Using Rational
PerformanceArchitect

support@rational.com
http://www.rational.com

Rational

software

Using Rational PerformanceArchitect

Copyright © 1999 Rational Software Corporation. All rights reserved. The contents of this manual and
the associated software are the property of Rational Software Corporation and are copyrighted. Any
reproduction in whole or in part is strictly prohibited. For additional copies of this manual or software,
please contact Rational Software Corporation.

Rational, the Rational logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and Object Testing are trademarks or registered trademarks of Rational
Software Corporation in the United States and in other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR
52.227-19, or FAR 52.227-14, as applicable.

Revised 12/1999

This manual prepared by:
Rational Software Corporation
20 Maguire Road

Lexington, MA 02421

U.SA

Phone:
800-433-5444
408-863-4000

E-mail: support@rational.com
Web: http://www.rational.com

>

>

>

Contents

Road Mapo e 2
Before YouBegin 3
Who Should Read ThisGuide 3
What You Need to Get Started. 3
Installing Rational PerformanceArchitect. 4
Before YoulInstall L. 4
Running the Installation 4
Basic Concepts . ..o vvvt it 5
Modeling Rational PerformanceStudio Features Using Rose . . . 5
Generating Scripts and Wrapper Code from Rose Models 6
Running LoadTest Schedules. 7
Understanding Datapools. i 8
Working with the Sample Model 8
Understanding the Component View 8
Understanding the Use Case View 10
Understanding the Logical View 11
Testing the Sample Model 12
Working with the Starting from Scratch Tutorial 17
Digging Deeperot 17
Adding the RationalTest Package to Your Models 18
Converting Model Elements to a Virtual User Script 18
Datapool Commands in the Virtual User Script............. 19
Controlling Object Creation Overhead. 22
Modeling COM Objectswith Rose. 25
How Rational PerformanceArchitect Maps VB Data Types .. .29
Sample VU Scripto oot 30
Sample C+ + Wrapper Generated for the VBExample Script . . 31
Troubleshooting. i 35
Wrappers Fail toBuild 35

Asynchronous Environments. 37

Contents

Runtime Registry Settings

>»> Using Rational PerformanceArchitect

Rational PerformanceArchitect (RPA) is a Rational Rose add-in that generates
scripts for testing the performance of COM/DCOM applications. Rational
PerformanceArchitect works by interpreting the information in Rose interaction
diagrams and then generating scripts that can be used with Rational LoadTest.
(Interaction diagrams include both sequence diagrams and collaboration diagrams.)

Rational PerformanceArchitect serves as a bridge between LoadTest and Rose.
After you generate scripts in Rose, you can use the Robot component of
PerformanceStudio to edit the scripts and then use LoadTest to run performance
tests. Afterwards, you can rearchitect the model in Rose, generate new scripts, and
compare the performance of the new architecture with that of the original.

Scripts generated by Rational PerformanceArchitect emulate the client side of a
client/sever application, helping you catch design flaws in your architecture early in
the development process, before you spend time and money implementing the
client. All scripts generated by Rational PerformanceArchitect are virtual user
scripts. Virtual user scripts are used primarily in performance testing to measure
server response time. Virtual user scripts are written in a C-like scripting language
called VU.

Rational PerformanceArchitect is extremely flexible and provides numerous usage
scenarios for performance-based testing. In one scenario, you can model your COM/
DCOM application for deployment in different languages and compare the
performance of each version. In another scenario, you can compare the performance
characteristics of a thin client with that of a fat client.

By default, Rational PerformanceArchitect generates one script per Rose diagram
and assigns the script the same name as the diagram. As an alternative, you can build
a diagram that generates multiple scripts. For an example of this approach, see
Controlling O bjeat Creation Overhead on page 22.

Road Map

U se the following table to help you find various topics in this guide.

To find out

Read this

Who should read this guide and what you
need to get started

U sethefollowingtable to help you find various topics
in this guide. on page 2

How to install Rational
PerformanceArchitect

Installing Rational PerformanceA rchiteat on page 4

How to model PerformanceStudio features
in Rational Rose

Adding the RationalT est Padkage to Y our M odels
on page 18

ConvertingM odel Elementstoa Virtual U ser S cript
on page 18

How to generate scripts and wrapper code
from Rose models

G enerating S cripts and W rapper C ode from Rose
M odels on page 6

How to work with test data and use the
datapool facility

U nderstanding D atapools on page 8
D atapool Commands in the Virtual U ser S cript on
page 19

How to work with the sample Rose model

Working with the S ample M odel on page 8

How to generate multiple scripts from a
single diagram

Controlling O bject Creation Overhead on page 22

How to model interfaces

M odeling COM O bjects with Rose on page 25

How to map Visual Basic datatypesto C+ +
data types

How Rational PerformanceA rchitect M aps VB
Data Types on page 29

How to troubleshoot Rational
PerformanceArchitect

T roubleshooting on page 35

About registry settings used or modified by
Rational PerformanceArchitect.

Runtime Registry S ettings on page 38

Before You Begin

Before You Begin

This section describes the intended audience for this guide and what you need to
get started.

Who Should Read This Guide

This guide assumes you are a system architect or software developer who wants to
generate performance tests from Rose models. To get the maximum benefit from
this guide, you need to be familiar with the Unified Modeling Language, Rational
Rose, Rational PerformanceStudio, and COM development. Although some
concepts related to these products and technologies are covered in this guide, refer
to the Rose and PerformanceStudio documentation for additional information.

What You Need to Get Started

To use Rational PerformanceArchitect, you need:

>

Rational Suite PerformanceStudio 1.5 or later

PerformanceStudio is a sophisticated tool for automating performance tests on
client/server systems. PerformanceStudio includes Rational LoadT est, Rational
Rose, Rational Robot, Rational Administrator, Rational TestManager, and
Rational PerformanceArchitect, and is needed to run performance tests and to
edit scripts.

Rational Rose 2000 or later
Microsoft Visual C+ + Version 6.0

Visual C+ + Version 6.0 is needed to build the wrapper code that is called by the

generated script. Wrappers serve as an interface between the script and the
COM server.

The Rational Test package for Rose

The Rational Test package for Rose is a group of related actor classes that
provide support for modeling runtime functions used by various Rational
software components. The Rational Test package for Rose is included with
Rational PerformanceArchitect.

Installing Rational PerformanceArchitect

This section explains how to set up your test environment and install Rational
PerformanceArchitect.

Before You Install

Before you install Rational PerformanceArchitect, keep the following requirements
in mind:

» At minimum, you need Rational Robot and Rational Rose installed on the
computer running Rational PerformanceArchitect. The rest of
PerformanceStudio can reside on the same computer or a different computer.

» To generate wrapper code automatically, Visual C+ + must be installed on the
same computer that is running Rational PerformanceArchitect.

Running the Installation

To install Rational PerformanceArchitect, run the typical Rational Suite
PerformanceStudio installation. You can also install Rational PerformanceArchitect
from the Windows Start menu after performing a custom installation of Rational
Suite PerformanceStudio.

The installation adds an Rpa subdirectory to the Rose root directory and several files
within the new directory, including:

File or Directory Description

IslandH opperA.mdl Rose model derived by reverse engineerng the Island Hopper
sample application from Microsoft Visual Studio 6.

RationalTest.cat Rose catalog containing the Rational Test package. This
package contains several actors that provide support for
modeling runtime functions, such as think time, timers,

and datapool fetch. (In the UML, an actor is someone or
something outside the system that interacts with the system.)

Sample.VB Directory containing the Visual Basic ActiveX server sample

Sample.VC Directory containing the Visual C+ + ActiveX server sample

Readme.htm Rational PerformanceArchitect release notes

Rpa.htm Rational PerformanceArchitect online manual in HTML
format

Basic Concepts

Basic Concepts

This section introduces several concepts that will help provide a foundation for your
work with Rational PerformanceArchitect.

Modeling Rational PerformanceStudio Features Using Rose

Rational PerformanceArchitect uses Rose interaction (sequence and collaboration)
diagrams to access PerformanceStudio features, such as think time, timers, and
datapools. These features are made accessible to Rose viathe RationalTest package,
a collection of Rational-supplied actor classes that provide support for modeling
runtime functions used by various Rational software components. The RationalTest
package contains the following actors:

VU — Provides support for modeling runtime services such as the average think
time, COM initialization and deinitialization, and the VU language IN FO SERVER
command.

Timer — Provides support for modeling arbitrary start and stop timer operations
(start time and stop time functions)

Datapool — Provides support for modeling datapool runtime operations, such as
open and fetch.

VuServices — Inherits all operations of the VU, Datapool, and Timer actors. You
can use VuServices as a single actor in an interaction diagram in place of the other
three actors.

Script — Provides support for generating multiple scripts from a single diagram.

Virtual User — Provides support for modeling the client-side of a transaction in an
interaction diagram. U se the Virtual U ser actor as a placeholder for the actual client
object. Because this actor class is not part of the actual production application, you
can always add it to existing models without effecting the model.

The RationalTest package is included with the sample model that comes with the
Rational PerformanceArchitect installation, but it must be added to your own
models. For more information, see Adding the RationalT est Padkage to Y our M odels on
page 18.

The following table shows how Rational PerformanceArchitect converts the features
in the RationalT est package to commands in a virtual user script:

RPA converts this feature

To this command in a VU script

in a diagram

think() set Think_avg=nnn
fetch() datapool_fetch(x)
open() datapool_open(“x”)
start() start_time

stop() stop_time

vu_Colnitialize()

vu_Colnitialize()

vu_CoU ninitialize()

vu_CoU ninitialize()

infoserver()

INFO SERVER label= addr[,label= addr...]

For more information about these features, see the VU Language Reference.

Generating Scripts and Wrapper Code from Rose Models

To generate a script, Rational PerformanceArchitect interprets the messages in an
interaction diagram in your Rose model and then processes the operations associated
with these messages. Specifically, Rational PerformanceArchitect inspects the class
of the message’s receiver object to determine whether the object is a COM object.

The following figure shows a message’s receiver object in a Rose sequence diagram:

Message’s receiver object in sequence diagram

itr Sequence Diagram: Use Case Yiew / YBExample [_ (O]
sWirtual User I L WuSenices | :_Mlovj:haney I
! ~ - . howehdoney
< lrtual User b Services
lhinl«(time cIntagern)
F— =
HE . .
PrlmeAlcug‘ouniﬂ) Use thiz Actor from the
. RationalTest package
. ~ |10 madal WU nuntime
5 d.
seen %\Q?OU‘TM) | operdations. A commen
I use of this is to include
I g
StatefulPerforn(50, 2, “BSTR™ an average think time
e in your model that iz
' translated into set a =
| | »[qm

Basic Concepts

If Rational PerformanceArchitect determines that the object isa COM object, it
incorporates the message in the generated script as a VU emulate command. (See
Qualifying M essages for Indusion in a S ariipt on page 27 for more information.)

U ltimately, these messages, which are now incorporated in the script, help to drive
a performance test.

Clasgs Specification for _MoveMoney

General | Detail | Operations I Altributes I
Relations ~ Components | Mested | Files | COM

Component Mame | Package Mame I Language I

Z\FpaDemovE ApaDemovE Yer 1.0 COM You can inspect an object’s Class
&]RpaDemavB COM Visual Basic Specification in Rose to see
stdale stdale Yer 2.0 (OLE » COM whether it isa COM object.

ak, I Cancel | Apply | EIDWSBV| Help |

As it creates the script, Rational PerformanceArchitect also generates the C+ +
wrappers that are needed to establish an interface from the VU language to COM.
Together, the VU script and wrappers emulate your client application using the
actual COM calls of the server objects.

Rational PerformanceArchitect looks in the Component Specification in the Rose
Component View for two pieces of information: the FileName property and the
component name. Both pieces of information are saved in the wrapper and are
shown in the following example from a wrapper file:

FileName property, displayed in the COM
tab of the Component Specification.

#import "D:\Program Files\Rational\Rose
2000\RPA\Sample.vb\RpaDemoVB.d1l1l"

Component Name

Running LoadTest Schedules

After you generate a script, you can add it to a LoadTest schedule and run the
schedule. Typically, you add some number of virtual users to more accurately
simulate real-world conditions. A virtual user is a single instance of a virtual user
script running on a computer. Based on the results of the schedule run, you can
choose to update the model in Rose, regenerate the scripts, and rerun the
performance tests.

For more information about LoadTest, see the Using Rational LoadT est manual.

Understanding Datapools

With Rational Suite PerformanceStudio, you can create scripts that simulate the
actions of multiple users running multiple transactions against a database or Web
server. This is accomplished through the use of datapools. A datapool is a comma-
separated text file that contains rows of data.

Scripts generated by Rational PerformanceArchitect are fully integrated with
PerformanceStudio’s datapool facilities. For more information about the datapool
features of PerformanceStudio, see the Using Rational LoadT est manual. For more
information about the use of datapools in Rational PerformanceArchitect, see
Datapool Commands in the Virtual U ser S cript on page 19.

Working with the Sample Model

The installation procedure installs two sample Rose models — a Visual Basic model
and a Visual C+ + model that you can use to try out Rational PerformanceArchitect.
Both models reflect a traditional transaction processing system that allows users to
credit or debit their accounts on a server.

Both models already contain an imported type library and a component associated
with the source project in Visual Basic and Visual C+ + .

Understanding the Component View

The following component diagram shows the physical pieces of software that are
included in the architecture for the Visual Basic version of the sample banking
application:

» ACOM object (RpaDemoVB) that is associated with the imported type library

» Anoptional ActiveX DLL (RpaDemoVB) that is associated with the Visual Basic
source project. This DLL is used for round-trip engineering.

» Stdole.dll, which is the COM automation library referenced by the
RpaDemoVB project. This component is imported by Rose when the
RpaDemoVB type library is imported.

The client application uses the COM interfaces _Account, _U pdateReceipt,
_GetReceipt, and _MoveMoney to communicate with the RpaDemoVB server. (All
COM interfaces from imported Visual Basic applications contain a leading
underscore character.)

3l Component Diagram: Component ¥iew / Main

project. (optional)

The component associgted
with the *dsual Basic zource

The component associated
with the imported type librany .
frequired)

WB

o O O

_foccount _UpdateReceip _GetReceipt _Mowehbdoney
t

<dimportss:>

<<COM==
Rpalemo

Working with the Sample Model

<sActivex DLL=>
Rpalemo'B

<2COM=x
_______________ = stdale

|Dispatch

[T

NOTE: In the C+ + version of the sample model, the COM object and the
ActiveX DLL are combined into a single component.

Understanding the Use Case View

The Use Case view in the Rose browser shows the interaction diagrams and use
cases that are included in the sample model.

%[S:almup '::gase View The sequence diagram used in this section of this
% Main / document to help you test the sample model.

WEBExample

b MultipleSceripts A 2nd sequence diagram that you can use to
> Tutorial - Starting from Scratch generate multiple scripts. (See Controlling Object

—>), Azzociations : .
. C3 Logical View Creation Overhead on page 22 for details.)

-3 Component Wiew

8 Deployrment View .

{38 Model Froperties A tutorial that shows you how to generate
a virtual user script from scratch. This use
case includes multiple sequence diagrams.

The VBExample sequence diagram appears as follows. See Controlling O bject Creation
Overhead on page 22 for a description of the MultipleScript sequence diagram. See
Working with the S tarting from S aratch Tutorial on page 17 for a description of the other
sequence diagram included with the sample model.

it Sequence Diagram: Use Case Yiew / YBExample [_ O] =]
:Wirual User I WuSenices I o _Movetoney I
4 h - Movehboney
+ irtual User L MuiServices
! thinki2500) ! "
e g

FrimeAegount(1)) Usa this Actor from the [
RationalTest package
to model WU muntime
operations. A common
use of this is to include
an average think time
in wour model that is
translated into set a [—
#org_think command
when you generate the

Secon quco‘u‘nt(‘Z)

StatefulPerformig0

P seript.
The client iz an Actor Substitute actual values for each parameter to model a [N
wou provide 3z a single instance of the transaction. In this diagram we
‘placeholder” for the assign 1 as the Pri .2asthe .
actual client object. and finally indicate in the StatefulPerform call that we

warnt to transfer an amount of 50 from the Primefccount
to the SecondAccount. 3 is the application’s code
meaning ‘transfer”. iz leave the final parametar of type
"BSTR alone. That's the field used for the value retumed
by the StatefulPerform call.

l | H[m

10

Working with the Sample Model

In the VBExample sequence diagram:

>

>

>

The Virtual U ser actor serves as a placeholder for the actual client object.
The VU Services actor enables runtime services such as think time.

_MoveMoney is a hidden interface — indicated by the leading underscore
character — and realized by the MoveMoney coclass. The _MoveMoney
interface and the MoveMoney coclass are realized by the RpaDemoVB COM
component.

PrimeAccount assigns itself the number 1.
SecondAccount assigns itself the number 2.

StatefulPerform indicates a request to transfer $50 from PrimeAccount to
SecondAccount.

Understanding the Logical View

The Logical View shows the packages, classes, interfaces, and operations in the
model. Packages in the Visual Basic version of the sample model include:

>

RpaDemoVB (from COM). The package that would be created when you
import the type library from RpaDemoVB.dll. (In the sample model, the type
library has already been imported.)

stdole (from COM). The OLE Automation package that is created when you
import a Visual Basic project.

RationalTest. Rational-supplied actor classes that provide support for modeling
runtime functions used by various Rational software components.

RpaDemoVB (from Reverse Engineered). The package containing objects
used in round-trip engineering of the source code for RpaDemoVB objects.

11

The following figure shows the main Class Diagram for the SampleVB model:

—| These two packages are created when the type B ;I
library iz imported from RpaDemotB.0LL. Do this
RpaDemo’yB “er 1.0 (Rational Performance Architect uging Tools - COM -> Import Type Library.
Demao Objects for “dsual Basic)
(fram COM) TESTING &N EXISTING OBJECT

fou can impaort the type librany for 3 completed

T e ication object and use the interfaces of that

h AR object directly in your interaction diagrams for

.'J AR generating scripts.

; TESTIMG WITH ITERATIVE DEVELOPMENT
' *fou ean also use Rational Performance Architect to
\;/ test interim iterations of COM objects during
dewvelopment. To do thiz wou model 3 component
with an assigned language of “Wzual Basic" and
stdole “er 2.0 (OLE azgign it to your ‘sual Basic project. You can use
Automnation) the "Update Code” feature of Rose to create new
rfrom COM) “stub” claszes for ywour component and then “round
trip*the code yvou add to these classes into the
model 3z you develop.

Mhen ywou are ready to test wou simply use Tools -»
CObt> Import Type Library to import the type
library for your component. Then you can proceed
to model transactions in interaction diagrams using
the interfaces imported from the type librany .

RationalTest ‘ithen wou change your code either by updating it
from the model or directhy you simply refresh the
type library information in the model by importing it
again.

Y RpalemoWB
3 (from Rewerse Enginesned)

The package containing objects used in
p round-trp engineering of the source code for
' the Rpabemo'/B objects.

The package containing actors
uzeful in modeling the services of
LoadTest's wvirtual user playback
engine in interaction diagrams or
elsewhere.

To configure round-trip engineering you
may need to edit the options of the
RpaDemo'yB component tha is stereotyped
az <<fctivel OLL>> and adjust the project
to reference RpaDemo’sB in the
Samples B directory.

4]

Testing the Sample Model

12

To see how Rational PerformanceArchitect works, you can generate a script and
C+ + wrappers from the VBExample sequence diagram. Then, you can use
LoadTest to run a performance test. In the performance test, you can measure
the time required for the PrimeAccount, SecondAccount, and
StatefulPerform () messages that the client sends to the server.

Working with the Sample Model

Generating the Script and Wrappers in Rose

To generate a virtual user script and the wrappers:

1.

2.

Start Rational Rose and open the sample model,

[Rose Dir]\Rpa\SampleVB.mdl.

In the Rose Browser, expand the Use Case View.

@ SampleV/B
ED s Case View

<22 Tutorial - Starting from Scratch
3 Assooialions

(7 Logioal Yiew

-3 Camponent Yiew

Deployment Yiew

{8 Model Properties

3. Double-click the VBExample sequence diagram to open it.

4.

Click Tools > VU Scripting > Options.

Rational PerformanceArchitect Options

2 =

¥ Launch Rohat after scrpt iz generated
¥ Automatically build COM interface wiappers

IV Alwaps include vu_Colnitialize() and vu_CoUninitializel)

K

Cancel |

Make sure that all of the options are selected.

Select diagram from list — Displays a list of sequence diagrams to choose
from. If deselected, Rational PerformanceArchitect generates a script based on

the active sequence diagram.

Launch Robot after script is generated — Starts Robot automatically after

generating the script.

NOTE: If Robot is already running, newly generated scripts will not open

automatically in Robot.

13

14

Automatically build COM interface wrappers — Builds the COM wrappers
automatically. Rational PerformanceArchitect looks for the Microsoft Visual
C+ + 6.0 compiler on your computer. If it cannot locate the compiler, it asks
you to locate the vcvars32.bat file, which is typically located in the VC98\bin
directory of the compiler. If the compiler is not installed on your system,
Rational PerformanceArchitect disables the Build wrappers automatically
option. For more information about the wrappers, see Generating S aripts and

W rapper C ode from Rose M odels on page 6.

NOTE: Deselect this option only in certain situations, such as when the
C+ + compiler does not reside on your computer. To build the wrappers
manually, run the rpa.bat file, which resides in the repository under
Project\[ProjectN ame]\Script\externC\[Diagram N ame].

Automatically include Colnitialize() and CoUninitialize() — Inserts a single
Vu_CoInitialize () and asingle Vu CoUninitialize () statement in
the script. These statements call the CoInitialize () and
CoUninitialize () COM runtime functions. If deselected, these
statements are not inserted into the script automatically, and therefore, these
functions are not executed for each iteration of the script. These statements are
part of the VU class in the RationalTest package. For more information about
this option, see Controlling O bjeat Creation O verhead on page 22.

Click Tools > VU Scripting > Generate Script.

When prompted, log into a Rational repository. (If you don’t already have a
repository, you will need to create one. For details, see the Using the Rational
Administrator manual or the Rational Administrator online Help.)

Type your user ID and password. [

If you do not know these, see

your administrator. U=l C
admir

Select a repository. To change I

repositories later, exit all Robot Password

components and log in again. |

(Repositories are created in the Renositore P\th

Rational Administrator.) e)

rogram Files'

ionalvH atiohal Test 7\Clazsi ity Browsze |
Select a project. You can change

to another project within the JoLRSSICS [
same repository after you log in.
ok I Cancel I

Project

Click OK to log in.

Working with the Sample Model

NOTE: If your repository is located on another computer, you must map the
path to the repository to a drive letter in order to use the Automatically build
COM interface wrappers option.

If you have chosen the Select diagram from list option and your model
contains multiple sequence diagrams, Rational PerformanceArchitect prompts

you to select a sequence diagram. Select the VBExample sequence diagram and
click OK.

NOTE: The list can include both sequence and collaboration diagrams.

Select Diagram E

The following sequence and collaboration diagrams exist in
your rodel. Please choose the diagran to uze for this
tranzaction.

p

ial - Starting from Scratch / Stepl
ial - Starting from Scratch / Step2
- Starting from Scratch £ Step3
ial - Starting from Scratch / Stepd
ial - Starting from Scratch / Steph

If you are prompted, type or browse to the path for RpaDemoVB.dll, which is
the server component you are testing. Then, click OK.

Identify Type Library for _MoveMoney

Browse .. |
Cancel |

ID:\Program FilesR ationalsRose 2000%RPALS ample. vb4yR palema'B

NOTE: Rational PerformanceArchitect looks for the path in the FileName
property of the RpaDemoVB Component Specification. If it finds the path
and the path is correct, you will not be prompted.

At this point, Rational PerformanceArchitect opens the script in Robot and
builds the C+ + wrapper DLL for the transaction described in the sequence
diagram. The script is assigned the same name as the sequence diagram. For an
example of a C+ + wrapper, see Sample C+ + Wrapper G enerated for the
VBExample S cript on page 31.

15

16

If Build wrappers automatically is deselected in the Rational

PerformanceArchitect O ptions dialog box, the following dialog box will appear
at the end of the script/wrapper generation process. Enable the check box and

click OK to build the wrappers.

An interface wiapper has been generated, but you have
chazen not to automatically build the wrapper.

Cancel |

[~ Tobuild wrapper. check here, then click OK,

Running Performance Tests

To run a performance test:

1. In Robot, click File > Playback.

This starts LoadTest and creates a LoadTest schedule from the virtual user

script.

2. Click Run > Schedule.

Run Schedule

— Schedule information

Marme:

Mumber of ugers: |1

=

Max Users: Scalable to 110 License
Linnit

LChange... |
License Information
Maw. Mo, GUI Users I'IU
@

Max. Mo, Virtual Users

— Log Information

Change... |

Build [Buid 1
Log Folder: IVBExampIe
Log: IUsers 1#01

— Reszource Monitoring

™ Maritar resources

Update rate [zec): |5 _l:j

Cancel | Dptions... | Help I

3. Click OK.

4. Review the results.

Working with the Starting from Scratch Tutorial

For more information about creating and running schedules, see the Using
Rational LoadT est manual.

Run a Performance report in LoadTest to display the response times observed
during the schedule run.

Working with the Starting from Scratch Tutorial

The Starting from Scratch tutorial is a use case that is included with the Visual Basic
version of the sample model. This use case teaches you how to create your own
sequence diagrams in which you model interface operations and generate a VU
script.

@ SamplevE o
23 Use Case View

- WBEwample

i MultipleScripts

=R ¥ T Litorial - Starting from S cratch
Stepl

Step2

Step3

Stepd

Steph =

Digging Deeper

Read the following topics in this section for important information about:

vV vV v v v v v VY

Adding the RationalTest package to your models

Converting model elements to a virtual user script

Datapool commands in the virtual user script

Controlling object creation overhead

Modeling COM objects with Rose

How Rational PerformanceArchitect maps Visual Basic data types
Sample virtual user script

Sample C+ + wrapper

17

Adding the RationalTest Package to Your Models

The RationalTest package is a collection of actors that provide support for modeling
runtime functions used by various Rational software components. To add this
package to your own models:

1. Open your model in Rose.

2. Click File > Units > Load.

3. Navigate to the [Rose Dir]\rpa directory and select the RationalTest.cat file.
4. Click Open.

Converting Model Elements to a Virtual User Script

18

Rational PerformanceArchitect converts elements in your Rose model to lines of
code in a virtual user script. To get a feel for how this conversion works, consider
how COM calls and think time are modeled in your sequence diagram.

When Rational PerformanceArchitect generates a virtual user script, the messages to
aCOM server in the sequence diagram become VU language emulate commands
in your script. The emulate command provides generic emulation services to the
VU language and to external C function calls.

Rational PerformanceArchitect helps you model think time by providing a

think () operation as part of the VU class in the RationalTest package. Think time
is used in LoadTest to pace the playback of virtual user scripts. Generally speaking,
think time is used to indicate the time that a typical user would delay or think
between submitting commands.

The think () operation of the VU class in the RationalTest package takes one
parameter, the average think time in milliseconds, for which you must supply a
value.

Every think (nnn) message in your sequence diagram becomes a set

Think Avg=nnn command in the script, where nnn is the value of the average
delay time in milliseconds. When you model this operation in a message, Rational
PerformanceArchitect uses the value that you supply as the parameter on the
message and generates the corresponding set Think avgcommand in the virtual
user script.

The following segment of a virtual user script shows how Rational
PerformanceArchitect converts a think (nnn) message in the sequence diagram to
aset Think Avg=nnncommand in the script and then converts the messages in
the sequence diagram to emulate commands in the script.

Digging Deeper

/* think () message from sequence diagram */
set Think avg = 2000;
emulate ["IAccount Post"] iRetval = IAccount_ Post (
datapool value (TransferlVC, "lAccount"),
datapool_value (TransferlVC, "lAmount")),
pszLogPass, pszLogFail;

For more information about the emulate command and the think time
environment variable, see the VU Language Reference.

Datapool Commands in the Virtual User Script

Rational PerformanceArchitect uses the arguments from the COM calls in your
interaction diagram to fill in a DATAPOOL_CONFIG section in the generated
script. Like-named arguments with the same data value in the diagram are treated as
one datapool field in the DAT APOOL_CONFIG section. Like-named arguments
with different data values in the diagram are treated as separate fields in the
DATAPOOL_CONFIG section. These rules apply even if the arguments are used
in separate functions. To prevent like-named fields in the DATAPOOL_CONFIG
section, Rational PerformanceArchitect appends a suffix to the argument name —
for example AccountN o, AccountN o1, and so on.

In the following example, the AccountN umber parameter is assigned different
values in the transaction while Amount is a constant value. This results in two
datapool variables for AccountN umber and a single variable for Amount.

19

20

77 Sequence Diagram: Use Case View / VBExample [_ (O] x]

s Wirual User

| iWuSenvices I i _Mloveboney |

x

:Mrtual User
'

thinkitime : Integen | .
h

X

- i Services

: howvehboney

' - '
- '

PrimeAccount(1) —_—
A 1

Vo Use thiz Actor from the
| 1 £ RaxgnalTest package
HE— e L el WU runtime
H s d " -
' R %\Q?O U‘Th?) Operationi\ A common
' S ' use of this iSxg include
' ' W ' R
i Stateful P erf 50,2, ~BSTR™ H R R AR
. . etuie orn‘la(\ o ! 1 in wour model that
' LY ' tranzlated into zet 3 hd

| H[dm

DATAPOOL CONFIG "VBExample" OVERRIDE DP_ SEQUENTIAL DP_SHARED DP_NOWRAP

EXCLUDE,
EXCLUDE,
EXCLUDE,
EXCLUDE,

Defaults to Exclude

Data values shown in the COM
calls in the sequence diagram
become default values in the script.

I

"lAccount", "string", "1
"lAccountQ0", "string", "2
"lAmount", "string", "50&;
"1TranType", "string", "3';

Data types appear but are not used
by Rational PerformanceArchitect.

Column names come from the
parameters in the Operation
Soecification in Rose.

This first line of the DATAPOOL _CONFIG contains the datapool name and the flags
that define how the datapool is accessed when the script is played back in LoadTest.

Each subsequent line has four columns of information, separated by commas. These
lines serve as adatapool blueprint, giving Robot the information it needs to create the
datapool. During script playback, these lines also tell LoadTest where to look for

values to assign the variables in the script.

You will find datapool commands throughout a virtual user script. These commands
work in conjunction with the DATAPOOL_CONFIG section of the script to control
datapool creation and datapool access. D atapool commands typically found in virtual

user scripts include datapool open, datapool fetch,

datapool value, datapool rewind, datapool close, and

DATAPOOL CONFIG.

Digging Deeper

The following example shows several datapool commands and a
DATAPOOL CONFIG statement for a datapool named VBExample.

For more information about datapools, see the Using Rational LoadT est and VU
Language Reference manuals.

vu_CoInitialize(); /* Automatically generated - vu_CoInitialize() */
VBExample = datapool open ("VBExample") ;
datapool fetch (VBExample) ;

/* R R R RS R RS R EE R R R EEESEE]

*
/
/* Operations mapped in the sequence diagram */
/* R R R RS R RS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEESEE]
*
/
/* think () message from sequence diagram */
set Think_avg = 2500;
emulate ["MoveMoney PrimeAccount"] iRetval = MoveMoney PrimeAccount (
datapool value (VBExample, "lAccount")),
pszLogPass, pszLogFail;
emulate ["MoveMoney SecondAccount"] iRetval = MoveMoney SecondAccount (
datapool value (VBExample, "lAccountO")),
pszLogPass, pszLogFail;
emulate ["MoveMoney StatefulPerform"] iRetval = MoveMoney StatefulPerform(
datapool value (VBExample, "lAmount"),
datapool value (VBExample, "lTranType")),
pszLogPass, pszLogFail;
/* R R R RS R RS R R R R EEESS
*
/

vu_CoUninitialize(); /* Automatically generated - CoUninitialize() */
pop [Think avg, Think dist, Think def, Timeout_val, Timeout_scalel];

DATAPOOL_CONFIG "VBExample" OVERRIDE DP_SEQUENTIAL DP_SHARED DP_NOWRAP

EXCLUDE, "lAccount", "string", "1";
EXCLUDE, "lAccountO", "string", "2";
EXCLUDE, "lAmount", "string", "50";
EXCLUDE, "lTranType", "string", "3";

Using Real Data Values

When creating interaction diagrams, be sure to include real data values for the
arguments in your COM calls rather than the data type names that Rose defaults to
in the message signatures. If you fail to supply default data values in the message
signatures of your interaction diagrams, your scripts may fail on playback. The
interaction diagrams in the sample model provided with Rational
PerformanceArchitect provide default data values for your reference. (See Working
with the Sample M odel on page 8.)

21

NOTE: To display real data values, be sure to configure Rose to display message
signatures. To do this, click Tools > Options, click the Diagram tab, and be sure
that either Type Only, Name Only, or Name and Type is selected. However, if
you change this option, every argument in your diagram will be reset, and you
will need to reenter the argument values.

Controlling Object Creation Overhead

22

Two features of Rational PerformanceArchitect can be especially useful in modeling
architectures for certain types of systems, such as an order entry system. These
features are the Automatically include Colnitialize()/CoUninitialize() option and
the script object feature.

In an order entry system, each user generates numerous transactions. This type of
application often requires a different architectural approach than an ATM
application, in which many users execute a single transaction.

If you select the Automatically include Colnitialize()/CoUninitialize() option
(Tools > VU Scripting > Options) and generate a script, Rational
PerformanceArchitect inserts the vu_CoInitialize () and
vu_CoUninitialize () statements into your script. (These statements are also
inserted into the C+ + wrappers.) When you run multiple iterations of your script
in LoadTest, these statements reset the COM environment and cause any objects
created by the script to be recreated with each script iteration. To see how this object
creation overhead affects performance, you can compare scripts that include the
Colnitialize/CoU ninitialize pair with scripts that do not.

Rather than include the vu_CoInitialize () and vu_CoUninitialize ()
statements in your script, you can use the script object provided in the Rational Test
package to tell Rational PerformanceArchitect to create additional scripts — one to
initialize the COM environment and another to uninitialize the COM environment.
You can include all three scripts in a single diagram in Rose. Using this technique,
you can set up the diagram as follows:

» ACoInitialize () script that initializes the COM environment.

» Another script that executes the transaction. If you deselect the Automatically
include Colnitialize()/CoUninitialize() option, this script will not contain the
vu_CoInitialize () and vu_CoUninitialize () statements, thereby
eliminating the overhead of having to recreate the COM object with each
1teration.

» AcCoUninitialize () script that uninitializes the COM environment.

Digging Deeper

To see how this can be implemented in a Rose diagram:

1. Double-click MultipleScripts in the Rose browser for the sample model.

[SamplevB

E1-{C3 Use Caze Yiew

R Main

YEEwample

MultipleS cripts

+ C} Tutorial - Starting from Scratch
—> Aszociations

[D Loglcal Wi

I:I--D Component Yiew

Deployment Yiew

- [#@ Model Properties

Double-click to open the
MultipleScripts diagram.

2. View the sequence diagram that is displayed. N ote that the diagram includes
three script objects and that there is a N ew() message before each COM call.

New() message starts
a new script.

New script objects

i1 Sequence Diagram: Use Case Yiew / MultipleScripts -
s Virtual User | : _MoveMoney | s VuSemnices | initialize : Serpt | transfer | Seript | unintialize : |
| =
A= 2 2R R
_ rtudl User : , : : A
: : new) Wiérvices nfislize’: Seript tramsfer: Soript unintalize : Seript i
: : ‘ j : : Initialize
: vu_Colnitialize() ' ! ' H
: : newt) .
: thinkia000) f 3 : : —
e ; ; 1 e e Post
: PrimeAceaunt) : ; ; : : transaction
_ | | H H
E SecondAccount(2) E 3 3 E E
—_— | | H H
| StatefulPerform(1D, 3, Resul) ! -
—_— : : i i
: E nee) | : : S
; ; : : ; ; Uninitialize
! wu_CoUninitializet) : : H H
o | o[

23

24

To create a scenario such as this in your own diagrams:

1. In Rose, click Tools > VU Scripting > Options and deselect Automatically
include Colnitialize() and CoUninitialize().

2. Add the Rational Test package to your script. (See Adding the RationalTest Package
to Your M odels on page 18.)

3. Add a script object for each script that you want to create.

For example, in the MultipleScripts diagram, there is one script object for
transfer, one for initialize, and one for uninitialize.

4. Add aNew () message before each COM call that you plan to add.

New () tells Rational PerformanceArchitect to start a new script. Each script
becomes the receiving object of the New () message.

5. After each New () message, add a message for each COM call.

In the sample, these messages are vu_Coinitialize (),
PrimeAccount (), SecondAccount () ,StatePerform()) and
vu_CoUninitialize ().

Sample LoadTest Schedule

This section shows how your use of the Automatically include Colnitialize()/
CoUninitialize() option and the script object can affect a schedule in LoadTest.

In the following sample LoadTest schedule, there are three U ser Groups — U ser
Groupl, User Group2, and U serGroup3 — and four scripts — VBExample,
Transfer, Initialize, and U ninitialize.

User Group1 runs the

VBExample script 10 times. — ot S—
COM objects are opened and ched® ven EPENENE | my User Groups
closed with each iteration. N8B User Groups
-gv-;j Usger Groupl: 3 uger(z] a Computers

User Group2 runsthe Initialize : WBEwample: 10 timel B
script once, the Transfer script o

. P 02 User Group2: 10 g
10 times, and the Uninitialize g User Group: 10 users] ™ UserSettings
script once. COM objects are initialize: 1 time{s)
opened and closed once. transfer: 10 time(s] o Runtine
User Group3 runs the : uninitialize: 1 time(s)
VBExample script 10 times. IE‘ -gv%j Uszer Group3: 5 uzer(s) Eh Temination
The SCprt' fails becaguse the . tramsfer: 10 timefs]
COM environment is not :
initialized. | - M Scenanios %¢# Shared Wariables

Digging Deeper

The following table describes the four scripts:

Script Description

VBExample Includes Colnitialize and CoU ninitialize COM calls. Can be
generated with the Automatically include Colnitialize()/
CoUninitialize() option turned on.

Transfer Does not includes Colnitialize and CoU ninitialize COM calls.
Can be generated with the Automatically include
Colnitialize()/CoUninitialize() option turned off and with a
script object in the Rose diagram.

Initialize Initializes COM environment. Can be generated with the
Automatically include Colnitialize()/CoUninitialize() option
turned off and with a script object in the Rose diagram.

U ninitialize Uninitializes COM environment. Can be generated with the
Automatically include Colnitialize()/CoUninitialize() option
turned off and with a script object in the Rose diagram.

In this sample, it is expected that U ser Group2 will outperform U ser Groupl
because of reduced object creation overhead. In addition, the Transfer script will fail
to run in U ser Group3 because of the missing Colnitialize and CoU ninitialize calls.

Modeling COM Obijects with Rose

COM support is provided in Rational PerformanceArchitect when you import type
libraries with the type library import tool in Rose 2000.

The type library import tool defines all the appropriate interfaces, coclasses, and
classes and the relationships among them. The structure for each COM object
created in the model by the imported type library is the same as the structure created
with the ATL (ActiveX Type Library) object creation wizard in Rose 2000.

Comparing COM Components in Visual Basis and C+ +

When you program in Visual Basic, VB masks the complexity of dealing with
interfaces and coclasses. You use the class name both to instantiate objects and to call
methods on those objects. VB creates a hidden interface, using your class name
preceded by a leading underscore character.

In Visual C+ + , you typically model interfaces as separate classes and connect them
to their coclasses using the UML realizes relationship. In Visual C+ + , interface
names often begin with aleading | and class names often begin with a leading C.

25

26

Class Diagram Structure for COM Objects

The following figure shows the structure created when you use the ATL object
creation wizard in Rose 2000. (You can access this wizard in Rose by clicking
Tools> Visual C+ + > COM > New ATL Object.) N ote that you must implement
operations as members of the IN ewClass interface.

«atichject== <<Implements= <<coclass>> zzfefault==
Chiew Class | — — — — s MGG T O

{rom CoClasses)

INew Class

The following figure shows a class diagram for an ATL object imported from a type
library for a COM object built using Visual C+ + :

CComCollass < C ko hd ZCLSID_Chlovehd ‘ ‘ CComDuallmplsibdowe el D_I o b ZLIBID _CFPBANK:

<< atlobject==
C hidone hdon ey

2lmplements ==

hrs

<=coclassr>
CMoveMoney

[fram CPPE der 1.0[Sample Ban

<default==

Mifoneforey

(from CPPEAN K Wer 1.0(Sample Bank Account(WC wersion)i

Digging Deeper

The following figure shows a class diagram for an ATL object imported from a type
library for a COM object built using Visual Basic.

Account G etRec eipt UpdateR eceipt

==l fault== ==rlefauts= ==defaut== ==default==

O

_,ﬂccouh £ ReCel
. 1
These are the interfaces to use in your interaction
diagram s for purposes of mnning R stiorsl
P erfonm ancedrchitect to generste scripts.
FDispatch

The dif ference between a “isual basic com ponent
and other component s is the use of "hidden”
interfaces. These are typically identified with a
leading underscore character.

Requirements for COM Objects
Requirements for COM objects in Rational PerformanceArchitect are as follows:

» Rational PerformanceArchitect requires a realize relationship from the coclass
to the interface.

» Rational PerformanceArchitect requires that the interface and coclass be realized
by acomponent (in this case Account) in the Component View, as shown in the
previous figure. N ote that the design of the application will require other classes
to be realized by the component.

Qualifying Messages for Inclusion in a Script

Rational PerformanceArchitect qualifies a message for inclusion in the script as
follows:

» The message must be associated with an operation.

» The message must contain a uuid property, which you can find on the COM tab
in the specification for the parent class of the message’s receiver object.

27

To verify whether a message qualifies:

1. Right-click the message’s receiver object.

2. Click Open Specification.

3. Click Browse and select Browse Class.

A sample class specification appears as follows:

l:lass Specification for _MoveMoney

General I Detail I Operations I Altributes |
Relations I Compohents I Mested I Files COM
Set [ECETTMMNG—G—] coico. |
todel Properties
* | Mame | Walue | Source |
Generate True Default
kind interface Overide
Lid ZFD1BF2B-EBT3-11D Owenide
wersion 1.0 Owerride
helpstring Diafault
helpcontest Ow00000000 Oweride
attributes dual, nonextensible, o Owenide
dliname Crefault
aliaz Drefault
[weride | Default | Bevert |

oK I Cancel I

Apply | ﬁrowsevl Help |

For a class to qualify as a COM object
and be included in a script, the kind
property must have a value of
interface and the uuid property
cannot be blank. If you import the type
library using Rose, then these
properties will be set properly.

What Happens When Multiple Classes Realize an Interface

In amodel, it is possible to have more than one class of the same name realizing the
same interface. When you generate the script, Rational PerformanceArchitect
displays a dialog box that prompts you to specify which class you want to use.

In this model, the first
CAccount class is part of
a package called
ACCOUNT, and the
second CAccount classis
part of a package called
AccountLib. Both classes
realize the IAccount
interface.

28

Select Class for Interface: lAccount

“rour model indicates that each class listed below “realizes” the interface named
above. Select the clazz pou want to use for this ransaction.

[unt [ACCOUNT]
CAccount [AccountLib]

Digging Deeper

How Rational PerformanceArchitect Maps VB Data Types

In the VU language, all data is typed as strings and is passed into the C+ + wrapper
as a TCHAR* data type. Inside the wrapper, these parameters are transformed from a
TCHAR* data type into local variables before they are passed into the COM object.

When mapping the Visual Basic data types to Visual C+ + data types, Rational
PerformanceArchitect checks the Type property of the Parameter object. It also
inspects the list of properties for each Parameter object to determine whether the
Parameter object is passed by value or passed by reference. Specifically, the VC+ +
type is used for data manipulation inside the wrapper and is passed to the target
object by value or by reference according to the dictates of the model.

The following table lists the Visual Basic data types and the corresponding Visual
C+ + data types used in the wrappers.

When reading the table, you can extrapolate the example to the general case. For
example, in the case of Boolean, the variable name Parm_ bool is the parameter
name from the model. The name wrParm_ bool is the wrapper variable used to
pass the transformed data from Parm_bool to the object. This pattern is used in all
of the examples. N ote that two types, Currency and String, use a two-step
transformation process.

VB Type VC+ + Type Example Wrapper Code
Boolean VARIANT_BOOL VARIANT_BOOL wrParm_bool =
(VARIANT_BOOL)Parm_bool;
Byte UCHAR UCHAR wrParm_byte = (UCHAR)Parm_byte;
Currency CURRENCY CURRENCY wrParm_curr;
wrParm_curr.int64 = _atoi64(Parm_curr);
Date DATE DATE wrParm_date = atof(Parm_date);
Double DOUBLE DOUBLE wrParm_double = atof(Parm_double);
Integer SHORT SHORT wrParm_int = (SHORT)Parm_int;
Long LONG LONG wrParm_long = atol(Parm_long);
Object LPDISPATCH LPDISPATCH wrParm_obj = (LPDISPATCH)Parm_obj;
Single FLOAT FLOAT wrParm_single = (FLO AT)atof(Parm_single);
String BSTR BSTR BSTRResult;
Variant VARIANT VARIANT wrParm_byval = _variant_t(Parm_byval);

29

Sample VU Script

#include <VU.h>

external C string strResult; /*for string results*/
external C int intResult; /*for non-string results*/
external C string pszLogPass; /*log message for success*/
external C string pszLogFail; /*log message for fail*/
external C int func vu ColInitialize() {} /*initialize COM*/
external C int func vu CoUninitialize() {} /*unitialize COM*/

external_ C int func MoveMoney PrimeAccount (1Account)
string lAccount, ;

{}

external C int func MoveMoney SecondAccount (1Account)
string lAccount, ;

external C int func MoveMoney StatefulPerform(lAmount, 1TranType)
string lAmount, 1TranType, ;

{}

/* Main */

int iRetval = 0;

/* LR RS RS R R E R SR EEEEE SR SRS EE SR SRR ER SRR EEEEREEREEEREEEEEEEEEREEEEEESE SRS */

/* The following code is common initialization code for all scripts */

/* LR R R SRR R R SR SRR R R R SRS R R SRR */

push Timeout scale = 200; /* Set timeouts To 200% of maximum response Time *
push [Think avg = 0, Think dist = "NEGEXP", Think def = "LS"];

push Timeout val = 120000;/* Set minimum Timeout val to 2 minutes *
/* LR RS R SRR EEEREEEEEE SR SRS EE SR SRR EREEEREEEEEREEREEEEEEEEEEEEREEEEEEEE RS */

vu_CoInitialize(); /* Automatically generated - vu_CoInitialize() */
VBExample = datapool_open ("VBExample") ;
datapool fetch(VBExample) ;

/* R R RS S S S S SRR S SRR RS RS R R RS EEEEEE R RS E E R R R R R R RE R R R R EEEEEEEE R */

/* Operations mapped in the sequence diagram */
/* LR R RS S S S S SRR SRR R RS RS E R EE R E R E R R R R R R R R E R R R R R EEEEEEE R */
/* think () message from sequence diagram */
set Think_avg = 2500;
emulate ["MoveMoney PrimeAccount"] iRetval = MoveMoney PrimeAccount (
datapool value (VBExample, "lAccount")),
pszLogPass, pszLogFail;
emulate ["MoveMoney SecondAccount"] iRetval = MoveMoney SecondAccount (
datapool value (VBExample, "lAccountO")),
pszLogPass, pszLogFail;
emulate ["MoveMoney StatefulPerform"] iRetval = MoveMoney StatefulPerform(
datapool value (VBExample, "lAmount"),
datapool_value (VBExample, "lTranType")),
pszLogPass, pszLogFail;

/* EE R R R SRR SRR R R EE] */

vu_CoUninitialize(); /* Automatically generated - CoUninitialize() */
pop [Think avg, Think dist, Think def, Timeout val, Timeout_ scalel;

DATAPOOL_CONFIG "VBExample" OVERRIDE DP_SEQUENTIAL DP_SHARED DP_NOWRAP

30

EXCLUDE, "lAccount", "string", "1";
EXCLUDE, "lAccountO", "string", "2";
EXCLUDE, "lAmount", "string", "50";
EXCLUDE, "lTranType", "string", "3";

Digging Deeper

Sample C+ + Wrapper Generated for the VBExample Script

#include <stdio.h>
#include <stdlib.h>
#include <string.hs>
#include <comdef.h>
#include <tchar.hs>

#ifndef WIN32 DCOM

#define _WIN32_ DCOM

#endif

#define DLLEXPORT _ declspec (dllexport)

#import "D:\Program Files\Rational\Rose 2000\RPA\Sample.vb\RpaDemoVB.dll"
using namespace RpaDemoVB;

TCHAR sDatl1[256]; /*buffer for strResult*/

TCHAR sDat2[256]; /*buffer for pszLogPass*/

TCHAR sDat3([256]; /*buffer for pszLogFail¥*/
extern "C" {

DLLEXPORT int intResult;
DLLEXPORT TCHAR* gtrResult = sDatl;
DLLEXPORT int* addr_intResult (void) {return &intResult;

DLLEXPORT TCHAR** addr_strResult (void) {return &strResult;
DLLEXPORT TCHAR* pszLogPass = sDat2;

DLLEXPORT TCHAR* pszLogFail = sDat3;

DLLEXPORT TCHAR** addr pszLogPass(void) {return &pszLogPass;}
DLLEXPORT TCHAR** addr pszLogFail (void) {return &pszLogFail;}

DLLEXPORT _MoveMoney* p_MoveMoney = NULL;
DLLEXPORT LONG* addr_ p MoveMoney (void) {return (LONG*)&p MoveMoney; }

DLLEXPORT int MoveMoney PrimeAccount (TCHAR* lAccount)

LONG rc = 1;
_tcscpy (pszLogPass, "Pass: ");
_tcscpy (pszLogFail, "Fail: ");

HRESULT HRESULTResult;
//Declare and initialize variables for parameters
//to be passed.

LONG wrlAccount = atol (lAccount) ;

MoveMoneyPtr p MoveMoneyPtr = NULL;
try

Use an existing interface reference if available.
To create the object on every iteration, model the
vu_CoInitialize and vu_CoUninitialize operations in
your sequence diagram.

NN
Hh NN

(p_MoveMoney == NULL) ({
p_MoveMoneyPtr = _MoveMoneyPtr (_ uuidof (MoveMoney)) ;

-

Save raw interface ptr in process global memory.
Increment the reference count so the smart pointer
does not clean up when we lose scope returning control
to the script. The vu CoUninitialize() function
releases this reference.

NN
NN

p_MoveMoney = p_ MoveMoneyPtr.GetInterfacePtr() ;
p_MoveMoney->AddRef () ;

31

else {
p_MoveMoneyPtr = MoveMoneyPtr (p MoveMoney) ;

//Call the COM interface using a smart pointer.

//But, if the object platform is Visual basic then

//use the raw interface pointer.

HRESULT hr = p MoveMoney->put PrimeAccount (wrlAccount, &8HRESULTResult) ;

if (FAILED (hr))
_com_raise error (hr);

}

catch (_com error e) {

rc = 0; // Return 0 to VU to signal a failure.

_tcscat (pszLogFail, (TCHAR*)e.ErrorMessage()); //com_error message to VU log
catch (...) {

rc = 0;

__tcscat (pszLogFail, "Failure not COM-related.");

}

return rc;

}

DLLEXPORT int MoveMoney_ SecondAccount (TCHAR* lAccount)

LONG rc = 1;
_tcscpy (pszLogPass, "Pass: ");
_tcscpy (pszLogFail, "Fail: ");

HRESULT HRESULTResult;
//Declare and initialize variables for parameters
//to be passed.

LONG wrlAccount = atol (lAccount) ;

_MoveMoneyPtr p_MoveMoneyPtr = NULL;
try

Use an existing interface reference if available.
To create the object on every iteration, model the
vu_CoInitialize and vu_CoUninitialize operations in
your sequence diagram.

SN
Hh NN

-

(p_MoveMoney == NULL) {
p_MoveMoneyPtr = _MoveMoneyPtr (__uuidof (MoveMoney)) ;

Save raw interface ptr in process global memory.
Increment the reference count so the smart pointer
does not clean up when we lose scope returning control
to the script. The vu_ CoUninitialize() function
releases this reference.

NN
NN

p_MoveMoney = p_ MoveMoneyPtr.GetInterfacePtr() ;
p_MoveMoney->AddRef () ;

else {

p_MoveMoneyPtr = _MoveMoneyPtr (p_MoveMoney) ;

//Call the COM interface using a smart pointer.

//But, if the object platform is Visual basic then

//use the raw interface pointer.

HRESULT hr = p_ MoveMoney->put_SecondAccount (wrlAccount, &HRESULTResult) ;

if (FAILED (hr))

32

Digging Deeper

_com_raise_error (hr) ;

}

catch (com error e)

rc = 0; // Return 0 to VU to signal a failure.

_tcscat (pszLogFail, (TCHAR*)e.ErrorMessage()); //com_error message to VU log
catch (...) {

rc = 0;

_tcscat (pszLogFail, "Failure not COM-related.");

}

return rc;

}

DLLEXPORT int MoveMoney StatefulPerform(TCHAR* lAmount, TCHAR* 1TranType)

LONG rc = 1;
_tcscpy (pszLogPass, "Pass: ");
_tcscpy (pszLogFail, "Fail: ");

BSTR* BSTRResult;
//Declare and initialize variables for parameters
//to be passed.

LONG wrlAmount = atol (l1Amount) ;

LONG wrlTranType = atol (1lTranType) ;

_MoveMoneyPtr p_MoveMoneyPtr = NULL;
try

Use an existing interface reference if available.
To create the object on every iteration, model the
vu_CoInitialize and vu_CoUninitialize operations in
your sequence diagram.

SN
SN

if (p_MoveMoney == NULL)
p_MoveMoneyPtr = _MoveMoneyPtr (__uuidof (MoveMoney)) ;

Save raw interface ptr in process global memory.
Increment the reference count so the smart pointer
does not clean up when we lose scope returning control
to the script. The vu_CoUninitialize() function
releases this reference.

SN
SN

p_MoveMoney = p_MoveMoneyPtr.GetInterfacePtr () ;
p_MoveMoney->AddRef () ;

else {
p_MoveMoneyPtr = _MoveMoneyPtr (p_MoveMoney) ;

//Call the COM interface using a smart pointer.

//But, if the object platform is Visual basic then

//use the raw interface pointer.

HRESULT hr = p MoveMoney->StatefulPerform(wrlAmount,wrlTranType, &BSTRResult) ;

if (FAILED (hr))
_com_raise_error (hr) ;

tcscat (pszLogPass, (TCHAR*) bstr t (BSTRResult)) ;
_tcscpy(strResult, (TCHAR*) bstr t (BSTRResult)) ;

catch (_com error e)

rc = 0; // Return 0 to VU to signal a failure.
_tcscat (pszLogFail, (TCHAR*)e.ErrorMessage()); //com error message to VU log

33

catch (...) {
rc = 0;
_tcscat (pszLogFail, "Failure not COM-related.");

}

return rc;

DLLEXPORT int wvu_CoInitialize()

::CoInitialize (NULL) ;
return 1;

DLLEXPORT int vu_CoUninitialize ()

//Release the raw interface pointer and set it to 0
if (p_MoveMoney) ({
try {

p_MoveMoney->Release () ;
p_MoveMoney = 0;

}

catch (...)
//Catch everything so we do not crash.

//Release the raw interface pointer and set it to 0
if (p_MoveMoney)
try

p_MoveMoney->Release () ;
p_MoveMoney = 0;

}

catch (...) {
//Catch everything so we do not crash.

//Release the raw interface pointer and set it to 0
if (p_MoveMoney) {
try {

p_MoveMoney->Release() ;
p_MoveMoney = 0;

}

catch (...) {
//Catch everything so we do not crash.

::CoUninitialize() ;
return 1;

34

Troubleshooting

Troubleshooting

This section provides troubleshooting techniques you can use when running

Rational PerformanceArchitect.

If

Then

Wrappers fail to build and you see a
message such as Program is not an
executable file.

See Wrappers Fail to Build on page 35.

Wrappers fail to build and the build results
are not displayed

See Configuring N otepad to Always D isplay Build
Errors on page 36.

ACOM not initialized error
appears when you run a LoadTest
schedule.

You failed to call vu_Colnitialize and
vu_CoU ninitialize in your script. To correct
this error, select the Automatically include
Colnitialize and CoUninitialize option in the
Rational PerformanceArchitect O ptions
dialog box and regenerate the script; or,
model the call in your diagram and regenerate
the script. For more information, see
Controlling O bject Creation O verhead on page 22.

Script fails to open in Robot after script
has been generated, even with the Launch
Robot option selected.

Wrappers Fail to Build

Be sure to exit out of Robot before generating
a script.

Wrapper compilation may fail for a variety of reasons related to the data types of
parameters. For example, you may have uncovered a data type conversion that
Rational PerformanceArchitect does not handle properly, or you may have exposed
an issue in your model.

In addition, it is possible that N otepad may fail to initialize and display the results of
a wrapper build when build errors occur.

Problems with Visual Basic Applications

For Visual Basic components, you must verify that you have properly modeled the
ByVal and ByRef properties using ByVal in the parameter name or using the
Model Assistant. For information about the Model Assistant, see the Using Rose
Visual Basicmanual.

35

36

In addition, this version of Rational PerformanceArchitect generates interface
wrappers that use early binding. Visual Basic applications may use late binding
depending on the data types for functions and parameters that are being used.

Missing Libraries

Wrappers may also fail to build because of various undefined COM operations.
Rational PerformanceArchitect generates code for #import statements in the
VC+ + interface wrapper code. One #import statement is generated for each
COM object included in a given diagram. In some cases, your transaction may
depend on type libraries that are not directly referenced in your sequence diagram.
In this case, you need to determine which library is missing and add a #import
statement for it manually.

Exceeding the Maximum Wrapper Size
Wrappers will fail to build if the source file for the wrapper is larger than 64k bytes.

Program is Not an Executable File Message

If the wrappers fail to build and you see a message such as Program is not an
executable file:

1. Verify that you have the C+ + compiler installed on your computer.

2. Click Automatically build COM interface wrappers in the Rational
PerformanceArchitect O ptions dialog box.

Regenerate the script.

If step 3 fails, run the Vsvars32 batch file, located in the Visual C+ + bin
directory.

5. Then, run the rpa.bat file. (See G enerating the S cript and Wrappers in Rose on page
13.)

Configuring Notepad to Always Display Build Errors

On Windows NT computers, Rational Suite PerformanceStudio may prevent
Windows from locating the N otepad executable and cause Windows to fail to display
the results of a wrapper build when build errors occur.

To ensure that N otepad will display build errors:

1. Click Start > Settings > Control Panel > System and click the Environment
tab.

Troubleshooting

System Properties EE
Startup/S hutdown I Hardweare Profiles | User Profiles |
General I Performance Enviranment
Spstem Variables:

Wariable | Walue |;|

as windows MT

Oz2LibPath CAWANNT Sapstern 3oz 2hdl:

Select the PATH Path CANUTCEROOT Yhint C:AMUTCROOT \hints. .

System Variable.

PROCESSOR_AR...
PROCESSOR IDE...

User Y ariables for esol

«06
%36 Family B Model 3 Stepping 4, Genuinelntel LI

OMmor;

‘Wariable | Walue | -
CLASSPATH C:hjdk1.7.5:e M ewing-1.1 vewingall jarc:sprogr...
Sy HOME Cihidk1.1.5

PATH ALCANUTCROOT birt,C:\WUTCROOT bir... |
SWING_HOME D:hawing-1.0.3

TEMP CATEMP d
Wariable: IF'ath

Click insidethe —————— Walue: |C:ANUTCROOT birC:\NUTEROOT Sin've] 15:.C:\WUTCROD

Value box.

St LDelete |

Cancel | Appli |

ok |

Select the PATH System Variable.

3. Click inside the Value box at the bottom of the dialog (without making any
changes).

4, Click Set and click OK.

5. Regenerate the script and wrappers by running the rpa.bat command file
associated with the wrapper or by clicking Tools > VU Scripting > Generate
Script in Rose.

Be sure that the Automatic build COM Interface Wrappers option is selected
when you generate the script.

Asynchronous Environments

Rational PerformanceArchitect generates scripts for testing the performance of
COM/DCOM applications in a synchronous client/server environment. Visual
Basic client applications that respond to asynchronous server-initiated requests
(callbacks) using VB events are not supported by Rational PerformanceArchitect.

37

Runtime Registry Settings

Rational PerformanceArchitect maintains several runtime registry settings in
HKEY CURRENT_U SER\Software\BasicScript Program Settings\Rational
PerformanceArchitect. The following table describes the keys and their legal values:

Key Value
AutoBuild TRUE. Build wrappers when generating
script.

FALSE. Do not build wrappers.

CompilerLocation Fully-qualified location and name of
vevars32.bat.

InitializeCOM TRUE. Include vu_Colnitialize() and
vu_CoU ninitialize calls.

FALSE. Donotinclude these calls. U ser must
model them explicitly.

LaunchRobot TRUE. Launch Robot when script generation
completes.

FALSE. Do not launch Robot.

TypelibHistory Collection of key values for the list of
previously used type libraries.

UseDefaultSettings TRUE. Set all options to their default values
the next time VU Scripting is called.

FALSE. Use the settings as specified by the
user.

Note: This is a system setting used during
product installation.

UseDiagramList TRUE. Display alist of diagrams in the model.

FALSE. Use the current diagram.

38

> > > Index

A

ActiveX Type Library. See also ATL
ATL object creation wizard 25, 26

binding, early vs. late 36

C

Class Specification dialog box 7
coclasses with Visual Basic 25
Colnitialize/U ninitialize runtime functions 14
collaboration diagrams 5
COM objects
interfaces imported from Visual Basic 8
requirements for 27

component diagrams 8

D

data types, mapping VB to VC+ + 29

datapools
DATAPOOL_CONFIG section of script 19
definition 8

support for in RationalTest package 5

E

early binding 36

emulate command 7, 18

F

fat client 1

FileN ame property, in Component Specification 7

INFO SERVER command 5
installation instructions 4
interaction diagrams 1, 5
interfaces
COM 8
leading underscore character in name 25

realize relationship from coclass 27

K

kind property 28

L

late binding 36
LoadTest 3

M

MultipleScripts sequence diagram 23

N

N otepad, configuring to display build errors 36

Index-1

Using Rational PerformanceArchitect

(o)

OLE objects. See also stdole
operation signatures, in Rose 22

options, VU Scripting 13

P

performance tests, running 16

R

Rational Test package 3, 18

realize relationship 27

receiver objects 6

registry settings 38

repository 15

requirements, PerformanceArchitect 3, 4

round-trip engineering 8, 11

S

schedules, in Rational LoadTest 24
scripts

generating 13

support for generating multiple 5
sequence diagrams 5
set Think_Avg command 18
StatefulPerform message 12
stdole 8, 11

T

thin client 1
think time 18

Timer actor 5

U

underscore characters, in COM interfaces 8

Index-2

user groups, in Rational LoadTest 24
uuid property 27, 28

\'}

virtual user actor 5, 11

virtual user scripts, definition 1
VU actor 5

VU Scripting options 13

Vu_Colnitialize and Vu_CoU ninitialize statements
14, 22

VuServices actor 5, 11

W

wrappers
FileN ame property in 7
generating 13

troubleshooting 35

	Contents
	Road Map
	Before You Begin
	Who Should Read This Guide
	What You Need to Get Started

	Installing Rational PerformanceArchitect
	Before You Install
	Running the Installation

	Basic Concepts
	Modeling Rational PerformanceStudio Features Using Rose
	Generating Scripts and Wrapper Code from Rose Models
	Running LoadTest Schedules
	Understanding Datapools

	Working with the Sample Model
	Understanding the Component View
	Understanding the Use Case View
	Understanding the Logical View
	Testing the Sample Model

	Working with the Starting from Scratch Tutorial
	Digging Deeper
	Adding the RationalTest Package to Your Models
	Converting Model Elements to a Virtual User Script
	Datapool Commands in the Virtual User Script
	Controlling Object Creation Overhead
	Modeling COM Objects with Rose
	How Rational PerformanceArchitect Maps VB Data Types
	Sample VU Script
	Sample C++ Wrapper Generated for the VBExample Script

	Troubleshooting
	Wrappers Fail to Build
	Asynchronous Environments

	Runtime Registry Settings

	Index

