUT,

QUT, and RETURN parameter variables are loaded with the results of the operation
invocation.

Thiscommand isequivdent to the CORBA: : Obj ect:: create_request()
and CORBA: : Request : : i nvoke() function pairs.

Thei i op_i nvoke command setsthefirg sent (fs_ts),lastsent (I s_ts),
firsg received (_fr _ts),lastreceived (_|I s_ts), and error information
(_error_type, _error,and_error_text)read-onlyvarigbles.

Thei i op_i nvoke command is affected by the following VU environment
variables: the think timevariables, Ti neout _val , Ti neout _scal e,
Ti meout _act,Log | evel ,Record_I evel ,and Suspend_check.

Command Reference 6-59

iiop_release

Example Thisexampleinitiatesasynchronous I lOP request to an interface implementation.
Thei i op_i nvoke command isused to invoke methods on an object.

/* bind to the Branchl5 instance of the BranchManager interface */
bmref = iiop_bind ["bind001"]
"| DL: Bank/ BranchManager/ 1. 0", "Branchl15";

/* fetch account bal ance, using gl obal request context */
{ string Bal ance; }
iiop_invoke ["Balance001"] "Bal ance", bmref,

"Account": Account, "Bal ance":: &Bal ance;

/* 1og the bal ance query to the transaction |og, preserving
the request context in a new Request pseudo-object
referenced by log_req */
iiop_invoke ["LogTransacti on001"] & og_req, "Log Transaction", bmref,
"LogTransaction", "Account":Account,
"Transacti onType": " Bal ance";

/* withdraw all funds from account, again using the gl obal
request context but re-initializing it */
iiop_invoke ["Wthdraw001"] "Wthdraw', bmref,
"Account": Account, "Anpunt": Bal ance;
/* 1og the withdraw transaction to the log, reusing the
previ ous LogTransaction request context */
iiop_invoke ["LogTransaction002"] |og_req,
"TransactionType": "W thdraw';

/* rel ease | og_req Request pseudo-object */
iiop_release(log_req);

See Also i i op_bind

liop_release
Emulation Function

Description Releases storage associated with apseudo-object.

Syntax int iiop_release (handle[, ...])
Syntax Element ’ Description
handl e A ligt of integer handlesto pseudo-objects of any type.

At least one handle argument must be supplied.

Comments Theii op_r el ease function deletes and releases the storage associated with one
or more pseudo-objects. When ahandleisreleased, it becomesinvaid and cannot be
used again.

U pon successthe function returns 1, elseit returns 0 indicating an error.

6-60 VU Language Reference

IndexedField

Example This example releases storage associated with a pseudo-object. You can use
i i op_rel ease tofreememory used for storing requests or object
references.
iiop_rel ease(objref);
See Also None.
IndexedField
VU Toolkit Function: File I/O
Description Parsesthelineread by the ReadLi ne function and returnsthefield designated by
i ndex.
Syntax #define PV _FILEIO FIELD "deliniter characters"
#i ncl ude <sme/fileio. h>
string func | ndexedFi el d(/ ndex)
int jndex;
Syntax Element Description
deliniter characters |Thecharacterstha delimitthefieldsintheindex. Thedefault
field delimiter isavertica bar (|).
i ndex The number of thefield to be retrieved (beginswith 1).
Comments Thel ndexedFi el d function parsesthe datareturned by the most recent call to

the ReadLi ne function. A null stringisreturned when i ndex isgreater than the
number of fieldsin the line. M ultiple contiguous occurrences of the delimiter are
considered asingle delimiter.

Thel ndexedFi el d function affectsthe order of the resultsreturned by
Next Fi el d. Either functions modify the field pointer, which isthe starting point
for the next invocation of thisfunction.

If | ndexedFi el d iscdled beforethefirst cdl to ReadLi ne, the return vdueis
undefined. The SHARED READ macro usesthe ReadLi ne function to read from
thefile, so it dso may be used to retrieve the datato be parsed.

ThedringvariebleLast _Fi el d contansthevduereturned by themost recent use
of thel ndexedFi el d or Next Fi el d function.

Thelist of charactersto be considered asfield delimitersis contained in the macro
definition _PV_FI LEI O_FI ELD. Define thismacro congtant (# def i ne) before
theinclusion of the header filefi | ei 0. h.

Command Reference 6-61

IndexedField

Example This example first frees any previously saved data from the “parts” text buffer. Aloop
is started to query the database five times. The script then obtains the next record
from afile being shared by all virtual users that execute this script. The record is
parsed by selection of the first field and direct selection of the third field, skipping
the second field. The third field is composed of four or more subfields. Parsing of
the third field continues by selection of the first subfield, which provides a count of
the number of remaining subfields. O ne of the remaining subfields is selected at
random to form a part of the query. After the query is performed, the returned rows
are saved. If this is the first iteration of the loop, the rows are saved to the “parts” text
buffer. Subsequent iterations of the loop append the data from the returned rows to
the “parts” text buffer.

#i ncl ude <VU. h>

#i ncl ude <sne/ data. h>
#i ncl ude <sne/fileio. h>

{

shared int file_tag_lock, file_tag_offset;
string product_id, part_id, subassm.id;
string tenp_str;

int subassmcnt;

/* This script assunes a connection was nmade to the database. */
/* Record | ayout of "nyfile" */
/**}aroduct | part | subassmcnt ; subassm 1; subassm 2 ; subassm 3;
/* There will be a m ni numof three subassenblies in each record. */
FreeData("parts");
/* Performb5 queries for parts. */
for (i=0; i<=4; i++)

SHARED READ ("myfile", file_tag);

/* Parse the record. */
product _id = NextField();

tenp_str = I ndexedFi el d(3);
/* Note: The entire unparsed field is returned but it is not
used directly. So the returned text string is not used. */

subassm cnt = at oi (Next SubFi el d());
subassm id = | ndexSubFi el d(uni form(2, subassmcnt+1));

/* Query for the part. */

sql exec ["test_001"]
"sel ect part_nanme from product_db "
"wher e product=""+product _i d+"’
"and subassenbl y='"+subassm.id+"""

sgl nrecv ["test_002"] ALL_ROW5;

6-62 VU Language Reference

IndexedSubField

ifi =0

SaveDat a("parts");
el se

AppendDat a(" parts");

}

See Also | ndexedSubFi el d NextFi el d Next SubFi el d ReadLi ne SHARED READ
IndexedSubField
VU Toolkit Function: File 1/0
Description Parsesthefield set bytheNext Fi el d or | ndexedFi el d function and returnsthe
subfield designated by i ndex.
Syntax #define PV _FILEI O SUBFIELD "deliniter characters"
#i ncl ude <sne/fileio. h>
string func | ndexedSubFi el d(/ ndex)
int jndex;
Syntax Element Description
deliniter characters |Thecharacterstha delimit the subfieldsin theindex. The
default delimiter isacolon (:). Do not separate delimiter
characterswith white space or any other character. M ultiple
contiguous occurrences of the delimiter are considered asa
singleddimiter.
i ndex The number of thefield to be retrieved (beginswith 1).
Comments Thel ndexedSubFi el d function parsesthefield returned by the most recent cal

tothe Next Fi el d or | ndexedFi el d function. The i ndex argument, which
beginsat 1, isthe number of thefield to beretrieved. A null stringisreturned when
index isgreater than the number of fieldsin theline.

Thel ndexedSubFi el d function affectsthe order of the resultsreturned by
Next SubFi el d. Either functions modifiesthe subfield pointer, which isthe
starting point for the next invocation of thisfunction.

If | ndexedSubFi el d iscdled beforethefirst cal to Next Fi el d or
I ndexedFi el d, thereturn vdueisundefined.

The string variable Last _SubFi el d containsthe vaue returned by the most
recent use of | ndexedSubFi el d or Next SubFi el d function.

Thelig of charactersto be considered as subfield delimitersis contained in the
macro definition _PV_FI LEI O_SUBFI ELD. Define thismacro constant
(# def i ne) beforetheinclusion of the header file fi | ei o. h.

Command Reference 6-63

IndexedSubField

Example Thisexamplefirst freesany previoudy saved datafrom the "parts' text buffer. A loop
isgarted to query the database five times. The script then obtainsthe next record
from afile being shared by dl virtua usersthat execute thisscript. Therecord is
parsed by selection of the firgt field and direct selection of the third field, skipping
the second field. Thethird field is composed of four or more subfields. Parsing of
thethird field continues by selection of thefirst subfield, which providesacount of
the number of remaining subfields. One of the remaining subfieldsis selected at
random to form apart of the query. After the query isperformed, the returned rows
are saved. If this is the first iteration of the loop, the rows are saved to the “parts” text
buffer. Subsequent iterations of the loop append the data from the returned rows to
the “parts” text buffer.
#i ncl ude <VU. h>

#i ncl ude <sne/ data. h>
#i ncl ude <sne/fileio. h>

{

shared int file_tag_lock, file_tag_offset;
string product_id, part_id, subassm.id;
string tenp_str;

int subassmcnt;

/* This script assunes a connection was nmade to the database. */
/* Record | ayout of "nyfile" */
/**}aroduct | part | subassmcnt ; subassm 1; subassm 2 ; subassm 3;
/* There will be a m ni numof three subassenblies in each record. */
FreeData("parts");
/* Performb5 queries for parts. */
for (i=0; i<=4; i++)

SHARED READ ("myfile", file_tag);

/* Parse the record. */
product _id = NextField();

tenp_str = | ndexedFiel d(3);
/* Note: The entire unparsed field is returned but it is not
used directly. So the returned text string is not used. */

subassm cnt = at oi (Next SubFi el d());
subassm id = I ndexSubFi el d(uni form 2, subassmcnt+1));

/* Query for the part. */

sql exec ["test_001"]
"sel ect part_nanme from product_db "
"wher e product=""+product _id+"’
"and subassenbl y='"+subassm.id+"'";

sqlnrecv ["test_002"] ALL_ROWS;

6-64 VU Language Reference

itoa

ifi =0

SaveDat a("parts");
el se

AppendDat a(" parts");

}
See Also I ndexedFi el d Next Fi el d Next SubFi el d ReadLi ne SHARED READ

itoa
Library Routine

Description Convertsintegersto strings.

Syntax string itoa(int)
Syntax Element ‘ Description
int ’Theinteger expression to convert to astring.

Comments Thei t oa routinereturnsastring expression, the ASCI| form of theinteger. If i nt
is negative, then thereturned string expression is prefixed with anegative sign.

Thei t oaroutineistheconverseof at oi . It takesan integer argument and returns
astring expression made up of digitsrepresenting the integer in ASCII.

Example Thisexamplereturnsthe string " 93" :
itoa(93);
Thisexamplereturnsthe sring " 30" :
itoa(21 + 9);
Thisexamplereturnsthe string " 23" :
itoa(atoi ("23"));

See also at oi

Icindex
Library Routine

Description Returnsthe position of the last occurrence of auser-supplied character.

Command Reference 6-65

log_msg

Syntax int |Icindex (str, char)
Syntax Element Description
str The string to search.
char The character to search for within st r.

Comments Thel ci ndex (last character index) routinereturnsthe position within st r of the
last occurrence of the character char . If no occurrencesare found, | ci ndex
returnstheinteger zero.

Theroutinesci ndex, | ci ndex, si ndex, and | si ndex return positiond
information about either thefirst or last occurrence of aspecified character or set of
characterswithin astring expression. st r span returnsdistance information about
the span length of aset of characterswithin astring expression.

Example Thisexamplereturnstheinteger vaue 6, which isthe position of thelast occurrence
of the letter a in the stringaar dvar k:

| ci ndex("aardvark", 'a’);

See Also ci ndex si ndex | sindex strspan strstr

log_msg

Library Routine

Description Writes messagesto the log file with astandard header format.

Syntax int log_nsg (nsg_str)
Syntax Element ’ Description
nmsg_str A gring expresson contaning the message to write to the
logfile.

Comments Thel og_ns(g routinereturnsan integer expression equa to thevadue of T.

| og_nsg writesnsg_st r to the standard log file, preceded by the following
explanaory text:

<<< log_msg(): script = script_nane, time = T>>>

6-66 VU Language Reference

Isindex

scri pt_nane isreplaced by the script name (corresponding to the read-only

variable _scri pt). Tisreplaced by the current time, in millisscondsformat. The

text of n6g_st r is printed in a manner consistent with other logged information —

for example, unprintable characters are replaced by their VU -style escape sequences
as described iFlowv aVU Saipt RepresntsU nprintableDataon page 3-34.

Example In this example, assume the current script’s nandé2s the value of r ans_no
before thd og_nsg statement is executed is 3, and the current time is 29130:

| og_nsg("Begi nni ng Transaction " + {itoa(++trans_no))
The following is message is logged:

<<< log_msg(): script = db2, tine = 29130 >>>
Begi nning Transaction 4

See Also None.

|sindex
Library Routine

Description Returns the position of the last occurrence of any character from a specified set.

Syntax int |sindex (str, char_set)
Syntax Element Description
str The string expression to search.
char_set The charactersto search for within st r.

Comments Thel si ndex (last string index) routine returns the position witkirv of the last
occurrence of any character fraehar _set . If no occurrences are found,
| si ndex returns an integer value 0f

The routinegi ndex, | ci ndex, si ndex, andl si ndex return positional
information about either the first or last occurrence of a specified character or set of
characters within a string expressigmr span returns distance information about

the span length of a set of characters within a string expression.

Command Reference 6-67

match

Example Thisexample returnsthe integer vaue 14, because a isthe last vowel in the string
"noo goo gai pan" anditisthe 14th character.
| si ndex("nmoo goo gai pan", "aeiou");
See Also ci ndex I cindex sindex strspan strstr

match
Library Routine

Description Determineswhether asubject string matches aspecified pattern.

Syntax int mtch (pattern, subject [, &arg] ...)
Syntax Element Description
pattern A string expression specifying the pattern to match, as

expressed in VU regular expression notation. (T he section
VU Regular Expresonson page 3-29 discussesregular
expression notation.)

To asdgn thereaultsof the match to &ar g, placethe regular
expression portion of the pattern in the format

(regul ar_exp)$n, where nisan integer representing the
position of the argument.

For example, (r egul ar_exp)$0 placestheresultsin ar g1,
(regul ar_exp) $1 placestheresultsin ar g2, and so on.

subj ect A string expression specifying the string to match. subj ect
isoften theread-only variable_r esponse, becauseyou may
want to match acertain pattern in your response.

argn Theoptiond gringoutput variablethat containstheresultsof
thematch. Thenumber of ar gn varisblesmust be equal to or
greater than thenumber of (r egul ar _exp)$n, even if some
varidbles are left unassigned.

Comments The mat ch routinereturnsthe integer vaue 1 if the subject string matches
pat t er n; Otherwiseit returnsavaue of 0.

In making assignmentsto ar gn variables, mat ch followsthese rules.
» Assgnmentsare made unconditiondly.
» Thevdue of recursve assgnmentsare undefined.

» If an assgnment isnot made, the origind valuesof ar gn varigblesare
unchanged.

6-68 VU Language Reference

Example

See Also

mixed2hexstring

Thisexample uses mat ch to check whether the database containsSnmit h A E. |

and, if not, adds hisname and relevant data
sqgl exec "SELECT * FROM dbo. Student WHERE Studid < 5000";
sqlnrecv ["test001"] ALL_ROW5;
i f (!match(’Smith *A\.E.\’, _response))

sglexec "INSERT dbo.Student VALUES"
"1005, 'Smith", "A.E.", "215 Charles St.’, '050263", 'M");

}
Inthisexample, nat ch returnsal," 4" isassignedtostr1l,and"def" is
assigned tostr 2:

mat ch("abc([0-9]+)$0 ([A-Za-z]+)$1", "abc4 def", &strl, &str2);

N one.

mixed2hexstring

Library Routine

Description
Syntax

Comments

Example

Returnsapure hexadecima version of aVU tring.

string mxed2hexstring(str)

Syntax Element ’Description

str ‘VU string expresson.

The returned string consists of aleading grave accent (*), the hexadecima
representation of the gring expression, and atrailing grave accent (*). Strings used
(and returned) by VU with socket and HT TP emulation commands are in mixed
ASCII and hexadecimd formai.

#include <VU.h>

string hexstr;
calvin_700 = http_request ["cal001"] "calvin:700", ", 2,
"GET / HTTP/1.0\r\n"
"Connection: Keep-Alive\r\n"
"User-Agent: Mozilla/4.03 [en] (X11; I; SunOS 5.5.1 sun4u)\r\n"
"Pragma: no-cache\r\n"
"Host: calvin:700\r\n"
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
*\\n"
"Accept-Language: en\r\n"
"Accept-Charset: iso-8859-1,*,utf-8\r\n"
"\r\n";
set Server_connection = calvin_700;
http_header_recv ["cal002"] 200;/* OK */
http_nrecv ["cal003"] 100 %% ; /* 1316 bytes */
hexstr = m xed2hexst ri ng(_response);
http_disconnect(calvin_700);

Command Reference 6-69

mkprintable

See Also hex2m xedstring http_request
http_nrecv http_recv
mkprintable

Library Routine

Description Creates printable versions of stringsthat contain nonprintable characters.

Syntax string nkprintable (str)
Syntax Element ’ Description
str ‘Astring expresson that serves asthe subject string.

Comments Thenkpri nt abl e routinereturnsaprintable version of st r by replacing al
unprintable characterswith their corresponding VU - style escape sequences, as

follows:

\r A single character representing acarriage return.
\ f A single character representing aformfeed.

\n A single character representing anewline.

\'t A single character representing ahorizontal tab.
\b A single character representing a backspace.

\0 Thenull character (the character with vadue 0).

| ddd | A singlecharacter representing the character ddd.

Example Thisexamplereturnsasring equivaent to the string constant *\ \ 033" . Although
the stringslook similar, they are quite different; the length of the subject stringis1
character and thelength of the returned string is4 characters.

nkprintable ("\033");

Thisexamplereturnsastring equivaent to the stringconstant "\ \ t \ \ t\\ t ",
escaping each tab character with the two-character combination \ t .

nkprintable("\t\t\t");

See Also pri nt

6-70 VU Language Reference

negexp

negexp
Library Routine

Description Returnsarandom integer from anegative exponentia distribution with the specified

mean.
Syntax i nt negexp (nean_val ue)
Syntax Element ’ Description
mean_val ue An integer expression whose vaue specifiesthe mean of the

negeative exponentidly distributed random integersreturned
by negexp. Thevdue of nean_val ue must be non-
negetive.

Comments Ther and, srand, uni f or m and negexp routines enablethe VU language to
generate random numbers. The behavior of these random number routinesis
affected by theway you set the Seed and Seed Flags optionsin aLoadT est schedule.
By default, the Seed generatesthe same sequence of random numbers but sets
unique seedsfor each virtua user, so that each virtua user has adifferent random
number sequence. For more information about setting the seed and seed flagsin a
schedule, seethe UdngRational LcadT et manud.

srand usesthe argument seed asaseed for anew sequence of random numbers
returned by subsequent calstonegexp. If sr and isthen caled with the same seed
vaue, the sequence of random numbersisrepeated. If negexp iscaled before any
cdlsare madeto sr and, the same sequence isgenerated aswhen sr and isfirst
cdled with aseed vaue of 1.

Example In thisexample, seedsthe random number generator with the current time and
printsthefirg 10 random numbers with amean of 10.
srand(time());

for (i =0; 1 < 10; i++)
printf("random nunber (%l): %\n", i, negexp(10));

See Also r and uni form srand

NextField
VU Toolkit Function: File I/0

Description Parsesthelineread by the ReadLi ne function.

Command Reference 6-71

N extField

Syntax #define PV FILEIO FIELD "deliniter characters"
#i ncl ude <sme/fileio. h>
string func NextField()

Syntax Element Description

del i miter character Thecharactersthat delimit thefieldsin theindex. Thedefault
delimiter isavertica bar (|). Do not separate delimiter
characterswith white space or any other character. M ultiple
contiguous occurrences of the delimiter are considered asa
singleddimiter.

Comments TheNext Fi el d function retrievesthe next available field from the datareturned
by the most recent cdl to the ReadLi ne function. Thenull stringisreturned when
thefieldsin theline have been exhausted.

Thel ndexedFi el d function affectsthe order of the resultsreturned by
Next Fi el d. Either function modifiesthefield pointer, which isthe starting point
for the next invocation of thisfunction.

If Next Fi el d iscdled beforethefirst cdl to ReadLi ne thereturn valueis
undefined. The SHARED READ macro usestheReadLi ne function to perform the
read from thefile, so it dso may be used to retrieve the datato be parsed.

ThedringvariebleLast _Fi el d containsthevduereturned by themost recent use
of | ndexedFi el d or Next Fi el d function.

Thelist of charactersto be considered asfield delimitersis contained in the macro
definition _PV_FI LEI O_FI ELD. Define thismacro constant (# def i ne) before
theinclusion of the header file fi | ei 0. h.

Example This example first frees any previously saved data from the “parts” text buffer. Aloop
is started to query the database five times. The script then obtains the next record
from afile being shared by all virtual users that execute this script. The record is
parsed by selection of the first field and direct selection of the third field, skipping
the second field. The third field is composed of four or more subfields. Parsing of
the third field continues by selection of the first subfield, which provides a count of
the number of remaining subfields. O ne of the remaining subfields is selected at
random to form a part of the query. After the query is performed, the returned rows
are saved. If this is the first iteration of the loop, the rows are saved to the “parts” text
buffer. Subsequent iterations of the loop append the data from the returned rows to
the “parts” text buffer.

6-72 VU Language Reference

N extField

#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>
#i ncl ude <sme/fileio.h>

{

shared int file_tag lock, file_tag_offset;
string product_id, part_id, subassm.id;
string tenp_str;

int subassm cnt;

/* This script assunes a connection was nmade to the database. */
/* Record | ayout of "nyfile" */
/**}aroduct | part | subassmecnt ; subassm 1; subassm 2 ; subassm 3;
/* There will be a m ni mumof three subassenblies in each record. */
FreeData("parts");
/* Performb5 queries for parts. */
for (i=0; i<=4; i++)

{SHARED_READ ("myfile", file_tag);

/* Parse the record. */
product _id = NextField();

tenp_str = I ndexedFiel d(3);
/* Note: The entire unparsed field is returned but it is not
used directly. So the returned text string is not used. */

subassm cnt = at oi (Next SubFi el d());
subassm.id = | ndexSubFi el d(uni form(2, subassmcnt+1));

/* Query for the part. */

sql exec ["test_001"]
"sel ect part_nanme from product_db "
"wher e product=""+product _id+"" "
"and subassenbl y=""+subassm.id+"'";

sgl nrecv ["test_002"] ALL_ROW5;

if i =0
SaveDat a("parts");

el se
AppendDat a(" parts");

}

See Also | ndexedFi el d | ndexedSubFi el d Next SubFi el d ReadLi ne
SHARED READ

Command Reference 6-73

N extSubField

NextSubField

VU Toolkit Function: File 1/0

Description Parsesthefield returned by the most recent call to Next Fi el d or

| ndexedFi el d.
Syntax #define PV _FILEI O SUBFIELD "deliniter characters"
string func Next SubFi el d()
Syntax Element Description
delimters The characterstha delimit the subfieldsin theindex. The

default delimiter isacolon (:). Do not separate delimiter
characterswith white space or any other character. M ultiple
contiguous occurrences of the delimiter are consdered asa
singleddimiter.

Comments The Next SubFi el d function retrievesthe next available subfield returned by the
mosgt recent cdl to the Next Fi el d or | ndexedFi el d function. The null string
isreturned when the subfields within the field have been exhausted.

Thel ndexedSubFi el d function affectsthe order of the resultsreturned by
Next SubFi el d. Either function modifiesthe subfield pointer, which isthe
sarting point for the next invocation of thisfunction.

If Next SubFi el d iscdled beforethefirst cdl to Next Fi el d or
| ndexedFi el d, thereturn vaueisundefined.

The gtring variable Last _SubFi el d containsthe vaue returned by the most
recent use of | ndexedSubFi el d or Next SubFi el d function.

Thelist of charactersto be considered as subfield delimitersiscontained in the
macro definition _PV_FI LEI O_SUBFI ELD. D efinethismacro constant (# define)
beforethe incluson of the header filefi | ei 0. h.

Example This example first frees any previously saved data from the “parts” text buffer. Aloop
is started to query the database five times. The script then obtains the next record
from afile being shared by all virtual users that execute this script. The record is
parsed by selection of the first field and direct selection of the third field, skipping
the second field. The third field is composed of four or more subfields. Parsing of
the third field continues by selection of the first subfield, which provides a count of
the number of remaining subfields. One of the remaining subfields is selected at
random to form a part of the query. After the query is performed, the returned rows
are saved. If this is the first iteration of the loop, the rows are saved to the “parts” text
buffer. Subsequent iterations of the loop append the data from the returned rows to
the “parts” text buffer.

6-74 VU Language Reference

open

#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>
#i ncl ude <sme/fileio.h>

{
shared int file_tag lock, file_tag_offset;
string product_id, part_id, subassm.id;
string tenp_str;
int subassm cnt;
/* This script assunes a connection was nmade to the database. */
/* Record | ayout of "nyfile" */
/* product | part | subassmcnt ; subassm 1; subassm 2 ; subassm 3;
.ox
/* There will be a m ni mumof three subassenblies in each record. */
FreeDat a("parts");
/* Performb5 queries for parts. */
for (i=0; i<=4; i++)
{
SHARED READ ("myfile", file_tag);
/* Parse the record. */
product _id = NextField();
tenp_str = I ndexedFiel d(3);
/* Note: The entire unparsed field is returned but it is not
used directly. So the returned text string is not used. */
subassm cnt = at oi (Next SubFi el d());
subassm id = | ndexSubFi el d(uni form(2, subassmcnt+1));
/* Query for the part. */
sql exec ["test_001"]
"sel ect part_nanme from product_db "
"wher e product=""+product _id+"" "
"and subassenbl y=""+subassm.id+"'";
sgl nrecv ["test_002"] ALL_ROW5;
ifi =0
SaveDat a("parts");
el se
AppendDat a(" parts");
}
See Also I ndexedFi el d | ndexedSubFi el d ReadLine NextField SHARED READ

open
Library Routine

Description Opensafilefor reading or writing.

Command Reference

6-75

open

Syntax int open (filenane, npde)

Syntax Element

Description

fil enanme

A string expression specifying the file to be opened.

nmode

A string expression specifying how thefileisto open. Vadid
vaues:

» "r" opensthefilefor reading. If the file does not exist, a
runtime error is generated.

» "W' opensthefilefor writing. If thefileexigs, itscontents
arediscarded. If it doesnot exig, it is created.

» "a" opensthefilefor appending. If thefile exists, its
contentsareretaned and any new output to thefileis
gppended to what isdready in thefile. If the file doesnot
exig, it iscreated. Information dready in thefileis never
overwritten. If multiple processes open the samefile for
gppending, their output isintermixed in thefilein the
order in which it iswritten.

» "r+" opensthefilefor update. You can read or writeto a
file for update. If the file doesnot exist, aruntime error is
generated. If thefiledoesexist and new output iswritten to
it, the new output iswritten a the beginning of thefile,
overwriting what isdready there.

» "w+" opensthefilefor update and create or truncae. You
can read or writeto afilefor updatein thismode. If thefile
doesnot exis, it iscreated. If thefile exists, its current
contents are discarded.

» "a+" opensthefilefor update and gopend. You can read
or writeto afilefor updatein thismode. If thefiledoesnot
exig, it iscreaed. If thefile doesexist, datawritten to it is
appended.

» "p" opensthefilein persstent mode." p" can accompany
any other mode (the mode string for open() can include
a'p" anywherein the string). A persistent fileremains
open across criptsin asinglerun.

Comments If open can successfully open thefilg, it returnsan integer file descriptor. You use
thisfile descriptor to make subsequent referencesto thefile. If open cannot open
the file as specified, open generatesaruntime error.

The open routine specifies afile to open for reading or writing. A file must be
opened beforeit isused. You do not have to open the standard input, output, error,
log, or record files, however, because they are automaticaly opened by the system.

The VU language open routine correspondsto the C language f open library
routine. The options on your computer determine the maximum number of open
files. The number of reserved filesfor VU isseven.

6-76

VU Language Reference

Example

See Also

pop

pop

T o enable subsequent scriptsto accessapersstent filewithout reopeningthefile, use
aperdstent integer variable to hold the file descriptor returned from open.

Thisexample declaresthe variablet hel i ne asadring. It then:
» Opensdata_fil e forreadingand assignsit thefile descriptor fi | el.

» Podtionsthe character pointer so that each user readsadifferent line (file
pointer for user1is80 (_ui d* 80) bytesfrom the beginning of thefilg, file
pointer for user 2 is 160 bytesfrom the beginning of the file, and so on).

» Readsan entireline (anything but anew linefollowed by anew line) and stores
itint heli ne.
» Closesthefileafter reading 10 lines.
string theline;
for (1=0; i<10; 1++) {
filel=open("data_file","r");
fseek(filel, (_uid*80),0);
fscanf(filel, "% ™\ n]\n", &heline);
}
close(filel);

cl ose

Environment Control Command

Description

Syntax

Comments

Removesthe vaue of aVU environment variable from the top of the stack.

pop [env_var_list];

Syntax Element Description

env_var_list U seoneof thefollowing for env_var_Ii st:

» Alig of oneor more environment variables, separated by
commas and optionaly by white space. If
env_var_| i st contansoneitem, the bracketsare
optiond. If env_var_Ii st contansmorethan one
item, pop operateson the itemsfrom left to right.

» ENV_VARS. Thisspecifiesdl the environment varigbles.

Thepop command removes and discardsthe element & the top of the stack of each
vaiablein env_var_| i st. Thus, the next-to-top element of each sack movesto
thetop of that stack and becomesthe current vaue of that variable. A runtime error
occursif you attempt to pop astack tha containsonly one element.

Command Reference 6-77

print

Example

See Also

print

Statement

Thisexample setsthe vauefor Ti meout _val to 120000 ms, pushesthe vaue of
30000to thetop of theTi meout _val gtack (sothat 30000 isnow the current value
and 120000 isthe second element on the stack), and then removes 30000 from the
stack (so that 120000 isthe only element left on the stack).

/* Set values for Timeout_val and Log level. */

set [Ti meout _val 120000, Log_level = TIMEQUT];

push Ti meout _val 30000;
pop Log_| evel;

This example disablesthe normd checking for any queued suspend requests, and
encgpsulates this disabling within the push and pop commands.

push Suspend_check of f;

/* code that performnms input emul ati on conmands where you do not want

suspend or step operations to stop */
pop Suspend_check;

push eval set

Description
Syntax

Comments

Example

6-78

Writesto standard output when the formatting capability of pri nt f isnot required.

print exp list;

Syntax Element Description

exp_list One or more expressions separated by commas, and
optiondly by white space. T he expressions can have string or
integer vaues, pri nt automaticaly handlesthe conversion
of integer vauesto ASCII.

Thepri nt routinewritesthe vaues of each expression to sandard output, each
followed by asingle blank, in the order in which they are specifiedin exp_I i st.
Specificdly, the pri nt f format equivdentsfor pri nt output are" %@ " for
integer expressonsand " % " for string expressions. Because it does not return a
vaue, print cannot be used asan expression.

Thisexamplewritesthestring The square of 7 is 49\ ntogandard output.
The newlineisadded to the pri nt output becauseit was explicitly requested:

print "The square of", 7, "is", 7*7, "\n";

VU Language Reference

printf, fprintf, sprintf

Thisexamplewritesthestring0 1 2 3 4 to standard output. Recdl that thesr and
routine dwaysreturnstheinteger vdue 1.

i = 4

=2

print i<j, j<i, j, srand(i+j) +j, i;
See Also nkprintable printf fprintf sprintf

printf, fprintf, sprintf

Library Routine

Description Writes specified output to standard output, to afile, or to astring varidble.

Syntax int printf (format_str [, arg_list])
int fprintf (file des, format_str [, arg list])
int sprintf (/ocation, format_str [, arg list])

Syntax Element Description

format_str A string expression that specifies the format in which the
output iswritten.

arg_Ilist The output to bewritten. Separate multipleargumentswith a
comma

file_des Theinteger filedescriptor, obtained from open, of thefileto

which the output iswritten

I ocation The address of the gring variable (&st r 1) to which the
output iswritten. Additiona space isdlocated if the output
exceedsthe size of the current string.

Comments If printf,fprintf,orsprintf successfullywritesthe requested output, it
returnsthe number of characterswritten. If theroutineisunableto writethe output
asrequested, it generatesaruntime error.

Theprintf, fprintf,andsprintf routinesareclosely related; the difference
among them iswhere they write the specified output: afile, sandard output, or a
string variable.

format _str andarg |i st aeliketheoutput format and argumentsin the C
library routinesprintf,fprintf,andsprintf,with thefollowing exceptions.

» Floaing-point converson characters(e E, f, F, g, G) are not dlowed. They are
unnecessary because the VU language does not have floating-point vaues.

» Theuseof * to secify afield width or precision taken from the corresponding
argument isnot supported.

Command Reference 6-79

push

» Integer conversion characters(d, o, u, x, X) are automatically prefixed by the
character 1'in keeping with the VU language treatment of all integers as 32 bits.
This is transparent; if you explicitly specify the T, no change is made.

» format_str andarg I i st are checked at runtime to ensure that their
syntax is correct, that every conversion specification has an argument, and that
each argument is the correct type for the corresponding conversion
specification. As in C, extra arguments are ignored.

Example In this example, assume that the value of the dividend is 3 and the value of the divisor
is 9:

printf("% is %%% of %",
di vi dend, (100*di vi dend)/divisor, divisor);

The following line is printed on standard output:
3 is 33%of 9
In this example, assume that the valuaiogl is 12 and the value aifr g2 is 6:
fprintf(outfile_des,
"X (HEX) is % than % (decimal)", argl,
argl > arg2 ? "greater" : "equal to or less", arg2);
The following line is written to the file whose descriptooig fi | e_des:
C (HEX) is greater than 6 (decinal)
If ar g1 is 63 andar g2 is 64, the line written to the file is:
3F (HEX) is equal to or less than 64 (decinal)

In this example, if the value ahar _ar g is the character $, thetat a_str is
assigned the value \044:

sprintf(&data_str, "\% 30", char_arg);

See Also print mkprintable

push

Environment Control Command

Description Pushes the value of a VU environment variable to the top of the stack.

6-80 VU Language Reference

push

Syntax push [env_assign list];
Syntax Element Description
env_assign_Iist Aligt of oneor moreenvironment variable assignments, of the

form env_var = expr,whereenv_var isany VU
environment variable and expr isan expression separated by
commas and optionaly by white space. If

env_assi gn_I i st contansoneitem, the bracketsare
optiond. If env_assi gn_I i st contansmorethan one
item, push operateson them from left to right.

Comments For each env_var in env_assi gn_I i st , the corresponding value of expr is
pushed to thetop of that env_var’s stack. Thusexpr becomes the current value
of thatenv_var and the previous value becomes the next-to-top element of that
env_var’s stack.

Example This example disables the normal checking for any queued suspend requests, and
encapsulates this disabling within thesh andpop commands:

push Suspend_check of f;

/* code that performnms input emul ati on commands where you do not want
suspend or step operations to stop */

pop Suspend_check;

This example shows how to change the values in the stack:

/* Set values for Timeout_val and Log level. */
set [Tineout_val = 120000, Log_level = TIMEQUT];

/* Set the current val ues of Tinmeout_val to 60000, and save the val ue.
The current and saved val ues of are 60000. */

set Timeout_val = 60000;

save Ti meout _val;

/* Push 30000 to the top of the Tinmeout_val stack, making it the cur-
rent value. 60000 is now the second el enent on the stack. */
push Ti nmeout _val = 30000;

/* Wite values to standard output. */
show [Ti neout _val, Log_level];

Ti meout _val = 30000

Log_l evel = TI MEQUT

/* Set the current value of Timeout_val to 20000. The Ti meout _val
stack now contai ns 20000 and 60000. */

set Timeout_val = 20000;

/* Push ALL to the top of the Log_|l evel stack, nmaking it the current

value. TIMEQUT is now the second el enent on that stack. */
push Log_l evel = "ALL";

See Also pop eval set

Command Reference 6-81

putenv

putenv

Library Routine

Description

Syntax

Comments

Example

See Also

rand

Library Routine

Setsthe vaues of WindowsN T or U N IX environment varigbles from within a
virtud user script.

int putenv (string)

Syntax Element ’Description

string A string expression of theform nane=val ue specifyingthe
environment variable name and vaue.

The put env routine, likethe C routine of the same name, setsthe vaues of
WindowsN T or UN IX environment variablesfrom within avirtua user script.

If put env completes successfully, it returnsavaue of 0. Otherwiseg, it returnsa
nonzero vaue.

ThisexamplesetsLI M T to 100:

string nane;
string val ue;

name = "LIMT";

val ue = "100";
putenv (name + "=" + val ue);
get env

Description
Syntax

Comments

6-82

Returnsarandom integer in the range 0 to 32767.
int rand ()

Ther and routineissimilar toitscorresponding C library routine but does abetter
job of generating random numbers.

VU Language Reference

Example

See Also

ReadLine

ReadLine

Ther and, srand, uni f or m and negexp routines enable the VU language to
generate random numbers. T he behavior of these random number routinesis
affected by theway you set the Seed and Seed Flags optionsin aLoadT est schedule.
By default, the Seed generatesthe same sequence of random numbers but sets
unique seedsfor each virtua user, so that each virtua user has adifferent random
number sequence. For more information about setting the seed and seed flagsin a
schedule, seethe UdngRationa L cadT et manud.

srand usesthe argument seed asaseed for anew sequence of random numbers
to bereturned by subsequent cdlsto ther and routine. If sr and isthen cdled with
the same seed vaue, the sequence of random numbersisrepeated. If r and iscalled
beforeany cdlsaremadeto sr and, the same sequenceisgenerated aswhen sr and
isfirst caled with aseed vdue of 1.

Thisexample setsarandom delay. It first definesamaximum delay of 10 seconds,
and then usesther and routineto delay arandom amount of time from 0 to 10
seconds:

#defi ne MaxDel ay 10

delay_time = rand() % (MaxDelay + 1);
del ay(del ay_time * 1000);

uni form negexp srand

VU Toolkit Function: File I/0

Description
Syntax

Readsaline from the open file designated by fi | e _descri pt or.

#define _PV__FI LEI O NOARAP

#define PV FILEIO COWENT "deliniter characters"
#define _PV_FI LEI O WHI TESPACE " whi t espace characters"
#define _PV_FILEI O BLANKLI NE

#i ncl ude <sne/fil eio. h>

func ReadLine(file _descriptor)

int file descriptor;

Command Reference 6-83

ReadLine

Comments

6-84

Syntax Element

Description

delimter characters

The charactersthat delimit comments. T he default delimiter
isa# . All text following acomment delimiter, up to end of
line, isremoved.

Do not separate delimiter characterswith white space or any
other character. M ultiple contiguous occurrences of the
delimiter are considered asasingle delimiter. All text
following acomment delimiter, up to end of line, isremoved.

whi t espace characters

The charactersthat are considered as white space for
trimming thelineread. T he default isthe tab character (\t).
Do not separate delimiter characterswith white space or any
other character. M ultiple contiguous occurrences of the
delimiter are considered asasingle delimiter.

file_descriptor

The open filethat you want to read.

The ReadLi ne function returnsasingle line of datafrom the open fileidentified
by fil e descri ptor.In processing thefile, the following actions occur:

» Linesbeginning with acomment delimiter are skipped.

» Tralingcommentsare removed from theline.

» All white space isremoved from the end of the line (trimming occurs after
comments have been removed).

» Blank lines(after trimming comments and white space) are skipped.

» Alineconsstingonly of thetilde character (~) resultsin ablank line being read.

» ReadLi ne returns 1 if successful, and -1 if no data is read.

By default,ReadLi ne skips any line that is only white space, and wraps back to the
top of the file when the end of file is reached. The function returns 1 on success, and

—1 on failure. The string variableast _Li ne contains the line read by the most
recent successful invocation RéadLi ne.

When the macro constanPV_FI LEI O NOWRAP is defined ReadLi ne returns

failure after reaching the end of the file. The default behavior is to wrap back to the

top of the file.

The macro constantPV_FI LEI O COMVENT allows you to redefine the characters

that are considered as comment delimiters.

VU Language Reference

reset

Themacro congant _PV_FI LEI O WHI TESPACE definesthe charactersthat are
considered aswhite spacefor trimmingthelineread. The default isthetab character

().

Themacrocongant _PV_FI LEI O BLANKLI NE definesastringthat, when read as
theonly item in aline, returnsablank line. The default stringis™ ~" . Setting this
gringto null (" ") disables skipping of blank lines, and returnsablank line if the
input contains only white space, or white space followed by acomment.

Example This example opens afile and inserts datauntil the end of thefile:

#i ncl ude <VU. h>

#define _PV_FI LEl O NOARAP 1
#define _PV_FI LEI O FI ELD "
#i ncl ude <sme/fileio.h>

#def i ne | DX_STUDENT 1 /* STUDENT is 1st field */
#define | DX_CLASS 2 /* CLASS is 2nd field */
#def i ne | DX_GRADE 3 /* GRADE is 3rd field */
{ : . :
/* open input data file for transaction A */
transA fd = open ("transA_input_file", "r");
/* loop until input data is exhausted */
whil e (ReadLi ne(transA fd) !'= -1)
{
sql exec ["Insert A"]
"1 NSERT | NTO REPORTCARD (STUDENT, CLASS, GRADE) VALUES ("
+ I ndexedFi el d(1 DX_STUDENT) + ", "
+ | ndexedFi el d(| DX_CLASS) + ",
+ | ndexedFi el d(| DX_GRADE) + ") "
}
}
See Also Next Fi el d I ndexedFi el d Next SubFi el d | ndexedSubFi el d
SHARED_READ

reset
Environment Control Command

Description Changesthe current vaue of aVU environment variable to itsdefault vaue, and
discards dl other vauesin the stack.

Command Reference 6-85

restore

Syntax reset [env_var_list];
Syntax Element Description
env_var_list U seoneof thefollowing for env_var_Ii st:

» Alig of oneor more environment variables, separated by
commas and optionaly by white space. If
env_var_| i st contansoneitem, the bracketsare
optiond. If env_var_Ii st contansmorethan one
item, r eset operateson them from left to right.

» ENV_VARS. Thisspecifiesdl of the environment
variables.

Comments Thecurrent value of each varigblein env_var_| i st is set to that variable’s default
value. All other values on that variable’s stack are discarded. The default and saved
values of the variables ienv_var_[i st are unchanged.

Example This example changes the valuesTommeout _val andLog_| evel , clears the
stack, and then sets the values to their default values.

/* Set values for Timeout_val and Log level. */
set [Tinmeout_val = 120000, Log_level = TI MEQOUT];

/* Set the current val ues of Tinmeout_val to 60000, and save the val ue.
The current and saved val ues of are 60000. */

set Timeout_val = 60000;

save Ti nmeout _val;

/* Push 30000 to the top of the Tinmeout_val stack, making it the cur-
rent value. 60000 is now the second el enent on the stack. */
push Ti meout _val = 30000;

/* Reset the Tinmeout_val and Log_level */
reset [Tinmeout_val, Log_level];

show [Ti neout _val, Log_level];

Ti meout _val = 120000

Log_l evel = TI MEQUT

See Also set

restore
Environment Control Command

Description Makes the saved value of a VU environment variable the current value.

6-86 VU Language Reference

save

Syntax restore [env_var_Ilist];
Syntax Element Description
env_var_list U seoneof thefollowing for env_var_Ii st:

» Alig of one or more environment variables, separated by
commas and optionaly by white space. If
env_var_| i st contansoneitem, the bracketsare
optiond. If env_var_Ii st contansmorethan one
item, r est or e operaeson them from left to right.

» ENV_VARS. Thisspecifiesdl of the environment
variables.

Comments Thecurrent vaue of each variablein env_var | i st is set to that variable’s saved
value. The saved values of the variablesmv_var_1i st are unchanged. This is
the inverse of theave command.

Example This example sef6i meout _val to 60000 ms, saves this value to the stack, sets
Ti meout _val to 30000 ms, and then restores the value to 60000 ms:

set Ti meout _val = 60000;
save Ti meout _val;
set Timeout_val = 30000;

restore Tineout_val;
show Ti meout _val ;

See Also save reset

save
Environment Control Command

Description Saves the value of a VU environment variable.

Syntax save [env_var_list];
Syntax Element Description
env_var_list U seone of thefollowing for env_var_Ii st:

» Aligt of one or more environment variables, separated by
commas and optionaly by white space. If
env_var_l i st contansoneitem, the bracketsare
optiond. If env_var_Ii st contansmorethan one
item, save operaeson them from left to right.

» ENV_VARS. Thisspecifiesdl of the environment
variables.

Command Reference 6-87

SaveData

Comments Thesaved vdue of each variablein env_var | i st is set to that variable’s current
value. The current values of the variableginv_var_1i st are unchanged. This
is the inverse of theest or e command.

Example This example sef6i meout _val to 60000 ms, saves this value to the stack, sets
Ti meout _val to 30000 ms, and then restores the value to 60000 ms:
set Timeout_val = 60000;
save Ti meout _val;
set Timeout_val = 30000;
restore Timeout_val ;

show Ti meout _val ;
Ti meout _val = 60000

See Also restore

SaveData
VU Toolkit Function: Data

Description Stores the data returned by the most resghinr ecv command into a data set.

Syntax #define _PV_FILEI O REBUI LD
#i ncl ude <sne/dat a. h>
proc SaveDat a(dat a_nane)
string data_nang;

Syntax Element ’Description

dat a_nane ‘Astringthat namesthe datathat is saved.

Comments This procedure stores the data retrieved by the most reqémr ecv command.
Once saved, the data can be referenced using the name given in the string argument
dat a_nane.

After the data is stored, the column headers are examined to determine the number
and size of the columns. This information is stored for use by the functions that
parse the data based on rows and columns. Because this is an expensive operation, it
is performed only the first time a data set is created using this name, or when the
name has been cleared usingfneeDat a command.

If a data set already exists with the given name, the data is replaced but the field
definitions are retained. If the new data does not have the same structure as the
original, the results of subsequent attempts to parse the fields are undefined. To
avoid this problem, you can create different data sets for different sets of queries, or
you can explicitly clear the data set wkheeDat a before doing the next

SaveDat a.

The stored data sets and their field definitions persist across script boundaries.

6-88 VU Language Reference

scanf, fscanf, sscanf

Themacro constant _PV_DATA REBUI LD, when defined, forcesSaveDat a tore-
compute field countsand sizesfor every cdl, even if the dataset dready exisswith
thisname. Whileit providesan extradegree of protection from usingthe samename
for different types of datasets, if dso increasesthe amount of processng required in
the script.

Because datais stored using only the results of the most recent sql nrecv
command, any VU environment variablesthat affect the datareturned dso affect this
function. In particular, it assumesthat only one table was fetched. If

Tabl e_boundari es issetto" OFF" and multipletablesareretrieved, theresults
of thisfunction and subsequent datacommands on the stored data have undefined
results.

Example This example savesthe dataretrieved in thet np_r esul t s buffer, soresthe
second field in accessprofil e_i d,thenfreest np_resul ts.

#i ncl ude <VU. h>
#i ncl ude <sne/ data. h>

string accessprofile_id;

sqgl exec ["test_gr003"]
"sel ect PASSWORD, ACCESSPROFI LEI D, | NACTI VE,
"PW_UPDATE_DT from USERACCOUNT where NAME = "davidj™;
sqlnrecv ["test_gr004"] ALL_ROWS;

SaveDat a ("tmp_results");
accessprofile_id = GetDatal("tmp_results", 2);
FreeData ("tmp_results");
sglexec [“test_gr005"]
"select LOGONNAME, LOGONPASSWD, EXP_DAYS from "

"ACCESSPROFILE where ACCESSPROFILEID ="
+ accessprofile_id;

See Also AppendDat a FreeAl | Data FreeData GCetData Get Dat al

scanf, fscanf, sscanf
Library Routine

Description Reads specified input from standard input, afile, or astring expression.

Command Reference 6-89

scanf, fscanf, sscanf

Syntax int scanf (control_str [, ptr_list])

int fscanf (file_des, control_str [, ptr_list])

int sscanf (str, control_str [, ptr_Ilist])

Syntax Element Description

control _str A gtring expression that specifieshow to interpret the input
that isread.

ptr_list Specifieswhere the input is placed after it isread.

file_des The integer file descriptor, obtained from open, of thefile
from which theinput isread.

str A gring expresson from which the input istaken.

Comments Thescanf , f scanf , and sscanf routinesreturn the number of input items
successfully read and assigned even if thisislessthan the requested number. Each
returnsEOF (asdefined in the standard VU header file) if the input endsbeforethe
firg atempt to match the format control string.

Thescanf ,f scanf, and sscanf routinesare closely related, the difference
among them iswhere they read the specified input.

Specify cont rol _str and ptr_1Ii st liketheformat control string and pointer
argumentsin the C library routinesscanf , f scanf , and sscanf , with the
following exceptions:

>

6-90

If amaximum field width isnot given for astring conversion specification (for
exampleasin % or % a- z]), awidth of 100 isinserted. T herefore, if you
expect agring exceeding 100 characters, specify an appropriately large field
width. U nused spaceisfreed after the assgnment ismade, so alargefield width
does not waste space.

Floating-point converson characters(e, E, f, F, g, G) are not dlowed. They are
unnecessary, because the VU language does not have floating-point values.

Integer conversion characters(d, o, u, X) aretransparently changed to uppercase
to indicate that their corresponding pointer arguments are addresses of 32-bit
(non-shared) integer veriables.

control _strandptr_Iist arechecked & runtimeto ensure that their
syntaxiscorrect, tha every conversion specification hasapointer argument, and
that each pointer argument isan addressof the correct variabletype (non-shared
integer or string) for the corresponding conversion specification. Pointersto
argumentsare not dlowed. Asin C, extrapointer argumentsare ignored.

VU Language Reference

script_exit

Theseroutines sop reading input if they encounter the end of thefile, after they
have handled the entire cont r ol _st r, or if input dataconflictswith the format
control string. T he conflicting dataisleft unread.

Example Inthisexample, if thestringabcdef g issupplied on sandard input, then the string
abc isassigned topart 1 and thedringdef g isassigned to part 2.

scanf ("9%8s%", &partl, &part2);]))
In thisexample, if the file with file descriptor i nf i | e_des containsthe characters

abcde 12345,thenthedringabcde isassignedto st r 1 and numisassigned the
integer 12345.

fscanf(infile_des, "% a-zA- Z]%", &strl, #

Inthisexample, if thevaueof thesringdat a_st r is\044, then the character $ (or
equivaently the decimd vaue 36) isassigned to char _ar g:

sscanf (data_str, "\9%80", &char_arg);

See Also N one.

script_exit
Library Routine

Description Exitsfrom ascript.

Syntax int script_exit (nsg_str)
Syntax Element ’ Description
nmeg_str A gtring expression specifying an optional message to be

written to the sandard error file.

Comments Thescri pt_exit routinecausesthe current script to exit immediately. If
nsg_str isnot of zero length, it iswritten (before exiting the script) to standard
error, preceded by the following explanatory line of text:

Scri pt script_nane exited at user's request with message:

scri pt_naneisreplaced by the appropriate script name (corresponding to the
read-only variable _scri pt). Virtud user execution continues with the next
scheduled script, just asif the current script had completed normally. Therefore,
scri pt_exit never returns, dthough for syntacticd purposesitsreturn vaueis
considered to be an integer.

Command Reference 6-91

set

Example

See Also

set

This example causesthe current script to exit. N o message is written to standard
error. Emulation proceedswith the next scheduled script, if any:

script_exit("");

user_exit

Environment Control Command

Description SetsaVU environment variable to the specified expression.
Syntax set [env_assign |ist];
Syntax Element Description
env_assign_Iist Aligt of oneor moreenvironment variable assignments, of the
form env_var = expr,whereenv_var isany VU
environment variable and expr isan expression separated by
commas and optionaly by white space. If
env_assi gn_I i st contansoneitem, the bracketsare
optiond. If env_assi gn_I i st contansmorethan one
item, set operateson them from left to right.
Comments The current value of each env_var in env_assi gn I i st isreplaced by the
vaue of the corresponding expr .
Example Thisexample setsthe Ti meout _val and Log_| evel vaduesand writesthem to
standard output.
set [Timeout_val = 60000, Log_level= ALL];
show [Ti neout _val, Log_level];
See Also N one.
set_cookie
Emulation Function
Description Addsacookie to the cookie cache.
Syntax set _cooki e(nane, val ue, domain, path [, secure])
Syntax Element Description
name A string expression that specifiesthe name of the cookie.
val ue A string expression that specifiesthe vaue for the cookie.
6-92 VU Language Reference

SHARED_READ

Syntax Element Description

donai n A string expression that specifies the domain for which this
cookieisvalid.

pat h A string expression that specifies the path for which this
cookieisvaid.

secure An optiond string expression tha, if given, providesthe

should be" secur e".

secure modifier for the cookie. The vaue of this parameter

Comments Theset _cooki e function createsthe named cookie with the given vaue. If a
cookie dready existswith thisnamefor the given domain and path then
set _cooki e() setsthe vaue of that cookieto val ue.
Theexpiraion date of the cookieisset sufficiently in thefuturethat it will not expire
duringtherun.
Example T his example adds a secure cookie named AA002 for doman avenuea. comand
pah/ .
set _cooki e(" AA002", "00932743683-
101023411/ 933952959", *".avenuea.cont, "/",
"secure");
See Also COOKI E_CACHE expi re_cooki e
SHARED READ
VU Toolkit Function: File I/O
Description Allows multiple usersto share afile.
Syntax #define _PV__FI LEI O NOARAP

#define PV _FILEIO COWENT "deliniter characters"
#define _PV_FI LEI O WHI TESPACE " whi t espace characters"
#define _PV_FILEl O BLANKLI NE

#i ncl ude <sne/fileio. h>

shared prefix | ock, prefix offset;

SHARED READ fil enanme, prefix)

Command Reference

6-93

SHARED_READ

Comments

6-94

Syntax Element Description

delinmter characters |Thechaacterstha delimit comments. T he default delimiter
isa# . All text following acomment delimiter, up to end of
ling, isremoved.

Do not separate delimiter characterswith white space or any
other character. M ultiple contiguous occurrences of the
delimiter are considered asasingle delimiter. All text
following acomment delimiter, up to end of line, isremoved.

whi t espace characters |Thechaactersthat are considered aswhite space for
trimming thelineread. T he default isthe tab character (\t).
Do not separate delimiter characterswith white space or any
other character. M ultiple contiguous occurrences of the
delimiter are considered asasingle delimiter.

prefix_Ilock A variable to ensure that only one user a atime accessesthe
file.

prefix_of fset A variable to keep track of the next location to be read.

filenane The name of the shared file.

prefix Any string congtant (for example, myfil e_| ock and

nyfil e_of fset). prefixisnotasring consant, butisa
tagthe precompiler usesto createthe actud variadble name; do
not enclose the prefix tagsin quotes.

SHARED READ providescoordinated accessby multiple usersto thefile specified by
the fi | enane argument, such that no two usersretrieve the same line of data

Two shared variablesare used to coordinatethereads. These must bedefined in your
script with the namesmatchingtheformat prefi x_| ock and prefi x_of f set.

SHARED READ opensthefileand closesit again upon exiting. SHARED READ uses
theReadLi ne function to perform theactud filel/O, thereforedl of the comments
and white space processing described under ReadLi ne gpply to SHARED READ.
TheNext Fi el d and | ndexedFi el d functions can dso be used &fter a
SHARED READ.

The gring variable Last _Li ne containsthe line of datareturned by the most
recent call to SHARED READ.

When themacro congtant _ PV_FI LEI O_NOARAP isdefined, SHARED READ
returnsfalure after reachingtheend of thefile. T he default behavior isto wrap back
to thetop of thefile.

VU Language Reference

show

Themacroconstant _PV_FI LEI O_ COMVENT dlowsyou to redefinethe characters
that are consdered ascomment delimiters. All text following acomment delimiter,
up to end of line, isremoved.

Themacro congant _PV_FI LEI O WHI TESPACE definesthe charactersthat are
considered aswhite spacefor trimmingthelineread. The default isthetab character

().

Themacrocongant _PV_FI LEI O BLANKLI NE definesastringtha, when read as
theonly item in aline, returnsablank line. The default stringis™ ~" . Setting this

stringto null (" ") disables skipping of blank lines, and returnsablank lineif the
input contains only white space, or white space followed by acomment.
Example
#i ncl ude <VU. h>
#defi ne _PV_FI LEl O NOARAP 1
#define _PV_FILEI O _FI ELD "
#i ncl ude <sne/fileio. h>
#defi ne | DX_STUDENT 1 /* STUDENT is 1st field */
#define | DX_CLASS 2 /* CLASS is 2nd field */
#def i ne | DX_GRADE 3 /* GRADE is 3rd field */
shared transA | ock, transA offset;
while (1)
{
SHARED READ(" transA input_file", transA);
if (Last_line == ""Y)
br eak;
sql exec [I nsert A']
"I NSERT | NTO REPORTCARD (STUDENT, CLASS, GRADE) VALUES ("
+ | ndexedFi el d(| X (_ STUDENT) + ", "
+ | ndexedFi el d(| DX_CLASS) + "
+ | ndexedFi el d(| DX_GRADE) + ") "
}
}
See Also I ndexedFi el d | ndexedSubFi el d NextFi el d ReadLi ne Next SubFi el d
show

Environment Control Command

Description Writesthe current vaues of the specified variablesto sandard output.

Command Reference 6-95

sindex

Syntax show [env_var_Iist];
Syntax Element Description
env_var_list U seoneof thefollowing for env_var_Ii st:

» Alig of oneor more environment variables, separated by
commas and optionaly by white space. If
env_var_| i st contansoneitem, the bracketsare
optiond. If env_var_Ii st contansmorethan one
item, show operates on them from left to right.

» ENV_VARS. Thisspecifiesdl of the environment
variables.

Comments The showcommand doesnot dter any vauesof environment variables. showdoes
not escgpe unprintable characterswhen printing string expression vaues. For bank
variables, stringsare listed first (enclosed in double quotation marks), followed by
integers.

Example Thisexamplewritesthevauesof Ti neout _val and Log_| evel tostandard
output:

show [Ti neout _val , Log_Il evel];
Ti meout _val = 120000
Log_l evel = TI MEQUT

See Also N one.

sindex
Library Routine

Description Returnsthe postion of the first occurrence of any character from a specified set.

Syntax int sindex (str, char_set)
Syntax Element Description
str The string expression to search.
char_set The charactersto search for within st r.

Comments Thesi ndex (gtring index) routine returnsthe ordind postion within st r of the
first occurrence of any character from char _set . If no occurrencesare found,
si ndex returnsan integer vaue of 0.

6-96 VU Language Reference

sock_connect

Theroutinesci ndex, | ci ndex, si ndex, and | si ndex return postiond
information about either thefirst or last occurrence of aspecified character or set of
characterswithin astring expression. st r span returnsdistance information about
the span length of aset of characterswithin astring expression.

Example Thisexamplereturnstheinteger value 2, because 2 isthe postion of the first vowel
inthestring”" nbo goo gai pan":
si ndex("moo goo gai pan", "aeiou");
See Also ci ndex | ci ndex | si ndex strspan strstr

sock _connect
Emulation Function

Description Opensasocket connection.

Syntax i nt sock_connect (/abel, address)
Syntax Element Description
| abel A string expression that identifiesthe name of the connection.
addr ess A string expression of theform host :port. port is

required. host isasymbolic host nameor an IP addressin
dotted-decima form. Equivaent examples: " cal vi n: 80"
and" 152. 52. 110. 86: 80" (Assuming calvin’s IP address
is152. 52. 110. 86).

Comments Thesock_connect function returnsan integer vdue: 0 or lessfor falure, or a
unique connection number greater than or equd to 1 for success. If
sock_connect fals an entryiswrittento_error anderror _text.

Thesock_connect function makesaconnection to the server defined by

addr ess, and identifiesthenameof thisconnection as/ abel (for theTracereport
output). Supply adescriptive nameto makeit easier to identify the connection when
you examine the outputs.

Thesock_connect function sets the “first connect’{ c_t s) and “last connect”
(_I c_t s) read-only variables.

Thesock_connect function is affected by the following VU environment
variablesRecor d_| evel , Ti meout _val , Ti meout _scal e, Ti meout _act,
Connect _retries,and Connect _retry_interval .

Command Reference 6-97

sock _create

Example

See Also

This example connectsto acomputer named cadvin. The connection number is
returned in thevariableconnl:

int connl
connl = sock_connect ("cal vin", "152.52.110.86:25");

sock_di sconnect

sock create
Emulation Function

Description

Syntax

Comments

6-98

Creates asocket to which another process may connect.

int sock create ([service | port [, type [, backlog]]])

Syntax Element Description

service A string expression that namesthe service whose port isto be
used.

port An integer expression specifying the port to use.

type An integer specifying the type of socket to create T he only
currently supported typeis SOCK_TYPE_STREAM
defined in VU .h.

backl og An integer specifying the maximum number of pending
incoming connections. The default is 1.

LoadT est automaticdly generatesthe VU code necessary to accept incoming socket
connectionsfrom aserver by inserting the following emulation commandsin your
socket script: sock_creat e, sock_f dopen, sock_i si nput, and
sock_open.

Thesock_cr eat e function createsan Internet socket and preparesfor incoming
connections. It returnsthe port of the created socket.

Thedesired port for the created socket may be specified by either aservice name or
by aport number. If the port isnot specified or isgiven as0, the socket usesasystem-
assigned port.

VU Language Reference

Example

See Also

sock_disconnect

Thisexample createsasocket on port 80 and then waitsfor aconnection to be made
on that socket:

int port, con;
port = sock_create(80);

/* do sonething here to |let other process know that
socket is ready for connections. */

con = sock_open(“sock_open”, port);

set Server_connection = con;
sock_nrecv 1;

sock_open sock_connect sock_fdopen

sock_disconnect
Emulation Function

Description Disconnects asocket connection.
Syntax i nt sock_di sconnect (connection)
Syntax Element ‘ Description
connection An integer expression specifying aconnection number that
has been returned by sock_connect and hasnot been
disconnected. If connect i onisinvdid,
sock_di sconnect generatesafad runtimeerror.
Comments Thesock_di sconnect function returns 1 for successand O for falure.
Example T his example disconnectsthe connection conn1:
sock_di sconnect (connl);
See Also sock_connect
sock _fdopen

Emulation Function

Description

Associates afile descriptor with asocket connection.

Command Reference 6-99

sock_isinput

Syntax int sock_fdopen (/abel, fd)
Syntax Element Description
| abel A string expression that identifiesthe name of the connection.
fd An integer expression that identifiesthefile descriptor of a
socket created by externd C code.

Comments LoadT est automaticdly generatesthe VU code necessary to accept incoming socket
connectionsfrom aserver by inserting the following emulation commandsin your
socket script: sock_creat e,sock_f dopen, sock_i si nput, and
sock_open.

Thesock_f dopen function returnsan integer value: 0 or lessfor failure, or a
unique connection number greater than or equd to 1 for success. The
sock_f dopen function assignsthe given file descriptor to aconnection and
identifiesthe name of thisconnection aslabel (for the Trace report output). The f d
parameter must be afile descriptor for asocket connection created by an externd C
function.
Thesock_f dopen function isaffected by theRecor d_| evel VU environment
variable.
Example This example creates a pecidized socket viathe externd C function and then uses

that socket asthecurrent Server _connecti on.

external _C int func nmake_socket ()

{}

int fd, con;

fd = make_socket ();

con = sock_f dopen(“sock_fdopen”, fd);

set Server_connection = con;

sock_nrecv 1;

See Also sock_create sock_connect sock_open

sock_isinput

Emulation Function

Description Checksfor available input on asocket connection.

Syntax int sock_isinput ()

6-100 VU Language Reference

Comments

Example

See Also

sock_nrecv

LoadT est automaticdly generatesthe VU code necessary to accept incoming socket
connectionsfrom aserver by inserting the following emulation commandsin your
socket script: sock_cr eat e, sock_f dopen, sock_i si nput, and
sock_open.

Thesock_i si nput function returnsan integer vaue equd to the number of
characters currently available on the socket connection that have not been read by
any of the socket receive commands. T hisfunction does not process the incoming
data Incoming datais still available for processing by a socket receive emulation
command.

Thesock_i si nput function isaffected by the Ser ver _connecti on VU
environment variable.

Thisexample conditiondly readsthe datafrom the socket until no more dataexists.
Thisexample isuseful asasubstitute for asock_nrecv [cnd_j d] $ command.
Although the $ tellsLoadT est to read until the end of file, the command does not
terminate if the socket is not closed by the server.

Set Server_connection = connl;

if (n = sock_isinput())
sock_nrecv n;

sock_nrecv

sock _nrecv
Receive Emulation Command

Description

Syntax

Comments

Receives n bytesfrom the server.

int sock nrecv [cnd idl n_bytes

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

n_bytes An integer expression, specifying the number of bytesto read
from the connection identified by Ser ver _connecti on.

Thesock_nrecv command receivesn_byt es from the server specified by the
VU environment variable Ser ver _connect i on. Binary dataistrandated into
embedded hexadecimal strings. See UnprintableHTTP o Soke Dataon page 3-35.

If Ti meout _val (subject to scading) milliseconds elapsesbeforesock _nrecv is
satiffied, it falsand returns 0. Otherwise, it passesand returns 1.

Command Reference 6-101

sock_open

Thesock_nrecv command is afected by the following VU environment
variables Ti meout _act, Ti neout _val , Ti meout _scal e, Log_|I evel ,
Record_| evel ,Max_nrecv_saved, and Server _connecti on.

Max_nrecv_saved agopliesto the actud datareceived, before expanding any
binary datainto embedded hexadecimd grings.

Example This example receives 1355 bytes from the server conn1:

Set Server_connection = connil;
sock_nrecv ["cnd001"] 1355;

See Also sock_recv sock_send sock_i si nput

sock _open
Emulation Function

Description Waitsfor asocket connection from another process.

Syntax i nt sock open (/abel, port)
Syntax Element Description
| abel A gring expression that identifiesthe name of the connection
port An integer expression that identifiesthe port of asocket
created by sock_cr eat e.

Comments LoadT est automaticdly generatesthe VU code necessary to accept incoming socket
connectionsfrom aserver by inserting the following emulation commandsin your
socket script: sock_creat e,sock_f dopen, sock_i si nput, and
sock_open.

Thesock_open function returnsan integer vaue: 0 or lessfor falure, or aunique
connection number greater than or equd to 1 for success. If sock_open falls, an
entry iswrittento _error and _error_text.

Thesock_open function watsfor aconnection from another process and
identifiesthe name of thisconnection as/ abel (for the Tracereport output). The
port parameter must be aport returned by sock_cr eat e.

Thesock_open function sets the “first connect”{c_t s) and “last connect”
(_l c_ts) read-only variables.

Thesock_open function is affected by the following VU environment variables:
Record_| evel , Ti meout _val , Ti neout _scal e, andTi neout _act .

6-102 VU Language Reference

Example

See Also

sock _recv

sock_recv

Thisexample createsasocket on port 80 and then waitsfor aconnection to be made
on that socket:

int port, con;

port = sock_create(80);
/* do sonmething here to |let other process know that
socket is ready for connections */

con = sock_open("sock_open", port);
set Server_connection = con;
sock_nrecv 1;

sock_create sock_connect sock_fdopen

Receive Emulation Command

Description

Syntax

Receives datauntil the specified delimiter string is found.

int sock recv [cnd _id] reply

Syntax Element Description

cnd_id The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

reply A gtring expresson specifying the desired reply from the

server. Daaisreceived from the connection identified by
Server _connecti on until repl y isencountered.

r epl y can contain the following specid characters:

» " (carat). Asthefirst characterin r epl y, thecara signifies
binding to the beginning of the response, such asthat used
in VU regular expressonsfor themat ch() built-in
function. It isconsidered an error if no charactersfollow
the”.

» $ (dollar sign). Asthelest character in r epl y, the dollar
sgn signifies binding to the end of the response (for
example, the end of the connection) such asthat used in
VU regular expressionsfor themat ch() built-in function.
If no charactersprecedethe$, sock_r ecv readsuntil the
end of connection, thus matching any combination of O or
more received characters.

Tooverridethespecia meaningof * and$, escapethem with
abackdash or use embedded hex string notaion (5e for the
carat and 24 for the dollar sign). When used anywhere else
within r epl y, the carat and dollar sign have no specid
meaning.

Command Reference 6-103

sock_send

Comments

Example

See Also

sock_send

This command returnsdata until the specified pattern appears. Binary datais
trandated into embedded hexadecimad strings. See UnprintableH TTP o Soke Data
on page 3-35.

If Ti meout _val (subject to scading) milliseconds elapsesbeforesock_r ecv is
satiffied, it falsand return 0. Otherwise, it passesand returns 1.

Thesock_r ecv command isaffected by thefollowing VU environment veriables:
Ti meout _act, Ti neout _val , Ti meout _scal e, Log_|I evel ,
Record_| evel ,Max_nrecv_saved, and Server _connecti on.

Max_nrecv_saved appliesto the actud datareceived, before expanding any
binary datainto embedded hexadecimd srings.

Thisexample matchesas soon asthe string” This is an extrenely smal |
file\r\n" isfound anywhere within the response:

sock_recv ["cnd00lr"] "This is an extrenely small file\r\n";

Thisexamplereadsuntil the end of the connection, and passesonly if _r esponse
endswith "This is an extrenely small file\r\n":

sock_recv ["cnd002r"] "“This is an extrenely small file\r\n$"

Thisexample matchesonly if thefirst 20 charactersof _response =="This i s
an extrenel y".If thefirg 20 charactersdo not match, sock_r ecv continues
to read until the end of the connection or atimeout.

sock_recv ["cnd003r"] "AThis is an extremely"

This example reads until the end of the connection. It failsonly if Ti neout _val
(subject to scaling) milliseconds expires before reaching the end of the connection:

sock_recv ["cnd003r"] "$";

sock_nrecv sock_recv

Send Emulation Command

Description

6-104

Sends datato the server.

VU Language Reference

sqlalloc_cursor

Syntax int sock_send [cnd_id] data
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

dat a A gring expression that is parsed for embedded hexadecima
sringsdelimited by grave accent (*) characters. See
UnprintableHTTP o Sake Dataon page 3-35.

Comments Thesock_send command sendsdatato the connection specified by the VU
environment variable Ser ver _connect i on. Thesock_send command
returns an integer value — O for failure, and 1 for success.

Thesock_send command is affected by the following VU environment variables:
the think time variablet,og_| evel ,Record_I evel ,Server _connecti on,
Suspend_check, Ti meout _val , andTi meout _scal e.

Example This example sendgddat a to send" to the serveconnl:
set Server_connection = connl;
set Think_avg = 27;
sock_send ["cnd001"] "data to send";

See Also sock_nrecv sock recv

sglalloc_cursor
Emulation Function

Description Allocates a cursor for use in cursor oriented SQL emulation commands and
functions.

Syntax int sqglalloc_cursor()

Comments Thesql al | oc_cur sor function allocates a cursor for use by
sql decl are_cursor,sqgl open_cursor,sql cursor_setoption,or
sql syst eni nf 0. The returned cursor ID is placed in the read-only
variable cur sor _i d.

Command Reference 6-105

sglalloc_statement

Example Thisexampledlocatesacursor withsql al | oc_cur sor and then usesthat cursor
to execute aquery.
stmt_2 1 id = sqglalloc_cursor();
sql cursor_setoption(stnt_2_1 id, ODBC_CURSOR TYPE,
ODBC_CURSOR_KEYSET_DRI VEN) ;
sql cursor _setoption(stnt_2_1 id, ODBC_CONCURRENCY,
ODBC_CONCUR VALUES) ;

set Cursor_id = stnmt_2_1 id;
sql open_cursor ["val _6001"] "", "select @®ervernane";

push CS_bl ocksi ze = 100;

sql fetch_cursor ["val _6002"] stnt_2 1 id, ALL_ROW5;
set Cursor_id = 0;

sqglfree_cursor(stnt_2 1 id);

See Also sql free_cursor sql open_cur sor
sql decl are_cur sor sql cursor_setoption

sglalloc_statement
Emulation Function

Description Allocatesacursor dataareafor Oracle playback.

Syntax int sqglalloc_statenent ();

Comments Thesql al | oc_st at enment functi on alocaesacursor daaarea(CDA) for
Oracle playback. Thereturned satement ID isplaced in the read-only variable
_statenent _id.

Example Thisexampledoesasel ect onstnti d_1 and fetchesonerow, then it doesa
sel ect onstntid_2 andfetchesdl rows. It then returnstostnti d_1 and
fetchesthe remaining rows.

stntid_1=sqlalloc_statenent();
set Statenment_id = stntid_1;
sql prepare "select * from custoners";

sqgl exec stntid_1;

sql nrecv 1;

stntid_2=sqlalloc_statenent();

set Statenment_id = stntid_2;

sql prepare "select distinct conposer from products";
sql exec stntid_2;

sqgl nrecv ALL_RONS;

set Statenent_id=stntid_1;

sqgl nrecv ALL_RONS;

See Also sql free_st at ement

6-106 VU Language Reference

sqlclose_cursor

sqglclose_cursor
Send Emulation Command

Description Closestheindicaed cursor.

Syntax int sqglclose cursor [cnd id]
[EXPECT_ERRCR ary,] [EXPECT_ROWN5 n,]| csr_id

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integerstha containsdl acceptableerror numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

n An integer that assignsthe of rowsthiscommand affects. The
default is-1, which indicates any number of rows. If nis

> =0, and the number of rowsthe SQL command processes
doesnot equd n, theresponse is unexpected.

csr_id Theinteger cursor identifier of an opened cursor.

Comments If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connect i on or if thecursor isnot open, an error isreported to both the
error file and the logfile.

After acursor isclosed, dl cursor commandswill fail except for sql open_cur sor
and sql free_cursor. Thecursor isreopened by sql open_cur sor .

sql cl ose_cur sor isaffected by the VU environment variable
Server _connecti on.

Example This example declares and opensthe cursor, manipulaesthe rowsin thetable, and
then closesthe cursor:

/* sqgl open_cursor inplicitly declares and then opens the cursor */
cursor _65537 = sql open_cursor ["hand002"] "cur"
"SELECT * FROM Room \t FOR UPDATE OF Roommum Type, Capacity"
UPDATE_CURSOR;

/* CS_blocksize is set to 1 to control the fetch api calls */
set CS bl ocksize =1

/* 4 TDS_CURFETCH NEXT packets of 1 row each are conbi ned

* into a single sqlfetch_cursor conmmand. */
sql fetch_cursor ["hand003"] cursor_65537 FETCH NEXT, 4;

Command Reference 6-107

sglcommit

See Also

sqgl del ete_cursor ["hand004"] cursor_65537, "Roont,
"Roomnum="2017 ’ Type="OFF ' Capacity="2"";

sqlfetch_cursor ["hand005"] cursor_65537 FETCH_NEXT;

sglupdate_cursor ["hand006"] cursor_65537, "Room",
"UPDATE Room Set Roomnum = @sql0_num , Type = @slql_type ,"
" Capacity = @sql2_cap ","Roomnum="2065 ' Type="OFF ™
"Capacity="2","2056", "lab", 4;

sqlfetch_cursor ["hand007"] cursor_65537 FETCH_NEXT;

sqldelete_cursor ["hand008"] cursor_65537, "Room",
"Roomnum="2111 ' Type="OFF ' Capacity="3"";

sqlfetch_cursor ["hand009"] cursor_65537 FETCH_NEXT;

sqlupdate cursor ["hand010"] cursor_65537, "Room",
"UPDATE Room Set Roomnum @sql0_| num, Type @slql type ,"
"Capacity = @sql2 cap "Roomnum="2220 ’ Type 'OFF
"Capacity="3","1111", of‘f 3;

sqlfetch_cursor ["hand011"] cursor_65537 FETCH_NEXT, 2;

sql cl ose_cursor ["hand012"] cursor_65537;

sql open_cur sor

sglcommit
Emulation Function

Description
Syntax

Comments

Example

6-108

Commitsthe current transaction.
int sqglcomit ()

Thesql commi t function isnot supported for Sybase and Microsoft SQL Server
databases. For Sybase and Microsoft SQL Server databases, use:

sql exec "commt transaction";

Usingsql conmi t on Sybase or Microsoft SQL Server database produces afata
runtime error.

sql conmi t isaffected by the VU environment variable Ser ver _connecti on.

Inthisexample, aconnection ismadetothet : cal vi n: PACserver. Thesql exec
expects commands to modify datain an Oracle database. T he datais committed to
the database and, then the connection is disconnected.

#include <VU.h>

{

t_calvin_PAC = sqglconnect("t_calvin_PAC", "scott", “tiger",
"t:calvin:PAC", "oracle7.3");

set Server_connection = t_calvin_PAC;

sglexec ['school001"] "alter session set nls_language="'AMERICAN" "
"nls_te"rritory="AMERICA™;

sglexec ["school002"] "select * from student";

sginrecv ["school003"] ALL_ROWS;

sglexec ["school004"] "insert into student VALUES (1,'LAURA', "
"L.L.R.", '63 Greenwood Drive, TORONTO ONT', "
"12-Jun-95', 'F")";

sqlcommit();

sgldisconnect(t_calvin_PAC);

VU Language Reference

See Also sqgl rol | back

sglconnect
Emulation Function

sglconnect

Description Logson to aSQL database server.

Syntax i nt sql connect (/abel, database | ogi n, pwd,
server, server_info [, connection_opts |)

Syntax Element

Description

| abel

A gring expression that isused asthe label for this server
connection in LoadT est report output. If / abel hasthevadue
"" dat abase_l ogi nand server agumentsae
combined into the default |abel

"dat abase_| ogi n@erver".

dat abase_I ogi n

A gtring expression that specifiesthe databaselogin ID for the
connection.

pwd A string expression that specifiesthe password of the database
loginID.
server A string expression that specifiesthe server.

server_info

A gtring expression that specifiesaproduct ID that isused to
locate the correct API library for playback.

connection_opts

An optiond string expression tha containsone or more
name= 'valu€' pairswhich give vendor-specific connection-
oriented options. All connecti on_opts in automaticaly
generated scripts are taken from the recorded session. The
supported names are described below.

Comments Thesql connect function connects dat abase | ogi nto ser ver with
password pwd. If the connection issuccessful, sgl connect returnsaconnection
ID, which isan integer for use with the Ser ver _connect i on environment
variable. If the connection isnot successful, sql connect returns0 and sets
_error and_error_text.

Command Reference

6-109

sglconnect

Supported connection options are asfollows.

Name Value

TDS_VERSI ON (‘n.n.n.n.). For Sybase and Microsoft SQL Server databases
only, asequence of integer digits that indicate the TD S version
used to communicate with the server. The default is 5.0.0.0. If
the server cannot support the requested TDS version, a lower
version is negotiated.

APP_NAVE (‘a.b.c.d.e.f.’). For Sybase and Microsoft SQL Server databases
only, an optional string that indicates the application name.
The value oAPP_NAME is taken from the client login request,

if present in the session. Otherwise, it does not appear in the
connection option string.

PACKET_SI ZE (’X). For Sybase only, an optional integer that indicates the size
of the network packet used to communicate with the server.

DRI VER_I NFO (‘value’). For ODBC only, a string that contains various

ODBC related information such as 'UID= DEFAULT;

PWD= DEFAULT' which causes the connect box to use the
default username and password that were set up with the
ODBC driver. To use the database login and password instead,
remove the UID and PWD from the DRIVER_INFO value.

SQ@._ODBC_CURSORS (‘value’). For ODBC only, controls what type of cursors to use
for playback. The value can be set to any of the following:
SQL_CUR_USE_IF_NEEDED

SQL_CUR_USE_ODBC

SQL_CUR_USE_DRIVER

Thesql connect function isaffected by the VU environment variables
Ti meout _val , Ti neout _scal e,and Record_I evel .

Example This example connectsto a Sybase server, setsthe server connection, and then
disconnects:
SYBASE=sql connect (" SERVER', "ron", "rondo", " SYBASEC", "sybase",
“TDS_VERSION="5.0.0.0' APP_NAME="Sample App™);
set Server_connection = SYBASE;

/* emulation functions */
sgldisconnect (SYBASE);

See Also sql di sconnect

6-110 VU Language Reference

sglcursor_rowtag

sglcursor_rowtag
Emulation Function

Description
Syntax

Comments

Example

Returnsthetag of the last row fetched.

string sql cursor_row ag(csr_id)

Syntax Element ’Description

csr_id ‘ Theinteger cursor identifier of an opened cursor.

Thesql cur sor _r owt ag function returnsastring that containsatag, or
bookmark, for thelast row fetched from acursor. In custom scripts, you can usethis
taglaterinsql cur sor _updat e andsqgl cur sor _del et e Saementsto update
or delete the specific row identified by the tag vaue.

The returned string isused asan argument to the emulation commands
sql del et e_cursor and sql updat e_cursor.

If you captureaSQL Server gpplication that usesembedded SQL cursors, your script
includesthesql cur sor _r owt ag emulation function.

If you capture a Sybase gpplication session that uses SQL cursors, thisemulation
function isnot included in generated scripts. T hisisbecause the current row tagis
dwaysthelast row fetched. Any updatesor deletesare dways gpplied to thelast row
fetched.

If an error occurs, sql cur sor _r owt ag returnsan empty sring.

In thisexample, acursor isopened, five rowsare fetched, the current row position is
saved inther owt ag_cur sor _a_i d string. The next three rows are fetched, and
then therow identified by ther owmt ag_cur sor _a_i d vaueisupdated.

#i ncl ude <VU. h>

{

SYBASE = sql connect (" SYBASE", "nyuserid", "nypassword",
"SYBASE_SERVER', "sybasell", "TDS_VERSION="5.0.0.0",
APP_NAME=' csr_disp'");

set Server_connection = SYBASE;

sql exec ["csrforu001"] "use pubs2";

push CS bl ocksi ze = 5;

cursor_a_id = sql open_cursor ["csr002"] "cursor_a", "select * from"
"titles where title_id in ('TCr777",

Command Reference 6-111

sglcursor_setoption

' TC3218', ' TC4203')", UPDATE_CURSOR;
sql fetch_cursor ["csr003"] cursor_a_ id, 5;

{string rowtag_cursor_a_id;}
rowm ag_cursor_a_id = sqglcursor_rowtag(cursor_a_id);

sql fetch_cursor ["csr003"] cursor_a_id, 3;

sqgl cursor _update ["csr004"] cursor_a_id, "titles","update "
"titles set total _sales = 9999", rowtag_cursor_a_id;

sql free_cursor(cursor_a_id);
sql di sconnect (SYBASE) ;

pop CS_bl ocksi ze;
}

See Also sql del ete_cursor sql updat e_cursor

sglcursor_setoption
Emulation Function

Description SetsaSQL cursor option.

Syntax int sqglcursor_setoption(csr_id, optioncode [, optarg...])
Syntax Element Description
csr_id Theinteger cursor identifier of an opened cursor.
opt i oncode The integer that indicatesthe cursor option you want to set.

Thevaduesfor opt i oncode are vendor-specific. The
recognized valuesfor opt i oncode and any symbolic
congantsfor optarg are defined in the file VU .h. Comments
accompany each opt i oncode, giving the number and type
of opt ar gs expected.

optarg The vauetha you want to supply to the cursor option. The

number and type of opt ar gs depend on the vaue of
opt i oncode. The number and type of opt ar gs are
checked at runtime; mismatchesresult in afata runtime
error.

Comments Thesqlcursor_setoption function returns1 for successand Ofor falure. The
function sets_error and _error_text , and printsan gppropriae message to
standard error when _error isnonzero.

The sqglcursor_setoption function is affected by the VU environment
variable Server_connection

6-112

VU Language Reference

Example

See Also

sqldeclare_cursor

If the cursor ID isnot valid for the connection indicated by the vaue of
Server _connecti on, an error isreported to both the error file and the log file.

Thisexample dlocatesacursor with sql al | oc_cur sor and then uses
sql cur sor_set opti on to set two ODBC cursor atributesbefore using tha
Cursor to execute aquery.
stmt_2 1 id = sqglalloc_cursor();
sql cursor _setoption(stnt_2_1 id, ODBC_CURSOR_TYPE,
ODBC_CURSOR_KEYSET_DRI VEN);
sql cursor _setoption(stnt_2_1 id, ODBC_CONCURRENCY,
ODBC_CONCUR_VALUES) ;

set Cursor_id = stnmt_2_1 id;

sql open_cursor ["val _6001"] "", "select @®ervernane";
push CS_bl ocksi ze = 100;

sql fetch_cursor ["val _6002"] stnt_2 1 id, ALL_ROW\5;
set Cursor_id = O;

sqglfree_cursor(stnt_2 1 id);

N one.

sgldeclare_cursor
Send Emulation Command

Description
Syntax

Associatesa SQL statement with acursor 1D, which isrequired to open the cursor.

int sqldeclare_cursor [cnd_id] [EXPECT_ERROR ary, |
csr_nane, sql stm
[READ_ONLY_CURSCR | UPDATE_CURSCR [col _ary]]

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integerstha containsdl acceptable error numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

csr_nane A string expression giving the name of the cursor.
sql stnt Aprevioudy prepared statement ID or aSQL statement string

expression associated with the cursor.

col _ary An array of stringswhose vaues are the updatable column
names. The default isdl columnsare updatable.

Command Reference 6-113

sqldelete_cursor

Comments

Example

See Also

Thesql decl are_cur sor command returnsan integer cursor ID for future
reference by other sql * _cur sor commandsand functions. The returned cursor
ID isplaced in theread-only variable _cur sor _i d.

The READ_ONLY_CURSOR keyword indicatesthat the cursor isread-only. The
UPDATE_CURSOR keyword indicatesthat the cursor isupdatable. If neither type of
cursor isspecified, thetext of sq/ st nt determineswhether the cursor isupdatable.

Thesql decl are_cur sor command isaffected by the VU environment
variablesCur sor _i d and Server _connecti on.

In thisexample, aconnection ismadeto the Sybase database and aSQL statement is
prepared for aSQL execution command. A cursor isthen declared for the prepared
SQL staement.

SYBASE = sql connect (" SYBASE", "prevue", "prevue", "SYBASEC',
"sybase", "TDS_VERSION='5.0.0.0"");

set Server_connecti on = SYBASE;

sgl exec ["csrdyne001"] "USE pubs2";

stmt = sqgl prepare ["csrdyne002"] "SELECT\tau_id, au_l nane, au_fnane,"
"\t\t\tphone, address, city, state, \t\t\tpostal code\t\tFROM
\taut hors";

aut hors_id = sqgl decl are_cursor["csrdyne003"] "authors", stnt;

sql open_cursor ["csrdyne004"] authors_id;

sqgl fetch_cursor ["csrdyne005"] EXPECT_ROAS 5, authors_i d FETCH_NEXT,

5;

sql open_cursor

sgldelete cursor
Send Emulation Command

Description
Syntax

6-114

Deletesthe arow using the indicated cursor.

int sqldelete_cursor [cnmd_id] [EXPECT_ERROR ary, |
[EXPECT_ROWS n,]| csr_id, tbl_nanme, rowtag

Syntax Element Description

cmd_i d The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integersthat containsdl acceptable error numbers
for this SQL command. T he default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

n An integer that givesthe number of rowsthiscommand
affects. Thedefault is-1, which indicatesany number of rows.
If nis>=0, and the number of rowsthe SQL command
processes does not equd n, the response is unexpected.

VU Language Reference

Comments

Example

See Also

sgldisconnect

(Continued)

Syntax Element Description

csr_id Theinteger cursor identifier of an opened cursor.

t bl _nane A gring expresson contaning the name of the table from
which to delete.

rowt ag A string expression identifying therow to delete. Theforma
of thestringisSQL database vendor-specific. Avalid r ot ag
can be obtained by calingsql cur sor _r owt ag(). If
rowt agis”", norow identification isused and the current
row isdeleted.

If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connecti on, an error isreported to both the error file and the log file.

Thesql del et e_cur sor command is affected by the VU environment variable
Server _connecti on.

This example opens and fetches 4 rows from acursor, and then deletesarow and
closesthe cursor:

/* sqgl open_cursor inplicitly declares and then opens the cursor */
cursor_65537 = sql open_cursor ["hand002"] "cur",
"SELECT * FROM Room \t FOR UPDATE OF Roomnum Type, Capacity"
UPDATE_CURSOR,;

/* CS_blocksize is set to 1 to control the fetch api calls */
set CS_bl ocksi ze = 1;

/* 4 TDS_CURFETCH NEXT packets of 1 row each are conbi ned

* into a single sqlfetch_cursor conmand. */

sql fetch_cursor ["hand003"] cursor_65537 FETCH NEXT, 4;

sql del ete_cursor ["hand004"] cursor_65537, "Rooni,
"Roomnum="2017 ’ Type="OFF ' Capacity="2"";

sqlclose_cursor ["hand012"] cursor_65537;

sql cursor _rowt ag

sgldisconnect
Emulation Function

Description

Syntax

Command Reference

Closesthe specified connection.

i nt sql di sconnect (connection_id)

Syntax Element ’Description

connection_id An integer expression, returned by sql connect , which

specifiesthe connection to close.

6-115

sglexec

Comments Thesql di sconnect function returns 1 upon success, and 0 upon failure. The
sql di sconnect functionsets_error and _error _text.

Thesql di sconnect function isaffected by the VU environment variable

Record_| evel .

Example This example connectsto a Sybase server, setsthe server connection, and then

disconnects.

SYBASE=sql connect (" SERVER", "ron", "rondo", " SYBASEC", "sybasell",
"TDS_VERSION=5.0.0.0' APP_NAME="Sample App™);
set Server_connection = SYBASE;

/* emulation functions */

sql di sconnect (SYBASE);

See Also sql connect

sglexec
Send Emulation Command

Description Executes SQL statements.

Syntax int sqlexec|[cnd _id][EXPECT_ERRORary,] [EXPECT_ROAS n,]

stnt, arg _specl,

Syntax Element

arg_spec?2. ..

Description

cmd_id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary

An array of integerstha containsdl acceptable error numbers
for this SQL command. T he default vdueis{0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

An integer that givesthe number of rowsthiscommand
affects. Thedefaultis-1, which indicatesany number of rows.
If nis>=0, and the number of rowsthe SQL command
processes does not equd n, the response is unexpected.

stnt

A gring expression containingaSQL statement or an integer
expression indicating aprepared satement ID.

arg_specN

6-116

One or more optiond argument specifications used when
executing st nt . U sethese argument specifications for
dynamic SQL placeholders (?'s) or stored procedure
arguments.

VU Language Reference

sglexec

Format for Specifying sglexec Arguments
An argument specification hasthe form:
expr [: &War [: &WUind]]
expr isrequired and iseither astring or an integer expression.
If expr isastring expression, itsvadueisinterpreted & runtime as
name="value’ <type : (p,s)[c]: | | O] 10>
The syntax hasthese elements:

» name= indicatesthe name of the argument asit occursin the SQL statement
that is executed.

name= isrequired for Oracle and isoptiond for Sybase and SQL Server. With
Sybase and SQL Server, if the name is omitted, the argument isassociated with
the next SQL placeholder from the beginning of the SQL statement.

» value isthestringrepresentation of theargument value. If name= indicates
ascdar argument, enclose the value portion of the string in single quotation
marksfor clarity. These quotation marks are not part of the argument vaue.

If name= indicatesan array argument, the value portion of the sring hasthe
form:

{'vl’,'v2’, ... 'vN' }
where’vl’ through 'vN’' are string vauesfor the array elements You can
specify aN U LL array element as SQL_NULLasin:
{'vl’,'v2’, SQL_NULL, 'v4' }
» [ypeistheoptiona VU language database type of the argument. The default
typeisvarchar

» (p,s) aeoptiond integer constants that represent the precision and scde.
Generdly, precision indicatesthe length (in bytes) of the internd format of the
data If present, thisinformation isused in the conversion to the SQL database
vendor-specific SQL database type as appropriate for tha type.

The val ue portion of abinary, varbinary, or longbinary argument is
represented as pairs of hexadecima characters.

For Oracle, the presence of ascde vaue for acharacter datatype (char or
varchar) indicatesanull conversion character. Any character equd tothescaeis
converted to anull (\O) character interndly before transmission to the SQL
database server.

Command Reference 6-117

sglexec

» [c] specifiesthenumber of elementsin an array argument. [¢] isnot specified
for scdar arguments.

For output array arguments, the array sizeisrequired.

For input array arguments, the array sizeisoptiond, for example, you can
specify empty [] . If not specified, the number of elementsin the array vaueis
transmitted. If specified, the number of elementstransmitted is:

MAX(act ual val ues, c)
Example of array arguments:

sql exec "proc(:a, :b, :c)",
" a=4<nuneric(21):1>",
"ib= {1, 2, 3, 4} <nunmeric(21)[]:1>",
":c={'one’, 'two’, SQL_NULL, four’}
<varchar(10)[]:I>";

In the example:

— :alisaninput scalar argument, type numeric, value 4 with precision length
of 21.

— :bisaninputarray of 4 numerics, values 1, 2, 3, and 4 with precision length
of 21.

— :cisaninputarray of 4 varchars (maximum length 10 characters each), the
third of which isSQ._NULL.

» |,Q orl Oindicates whether the argument is input (default), output, or input/
output.

If an argument is outpu@j or input/output O), the output parameter value is not
valid until the next receive emulation command is executed.

White space characters within a string expression are optional, surrounding each
portion of the string and between the name and =.

The following are some names, data types, and values obtained from Oracle

arguments:
String Name Type Value
": spi d=50<i nt 4>" :spid O_VARNUM |50
":loghame="george™ logname | O_VARCHAR?2 | "george”
":cl="random=text™ «cl O_VARCHAR?2 | "random=text"
":c2="01/17/96'<date>" :c2 O_DATE "01/17/96"

6-118 VU Language Reference

sglexec

String Name Type Value
":foo="hi\377pat’<char(6,0377):1>" :foo O_VARCHAR2 | "hi\Opat"
":bin="00010203'<binary(4):1>" :bin O_BINARY "\000\001\002\003"
Thefollowingare somenames, datatypes, and vaduesobtained from Sybaseand SQL
Server arguments:
String Name Type Value
"@spid=50<int4>" @spid CS INT_TYPE 50
"@logname='george™ @logname |CS_CHAR_TYPE "george"

"random=text™

CS_CHAR_TYPE

"random=text"

"01/17/96'<datetime4>"

CS_DATETIME4_TYPE

"01/17/96"

If expr isan integer, itsvalueisthe vaue of theinteger. It hasno name and it
representsan input argument with the VU language databasetypeisi nt 4. N otethat
Oracle expressonsrequire aname.

You get asyntax error if you use atype specification with an integer expression. To
specify atype for an integer expression, use astring expression containing the vaue
and type. For example:

sql exec ["execO001"] stnt_id, "50 <intl>";

Thefollowing list showsthe datatype conversions performed by the VU playback
librariesfor each VU language datatype. The SQL database server could perform
further conversions.

VU Sybase, SQL Server (ct-lib) |Oracle ODBC

default CS CHAR TYPE O _VARCHAR2|SQL_C _CHAR

binary CS BINARY TYPE O BINARY |SQL_C BINARY

bit CS BIT_TYPE O _VARCHAR2|SQL_C _CHAR

char CS CHAR TYPE O_VARCHAR2|SQL_C_CHAR
datetime4 |CS DATETIME4 TYPE |O_DATE SQL_C_CHAR
datetime8 |CS DATETIME_TYPE O_DATE SQL_C_TIMESTAMP
decimad | CS DECIMAL_TYPE O VARNUM |SQL_C CHAR

float4 CS REAL_TYPE O_FLOAT SQL_C_CHAR

Command Reference 6-119

sglexec

(Continued)

6-120

VU Sybase, SQL Server (ct-lib) |Oracle ODBC

floas CS FLOAT _TYPE O_FLOAT SQL_C_CHAR
intl CS TINYINT_TYPE O VARNUM |SQL_C SLONG
int2 CS SMALLINT_TYPE O VARNUM |SQL_C SLONG
int4 CSINT_TYPE O_VARNUM |SQL_C_SLONG
money4 |CS MONEY4 TYPE O_VARCHAR2|SQL_C_CHAR
money8 |CS MONEY_TYPE O_VARCHAR2|SQL_C_CHAR
numeric |CS NUMERIC_TYPE O VARNUM |SQL_C CHAR
varccha |CS VARCHAR TYPE O _VARCHAR2|SQL_C _CHAR
text CS TEXT _TYPE O _VARCHAR2|SQL_C _CHAR
image CS IMAGE_TYPE O_VARCHAR2|SQL_C_CHAR
void not supported O_VARCHAR2|SQL_C_CHAR
varbinay |CS VARBINARY TYPE |O_BINARY |SQL_C_BINARY
longbinary | not supported O_LONGBIN |SQL_C_BINARY
longchar | not supported O _LONG SQL_C CHAR
senditivity | not supported O VARCHAR2|SQL C CHAR
boundary | not supported O_VARCHAR2|SQL_C_CHAR
date not supported O_DATE SQL_C_DATE

You can specify any numeric argument asastring. N on-integer numeric arguments
(such asfloating point) must be specified as strings.

Thesqgl exec command acceptsboth named and positiona argumentsin the same
command, and passesthem on to the server. Any restrictions regarding mixing of
named and positiond arguments are enforced by the SQL server.

:&VWvar and :& VUi ndindicae VU language variable bindings. When Vvar and
VU nd are arrays, the & isnot required. If present, awarning is generated.

Theoptiond VUvar isastring, integer, array variable, or array element that indicates
that the corresponding SQL argument isbound to thisVU variable. If the SQL
argument isascdar, the VU variable must be ascdar. If the SQL argument isan

array, the VU varigble must be an array.

VU Language Reference

sglexec

These bindings are interpreted asin the following table, depending on whether the
SQL argument isinput, output, or input/output:

SQL Argument

How VUvar |s Bound

input

If expr hasno vdue component, thevaueof VUvar isused asthe
input vdue. If VWvar isnot set, aruntime error occurs (unless
VU ndispresent and hasvadue-1). If expr hasavaduecomponent,
thevadue of Vivar isignored.

output

VWvar receivesthevaue of the SQL arguments after execution of
the SQL statement. If Vvar isomitted, the SQL result isreturned
into an internd temporary space and discarded.

input/output

Same asinput and output, above.

Theoptiond VU nd isan integer VU variable for scdar argumentsand an array of
integersfor array arguments. VUi nd representsthe SQL NULL indicator or array of
SQ. NULL indicators, asfollows:

SQL Argument

How WUind |s Bound

input

If expr hasno vaue component, the vdue of VU nd hasthe
following meaning:

» -1. Theinput vaueused is SQL_NULL

» >=0.Theinput vdueisthevaueof VUrar

If VU ndisunset, itisaruntimeerror.

output

VU nd receivesthe vaue assigned by the SQL server. Possible

vauesfor VU nd are:

» -2. Thereturn vaue (in VUvar) hasbeen truncaed and the
actua length is grester than 65535.

» -1 Thereturn vaueisSQL_NULL (VWvar isunchanged).

» 0. Thereturn vdueisintact and sored in VUvar .

» > 0. Thereturn vadue hasbeen truncated and VU nd contains
the length before truncation.

input/output

Command Reference

Same asinput and output, above.

6-121

sglexec

6-122

To specify aSQL NULL input value, use any of the following formats:

» SQ_NULL

» “SQ_NULL"

» "nanme=SQL_NULL<type:|>"

» "nane=<typel>" :&War :&VU nd [* where VU nd == -1*/

How sqglexec Processes Statements

Thesql exec command executesany SQL statement. It does not return until the

SQL statement has completed, or until Timeout_vd elapses. sql exec returns1
indicating success, and returns 0 indicating an error. When sql exec returnsO,
_error and_error _text aeset gopropriaely. If st nt isaprepared saement

ID that isinvalid for the current vdue of Ser ver _connect i on, sql exec fals.
Zeroisnever avdid statement ID. Thevauesof arg _specl .. arg specN ae
passed to the statement (st nt) , prepared or not, as values for placeholders (?'s) or
stored procedure arguments.

Thesql exec command can be used to execute statements using Oracle's array
interface. Ifsql set opti on() is used to seDRA EXECCOUNT to a value greater

than 1, then each input parametes ¢ exec must be an array containing the same
number of elements as the valueOBR EXECCOUNT. Thesqgl exec command

then executes the statement using the array interface which performs the specified
SQL statement multiple times with a single call to the SQL database server.

Thesgl exec command delays execution of the SQL statement for the duration of
a think time interval controlled by the think time variables. For more information,
seeThink TimeVariableson page 5-42.

The read-only variablef s_t s is set to the time the SQ L statement is submitted to
the server. The read-only variabldss ts, fr _ts,and | r_ts are settothe
time the server has completed execution of the SQL statement.

Thesql exec command is affected by the following VU environment variables:
Log | evel ,Record_| evel ,Server_connecti on,

Sql exec_control _oracl e, Sgl exec_control _sybase,

Sql exec_control _sql server, St at enent _i d, the think time variables,

Ti meout _act, Ti neout _val , Ti meout _scal e, andSuspend_check.

Sql exec_control _* controls preciselyhow sql exec executes the SQL
statement. Se€lient/Save Environment Variableson page 5-21.

VU Language Reference

sglexec

Example In thisexample, assumetwo SQL database servers: SYBORG (a Sybase 11.0 server)
and ORCA (an Oracle 7.3 server). Thefollowing script accesses both serversand

generatesalog file (shown on page 5-37).
#i ncl ude <VU. h>

/* connection variables */
int syborg, syberspace, orca;

int deptno[] = { 50, 60, 70 };

string deptname[] = { "testing", "shipping", "receiving" };
string deptloc[] = { "Raleigh", "Durhan, "Chapel HIIl" };
set Log_level = "ALL";

/* connect to both servers */

/* sybase connection, use all defaults */
syborg = sql connect("", "hugh", "3ofFive", "sybserver",
"sybasell");

/* oracle connection, override defaults */
orca = sqgl connect ("", "willy", "wonka", "SEA world", "oracle7.3");

/* access syborg */
set Server_connection = syborg;
sgl exec ["school"] "use school";

sql exec"sel ect Enpnum Enpnane, Roommum from Enpl oyee where
Rank="TUTOR™;

set CS_blocksize = 3;
while (_error == 0)
sglnrecv ["Tutors"] 10;

/* switch to orca */
set Server_connection = orca;

sglsetoption(ORA_AUTOCOMMIT, 1);

sql exec "select * from Dept";
sqginrecv ["dept (a)"] ALL_ROWS;
/* insert some rows */
sqglprepare ["prep insert"]
"insert into Dept values (:no, :name, :place)";
for (i = 0; i <= limitof deptno; i++)
sqgl exec _statement_id, ":no="+itoa(deptnoli]),
":name="+deptname]i], ":place="+deptloc[i];

sglexec "select * from Dept";
sqginrecv ["dept (b)"] ALL_ROWS;

/* now delete rows */
sql exec "delete from Dept where deptno >= "+itoa(deptno[0]);

sqgl exec "select * from Dept";
sqginrecv ["dept (c)"] ALL_ROWS;

/* done with orca */
sgldisconnect(orca);

/* done with syborg */
sgldisconnect(syborg);

Command Reference 6-123

sqlfetch_cursor

See Also

N one.

sqglfetch_cursor
Receive Emulation Command

Description
Syntax

Comments

6-124

Fetchesthe requested rows from the specified cursor.
int sqlfetch_cursor [cnd_id]

[EXPECT_ERRCR ary, | [EXPECT_ROWS n,]
csr_id][row] [, count]

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integerstha containsdl acceptable error numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

n An integer that givesthe number of rowsthiscommand
affects. Thedefaultis-1, which indicatesany number of rows.
If nis>=0, and the number of rowsthe SQL command
processes does not equd n, the response is unexpected.

csr_id The cursor identifier returned by sql decl ar e_cur sor
(or sql open_cur sor) and opened by
sql open_cur sor.

row Can be FETCH_NEXT (default), FETCH_FI RST,
FETCH_LAST, FETCH_PREV, FETCH_RELATI VE x, or
FETCH_ABSCLUTE x, where x isan integer that specifiesthe
row to fetch.

count Specifiesthe number of rowsto fetch or ALL_ROWS. The
default is 1.

Thefirst cdl tosql f et ch_cur sor retrievesthe column header information if
Col unm_header s is" ON. " The column headersare sored in the read-only
variable _col utm_header s in two lines.

The rowsreturned by the SQL database server are stored in theread-only variable

_response. Amaximum of Max_nr ecv_saved rowsare stored. If morethan

Max_nrecv_saved rowsareregquested, the excessrows are fetched but not
returnedin _r esponse and not logged.

VU Language Reference

Example

See Also

sqlfetch_cursor

If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connect i on or if thecursor isnot open, an error isreported to both the
error file and the logfile.

Rowsarefetched in groupsof CS_bl ocksi ze until therequested number of rows
isreturned or theend of theresultsisencountered. If ALL_ ROAS arerequested, then
rows are fetched until the end of theresult set (or tableif Tabl e_boundari es is
" ON'") isreached. If fewer than count rowsareretrieved, an error islogged.

Thesql fet ch_cur sor command is affected by the following VU environment
variables. CS_bl ocksi ze, Max_nr ecv_saved, Col um_headers,
Tabl e_boundari es, Server _connecti on, and Sql nrecv_| ong.

This example prepares astatement, declares and opens acursor on the prepared
satement, and fetchesfive rowsfrom the cursor result set. Thelast row fetched is
updated using aparameterized update statement, and the next four rows from the
cursor set arefetched for atota of nine rowsfetched:

#i ncl ude <VU. h>
{

SYBASE = sql connect (" SYBASE", "prevue", "prevue", "PROXYC',
"sybasellsybasell", "TDS_VERSION='5.0.0.0"");

set Server_connection = SYBASE;

sql exec ["csrdyne001"] "USE pubs2";
stmt = sql prepare ["csrdyne002"] "SELECT au_id, au_l nane, au_fnane,"
"phone, address, city, state, postal code FROM authors";

aut hors_id = sqgl decl are_cursor["csrdyne003"] "authors", stnt;
sql open_cursor ["csr004"] authors_id;

sql fetch_cursor ["csr005"] EXPECT_ROWS 5, authors_id FETCH NEXT, 5;
sql update_cursor ["csr006"] EXPECT_ROWS 1, authors_id, "authors",
" UPDATE "

"aut hors SET au_l name = @ql 0O_m au_l nane , au_fnane ="
"@ql1_mau_fname , phone = @ql 2_m phone ,

"address = @ql 3_maddress , city = @ql4_mcity ,"

' state = @ql5_mstate , postalcode ="

"@ql6_mzip ", "",

" Smith oy

"' Meander .

"913 843-0462",

"*10 M ssissippi Dr.

"’ Law ence '
"KS', "'66044 o

sql fetch_cursor ["csr007"] EXPECT_ROWS 9, authors_id FETCH NEXT, 4;
sql cl ose_cursor ["csr008"] authors_id ;

sql di sconnect (SYBASE) ;
}

sqgl connect

Command Reference 6-125

sqlfree_cursor

sglfree_cursor
Emulation Function

Description Freesacursor.

Syntax int sqglfree_cursor(csr_id)
Syntax Element ’ Description
csr_id Theidentifier of thecursor tofree. If csr_i disnot declared

by either sgl decl ar e_cur sor orsql open_cur sor ,or
dlocated by sql al | oc_cur sor, anonfatd error is
reported in the error file.

Comments After acursor ID isfreed, any cursor emulation command or function that atempts
to usethat cursor ID producesanonfatd error, which isreported in the error file.

If you areemulatingaSybase, ODBC, or Microsoft SQL Server gpplication that uses
embedded SQL cursors, your script includesthe sql f r ee_cur sor emulation
function. T hisfunction closes(if necessary), then dedlocatesthe cursor ID declared
with the emulation commandssql decl are_cur sor or sgl open_cur sor.

Example In thisexample, acursor isopened, some cursor rows are fetched, and the cursor is
freed.

#i ncl ude <VU. h>

SYBASE = sql connect (" SYBASE", "nyuid"
5.0.0.

ui d", "nypasswd"," SYBASE_SERVER',
"sybasell", "TDS_VERSI ON="5. 0. '

0', APP_NAME='csr _disp'");

set Server_connecti on = SYBASE;

sgl exec ["csr_upd001"] "use pubs2";

push CS_bl ocksi ze = 5;

cursor_a_id = sqgl declare_cursor ["csr_upd002"] “cursor_a",
"select * fromtitles" UPDATE _CURSOR{"total _sales","type"};

sqgl open_cursor cursor_a_id;

sqgl fetch_cursor ["csr_upd003"] cursor_a_id FETCH NEXT, 1;

sql free_cursor(cursor_a_id);

sql di sconnect (SYBASE) ;

pop CS_bl ocksi ze;
}

See Also sql decl are_cur sor sql open_cur sor sql open_cur sor

6-126 VU Language Reference

sqlfree_statement

sqlfree_statement
Emulation Function

Description

Syntax

Comments

Example

See Also

Freesdl of the client and server resourcesfor aprepared statement.

int sqlfree_statenent(stnt_id)

Syntax Element Description

stnt_id An integer vaue returned by the sql pr epar e emulation

command. If st nt _i disnot theresult of thesql prepare
emulation command or st nt _i d hasdready been freed by
sql free_st at enent, an error messageisprinted and
_error and_error_text aest.

Thesql free_st at ement function isaffected by the VU environment variable
Server _connecti on.

In thisexample, aSQL SELECT statement is prepared, for which the ssaement ID
st nt isreturned. A cursor isdeclared for st nt , and the cursor is opened on the
prepared statement with an argument of 2. The server processesthe prepared
statement and returnsacursor result set. The cursor rows are fetched, and the
prepared statement isfreed.

#i ncl ude <VU. h>
{SYBASE = sql connect (" SYBASE", "nyuserid", "nypassword",
" SYBASE_SERVER', "sybasell", "TDS VERSION="5.0.0.0"");
set Server_connection = SYBASE;
sql exec ["csrsinp001"] "USE pubs2";
stnt = sql prepare ["csrsinp002"] "SELECT * FROM nyt abl e where id = ?";
sinple_id = sqgl decl are_cursor["csrsi np003"] "sinple", stnt;
sql open_cursor ["csrsinp004"] sinple_id, 2;
sql fetch_cursor ["csrsinp005"] sinmple_id FETCH NEXT, 1;
sql free_statenent (stnt);
sql cl ose_cursor ["csrsinp008"] sinmple_id ;

sql di sconnect (SYBASE) ;
}

N one.

Command Reference 6-127

sglinsert_cursor

sglinsert_cursor
Send Emulation Command

Description
Syntax

Comments

6-128

Insertsrowsviaacursor.

int sqlinsert _cursor [cnd id] [EXPECT_ERROR ary, |
[EXPECT_ROWE n,] [CURSOR LOCK | CURSOR UNLOCK,] csr_id,

tbl _nanme, rowtag |

Syntax Element

, val ues]

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary

An array of integersthat containsdl acceptable error numbers
for this SQL command. T he default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenotin ary, theresponse isunexpected.

An integer that givesthe number of rowsthiscommand

should affect. The default is —1, which indicates any number
of rows. Ifnis > = 0, and the number of rows the SQL
command processes does not equghen response is
unexpected.

csr_id

The integer cursor identifier of an opened cursor.

t bl _nane

A string expression containing the name of the table affected
by the insert.

rowt ag

Astring expression identifying the row to position the cursor.
The format of the string is SQL database vendor-specific. A
valid rowtag can be obtained by calling

sql cursor _r owt ag().

val ues

Alist of string values, integer values, or both to insert into the
table via the cursor. Values may include type specifiers. Each
value is the string representation of the argument value as
described for theql exec emulation command.

If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connecti on, an error isreported to both the error file and the log file.

If CURSOR_LOCK isspecified, thesql i nsert _cur sor command locksthe
inserted rows. If CURSOR_UNLOCK isspecified, sql i nsert _cur sor unlocksthe

inserted rows.

Thesql i nsert _cur sor command isaffected by the VU environment variable

Server _connecti on.

VU Language Reference

sgllongrecv

Example Thisexampleinsertstherow Dodswort h, Anne into the employeestable.
stnt_2_1 id=sqlalloc_cursor();
set Cursor_id =stnt_2 1 id;
sql open_cursor "Cl", "select lastnane, firstname from enpl oyees";
sql fetch_cursor stnt_2 1 id, 8;
sqlinsert_cursor stnt_2_1 id, "", "1", "' Dodsworth’ <varchar(21):1>",
"’ Anne’ <var char (16):1>";
sqlfree_cursor(stnm_2_1 id);
See Also sql exec sql cursor_row ag
sgllongrecv
Receive Emulation Command
Description Retrieveslongbinary and longchar results.
Syntax int sqllongrecv [cnd_id] [EXPECT_ERROR ary, |
colum, offset, size, count
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].
ary An array of integersthat containsdl acceptableerror numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.
col unm An integer expression indicating the column that containsthe
long datatype. Thefirst column in therow is 1.
of fset An integer expression indicating the beginning offset within
the column.
si ze An integer expression indicating the number of bytesto
retrieve from the column a onetime.
count An integer expression indicating the number of blocks of
Si ze bytesto retrieve.
Comments Thesql | ongr ecv command retrieves count * si ze bytesfrom acolumn of

typelongbinary or longchar. If fewer than count * si ze bytesareretrieved,
_error and _error_text aresettoindicate the reason.

Command Reference 6-129

sqinrecv

Example

See Also

sglnrecv

Thesql | ongr ecv command operateson thelast row retrieved by sql nrecv or
sql fet ch_cur sor, and thuscan be cdled &fter sql nrecv or
sql fetch_cursor wascdled.

Thesql | ongr ecv command is affected by the following VU environment
variables Ti meout _val , Ti neout _scal e, Ti neout _act, Log_I evel ,
Record_| evel ,Max_nrecv_saved, and Server _connecti on.

Thesql | ongr ecv command isaso affected by St at erent _i d if
St at ement _i d isnot zero. Otherwisesql | ongr ecv operaeson the last
sql exec command.

In thisexample, sql nr ecv fetchesthefirst 100 bytes of column 3. The next
sql | ongr ecv fetches 3 blocks, each 65536 bytesin size, of column 3. The last
sql | ongr ecv fetchesthe last 3392 bytes of column 3, starting at offset 199608.

sql prepare "select nsg_id, nsg_len, nsg fromvoicemil"
"where nsg_i d=100";

push CS_bl ocksi ze = 1;

set sql nrecv_l ong=100;

sql nrecv 1;

sql l ongrecv 3, 65536, 3;

sqgl l ongrecv 3, 196608, 3392, 1;

N one.

Receive Emulation Command

Description
Syntax

6-130

Retrievesrow results after sql exec isexecuted.

int sqlnrecv [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_RONMS n, | m

Syntax Element Description

cmd_i d The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integersthat containsdl acceptableerror numbers
for this SQL command. T he default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

n An integer that givesthe number of rowsthat thiscommand
affects. Thedefaultis-1, which indicatesany number of rows.
If nis>=0, and the number of rowsthe SQL command
processes does not equd n, the response is unexpected.

VU Language Reference

sqlnrecv

(Continued)

Syntax Element Description

m An integer that givesthe number of rows requested or
ALL_ROWAS, which receivesdl remaningrows. Thedefaultis
1

Comments The sqgl nr ecv command retrieves mrows from the last command processed by
sql exec.sql nrecv repeatedly requests CS_bl ocksi ze rowsfrom the SQL
database server until mrows have been retrieved, an error occurs, or it reachesthe
end of thetableand Tabl e_boundari es isON.

If fewer than mrows areretrieved, _err or isset to indicate the reason. If misnot
ALL_ROWS, and if the end of therow reaults (or the end of the table) isreached,
_error and_error_text aresettoindicaethecondition that terminated the
command. If thereareno morerow results, sgl nr ecv returnsimmediately, setting
_error and _error_text gopropriaely.

The sql nrecv command processesthefirst Sql nr ecv_I ong bytes of columns
of type longbinary or longchar. Any remaining datain these columns must be
processed by sql | ongr ecv.

Thesqgl nrecv command isaffected by the following VU environment veriables:
CS bl ocksi ze, Col um_header s, Ti neout _val , Ti neout _scal e,
Log_l evel ,Record_I| evel ,Max_nrecv_saved, Server _connecti on,
Ti meout _act, Tabl e_boundari es, Sql nrecv_| ong. It isaso affected by
Statenent _i dif St at ement _i d isnot zero. Otherwisesql nr ecv operates
on thelast sgl exec command.

Command Reference 6-131

sglopen_cursor

Example

See Also

Thisexampleissuesasel ect query. Thesqgl nr ecv fetchesand processesdl rows
returned by the query. Thesamesel ect queryisissued, and thefirst twenty-five
rows are fetched and process. The next sql nr ecv fetchesand processesthe
remaining rows held in the f et ch buffer.

#i ncl ude <VU. h>

{

SERVER = sql connect (" SERVER', "nyuserid", "nypassword",
"NTSQL_SERVER', "sql server", "TDS_VERSION="4.2.0.0","

"APP_NAME="isql’'");

set Server_connection = SERVER

sql exec ["sqgl _1001"] "use school ";

sgl exec ["sqgl _1002"] "select * from Assignment";

/* Get all rows returned */

sgl nrecv ["sqgl _1003"] EXPECT_ROWS 50, ALL_ROW5;

sql exec ["sqgl _1004"] "select * from Assignnent";

/* Get first twenty-five rows returned */
sql nrecv ["sqgl _1005"] EXPECT_ROWS 25, 25;

/* Get rest of rows returned */
sql nrecv ["sqgl _1005"] EXPECT_ROWS 25, ALL_ROWS;

sql di sconnect (SERVER) ;
}

sql | ongrecv

sglopen_cursor
Send Emulation Command

Description

6-132

Opensthe specified cursor.
int sqlopen_cursor [cnd_id]

[EXPECT_ERROR ary,] [EXPECT_ROWS n,]
csr_spec [, values |

Syntax Element Description

cnd_id The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

An array of integerstha containsdl acceptable error numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenotin ar y, theresponse is unexpected.

An integer that givesthe number of rowsthat thiscommand
affects. Thedefault is-1, which indicatesany number of rows.
If nis>=0, and the number of rowsthe SQL command
processes does not equd n, the response is unexpected.

VU Language Reference

(Continued)

Syntax Element

sglopen_cursor

Description

csr_spec

Choose one of the following:

» Acursor ID returned by sql decl ar e_cur sor

» csr_nane, sqlstnt [,{ READ_ONLY_CURSOR |
UPDATE_CURSOR [col _ary] }]
csr_nane isagring expresson giving the name of the
cursor.
sql st nt iseither aprevioudy prepared statement ID or a
SQL statement string expression associated with the
cursor.sql open_cur sor implicitly declaresacursor for
that statement and then opensthat cursor.
READ_ONLY_CURSOR indicatesthat the cursor isread-
only.
UPDATE_CURSORindicatesthat thecursor isupdatable. If
neither type of cursor is gecified, thetext of sql/ st nt
determines whether the cursor isupdatable.
col _ary isan array of stringswhose vauesarethe
updatable column names. The default isdl columnsare
updatable.

val ues

Command Reference

A ligt of gtring vaues, integer vadues, or both to use for
opening the cursor. val ues could include type specifiers.
Each val ue isthe gtring representation of the argument
vaue. If name= indicaesascdar argument, enclosethevaue
portion of the string in single quotation marksfor clarity.
These quotation marks are not part of the argument vaue. If
nane= indicatesan array argument, the value portion of the
gring hasthe form:

{'vl','v2’, ... 'vN"}
where’ v1' through’ vN aredringvduesfor thearray
elements. You can specify aN U LL array element as
SQL_NULL asin:

{'v1’,'v2’, SQL_NULL, 'v4'}

6-133

sqlposition_cursor

Comments

Example

See Also

Thesql open_cur sor command returnsan integer cursor ID for future
reference by other sql * _cur sor command and functions. The returned cursor
ID isplaced in theread-only variable _cur sor _i d.

If csr_spec isacursor ID and isnot avaid declared cursor (with

sql decl ar e_cur sor) for the connection indicated by the vdue of

Server _connect i on,then an error isreported to both the error file and the log
file.

Thesql open_cur sor command iséaffected by the VU environment variables
Cur sor _i d, Sgl exec_control _*,and Server _connecti on.

Thisexampleopensacursor, fetchestheresults, and closesthe cursor. N otethat the
cursor was not freed and dedlocated. The cursor isreopened a alater point in the
script without redeclaring it.

#i ncl ude <VU. h>

SYBASE = sql connect (" SYBASE", "nyuserid", "nypassword",
" SYBASE_SERVER', "sybasell", "TDS_VERSI ON='5.0.0.0',
APP_NAME=' csr_disp'");
set Server_connecti on = SYBASE;
sgl exec ["csr_upd001"] "use pubs2";
push CS_ bl ocksi ze = 5;
cursor_a_id = sqgl declare_cursor ["csr_upd002"] "cursor_a",
"select * fromtitles" UPDATE_CURSOR {"total _sales","type"};
sqgl open_cursor cursor_a_id;
sql fetch_cursor ["csr_upd003"] cursor_a_id FETCH NEXT, 1;
sqgl cl ose_cursor(cursor_a_id);
sql exec ["csr_upd004"] "select * from authors”;
sql open_cursor cursor_a_id;
sqgl fetch_cursor ["csr_upd003"] cursor_a_id FETCH NEXT, 1;
sqgl cl ose_cursor(cursor_a_id);
sql free_cursor(cursor_a_id);
sql di sconnect (SYBASE) ;
pop CS_bl ocksi ze;
}

sql cl ose_cursor sgl exec sql decl are_cur sor sql free_cursor

sglposition_cursor
Send Emulation Command

Description

6-134

Positions acursor within aresult set.

VU Language Reference

sqlprepare

Syntax int sqlposition_cursor [cnd _id] [EXPECT_ERRCOR ary,]
[CURSOR LOCK | CURSOR UNLOCK ,]| csr_id, rowag

Syntax Element

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary

An array of integersthat containsdl acceptable error numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

csr_id

Theinteger cursor identifier of an opened cursor.

rowt ag

A gring expression identifying therow to postion the cursor.
The format of the string is SQL database vendor-specific. A
vaid rowtag can be obtained by cdling

sql cur sor _rowt ag().

Comments If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connecti on, an error isreported to both the error file and the log file.

If CURSOR_LOCK isspecified, thesql posi ti on_cur sor command locksthe
inserted rows. If CURSOR_UNLOCK isspecified, sql posi ti on_cur sor unlocks

theinserted rows.

Thesql posi ti on_cursor command isaffected by the VU environment
vaiable Ser ver _connect i on.

Example This example setsthe current row position to row 1 in the result set.

sql open_cursor "Cl", c
sql fetch_cursor stm_2_1 id
sqgl position_cursor stnt_2 1

See Also sqgl cursor _row ag

sglprepare

Send Emulation Command

"sel ect |astnanme, firstnanme from enpl oyees";
8;
id "1

Description PreparesaSQL statement for execution.

Command Reference

6-135

sqlprepare

Syntax

Comments

6-136

int sqlprepare [cnd_id] [EXPECT_ERRCOR ary,] stnt

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integersthat containsdl acceptable error numbers
for this SQL command. T he default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

stnt A gring expression containing aSQL statement.

Thesql pr epar e command prepares SQL statements. It doesnot return until the
server hasparsed the SQL statement, or until Ti meout _val elapses. U pon success,
sql pr epar e returnsthe vaue assigned asthe prepared ssatement ID, and sets
_statement _i dtothevaue. Upon falure, sql pr epar e sets

_statenment _i dtoanegativevaue, returnsthevaueof st at enent _i d, and
sats_error and _error _text.Thesql prepar e command asociaesthe
statement ID with the connection indicated by Ser ver _connect i on. Because
sql pr epar e setsand returnsthevadueof _st at enent _i d, thestatement ID is
saved in an integer variable, either by:

stnt_id = sqgl prepare ...
or

sql prepare ...

stnt_id = _statenent_id;
Thesql pr epar e command delayssubmittingthe SQL statement to the server for
the duration of athink timeinterva controlled by the think time environment
variables.

Theread-only varigble _fs_t s issettothetimethe SQL statement issubmitted to
the server. Theread-only variables |s ts, fr _ts,and _|Ir_ts aesattothe
timethe server has completed parsing the SQL statement.

Thesql pr epar e command is afected by the following VU environment
variables. the think time variables, Ti meout _val , Ti meout _scal e,

Log_ | evel ,Record_| evel ,Server_connection, St at enent _i d, and
Suspend_check.

VU Language Reference

Example

See Also

sqlrefresh_cursor

This example showsascript that preparesasel ect staement and assignsthe
saement ID tost nti d_1. Theprepared satement st nt i d_1 isexecuted with a
runtime parameter of : i d=" 12345’ . Any rowsreturned are fetched and
processed. Statement st mt i d_1 isfreed and dedlocated. T he same variable
stntid_1isreused for another sql pr epar e on adifferent sel ect stacement.
The prepared statement is executed and any rows returned are fetched and
processed. The satement ID stopped in st mt i d_1 isfreed and dedlocated.

#i ncl ude <VU. h>

t _cal vin_PAC = sql connect ("t _cal vin_PAC', "oracle", "oracle",
"t:calvin:PAC', "oracle7.3");

push Sqgl exec_control _oracle = "STATI C_BIND';

set Server_connection = t_cal vi n_PAC;

stntid_1 = sql prepare ["oracl ee016"] "select * from Student where id"
"= id";

sgl exec ["oraclee017"] stntid_1,":id="12345"";

sql nrecv ["oracl ee018"] EXPECT_ROAS 1, ALL_ROW5;

sql free_statement (stntid_1);

stnmtid_1 = sql prepare ["oracl ee019"] "select * from Course";

sql exec ["oracl ee020"] stntid_1;

sql nrecv ["oracl ee021"] EXPECT_ROMNS 14, ALL_ROW5;

sql free_statenent(stntid_1);

sql di sconnect (t_cal vi n_PAC);

pop CS_bl ocksi ze;

}

sql exec

sqglrefresh_cursor
Send Emulation Command

Description
Syntax

Refreshesthe result set of acursor.

int sqlrefresh _cursor [cnd_id] [EXPECT_ERROR ary, |
[EXPECT_ROAS n,][CURSOR LOCK | CURSOR_UNLOCK ,]
csr_id, rowtag

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integerstha containsdl acceptable error numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

Command Reference 6-137

sqlrefresh_cursor

Syntax Element Description

n An integer that givesthe number of rowsthiscommand

should affect. The default is —1, which indicates any number
of rows. Ifnis > = 0, and the number of rows the SQL
command processes does not equghen response is

unexpected.
csr_id The integer cursor identifier of an opened cursor.
rowt ag Astring expression identifying the row to position the cursor.

The format of the string is SQL database vendor-specific. A
valid rowtag can be obtained by calling
sql cursor _r owt ag().

Comments If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connecti on, an error isreported to both the error file and the log file.

If CURSOR_LOCK isspecified, thesql r ef r esh_cur sor command locksthe
inserted rows. If CURSOR_UNLOCK is specified, sql ref resh_cur sor unlocks
theinserted rows.

Thesql ref resh_cur sor command isaffected by theVU environment varidble
Ser ver _connecti on.

Example Thisexamplerefreshesrow 2 in therowset. Thisisdone, becausethe update on row
2invdidaed therow currently stored in the rowset.

stnt_2_1 id=sqlalloc_cursor();

set Cursor_id = stnt_2_1 id;
sql open_cursor "Cl", "select |astnane, firstname from enpl oyees";

sql fetch_cursor stnt_2_ 1 id, 8;

sqgl update_cursor stnt_2 1 id, "*, "", "2", "’ Buchanan’' <var -
char (21):1>",

"' Anne’ <var char (16):1>";

sql refresh_cursor stnt_2_ 1 id, "2";

sqlfree_cursor(stnt_2 1 id);

See Also sqgl cursor _row ag

6-138 VU Language Reference

sqlrollback

sqglrollback

Emulation Function

Description Rollsback the current transaction.

Syntax i nt sqlroll back()

Comments Thesql rol | back function isnot supported for Sybase and Microsoft SQL
server, and producesafatd runtimeerror. For Sybase and Microsoft SQL server
databases, use the following:
sql exec "rol |l back transaction”;

Thesql rol | back function isaffected by the VU environment variable
Server _connecti on.
Example In thisexample, an update statement issent to the server. Thesql r ol | back
function restores the affected rows of the updated table to their originad vaue.
#i ncl ude <VU. h>
t _cal vin_PAC = sql connect ("t _cal vin_PAC', "oracle", "oracle",
"t:calvin:PAC', "oracle7.3");
set Server_connection = t_cal vi n_PAC,
sql exec ["oracl e003"] INSERT I NTOvoice_mail (nmsg_id, nsg_l en, neg)"
“VALUES (100, 5, Hell
sqgl rol | back();
sql di sconnect (t_cal vi n_PAC);
pop CS_bl ocksi ze;
}
See Also sql commi t
sglsetoption

Emulation Function

Description

Setsa SQL database server option.

Command Reference 6-139

sqlsetoption

Syntax

Comments

Example

See Also

6-140

int sql setoption(optioncode [, optarg ...])

Syntax Element

Description

opti oncode

Theinteger that indicatesthe server option you want to set.
Thevauesfor opt i oncode are vendor-specific. The
recognized valuesfor opt i oncode and any symbolic
congantsfor opt ar g are defined in the file VU. h.
Comments accompany each opt i oncode, giving the
number and typesof opt ar g's expected. All definitions for
Sybase options are prefixed 8YB_; all definitions for
Oracle options are prefixed QRA .

optarg

The value that you want to supply to the server option. All
optionsrequire at least oopt ar g. The number and type of
opt ar g's depends on the value @bt i oncode. The
number and type afpt ar g's are checked at runtime;
mismatches result in a fatal runtime error.

Thesql set opti on function returns 1 for successand O for failure.
sql setoptionsets _error and _error _text,andprintsan appropriate
message to tandard error when _er r or isnonzero.

Thesql set opti on function setsthe server option indicated by the integer
opt i oncode tothevauegiven by opt ar g for the server indicated by the current
vadueof Server _connecti on.

Thesql set opti on function isaffected by the VU environment varidble

Server _connecti on.

This example sets optionsfor a Sybase server:

SYBASE = sql connect ("", "sybase", "sybase", "", "sybasell");
set Server_connecti on = SYBASE;

/* assorted options */

sql set opti on(SYB_OPT_ANSI NULL, 1);

sql set opti on(SYB_OPT_STR _RTRUNC, 1);

sql set opti on(SYB_OPT_ARI THABORT, 0);

sql set opti on(SYB_OPT_TRUNCI GNORE, 1);

sql set opti on(SYB_OPT_ARI THI GNORE, 0);

sqgl setopti on(SYB_OPT_| SOLATI ON, SYB_OPT_LEVEL3);
sql set opti on(SYB_OPT_CHAI NXACTS, 1);

sql set opti on(SYB_OPT_CURCLOSEONXACT, 1);

sql setopti on(SYB_OPT_QUOTED | DENT, 1);

N one.

VU Language Reference

sglsysteminfo

Send Emulation Command

sqlsysteminfo

Description Queriesthe server for varioustypes of system information.

Syntax sql systeminfo [cnd_id] [EXPECT _ERROR ary ,]
[EXPECT_ROWNS n , | operation , arglist

Syntax Element

Description

cm_id The optionad command ID availablein dl emulation
commands. cnd_i d hastheform [stri ng _exp].

operation A gtring expression specifying what type of information
toretrieve.

arglist A comma seperated list of string or integer expressons.

The interpretation of each argument dependson the
vaue of oper at i on.

Comments Thesql syst eni nf o command performsany of severd specific system
information requests depending on the value of oper at i on.

List of Operations

Thevdid vduesfor oper at i onandtheir purposeareshown in thefollowingtable:

Operation

Purpose

Tabl es

Retrievesalist of table names stored in a pecific data
source's system catdog.

Tabl ePri vi |l eges

Retrievesalist of table names stored and privileges
associated with them.

Col ums

Retrievesalist of column names associated with a
specified table.

Col umPri vil eges

Retrievesalist of column namesand privilegesfor a
specified table.

Speci al Col ums

Retrievesauniquerow ID for aspecified table.

Statistics

Retrieves gatistica information about aspecified table
and its asociated indexes.

Pri mar yKeys

Command Reference

Retrievesthe list of column namesthat make up the
primary key for aspecified table.

6-141

sqlsysteminfo

6-142

(Continued)

Operation

Purpose

For ei gnKeys

Retrievesinformation about theforeign keysdefined for
aspecified table and what primary keysin other tables

they access.

Pr ocedur es

Retrievesalist of stored procedure namesthat have been
registered in aspecified datasource.

Pr ocedur eCol ums

Retrievesalist of 1/O parametersto astored procedure.

List of Operation Arguments

Thevdid vduesfor ar gl i st for each operation are shown in the following table.
All arguments are strings unless marked with a (*).

Operation

arglist

Tabl es

cat al ogNane,
t abl eType

schemaNane, tabl eNane,

Tabl ePrivil eges

cat al ogNane,

schemaNane, tabl eNane

Col ums

cat al ogNane,
col unmNane

schemaNane, tabl eNane,

Col umPri vil eges

cat al ogNane,
col utmNare

schemaNane, tabl eNane,

Speci al Col ums

rowi d(*), catal ogNanme, schemaNane,
t abl eNane, col umNane, scope(*),

nul | abl e(*)

Statistics

cat al ogNane,

i ndexType(*),

schemaNane, tabl eNane,
accuracy(*)

Pri mar yKeys

cat al ogNane,

schemaNane, tabl eNane

For ei gnKeys

PKcat al ogNane, PKschenaNane, PKtabl eNare,
FKcat al ogNane, FKschenaNane, FKtabl eNane

(PK = primary key,

FK = forei gn key)

Pr ocedur es

cat al ogNane,

schermaNanme, procedureNane

Pr ocedur eCol umms

cat al ogNan®e, schemaNane, procedur eNane

col umNane

If Cursor _i d isnon-zero, sql syst em nf o will perform the operation using
the cursor specified by Cur sor _i d. Otherwise, sql syst em nf o will dlocate a
new cursor (and set _cur sor _i d) for the operation. sql syst eni nf o returns
the cursor ID used for the operation.

VU Language Reference

Example

sqlupdate_cursor

Thesql syst eni nf o command is affected by the VU environment variables
Cursor _id, Server _connecti on, thethink timevariables, Ti neout val ,
Ti meout _scal e, Ti meout _act,Log_| evel ,Record_| evel ,and
Suspend_check.

x = sqglalloc_cursor();
set Cursor_id = x;

sql systeminfo ["infoOO1"] "Tables", "catal og_1",
"schema_1", "Cities", "user";

sql fetch_cursor x, ALL_ROWS;

sglupdate_cursor
Send Emulation Command

Description
Syntax

U pdatesthe current row of the indicated cursor.
int sqlupdate_cursor [cnd_id] [EXPECT_ERROR ary, |

[EXPECT_RONS n,] [CURSOR LOCK | CURSOR _UNLCCK]
csr_id, tbl_nane, set_clause, rowag [, values]

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

ary An array of integersthat containsal acceptable error numbers
for this SQL command. The default vdueis {0}, which
indicatesthat no error isacceptable. If aSQL command sets
_error toavauenot in ar y, theresponse is unexpected.

n An integer that givesthe number of rowsthiscommand
affects. Thedefault is-1, which indicatesany number of rows.
If nis>=0, and the number of rowsthe SQL command
processes does not equd n, the response is unexpected.

csr_id Theinteger cursor identifier of an opened cursor.

t bl _nane A string expression containing the name of the table to update.

set_cl ause A string expression containing the SET clause of that SQL
update statement.

rowt ag A string expression identifying the row to update and which is

obtained by cdlingsql cur sor _r owt ag(). The format of
the gtring is vendor-specific. If rowt agis" ", no row
identification isused and the current row isupdated.

Command Reference 6-143

sgtrans

Comments

Example

See Also

sgtrans

Library Routine

(Continued)

Syntax Element Description

val ues A ligt of gtring vaues, integer vadues, or both to use for
updating the current row of the cursor. val ues may include
type specifiers.

Each val ueisthedringrepresentation of theargument vaue.
If name= indicaesascda argument, enclosethevaue
portion of the string in single quotation marksfor clarity.
These quotation marks are not part of the argument vdue. If
nane= indicates an array argument, the vaue portion of the
gring hasthe form:
{" v1i,” v2,..’ vN}

where’ v1' through’ vN are string vauesfor the array
elements. You can specifyaN ULL array as SQL_NULLasin:

{" vIN' vZ,SQL_NULL,’ v4'}

If the cursor ID isnot vaid for the connection indicated by the vaue of
Server _connect i on or if thecursor isnot open, an error isreported to both the
error file and the logfile.

If CURSOR_LOCK is specified, thesql updat e_cur sor command locksthe
updated rows. If CURSOR_UNLOCK isspecified sql updat e_cur sor unlocksthe
updated rows.

Thesql updat e_cur sor command is affected by the VU environment variable
Server _connecti on.

This example positionsthe cursor a the next row and updatesthat row:

sqgl fetch_cursor ["hand009"] cursor_65537 FETCH_NEXT;
sql update_cursor ["hand010"] cursor_65537, "Roont,
"UPDATE Room Set Roommum = @ql O_num , Type = @lql_type ,"
"Capacity = @sql2_cap ","Roomnum="2220 ' Type="OFF ™
"Capacity="3","1111", "off", 3;

sql cur sor _rowt ag

Description

6-144

Creates gring expressions based on character trandations of string expressions,
sgueezing out any repeated characters.

VU Language Reference

Syntax

Comments

Example

See Also

sqtrans

string sqtrans (str, in_str, out_str)

Syntax Element Description
str The subject string expression.
in_str A string expression that specifies the set of characterswithin

st r tha istrandated or deleted.

out_str A gtring expression that specifiesthe corresponding set of
charactersto which thecharactersin i n_st r aretrandated.

Thesqt r ans routinereturnsatrandated verson of st r by substituting or deleting
selected characters and then squeezing dl strings of repeated charactersin the
returned stringthat occur in out _st r to singlecharacters. Any character in st r not
foundin i n_st r iscopied unmodified to the returned string. Charactersfound in
i n_str aresubgtituted by the corresponding character in out st r (based on
character position). If thereisnot acorresponding character in out _st r, the
character isdeleted (not copied to the returned string).

A specid convention isuseful for padding out st r. If out _str hasat least two
charactersand endsin an asterisk (*), out _st r isautomaticdly padded with the
character precedingthe* until thelength of out st r isthe same asthe length of
i n_str.Forexample, if out _stris"abc*" andthelength of i n_str is10,
out _str isconvertedto abcccccccc beforethetrandation begins. If thisaction
isundesirable, the ordering of the charactersin i n_st r and out _st r must be
changed such that out st r doesnot endin*.

Thet r ans routineaso trandatesstring expressions, except that it doesnot perform
the “squeeze” translation.

This example removes each tab in the input string and replaces it with a space, and
then squeezes the repeated spaces so that the result has only one space around each

word:

sqtrans("\t\tHello,\t\tworld\t\t" "\t", " ");

trans

Command Reference 6-145

srand

srand
Library Routine

Description

Syntax

Comments

Example

See Also

6-146

Reseedsthe random number generator, essentidly resetting it to aspecific sarting
place.

int srand (seed)

Syntax Element ’Description

seed The integer expression used to seed the random number
generator. Itsvaue must be non-negative.

Thesr and routineissimilar to its corresponding C library routine but generates
random numbers with better “randomness.”

Ther and, srand, uni f or m andnegexp routines enable the VU language to
generate random numbers. The behavior of these random number routines is
affected by the way you set tBeed andSeed Flags options in a LoadTest schedule.

By default, theSeed generates the same sequence of random numbers but sets
unigue seeds for each virtual user, so that each virtual user has a different random
number sequence. For more information about setting the seed and seed flags in a
schedule, see tHédngRationa LoadT et manual

Thesr and routine uses the argumeseed as a seed for anew sequence of random
numbers to be returned by subsequent calls to &mel routine. Ifsr and is then
called with the same seed value, the sequence of random numbers is repeated. If
r and is called before any calls are madestand, the same sequence is generated
as whersr and is first called with a seed value of 1.

This example seeds the random number generator with the current time and then
prints the first 10 random numbers:

srand(tine());
for (i =0; 1 < 10; i++)
printf("random nunber (%): %\n", i, rand());

rand uniform negexp

VU Language Reference

start_time

start_time
Emulation Command

Description Marksthe start of ablock of actionsto be timed.

Syntax int start_tine;
int start _time ting
int start_time [tine_id];
int start _time [tine_id] ting

Syntax Element Description

tine An integer expression pecifying atimestamp that overrides
the current time.

time_id An optiond ID, smilar to acommand ID, that hasthe form
[string_exp].\fti ne_i disnot specified, the starting
timestamp issaved interndly.

Comments Thestart _time command associates astarting timestamp with t 7 ne_i dfor
later reference by st op_t i ne, and returnsan integer expression equd to the
sarting timestamp.

VU automaticaly timesampsthetimethat any send emulation command issent to
the SQL database server as_fs_t s, and thetime tha the command returns as
_I's_ts.VU dsotimestampsthetime of the first and last resultsreceived by any
receive emulation command, allowing six possible “response time” definition
choices with LoadTest reports. If these are not sufficientstiset ti ne and
st op_ti me when generating report output.

Thestart _tinme andstop_ti me commands can span multiple emulation
commands in the same script, such as the elapsed time for a logical transaction that
consists of several commands.

Example This example shows how IDs are used vgithrart _t i ne to measure nested
transactions. The ID2. x on the secondt art _ti me is not necessary, but it is
recommended for clarity:

start _time ["T2"];/* beginning of entire T2 */
éiért_tinﬁ [*"T2.x"];/* beginning of subset of T2 */
éibp_tine ["T2.x"];/* ending of subset of T2 */

éibp_tine ["T2"];/* ending of entire T2 */

Command Reference 6-147

start_time

6-148

This example showshow IDscan beused with st art _t i me to measure
overlgpping transactions:

start _time ["T3"];/* beginning of T3 */
éiért_tinﬁ [*"T4"];/* beginning of T4 */
éibp_tine ["T3"];/* ending of transaction T3 */
éibp_tinﬁ ["T4"];/* ending of transaction T4 */

This example shows how transactions can easily share the same gtartingtime. The
examplewould not work correctly if apreviousst art _t i me in thescript had been
givenan ID T1,T2,0r T3, becausest op_t i me selectspr ev_t i ne asthegarting
timeonly if amatching ID isnot found:

start _time;/* beginning of T1, T2 & T3*/

éibp_tine ["T1"];/* ending of transaction T1 */

éibp_tinﬁ [*T2"];/* ending of transaction T2 */

éibp_tinﬁ [*T3"];/* ending of transaction T3 */
Thisdternative example removesthe potentia problem by providing separately
labeled start timesfor T1, T2, and T3, dl using acommon garting timestamp.

beg = start_time ["T1"];/* beginning of T1, T2 & T3*/

start _time ["T2"] beg;/* associate time with ID T2 */

start _time ["T3"] beg;/* associate this with ID T3 */

éibp_tinﬁ [*T2"];/* ending of transaction T1 */

éibp_tine ["T2"];/* ending of transaction T2 */

éibp_tinﬁ [*T3"];/* ending of transaction T3 */
Because the starting timestamps for T2 and T3 were user-defined, their associated
start _ti me commandscould have been executed at any time before their
respectivest op_t i me command. H owever, because the Trace report output
displaysdl emulation commandsin order of execution, you execute the

start _ti me ascloseto theactua garting time as possible, as shown in the
previous example.

With the creativeuseof start _time and st op_ti me, emulation commands,
and the read-only timestamp variables _fs_ts, Is_ts, fr_ts,and _Ir_ts,
you can measure acomplex transaction using any statement submitted to the server
or datareceived from the server asend points. Avoid measuring very short
transactions; your operating sysem could restrict timing resolution.

VU Language Reference

This example splitsaresponse into arbitrary units, each measured as separae
transactions.

NOTE: Theuseof multiplesgl nr ecv commands per sql exec lets
Performancereportsautomaticaly caculate separate responsetimesfor individua
parts of aresponse. H owever, each sql nr ecv command’s response time must
share the same starting time, namely that of the consgbexec command.
This restriction does not applyst art _ti ne/stop_ti nme.

sql exec "select * from Student";

start_tine ["pl_wait"] _Ir_ts;

sgl nrecv 10/* fetch the first 10 rows */

/* wait for phase 1 ends and output for phase 1 begins*/
stop_tinme ["pl_wait"] _fr_ts;

start_tine ["pl_out"] _fr_ts;

/* output for phase 1 ends and wait for phase 2 begins*/
stop_time ["pl_out"] _lr_ts;

start_tine ["p2_wait"] _Ir_ts;

sql nrecv ALL_ROAS/* fetch rest of results */

/* wait for phase2 ends; output for phase2 begi ns*/
stop_tinme ["p2_wait"] _fr_ts;

start_tine ["p2_out"] _fr_ts;

/* output for phase 2 ends: */
stop_time ["p2_out"] _lr_ts;

tinme_ji ds aretruncated to 40 characters during command recording.

See Also stop_time

stoc
Library Routine

stoc

Description Returnsaselected character from astring algument.

Syntax int stoc (str, n)
Syntax Element Description
str The string expression to search.
n An integer expression used to specify the position of one
character to extract.

Command Reference

6-

149

stop_time

Comments Thest oc routinereturnsthe nth character (asan integer) of thestring st r. If nis
lessthan 1 or exceedsthelength of st r, st oc returnstheinteger O.

Thect os routineisthe converse of st oc; ct 0os converts charactersto strings.
Example Thisexamplereturnsthe character 'n’
stoc("manual ", 3);
These examples both return the character \0' (zero):

stoc("guide", 6);
stoc("guide", 0);

See Also ct os

stop_time
Emulation Command

Description Marksthe end of ablock of actionsbeing timed.

ntax int stop_tine tine id,;
p
int stop_tinme tine_id ting

Syntax Element Description

time_id Arequired ID, smilar toacommand ID, that hasthe form
[string exp].If ti me_i dhasnot been specifiedin a
previousst art _ti me inthecurrent script, the most recent
gart timewithout alabel isused instead.

tine An integer expression specifying atimestamp that overrides
thecurrent time. If t i me isnot specified, the current timeis
used.

Comments Thestop_time command returnsan integer expression equd to the ending
timestamp.

Thestop_time command associates an ending timestamp with the t i me_i d,
and records both the gtarting time and ending time for use by LoadT est reports.

Onestop_time command isnormaly used with each start_time command.
However, multiple stop_time commands per start_time command are

dlowed.
Example This example showsasimple use of start_time and stop_time
start _tine; /* beginning of T1 */
L. /* T1 comuands & responses */
stop_time ["T1"]; /* ending of transaction T1 */

6-150 VU Language Reference

strlen

See Also start_tinme

strlen
Library Routine

Description Returnsthelength of astring expresson.

Syntax int strlen (str)
Syntax Element ‘ Description
str ‘ The gtring expresson whose length you want to obtain.

Comments Thest rl en routine, equivdent to the C library routine of the same name, returns
an integer specifying the number of charactersin itsargument.

Example In thisexample, the integer returned hasthe vdue 26; notethat \n’ isasngle
character.

strlen("A string of 26 characters\n")

In thisexample, strlen returnsthe number of charactersin theread-only variable
_response and assgnsthem to var .

var = strlen(_response);

See Also strneg strspan

strneg

Library Routine

Description Creaesastring expression based on character set negation (complements).

Syntax string strneg (str)
Syntax Element ‘ Description
str ‘The string expression to negate.

Comments Thestrneg routinereturnsastring consigting of the negation of string st r with
respect to the 255-character native character set on the computer on which LoadT est
is installed. Every character, numerical values 1-@&%ccurring inst r is
includedoneein the returned string, sorted numerically. This routine is useful with
several others, such ssr span andstr | en.

Command Reference 6-151

strrep

Thestrrep,strset,andstrneg routines creae string expressions based on
character repetition, character sets, or character negation.

Example In thisexample, theinteger value 8 isassigned to uni que, equivaent to thenumber
of unique charactersin pol yet hyl ene:

uni que = 255 - strlen(strneg("polyethylene"));

In thisexample, st r neg returnsthe string abcd, which lists each of the unique
charactersin ddccbbaa in dphabeticad order:

strneg(strneg("ddcchbaa"));

In thisexample, st r span returns 22 (the number of consecutive nondigit
characters beginning with the first character of the string" up to the first
digit 0 - 9").

strspan("up to the first digit 0 - 9", strneg(strset('0','9")), 1);
In thisexample, st r neg returnsthe string" " .

st rneg(strset(\1’, \377’));

See Also strspan strlen strset

strrep

Library Routine

Description Createsastring expression based on character repetition.

Syntax string strrep (rep_char, |en)
Syntax Element Description
rep_char An integer expression specifying the character to repest.
I en An integer expression specifying the desired length.

Comments Thest rr ep routinereturnsastring of length / en consisting of / en repetitions of
thecharacter rep_char.If rep_char or | enislessthan 1, or if rep_char is
greater than 255 (\377'), strrep returnsasdtring of length zero (").

Thestrrep ,strset ,andstrneg routines create string expressions based on
character repetition, character sets, or character negation.

Example Thisexamplereturnsthe string " aaaaa” :

strrep(a’, 5);

6-152 VU Language Reference

strset

These examples both return the string " " :

strrep(a’, 0);
strrep(256, 5);

See Also strset strneg

strset
Library Routine

Description Creaesastring expression based on user-supplied characters.

Syntax string strset (beg char, end _char)
Syntax Element Description
beg_char An integer expression (interpreted asacharacter) that

indicatesthefirst character intheexpresson. If beg_char is
lessthan 1 or exceedsthevdueof end char,str set
returnsastring of length zero (" ").

end_char An integer expression (interpreted asacharacter) that
indicatesthe last character in theexpression. If end_char is
greater than 255 (\377"), itsvdueissilently changed to
255,

Comments Thest r set routinereturnsastring conssting of the set of charactersbetween (and
including) the charactersbeg _char and end_char .

Thestrrep,strset,andstrneg routines creae string expressions based on
character repetition, character sets, or character negation.

Example Thisexample returnsthe sring " abcdef ghi j kl mopgr st uvwxyz":
strset (a', 'z2");
Thisexamplereturnsthe string " " :
strset (B, 'A);

Thisexample returnsthe set of charactersbetween t enpl and t enp2, and stores
thereturned gringin var:

var = strset (templ, temp2);

See Also strrep strneg

Command Reference 6-153

strspan

strspan
Library Routine

Description Returnsthelength of theinitia segment within astring expression, beginning a the

specified position.
Syntax int strspan (str, char_set, pos)
Syntax Element Description
str The string to search.
char_set A set of charactersto search for within st r.
pos An integer expression that specifiesthe postion within st r
where the search should begin.

Comments Thest r span routinereturnsdistance information about the span length of aset of
characterswithin astring expression. Specificdly, it returnsthe length of theinitia
segment within st r, beginning at the ordind position pos, which consistsentirely
of charactersfrom char_set . If pos islessthan 1 or exceedsthe length of st r,
st r span returnsan integer vaue of 0.

Theci ndex, | ci ndex, si ndex, and | si ndex routinesreturn positiona
information about either thefirst or last occurrence of aspecified character or set of
characterswithin astring expression.

Example Thisexamplereturnsthefifth field in theread-only variable _r esponse and stores
thevaluein var :

var= strspan(_response ",", 5);
This example returnsthe integer value 2:
strspan("noo goo gai pan", "aeiou", 2);
Thisexample returnsthe integer value 3:
strspan("aeiou", "eieio", 3);
Thisexample returnsthe integer value O:
strspan("had a farnt, "eieio", 11);

In thisexample, st r span returns 22 (the number of consecutive nondigit
characters beginning with the first character of the string”" up to the first
digit 0 - 9").

st r span("up to the first digit O - 9", strneg(strset('0’,'9"), 1);

See Also ci ndex | ci ndex si ndex | si ndex strstr

6-154 VU Language Reference

strstr

strstr

Library Routine

Description Searchesfor one string within another.

Syntax int strstr(strl, str2)
Syntax Element Description
str1 The string expression to search.
str2 The gtring expresson to find.

Comments Thestr st r () function returnsthe ordina postion within st r 1 of thefirst
occurrenceof st r 2. If st r2isnot foundin srl, str st r () returnsO. This
function isequivaent to the standard C library function of the same name.

Example Thisexampleusesst r st r () to find the base64—encoded login ID and password
contained in the given request text.

string auth_str, key, |og_pass, request_text;
int start, end;

key = "Authori zation: Basic";

start = strstr(request_text, key);

start += strlen(key);

auth_str = substr(request_text, start, 10000);
end = strstr(auth_str, "\r\n");

auth_str = substr(auth_str, 1, end — 1);

See Also ci ndex Icindex |sindex sindex st rspan

subfield

Library Routine

Description Extracts substrings from string expressions based on field position.

Syntax string subfield (str, field_sep, n)
Syntax Element Description
str The string to search.
field sep A string expression containing aset of field separator
characters.
n An integer expression indicating the desired field to search
within st r.

Command Reference 6-155

substr

Comments Thesubfi el d routinereturnsastring representing the nth field within the string
st r,wherefieldsare delimited within st r by one or more consecutive separator
characterscontained inthestringf i el d_sep. If nislessthan 1, or if st r contains
fewer than nfields, or if nequas1and st r beginswith aseparator character,
subfi el d returnsastring of zero length (" ").

Example Thisexamplereturnsthefifth field in theread-only variable _r esponse and stores
thevaluein var :

var = subfiel d(_response ",", 5);
Thisexample returnsthe string "b":
subfield("a, b,c,d", ",", 2);
Thisexamplereturnsthe sring" 104" :
subfiel d("104.13", ".", 1);
Thisexamplereturnsthe sring" 9" :
subfield("1,000.9", ",.", 3);
Thisexamplereturnsthe string (" "):
subfiel d("xxyzxxx", "xyz", 1);
Thisexamplereturnsthe sring" 3" :
subfield(",1,2,3"", ", ", 4);

See Also substr

substr

Library Routine

Description Extracts substrings from string expressions based on character postion.

Syntax string substr (str, pos, len)
Syntax Element Description
str The string to search.
pos An integer expression specifying the position of the first

character of the substring.

len An integer expression specifying the maximum length of the
returned substring.

6-156 VU Language Reference

Comments

Example

See Also

sync_point

Thesubst r routinereturnsthe substring within the string st r, beginning a the
ordina position pos with (maximum) length / en. If either | en or pos islessthan
1orif posexceedsthelength of st r, subst r returnsasring of zero length (" ").

Thisexamplereturnsthefirst five charactersin theread-only variable _r esponse
and storesthevaluein var :
var = substr(_response 1, 5);
Thisexamplereturnsthe string" knack" :
substr("knackwurst", 1, 5);
Thisexamplereturnsthe sring" wur st " :
substr ("knackwurst", 6, 100);
Thisexamplereturnsthe sring (" "):
substr ("knackwurst", 11, 1);

subfield

sync_point

Statement
Description Waitsfor usersin aLoadT est schedule to synchronize.
Syntax sync_poi nt sync_poi nt_nane,
Syntax Element ‘ Description
sync_poi nt_nane A string congtant that namesthe synchronization point. The
name can have from 1 to 40 characters.
Comments A script pauses a asynchronization point until the release criteriaspecified by the

schedulehave been met. At that time, the script delaysarandom time specified in the
schedule, and then resumes execution.

Typicaly, you will want to insert synchronization pointsinto aLoadT est schedule
rather than insertingthe sync_poi nt command into ascript.

If you insert asynchronization point through aschedule, synchronization occurs at
thebeginning of thescript. If you insert asynchronization point into ascript through
thesync_poi nt command, synchronization occursat that point in the script
where you inserted the command. You can insert the command anywhere in the
script.

For moreinformation about inserting synchronization pointsin aschedule, seethe
UsngRational L cedT et manud.

Command Reference 6-157

system

Example

See Also

system

Library Routine

In thisexample, auser makes adatabase connection and then synchronizeswith
other usersbefore proceeding.

t _cal vin_PAC = sql connect ("t _cal vin_PAC', "scott", "tiger",
"t:cal vin:PAC', "oracle7.3");

set Server_connection = t_cal vi n_PAC,

sync_point "l ogon";

sql exec ["school 001"] "alter session set nls_|language= ' AMERI CAN' "
"nls_te"rritory= "AVERICA' ";

sgl exec ["school 002"] "select * from student";

sql nrecv ["school 003"] ALL_ROWS;

wai t

Description

Syntax

Comments

6-158

Allows an escgpe mechanism to the U N I1X shell from within avirtud user script
runningon aU N IX system.

system (cnd_str)

Syntax Element ‘ Description
cnd_str A string expression specifying the U N IX command to
execute.

The syst emroutine behaveslike the C routine of the same name.

syst emcausescnd_str giventotheUN X shell / bi n/ sh(1) asinput, asif the
string had been typed asacommand at atermind. syst emwaitsuntil the shell has
completed execution of cnd_st r, and then returnstheexit statusof the shell (asan
integer expression). cnd_st r must be accessible from the PATH environment
variableand must have execute permissionsset. Thestandard input, standard output,
and standard error filesused by the shell correspond to the samefilesused by VU . If
standard output, or any other user-specified file opened for writing, is accessed by
both thevirtua user script and theinvoked syst emcommand, dl previousbuffered
output by VU iswritten out with f f | ush beforethecadl to syst emto ensure
correct file1/O operation.

The UN IX process environment avalableto cnd_st r isidenticd to the
environment of the virtua user, as described under ggenv on on page 6-42.
Therefore, if cnd_st r requiresvaues of certain predetermined environment
variablesto be different from thosein thevirtua usersenvironment, they should be
explicitly mentioned on the syst emcommand line, as shown in the second
example below.

VU Language Reference

tempnam

Example In this example, if the virtual user’s ID has the value 1, then the current working
directory is output to thefildi r 1, andsyst emreturns an integer expression equal
to the shell’s exit status. After completionsafst em the VU 1/O library routines
are used to accedsr 1, and then used to incorporate the result ofptve
command in further processing.

system("pwd > dir" + itoa(_uid));

This example defines the environment variablesE andMAI L to the script
read_ny_mai |l ; executes ead_my_nmai | ; and then returns its exit status.

system("HOVE=/u/testerl MAlL=/u/testerl/mail read_ny_mail");
See Also None.

tempnam
Library Routine

Description Generates unique temporary file names.

Syntax string tenpnam (dir, prefix)
Syntax Element Description
dir A stringexpression that qudifiesthe pahname. Thedirectory

part of the pathnameischosen asthefirst accessbledirectory
name from the following four sources (in the order shown):

» TheWindowsNT or UNIX environment verigble
TMPDI R(theget env library routine discussesthe U N 1X
process environment available to virtua user scripts)

> dir

» P_tnpdir asdefinedin <stdi o. h>

» /tnp

prefix A string expression that indicatesthe prefix added to the

temporary file name.

Comments Theunl i nk routine, which deletes files, at@npnamare often used together
because temporary files are removed as soon as their usefulness has expired.

Example If the Windows NT or UNIX environment variablé&/PDl Ris undefined,
t empnamreturns a temporary file name in the current (.) directory, such as
AAAa02179. The actual file name of the temporary file returned &ypnamwill
vary.

tenpnam(".", "");

Command Reference 6-159

testcase

See Also

testcase

If the WindowsN T or UN IX environment variagble TMPDI Rhasthevaue/ t np,
t empnamreturnsatemporary file namein the/ t np directory, prefixed by m ne,
such as/ t np/ mi neBAAa02179:

tenpnam(".", "mne");
If theWindowsN T or UN IX environment variable TMPDIR isundefined, and
P_t npdi r isdefined in < st di 0. h> to havethevaue/ usr/t np,t enpnam
returnsatemporary filenamein the/ usr/ t nmp directory, such as/ usr/t np/

CAAa02179. After the file has been opened, processed, and closed, unl i nk
removesit:

string tenp_filenane;

tenp_filename = tenmpnan("", "");
tnpfile_des = open(tenp_ fllenane "w')

/* do file processing on the tenporary file */

cl ose(tnpfil e_des);
unl i nk(tenp_ f||enane)

unl i nk get env

Emulation Command

Description
Syntax

6-160

Checksaresponse for specific results, and reports and logs them.

int testcase [cnd_id] condition[, log string [, fail_string]]

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

condition An integer expression. If thevalueof condi t i onis> 0, the
t est case command passes; otherwisg, it fals. t est case
returnsthevaue of condi ti on.

| og_string An optiond string expression used when logging a passed
test case (or afdledt est caseif fail_stringisnot
specified). If I og_st ri ngisnot specified, no log entry is
generated for t est case.

fail_string An optiond string expression used when logging afailed
testcase.If fail_stringisnot specified,
| og_stringisused for both passand fal cases.

VU Language Reference

time

Comments Thet est case command enablesyou to check aresponse for specific results, and
to record or log apassor fal status based on conditionsthat you specify.

Likeerrul at e, thearguments(condi ti on,l/ og_string,andfail_string)
are not evaluated before caling the command. Instead, t est case operates much
likethe conditiona operator (?:). condi t i onisevauated, and based on theresult
of condi tion, either og _stringorfail_stringisevauated.

Another difference between t est case and most other emulation commandsis
that t est case does not “think” before evaluating the condition.

Thet est case command is affected by the following VU environment variables:
Log_| evel andRecord_I evel .

Example In this examplet est 001 is not logged, butest 002 andt est 003 are logged,
depending on the value bbg_|I evel .

testcase ["test001"] match ("XYZ", _response);
testcase ["test002"] match ("XYZ", _response), "XYZ test";
testcase ["test003"] match ("XYZ", _response), "Found XYZ",
"Could not find XYZ";

See Also enul at e

time
Library Routine

Description Returnsthe current time in integer format.
Syntax int time ()

Comments Thet i ne routine returns an integer representing the current time in milliseconds.
ti me usesthe same time source and format used by the emulation commands when
timestamping input and output. This time source is reset to zero during
initialization.

Arelated routinet od, returns the current time in string format.

Example This example prints the current time and then prints the time that has elapsed. The

_|lr_t s read-only variable contains the timestamp of the last received data.
printf ("The time of day is %.", tod());
printf ("% mlliseconds have el apsed since the \
| ast rows received fromthe server",
tinme() - _Ir_ts);

See Also t od

Command Reference 6-161

tod

tod

Library Routine

Description Returnsthecurrent timein string format.
Syntax string tod ()

Comments Thet od routinereturnsa24-character string representingthe current timein time-
of-day format (such asti Apr 11 15:29: 02 1997").

Arelated routinet i me, returns the current time in integer format.

Example This example prints the current time and then prints the time that has elapsed. The

_|lr_ts read-only variable contains the timestamp of the last received data.
printf ("The time of day is %.", tod());
printf ("%l mlliseconds have el apsed since the \
| ast rows received fromthe server"”,
time() - _Ir_ts);

See Also time

trans
Library Routine

Description Substitutes or deletes selected characters in a string expression.

Syntax string trans (str, in_str, out_str)
Syntax Element Description
str The subject string expression.
in_str A string expression that specifiesthe set of characterswithin

st r tha should betrandated or deleted.

out_str A stringexpression tha specifiesthe set of characterstowhich
the charactersin i n_st r aretrandated.

Comments Thet r ans routine returns a translated versionsofr by substituting or deleting
selected characters. Any charactesirr not found ini n_st r is copied
unmodified to the returned string. Characters foundrinst r are substituted by
the corresponding characterdwt _st r (based on character position). If there is
not a corresponding characterdnt _st r, the character is deleted (not copied to
the returned string).

6-162 VU Language Reference

tux_allocbuf

A specid abbreviated convention isuseful for padding out _st r.If out _st r hasat
least two charactersand endsin an asterisk (*), out _st r isautomatically padded
with the character preceding the asterisk until thelength of out _st r isthesameas
thelength of i n_st r. For example, if out _str is"abc*" and thelength of

i n_strisl0, out_str isconvertedtoabcccccccce beforethetrandation begins.
If thisaction isundesirable, change the order of the charactersin i n_st r and

out _str sotha out st r doesnot endin an asterisk.

Thesqt r ans routineisthesameast r ans, except that it “squeezes” all strings of
repeated characters in the returned string that occowin st r to single
characters.

Example This example takes the stringt i onal and translates each letter into uppercase.
Thestrset routine specifies a range of letters.

t rans(“rational", strset('a’,’z’), strset(’A’,’Z2"));

Thisexample producesthe string"” Spani sh. " When t r ans findstheletter g, it
subgtitutes a; when it findstheletter | it substitutesn, and so on:

t rans("English", "gInE", "anpS");

Thisexample producesthestring"rmv my vw s. " When't r ans findstheletter
a,e,i,o,oru,itdeetesit (subgtitutes nothing).

t rans("remove my vowels", "aeiou”, "");
These two examples are equivdent and produce the string " $XXX. XX" :

trans("$141.19", strset('0’,'9’), "X*");
trans("$141.19", "0123456789", "XXXXXXXX");

Thisexample, without the asterisk, producesthe string " $. "

trans("$141.19", strset('0’,'9’), "X");
trans("$141.19", "0123456789", "X");

Thisexampleremoveseach tab in theinput string and replacesit with aspace, so two
spaces surround each word:

t r ans("\t\tHello,\t\tworld\t\t" "\t", " *);

See Also sqtrans

tux_allocbuf
Emulation Function

Description Allocaes afree buffer.

Command Reference 6-163

tux_allocbuf_typed

Syntax int tux_allocbuf (buftype)

Syntax Element

‘ Description

buftype

Must be one of the following buffer types:
BUFTYP_CLI ENTI D, BUFTYP_REVENT,
BUFTYP_SUBTYPE, BUFTYP_TPEVCTL,
BUFTYP_TPQCTL, BUFTYP_TPTRANI D, BUFTYP_TYPE.

Comments Buffersdlocated by t ux_al | ocbuf arefreed witht ux_fr eebuf .

Ift ux_al | ocbuf completessuccessfully, it returnsabuffer handle. Otherwisg, it
returnsavadueof NUM BUFandsets_error,_error_type,and_error _text
to indicate the error condition.

Example Thisexample dlocatesabuffer of type TPQCT L (queuecontrol) and setsan integer

field.

tpgctl = tux_al |l ocbuf (BUFTYP_TPQCTL) ;
tux_setbuf _int(tpgctl, "flags", TPQCORRI D | TPQFAI LUREQ | TPQREPLYQ |

TPQGETBYCORRI D |

See Also t ux_freebuf

tux_allocbuf typed

Emulation Function

TPQVSG D) ;

Description AllocatesaTU XED O-typed buffer.

Syntax int tux_allocbuf typed (buftype, subtype, size)

Syntax Element

Description

buftype

Must be one of the following buffer types:
BUFTYP_CARRAY, BUFTYP_FM., BUFTYP_FM.32,
BUFTYP_STRI NG BUFTYP_TPI NI T,
BUFTYP_X_OCTET, BUFTYP_VI EWBUFTYP_VI EVB2,
BUFTYP_X_C_TYPE, or BUFTYP_X_COVMON.

subt ype

A string expression that identifiesthe user-defined structure
contained within the VI EW VI EVB82, X C TYPE, or
X_COVMDON typed buffer. You must have defined the U N IX
environment variables VI EWFI LES and VI EVDI R.
Otherwise, subt ype isan empty string.

size

6-164

Therequested buffer size, in bytes.

VU Language Reference

Comments

Example

See Also

tux_bq

tux_bq

If t ux_al | ocbuf _t yped completes successfully, it returnsabuffer handle.
Otherwise, it returnsavadueof NULL_BUF and sets_error,_error_type,and
_error_text toindicatethe error condition.

Thisfunction isequivadent to the function t ux_t pal | oc. When you record
TUXEDO tréffic, the resulting script containst ux_t pal | oc, not
tux_al | ocbuf _t yped.

Thisexample dlocaes string-typed buffer of 30 bytes and then setsthe string "Jeke
Brake" to the buffer.

name = tux_al |l ocbuf _typed(BUFTYP_STRING "", 30);
tux_set buf _string(name, "", "Jake Brake");

tux_tpalloc tux_freebuf

Send Emulation Command

Description

Syntax

Comments

Example

See Also

QueuesaUN IX command for background processing.

int tux_bg [cnmdid] cmd

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

cmd A string expression that containsthe U N IX command
executed.

If t ux_bqg completes successfully, it returnsavaue of 1. Otherwise, it returnsa
vdueof Oandsets_error,_error_type,and _error _text toindicaethe
error condition.

t ux_bq isaffected by the think time, Log_| evel ,and Record_I evel VU
environment veriables.

Thisexample qgueuesaU N I X command for background printing of afile.
tux_bg ["tbg_001"] "lIp -d hp5np /hone/tuxedo/tux.env";

N one.

Command Reference 6-165

tux_freebuf

tux_freebuf
Emulation Function

Description Dedlocates afree buffer.

Syntax int tux_freebuf (bufhnd)
Syntax Element ’ Description
buf hnd A buffer dlocated with t ux_al | ocbuf ,

tux_al | ocbuf _typed,ortux_tpalloc.

Comments If t ux_freebuf completessuccessfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Example This example dedlocatesthe buffer t pqct | .
/* tux_allocbuf ... */

tux_freebuf (tpqctl);

See Also tux_al | ocbuf tux_al | ocbuf _typed

tux_getbuf ascii
Emulation Function

Description Getsafree buffer or buffer member and convertsit to astring.

Syntax string tux_getbuf_ascii (bufhnd, nbrspec)
Syntax Element Description
buf hnd A buffer dlocated with t ux_al | ocbuf,

tux_al | ocbuf _typed,ortux_tpalloc.

mbr spec A buffer member specification.

Comments Ift ux_get buf _ascii completessuccessfully, it returnsastring representation
of the buffer or buffer member. N onprintable characters are converted to hex or
backdash format. (See How aVU Saipt Represnts U nprintableD ata on page 3-34.)
Otherwise, t ux_get buf _asci i returnsan empty stringand sets_er r or,
_error_type,and_error _text toindicatethe error condition.

You should check _error explicitly after every cal tot ux_get buf _ascii.

6-166 VU Language Reference

Example

See Also

tux_getbuf_int

This example getsthe buffer odat a and returnsan ASCII representation.

idata = tux_tpalloc("CARRAY", "", 16);

tux_set buf _ascii(idata, "", "@8' b42fff48ba' @R 13e2228114'E");
odata = tux_tpall oc(" CARRAY", "", 8);

tux_tpcall ["kl_cnx020"] "math::nmul™, idata, odata, (TPSIGRSTRT);

{ string asciified_result; }

asciified_result = tux_getbuf_ascii(odata, "");

if (_error)
/* asciified_result is invalid */

N one.

tux_getbuf int

Emulation Function

Description

Syntax

Comments

Example

See Also

Getsafree buffer or buffer member and convertsit to aVU integer.

i nt tux_getbuf _int (bufhnd, nbrspec)

Syntax Element Description

buf hnd A buffer dlocated with t ux_al | ocbuf,
tux_al | ocbuf _typed,ortux_tpalloc.

mbr spec A buffer member specification.

Ift ux_get buf _i nt completessuccessfully, it returnsan integer representation of

the buffer or buffer member. Otherwisg, it returnsaO and sets_err or,
_error_type,and_error _text toindicatethe error condition.

You must check _er r or explicitly after every cdl tot ux_get buf _i nt .

This example getsthe buffer r esul t _buf and returns an integer representation.

args_buf = tux_tpalloc("FM.32", "", 0);
tux_setbuf __int(args_buf, ".FLD LONG 0", 123);
tux_setbuf _int(args_buf, ".FLD LONG 1", 456);

tux_tpcal | "Add", args_buf, result_buf, TPNOFLAGS;

result = tux_getbuf_int(result_buf, ".FLD LONG 2");

if (_error)
/* result is invalid */

tux_set buf _int

Command Reference

6-167

tux_getbuf_string

tux_getbuf _string

Emulation Function

Description Getsafree buffer or buffer member and convertsit to astring without converting

nonprintable characters.

Syntax string tux_getbuf_string (bufhnd, nbrspec)

Syntax Element

Description

buf hnd

A buffer dlocated with t ux_al | ocbuf,
tux_al | ocbuf _typed,ortux_tpalloc.

mbr spec

A buffer member specification.

Comments Ift ux_get buf _stri ng completessuccessfully, it returnsastring representation
of the buffer or buffer member. Otherwise, it returnsan empty string and sets
_error,_error_type,and_error_text toindicatetheerror condition.

You must check _er r or explicitly after every cdl tot ux_get buf _stri ng.

Example Thisexample getsthe buffer r esul t _buf and returnsastring representation.
args_buf = tux_tpalloc("FM.32", "", 0);
tux_set buf _int(args_buf, ".FLD LONG 0", 123);

tux_setbuf __int(args_buf, ".FLD LONG 1", 456);

tux_tpcall

args_buf, result_buf, TPNOFLAGS;

{ string result_str; }

result_str

if (_error)

See Also tux_setbuf _string

tux_reallocbuf
Emulation Function

tux_getbuf _string(result_buf, ".FLD LONG 2");

/* result_str is invalid */

Description Resizesafree buffer.

6-168

VU Language Reference

tux_setbuf_ascii

Syntax int tux_reallocbuf (bufhnd, size)
Syntax Element Description
buf hnd A buffer dlocated with t ux_al | ocbuf,

tux_al | ocbuf _typed,ortux_tpalloc.

size Therequested buffer size, in bytes.

Comments Ift ux_real | ocbuf completessuccessfully, it returnsabuffer handle. Otherwise,
it returnsavalueof NULL_BUF and sets_error, _error_type, and
_error _text toindicaethe error condition.

Example This example dlocaesthe string-type buffer msgbuf , checksthelength of a
message string, and then reszesmsgbuf to the length of nsgl en.
nsgbuf = tux_all ocbuf_typed(BUFTYP_STRING, "", 0);
[* .00
nsgl en = strlen(nmessage) + 1;
i f (tux_sizeofbuf(nmsgbuf) < nsglen)
nsgbuf = tux_reall ocbuf (msgbuf, nsglen);

See Also t ux_al | ocbuf

tux_setbuf_ascii
Emulation Function

Description Writesastring vaue into abuffer or buffer member.

ntax int tux_setbuf ascii (bufhnd, nbrspec, ascval
p
Syntax Element Description
buf hnd A buffer dlocated with t ux_al | ocbuf ,
tux_al | ocbuf _typed,ortux_tpalloc.
mbr spec A buffer member specification.
ascval A string expression with nonprintable charactersin

hexadecimd format or backd ash format. (SeeHowaVU Saipt
RepresntsU nprintable D ata on page 3-34.)

Comments Ift ux_set buf _ascii completessuccessfully, it returnsavaue of 1. Otherwise
itreturnsavalueof Oand sets_error,_error_type,and_error_text to
indicate the error condition.

Command Reference 6-169

tux_setbuf_int

Example Thisexampledlocaesthebuffer i dat a and then writesastring vaueto the buffer.
idata = tux_tpalloc("CARRAY", "", 16);
tux_set buf _ascii (idata, "", "@58' b42fff48ba' @R 13e2228114'E");

See Also t ux_get buf _asci i

tux_setbuf_int
Emulation Function

Description Setsafree buffer or buffer member with aVU integer vaue.

Syntax int tux_setbuf _int (bufhnd, nbrspec, intval)
Syntax Element Description
buf hnd A buffer dlocated with t ux_al | ocbuf ,
tux_al | ocbuf _typed,ortux_tpalloc.
mbr spec A buffer member specification.
ascval An integer expression.

Comments Ift ux_set buf i nt completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error, _error _type,and_error_text to
indicate the error condition.

Example Thisexample dlocaesthe buffer dat a and then writesan integer vdueto the
buffer.
data = tux_tpalloc("FM", "", 0);

tux_setbuf _int(data, " XA_TYPiE“ , S) ;

See Also tux_get buf _int

tux_setbuf_string
Emulation Function

Description Setsafree buffer or buffer member with aVU string vaue, without converting
nonprintable characters.

6-170 VU Language Reference

Syntax

Comments

Example

See Also

tux_sizeofbuf

int tux_setbuf_string (bufhnd, mbrspec, strval)

Syntax Element Description
buf hnd A buffer dlocated with t ux_al | ocbuf,
tux_al | ocbuf _typed,ortux_tpalloc.
mbr spec A buffer member specification.
strval A string expression. D o not convert nonprintable characters

into hexadecimd or backdash formd. If you do, they are
loaded into buf hnd unmodified.

If t ux_set buf _st ri ng completes successfully, it returnsavaue of 1.
Otherwise, it returnsavadueof Oand sets_error, _error _type, and
_error _text toindicatethe error condition.

Thisexample dlocaesthe buffer t pqct | and then writesastring vadue to the
buffer.

tpgctl = tux_all ocbuf (BUFTYP_TPQCTL) ;
tux_setbuf_string(tpqctl, "corrid", "req302");

tux_get buf _string

tux_sizeofbuf
Emulation Function

Description
Syntax

Comments

Returnsthe size of abuffer.

i nt tux_sizeof buf (bufhnd)

Syntax Element ’Description

buf hnd A buffer dlocated with t ux_al | ocbuf,
tux_al | ocbuf _typed,ortux_tpalloc.

If t ux_si zeof buf completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error, _error _type,and_error_text to
indicate the error condition.

Command Reference 6-171

tux_tpabort

Example

See Also

Thisexampleadlocatesthe sting-type buffer nsgbuf , checksthelength of amessage
sring, and then resizesnsgbuf if the size of nsgl en isgreater than nsgbuf .
nsgbuf = tux_all ocbuf_typed(BUFTYP_STRING, "", 0);
[* .00
nsgl en = strlen(nmessage) + 1;
i f (tux_sizeofbuf (nsgbuf) < nsgl en)
nsgbuf = tux_reall ocbuf (nmsgbuf, nsglen);

N one.

tux_tpabort
Send Emulation Command

Description

Syntax

Comments

Example

See Also

6-172

Abortsthe current transaction.

int tux_tpabort [cnd_id] flags

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

flags An integer expression whose vaue must be TPNOFLAGS.
Thevaduesof f| ags aredefined in the TU XED O header
file.

If t ux_t pabort completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t pabort command isaffected by the think time, Log_| evel , and
Record_| evel VU environment variables.

Thisexample abortsaTU XED O transaction in progress:

/* begin transaction, 180-sec tineout */
tux_t pbegin (180, TPNOFLAGS);

/* abort current transaction */
tux_tpabort ["tabo013"] TPNOFLAGS;

t ux_t pbegi n

VU Language Reference

tux_tpacall

tux_tpacall
Send Emulation Command

Description Sendsaservice request.

Syntax int tux_tpacall [cmd_id] sve, data, flags
Syntax Element Description
cml_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].
sve A gring expresson that identifiesthe service.
dat a A string expression that must reference abuffer dlocated by

tux_t pal | oc().

flags An integer expression with one of the following vaues:
TPNOFLAGS, TPNOBLOCK, TPNOREPLY, TPNOTI ME,
TPNOTRAN, or TPSI GRSTRT (ignored). T he vaues of
fl ags aredefined in the TU XED O header file.

Comments If t ux_t pacal | completessuccessfully, it returnsavaue of 1. Otherwiseit
returnsavaueof Oandsets _error, _error_type,and _error_text to
indicate the error condition.

Thet ux_t pacal I command isaffected by the think time, Log_| evel , and
Record_| evel VU environment variables.

Example Thisexample dlocaesthe buffer dat a, populatesthe buffer with transaction
information, and then sends a service request to the OPEN_ACCT service.

data = tux_tpalloc("FM", "", 0);
tux_setbuf _int(data, "XA TYPE', 5);

tux_setbuf _int(data, "8194", 41162);
tux_set buf _int(data, "8195", 0);
tux_setbuf int(data, "BRANCH ID', 1);
tux_set buf _ascii(data, "ACCT_TYPE', "C');
tux_set buf _ascii(data, "MD_INT", "Q");

tux_set buf _string(data, "40964", "F11");
tux_set buf _string(data, "40966", "OPEN');

tux_set buf _string(data, "40968", "OPEN_ACCT");

tux_set buf _string(data, "PHONE", "919-870-8800");

tux_set buf _string(data, "ADDRESS", "100 Happy Trail");

tux_set buf _string(data, "SSN', "123-45-6789");

tux_set buf _string(data, "LAST_NAME', "John");

tux_set buf _string(data, "FIRST_NAME', "Custoner");

tux_set buf _string(data, "SAMOUNT", "1000");

tux_setbuf _ascii(data, "49170",
"*a071910800000000000091e8a072910800000000000091e8* @' 91080000000000009"
" 1e8a06f 910800000000000091e8a06d910800000000000091e8a06c910800000000000"
"091e8° h*910800000000000091e8a0ca910800000000000091e8" "

)

call _1 = tux_tpacall ["bankap002"] "OPEN_ACCT", data, (TPNOBLOCK |

Command Reference 6-173

tux_tpalloc

TPSI GRSTRT) ;
call _1 fs_ts = _fs_ts;
tux_tpfree(data);

See Also tux_tpgetrply
tux_tpalloc
Emulation Function
Description Allocates TU XED O-typed buffers.
Syntax int tux_tpalloc (type, subtype, size)
Syntax Element Description
type A string expression that evauatesto CARRAY, FM., FML32,
STRI NG TPI NI T, X_OCTET, VI EWVI EWB2, X_C TYPE,
or X_COMVON.
subt ype A string expression that identifiesthe user-defined structure
contained within the VI EW VI EVB82, X C TYPE, or
X_COVMDON typed buffer. You must have defined the U N 1X
environment variables VI EWFI LES and VI EVWDI R.
Otherwise, subt ype isan empty string.
si ze Therequested buffer size, in bytes.
Comments If t ux_t pal | oc completes successfully, it returnsabuffer handle. Otherwise, it
returnsavaueof NULL_BUF and sets_error,_error_type,and
_error_text toindicaethe error condition.
Thet ux_t pal | oc function isequivaent to thefunction t ux_t pal | oc, except
thatitisan ATMI cdl.
Example This example dlocaes abuffer of 9 bytestha evduaesto STRI NG.
data = tux_tpalloc("STRING', "", 9);
tux_tpgetrply ["tget006"] call_6, data, TPNOFLAGS;
See Also tux_tpfree
6-174 VU Language Reference

tux_tpbegin

Emulation Function

tux_tpbegin

Description Beginsatransaction.

Syntax int tux_tpbegin (tinmeout,flags)

Syntax Element

Description

ti meout

The transaction timeout threshold, in seconds.

fl ags

An integer expresson whose vaue must be TPNOFLAGS.
Thevaduesof fI ags aredefined in the TU XED O header
file.

Comments If t ux_t pbegi n completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Example Thisexample beginsaTU XEDO transaction with a 60-second timeout.

tux_t pbegi n(60, TPNOFLAGS) ;

See Also t ux_t pabort

Command Reference

tux_t pcomm t

6-175

tux_tpbroadcast

tux_tpbroadcast

Send Emulation Command

Description Broadcasts notification by name.

Syntax int tux_tpbroadcast [cnd_id] Imd, usrname, cltnane,

data, flags

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

I'md A gtring expression tha evauatesto alogicd computer ID.

usrnane A gtring expression tha selectsthe user name.

cl t nane A string expression tha selectsthe target client set.

dat a Typed buffer datathat must reference abuffer alocaed by

tux_tpal |l oc()

flags An integer expression with one of the following vaues:
TPNOFLAGS, TPNOBLOCK, TPNOTI ME, or TPSI GRSTRT
(ignored). Thevduesof f | ags aredefinedintheTU XEDO
header file.

Comments Ift ux_t pbroadcast completessuccessfully, it returnsavaueof 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t pbroadcast command isaffected by the think time, Log_| evel ,
and Record_| evel VU environment variables.

Example Thisexampledlocated thebuffer dat a, sets the string “Wake U p”in the buffer, and
then broadcasts the string to JackSHRVER3.
data = tux_tpalloc("STRING', "", 0);
tux_setbuf_string(data, "", "Wake Up!");
tux_t pbroadcast ["tbro002"] "SERVER3", "Jack", "PCAEO5", data,
TPNOFLAGS;
tux_tpfree(data);
See Also None.

6-176 VU Language Reference

tux_tpcall
Send Emulation Command

tux_tpcall

Description Sendsaservice request and awaitsitsreply.

Syntax int tux_tpcall

Syntax Element

[ecnd id] sve, idata, odata, flags

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

svc

A gring expresson that identifiesthe service.

i data

A buffer handle that must reference abuffer alocated by
tux_t pal | oc().

odat a

A buffer handle that must reference abuffer dlocated by
tux_t pal | oc().

fl ags

An integer expression with one of the following vdues:
TPNOFLAGS, TPNOBL OCK, TPNOCHANGE, TPNOTI ME,
TPNOTRAN, or TPSI GRSTRT (ignored). T he vaues of
fl ags aredefined in the TU XED O header file.

Comments Ift ux_t pcal I completessuccessfully, it returnsavaueof 1. Otherwisg, it returns
avaueof Oandsets_error,_error_type,and_error_text toindicaethe

Example

See Also

error condition.
Thet ux_t pcal | command updates _t ux_t pur code.

Thet ux_t pcal | command isaffected by thethink time, Log_| evel , and
Record_| evel VU environment varigbles.

Thisexample dlocaesthe buffersi dat a and odat a, and then sendsaservice
request to the "math::exp" service.

idata = tux_tpalloc("CARRAY", "", 16);

tux_set buf _ascii(idata, "", "@8' b42fff48ba' @R 13e2228114'E");
odata = tux_tpall oc(" CARRAY", "", 8);

set Think_avg = 12;

tux_tpcall ["kl_cnx020"] "math::exp", idata, odata, (TPSIGRSTRT);
tux_tpfree(idata);

tux_tpfree(odata);

N one.

Command Reference 6-177

tux_tpcancel

tux_tpcancel
Emulation Function

Description Cancelsacal descriptor for an outstanding reply.

Syntax int tux_tpcancel (cd)
Syntax Element ’ Description
cd ‘Thecanceled cdl descriptor.

Comments If t ux_t pcancel completessuccessfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Example Thisexample cancelsthet ux_t pacal | represented by cal | _23.
call _23 = tux_tpacall "EDI-SENDJOB", jobdesc, TPNOFLAGS;
[* .00
tux_t pcancel (cal | _23);

See Also t ux_t pacal |

tux_tpchkauth

Emulation Function

Description Checkswhether authentication isrequired to join an gpplication.
Syntax int tux_tpchkauth ()

Comments If t ux_t pchkaut h completes successfully, it returnsavadid authorization level.
Otherwisg, it returnsavdueof -1and sets_error, _error _type, and
_error_text toindicaethe error condition.

Example This example checksif authentication isrequired, and if S0, printsamessage
indicating the script requires authentication.

i f (tux_tpchkauth() != TPNOAUTH)
print "Script requires authentication info!";

See Also N one.

6-178 VU Language Reference

tux_tpcommit
Send Emulation Command

tux_tpcommit

Description Commitsthe current transaction.

Syntax int tux_tpcommit [cnd_id] flags

Syntax Element

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

fl ags

An integer expresson whose vaue must be TPNOFLAGS.
Thevaduesof | ags aredefined in the TU XED O header
file.

Comments Ift ux_t pcomm t completes successfully, it returnsavaue of 1. Otherwisg, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t pconm t command isaffected by thethink time, Log | evel , and
Record_| evel VU environment varigbles.

Example T his example commitsthe current transaction.

/* tux_tpbegin ...

*/

tux_tpcomit ["tconDO7"] TPNOFLAGS;

See Also t ux_t pbegin

Command Reference

6-179

tux_tpconnect

tux_tpconnect
Send Emulation Command

Description Establishes aconversationa service connection.

Syntax int tux_tpconnect [cnd id] svc, data, flags

Syntax Element

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

svc

A gring expresson that identifiesthe service.

dat a

Must reference abuffer dlocated by t ux_t pal | oc().

flags

An integer expression with one of the following vaues:
TPNOFLAGS, TPNOBLOCK, TPNOTI ME, TPNOTRAN,
TPRECVONLY, TPSENDONLY, or TPSI GRSTRT
(ignored). Thevauesof | ags are defined in the
TUXEDO header file.

Comments If t ux_t pconnect completessuccessfully, it returnsaconnection descriptor.
Otherwise, it returnsavdueof -1 and sets_error, _error _type, and
_error _text toindicatethe error condition.

Thet ux_t pconnect command isaffected by the think time, Log_| evel , and
Record_| evel VU environment variables.

Example This example establishes aconversationa connection with the service AuDI TC.

conn_1 = tux_tpconnect ["denpl.002"] "AUDI TC', NULL_BUF, TPSENDONLY;

See Also t ux_t pdi scon

tux_tpdequeue
Send Emulation Command

Description Removes amessage from aqueue.

6-180

VU Language Reference

Syntax

Comments

Example

See Also

tux_tpdequeue

int tux_tpdequeue [cnd _id] qspace, qnane, ctl, data,

fl ags

Syntax Element Description

cnd_id The optiond command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

gspace A string expression that identifiesthe queue space.

gnane A string expression that identifiesthe queue.

Must reference abuffer of type BUFTYP_TPQCTL or
BUFTYP_NULL.

dat a Must reference abuffer dlocated by t ux_t pal | oc().
flags An integer expression with one of the following vaues:

TPNOFLAGS, TPNOBL OCK, TPNOCHANGE, TPNOTI ME,
TPNOTRAN, or TPSI GRSTRT (ignored). T he vaues of
fl ags aredefined in the TU XED O header file.

If t ux_t pdequeue completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error, _error _type,and_error_text to
indicate the error condition.

Thet ux_t pdequeue command is afected by the think time, Log_| evel , and
Record_| evel VU environment varigbles.

This example removes the message represented by the buffer t pgct | from the
gueue space TMQUEUE.

tpgctl = tux_all ocbuf (BUFTYP_TPQCTL);

tux_setbuf _int(tpgctl, "flags", TPQCORRI D | TPQFAI LUREQ | TPQREPLYQ |
TPQGETBYCORRI D | TPQVSA D) ;

tux_setbuf_string(tpqctl, "corrid", "req302");

odata = tux_tpalloc("STRING', "", 9);

tux_t pdequeue ["yang003"] "TMQUEUE", "APP_REPLY", tpqctl, odata,
TPNOFLAGS;

tux_freebuf (tpqctl);

tux_t pfree(odata);

t ux_t penqueue

Command Reference 6-181

tux_tpdiscon

tux_tpdiscon
Send Emulation Command

Description Takesdown aconversationd service connection.

Syntax int tux_tpdiscon [cnd id] cd

Syntax Element

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

cd

A cdl descriptor indicating the connection taken down. It
must bereturned byt ux_t pconnect ().

Comments If t ux_t pdi scon completes successfully, it returnsavaue of 1. Otherwisg, it
returnsavaueof Oand sets_error, _error _type,and_error_text to
indicate the error condition.

Thet ux_t pdi scon command isaffected by the VU environment variablesthink
time, Log_| evel ,and Record_| evel .

Example This example takes down the service connection conn_1.

/* tux_tpconnect ...

*/

tux_t pdi scon ["denpl. 002"] conn_1;

See Also t ux_t pconnect

tux_tpenqueue
Send Emulation Command

Description Queuesamessage.

6-182

VU Language Reference

tux_tpenqueue

Syntax int tux_tpenqueue [cnd _id] qspace, qnane, ctl, data,

fl ags

Syntax Element Description

cnd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

gspace A string expression that identifiesthe queue space.

gnane A string expression that identifiesthe queue.

ctl Must reference abuffer of type BUFTYP_TPQCTL or
BUFTYP_NULL.

dat a Must reference abuffer dlocated by t ux_t pal | oc().

flags An integer expression with one of the following vaues:

TPNOFLAGS, TPNOBL OCK, TPNOCHANGE, TPNOTI ME,
TPNOTRAN, or TPSI GRSTRT (ignored). T he vaues of
fl ags aredefined in the TU XED O header file.

Comments If t ux_t penqueue completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t penqueue command is afected by the VU environment variables
think time, Log_| evel ,and Record_| evel .

Example This example queuesthe message represented by t pgct | (queue control) to the
queue space TMQUEUE.

tpgctl = tux_all ocbuf (BUFTYP_TPQCTL);
tux_setbuf _int(tpgctl, "flags", TPQCORRI D | TPQFAI LUREQ | TPQREPLYQ |

TPQVSG D) ;

tux_setbuf_string(tpqctl, "corrid", "req302");

tux_setbuf _string(tpqctl, "failurequeue", "APP_FAILURE");

tux_set buf _string(tpqctl, "replyqueue", "APP_REPLY");

data = tux_tpalloc("STRING', "", 8);

tux_set buf_string(data, "", "NC WAKE 302.82");

tux_t penqueue ["yin002"] "TMQUEUE", "Cal cSal esTax", tpqctl, data,
TPNOFLAGS;

tux_freebuf (tpqctl);
tux_tpfree(data);

See Also t ux_t pdequeue

Command Reference 6-183

tux_tpfree

tux_tpfree
Emulation Function

Description
Syntax

Comments

Example

See Also

Freesatyped buffer.

int tux_tpfree (ptr)

Syntax Element

’ Description

ptr

‘A buffer handle dlocaed with t ux_t pal | oc.

If t ux_f reebuf completessuccessfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

This example freesthe buffer dlocated asast ri ng.

astring =

[* o0

tux_tpfree(astring);

tux_tpalloc

tux_tpgetrply

Send Emulation Command

tux_tpalloc("STRING', "", 0);

Description
Syntax

6-184

Getsareply from apreviousrequest.

int tux_tpgetrply [cnd_id] cd, data, flags

Syntax Element

Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

cd A cdl descriptor returned by t ux_t pacal | ().

dat a Must reference abuffer dlocated by t ux_t pal | oc().

flags An integer expression with one of the following vaues:

TPNOFLAGS, TPNOBL OCK, TPNOCHANGE, TPNOTI ME, or
TPSI GRSTRT (ignored). Thevauesof f | ags aredefined in
the TUXEDO header file.

VU Language Reference

tux_tpinit

Comments If t ux_t pget r pl y completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t pgetrpl y command updates_t ux_t pur code.

U nlike the other emulation commands, the order of thet ux_t pgetrply
emulation commandsin your VU script could differ from the TU XED O

t pget r pl y cdlsin your origind client program. Thisisdueto limitations of

T U XED O workgation protocol decoding. Although the order of thecommandsare
different, they are scripted in amanner consistent with how t pget r pl y isused by
the origind client program based on information recorded during the capture.

In addition, ascripted t ux_t pget r pl y blockswaiting for specific asynchronous

request responses — for example, specific call descriptors — regardless of how
asynchronous responses were gathered by the original client program. It is possible
that reported response times for asynchronous calls are skewed when more than one
is outstanding.

Thet ux_t pget r pl y command is affected by the VU environment variables
think time,Log_I evel , andRecord_I evel .

Example This example gets the reply from a previdbusx_t pacal | represented by
call _6.
/* tux_tpacall ... */
data = tux_tpalloc("STRING', "", 9);

tux_tpgetrply ["tget006"] call_6, data, TPNOFLAGS;
start_time ["t15003"] call _6_fs_ts;

stop_time ["t15003"] _lr_ts;

tux_tpfree(data);

See Also tux_tpacal |

tux_tpinit
Send Emulation Command

Description Joins an application.

Syntax int tux_tpinit [cnd_id] tpinfo
Syntax Element Description
cmd_i d The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

tpinfo Must reference abuffer of type TPI NI T dlocated by
tux_t pal | oc().

Command Reference 6-185

tux_tpnotify

Comments

Example

See Also

In order for t ux_t pi ni t to operate correctly, aTU XED O-defined system
environment variable named WSN AD D R must be present. Thisvariableisused by
the TU XEDO client library to determinewhich TU XEDO Worksétion Listener
(WSL) to connect to.

TheWSLHOST and WSLPORT system environment varigblesare optiond. If they
are defined, they will beused by t ux_t pi ni t to generaeavdid WSNADDR. If
they are not defined, then t ux_t pi ni t usesthevadue of WSNADDR. If

WSN ADDR isnot defined, then t ux_t pi ni t fails, reporting aplayback error
message indicating that none of the three variables were set.

If WSLHOST and WSLPORT are st, theresultingWSN AD DR vdueoverridesany
previous WSN ADDR vaue.

WSLHOST and WSLPORT can be et in the script, which isthe default recorded
script action, or they may be set in aLoadT est schedule. If they are set in ascript and
aschedule, the script values override the schedule vaues.

Iftux_t pi nit completessuccessfully, it returnsavadueof 1. Otherwiseit returns
avaueof Oand sets_error,_error_type,and_error _t ext toindicaethe
error condition.

Thet ux_t pi ni t command isaffected by the think time, Log_I evel , and
Record_| evel VU environment variables.

This example connectsto the TU XED O Workstation Listener in the environment
variablesWBLHOST and WELPORT using the dataset in the buffer t pi nf o.

put env(" WSLHOST=hp715. nc.rati onal . cont');
put env(" WSLPORT=36001") ;

tpinfo = tux_tpalloc("TPINIT", "", TPI N TNEEDX 10));
tux_set buf _string(tpinfo, "usrnane", "dhinson");
tux_set buf_string(tpinfo, "cltnanme", “rocinante");
tux_setbuf _int(tpinfo, "flags", TPNOFLAGS);

tux_setbuf _int(tpinfo, "datalen", 10);

tux_setbuf _ascii(tpinfo, "data", "GL°0201' AL‘ 0102° NP");
tux_tpinit ["cx1001"] tpinfo;

tux_t pfree(tpinfo);

[* or */
tux_tpinit ["cx1001"] NULL_BUF;

tux_tpterm

tux_tpnotify

Send Emulation Command

Description

6-186

Sends notification by client identifier.

VU Language Reference

tux_tppost

Syntax int tux_tpnotify [cmd_id] clientid, data, flags
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].
clientid Must reference abuffer of type BUFTYP_CLI ENTI D.
dat a Must reference abuffer dlocated by t ux_t pal | oc().
flags An integer expression with one of the following vaues:

TPNOFLAGS, TPNOBLOCK, TPNOTI ME, or TPSI GRSTRT
(ignored). Thevduesof f | ags aredefinedintheTU XEDO
header file.

Comments Ift ux_t pnoti fy completessuccessfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t pnoti fy command isaffected by thethink time, Log | evel , and
Record_| evel VU environment varigbles.

Example This example sendsthe notification represented in thecl i ent i d_ typed-buffer.

clientid_ = tux_all ocbuf(BUFTYP CLI ENTI D) ;
tux setbuf ascii(clientid_, "
‘3383 F& 000000000000001c00000000 ")
set Think_avg = 1;
tux_tpnotify ["tnot006"] clientid_, NULL_BUF, TPNOFLAGS;
tux_freebuf(clientid));

See Also N one.

tux_tppost

Send Emulation Command

Description Possan event.

Syntax int tux_tppost [cnd_id] eventnane, data, flags
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].
event nane A string expression that identifiesthe name of the event.
dat a Must reference abuffer dlocated by t ux_t pal | oc().

Command Reference 6-187

tux_tprealloc

(Continued)
Syntax Element Description
flags An integer expression with one of the following vdues:

TPNOFLAGS, TPNOBLOCK, TPNOREPLY, TPNOTI ME,
TPNOTRAN, or TPSI GRSTRT (ignored). T he vaues of
fl ags aredefined in the TU XED O header file.

Comments Ift ux_t ppost completessuccessfully, it returnsavaueof 1. Otherwisg, it returns
avaueof Oandsets_error,_error_type,and_error _text toindicaethe
error condition.

Thet ux_t ppost command isaffected by the think time, Log_| evel , and
Record_| evel VU environment varigbles.

Example This example posts "Switch Power Failure" to an event previoudy subscribed to by
t ux_t psubscri be.
data = tux_tpalloc("STRING', "", 7);
tux_set buf _string(data, "", "03-019");

tux_tppost ["swmon023"] "Switch_Power Failure", data, TPNOFLAGS;
tux_tpfree(data);

See Also t ux_t psubscri be t ux_t punsubscri be

tux_tprealloc
Emulation Function

Description Changesthe size of atyped buffer.

Syntax int tux_tprealloc (ptr, size)
Syntax Element Description
ptr Must be abuffer handle dlocated by t ux_t pal | oc().
si ze Therequested buffer size, in bytes.

Comments Ift ux_t preal | oc completessuccessfully, it returnsabuffer handle. Otherwise,
it returnsavalue of NULL_BUF and sets_error,_error_type,and
_error_text toindicatethe error condition.

6-188 VU Language Reference

tux_tprecv

Example Thisexampleallocaesthe string-type buffer i dat a, checksthelength of amessage
sring, and then resizesi dat a to the length of nsgl en.
idata = tux_tpalloc("STRING', "", 0);
[* .00
nsgl en = strlen(message) + 1;
if (tux_tptypes(idata, NULL_BUF, NULL_BUF) < mnsgl en)
idata = tux_tprealloc(idata, mnsglen);
See Also tux_tpalloc
tux_tprecv
Send Emulation Command
Description Receives amessage in aconversationd service connection.
Syntax int tux_tprecv [cnmd_id] cd, data, flags, revent
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].
cd A cdl descriptor indicating the conversation in which to
receive data. It must bereturned by t ux_t pconnect ().
dat a Must reference abuffer dlocated by t ux_t pal | oc().
flags An integer expression with one of the following vdues:
TPNOFLAGS, TPNOBL OCK, TPNOCHANGE, TPNOT| IVE, or
TPSI GRSTRT (ignored). Thevauesof f | ags aredefined in
the TUXEDO header file.
revent Must reference abuffer of type BUFTYP_REVENT.
Comments Ift ux_t pr ecv completessuccessfully, it returnsavaueof 1. Otherwisg, it returns

avaueof Oandsets_error,_error _type,and_error _text toindicaethe
error condition.

Thet ux_t precv command updates _t ux_t pur code.

Thet ux_t precv command isafected by the think time, Log_| evel , and
Record_| evel VU environment varigbles.

Command Reference 6-189

tux_tpresume

Example This example receives amessage from the previoudy established conversationd
service connection conn_ 1.
revent _ = tux_al |l ocbuf (BUFTYP_REVENT) ;
data = tux_tpalloc("STRING', "", 47);
set Think_avg = 1;
tux_tprecv ["bankap004"] conn_1, data, (TPNOCHANGE), revent_;

tux_freebuf (revent);
tux_t pfree(data);

See Also t ux_t pconnect

tux_tpresume
Send Emulation Command

Description Resumesaglobd transaction.

Syntax int tux_tpresume [cnd_id] tranid, flags

Syntax Element Description

cmd_i d The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

tranid Must reference abuffer of type BUFTYP_TRANI Dthat was
suspended by t ux_t psuspend().

fl ags An integer expression whose vaue must be TPNOFLAGS.
Thevaduesof | ags aredefined in the TU XED O header
file.

Comments If t ux_t presune completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t presunme command isafected by the think time, Log | evel , and
Record_| evel VU environment varigbles.

t ux_t pr esune resumesthe currently suspended transaction. It must be preceded
byt ux_t pbegi n, 0or moretransacaction suboperations, andt ux_t psuspend.
Thedataargument tot ux_t pr esunme must be created usingt ux_al | ocbuf,
and it must have been used in thecadl tot ux_t psuspend.

Example This example resumes asuspended transaction represented ast r ani d_40.
/* tux_tpsuspend ... */
set Think_avg = 3;
tux_tpresune trani d_40, TPNOFLAGS;
tux_freebuf (tranid_40);

See Also t ux_t psuspend t ux_t pbegin

6-190 VU Language Reference

tux_tpscmt

tux_tpscmt
Emulation Function

Description Setswhent ux_t pconmi t () returns.

Syntax int tux_tpscnt (flags)
Syntax Element ’ Description
flags An integer expression with one of the following vdues:

TP_CMI_LOGGED or TP_CMI_COVPLETE. The vaues of
fl ags aredefined in the TU XED O header file.

Comments If t ux_t pscmt completes successfully, it returnsthe previousvalue of
TP__COMM T_CONTROL. Otherwisg, it returnsavaueof -1and sets_err or,
_error_type,and_error _text toindicatethe error condition.

Example This example setsthe return instance for the followingt ux_t pconmi t .
tux_t pscnt (TP_CMI_COVPLETE) ;
/* tux_tpcommt ... */

See Also tux_t pcommi t

tux_tpsend
Send Emulation Command

Description Sendsamessage in aconversationd service connection.

Syntax int tux_tpsend [cnd_id] cd, data, flags, revent

Syntax Element Description

cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

cd A cal descriptor indicating the conversation in which to send
daa It must bereturned by t ux_t pconnect ().

dat a Must reference abuffer dlocated by t ux_t pal | oc().

flags An integer expression with one of the following vdues:

TPNOFLAGS, TPNOBLOCK, TPNOTI ME, TPRECVONLY, or
TPSI GRSTRT (ignored). Thevauesof f | ags aredefined in
the TUXEDO header file.

revent Must reference abuffer of type BUFTYP_REVENT.

Command Reference 6-191

tux_tpsprio

Comments If tux_tpsend completessuccessfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t psend command updates _t ux_t pur code.
Thet ux_t psend command is affected by the think time, Log_I evel , and
Record_| evel VU environment variables.

Example This example sends message to the previoudy established conversationd service
connection conn_1.

/* Must be preceded by tux_tpconnect to start the conversation.*/
revent _ = tux_all ocbuf(BUFTYP REVENT) ;

data = tux tpal loc("STRING', "", 2);

tux_set buf _stri ng(dat a, "", "t");

set Thi nk _avg 5043;

tux_tpsend [" bankap003] conn_1, data, (TPRECVONLY), revent_
tux_freebuf(revent_);

tux_tpfree(data);

/* Part of conversation between client and server in Bankapp appli -
cation. Send a nmessage during conversation. */

tux_tpsend ["tsen.003"] conn_1, data_, (TPRECVONLY), revent_;
tux_freebuf (revent_);

tux_tpfree(data);

See Also t ux_t pconnect

tux_tpsprio

Emulation Function

Description Setsthe service request priority.

Syntax int tux_tpsprio (prio, flags)

Syntax Element Description

prio An integer expression that incrementsor decrementsthe
service request priority.

flags An integer expression with one of the following vdues:
TPABSOLUTE or TPNOFLAGS. Thevduesof f/ ags ae
defined in the TU XED O header file.

Comments If t ux_t pspri o completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Example This example setsthe service request priority for the followingt ux_t pcal | .

tux_t psprio(99, TPABS(]_UTE)
/* tux_tpcall */
6-192 VU Language Reference

tux_tpsubscribe

See Also tux_t pacal | tux_tpcall

tux_tpsubscribe
Send Emulation Command

Description Subscribesto an event.

Syntax int tux_tpsubscribe [cnd_id] eventexpr, filter, ctl, flags
Syntax Element Description
cmd_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].
event expr A gtringexpression that identifiesthe event the caler wantsto
ubscribe to.
filter A string expression that containsthe Boolean filerule

associated with event expr .

ctl Must reference abuffer of type BUFTYP_TPEVCTL or
BUFTYP_NULL.

flags An integer expression with one of the following vdues:
TPNOFLAGS, TPNOBLOCK, TPNOTI ME, or TPSI GRSTRT
(ignored). Thevduesof f | ags aredefinedintheTU XEDO
header file.

Comments Ift ux_t psubscri be completessuccessfully, it returnsavaueof 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t psubscri be command isaffected by the think time, Log_| evel ,
and Record_| evel VU environment variables.

Example This example subscribesto the event "Switch_Power_Failure”.

tpevct!l _ = tux_al |l ocbuf (BUFTYP_TPEVCTL) ;

tux_setbuf _int(tpevctl_, "flags", TPEVSERVICE);

tux_set buf _string(tpevctl_, "namel", "Panic");

subs_1 = tux_tpsubscribe ["tsub001"] "Swi tch_Power_Fail ure",
tpevct| _, TPNOFLAGS;

tux_freebuf (tpevctl_);

See Also t ux_t punsubscri be

Command Reference 6-193

tux_tpsuspend

tux_tpsuspend
Send Emulation Command

Description Suspendsagloba transaction.

Syntax int tux_tpsuspend [cnd_id] tranid, flags

Syntax Element Description

cml_id The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

tranid Musgt reference abuffer of type BUFTYP_TRANI D.

flags An integer expression whose vaue must be TPNOFLAGS.
Thevaduesof f| ags aredefined in the TU XED O header
file.

Comments If t ux_t psuspend completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Thet ux_t psuspend command is afected by the think time, Log_| evel , and
Record_| evel VU environment varigbles.

t ux_t psuspend suspendsthe current transaction. It must be preceded by acdl to
t ux_t pbegi n, which began the transaction.

Example This example suspends the previoudy established transaction t r ani d_40.
trani d_40 = tux_al | ocbuf (BUFTYP_TPTRANI D) ;
set Think_avg = 11;
tux_t psuspend trani d_40, TPNOFLAGS;

/* tux_tpresume ... */

See Also tux_t pbegin tux_tpresune

tux_tpterm
Send Emulation Command

Description Leavesan gpplication.

Syntax int tux_tpterm[cnd_id]
Syntax Element ’ Description
cmd_id The optiona command ID availablein dl emulation

commands. cnd_i d hastheform [st ri ng_exp].

6-194 VU Language Reference

tux_tptypes

Comments Ift ux_t pt er mcompletessuccessfully, it returnsavaueof 1. Otherwisg, it returns
avaueof Oand sets_error,_error_type,and_error _text toindicaethe
error condition.

Thet ux_t pt er mcommand is affected by the think time, Log_I evel , and
Record_| evel VU environment variables.

Example This example exitsthe application represented by command ID t t er 002.
[* tux_tpinit ... */
tux_tpterm["tter002"];}

See Also tux_tpinit

tux_tptypes

Emulation Function

Description Providesinformation about atyped buffer.

Syntax int tux_tptypes (ptr, type, subtype)
Syntax Element Description
ptr A buffer dlocated with t ux_t pal | oc.
type Mugt reference abuffer of type BUFTYP_TYPE.
subt ype Mugt reference abuffer of type BUFTYP_SUBTYPE.

Comments If t ux_t pt ypes completes successfully, it returnsthe buffer size. Otherwise, it
returnsavaueof -1, and sets_error,_error_type,and_error _text to
indicate the error condition.

Example This example getsinformation about the typed buffer odat a and checksif isa
string-typed buffer.

/[* tpcall ... */

type = tux_al |l ocbuf (BUFTYP_TYPE) ;
tux_t ptypes(odata, type, NULL_BUF);
{ string type_str; }
type_str = tux_getbuf _string(type, "");
if (type_str !="FM"
print "lInvalid odata buffer type!";

See Also N one.

Command Reference 6-195

tux_tpunsubscribe

tux_tpunsubscribe
Send Emulation Command

Description Unsubscribesto an event.

Syntax int tux_tpunsubscribe [cnd_id] subscription, flags

Syntax Element

Description

cnd id

The optiona command ID availablein dl emulation
commands. cnd_i d hastheform [st ri ng_exp].

subscription

An event subscription handlereturned by
t ux_t psubscri be.

flags

An integer expression with one of the following vaues:
TPNOFLAGS, TPNOBLCOCK, TPNOTI ME, or TPSI GRSTRT
(ignored). Thevduesof f | ags aredefinedintheTU XEDO
header file.

Comments If t ux_t punsubscri be completes successfully, it returnsavaue of 1.
Otherwisg, it returnsavdueof Oand sets_error, _error _type, and
_error_text toindicaethe error condition.

Thet ux_t punsubscri be command isaffected by thethink time, Log_| evel ,
and Record_| evel VU environment varigbles.

Example This examples unsubscribesto previoudy subscribed to event services.

/* tux_tpsubscribe ...

*/

tux_t punsubscribe ["tuns001"] -1, TPNOFLAGS;

See Also t ux_t psubscri be

tux_typeofbuf

Emulation Function

Description Returnsthetype of abuffer.

6-196

VU Language Reference

tux_userlog

Syntax int tux_typeofbuf (bufhnd)
Syntax Element ‘ Description
buf hnd A buffer dlocated with t ux_al | ocbuf,
tux_al | ocbuf _typed,ortux_tpalloc.

Comments If t ux_t ypeof buf completes successfully, it returnsavdid buffer type.
Otherwisg, it returnsavdueof -1and sets_error, _error _type, and
_error_text toindicaethe error condition.

Example Thisexample check if the odat a buffer isof type BUFTYP_FM_.

/* tpcall ... */
if (tux_typeofbuf(odata) != BUFTYP_FM.)
print "Invalid odata buffer type!";

See Also N one.

tux_userlog

Emulation Function

Description Writesamessage to the TU XED O centrd event log.

i nt tux_userlog (nessage)
Syntax Element ’ Description
nmessage ‘The string you want to write.

Comments If t ux_user | og completes successfully, it returnsavaue of 1. Otherwise, it
returnsavaueof Oand sets_error,_error _type,and_error_text to
indicate the error condition.

Example ThisexamplewritestheUser . . . conpl et ed messagetothe TUXEDO centrd
event log.

tux_userlog("User " + itoa(_uid) + " conpleted run.");
See Also N one.

Command Reference 6-197

ungetc

ungetc
Library Routine

Description Provides unformatted character input capability.

Syntax int ungetc (ret_char, file_des)
Syntax Element Description
ret_char An integer expression (interpreted asacharacter) that

ecifiesthe character to be returned to the input buffer.

file_des The integer file descriptor, obtained from open, of thefile
associated with theinput buffer.

Comments Theunget c routinereplacesthe character r et _char in theinput buffer
associated with the named file, thus providing an “undo” mechanisfrgfetrc.
This character is returned by the negtet ¢ (or other file input) call. The file
contents remain unchanged.

Theunget c routine returns EOF (as defined in the standard VU header file) if it
cannot return the character — for example, if:

» ret_char equals EOF
» Noinput has yet been read from the named file

» More than one character of push back is attempted (via successive calls to
unget ¢ with no intervening file input routine call)

Example In this example, if the file with the descriptonf i | e_des contains the characters
ABZ14, then the characteABZ are written to the file whose descriptor is
outfil e_des, and the character 1 is returned to the input buffer associated with
infile_des.
#i ncl ude <VU. h>
while ((c = fgetc(infile_des)) != EOF)
if (c>="A’ && ¢ <='Z))

fputc(c, outfile_des);
else

unget c(c, infile_des);
break;

See Also fgetc

6-198 VU Language Reference

uniform

uniform
Library Routine

Description Returnsarandom integer uniformly distributed in the specified range.

Syntax int uniform (nin_value, nax_value)
Syntax Element Description
m n_val ue An integer expresson whose value generaly specifiesthe

minimum random integer to be returned.

max_val ue An integer expresson whose value generaly specifiesthe
maximum random integer to bereturned.

Comments Theuni f or mroutinereturnsarandom integer uniformly distributed in the
specified range.

Thevaduesof m n_val ue and max_val ue can be negative aswell as postive.
Although unconventiond, mi n_val ue can exceed nax_val ue. However, the
absolute value of thedifference m n_val ue - max_val ue must be lessthan
2147483647.

Ther and, srand, uni f or m and negexp routines enablethe VU language to
generate random numbers. T he behavior of these random number routinesis
affected by theway you set the Seed and Seed Flags optionsin aLoadT est schedule.
By default, the Seed generatesthe same sequence of random numbers but sets
unique seedsfor each virtua user, so that each virtua user has adifferent random
number sequence. For more information about setting the seed and seed flagsin a
schedule, seethe UdngRational LcadT et manud.

Thesr and routineusestheargument seed asaseed for anew sequence of random
numbersreturned by subsequent cadlsto the function uni f or m If sr and isthen
caled with the same seed vaue, the sequence of random numbersisrepeated. If
uni f or miscdled before any cdlsare made to sr and, the same sequenceis
generated aswhen sr and isfirst cdled with aseed vaue of 1.

Example In thisexample, sr and seedsthe random number generaor with the current time
and then printsthefirst 10 random numbers between -10 and 10.

srand(time());

for (i =0; 1 < 10; i++)
printf("random nunber (%): %\n", i, unifornm(-10, 10));
See Also rand negexp srand

Command Reference 6-199

unlink

unlink

Library Routine

Description
Syntax

Comments

Example

See Also

user_exit

Removesfiles.

int unlink (filenane)

Syntax Element ’Description
fil enane A gring expression specifying the name of thefileto be
removed.

Theunl i nk routineremoves (unlinks) the directory entry named by f i | enane.
When dl linksto afile have been removed, space occupied by thefileisfreed and the
file ceasesto exist; however, thisaction is postponed if one or more processes ill
havethefile opened until al referencesto thefile have been closed. unl i nk returns
0 upon successful completion; otherwise, aVU runtime error is generated.

The t enpnamand unl i nk routines are often used together because you should
remove temporary files as soon astheir usefulness has expired.

If theWindowsN T or UN IX environment variable TMPDIR isundefined, and
P_t npdi r isdefined in < st di 0. h> to havethevaue/ usr/t np,t enpnam
returnsatemporary filenamein the/ usr/ t np directory, such as/ usr/t np/
CAAa02179. After the file has been opened, processed, and closed, unl i nk
removesit.

string tenp_fil enane;

tenp_filename = tempnanm("", "");
tnpfile_des = open(tenp fllenane "w')

/* do file processing on the tenporary file */

cl ose(tnpfil e_des);
unl i nk(tenp_ fllenane)

t enpnam

Library Routine

Description

6-200

Exitsan entirevirtua user emulation from within any point in avirtua user script.

VU Language Reference

user_exit

Syntax int user_exit (status, nsg_str)
Syntax Element Description
stat us An integer expression specifying the target virtual user’s exit
status.
nmsg_str A string expression specifying an optional message to be
written to the standard error file.

Comments Theuser _exi t routine causesthe current script to exit immediately followed by
one of three user terminaion sequences (see the following example). Although
user _exit never returns, itsreturn vaueisconsidered an integer type for
syntactica purposes. If nsg_st r isnot of zero length, it iswritten (before exiting
the script) to standard error, preceded by the following explanaory line of text:

User exited fromscript script_name with status=N and nessage:

scri pt_naneisreplaced by the appropriate script name (corresponding to the
read-only variable _scri pt), and Nisreplaced by the vdue of st at us. After
termination of the current script, user termination is controlled according to the
value of st at us.

» |Ifstat usisgreater than 0, no escape or logout sequencesare executed, and the
user exit gatusreported to LoadTest isN ormd.

» |f statusisequd to0, any logout sequences are executed, and the user exit
satusreported to LoadTest isN ormad.

» If st at usislessthan O, any escgpe and logout sequencesif any are executed,
and the user exit statusreported to LoadT est isAbnormal.

Example In this example, assume that the script’s nantaisabase4. If the value of
stringliserror,the scriptis exited; the error message is written to standard
error; all defined escape or logout sequences are executed, and the user terminates
the emulation session with an Abnormal exit status:

if (stringl = "ERROR")
user _exit(-1, "Fatal Error - Aborting");

See Also script_exit

Command Reference 6-201

usergroup_member

usergroup_member
Library Routine

Description Returnsthe position of avirtua user within auser group.

Syntax i nt usergroup_nenber (group_nane)
Syntax Element ’Description
group_namne ‘ A string expression whose vaueisthe name of the user group.

Comments Theuser gr oup_nenber routinereturnsthe position of avirtua user within a
user group. Thefirst position is 1.

Example In thisexample, five user groupsare defined. The example printsout the position of
each virtud user in the group.
#defi ne MAX_GROUPS 5
{
string groups[MAX_GROUPS] = {"Accountants", "Engineers"
"DB Entry","Adm nistration", "Operations"};
int index, size
for (i =0; i < MAX_GROUPS; i ++)
{

ndex = usergroup_nenber(groups[il]);
f

i
i f (index)
{
size = usergroup_size(groups[i]);
printf ("I amuser nunber: %l in group: % which has %
users", index, groups[i], size);
br eak;
}
}
See Also usergroup_si ze

usergroup_size
Library Routine

Description Returnsthe number of membersin auser group.

Syntax i nt usergroup_size(group_nane)
Syntax Element ‘ Description
group_nane ’ A string expression whose vaueisthe name of the user group.

Comments Theuser gr oup_si ze routinereturnsthe number of membersin auser group.

6-202 VU Language Reference

wait

Example In thisexample, five user groupsare defined. The example printsout the number of
membersin each group.
#defi ne MAX_GROUPS 5
{
string groups[MAX_GROUPS] = {"Accountants", "Engineers",
"DB Entry","Adm nistration", "Operations"};
int index, size

for (i =0; i < MAX_GROUPS; i ++)

{
i ndex = usergroup_menber (groups[i]);
i f (index)
{
size = usergroup_size(groups[i]);
printf ("I amuser nunber: %l in group: % which has %l
users", index, groups[i], size);,
i ndex, groups[i], size);
br eak;
}
}
}
See Also user gr oup_rmemnber

wait
Library Routine

Description Blocksavirtud user from further execution until auser-defined globa event occurs.

Syntax int wait (&sv, mn [, max, adj, tmout, &retvall)
Syntax Element Description
sv A shared variable. wai t considersan event to have occurred if

thevaueof svisgreaer than or equd to i nand lessthan or
equal to max. If max isnot specified, max isassumed to equd
m n.

mn An integer expression that specifiesthe minimum vaue that
the shared variable can have.

max An integer expression. If omitted, it isassumed to equd mi n.

adj An integer expresson. Thevaueof adj isadded to thevadue

of sv, if and when the event occurs. The adjusment is

performed with the “unblocking” of the associated virtual user
as a single atomic event. If you do not require an adjustment,
but do need a placeholder argument because additional
arguments need to be specified,agj to 0.

Command Reference 6-203

wait

Comments

6-204

(Continued)

Syntax Element Description

t nout An integer expression that controlsthenumber of milliseconds
wai t waitsfor the event to occur. By default, wai t doesnot
return until the event occurs. If t nout equaszero,wai t is
nonblocking, and returnsthe vaue zero immediately if the
event isfdse. If t npout isgreaer than zero, wai t enforcesa
timeout of t nout milliseconds, a which timeif theevent has
not occurred, wait returns zero. If no time-out isdesired, but
t mout isrequired asaplaceholder, set t nout to anegdtive
vaue.

retval A non-shared integer variable. If r et val isspecified, wai t
setsr et val tothevaueof sv asfollows. if wai t returnsi,
ret val issettothevaue of sv beforethe optiond
adjugment; if wai t returnsO, r et val isset to the vaue of
sv when thetimeout occurs.

Thewai t routineisan efficient method of blocking avirtud user until auser-
defined global event occurs. wai t returns1when the event hasoccurred; it returns
0if the event hasnot yet occurred when the time specified by t nout has expired.

If virtua usersare blocked on an event utilizing the same shared variable, and if the
vaue of that shared variable is set to TRUE simultaneoudy, VU guaranteesthat the
usersare unblocked in the same order in which they were blocked. Although this
alanedoes not ensure adeterministic multi-user timing order in which VU

statements following awai t isexecuted,! the additional proper use of the wai t
arguments ni n, nax, and adj alows control over the order in which multiuser
operations occur.

If a shared variable’s value is modified (by a VU assignment statement,
autoincremenf sv++] operation, and so on), any subsequent attempt to modify

this value — other than throughai t — blocks execution until all virtual users

already blocked on an event definedswhave had appartunity to unblock. This
ensures that events cannot appear and then quickly disappear before a blocked virtual
user is unblocked. For example, if two virtual users were blocked waitirgy/fto

equal or exceed/ and if another virtual user assigned the vailie sv, then VU
guarantees both users the opportunity to unblock before any other virtual user is
allowed to modifysv.

L UNIX or Windows NT determines the order of the scheduling algorithms. For example, if two

virtual users are unblocked from await in a given order, the user unblocked last may be allowed
to execute its next VU statement before the user who unblocked first.

VU Language Reference

wait

Offering the gppartunity for al virtud usersto unblock doesnot guaranteethat dl
usersactudly unblock, becauseif wai t had been caled with anonzero vdue of adj
by one or more of the blocked users, the shared variable vdue would change during
theunblocking script. In the previousexample, if the first user to unblock had called
wai t with anegative adj vaue, the event waited on by the second user would no
longer betrue &fter thefirst user unblocked. With proper choice of adj vaues, you
can control the order of events.

Example This example blocks until the value of the shared variable ev equas 2, 3, or 4, and
returns1:

wai t (&ev, 2, 4);

This example blocks until the vdue of the shared varigble ev equals 0, and before
returning theinteger vdue 1, adjuststhe vdue of ev to 1 (by adding 1 to itsvaue
of 0):

wait(&v, 0, 0, 1);

This example blocks until the vdue of the shared varidble ev is 1 (returning the
integer 1), or until 10 seconds have elgpsed (returning the integer 0):

wait(&v, 1, 1, 0, 10000);

This example blocks until the vdue of the shared varigbleev is2, 3, 4, or 5, and
before returning the integer value 1, assgnsthevaue (2, 3,4,or 5) tor et , and
subtracts 10 from ev:

wait(&v, 2, 5, -10, -1, &ret);

Thisexample dlowsonly one user to access acriticd section of code. Thewai t
routine blocksuntil i nuse equasO (theinitia vaue for dl shared variables), and
upon obtaining access, usesan adj vaue of 1to lock out all other virtua users.
U pon completion of the criticd section, i nuse isreset to zero to dlow accessto
other virtua users(who are executingidenticad code segments). Recdl that if virtua
usersare blocked concurrently, accessis granted on afirst-come, first-served basis.

shared inuse;

wai t (& nuse, 0, 0, 1);

/* critical section of code */

i nuse = 0;
Assumethat an application islicensed for five users. T his example setsthe variable
i nuse so that no more than five people can log on a onetime. Asauser logson,
thevdueof i nuse isdecremented:

shared inuse;

wait (& nuse, 0, 4, 1);

/* critical section of code */
--inuse

Command Reference 6-205

wait

6-206

Supposethat for stresstesting purposes, dl virtud users must submit acertain
transaction sequence a once. In thisexample, each virtud user incrementsnr eady
and proceedswhen dl virtud usersare ready (_nuser s contansthe number of
virtud usersin the emulation sesson).

shared nready;

nready++;

wai t (&nready, _nusers, _nusers);

/* Synchroni zed activity takes place here */

This example resynchronizes so tha the same condition can be tested repeatedly:

shared ready_cnt, control;
for (attenpts = 0; attenpts < 100; attenpts++) {
ready_cnt ++;
if (_uid == 1) {
wai t (& eady_cnt, _nusers, _nusers, -(_nusers));
control = 2;

el se
wait (&control, _uid, _uid, 1);
) /* Synchroni zed activity takes place here */
Supposethat al virtua usersare required to take turnsa executing acertain
transaction in round-robin fashion, with no specific execution order. Thisexample
successively grants accessto the criticd section of code to virtuad users 1 through n
in ascending order of user ID (_ui d). After thelagt virtuad user hastaken histurn,
heresetst ur n to 0, dlowing the next iteration to begin anew with user 1:
shared turn;
for (attenpts = 1; attenpts < 100; attenpts++) {
wait (& urn, _uid-1, _uid-1);
/* critical section of code */
if (_uid == _nusers)
turn = O;

el se
tur n++;

}
In the following example, you need to execute code in aspecific order, but it is
unrelated to ascending or descending order of user IDs. Ten virtud usersare to
perform acertain transaction repeatedly in the following arbitrary order: 5,1, 2, 6, 3,
10,4, 7,9, 8. Stated in adifferent way, user 1 issecond, user 2 isthird, user 3isfifth,
user 4isseventh, ... and user 10 issixth.

VU Language Reference

See Also

while

while

The example successvely grantsaccessto the critica section of codeto virtua users
51, 2,6,3,10,4, 7,9, and 8 successvely. After the last user (user 8) hastaken his
turn, heresetst ur n to O, dlowing the next iteration to begin anew with the first
virtud user (user 5).

shared turn;

int exec_order[10] = {2,3,5,7,1,4,8,10,9, 6};
nyturn = exec_order[_uid - 1];

lastturn = limtof (exec_order) + 1

for (attenpts = 0; attenpts < 100; attenpts++) {
wai t (& urn, myturn - 1, myturn - 1)

/* Critical section of code */
if (myturn == lastturn)

turn =0
el se

turn++

sync_poi nt

Flow Control Statement

Description
Syntax

Comments

Command Reference

Repeatedly executesaVU statement.

while (expl)
st at enent 1,
Syntax Element Description
expl Theinteger expression to evauate.
statenent 1 A VU language statement or, if enclosed in braces, multiple
VU language statements.

The execution of thewhi | e loop occursin the following steps:

1.
2.

explisevduated.

If thevalueof explisnot O, st at enent 1 isexecuted. If thevdueof exp1isO,
execution of thewhi | e loop ends.

If thewhi | e loop execution hasnot ended, steps 1 and 2 are repeated.

6-207

while

Example In thisexample, the satementswithin the whi | e loop execute until thewhi | e
condition isfdse.

#i ncl ude <VU. h>
while ((c = fgetc(infile_des)) != EOF)
if (c>="‘A" && ¢ <='Z")

fputc(c, outfile_des);

else
ungetc(c, infile_des);
break;
}
See Also for do-whil e

6-208 VU Language Reference

> > > Part I

Appendixes

»»» APPENDIX A

Jolt-Specific VU Functions

This chapter providesagenera introduction to the Jolt protocol. It includesthe
following topics.

» Jolt overview
» PerformanceStudio/Jolt function overview

» PerformanceStudio/Jolt function reference

Jolt Overview

Thefollowing sections describe how PerformanceStudio supportsthe Jolt protocol.

BEA Jolt isaproduct that extendsthe BEA TU XEDO middleware framework to
provide pure Java-based clients accessto TU XED O gpplication services. This
enhanced functionality is provided by acombination of anew set of Jolt classeson
the client and some new Jolt system processes on the server.

Jolt clients (pure Javaapplicaions or gpplets) communicate with the Jolt system
processesviathe Jolt protocol. PerformanceStudio emulates Jolt client activity by
reproducing the recorded native Jolt protocol messages originaing from the client,
effectively becoming a Jolt client from the Jolt server’s perspective.

Jolt support is implemented widpock _send andsock_nr ecv emulation
commands. Therefore, it uses the same set of VU environment variables, timeouts,
and so on, that the socket protocols use. Jolt, in effect, sits on top of socket.

A-1

Jolt-Specific VU Functions

PerformanceStudio models seven message types within the Jolt protocol:

Jolt Message Type Usage
Authenticate/Chalenge sesson management
Authenticate/Ticket sesson management
Check Authorization Level sesson management
Close Connection sesson management
DaaTransfer application service
Establish Connection sesson management
Reconnect sesson management

The DataTransfer message isthe primary means of exchanging gpplication data
between the Jolt client and the Jolt server, henceit iscadled an application service
message. Theother messages, cadled session control messages, establish and
maintain Jolt sessions. PerformanceStudio providesemulation functionsthat let you

construct request messagesand extract information from response messages of these
types.

PerformanceStudio/Jolt Function Overview

PerformanceStudio providesanumber of emulation functionsthat, with the
sock_send andsock_r ecv emulaion commands, can createvirtud user scripts

that communicate directly with Jolt gpplication services using the native Jolt
protocol.

The following sections describe the main classes of Jolt emulation functions.

Request Construction Functions

A-2

The request congtruction function class contains only one function,
jolt_request (). Thisfunction buildsacomplete Jolt request that can then be
sent to aJolt server viasock_send. It requiresthe assstance of aM essage
Condruction function to supply the body of the request.

PerformanceStudio/Jolt Function Overview

Message Construction Functions

M essage construction functions build the body of a Jolt request asrequired by
jolt_request (). Each Jolt message type has amessage construction function.
Some of the functionsrequire message parameters, othersdo not. M essage
construction functions contain two specid subclasses.

» Attribute congruction functions, which build atributelissused by Application
Service functions.

» Parameter congtruction functions, which build parameter liststhat may
accompany certain atributes.

Response Query Functions

Thetwo primary response query functionsarej ol t _response_header () and
jolt_response_body() . Thesefunctionsinterface with thesock_recv
emulation command to retrieve response messages from the Jolt servers. A specia
subclass of response query functions extractsinformation from the received Jolt
header.

Response Header Query Functions

Response H eader Query functions extract specific Jolt message header variables
from aJolt response.

Message Query Functions

These functions, which complement the message construction functions, extract
specific information from the body of Jolt responses. The two specid subclasses of
message query functions are:

» Attribute query functions, which extract specific atributesfrom aJolt response.
» Parameter query functions, which extract specific parametersfrom an attribute.

In addition to the function classeslisted above, the Jolt emulation functionsare
further classified into two functiond areas, Jolt Session Control functions and Jolt
Application Service functions. In generd, for automaticaly generated virtud user
scripts, you should be concerned only with Jolt Application Service functions. Jolt
Session Control functions set up the environment in which the Application Service
functions operéate.

A-3

Jolt-Specific VU Functions

Session Control Functions

PerformanceStudio provides seven categories of sesson control functions. These
establish and maintain working sessonsbetween PerformanceStudio and Jolt Server
Handlers (JSH s) during script playback. T he following table lists each category and
its corresponding VU function prefix:

Category VU Function Prefix
Authenticate/Chalenge jolt_chall enge
Check Authorization Level jolt_checkauth
Close Connection jolt_close
Establish Connection jolt_estcon
Reconnect jolt_reconnect
Authenticate/Ticket jolt_ticket
Header Information jolt_header

PerformanceStudio uses anumber of session control functionsto manage Jolt
sessions. However since proper use of these functionsiscritica to the correct Jolt
script playback, do not modify any PerformanceStudio- scripted session control
function cals. Improper use of session control functions may result in fata Jolt
server falures

Application Service Functions

A-4

Onceasession isestablished, PerformanceStudio uses application service functions
to communicate gpplication datawith the Jolt services. There are five categories of
Application Service functions:

Category VU Function Prefix
DaaTransfer jolt_dataxfer
Attribute Construction jolt_setatt
Attribute Query jolt_getatt
Parameter Congtruction jolt_setpar
Parameter Query jolt_getpar

PerformanceStudio/Jolt Function Overview

The DaaTransfer messages are the primary means of communicating with the Jolt
server. ADaaTransfer request message encapsulatesal of thedatathat aspecific Jolt
servicerequiresto execute. Likewise, aData T ransfer response message containsall
of the result datathat aJolt service produces. The Data T ransfer functions manage
both message types.

A DaaTransfer message may contain alist of name-value datacomponentscaled
atributes. In generd, atributes have predefined meanings and supply information
required by the Jolt system. Each atribute has aspecific datatype and a
corresponding vaue. Theattribute construction functionsbuild attributelistsswhen
constructing arequest. T he atribute query functionslocate and extract specific
attributes from messages.

One dtribute, the dataatribute, may aso contain alist of name-vdue data
componentscdled parameters. U nlike attributes, parameters are user-defined and
encgpsulate datarequired by the Jolt servicesthemselves. Like their atribute
equivaents, the Parameter Congtruction functions build parameter listsfor request
construction, and the atribute query functions extract specific parametersfrom
messages.

For details about the functionsin each Application Service category, see
PeaformanceStudia’ Jdt Fundion Referenceon page A-8.

Request Construction

Building a Jolt request involves associating anumber of congruction functions
together to create the correct raw octet sequence of the request message. T he octet
sequence isthen passed to the sock _send emulation command, which, in turn,
sendsit to the Jolt server.

Associating Construction Functions

Condruction functions are associated by passing the result of aconstruction
producer function asan input parameter to acongtruction consumer function. Each
construction consumer capable of associating aconstruction producer hasan
association parameter of aspecific construction type. Only acongruction producer
function of the same construction type should be associated with agiven association
parameter congruction type. T he three construction typesare M essage, Attribute
Ligt, and Parameter Ligt. The construction functionsrelated to each type are
described below.

A-5

Jolt-Specific VU Functions

A-6

The following table lists the congtruction consumer functions:

Construction Consumer Association Parameter Construction Type
Function

jolt_request() message M essage
jolt_dataxfer() dtribute list Attribute List
jolt_setatt_data() parameter_list Parameter List

The following table lists the construction producer functions:

Construction Type Construction Producer Function

M essage jolt_chal l enge()

jolt_checkaut h()
jolt_close()
jolt_dataxfer()
jolt_estcon()
jolt_reconnect ()

jolt_ticket
Attribute List SeetheAttributeList Congruction functions.
Parameter List Seethe Parameter Lis Construction
functions.

Building Requests

The following steps show how to build a Jolt request:

1.

Congtruct amessage by calling one of the message construction functions. Each
Jolt message type hasits own congruction function and may require one or
more parameters. If you are constructing adatatransfer request you may dso
need to cal and associate the results of one or more atribute or parameter
construction functions.

string nsg;

..meg = jolt_dataxfer(sessionid, JOLT_CALL_RQST, attlst))

/* see 2.3.2.1. exanple for attlst construction */

Congruct aJolt request by associating the result of amessage construction
function with the request construction functionj ol t _request ().

string req;

;éd = jolt_request(0, sessionid, handlerid, 1, nsg)

PerformanceStudio/Jolt Function Overview

3. Passthereaultof j ol t _request () tothesock_send emulation function.
sock_send ["request1"] req;

You can combine these stepsinto one satement asfollows:

sock_send

jolt_request(0, sessionid, handlerid, 1,
] j ol t _dat axfer(sessionid, JOT_CALL_RGST,

jolt_setatt_name(" TRANSFER') +
jolt_setatt_data(
jolt_setpar_long(l, 309270) +
jolt _set par _long(2, 202463) +

set par _doubl e("9500.00"))));

Building Attribute Lists and Parameter Lists

Attribute lists and parameter lists are built by combining the results of individud
Attribute Congruction and Parameter Construction functions with the VU string
concatenation operator (+). For example:

string attlst;
string parlst;

/* create paraneter list with two longs and a double */

parlst = jolt_setpar_long(1l, 309270) +/* from account */
jolt_setpar_long(2, 202463) +/* to account */
j ol t _set par_doubl e("9500. 00");/* transfer anmount */

/* create attribute list with the NAVE and DATA attributes set */

attlst = jolt_setatt_nane(" TRANSFER') +/* TRANSFER service */
jolt_setatt_data(parlst);/* paranmeter list */

N ote that atributes can be placed within an attributelist in any order.

Likewise, the order of parameterswithin alist isnot significant.

Response Query

Once aJolt request has been successfully constructed and sent to the Jolt server,
receiving and extracting information from the Jolt server response requiresthe use
of the response query functions.

These functions operaein conjunction with the sock _nr ecv emulaion
command to accessthe response data. Receiving the complete Jolt responseisatwo-
stage process. Firg the Jolt header must be received usingasock_nrecv/
jolt_response_header () combinaion statement. For example:

sock_nrecv ["rsphdr1"] jolt_response_header();

A-7

Jolt-Specific VU Functions

Oncethisis successfully executed, the contents of the Jolt header may be accessed
using the gppropriate query functions. T he second step isto receive the body of the
Jolt response. Thisisdoneusngasock_nrecv/jolt_response_body()
combination statement. For example:

sock_nrecv ["rspbodl"] jolt_response_body();

Oncethisis successfully executed, the contents of the response message, including
atributes and parameters, may be accessed using the message query functions.

PerformanceStudio/Jolt Function Reference

You should not modify PerformanceStudio- scripted Session Control function cdls.
Therefore, only the Application Service functions of each function classare
described below.

Theformat is:
< functiond areaand category (when applicable)>
< VU function prototype>

< function description>

Request Construction Functions

string jolt_request (int flags, int sessionid, int handlerid, int nsgid,
string nessage)

jolt_request () isthetop-level Jolt request construction function. Theresultis
an asciified string containing acomplete Jolt request that may be passed to the
sock_send emulation command.

f I ag contains protocol mode information (usually 0).

sessi oni disthe JSH -assigned identifier of the current Jolt sesson. handlerid is
the JSL-assigned handler identifier for the current session.

nsgi distheincrementing per-sesson message sequence number of the current
request.

nmessage isthe association parameter for the M essage construction.

Message Construction Functions
Application Service (DataT ransfer)

string jolt_dataxfer (int sessionid, int opcode, string attribute_|list)

A-8

PerformanceStudio/Jolt Function Reference

Thisisthe congruction function for DataT ransfer messages. sessi oni disthe
WSH -assigned identifier of the current Jolt session. opcode specifiesthe mode of
operation of the current Data T ransfer request operation. Vaid opcodes are:

Opcode

Description

JOLT_CALL_RQST

TUXEDO t pcal | primitive

JOLT_DEQUEUE_RQST

TUXEDO t pdequeue primitive

JOLT_CONNECT_RQST

TUXEDO t pconnect primitive

JOLT_SEND RQST

TUXEDO t psend primitive

JOLT_RECV_RQST

TUXEDO t pr ecv primitive

JOLT_DI SCONNECT_RQST

TUXEDO t pdi scon primitive

JOLT_SUBSCRI BE_RQST

TUXEDO t psubscri be primitive

JOLT_UNSUBSCRI BE_RQST

TUXEDO t punsubscri be primitive

JOLT_NOTI FY_RQST

TUXEDO t pnoti fy primitive

JOLT_POST_RQST

TUXEDO t ppost primitive

JOLT_UNSOL_RQST n/a
JOLT_CHKUNSOL_RQST n/a
JOLT GETCONFI G RQST n/a

JOLT_LOGON_RQST

Jolt server logon

JOLT_LOGOFF_RQST

Jolt server logoff

JOLT_GETDEF_RQST

get Jolt Repository service definition

JOLT_GETDEFX_RQST

get Jolt Repository service definition

attribute_|ist istheassociaion parameter for the Attribute List construction.

Attribute List Construction Functions

These functions congruct the attribute list associated with the Data T ransfer
gpplication servicefunction j ol t _dat axf er () . Thereisone congruction
function per atribute. T he results of the functions may be tied together using the
VU string concatenation operator (+) to form acomplex atributelist.

A-9

Jolt-Specific VU Functions

The naming convention for thefunctionsisj ol t _setatt _attri but e- nane,
whereat t ri but e- naneisthenameof the Jolt attribute constructed. Theval ue
argument, aVU language datatype, will be mapped to the gppropriate Jolt atribute
datarepresentation by the function.

Application Service (Attribute Construction)

string jolt_setatt_appasswd (string val ue)
string jolt_setatt_authlevel (int value)
string jolt_setatt _clientdata (int value)
string jolt_setatt _corrid (string val ue)
string jolt_setatt data (string paraneter_Ilist)*
string jolt_setatt e errno (int value)
string jolt _setatt e reason (string val ue)
string jolt_setatt _errno (int value)
string jolt_setatt _errorq (string val ue)
string jolt_setatt _event (string val ue)
string jolt_setatt filter (string value)
string jolt_setatt flags (int value)
string jolt_setatt _groupnm (string val ue)
string jolt_setatt _idle (int value)

string jolt_setatt joltvers (int value)
string jolt_setatt msgid (string val ue)
string jolt_setatt nanme (string val ue)
string jolt_setatt netnsgid (int value)
string jolt_setatt nunevents (int value)
string jolt_setatt passwd (string val ue)
string jolt_setatt priority (int value)
string jolt_setatt _reason (string val ue)
string jolt_setatt _replyq (string val ue)
string jolt_setatt _repnane (string val ue)

string jolt_setatt repnrecs (int value)

A-10

PerformanceStudio/Jolt Function Reference

string jolt_setatt_reppattern (string val ue)
string jolt_setatt_repvalue (string val ue)
string jolt_setatt _sid (int value)

string jolt_setatt_timeout (int value)
string jolt_setatt_tuxvers (int value)
string jolt_setatt_type (int value)

string jolt_setatt _usernane (string val ue)
string jolt_setatt _userrole (string val ue)
string jolt_setatt _version (int value)
string jolt_setatt xid (int value)

NOTE: The special attribute list construction function

jolt _setatt data() accepts asingle parameter list construction (see below)
in place of a VU scalar value as an argument.

Parameter List Construction Functions

These functions congtruct the parameter list associated with the Attribute List
congtruction function j ol t _set att _dat a() . Thereisone construction
function per parameter. The results of the functions may be tied together using the
VU string concatenation operator (+) to form acomplex parameter list.

The naming convention for the functionsisj ol t _set par _par anet er - nane,
wherepar amet er - name isthe nameof the Jolt parameter constructed. fi el di d
isan identifier that uniquely identifiesthe parameter among other parameterswithin
alig. The val ue argument, aVU language datatype, will be mapped to the
gppropriate Jolt parameter datarepresentation by the function. asci i fi ed-

val ue isthe astiified form of the parameter vdue. t ext - val ue isthetextua
representation of the floating point value (for example, “1.23").

Application Service (Parameter Construction)

string jolt_setpar_carray (int fieldid, string asciified-
val ue)

string jolt_setpar_char (int fieldid, int value)
string jolt_setpar_double (int fieldid, string text-val ue)

string jolt_setpar _float (int fieldid, string text-value)

A-11

Jolt-Specific VU Functions

string jolt_setpar_long (int fieldid, int value)
string jolt_setpar_short (int fieldid, int value)

string jolt_setpar_string (int fieldid, string val ue)

Response Query Functions

The Response Query functions extract information from Jolt responsesreceived by
the client. All of the query functions, except the Parameter Query group, accept no
arguments. They work implicitly with theVU _r esponse read-only variable,
which isset by thesock_nr ecv emulation command. T herefore, within ascript
the Response Query functionsmust follow thesock_nr ecv commandson which
they operate.

Thereare two man functionsin thisclass:

int jolt_response_header ()

Thisfunction must be passed asan argument to the sock_nr ecv emulation
command to prepareit to receive the header portion of aJolt response. For example:

sock_nrecv ["header_1"] jolt_response_header ()

Thisfunction must dwaysprecedeitsj ol t _response_body() complement.

int jolt_response_body ()

Thisfunction must be passed asan argument to the sock_nr ecv emulation
command to prepareit to receive the body portion of a Jolt response.

sock_nrecv ["body_1"] jolt_response_body();

Thisfunction must dwaysfollow itsj ol t _response_header () complement.

Message Query Functions

A-12

These functions extract specific field vdues from the message body portion of the
Jolt responses. The naming convention used for these functionsis
jolt_nessage- nane_fi el d- nane, where nessage- name isthe name of
the message to be examined and f i el d- nane isthe name of the field to be
extracted.

Application Service (DataT ransfer)

string jolt_dataxfer_attribute list ()

PerformanceStudio/Jolt Function Reference

Response Attribute Query Functions

These functions extract specific atribute vauesfrom Jolt Data T ransfer response
messages. T he actuad atribute vaue ismapped to an gppropriate VU language data
type as necessary. The naming convention for these functionsis

jolt _getatt _attribute-nanme,whereattri bute-naneisthename of
the dtributeto extract.

Application Service (Attribute Query)
string jolt_getatt appasswd ()
int jolt_getatt_authlevel ()
int jolt_getatt_clientdata ()
string jolt_getatt _corrid ()
string jolt_getatt data ()
int jolt_getatt_e errno ()
string jolt_getatt_e reason ()
int jolt_getatt_errno ()
string jolt_getatt_errorqg ()
string jolt_getatt_event ()
string jolt_getatt filter ()
int jolt_getatt _flags ()
string jolt_getatt_groupnm ()
int jolt_getatt_idle ()

int jolt_getatt_joltvers ()
string jolt_getatt_mnsgid ()
string jolt_getatt_name ()
int jolt_getatt_netmsgid ()
int jolt_getatt nunevents ()
string jolt_getatt_ passwd ()
int jolt_getatt_priority ()
string jolt_getatt _reason ()

string jolt_getatt _replyq ()

A-13

Jolt-Specific VU Functions

string jolt_getatt_repname ()
int jolt_getatt_repnrecs ()
string jolt_getatt _reppattern ()
string jolt_getatt_repval ue ()
int jolt_getatt_sid ()

int jolt_getatt_tineout ()

int jolt _getatt tuxvers ()

int jolt _getatt _type ()

string jolt _getatt usernane ()
string jolt _getatt userrole ()
int jolt _getatt version ()

int jolt _getatt xid ()

Response Parameter Query Functions

A-14

These functions extract specific parameter vauesfrom Jolt Data Transfer response
messages. T he actud parameter vaduewill be mapped to an appropriate VU language
datatype as necessary. The naming convention for these functionsis

jolt _get par_paranet er - nane, where par anet er - nane isthe name of
the parameter to extract. fi el di d isthe gpplication-assigned identifier used to
diginguish aparticular parameter from alist of parameters.

Application Service (Parameter Query)

string jolt_getpar_carray (int fieldid)
int jolt_getpar_char (int fieldid)
string jolt_getpar_double (int fieldid)
string jolt_getpar _float (int fieldid)
int jolt_getpar_long (int fieldid)

int jolt_getpar_short (int fieldid)
string jolt_getpar_string (int fieldid)

»»» APPENDIX B

SAP-Specific VU Functions

If you have purchased alicenseto play back SAP protocol, and you record asession
that accessesa SAP R/3 server, the script that you generatewill contain VU functions
that emulate SAP clients. T his gppendix liststhe functions that the VU script can
contain. T he functions begin with the prefix VUERP.

This appendix divides SAP-specific VU functionsinto the following categories:

» Event Manipulation and Communication

» Event Structure Access

» Utilities

Becausethe VU functionsserve aswrappersto the SAP GU LIB API, you need to be

familiar with the GUILIB API. For information on the GU ILIB API, consult your
SAP documentation.

GUILIB usestheterm event to mean adaarepresentation of aparticular SAP
screen. The event datastructure contains acomplete description and instructions
necessary for rendering the SAP screen. T herefore, in thisappendix, the terms event
and syem are synonymous.

The functions, properties, and fields defined in the GU ILIB documentation are
shown in bol/ ditalics.

For information on testing SAP applications, see the following on-line manuason
the Documentation CD:

» Rationa LoadTet Tryit! for Virtud Usa Tetingd SAP Applications
» Retiona Robat Tryit! for GUI Tedingd SAP Applications

B-1

SAP-Specific VU Functions

Event Manipulation and Communication

Functions

B-2

Each function in thissection isinvoked viathe VU enul at e() command.
Therefore, dl environment variablesthat affect theerul at e() command aso affect
the execution of the functionsin thissection. Those functionswith Set in their
name set propertiesin the event or screen; those functionswith Send in their name
send the screen, or event, information to the SAP R/3 server.

func VuUErpSet Hei ght (Hei ght) int Height; {}

Setsthe scr een. di nr owfield of theevent. If Hei ght isgreater than 255, it isset
to 255. If theevent isanpdal screen 0, thefunction returns0. Otherwiseit
returns 1. A return of Oindicates afailure since modd events/screensare not
resizable.

func VuErpSetWdth(Wdth) int Wdth; {}

Setsthe screen. di ntol field of theevent. If W dt hisgreater than 255, it is set
to 255. If theevent isanpdal screen 0, thefunction returns0. Otherwise it
returns 1.

func VuErpSetHScrol |l (Pos) int Pos; {}

Setsthe Pos field of the event and marksthe event type with MES HSCROLL
mask. Thisfunction dwaysreturns 1.

func VuErpSetVScroll (Pos) int Pos; {}

Setsthe Pos field of theevent and marksthe event typewith MES VSCROLL mask.
Thisfunction alwaysreturns 1.

func VuUErpSet Cur PosByl ndex(/ ndex) int [Index; {}

A wrapper for I t Ev_Set Cur PosBy Ct r | (). Returns O if
It Ev_Set Cur PosByCt r| failsand 1 otherwise.

func VuErpSet Check(/ndex, ck) int long, ck; {}

A wrapper for I t Ev_Set Check(). ReturnsOif | t Ev_Set Check falsand 1
otherwise.

func VuErpSet Menuld(id) int id;, {}

A wrapper for I t Ev_Set Menul [N). ReturnsQif | t Ev_Set Menul Dfalsand 1
otherwise.

Event Manipulation and Communication

func VuEr pSet OkCode(okCode) string okCode; {}

A wrapper for | t Ev_Set OKCode(). ReturnsQif | t Ev_Set OKCode falsand 1
otherwise.

func VuUErpSet Pf Key(KeyCode) int KeyCode; {}

A wrapper for I t Ev_Set PFKey(). ReturnsQif | t Ev_Set PFKey falsand 1
otherwise.

func VUEr pSet Val ue(/ ndex, val ue) int I ndex; string value; {}
A wrapper for I t Ev_Set Val ue(). ReturnsQif | t Ev_Set Val ue falsand 1

otherwise.

func VuEr pSet Val ueDecrypt (/ ndex, val ue) int Index; string
val ue; {}

A wrapper for | t Ev_Set Val ue() that decryptsthe encrypted vaue. Returns O if

I t Ev_Set Val ue falsand 1 otherwise. By default, the user nameand password are
encrypted in acapture script and are decrypted with the

VUEr pSet Val ueDecr ypt () function before being passed to

It Ev_Set Val ue().

U serswishing to datapool unencrypted user names and passwords should replace
the VUEr pSet Val ueDecr ypt () cdlswith VUEr pSet Val ue(),i.e.

Line from captured script (that uses adatapool with encrypted password):

enul ate ["Ratl Erp_sun_excepti on_on001"]
VUEr pSet Val ueDecrypt (5,

dat apool _val ue(VuErp_DP, "RSYST_BCCDE")),
VUEr p_| og_nessage;

Line from modified script (uses adatapool with unencrypted password):

enul ate ["Ratl Erp_sun_excepti on_on001"]
dat apool _val ue(VuEr p_DP, "RSYST_BCCDE"),
VUEr p_| og_nessage;

func VuUEr pFreeConnection() {}

Awrapper for I t _FreeConnect i on().ReturnsQifl t _FreeConnecti on fals
and 1 otherwise.

func VuErpFreeEvent () {}

A wrapper for It _FreeEvent (). ReturnsQif I t _FreeEvent falsand 1
otherwise.

B-3

SAP-Specific VU Functions

func VuUErpCet Event Ex(l ong flags) {}

A wrapper for I t _Get Event Ex(). ReturnsQif I t _Get Event Ex falsand 1
otherwise.

func VuErpLogoff () {}

A wrapper for It _Logof f(). ReturnsQif I t _Logof f falsand 1 otherwise.

func VuEr pNewConnecti on(Host, Syst emNo, fl ags)
string Host, SystenNo; int flags; {}

A wrapper for I t _NewConnect i on(). Returns0if I t _NewConnect i on fals
and 1 otherwise.

func VuErpSendEvent () {}

A wrapper for I t _SendEvent (). ReturnsQif I t _SendEvent falsand 1
otherwise.

func VuErpSendReturn() {}

A wrapper for I t _SendRet ur n(). ReturnsQif I t _SendRet ur n falsand 1
otherwise.

func VuErpSet CtlVScroll (/I ndex, pos) int [ndex, pos; {}

Set TabVer Scr ol | bar St art Rowfield of thel T_TABLEI NFOstructurefor the
control indexed by / ndex. Returns 1 if successful and 0 otherwise.

Event Structure Access

Each function in thissection isinvoked viathe VU Language emnul at e()
command. T herefore, al environment variablesthat affect the errul at e()
command aso affect the execution of the functionsin this section. Each function
attemptsto get the vaue of an event or screen returned from the server. If thevaue
isnot assigned, each function continues to check thevaue until thevaueisassigned
or Ti meout _val isreached. (Thisistruefor any function cdled by errul at e()).

Event Structure Access

Functions
func VUErpGet EventPtr () {}

Returnsapointer to thecurrent event structure. ReturnsaN U LL if thereisno vdid
event at the time of thecall.

func VuErpGetCtriCnt() {}

Returnsscreen. i Ct rl Cnt field of theevent structurethat indicatesthe number
of controlspresent in the current event.

string func VUuErpGet Ctrl Nane(/ndex) int [ndex; {}

Returnsthe name of the control indexed by I ndex. If | ndex isinvdid, an empty
gringisreturned. The space dlocated for the stringisreused on each successivecal.
To preserve thereturn vaue, assign it to another VU gring variable before caling
thisfunction again.

string func VuErpGetCtrl Val ue(/ndex) int Index; {}
Returnsavaue of the control indexed by I ndex. If | ndex isinvdid, an empty

sringisreturned. The space dlocated for the stringisreused on each successivecal.
To preserve thereturn vaue, assign it to another VU string variable before caling
thisfunction again.

string func VUuErpGet Ctrl Fi el dName(/ndex) int [ndex; {}

Returnsafield name of the control — aszFi el dNane field of thel T_CTRL

structure indexed biyndex. If the field name is not available éndex is invalid,

an empty string is returned. The space allocated for the string is reused on each
successive call. To preserve the return value, assign it to another VU string variable
before calling this function again.

string func VuErpGet ScrnName() {}

Returns a screen name of the event seneen. szScr eenNane field of the

event structure. If the screen name is not available, an empty stringis returned. The
space allocated for the string is reused on each successive call. To preserve the return
value, assign it to another VU string variable before calling this function again.

string func VuErpGet ProgName() {}

Returns a program name of the event scaeen. szPr ogr amNane field of the

event structure. If the program name is not available, an empty string is returned.
The space allocated for the string is reused on each successive call. To preserve the
return value, assign it to another VU string variable before calling this function again.

B-5

SAP-Specific VU Functions

string func VuErpGet Event Msg() {}

Returnsagtatus message of the event — aszMessage field of the event structure.

If the status message is not available, an empty string is returned. The space allocated
for the string is reused on each successive call. To preserve the return value, assign it
to another VU string variable before calling this function again.

string func VuErpGetTitle() {}

Returns atitle of the event —sa Nor nili t | e field of the event structure. If the

title is not available, an empty string is returned. The space allocated for the string is
reused on each successive call. To preserve the return value, assign it to another VU
string variable before calling this function again.

Utilities

Each function in this section, except fduEr p_Veri f yEvent (), is invoked via
the VU emnul at e() command. Therefore,, all VU environment variables that
affect theerrul at e() command also affect the execution of the functions in this
section. Each function, except the last two functidfugsf pDecr ypt and

VUEr pEncr ypt), verifies that the value of a property of an event screen is the
expected value. The last two functions either encrypt or decrypt a text string.

Functions

int func

VuErp_VerifyEvent (scrn, prog, title, nsg, ctrl Cnt,verifyScrn,
veri fyMsg, veri fyCnt)()string scrn, prog,title, nsg,

int ctrlCnt,verifyScrn,verifyMsg, verifyCnt;

This function verifies that the screen (event) returned from the SAP server is the
expected screen.

The verification is done by comparing the following five parameters of the
VuEr p_Veri f yEvent function call with the corresponding event properties
actually returned by the server:

scrn: Internal screen name as defined in Advanced Business Application
Programming (ABAP).

prog: Internal program name as defined in ABAP
titl e: Screen title (caption)
nmsg: Message appearing in the status bar of the screen

ctrl Cnt: Number of controls on the screen

B-6

Utilities
Comparison of attributes can be turned off with the last three parameters of

VUEr p_Veri f yEvent , asfollows

veri fyScrn: If, and only if, thevdue of veri f yScrnisO, then scrn,
prog,andtitl eaenot compared with the actua vauesreturned by the
server.

veri fyMsg: If, and only if, the vaue of veri f yMsg iSO, then nsg are not
compared with the actual vaue returned by the server.

veri fyCnt: If, and only if, thevaueof veri f yCnt is0, then veri f yCnt
are not compared with the actud vaue returned by the server.

Thedefault valuesfor veri fyScrn, veri fyMsg, and veri fyCnt (the
variables, VUEr p_Veri fyScr eenl nf o, VUEr p_Veri f yMessagelLi ne,
andVUErp_Veri fyCtrl Count) aredefined as1 by default. You can change
the values of these variables or substitute another integer for the parameters
veri fyScrn,verifyMg,andverifyCnt.

VUEr p_Veri f yEvent returnslif dl compared parameters of the event returned
from the server match al compared parametersof the expected event. If one or more
compared parameters do not match, thisfunction returnsO.

Thisfunction isadded at capturetime by theexception handler or by theuser during
script editing.

VUEr p_Veri f yEvent () iswrittenin theVU Languageand iscontained in thefile
~ Program Files\Rationd\Rationa Test 7\include\vuerpl.h.

func VuEr pConpar eScreenNane(in) string in; {}

Comparesthe i n string against the screen name of the event. The function returns
1lif sringsare equa and O otherwise. If inisN U LL, the function dwaysreturns 1.

func VuEr pConpar eProgramNane(/in) string in; {}

Comparesthei n stringagaingt the program nameof theevent. Thefunction returns
1if gringsare equd and 0 otherwise. If i nisN ULL, the function dwaysreturns 1.

func VuErpConpareTitle(in) string in; {}

Comparesthei n stringagaing thetitle of theevent. Thefunction returns1if strings
areequd and O otherwise. If i nisNULL, thefunction dwaysreturns 1.

func VuEr pConpar eMessage(in) string in; {}

Comparesthein string against the satus message of the event. The function returns
1if gringsare equd and 0 otherwise. If i nisN ULL, the function dwaysreturns 1.

B-7

SAP-Specific VU Functions

B-8

func VuErpConpareEvent (title, scrn, prog, nsg, ctrl Cnt)
string title,scrn, prog, nsg;, long ctrlCnt; {}

Thisfunction combinesthe functiondity of the previousfour and dso comparesthe
number of controls. Just asfor the previousfunctions, passng N U LL for any string
parameter causesthe comparison of tha parameter to dwayssucceed. If ct r/ Cnt

is-1, the controls count comparison aways succeeds.

string func VUuErpCrypt(char *str)

Returnsan encrypted version of st r. The space dlocated for the stringisreused on
each successive cal. To preserve thereturn vaue, assign it to another VU string
variable before caling thisfunction again.

string func VuErpDecrypt(char *str)

Returnsadecrypted version of st r. The space dlocated for the string isreused on
each successive cal. To preserve thereturn vaue, assign it to another VU gring
variable before cdling thisfunction again.

Glossary

action object — In TestFactory, an object in the application map that represents an
action to which a control in the application responds. Typical actions are mouse
left-click, mouse right-click, and mouse left-double-click; the corresponding action
objects in the application map are LeftClick, RightClick, and LeftDoubleClick.

ActiveX control — Areusable software control that takes advantage of O bject Linking
and Embedding (OLE) and Component Object Modeling (CO M) technologies.
Developers can use ActiveX controls to add specialized functions to applications,
software development tools, and Web pages. Robot can test ActiveX controls in
applications.

actual results — In a functional test, the outcome of testing an object through a
verification pointin a GU script. Actual results that vary from the recorded baseline
results are defects or intentional changes in the application. Sdesdisereults

Administrator — SeeRational Adminidrator.

Agent computer — In LoadTest, a computer that has the Rational Agent software
installed and that plays back a virtual user or GU I script. In a LoadT est schedule,
you can identify the Agent computer on which to run a script. Se®aisna Agnt.

API recording — In Robot, a virtual user recording method that captures API calls
between a specific client application and a server. These calls are captured on the
client computer.

application map — In TestFactory, a hierarchical list of controls and actions in the
application-under-test, as well as the states of the application-under-test and the
transitions between those states. An application map can include U1 objects and
action objects, as well as TestFactory objects such as Pilots, Test Suites, and scripts.

application-under-test — The software being tested. See ajsam-unda-ted.

Asset Browser — A window that displays testing resources such as builds, queries,
scripts, schedules, reports, report output, and logs. The Asset Browser is available in
TestManager and LoadTest.

AUT — Seegppliction-unde-ted.

Glossary-1

Glossary

Glossary-2

automated testing — Atesting technique in which you use software tools to replace
repetitive and error-prone manual work. Automated testing saves time and enables a
reliable, predictable, and accurate testing process.

AutoPilot — In TestFactory, a tool for running scripts, Test Suites, and Pilots. The
scripts and Test Suites can run on your local computer or on computers in the Test
Lab. The Pilots run on your local computer, and the scripts they generate can run on
your local computer or on computers in the Test Lab.

base state — In TestFactory, the known, stable state in which you expect the
application-under-test to be at the start of each script segment. Segpilsgment.

baseline results — In a functional test, the outcome of testing an object through a
verification pointin a GU | script. The baseline results become the expected state of
the object during playback of the script. Actual test results that vary from the baseline
results are defects or intentional changes in the application. Seg@bsults

best script — In TestFactory, an optimized script generated by a Pilot. A best script
contains the fewest number of script segments that provide the most coverage of the
source code or user interface in the application-under-test.

breakpoint — A feature of the Robot debugger. When you assign a breakpoint to a
line of code, and then run the script in the debugger environment, the script stops
executing at that line of code. Control returns to you, and the breakpoint line is
displayed. From here you can view variables, perform other debugging activities, and
continue executing the script.

build — A version of the application-under-test. Typically, developers add new
features or enhancements to each incremental build. As team members test a build,
they enter defects against those features that do not behave as expected. You use
TestManager to define and manage builds.

built-in data test — A data test that comes with Robot and is used with the Object
Data verification point. A data test uses a specific property of the object, in
conjunction with other parameters, to determine the data to capture. Although
built-in data tests cannot be edited, renamed, or deleted, they can be copied and then
edited, and they can be viewed. See aldom data ted.

ClearQuest — SeeRationa ClearQued.

client/server — An architecture for cooperative processing in which the software
tasks are split between server tasks and client tasks. The client computer sends
requests to the server, and the server responds.

code coverage — In TestFactory, the percentage of code that is tested by a script.
This percentage is based on the portion of the code that a script touches, relative to
all code in the application-under-test. A Pilot can use code coverage to determine the
best script for a run. See alsd cveae

Glossary

command ID — In LoadTest's VU language, an identifier for a command. Robot
automatically assigns a unique command ID, composed of an alphanumeric prefix
and a three-digit number, to each emulation command. Because command IDs
appear in both the virtual user script and the LoadT est report output, they enable you
to determine the relationship between an emulation command and its response
times.

command ID prefix — In LoadT est, a prefix for a unique emulation command ID.
The prefix defaults to the script name (up to the first seven characters). However,
you can define the prefix in the Generator tab of the Virtual U ser Record O ptions
dialog box.

custom data test — A customer-defined data test used with the Object Data
verification point. A data test uses a specific property of the object, in conjunction
with other parameters, to determine the data to capture. Custom data tests are
created within your organization and are stored in the repositories that were active
when they were created. They can be edited, renamed, and deleted. Bak-atso

data ted.

data test — Atest that captures the data of an object with the O bject Data verification
point. See alsbuilt-in datates andaistom data ted.

datapool — A source of test data that GU | scripts and virtual user scripts can draw
from during playback. You can automatically generate datapools using TestManager,
or you can import datapool data from other sources such as your database.

dependency — In LoadTest, a method of coordinating an object in a schedule with
an event. For example, if the script Query is dependent upon the script Connect,
then Connect must finish executing before Query can begin executing. See also
evant.

distributed architecture — Architecture in which computer systems work together
and communicate with each other across LAN, WAN, or other types of networks.
A client/server system is an example of distributed architecture.

distributed functional test — In LoadT est, atest that uses multiple Agent computers
to execute multiple GU I scripts written in the SQ ABasic language.

dynamic load balancing selector — Atype of selector in aLoadTest schedule. Items
in the selector, such as scripts, are executed according to a weight that you set.

emulation commands — VU language statements or commands that emulate client
activity, evaluate the server’s responses, and perform communication and timing
operations. LoadT est stores the results of emulation commands in a log file, which
you can view from the LogViewer.

Glossary-3

Glossary

Glossary-4

emulation functions — VU language functions that emulate client activity and
evaluate the server’s responses. U nlike emulation commands, emulation functions
do not perform communication and timing operations, and they are not logged.

environment control commands — VU language commands that let you control a
virtual user’s environment by changing the VU environment variables. For example,
you can set the level of detail that is logged or the number of times that virtual users
attempt to connect to a server.

event — An item in a LoadTest schedule upon which another item is dependent.
For example, if the script Connect sets an event and the script Query depends on this
event, Connect must finish executing before Query can begin executing. See also

dependency.

external script — A script that runs a program created with any tool. You plan and
run external scripts in TestManager.

fixed user group — In LoadTest, a group that contains a scalable number of users.
When you create afixed user group, you indicate the maximum number of users that
you will run in the group. Typically, you use fixed user groups in functional tests,
which do not add a workload to the system.

flow control statements — In the VU and SQ ABasic languages, statements that let
you add conditional execution structures and looping structures to a script.

functional test — Atest to determine whether a system functions as intended.
Functional tests are performed on GU | objects and objects such as hidden
DataWindows and Visual Basic hidden controls.

Grid Comparator — The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in grid formats. The Grid
Comparator displays the differences between the recorded baseline data and the
actual data captured during playback.

GUI script — A type of script written in the SQ ABasic language. It contains GU |
actions such as keystrokes and mouse clicks. Typically, a GU I script also contains
verification points for testing objects over successive builds of the application-under-
test.

GUI user — The type of user that is emulated when a GU | script is executed.
Only one GUI user at atime can run on a computer.

hidden object — An object that is not visible through the user interface. Hidden
objects include objects with a visible property of False and objects with no GU |
component.

IDE — Integrated Development Environment. This environment consists of a set of
integrated tools that are used to develop a software application. Examples of IDEs
supported by Robot include Oracle Forms, PowerBuilder, Visual Basic, and Java.

Glossary

Image Comparator — The Robot component for reviewing and analyzing bitmap
image files for Region Image and Window Image verification points. The Image
Comparator displays differences between the recorded baseline image and the actual
image captured during playback. The Image Comparator also displays unexpected
active windows that appear during playback.

instrumentation — In TestFactory, the process of inserting code coverage counters
into the application-under-test. These counters record how much code is executed
during a script run. See alshjet cdeingdrumentation andsource adeingrumentation.

load — Seeworkloed.
load balancing — Seewarkloed baandng
LoadTest — SeeRationa L cedT e

log — Arepository object that contains the record of events that occur while playing
back a script or running aschedule. Alogincludes the results of all verification points
executed as well as performance data that can be used to analyze the system’s
performance.

LogViewer — SeeRationa Logvieve.

low-level recording — A recording mode that uses detailed mouse movements and
keyboard actions to track screen coordinates and exact timing. During playback, all
actions occur in real time, exactly as recorded.

manual script — A set of testing instructions to be run by a human tester. The
script can consist of steps and verification points. You create manual scripts in
TestManager.

M aster computer — Acomputer that executes LoadTest. From this computer, you
create, run, and monitor schedules. When the run is finished, you use it to analyze
test results.

mix-ins — SeePila mix-ins

network recording — In Robot, a virtual user recording method that records packet-
level traffic. This traffic is captured on the wire.

next available selector —In Load T est schedules, a selector that distributes each item
such as a script, delay, or other selector to an available computer or virtual user. This
type of selector isused in aGU | schedule. The next available selector parcels out the
items sequentially, based on which computers or virtual users are available.

Glossary-5

Glossary

Glossary-6

object — An item on a screen, such as a window, dialog box, check box, label, or
command button. An object has information (properties) associated with it and
actions that can be performed on it. For example, information associated with the
window object includes its type and size, and actions include clicking and scrolling.
In some development environments, a term other thjatt is used. For example,

the Java environment usesponant, and the HTML environment usdsmant.

object code instrumentation — In TestFactory, the process of inserting code
coverage counters into the executable file of the application-under-test. These
counters record how much of the program a script tests. Seassgoentation and
uree adeindrumentation.

Object-Oriented Recording® — A script recording mode that examines objects in
the application-under-test at the Windows layer. Robot uses internal object names to
identify objects, instead of using mouse movements or absolute screen coordinates.

Object Properties Comparator — The Robot component that you use to review,
analyze, and edit the properties of objects captured by an Object Properties
verification point. The Object Properties Comparator displays differences between
recorded baseline data and the actual data captured during playback.

Object Scripting commands — A set of SQ ABasic commands for accessing an
application’s objects and object properties. You add Object Scripting commands
manually when editing a script.

Object Testing® — Atechnology used by Robot to test any object in the application-
under-test, including the object’s properties and data. O bject Testing lets you test
standard Windows objects and ID E-specific objects, whether they are visible in the
interface or hidden.

OCI — Object Code Insertion. The Rational technology used in TestFactory to
instrument object code and measure how much of the application-under-test a script
tests. See alsmde verage anddyjet adeingrumentation.

performance test — Atest that determines whether a multi-client system performs
within user-defined standards under varying loads. Performance tests are always run
from a schedule in LoadT est.

Pilot — In TestFactory, a tool for generating scripts automatically.

Pilot mix-ins — In TestFactory, a list of Pilots that are executed on a random basis
duringthe run of alead Pilot. Mix-ins are useful for randomly testing multiple areas
of the application-under-test. To make tests more realistic, you can combine mix-ins
and scenarios.

Pilot scenario — An ordered list of Pilots that are executed during the run of a Pilot.
APilot scenario is useful for testing U | objects that need to be exercised in a specific
order. To make tests more realistic, you can combine scenarios and mix-ins.

Glossary

project — A collection of data, including test assets, defects, requirements, and
models, that can facilitate the development and testing of one or more software
components.

proxy recording — In Robot, a virtual user recording method that captures the client/
server conversation on the network wire rather than on the client computer. Proxy
recording allows Robot to capture network packets that are not visible to it during
network recording — for example, if the client and server are in different network
segments.

query —Arequest for information stored in the repository. Aquery consists of afilter
and several visible attributes — the columns of data to display, the width of the
column, and the sort order.

random selector — A type of selector in a LoadTest schedule. Items in the selector,
such as scripts, are randomly executed. Random selectors can be with replacement,
where the odds are the same, or without replacement, where the odds change with
each iteration.

Rational Administrator — The component for creating and maintaining repositories,
projects, users, groups, computers, and SQL Anywhere servers.

Rational Agent — The LoadT est software that resides on a shared network drive and
runs on each computer where testing occurs. The entries specified in a schedule play
back on the Agent computer, which reports on their progress and status as they run.
See alsgmt compute..

Rational ClearQuest — The Rational product for tracking and managing defects and
change requests throughout the development process. With ClearQuest, you can
manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.

Rational LoadTest — The Rational Test component for running performance,

stress, scalability, multi-user, and distributed functional tests on multiple Agents
connected by a network. With LoadT est, you can initiate test runs and monitor tests
from a master computer that manages the test process. LoadTest is available only in
Rational Suite PerformanceStudio.

Rational LogViewer — The Robot component for displaying logs, which contain the
record of events that occur while playing back a script or running a schedule. Also,
the component from which you start the four Comparators.

Rational PerformanceArchitect — The Rational component that lets you test the
performance of COM/DCOM applications. With Rational PerformanceArchitect,
you can create a Rose sequence or collaboration diagram, convert it to a virtual user
script, and then use Rational Suite PerformanceStudio to edit the script and run the
performance tests.

Glossary-7

Glossary

Glossary-8

Rational repository — A database that stores application testing information, such as
test requirements, scripts, and logs. All Rational Suite TestStudio and Rational Suite
PerformanceStudio products and components on your computer update and
retrieve data from the same connected repository. A repository can contain either
a Microsoft Access or a Sybase SQL Anywhere database.

Rational RequisitePro — The Rational product for organizing, managing, and
tracking the changing requirements of your system.

Rational Robot — The Rational product for recording, playing back, debugging, and
editing scripts.

Rational SiteCheck — The Robot component for managing your intranet or World
Wide Web site. You can use SiteCheck to visualize the structure of your Web site,
and you can use it with Robot to automate Web site testing.

Rational Synchronizer — The Rational tool that ensures the consistency of data
across several Rational products.

Rational TestAccelerator — An agent application that executes scripts. TestFactory
uses computers running TestAccelerator as remote machines on which to run
automated distributed tests.

Rational TestFactory — The Rational Test component for mapping an application-
under-test and generating scripts automatically. TestFactory is available in Rational
Suite TestStudio and Rational Suite PerformanceStudio.

Rational TestManager — The Robot component for managing the overall testing
effort. You use it to define and store information about test documents,
requirements, scripts, schedules, and sessions.

Report Layout Editor — The TestManager component for customizing the layout of
reports.

repository — SeeRational rgpastary.
RequisitePro — SeeRationa RequistePro.
Robot — SeeRationd Rdbat.

scalable user group —In LoadT est, a group that contains a varying number of users.
When you create a scalable user group, you assign it a percentage of the total
workload. Assume you have a scalable user group that is 50 percent of the workload.
If you run atest with 10 users, the group will contain 5 users. If you run a test with
100 users, the group will contain 50 users.

scenario — In LoadT est, amodular group of scripts and other itemsin aschedule that
is used by more than one user group. A scenario can contain scripts, delays, and
synchronization points.

Glossary

scenario — SeePila saria

schedule — In LoadTest, structure that you create to specify how scripts should be
played back. A schedule can contain GU I scripts and virtual user scripts, and can
indicate the number of times to repeat a script and the computer on which the script
will run. In performance testing, a schedule is used to create a workload. In
distributed functional testing, a schedule is used to distribute scripts among various
computers.

script — A set of instructions used to navigate through and test an application. You
can generate scripts in a variety of ways. You can use Robot to record scripts used in
functional testing and performance testing. You can also use TestManager to create
and manage manual scripts, and to manage external scripts created with a third-party
testing tool. A script can have properties associated with it, such as the purpose of the
script and requirements for the script. See adna sript, GUI gript, manual sxipt,
andyvirtual usr sript.

script outline — In TestFactory, the readable version of a script. A script outline
contains a description of the actions that Robot performs while running the script.

script segment — In TestFactory, a section of a script that tests a particular

element of product functionality. A Pilot generates a script segment by starting the
application-under-test in a base state, navigating through the part of the product that
you are testing, and returning the application-under-test to the base state. See also
baedate

seed — An initial number fed to a random number generator. Using the same seed
producesthe same series of random numbers. In LoadTest, you use seeds to generate
think times.

selector — An item that you insert in a LoadTest schedule to indicate how often and
in what order to run scripts.

sequential selector — In a LoadT est schedule, a type of selector that executes each
script, delay, or other item in the same order in which it appears in the schedule.

session — In virtual user recording, one or more scripts that you record from the time
you begin recording until the time you stop recording. Typically, the scriptsin a
session represent a logical flow of tasks for a particular user, with each script
representing one task. For example, a session could be made up of three scripts:
logn, teting andlogout. In T estFactory, a session is the period of time that the
TestFactory application or a window is open.

shared variable — An integer variable that multiple scripts and multiple virtual users

can read and write to. You can see the value of a shared variable while monitoring a
LoadTest schedule. For example, you can set a shared variable as a flag to end a
playback session. Each script can check the flag to see if the session should end. When
that flag is set, exit tasks can be performed.

Glossary-9

Glossary

Glossary-10

shell script — A script that calls or groups several other GUI scripts and plays them
back in sequence. Shell scripts provide the ability to create comprehensive tests and
then store the results in a single log.

SiteCheck — SeeRationd SiteCheak.

source code instrumentation — In TestFactory, the process of inserting code into
the source code of the application-under-test. This code measures how much of the
source code a script tests. See alsoumentation andadyjet adeingrumentation.

SQABasic — The Robot scripting language for recording GU | actions

and verifying GU | objects. SQ ABasic contains most of the syntax rules and core
commands that are contained in the Microsoft Basic language. In addition,
SQABasic has commands that are specifically designed for automated testing.
See also/U.

stable load — In LoadTest, a condition that occurs when a specified number of
virtual users have logged on to the system-under-test and are active. When the stable
load criterion is met, LoadT est begins measuring the load.

streak — When running a virtual user schedule in LoadTest, a series of successes or
failures for emulation commands. You can see a streak while monitoring a schedule.

structural test — Atest to determine whether the structure of a Web site is consistent
and complete. A structural test ensures that an application’s interdependent objects
are properly linked together. You perform a structural test using SiteCheck.

synchronization point — In LoadTest, a place where emulated virtual users stop and
wait until all other synchronized users reach that point. When all users reach the
synchronization point, they are released and continue executing.

Synchronizer — SeeRational Synchronize.

system tuning — In LoadT est, the process of optimizing a system’s performance by
changing hardware resources and software configuration parameters while using a
constant workload.

system-under-test — The system being tested. This includes the computers and any
software that can generate aload on the system, networks, user interfaces, CPUs, and
memory. See alsappliction-unde-tes.

test assets — The resources that facilitate the planning or development phases of
the testing effort. Examples of test assets include scripts, schedules, sessions, test
documents, and test requirements.

test development — The process of developing tests to verify the operation of a
software application. This includes creating scripts that verify that the application-
under-test functions properly. Test development lets you establish the baseline of
expected behavior for the application-under-test.

Glossary

test documents — Test plans, project schedules, resource requirements, and any
other documents that are important to your project. You develop your test
documents using your own word processing or scheduling program; you then
reference the name and location of the document in TestManager. This lets
members of the test and development team locate documents quickly.

Test Lab — A collection of computers on which TestAccelerator is running. In
TestFactory, you can distribute the scripts associated with a Pilot, a Test Suite, or the
AutoPilot to run on computers in the Test Lab. SeeRétiona TetAadeaaa.

Test Suite — In TestFactory, a tool for running a collection of scripts as a group.
TestAccelerator — SeeRational TedAadgaar.

TestFactory — SeeRationa T etFadary.

TestManager — SeeRationa TetManagg.

Text Comparator — The Robot component for reviewing, analyzing, and editing

data files for text and numeric verification points in any format except grids. The
Text Comparator displays the differences between the recorded baseline results and
the actual results.

think time — In virtual user and GU | scripts, think times are delays that simulate a
user’s pauses to type or think while using an application. With virtual user scripts,
LoadTest calculates the think time at runtime, based on think time VU environment
variables that are set in the script. You can set amaximum think time in Robot. With
GUI scripts, Robot uses the actual delays captured between keystrokes, menu
choices, and other actions.

transaction — In LoadT est, a logical unit of work performed against a server. For
example, submitting a search query or submitting a completed form to a Web server
are both transactions.

transaction rate — In LoadT est, the playback speed calculated as a function of
number of transactions per unit of time. For example, if a script contains one
transaction, and each script is started at half-second intervals, your transaction rate
would be 2 per second.

transactor — In LoadT est, an item that you insert in a LoadTest schedule to indicate
the number of user-defined transactions that a virtual user performs in a given time
period.

Ul coverage — In TestFactory, the percentage of objects in the application map that
are tested by a Pilot-generated script. This percentage is the proportion of U | objects
that the script touches, relative to all U1 objects available to the Pilot. APilot can use
Ul coverage to determine the best script for a run. Seecdsmverage

Glossary-11

Glossary

Glossary-12

Ul object properties — Attributes of object classes and U1 objects that TestFactory
uses to map applications and generate scripts.

unexpected active window — A window that appears during script playback that
interrupts the script playback process and prevents the expected window from being
active. For example, an error message generated by the application-under-test is an
unexpected active window. You can view unexpected active windows in the Image
Comparator.

user group — In LoadT est, a collection of users that execute similar tasks and
generate the same basic workload. Accountants and data entry operators are examples
of user groups.

verification — The process of comparing the test results from the current build of the
software to its baseline results.

verification point — A point in an SQ ABasic script that confirms the state of one or
more objects. During recording, a verification point captures object information
from the application-under-test and stores it as the baseline. During playback, a
verification point recaptures the object information and compares it to the baseline.
In amanual script, a verification point is a question about the state of the application-
under-test.

virtual user — In LoadT est, a type of user that is emulated when a virtual user script
is executed. A computer can run multiple virtual users simultaneously.

virtual user script — Atype of script written in the VU language. Virtual user scripts
contain client/server requests and responses as well as user think times.

VU — The Robot scripting language for recording a client’s requests to a server.
VU provides most of the syntax rules and core commands available in the C
programming language. In addition, VU has emulation commands and functions
that are specifically designed for automated performance testing. S&Q&Basc

wait state — A delay or timing condition that handles time-dependent activities.

workload — In LoadT est, the set of all activities that users perform in an actual
production setting of the system-under-test. You can use LoadTest to emulate a
workload.

workload balancing — In LoadT est, the act of distributing activities so no one system
or device becomes a bottleneck.

workload model — In LoadTest, the workload model is represented as a schedule.
You can play back this schedule and analyze the response times.

»»» Ndex

A

abslibrary routine 6-2
absolute values of numbers 6-2
address of operator 3-10
_dltext read-only variable 5-21, 5-49
AppendD aafunction 5-5, 6-2
arguments
arays 3-24
integer 4-12
gring 4-12
arithmetic operators 3-7
bank 3-7
integers 3-7
grings 3-7
arrays 3-18
arguments 3-24, 4-12
assignment operators 3-23
functions 4-6
initidization 3-21
limitof operator 3-23
operaors 3-22
subroutine arguments 3-24
subscripts 3-22
ASCII to integer conversion 6-4
assignment operators 3-8, 3-23
associaivity of operaors (table) 3-14
agterisk operaor 3-30
atoi library routine 6-4

B

bank

datatype 3-2

library routine 6-5

union of expressions 3-7
base64 decode library routine 6-7
base64 encode library routine 6-8
bitwise operaors 3-7

AND 3-8

exclusve OR 3-8

left shift 3-8

OR 3-8

right shift 3-8
braces operator 3-30
bresk statement 3-24, 6-6
buffer (TUXEDO)

returning type of 6-196

C

C language, VU additionsto 1-3
cdling
procedures 4-8
character congtants 3-4, 3-5
characters
input 6-34
nonprinting 3-34, 6-70
returning position of 6-65
gring conversions 6-12
unformated 6-198
writing unformatted output 6-35

Index-1

Index

Check_unread environment variable 5-18, 5-32
cindex library routine 6-7, 6-66, 6-67, 6-97, 6-154
circumflex operator 3-30
Cleanup_time argument
effect on Escape_seq and Logout_seq 5-28
client/server environment varisbles 5-21
Column_headers 5-18, 5-21, 5-22, 5-36,
5-49
CS blocksize 5-18, 5-22, 6-131
Cursor_id 5-19
Server_connection 5-19, 5-23, 5-26
Sglexec_control_oracle 5-20, 5-23
Sglexec_control_sglserver 5-20, 5-23
Sglexec_control_sybase 5-20, 5-23
Sqlnrecv_long 5-20, 5-24, 6-131
Statement_id 5-20
Table_boundaries 5-20, 5-25, 6-3, 6-89,
6-131

closelibrary routine 6-9

close server connection 6-43

closing aconnection 6-115

closing an open datapool 6-13
_cmd_id read-only variable 5-49
_cmdcent read-only variable 5-50, 5-18

Column_headersenvironment variable 5-18, 5-21,
5-22, 5-36, 5-49

_column_headersread-only varigble 5-49
commaoperaor 3-13
command IDs

logging 5-34, 5-37

read-only variable 5-49
_commeand read-only varidble 5-49
comments 3-18
compiling portionsof ascript 4-4
computer resouces

monitoring 5-3
computers, read-only variable containing

names of 5-49

Index-2

concatenaion operator 3-23
conditiond operator 3-13
connect environment variables 5-25
Connect_retries 5-18, 5-26
Connect_retry intervad 5-19, 5-26
Connect_retries environment variable 5-18, 5-26
Connect_retry_interva environment variable 5-19,
5-26
connection
closing 6-115
congants 3-3
character 3-4
integer 3-3
gring 3-4
continue statement 3-24, 6-9
conversion routines 2-8
COOKIE_CACHE gaement 6-11
CORBA modd 5-11
CPU think time 5-44
creating astring expression 6-144, 6-152
CS blocksize environment variable 5-18, 5-22,
6-131
ctoslibrary routine 6-12
Cursor_id environment variable 5-19
_cursor_id read-only variable 5-50
cursors 6-126
dlocating 6-105
closing 6-107
declaring 6-113
inserting 6-128
opening 6-132
persigent 6-15
positioning 6-134
privatevs. shared 6-15
refreshing 6-137
setting options 6-112
customer support Xvi

VU Language Reference

D

datacorrelation 5-53
http function for 6-44
datatypes 3-1
bank 3-2
integer 3-2
gring 3-2
datgpool functions 2-11, 6-1
datapool_close datapool function 6-13
DATAPOOL_CON FIG datgpool function 6-13
datapool_fetch datgpool function 6-20
datapool_open datagpool function 6-21
datapool_vaue datgpool function 6-24
datgpools 1-4, 5-53
closing 6-13
configuraion information 6-13
DP_NOWRAP 6-14
DP_PRIVATE 6-14
DP_SHARED 6-14
DP_WRAP 6-14
persigent cursors 6-15
private user accessto 6-15
retrieve vue 6-24
shared user accessto 6-15
decrement operator 3-11
defining
functions 4-6
procedures 4-6, 4-8
subroutines 4-6
delay library routine 6-25
scding time of 5-43
Delay dly_scdeenvironment varigble 3-2, 5-19,
5-43, 6-5, 6-25
deleting arow 6-114
dollar sign operator 3-30
do-while satement 3-24, 6-26
dynamic datacorrelaion 5-53
header file for 4-3

Index

Index

E

else-if saement 6-27
emulate emulaion command 5-2, 6-28
and SAP protocol 5-34
logging 5-37
emulation commands 5-1
expected and unexpected responses 5-6
HTTP 5-2
receive 2-1, 5-40
send 2-1, 5-40
http_recv 5-2
IHorP 5-11
send 2-6, 5-40
number executed 5-50
read-only variable containing 5-49
send 5-41
socket 5-17
receive 5-41
QL 55
receive 2-2, 5-40
send 2-2, 5-40
TUXEDO 5-7
send 2-4
emulation functions 5-18, 6-1
command count not incremented by 5-18
HTTP 2-1
IIOP 2-6
SQL 2-2
TUXEDO 2-5
environment control commeands 5-21, 6-1
eva 5-21, 6-31
pop 5-21, 6-77
push 5-21, 6-80
reset 5-21, 6-85
resore 5-21, 6-86
save 5-21, 6-87
st 5-21, 6-92
show 5-21, 6-95

Index-3

Index

environment variables 4-2, 5-18

client/server 5-21
Column_headers 5-18, 5-21, 5-22, 5-36,
5-49
CS blocksize 5-18, 5-22, 6-131
Cursor_id 5-19
Server_connection 5-4, 5-19, 5-23, 5-26
Sglexec_control_oracle 5-20, 5-23
Sglexec_control_sglserver 5-20, 5-23
Sglexec_control_sybase 5-20, 5-23
Sqlnrecv_long 5-20, 5-24, 6-131
Statement_id 5-20
Table_boundaries 5-20, 5-25, 6-3, 6-89,
6-131
connect 5-25
Connect_retries 5-18, 5-26
Connect_retry intervd 5-19, 5-26
current 5-21
default 5-21
displaying vdues of 6-95
exit sequence 5-26
Escape_seq 5-19
Escapet_seq 5-26
Logout_seq 3-2, 5-19, 5-26, 6-5
getting vaues of 6-42
HTTP 5-29
Http_control 5-19
Line _speed 5-19
IOP 5-30
liop_bind_modi 5-19
initidizing 5-21
private 5-31
Mybstack 3-2, 5-19, 5-31
Mysstack 5-19, 5-31
Mystack 5-19, 5-31
reporting 5-32
Check_unread 5-18, 5-32
Log_level 5-6, 5-19, 5-33
Max_nrecv_saved 5-19, 5-32, 5-36, 5-49
Record_level 5-19, 5-23, 5-39
Suspend_check 5-20, 5-40

Index-4

response timeout 5-40
Timeout_act 5-20, 5-41
Timeout_scde 5-20, 5-41
Timeout_vd 5-6, 5-20, 5-41, 5-42,
6-122, 6-136
saved 5-21
setting to default value 6-85
setting vdues of 5-21, 6-82, 6-92
think time 5-42
Delay dly scde 3-2, 5-19, 5-43, 6-5,
6-25

Think_avg 5-20, 5-26, 5-43, 5-46, 5-47

Think_cpu_dly scde 5-20, 5-43, 5-44
Think_cpu_threshold 5-20, 5-44
Think_def 5-20, 5-28, 5-45

Think_dist 5-20, 5-28, 5-44, 5-46, 5-47

Think_dly scde 5-20, 5-46
Think_max 5-20, 5-47
Think_sd 5-20, 5-46, 5-47
equdity operator 3-12, 3-13
€rror messages
read-only variable containing 5-6, 5-49
_error read-only variable 5-6, 5-11, 5-50
_error_text read-only variable 5-6, 5-11, 5-49
_error_typeread-only varigble 5-11, 5-50
Escape_seq environment varidble 5-19, 5-26, 5-27
evd environment control command 5-21, 6-31
exit sequence environment variables 5-26
Escape_seq 5-19, 5-26
Logout_seq 3-2, 5-19, 5-26, 6-5
exiting from an emulation sesson 5-27
expected responses 5-6
expire_cookie emulation function 6-31
expressions 3-15
externa C
arays 4-13
shared library 4-15

VU Language Reference

Index

externa C functions 4-10 fprintf library routine 6-79
and SAP protocol 5-34 fputc library routine 6-35
declaring 4-10 fputslibrary routine 6-35
linkage 4-9 _fr_tsread-only varisble 5-51
memory management 4-13 FreeAllD &afunction 5-5, 6-36

passing arguments 4-11

FreeDatafunction 5-5, 6-37
vaiables 3-17, 4-9

_fs tsread-only variable 5-51
fscanf library routine 6-89

F fseek library routine 6-38
_fc_tsread-only varigble 5-50 ftell library routine 6-39
feof library routine 6-32 functions 4-6
fflush library routine 6-33 aguments 4-6
fgetc library routine 6-34 defin.ing 4-6
files VU filel/O 2-3
dosing 6-9 VU toolkit 1-4, 2-3, 6-1
generating temporary name 6- 159
multiple source 4-4 G
opening 6-75
pgint erg6- 32 get header vaues 6-46

GetDaafunction 5-5, 6-40
GetDatal function 5-5, 6-41
getenv library routine 6-42

reading input from 6-89
removing 6-200
repositioning pointer 6-38

returning pointer 6-39 greater than operaor 3-11, 3-12

sharing 6-93 greater than or equa to operator 3-12

temporary names 6-159

writing buffered datato 6-33 H

writing datato 6-79

flow control 2-7, 3-24 header files 1-3, 4-2

break statement 6-6 sme/datah 4-3

continue statement 6-9 smeffile.h 4-3

do-while gatement 6-26 VU .h 4-2, 6-33, 6-34, 6-90, 6-198
VU _tux.h 4-3

else-if satement 6-27

for satement 6-34 with emulate command 6-30

if-else statement 6-56 help desk xvi
loops 3-24 hex2mixedstring library routine 6-42
satements 6-1 _host read-only variable 5-49
while statement 6-207 hotline support xvi
for satement 3-24, 6-34 HOURSmacro 4-2

Index Index-5

Index

HTTP, monitoring computer resources 5-3
http, dynamic datacorrelation 5-53
HTTP emulaion commands 2-1, 5-2
setting retries 5-25
HTTP emulation functions 2-1
HTTP environment variables 5-29
Http_control 5-19
Line _speed 5-19
Http_control environment variable 5-19
http_disconnect emulation function 6-43
http_find_valuesemulation function 6-44
http_header_info emulation function 6-46
http_header_recv emulation command 5-32, 6-47
bytesreceived 5-51
logging 5-34
http_nrecv emulation command 6-50
and Max_nrecv_saved 5-32
bytes processed by 5-51
bytesreceived 5-51
logging 5-34
http_recv emulaion command 5-2, 6-51
and Max_nrecv_saved 5-32
bytes processed by 5-51
bytesreceived 5-51
logging 5-34
http_request emulation command 6-53
bytes sent to server 5-51
logging 5-34
setting retries 5-25
Think_avg set before each 5-42
http_url_encode emulation function 6-54

i/o routines 2-8

identifier 3-3

if-else satement 6-56

IIOP emulaion commands 2-6, 5-11
I1OP emulation functions 2-6

Index-6

I1OP environment variables 5-30

liop_bind_modi 5-19
liop_bind_modii environment variable 5-19
increment operator 3-10
IndexedField function 5-7, 6-61
IndexedSubField function 5-7, 6-63
inequality operator 3-12, 3-13
INFO SERVER statement

location in virtud user script 5-3
initidizing environment variables 5-21
initidizing read-only variables 5-52
integer

congants 3-3

converting to string 6-4, 6-65
integer datatype 3-2
integer-vaued read-only variables 5-50
itoalibrary routine 6-65

J

JwvaA-1

Jolt protocol A-1
and socket emulation commeands 5-17, 5-34,

A-1

building atribute and parameter lists A-7
extracting atribute vaues from responses A-13
extracting field values from responses A-12
response query functions A-7, A-12

Jolt Server Handlers A-4

L

_lc_tsread-only variable 5-51

Icindex library routine 6-7, 6-65, 6-66, 6-67, 6-97,
6-154

lessthan operator 3-12

lessthan or equal to operator 3-12

library routines 6-1

limitof operator 3-23

VU Language Reference

Line_speed environment varicble 5-19
_lineno read-only variable 5-51
linkageto externd C 4-9
LoadTest 5-2
read-only variable containing version 5-50
log files 5-37
writing messagesto 6-66
Log_level environment variable 5-6, 5-19, 5-33
ALL 5-34
ERROR 5-33
OFF 5-33
TIMEOUT 5-33
UNEXPECTED 5-33
log_msy library routine 6-66
logicd
AND 3-11
negation 3-10
OR 3-11
logica negation operator 3-10
Logout_seq environment variable 3-2, 5-19, 5-26,
6-5
longbinary results
retrieving 6-129
longchar results
longbinary and longchar 6-129
loops 3-24
_Ir_tsread-only variable 5-51
_Is tsread-only variable 5-51
Isindex library routine 6-7, 6-66, 6-67, 6-97, 6-154

M

match library routine 6-68

Max_nrecv_saved environment variable 5-19, 5-32,
5-36, 5-49

Microsoft SQL Server 6-110
MINUTESmecro 4-2
mixed2hexstring library routine 6-69
mkprintable library routine 6-70

Index

Index

monitoring computer resources 5-3

move cursor to next datapool record 6-20
Mybstack environment variable 3-2, 5-19, 5-31
Mysstack environment variable 5-19, 5-31
Mystack environment variable 5-19, 5-31

N

negation operator 3-11
negexp library routine 6-71
N extField function 5-6, 6-71
N extSubField function 5-7, 6-74
nonprintable characters

representing in scripts 3-34, 6-70
_nrecv read-only variable 5-32, 5-51
null satement 3-16
numbers

absolute value 6-2
_nusersread-only varieble 5-51
_nxmit read-only variable 5-51

O

one’s complement operat@ 11
open library routines-75
opening datapool6-21
opening files6-75
operators3-6
address o88-10
arithmetic3-7
assignmenf-8, 3-23
associativity3-14
asterisk3-30
bitwise 3-7
bitwise AND 3-8
bitwise left shift3-8
bitwise OR3-8
braces3-30
circumflex 3-30

Index-7

Index

comma 3-13 persistent datapool cursofs15
concatenaion 3-23 persistent variables-26, 6-77
conditiond 3-13 in declarations3-17
decrement 3-11 initial values3-27

dollar sign 3-30 pipe operatoi3-30

equality 3-12 plus operatoi3-30

exclusve OR 3-8

greater than 3-11, 3-12
greater than or equd to 3-12
increment 3-10

inequdity 3-12, 3-13

pointer 6-32
repositioning6-38
returning offset 066-39
pop environment control commarkd21, 6-77

preprocesso#-3

::IE: (:)))r-zud t0 3-12 conditional compilatiord-4
limitof 3-23 features-3
logical AND 3-11 ;'cl)? lelfgn 4-4
:zg:i gesagf):f_ 10 token replaceme-3
one’s complemen8-11 preVue.h SeeVU .h header file
pipe 3-30 preVueCS.hSeeVU .h header file
plus 3-30 preVueCS_tux.hSeeVU _tux.h header file
precedencd-14 print statement-78
question mari3-30 printf library routine6-79
relational 3-11 private datapool cursoi 15
right shift 3-8 private environment variablés 31
unary3-10 Mybstack3-2, 5-19, 5-31
unary negatiord-11 Mysstack5-19, 5-31

Oracle Mystack 5-19, 5-31
argument$-118 procedures
environment variable§-20, 5-23 calling4-8
prefixes4-2, 6-140 defining4-6, 4-8

examples4-8
P program structurd-1

push environment control commahe2l, 6-80

passing arguments putenv library routines-82

arrays4-13
integers4-12
strings4-12 Q
pattern matchin®-68 question mark operat@-30

pattern string constan®4, 3-5

Index-8 VU Language Reference

Index

R cursor_id 5-50
_ _ initidization 5-52
rand library routine 6-82 integer-vaued 5-50

random numbers 6-71, 6-146, 6-199
rand library routine 6-82

receive emulation commands 6-1

_ receives
routines 2-10 _ bytes from server 6-50
Rationd technica support xvi server header metadata 6-47
ReadLine function 5-6, 6-83 dring data 6-103
read-only veribles 5-48 Record_level environment variable 5-19, 5-23, 5-39
_dltext 5-21, 5-49 vaues 5-39
_cmd_id 5-49 regular expressions 3-29, 3-31
_cmdent 5-18, 5-50 errors 3-32
_column_headers 5-49 rules 3-29

_command 5-49

_error 5-6, 5-11, 5-50
_error_text 5-6, 5-11, 5-49
_error_type 5-11, 5-50

single-character operators 3-29
relaiond operators 3-11

integer operands (table) 3-11

gring operands 3-12

:f:: g::g reporting environment variables 5-32

_fs_ts 5.51 Check_unread 5-18, 5-32

- Max_nrecv_saved 5-19, 5-32, 5-36, 5-49
_Ith?s 5523 Suspend_check 5-20, 5-40

_IirTeno 551 reset environment control command 5-21, 6-85
_Ir ts 5-51 reset random number generator 6-146
_Ists5-51 response

nrecv 5-32. 5-51 checking for specific results 6-160
_nusers 5-5i _responseread-only variable 5-49, 6-49, 6-50, 6-51
:nxmit 5-51 response timeout environment variables 5-40
_response 5-49, 6-49, 6-50, 6-51 Timeout_eact 5-20, 5-41
_script 5-50 Timeout_scde 5-20, 5-41
_source _file 5-50 Timeout_vd 5-6, 5-20, 5-41, 5-42, 6-122,
_statement_id 5-51 6-136

total_nrecv 5-32, 5-51 restore environment control command 5-21, 6-86
:tota:rows 5-32, 5-52 retrieve daapool vaue 6-24
_tux_tpurcode 5-52 return statements 4-6
_uid 5-52 returns
_user_group 5-50 character data 6-67
_version 5-50 random integers 6-71

rowtag 6-111

Index Index-9

Index

rows
deleting 6-114
fetching 6-124
number processed 5-32, 5-52
retrieving 6-130
updating 6-143

S

SAP protocol
and emulate emulation command 5-34
save environment control command 5-21, 6-87
SaveD atafunction 5-5, 6-88
saving environment variables 6-87
_script read-only varigble 5-50
script_exit library routine 6-91
scripts
delaying execution of 6-25
exiting from 6-91
read-only variable containing 5-50
representing nonprintable characters 3-34, 6-70
SECON DS macro 4-2
seed 5-46
seed flags 5-46
send emulation commands 6-1
send HTTP request 6-53
server
close connection 6-43
connection 6-97
receive header metadata 6-47

Server_connection environment variable 5-4, 5-19,
5-23, 5-26

session files 1-3
session ID 5-53
where stored 5-54
set environment control command 5-21, 6-92
set_cookie emulation function 6-92
shared datgpool cursors 6-15
shared library 4-15

Index-10

shared varidbles 3-25, 6-205
atomic read and update 3-8, 3-11
in declarations 3-17
initidization 3-26, 3-28
reading 3-26
scope 3-25
unary operatorsand 3-10
updating 3-26
SHARED_READ function 5-7, 6-93
shell, escaping to 6-158
show environment control command 5-21, 6-95
sindex library routine 6-7, 6-66, 6-67, 6-96, 6-97,
6-154
sme/datah header file 4-3
smeffile.h header file 4-3
sock_connect emulation function 6-97
setting retries 5-25
sock_create emulation function 6-98
sock_disconnect emulation function 6-99, 6-102
sock_fdopen emulation function 6-99
sock_isinput emulation function 6-100
sock_nrecv emulation command 5-32, 6-101
and Max_nrecv_saved 5-32
bytes processed by 5-51
Jolt protocol and A-7, A-12
logging 5-35
sock_recv emulation command 6-103
and Max_nrecv_saved 5-32
bytes processed by 5-51
Jolt protocol and A-2
logging 5-35
sock_send emulation command 6-104
bytes sent to server 5-51
Jolt protocol and A-2, A-5
logging 5-35
Think_avg set before each 5-42
socket emulation commands 5-17
and Jolt protocol 5-17, 5-34, A-1

VU Language Reference

sockets
checking for input 6-100
cregting 6-98
disconnect 6-99, 6-102
sending data 6- 104
setting retries 5-25
_source_fileread-only variable 5-50
sprintf library routine 6-79
QL
dloc_cursor 6-105
commit 6-108
connect 6-109
declare 6-113
delete cursor 6-114
disconnect 6-115
executing statements 6-116
fetch_cursor 6-124
free_cursor 6-126
open_cursor 6-132
prepare 6-135
retrieves row results 6-130
rollback 6-139
rowtag 6-111
set database server 6-139
update current row 6-143
SQL emulation commands 5-5
receive 2-2
send 2-2
SQL emulation functions 2-2
SQL Server
arguments 6-119
committing transactions 6- 108
environment variables 5-20, 5-23
rolling back transactions 6-139
TDSprotocol version 6-110
SQL VU file /O functions 2-3
SQL VU toolkit functions 1-4, 2-3, 6-1

Index

Index

SQL_NULL, specifying 6-122
sgldloc_cursor emulation function 6-105
sgldloc_statement emulation function 6-106
_statement_id returned by 5-51
sglclose_cursor emulation command 6- 107
logging 5-35
sglcommit emulaion function 6-108
sglconnect emulation function 6-109
example 6-123
sgleursor_rowtag emulation function 6-111, 6-115
sglcursor_setoption emulation function 6-112
sgldeclare_cursor emulation command 6-113
logging 5-35
sgldelete_cursor emulation command 6-114
logging 5-35
sgldisconnect emulation function 6-115
example 6-123
sglexec emulation command 6-116
example 6-123
logging 5-35
number of characters sent to server 5-51
setsrows processed to 0 5-52
Think_avg set before each 5-42
Sglexec_control_oracle environment variable 5-20,
5-23
Sglexec_control_sglserver environment variable
5-20, 5-23
Sglexec_control_sybase environment variable 5-20,
5-23
sglfetch_cursor emulation command 6-124
and Max_nrecv_saved 5-32
and sgllongrecv 6-130
logging 5-35
sglfree_cursor emulation function 6-126
slfree_statement emulation function 6-127
sglinsert_cursor emulaion command 6-128
sgllongrecv emulaion command 5-32, 6-129

Index-11

Index

sglnrecv emulation command 6-130
and Max_nrecv_saved 5-32
and sgllongrecv 6-130
incrementstota rows processed 5-52
logging 5-36
rows processed by 5-51

Sglnrecv_long environment variable 5-20, 5-24,

6-131
sglopen_cursor emulation command 6-132
logging 5-36
sglposition_cursor emulaion command 6-134
sglprepare emulation command 6-135
_staement_id returned by 5-51
example 6-123
logging 5-35
number of characterssent to server 5-51
Think_avg set before each 5-42
sglrefresh_cursor emulation command 6-137
sglrollback emulation function 6-139
sglsetoption emulation function 6-139, 6-140
example 6-123
sglsysteminfo send emulaion commeand 6-141
sglupdate_cursor emulation command 6-143
logging 5-36
sgtranslibrary routine 6-144
srand library routine 6-146
sscanf library routine 6-89
standard input
reading datafrom 6-89
gart_time emulaion command 5-2, 6-147
logging not done 5-37
Statement_id environment variable 5-20
_staement_id read-only variable 5-51
gaements 3-16
executing SQL 6-116
freeing client and server resources 6-127
preparing SQL 6-135
SQL free_statement 6-127
goc library routine 6-149

Index-12

stop_time emulaion command 5-2, 6-150
logging not done 5-37
string
concatenaing 3-7
congtants 3-4
conversion to character 6-149
converting charactersto 6-12
converting integer to 6-65
converting to hexadecima 6-42, 6-69
create string expression 6-153
creating expressions 6-144, 6-152
datatype 3-2
decoding 6-7
deleting charactersin 6-162
extracting substring from 6-155, 6-156
operands 3-12
return 6-151
returning length of 6-151
returns
length 6-154
position of character within 6-7
subgtituting charactersin 6-162
writing unformatted output for 6-35
grings 2-9
encoding 6-8
grlen library routine 6-151
strneg library routine 6-151
grrep library routine 6-152, 6-153
grspan library routine 6-7, 6-66, 6-67, 6-97, 6-154
subfield library routine 6-155
subroutines, defining 4-6
substr library routine 6-156
support, technica xvi
Suspend_check environment varigble 5-20, 5-40
Sybase 6-110
arguments 6-119
committing transactions 6- 108
environment variables 5-20, 5-23
prefixes 4-2, 6-140

VU Language Reference

rolling back transactions 6-139

TDSprotocol version 6-110
sync_point statement 6-1, 6-157
synchronization points

setting 6-1, 6-157
system library routine 6-158

T

Table_boundariesenvironment variable 5-20, 5-25,
6-3, 6-89, 6-131
sglfetch_cursor 5-25
sglnrecv 5-25
_task_file.