
Using
Rational Robot
Version 2000.02.10

ii

U sing Rational Robot

Copyright  1998-2000 Rational Software Corporation. All rights reserved. The contents of this
manual and the associated software are the property of Rational Software Corporation and are
copyrighted. Any reproduction in whole or in part is strictly prohibited. For additional copies of this
manual or software, please contact Rational Software Corporation.

Rational, the Rational logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and O bject Testing are trademarks or registered trademarks of Rational
Software Corporation in the U nited States and in other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U nited States and other
countries. All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

U .S. GO VERMEN T RIGH TS. U se, duplication, or disclosure by the U .S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR
52.227-19, or FAR 52.227-14, as applicable.

Revised 04/2000

This manual prepared by:
Rational Software Corporation
20 Maguire Road
Lexington, MA 02421
U .S.A.

Phone:
800-433-5444
408-863-4000

E-mail: support@rational.com
Web: http://www.rational.com

P/N 800-023366-000

ã ã ã Contents

Preface
Resources. .xxi

U sing H elp . xxii

Contacting Rational Technical Publications xxii

Contacting Rational Technical Support xxiii

Part I Introducing Rational Robot

1 Introduction to Rational Robot
What Is Rational Robot?. 1-1

Managing the Rational Repository with the Administrator . . . 1-2

Planning and Managing Tests in TestManager 1-3

Developing Tests in Robot . 1-5

Creating Datapools . 1-7

Analyzing Results in the LogViewer and Comparators 1-8

Managing Intranet and Web Sites with SiteCheck and Robot 1-10

U sing Robot with O ther Rational Products 1-12

Testing Applications with Rational TestFactory 1-12

Managing Defects with Rational ClearQuest 1-12

Collecting Diagnostic Information During Playback 1-13

Performance Testing with Rational Suite PerformanceStudio1-13

Managing Requirements with Rational RequisitePro. 1-14

Sharing Data with O ther Rational Products 1-14

Starting Robot and Its Components . 1-15

Logging in . 1-15

Changing to Another Project . 1-16

Opening Other Rational Products and Components 1-16

Tasks You Can Perform with Robot and Its Components 1-17
ii i

Contents
Part II Planning Tests

2 Planning Your Tests
Working with Test Plans and O ther Test Documents2-1

Creating Test Document References .2-2

Editing Test Document References .2-2

Viewing Test Documents .2-3

Defining Test Requirements. .2-3

Working with Projects .2-4

Building the Requirements H ierarchy .2-5

Planning Scripts .2-10

About Scripts. .2-10

Assigning a N ame and O ther Properties.2-11

Attaching Scripts to Test Requirements2-13

Referencing Specification Files .2-15

Customizing Script Properties. .2-16

Displaying Script Statistics .2-16

Referencing Include Files and External C Libraries.2-16

Controlling Whether Robot Starts After Planning a Script . . .2-17

Deleting Scripts .2-18

Importing Scripts from Other Projects.2-18

Planning LoadTest Schedules .2-19

Attaching Schedules to Test Requirements 2-19

Referencing Specification Files .2-20

Customizing Schedule Properties .2-21

Displaying Schedule Statistics .2-21

Deleting Schedules. .2-21

Managing Requirements .2-21

Editing Requirement Properties .2-21

Deleting Requirements .2-22

Customizing Scripts and LoadTest Schedules.2-22

Customizing the Environment List. .2-22

Customizing the Purpose List .2-23

Defining Custom Field Labels and Values2-23
iv

Contents
3 M anaging Builds, Log Folders, and Logs
Overview . 3-1

U sing Builds in Functional Testing . 3-2

Generating Log Files. 3-2

Organizing Log Folders . 3-3

N aming Log Folders for LoadTest U sers 3-3

Displaying Builds in the Asset Browser . 3-4

Creating a N ew Build . 3-5

Copying, Renaming, and Deleting Builds . 3-6

Renaming and Deleting Logs and Log Folders 3-8

Displaying Log Properties . 3-9

Viewing Logs . 3-9

Working with Build States. 3-9

Part III Developing Tests

4 Recording GU I Scripts
The Recording Process . 4-1

The Recording Workflow . 4-2

Before You Begin Recording. 4-3

Establishing Predictable Start and End States for Scripts 4-3

Setting U p Your Test Environment . 4-3

Creating Modular Scripts . 4-3

Planning Scripts in TestManager . 4-4

Enabling IDE Applications for Testing. 4-5

Setting GU I Recording Options . 4-6

N aming Scripts Automatically . 4-7

Controlling H ow Robot Responds to U nknown O bjects 4-8

Selecting an Object Order Preference 4-10

U sing Advanced Features Before Recording 4-11

Customizing the Object Recognition Method O rder 4-12

Mapping O bject Types and Classes Before Recording 4-14
v

Contents
Recording a N ew GU I Script .4-16

Restoring the Robot Main Window During Recording.4-19

U sing the GU I Record and GU I Insert Toolbars4-20

Pausing and Resuming the Recording of a Script 4-20

Defining U nknown Objects During Recording 4-21

Switching to Low-Level Recording. .4-22

Ending the Recording of a GU I Script4-23

Defining Script Properties. .4-24

Coding a GU I Script Manually .4-24

Testing Your Recorded Script .4-25

Playing Back the Script. .4-25

Editing and Compiling the Script .4-25

Debugging the Script .4-26

Creating Shell Scripts to Play Back Scripts in Sequence4-26

Creating a Shell Script .4-26

Playing Back a Shell Script .4-27

5 Adding Features to GU I Scripts
Starting an Application .5-1

Inserting a Call to Another Script .5-3

Inserting Verification Points .5-4

Inserting Timers .5-6

U ses for Timers .5-6

Inserting a Timer .5-7

Playing Back a Script that Includes Timers 5-8

Inserting Comments .5-8

Inserting Log Messages .5-9

Inserting Delay Values. .5-10

U sing the Insert Menu .5-11

Customizing SQABasic Scripts .5-11

Library Source Files .5-12

SQ ABasic H eader Files .5-14

H eader and Library Source File Examples5-15

The Template File .5-16
vi

Contents
6 Creating Verification Points in GU I Scripts
About Verification Points . 6-1

Verification Points and Data Files . 6-1

Verification Points and Scripts . 6-2

Types of Verification Points . 6-3

Before You Create a Verification Point. 6-6

Tasks Associated with Creating a Verification Point 6-6

Starting to Create a Verification Point . 6-7

Setting a Wait State for a Verification Point 6-8

Setting the Expected Result for a Verification Point. 6-9

Selecting and Identifying the O bject to Test. 6-10

Selecting a Verification Method . 6-14

Selecting an Identification Method . 6-15

Working with the Data in Data Grids . 6-19

Selecting the Data to Test in a Data Grid 6-19

Testing Column Titles or Top Menus in a Data Grid 6-20

Editing Captured Data in a Data Grid 6-21

Changing a Column Width in a Data Grid 6-22

Transposing Columns and Rows in a Data Grid 6-23

Editing a Verification Point . 6-23

Viewing a Baseline File . 6-24

Renaming a Verification Point . 6-25

Copying a Verification Point . 6-25

Deleting a Verification Point . 6-26

7 Editing, Compiling, and D ebugging Scripts
Editing the Text of a Script . 7-1

Adding a U ser Action to an Existing GU I Script 7-2

Adding a Feature to an Existing GU I Script 7-2

Working with Low-Level Scripts . 7-3

Viewing Low-Level Scripts. 7-4

Renaming a Low-Level Script . 7-4

Copying a Low-Level Script. 7-5

Deleting a Low-Level Script. 7-6

Saving Scripts and SQABasic Files . 7-7
vii

Contents
Printing a Script or SQ ABasic File .7-7

Compiling Scripts and SQ ABasic Library Source Files 7-7

Compiling O ne or All Scripts and Library Source Files 7-8

Batch Compiling Scripts and Library Source Files.7-8

Locating Compilation Errors .7-9

Debugging GU I Scripts. .7-9

Setting and Clearing Breakpoints .7-11

Executing to a Selected Line .7-13

Executing in Animation Mode .7-13

Examining Variable Values. .7-13

Deleting Scripts .7-15

8 Working with D atapools
What Is a Datapool? .8-2

Datapool Tools .8-2

Datapool Cursor .8-3

Datapool Limits .8-3

What Kinds of Problems Does a Datapool Solve?8-4

Planning and Creating a Datapool .8-4

Data Types .8-6

Standard and U ser-Defined Data Types.8-7

Finding O ut What Data Types You N eed 8-8

Creating U ser-Defined Data Types .8-9

Generating U nique Values from U ser-Defined Data Types. .8-10

Generating Multi-Byte Characters .8-11

U sing Datapools with GU I Scripts .8-12

Recording a GU I Script .8-12

Adding Datapool Commands to a GU I Script8-13

Example GU I Script .8-16

Managing Datapools .8-17

Creating a Datapool with TestManager 8-18

Editing Datapool Column Definitions with TestManager . . .8-25

Editing Datapool Values with TestManager8-26

Renaming a Datapool .8-27

Copying a Datapool .8-27
viii

Contents
Deleting a Datapool . 8-28

Importing a Datapool . 8-28

Exporting a Datapool . 8-30

Managing Data Types . 8-31

Editing U ser-Defined Data Type Values 8-31

Editing Standard Data Type Values . 8-32

Editing U ser-Defined Data Type Definitions 8-32

Generating Values for a U ser-Defined Data Type 8-33

Importing a U ser-Defined Data Type. 8-35

Renaming a U ser-Defined Data Type. 8-35

Copying a U ser-Defined Data Type . 8-36

Deleting a U ser-Defined Data Type . 8-36

Generating and Retrieving U nique Datapool Rows 8-36

What You Can Do to Guarantee U nique Row Retrieval 8-37

Creating a Datapool O utside Rational Test 8-38

Datapool Structure . 8-39

Example U sing Microsoft Excel . 8-40

Matching Datapool Columns with Script Variables 8-42

Maximum N umber of Imported Columns 8-42

Creating a Column of Values O utside Rational Test 8-42

Step 1. Create the File. 8-43

Step 2. Assign the File’s Values to the Datapool Column . . . 8-43

Generating U nique Values. 8-44

Part IV Playing Back Scripts and Analyzing Results

9 Playing Back GU I Scripts
Playback Phases . 9-1

Test Development Phase . 9-2

Regression Testing Phase . 9-2

Restoring the Test Environment Before Playback 9-3

Setting GU I Playback Options . 9-4

Acknowledging the Results of Verification Point Playback . . . 9-5

Setting Log Options for Playback . 9-5

Setting Wait State and Delay Options . 9-7
ix

Contents
Setting Error Recovery Options .9-9

Setting U nexpected Active Window O ptions.9-10

Setting Diagnostic Tools Options .9-11

Setting the Trap Options to Detect GPFs.9-16

Playing Back a GU I Script .9-18

Viewing Results in the Rational LogViewer9-20

Analyzing Verification Point Results with the Comparators 9-21

1 0 Reviewing Logs with the LogViewer
Overview .10-2

U sage Scenarios .10-2

Starting the LogViewer .10-3

Starting the LogViewer Automatically from Robot 10-3

Starting the LogViewer Automatically from LoadTest.10-3

Starting the LogViewer from TestManager 10-4

Starting the LogViewer from a Rational Test Product10-4

Starting the LogViewer from the Desktop 10-4

The LogViewer Main Window .10-5

Opening a Log File .10-6

Deleting a Log File. .10-6

Viewing Log Event Properties. .10-7

Modifying the Log Window .10-7

Collapsing and Expanding Log Events10-7

Changing Column Widths. .10-8

Changing the Column Order .10-8

Locating Failed Log Events .10-8

Evaluating Verification Point Failures in a Comparator10-9

Viewing a Verification Point in the Comparators.10-9

Viewing a Script .10-10

Playback/Environmental Differences 10-10

Intentional Changes to an Application Build10-10

Filtering the Log Event Column. .10-11

Applying a Log Filter .10-11

Creating or Editing a Log Filter .10-11

Copying, Renaming, and Deleting a Log Filter 10-12
x

Contents
Working with Reports . 10-13

Setting a Default Report Layout. 10-13

Generating, Printing, and Saving a Q uick Report 10-13

Entering and Modifying Defects. 10-14

About ClearQuest and Defect Tracking 10-15

Starting ClearQuest . 10-18

Entering Defects . 10-18

Finding Defects. 10-21

Modifying Defects . 10-21

11 U sing the O bject Properties Comparator
Overview . 11-1

Starting the Object Properties Comparator 11-2

Starting the Comparator from Robot 11-2

Starting the Comparator from the LogViewer 11-2

The Main Window. 11-3

The Objects H ierarchy and the Properties List 11-4

Changing the Window Focus and Section Widths 11-4

Working Within the O bjects H ierarchy 11-5

Working Within the Properties List . 11-6

Locating and Comparing Differences. 11-6

Viewing Verification Point Properties . 11-7

Adding and Removing Properties . 11-7

Adding Properties to the Properties List 11-7

Removing Properties from the Properties List 11-8

Editing the Baseline File . 11-9

Editing a Value in the Properties List 11-9

Cutting, Copying, and Pasting a Value 11-10

Copying Values from the Actual to the Baseline File 11-11

Changing a Verification Method . 11-11

Changing an Identification Method 11-12

Replacing the Baseline File. 11-12

Saving the Baseline File . 11-12
xi

Contents
1 2 U sing the Text Comparator
Overview .12-1

Starting the Text Comparator .12-2

Starting the Comparator from Robot .12-2

Starting the Comparator from the LogViewer12-3

The Main Window .12-3

The Text Window .12-4

Scrolling the Text Window .12-4

Changing the Widths of the Text Panes12-4

U sing Word Wrap. .12-4

Locating and Comparing Differences. .12-5

Viewing Verification Point Properties .12-5

Editing the Baseline File .12-5

Editing Data in the Baseline File .12-6

Cutting, Copying, and Pasting Data .12-6

Copying Data from the Actual to the Baseline File12-6

Replacing the Baseline File .12-7

Saving the Baseline File .12-7

13 U sing the Grid Comparator
Overview .13-1

Starting the Grid Comparator .13-2

Starting the Comparator from Robot .13-2

Starting the Comparator from the LogViewer13-3

The Main Window .13-3

The Grid Window .13-4

Differences List. .13-4

Setting Display O ptions .13-5

Changing the Column Widths .13-5

Transposing the Grid Data .13-5

Synchronizing the Scroll Bars .13-5

Synchronizing the Cursors .13-6

Locating and Comparing Differences. .13-6

Viewing Verification Point Properties .13-7

U sing Keys to Compare Data Files. .13-7
xii

Contents
Editing the Baseline File . 13-8

Editing Data in the Baseline Grid . 13-8

Editing a Menu Item. 13-9

Cutting, Copying, and Pasting Data 13-10

Copying Data from the Actual to the Baseline File 13-10

Replacing the Baseline File. 13-11

Saving the Baseline File . 13-11

1 4 U sing the Image Comparator
Overview . 14-1

Starting the Image Comparator . 14-2

Starting the Comparator from Robot 14-2

Starting the Comparator from the LogViewer 14-3

The Main Window. 14-4

The Image Window . 14-4

 . Differences List14-5

Mask/O CR List . 14-5

The Status Bar . 14-6

Locating and Comparing Differences. 14-6

Changing H ow Differences are Determined 14-7

Changing the Color of Masks, O CR Regions, or Differences . . . 14-7

Moving and Zooming An Image. 14-8

Viewing Image Properties . 14-8

Working with Masks . 14-9

Displaying Masks . 14-9

Creating Masks . 14-10

Moving and Resizing Masks . 14-10

Cutting, Copying, and Pasting Masks 14-11

Duplicating Masks . 14-11

Deleting Masks . 14-12

Automatically Masking a Difference 14-12

Working with O CR Regions . 14-13

Creating an O CR Region . 14-13

Moving and Resizing OCR Regions 14-14

Cutting, Copying, and Pasting an OCR Region 14-15
xiii

Contents
Duplicating O CR Regions. .14-16

Deleting OCR Regions .14-16

Replacing the Baseline File .14-17

Saving the Baseline File .14-18

Viewing U nexpected Active Window. .14-18

Part V Running Queries and Reports

15 Q uerying the Rational Repository
Overview .15-1

Running Queries .15-2

The Q uery Window .15-2

Deleting Scripts, Schedules, and Sessions.15-3

Creating N ew Queries .15-4

Opening the Query Properties Dialog Box 15-4

Choosing Fields to Display .15-5

Specifying the Sort Order .15-5

Adding a Filter Statement .15-6

Editing Existing Q ueries .15-8

Viewing Q uery Properties .15-8

Setting Query Options .15-9

Configuring the Query Window .15-10

Replacing or Inserting a Column .15-10

Deleting a Column .15-10

16 Running TestM anager Reports
Types of Reports .16-1

Listing Reports .16-2

Coverage Reports .16-2

Progress Reports .16-3

Selecting Which Reports to U se .16-3

Working with Listing Reports. .16-4

Creating Listing Reports .16-4

Running Listing Reports .16-5

Opening Listing Reports .16-7
xiv

Contents
Working with Coverage Reports . 16-7

Creating Coverage Reports . 16-7

Running Planning and Development Coverage Reports . . . 16-11

Running Execution Coverage Reports 16-13

Opening Coverage Reports . 16-14

Working with the Test Results Progress Report 16-15

Creating a Test Results Progress Report 16-15

Running a Test Results Progress Report 16-16

Opening a Test Results Progress Report 16-17

Copying, Renaming, and Deleting Reports 16-17

Part VI Testing IDE Applications

1 7 Testing Visual Basic Applications
About Robot Support for Visual Basic Applications 17-1

Try it! with Visual Basic . 17-3

Verifying that the Visual Basic Extension Is Loaded 17-3

18 Testing O racle Forms Applications
About Robot Support for Oracle Forms Applications 18-1

Try it! with Oracle Forms . 18-2

Making Oracle Forms Applications Testable 18-2

Installing the Rational Test Oracle Forms Enabler. 18-3

Running the Enabler on Your Application 18-3

Verifying that the Oracle Forms Extension Is Loaded 18-8

Recording Actions and Testing Objects. 18-9

Recording Actions . 18-9

Testing Objects . 18-9

Testing an Object’s Properties . 18-12

Object Properties Verification Point. 18-12

Object Scripting Commands. 18-15

Testing an Object’s Data . 18-16

Testing Base-Table Blocks and Base-Table Items 18-16

Testing LOVs and Record Groups . 18-17
xv

Contents
19 Testing H TM L Applications
About Robot Support for HTML Applications19-1

Configuring Internet Explorer for Testing 19-2

Disabling the Cookie Prompt .19-2

Try It! with H TML .19-3

Making H TML Applications Testable .19-3

Verifying that the H TML Extension Is Loaded19-3

Enabling H TML Testing in Robot .19-3

Testing Data in H TML Elements .19-4

Additional Examples. .19-7

H ow Robot Maps H TML Elements .19-8

Supported Data Tests for H TML Testing19-10

Testing Properties of H TML Elements .19-11

Playing Back Scripts in N etscape N avigator 19-12

Configuring Robot for N etscape Playback19-12

Differences Between Internet Explorer and N avigator19-13

Recording Tips. .19-14

Capturing the Properties of Java Applets in H TML Pages . .19-14

Synchronizing Pages. .19-15

Recording Mouse Movements .19-16

Ensuring Browser Compatibility. .19-17

Enhancing O bject Recognition of H TML Elements 19-17

2 0 Testing Java Applets and Applications
About Robot Support for Java. .20-2

Robot Support for Testing Java Applets and Applications20-3

Supported Foundation Class Libraries20-3

Making Java Applets and Applications Testable.20-4

Running the Java Enabler. .20-5

Verifying that the Java Extension Is Loaded20-7

Setting U p the Sample Java Applet .20-7

Installing the Sample Java Applet .20-8

Installing the Swing Foundation Classes 20-8

Starting the Sample Java Applet .20-10
xvi

Contents
Testing Data in Java Components. 20-10

Testing the Contents of a Java Panel 20-12

Support for Custom Java Components . 20-13

For More Information About Java Support. 20-14

Supported Data Tests for Java Testing . 20-14

Testing Properties of Java Components . 20-15

Enhancing Object Recognition of Java Components 20-17

21 Testing PowerBuilder Applications
About Robot Support for PowerBuilder Applications. 21-1

Verifying that the PowerBuilder Extension Is Loaded 21-2

Try it! with PowerBuilder . 21-2

Recording Actions on DataWindows. 21-3

Parameters for a Mouse-Click Action 21-4

Value-Based Recording . 21-4

Testing an Expression Value of a DataWindow Property 21-5

Testing DataStore Controls and Hidden DataWindows 21-6

Capturing Data in a DropDownDataWindow/ListBox 21-7

Testing the Value of a DataWindow Computed Field 21-8

22 Testing PeopleTools Applications
About Robot Support for PeopleTools Applications 22-1

Verifying that the PeopleTools Extension Is Loaded 22-2

Testing a Component’s Properties . 22-2

Testing a Component’s Data . 22-3

PeopleTools Commands . 22-3
xvii

Contents
Part VII Appendixes

A Working With Toolbars
Viewing Information About Toolbar Buttons A-1

Displaying Toolbars. A-2

Anchoring and Floating Toolbars . A-2

Setting Toolbar Options . A-3

Adding, Deleting, and Moving Toolbar Buttons. A-3

Creating Your O wn Toolbar. A-3

Resetting and Deleting Toolbars . A-4

B Working with D ata Tests
About Data Tests . B-1

An Example of a Data Test . B-2

What the All Data Test Does . B-2

The Definition of the All Data Test . B-3

Changing a Data Test Definition . B-4

Creating or Editing a Custom Data Test . B-5

Copying, Renaming, or Deleting a Data Test B-8

C Standard D atapool D ata Types
Standard Data Type Table. C-1

Data Type Ranges . C-9

D Rational Robot Command-line O ptions

E Working with M anual and External Scripts
About Manual Scripting . E-1

Working with Manual Scripts in TestManager E-2

Setting the Default Editor for Manual Scripts E-3

Planning and Creating a Manual Script E-3

Running a Manual Script in TestManager E-7

Viewing the Results in the LogViewer E-10
xviii

Contents
Working with Manual Scripts on the Web E-11

Overview of Tasks . E-12

Software Requirements . E-13

About Shared Repositories . E-14

Installing a Web Server . E-14

Configuring a Microsoft Internet Information Server E-16

Configuring a Microsoft Personal Web Server E-19

Setting U p a Web Browser . E-21

Troubleshooting for Manual Scripting on the Web E-22

Running a Manual Script on the Web E-23

Working with External Scripts. E-26

Planning an External Script . E-26

Logging Results of an External Script E-26

Logging Results of Several External Scripts E-28

Running an External Script . E-29

Viewing the Results of Running an External Script E-29

Glossary

Index
xix

Contents
xx

ã ã ã Preface
Rational Robot is a complete set of tools for automating the testing of Microsoft
Windows client/server and Internet applications running under Windows N T 4.0,
Windows 2000, Windows 98, and Windows 95.

This manual describes how to use Rational Robot to test the quality of your
applications. The manual explains how to plan tests, develop automated scripts,
play back the scripts, and analyze the results. This manual is intended for application
developers, quality assurance managers, and quality assurance engineers.

Other Resources
ã This product contains complete online H elp. From the main toolbar,

choose an option from the H elp menu.

For information about context-sensitive H elp, see the following section.

ã All manuals for this product are available online in PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

ã For information about training opportunities, see the Rational U niversity
Web site: http://www.rational.com/university.
xxi

Preface
Using Help
This product contains context-sensitive H elp for dialog boxes, menus, and toolbars.

Dialog Box Help
Most dialog box H elp includes overviews and detailed item information.

Menu Command Help
For menu command H elp, highlight the command and press F1, or click the H elp
button on the toolbar and select the command. A brief description of the command
also appears in the status bar.

Toolbar Button Help
For toolbar button H elp, pause the pointer over the button. A yellow ToolTip
appears below the button, and a brief description appears in the status bar. For more
detailed information, click the H elp button on the toolbar, and then select the button
for which you want more information.

Contacting Rational Technical Publications
To send feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs@rational.com.

Click th is to see an
overview of the d ia log box.

Click th is and then click an
item to see in form ation
abou t the item .
xxii

Contacting Rational Technical Support
If you have questions about installing, using, or maintaining this product,
contact Rational Technical Support as follows:

Rational Technical Support

Location Contact Information Notes

North America Telephone:
800-433-5444
408-863-4000

E-mail:
support@rational.com

Please be prepared to supply
the following information:

– Your name, telephone number,
and company name

– Computer make and model

– Operating system and
version number

– Product release number
and serial number

– Your Case ID number (if you
are calling about a previously
reported problem)

Europe Telephone:
+31 (0) 20 4546 200

E-mail:
support@europe.rational.com

Asia Pacific Telephone:
+61-2-9419-0111

E-mail:
support@apac.rational.com

World Wide Web http://www.rational.com Click the Technical Support link.
xxiii

Preface
xxiv

ã ã ã Part I

In troducing Rational Robot

ã ã ã C H A P T E R 1

Introduction to Rational Robot
This chapter introduces you to Rational Robot and its components. It includes the
following topics:

ã What is Rational Robot?

ã U sing Robot with other Rational products

ã Starting Robot and its components

ã Tasks you can perform with Robot and its components

What Is Rational Robot?

Rational Robot is a complete set of components for automating the testing of
Microsoft Windows client/server and Internet applications running under
Windows N T 4.0, Windows 2000, Windows 98, and Windows 95.

The main component of Robot lets you start recording tests in as few as two mouse
clicks. After recording, Robot plays back the tests in a fraction of the time it would
take to repeat the actions manually.

O ther components of Robot are:

ã Rational Adm inistrator – U se to create and manage Rational repositories,
which store your testing information.

ã Rational TestM anager – U se to plan your tests, manage test assets, and create
and run manual and external scripts.

ã Rational LogViewer – U se to review and analyze test results.

ã O bject Properties, Text, Grid, and Im age Com parators – U se to view and
analyze the results of verification point playback.

ã Rational SiteCheck – U se to manage Internet and intranet Web sites.
1 -1

In troduction to Rational Robot
Managing the Rational Repository with the Administrator
You use the Rational Administrator to create and manage Rational repositories.

Rational repositories store application testing information, such as scripts,
verification points, queries, and defects. Each repository consists of a database and
several directories of files. All Rational Test components on your computer update
and retrieve data from the same active repository.

Within the repository, information is categorized by projects. Projects help you
organize your testing information and resources for easy tracking. Repositories and
projects are created in the Rational Administrator, usually by someone with
administrator privileges.

U se the Administrator to:

ã Create and delete a repository.

ã Connect to a repository.

ã Configure a SQ L Anywhere database server.

ã Create and manage users, groups, and computers for a Rational Test database.

ã Create and manage projects containing Rational RequisitePro databases and
Rational Rose models.

ã Manage security privileges for the entire Rational repository.

ã Change Rational Test and ClearQuest database types.

ã U se the centralized Rational License Key Administrator.

ã Synchronize data among Rational Test, RequisitePro, and Rational Rose
datastores using the Rational Synchronizer.
1 -2

W hat Is Rationa l Robot?
The following figure shows the main Rational Administrator window after you have
created some repositories and projects:

For information about the Administrator and repositories, see the Using the Rational
Administrator manual.

Planning and Managing Tests in TestManager
You use Rational TestManager to plan your tests, manage your test assets, and run
queries and reports.

U se TestManager to:

ã D efine test requirem ents. These are the features and functionality that you
plan to test. You can define test requirements in TestManager and Rational
RequisitePro.

ã Plan scripts and schedules. A script is a set of instructions used to navigate
through and test an application. A schedule can contain scripts, information
about how and where to run the script, and how to coordinate script playback.
(Schedules are used in LoadTest, which is available only in Rational Suite
PerformanceStudio).

ã Create, m anage, and run queries. The query tools help you manage your
scripts, schedules, and sessions. You can use the default queries provided with
TestManager or create queries of your own.

ã Create, m anage, and run reports. The reporting tools help you track assets
such as scripts, builds, and test documents. They also help you track test
coverage and progress.

Lists the repositories.

Lists the pro jects in the
repository. Pro jects help
you organ ize your
testing in form ation.

Lists the U sers, Groups,
and Com puters in the
repository.

Stores defect in form ation.
1 -3

In troduction to Rational Robot
ã Create and manage builds, log folders, and logs. Logs are created when you
run a script or schedule. Log folders are used to organize logs.

ã Create and m anage datapools and data types. A datapool supplies data
values to variables in a script during script playback. A data type is a source of
data for one datapool column.

ã Create and run m anual and external scripts. A manual script contains a set of
instructions to be run by a human tester. An external script runs a program
created with any tool.

The following figure shows the main TestManager window and some of the other
windows and dialog boxes that you can use to manage your tests.

TestM anager m ain window Plan scrip ts.
Crea te, m anage, and d isp lay
queries, reports, and bu ilds.

D isp lay query
resu lts.
1 -4

W hat Is Rationa l Robot?
Developing Tests in Robot
You use Robot to develop two kinds of scripts: GU I scripts for functional testing and
virtual user scripts for performance testing.

U se Robot to:

ã Perform full functional testing. Record and play back scripts that navigate
through your application and test the state of objects through verification points.

ã Perform full perform ance testing. U se Robot and LoadTest together to record
and play back scripts that help you determine whether a multi-client system is
performing within user-defined standards under varying loads.

ã Create and edit scripts using the SQ ABasic and VU scripting environm ents.
The Robot editor provides color-coded commands with keyword H elp for
powerful integrated programming during script development. (VU scripting is
available only in Rational Suite PerformanceStudio.)

ã Test applications developed with ID Es such as Java, H TML, Visual Basic,
Oracle Forms, and PowerBuilder. You can test objects even if they are not
visible in the application’s interface.

ã Collect diagnostic inform ation about an application during script playback.
Robot is integrated with Rational Purify, Rational Quantify, and Rational
PureCoverage. You can play back scripts under a diagnostic tool and see the
results in the log.

The Object-Oriented Recording technology in Robot lets you generate scripts by
simply running and using the application-under-test. Robot uses O bject-Oriented
Recording to identify objects by their internal object names, not by screen
coordinates. If objects change locations or their text changes, Robot still finds them
on playback.

N O TE: Virtual user scripts are available only in Rational Suite
PerformanceStudio. For information about virtual user scripts, see the
Using Rational LoadTest manual.
1 -5

In troduction to Rational Robot
The following figure shows the main Robot window after you have recorded a script.

The O bject Testing technology in Robot lets you test any object in the application-
under-test, including the object’s properties and data. You can test standard
Windows objects and IDE-specific objects, whether they are visible in the interface
or hidden.

In functional testing, Robot provides many types of verification points for testing the
state of the objects in your application. For example, you use the O bject Properties
verification point to capture the properties of an object during recording, and to
compare these properties during playback.

The following figure shows the O bject Properties Verification Point dialog box.

Robot creates
a scrip t as you
work.

Shows the
scrip t assets

Shows com piler
m essages

Click to start
record ing a
GU I or virtua l
user scrip t.

Click a bu tton to insert a verif icat ion
poin t to test the sta te of any object.
1 -6

W hat Is Rationa l Robot?
Creating Datapools
A datapool is a source of test data that scripts can draw from during playback.

If a script sends data to a server during playback, consider using a datapool as the
source of the data. By accessing a datapool, a script transaction that is executed
multiple times during playback can send realistic data and even unique data to the
server each time. If you do not use a datapool, the same data (the data you recorded)
is sent each time the transaction is executed.

When creating a datapool, you specify the kinds of data (called data types) that the
script will send — for example, customer names, addresses, and unique order
numbers. When you finish defining the datapool, TestManager automatically
generates the number of rows of data that you specify.

TestManager is shipped with many commonly used data types. In addition,
TestManager lets you create your own data types.

The following figure shows a datapool being defined. N ote that most of the data
types in the Type column are standard data types shipped with TestManager. Two
data types, Product List and Color List, are user-defined data types.

Lists the nam es and va lues of a ll
propert ies for the selected object

You can change the
property va lues.

H igh lights the
selected object and
lists its ch ildren

You can edit the
list o f propert ies.
1 -7

In troduction to Rational Robot
Analyzing Results in the LogViewer and Comparators
You use the Rational LogViewer to view the logs that are created when you run
scripts and schedules.

U se the LogViewer to:

ã View the results of running a script , including verification point failures,
procedural failures, aborts, and any additional playback information. Reviewing
the results in the LogViewer reveals whether each script and verification point
passed or failed.

U se the Comparators to:

ã Analyze the results of verification points to determine why a script may have
failed. Robot includes four Comparators:

– Object Properties Comparator

– Text Comparator

– Grid Comparator

– Image Comparator

D ata types that supply
data to datapool co lum ns

Colum ns to generate
in the datapool f ile

N um ber of rows to generate
in the datapool f ile

Inserts new
datapool
co lum ns
1 -8

W hat Is Rationa l Robot?
The following figure shows a log file in the LogViewer that contains a failed O bject
Properties verification point.

When you double-click the line that contains the failed Object Properties
verification point, the O bject Properties Comparator opens, as shown in the
following figure. In the Comparator, the Baseline column shows the original
recording, and the Actual column shows the playback that failed. Compare the two
files to determine whether the difference is an intentional change in the application
or a defect.

Failed O bject
Properties verification
point. D oub le-click
the line to open the
Com parator and view
the fa ilure.

Propert ies in the
baseline data f ile

Propert ies in the
actual data f ile

Shows the d ifferences
between the baseline
and actual files. Click a
d ifference to h igh light it
in the Propert ies list
above.
1 -9

In troduction to Rational Robot
Managing Intranet and Web Sites with SiteCheck and Robot
You use Rational SiteCheck to test the structural integrity of your intranet or World
Wide Web site. SiteCheck is designed to help you view, track, and maintain your
rapidly changing site.

U se SiteCheck to:

ã Visualize the structure of your W eb site and display the relationship between
each page and the rest of the site.

ã Identify and analyze W eb pages with active content , such as forms, Java,
JavaScript, ActiveX, and Visual Basic Script (VBScript).

ã Filter inform ation so that you can inspect specific file types and defects,
including broken links.

ã Exam ine and edit the source code for any Web page, with color-coded text.

ã U pdate and repair f iles using the integrated editor, or configure your favorite
H TML editor to perform modifications to H TML files.

ã Perform com prehensive testing of secure W eb sites. SiteCheck provides
Secure Socket Layer (SSL) support, proxy server configuration, and support for
multiple password realms.

Robot has two verification points for use with Web sites:

ã U se the Web Site Scan verification point to check the content of your Web site
with every revision and ensure that changes have not resulted in defects.

ã U se the Web Site Compare verification point to capture a baseline of your Web
site and compare it to the Web site at another point in time.

The following figures show the types of defects you can scan for using a Web Site
verification point, and the list of defects displayed in SiteCheck.
1 -1 0

W hat Is Rationa l Robot?
For more information about SiteCheck, see the Try it! with Rational SiteCheck card
and the SiteCheck H elp. For more information about the Web Site verification
points, see the Robot Help.

D uring record ing , insert a
W eb Site Scan verif icat ion
point that checks for
defects on your Web site.

D uring p layback,
SiteCheck lists a ll
the defects on
your W eb site.
1 -1 1

In troduction to Rational Robot
Using Robot with Other Rational Products

Rational Robot is integrated with many other Rational products and components,
including TestFactory, ClearQuest, Purify, Quantify, PureCoverage, LoadTest, and
RequisitePro. The products and components are available based on what you have
installed.

Testing Applications with Rational TestFactory
Rational TestFactory is a component-based testing tool that automatically generates
TestFactory scripts according to the application’s navigational structure.

TestFactory is integrated with Robot and its components to provide a full array of
tools for team testing under Windows N T 4.0, Windows 2000, Windows 98, and
Windows 95.

With TestFactory, you can:

ã Automatically create and maintain a detailed map of the application-under-test.

ã Automatically generate both scripts that provide extensive product coverage and
scripts that encounter defects, without recording.

ã Track executed and unexecuted source code, and report its detailed findings.

ã Shorten the product testing cycle by minimizing the time invested in writing
navigation code.

ã Automate distributed testing with TestAccelerator, an application that drives
and manages the execution of scripts on remote machines.

ã Play back Robot scripts in TestFactory to see extended code coverage
information and to create regression suites; play back TestFactory scripts in
Robot to debug them.

For more information about TestFactory, see its manuals and H elp.

Managing Defects with Rational ClearQuest
Rational ClearQuest is a change-request management tool that tracks and manages
defects and change requests throughout the development process. With ClearQuest,
you can manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.
1 -1 2

U sing Robot with O ther Rational Products
With Robot and ClearQ uest, you can:

ã Submit defects directly from the LogViewer or SiteCheck.

ã Modify and track defects and change requests.

ã Analyze project progress by running queries, charts, and reports.

For information about using the LogViewer to enter defects into ClearQuest, see
Entering and Modifying Defects on page 10-14. For information about using
ClearQ uest, see its manuals and H elp.

Collecting Diagnostic Information During Playback
U se the Rational diagnostic tools to perform runtime error checking, profile
application performance, and analyze code coverage during playback of a Robot
script.

ã Rational Purify is a comprehensive C/C+ + run-time error checking tool that
automatically pinpoints run-time errors and memory leaks in all components of
an application, including third-party libraries, ensuring that code is reliable.

ã Rational Q uantify is an advanced performance profiler that provides
application performance analysis, enabling developers to quickly find, prioritize
and eliminate performance bottlenecks within an application.

ã Rational PureCoverage is a customizable code coverage analysis tool that
provides detailed application analysis and ensures that all code has been
exercised, preventing untested code from reaching the end-user.

For information about playing back scripts under these products, see Setting
Diagnostic Tools Options on page 9-11. For information about using the diagnostic
tools, see their manuals and H elp.

Performance Testing with Rational Suite PerformanceStudio
Rational Suite PerformanceStudio is a sophisticated tool for automating
performance tests on client/server systems. A client/server system includes client
applications accessing a database or application server, and browsers accessing a Web
server.

PerformanceStudio includes Rational Robot and Rational LoadTest. U se Robot to
record client/server conversations and store them in scripts. U se LoadTest to
schedule and play back the scripts. During playback, LoadTest can emulate
hundreds, even thousands, of users placing heavy loads and stress on your database
and Web servers.
1 -1 3

In troduction to Rational Robot
With PerformanceStudio, you can:

ã Find out if your system-under-test performs adequately.

ã Monitor and analyze the response times that users actually experience under
different usage scenarios.

ã Test the capacity, performance, and stability of your server under real-world
user loads.

ã Discover your server’s break point and how to move beyond it.

For information about PerformanceStudio, see its manuals and H elp.

Managing Requirements with Rational RequisitePro
Rational RequisitePro is a requirements management tool that helps project teams
control the development process. RequisitePro organizes your requirements by
linking Microsoft Word to a requirements repository and providing traceability and
change management throughout the project lifecycle.

A baseline version of RequisitePro is included with Rational TestManager. When
you define a test requirement in RequisitePro, you can access it in TestManager.

With the full version of RequisitePro, you can:

ã Customize the requirements database and manage multiple requirement types.

ã Prioritize, sort, and assign requirements.

ã Control feature creep and ensure software quality.

ã Track what changes have been made, by whom, when, and why.

ã Integrate with other tools, including Rose, ClearCase, Rational U nified Process,
and SoDA.

Sharing Data with Other Rational Products
You can share or link data between applications that store data in Rational Test,
RequisitePro, or Rose datastores. H owever, when you update data in one of these
products, you often want to update this data in other products. You use the Rational
Synchronizer to update data.

U se the Synchronizer to:

ã Ensure consistency of data across several products. A single change in one type
of data can be updated in other types of data simultaneously.

ã Jump-start work in one product with the data from another product. For
example, you can create requirements using TestManager or RequisitePro, and
then import one or more of these requirements to a Rose model.
1 -1 4

Starting Robot and Its Com ponents
ã Analyze the impact of changes. You can synchronize data in several different
products to gain a deeper understanding of how changes in requirements or
design changes impact your overall software development process.

You can start the Synchronizer from the Administrator or from TestManager.
For more information about using the Synchronizer, see the Using the Rational
Administrator manual.

Starting Robot and Its Components

Before you start using Robot, you need to have:

ã Rational Robot installed. For information, see one of the following manuals:
Installing Rational Suite or Installing Rational TeamTest and Rational Robot.

ã A Rational repository and a project within the repository. For information, see
the Using the Rational Administrator manual.

Logging in
When you log into Robot or one of its components, you provide your user ID and
password, which are assigned by your administrator. You also specify the repository
and project to log into.

To log in:

ã From Start → Program s → Rat iona l p roduct nam e, start Rational Robot or
one of its components to open the Rational Repository Login dialog box.

Type your user ID and password.
If you do not know these, see
your adm in istrator.

Select a repository. To change
repositories la ter, exit a ll Robot
com ponents and log in again .
(Repositories are created in the
Rational Adm in istrator.)

Select a pro ject. You can change
to another pro ject with in the
sam e repository after you log in .

Click O K to log in .
1 -1 5

In troduction to Rational Robot
Changing to Another Project
Once you are logged into a Robot component, you can easily change to another
project in the same repository.

To change to another project:

ã Click File → Change Project.

To change to a project in a different repository, exit all Robot components and then
log in again. Select the repository and project in the Rational Repository Login dialog
box. (N ew repositories and projects are created in the Rational Administrator.)

Opening Other Rational Products and Components
Once you are logged into a Robot component, you can start other products and
components from either:

Select a project in
the repository.

Click O K .

The Tools m enu
1 -1 6

Tasks You Can Perfo rm with Robot and Its Com ponents
Some components also start automatically when you perform certain functions in
another component.

Tasks You Can Perform with Robot and Its Components

The following table lists the tasks that you can perform, the component to use, and
where to find more information:

TestM
anager

LoadTest
TestFactory

LogViewer
SiteCheck
Adm

in istrator

ClearQ
uest

The Tools toolba r

To Use this
component

See

Plan tests and manage test assets TestManager Chapter 2, Planning Your Tests
Chapter 3, Managing Builds, Log Folders,
and Logs

Record GU I scripts Robot Chapter 4, Recording GUI Scripts
Chapter 5, Adding Features to GUI Scripts

Create verification points to test
the state of objects

Robot Chapter 6, Creating Verification Points in
GUI Scripts

Edit, compile, and debug scripts Robot Chapter 7, Editing, Compiling, and
Debugging Scripts

Supply data values to the
variables in a script during
playback

Robot
TestManager

Chapter 8, Working with Datapools

Play back GU I scripts Robot Chapter 9, Playing Back GUI Scripts

Review and analyze test results,
and enter defects

LogViewer Chapter 10, Reviewing Logs with the
LogViewer

View and analyze the results of
verification points

Object Properties
Comparator

Text Comparator
Grid Comparator
Image Comparator

Chapter 11, Using the Object Properties
Comparator
Chapter 12, Using the Text Comparator
Chapter 13, Using the Grid Comparator
Chapter 14, Using the Image Comparator
1 -1 7

In troduction to Rational Robot
Create and run queries to help
you manage information in your
projects

TestManager Chapter 15, Querying the Rational
Repository

Create and run reports to help
you manage your testing efforts

TestManager Chapter 16, Running TestManager Reports

Test Visual Basic applications Robot Chapter 17, Testing Visual Basic
Applications

Test Oracle Forms applications Robot Chapter 18, Testing Oracle Forms
Applications

Test H TML applications Robot Chapter 19, Testing HTML Applications

Test Java applications Robot Chapter 20, Testing Java Applets and
Applications

Test PowerBuilder applications Robot Chapter 21, Testing PowerBuilder
Applications

Test PeopleTools applications Robot Chapter 22, Testing PeopleTools
Applications

Create and run manual and
external scripts

TestManager Appendix E, Working with Manual and
External Scripts

Manage Internet and intranet
Web sites

SiteCheck Try it! with Rational SiteCheck card
Rational SiteCheck H elp

N O TE: All Robot components include complete H elp. For information about
how to use the H elp, see Using Help in the Preface.

To Use this
component

See
1 -1 8

ã ã ã Part II

Plann ing Tests

ã ã ã C H A P T E R 2

Planning Your Tests
The first phase of a software testing effort involves test planning. In this phase, you
write test plans, define test requirements, and plan test scripts that will validate the
test requirements. Rational TestManager is the tool you use to plan your tests.

This chapter describes the planning phase of your testing effort. It includes the
following topics:

ã Working with test plans and other test documents

ã Defining test requirements

ã Planning scripts

ã Planning LoadTest schedules

ã Managing requirements

ã Customizing scripts and LoadTest schedules

Working with Test Plans and Other Test Documents

Often, the first part of the test planning phase involves the creation of test plans and
other documents. A test plan defines a testing project so it can be properly measured
and controlled. The test plan usually describes the features and functions you are
going to test and how you are going to test them. O ften, the test plan discusses
resource requirements and defines a project schedule. Large software projects may
require several test plans, each one written by a separate quality engineer.

In TestManager, test plans, project schedules, and other related documents are called
test docum ents. You develop your test documents using any word processing or
scheduling program, and you create references to these documents in TestManager.
The references are stored in the Rational repository. If the test documents
themselves are modified during the project, you can use TestManager to rename,
copy, or delete the references. You can also open the test documents from
TestManager.
2 -1

Plann ing Your Tests
Creating Test Document References
After you create test plans and other documents, you can use TestManager to create
references to these documents. By doing this, you can use TestManager as your
“control center” from which you can access any document that is important to the
project.

To create a reference to a test document:

1 . Click Tools → M anage Test D ocum ents:

2 . Click N ew.

3 . Type a name (40 characters maximum) that refers to an existing test document.
For clarity, use a name that is the same or very similar to the actual document
name.

4 . Type a short description of the test document.

5 . Type the path to the test document, or click Browse to search for the path.

6 . Click O K to close the Test Document Properties dialog box.

7 . Click Close to close the Manage Test Documents dialog box.

Editing Test Document References
If test documents are modified or deleted during a project, you can use TestManager
to rename, copy, or delete the reference. You can also edit the reference’s name,
description, or path.

For deta iled in form ation
abou t an item , click the
question m ark, and then
click the item .
2 -2

D efin ing Test Requ irem ents
To edit a reference to a test document:

1 . Click Tools → M anage Test D ocum ents.

2 . Select a test document from the list.

3 . Click one of the following buttons:

Edit – To change the description of the reference or to map the reference to a
different source document.

Renam e – To change the name of the reference.

D elete – To remove the reference.

Copy – To copy a reference to a test document (not the document itself).

4 . Complete the edit, rename, deletion, or copy process.

5 . Click Close.

Viewing Test Documents
TestManager provides easy access to your test documents.

To open a test document:

1 . Click Tools → M anage Test D ocum ents.

2 . Select a test document from the list.

3 . Click Edit .

4 . Click O pen to open the document using its associated editor.

Defining Test Requirements

After you write your test plans and other test documents, the next step in test
planning is to define your test requirem ents — the features and functionality you
plan to test. You can define test requirements using the Requirements H ierarchy in
TestManager. The Requirements H ierarchy is a graphical outline of requirements
and nested child requirements. You can define a hierarchy of your project’s
requirements in any way that is appropriate for your project.
2 -3

Plann ing Your Tests
The following figure shows a sample Requirements H ierarchy:

Requirements in TestManager are stored in a Rational RequisitePro database.
RequisitePro is a requirements management tool that helps project teams control the
development process by organizing, managing, and tracking the changing
requirements of your system. You can define and access test requirements in either
RequisitePro or TestManager.

TestManager includes a baseline version of RequisitePro that you can use to build a
test requirements hierarchy and then associate scripts and schedules with the
requirements in the hierarchy.

With the full version of RequisitePro, you can customize the requirements database
and incorporate other advanced features such as traceability, change notification, and
requirements attribute management. The full version of RequisitePro is included as
part of Rational Suites, or you can purchase it separately.

Working with Projects
Rational Test categorizes test information within a repository by project. You can use
the Rational Administrator to create and manage projects.

The project represents the top-level name of a software testing effort. Its name
appears in the TestManager title bar and in the title bar of the other components of
Rational Test.

Project nam e
2 -4

D efin ing Test Requ irem ents
Projects help you categorize your software testing information and resources for easy
tracking. Each project can include information about requirements, test documents,
scripts, verification points, and schedules.

The number of projects in a repository depends on the complexity of the
application-under-test or on the number of ongoing unrelated testing efforts. For
example, you could divide a large application into several smaller projects, or you
could define a separate project for each unrelated testing effort.

The Requirements H ierarchy in TestManager is project-specific — that is, it is
associated with a particular project. When you log into TestManager, you select the
repository and project you want to work with. The default is the last project that was
used. For information about accessing other projects, see Changing to Another Project
on page 1-16. For information about creating and deleting projects, see the Using the
Rational Administrator manual.

TestManager includes an Import Test Assets wizard that you can use to copy or
import test scripts and other test assets, such as datapools and data types, from one
project to another. The destination project may reside within the same repository or
in another repository. For more information, see Importing Scripts from Other Projects
on page 2-18.

Building the Requirements Hierarchy
The Requirements H ierarchy is displayed in its own window within TestManager.
It displays requirements as well as the scripts and schedules that you can associate
with those requirements. You build the Requirements H ierarchy as you would build
an outline. Each requirement can have multiple levels of nested sub-requirements,
called child requirements.

Inserting a Requirement
To insert a requirement in the hierarchy:

1 . Click File → O pen Requirem ents to open the Requirements H ierarchy.

2 . Click Edit → Insert Requirement to open the Requirement Properties dialog
box.
2 -5

Plann ing Your Tests
3 . Select a requirement type from the list.

Requirement types are defined in RequisitePro.

4 . Type the requirement name in the Text box.

5 . Click the Revision tab.

6 . In the D escription box, type a description for this version of the requirement.

For example, you might type Update priority attribute value from medium to high.

7 . Type a label for the revision — for example, beta 2, alpha 1, or the build number.

8 . Click the Attributes tab.

Attributes describe the requirements in the Requirements H ierarchy. In
TestManager, you can assign values to attributes. To add or modify attributes
and their values, you must use RequisitePro.

N O TE: You cannot change the type of an existing requirement. In addition,
a child requirement must be the same type as its parent.
2 -6

D efin ing Test Requ irem ents
9 . Click in the Value row next to the attribute you want to edit.

– For a text field, type a value.

– For a single-value field, select a value from the list.

– For a multi-value field, double-click the Value column to open the Select
Attribute Values dialog box. Move the values from the Available list to the
Selected list and click O K.

1 0 . Click O K .

The new requirement appears in the hierarchy.

Inserting a Child Requirement
To insert a child requirement:

1 . Select a requirement in the hierarchy and click Edit → Insert Child
Requirem ent, or right-click a requirement in the hierarchy and click Insert
Child Requirem ent .

2 . Fill in the Requirement Properties dialog box as described in Inserting a
Requirement on page 2-5. Remember that a child requirement must be the
same type as its parent.

When you finish, the child requirement appears beneath its parent in the
hierarchy.

Importing Requirements from PowerBuilder Libraries
In TestManager, you can import requirements directly from a PowerBuilder library
(version 5.0 and later).

To import requirements from a PowerBuilder library:

1 . Make sure PowerBuilder is set to the application from which you want to import
hierarchy information.

Child requirem ent

Parent requ irem ent
2 -7

Plann ing Your Tests
2 . From the Requirements H ierarchy, select the requirement to which you want to
append the new requirements.

3 . Click File → Import PowerBuilder PBL.

4 . Select the PowerBuilder library to import and click O pen.

5 . In the Object Types section of the Library Entries dialog box, select the type of
PowerBuilder objects to import.

6 . In the Object Structures section of the Library Entries dialog box, select the type
of object structure to use for the hierarchy.

H ierarchy builds a Requirements H ierarchy based on the tree structure of the
PowerBuilder application.

List by Type builds a Requirements H ierarchy sorted by the selected object
types.

7 . If you want TestManager to automatically create script names that correspond to
the requirements, select the Generate Test Scripts check box.

8 . Click O K .

TestManager reads the structure information from the PowerBuilder library file
and appends the data to the Requirements H ierarchy.

Editing Requirement Properties
To change the name of a requirement or to change other properties:

1 . Right-click the requirement and click Properties or double-click the
requirement to open the Requirement Properties dialog box.

2 . Make edits to the properties as needed.

3 . Click O K .

N O TE: If TestManager cannot find the PB.IN I file, it opens a dialog box for
specifying the path of the file. Type or browse the full path to this file and
click O K . The PB.IN I file is usually located in the PowerSoft installation
directory. If your PowerBuilder application uses only a single library, you can
leave the edit box blank and click O K .
2 -8

D efin ing Test Requ irem ents
Expanding and Collapsing the Requirements Hierarchy
For large applications, the Requirements H ierarchy can become quite extensive.
While creating or editing a hierarchy, you can simplify navigation through the tree
structure by showing or hiding specific levels of the hierarchy. All parent
requirements display a plus (+) or minus (–) sign on their left side.

ã To view the children, click the plus (+) sign.

ã To hide the children, click the minus (–) sign.

Reparenting Child Requirements
In TestManager, you can drag a child requirement in the Requirements H ierarchy
from one parent requirement to another. When you reparent a requirement, the
entire sub-tree of children is also moved to the new parent and is renumbered.

Reparenting rules are as follows:

ã The child requirement must be the same requirement type as the new parent.

ã Document-based requirements from RequisitePro documents cannot be
reparented.

ã Traceability relationships in RequisitePro are not allowed between the new
parent and its new children.

ã The parent-child hierarchy that is created when reparenting cannot exceed 25
levels.

Click a ch ild requirem ent and
drag it to its new parent.
2 -9

Plann ing Your Tests
Planning Scripts

After you create your test documents and define your test requirements, you are
ready to use TestManager to plan the scripts and attach them to test requirements.
After you complete this process, you can:

ã Record a GU I or virtual user script. To do this, start recording in Robot and
select a planned script.

ã Create a manual script. To do this, open the planned script in TestManager.

By planning your scripts, you will know the size of the testing effort, and you will be
able to assign the development of each script to the appropriate individual. This
model can also help you develop logical and consistent naming conventions for all of
your scripts.

To plan scripts, open the Plan Script dialog box and assign properties, such as a name,
description, and owner. For details, see Assigning a N ame and Other Properties on page
2-11.

Other tasks you can perform with scripts include:

ã Attaching a script to a test requirement

ã Referencing specification files, such as functional specifications or design
documents

ã Customizing script properties

ã Displaying script statistics

ã Referencing include files and external C libraries (VU scripts only)

ã Controlling whether Robot starts after planning a script

ã Deleting and importing scripts

These tasks are described in more detail in the following sections.

About Scripts
Much of your testing effort involves planning and recording GU I and virtual user
scripts. These types of scripts have two parts:

ã A file (extension .rec) that can be run by Robot or by a LoadTest schedule.
(LoadTest requires Rational Suite PerformanceStudio).

ã A set of script properties, such as the type and purpose of the script.
2 -1 0

Plann ing Scripts
You generate a script file when you record your GU I actions or client/server requests
with Robot. Robot translates your actions into scripting language commands
(SQABasic for GU I activities, VU for client/server requests), and writes them to the
script.

Typically, you define the script’s properties when you plan the script with
TestManager. You can also define script properties in Robot after you record
the script.

By playing back scripts in Robot, you can perform functional tests of GU I objects.
A functional test helps you determine whether a system functions as intended by
verifying objects over successive builds of the application-under-test.

If you have Rational Suite PerformanceStudio, you can also play back GU I scripts
and virtual user scripts in LoadTest schedules. For information about virtual user
scripts and the kinds of tests you can perform in LoadTest, see the Using Rational
LoadTest manual.

For information about manual and external scripts, see Appendix E, Working with
Manual and External Scripts. For information about scripts in TestFactory, see the Using
Rational TestFactory manual.

Assigning a Name and Other Properties
All scripts must have a name and can have several other optional properties. Script
properties include:

ã N ame, description, owner, purpose, and test environment

ã Related assets such as test requirements

ã N otes and specification files

ã Custom keywords

To assign a name and other properties to a script:

1 . Do one of the following to open the Plan Script dialog box:

– To plan a script and attach it to a requirement, open the Requirements
H ierarchy (File → O pen Requirem ents). Right-click the requirement and
click Plan and the type of script.

– To plan a script without attaching it to a requirement, make sure that no
requirement is selected. Click File → Plan and the type of script.
2 -1 1

Plann ing Your Tests
The appearance of the Plan Script dialog box differs slightly depending on the
type of script you are planning.

2 . Type a name (40 characters maximum) for the script, using a logical naming
convention.

3 . Type an explanation of the script in the D escription box.

4 . Select the script’s developer from the O wner list. Owners are defined in
Rational Administrator.

5 . Select the purpose of the script from the Purpose list. For information about
adding purposes to the list, see Customizing the Purpose List on page 2-23.

6 . Select the environment (operating system) in which the script will be used from
the Environm ent list. For information about adding environments to the list, see
Customizing the Environment List on page 2-22.

7 . Click O K and proceed to the following section, Attaching Scripts to Test
Requirements.

The Plan Scrip t d ia log
box for GU I scrip ts

N O TE: The D eveloped check box indicates whether or not a script has
actually been developed. TestManager considers a script to be developed
when it has been recorded or edited. When planning a new GU I or virtual
user script, the check box should be cleared. For information about manual
and external scripts, see Appendix E, Working with Manual and External Scripts.
2 -1 2

Plann ing Scripts
Attaching Scripts to Test Requirements
By attaching scripts to test requirements, you can more easily track which areas of
the application-under-test have test coverage. When you plan a script from the
Requirements H ierarchy, the script is automatically attached to a test requirement.
H owever, if you use File → Plan to plan the script, and no requirement is selected,
you will need to explicitly attach the script to a test requirement.

Attaching Scripts from the Requirements Hierarchy
To attach a script to a requirement from the Requirements H ierarchy:

1 . Right-click a requirement in the hierarchy and click Attach Script, or select a
requirement in the hierarchy and click Edit → Attach Script:

2 . Optionally, select a query from the Query list.

The query lets you narrow down the list of scripts that appear. This is extremely
useful in projects with hundreds of scripts. For example, you can select a query
that lists all scripts, or lists only GU I or virtual user scripts. For information
about how to create a query, see Creating N ew Queries on page 15-4.

N O TE: A script can be attached to only one requirement at a time.
2 -1 3

Plann ing Your Tests
3 . Select a script from the list and click O K to attach it to the requirement.

The script appears in the hierarchy beneath the requirement.

Attaching Scripts from the Plan Script Dialog Box
To attach a script to a requirement from the Plan Script dialog box:

1 . Click File → Plan and the type of script.

2 . Supply a name, description, owner, purpose, environment, and type for the
script. For more information, see Planning Scripts on page 2-10.

3 . Click the Related Assets tab.

The Test Repo Connect scrip t is now
attached to the Connect to
Repository requ irem ent.

N O TE: If a requirement is selected in the Requirements H ierarchy, the
requirement will appear automatically in the Test Requirement box.
2 -1 4

Plann ing Scripts
4 . Click Select.

5 . Select the test requirement to attach the script to.

6 . Click O K .

7 . Click O K to close the Plan Script dialog box.

Detaching a Script from a Requirement
When you detach a script from a requirement, you simply eliminate the mapping
between them. Afterwards, you can attach the script to another requirement.

To detach a script from a requirement:

ã Right-click the script in the Requirements H ierarchy and click D etach, or click
Edit → D etach.

Moving a Script from One Requirement to Another
To move a script to a different requirement, select the script in the Requirements
H ierarchy and drag it to a different requirement, or use the Attach Script command
to attach the script to the new requirement.

Referencing Specification Files
You can set up your scripts so that each script references a specification file, such as
a functional or design specification, or you can simply add a detailed note describing
the script.

To reference a specification file:

1 . Right-click in the Requirements H ierarchy and click Plan and the type of script,
or click File → Plan and the type of script.

2 . Supply a name, description, owner, purpose, environment, and type for the
script. For more information, see Planning Scripts on page 2-10.

3 . Click the Specifications tab.

4 . Type any additional information about the script in the N otes box.

5 . Type the path to the specification file, or click Browse to locate the file.

N O TE: You can also use this procedure to attach a script to a test
requirement from within Robot. To do so, open the Script Properties dialog
box and follow the previous procedure.
2 -1 5

Plann ing Your Tests
6 . To open the specification file, click O pen. Close the file when you have finished
viewing it.

7 . Click O K to close the Plan Script dialog box.

Customizing Script Properties
When you use the Plan Script dialog box to define a script, you assign several
properties, such as a name, description, owner, environment, purpose, and type.
With TestManager, you can add your own properties and also customize the values
that are used with many of the standard properties. You can define both the property
itself (the label) and the values that can be used with that property. For example, you
could add a new property called Test Type, and you could add Test Type values,
such as U I, functional, and performance. For more information about customizing
script properties, see Customizing Scripts and LoadTest Schedules on page 2-22.

Displaying Script Statistics
To display statistics about a script, such as the creation date, modification date, or the
name of the developer:

1 . Right-click a script in the Requirements H ierarchy and click Properties.

2 . Click the Statistics tab.

Referencing Include Files and External C Libraries

U se the VU Com pilation tab of the Script Properties dialog box to add # defines and
external C libraries that may be needed to compile virtual user scripts used in
Rational LoadTest.

To reference include files and external C libraries:

1 . Right-click in the Requirements H ierarchy and click Plan and the type of script,
or click File → Plan and the type of script.

2 . Supply a name, description, owner, purpose, environment, and type for the
script. For more information, see Planning Scripts on page 2-10.

N O TE: This feature requires Rational Suite PerformanceStudio.
2 -1 6

Plann ing Scripts
3 . Click the VU Com pilation tab.

4 . Click the Add button in the D efines section.

In this section you can add C-preprocessor directives, such as # define,
include, # ifdef, and # if to virtual user scripts.

5 . Type the name of the directive.

6 . Click the Add button in the External C Libraries section.

In this section you can add references to user-written external C libraries.

7 . Type or browse to the name of the library, and then click O K.

8 . Click O K .

Controlling Whether Robot Starts After Planning a Script
You can control whether or not Robot starts automatically after you plan a new script
in TestManager. You can plan all of your scripts before you start recording in Robot,
or you can plan and record one script at a time.

N O TE: LoadTest requires that all external C libraries (.DLLs on Windows
N T 4.0) be placed in the Script\externC directory of the current project.
When specifying the library name, you do not need to include the .DLL
extension.
2 -1 7

Plann ing Your Tests
To control whether Robot starts after you plan a new script:

1 . Click Tools → O ptions.

2 . Set the Launch Robot option:

– Select the Launch Robot after creating scripts check box to start Robot
automatically after you plan a new script.

– Clear the Launch Robot a fter creating scripts check box to prevent Robot
from starting automatically after you plan a new script.

3 . Click O K .

Deleting Scripts
There may be times when you want to delete scripts that are no longer useful.
To delete a script:

ã Right-click a script in the Requirements H ierarchy and click D elete.

Deleting a GU I script from the repository also deletes its corresponding script file
(.rec), executable file (.sbx), verification points, and low-level scripts.

Deleting a virtual user script deletes the .s file and its properties, but not the
associated watch file (.wch).

For information about deleting scripts from Robot, see Deleting Scripts on page 7-15.
For information about deleting scripts from the Query window, see Deleting Scripts,
Schedules, and Sessions on page 15-3.

Importing Scripts from Other Projects
You can use the Import Test Assets wizard to import scripts from another project in
the same repository or from a different repository.

To import a script:

1 . Click File → Import Test Assets.

2 . Select Script from the list, click one of the O verwrite options, and click N ext to
move to the next page.

3 . Select the repository and project that contain the scripts you want to import.
Then, type a user ID and password for the project and repository and click N ext.

4 . Select the scripts you plan to import and click N ext . If necessary, select a query
from the list to display just the types of scripts you are interested in. For details
about how to work with queries, see Chapter 15, Querying the Rational Repository.
2 -1 8

Plann ing LoadTest Schedu les
5 . Review the summary page that is displayed. If you want to change any settings,
click Back. If you are satisfied with the settings, click Finish.

TestManager displays a status window while the scripts are being imported.

Planning LoadTest Schedules

If you are a Rational LoadTest user, you can plan and organize your LoadTest
schedules before you actually build them. A schedule is a file that contains scripts,
information about how to run the scripts, and information about how to coordinate
script playback. You can plan your LoadTest schedules in much the same way that
you plan your scripts.

To plan your schedules:

1 . Right-click the requirement you want to attach the schedule to and click
Plan → Schedule, or click File → Plan → Schedule.

2 . Type a name for the schedule. The name can contain up to 40 characters and
should be similar to the requirement name.

3 . Type a brief explanation of the schedule in the D escription box.

4 . Select the schedule’s developer in the O wner list. Owners are defined in
Rational Administrator.

5 . Click O K .

Attaching Schedules to Test Requirements
You can attach a LoadTest schedule to a requirement just as you would attach a
script. You can attach a schedule to a requirement from the Requirements H ierarchy
or from the Plan Schedule dialog box. A schedule can be attached to only one
requirement at a time.

N O TE: This feature requires Rational Suite PerformanceStudio.
2 -1 9

Plann ing Your Tests
Attaching Schedules from the Requirements Hierarchy
To attach a schedule to a requirement from the Requirements H ierarchy:

1 . Right-click a requirement in the hierarchy and click Attach Schedule, or select
a requirement in the hierarchy and click Edit → Attach Schedule.

2 . Select a query from the list. The query lets you narrow down the list of
schedules that are displayed.

3 . Select the schedule from the list and click O K to attach it to the requirement.

The schedule appears in the hierarchy beneath the requirement.

Attaching Schedules from the Plan Schedule Dialog Box
To attach a schedule to a requirement from the Plan Schedule dialog box:

1 . Click File → Plan → Schedule.

2 . Type the name of the schedule.

3 . Click the Test Requirem ent tab.

4 . Click Select to open the Requirements H ierarchy. Select the test requirement
you want to attach the schedule to.

5 . Click O K to close the Requirements H ierarchy.

6 . Click O K to close the Plan Schedule dialog box.

Detaching a Schedule from a Requirement
To detach a schedule from a requirement, right-click the schedule in the
Requirements H ierarchy and click D etach, or click Edit → D etach.

Moving a Schedule from One Requirement to Another
To move a schedule to a different requirement, select the schedule in the
Requirements H ierarchy and drag it to a different requirement, or use the
Attach Schedule command to attach the schedule to the new requirement.

Referencing Specification Files
A schedule can reference a specification file just as a script can. For more
information, see Referencing Specification Files on page 2-15.
2 -2 0

M anaging Requ irem ents
Customizing Schedule Properties
With TestManager, you can add your own customized schedule properties. You can
define both the property (the label) and the values that can be used with that
property. For information about customizing schedule properties, see Customizing
Scripts and LoadTest Schedules on page 2-22.

Displaying Schedule Statistics
To display statistics about a schedule, such as the creation date, the modification date,
or the name of the developer:

1 . Right-click a schedule in the Requirements H ierarchy and click Properties.

2 . Click the Statistics tab.

Deleting Schedules
There may be times when you want to delete schedules that are no longer useful.
To delete a schedule, right-click a schedule in the Requirements H ierarchy and click
D elete.

You can also delete schedules from the Query window. For information, see Deleting
Scripts, Schedules, and Sessions on page 15-3.

Managing Requirements

As a software project evolves, some of your test requirements may need to be
changed or deleted. TestManager helps you maintain requirements throughout the
project’s life cycle.

Editing Requirement Properties
To edit requirement properties:

1 . Click File → O pen Requirem ents to open the Requirements H ierarchy.

2 . Right-click a requirement in the hierarchy and click Properties.

3 . If necessary, edit the requirement text.

4 . Click the Revision tab. U pdate the description and label as needed. Click the
H istory button to view the requirement’s history.

5 . Click the Attributes tab. If necessary, update the attribute values.

6 . Click O K .
2 -2 1

Plann ing Your Tests
Deleting Requirements
When you delete a requirement, all of its child requirements are also deleted. In
addition, any references to the deleted test requirements in scripts are removed.

To delete a test requirement:

1 . From the Requirements H ierarchy, right-click the requirement to delete.

2 . Click D elete.

3 . Click Yes to confirm the deletion.

Customizing Scripts and LoadTest Schedules

You can tailor much of the terminology associated with scripts and schedules to the
standards and practices used within your organization. For example, you can:

ã Customize the values that are displayed in the Script Properties and Plan Script
dialog boxes, such as the list of operating environments and test types.

ã Define custom fields to be used with scripts and schedules.

ã Add custom labels to be used with custom fields.

Customizing the Environment List
You can add new operating environments to the list and modify or delete existing
ones.

To add, modify, or delete environments:

1 . Click Tools → Custom ize → Environm ents.

2 . Click the appropriate button.
2 -2 2

Custom izing Scrip ts and LoadTest Schedu les
Customizing the Purpose List
Another way to customize scripts is to edit the purpose list. You assign a purpose to
indicate why you would use a script. You can add new purposes to the list and modify
or delete existing ones.

To add, modify, or delete purposes:

1 . Click Tools → Custom ize → Purpose.

2 . Click the appropriate button.

Defining Custom Field Labels and Values
When you use the Plan Script and Plan Schedule dialog boxes to plan new scripts and
schedules, you assign a name, description, owner, purpose, environment, and type.

You can add your own values to the purpose, environment, and type lists. You can
also customize the field labels and list items that appear on the Custom tab of the
Plan Script, Plan Schedule, Script Properties, and Schedule Properties dialog boxes.

For example, you could change Custom 1 to Test Type and add Test Type values,
such as UI, functional, performance, and so on. You could change Custom 2 to
something that might indicate the complexity level or whether the script or schedule
has any dependencies.

N O TE: The examples used in this section show how to customize field labels
and values for your scripts. U se the same procedures to customize field labels and
values for your schedules.

Field labels
Values
2 -2 3

Plann ing Your Tests
Defining Custom Field Labels
To define custom field labels for your scripts:

1 . Click Tools → Custom ize → Script Custom Fields.

2 . Click Labels.

3 . Replace Custom Label 1 , Custom Label 2 , or Custom Label 3 with your own
field labels and click O K to return to the Customize Script Custom Fields dialog
box.

4 . Click O K .

Click to rep lace field
labels Custom 1 and
Custom 2 .

Click to add your
own f ield va lues.

Field labels that
you can replace

Replace f ield labels
with labels of your
own .
2 -2 4

Custom izing Scrip ts and LoadTest Schedu les
Modifying Custom Field Values
To modify values for custom fields:

1 . Click Tools → Custom ize → Script Custom Fields.

2 . Click either Custom 1 or Custom 2 .

3 . Click one of the default values, Value 1 or Value 2 .

4 . Click M odify, type the new name for the value, and click O K.

5 . Repeat steps 2 – 4 to modify other custom values.

Adding Custom Field Values
To add a value to a custom field:

1 . Click Tools → Custom ize → Script Custom Fields.

2 . Click either Custom 1 or Custom 2 .

3 . Click Add, type the name for the new value, and click O K.

4 . Repeat steps 2 and 3.

5 . Click O K .
2 -2 5

Plann ing Your Tests
2 -2 6

ã ã ã C H A P T E R 3

Managing Builds, Log Folders, and Logs
This chapter explains how to manage builds, log folders, and logs. It includes the
following topics:

ã Overview

ã Displaying builds in the Asset Browser

ã Creating a new build

ã Copying, renaming, and deleting builds

ã Renaming and deleting logs and log folders

ã Displaying log properties

ã Viewing logs

ã Working with build states

Overview

After you complete the test planning phase of your project, you can begin the test
development and analysis phases. In the test planning phase (described in Chapter 2,
Planning Your Tests) you create test documents, define test requirements, and plan test
scripts and schedules.

In the test development phase, you record the scripts and create the schedules that
you planned in the planning phase. In the analysis phase, you play back the scripts,
run the schedules, and analyze the results.

Before you start the test development and analysis phases, you should know how to
use TestManager to organize both the software builds and the test logs that are
generated during the test analysis phase.
3 -1

M anag ing Builds, Log Folders, and Logs
Using Builds in Functional Testing
Functional tests compare the way an application-under-test actually behaves in the
current build against its expected behavior as recorded and validated in a previous
build. Typically, as software developers add new features or fix defects, a new build
is generated. Because this process happens on a continual basis during application
development, hundreds of builds may be generated.

You use TestManager to define and manage builds. You can assign properties such
as a name, description, owner, and build state. Afterwards, you can copy, rename, or
delete a particular build as necessary.

Generating Log Files
Your test team may develop hundreds of scripts to validate your test requirements.
When you play back a script, Robot runs the script and generates a log file that reports
the results. A log file contains the record of events that occurred during playback of
a script. Each log file clearly specifies the pass/fail results of each verification point in
the script, as shown in the following figure:

Because you normally play back scripts against each build of the application-under-
test, you can easily generate thousands of log files. You can use these log files to
generate reports that will help you determine the quality of each build and the
progress of your testing effort. For example, the Execution Coverage report tells you
the percentage and number of tests that have passed or failed for a specific build. For
information about reports, see Chapter 16, Running TestManager Reports.
3 -2

O verview
Organizing Log Folders
To more easily manage your log files, you can create log folders. Each build folder in
the Asset Browser contains one default log folder, named D efault. You can store all
of your log files in the Default folder, or you can create your own log folders. For
information about adding log folders, see Creating a N ew Build on page 3-5.

You can name and organize your log folders in any way that makes sense for your
project. O ne logical way to organize your log folders is to mirror the top-level
organization of your Requirements H ierarchy. If your Requirements H ierarchy is
organized according to functional area, for example, you could create log folders for
each of those functional areas.

When you play back a script in Robot, Robot may prompt you to specify a particular
build and log folder in which to store the log. For information about setting up
Robot to prompt you for the build and log folder, see Chapter 9, Playing Back GUI
Scripts.

Naming Log Folders for LoadTest Users

When you run a LoadTest schedule, LoadTest prompts you to specify the name of
the build and log folder in which to store the log file that is created. By default,
LoadTest uses the name of the schedule for the log folder name. Typically, you store
all of the logs for that schedule in the same folder.

Log fo lders

N O TE: This feature requires Rational Suite PerformanceStudio.
3 -3

M anag ing Builds, Log Folders, and Logs
Displaying Builds in the Asset Browser

Builds are displayed as one of the top-level folders in the Asset Browser. The Asset
Browser is the TestManager window that you can use to create, manage, and display
builds, queries, and reports, as show in the following figure:

You can organize the way builds are displayed in the Asset Browser in one of two
ways:

ã Sequentia lly – Organized in alphanumeric order.

ã By State – Organized within the build state to which they are assigned. For
information about build states, see Working with Build States on page 3-9.

The following figure displays the build portion of the Asset Browser and compares
the two ways to organize the folder:

To toggle between the two views:

1 . Right-click a build folder or a specific build in the Asset Browser.

2 . Click List Builds Sequentia lly or List Builds by State.

U ser-defined log fo lder

Log files

D efau lt log folder

Bu ilds listed
sequentia lly

Bu ilds listed by
curren t state
3 -4

Creating a N ew Bu ild
To define the default view:

1 . Click Tools → O ptions.

2 . Click the M iscellaneous tab.

3 . Click List builds sequentia lly or List builds by state.

Creating a New Build

You can create new builds and copy, rename, or delete existing ones. When you
create a new build, you can add important information about the build in the form
of notes. For example, you can include release note information or warnings to
testers.

To create a new build:

1 . Do one of the following:

– Right-click the Builds folder or any build states folder in the Asset Browser
and click N ew Build. (For information about build states, see Working with
Build States on page 3-9.)

– Click Tools → M anage Builds, and then click N ew.

2 . Type a name (40 characters maximum) for the build.

3 . Type a description (255 characters maximum) of the build.

4 . Select the owner responsible for the build. Owners are defined in the Rational
Administrator. For details, see the Using the Rational Administrator manual.

5 . Select the build state.
3 -5

M anag ing Builds, Log Folders, and Logs
6 . Click the Specifications tab.

7 . Type any notes that are relevant to this particular build.

8 . To add a log folder, click Add. Type the name of the new log folder and click O K.

9 . Click O K .

Copying, Renaming, and Deleting Builds

After you create a build, organize your log folders, and play back your scripts, you
can copy the entire build folder in preparation for testing the next build.

When you copy a build, you also copy the log folders that reside within the build
folder. The logs themselves are not copied because they represent the test results for
only one particular build.

In addition, you can rename or delete builds. For example, if a particular build has
been approved as the beta release, you might want to rename it Beta . After the
project is finished, you might want to archive your alpha, beta, and final builds and
delete all of the other ones. When you delete a build, you delete everything contained
within the build folder, including log folders and logs.

In the Specif icat ions
tab, you can add bu ild
notes and log fo lders.

N O TE: There are two other ways to create log folders. You can right-click a
build in the Asset Browser and click N ew Log Folder, or you can create a
new log folder from the dialog box that appears when you play back a script
in Robot.
3 -6

Copying , Renam ing, and D eleting Bu ilds
You can copy, rename, and delete builds from the Asset Browser or from the Manage
Builds dialog box.

To copy, rename, or delete builds from the Asset Browser:

1 . Right-click a build in the Asset Browser.

2 . Do one of the following:

– Click Copy, type a name for the new build, and click O K .

– Click Renam e, type the new name for the build, and press EN TER.

– Click D elete, and then click Yes to delete the build.

To copy, rename, or delete builds from the Manage Builds dialog box:

1 . Click Tools → M anage Builds.
3 -7

M anag ing Builds, Log Folders, and Logs
2 . Select a build from the list and do one of the following:

– Click Renam e, type the new name for the build, and click O K .

– Click Copy, type a name for the new build, and click O K .

– Click D elete, and then click Yes to delete the build.

3 . Click Close.

Renaming and Deleting Logs and Log Folders

When you play back a script in Robot or run a schedule in LoadTest, you assign a
name to the log file that is created. By default, a log has the same name as the script
or schedule. Later, you can rename the log or log folder from the Asset Browser in
TestManager. You can also delete logs and log folders from the Asset Browser.

To rename or delete logs and log folders:

1 . Right-click a log or log folder in the Asset Browser.

2 . Do one of the following:

– Click Renam e, type the new name for the log or log folder, and press
EN TER.

– Click D elete, and then click Yes to delete the log or log folder.

Log fo lder
Log
3 -8

D isplaying Log Properties
Displaying Log Properties

Log properties include a name and description, as well as the build and log folder to
which the log belongs.

To display log properties:

1 . Right-click a log in the Asset Browser.

2 . Click Properties.

3 . Optionally, you can edit the log’s description.

Viewing Logs

To view a log in the LogViewer:

ã Double-click a log in the Asset Browser, or right-click a log in the Asset Browser
and click O pen.

For information about logs, see Chapter 10, Reviewing Logs with the LogViewer.

Working with Build States

You can organize the builds in the Asset Browser sequentially or by build state. Build
states provide a way to organize builds within a build hierarchy. When you organize
by build state, you can use the default build states that are provided (Available,
Pending Validation, Rejected, and Scheduled), or you can create your own. You can
also modify or delete the existing build states.
3 -9

M anag ing Builds, Log Folders, and Logs
To add a new build state:

1 . Click Tools → Custom ize → Build States.

2 . Click Add. Type a build state, and then click O K to add it to the list.

3 . Click O K .

To modify or delete an existing build state:

1 . Click Tools → Custom ize → Build States.

2 . Select a build state from the list.

3 . Do one of the following:

– Click M odify, type a new name for the build state, and then click O K.

– Click D elete.

4 . Click O K .
3 -1 0

ã ã ã Part III

D eveloping Tests

ã ã ã C H A P T E R 4

Recording GUI Scripts
This chapter describes the recording process and tells you how to record GU I scripts
in Rational Robot. It includes the following topics:

ã The recording process

ã The recording workflow

ã Before you begin recording

ã Enabling IDE applications for testing

ã Setting GU I recording options

ã U sing advanced features before recording

ã Recording a new GU I script

ã Defining script properties

ã Coding a GU I script manually

ã Testing your recorded script

ã Creating shell scripts to play back scripts in sequence

The Recording Process

When you record a GU I script, Robot records:

ã Your actions as you use the application-under-test. These user actions include
keystrokes and mouse clicks that help you navigate through the application.

N O TE: For information about recording virtual user scripts, see the Using
Rational LoadTest manual.
4 -1

Record ing GU I Scrip ts
ã Verification points that you insert to capture and save information about specific
objects. A verification point is a point in a script that you create to confirm the
state of an object across builds. During recording, the verification point captures
object information and stores it as the baseline. During playback, the verification
point recaptures the object information and compares it to the baseline.

The recorded GU I script establishes the baseline of expected behavior for the
application-under-test. When new builds of the application become available, you
can play back the script to test the builds against the established baseline in a fraction
of the time that it would take to perform the testing manually.

The Recording Workflow

Typically, when you record a GU I script, your goal is to:

ã Record actions that an actual user might perform (for example, clicking a menu
command or selecting a check box).

ã Create verification points to confirm the state of objects across builds of the
application-under-test (for example, the properties of an object or the text in an
entry field).

The following figure outlines the general process for recording a GU I
script.

Set up test environment

Set recording options

Perform user actions

End recordingStart recording

GUI Script Recording Workflow

Create verification points
4 -2

Before You Beg in Recording
Before You Begin Recording

You should plan to use Robot at the earliest stages of the application development
and testing process. If any Windows GU I objects such as menus and dialog boxes
exist within the initial builds of your application, you can use Robot to record the
corresponding verification points.

Consider the following guidelines before you begin recording:

ã Establish predictable start and end states for your scripts.

ã Set up your test environment.

ã Create modular scripts.

ã Plan your scripts in Rational TestManager.

These guidelines are described in more detail in the following sections.

Establishing Predictable Start and End States for Scripts
By starting and ending the recording at a common point, scripts can be played back
in any order, with no script being dependent on where another script ends. For
example, you can start and end each script at the Windows desktop or at the main
window of the application-under-test.

Setting Up Your Test Environment
Any windows that are open, active, or displayed when you begin recording should be
open, active, or displayed when you stop recording. This applies to all applications,
including Windows Explorer, e-mail, and so on.

Robot can record the sizes and positions of all open windows when you start
recording, based on the recording options settings. (For information about setting
the recording options, see Setting GUI Recording Options on page 4-6.) During
playback, Robot attempts to restore windows to their recorded states, and inserts a
warning in the log if it cannot find a recorded window.

In general, close any unnecessary applications before you start to record. For stress
testing, however, you may want to deliberately increase the load on the test
environment by having many applications open.

Creating Modular Scripts
Rather than defining a long sequence of actions in one GU I script, you should define
scripts that are short and modular. Keep your scripts focused on a specific area of
testing — for example, on one dialog box or on a related set of recurring actions.
4 -3

Record ing GU I Scrip ts
When you need more comprehensive testing, modular scripts can easily be called
from or copied into other scripts. They can also be grouped into shell scripts, which
are top-level, ordered groups of scripts.

The benefits of modular scripts are:

ã They can be called, copied, or combined into shell scripts.

ã They can be easily modified or re-recorded if the developers make intentional
changes to the application-under-test.

ã They are easier to debug.

Planning Scripts in TestManager
Planning scripts and defining script properties are important parts of the test
planning process. You typically define a script’s properties in TestManager before you
record the script in Robot. You can then start Robot, select a planned script, and start
recording.

Script properties include:

ã The script name, description, owner, purpose, and test environment.

ã Related assets such as test requirements.

ã N otes and specification files.

ã Custom keywords.

To plan scripts and define properties before you record the script, open TestManager
and click File → Plan → GU I Script. For more information, see Planning Scripts on
page 2-10.

U se th is d ia log box to
define scrip t properties in
TestM anager before you
record scrip ts.
4 -4

Enab ling ID E App lications fo r Testing
You can also define or change these properties in Robot when you begin recording
the script or after you record the script. For information, see Defining Script Properties
on page 4-24.

Enabling IDE Applications for Testing

Robot provides specialized support for testing the objects in applications that are
created in many integrated development environments (IDEs).

To successfully test the objects in Oracle Forms, H TML, Java, C+ + , and Visual
Basic 4.0 applications, you need to enable the applications as follows before you start
recording your scripts:

ã O racle Form s – Install the Rational Test Enabler for Oracle Forms. Run the
Enabler to have it add the Rational Test Object Testing Library and three
triggers to the .fmb files of the application. For information, see Chapter 18,
Testing Oracle Forms Applications.

ã H TM L – While recording or editing a script, use the Start Browser toolbar
button to start Internet Explorer from Robot. This loads the Rational ActiveX
Test Control, which lets Robot recognize Web-based objects. For information,
see Chapter 19, Testing HTML Applications.

ã Java – Run the Java Enabler to have it scan your hard drive for Java
environments such as Web browsers and Sun JDK installations that Robot
supports. The Java Enabler only enables those environments that are currently
installed. For information, see Chapter 20, Testing Java Applets and Applications.

ã C/C+ + – To test the properties and data of ActiveX controls in your applications,
install the Rational ActiveX Test Control. This is a small, non-intrusive custom
control that acts as a gateway between Robot and your application. It has no
impact on the behavior or performance of your application and is not visible at
runtime. Manually add the ActiveX Test Control to each O LE container
(Window) in your application. For instructions, see the documentation that
comes with your C/C+ + development environment.

ã Visual Basic 4 .0 – Install the Rational Test Enabler for Visual Basic. Attach the
Enabler to Visual Basic as an add-in. H ave the Enabler add the Rational ActiveX
Test Control to every form in the application. This is a small, non-intrusive
custom control that acts as a gateway between Robot and your application. For
information, see Visual Basic support, making Visual Basic applications testable in the
Robot H elp Index.
4 -5

Record ing GU I Scrip ts
You can install the Enablers and the ActiveX Test Control from the Rational
Software Setup wizard. For instructions, see one of the following manuals: Installing
Rational Suite or Installing Rational TeamTest and Rational Robot.

Setting GUI Recording Options

GU I recording options provide instructions to Robot about how to record and
generate GU I scripts. You can set these options either before you begin recording or
early in the recording process.

To set the GU I recording options:

1 . Open the GU I Record Options dialog box by doing one of the following:

– Before you start recording, click Tools → GU I Record O ptions.

– Start recording by clicking the Record GU I Script button on the toolbar.
In the Record GU I dialog box, click O ptions.

N O TE: You do not need to enable applications created in Visual Basic 5.0 and
later, PowerBuilder, or PeopleTools.

For deta iled in form ation about
an item , click the question
m ark, and then click the item .
4 -6

Setting GU I Record ing O ptions
2 . Set the options on each tab.

3 . Click O K .

Naming Scripts Automatically
Robot can assist you in assigning names to scripts with its script autonaming feature.
Autonaming inserts your specified characters into the N am e box of a new script and
appends a consecutive number to the prefix.

This is a useful feature if you are recording a series of related scripts and want to
identify their relationship through the prefix in their names. For example, if you are
testing the menus in a Visual Basic application, you might want to have every script
name start with VBMenu.

To turn on script autonaming:

1 . Open the GU I Record Options dialog box. (See Setting GUI Recording Options
on page 4-6.)

2 . In the General tab, type a prefix in the Prefix box.

Clear the box if you do not want a prefix. If the box is cleared, you will need to
type a name each time you record a new script.

3 . Click O K or change other options.

The next time you record a new script, the prefix and a number appear in the N am e
box of the Record GU I dialog box.

In the following figure, the autonaming prefix is Test. When you record a new script,
Test7 appears in the N am e box because there are six other scripts that begin with Test.
4 -7

Record ing GU I Scrip ts
If you change the script autonaming prefix by clicking O ptions in the Record GU I
dialog box, changing the prefix, and then clicking O K , the name in the N am e box
changes immediately.

Controlling How Robot Responds to Unknown Objects
During recording, Robot recognizes all standard Windows GU I objects that you
click, such as check boxes and list boxes. Each of these objects is associated with one
of a fixed list of object types. The association of an object with an object type is
generally based on the class name of the window associated with the object.

Robot also recognizes many custom objects defined by IDEs that Robot supports,
such as Visual Basic, Oracle Forms, Java, and H TML. For example, if you click a
Visual Basic check box, Robot recognizes it as a standard Windows check box. This
mapping is based on the object’s Visual Basic assigned class name of
ThunderCheckBox.

These built-in object m appings are delivered with Robot and are available to all
users no matter which repository they are using.

The pref ix in the Scrip t autonam ing box appears
as the nam e of the new scrip t. A consecutive
num ber is appended to the prefix.

Click to change the prefix
for scrip t au tonam ing.
4 -8

Setting GU I Record ing O ptions
During recording, you might click an object that Robot does not recognize. In this
case, Robot’s behavior is controlled by a recording option that you set. You can have
Robot either:

ã Open the Define Object dialog box, so that you can map the object to a known
object type.

Mapping an object to an object type permanently associates the class name of the
object’s window with that object type, so that other objects of that type will be
recognized. For more information, see Defining Unknown Objects During
Recording on page 4-21.

ã Automatically map unknown objects encountered while recording with the
Generic object type. This permanently associates the class name of the
unknown object’s window with the Generic object type.

This is a useful setting if you are testing an application that was written in an IDE
for which Robot does not have special support and which therefore might
contain many unknown objects. When an object is mapped to the Generic object
type, Robot can test a basic set of its properties, but it cannot test the special
properties associated with a specific object type. Robot also records the object’s
x,y coordinates instead of using the more reliable object recognition methods to
identify the object. (For information about the recognition methods, see the
following section, Selecting an Object Order Preference.)

These custom object m appings are stored in the repository that was active when
the mappings were created.

To control how Robot behaves when it encounters an unknown object during
recording:

1 . Open the GU I Record Options dialog box. (See Setting GUI Recording Options
on page 4-6.)

2 . In the General tab, do one of the following:

– Select D efine unknown objects as type “Generic” to have Robot
automatically associate unknown objects encountered while recording with
the Generic object type.

– Clear D efine unknown objects as type “Generic” to have Robot suspend
recording and open the Define Object dialog box if it encounters an
unknown object during recording. U se this dialog box to associate the
object with an object type.

3 . Click O K or change other options.
4 -9

Record ing GU I Scrip ts
You can also map object types and classes before you start recording. For information,
see Mapping Object Types and Classes Before Recording on page 4-14.

Selecting an Object Order Preference
Robot uses a variety of object recognition m ethods to uniquely identify objects in
the application-under-test that are acted on during recording sessions. For example,
Robot can identify a check box in the application-under-test by its object name,
associated label or text string, index value, or ID value.

These recognition methods are saved as arguments in script commands so that
Robot can correctly identify the same objects during playback.

Robot has two predefined preferences for the recognition method order for each
standard object type. While recording an action on an object, Robot tries each
method within the selected preference in sequence until it finds a method that
uniquely identifies the object.

The following table describes the two predefined preferences.

The < Default> object order preference is the initial setting. If you plan to test C+ +
applications, change the preference to C+ + Recognition O rder.

N O TE: The custom mapping from class name to object type is stored in the
repository and is shared among all users of the repository.

Object order
preference

Recognition
method order

Comments

< Default> Object N ame
Label and/or Text
Index
ID

Index comes before ID. In some
environments, such as PowerBuilder
and Visual Basic, the ID changes each
time the developer creates an
executable file and is therefore not a
good recognition method.

C+ + Recognition
Order

Object N ame
Label and/or Text
ID
Index

ID comes before index. In some
environments, such as C+ + , the ID
does not usually change and is
therefore a good recognition method.
4 -1 0

U sing Advanced Features Before Recording
To change the object order preference:

1 . Open the GU I Record Options dialog box. (See Setting GUI Recording Options
on page 4-6.)

2 . Click the O bject Recognition O rder tab.

3 . Select a preference in the O bject order preference list.

4 . Click O K or change other options.

For information about changing the order of the recognition methods within an
object order preference, see Customizing the Object Recognition Method Order on page
4-12.

Using Advanced Features Before Recording

In addition to setting the standard GU I recording options, you can take some
additional steps to refine your testing. You can:

ã Customize the order of the object recognition methods to make the script more
readable and stable.

ã Map object types and classes to identify custom objects during record and
playback.

Selecting C+ +
Recogn it ion O rder ...

... sets the recognit ion
m ethod order so that ID
com es before Index.

N O TE: The object order preference is specific to each user. For example, you can
record with C+ + preferences while another user is recording with < Default>
preferences at the same time.
4 -1 1

Record ing GU I Scrip ts
Customizing the Object Recognition Method Order
As explained in the previous section, Robot has two predefined preferences for the
recognition method order for each standard object type: < Default> and C+ +
Recognition Order. When you record an action on an object, Robot tries each
method within the selected preference in sequence until it finds one that uniquely
identifies the object.

You can redefine the order in which Robot tries recognition methods for each object
type. This order has an effect on both the readability and stability of script
commands. For example, when you read script files, it is easier to locate a command
on a specific object if that command uses the object name or label for identification.
H owever, if the object name or label is likely to change between builds, another
recognition method may provide more stability.

You should evaluate your own development and testing environment before you
change the default order of object recognition methods.

Important Notes
ã Changes to the recognition method order affect scripts that are recorded after

the change. They do not affect the playback of scripts that have already been
recorded.

ã Changes to the recognition method order are stored in the repository. For
example, if you change the order for the CheckBox object, the new order is
stored in the repository and affects all users of that repository.

ã Changes to the order for an object affect only the currently-selected preference.
For example, if you change the order for the CheckBox object in the < Default>
preference, the order is not changed in the C+ + preference.

Changing the Order of Object Recognition Methods
To change the order of the object recognition methods for an object type:

1 . Open the GU I Record Options dialog box. (See Setting GUI Recording Options
on page 4-6.)

2 . Click the O bject Recognition O rder tab.
4 -1 2

U sing Advanced Features Before Recording
3 . Select a preference in the O bject order preference list.

If you will be testing C+ + applications, change the object order preference to
C+ + Recognition O rder.

4 . From the O bject type list, select the object type to modify.

The fixed set of recognition methods for the selected object type appears in the
Recognition m ethod order list in its last saved order.

5 . Select an object recognition method in the list, and then click M ove U p or M ove
D own.

Changes made to the recognition method order take place immediately, and
cannot be undone by the Cancel button. To restore the original default order,
click D efault.

6 . Click O K .

N O TE: Changes to the recognition method order are stored in the repository.
For example, if you change the order for the CheckBox object, the new order is
stored in the repository and affects all users of that repository.
4 -1 3

Record ing GU I Scrip ts
Creating a New Object Order Preference
Robot has two predefined object order preferences: < Default> and C+ +
Recognition Order. You can create additional preferences to handle special
situations.

To create a new object order preference:

1 . In an ASCII editor, create an empty text file with the extension .ord.

2 . Save the file in the Dat folder of the repository.

3 . Click Tools → GU I Record O ptions.

4 . Click the O bject Recognition O rder tab.

5 . From the O bject order preferences list, select the name of the file you created.

6 . Change the method order to customize your preferences.

Mapping Object Types and Classes Before Recording
As explained in Controlling How Robot Responds to Unknown Objects on page 4-8, Robot
recognizes all standard Windows GU I objects and many custom objects. You can
also set a recording option so that Robot either automatically maps unrecognized
objects to the Generic object type, or stops during recording so that you can map the
object to a standard object type.

If you know in advance that the application-under-test contains a custom object or
any object that Robot does not recognize, you can create a custom object mapping
before you start recording. You do this by adding the object’s class to the list of classes
that Robot recognizes, and then associating the class to a standard object type. Robot
saves this custom class/object-type mapping in the repository and uses it to identify
the custom object during playback.

Defining an Object Class Mapping
To define an object class and map an object type to it:

1 . Identify the class name of the window that corresponds to the object.

You can use the Spy+ + utility in Visual C+ + to identify the class name. You can
also use the Robot Inspector tool by clicking Tools → Inspector.

N O TE: The custom mapping from class name to object type is stored in the
repository and is shared among all users of the repository. Be careful about
changing existing mappings because this may cause already-recorded scripts to
play back incorrectly.
4 -1 4

U sing Advanced Features Before Recording
2 . In Robot, click Tools → Genera l O ptions, and then click the O bject M apping
tab.

3 . From the O bject type list, select the standard object type to be associated with
the new object class name.

Robot displays the class names already available for that object type in the
O bject classes list box.

4 . Click Add.

5 . Type the class name you identified in step 1 and click O K .

6 . Click O K .

Modifying or Deleting a Custom Class Name
To modify or delete a custom class name:

1 . Click Tools → Genera l O ptions, and then click the O bject M apping tab.

2 . From the O bject type list, select the standard object type that is associated with
the object class name.

Robot displays the class names already available for that object type in the
O bject classes list.

3 . From the O bject classes list, select the name to modify or delete.

N O TE: An object class can be mapped to only one object type. If you try to map
an object class to more than one object type, a message asks you to confirm that
you want to remap the class.
4 -1 5

Record ing GU I Scrip ts
4 . Do one of the following:

– To modify the class name, click M odify. Change the name and click O K .

– To delete the object class mapping, click D elete. Click O K at the
confirmation prompt.

5 . Click O K .

Recording a New GUI Script

To record a GU I script:

1 . Prepare to record the script. (See Before You Begin Recording on page 4-3.)

2 . If necessary, enable your application for testing. (See Enabling IDE Applications for
Testing on page 4-5.)

3 . Make sure your recording options are set appropriately for the recording session.
(See Setting GUI Recording Options on page 4-6.)

4 . Click the Record GU I Script button on the toolbar to open the Record GU I
dialog box.

N O TE: You cannot modify or delete a built-in class name.

Type a nam e or select
a scrip t from the list .

Select a query to filter
the list of scrip ts.

M odify a query.

Show nam es of scrip ts.

Show deta ils o f scrip ts.

Lists scrip ts based on
the selected query.

Change record ing options. Change propert ies for previously defined ,
recorded , or generated scrip ts.
4 -1 6

Recording a N ew GU I Script
5 . Type a name (40 characters maximum) or select a script from the list.

The listed scripts have already been defined in TestManager, recorded in Robot,
or generated in TestFactory. To change the list, select a query from the Q uery
list. The query lets you narrow down the displayed list, which is useful in
projects with hundreds of scripts. You create queries in TestManager, and you
modify queries in TestManager or Robot. (For information about queries, see
Chapter 15, Querying the Rational Repository.)

If a prefix has been defined for script autonaming, Robot displays the prefix in
the N am e box. To edit this name, either type in the N am e box, or click
O ptions, change the prefix in the Prefix box, and click O K . (For more
information, see N aming Scripts Automatically on page 4-7.)

6 . To change the recording options, click O ptions. When finished, click O K .

7 . If you selected a previously defined or recorded script, you can change the
properties by clicking Properties. When finished, click O K .

To change the properties of a new script, record the script first. After recording,
click File → Properties. (For more information, see Defining Script Properties on
page 4-24.)

8 . Click O K to start recording. The following events occur:

– If you selected a script that has already been recorded, Robot asks if you
want to overwrite it. Click Yes. (If you record over a previously-recorded
script, you overwrite the script file but any existing properties are applied to
the new script.)

– Robot is minimized by default. (For information, see Restoring the Robot
Main Window During Recording on page 4-19.)

– The floating GU I Record toolbar appears. You can use this toolbar to pause
or stop recording, display Robot, and insert features into a script. (For more
information, see Using the GUI Record and GUI Insert Toolbars on page 4-20.)

9 . Start the application-under-test as follows:

a. Click the D isplay GU I Insert Toolbar button on the GU I Record toolbar.

b. Click the appropriate Start button on the GU I Insert toolbar.

c. Fill in the dialog box and click O K .

N O TE: It is essential that you start the application correctly, depending an
the type of application and how you plan to play it back. For information, see
Starting an Application on page 5-1.
4 -1 7

Record ing GU I Scrip ts
1 0 . Perform actions as needed to navigate through the application.

1 1 . Insert features as needed. You can insert features such as verification points,
comments, and timers. (For information, see Chapter 5, Adding Features to GUI
Scripts.)

1 2 . If necessary, switch from Object-Oriented Recording to low-level recording.
(For information, see Switching to Low-Level Recording on page 4-22.)

O bject-O riented Recording examines Windows GU I objects and other objects
in the application-under-test without depending on precise timing or screen
coordinates. Low-level recording tracks detailed mouse movements and
keyboard actions by screen coordinates and exact timing.

1 3 . When finished, click the Stop Recording button on the GU I Record toolbar.

The Robot main window appears as follows:

– The script that you recorded appears in a Script window within the Robot
main window.

– The verification points and low-level scripts in the script (if any) appear in
the Asset pane on the left.

– The text of the script appears in the Script pane on the right.

N O TE: The Build tab of the Output window shows compilation results
when you compile or play back a script. (For information, see Compiling
Scripts and SQABasic Library Source Files on page 7-7.) The Console tab of the
Output window is reserved for your messages. (For information, see the
SQABasic Language Reference.)

Asset pane

O utpu t window

Scrip t pane

Scrip t window

Console tabBu ild tab
4 -1 8

Recording a N ew GU I Script
1 4 . Optionally, change the script properties by clicking File → Properties. (For
information, see Defining Script Properties on page 4-24.)

Restoring the Robot Main Window During Recording
When you begin recording, the Robot main window becomes minimized by default,
allowing you unobstructed access to the application-under-test.

At any time during recording, you can restore the Robot window without affecting
the script you are recording. For example, you might want to restore the Robot
window to reset your recording options.

When Robot is minimized or is hidden behind other windows during recording, you
can bring it to the foreground in any of the following ways:

ã Click the O pen Robot W indow button on the GU I Record toolbar.

ã Click the Robot button on the Windows taskbar.

ã U se the hot key combination CTRL+ SH IFT+ F to display the window and
CTRL+ SH IFT+ H to hide the window.

You can also use the standard Windows ALT+ KEY combination.

To change the default behavior of the Robot main window and the default hot keys:

1 . Open the GU I Record Options dialog box. (See Setting GUI Recording Options
on page 4-6.)

2 . Click the Robot W indow tab.

3 . Select an option under D uring record.

4 . Change the letter of a hot key under H ot keys.

5 . Click O K .
4 -1 9

Record ing GU I Scrip ts
Using the GUI Record and GUI Insert Toolbars
When you begin to record a GU I script, Robot displays the floating GU I Record
toolbar. This toolbar gives you quick access to activities you might want to perform
during recording.

If you click the rightmost button on the GU I Record toolbar, the GU I Insert toolbar
appears. U se this toolbar to insert features (such as verification points, timers, and
comments) into the script.

For information about customizing the toolbars, see Appendix A, Working With
Toolbars.

Pausing and Resuming the Recording of a Script
During recording, if you click an enabled Robot toolbar button or menu command
(for example, Tools → GU I Record O ptions), Robot pauses the recording. After
Robot completes your action (for example, after you click O K in the dialog box),
recording resumes and you can continue working with the application-under-test.

You can also pause recording manually. For example, if you need to check your
e-mail, you can pause recording so that the mouse clicks and keystrokes are not
recorded as part of the script.

To pause recording:

ã Click the Pause button on the GU I Record toolbar. Robot indicates a paused
state by:

– Depressing the Pause button.

– Displaying Recording Suspended in the status bar.

– Displaying a check mark next to the Record → Pause command.

To resume recording:

ã Click Pause again.

Always resume recording with the application-under-test in the same state that
it was in when you paused.

D isplay the GU I insert too lbarPause record ing

Stop record ing O pen the Robot window
4 -2 0

Recording a N ew GU I Script
Defining Unknown Objects During Recording
As explained in Controlling How Robot Responds to Unknown Objects on page 4-8, Robot
recognizes all standard Windows GU I objects and many custom objects. You can
also set a recording option so Robot automatically associates unrecognized objects
with the Generic object type.

If you have not set this option, Robot displays the Define Object dialog box if you
click an object that Robot does not recognize. U se this dialog box to map the object
to a known object type.

To define an unknown object while recording:

1 . From the Type list in the Define Object dialog box, select an object type to
associate with the unknown object.

If possible, select an object type that is appropriate for the object you are
defining. For example, if the unknown object is a custom toolbar that has the
same behavior as a standard Windows toolbar and supports the same
programmatic interface, select Toolbar from the Type list. By mapping the
object to a known object type, you will make your script more readable and
Robot will be able to test the special properties associated with that object type.
Also, Robot will be able to identify the object more accurately by using the
object recognition methods.

H owever, using an incorrect object mapping can cause problems during
playback. For example, an object might look and act like a standard toolbar but
might actually not respond correctly to the messages that are sent to a standard
toolbar. If you are not sure which type to use, select Generic. Robot will be able
to test the basic set of the object’s properties, and will use the object’s x,y
coordinates to locate the object.

Th is unknown ob ject ...

... will be m apped to the
object type tha t you select ...

... based on the class nam e
of the window associated
with the object.
4 -2 1

Record ing GU I Scrip ts
2 . Click O K to continue recording.

Robot stores the mapping between the window class name and the object type
in the repository in case the same object type is captured again.

Important Notes
ã If you want Robot to automatically define unknown objects as Generic during

recording, click Tools → GU I Record O ptions, click the General tab, and select
D efine unknown objects as type "Generic". (For more information, see
Controlling How Robot Responds to Unknown Objects on page 4-8.)

ã If you know in advance that the application-under-test contains an object that
Robot will not recognize, you can map the class name of the object’s window to
a standard object type before recording. Robot saves this custom class/object-type
mapping in the repository and uses it to identify the custom object during
playback. (For more information, see Mapping Object Types and Classes Before
Recording on page 4-14.)

Switching to Low-Level Recording
Robot has two recording modes:

ã O bject-O riented Recording mode – Examines objects in the application-
under-test at the Windows layer during recording and playback. Robot uses
internal object names to identify objects, instead of using mouse movements or
absolute screen coordinates. If objects in your application’s graphical user
interface (GU I) change locations, your tests still pass because the scripts are not
location dependent. As a result, O bject-O riented Recording insulates the GU I
script from minor user interface changes and simplifies GU I script
maintenance.

ã Low-level recording m ode – Tracks detailed mouse movements and keyboard
actions by screen coordinates and exact timing. U se low-level recording when
you are testing functionality that requires the tracking of detailed mouse actions,
such as in painting, drawing, or CAD applications.

To switch between the two modes during recording, do one of the following:

ã Press CTRL+ SH IFT+ R.

ã Click the O pen Robot W indow button on the GU I Record toolbar (or press
CTRL+ SH IFT+ F) to bring Robot to the foreground. Click Record → Turn
Low-Level Recording O n/O ff.

N O TE: To redefine hot keys, click Tools → GU I Record O ptions, click the
Robot W indow tab, and type the letter for the hot key.
4 -2 2

Recording a N ew GU I Script
When you switch to low-level recording mode, Robot does the following:

ã Records low-level actions in a binary script file that cannot be edited, and stores
this file in the repository.

ã Adds a PlayJrnl command to your script that references the low-level script
file.

Robot gives each low-level script a consecutive number. These numbers appear in
the Asset pane in the Script window, under Low-Level Scripts.

To view the contents of the low-level binary file, double-click the file in the Asset
pane. This displays an ASCII version of the binary file in N otepad. The file lists the
actions that occurred during low-level recording. (For more information, see
Working with Low-Level Scripts on page 7-3.)

Ending the Recording of a GUI Script
You should finish recording by returning the application-under-test to the same state
it was in when recording began. This lets you play back the script without manually
resetting the environment.

If you started recording from the Windows desktop, stop recording at the desktop. If
you started recording from the main window of the application, stop recording at
the main window, making sure that the window is in the same state is was in when
you started recording. For example, if the application is an editor and it had no
documents open when you started recording, make sure that no documents are open
when you stop recording.

To end the recording of a script:

ã Click the Stop Recording button on the GU I Record toolbar.

Low-level
scrip t 0 01 in
repository

PlayJrn l com m and
referencing low-
level scrip t 0 01
4 -2 3

Record ing GU I Scrip ts
Defining Script Properties

Defining script properties is an important part of the test planning process. For that
reason, you typically define a script’s properties in TestManager before you record
the script. For more information, see Planning Scripts on page 2-10.

Script properties include:

ã The script’s name, description, owner, purpose, and test environment.

ã Related assets such as test requirements.

ã N otes and specification files.

ã Custom keywords.

You can also define or edit these properties after you record the script in Robot.

To define script properties in Robot:

1 . Do one of the following:

– If the script is open, click File → Properties.

– If the script is not open, click File → O pen → Script. Select the script and
click the Properties button.

2 . In the Script Properties dialog box, define the properties. (For more
information, see Planning Scripts on page 2-10.)

For detailed information about an item, click the question mark near the upper-
right corner of the dialog box, and then click the item.

3 . Click O K .

If you record over an existing GU I script, you overwrite the script file, but any
existing properties are applied to the new script.

Coding a GUI Script Manually

By far, the fastest and easiest way to generate a GU I script is to let Robot record your
actions and generate the script automatically. H owever, you can also hand-code a
GU I script using the SQABasic scripting language.

To code a script manually:

1 . In Robot, click File → N ew → Script .

2 . Type a script name (40 characters maximum) and, optionally, a description of the
script.
4 -2 4

Testing Your Recorded Script
3 . Click GU I.

4 . Click O K . Robot creates an empty script with the following lines:

Sub Main
Dim Result As Integer
’Initially Recorded: 01/17/00 14:55:53
’Script Name: GUI Script

End Sub

5 . Begin coding the GU I script.

For information about using the SQ ABasic scripting language, see the SQABasic
Language Reference. (In Robot, click H elp → SQ ABasic Reference.)

Testing Your Recorded Script

After you record a script, you can:

ã Play it back using the same version of the application-under-test.

ã Edit and compile it.

ã Debug it.

These steps are described briefly in the following sections.

Playing Back the Script
After you record a script, play it back to verify that it works as intended. U se the same
build of the application-under-test that you used to record the script. After you play
back the script, Robot writes the results to a log. U se the Rational LogViewer to view
the log. The results should validate the baseline of expected behavior for the
application-under-test.

For more information, see Chapter 9, Playing Back GUI Scripts and Chapter 10,
Reviewing Logs with the LogViewer.

Editing and Compiling the Script
After you play back a script, you may decide to edit the script to make it more usable.
For example, you may want to insert a new verification point or change some text of
the script. You may also want to print your script or compile changes.

For more information, see Chapter 7, Editing, Compiling, and Debugging Scripts.
4 -2 5

Record ing GU I Scrip ts
Debugging the Script
You may need to debug your script to locate errors. Robot includes a complete,
built-in debugging environment to assist you during the development phase of your
GU I script.

For more information, see Debugging GUI Scripts on page 7-9.

Creating Shell Scripts to Play Back Scripts in Sequence

After you have created each GU I script and verified that it performs as intended, you
may want to group the scripts into a shell script. A shell script is a script that plays
back other scripts in sequence.

For example, you could have:

ã One script that starts your application.

ã A second that searches for and opens a particular file.

ã A third that modifies the file.

ã A fourth that closes the application and returns to the starting point.

Combined into a single shell script, scripts can run in unattended mode and perform
comprehensive test coverage. The results from all scripts are stored in the same log,
which simplifies results analysis in the LogViewer.

For unattended testing, each shell script should return to a common point in the
application-under-test. This common point could be a main menu, a specific
window or dialog box, or even the Windows desktop. This assures that script
playback remains synchronized with the application-under-test.

Before creating a shell script, you must have already recorded the individual scripts
that you intend to include.

Creating a Shell Script
To create a shell script:

1 . Click File → N ew → GU I Shell Script .

2 . Type a name (40 characters maximum).

3 . Optionally, type a description.

4 . Click O K .
4 -2 6

Creating Shell Scripts to Play Back Scripts in Sequence
5 . To add scripts, select one or more scripts in the Available list and click > or > > .
Robot plays back scripts in the same order in which they appear in the Selected
list.

6 . Click O K .

The shell script contains a CallScript command followed by the name of each
script that you included.

Playing Back a Shell Script
You play back a shell script just like any other script. For information, see Chapter 9,
Playing Back GUI Scripts.

For unattended playback, however, do the following before you play back a shell
script:

1 . Click Tools → GU I Playback O ptions.

2 . In the Playback tab, clear the Acknowledge results check box.

This prevents a pass/fail result message box from appearing for each verification
point. You can still view the results in the log after playback.

3 . Set the other options in the tabs as appropriate. For information, see Setting GUI
Playback Options on page 9-4.

4 . Click O K .

When you play back the shell script, the results from all scripts are stored in the same
log, which simplifies results analysis in the LogViewer. For information, see Chapter
10, Reviewing Logs with the LogViewer.
4 -2 7

Record ing GU I Scrip ts
4 -2 8

ã ã ã C H A P T E R 5

Adding Features to GUI Scripts
This chapter describes the features that you can add to GU I scripts. It includes the
following topics:

ã Starting an application

ã Inserting a call to another script

ã Inserting verification points

ã Inserting timers

ã Inserting comments

ã Inserting log messages

ã Inserting delay values

ã U sing the Insert menu

ã Customizing SQABasic scripts

Starting an Application

While recording or editing a GU I script, you can start applications or other
executable programs by using one of the Start buttons on the GU I Insert toolbar, or
one of the Start commands on the Insert menu.

N O TE: To successfully test the objects in Oracle Forms, H TML, Java, C+ + ,
and Visual Basic 4.0 applications, you need to enable the applications before you
start recording your scripts. For information, see Enabling IDE Applications for
Testing on page 4-5.
5 -1

Adding Features to GU I Scripts
To start an application or executable program while recording or editing a script:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Do one of the following:

– To start most applications, click the Start Application button. (For
exceptions, see the following two bullets.)

– To start an H TML application, click the Start Browser button. (For more
information, see Enabling HTML Testing in Robot on page 19-3.)

– To start a Java application that you plan to play back under Q uantify or
PureCoverage, click the Start Java Application button. (For more
information, see Setting Diagnostic Tools Options on page 9-11.)

3 . Fill in the dialog box and click O K .

For details about any item in the dialog box, click the question mark in the
upper-right corner and then click the item.

4 . Continue recording or editing the script.

During playback, Rational Robot starts the specified application when it reaches that
command in the script.

N O TE: Do not use the Windows desktop (such as the Start button) to start an
application.
5 -2

Inserting a Call to Another Script
Inserting a Call to Another Script

While recording or editing a GU I script, you can insert a call to a previously recorded
GU I script. This lets you avoid repetitive actions in the application-under-test by
taking advantage of scripts that already exist.

To insert a call to a previously recorded script while recording or editing:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Click the Call Script button on the GU I Insert toolbar.

3 . Select a GU I script from the list.

The listed scripts have been recorded in Robot or generated in TestFactory. To
change the list, select a query from the Q uery list. The query lets you narrow
down the list, which is useful in projects with hundreds of scripts. You create
queries in TestManager, and you modify queries in TestManager or Robot. (For
information about queries, see Chapter 15, Querying the Rational Repository.)

Select the
scrip t to ca ll.

Select to run the
ca lled scrip t when
you click O K .
5 -3

Adding Features to GU I Scripts
4 . Do one of the following:

– Select Run N ow if the script being recorded depends on the state in which
the called script leaves the application-under-test. If this check box is
selected, Robot adds the script call to the recording script and immediately
plays back the called script when you click O K.

– Clear Run N ow if the called script starts and ends at the same point in the
application-under-test, so that the script being recorded does not depend on
the called script. If this check box is cleared, Robot adds the script call to the
recording script but does not play back the called script when you click O K.

5 . Click O K to continue recording or editing.

You can also group your scripts into a shell script. For information, see Creating Shell
Scripts to Play Back Scripts in Sequence on page 4-26.

Inserting Verification Points

A verification point is a point in a script that you create to confirm the state of an
object across builds. During recording, the verification point captures object
information and stores it as the baseline. During playback, the verification point
recaptures the object information and compares it with the baseline.

To insert a verification point while recording or editing a script:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Click a verification point button on the GU I Insert toolbar.

N O TE: This section gives an overview of how to insert a verification point. For
detailed information about verification points, see Chapter 6, Creating Verification
Points in GUI Scripts.
5 -4

Inserting Verifica tion Poin ts
3 . In the Verification Point N ame dialog box, edit the name of the verification
point as appropriate.

Robot automatically names the verification point with the verification point
type, and adds a number if there is more than one of the same type in the script.

4 . Optionally, set the W ait state options.

The wait state specifies how often Robot should retry the verification point until
it passes or times out, and how long Robot should keep trying the verification
point before it times out. (For more information, see Setting a Wait State for a
Verification Point on page 6-8.)

O
bject Propert ies

A lphanum
eric

M
enu

Clipboa rd
W

indow
 Existence

Region Im
age

W
indow Im

age

O
bject D

a ta
W

eb Site Scan
W

eb Site Com
pare

N O TE: To insert a File Comparison, File Existence, or Module Existence
verification point, open the Robot window (click the O pen Robot W indow
button on the GU I Record toolbar). Click Insert → Verification Point and
the appropriate menu command.
5 -5

Adding Features to GU I Scripts
5 . Optionally, set the Expected result option.

When you create a verification point, the expected result is usually that the
verification point will pass — for example, that a window does exist during
playback. H owever, you can also indicate that you expect the verification point
to fail — for example, that a window does not exist during playback. (For more
information, see Setting the Expected Result for a Verification Point on page 6-9.)

6 . Click O K .

Inserting Timers

Robot lets you insert start timer and stop timer commands to record and write to the
log the duration of events in a script. A tim er measures the time it takes to perform
an activity. For example, you may want to record the time required to perform a
database transaction on a remote server, or how long it takes the same verification
point to execute on client machines with different hardware configurations.

You can insert any number of timers with different names into the same script to
measure a variety of separate tasks. You can nest timers within other timers (starting
and stopping the second timer before stopping the first timer), and you can overlap
timers (stopping the second timer after stopping the first timer). H owever, you
should stop a timer before starting that same timer over again. If you start the same
timer twice without stopping it, Robot terminates the first occurrence when it starts
the second.

If you do not explicitly stop a timer, the timer is stopped automatically at the end of
the transaction.

When you play back a script that includes timers, you can view the elapsed time in
the log. For more information, see Playing Back a Script that Includes T imers on page
5-8.

Uses for Timers
You can use timers to measure general application performance and specific task
performance.

Measuring General Application Performance
For general application performance, start a timer, perform a series of actions and
create verification points with the application-under-test, and then stop the timer.

When you play back the script, the timer measures the amount of time it took for the
application to complete all of the actions. The log shows the timing results.
5 -6

Insert ing T im ers
Measuring Specific Task Performance
For specific task performance, you often use timers with verification points that have
wait state values. (For more information, see Setting a Wait State for a Verification Point
on page 6-8.) You use the wait state value to detect the completion of a task before
stopping the timer.

The following is an example of using timers for specific task performance testing:

1 . During recording, start a timer.

2 . Start an application task or transaction (for example, open an application or start
a database query).

3 . Insert a verification point with a wait state.

For example, insert a Window Existence verification point that waits up to 30
seconds for a window that indicates the task is complete.

4 . Stop the timer.

5 . Continue recording other actions or stop the recording.

After you play back the script, the log shows the timing results.

Inserting a Timer
To insert a timer while recording or editing a script:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Click the Start T im er button on the GU I Insert toolbar.

3 . Type a timer name (40 characters maximum) and click O K. If you start more
than one timer, make sure you give each timer a different name.

4 . Perform the timed activity.

5 . Immediately after performing the timed activity, click the Stop T im er button on
the GU I Insert toolbar.

6 . Select a timer name from the list of timers you started and click O K .
5 -7

Adding Features to GU I Scripts
Playing Back a Script that Includes Timers
Do the following before you play back a script that include timers:

1 . Click Tools → GU I Playback O ptions.

2 . In the Playback tab, clear Acknowledge results.

This prevents a pass/fail result message box from appearing for each verification
point. You can still view the results in the log after playback.

3 . In the Playback tab, set the D elay between com m ands value to 0.

This removes any extra Robot timing delays from the performance
measurement. If you need a delay before a single command, click Insert →
D elay and type a delay value.

4 . Click O K .

When you play back the script and view the log in the LogViewer, the elapsed time
is displayed for each Stop Timer event. For more information, see Chapter 9, Playing
Back GUI Scripts and Chapter 10, Reviewing Logs with the LogViewer.

Inserting Comments

During recording or editing, you can insert lines of comment text into a GU I script.
Comments are helpful for documenting and editing scripts. Robot ignores
comments at compile time.

To insert a comment into a script during recording or editing:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Click the Com m ent button on the GU I Insert toolbar and then do the
following:

Type a com m ent
(6 0 characters m axim um).

Click O K to continue
record ing or ed it ing .
5 -8

Inserting Log M essages
Robot inserts the comment into the script (in green by default) preceded by a
single quotation mark. For example:

’This is a comment in the script

To change lines of text into comments or to uncomment text:

1 . H ighlight the text.

2 . Click Edit → Com m ent Line or Edit → U ncom m ent Line.

Inserting Log Messages

During recording or editing, you can insert a log message, description, and result
into a GU I script. During playback, Robot inserts this information into the log. You
can use log messages to document your script for the playback process.

To insert a log message into a script during recording or editing:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Click the W rite to Log button on the GU I Insert toolbar and then do the
following:

After playback, you can view logs and messages using the LogViewer. The message
appears in the Log Event column. The result appears in the Result column.

To view the description, select the log event and click View → Log Event Properties.
Click the Result tab.

Type a m essage
(6 0 characters m axim um).

O ptionally, type a descrip tion
(6 0 characters m axim um).

Select a result .

Click O K to continue
record ing or ed it ing.
5 -9

Adding Features to GU I Scripts
Inserting Delay Values

During playback of a GU I script, Robot adds a delay value between each user action
command and between each verification point command. You can set this value in
the Playback tab of the GU I Playback Options dialog box. (For more information,
see Setting Wait State and Delay Options on page 9-7.)

At times during playback, you may need to have Robot pause for a specific amount
of time before executing a particular command. For example, an additional delay
may be necessary if the application accesses a network server, printer, or other
remote system. In these cases, if script playback does not wait, it can become out-of-
sync with the application by executing script commands before the application is
ready for them.

When you insert a delay value into a script, the script waits for the amount of time
you specified before playback continues. This delay is useful when you can calculate
the amount of time needed for a process to finish before playback resumes.

To insert a delay value into a script during recording or editing:

1 . Do one of the following:

– If recording, click the O pen Robot W indow button on the GU I Record
toolbar.

– If editing, position the pointer in the script.

2 . Click Insert → D elay and then do the following:

N O TE: If you are testing an application in which time estimates are not
predictable, you can define a wait state for a verification point instead of inserting
a delay value. With a wait state, playback waits based on specific conditions rather
than on absolute time. For more information, see Setting a Wait State for a
Verification Point on page 6-8.

Type the delay in terva l in
m illiseconds. For exam ple:
1 second = 10 0 0
1 m inute = 6 0 ,0 00
1 hour = 3 ,6 0 0 ,0 0 0

Click O K to continue
record ing or ed it ing.
5 -1 0

U sing the Insert M enu
Using the Insert Menu

The preceding sections of this chapter describe how to use the GU I Insert toolbar to
add features to scripts. You can also use the Robot Insert menu to add these features.

If Robot is minimized while you are recording:

ã Click the O pen Robot W indow button on the GU I Record toolbar. This button
restores the Robot window, letting you use the Insert menu.

Customizing SQABasic Scripts

In addition to editing a recorded script, you can customize SQABasic scripts in the
following ways:

ã By adding your own SQABasic sub procedures and functions either directly to
script files or to included library source files. The custom procedures you add
to library source files can be called from procedures in other files (scripts and
other library source files).

ã By using SQ ABasic header files to declare custom procedures, constants, and
variables. Items declared in an SQABasic header file are available to multiple
script and library source files.

ã By using a script tem plate. The template contains information that you want to
appear in every new script and .rec library file that you create.

This section describes the basic information you need to know to use Robot to create
and edit library source files and SQABasic header files. For syntax and other detailed
information about using these files, see the SQABasic Language Reference.

Information about using the template appears at the end of this section.
5 -1 1

Adding Features to GU I Scripts
Library Source Files
You can use Robot to create and edit two types of SQABasic library source files:

ã .sbl – These have repository-wide scope, but they do not support verification
points. They are stored in the SQABas32 folder of the repository.

ã .rec – These have project-wide scope, and they do support verification points.
They are stored in the Script folder of the project.

The .rec files are also used as GU I scripts.

Library source files are useful for storing custom procedures that multiple scripts
need to access. If a custom procedure needs to be accessed by just a single script,
consider adding the procedure to the script rather than to a library source file.

Creating and Editing .sbl Library Source Files
To create a new .sbl library source file:

1 . Click File → N ew → SQ ABasic File.

2 . Click Library Source File, and then click O K .

You name the file (or accept the default name) the first time you save it.

A library file cannot have the same name as a script file that calls it. For instance,
Myscript.rec cannot call a function in Myscript.sbl.

To edit an existing .sbl library source file:

1 . Click File → O pen → SQ ABasic File.

2 . In Files of type, select Library Source Files (* .sbl).

3 . Click the file to edit, and then click O pen.

Creating and Editing .rec Library Source Files
To create a new .rec library file:

1 . Click File → N ew → Script .

2 . Type the name of the file to create and optionally, a description.

3 . Click the file type GU I if it is not already selected.

4 . Click O K .

N O TE: You can also call procedures in .dll files from SQ ABasic scripts and
library files. H owever, you cannot use Robot to create and edit .dll files as you can
.sbl and .rec files.
5 -1 2

Custom izing SQ ABasic Scripts
To edit an existing .rec library file:

1 . Click File → O pen → Script .

2 . Click the name of the file to edit, and then click O K.

Adding Procedures to the Global Library Source File
For your convenience, Robot provides a blank library source file called Global.sbl.
You can add procedures to this library source file and/or create your own.

To open Global.sbl:

1 . Click File → O pen → SQ ABasic File.

2 . Set the file type to Library Source Files (* .sbl).

3 . Select global.sbl, and then click O pen.

Using Library Source Files
To use an SQ ABasic library file at runtime, you must:

ã Add custom procedures to the library source file.

ã Compile the file. Both types of SQ ABasic library source files (extensions .sbl
and .rec) compile to a .sbx runtime file.

ã Declare the file in an SQ ABasic header file or directly in a script or library file
that will call the custom procedures.

H ere is an example of declaring the sub procedure myProc in the library file
Mylibrary.sbx:

Declare Sub myProc BasicLib "Mylibrary" (arg as Integer)

And here is an example of declaring the function myFunc in the .dll file
Mylibrary.dll:

Declare Function myFunc Lib "Myblibrary" (ByVal PassVar) as Integer

For information about adding custom procedures to SQABasic library files and
about declaring library files (including .dll files), see the SQABasic Language Reference.

For information about compiling SQABasic library source files, see Compiling Scripts
and SQABasic Library Source Files on page 7-7.
5 -1 3

Adding Features to GU I Scripts
SQABasic Header Files
H eader files let you declare custom procedures, constants, and variables that you
want to make available to multiple script and library source files.You can use Robot
to create and edit the following kinds of SQ ABasic header files:

ã H eader files – These files are stored in the SQ ABas32 folder of the repository.
They can be accessed by all modules within the repository.

ã Project header files – These files are stored in the Script folder of the project.
They can be accessed by all modules within the project.

Both types of SQABasic header files have the extension .sbh.

Creating and Editing Repository-Wide Header Files
To create a new header file that can be accessed by any module in the repository:

1 . Click File → N ew → SQ ABasic File.

2 . Click H eader File, and then click O K.

You name the file (or accept the default name) the first time you save it.

To edit an existing repository-wide header file:

1 . Click File → O pen → SQ ABasic File.

2 . In Files of type, select H eader Files (* .sbh) .

3 . Click the file to edit, and then click O pen.

Creating and Editing Project Header Files
To create a new project header file:

ã Click File → N ew → Project H eader File.

You name the file (or accept the default name) the first time you save it.

To edit an existing project header file:

1 . Click File → O pen → Project H eader File.

2 . Click the file to edit, and then click O pen.
5 -1 4

Custom izing SQ ABasic Scripts
Adding Declarations to the Global Header File
For your convenience, Robot provides a blank header file called Global.sbh.
Global.sbh is a repository-wide header file stored in SQABas32 in the repository.
You can add declarations to this global header file and/or create your own.

To open Global.sbh:

1 . Click File → O pen → SQ ABasic File.

2 . Set the file type to H eader Files (* .sbh).

3 . Select global.sbh, and then click O pen.

Using SQABasic Header Files
After you finish adding global declarations to an SQABasic header file, save the file
before you compile a script or library file that references the header file. Save the
header file by clicking the Save toolbar button.

You do not compile SQ ABasic header files.

Header and Library Source File Examples
The following examples show how a script can reference:

ã Variables and constants declared in a header file.

ã Procedures declared in the header file and defined in a library source file.

To run the example, type the contents of each example file into an empty .rec script
file, .sbh header file, and .sbl library source file. Before attempting to run the script,
save the .sbh file and compile the .sbl file.

The examples and the names you should assign the files are:

ã Example Script – Assign any name to this script.

ã Example H eader File – N ame the script tstH eader.sbh.

ã Example Library Source File – N ame the script tstLibrary.sbl.

N O TE: These examples are also provided in the Robot H elp. (See header files in
the H elp Index.) You can copy the examples from the H elp into your own files.
5 -1 5

Adding Features to GU I Scripts
Example Script
Run this example with the example library and header files:

’$Include "tstHeader.sbh"
Option Explicit
Sub Main
’Initially Recorded: 01/17/00 18:12:16
 ’Script Name: testscript

userInput = InputBox("Type a number: ")
Call compareNumbers(userInput,NMBR)

End Sub

Example Library Source File (Tstlibrary.sbl)
Run this example with the example script and header files. Be sure to compile the
library source file to an .sbx file before you run the script that calls the custom
procedure defined in the library file:

Sub compareNumbers(inputVal as Integer, constVal as Variant)
Dim txt as String
If inputVal > constVal then
 txt="You typed a number greater than "
 ElseIf inputVal < constVal then
 txt="You typed a number less than "
 Else
 txt="The number you typed equals "
 End If
MsgBox txt + constVal
End Sub

Example Header File (Tstheader.sbh)
Run this example with the example script and library files:

Global userInput as Integer
Global Const NMBR as Variant = 10
Declare Sub compareNumbers BasicLib "tstLibrary" (arg1 as Integer,
arg2 as Variant)

The Template File
Robot provides a template file, Testproc.tpl, that you can use to automatically add
comments or include statements in new GU I scripts. Any text that you add to
Testproc.tpl automatically appears in each newly recorded script.

To edit Testproc.tpl:

1 . Click File → O pen → SQ ABasic File.

2 . Set the file type to Tem plate Files (* .tpl).

3 . Select testproc.tpl and click O pen.
5 -1 6

Custom izing SQ ABasic Scripts
4 . Type include statements, as in the following example:

’Include global declarations in all scripts
’$Include "global.sbh"

The $Include metacommand begins with a single quotation mark (’).
Although this normally indicates a comment, when followed by a dollar sign ($)
it indicates a special SQABasic command.

5 . Click File → Save.
5 -1 7

Adding Features to GU I Scripts
5 -1 8

ã ã ã C H A P T E R 6

Creating Verification Points in GUI Scripts
This chapter provides conceptual information about verification points and tells you
how to perform common operations associated with creating a verification point. It
includes the following topics:

ã About verification points

ã Types of verification points

ã Before you create a verification point

ã Tasks associated with creating a verification point

ã Working with the data in data grids

ã Editing a verification point

About Verification Points

A verification point is a point in a script that you create to confirm the state of an
object across builds of the application-under-test.

Verification Points and Data Files
During recording, a verification point captures object information (based on the
type of verification point) and stores it in a baseline data file. The information in
this file becomes the baseline of the expected state of the object during subsequent
builds.

N O TE: For detailed information about each verification point and how to create
it, see the Robot H elp.
6 -1

Creating Verification Poin ts in GU I Scripts
When you play back the script against a new build, Rational Robot retrieves the
information in the baseline file for each verification point and compares it to the
state of the object in the new build. If the captured object does not match the
baseline, Robot creates an actual data file. The information in this file shows the
actual state of the object in the build.

After playback, the results of each verification point appear in the log in the
LogViewer. If a verification point fails (the baseline and actual data do not match),
you can double-click the verification point in the log to open the appropriate
Comparator. The Comparator displays the baseline and actual files so that you can
compare them.

Verification Points and Scripts
A verification point is stored in the repository and is always associated with a script.
When you create a verification point, its name appears in the Asset (left) pane of the
Script window. The verification point script command, which always begins with
Result=, appears in the Script (right) pane.

Because verification points are assets of a script, if you delete a script, Robot also
deletes all of its associated verification points.

You can easily copy verification points to other scripts if you want to reuse them.
For information, see Copying a Verification Point on page 6-25.

N O TE: The following verification points are not stored in the repository and do
not appear in the Asset pane: File Comparison, File Existence, Module Existence,
Window Existence, and Alphanumeric (if the verification method is N umeric
Equivalence or N umeric Range).

List of verif icat ion
points associated
with the scrip t

Verif icat ion point
com m ands in the
scrip t

N O TE: You cannot play back a verification point that you have copied or typed
into a .sbl library source file. The verification point must be in a script or a .rec
library source file. For information about types of library files, see Library Source
Files on page 5-12.
6 -2

Types of Verifica tion Poin ts
Types of Verification Points

The following table summarizes each Robot verification point.

N O TE: For detailed information about each verification point and how to create
it, see the Robot H elp.

Verification point type Example

Alphanumeric

Captures and tests alphanumeric data in Windows objects
that contain text, such as edit boxes, check boxes, group
boxes, labels, push buttons, radio buttons, toolbars, and
windows (captions). You can use the verification point to
verify that text has not changed, to catch spelling errors,
and to ensure that numeric values are accurate.

Clipboard

Captures and compares alphanumeric data that has been
copied to the Clipboard. To use this verification point, the
application must supply a Copy or Cut capability so that
you can place the data on the Clipboard. This verification
point is useful for capturing data from spreadsheet and
word processing applications as well as terminal emulators.

File Comparison

Compares two specified files during playback. The
comparison is based on the contents of the files and their
sizes, not on the file names or dates. When you create the
verification point, you specify the drive, directory, and file
names. During playback, Robot compares the files byte-
for-byte.

File Existence

Verifies the existence of a specified file during playback.
When you create the verification point, you specify the
drive, directory, and file name for the required file. During
playback, Robot checks to see if the file exists in the
specified location.

“Program”

“100”
6 -3

Creating Verification Poin ts in GU I Scripts
M enu

Captures and compares the menu title, menu items,
shortcut keys, and the state of selected menus. Robot
records information about the top menu and up to five
levels of sub-menus. Robot treats menu items as objects
within a menu and tests their content, state, and accelerator
keys regardless of the menu item’s location. (You can also
use the O bject Data verification point to test a menu.)

M odule Existence

Verifies whether a specified module is loaded into a
specified context (process), or is loaded anywhere in
memory. Each process has its own context, which includes
a set of loaded modules. When you create this verification
point, you select the name of the module. You can also
select the name of a context (process), in which case the
verification point tests whether the module is loaded into
that process. If no context is specified, the verification
point tests whether the module is loaded anywhere in
memory.

O bject D ata

Captures and compares the data inside standard Windows
objects. Also provides specialized support for
environment-specific objects such as Visual Basic Data
controls, ActiveX controls, H TML and Java objects,
PowerBuilder DataWindows, and O racle Forms base-table
blocks.

Robot provides many data tests that are used with the
Object Data verification point. A data test is a mechanism
for capturing the data of objects. For information about
creating your own data tests, see Appendix B, Working with
Data Tests.

O bject Properties

Captures and compares the properties of standard
Windows objects. Also provides specialized support for
environment-specific objects such as Visual Basic Data
controls, ActiveX controls, H TML and Java objects,
PowerBuilder DataWindows, and O racle Forms base-table
blocks.

 (Continued)

Verification point type Example
6 -4

Types of Verifica tion Poin ts
Region Image

Captures a region of the screen as a bitmap. The captured
region is a pixel-by-pixel representation that includes
colors, height, and width.

Web Site Compare

Captures a baseline of a Web site and compares it to the
Web site at another point in time.

Web Site Scan

Checks the contents of a Web site with every revision and
ensures that changes have not resulted in defects.

Window Existence

Verifies the existence and status of a specified window
during playback. The status can be normal, minimized,
maximized, or hidden.

Window Image

Captures a window as a bitmap. The captured window is a
pixel-by-pixel representation that includes colors, height,
and width.

N O TE: You can also verify objects through your own custom procedures. You
can then use the SQABasic verification point management commands to perform
the same kind of verification and LogViewer tasks that Robot performs
automatically. For more information, see the SQABasic Language Reference.

 (Continued)

Verification point type Example
6 -5

Creating Verification Poin ts in GU I Scripts
Before You Create a Verification Point

Before you create a verification point, consider the following:

ã What feature in the application do you want to test?

Example: You want to verify that the Cut command places selected data on the
Clipboard.

ã To test the feature, what object or objects should you test?

Example: The objects that you should test are the Cut command on the Edit
menu and the data on the Clipboard.

ã What kind of verification points do you want to create?

Example: You create verification points to test that 1) the Cut command exists
on the Edit menu and is enabled, and 2) the Clipboard contains the information
cut to it.

ã What type of verification points do you create to accomplish the kind of object
testing that you want?

Example: You create a script that contains two verification points — an O bject
Data verification point to test that the Cut command exists on the Edit menu and
that the state of the Cut command is enabled; a Clipboard verification point to
test that the selected information is actually placed on the Clipboard.

Tasks Associated with Creating a Verification Point

The following table provides an overview of the major tasks that you perform when
you create a verification point and where to look in this chapter for instructions. The
specific steps depend on the type of verification point that you create.

Task See

1 . Start to create a verification point. The next section, Starting to Create a Verification
Point

2 . Set a wait state. Setting a Wait State for a Verification Point on
page 6-8

3 . Set the expected result. Setting the Expected Result for a Verification Point
on page 6-9

4 . Select and identify the object to test. Selecting and Identifying the Object to Test on page
6-10

5 . Select a verification method. Selecting a Verification Method on page 6-14
6 -6

Tasks Associated with Creating a Verification Point
Starting to Create a Verification Point
The following is the basic procedure for starting to create a verification point:

1 . Do one of the following:

– If recording, click the D isplay GU I Insert Toolbar button on the GU I
Record toolbar.

– If editing, position the pointer in the script and click the D isplay GU I Insert
Toolbar button on the Standard toolbar.

2 . Click a verification point button on the GU I Insert toolbar.

6 . Select an identification method. Selecting an Identification Method on page 6-15

7 . Select the data or properties to test. Selecting the Data to Test in a Data Grid on page
6-19

8 . Test column titles or menus (optional). Testing Column Titles or Top Menus in a Data
Grid on page 6-20

9 . Edit the captured data (optional). Editing Captured Data in a Data Grid on page
6-21

Task See

O
bject Propert ies

A lphanum
eric

M
enu

Clipboard
W

indow
 Existence

Region Im
age

W
indow

 Im
age

O
bject D

a ta
W

eb Site Scan
W

eb Site Com
pare

N O TE: To insert a File Comparison, File Existence, or Module Existence
verification point, open the Robot window (click the O pen Robot W indow
button on the GU I Record toolbar). Click Insert → Verification Point and
the appropriate menu command.
6 -7

Creating Verification Poin ts in GU I Scripts
3 . In the Verification Point N ame dialog box, edit the name as appropriate. The
name can be a maximum of 20 characters.

4 . Optionally, set the W ait state options. For information, see the next section,
Setting a Wait State for a Verification Point.

5 . Optionally, set the Expected result option. For information, see Setting the
Expected Result for a Verification Point on page 6-9.

6 . Click O K .

The steps that you perform next depend on the type of verification point that you
are creating. For a list of verification points, see Types of Verification Points on page
6-3. For detailed information about each verification point and how to create it, see
the Robot H elp.

Setting a Wait State for a Verification Point
When you create a verification point, you can add specific wait values to handle
time-dependent test activities. Wait values are useful when the application requires
an unknown amount of time to complete a task. U sing a wait value keeps the
verification point from failing if the task is not completed immediately or if the data
is not accessible right away.

For example, suppose you create an Alphanumeric verification point that tests for a
specific string in a text box. When you play back the script, Robot first looks for the
text box. The verification point fails immediately if the box does not exist. If Robot
finds the box, it checks for the string in the box. H owever, the string might not be
in the box yet (your application might be running slowly and the box might not be
updated yet). To solve this, include wait values so that Robot retries the test (checks
for the string) every two seconds. If the content of the box does not match the string
within 30 seconds, the verification point returns a failure indication to the script.

Robot inserts the verif icat ion
point type and adds a num ber
if there is m ore than one of the
sam e type in the scrip t.
6 -8

Tasks Associated with Creating a Verification Point
For verification points that verify the properties or data of an object, Robot must
first find the specified object before it can perform the verification point. After it
finds the object, the following happens:

ã If no wait state is specified, the verification point passes or fails immediately.

ã If a wait state is specified, then Robot does the following, as shown in this
pseudo-code example:

loop until timeout period expires (as specified by Timeout After)
wait for retry period (as specified by Retry Every)
perform VP

if it passes, exit loop, else loop back
end loop

To add a wait state when creating a verification point:

1 . Start to create the verification point. (See Starting to Create a Verification Point on
page 6-7.)

2 . In the Verification Point N ame dialog box, select Apply wait state to
verification point.

3 . Type values for the following options:

Retry every – H ow often Robot retries the verification point during playback.
Robot retries until the verification point passes or until the timeout limit is
reached.

T im eout after – The maximum amount of time that Robot waits for the
verification point to pass before it times out. If the timeout limit is reached and
the verification point has not passed, Robot enters a failure in the log. The script
playback either continues or stops based on the setting in the Error Recovery tab
of the GU I Playback Options dialog box.

Setting the Expected Result for a Verification Point
When you create a verification point, the expected result is usually that the
verification point will pass. For example, if you create a Window Existence
verification point, you are usually expecting that the window will exist during
playback. If the window exists, the verification point passes.

H owever, suppose you want to test that a window does not exist during playback.
This is useful when you want a script to wait for a window to disappear before
continuing. In this example, you could create a Window Existence verification point
with the following values:

ã A timeout wait state value of 30 seconds

ã An expected result of Fail
6 -9

Creating Verification Poin ts in GU I Scripts
Because the expected result is a failure, you are telling Robot that you expect the
window to not exist within 30 seconds. When you play back this verification point,
if the window cannot be found at any time during the 30 seconds, the verification
point passes. If the window is found during the 30 seconds, the verification point
fails.

To set the expected result when creating a verification point:

1 . Start to create a verification point. (See Starting to Create a Verification Point on page
6-7.)

2 . In the Verification Point N ame dialog box, click Pass or Fail.

You might also want to add wait state values to the verification point. (See Setting a
Wait State for a Verification Point on page 6-8.)

Selecting and Identifying the Object to Test
When you create certain verification points, you need to select the object to test.
You do this by pointing to the object with the O bject Finder tool, or by selecting the
object from a list of all objects on the Windows desktop.

When you point to an object, you can use one of several methods to visually identify
the object before you actually select it.

Selecting the Object to Test
There are two ways to select the object to test:

ã Point to it in the application. This is useful for selecting visible objects.

ã Select it from a list of all objects on the desktop. This is useful for selecting
hidden objects.

To select the object to test:

1 . Start creating the verification point. (See Starting to Create a Verification Point on
page 6-7.)
6 -1 0

Tasks Associated with Creating a Verification Point
2 . In the Verification Point N ame dialog box, type a name and click O K to open the
Select Object dialog box.

3 . Do one of the following:

– Select Autom atically close dia log box after object selection to have the
Select Object dialog box close after you select the object to test.

– Clear Autom atica lly close dia log box after object selection to have the
Select Object dialog box reappear after you select the object to test. You will
need to click O K to close the dialog box.

To select a visible object directly from the application, continue with step 4.
To select an object from a list of all objects on the desktop, skip to step 5.

4 . To select a visible object directly from the application, drag the Object Finder
tool over the object and release the mouse button.

When you drag the Object Finder tool, the Select O bject dialog box disappears.
When you release the mouse button, the Select Object dialog box reappears if
you have cleared the Autom atica lly close dia log box after object selection
check box.

As you move the Object Finder tool over an object, the object type appears in a
yellow TestTip. (For information about how to identify the object to test, see
the next section, Identifying the Object to Test.)

D rag over an object and
release the m ouse button .

Shows the type a fter
you select an object.

Select to have the
d ia log box close after
you select an object.

Click to select
from a list o f a ll
ob jects on the
desktop.
6 -1 1

Creating Verification Poin ts in GU I Scripts
5 . To select a visible or hidden object from a list of all objects on the Windows
desktop, click Browse to open the Object List dialog box. Select the object from
the list and click O K.

The Object List dialog box includes hidden objects that you cannot point to
because they are not visible through the user interface, such as objects with the
Visible property set to False and objects with no GU I component. This dialog
box also includes objects that are direct children of the desktop, such as
PowerBuilder DataStore controls.

When you select an object in the list and click O K , it is equivalent to pointing to
the object with the Object Finder tool and releasing the mouse button.

D ouble-click
to expand
the object.

D ouble-click
to co llapse
the object.

Shows h idden objects
on the desktop.

As you select an ob ject,
inverts the object’ s co lors
in the applicat ion.

Returns the selection
m ethod to the O bject
Finder too l.

N O TE: If you first select an object with the Object Finder tool (in step 4)
and then click Browse, Robot highlights the selected object in the object list.
The object’s parent is expanded down to the level of the object. This is useful
if there are many objects on the desktop. In this case, you would want to clear
the Autom atica lly close dia log box after object selection check box in the
Select Object dialog box, so that it reappeared after you selected the object.
6 -1 2

Tasks Associated with Creating a Verification Point
Identifying the Object to Test
When you point to an object in the application-under-test with the O bject Finder
tool, Robot displays a TestTip that identifies the object.

You can use one of several methods to visually identify an object. To set the
method:

1 . If recording, click the O pen Robot W indow button on the GU I Record toolbar
to restore the Robot window.

2 . Click Tools → Genera l O ptions, and then click the Preferences tab.

TestTip identifies the object type
and developm ent environm ent.

Inverts screen co lors as you point to
an object.

D isp lays a TestT ip tha t describes the
object type as you poin t to an object
(for exam ple, PushButton).

D isp lays a TestT ip that describes
both the object type and the object
recogn it ion m ethod as you poin t to
an object.

D isp lays the developm ent
environm ent nam e (if known)
in the TestT ip.

N O TE: To change the selection indicator temporarily while pointing to objects,
press CTRL or SH IFT.
6 -1 3

Creating Verification Poin ts in GU I Scripts
Selecting a Verification Method
When you create certain verification points, you can select a verification method.
The verification m ethod specifies how Robot compares the baseline data captured
while recording with the data captured during playback.

The verification methods are:

Case-Sensitive – Verifies that the text captured during recording exactly matches
the captured text during playback. For example, if you capture Inches during
recording, the test fails during playback if the captured text is inches or if the text
contains any other characters.

Case-Insensitive – Verifies that the text captured during recording matches the
captured text during playback in content but not necessarily in case. For example, if
you capture Inches during recording, the test passes during playback if the captured
text is inches. If the text contains any other characters, the test fails.

Find Sub String Case-Sensitive – Verifies that the text captured during recording
exactly matches a subset of the captured text during playback. For example, if you
capture Inches during recording, the test passes during playback if the captured text
is Inches or Feet, because Inches exists within the text. The test fails if the captured text
contains inches, because the case is different.

Find Sub String Case-Insensitive – Verifies that the text captured during recording
matches a subset of the captured text during playback in content but not necessarily
in case. For example, if you capture Inches during recording, the test passes during
playback if the captured text is Inches or Feet, because Inches exists within the text.
The test also passes if the captured text contains inches, because the case does not
have to match.

N um eric Equivalence – Verifies that the values of the data captured during
recording exactly match the values captured during playback. For example, if you
select 24.25 during recording, the test passes during playback only if the captured
value is 24.25.

Select a verificat ion
m ethod to specify how
Robot com pares the
data.
6 -1 4

Tasks Associated with Creating a Verification Point
N um eric Range – Verifies that the values of the data captured during recording fall
within a specified range during playback. You specify the From and To values for
the numeric range. During playback, the verification point verifies that the numbers
are within that range. For example, you can capture a list containing a range of
salaries and then set the high and low values of the range. The test passes during
playback only if all of the salaries are within the set range.

U ser-D efined and Apply a U ser-D efined D LL test function – Passes text to a
function within a dynamic-link library (DLL) so that you can run your own custom
tests. You specify the path for the directory and name of the custom DLL and the
function. The verification point passes or fails based on the result that it receives
back from the DLL function. (U se the Apply a U ser-Defined DLL test function
method with the Alphanumeric verification point. U se the U ser-Defined method
with all other verification points.)

Verify that selected field is blank – Verifies that the selected field contains no
text or numeric data. If the field is blank, the verification point passes. If the field
contains any text or numeric value during playback, the verification point fails. You
can use this method on a list if you do not highlight any of the items in the list.
(This method is used only with the Alphanumeric verification point.)

Selecting an Identification Method
An identification m ethod tells Robot how to identify the values to compare during
record and playback.

For example, suppose you want to test that the values of one row in a table remain
the same during record and playback. You could specify an identification method so
that Robot can identify the values regardless of the location of the row in the table.

When you create certain verification points, you can select an identification method
for data that appears in a data grid. A data grid shows data in rows and columns in a
Robot dialog box. Data grids are used when you create a Clipboard, Menu, or
Object Data verification point. You can also select an identification method for
properties that have a list or array value when you create an Object Properties
verification point.

If the data is displayed in a two-dimensional grid, you select two identification
methods — one for columns and one for rows. If the data is displayed in a one-
dimensional grid, you select only one identification method.

There are four identification methods: By Content, By Location, By Title, and By
Key/Value. (For a complete list of the identification methods, see List of Identification
Methods on page 6-18.)
6 -1 5

Creating Verification Poin ts in GU I Scripts
By Content
U se this method to verify that the recorded values exist during playback. This
method is location-independent. For example, if you record a value of 100, the
verification point passes as long as the value 100 exists during playback.

The following figure shows baseline data captured using Items By Content. During
playback, the verification point passes because the recorded value exists even though
its location changes.

By Location
U se this method to verify that the recorded values exist in the same locations during
playback. For example, when you test items in a menu, use By Location to verify
that the locations of the recorded menu items remain the same during playback.
You can also use By Location to verify that the locations of recorded column and
row values remain the same during playback.

The following figure shows baseline data captured using Columns By Location and
Rows by Location. During playback, the verification point passes because the
locations of the recorded values remain the same.

By Title
U se this method to verify that the recorded values remain with their titles (names
of menus or columns) during playback, even though the columns may have
changed locations.

Baseline Playback (Pass)

Baseline Playback (Pass)
6 -1 6

Tasks Associated with Creating a Verification Point
The following figure shows baseline data captured using By Title. During playback,
the verification point passes because the recorded values under the menu title
remain the same even though the File and Edit menus have changed positions.

By Key/Value
U se this method to verify that the recorded values in a row remain the same during
playback. This method is location-independent. If rows are added or deleted, the
verification point passes as long as the recorded values in the row remain the same.

This method also lets you add up to eight keys to the columns in the data grid. The
keys function like a primary key in a database table. Each key uniquely identifies a
column so that Robot can easily locate and retrieve the records you select. If you
add a key to a column, Robot searches for the recorded values in the key column
during playback. After Robot locates the values in the key column, it then verifies
that the rest of the recorded values in each row have remained the same during
playback.

To add or remove a key from a column, position the pointer anywhere in the
column and click the right mouse button.

The following figure shows baseline data captured using Rows By Key/Value with
a key in the customerid column. During playback, Robot searches only for the
recorded value in the key column (for example, 2). After Robot locates the value in
the key column, it then compares the recorded values with the baseline values. The
verification point passes because the recorded values exist even though the row
location changes because a new record was added to the database.

Baseline Playback (Pass)

Playback (Pass)Baseline
6 -1 7

Creating Verification Poin ts in GU I Scripts
When you select Rows By Key/Value:

ã Robot uses the Case-Sensitive verification method during playback to verify
values in the columns that contain keys. If you select another verification
method, it applies to the values in the non-key columns.

ã If you select N umeric Range as the verification method, you must use at least
one key. The key tells Robot how to locate a record. Then, Robot compares the
data to the specified range of numbers.

ã You can add or change a key in the baseline data file in the Grid Comparator and
then recompare the baseline and actual data files. For information, see Using Keys
to Compare Data Files on page 13-7.

List of Identification Methods
The following tables lists the identification methods. The type of verification point
that you are creating determines the available identification methods.

Use this method To test on playback that

Columns By Location The locations of recorded column values have not changed.

Columns By Title The recorded values remain with their column titles even if
column locations change.

Rows By Location The locations of recorded row values have not changed.

Rows By Content The recorded values in a row have not changed.

Rows By Key/Value The recorded values in a row have not changed; the row may
have changed location.

Top Menus By Location The locations of recorded top menus have not changed.

Top Menus by Title The recorded values remain with their menu titles even if
menu locations change.

Menu Items By Location The locations of recorded menu items have not changed.

Menu Items by Content The values of recorded menu items have not changed.

Items by Location The locations of recorded list items have not changed.

Items by Content The values of selected list items have not changed.
6 -1 8

W orking with the D ata in D ata Grids
Working with the Data in Data Grids

When you create a Clipboard, Menu, or Object Data verification point and select an
object, you are actually testing the object’s data. This data appears in a Robot data
grid, which shows data in rows and columns. You use the data grid to select and edit
the data to test.

Selecting the Data to Test in a Data Grid
After selecting an object but before saving the verification point, you can select the
data to test for the following verification points: Clipboard, Menu, and O bject Data.

The values originally captured appear in a data grid.

U se the data g rid to
select a subset of the
captured va lues.
6 -1 9

Creating Verification Poin ts in GU I Scripts
U se any of the following methods to select data in the columns, rows, or cells of the
data grid. The selected values become the baseline that Robot uses during playback
to test the current build of the application.

Testing Column Titles or Top Menus in a Data Grid
After you capture data using the O bject Data, Menu, or Clipboard verification
point, you can select M ove colum n titles to grid or M ove top m enus to grid in the
Verification Point dialog box.

If you select this check box, the titles move into the data grid and numbers replace
the titles above the grid.

To select Do this

Range Click and drag the pointer over a range of cells.
...or...
Click the first cell, hold down the SH IFT key, and click
the last cell in the range.
...or...
H old down the SH IFT key while pressing one of the
arrow keys.

N on-contiguous cells Make sure the captured values are deselected. Then
press the CTRL key and click each cell. Clicking without
the CTRL key cancels previous selections.

Entire column Click a column title. Robot compares the data and the
number of items in the column.

Entire row Click a row number. Robot compares the data and the
number of items in the row.

All cells Click the box in the upper-left corner of the grid.

Colum n t it les are m oved
in to the grid for test ing.
6 -2 0

W orking with the D ata in D ata Grids
U se M ove column tit les to grid or M ove top m enus to grid to:

ã Capture and test a title without its column data.

ã Test the title like any of the other data in the grid.

ã Edit a title by moving it to the grid, editing it, and moving it back to its position
as a title.

If a verification point captures only column titles, Robot selects the M ove colum n
titles to grid check box. Titles are moved to the grid so that data exists in the grid
for testing. This check box is not available for list boxes, combo list boxes, and
combo boxes.

Editing Captured Data in a Data Grid
After selecting the data to test but before saving the verification point, you can edit
the data to test for the following verification points: Clipboard, Menu, and Object
Data.

You can edit the data in any cell of a data grid. Editing data is useful if you want
to change the baseline for a verification point based on a new specification or
anticipated changes to the application-under-test. By editing data before playback,
you can often avoid a verification point failure.

Editing Data for a Clipboard or Object Data Verification Point
To edit the data for a Clipboard or Object Data verification point:

1 . Double-click a cell in the data grid. The pointer changes to a text cursor.

2 . Edit the data in the cell.

3 . To accept the changes, press EN TER. To cancel the changes, press ESC.

N O TE: To edit the titles in a data grid, select the M ove colum n titles to grid or
M ove top m enus to grid check box.
6 -2 1

Creating Verification Poin ts in GU I Scripts
Editing Data for a Menu Verification Point
To edit the data for a Menu verification point:

ã Double-click a cell in the data grid to open the Edit Menu Item dialog box.

Restrictions on Editing Data
When you edit data in a data grid:

ã You cannot edit column, row, or menu titles unless you use the M ove colum n
titles to grid or M ove top m enus to grid option.

ã You cannot insert additional columns or rows.

ã You cannot use the N um eric Range verification method, because this method
does not compare the data to the values in the grid. Instead, it compares the data
captured during script playback according to the From and To values that you
specify. Editing the data in the grid has no effect.

Changing a Column Width in a Data Grid
The column widths in the data grid default to fit the longest data string. You can
adjust the widths of any of the columns in the grid by dragging the lines between
the columns.

Change a m enu com m and nam e by
edit ing its text. Type an am persand
(&) before the letter to be used as the
m nem onic accelerator.

Change the m enu state as needed.

Change the item type as needed.

D rag these lines to
change colum n widths.
6 -2 2

Editing a Verification Point
Transposing Columns and Rows in a Data Grid
You can transpose the view of the data in the grid by selecting the Transpose view
check box in the Verification Point dialog box.

Transpose view is a display option only. It does not affect how Robot captures
information.

Transpose view is not available for a menu because Robot treats each menu as a
separate entity; rows of menu items are not recognized. For example, Robot does
not treat the fourth menu item in one menu and the fourth menu item in another
menu as though they were in the same row.

Editing a Verification Point

When you record a verification point in a script, the verification point is stored in
the repository, along with any associated files. The verification point name appears
in the Asset pane of the Robot Script window.

You can view and edit the baseline file of a verification point in one of the
Comparators. You can rename, copy, or delete any verification point in a script.

W hen the view is not transposed,
data appears in standard rows
and co lum ns. Colum n wid ths are
adjusted accord ing to the
conten ts of each co lum n.

W hen the view is transposed,
co lum ns becom e rows and
rows becom e colum ns. Colum n
widths becom e the sam e size
— the m axim um size needed .

N O TE: The following verification points are not stored in the repository and
do not appear in the Asset pane in the Script window: File Comparison, File
Existence, Module Existence, Window Existence, and Alphanumeric (if the
verification method is N umeric Equivalence or N umeric Range). You can
rename, copy, or delete these verification points directly in the script.
6 -2 3

Creating Verification Poin ts in GU I Scripts
Viewing a Baseline File
To view the baseline file of a verification point in a Comparator:

ã In the Asset (left) pane in Robot, right-click the verification point name and click
View Baseline, or double-click the name.

As the following figure shows, Robot opens the baseline file of an O bject Properties
verification point in the O bject Properties Comparator.

Once the baseline file opens in the appropriate Comparator, you can view and
edit the data. Editing data is useful if you want to change the baseline data for a
verification point based on a new specification or anticipated changes to the
application-under-test. By editing data before playback, you can often avoid a
verification point failure. For information about the four Comparators, see
Chapters 11, 12, 13, and 14.

... click View
Baseline ...

... to view the baseline file in
the appropria te Com parator.

Right-click a
verif icat ion point
and ...

N O TE: To compare the baseline and actual files, you must open the Comparator
through the LogViewer. For information, see Evaluating Verification Point Failures in
a Comparator on page 10-9.
6 -2 4

Editing a Verification Point
Renaming a Verification Point
Renaming a verification point involves two tasks:

ã Renaming the verification point in the Asset pane, which renames the
verification point and its associated files in the repository.

ã Renaming all references to that verification point in the script.

When you rename a verification point in the Asset pane, Robot does not
automatically rename references to it in the script. If you play back a script that
refers to a verification point with a name that is not in the Asset pane (and therefore
not in the repository), the verification point and script will fail.

To rename a verification point and its associated files:

1 . Right-click the verification point name in the Asset (left) pane and click
Renam e.

2 . Type the new name and press EN TER.

3 . Click the top of the script in the Script (right) pane.

4 . Click Edit → Replace.

5 . Type the old name in the Find what box. Type the new name in the Replace
with box.

6 . Click Replace All.

Copying a Verification Point
You can copy a verification point into the same script or into another script in the
same project. Copying a verification point involves two tasks:

ã Copying the verification point name in the Asset pane in one script, and pasting
it into the Asset pane in the same script or a different script. This puts a copy of
the verification point and its associated files in the repository.

ã Copying the verification point command from the script and pasting it into the
same script or a different script.

If you renam e
the verificat ion
poin t in the
Asset pane ...

... you a lso need
to renam e
references to it
in the scrip t.
6 -2 5

Creating Verification Poin ts in GU I Scripts
To copy a verification point:

1 . Right-click the verification point in the Asset (left) pane and click Copy.

2 . In the same script or in a different script (in the same project), right-click
Verification Points in the Asset pane.

3 . Click Paste to paste a copy of the verification point and its associated files into
the repository.

If a verification point with that name already exists, Robot appends a unique
number to the name.

You can also copy and paste by dragging the verification point to Verification
Points in the Asset pane.

4 . Click the top of the Script (right) pane of the original script.

5 . Click Edit → Find and locate the line with the verification point name that you
just copied.

6 . Select the entire line, which starts with Result=.

7 . Click Edit → Copy.

8 . Return to the script that you used in step 2. Click the location in the script where
you want to paste the line. Click Edit → Paste.

9 . Change the name of the verification point to match the name in the Asset pane.

Deleting a Verification Point
Deleting a verification point involves two tasks:

ã Deleting the verification point name from the Asset pane, which deletes the
verification point and its associated files from the repository.

ã Deleting the verification point command from the script.

When you delete a verification point from the Asset pane, Robot does not
automatically delete references to that verification point from the script. If you play
back a script that refers to a deleted verification point, the verification point and
script will fail.
6 -2 6

Editing a Verification Point
To delete a verification point and its associated files:

1 . Right-click the verification point name in the Asset (left) pane and click D elete.

2 . Click the top of the script in the Script (right) pane.

3 . Click Edit → Find.

4 . Type the name of the deleted verification point in the Find what box.

5 . Click Find N ext .

6 . Delete the entire line, which starts with Result=.

7 . Repeat steps 5 and 6 until you have deleted all references.
6 -2 7

Creating Verification Poin ts in GU I Scripts
6 -2 8

ã ã ã C H A P T E R 7

Editing, Compiling, and Debugging Scripts
This chapter explains how to edit, print, and compile GU I and virtual user scripts,
and how to debug GU I scripts. It includes the following topics:

ã Editing the text of a script

ã Adding a user action to an existing GU I script

ã Adding a feature to an existing GU I script

ã Working with low-level scripts

ã Saving scripts and SQABasic files

ã Printing a script or SQABasic file

ã Compiling scripts and SQABasic library source files

ã Debugging GU I scripts

ã Deleting scripts

Editing the Text of a Script

You can edit the text of any open script. You might want to edit a script to change a
command argument or to add conditional logic using the SQ ABasic language (for
GU I scripts) or the VU language (for virtual user scripts). For information about
these languages, see the SQABasic Language Reference and the VU Language Reference.

The Rational Robot Edit menu commands use standard Windows mouse and
pointer techniques for selecting text. In addition, you can use standard Windows
shortcut keys instead of the mouse to select menu commands. Shortcut keys are
listed next to the corresponding Edit menu commands.
7 -1

Edit ing, Com piling , and D ebugging Scripts
Before starting to edit, you must have a script open. The script can be:

ã A script you have just recorded.

ã A script you have opened.

To edit the text of a script, use the Edit menu commands or toolbar buttons.

Some of the Edit menu commands are disabled if you are debugging. To stop
debugging, click D ebug → Stop.

Adding a User Action to an Existing GUI Script

U ser actions are actions, such as keystrokes and mouse clicks, that help you navigate
around the application. After you record a script, you might decide to add new user
actions, such as selecting a menu command, to the script.

To add a new action to an existing script:

1 . If necessary, open the script by clicking File → O pen → Script .

2 . If you are currently debugging, click D ebug → Stop.

3 . In the Script window, click where you want to insert the new actions. Make sure
that the application-under-test is in the appropriate state to begin recording at
the text cursor position.

4 . Click the Insert Recording button on the Standard toolbar.

The Robot window minimizes by default, or behaves as specified in the GU I
Record O ptions dialog box.

5 . Continue working with the application-under-test as you normally do when
recording a script.

Adding a Feature to an Existing GUI Script

Features you might want to add to an existing script include verification points,
timers, and comments. You can easily add these features while you are recording a
script or after you finish recording.

To add a feature to an existing GU I script:

1 . If necessary, open the script by clicking File → O pen → Script .

2 . If you are currently debugging, click D ebug → Stop.
7 -2

Working with Low-Level Scripts
3 . In the Script window, click where you want to insert the feature. Make sure that
the application-under-test is in the appropriate state to insert the feature at the
text cursor position.

4 . Do one of the following:

– To add the feature without going into recording mode, click the D isplay
GU I Insert Toolbar button on the Standard toolbar. The Robot Script
window remains open.

– To start recording and add the feature, click the Insert Recording button
on the Standard toolbar. The Robot window minimizes by default, or
behaves as specified in the GU I Record Options dialog box. Click the
D isplay GU I Insert Toolbar button on the GU I Record toolbar.

5 . Click the appropriate button on the GU I Insert toolbar.

6 . Continue adding the feature as usual.

For more information about the features you can add, see Chapter 5, Adding Features
to GUI Scripts.

Working with Low-Level Scripts

As indicated in Switching to Low-Level Recording on page 4-22, Robot has two
recording modes:

ã Object-Oriented Recording mode

ã Low-level recording mode

If you turn on low-level recording, Robot tracks detailed mouse movements and
keyboard actions by screen coordinates and exact timing. Robot records these low-
level actions in a binary script file. You can view an ASCII version of this binary file.
You can also rename, copy, or delete the file.

A low-level script is stored in the repository and is always associated with a Robot
script. When you create a low-level script, its name appears in the Asset pane of the
Script window. If you delete a Robot script, its associated low-level scripts are also
deleted.

N O TE: The following features are not on the GU I Insert toolbar: File
Comparison, File Existence, Module Existence, and Delay. To add these
features to your script, open the Robot window if necessary (by clicking the
O pen Robot W indow button on the GU I Record toolbar). Click the Insert
menu, and then click the appropriate command.
7 -3

Edit ing, Com piling , and D ebugging Scripts
Viewing Low-Level Scripts
You cannot edit the low-level binary file, but you can use N otepad to view an ASCII
version of the binary file.

To view the low-level script file:

1 . In the Asset (left) pane of the Script window, expand Low Level Scripts if
necessary by clicking the plus sign (+).

2 . Double-click the number of the low-level script that you want to view in
N otepad.

The low-level ASCII file lists the actions that occurred during low-level recording.
For information about the contents of this file, see low-level recording in the Robot
H elp Index.

Renaming a Low-Level Script
When you record a low-level script, it is stored in the repository. You can rename the
low-level script if needed. Renaming a low-level script involves two tasks:

ã Renaming the low-level script in the Asset pane, which renames it in the
repository.

ã Renaming all references to that low-level script in the script.

D ouble-click the low-level
scrip t in the Asset pane to
view an ASCII version of
the b inary file.

If you renam e the
low-level scrip t in
the Asset pane ...

... you a lso
need to renam e
references to it
in the scrip t.
7 -4

Working with Low-Level Scripts
When you rename a low-level script in the Asset pane, Robot does not automatically
rename references to it in the script. If you play back a script that refers to a low-level
script with a name that is not in the Asset pane (and therefore is not in the
repository), the script will fail.

To rename a low-level script:

1 . Right-click the low-level script name in the Asset (left) pane and click Renam e.

2 . Type the new name and press EN TER.

3 . Click the top of the script in the Script (right) pane.

4 . Click Edit → Replace.

5 . Type the old name in the Find what box. Type the new name in the Replace
with box.

6 . Click Replace All.

Copying a Low-Level Script
You can copy a low-level script to the same script or to a different script in the same
project. Copying a low-level script involves two tasks:

ã Copying the low-level script name in the Asset pane in one script, and pasting it
into the Asset pane in the same script or a different script. This puts a copy of
the low-level script in the repository.

ã Copying the low-level script command from the script and pasting it into the
same script or a different script.

To copy a low-level script:

1 . Right-click the low-level script in the Asset (left) pane and click Copy.

2 . In the same script or in a different script (in the same project), right-click
Low-Level Scripts in the Asset pane.

3 . Click Paste to paste a copy of the low-level script into the repository.

If a low-level script with that name already exists, Robot appends a unique
number to the name.

You can also copy and paste by dragging the low-level script to Low Level
Scripts in the Asset pane.
7 -5

Edit ing, Com piling , and D ebugging Scripts
4 . Click the top of the Script (right) pane of the original script.

5 . Click Edit → Find and locate the line with the low-level script name that you
just copied.

6 . Select the entire line, which starts with PlayJrnl. Click Edit → Copy.

7 . Return to the script that you used in step 2. Click the location in the script where
you want to paste the line, and then click Edit → Paste.

8 . Change the name of the low-level script to match the name in the Asset pane.

Deleting a Low-Level Script
If you no longer need a low-level script, you can delete it. Deleting a low-level script
involves two tasks:

ã Deleting the low-level script name in the Asset pane (left pane), which deletes
the low-level script from the repository.

ã Deleting the low-level script command from the script.

When you delete a low-level script in the Asset pane, Robot does not automatically
delete references to it from the script. If you play back a script that refers to a deleted
low-level script, the script will fail.

To delete a low-level script:

1 . Right-click the low-level script name in the Asset (left) pane and click D elete.

2 . Click the top of the script in the Script (right) pane.

3 . Click Edit → Find.

4 . Type the name of the deleted low-level script in the Find what box.

5 . Click Find N ext .

6 . Delete the entire line, which starts with PlayJrnl.

7 . Repeat steps 5 and 6 until you have deleted all references.
7 -6

Saving Scripts and SQ ABasic Files
Saving Scripts and SQABasic Files

Robot saves a script after you define it or record it. You can also save any open script
or SQABasic file manually.

To save open scripts or SQABasic files, do one of the following:

You can save only within the current repository and project.

Printing a Script or SQABasic File

To print an open script or SQABasic file:

1 . If necessary, click File → Page Setup to set up the format of printed output.

To add information to the page header or footer, you need to use print codes.
For a description of these codes, click the H elp button in the Page Setup dialog
box.

2 . Click File → Print.

3 . Set the print options as needed and click O K.

Robot uses standard Windows Print Setup dialog boxes. For more information, see
your Windows documentation.

Compiling Scripts and SQABasic Library Source Files

When you play back a GU I script or virtual user script, or when you debug a GU I
script, Robot compiles the script if it has been modified since it last ran.

You can also compile scripts and SQ ABasic library source files manually.

To save Do this

The active script or file Click File → Save.

The active script or file with a new name Click File → Save As. Type the new name and
click O K.

All open scripts and files Click File → Save All.
7 -7

Edit ing, Com piling , and D ebugging Scripts
Compiling One or All Scripts and Library Source Files
You can compile the active script or file, or you can compile all scripts and files in the
current project.

Batch Compiling Scripts and Library Source Files
To batch compile scripts and library source files:

1 . Click File → Batch Com pile.

2 . Select an option to filter the type of scripts or files you want to appear in the
Available list: GU I scripts, VU scripts, or SQABasic library source files.

3 . Optionally, select List only m odules that require com pila tion to display only
those files that have not yet been compiled or that have changed since they were
last compiled.

4 . Select one or more files in the Available list and click > or > > . Robot compiles
the files in the same order in which they appear in the Selected list.

5 . Click O K to compile the selected files.

To Do this

Compile the active script or library
source file

Click File → Compile.

Compile all scripts and library source
files in the current project

Click File → Compile All.

U se this if, for example, you have made changes to
global definitions that may affect all of your
SQABasic files.
7 -8

D ebugg ing GU I Scripts
Locating Compilation Errors
During compilation, the Build tab of the O utput window displays compilation
results and error messages with line numbers for all scripts and library source files.

To locate compilation errors in the Script window, do one of the following:

ã Double-click the error or warning in the Build tab. Robot moves the cursor to
the beginning of the line and inserts an X in the left margin or highlights the line.

ã Click Edit → N ext Error or Edit → Previous Error. Robot moves the cursor to
the beginning of the line and inserts an X in the left margin or highlights the line.

ã Click Edit → Go to Line, type the line number, and click O K . Robot moves the
cursor to the beginning of the line.

Debugging GUI Scripts

Robot includes a complete, built-in debugging environment to assist you during the
development phase of your GU I scripts.

Before you start to debug, you must have an open GU I script. The script can be:

ã A script that you have just recorded.

ã A script that you have opened by clicking File → O pen → Script .

Bu ild tab shows
com pila t ion resu lts.

N O TE: Robot does not have a debugging environment for virtual user scripts.
7 -9

Edit ing, Com piling , and D ebugging Scripts
To debug a GU I script, use the D ebug menu commands or toolbar buttons on the
Standard toolbar or Playback toolbar. When you start to debug, Robot automatically
compiles the script if it has changed since it last ran, and displays the Playback
toolbar.

The following table describes the commands on the D ebug menu.

Debug command Description

Go Plays back the currently open script.

Executes until either the next breakpoint or the end of the
script, whichever comes first.

Go U ntil Cursor Plays back the currently open script, stopping at the text
cursor position.

Executes until either the next breakpoint or the end of the
script, whichever comes first.

Animate Plays back the currently open script, displaying a yellow
arrow in the left margin of each line (or highlighting the line)
as it executes.

Executes until either the next breakpoint or the end of the
script, whichever comes first.

Pause Pauses playback. To resume playback, click D ebug →
Pause.

Stop Stops playback.

Set or Clear Breakpoint Sets or clears a breakpoint at the cursor position.

If you set a breakpoint, Robot inserts a solid red circle in the
left margin or highlights the line.

If you clear a breakpoint, Robot removes the circle or
highlighting.
7 -1 0

D ebugg ing GU I Scripts
You can also use the N ext Error and Previous Error commands on the Edit menu.
These commands move the text cursor to the line containing the next or previous
compiler error, and add an X in the left margin or highlight the line.

Setting and Clearing Breakpoints
Robot lets you set any number of breakpoints in a script. A breakpoint is a location
in a script where you want execution to stop.

When execution stops at a breakpoint, you can examine the value of a variable or
check the state of an object before it is modified by a subsequent command. You can
then resume execution until the next breakpoint or the end of the script.

Clear All Breakpoints Clears all breakpoints in the script.

Step Into Begins single-step execution. (The subprogram you initially
step into is Main.)

Executes one command at a time.

Step O ver Enabled after you step into a script. Executes a single
command line within a script.

If the command calls another script, Robot executes the
called script as if it were a single instruction and moves to
the command immediately following the script call.

If the command is the last line in a called script, Robot
returns to the calling script and stops at the command
immediately following the script call.

Step O ut Enabled after you step into a script. Steps out of the called
script and returns to the calling script. Execution stops at the
command immediately following the script call.

Step O ut is equivalent to Go U ntil Cursor with the text
cursor placed in the calling script in the command line
immediately following the script call.

Debug command Description
7 -1 1

Edit ing, Com piling , and D ebugging Scripts
To set and clear breakpoints:

1 . If necessary, open a script by clicking File → O pen → Script.

2 . Place the pointer on the line where you want to set a new breakpoint or clear an
existing breakpoint.

You can only place a breakpoint on a line where an SQABasic command is
executed. Breakpoints on comments, labels, and blank lines are not supported.
Also, there are a very few commands that do not support breakpoints (for
example, Dim and Sub).

3 . Click once to insert a blinking text cursor. (You can also highlight the entire line
or any part of the line.)

4 . Click D ebug → Set or Clear Breakpoint.

If you set a breakpoint, Robot inserts a solid red circle in the left margin or
highlights the line. If you clear a breakpoint, Robot removes the circle or
highlighting.

5 . If you set a breakpoint, click D ebug → Go.

Robot executes as far as the breakpoint, and then displays a yellow arrow in the
left margin of that line or highlights the line.

If you attempt to assign a breakpoint to a line of code that does not support
breakpoints, Robot does the following:

ã If you attempt an unsupported breakpoint assignment before you execute the
script, the assignment appears to be successful, and no warning message appears.
H owever, when script execution begins, Robot automatically removes invalid
breakpoint assignments.

Last line execu ted

Breakpoint not yet reached

N ext line to be execu ted
7 -1 2

D ebugg ing GU I Scripts
ã If you attempt an unsupported breakpoint assignment during the execution of
a script (for example, while execution is stopped at a breakpoint), the warning
message This is not an executable line of code appears in the status bar.

Executing to a Selected Line
To stop execution at a selected line in a script without setting a breakpoint:

1 . If necessary, open a script by clicking File → O pen → Script.

2 . Place the cursor on the line where you want execution to stop.

3 . Click once to insert a blinking text cursor. (You can also highlight the entire line,
or any part of the line.)

4 . Click D ebug → Go U ntil Cursor.

Robot executes as far as the line with the text cursor, and displays a yellow arrow
in the left margin of that line or highlights the line.

Executing in Animation Mode
To play back a script in animation mode, so you can see each line as it executes:

1 . If necessary, open a script by clicking File → O pen → Script.

2 . Move and resize the Robot window so that it does not cover the application-
under-test but so that you can still see the Script window.

3 . Click D ebug → Anim ate.

As Robot plays back the script, it displays a yellow arrow in the left margin of the
currently executing line or highlights the line.

When playing back a script in animation mode, you may want to increase the delay
between commands. This slows down the execution of user action commands and
verification point commands so you can view line-by-line animation more clearly.
(For information, see Setting Delay Options for Commands and Keystrokes on page 9-8.)

Examining Variable Values
You can examine variable and constant values in the Variables window as you play
back scripts during debugging.

The Variables window appears in the lower-right corner of the Robot main window.
If the Variables window is not open, click View → Variables to open it.
7 -1 3

Edit ing, Com piling , and D ebugging Scripts
The Variables window contains lists of the variables that are assigned values during
playback and the constants that are referred to during playback.

Variable and constant values are updated each time execution pauses during playback
— for example, at a breakpoint, or as you step through the script line by line. Variable
and constant values are also updated during animation mode when each statement is
executed.

The data type of each variable and constant listed in the Variables window is
indicated by a type-declaration character at the end of the variable or constant name.

Variab les window

D ouble-click the + or - sign to
expand or h ide the variab les list .

N ext line
to execute
7 -1 4

D eleting Scripts
Variables and constants are grouped according to scope. For example, in the previous
figure:

ã The variables listed under Main are local variables that are visible only to the
Main sub procedure.

ã The variables listed under CustomVP are module-level variables that are visible
to all the sub procedures in the script CustomVP.

Variables and constants that are visible to all modules are listed under the heading
Globals.

Deleting Scripts

To delete scripts from the repository:

1 . Click File → D elete.

2 . Select one or more scripts from the list.

To change the list of scripts, select a query from the Q uery list.

3 . Click D elete. Click O K to confirm the deletion.

4 . Click Close.

Deleting a GU I script from the repository also deletes its corresponding script file
(.rec), executable file (.sbx), verification points, and low-level scripts.

Deleting a virtual user script deletes the .s file and its properties, but not the
associated watch file (.wch).

For information about deleting scripts from TestManager, see Deleting Scripts on page
2-18.
7 -1 5

Edit ing, Com piling , and D ebugging Scripts
7 -1 6

ã ã ã C H A P T E R 8

Working with Datapools
This chapter describes how to create and manage datapools. It includes the
following topics:

ã What is a datapool

ã Planning and creating a datapool

ã Data types

ã U sing datapools with GU I scripts

ã Managing datapools

ã Managing data types

ã Generating and retrieving unique datapool rows

ã Creating a datapool outside Rational Test

ã Creating a column of values outside Rational Test

Before you begin to work with datapools, you should familiarize yourself with the
concepts and procedures in this chapter

N O TE: This chapter describes datapool access from GU I scripts played back in
Rational Robot. If you have Rational Suite PerformanceStudio installed, see the
datapools chapter in the Using Rational LoadTest manual for information about
accessing datapools from GU I and virtual user scripts played back in a LoadTest
schedule.
8 -1

Working with D atapools
What Is a Datapool?

A datapool is a test dataset. It supplies data values to the variables in a script during
script playback.

Datapools automatically pump a different set of test data to a script each time a script
sends data to the server during the playback of a test. Consider using a datapool
whenever multiple records are being sent to the server in a single playback, and you
want to send a different record each time — for example:

ã If a script transaction sends a record to the server, and the script repeats the
transaction multiple times through a loop (such as a For…Next loop).

ã If a script transaction sends a record to the server, and the script is executed
multiple times through a CallScript command in a loop.

ã If multiple scripts are executed consecutively through a shell script, and each
script sends the server one or more records of the same type.

If you do not use a datapool, the same literal values (the values that were captured
when you recorded the script) are sent to the server each time a record is sent to the
server during script playback.

Datapool Tools
You use Robot to manually add datapool commands to GU I scripts. You use
TestManager to create and manage datapools — for example:

ã Create a datapool and automatically generate datapool values.

ã Edit datapool column definitions.

ã Edit datapool values.

ã Create and edit datapool data types.

ã Perform datapool management activities such as copying and renaming
datapools.

ã Import and export datapools.

ã Import data types.

This chapter describes how to perform all of these tasks.
8 -2

W hat Is a D atapool?
Managing Datapool Files
A datapool consists of two files:

ã Datapool values are stored in a text file with a .csv extension.

ã Datapool colum n nam es are stored in a specification(.spc) file. The software for
Rational Robot or TestManager is always responsible for creating and
maintaining this file. You should never edit this file directly.

.csv and .spc files are stored in the Datapool directory of your Robot project.

U nless you import a datapool, the Robot or TestManager software automatically
creates and manages the .csv and .spc files based on instructions that you provide
through the user interface.

If you import a datapool, you are responsible for creating the .csv file and populating
it with data. H owever, the Rational Test software is still responsible for creating and
managing the .spc file for the imported datapool.

For information about importing datapools, see Importing a Datapool on page 8-28 and
Creating a Datapool Outside Rational Test on page 8-38.

Datapool Cursor
The datapool cursor, or row-pointer, is automatically reset after you run a test in
Robot. In other words, if the last datapool row accessed at the end of a test run is row
100, access resumes with row 1 the first time the datapool is accessed in a new test.
Access does not resume with row 101.

Row Access Order
Row access order is the sequence in which datapool rows are accessed at test runtime.

With GU I scripts, you can control the row access order of the datapool cursor
through the sequence argument of the SQ ABasic SQADatapoolOpen
command.

Datapool Limits
A datapool can have up to 150 columns if the Rational Test software automatically
generates the data for the datapool, or 32,768 columns if you import the datapool
from a database or other source. Also, a datapool can have up to 2,147,483,647 rows.

N O TE: LoadTest automatically copies a .csv file to each Agent computer that uses
it. If an Agent’s .csv file becomes out-of-date, LoadTest automatically updates it.
8 -3

Working with D atapools
What Kinds of Problems Does a Datapool Solve?
If a single record is sent to the server during script playback, the script probably does
not need to access a datapool.

But sometimes, script playback involves sending multiple records to the server — for
example, if the same transaction is repeated multiple times during playback.

If the values used in each transaction are the same literal values — the values you
provided during recording — you might encounter problems at test runtime.

H ere are some examples of problems that datapools can solve:

ã Problem: During recording, you create a personnel file for a new employee, using
the employee’s unique social security number. Each time the transaction is
repeated, there is an attempt to create the same personnel file and supply the
same social security number. The application rejects the duplicate requests.

Solution: U se a datapool to send different employee data, including unique social
security numbers, to the server each time the transaction is repeated.

ã Problem: You delete a record during recording. During playback, each
transaction attempts to delete the same record, and “Record N ot Found” errors
result.

Solution: U se a datapool to reference a different record in the deletion request
each time the transaction is repeated.

Planning and Creating a Datapool

The following is a summary of the stages involved in preparing a datapool for use in
testing. Stages two and three can be performed in any order:

1 . Plan the datapool.

Determine the datapool columns you need. In other words, what kinds of values
(names, addresses, dates, and so on) do you need to retrieve from the datapool
and send to the server?

Typically, you need a datapool column for each script variable that you plan to
assign datapool values to during recording.

For example, suppose your client application has a field called O rder N um ber.
During recording, you type a value for that field. Later, you edit the script and
substitute the literal value that you recorded with a variable. During playback,
the variable can be assigned unique order numbers from a datapool column.

This stage requires some knowledge of the client application and the kinds of
data that it processes.
8 -4

Planning and Creating a D atapool
2 . Add datapool code to the script.

To access a datapool at runtime, a script must contain datapool commands, such
as commands for opening the datapool and fetching a row of data.

With GU I scripts, you manually insert the datapool commands into the script
during editing — for example, substituting a variable for a literal value you
recorded, and then matching up the variable with a datapool column through
the SQADatapoolValue command. For information about using this and
other datapool commands, see Using Datapools with GUI Scripts on page 8-12.

3 . Create and populate the datapool.

You create and populate the datapool in the TestManager Datapool Specification
dialog box. The following is a summary of these basic tasks:

– Define the datapool columns that you determined you needed during the
planning stage. For example, for an Order N umber column, you can specify
the maximum number of characters that an order number can have, and
whether the Order N umber column must contain unique values. For
information about defining datapool columns in the Datapool Specification
dialog box, see Defining Datapool Columns on page 8-20 and Example of
Datapool Column Definition on page 8-23.

You also assign a data type to each datapool column. Data types supply a
datapool column with its values. For information about data types, see Data
Types on page 8-6.

– Generate the data. Once you define the datapool columns, you populate the
datapool simply by clicking Generate D ata .

For more information, see Creating a Datapool with TestManager on page
8-18.

N O TE: You can also create and populate a datapool file manually and import
it into the repository. For more information, see Creating a Datapool Outside
Rational Test on page 8-38.
8 -5

Working with D atapools
The following figure illustrates the three stages of datapool creation:

Data Types

A datapool data type is a source of data for one datapool column.

For example, the N ames - First data type (shipped with Rational Test as a standard
data type) contains a list of persons’ first names. Suppose that you assign this data
type to the datapool column FN AME. When Robot automatically generates
the datapool, it populates the FN AME column with all of the values in the N ames -
First data type.

Plan the Datapool
What datapool columns do you need?
What data type should you assign each column?
Do you need to create data types?

Generate the Code
Manually add datapool commands to the script.
Match up script variable names with datapool
columns.

Create and Populate the Datapool
In TestManager, define datapool columns (and assign a data
type to each datapool column).
Generate the data.
8 -6

D ata Types
The following figure illustrates the relationship between data types, datapool
columns, and the values assigned to script variables during playback:

Standard and User-Defined Data Types
There are two kinds of datapool data types, as follows:

ã Standard data types that are included with Rational Test. These data types
include commonly used, realistic sets of data in categories such as first and last
names, company names, cities, and numbers.

For a list of the standard data types, see Appendix C.

ã U ser-defined data types that you create. You must create a data type if none of
the standard data types contain the kind of values you want to supply to a script
variable.

First Name
Data Type

FNAME
Datapool Column

Transaction 1 Transaction 3Transaction 2
FNAME="Frederick" FNAME="Mary" FNAME="Frank"

Charlotte

Frederick
Mary
Frank

Lauren
Eleanor

William
Victor ..., Frederick, ...

..., Mary, ...

..., Frank, ...

..., Lauren, ...

..., Eleanor, ...

..., Charlotte, ...

..., William, ...

..., Victor, ...

..., ..., ...

D uring datapool generat ion,
the First N am e da ta type
populates the FN AM E
datapool co lum n with va lues

D uring p layback, the FN AM E
colum n supplies a d if feren t
va lue to the FN AM E variab le
in each repeated transaction
8 -7

Working with D atapools
U ser-defined data types are useful in situations such as the following:

– When a field accepts a limited number of valid values.

For example, suppose a datapool column supplies data to a script variable
named color. This variable provides the server with the color of a product
being ordered. If the product only comes in the colors red, green, blue,
yellow, and brown, these are the only values that color can be assigned.
N o standard data type contains these exact values.

You could ensure that the color variable is assigned a valid value from the
datapool by doing the following:

1 . Before you create the datapool, create a data type named Colors that
contains the five supported values (Red, Green, Blue, Yellow,
Brown).

2 . When you create the datapool, assign the Colors data type to the
datapool column COLO R. The CO LOR column will supply values to
the script’s color variable.

– When you need to generate data that contains multi-byte characters, such as
those used in some foreign-language character sets. For more information,
see the section Generating Multi-Byte Characters on page 8-11.

Before you create a datapool, find out which standard data types you can use as
sources of data and which user-defined data types you need to create. Although it is
possible to create a data type while you are creating the datapool itself, the process of
creating a datapool will be smoother if you create the user-defined data types first.
For more information, see Creating User-Defined Data Types on page 8-9.

Finding Out What Data Types You Need
To decide whether to assign a standard data type or a user-defined data type to each
datapool column, you need to know the kinds of values that will be supplied to script
variables during playback — for example, whether a variable will contain names,
dates, order numbers, and so on.

After recording a script, search the script for each value that you provided to the
application during recording. Later, you will replace these literal values with
variables. During playback, the variables will be supplied values from the datapool.

For information about replacing the recorded value with a variable that is supplied
values from a datapool, see Substituting Variables for Literal Values on page 8-14.
8 -8

D ata Types
Finding Values in GUI Scripts
The following are two examples of literal values in GU I scripts. The values are in
bold type:

’Credit Card Type
ComboBox Click, "ObjectIndex=1", "Coords=104,7"
ComboListBox Click, "ObjectIndex=1", "Text=Discover"

’Credit Card Expiration Date
EditBox Left_Drag, "ObjectIndex=4", "Coords=19,13,16,12"
InputKeys "12/31/99"

To simplify the task of searching for values, insert a descriptive comment into the
script before providing a value to the client application during recording.

Creating User-Defined Data Types
If none of the standard data types can provide the correct kind of values to a script
variable, create a user-defined data type.

To create a user-defined data type in TestManager:

1 . Click Tools → M anage D ata Types.

2 . Click N ew.

3 . Type a name for the data type (40 characters maximum) and optionally,
a description (255 characters maximum).

4 . Click O K .

5 . Click Yes when prompted to enter data values now.

The Edit Data Type dialog box appears. This dialog box supports Input Method
Editor (IME) modes for typing multi-byte characters.

6 . Type a data type value on the first blank line in the list.

When you start typing the value, a pencil icon appears, indicating editing mode.

7 . To type a new value, place the insertion point on the blank line next to the
asterisk icon, and then type the value.

8 . Repeat steps 6 and 7 until you have added all of the values.

9 . Click Save.

N O TE: The only values that Robot records are those that you specifically provide
during recording. If you accept a default, Robot does not record that value.
8 -9

Working with D atapools
The following figure shows the data type Colors being populated with five values:

When you create a user-defined data type, it is listed in the Type column of the
Datapool Specification dialog box (where you define datapool columns). Type also
includes the names of all the standard data types. U ser-defined data types are flagged
in this list with an asterisk (*).

Generating Unique Values from User-Defined Data Types
You may want a user-defined data type to supply unique values to a script variable
during playback. To do so, the user-defined data type must contain unique values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, make the following settings for the datapool column associated with the user-
defined data type:

ã Set Sequence to Sequential.

ã Set Repeat to 1.

ã Make sure that the N o. of records to generate value does not exceed the
number of unique values in your user-defined data type.

For information about the values you set in the Datapool Specification dialog box,
see Defining Datapool Columns on page 8-20.

Type new value hereType the new value here.

Slide th is bar
up or down to
change row heigh t.

Line cu rrently being ed ited

N O TE: You can assign data from a standard data type to a user-defined data type.
For information, see Editing Standard Data Type Values on page 8-32.
8 -1 0

D ata Types
Generating Multi-Byte Characters
If you want to include multi-byte characters in your datapool (for example, to
support Japanese and other languages that include multi-byte characters), you can
do so in one of the following ways:

ã Through a user-defined data type. (For information, see Creating User-Defined
Data Types on page 8-9.)

The editor provided for you to supply the user-defined data fully supports Input
Method Editor (IME) operation. An IME lets you type multi-byte characters,
such as Kanji and Katakana characters as well as multi-byte ASCII, from a
standard keyboard. An IME is included in the Japanese version of Microsoft
Windows.

ã Through the Read From File data type. (For information, see Creating a Column
of Values Outside Rational Test on page 8-42.)
8 -1 1

Working with D atapools
Using Datapools with GUI Scripts

A GU I script can access a datapool when it is played back in Robot.

The following are the general tasks involved in providing access to a datapool from
a GU I script. These tasks are not in a fixed order — you can create the datapool at
any point:

ã Record the GU I script.

ã Add datapool commands to the script.

ã Create the datapool.

The following sections provide information about recording a GU I script for
datapool access and adding datapool commands to a GU I script.

For information about creating a datapool with TestManager, see Creating a Datapool
with TestManager on page 8-18.

Recording a GUI Script
During GU I recording, as you provide values to the client application, follow the
guidelines below. These guidelines will simplify the task of adding datapool
commands to the script after you record it.

ã Before you provide a value to the client application, insert a comment that
describes the value you are providing. Later, when you are editing the script,
comments will simplify the task of searching for the values you provided during
recording.

To insert a comment, click the Com ment button on the GU I Insert
floating toolbar.

ã Specify a value for each application field that is to be supplied with a datapool
value during script playback. Do this even for fields that contain default values.

Remember, during GU I recording, that Robot records your GU I actions. If you
do not act on a field that contains a default value, that field object and its default
value will not appear in the script. You will either have to re-record that portion
of the script or add the information to the script manually.
8 -1 2

U sing D atapools w ith GU I Scripts
Adding Datapool Commands to a GUI Script
Once you have recorded values for all of the fields in the client application that
require values from the datapool, edit the script and perform the following
basic tasks:

ã Reference the sqautil.sbh header file.

ã Substitute variables for the literal values that you provided during recording.

ã Add datapool commands that open the datapool, fetch a row of data from the
datapool, retrieve the individual values in the fetched row, and assign each value
to a script variable.

The following code fragment highlights the role of the primary datapool commands:

’$Include "sqautil.sbh"
Sub Main

... Declare variables with Dim statements

’ Open a datapool named CD Orders
dp=SQADatapoolOpen("CD Orders")

’ Perform the transaction 100 times, using a new
’ set of data from the datapool each time

For x = 1 to 100

’ Fetch a row from the datapool
 Call SQADatapoolFetch(dp)

’ Begin the transaction

’ Credit Card Number
Window SetContext, "Caption=Make An Order", ""
EditBox Click, "ObjectIndex=3", "Coords=13,11"
’ Assign ccNum a value from datapool column #4
Call SQADatapoolValue(dp,4,ccNum)
InputKeys ccNum ’ Pass the datapool value to the application

... ’ Assign other datapool values to other variables

Next x

Call SQADatapoolClose(dp)

End Sub

For details about using these datapool commands and the SQADatapoolRewind
command, see the SQABasic Language Reference.
8 -1 3

Working with D atapools
Substituting Variables for Literal Values
The values that you provided during recording are included in the script as literal
values. If you do not substitute a variable for a literal value, the literal value is sent to
the server each time the transaction is executed.

The recorded literal values are represented in the script in various ways. For example,
if you type a value into an edit box, the InputKeys command specifies the
characters you typed. If you click an item in a combo list box, the value is specified
in the parameters argument of ComboListBox.

Edit Box Exam ple
The following is an example of how Robot records the value Fred as it is typed into
an edit box:

’Customer’s First Name
EditBox Click, "ObjectIndex=5", "Coords=104,12"
InputKeys "Fred"

And the following is an example of replacing that literal value with the variable
fName:

’Customer’s First Name
EditBox Click, "ObjectIndex=5", "Coords=104,12"
Call SQADatapoolValue(dp,1,fName)
InputKeys fName

Com bo List Box Exam ple
The following is an example of how Robot records the value Discover as it is
selected from a list of credit card types:

’Credit Card Type
ComboBox Click, "ObjectIndex=1", "Coords=104,7"
ComboListBox Click, "ObjectIndex=1", "Text=Discover"

And the following is an example of replacing that literal value with the variable
ccType:

’Credit Card Type
ComboBox Click, "ObjectIndex=1", "Coords=104,7"
Call SQADatapoolValue(dp,5,ccType)
ComboListBox Click, "ObjectIndex=1", "Text=" + ccType
8 -1 4

U sing D atapools w ith GU I Scripts
Assigning Datapool Values to Variables
Once you substitute variables for the literal values that you recorded, you assign
datapool values to the variables. You do so through the SQADatapoolFetch and
SQADatapoolValue commands. U se these commands as follows:

ã Call SQADatapoolFetch to retrieve an entire row of values (also called a
record) from the datapool.

ã Call SQADatapoolValue to retrieve an individual value from the fetched
datapool row and assign it to a script variable.

For example, suppose a datapool row consists of three columns of values:
Part N umber, Part N ame, and U nit Price.

1 . At the beginning of the transaction, just before the lines of code where Robot
recorded these three values, call SQADatapoolFetch.

2 . N ext, call SQADatapoolValue three times — once for each of the three
datapool columns that you are accessing in the fetched row.
SQADatapoolValue retrieves a value from the specified column in the
fetched row and assigns the value to a script variable.

In the following example, SQADatapoolValue retrieves a value from the first
column in the fetched datapool row and assigns the value to the variable fName:

’Customer’s First Name
EditBox Click, "ObjectIndex=5", "Coords=104,12"
Call SQADatapoolValue(dp,1,fName)
InputKeys fName

Optionally, SQADatapoolValue can refer to the column by column name rather
than by column number. In the following example, the datapool column name
fName matches the variable name fName:

Call SQADatapoolValue(dp,"fName",fName)

If you refer to the datapool column by name, the reference must match the datapool
column name exactly, including a case match.

Datapool column names and column numbers are indicated in the TestManager
Datapool Specification dialog box and in the TestManager Edit Datapool dialog box.
8 -1 5

Working with D atapools
Example GUI Script
The following GU I script was edited to access the CD Orders datapool illustrated in
Example of Datapool Column Definition on page 8-23:

’$Include "sqautil.sbh"

Sub Main
Dim Result As Integer

’Initially Recorded: 05/06/98 17:56:15
’Script Name: CD Order

Dim x as Integer
Dim dp as Long ’ Reference to datapool

’Variables to be assigned data from datapool
Dim ccNum as String
Dim ccType as String
Dim ccExpDate as String
Dim fName as String
Dim lName as String
Dim custID as String

’ Open a datapool named CD Orders
dp=SQADatapoolOpen("CD Orders")

’ Execute transaction 100 times.
For x = 0 to 99

 ’ Fetch a row from the datapool
 Call SQADatapoolFetch(dp)

’Begin the order
Window SetContext, "Caption=Classics Online;Class=ThunderForm", ""
PushButton Click, "Text=Order It!"
Window SetContext, "Caption=Classics Login", ""

 PushButton Click, "Text=OK"

’ The following section uses data from the CD Orders datapool

’Credit Card Number
Window SetContext, "Caption=Make An Order", ""

 EditBox Click, "ObjectIndex=3", "Coords=13,11"
Call SQADatapoolValue(dp,4,ccNum)

 InputKeys ccNum

 ’Credit Card Type
 ComboBox Click, "ObjectIndex=1", "Coords=104,7"
 Call SQADatapoolValue(dp,5,ccType)
 ComboListBox Click, "ObjectIndex=1", "Text=" + ccType

 ’Credit Card Expiration Date
 EditBox Left_Drag, "ObjectIndex=4", "Coords=19,13,16,12"
 Call SQADatapoolValue(dp,6,ccExpDate)
 InputKeys ccExpDate

 ’Customer’s First Name
 EditBox Click, "ObjectIndex=5", "Coords=104,12"
 Call SQADatapoolValue(dp,1,fName)
 InputKeys fName
8 -1 6

M anag ing D atapoo ls
 ’Customer’s Last Name
 EditBox Left_Drag, "ObjectIndex=6", "Coords=67,4,-309,15"
 Call SQADatapoolValue(dp,2,lName)
 InputKeys lName

 ’Customer’s ID
 EditBox Left_Drag, "ObjectIndex=7", "Coords=115,11,-305,20"
 Call SQADatapoolValue(dp,3,custID)
 InputKeys custID

 ’Place the order
 PushButton Click, "Text=Place Order"

 ’Acknowledge the placement of the order
 Window SetContext, "Caption=Classics Online;Class=#32770", ""
 PushButton Click, "Text=OK"

Next x ’ End the current transaction

Call SQADatapoolClose(dp)

End Sub

Managing Datapools

You manage datapools in the TestManager Manage Datapools dialog box.

The activities that you perform in this dialog box affect the datapools stored in the
repository. For information about where datapools are stored, see Datapool Location
on page 8-29.
8 -1 7

Working with D atapools
Creating a Datapool with TestManager
To create and automatically populate a datapool with TestManager:

1 . Click Tools → M anage D atapools.

2 . Click N ew.

3 . Type a name for the datapool (40 characters maximum) and optionally,
a description (255 characters maximum).

4 . Click O K .

5 . Click Yes to acknowledge that you want to define the datapool now.

The Datapool Specification dialog box appears. This dialog box lets you define
the columns in the datapool file. Datapool column definitions are listed as rows
in this dialog box. Datapool columns are also called fields.

6 . Click Insert before or Insert after to add a datapool column to the datapool.

7 . Type a name for the new datapool column (40 characters maximum).

8 . Assign a data type to the datapool column, and define any other properties as
needed.

For information about the properties that you can define for a datapool column,
see Defining Datapool Columns on page 8-20.

9 . Repeat steps 6 through 8 until you have defined all of the columns in the
datapool.

To see an example of datapool columns defined in the Datapool Specification
dialog box, see Example of Datapool Column Definition on page 8-23.

1 0 . Type a number in the N o. of records to generate box.

Alternatively, if you do not want to generate any data now, click Save to save
your datapool column definitions, and then click Close.

1 1 . When finished defining datapool columns, click Generate D ata .

You cannot generate data for a datapool that has more than 150 columns.

1 2 . Optionally, click Yes to see a brief summary of the generated data.
8 -1 8

M anag ing D atapoo ls
If There Are Errors
If the datapool values are not successfully generated, you are prompted to see an
error report rather than a summary of the generated data. To correct the errors:

1 . Click Yes to see the error report.

2 . After viewing the cause of the errors, click Cancel.

3 . Correct the errors in the D atapool Fields grid.

Viewing Datapool Values
To see the generated values, close the Datapool Specification dialog box. In the
Manage Datapools dialog box, select the datapool that you just created, click Edit,
and then click Edit D atapool D ata .

If a datapool includes complex values (for example, embedded strings, or field
separator characters included in datapool values), you should view the datapool
values to make sure that the contents of the datapool are as you expect.

Making the Datapool Available to a Script
For a script to be able to access the datapool you create with TestManager, the script
must contain datapool commands, such as commands for opening the datapool and
fetching values.

For information about adding datapool commands to a GU I script, see Using
Datapools with GUI Scripts on page 8-12.
8 -1 9

Working with D atapools
Defining Datapool Columns
The following table provides information to help you define datapool columns in the
Datapool Specification dialog box.

Grid column Description

N ame The name of a datapool column (and its corresponding script variable).

If you change the name of a datapool column, be sure the new name
matches all instances of its corresponding script variable.

If you create a datapool outside of the Rational Test environment and
then import it, TestManager automatically assigns default names to the
datapool columns. U se N ame to match the imported datapool column
names with their corresponding script variables. N ames are case-sensitive.

You can use an IME to type multi-byte characters in datapool field names.

(With GU I scripts, you can associate datapool column names and script
variables through column position rather than column name. For more
information, see the description of the SQADatapoolValue command
in the SQABasic Language Reference.)

Type The standard or user-defined data type that supplies values to the datapool
column in N ame. U ser-defined data types are marked with an asterisk
(*).

Specify the data type to assign to the datapool column, as follows:

ã To select a standard data type or an existing user-defined data type,
click the currently displayed data type name, and then select the new
data type from the drop-down list:

See Appendix C for a description of the standard data types.
If you type rather than select the name of a user-defined data type,
enter an asterisk before the user-defined data type name. For example,
to specify the user-defined data type MyData, type:

*MyData

ã To create a new user-defined data type, enter the data type name
(without the asterisk) in the field, and then press RETU RN . After you
click Yes to confirm that you want to create a user-defined data type,
the Data Type Properties - Edit dialog box appears.
For information about creating a data type, see Creating User-Defined
Data Types on page 8-9.
8 -2 0

M anag ing D atapoo ls
Sequence The order in which the values in the data type specified in Type are
written to the datapool column. Select one of the following options from
the drop-down list:

ã Random – Writes numeric and alphanumeric values to the datapool
column in any order.

ã Sequentia l – Writes numeric values sequentially (for example, 0, 1,
2...). With decimal numbers, the sequence is based on the lowest
possible decimal increment (for example, with a D ecimals value of 2,
the sequential values are 0.00, 0.01, 0.02, ...).
Sequentia l is only supported for numeric values (including date and
time values) and values generated from user-defined data types.
When you select Sequential with numeric data types, and you specify a
M inimum and M aximum range, Interval must be greater than 0.

ã U nique – With data type Integers - Signed, ensures that numbers
written to the datapool column are unique. Also, set Repeat to 1,
and define a M inimum and M aximum range.

Repeat The number of times a given value can appear in a datapool column.
Repeat cannot be set to 0.

To make values unique with Integers - Signed data types and user-defined
data types, set Repeat to 1. For unique Integers - Signed values, also set
Sequence to either Sequential or U nique.

When defining unique values, make sure that the number of rows you are
generating is not higher than the range of possible unique values.

Length The maximum number of characters that a value in the datapool column
can have. If the datapool column contains numeric values, Length
specifies the maximum number of characters a number can have, including
a decimal point and minus sign, if any.

For example, for decimal numbers as high as 999.99, set Length to 6.
For decimal numbers as low as -999.99, set Length to 7.

Length cannot be 0.

D ecimals Specifies the maximum number of decimal places that floating point
values can have. The maximum setting is 6 decimal places.

 (Continued)

Grid column Description
8 -2 1

Working with D atapools
Some items might not be modifiable, depending on the data type that you select.
For example, if you select the N ames - First data type, you cannot modify D ecimals,
Interval, M inim um , or M axim um .

Interval Writes a sequence of numeric values to the datapool column. The
sequence increments by the Interval you set. For example, if Interval is 10,
the datapool column contains 0, 10, 20, and so on. If Interval is 10 and
Decimal is 2, the datapool column contains 0.00, 0.10, 0.20, and so on.

Minimum interval is 1. Maximum interval is 999999.

With numeric data types (including dates and times), when Sequence is
set to Sequential and you specify a M inimum and M aximum range,
Interval must be greater than 0.

U se Interva l only with numeric values (including dates and times).

M inimum Specifies the lowest in a range of numeric values. For example, if the
datapool column supplies order number values, and the lowest possible
order number is 10000, set Type to Integer - Signed, M inimum to 10000,
and M aximum to the highest possible order number.

U se M inimum only with numeric values (including dates and times).

M aximum Specifies the highest in a range of numeric values. For example, if the
datapool column supplies values to a variable named ounces, set Type to
Integer - Signed, M inimum to 0, and M aximum to 16.

U se M aximum only with numeric values (including dates and times).

Seed The number that Rational Test uses to compute random values.
The same seed number always results in the same random sequence.
To change the random sequence, change the seed number.

When Type is String Constant, use Seed to provide the alphanumeric
value of the constant. For example, if you want to insert the constant
“Rational Software” into every row of a datapool column, set Type to
String Constant and type Rational Software into Seed.

D ata File The path to the user-defined data type file. The path is automatically
inserted for you. This field is not modifiable.

Data type files are stored in the Datatype directory of your project. You
never have to modify these files directly.

 (Continued)

Grid column Description
8 -2 2

M anag ing D atapoo ls
If you are generating unique values for an Integers - Signed data type, Length,
M inim um , M axim um , and N o. of records to generate must be consistent. For
example, if you want unique numbers from 0 through 999, errors may result if you
set Length to 1, M axim um to 5000, and/or if you set N o. of records to generate to
a number greater than 1000.

Example of Datapool Column Definition
Suppose you want to record a transaction in which a customer purchase is entered
into a database. During recording, you supply the client application with the
following information about the customer:

ã Customer name

ã Customer ID

ã Credit card number

ã Credit card type

ã Credit card expiration date

After you record the script and edit it for datapool access, you are ready to create the
datapool. Following the instructions on page 8-18, you define the datapool’s
columns in the Datapool Specification dialog box, as illustrated below:

N O TE: You can use an IME to type multi-byte characters into the N ame column
only. The IME is automatically disabled when you are editing any other column.

Generate 1 00 0
datapool rows

The only user-defined
data type needed

D ate range

Floa t data type with 0
decim als is used for
credit card num bers
requiring 1 6 d ig its

Custom er ID is un ique

D atapool
co lum n 1
8 -2 3

Working with D atapools
In this example, note the following highlights of the datapool column definition:

ã fN am e column. The standard data type N ames - First supplies this datapool
column with masculine and feminine first names.

ã lN am e column. The standard data type N ames - Last supplies this datapool
column with surnames.

ã custID column. The standard data type Integer - Signed supplies ID numbers to
this datapool column. Because all customer IDs in this example consist of seven
digits, the M inim um and M axim um range is set from 1000000 through 9999999.
Also, because all IDs must be unique, Sequence is set to U nique.

ã ccN um column. The Integer - Signed data type generates numbers up to nine
digits. Because credit card numbers contain more than nine digits, the standard
data type Float X.XXX is used to supply credit card numbers to this datapool
column. D ecim als is set to 0 so that only whole numbers are generated.
Sequence is set to Random to generate random card numbers. To generate
unique numbers, Repeat is set to 1.

ã ccType column. This is the only datapool column that needs to have values
supplied from a user-defined data type. The user-defined data type Credit Card
Type contains just four values — American Express, Discover, MasterCard,
and Visa.

ã ccExpD ate column. The standard data type Date - MM/DD/YYYY supplies
credit card expiration dates to this datapool column. The range of valid
expiration dates is set from July 1, 1998 through December 31, 2002. Sequence
is set to Random to generate random dates.

Example of Datapool Value Generation
After you define datapool columns in the Datapool Specification dialog box, click
Generate D ata to generate the datapool values. To see the values that you generated:

1 . Click Close.

2 . Click Edit D atapool D ata .

N O TE: Sequence can only be set to U nique for Integer - Signed data types.
8 -2 4

M anag ing D atapoo ls
This is what you see:

Editing Datapool Column Definitions with TestManager
To edit the definitions of the columns in an existing datapool with TestManager:

1 . Click Tools → M anage D atapools.

2 . Select the datapool to edit, and then click Edit.

3 . Click D efine D atapool Fields.

The Datapool Specification dialog box appears. This dialog box lets you define
the columns in the datapool file. Datapool column definitions are listed as rows
in this dialog box. Datapool columns are also called fields.

4 . Edit one or more datapool column definitions, as described in the table in
Defining Datapool Columns on page 8-20.

5 . When you have finished editing datapool column definitions, take one of the
following actions:

– To save the datapool column definitions but not generate any data, click
Save, and then click Close.

– To save the datapool column definitions and generate data, type a number
in the N o. of records to generate field, and then click Generate D ata .
Optionally, click Yes to see a brief summary of the generated data.

D rag th is vert ica l bar to
change colum n wid th .
8 -2 5

Working with D atapools
If There Are Errors
If the datapool values are not successfully generated, you are prompted to see an
error report rather than a summary of the generated data. To correct the errors:

1 . Click Yes to see the error report.

2 . After viewing the cause of the errors, click Cancel.

3 . Correct the errors in the D atapool Fields grid.

Deleting a Datapool Column
Datapool column definitions are listed as rows in the Datapool Specification
dialog box.

To delete a datapool column definition from the list:

1 . Click anywhere in the row to be deleted.

2 . Click the gray box to the left of the datapool column name. This action selects
the entire row.

3 . Press the DELETE key.

You are not prompted to confirm the deletion.

Editing Datapool Values with TestManager
To view or edit the values in an existing datapool with the TestManager editor:

1 . Click Tools → M anage D atapools.

2 . Select the datapool to edit, and then click Edit.

3 . Click Edit D atapool D ata in the Datapool Properties - Edit dialog box.

The Edit Datapool dialog box appears.

4 . Modify the datapool values as necessary. N ote that:

– When you click a value to edit it, an arrow icon appears to the left of the row
you are editing.

– When you begin to edit the value, a pencil icon appears to the left of the row,
indicating editing mode.

– To undo the changes that you just made to a value, press CTRL + Z before
you move the insertion point out of the field.

N O TE: To see the generated values, close the Datapool Specification dialog box.
In the Datapool Properties - Edit dialog box, click Edit D atapool D ata .
8 -2 6

M anag ing D atapoo ls
– To see the editing menu, select the text to edit, and then right-click the
mouse.

– To increase the width of a column, move the bar that separates column
names. To increase the height of a row, move the bar that separates rows:

5 . To delete an entire datapool row:

a. Click the gray box to the left of the first value in the row that you are
deleting. This action selects the entire row.

b. Press the DELETE key.

6 . When you have finished modifying datapool values, click Save, and then
click Close.

For an example of the datapool values that TestManager generates, see Example of
Datapool Value Generation on page 8-24.

Cancelling Your Ed its
To abandon all of the edits that you made in the Edit Datapool dialog box,
click Cancel or the ESC key. With either action, all your edits are abandoned, and the
Edit Datapool dialog box closes.

Renaming a Datapool
To rename a datapool:

1 . In TestManager, click Tools → M anage D atapools.

2 . Click the name of the datapool to rename.

3 . Click Renam e.

4 . Type the datapool’s new name (40 characters maximum).

5 . Click O K , and then click Close.

Copying a Datapool
To copy a datapool:

1 . In TestManager, click Tools → M anage D atapools.

2 . Click the name of the datapool to copy.

Slide up or down to
change row heigh t.

Slide left or right to
change colum n width .
8 -2 7

Working with D atapools
3 . Click Copy.

4 . Type a name for the new datapool (40 characters maximum).

5 . Click O K , and then click Close.

Deleting a Datapool
To delete a datapool:

1 . In TestManager, click Tools → M anage D atapools.

2 . Click the name of the datapool to delete.

3 . Click D elete.

4 . Click Yes to confirm the deletion, and then click Close.

Deleting a datapool removes the datapool .csv and .spc files plus all references to the
datapool from the repository.

Importing a Datapool
Robot automatically creates and populates datapools for you. H owever, it is
possible for you to create and populate a datapool yourself, using a tool such as
Microsoft Excel. For example, you might want to export data from your database into
a .csv file, and then use that file as your datapool.

If you create a datapool yourself, you need to import it into the same repository
as the scripts that will access it. U se TestManager to import a datapool .csv file.

To import a datapool .csv file using TestManager:

1 . Click Tools → M anage D atapools.

2 . Click Import.

3 . In the Look in box, specify the directory where the datapool you created is
located.

4 . In File nam e, specify the name of the datapool .csv file.

5 . Click O pen.

The Datapool Properties - Import dialog box appears and displays the
datapool name.

6 . Accept the default datapool name or type a new one (40 characters maximum).
8 -2 8

M anag ing D atapoo ls
7 . In Field Separator, make sure that the character(s) displayed are the same as the
field separator used in the .csv file that you are importing as a datapool.

For information about field separators in datapools, see Datapool Structure on
page 8-39.

8 . Optionally, type a description of the datapool (255 characters maximum).

9 . Click O K , and then click Close.

When you import a datapool, you often have to change the names of the datapool
columns to match the names of the corresponding script variables. For more
information, see Matching Datapool Columns with Script Variables on page 8-42.

Datapool Location
When you import a datapool, TestManager copies the datapool’s .csv file to the
Datapool directory associated with the current repository and project.

For example, if the current repository is MyRepo, and if the current project directory
is MyProject, the datapool is stored in the following directory:

C:\MyRepo\Project\MyProject\Datapool

This directory also includes the datapool’s specification (.spc) file. When you create
and then import a .csv file, TestManager automatically creates the .spc file for you.
You should never edit the .spc file directly.

Importing a Datapool from Another Project
U se the TestManager Import feature to copy a datapool that you created for one
project into another. When you import a datapool into a new project, the source
datapool is still available to the original project.

N O TE: After you import a datapool, the original file that you used to populate
the datapool remains in the directory that you specified when you saved it. The
Rational Test software has no further need for this file.

N O TE: If the datapool that you are importing includes user-defined data types,
import the data types before you import the datapool. For information, see
Importing a User-Defined Data Type on page 8-35.
8 -2 9

Working with D atapools
To import a datapool into a new project:

1 . Run TestManager. (By default, click Start → Program s → Rat iona l p roduct
nam e → Rational Test 7 → TestM anager.)

2 . In the Rational Repository Login dialog box, select the repository and project
that you are importing the datapool to.

3 . Click File → Im port Test Assets. The Import Test Assets wizard appears.

4 . Select D atapool in the Asset Type list.

5 . Click the appropriate overwrite option. This option determines whether to
overwrite an existing datapool with the same name as the one you are importing.

6 . Click N ext.

7 . In the Login dialog box, provide the path, project name, and your login
information for the repository that contains the datapool you are importing.

If you are importing between projects in the same repository, you do not need
to provide a user ID and password.

8 . Click N ext.

9 . Select one or more datapools to import. (To select multiple datapools, hold
down the CTRL key while clicking each datapool to import.)

1 0 . Click N ext.

1 1 . Click Finish after reading the information summarizing the import operation.

Exporting a Datapool
U se the TestManager Export feature to copy a datapool to any directory on your
computer. When you export a datapool, the original datapool remains in its
repository and project.

Do not attempt to export a datapool to another Rational Test project. Instead, use the
import feature to import the datapool into the new project. For more information,
see Importing a Datapool on page 8-28.

To export a datapool to a location on your computer:

1 . In TestManager, click Tools → M anage D atapools.

2 . Click the datapool to export.

3 . Click Export .

4 . In Save In, specify the directory where you want to copy the datapool.
8 -3 0

M anaging D ata Types
5 . Click Save.

6 . Click O K to acknowledge that the datapool was exported to the correct location.

Managing Data Types

You can se TestManager to manage data types, as follows:

ã With user-defined data types, you can edit data type values and data type
definitions. You can also import, rename, copy, and delete user-defined
data types.

For information about creating user-defined data types, see Creating User-Defined
Data Types on page 8-9.

ã With standard data types, you can only edit data type values, and you can only do
so indirectly, through a user-defined data type.

Editing User-Defined Data Type Values
If you want to add, remove, or modify data type values, or if you just want to modify
the optional description, edit the data type. You can edit only user-defined data types,
not standard data types.

To edit a user-defined data type in TestManager:

1 . Click Tools → M anage D ata Types.

2 . Select the data type to edit, and then click Edit.

3 . Optionally, modify the data type description.

4 . Click Edit D ata Type D ata . A dialog box appears with the name of the data type
you are editing.

5 . The arrow icon points to the line that is currently available for editing. Edit that
line, or place the insertion point in another line.

You can use the keyboard’s up and down arrow keys to move the insertion point.

6 . To see the editing menu, select the text to edit, and then right-click the mouse.

7 . To delete a value, place the insertion point anywhere in the value, click the gray
box to the left of the value, and then press the DELETE key.

8 . When you have finished making changes, click Save.

9 . Click O K in the Data Type Properties - Edit dialog box, and then close the
Manage Data Types dialog box.
8 -3 1

Working with D atapools
Editing Standard Data Type Values
You cannot edit the values in a standard data type directly. H owever, you can
accomplish the same task by copying the values in a standard data type to a user-
defined data type, and then modifying the values in the user-defined data type.

The following procedure shows how you can modify the values in the standard data
type Cities – U .S:

1 . Click Tools → M anage D ata Types, and then click N ew.

2 . Click the name of your new data type (in this case, Custom U S Cities).
Optionally, type a description, and then click O K .

3 . Click N o when prompted to enter data into the new data type now.

4 . Select the data type you just created, and then click Edit.

5 . Click D efine D ata Type Field.

6 . In the Type column, use the drop-down list to select the name of the standard
data type that contains the values you want to modify (in this case, Cities – U .S.).

7 . In N o. of records to generate, type the number of values to copy from the
standard data type to the new data type, and then click Generate D ata .

8 . Click Close in the Datapool Specification dialog box, and then click
Edit D ata Type D ata .

9 . Add, delete, and modify the standard data type values as appropriate.

1 0 . When you have finished making changes, click Save.

1 1 . Click O K in the Data Type Properties - Edit dialog box, and then close the
Manage Data Types dialog box.

To use the modified values when assigning a data type to a datapool column in the
Datapool Specification dialog box, assign the user-defined data type that you just
created, not the standard data type.

Editing User-Defined Data Type Definitions
Like all data types, a user-defined data type is essentially a one-column datapool. The
single column contains the values that you type into the user-defined data type.

You can edit the default definition of the data type column in the Datapool
Specification dialog box, just as you edit the default definition of datapool columns.

If you edit the definition of a user-defined data type, and then generate values for the
data type, you overwrite any existing definitions and values for the data type.
8 -3 2

M anaging D ata Types
How to Edit User-Defined Data Type Definitions
To edit the definition of a user-defined data type in TestManager:

1 . Click Tools → M anage D ata Types.

2 . Select the data type to edit, and then click Edit.

3 . Click D efine D ata Type Field.

The Datapool Specification dialog box appears. N ote that the Insert Before and
Insert After buttons are not present; this is because a user-defined data type file
can have only one column of values.

4 . Define the fields in the data type. U se the table in Defining Datapool Columns on
page 8-20 to help you define the fields.

5 . When you have finished defining the data type, click Generate D ata .

Optionally, click Yes to see a brief summary of the generated data.

6 . Click Close in the Datapool Specification dialog box, and then click Edit D ata
Type D ata .

7 . Make any necessary modifications to the generated values.

8 . When you have finished modifying values, click Save.

9 . Click O K in the Data Type Properties - Edit dialog box, and then close the
Manage Data Types dialog box.

Generating Values for a User-Defined Data Type
You can add values to a user-defined data type by supplying it with values from a
standard data type. Doing so can reduce the typing that you need to perform when
adding values to the user-defined data type.

For example, suppose you want to create a user-defined data type containing a list
of valid product IDs. The valid ID numbers range from 1000001 through 1000100.
H owever, there is a dash between the fourth and fifth digits (such as 1000-001).

Rather than type in all 100 numbers, with dashes, you can have TestManager
generate the numbers and assign them to a user-defined data type. Then, all you then
have to do is edit the data type values and add the dash to each ID.
8 -3 3

Working with D atapools
U se the following steps to guide you through the process:

1 . In TestManager, click Tools → M anage D ata Types.

2 . Click N ew.

3 . Type a name for your user-defined data type (for example, Item ID).

4 . Click O K .

5 . Click N o when prompted to enter data type values now.

6 . Click the name of your new data type, and then click Edit .

7 . Click D efine D ata Type Field.

8 . Set the following column values in the grid (or accept the defaults):

– Type = Integers - Signed

– Sequence = Sequential

– Repeat = 1

– Length = 7

– Interval = 1

– M inim um = 1000001

– M axim um = 1000100

9 . Type 100 in N o. of records to generate.

1 0 . Click Generate D ata .

1 1 . Click N o to decline to see data generation details, and then click Close.

1 2 . Click Edit D ata Type D ata in the Data Type Properties dialog box.

1 3 . Type a dash character between the fourth and fifth characters of each value.

N O TE: You can also assign the standard data type Read From File to a user-
defined data type. For information about using the Read From File data type,
see Creating a Column of Values Outside Rational Test on page 8-42.
8 -3 4

M anaging D ata Types
Importing a User-Defined Data Type
You can import a user-defined data type from one project into another. When you
import a user-defined data type into a new project, the source data type is still
available to the original project.

To import a user-defined data type into a new project:

1 . Run TestManager. (By default, click Start → Program s → Rat iona l p roduct
nam e → Rational Test 7 → TestM anager.)

2 . In the Rational Repository Login dialog box, select the repository and project
that you are importing the user-defined data type to.

3 . Click File → Im port Test Assets. The Import Test Assets wizard appears.

4 . Select D ata type in the Asset Type list.

5 . Click the appropriate overwrite option. This option determines whether to
overwrite an existing datapool with the same name as the one you are importing.

6 . Click N ext.

7 . In the Login dialog box, provide the path, project name, and your login
information for the repository that contains the data type you are importing.

If you are importing between projects in the same repository, you do not need
to provide a user ID and password.

8 . Click N ext.

9 . Select one or more data types to import. (To select multiple data types, hold
down the CTRL key while clicking each data type to import.)

1 0 . Click N ext.

1 1 . Click Finish after reading the information summarizing the import operation.

Renaming a User-Defined Data Type
To rename a user-defined data type in TestManager:

1 . Click Tools → M anage D ata Types.

2 . Click the name of the data type to rename.

3 . Click Renam e.

4 . Type the data type’s new name (40 characters maximum).

5 . Click O K , and then click Close.
8 -3 5

Working with D atapools
Copying a User-Defined Data Type
To copy a user-defined data type in TestManager:

1 . Click Tools → M anage D ata Types.

2 . Click the name of the data type to copy.

3 . Click Copy.

4 . Type the name of the new data type (40 characters maximum).

5 . Click O K , and then click Close.

Deleting a User-Defined Data Type
To delete a user-defined data type in TestManager:

1 . Click Tools → M anage D ata Types.

2 . Click the name of the data type to delete.

3 . Click D elete.

4 . Click Yes to confirm the deletion, and then click Close.

Generating and Retrieving Unique Datapool Rows

Many database tests work best when each row of test data is unique. For example,
if a test involves repeating a transaction that adds customer orders to a database, each
new order has to be unique — in other words, at least one field in the new record has
to be a “key” field containing unique data.

When you are defining datapool columns in the Datapool Specification dialog box,
you specify whether a given datapool column should contain unique data. If you
specify that one or more columns should contain unique data, the datapool that the
Rational Test software generates is guaranteed to contain unique rows.

H owever, even when a datapool contains all unique rows, it is possible for duplicate
rows to be supplied to a script at test runtime.

To generate and retrieve unique datapool rows, you need to perform a few simple
tasks when you define the datapool, as described in the next section.
8 -3 6

Generating and Retrieving U n ique D atapool Rows
What You Can Do to Guarantee Unique Row Retrieval
To ensure that a datapool supplies only unique rows to scripts at runtime, use the
guidelines in the following table.

What to do How to do it

Specify at least
one column of
unique data.

In the Datapool Specification dialog box, specify that at least one
datapool column should contain unique data. U nique data can be
supplied through the Integers - Signed data type, through the Read
From File data type, and through user-defined data types.

With the Integers - Signed data type, take all of the following actions:

ã Set Sequence to U nique or Sequential.
ã Set Repeat to 1.
ã If Sequence= U nique, set an appropriate range in M inimum and

M aximum .
ã Make sure that the values of Length and N o. of records to generate

are appropriate for the set of numbers to generate.

For information about the Read From File data type, see Generating
Unique Values on page 8-44.

For information about user-defined data types, see Generating Unique
Values from User-Defined Data Types on page 8-10.

Generate enough
datapool rows.

Generate at least as many unique datapool rows as the number of times
the datapool will be accessed during a test.

For example, if a script repeats a transaction 100 times, and if each
transaction sends one data record to the server, the datapool must
contain at least 100 rows.

You specify the number of rows to generate in the N o. of records to
generate field of the Datapool Specification dialog box.

Disable cursor
wrapping.

If the datapool cursor wraps after the last row in the datapool has been
accessed, previously fetched rows are fetched again.

When editing a GU I script in Robot, disable cursor wrapping by setting
the wrap argument of the SQADatapoolOpen command to False.
8 -3 7

Working with D atapools
Creating a Datapool Outside Rational Test

To create a datapool file and populate it with data, you can use any text editor (such
as Windows N otepad) or any application (such as Microsoft Excel or Microsoft
Access) that can save data in .csv format.

For example, you can create a datapool file and type in the data, row by row and value
by value. O r, you can export data from your database into a .csv file that you create
with a tool such as Excel.

After you create and populate a datapool, use TestManager to import the datapool
into the repository. For information about importing a datapool, see Importing a
Datapool on page 8-28.

U se sequential or
shuffle access
order.

With sequential or shuffle access, each datapool row is referenced in the
row access order just once. When the last row is retrieved, the datapool
cursor either wraps or datapool access ends.

With random access, rows can be referenced in the access order multiple
times. Thus, a given row can be retrieved multiple times.

When editing a GU I script in Robot, set the sequence argument of
the SQADatapoolOpen command to either SQA_DP_SEQUENTIAL
or SQA_DP_SHUFFLE.

Do not rewind
the cursor during
a test.

If you rewind the datapool cursor during a test (through the SQABasic
SQADatapoolRewind command), previously accessed rows will be
fetched again.

N O TE: Rational Test can guarantee that a datapool contains unique rows
only when you generate datapool data through TestManager.

 (Continued)

What to do How to do it
8 -3 8

Creating a D atapool O utside Rational Test
Datapool Structure
A datapool is stored in a text file with a .csv extension. The file has the following
characteristics:

ã Each row contains one record.

ã Each record contains datapool field values delimited by a field separator. Any
character can be used for the field separator. Some common field separators are:

– Comma (,). This is typically the default in the U nited States and the
U nited Kingdom.

– Semi-colon (;). This is typically the default in most other countries.

– Colon (:).

– Pipe (|).

– Slash (/).

The field separator can consist of up to three single-byte ASCII characters or one
multi-byte character.

ã Each column in a datapool file contains a list of datapool field values.

ã Field values can contain spaces.

ã A single value can contain a separator character if the value is enclosed in double
quotes. For example, “Jones, Robert” is a single value in a record, not two.

The quotation marks are used only when the value is stored in the datapool file.
The marks are not part of the value that is supplied to your application.

ã A single value can contain embedded strings. For example, “Jones, Robert
“Bob”” is a single value in a record, not two.

ã Each record ends with a line feed.

ã Datapool column names are stored in a .spc file. (Robot and TestManager edit
the .spc file. You should never edit the .spc file directly.)

ã The datapool name that is stored in the repository is the same as the root
datapool file name (without the .csv extension). The maximum length of a
datapool name is 40 characters.

N O TE: To view or change the field separator, click Start → Settings →
Control Panel, double-click the Regional Settings icon, and then click the
N um ber tab. List separator contains the separator character(s).
8 -3 9

Working with D atapools
Example Datapool
The following is an example of a datapool file with three rows of data. In this
example, field values are separated by commas:

John,Sullivan,238 Tuckerman St,Andover,MA,01810
Peter,Hahn,512 Lewiston Rd,Malden,MA,02148
Sally,Sutherland,8 Upper Woodland Highway,Revere,MA,02151

Example Using Microsoft Excel
To create and populate a datapool using Microsoft Excel:

1 . Run Microsoft Excel.

2 . Click File → N ew to create a new Excel workbook.

3 . Click the W orkbook icon, and then click O K .

4 . Type a datapool record into row 1. To do so, type each value in the record into
separate columns, beginning with column A.

When using Microsoft Excel to populate a datapool, do not separate values with
the Windows separator character (see page 8-39). Excel automatically inserts the
separator character when you save the datapool in .csv format.

5 . Continue populating the datapool by typing records into the subsequent rows.

The following is an example of how a datapool might look as it is being populated
with data in Microsoft Excel:
8 -4 0

Creating a D atapool O utside Rational Test
N ote that:

ã Each column represents a datapool field.

ã Each row is an individual datapool record containing datapool field values.

Saving the Datapool in Excel
When you finish adding rows of values to the datapool, save the datapool to .csv
format. To do so using Microsoft Excel:

1 . Click File → Save As.

2 . In the Save in field, specify the directory where you want to save the datapool.

Do not specify the Datapool directory in the repository. When you later
import the datapool using the TestManager Import feature, TestManager
automatically copies the datapool to the Datapool directory in the current
repository and project.

3 . In the File name field, type the datapool name (maximum 40 characters). This
is the name that the script and the repository use to identify the datapool.

4 . In the Save as type list, select the entry CSV (Com m a delim ited) (* .csv).

5 . Click Save.

If you are prompted that the .csv file format does not support multiple
workbook sheets, click O K to save the datapool and abandon the other (empty)
worksheets.

U pon closing Excel, if you are prompted to decide whether to save the .csv file
in Microsoft Excel format, click N o.

If you use Windows N otepad to open the datapool file you just created and saved,
this is how it looks:
8 -4 1

Working with D atapools
Matching Datapool Columns with Script Variables
When you create a .csv file and then import it as a datapool, TestManager
automatically assigns column names (that is, datapool field names) to each
datapool column.

Datapool column names must match the names of the script variables that they
supply with data (including a case match). But most likely, when you create and
import a datapool, the column names that TestManager assigns will not match the
names of the associated script variables. As a result, you need to edit the column
names that TestManager automatically assigns during the import. You do so by
modifying a column’s N am e value in the Datapool Specification dialog box.

For information about how to open the Datapool Specification dialog box during
datapool editing, see Editing Datapool Column Definitions with TestManager on page
8-25.

Maximum Number of Imported Columns
You can import a datapool that contains up to 32,768 columns. If you open an
imported datapool in the Datapool Specification dialog box, you can view and edit all
datapool column definitions up to that limit.

A datapool is subject to a 150-column limit only if you generate data for the datapool
from the Datapool Specification dialog box.

Creating a Column of Values Outside Rational Test

A datapool that you create with Rational Test can include a column of values
supplied by an ASCII text file. You could use this feature, for example, if you wanted
the datapool to include a column of values from a database.

Populating a datapool column with values from an external file requires two
basic steps:

1 . Create the file containing the values.

2 . Assign the values in the file to a datapool column through the standard data type
Read From File.

N O TE: With GU I scripts, you can associate datapool column names and script
variables through column position rather than column name. For more
information, see the description of the SQADatapoolValue command in the
SQABasic Language Reference.
8 -4 2

Creating a Co lum n o f Va lues O utside Rational Test
Step 1. Create the File
To use a file as a source of values for a datapool column, the file must be a standard
ASCII text file. The file must contain a single column of values, with each value
terminated by a carriage return.

You can create this text file any way you like — for example, you can use either of
these methods:

ã Type the list of values in Microsoft N otepad.

ã Export a column of values from a database to a text file.

Step 2. Assign the File’s Values to the Datapool Column
Once the file of values exists, you assign the values to a datapool column just as you
assign any set of values to a datapool column — through a data type. In this case, you
assign the values through the Read From File data type. To do so:

1 . Open the Datapool Specification dialog box:

– To open this dialog box during datapool creation, see Creating a Datapool
with TestManager on page 8-18.

– To open this dialog box during datapool editing, see Editing Datapool Column
Definitions with TestManager on page 8-25.

2 . In the Type column, select the data type Read From File for the datapool column
being supplied the values from the external text file.

3 . Tab out of the column. The Open dialog box appears.

4 . In Look in, specify the directory where the text file that you created is located.

5 . In File nam e, specify the name of the text file.

6 . Click O pen.

You can use the Read From File data type to assign values to multiple columns in the
same datapool.
8 -4 3

Working with D atapools
Generating Unique Values
You can use the Read From File data type to generate unique values to a datapool
column that you create outside Rational Test.

To generate unique values through the Read From File data type, the file that the
data type accesses must contain unique values.

In addition, when you are defining the datapool in the Datapool Specification dialog
box, change the following settings for the datapool column associated with the Read
From File data type:

ã Set Sequence to Sequential.

ã Set Repeat to 1.

ã Make sure the N o. of records to generate value does not exceed the number
of unique values that you are accessing through the Read From File data type.

For information about the values that you set in the Datapool Specification dialog
box, see Defining Datapool Columns on page 8-20.
8 -4 4

ã ã ã Part IV

Playing Back Scripts and Analyzing Resu lts

ã ã ã C H A P T E R 9

Playing Back GUI Scripts
This chapter explains how to play back GU I scripts. It includes the following topics:

ã Playback phases

ã Restoring the test environment before playback

ã Setting GU I playback options

ã Playing back a GU I script

ã Viewing results in the Rational LogViewer

ã Analyzing verification point results with the Comparators

Playback Phases

When you play back a script, Rational Robot repeats your recorded actions and
automates the software testing process. With automation, you can test each new
build of your application faster and more thoroughly than by testing it manually.
This decreases testing time and increases both coverage and overall consistency.

There are two general phases of script playback:

ã Test development phase

ã Regression testing phase

These phases are described in the following sections.

N O TE: For information about playing back virtual user scripts, see the Using
Rational LoadTest manual.
9 -1

Playing Back GU I Scrip ts
Test Development Phase
During the test development phase, you play back scripts to verify that they work as
intended, using the same version of the application-under-test that you used to
record. This validates the baseline of expected behavior for the application.

The following table shows the general process for the test development phase.

Regression Testing Phase
During the regression testing phase, you play back scripts to compare the latest
build of the application-under-test to the baseline established during the test
development phase. Regression testing reveals any differences that may have been
introduced into the application since the last build. You can evaluate these
differences to determine whether they are actual defects or deliberate changes.

Task See

1 . Prepare for playback by restoring the test
environment and setting the playback options.

Restoring the Test Environment Before
Playback on page 9-3

Setting GUI Playback Options on
page 9-4

2 . Play back each script against the same version of the
application-under-test that was used for recording to
verify that it performs as intended.

Playing Back a GUI Script on page
9-18

3 . Analyze the results using the LogViewer. Chapter 10, Reviewing Logs with the
LogViewer

4 . U se the appropriate Comparator to determine the
cause of verification point failures.

Chapters 11, 12, 13, 14

5 . If the script fails, edit, debug, or rerecord the script
so that it runs as required.

Chapter 7, Editing, Compiling, and
Debugging Scripts

6 . Group individual scripts into a comprehensive shell
script. Play back the shell script to verify that the
scripts work properly. If necessary, edit, debug, or re-
record the scripts.

Creating Shell Scripts to Play Back
Scripts in Sequence on page 4-26
9 -2

Restoring the Test Environm ent Before Playback
The following table shows the general process for the regression testing phase.

Restoring the Test Environment Before Playback

The state of the Windows environment as well as your application-under-test can
affect script playback. If there are differences between the recorded environment
and the playback environment, playback problems can occur.

Before playing back a script, be sure that your application-under-test is in the same
state it was in when you recorded the script. Any applications and windows that
were open, active, or displayed when you started recording the script should be
open, active, or displayed when you start playback. In addition, be sure that any
relevant network settings, active databases, and system memory are in the same state
as when the script was recorded.

Task See

1 . Prepare for playback by restoring the test
environment and setting the playback options.

Restoring the Test Environment Before
Playback on page 9-3

Setting GUI Playback Options on page
9-4

2 . Play back each script against a new build of the
application-under-test.

Playing Back a GUI Script on page 9-18

3 . Analyze the results using the LogViewer. Chapter 10, Reviewing Logs with the
LogViewer

4 . U se the appropriate Comparator to determine
the cause of verification point failures. If failed
verification points are the result of intentional
changes to the application-under-test, update the
baseline data using the appropriate Comparator.

Chapters 11, 12, 13, 14

5 . U se the LogViewer to enter defects. Entering and Modifying Defects on page
10-14

6 . If necessary, revise the scripts to bring them up-
to-date with new features in the application-
under-test. Play back the revised scripts against the
current build and then reevaluate the results.

Chapter 7, Editing, Compiling, and
Debugging Scripts
9 -3

Playing Back GU I Scrip ts
Setting GUI Playback Options

GU I playback options provide instructions to Robot about how to play back scripts.
You can set these options either before you begin playback or early in the playback
process.

To set GU I playback options:

ã Open the GU I Playback Options dialog box by doing one of the following:

– Before you start playback, click Tools → GU I Playback O ptions.

– Start playback by clicking the Playback Script button on the toolbar. In the
Playback dialog box, click O ptions.

For deta iled in form ation about
an item , click the question
m ark, and then click the item .

Set the options on each tab.

Click O K or change
other options.
9 -4

Setting GU I Playback O ptions
Acknowledging the Results of Verification Point Playback
By selecting the Acknowledge results check box, you can have Robot display a
results message box each time it plays back a verification point.

For example, in the following figure, the message box indicates that the verification
point named Object Properties failed during playback. You must click O K before
playback continues. During the test development phase, this lets you interactively
view the playback results of each verification point.

During the regression testing phase, you usually play back scripts in unattended
mode. By clearing the Acknowledge results check box, you can prevent Robot
from displaying this message box. After the script plays back, you can view the
results of all verifications points in the LogViewer. (For more information, see
Chapter 10, Reviewing Logs with the LogViewer.)

To set this option:

1 . Open the GU I Playback O ptions dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . In the Playback tab, do one of the following:

– Select Acknowledge results to have Robot display a pass/fail result message
box for each verification point. You must click O K before playback
continues.

– Clear Acknowledge results so that Robot does not interactively display
pass/fail results.

3 . Click O K or change other options.

Setting Log Options for Playback
A log is a file that contains the record of events that occur while a script is playing
back. A log includes the results of the script and of all verification points. You view
logs in the LogViewer. (For more information, see Chapter 10, Reviewing Logs with
the LogViewer.)

Click O K to con tinue p layback.
9 -5

Playing Back GU I Scrip ts
To set the log options:

1 . Open the GU I Playback O ptions dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . Click the Log tab.

3 . To output the playback results to the log so you can view them in the LogViewer,
select O utput playback results to log.

If you clear this, you cannot to view the playback results in the log.

4 . To have the LogViewer appear automatically after playback is complete, select
View log after playback.

If you clear this, you can still view the log after playback by clicking Tools →
Rational Test → LogViewer, and then opening the log.

5 . To have Robot prompt you before it overwrites a log, select Prom pt before
overwrite log.

6 . Click one of the following:

Specify log inform ation at playback – At playback, displays the Specify Log
Information dialog box so that you can specify the build, log folder, and log. You
can define these in TestManager, Robot, or TestFactory.

U se default log inform ation – At playback, uses the same build and log folder
that was used during the last playback. U ses the script name as the log name.

For information about builds, log folders, and logs, see Chapter 3, Managing
Builds, Log Folders, and Logs.

7 . Click O K or change other options.
9 -6

Setting GU I Playback O ptions
Setting Wait State and Delay Options
In most cases, it is important for the playback of a GU I script to be synchronized
with the application-under-test, so that Robot executes commands in the script
only after the application is ready to receive them. Robot attempts to maintain this
synchronization automatically for you using several techniques.

You can refine the synchronization by setting the following options in the GU I
Playback Options dialog box:

ã Wait states for windows

ã Delays between commands

ã Delays between keystrokes

These options are described in the following sections.

Setting Wait State Options
During playback, Robot waits for windows (including dialog boxes) to appear
before executing a user action or verification point command. You can specify how
often Robot checks for the existence of a window and how long it waits before it
times out.

For example, suppose that Robot is playing back a script with the following lines:

StartApplication “MyVBApp.exe”
Window SetContext, “Name=Form1”,””
Pushbutton Click, “Name=Command5”

This example specifies that Robot should start an application, find a window on the
desktop named “Form1”, find a pushbutton named “Command5”, and generate a
click on that button. H owever, suppose Robot gets to the SetContext line in the
script and fails to find a window named “Form1”. This may not necessarily be an
error — the application may not yet have started up and created the window. In this
case, Robot keeps looking for the window for a specified period of time.

N O TE: If a script needs to wait before executing a particular command, you can
insert a delay for just that command. (For information, see Inserting Delay Values
on page 5-10.) If you are testing an application in which time estimates are not
predictable, you can define a wait state for a verification point so that playback
waits based on specific conditions rather than on absolute time. (For information,
see Setting a Wait State for a Verification Point on page 6-8.)
9 -7

Playing Back GU I Scrip ts
By default, if Robot cannot find a window during playback, it waits for 2 seconds
and then looks for it again. If it still cannot find the window after 30 seconds, it
times out and returns a command failure indication to the script. Script execution
continues or stops based on the O n script comm and failure setting in the Error
Recovery tab of the GU I Playback Options dialog box.

You can change the default values for the retry time and the timeout by changing
the wait state options.

To set the wait state options:

1 . Open the GU I Playback Options dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . Click the Wait State tab.

3 . To specify how often Robot checks for the existence of a window, type a
number in the Retry test every box.

4 . To specify how long Robot waits for a window before it times out, type a
number in the T im eout after box.

5 . Click O K or change other options.

Setting Delay Options for Commands and Keystrokes
By default, Robot pauses 100 milliseconds between each user action command and
between each verification point command during playback. If you find that Robot
consistently gets ahead of your application-under-test during playback, you can
increase the time that Robot waits between these commands.

Also, if you find that your application-under-test does not see all of the keystrokes
that Robot sends it, you can have Robot wait between sending keystrokes to the
application.

N O TE: This synchronization is used only in Object-Oriented Recording. In
contrast, low-level scripts are processed in real time. They play back at the same
speed at which they were recorded and do not use automatic wait settings.
9 -8

Setting GU I Playback O ptions
To set the delay options for commands and keystrokes:

1 . Open the GU I Playback Options dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . Click the Playback tab.

3 . Click D elay between com m ands. Type the delay value.

This is the delay between each user action command and between each
verification point command during playback.

4 . Click D elay between keystrokes. Type the delay value.

5 . Click O K or change other options.

Setting Error Recovery Options
U se the error recovery options to specify how Robot handles script command
failures and verification point failures.

To set the error recovery options:

1 . Open the GU I Playback O ptions dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . Click the Error Recovery tab.
9 -9

Playing Back GU I Scrip ts
3 . To specify what Robot should do if it encounters a failure, click one of the
following options under both O n script com m and fa ilure and O n verification
point fa ilure:

Continue execution – Continues playback of the script.

Skip current script – Terminates playback of the current script. If the script with
the failure was called from another script, playback resumes with the command
following the CallScript command.

Abort playback – Terminates playback of the current script. If the script with
the failure was called from another script, the calling script also terminates.

4 . Click O K or change other options.

Failures are stored in the log. (For information about logs, see Chapter 10, Reviewing
Logs with the LogViewer.)

Setting Unexpected Active Window Options
An unexpected active window is any unplanned window that appears during script
playback that prevents the expected window from being made active (for example,
an error message from the network or application-under-test). These windows can
interrupt playback and cause false failures.

To set options to specify how Robot responds to unexpected active windows:

1 . Open the GU I Playback O ptions dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . Click the U nexpected Active W indow tab.
9 -1 0

Setting GU I Playback O ptions
3 . To have Robot detect unexpected active windows and capture the screen image
for viewing in the Image Comparator, select D etect unexpected active
windows and Capture screen im age. (For information, see Viewing Unexpected
Active Window on page 14-18.)

4 . Specify how Robot should respond to an unexpected active window:

Send key – Robot sends the specified keystroke: EN TER, ESCAPE, or any
alphabetic key (A through Z).

Select pushbutton with focus – Robot clicks the push button with focus.

Send W M _CLO SE to window – Robot sends a Windows WM_CLO SE message.
This is equivalent to clicking the Windows Close button.

5 . Specify what Robot should do if it cannot remove an unexpected active window:

Continue running script – Robot continues script playback with the next
command in the script after the one being processed when the unexpected active
window appeared. Playback continues even if the unexpected active window
cannot be removed. This may result in repeated script command failures.

Skip current script – Robot halts playback of the current script. If the script that
detected the unexpected active window was called from within another script,
playback resumes with the script command following the CallScript
command.

Abort playback – Robot halts playback completely. If the script that detected the
unexpected active window was called from within another script, the calling
script also stops running.

6 . Click O K or change other options.

Setting Diagnostic Tools Options
You can use the Rational diagnostic tools — Rational Purify, Q uantify, and
PureCoverage — to collect diagnostic information during playback of a Robot
script.

After playback, Robot can integrate the diagnostic tool’s results into the Robot log,
so that you can view all of the playback results in one place. You can choose to show
any combination of errors, warnings, and informational messages. You can then
double-click a result in the log to open the script in Robot and the appropriate file in
the diagnostic tool.
9 -1 1

Playing Back GU I Scrip ts
About Purify and Robot
Robot with playback under Purify works with Visual C/C+ + applications on
Windows N T 4.0 and Windows 2000.

Purify detects and diagnoses memory access errors and memory leaks. Without
Purify, the visible symptoms (crashes, malfunctions, or incorrect results) of these
kinds of errors often do not show up until long after the erroneous code was
executed, and in a short test, often not at all. Purify detects and pinpoints the cause
of the error as the code is executed.

Where applicable, Purify adds significant value to Robot, because it finds many
otherwise hidden defects in the application code.

About Quantify and Robot
Robot with playback under Quantify works with Visual C/C+ + , Visual Basic, and
Java applications on Windows N T 4.0 and Windows 2000.

Quantify profiles the time spent in each module, function, line, and block of code,
and detects performance bottlenecks within an application. Once bottlenecks are
identified, you can focus on the inefficient parts of the code, and substitute
alternative implementations or algorithms to improve performance.

By using a Robot script to drive the application, in conjunction with Quantify, you
ensure that a repeatable test is measured for each iteration of performance
improvement. This minimizes the risk of comparing different things when
contrasting a run before and after a possible performance-enhancing code-change.

About PureCoverage and Robot
Robot with playback under PureCoverage works with Visual C/C+ + , Visual Basic,
and Java applications on Windows N T 4.0 and Windows 2000.

PureCoverage is a code coverage analyzer that reports which modules, functions,
and lines of code were and were not executed in any run or collection of runs.
U sing PureCoverage to monitor a script reveals how comprehensively that script
exercises the application-under-test, and can provide helpful information about
which code paths are taken under particular scenarios.
9 -1 2

Setting GU I Playback O ptions
How the Diagnostic Tools Work with Robot
For Visual C/C+ + and Visual Basic applications, these diagnostic tools work best
when the applications have been compiled with debug information (in other words,
when a .pdb file is available). These tools use the Rational O bject Code Insertion
(O CI) technology to insert instrumentation probes into the executable program for
the application before it runs. When you select a diagnostic tool in the GU I
Playback Options dialog box, you instruct Robot to call that tool to instrument the
application that is to be started, and then run the instrumented application in place
of the original.

For Java applications, Quantify and PureCoverage put the JVM into a special mode
to enable event monitoring when the application runs during playback. When you
select a diagnostic tool in the GU I Playback Options dialog box, you instruct Robot
to call that tool to enable event monitoring.

To use any of the diagnostic tools with Robot, start the application as follows when
recording:

ã Start Visual C/C+ + and Visual Basic applications with the Start Application
button or command.

ã Start Java applications with the Start Java Application button or command.

For more information, see Starting an Application on page 5-1.

Setting the Options
To set options to specify the diagnostic tool to be used during playback:

1 . Open the GU I Playback O ptions dialog box. (See Setting GUI Playback Options
on page 9-4.)

N O TE: There is no support for using Robot to play back Java applets under these
diagnostic tools. For information about the environments that are supported
directly in these tools, see the documentation for the appropriate product.
9 -1 3

Playing Back GU I Scrip ts
2 . Click the D iagnostic Tools tab. Then do the following:

For Visual C/C+ + and Visual Basic applications, the instrumentation added by
these tools causes the application-under-test to run considerably slower than the
uninstrumented program. For Java applications, the event monitoring causes
the application to run slower than usual. If you select U se tim eout m ultiplier,
Robot compensates for this effect by multiplying wait state values for windows,
wait state values for verification points, and delay values (between user action
and verification point commands, and between keystrokes) by the specified
value. If you need to fine-tune the wait states and delays further, see Setting Wait
State and Delay Options on page 9-7.

3 . If you selected any of the log check boxes in step 2c, click the Log tab and select
both Log m anagem ent check boxes.

If O utput playback results to log is cleared, the diagnostic tool opens (instead
of the log) after you play back the script. (For more information about the log
options, see Setting Log Options for Playback on page 9-5.)

4 . Click O K or change other options.

You are now ready to play back the script. Keep in mind that the script will run
slower than usual because of the instrumentation or event monitoring added by
these tools.

a. Click the d iagnostic too l
under which the applicat ion
shou ld run. The options a re
enabled if you have the too ls
insta lled.

c. Select the type of
in form ation to show in the
log.

b. O ptiona lly, select th is and
type a va lue. Th is m u ltip lies
wait sta te and delay va lues.
9 -1 4

Setting GU I Playback O ptions
Viewing the Playback Results
After you play back the script, the results appear in the log.

A summary line at the end of the log indicates the total number of errors, warnings,
and informational messages.

Double-click a log event to open up both:

ã The script in Robot, near the line that was executing when the error was
reported.

ã The appropriate file in the diagnostic tool, so that you can view the details.

If you double-click the summary line, and if there are multiple files involved in the
summary, then all of the files open. This happens if the script contains more than
one StartApplication or StartJavaApplication command.

For more information about the log, see Chapter 10, Reviewing Logs with the
LogViewer.

The scrip t fa ils if
there are any errors.

Log event
showing a
fa ilu re

The sum m ary line fa ils if
there are any errors.
9 -1 5

Playing Back GU I Scrip ts
Setting the Trap Options to Detect GPFs
Robot uses the Trap utility to detect the occurrence of General Protection Faults
(GPF) and the location of offending function calls during playback. If a GPF is
detected, Robot updates a log file that provides information about the state of the
Windows session that was running.

Important Notes
ã To use the Trap utility, you must include Common Object File Format

(CO FF) information in your application when you link. For instructions, see
the documentation for your development environment.

ã Trap, Visual C+ + , and Dr. Watson (from Microsoft), WinSpector (from
Borland), and Crash Analyzer (from Symantec) use the same Windows system
calls to trap faults. You cannot use more than one error trapping program at the
same time.

Uses for Trap
The occurrence of a GPF usually results in a crash of the running application and
may also result in a loss of data. U sing Trap, you can:

ã Capture information about GPFs.

ã Write the state of your environment to a log file when a GPF is detected.

ã Specify the type of information to write to the log file.

ã Automatically restart Windows or call your own error handling sub procedure
before performing any other action.

ã Save an audit of the function where the fault occurred in the failing program.

The Trap utility detects and traps the following events during playback:

ã U AE: General Protection Fault # 13

ã Stack Overflow: Fault # 12

ã Invalid O p Code: Fault # 6

ã Divide by Zero: Fault # 0

If one of these errors occurs, Trap appends the error data to the existing Sqatrap.log
file in the Rational installation directory, or creates a new file if one does not exist.
(For more information, see Analyzing Results in the Sqatrap.log File on page 9-17.)
9 -1 6

Setting GU I Playback O ptions
Starting Trap

To automatically start Trap during playback:

1 . Open the GU I Playback O ptions dialog box. (See Setting GUI Playback Options
on page 9-4.)

2 . Click the Trap tab.

3 . Select Start T rap to enable the other options.

4 . To include the contents of the stack for non-current tasks, select Stack trace.

5 . To include the modules and class list information, select M odule and class list.

6 . Click one of the following to specify what Trap should do after detecting a GPF:

Restart W indows session – Trap restarts Windows.

Call user-defined sub procedure – Trap calls the sub-procedure in the module
that you specify. Select this option to specify your own custom SQABasic error
handling. Type the names of the library source file (with an.sbl extension) and
the sub-procedure.

7 . Click O K or change other options.

Analyzing Results in the Sqatrap.log File
If you select the Start T rap option and an error occurs during playback, Robot
appends the error data to the existing Sqatrap.log file in the Rational installation
directory, or creates a new file if one does not exist. (To start with a clean
Sqatrap.log file, delete the old file.) This file provides information about the state of
the Windows session that was running.

N O TE: Before you start Trap, see Important N otes on page 9-16.
9 -1 7

Playing Back GU I Scrip ts
The Sqatrap.log file can contain a variety of information about failure events. The
following failure information is always written to Sqatrap.log:

ã Contents of the stack for the current task

ã N ames of functions that were called just before the error occurred

ã Contents of CPU registers

ã Date/Time stamp and Fault N umber

Other information can be written to Sqatrap.log depending on settings in the Trap
tab of the GU I Playback Options dialog box.

To see a sample Sqatrap.log file, see Sqatrap.log file in the Robot H elp Index.

Playing Back a GUI Script

To play back a GU I script:

1 . Prepare for playback by restoring the test environment. (For information, see
Restoring the Test Environment Before Playback on page 9-3.)

2 . Set your playback options. You can also set these options after you start playback.
(For instructions, see Setting GUI Playback Options on page 9-4.)

3 . Click the Playback Script button on the toolbar.

Select a query to f ilter
the list o f scrip ts.

M odify a query.

Show nam es of scrip ts.

Show deta ils o f scrip ts.

Change GU I p layback options. Change the propert ies of the
selected scrip t.

Type a nam e or select
a scrip t from the list.
9 -1 8

Playing Back a GU I Script
4 . Type a name or select it from the list.

To change the list, select a query from the Q uery list.

5 . To change the playback options, click GU I O ptions. When finished, click O K .

6 . Click O K to continue.

7 . If the Specify Log Information dialog box appears, fill in the dialog box and
click O K .

This dialog box appears if you selected Specify log inform ation at playback in
the Log tab of the GU I Playback O ptions dialog box.

For information about builds, log folders, and logs, see Chapter 3, Managing
Builds, Log Folders, and Logs.

8 . If a prompt appears asking if you want to overwrite the log, do one of the
following:

– Click Yes to overwrite the log.

– Click N o to return to the Specify Log Information dialog box. Change the
build, log folder, and/or log information.

– Click Cancel to cancel the playback.

This prompt appears if you selected Prom pt before overwrite log in the Log tab
of the GU I Playback Options dialog box.

When you begin playback, the Robot main window is minimized by default. You
can change this behavior in the Playback tab of the GU I Playback Options dialog
box.

... or create a new bu ild .
a . Select a bu ild ...

b . Select a log fo lder...

c. Accept the default log
nam e or type a new nam e.

... or create a new log folder.

N O TE: To stop playback of a script, press the F11 key. Robot recognizes the F11
key only when playing back object-oriented commands. The F11 key does not
stop playback during low-level actions.
9 -1 9

Playing Back GU I Scrip ts
After playback, you can see the results in the LogViewer, as described in the next
section.

Viewing Results in the Rational LogViewer

After playback finishes, you can use the LogViewer to view the playback results,
including verification point failures, procedural failures, aborts, and any additional
playback information.

The following table gives you more information about the LogViewer.

For detailed information about the LogViewer, see Chapter 10, Reviewing Logs with
the LogViewer.

U se the LogViewer
to see p layback results.

To Do this For information, see

Control the log
information and display
of the LogViewer

Set options in the Log tab of the
GU I Playback Options dialog
box.

Setting Log Options for
Playback on page 9-5

Play back a script under
Purify, Quantify, or
PureCoverage, and see
the results in the log

Set options in the D iagnostic
Tools tab of the GU I Playback
Options dialog box.

Setting Log Options for
Playback on page 9-5

Analyze a failure in a
Comparator

Double-click a verification
point failure in the LogViewer.

The next section, Analyzing
Verification Point Results with
the Comparators

Enter defects into
Rational ClearQuest
from the LogViewer

Select the failed event in the log
and click D efect → Generate.

Entering and Modifying
Defects on page 10-14
9 -2 0

Analyzing Verif ication Po in t Resu lts with the Com para tors
Analyzing Verification Point Results with the Comparators

U se the Comparators to analyze differences between the baseline verification point
data (the data captured when you created the verification point) and the actual
verification point data (the data captured when you played back the verification
point). The Comparators help you determine whether a failure is a defect or an
intentional change to the application-under-test.

There are four Comparators, as follows:

To open a Comparator from the LogViewer:

ã In the Log Event column of a log, double-click a verification point.

Comparator Description For information see

Object Properties Compares the baseline data to the
data that caused a failure for the
Object Properties verification point.

Chapter 11, Using the
Object Properties
Comparator

Text Compares the baseline data to the
data that caused a failure for the
Alphanumeric verification point.

Chapter 12, Using the
Text Comparator

Grid Compares the baseline data to the
data that caused a failure for the
following verification points:
Clipboard, Menu, and O bject Data.

Chapter 13, Using the
Grid Comparator

Image Compares the baseline image to the
image that caused a failure for the
Window Image or Region Image
verification points. Also lets you view
unexpected active windows that
cause a failure during playback.

Chapter 14, Using the
Image Comparator
9 -2 1

Playing Back GU I Scrip ts
As the following figure shows, double-clicking an Object Properties verification
point in the LogViewer opens the O bject Properties Comparator.

N O TE: You can also open a Comparator from Robot by double-clicking a
verification point in the Asset (left) pane of a Script window. H owever, when you
open a Comparator this way, you can view only the baseline file. To compare the
baseline and actual files, you must open the Comparator through the LogViewer.

D ouble-click a
verification point in
the LogViewer...

... to ana lyze the
resu lts in a
Com parator.
9 -2 2

ã ã ã C H A P T E R 10

Reviewing Logs with the LogViewer
This chapter introduces the Rational LogViewer, and explains how to use the
LogViewer to view logs and interpret their contents. This chapter includes the
following topics:

ã Overview

ã Starting the LogViewer

ã The LogViewer main window

ã Opening a log file

ã Deleting a log file

ã Viewing log event properties

ã Modifying the log window

ã Locating failed log events

ã Evaluating verification point failures in a Comparator

ã Filtering the log event column

ã Working with reports

ã Entering and modifying defects
10 -1

Reviewing Logs with the LogViewer
Overview

U se the Rational LogViewer to view the logs created after you run scripts or
schedules.

A typical test process involves using Rational Robot to record scripts that contain
verification points. After the script is played back, Robot writes the results to a log.
Certain verification points also have baseline data files that are saved. If the
verification point fails during playback, actual data files are also saved. You can then
compare the actual to the baseline file to examine the failures.

In addition to using the LogViewer to view the playback results of verification points,
you can use it to view procedural failures, aborts, and any additional playback
information. You then use the appropriate Comparators to view actual data or image
files, and view and edit the baseline files as needed.

A testing cycle can have many individual tests for specific areas of an application.
Reviewing the results of tests in the LogViewer reveals whether each passed or failed.
Analyzing the results in a Comparator helps determine why a test may have failed.
Review and analysis help determine where you are in your software development
effort and whether a failure is a defect or a design change.

Usage Scenarios
The following are the main usage scenarios for the LogViewer:

ã After a script or schedule runs, the LogViewer opens automatically and displays
the newly generated log.

ã Open the LogViewer independently, and then open any log that you want to
view.

ã From an open log, double-click a log event generated from a verification point.
The appropriate Comparator opens so you can view the results of the
verification point. The Comparator shows the original results (the baseline) and
the current playback (the actual) results side-by-side so you can compare them
and analyze their differences.

ã From an open log, double-click a log event generated from playing back the
script under Purify, Q uantify, or PureCoverage. The script opens in Robot, and
the file opens in the diagnostic tool. (For more information, see Setting Diagnostic
Tools Options on page 9-11.)

ã From an open log, select any script-based log event, and click View → Script to
open the script in Robot (for GU I scripts) or TestManager (for manual scripts).
10 -2

Start ing the LogViewer
ã From an open log, generate a report of the log events using the File → Q uick
Report command.

ã From an open log, generate a defect from a failed log event using the D efect →
Generate command. The LogViewer automatically fills in some of the
information in the defect form, which is part of Rational ClearQuest.

Starting the LogViewer

You can start the LogViewer in the following ways:

ã Automatically from Robot

ã Automatically from LoadTest

ã From TestManager

ã From any Rational Test product

ã From the Windows desktop

Starting the LogViewer Automatically from Robot
To set up Robot so it automatically opens the LogViewer after playback:

1 . In Robot, click Tools → GU I Playback O ptions.

2 . Click the Log tab.

3 . Select O utput Playback Results to Log and View Log After Playback.

4 . Click O K .

5 . Play back a script in Robot.

When the script has finished playing back, Robot starts the LogViewer and opens
the log.

Starting the LogViewer Automatically from LoadTest
To set up LoadTest so it automatically opens the LogViewer after running a
schedule:

1 . In LoadTest, click Tools → O ptions.

2 . Click the Reports tab.

N O TE: You can also start the LogViewer from a selected script in a Rational
TestFactory application map. For more information, see the Using Rational
TestFactory manual.
10 -3

Reviewing Logs with the LogViewer
3 . U nder Autom atic LogViewer, click Always.

4 . Click O K .

5 . Run a schedule.

When the schedule has finished running, LoadTest starts the LogViewer and opens
the log file.

Starting the LogViewer from TestManager
To open a log from TestManager:

1 . Click View → Asset Browser.

2 . In the Asset Browser, expand the Builds tree until the log name appears.

3 . Double-click the log to open it.

Starting the LogViewer from a Rational Test Product
To start the LogViewer from a Rational Test product:

ã Click Tools → Rational Test → Rational LogViewer in any Rational Test
product, or click the Rational LogViewer toolbar button.

You can then open a log file by clicking File → O pen.

Starting the LogViewer from the Desktop
To start the LogViewer from the Windows desktop:

1 . Click Start → Program s → Rat iona l p roduct nam e → Rational Test →
Rational LogViewer.

2 . Type your user ID and password. If you do not know these, see your
administrator.

3 . Select a repository and project name.

4 . Click O K .

You can then open a log file by clicking File → O pen.

N O TE: You can only open log files that are part of the current project. To change
your project, click File → Change Project.
10 -4

The LogViewer M ain W indow
The LogViewer Main Window

The main window of the LogViewer contains the log file section, as well as the
toolbar, the menus, and the status bar.

The log file section displays the log events that are generated when scripts or
schedules are run. By default, the following columns appear:

ã Log Event – Lists all log events, such as the script start and end, verification
points, manual steps, and unexpected active windows. Right-click to display a
shortcut menu. To define filters to narrow down the event types that appear,
click Tools → M anage Filters. You can apply a filter to the currently active log
using the Filter list on the toolbar.

ã Result – Indicates the results of the events. If a verification point fails, double-
click the failure to open the appropriate Comparator. The Comparator shows
the baseline and actual files so you can evaluate any failures found and determine
whether they are intentional changes or defects. To define filters to narrow
down the result types that appear, click Tools → M anage Filters.

ã D ate – Lists the date of the log event.

ã T im e – Lists the start time of the log event.

ã D efect – Lists the defect number associated with this log event (if there is one).

ã Com puter – Lists the computer on which the script was run.

You can customize the order of these columns by clicking View → Colum n O rder.

You can filter the currently active log by selecting a filter from the list on the toolbar.
For information about log filters, see Filtering the Log Event Column on page 10-11.

Log file
section

Filter list

Toolbar

Sta tus bar

M enu bar
10 -5

Reviewing Logs with the LogViewer
Opening a Log File

To open a log file:

1 . In the LogViewer, click File → O pen.

2 . Select a log file to open.

You can only open log files that are part of the current project. To change your
project, click File → Change Project .

3 . Optionally, select D isplay Builds by State to show the hierarchy of builds and
logs by states.

You can create build states using TestManager. Four build states are already
available to you, and you can also create custom build states. If you do not
change the build state, the default of < N one> is assigned to each build. For
information about build states, see Working with Build States on page 3-9.

4 . Click O K to open the log.

You can open more than one log file in the LogViewer. If you have more than one
log file open, the log that is currently active is the one that is acted upon when you
use most menu commands.

Deleting a Log File

You can delete log files from your project. O nce you delete a log file, you cannot get
the log back.

To delete a log file:

1 . Click File → D elete.

2 . Select the log or log folder to delete.

When you delete a log folder, all logs in the folder are deleted.

3 . Optionally, select D isplay Builds by State to show the hierarchy of builds and
logs by states.

You can create build states using TestManager. Four build states are already
available to you, and you can also create custom build states. If you do not
change the build state, the default of < N one> is assigned to each build. For
information about build states, see Working with Build States on page 3-9.

4 . Click O K , and click Yes to confirm the deletion.
10 -6

Viewing Log Event Properties
Viewing Log Event Properties

Every log event in the log file has properties, such as the date and time the event was
recorded, the type of event, the name of the script, and the configuration of the
computer that the script was recorded on.

To view the log event properties:

1 . Select a log event in the active log.

2 . Click View → Log Event Properties.

The properties of the log event appear in the General tab. You cannot edit these
properties.

Modifying the Log Window

You can modify the log window by:

ã Collapsing and expanding log events

ã Changing column widths

ã Changing the column order

Collapsing and Expanding Log Events
The playback of a script results in a log of events. These events are stored
hierarchically in the Log Event column of the LogViewer.

To expand or collapse the view of log events in a log, do one of the following:

ã To expand or collapse a single log event, click the plus or minus sign at the
beginning of the event, or select the event and click View → Expand Log Event
or Collapse Log Event.

ã To expand or collapse all log events, click View → Expand All Log Events or
Collapse All Log Events.
10 -7

Reviewing Logs with the LogViewer
Changing Column Widths
To change the column width settings in the log file section of a log, position the
pointer on the vertical border between the column title cells and drag the border. To
hide a column completely, drag its right border to the left until the column
disappears.

To keep any new column width settings that you make during a LogViewer session,
click View → Save Colum n W idths. To restore the columns to their default widths,
click View → Restore Colum n W idths.

Changing the Column Order
To change the order of the columns in the log file section of a log:

1 . Click View → Colum n O rder.

The Colum n D isplay O rder box lists the columns from top to bottom, in the
order in which they appear in the LogViewer from left to right.

2 . Select the name of the column to move.

3 . Click M ove U p or M ove D own to move the column in that direction.

4 . Click O K .

To restore the columns to their default order, click the D efault O rder button.

Locating Failed Log Events

In the log file section of the LogViewer window, failed events are indicated in red in
the Result column.

To navigate to failed events in a log:

1 . To locate the first failed log event, click View → First Fa ilure.

2 . To locate the next failed event, click View → N ext Fa ilure. Continue to use this
command to navigate through all of the failures.

These navigation commands are especially convenient when a log file is large and
contains hundreds of log events.

After you locate a verification point failure, you can open a Comparator to analyze
the failure by double-clicking the event. In addition, if the event is associated with a
script, click View → Script to see the line of script that contains the failure in Robot.
10 -8

Evalua ting Verif ica tion Poin t Failu res in a Com para tor
Evaluating Verification Point Failures in a Comparator

When the application-under-test does not perform on playback exactly as specified
by the recording, Robot generates a failed entry in the LogViewer.

Failure indications in log files do not necessarily mean that the application-under-
test has failed. You need to evaluate each verification point failure with the
appropriate Comparator to determine whether it is an actual defect, a playback
environment difference, or an intentional design change made to a new build of the
application-under-test.

Viewing a Verification Point in the Comparators
In the log file section of the LogViewer window, failed events are indicated in red in
the Result column. If the event is a failed verification point, you can analyze the
failure using one of the Comparators.

To view a verification point in a Comparator:

1 . Open a log file.

2 . Do one of the following:

– Double-click a verification point in the Log Event column.

– Select a verification point and click View → Verification Point.

– Right-click a verification point and click View Result.

The appropriate Comparator opens based on the type of verification point, as shown
in the following table. You can then analyze the results to determine whether the
failure was caused by a defect or an intentional change in the application.

Comparator Verification points

Text Comparator Alphanumeric

Grid Comparator Object Data
Menu
Clipboard

Image Comparator Window Image
Region Image

Object Properties Comparator Object Properties
10 -9

Reviewing Logs with the LogViewer
Viewing a Script
You can select any log event that is associated with a script and view it in Robot (for
GU I scripts) or TestManager (for manual scripts).

To view a script:

1 . Open a log file.

2 . Select a log event that is associated with a script.

3 . Click View → Script , or right-click the event and click View Script.

Playback/Environmental Differences
Differences between the recording environment and the playback environment can
generate failure indications that do not represent an actual defect in the software.
This can happen if there are applications or open windows in the recorded Windows
environment that are not in the playback Windows environment, or vice versa.

For example, if you have the Calculator open in the recorded environment but not
open in the playback environment, Robot can generate a failure that has nothing to
do with the software that you are actually testing.

You should analyze these failure indications with the appropriate Comparator to
determine whether the window that Robot could not find is an application window
that should have opened during the script playback or an unrelated window.

Intentional Changes to an Application Build
Revisions to the application-under-test can generate failure indications in scripts and
verification points developed using a previous build as the baseline. This is especially
true if the user interface has changed.

For example, the Window Image verification point compares a pixel-for-pixel
bitmap from the recorded baseline image file to the current version of the
application-under-test. If the user interface changes, the Window Image verification
point will fail. When intentional application changes result in failures, you can easily
update the baseline file to correspond to the new interface using the Image
Comparator. Intentional changes in other areas can also be updated using the other
Comparators.

For information about updating the baseline, see the Comparator chapters.
10 -10

Filtering the Log Event Colum n
Filtering the Log Event Column

You can use filters to narrow down the log event list in the log file section of the
LogViewer window. Filters can make it easier to view large log files.

You can:

ã Apply a filter to the log.

ã Create or edit log filters.

ã Copy, rename, or delete a log filter.

These tasks are described in the following sections.

Applying a Log Filter
U se the following steps to apply already existing filters to the log. If you do not have
any filters set up, use the Tools → M anage Filters command to create them. For
information, see the following section, Creating or Editing a Log Filter.

To apply a filter:

1 . Open a log file.

2 . Do one of the following:

– Select a filter from the Filter drop-down list on the toolbar.

– Click View → Filters. Select the filter and click O K.

That filter is applied to the log.

Creating or Editing a Log Filter
You can use filters to narrow down the log event list in the log file section of the
LogViewer window. Filters can make it easier to view large log files.

To create or edit a log filter:

1 . Open a log file.

2 . Click Tools → M anage Filters.

3 . To create a new filter, click N ew.

To edit a filter, select a filter in the list, and then click Edit .
1 0 -1 1

Reviewing Logs with the LogViewer
4 . In the General tab of the Log Filter Properties dialog box, type the name of the
filter in the N am e box. This field is required.

5 . Optionally, type or edit a description of the filter in the D escription box.

6 . Specify which results should appear in the log in the Show Results option:

All – Displays all results in the log. This is the default setting.

Fail and W arning – Displays only failures and warnings in the log.

7 . The Show Events list shows the different types of events that can be shown in
the log. Select the types that you want shown, and clear the types that you want
to filter.

8 . If you selected the Verification Point check box in the General tab, click the
Verification Points tab. The Selected list contains the verification point types
that will be shown in the log. Move all verification points that you want to see
to the Selected list, and move all the ones you want filtered to the Available list.

9 . Click O K in the Log Filter Properties dialog box.

The filter appears in the Manage Log Filter dialog box.

1 0 . Click Close.

Copying, Renaming, and Deleting a Log Filter
The copy feature is useful when you want to create multiple filters that are similar to
one another. After you create the first filter, you can make a copy of it. Then you can
edit the copied filter to make the necessary modifications. You can also rename and
delete a log filter.

To copy, rename, or delete a filter:

1 . Open a log file.

2 . Click Tools → M anage Filters.

3 . In the Manage Log Filters dialog box, select the filter.

4 . Click Copy, Renam e, or D elete. Type a new name and click O K, or click Yes to
confirm the deletion.

N O TE: U se this procedure to create and manage filters. If you just want to apply
a log filter to the current log, click View → Filters or use the Filters list on the
toolbar.
10 -12

Working with Reports
Working with Reports

The LogViewer has a set of predefined reports that you can use to analyze test results.
You can work with reports as follows:

ã Set a default report layout.

ã Generate, print, or save a report.

These tasks are described in the following sections.

Setting a Default Report Layout
When you generate a quick report of the active log, the report is created using the
default report layout.

To set the default layout:

1 . Open a log file.

2 . Click Tools → O ptions.

3 . Select the default report layout from the D efault Report Layout list.

4 . Optionally, select a default log filter from the D efault Filter list. For information
about using filters, see Filtering the Log Event Column on page 10-11.

5 . Click O K .

Generating, Printing, and Saving a Quick Report
You can generate a Quick Report of the active log. It contains a summary or detailed
report of the log that you can view, print, or save to a file.

To generate a report of the active log:

1 . Click File → Q uick Report.

2 . If there is no default layout set, the Q uick Report dialog box appears. Select a
report layout and click O K .

The report is generated using the default layout. The Report toolbar appears in
the report window. U se this toolbar to navigate through the report or to print,
save, or close it.

N O TE: The Report Layout list shows only report layouts that have already been
created. To create a report layout, use the Report Layout Editor. For information,
see the TestManager H elp.
1 0 -1 3

Reviewing Logs with the LogViewer
3 . Optionally, click File → Print Setup. Set the print options and click O K . (For
information about printer options, see the Print Manager section of your
Windows documentation.)

4 . Optionally, click the Print toolbar button to print the report. Specify the page
information and click O K .

5 . Optionally, click the W rite to File toolbar button to save the report to a file.
Specify the drive, folder, and file name where you want to store the report text
and click O K .

6 . When you have finished viewing the report, click the Close toolbar button.

Entering and Modifying Defects

A defect can be anything from a request for a new feature to an actual bug found in
the application-under-test. Defect tracking is an important part of the software
testing effort. Rational Suite TestStudio, Rational TeamTest, and Rational Suite
PerformanceStudio all incorporate the change-request management technology of
Rational ClearQuest to track defects.

You can use the LogViewer to enter defects for any verification points that fail during
playback of a recorded script. When you enter a defect from the LogViewer, the
LogViewer displays the TestStudio defect form and fills in several fields for you with
information from the playback log. (When you enter defects this way, the LogViewer
does not start ClearQuest; it opens the defect form, which is part of ClearQuest.)
You can also enter defects manually using ClearQuest, but none of the fields will be
automatically filled in for you.

Once you have entered defects, you can use ClearQuest to review the data and
decide upon further action.

During the course of developing your application, you can update the state of each
defect to keep the information current with the development-test-repair cycle. You
can then use ClearQuest’s reporting options to retrieve current information about
the defects being tracked and the overall progress of development. You can also send
defect information to other members of your development team using ClearQ uest’s
e-mail features. For information about working with ClearQuest, see the Rational
ClearQ uest H elp

N O TE: You can set the default report layout using the Tools → O ption
command.
10 -14

Entering and M odifying D efects
.

About ClearQuest and Defect Tracking
ClearQ uest is a change-request management system designed for the dynamic and
interactive nature of software development. With ClearQuest, you can manage all of
the change-request needs of software development — for example, enhancement
requests, defect reports, and documentation modifications.

For your convenience, a specially designed schema for defect tracking is included
with your software. In ClearQuest, the term schem a refers to all attributes
associated with a change-request database. This includes field definitions, field
behaviors, the state transition tables, actions, and forms. For more information about
ClearQ uest schemas, see the Rational ClearQ uest H elp.

About the Rational TestStudio Schema
The TestStudio schem a includes two TestStudio defect forms, one for entering
new defects, and one for modifying and tracking defect information.

N O TE: To use ClearQuest to store defects, an administrator must first set up the
ClearQ uest schema repository, and then create or attach a ClearQuest user
database as part of a Rational repository. For information, see the Using the Rational
Administrator manual.

N O TE: To use the TestStudio schema, you must select it when you create or
attach a ClearQuest user database as part of a Rational repository. For
information, see the Using the Rational Administrator manual.
1 0 -1 5

Reviewing Logs with the LogViewer
About the TestStudio Defect Form
You can use the TestStudio defect form to track as many or as few details about a
defect as you want.

The defect form contains the following tabs that let you track defects and annotate
the defect tracking process:

ã M ain – Lets you specify basic details about a defect such as a brief description,
the repository project, repair priority of a defect, severity, owner, keywords, and
symptoms. The H eadline and Severity fields are required.

ã N otes – Lets you type additional information about a defect. If you enter a defect
from the LogViewer, the software automatically enters information about the
defect in this field.

ã Attachm ents – Lets you associate one or more files with a particular defect. You
can add, delete, copy, or open an attachment. Attachments are stored in the
ClearQ uest user database, along with other data contained in the record of a
defect.

ã Test D ata – Lets you specify the build, log folder, log, script, verification point,
and test requirement of a particular defect. For information about creating test
requirements, see Defining Test Requirements on page 2-3.
10 -16

Entering and M odifying D efects
If you enter a defect using ClearQ uest, the Test D ata information is empty. If
you enter a defect from the LogViewer, it fills in the Test D ata tab with
information from the Robot playback log. To manually select test data
information, you must select a valid project from the Repository Project box in
the M ain tab of the defect form.

ã Environm ent – Lets you specify information about who found the defect, the
type of computer on which the defect was found, and the testing environment.
You can also customize three fields to include information pertinent to your
project.

ã Requirem ents – Lets you associate one or more requirements, created with
TestManager or RequisitePro, with a particular defect. For information about
creating test requirements, see Defining Test Requirements on page 2-3.

ã H istory – Displays the complete history of the current defect: the date of the
action, who took the action, the action taken, the old state of the defect, and the
new state of the defect. The H istory tab appears after you submit a defect.

When you create a new defect, ClearQuest automatically enters the defect in the
Submitted state. U se ClearQuest to change the state of an existing defect. For
information, see the ClearQuest H elp.

ã Resolution – Lets you specify information related to the defect being fixed. You
can enter the type of resolution, the software build in which the defect was
repaired, and an in-depth explanation of the resolution. The Resolution tab
appears after you submit a defect.

N O TE: To display information about each item in the defect form, right-click the
item and click H elp.
1 0 -1 7

Reviewing Logs with the LogViewer
Starting ClearQuest
You can start ClearQ uest from another Rational Test product or component, or
from the Windows desktop.

To start ClearQuest:

1 . Do one of the following:

– From a Rational Test product or component, click Tools → Rational
ClearQ uest.

– From the Windows desktop, click Start → Program s → Rat iona l p roduct
nam e → Rational ClearQ uest .

2 . If the ClearQuest Login dialog box appears, type your ClearQ uest user ID and
password. Select the database in which you want to enter, find, or modify a
defect.

3 . Click O K .

Entering Defects
You can enter defects from the LogViewer or ClearQ uest. If you use the LogViewer,
it fills in many of the fields in the defect form. If you use ClearQ uest, you must enter
the fields manually.

To enter a defect:

1 . To enter a defect from the LogViewer, do one of the following:

– Select the failed event in the Log Event column, and click D efect →
Generate.

– Click D efect → Find and Generate. Click Find N ext until the failed event
for which you want to generate a defect is selected. Click Generate D efect.

Skip to step 3.

N O TE: To enter a defect directly from the LogViewer, see the next section,
Entering Defects.

N O TE: The LogViewer attempts to connect to ClearQuest using your
Rational Test user ID and password. If they do not exist in ClearQ uest, the
LogViewer attempts to create a user with the same ID and password.
H owever, if the LogViewer still cannot connect to the ClearQuest database,
the Login dialog box appears. In this case, type your ClearQuest user ID and
password. Select the database in which you want to enter the defect.
10 -18

Entering and M odifying D efects
2 . To enter a defect from ClearQ uest, do the following:

a. Start ClearQ uest as described in Starting ClearQuest on page 10-18.

b. In ClearQuest, click Actions → N ew D efect, or click N ew D efect from the
toolbar.

3 . In the M ain tab, type a brief description in the H eadline box, and select the
Severity for this defect. These two fields are required.

ClearQ uest automatically assigns an ID number and the submitted state to each
new defect. The next defect that you create receives the next available defect ID
number.

4 . Optionally, type or select the repository project, priority, owner, description,
keywords, and symptoms in the M ain tab.

5 . Optionally, click the N otes tab. Type any additional information about a defect,
such as how to reproduce it, in the N ew N ote box.

6 . Optionally, click the Attachm ents tab, and do the following:

a. Click Add and select one or more files to associate with the defect. Click
O pen.

b. Optionally, type a comment about the attachments in the Attachm ent
com m ent dialog box. To apply this description to all selected attachments,
click Apply to a ll. To apply the description to a single attachment, click O K .

To edit a description, right-click the attachment, and then click Edit
D escription. To view details of a description, right-click the attachment, and
then click View → D eta ils.

To change the way attachments appear, right-click in the Attachments box, and
then click View → List view, Sm all icons, or Large icons.

To disassociate an attachment from a defect, select a file, and then click D elete.

To save a copy of a file, select a file, and then click Save as.

To display a file in its native editor, click O pen. To open the appropriate editor,
the file name must include an extension that Windows recognizes.

N O TE: A red x on a tab indicates that you must enter required information
in that tab. A red label next to a text box means that you must enter required
information in that box.
1 0 -1 9

Reviewing Logs with the LogViewer
7 . Optionally, click the Test D ata tab. Select the build in which the defect was
found, as well as the log folder, log, script, and verification point for the defect.

To add test requirement information:

a. Click Select to display a list of requirements from those created using
TestManager or RequisitePro. For information about creating test
requirements, see Defining Test Requirements on page 2-3.

Be sure to select the correct repository project in the M ain tab of the defect
form so that the correct requirements appear.

b. Select a requirement from those listed, and then click O K .

Click Clear to delete a selected requirement.

Click Properties to display the properties of a requirement.

8 . Optionally, click the Environm ent tab. Type or select information describing the
environment in which the defect was found.

9 . Optionally, click the Requirem ents tab, and do any of the following:

– Click Add to List to associate a requirement with this defect.

– Click Rem ove to delete a selected requirement.

– Click Properties to display the properties of a requirement.

1 0 . Click O K .

If you enter a defect from the LogViewer, the number of the new defect appears
in the D efect column of the LogViewer.

N O TE: You can also enter defects from SiteCheck, after you play back a Web Site
Scan or Web Site Compare verification point. From the LogViewer, double-click
the failed Web verification point. In SiteCheck, click Tools → Enter a D efect.
10 -20

Entering and M odifying D efects
Finding Defects
To find a defect using ClearQuest:

1 . Start ClearQ uest, as described in Starting ClearQuest on page 10-18.

2 . Do one of the following to find a defect:

– Create a query to find the defect. For information about creating a query,
see the ClearQuest H elp.

– If you know the ID number of the defect that you want to find, do the
following:

a. Click Edit → Find Record.

b. Select D efect from the Entity box.

c. Type the ID number of the defect that you want to find, and then click
O K .

Modifying Defects
To modify a defect using ClearQuest:

1 . Start ClearQ uest, as described in Starting ClearQuest on page 10-18.

2 . Open the defect, as described in Finding Defects on page 10-21.

3 . Click the Actions button. Click M odify.

4 . Click any of the tabs, and then modify the information about the defect.

The information that you can modify depends on the state of the defect.

5 . Optionally, click the H istory tab to view the history of the defect. Any changes
that you make will not appear in this tab until you click O K.

6 . Click O K when you are finished.
1 0 -2 1

Reviewing Logs with the LogViewer
10 -22

ã ã ã C H A P T E R 11

Using the Object Properties Comparator
This chapter explains how to use the Object Properties Comparator. It includes the
following topics:

ã Overview

ã Starting the Object Properties Comparator

ã The main window

ã The Objects hierarchy and Properties list

ã Locating and comparing differences

ã Viewing verification point properties

ã Adding and removing properties

ã Editing the baseline file

ã Saving the baseline file

Overview

U se the Object Properties Comparator to view and compare the properties captured
when you use the Object Properties verification point in a Rational Robot script.

When you record a script that includes an Object Properties verification point, Robot
creates a baseline data file that contains captured objects and their properties.

When you play back a script, Robot compares the properties in the baseline data file
with the properties in the application-under-test. If the comparison fails, Robot saves
the data that caused the failure to an actual data file. The events in the script (for
example, call script, start schedule, verification point, user abort, unexpected active
window, end script, and so on) appear in the Rational LogViewer. From the
LogViewer, you can start the Comparator by double-clicking an Object Properties
verification point.
11 -1

U sing the O b ject Properties Com para tor
In summary, you can use the O bject Properties Comparator to:

ã Review, compare, and analyze the differences between the baseline data file and
the actual data file.

ã View or edit the baseline data file for an Object Properties verification point.

Starting the Object Properties Comparator

There are two ways to start the Object Properties Comparator:

ã From Robot

ã From the LogViewer

Starting the Comparator from Robot
To start the Comparator from Robot:

1 . Start Robot and open a script.

For Robot to open this Comparator, the script must contain an O bject
Properties verification point.

2 . Do one of the following in the Asset (left) pane:

– Double-click an Object Properties verification point.

– Right-click an Object Properties verification point and click View Baseline.

The Object Properties Comparator opens and that verification point appears.

You can also open the O bject Properties Comparator from Robot by clicking File →
Properties. In the Related Assets tab, select an O bject Properties verification point
and click the View Baseline button.

Starting the Comparator from the LogViewer
To start the Comparator from the LogViewer:

1 . Start the LogViewer and open a log file.

For the LogViewer to open this Comparator, the log must contain an Object
Properties verification point.

N O TE: When you open the Comparator through Robot, you can only view the
baseline file. If you have a failed verification point and want to compare the
baseline and actual files, you must start the Comparator through the LogViewer.
11 -2

The M ain W indow
2 . Do one of the following in the Log Event column:

– Double-click an Object Properties verification point.

– Select an O bject Properties verification point and click View →
Verification Point.

– Right-click an Object Properties verification point and click View Result.

The Object Properties Comparator opens and that verification point appears.

If the verification point failed, the Comparator opens with both the baseline and
actual files displayed.

The Main Window

The main window of the Object Properties Comparator contains the Objects
hierarchy and the Properties list, the Differences list, and the toolbar, menus, and
status bar.

The O bjects hierarchy contains the list of all objects that Robot records in the
Object Properties verification point. The Properties list contains the list of
properties of those objects. When you select an object on the left, its properties
appear on the right. You can control the display of both the Objects and Properties
sections of the window by using the View commands.

Toolbar

O bjects h ierarchy

D ifferences list

Status bar

Propert ies list

M enu bar
11 -3

U sing the O b ject Properties Com para tor
The D ifferences list shows the objects that have differences between the baseline
and the actual files. If you click an object in the list, that object is highlighted in the
Objects hierarchy and Properties list. If you are viewing a file with no failures, this
section does not appear. To show or hide this section, click View → Show
D ifference List .

The Objects Hierarchy and the Properties List

When the O bject Properties Comparator is opened, the O bjects hierarchy and
Properties list appear as follows:

ã The Objects hierarchy appears in the left pane of the window. It displays the list
of all the objects recorded by Robot using the O bject Properties verification
point and saved in the baseline file.

ã The Properties list appears in the right pane of the window. It displays the list of
properties of the selected object, and the properties’ values in the baseline file
and the actual file (if there are differences).

If the verification point passed, the Comparator displays the Objects hierarchy and
the Properties list with only the Baseline column.

If the verification point failed, the Comparator displays the Objects hierarchy and the
Properties list with both the Baseline and Actual columns, so you can compare them.

Changing the Window Focus and Section Widths
To change the focus between the Objects hierarchy and the Properties list, do one of
the following:

ã Click the mouse in the section.

ã Press TAB.

ã Press ALT+ O to set the focus to the Objects hierarchy.

ã Press ALT+ P to set the focus to the Properties list.

N O TE: If the verification point contains just one object, the Objects hierarchy
does not appear. To display it, click View → O bjects or View → O bjects and
Properties.
11 -4

The O bjects H ierarchy and the Propert ies List
To change the widths of the O bjects hierarchy and Properties list:

1 . Position the pointer on the border separating the sections.

2 . Drag the border to the right or to the left.

You can also follow the same steps to change the width of the columns within the
Properties list.

Working Within the Objects Hierarchy
To display the Objects hierarchy, click View → O bjects or View → O bjects and
Properties.

The object list is hierarchical. You can expand or collapse the view of objects by
selecting a top-level object and using the View → Expand and View → Collapse
commands.

When you select an object, the properties for that object are displayed in the
Properties list.

Each object is listed by its object type and is bold. After the object name there may
be information such as the object class or index, which can be used to identify the
object. If the object is red, it has properties with different values in the baseline and
the actual files. If the object is blue, it exists in the baseline file but not in the actual
file.

You can do any of the following to work within the Objects hierarchy. The Objects
hierarchy must have window focus.

ã Press H O ME, EN D, PAGEU P, PAGEDO WN , U P ARRO W, and DO WN ARRO W to
move between objects.

ã Click the check box that precedes each object to select or deselect it for testing.
All objects preceded by a check mark are tested.

ã Select an object preceded by a check mark to display its properties in the
Properties list.

ã Select an object and press IN SERT to display a dialog box for adding and
removing properties from the Properties list for that object.

ã Double-click a parent object to expand or collapse its children.

ã Press plus (+) to expand the highlighted object one level, or press minus (-) to
collapse the highlighted object. Press asterisk (*) to expand all objects.

ã Right-click an object in the hierarchy to display the O bjects shortcut menu.

ã Double-click an object that is labeled U nknown to define the object. For
information, see Defining Unknown Objects During Recording on page 4-21.
11 -5

U sing the O b ject Properties Com para tor
Working Within the Properties List
To display the Properties list, click View → Properties or View → O bjects and
Properties.

The N ame column shows the name of the property. The Baseline and Actual
columns display the values for the properties. Values in the Baseline column
represent the properties from the original recording of the Object Properties
verification point. Values in the Actual column represent the state of the properties
in the latest played back version. By default, if there are differences between the
baseline and actual, both columns are displayed.

U se the View commands to control which columns appear in the Properties list.

If a property is red, it has different values in the baseline and the actual files. If a
property is blue, it exists in the baseline file but not in the actual file. If a value cell is
blank, the property has an empty value.

You can do any of the following to work within the Properties list. The Properties
list must have window focus.

ã Type the first letter of a property’s name to move to that property or to the first
property beginning with that letter.

ã Press H O ME, EN D, PAGEU P, PAGEDO WN , U P ARRO W, and DO WN ARRO W to
highlight a property.

ã Press IN SERT to display a dialog box for adding and removing properties from
the Properties list.

ã Select a property and press DELETE to remove it from the list.

ã Double-click the value cell of a property to edit the value.

ã Position the pointer on the vertical border between column title cells. Drag the
pointer to the right or left to change the column widths.

ã Point to a property and click the right mouse button to display the Properties
shortcut menu.

Locating and Comparing Differences

The Object Properties Comparator begins its comparison with the first object in the
Objects hierarchy and its properties in the Properties list.

Objects that contain differences between the baseline and actual lists are red. Objects
that exist in the baseline list but are missing from the actual list are blue.
11 -6

Viewing Verifica tion Poin t Properties
To locate the first difference between the baseline data and the actual data, click
View → First D ifference. When the difference is located, the failure is highlighted.
The Differences list indicates the failure number and provides information about the
failure.

To navigate between differences, use the View commands.

You can also select a description in the Differences list to highlight that failure in the
Properties list.

Viewing Verification Point Properties

To view verification point properties:

ã Click File → Verification Point Properties.

The Verification Point Properties dialog box shows the verification point type,
the name of the baseline file, and the name of the actual file.

Adding and Removing Properties

When you first create an Object Properties verification point, you can specify the
properties to test by adding and removing them from the Properties list. You can also
add and remove properties from the list when you view the data file in the Object
Properties Comparator. This lets you refine a test even after it has been created and
played back.

For example, if the Properties list for a verification point contains a H eight property
that you decide you do not want to test, you can remove the property in the
Comparator. You can also apply the properties in the list to all objects of the same
type for this verification point, and define a list of default properties for each type of
object.

Adding Properties to the Properties List
To add properties to the Properties list:

1 . Select an object in the Objects hierarchy.

2 . Click Edit → Edit Property List, or right-click a property in the Properties list
and click Edit List.

3 . Select the properties to add from the Available list and click > or > > . Added
properties appear in the Selected list.
11 -7

U sing the O b ject Properties Com para tor
4 . Select the following as needed:

Apply to a ll like objects – Applies the selected properties to all objects with the
same classification as the selected object.

Save as default – Saves the selected properties as defaults for all objects with
the same classification as the selected object for use in future tests.

5 . Click O K .

Removing Properties from the Properties List
Removing a property removes it from the Properties list but does not delete it from
the verification point's baseline file. Removing a property means that it will no longer
be tested in future playbacks. Once removed, properties can be added back later.

To remove a single property from the Properties list:

1 . Select the property in the Properties list.

2 . Do one of the following:

– Click Edit → Rem ove Property.

– Right-click the property and click Rem ove Property.

– Press DELETE.

To remove multiple properties from the Properties list:

1 . Select an object in the Objects hierarchy.

2 . Click Edit → Edit Property List, or right-click the property and click Edit List .

3 . Select the properties to remove from the Selected list and click < or < < .

4 . Select the following as needed:

Apply to a ll like objects – Applies the selected properties to all objects with the
same classification as the selected object.

Save as default – Saves the selected properties as defaults for all objects with
the same classification as the selected object for use in future tests.

5 . Click O K .

If you remove a property, you can add it back to the Properties list at a later time by
using the Edit → Edit Property List command.
11 -8

Editing the Baseline File
Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the baseline file to keep it up-to-date with the developing application.

When editing the baseline file, you can:

ã Edit a value in the Properties list.

ã Cut, copy, and paste a value.

ã Copy values from the actual to the baseline file.

ã Change a verification method.

ã Change an identification method.

ã Replace the baseline file.

These tasks are described in the following sections.

Editing a Value in the Properties List
To edit a value in the Properties list:

1 . Select an object in the Objects hierarchy.

2 . Click a property name in the N ame column of the Properties list.

3 . Double-click the Value cell.

What happens when you double-click depends on what the value cell contains,
as described in the following table:

N O TE: You cannot edit the actual data file.
11 -9

U sing the O b ject Properties Com para tor
Cutting, Copying, and Pasting a Value
You can cut and copy values from the baseline file and paste values into it. Since you
cannot edit the actual file, you cannot cut a value from it or paste a value into it.

To cut, copy, and paste a value:

1 . Select an object in the Objects hierarchy.

2 . Select the value to cut or copy in the Properties list.

3 . Click Edit → Copy Property or Edit → Cut Property.

These commands, unlike standard Windows commands, do not place values on
the Windows Clipboard. Instead, they place values on an internal clipboard.

I f the value cell contains The following happens when you
double-click the cell

A string A blinking cursor appears. Edit the value.

...or...

A Property dialog box appears. Edit the value. (The string can
contain multiple lines of text.)

A float or integer A blinking cursor appears. Edit the value. Only numeric
characters are supported.

If a spin button appears, you can click the arrows to change the
value.

A down-arrow A list of available choices appears. Select a value.

...or...

A blinking cursor appears. Type a value in the cell, or click the
down-arrow and select a value from the list.

A color The Color dialog box appears. Select a color from the basic
colors or the color palette, or type values in the Red, Green, and
Blue edit boxes.

(list)...

(array)...

A Property dialog box appears, displaying all of the values in the
property. Click Edit to edit any value. Click Select to highlight
the items to test in the list or array.

Bitmap, OLE Object,
U nknown

These properties cannot be edited.
11 -10

Editing the Baseline File
4 . To paste the value, click the cell in the baseline file where you want to paste the
value. (The pasted value will replace the value in the cell.)

5 . Click Edit → Paste Property.

Copying Values from the Actual to the Baseline File
To copy one of an object’s property values from the actual file to the baseline file:

1 . Select an object in the Objects hierarchy.

2 . Select a value in red from the actual column in the Properties list.

3 . Click Edit → Copy Property to Baseline or press F9.

To copy all of an object’s values from the actual file to the baseline file:

1 . Select an object in the Objects hierarchy.

2 . Click Edit → Copy All Properties to Baseline.

Changing a Verification Method
A verification method for a property specifies how Robot compares the property
captured during recording with the property captured during playback.

To change a verification method for a property:

1 . Click View → Show Verification M ethod, or right-click in the Properties list
and click Verification M ethod.

2 . Select a property in the Properties list.

The current verification method of that property appears in the Verification
Method box. If N ot Applicable appears in the box, you cannot change the way
that property is verified. It will always be an exact match.

The box stays open until you close it, so you can keep selecting different
properties to see their verification methods.

3 . Select a different verification method for a property. N ote that:

– For a (list) or (array), the selected verification method applies to all of
the items.

– If you select N um eric Range, type the From and To values.

– If you select U ser D efined, type the Library and Function.

N O TE: The two values must be of similar types. For example, you can paste
a string over a string or an integer over an integer.
1 1 -1 1

U sing the O b ject Properties Com para tor
Changing an Identification Method
You can change the identification method for properties that have a list or array
value. The identification method defines how the items in the list or array are
identified during playback. For example, the item could be identified by Location or
Content.

To view or change an identification method:

1 . In the Properties list, double-click a list or array value to open the Property
dialog box.

2 . In the Identification M ethod list, select an identification method.

The selected method applies to all of the items.

3 . Click O K .

Replacing the Baseline File
You may want to overwrite the baseline file with the actual file when revisions to
your software application require that you update your baseline verification point
data files.

Each time you run your scripts against the revised software and the verification
points fail, an actual file is saved. You should compare the baseline file to the actual
file to make sure that the failure was caused by an intentional change and not by a
defect in the new build.

If the failure was caused by an intentional change, you can convert the actual data
into the new baseline data. This updates your script with the new application state.

To replace the baseline file:

1 . Click File → Replace Baseline W ith Actual.

2 . When prompted for a confirmation, click Yes to replace the baseline data or click
N o to leave it unchanged.

Saving the Baseline File

To save changes made to the baseline file:

ã Click File → Save Baseline.

This command is enabled only if you have made changes to the baseline file.
11 -12

ã ã ã C H A P T E R 12

Using the Text Comparator
This chapter explains how to use the Text Comparator. It includes the following
topics:

ã Overview

ã Starting the Text Comparator

ã The main window

ã The text window

ã Locating and comparing differences

ã Viewing verification point properties

ã Editing the baseline file

ã Saving the baseline file

Overview

U se the Text Comparator to view and compare alphanumeric data captured when
you use the Alphanumeric verification point in a Rational Robot script.

When you record a script that includes the Alphanumeric verification point, Robot
creates a baseline data file that contains the data you captured. When you play back
the script, Robot compares the data in the baseline file with the data in the
application-under-test. If the comparison fails, Robot saves the data that caused the
failure to an actual data file. The events in the script (for example, call script, start
schedule, verification point, user abort, unexpected active window, end script, and so
on) appear in the Rational LogViewer. From the LogViewer, you can start the Text
Comparator by double-clicking an Alphanumeric verification point.
12 -1

U sing the Text Com parator
In summary, you can use the Text Comparator to:

ã Review, compare, and analyze the differences between the baseline data file and
the actual data file.

ã View or edit the baseline data file for an Alphanumeric verification point.

Starting the Text Comparator

There are two ways to start the Text Comparator:

ã From Robot

ã From the LogViewer

Starting the Comparator from Robot
To start the Comparator from Robot:

1 . Start Robot and open a script.

For Robot to open this Comparator, the script must contain an Alphanumeric
verification point.

2 . Do one of the following in the Asset (left) pane:

– Double-click an Alphanumeric verification point.

– Right-click an Alphanumeric verification point and click View Baseline.

The Text Comparator opens and that verification point appears.

You can also open the Text Comparator from Robot by clicking File → Properties.
In the Related Assets tab, select an Alphanumeric verification point and click the
View Baseline button.

N O TE: When you open the Comparator through Robot, you can only view the
baseline file. If you have a failed verification point and want to compare the
baseline and actual files, you must start the Comparator through the LogViewer.
12 -2

The M ain W indow
Starting the Comparator from the LogViewer
To start the Comparator from the LogViewer:

1 . Start the LogViewer and open a log file.

For the LogViewer to open this Comparator, the log must contain an
Alphanumeric verification point.

2 . Do one of the following in the Log Event column:

– Double-click an Alphanumeric verification point.

– Select an Alphanumeric verification point and click View → Verif ication
Point .

– Right-click an Alphanumeric verification point and click View Result.

The Text Comparator opens and that verification point appears.

If the verification point failed, the Comparator opens with both the baseline and
actual files displayed.

The Main Window

The main window of the Text Comparator contains the text window and the toolbar,
menus, and status bar.

Toolbar

M enu bar

Text
window

Status ba r
12 -3

U sing the Text Com parator
The Text Window

The text window has two panes: Baseline and Actual. The Baseline pane shows the
data file that serves as a baseline file for a comparison. The Actual pane shows data
from the current playback in Robot. You can control the display of the panes by using
the View commands.

The text window uses a typical text editor format. In general, you use the same rules
and methods of typing, selecting, and deleting that you would use in a standard text
editor (such as N otepad).

The Baseline pane has a white background and the Actual pane has a gray
background. Data that failed the comparison between the baseline file and the
actual file appears in reverse color when you use one of the locating commands
to highlight it.

Scrolling the Text Window
The vertical scroll bar is automatically synchronized. It is on the far right side of the
window, to the right of the Actual pane. When you use it to scroll the actual data, the
baseline data scrolls at the same time.

There are also independent horizontal scroll bars at the bottom of each pane.

You can also use the cursor to scroll in both the Baseline and Actual panes. Click in
one of the panes to place the cursor, and then use the arrow keys to move it.

Changing the Widths of the Text Panes
To change the widths of the Baseline and Actual panes:

ã Position the pointer on the vertical border between the two panes. Drag the
border to the right or to the left.

Using Word Wrap
To wrap long text strings onto multiple lines within the text window, click View →
W ord W rap.

When this command is checked, the data wraps to fit into the text window area.

When this command is not checked, the data displays on one line that you must
scroll horizontally to read.
12 -4

Locating and Com paring D ifferences
Locating and Comparing Differences

To locate the first difference between the baseline data and the actual data, click
View → First D ifference.

To navigate between differences, use the View commands.

The comparison starts in the upper left corner of the pane. The Comparator then
scans for differences by going across each row of text in order, as it would in a text
editor.

When a difference is found using the View commands, the difference between the
baseline file and the actual file appears in reverse color.

The Alphanumeric verification point stores the specified verification method as part
of the script command. For data files created by the Alphanumeric verification point,
the Comparator assumes a case-sensitive comparison, regardless of how it was
recorded. For numeric data, the Comparator assumes N umeric Equivalence as the
verification method.

Viewing Verification Point Properties

To view verification point properties:

ã Click File → Verification Point Properties.

The Verification Point Properties dialog box shows the verification point type, the
name of the baseline file, and the name of the actual file.

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the baseline file to keep it up-to-date with the developing application.

When editing the baseline file, you can:

ã Edit the data.

ã Cut, copy, and paste data.

ã Copy data from the actual to the baseline file.

ã Replace the baseline file.

These tasks are described in the following sections.

N O TE: You cannot edit the actual data file.
12 -5

U sing the Text Com parator
Editing Data in the Baseline File
To edit the data in the baseline file:

1 . Click the location where you want to type.

2 . Type the new data.

In general, you use the same rules and methods of typing, selecting, and deleting
that you would use in a standard text editor (such as N otepad).

Cutting, Copying, and Pasting Data
You can cut or copy data from the baseline file and paste date into it. H owever, since
you cannot edit the actual file, you cannot cut data from it or paste date into it.

To cut, copy, and paste data from the baseline file:

1 . Select the data to cut or copy.

In general, you use the same rules and methods of typing, selecting, and deleting
that you would use in a standard text editor (such as N otepad).

2 . Click Edit → Copy or Edit → Cut.

3 . To paste data, click in the same or a different baseline file. (The pasted data will
be inserted where the cursor is located.) You can also select data that the pasted
data will replace.

4 . Click Edit → Paste.

Copying Data from the Actual to the Baseline File
You can use the Copy to Baseline command to copy data from the actual file into
the baseline file. This is the equivalent of using the Copy and Paste commands.

To copy data from the actual file to the baseline file:

1 . In the baseline file, do one of the following:

– Click the location where you want to paste the data. The data will be pasted
where the cursor is located.

– Select some data. The pasted data will replace the selection.

2 . In the actual file, select the data to copy.

3 . Click Edit → Copy to Baseline.

The command copies the selected data from the actual file to the insertion point in
the baseline file or replaces the selected data in the baseline file.
12 -6

Saving the Baseline File
Replacing the Baseline File
You may want to overwrite the baseline file with the actual file when revisions to
your software application require you to update your baseline verification point data
files.

Each time you run your scripts against the revised software and the verification
points fail, an actual file is saved. You should compare the baseline file to the actual
file to make sure that the failure was caused by an intentional change and not by a
defect in the new build.

If the failure was caused by an intentional change, you can convert the actual data
into the new baseline data. This updates your script with the new application state.

To replace the baseline file:

1 . Click File → Replace Baseline W ith Actual.

2 . When prompted for a confirmation, click Yes to replace the baseline data or click
N o to leave it unchanged.

Saving the Baseline File

To save changes made to the baseline file:

ã Click File → Save Baseline.

This command is enabled only if you have made changes to the baseline file.
12 -7

U sing the Text Com parator
12 -8

ã ã ã C H A P T E R 13

Using the Grid Comparator
This chapter explains how to use the Grid Comparator. It includes the following
topics:

ã Overview

ã Starting the Grid Comparator

ã The main window

ã Setting display options

ã Locating and comparing differences

ã Viewing verification point properties

ã U sing keys to compare data files

ã Editing the baseline file

ã Saving the baseline file

Overview

U se the Grid Comparator to view and compare data captured when you use the
following verification points in a Rational Robot script:

ã Object Data

ã Menu

ã Clipboard
13 -1

U sing the Grid Com parator
When you record a script with one of these verification points, Robot creates a
baseline data file containing the data you captured. When you play back the script,
Robot compares the data in the baseline file with the data in the application-under-
test. If the comparison fails, Robot saves the data that caused the failure to an actual
data file. The events in the script (for example, call script, start schedule, verification
point, user abort, unexpected active window, end script, and so on) appear in the
Rational LogViewer. From the LogViewer, you can start the Grid Comparator by
double-clicking an Object Data, Menu, or Clipboard verification point.

In summary, you can use the Grid Comparator to:

ã Review, compare, and analyze the differences between the baseline data file and
the actual data file.

ã View or edit the baseline data file for a verification point.

Starting the Grid Comparator

There are two ways to start the Grid Comparator:

ã From Robot

ã From the LogViewer

Starting the Comparator from Robot
To start the Comparator from Robot:

1 . Start Robot and open a script.

For Robot to open this Comparator, the script must contain an O bject Data,
Menu, or Clipboard verification point.

2 . Do one of the following in the Asset (left) pane:

– Double-click an Object Data, Menu, or Clipboard verification point.

– Right-click an Object Data, Menu, or Clipboard verification point and click
View Baseline.

The Grid Comparator opens and that verification point appears.

You can also open the Grid Comparator from Robot by clicking File → Properties.
In the Related Assets tab, select an O bject Data, Menu, or Clipboard verification
point and click the View Baseline button.

N O TE: When you open the Comparator through Robot, you can only view the
baseline file. If you have a failed verification point and want to compare the
baseline and actual files, you must start the Comparator through the LogViewer.
13 -2

The M ain W indow
Starting the Comparator from the LogViewer
To start the Comparator from the LogViewer:

1 . Start the LogViewer and open a log file.

For the LogViewer to open this Comparator, the log must contain an Object
Data, Menu, or Clipboard verification point.

2 . Do one of the following in the Log Event column:

– Double-click an Object Data, Menu, or Clipboard verification point.

– Select an O bject Data, Menu, or Clipboard verification point and click
View → Verification Point.

– Right-click an Object Data, Menu, or Clipboard verification point and click
View Result.

The Grid Comparator opens and that verification point appears.

If the verification point failed, the Comparator opens with both the baseline and
actual files displayed.

The Main Window

The main window of the Grid Comparator contains the grid window, the
Differences list, and the toolbar, menus, and status bar. The grid window contains
the grids of data recorded by Robot in an Object Data, Menu, or Clipboard
verification point. The Differences list displays descriptions of any items that failed
during playback.

Toolba r

M enu bar

Sta tus bar

Grid
window

D ifferences
list
13 -3

U sing the Grid Com parator
The Grid Window
The grid window has two panes: Baseline and Actual. The Baseline pane shows the
data file that serves as a baseline file for a comparison. The Actual pane shows data
from the current playback in Robot. You can control the display of the baseline and
actual files using the View commands.

The grids in the panes show data in row and column format. Cells with a green
background contain data that passed the comparison between the baseline file and
the actual file. Cells with a red background failed the comparison.

You can set display options to control the grid window. For more information, see
Setting Display Options on page 13-5.

Differences List
The Differences list displays the actual items that failed during playback. It shows the
reasons why a verification point failed, and it displays icons to graphically illustrate
the failure type. If you click an item in the list, that item is highlighted in the grid. If
you are viewing a file with no differences, this section does not appear.

The following icons may appear in the Differences list:

To work in the Differences list:

ã U se the vertical scroll bar to scroll through the list of descriptions.

ã Select a description in the Differences list to highlight the failure in the baseline
and actual files.

Icon Meaning

N o differences found

Comparison failed

Item not found

Different sizes

Key not found
13 -4

Setting D isplay O ptions
Setting Display Options

You can set the following display options in the Grid Comparator:

ã Change the column widths.

ã Transpose the grid data.

ã Synchronize the scroll bars.

ã Synchronize the cursors.

These tasks are described in the following sections.

Changing the Column Widths
To change the column widths:

1 . Position the pointer on the vertical border between the column title cells in
the grid.

2 . Drag the border to the right or to the left.

3 . To hide a column completely, drag its right border to the left until the column
disappears.

To restore the columns to their default widths, press F8.

Transposing the Grid Data
You can view the baseline and actual grid data in the standard column format or with
the rows and columns switched.

To switch the view of data in the grid, click View → T ranspose View.

This command can be used for O bject Data and Clipboard verification points. It is
disabled for Menu verification points.

Synchronizing the Scroll Bars
You can either synchronize the scroll bars in the two panes, or you can use them
independently. To link the scroll bars of the Baseline and Actual panes, click
View → Synchronize Scrolling.

When this command is checked, the data in both the panes scroll at the same time
when you use the scroll bars for either pane.

When this command is not checked, only the data in the pane corresponding to the
scroll bar scrolls.
13 -5

U sing the Grid Com parator
Synchronizing the Cursors
You can synchronize the cursors in the two panes, or you can use them
independently. To synchronize the cursors in the Baseline and Actual panes, click
View → Synchronize Cursors.

When this command is checked, the cursors in both panes highlight corresponding
cells even if the cells are in different locations.

If you highlight more than one cell in a column or row in either pane, only the first
cell in the other pane is highlighted.

If you select a description in the Differences list, the corresponding cells are
highlighted in both panes, regardless of synchronizing cursors.

When this command is not checked, only the cell in the selected pane is highlighted.

Locating and Comparing Differences

To locate the first difference between the baseline data and the actual data, click
View → First D ifference.

To navigate between differences, use the View commands.

You can also select a description in the Differences list to highlight that failure in the
Baseline and Actual panes.

In the grid panes, the comparison starts with the first data cell in the grid (the cell in
the upper-left corner). The Comparator then scans for differences by going down
the first column. At the end of the column the comparison goes to the top of the
second column, and so on.

When a difference is located, the Comparator highlights the area of difference using
reverse color and highlights the description in the Differences list. (You can also
select a description in the Differences list to highlight that failure in the baseline and
actual files.)

Verification points that have entire rows or columns selected compare the data in
each cell as well as the number of cells in the row or column. If the number of cells
is different, the Comparator highlights the row or column and italicizes the header
number or text. It also displays a red line around the header cell.

If the data displayed in the grid is larger than the window, you can use the scroll bars
to view other areas of the data, or you can resize the window.

N O TE: If a difference is highlighted in the baseline file and the description in the
Differences list is Item cannot be found, it means that there is no difference to
highlight in the actual file, since the item is missing there.
13 -6

Viewing Verifica tion Poin t Properties
Viewing Verification Point Properties

To view verification point properties:

ã Click File → Verification Point Properties.

The Verification Point Properties dialog box shows the following information:

Verification Point Type – Lists the type of verification point being displayed: O bject
Data, Clipboard, or Menu.

Baseline – The name of the baseline file.

Actual – The name of the displayed actual file.

Verification M ethod – The verification method specified when the verification
point was recorded.

Test M enu States – Indicates whether menu states were included when the
verification point was recorded.

Test M enu Keys – Indicates whether keyboard shortcuts and accelerators were
included when the verification point was recorded.

Identification M ethod – The identification method specified when the verification
point was recorded.

Using Keys to Compare Data Files

You can select the Key/Value identification method when you create Object Data or
Clipboard verification points in Robot.

For verification points that have the Rows by Key/Value identification method, you
can use the Grid Comparator to add or change keys in the baseline file. As in a
relational database, keys can be used to uniquely identify a row for comparison.

You can add or change keys to determine what the important comparisons are in a
verification point and to possibly change a failed verification point into one that
passes.

If the value of the data in a key column changes, Robot will not be able to locate the
record, and the verification point will fail. You may then want to change the keys in
the Comparator to gain more insight into why the verification point failed.

If you have not specified keys that ensure uniqueness, the test can fail because Robot
may compare the selected record to a record that contains similar values but is not
the record that you want to test. You can experiment by changing the keys in the
Comparator to improve the predictability of the verification point.
13 -7

U sing the Grid Com parator
If the database schema changes, you can change the keys in the Comparator to
identify new and unique columns.

To use keys to compare data files:

1 . Click the name of a column in the baseline file.

2 . Click the right mouse button, or press CTRL+ K to add or remove a key.

The data in the baseline and actual files should be automatically recompared.
At this point you can evaluate the new key placement.

If a key column in the baseline file has different data from the actual file, the
Differences list displays Row not found: Row x and includes the value from the
baseline key column.

If there are no key columns and the row data in the baseline and actual files do not
match exactly, the Differences list displays Row not found: Row where x and
includes each column name and value from the baseline file.

Editing the Baseline File

When there are intentional changes to the application-under-test, you may need to
modify the baseline file to keep it up-to-date with the developing application.

When editing the baseline file, you can:

ã Edit the data.

ã Edit a menu item.

ã Cut, copy, and paste data.

ã Copy data from the actual to the baseline file.

ã Save the baseline file.

These tasks are described in the following sections.

Editing Data in the Baseline Grid
To edit the data in the baseline file:

1 . Double-click a data cell, or select a cell and press EN TER.

The cell is highlighted in reverse color, and the blinking cursor appears at the
end of the last character in the cell.

N O TE: You cannot edit the actual data file.
13 -8

Editing the Baseline File
2 . Type the new data.

The change is made when you click outside of that cell or press EN TER.

If you edited a cell that had an identical value in the baseline and actual files, the
change results in a difference in the two files. The cells in the two files become red,
and that value is listed in the Differences list.

Editing a Menu Item
You can edit a menu item in the baseline file of an O bject Data or Menu verification
point.

To edit a menu item:

1 . Double-click a menu item cell in the grid.

2 . In the Edit Menu Item dialog box, set the M enu Item option.

– If the menu item is a command, click Text and type the name of the menu
command. During playback, Robot tests that the menu item is the same as
the text that appears in the box.

To designate one of the letters in the menu command name to be an
accelerator key, type an ampersand character (&) before that letter. For
example, for the File → N ew command, the grid text for N ew would be
N e&w if w is the accelerator key for the command.

– Click Custom if it is a custom item. During playback, Robot tests a custom
menu item that it cannot capture.

– Click Separator to make the item a separator. During playback, Robot tests
that the menu item is a horizontal line.

3 . Set the M enu State option by clicking one of the three menu states: Enabled,
D isabled, or Grayed.

During playback, Robots tests that the menu item is in that state.

4 . Optionally, set the Checkm ark option.

This option is used for toggle-type menu commands. It determines whether the
menu command is checked in the application. Select the option if you want the
command to have a check mark. Clear the option if you want the menu to be
unchecked. The actual bitmap used for the check mark may vary between
applications.

5 . Click O K .

You can double-click a cell in the actual file to view the attributes of a menu item,
but you cannot change the attributes.
13 -9

U sing the Grid Com parator
Cutting, Copying, and Pasting Data
You can cut or copy data from the baseline file and paste data into it. H owever, since
you cannot edit the actual file, you cannot cut data from it or paste date into it.

N ote that the Cut command does not cut the entire grid row. It cuts only the
contents of the value cells.

To cut, copy, and paste data:

1 . Select the data to cut or copy.

You can select one or more grid cells to be copied or cut. To select multiple cells,
click cells while pressing the SH IFT key.

2 . Click Edit → Copy or Edit → Cut.

3 . To paste data, click the grid cell in the same or a different baseline file. (The
pasted data replaces the data in the cell.)

You can paste individual data cells or entire columns, including the column
header.

4 . Click Edit → Paste.

Copying Data from the Actual to the Baseline File
You can use the Copy to Baseline command to copy data from an actual file into a
baseline file. This is the equivalent of using the Copy and Paste commands.

To copy data from the actual file to the baseline file:

1 . Select the data that you want to copy from the actual file.

2 . Click Edit → Copy to Baseline.

This command copies all values that are different in the highlighted selection of the
actual file, replacing the corresponding cells in the baseline.

To select multiple cells, click cells while pressing the SH IFT key.

If Row not found appears in the Differences list, Copy to Baseline does not paste
the data into the baseline file.

N O TE: The currently selected cell in the baseline file is used as the top-left
corner of the area being pasted into. A range of data is pasted into the cells starting
at the upper-left corner and filling in the other cells as needed.
13 -10

Saving the Baseline File
Replacing the Baseline File
You may want to overwrite the baseline file with the actual file when revisions to
your software application require that you to update your baseline verification point
data files.

Each time you run your scripts against the revised software and the verification
points fail, an actual file is saved. You should compare the baseline file to the actual
file to make sure that the failure was caused by an intentional change and not by a
defect in the new build.

If the failure was caused by an intentional change, you can convert the actual data
into the new baseline data. This updates your script with the new application state.

To replace the baseline file:

1 . Click File → Replace Baseline W ith Actual.

2 . When prompted for a confirmation, click Yes to replace the baseline data or click
N o to leave it unchanged.

Saving the Baseline File

To save changes made to the baseline file:

ã Click File → Save Baseline.

This command is enabled only if you have made changes to the baseline file.
1 3 -1 1

U sing the Grid Com parator
13 -12

ã ã ã C H A P T E R 14

Using the Image Comparator
This chapter explains how to use the Image Comparator. It includes the following
topics:

ã Overview

ã Starting the Image Comparator

ã The main window

ã Locating and comparing differences

ã Changing how differences are determined

ã Changing the color of masks, O CR regions, or differences

ã Moving and zooming an image

ã Viewing image properties

ã Working with masks

ã Working with O CR regions

ã Replacing and saving the baseline file

ã Viewing an unexpected active window

Overview

U se the Image Comparator to open and view bitmap images captured when you use
the following verification points in a Rational Robot script:

ã Region Image

ã Window Image
14 -1

U sing the Im age Com para tor
When you record a script with one of these verification points, Robot creates a
baseline image file containing the image you captured. When you play back the
script, Robot compares the image in the baseline file with the image in the
application-under-test. If the comparison fails, Robot saves the image that caused the
failure to an actual image file. The events in the script (for example, call script, start
schedule, verification point, user abort, unexpected active window, end script, and
so on) appear in the Rational LogViewer. From the LogViewer, you can start the
Image Comparator by double-clicking a Region Image or Window Image
verification point.

You can use the Image Comparator to:

ã Review and analyze the differences between the baseline image file and the
actual image file.

ã Edit the Region Image or Window Image verification points by creating masks
on the image.

ã Create OCR regions to read the text within a region.

ã View images of unexpected active windows that cause a failure during a script’s
playback.

Starting the Image Comparator

There are two ways to start the Image Comparator:

ã From Robot

ã From the LogViewer

Starting the Comparator from Robot
To start the Comparator from Robot:

1 . Start Robot and open a script.

For Robot to open this Comparator, the script must contain a Region Image or
Window Image verification point.
14 -2

Start ing the Im age Com para tor
2 . Do one of the following in the Asset (left) pane:

– Double-click a Region Image or Window Image verification point.

– Right-click a Region Image or Window Image verification point and click
View Baseline.

The Image Comparator opens and that verification point appears.

You can also open the Image Comparator from Robot by clicking File → Properties.
In the Related Assets tab, select a Region Image or Window Image verification point
and click the View Baseline button.

Starting the Comparator from the LogViewer
To start the Comparator from the LogViewer:

1 . Start the LogViewer and open a log file.

For the LogViewer to open this Comparator, the log must contain a Region
Image or Window Image verification point.

2 . Do one of the following in the Log Event column:

– Double-click an Image verification point.

– Select an Image verification point and click View → Verification Point.

– Right-click an Image verification point and click View Result.

The Image Comparator opens and that verification point appears.

If the verification point failed, the Comparator opens with both the baseline and
actual files displayed. If it does not, click View → Both H orizonta l or View → Both
Vertica l.

N O TE: When you open the Comparator through Robot, you can only view the
baseline file. If you have a failed verification point and want to compare the
baseline and actual files, you must start the Comparator through the LogViewer.
14 -3

U sing the Im age Com para tor
The Main Window

The main window of the Image Comparator contains the image window, the Mask/
OCR List, the Differences List, and the toolbars, menus, and status bar.

The Image Window
The image window has two panes: Baseline and Actual. The Baseline pane shows the
image file that serves as an expected file for a comparison. The Actual pane shows the
image from the current playback in Robot. You can control the display of both panes
by using the View commands.

The parts of the image that passed the comparison between the baseline file and the
actual file appear exactly as they were recorded. The parts of the image that failed the
comparison (that is, the differences) are shown as red regions.

You can move the image within a pane and zoom the image. For information, see
Moving and Z ooming An Image on page 14-8.

Toolbars

M enu bar

Status bar

Im age
window

M ask/O CR
list

D ifferences
list
14 -4

The M ain W indow
Differences List
The Differences List displays a list of the items that failed during playback. The Left,
Right, Top, and Bottom columns represent the measurement of the sides of the
difference area, in numbers of pixels. The number in the Left column is the number
of pixels from the left margin to the left edge of the difference region. The number
in the Right column is the number of pixels from the left margin to the right edge of
the difference region. In the same manner, the Top and Bottom columns define the
number of pixels to the top and bottom edges of the difference region, from the top
margin.

To work in the Differences List:

ã U se the vertical scroll bar to scroll through the list of descriptions.

ã Select a description in the Differences list to highlight the failure in the baseline
and actual files.

ã Double-click an item in the list to cause the image to be positioned so that the
region is centered in the view. It will momentarily flash, and then become
selected.

ã The Difference list is sortable by column. The currently sorted column is
indicated with an asterisk. To sort by a different column, click the column
header. The list is sorted in ascending order of the selected column.

Mask/OCR List
Masks are used to hide the underlying masked area from comparison when scripts
are played back. Any areas of the image that contain a mask will not be compared
when you play back a script containing an Image verification point.

Robot uses O CR regions to read the text within a designated region and compare it
in subsequent playbacks of the script.

The Mask/O CR List in the lower left pane of the main window lists any masks and
OCR regions being used in the verification point. When you select a mask or OCR
region in the list, it is highlighted in the baseline and actual files. This list works in
the same way that the Differences List works, as described in the previous section.
This section is empty if you do not have any masks or OCR regions defined for the
verification point.

The Left, Right, Top, and Bottom columns represent the measurement of the sides
of the mask or OCR region in number of pixels. This measurement works in the
same way as it works in the Difference List. The Comment column for masks
contains optional comments, which you can add by selecting a mask and clicking
Edit → M ask Properties. The O CR Text column for OCR regions contains the text
in the region that will be tested.
14 -5

U sing the Im age Com para tor
The Status Bar
The status bar at the bottom of the main window provides useful information as
you work with the Comparator. To show or hide the status bar, choose View →
Status Bar.

The message area in the leftmost part of the status bar displays menu command
descriptions and operational messages, such as progress updates while the
Comparator is scanning the image for differences.

On the right side, there are four small panes for specific information:

ReadO nly – Indicates a read-only state. This happens if the current baseline is not
displayed since the current baseline is the only file that you can edit.

Load CBL – Indicates that the current baseline is not being displayed. If you want to
make edits, click File → Load Current Baseline to display the current baseline.

BLIN K – Indicates that the Blink feature is turned on.

< zoom percentage> – Indicates the zoom percentage of the window. If you have
the original or normal view, the zoom percentage is 100%. If you have zoomed to
some percentage of the normal view, that percentage is shown. If you have fit the
image to the window, FITTED appears.

Locating and Comparing Differences

To display differences in the baseline and actual images, click View → Show
D ifferences.

To locate the first difference, click View → First D ifference. When a difference is
located, the Comparator flashes it briefly, centers the difference in the panes, and
then selects it in both panes.

To navigate between differences, use the View commands.

You can also select a difference in the Differences List to highlight that failure in the
baseline and actual images.
14 -6

Changing H ow D ifferences are D eterm ined
Changing How Differences are Determined

Each difference region represents a logical set of differing pixels — a cluster of
differing pixels close together. Depending on your preference setting, the
Comparator determines whether this region is close enough to the last one to be
classified as either the same or a different difference region. Every time the
Comparator defines a new region around a differing pixel, it determines whether the
region is close enough to any other previously defined region. If so, the Comparator
combines the two rectangular regions. O therwise, the region becomes a new
difference region.

To change how differences are determined:

1 . Click Tools → O ptions.

U se this setting to specify how close is close enough when a new differing pixel
has been found.

2 . Change the setting under D ifference Regions. Move the sliding bar to choose
whether you want more or fewer difference regions to be created.

The default setting is the second of the four possible choices. When you move
the bar, the picture next to the slide is a representation of that choice.

Changing the Color of Masks, OCR Regions, or Differences

To change the color of masks, OCR regions, or differences in the image window:

1 . Click Tools → O ptions.

2 . Change the setting under Colors.

M asks – Select the highlight color for masks in the image. The masks are
displayed as a block of this color in the baseline and actual files. The default color
is a light green. Click Change to select a different color.

D ifferences – Select the highlight color for differences in the image. The
difference regions are displayed as a block of this color in the baseline and actual
files. The default color is a light red. Click Change to select a different color.

O CR regions – Select the highlight color for OCR regions in the image. The
regions are displayed as a block of this color in the baseline and actual files. The
default color is a light blue. Click Change to select a different color.
14 -7

U sing the Im age Com para tor
Moving and Zooming An Image

There are several ways to move the image within the Baseline and Actual panes:

ã U se the horizontal and vertical scroll bars. Scrolling is synchronized if you are
viewing both files.

ã U se the moving hand pointer. If you hold down the left mouse button anywhere
in the image that is not a mask or a difference region, the mouse pointer turns
into a hand. You can then use it to move the image around in the window.

You can use the zooming commands to move around the image. You can zoom in,
zoom out, zoom by percentage, fit the image exactly to the window, or return to the
normal image size.

ã To zoom in on the image, click View → Z oom → Z oom In.

This zooms in on the image by a factor of 2. If you have a mask, OCR region, or
difference region selected when you use the Zoom command, the zooming is
centered on that region. If you do not have a region selected, the zoom is
centered on the entire image. You can use the command repeatedly to keep
zooming into the image.

ã To zoom out from the image, click View → Z oom → Z oom O ut.

ã To zoom the normal display of the image by a percentage, click View → Z oom
→ Z oom Specia l and the percentage.

ã To restore the image to its original size, click View → Z oom → N orm al Size.

ã To fit the image to the full size of the pane, click View → Z oom → Fit To
W indow.

Zoom factors always retain the image’s aspect ratio to ensure that text and images
appear without distortion. Fit To W indow represents the largest zoom factor that can
display the entire image in the window while maintaining the image’s aspect ratio.

Viewing Image Properties

To view the properties of an image:

ã Click File → Properties.

The Image Properties dialog box shows information about the image, including
its scale, color, size, and the creation date of the file.
14 -8

Working with M asks
Working with Masks

You can create masks in the Image Comparator with the Edit → N ew M ask
command. Masks are used to hide the underlying masked area from comparison
when scripts are played back. Any areas of the image that contain a mask are not
compared when you play back a script that contains an Image verification point.

U se masks to ensure that certain regions are not tested. For instance, if your
application has a date field, you might want to mask it so that it will not produce a
failure every time the script is played back. You can also apply masks to hide
differences that you determine were caused by intentional changes to the application,
so that they do not cause failures in future tests.

Since you can only edit the baseline file, you cannot perform the following
procedures in the actual file. H owever, when you select a mask in the baseline file,
the mask is also selected in the actual file. You cannot modify the mask in the actual
file — it is shown there as well for convenience only.

You can do the following tasks with masks:

ã Display masks.

ã Create masks.

ã Move and resize masks.

ã Cut, copy, and paste masks.

ã Duplicate masks.

ã Delete masks.

ã Automatically mask differences.

These tasks are described in the following sections.

Displaying Masks
To display masks in the image, click View → Show M asks.

When the command is checked, the masks are displayed in the baseline and actual
images.

If you do not have any masks on the current verification point, the Show M asks
command is disabled.
14 -9

U sing the Im age Com para tor
Creating Masks
To create a mask directly from the Image Comparator:

1 . Open an image file through the LogViewer. (Double-click a passed or failed
Region Image or Window Image verification point in the log.)

2 . If Load CBL appears in the status bar of the Image Comparator, click File →
Load Current Baseline.

3 . Click Edit → N ew M ask.

Your mouse pointer turns into a drawing tool when positioned over the image.
(If you activate the drawing tool accidentally, press the ESC key.)

4 . Depress the left mouse button and move the tool to draw the mask. You can
draw a rectangular mask of any size over any portion of the image. When you
release the mouse button, the mask is drawn and the mouse pointer becomes a
normal pointer again.

5 . If the mask is not visible, click View → Show M asks.

6 . Move or resize the pasted mask if necessary. See the next section, Moving and
Resizing Masks.

If you want to automatically mask a difference in the image without drawing the
mask, see Automatically Masking a Difference on page 14-12.

Moving and Resizing Masks
Once a mask is created, you can move it or resize it.

M oving M asks
To move a mask, do one of the following:

ã Select the mask and use the left mouse button to drag it to a new location on the
image.

ã Select the mask and use the arrow keys to move it.

ã Select the mask and click Edit → M ask Properties, or double-click the mask. In
the Mask Properties dialog box, change the Position setting, and then click O K.

You cannot move a mask outside the limits of the image.

N O TE: You can also add masks from Robot while recording a Window Image or
Region Image verification point. In the Capture Window Image or Region Image
dialog box, click the Edit button. That opens the Image Comparator, where you
can click Edit → N ew M ask to add a mask.
14 -10

Working with M asks
Resizing M asks
To resize a mask, do one of the following:

ã Select the mask and drag one of the handles to resize it.

ã Select the mask and click Edit → M ask Properties, or double-click the mask. In
the Mask Properties dialog box, change the Size setting, and then click O K .

Cutting, Copying, and Pasting Masks
You can cut or copy a mask from the baseline file and paste a mask into it. H owever,
since you cannot edit the actual file, you cannot cut a mask from it or paste a mask
into it.

A mask can only be pasted into the baseline image during the current session.

To cut, copy, and paste a mask:

1 . If Load CBL appears in the status bar, click File → Load Current Baseline.

2 . Click a mask to select it.

3 . Click Edit → Copy or Edit → Cut.

4 . Place the pointer over the area in the baseline image where you want to paste the
mask.

5 . Do one of the following:

– Press CTRL+ V. The pasted mask is centered on the spot where the pointer
is located.

– Click Edit → Paste. The pasted mask is centered in the image window.

6 . Move or resize the pasted mask if necessary. See Moving and Resizing Masks on
page 14-10.

Duplicating Masks
The D uplicate command copies and pastes a mask in one operation, and then it
places a copy of the mask on the Clipboard.

To duplicate a mask:

1 . Select the mask.

2 . Click Edit → D uplicate.

This copies the selected mask and pastes it into the image. The copied mask is
pasted slightly below and to the right of the original mask.
1 4 -1 1

U sing the Im age Com para tor
3 . Move or resize the pasted mask if necessary. See Moving and Resizing Masks on
page 14-10.

Since the mask is still on the Clipboard, you can optionally paste additional copies of
the mask using the Edit → Paste command.

This procedure is useful if you need to use many masks of the same size. For
instance, you may need a mask the size of an edit box in an application that has many
edit boxes of the same size, or you may need one the exact size of a toolbar button to
mask some of the buttons in your application.

You can edit only the baseline file, not the actual file.

Deleting Masks
To delete a mask:

1 . Select the mask.

2 . Click Edit → D elete.

You can edit only the baseline file, not the actual file.

Automatically Masking a Difference
You can automatically turn a difference region into a mask region. This feature is
useful if a difference found in playback is an intentional change in the application and
not a defect, or if you want to mask a region that will always cause a difference, such
as a date in a file. When you do this, the region will not fail in subsequent playbacks.

To automatically mask a difference:

1 . Select the difference to mask.

2 . Click Edit → Auto M ask.

The selected difference is automatically masked. The mask is the exact dimensions
of the difference.
14 -12

W orking with O CR Regions
Working with OCR Regions

Robot uses O ptical Character Recognition (O CR) regions to read the text within a
designated region and compare it in subsequent playbacks of the script.

You can use OCR regions to verify proper operation of an application that
dynamically paints text in window areas or where the actual text is difficult to obtain.
OCR regions are also valuable in situations where a text string’s font or weight may
change unexpectedly but go undetected using traditional verification methods. To
achieve the correct verification, you can define OCR regions on existing or newly-
captured Image verification points.

You can do the following tasks with OCR regions:

ã Create an OCR region.

ã Move and resize OCR regions.

ã Cut, copy, and paste O CR regions.

ã Duplicate O CR regions.

ã Delete OCR regions.

These tasks are discussed in the following sections.

Creating an OCR Region
To create an OCR region directly from the Image Comparator:

1 . Open an image file through the LogViewer. (Double-click a passed or failed
Region Image or Window Image verification point in the log.)

2 . If Load CBL appears in the status bar of the Image Comparator, click File →
Load Current Baseline.

3 . Click Edit → N ew O CR Region. The pointer becomes a drawing tool, which
you use to outline the OCR region. Drag the pointer to create the region, and
then release the mouse button.

The OCR Properties dialog box appears for the newly created region.

4 . If the region contains white text on a dark background, select Light text. If the
region has text on a gray or dark background, select Gray background. If the
language in which the underlying text is written is not English, select a different
language in the Language box. Click O K .

N O TE: For more detailed information about OCR regions, including tips for
using them, see the Image Comparator H elp.
1 4 -1 3

U sing the Im age Com para tor
The Image Comparator creates an OCR on the region by reading the text
within. The Comparator lists the region in the Mask/O CR List.

N ote that for the first instance of O CR, it may take a few seconds to initialize
the OCR engine.

5 . Create as many OCR regions as you want using these steps.

Moving and Resizing OCR Regions
When you move or resize an O CR region, the region is automatically updated — the
Image Comparator rereads the text within the region in its new location or size. The
new information is then displayed in the M ask/O CR List.

If your OCR region is picking up extraneous characters, you can fix the region by
moving or resizing it, and you can immediately verify whether it contains the
appropriate text by looking at the text in the Com ment/O CR Text column.

Moving OCR Regions
To move an OCR region, do one of the following:

ã Select the region and use the left mouse button to drag it to a new location on
the image.

ã Select the region and use the arrow keys to move it.

ã Select the region and click Edit → O CR Properties, or double-click a region in
the image window. In the O CR Region dialog box, change the Position setting,
and then click O K .

N O TE: You can also add OCR regions from Robot while recording a Window
Image or Region Image verification point. In the Capture Window Image or
Region Image dialog box, click the Edit button. That opens the Image
Comparator, where you can click Edit → N ew O CR Region.

N O TE: For tips on the best operation of OCR, see OCR Tips in the Image
Comparator H elp.
14 -14

W orking with O CR Regions
You cannot move an OCR region outside the limits of the image.

Resizing OCR Regions
To resize an O CR region, do one of the following:

ã Select the region and drag one of the handles to resize it.

ã Select the region and click Edit → O CR Properties, or double-click the region.
In the OCR Region dialog box, change the Size setting, and then click O K.

You cannot resize an OCR region outside the limits of the image.

Cutting, Copying, and Pasting an OCR Region
You can cut or copy an OCR region from the baseline file and paste a region into it.
H owever, since you cannot edit the actual file, you cannot cut an OCR region from
it or paste a region into it.

A copied OCR region can only be pasted into the baseline image during the current
session.

To cut, copy, and paste an OCR region:

1 . Click an O CR region.

2 . Click Edit → Copy or Edit → Cut.

3 . Place the pointer over the area in the baseline image where you want to paste the
region.

4 . Do one of the following:

– Press CTRL+ V. The pasted region is centered on the spot where the pointer
is located.

– Click Edit → Paste. The pasted region is centered in the image window.

5 . Move or resize the region if necessary.

When you paste an OCR region, O CR is automatically performed on the new
region. The Image Comparator reads the text within the region, and the new
information is then displayed in the M ask/O CR List .
1 4 -1 5

U sing the Im age Com para tor
Duplicating OCR Regions
The D uplicate command copies and pastes an OCR region in one operation, and
then it places a copy of the region on the Clipboard.

To duplicate an OCR region:

1 . Select the O CR region.

2 . Click Edit → D uplicate.

This copies the selected region and pastes it into the image. The copied region
is pasted slightly below and to the right of the original region.

When you duplicate an OCR region, O CR is automatically performed on the
new region. The Image Comparator reads the text within the region, and the
new information is then displayed in the Mask/OCR List.

3 . Move or resize the pasted region if necessary.

Since the region is still on the Clipboard, you can optionally paste additional copies
of the region with the Edit → Paste command.

This procedure is useful if you need to use many OCR regions of the same size, or
with the same option settings. For example, you might want to recognize all the text
on an application’s toolbar icons, which are all black text on a gray background and
are in N orwegian. To verify this text, you would create an OCR region the size of a
toolbar icon and with the Gray background and N orwegian language options
selected. Then, you would use the D uplicate command multiple times and
reposition each new region.

Deleting OCR Regions
To delete an OCR region:

1 . Select the region.

2 . Click Edit → D elete.

You can edit only the baseline file, not the actual file.
14 -16

W orking with O CR Regions
Replacing the Baseline File
You may want to overwrite the baseline file with the actual file when revisions to
your software application require you to update your baseline verification point data
files.

Each time you run your scripts against the revised software and the verification
points fail, an actual file is saved. You should compare the baseline file to the actual
file to make sure that the failure was caused by an intentional change and not by a
defect in the new build.

If the failure was caused by an intentional change, you can convert the actual image
into the new baseline image. This updates your script to the new application state.

To replace the baseline:

1 . Click File → Replace Baseline W ith Actual.

2 . When prompted for a confirmation, click Yes to replace the baseline data or
click N o to leave it unchanged.
1 4 -1 7

U sing the Im age Com para tor
Saving the Baseline File

To save changes made to the baseline file:

ã Click File → Save Baseline.

This command is enabled only if you have made changes to the baseline file.

Viewing Unexpected Active Window

Robot is designed to respond to unexpected active windows (U AW) during script
playbacks. An unexpected active window is any unscripted window appearing during
script playback that interrupts the playback sequence and prevents the expected
window from being made active. An example of a U AW is an error message
generated by the application-under-test, or an e-mail notification message window.

You can view the unexpected window in the Image Comparator only if you have set
up the option in Robot. In the GU I Playback dialog box in Robot, click the
U nexpected Active W indow tab. Make sure that the D etect unexpected active
windows and the Capture screen im age options are both selected. (For more
information, see Setting Unexpected Active Window Options on page 9-10.)

To open a U AW to view in the Comparator:

1 . Start the LogViewer and open a log file containing a UAW.

2 . Do one of the following in the Log Event column:

– Double-click an unexpected active window event.

– Select an unexpected active window event and click View → U AW .

The Image Comparator opens and that U AW appears.
14 -18

ã ã ã Part V

Runn ing Q ueries and Reports

ã ã ã C H A P T E R 15

Querying the Rational Repository
This chapter explains how to use queries to manage the scripts, schedules, and
sessions in your projects. The chapter includes the following topics:

ã Overview

ã Running queries

ã Creating new queries

ã Editing existing queries

ã Setting query options

ã Configuring the Q uery window

Overview

A query is a request for information stored in the repository.

Rational Test provides a powerful set of query tools that help you manage the vast
amount of information accumulated during the software testing effort. All of this
information is stored in the repository and is accessed with the query tools in
TestManager, Robot, and LoadTest. You can use the default queries provided with
TestManager, or you can create queries of your own.

For information about querying the Rational ClearQ uest defect database, see the
ClearQ uest H elp.
15 -1

Q uerying the Rational Repository
Running Queries

TestManager includes several default queries that you can use. There are queries for
retrieving all scripts from the repository, or for retrieving all GU I scripts or all VU
scripts. There are similar default queries for schedules and sessions.

To run a query, do one of the following:

ã In the Asset Browser, right-click a query (script, schedule, or session) and then
click Run.

ã Click Q uery → Run, select a query type from the list, select a query, and then
click O K .

The Query Window
Query results are displayed in the Q uery window, as shown in the following figure.
This window contains a toolbar for selecting commands and a grid for displaying the
results of your query.

You can use the toolbar buttons to display a query’s properties, to retrieve updated
data from the repository, to create a new query, and to change how the query results
are displayed.

For more information about the toolbar buttons, see the TestManager H elp. For
information about refreshing the Q uery window with the most up-to-date
information from the repository, see Setting Query Options on page 15-9.

N ew Q uery Q uery List View

Q uery Report View

Q uery Icon View

Q uery Propert ies

Q uery U pdate
15 -2

Running Q ueries
You can access the Query window (minus some of the toolbar buttons) from other
parts of Rational Test, such as the Robot Record and Playback dialog boxes and the
LoadTest O pen Schedule dialog box.

Deleting Scripts, Schedules, and Sessions

During your testing effort, you may find scripts, schedules, and sessions that you no
longer need. You can delete them from the Query window.

To delete a script, schedule, or session:

1 . Run a query, as described in Running Queries on page 15-2.

2 . From the Query window, right-click the item you want to delete and click
D elete Script, D elete Schedule, or D elete Session.

3 . When TestManager asks if you want to delete the item, click Yes.

4 . If you are deleting a session, you are asked whether or not you want to delete all
of the scripts contained within the session.

– Click Yes to delete all of the scripts.

– Click N o to delete the session without deleting any of the scripts contained
within the session.

You can also delete scripts and schedules from the Requirements H ierarchy in
TestManager and from Robot. For information about deleting scripts from within
the Requirements H ierarchy, see Deleting Scripts on page 2-18. For information about
deleting schedules from within the Requirements H ierarchy, see Deleting Schedules
on page 2-21. For information about deleting scripts using Robot, see Deleting Scripts
on page 7-15.

N O TE: If no items (scripts, schedules, or sessions) are listed in the Query
window, click the Q uery U pdate button on the toolbar. To make items appear
automatically, click Autom atic in the Query View tab of the TestManager
Options dialog box. For more information about query options, see Setting Query
Options on page 15-9.

N O TE: Schedules and sessions are available only with Rational Suite
PerformanceStudio.
15 -3

Q uerying the Rational Repository
Creating New Queries

The major tasks involved in creating a new query are:

1 . Open the Query Properties dialog box and type a query name.

2 . Choose the fields or columns that you want the query to display.

3 . Click the Sort tab and specify the sort order.

4 . Click the Filters tab and define one or more filters to narrow down the amount
of data to display.

These tasks are described in more detail in the following sections.

Opening the Query Properties Dialog Box
You can open the Query Properties dialog box using menu commands or the Asset
Browser.

To open the Query Properties dialog box using menu commands:

ã Click Q uery → N ew and click a query command.

To open the Query Properties dialog box using the Asset Browser:

1 . Click View → Asset Browser to display the Asset Browser.

2 . Right-click a queries folder, and then click N ew Q uery.
15 -4

Creating N ew Q ueries
Choosing Fields to Display
Each query that you create contains several fields or attributes that are predefined in
the repository. When you create a query, you can choose to display some or all of
these fields. Each field appears as a column in the Q uery window. Some of the query
fields include the query name, description, purpose, owner, environment, and type.

To choose the fields to display:

1 . Open the Query Properties dialog box. For details, see Opening the Query
Properties Dialog Box on page 15-4.

2 . Select one or more files in the Available list, and then click > or > > .

3 . In the Selected list, click M ove U p or M ove D own to set the display order.

4 . Click O K to finish defining the query, or click the Sorting tab or the Filters tab
to add additional query properties.

Specifying the Sort Order
By specifying a sort order, you can control the order in which query items are
displayed. TestManager lets you define three sort levels.

You sort the query by the field specified in the first sort box, then by the field
specified in the second and third sort boxes. You can sort in either ascending or
descending order.

To sort the items in query:

1 . Open the Query Properties dialog box. For details, see Opening the Query
Properties Dialog Box on page 15-4.

2 . Click the Sorting tab.
15 -5

Q uerying the Rational Repository
3 . Select a field from the Sort by list and click either Ascending or D escending.

4 . To add a second-level sort, select a field from the second Sort by list and click
either Ascending or D escending.

5 . To add a third-level sort, select a field from the third Sort by list and click either
Ascending or D escending.

6 . Click the Filters tab to add additional query properties, or click O K to finish
defining the query.

You can also sort by clicking any column header of the Q uery window.

Adding a Filter Statement
A filter is the part of the query that specifies the information to be retrieved from the
repository. Filter statements help you make queries more specific by narrowing
down the information you are searching for. You can build simple filter statements
or combine simple filter statements into more complex ones. For detailed
information about the options that are available in filter statements, see the
TestManager H elp.

A Filter consists of two parts:

ã Build filter statement

ã Select where list

You use the Build filter statem ent to specify the filtering criteria for the query. A
sample filter statement for a script could be something like Created By = Mark, which
means, retrieve all of the scripts created by Mark. You build the filter statement by
selecting a field and operator and typing a value. After you define the filter statement,
you add it to the Select where list.

Each line in the Select where list shows one filter statement. You can combine filter
statements into complex filters by using the Connectors options and the
Parentheses buttons.

Adding a Simple Filter Statement
To add a simple filter statement:

1 . Open the Query Properties dialog box. For details, see Opening the Query
Properties Dialog Box on page 15-4.

2 . Click the Filter tab.
15 -6

Creating N ew Q ueries
3 . Select a field from the Fields list. If you select one of the Date fields (such as
Created on), TestManager inserts Date into the Value field and displays another
field into which you can type or select the date.

4 . Select an operator from the O perators list. The list of available operators varies,
depending on the which field you choose. For information about which
Operators are available, see the TestManager H elp.

5 . Specify a filter Value. For alphanumeric fields, you simply type the value. For
Date fields, you can either type a date, use the spin buttons, or double-click the
Date field to display a calendar.

6 . Click Accept Statem ent to add the filter statement to the Select where list.

7 . Repeat steps 3 – 6 to build additional filter statements (if necessary).

8 . Click O K .

Building Complex Filter Statements
You can create complex filters based on multiple fields and data values in the
repository. You do this by building and accepting several filter statements and using
connectors to link the individual statements. The two available connectors are AN D
and O R. To combine two or more statements, use parentheses.
15 -7

Q uerying the Rational Repository
To create a complex filter:

1 . Build at least two filter statements using the procedure in Adding a Simple Filter
Statement on page 15-6.

2 . H ighlight the first filter statement in the Select where list, and then click the
button next to the Connectors list.

The Connectors list shows the options for linking the filter statements.

3 . Select either AN D or O R from the Connectors list, or type your choice. The text
appears on the line with the filter statement.

4 . You can use the parentheses buttons to combine more than two statements.

The following is an example of a complex filtering statement that uses
connectors and parentheses:

Owner = Eric AND
(Environment = Windows NT 4.0 OR
Environment = Windows 2000)

This statement retrieves all scripts that are owned by Eric and expected to run
on either Windows N T 4.0 or Windows 2000.

Editing Existing Queries

With TestManager, you can edit the properties of a query. You can also copy,
rename, and delete queries.

To edit, copy, rename, or delete a query:

1 . Click Tools → M anage Q ueries.

2 . Type or select a query type (script, schedule, or session).

3 . Select a query from the list.

4 . Click Edit to edit the query properties or click Renam e, Copy, or D elete to
perform one of these actions.

5 . Click O K twice.

Viewing Query Properties
In addition to using the previous procedure, you can also view a query’s properties
by doing one of the following:

ã Right-click a query in the Asset Browser, and then click Properties.

ã Run a query, and then click the Query Properties button.
15 -8

Setting Q uery O ptions
Setting Query Options

TestManager provides two query options that you can set: N umber and U pdate
Mode.

To set query options:

1 . Click Tools → O ptions.

2 . Click the Q uery View tab.

3 . In the N um ber area:

– Click Single to indicate that you want only one Query window for each
query type (script, schedule, or session) to be open at a time. Running
successive queries for a particular type replaces the data in the original
window.

– Click M ultiple to allow more than one open Q uery window for each query
type.

4 . In the U pdate m ode area:

– Click M anual to update the Query window only when you click the Q uery
U pdate button.

– Click Autom atic to update the Query window automatically each time you
run a query or change the way you want the query displayed.

N O TE: If your repository is relatively small, Autom atic ensures that the
Query window always contains the latest data. H owever, if your repository
contains a large amount of data or if you are in a networked environment,
automatic updating can affect the performance of your queries.
15 -9

Q uerying the Rational Repository
Configuring the Query Window

After you choose the fields you want to display in the Query window, you can adjust
the column widths. Place the pointer over the column separator line in the title, and
then click and drag the pointer to set the width.

At any time, you can also:

ã Replace or insert a column.

ã Delete a column.

Replacing or Inserting a Column
To replace one column with another, or to insert a column:

1 . Run a query.

2 . Right-click the column header that you want to replace, or the header where you
want to insert a column.

3 . Click Set Field or Insert Field and select a field from the list.

Deleting a Column
To delete a column:

1 . Run a query.

2 . Right-click the column header that you want to delete.

3 . Click D elete Field.
15 -10

ã ã ã C H A P T E R 16

Running TestManager Reports
This chapter explains how to create and run TestManager reports to help you
manage your testing efforts. This chapter includes the following topics:

ã Types of reports

ã Selecting which reports to use

ã Working with listing reports

ã Working with coverage reports

ã Working with the Test Results Progress report

ã Copying, renaming, and deleting reports

Types of Reports

TestManager provides three types of reports to help you in your testing efforts:

ã Listing reports

ã Coverage reports

ã Progress reports

In addition, there are reports available in Rational ClearQ uest and the LogViewer.
ClearQ uest reports, as well as report formats, queries, and charts, are available to help
you manage your defect database. These reports and other items are created for you
automatically when you create a repository that contains an associated ClearQuest
database.

For information about using these defect reports, see the ClearQuest H elp. For
information about creating a repository, see the Using the Rational Administrator
manual. For information about LogViewer reports, see Working with Reports on page
10-13.
16 -1

Runn ing TestM anager Reports
Listing Reports
Listing reports display lists of the different items stored in a project. TestManager
includes listing reports for scripts, schedules, sessions, builds, users, computers, and
test documents. For example, you can create a Script Listing report that:

ã Lists the properties of all of the scripts in your project.

ã Summarizes all of the scripts in your project.

ã Lists or summarizes only the GU I scripts or virtual user scripts.

Coverage Reports
Coverage reports help you track the progress of your test planning, test development,
and test execution efforts by showing you whether or not you are validating your test
requirements. TestManager includes three types of coverage reports:

Planning Coverage reports facilitate test planning by showing you the percentage
and number of test requirements that have been assigned scripts. You can use these
scripts to validate your test requirements. Planning Coverage reports can be
especially useful during the test planning phase of a project. For information about
the planning phase, see Chapter 2, Planning Your Tests.

D evelopm ent Coverage reports facilitate test development by showing you what
percentage and number of test requirements have scripts that are ready to be run.
These reports show you not only whether you have planned a script for each
requirement, but also whether you have actually recorded or edited the script.
TestManager uses the D eveloped check box in the Plan Script and Script Properties
dialog boxes to determine whether or not a script has been developed. TestManager
considers a script to be developed when it has been recorded or edited. For more
information about the test development phase, see Chapter 4, Recording GUI Scripts.

Execution Coverage reports provide crucial information about the quality of a
specific build and the progress of your ability to test that build. These reports tell you
the percentage and number of tests that have passed or failed for a specific build.
Execution Coverage reports show you not only whether you have planned and
developed a script for each requirement, but also whether you have actually run the
script and obtained test results. For more information about the test execution phase,
see Chapter 9, Playing Back GUI Scripts.
16 -2

Selecting W hich Reports to U se
Progress Reports
TestManager includes one progress report — the Test Results Progress report. This
report lets you track the success rate of your scripts over multiple builds of an
application-under-test.

Selecting Which Reports to Use

This section provides some basic guidelines for deciding which report to use to find
the information you need from the Rational repository.

When you want to retrieve Use this report type

A list of some or all of the scripts in your project. Script Listing

A list of some or all of the schedules in your project. Schedule Listing

A list of some or all of the sessions in your project. Session Listing

A list of the builds in your project. Build Listing

A list of the users in your project. (U sers are defined in
the Rational Administrator.)

U ser Listing

A list of the computers in your project. (Computers are
defined in the Rational Administrator.)

Computer Listing

A list of the test documents in your project. Test Document Listing

The percentage of requirements that include planned
scripts.

Planning Coverage

The percentage of requirements that have scripts ready
for testing.

Development Coverage

The percentage of scripts that have passed or failed for a
particular build.

Execution Coverage

The success rate of a set of scripts over a particular set of
builds.

Test Results Progress

N O TE: Schedule Listing and Session Listing reports are available only with
Rational Suite PerformanceStudio.
16 -3

Runn ing TestM anager Reports
Working with Listing Reports

This section includes the following topics:

ã Creating listing reports

ã Running listing reports

ã Opening listing reports

Creating Listing Reports
To create a listing report (in this case, a Script Listing report):

1 . Do one of the following:

– Click Reports → N ew → Script Listing.

– Right-click one of the listing report folders in the Asset Browser and click
N ew Report.

2 . Type a description for the report.
16 -4

Working with Listing Reports
3 . Select a report layout from the list. Default layouts include:

D etail – Lists all properties. For example, if you are creating a Script Listing
report, a detailed layout displays the script name, description, owner,
environment, purpose, and so on.

Sum m ary – Lists just the name, type, and description.

4 . If you are creating a Script, Schedule, or Session Listing report, select a query
from the list.

U se the query to narrow down the number of items to be displayed in the
report. O ptionally, click Edit to modify the selected query, or click N ew to create
a new query. For more information about queries, see Creating N ew Queries on
page 15-4.

5 . Click Save, type a name (40 characters maximum) for the report, and click O K.

6 . Click Close.

Running Listing Reports
After you create a listing report, you can run it to see the results.

To run a listing report, do one of the following:

ã Click Reports → Run, select a report from the list, and click O K .

ã Right-click a listing report in the Asset Browser and click Run.

N O TE: You can also create your own report layout with the Report Layout
Editor. Click O pen to open the selected layout, and then edit it as needed.
Click N ew to open a blank page that you can use to design a layout from
scratch. For more information about the Report Layout Editor, see the
TestManager H elp.
16 -5

Runn ing TestM anager Reports
The following figure show a Script Detail Listing report:

The following figure show a Script Summary Listing report:

Scrip t D eta il List ing ReportPrin t the report

Scrip t Sum m ary List ing Report
16 -6

W orking w ith Coverage Reports
Opening Listing Reports
At any point after creating a report, you can open it and, if necessary, make changes
to the report definition.

To open a listing report, do one of the following:

ã Click Reports → O pen, select a report from the list, and click O K .

ã Right-click a listing report in the Asset Browser and click O pen.

Working with Coverage Reports

This section includes the following topics:

ã Creating coverage reports

ã Running Planning and Development Coverage reports

ã Running Execution Coverage reports

ã Opening coverage reports

Creating Coverage Reports
With TestManager, you can create three types of coverage reports:

ã Planning Coverage reports show how many requirements you have planned
scripts for.

ã D evelopm ent Coverage reports show how many requirements you have
actually developed scripts for.

ã Execution Coverage reports show how many requirements you have actually
developed and run scripts for.

The following sections explain how to create each type of report.
16 -7

Runn ing TestM anager Reports
Creating Planning Coverage Reports
To create a Planning Coverage report:

1 . Do one of the following:

– Click Reports → N ew → Planning Coverage.

– Right-click the Planning Coverage folder in the Asset Browser and click
N ew Report.

2 . Type a description for the report.

3 . Set the D isplay options and the D ata options.

4 . Select a script query from the list. U se the query to narrow down the number of
items to be displayed in the report.

Optionally, click Properties to modify the query, or click N ew to create a new
query. (For information about queries, see Creating N ew Queries on page 15-4.)

5 . Click Save, type a name for the report, and click O K .

6 . Click Close to close the Planning Coverage Report specification window.
16 -8

W orking w ith Coverage Reports
Creating Development Coverage Reports
To create a Development Coverage report:

1 . Do one of the following:

– Click Reports → N ew → D evelopm ent Coverage.

– Right-click the Development Coverage folder in the Asset Browser and
click N ew Report.

2 . Type a description for the report.

3 . Set the D isplay options and the D ata options.

4 . Select a script query from the list. U se the query to narrow down the number of
items to be displayed in the report.

Optionally, click Properties to modify the query, or click N ew to create a new
query. (For information about queries, see Creating N ew Queries on page 15-4.)

5 . Click Save, type a name for the report, and click O K .

6 . Click Close to close the Development Coverage Report specification window.
16 -9

Runn ing TestM anager Reports
Creating Execution Coverage Reports
To create an Execution Coverage report:

1 . Do one of the following:

– Click Reports → N ew → Execution Coverage.

– Right-click the Execution Coverage folder in the Asset Browser and click
N ew Report.

2 . Type a description for the report.

3 . Set the D isplay options, the Test execution progress options, and the Test
results options.

4 . Select a script query from the list. U se the query to narrow down the number of
items to be displayed in the report.

Optionally, click Properties to modify the query, or click N ew to create a new
query. (For information about queries, see Creating N ew Queries on page 15-4.)

5 . Click Save, type a name for the report, and click O K .

6 . Click Close to close the Execution Coverage Report specification window.
16 -10

W orking w ith Coverage Reports
Running Planning and Development Coverage Reports
After you create a Planning or Development Coverage report, you can run it to see
the results.

To run a Planning Coverage or Development Coverage report:

1 . Do one of the following:

– Click Reports → Run, select a Planning Coverage or Development
Coverage report from the list, and click O K.

– Right-click a Planning Coverage or Development Coverage report in the
Asset Browser and click Run.

2 . Specify the requirements you want to include.

All requirements – Includes all requirements, regardless of type, in the
Requirements H ierarchy.

All requirements of type – Includes all requirements of the selected
requirement type.

Specific requirem ent of type – Includes a single branch of the Requirements
H ierarchy for a specific requirement type. In this case, a branch is a single parent
requirement and its children.

3 . Click O K to run the report.
1 6 -1 1

Runn ing TestM anager Reports
The following figures show a Planning Coverage report and a Development
Coverage Report:

Copy to Clipboard Save report to d isk

Close report window
Prin t the report
16 -12

W orking w ith Coverage Reports
Running Execution Coverage Reports
After you create an Execution Coverage report, you can run it to see the results. With
Execution Coverage reports, you specify the requirements to report on, as well as the
set of logs to examine. (For information about logs, see Generating Log Files on page
3-2.)

To run an Execution Coverage report:

1 . Do one of the following:

– Click Reports → Run, select an Execution Coverage report from the list,
and click O K.

– Right-click an Execution Coverage report in the Asset Browser and click
Run.

2 . Set the requirements you want to include.

All requirem ents – Includes all requirements, regardless of type, in the
Requirements H ierarchy.

All requirem ents of type – Includes all requirements of the selected
requirement type.

Specific requirem ent of type – Includes a single branch of the Requirements
H ierarchy for a specific requirement type. In this case, a branch is a single parent
requirement and its children.
1 6 -1 3

Runn ing TestM anager Reports
3 . Select a log from a build. Click > to move the log to the Selected Log list.
Repeat as necessary.

4 . Click O K to run the report.

The following figure shows an Execution Coverage report for a requirement
called TST7.1 Asset Browser:

Opening Coverage Reports
At any point after creating a report, you can open it and, if necessary, make changes
to the report definition.

To open a coverage report, do one of the following:

ã Click Reports → O pen, select a report from the list, and click O K .

ã Right-click a coverage report in the Asset Browser and click O pen.

Log fo lder

Log
16 -14

W orking with the Test Resu lts Progress Report
Working with the Test Results Progress Report

This section includes the following topics:

ã Creating a Test Results Progress report

ã Running a Test Results Progress report

ã Opening a Test Results Progress report

Creating a Test Results Progress Report
With the Test Results Progress report, you can track the success rate of your scripts
from build to build. When you create the report, you specify the scripts that you want
included. Later, when you run the report, you specify the builds you want to run the
report against.

To create a Test Results Progress report:

1 . Do one of the following:

– Click Reports → N ew → Test Results Progress.

– Right-click the Test Results Progress folder in the Asset Browser and click
N ew Report.

2 . Type a description for the report.
1 6 -1 5

Runn ing TestM anager Reports
3 . Set the D ata options.

4 . Select a script query from the list. U se the query to narrow down the number of
items to be displayed in the report.

Optionally, click Properties to modify the query, or click N ew to create a new
query. (For information about queries, see Creating N ew Queries on page 15-4.)

5 . Click Save, type a name for the report, and click O K .

6 . Click Close to close the Test Results Progress Report specification window.

Running a Test Results Progress Report
After you create a Test Results Progress report, you can run it to see the results. With
a Test Results Progress report, you need to indicate the set of logs to examine. (For
information about logs, see Generating Log Files on page 3-2.)

To run a Test Results Progress report:

1 . Do one of the following:

– Click Reports → Run, select a Test Results Progress report from the list,
and click O K .

– Right-click a Test Results Progress report in the Asset Browser and click
Run.

2 . Select a log from the list of available logs. Click > to move the log to the
Selected Log list. Repeat as necessary.

3 . Click O K to run the report.

Log fo lders

Logs
16 -16

Copying , Renam ing, and D eleting Reports
The following figure shows a Test Results Progress report:

Opening a Test Results Progress Report
At any point after creating a report, you can open it and, if necessary, make changes
to the report definition.

To open a Test Results Progress report, do one of the following:

ã Click Reports → O pen, select a report from the list, and click O K .

ã Right-click a Test Results Progress report in the Asset Browser and click O pen.

Copying, Renaming, and Deleting Reports

To copy, rename, or delete a report from the Asset Browser:

1 . Right-click a report in the Asset Browser.

2 . Do one of the following:

– Click Copy, type a name for the new report, and click O K .

– Click D elete and then click Yes to delete the report.

– Click Renam e, type the new name for the report, and press EN TER.
1 6 -1 7

Runn ing TestM anager Reports
16 -18

ã ã ã Part VI

Testing ID E Applications

ã ã ã C H A P T E R 1 7

Testing Visual Basic Applications
This chapter explains how to test 32-bit Visual Basic applications with Rational
Robot. It includes the following topics:

ã About Robot support for Visual Basic applications

ã Try it! with Visual Basic

ã Verifying that the Visual Basic extension is loaded

About Robot Support for Visual Basic Applications

Rational Robot provides comprehensive support for testing 32-bit applications built
with Visual Basic version 4.0 and later. Robot supports the testing of applications that
you migrate from one Visual Basic version to another, and allows for the reuse of
scripts between Windows N T 4.0, Windows 2000, Windows 98, and Windows 95.

With its Object Testing technology, Robot examines data and properties that are not
visible to the user. This means that Robot can do the following:

ã Recognize all Visual Basic objects, including objects that have windows
associated with them (such as EditBoxes) and objects that are “painted” on the
containing form (such as Labels).

ã Determine the names of objects in your program (as given in the Visual Basic
source code), and use those names for object recognition.

ã Capture properties of Visual Basic objects, using the Object Properties
verification point.

ã Capture the data underlying a Visual Basic data control, using the Object Data
verification point.
17 -1

Testing Visua l Basic Applications
As an example, suppose you have a label in a Visual Basic form. If you click the label
during Robot recording, the label’s name appears in the Robot script. If you create
an Object Properties verification point on the label, the label’s name is captured. The
name by which Robot identifies the object is the same as its Visual Basic name, as
shown in the Visual Basic Properties window.

N O TE: To test Visual Basic 4.0 applications, you need to add the Rational
ActiveX Test Control to your Visual Basic forms. For information, see Visual Basic
support, making Visual Basic 4.0 applications testable in the Robot H elp Index.

Label Click, “Name=Label1” ... is the sam e nam e that appears in the
Robot scrip t when you click the object ...

... The object nam e that appears in
the Visual Basic Propert ies window...

... and the sam e nam e that is captured
when you create an O bject Propert ies
verif icat ion point on the object.
17 -2

Try it! with Visua l Basic
Try it! with Visual Basic

Robot comes with the Try it! with Visual Basic card and sample applet.

The Try it! card provides quick instructions for recording tests on objects in the
Visual Basic applet. The applet contains objects that are specific to the Visual Basic
development environment. For example, you can test the properties and data of an
ActiveX control and a hidden data control.

Verifying that the Visual Basic Extension Is Loaded

To test Visual Basic applications, you should first verify that the Robot Visual Basic
extension is loaded in Robot.

To verify that the extension is loaded:

1 . Start Robot.

2 . Click Tools → Extension M anager.

3 . Verify that Visual Basic is selected. If not, select it.

4 . To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5 . Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.
17 -3

Testing Visua l Basic Applications
17 -4

ã ã ã C H A P T E R 18

Testing Oracle Forms Applications
This chapter describes how to test 32-bit O racle Forms applications with Rational
Robot. It includes the following topics:

ã About Robot support for Oracle Forms applications

ã Try it! with Oracle Forms

ã Making O racle Forms applications testable

ã Recording actions and testing objects

ã Testing an object’s properties

ã Testing an object’s data

About Robot Support for Oracle Forms Applications

Rational Robot provides comprehensive support for testing 32-bit applications built
with Oracle Forms 4.5 and 5.0. Robot supports the testing of applications that you
migrate from one O racle Forms version to another, and allows for the reuse of scripts
between Windows N T 4.0, Windows 2000, Windows 98, and Windows 95.

With its Object Testing technology, Robot examines data and properties that are not
visible to the user. Robot uses Object-Oriented Recording to recognize an O racle
Forms object by its internal name.

You can use Robot to test Oracle Forms objects, including:

ã Windows

ã Forms

ã Canvas-views

ã Base-table blocks (single- and multi-record)

ã Items, including OLE containers
18 -1

Testing O racle Form s App lications
Try it! with Oracle Forms

Robot comes with the Try it! with Oracle Forms card and sample applet.

The Try it! card provides quick instructions for recording tests on objects in the
Oracle Forms applet. The applet contains objects that are specific to the Oracle
Forms development environment. For example, you can test the properties and data
of a base-table block (a block associated with a database table).

Making Oracle Forms Applications Testable

Before you can test your Oracle Forms applications, you must:

ã Install the Rational Test O racle Forms Enabler.

ã Run the Enabler on your application.

ã Verify that the Robot O racle Forms extension is loaded.

N O TE: Before you can install and run the O racle Forms sample applet, the
following must be installed: O racle Forms 5.0 or 4.5 and the Oracle Open Client
Adapter for ODBC.
18 -2

M aking O racle Form s Applications Testable
Installing the Rational Test Oracle Forms Enabler
You can install the Enabler from the Rational Software Setup wizard. For
instructions, see one of the following manuals: Installing Rational Suite or Installing
Rational TeamTest and Rational Robot.

You then need to run the Enabler, which instruments the code in your .fmb file to
make your application testable by Robot.

Running the Enabler on Your Application
After you install the Enabler, you need to enable every form in your application. The
following sections explain:

ã What happens when you run the Enabler.

ã H ow to run the Enabler.

ã What to distribute with your application.

What Happens When You Run the Enabler?
The Enabler adds the Rational Test Object Testing Library and three triggers to one
or all .fmb files in a directory, as shown in the following figure and table.

As shown in the previous figure, the triggers contain the following code:

Conta ins sqa_evt_hand ler;
Conta ins sqa_m ouse_hand ler;
Conta ins sqa_exit_handler;

Conta ins the Ra tional Test
O bject Testing Library

Trigger Code

WH EN -WIN DO W-RESIZED sqa_evt_handler;

WH EN -MO U SE-EN TER sqa_mouse_handler;

PO ST-FO RM sqa_exit_handler;
18 -3

Testing O racle Form s App lications
The Enabler handles the triggers and code as follows:

You can leave the triggers and the Object Testing Library in your application when
you distribute it. For more information, see Distributing Your Application on page 18-8.

Running the Enabler
To run the Enabler, which adds the O bject Testing Library and triggers to your
application:

1 . Start the Rational Test O racle Form s Enabler from the folder in which it was
installed (the default folder is Developer 2000).

If the .fmb file The Enabler

Does not contain the trigger Adds a new trigger containing the code.

Contains the trigger Prepends the code to your existing trigger.

Contains a reference to the trigger Does not change the trigger in either the
selected (referencing) .fmb file or in the
referenced .fmb file. Displays a message
indicating that you should run the Enabler on
the referenced .fmb file.

N O TE: If objects in your application contain the WH EN -MO U SE-EN TER trigger,
the Enabler prepends sqa_mouse_handler; to each trigger. This is necessary
for Robot to correctly record mouse actions against these objects. If you need to
prevent this modification, you can clear the M odify local W H EN -M O U SE-EN TER
triggers option in the Enabler. (See the next section, Running the Enabler.) In this
case, the Enabler displays warning messages in the Status window when it detects
any of these local triggers.
18 -4

M aking O racle Form s Applications Testable
The following dialog box appears:

2 . Click Browse. Select the .fmb file that you want to make testable and click O K .

3 . Click Add Rational Test O bject Testing Library.

4 . Set the following options as needed:

Backup original FM B file – Creates a backup file before the file is enabled.

Enable a ll FM B files in selected directory – Enables every .fmb file in the
directory. If this check box is not selected, only the .fmb file in the O racle FM B
file box is enabled.

Generate each selected FM B file – Generates each .fmb file after enabling it.
If this check box is not selected, you will need to generate each .fmb file from
the Oracle Forms 5.0 Builder or Oracle Forms 4.5 Designer after the Enabler
runs.
18 -5

Testing O racle Form s App lications
5 . Click Advanced to open the following dialog box:

6 . If you selected the Generate each selected FM B file option, type your database
connection parameters in the D atabase tab.

7 . Click the D irectories tab.

8 . If you need to change the default locations of the Object Testing Library and
Oracle home directory, select O verride O racle paths in registry. Click each
Browse button and select the new location.
18 -6

M aking O racle Form s Applications Testable
9 . Click the General tab.

1 0 . To send the output in the Status box of the Enabler to a log file that you can view
or print, select W rite status output to log file.

In the Log file box, use the default log file name, type a new name, or click
Browse and select a file.

The log file is stored in the same directory as the .fmb file unless you specify
another path. If the file already exists, the text is appended to the file.

1 1 . If objects in your application contain the WH EN -MO U SE-EN TER trigger, the
Enabler prepends sqa_mouse_handler; to each trigger. This is necessary for
Robot to correctly record mouse actions against these objects. If you need to
prevent this modification, clear M odify local W H EN -M O U SE-EN TER triggers.
(For information about the Enabler and triggers, see What Happens When You
Run the Enabler? on page 18-3.)

If this check box is cleared, the Enabler displays warning messages in the Status
box when it detects any of these local triggers.

1 2 . Click O K .

1 3 . Click Enable. As the file is enabled, information appears in the Status box.

1 4 . If you did not select the Generate option in step 4, regenerate your application
once before using Robot by doing one of the following:

– In O racle Forms 5.0, open the Forms Builder. Load each enabled .fmb file,
and click File → Adm inistration → Com pile File.

– In O racle Forms 4.5, open the Forms Designer. Load each enabled .fmb file,
and click File → Adm inistration → Generate.

You are now ready to use Robot with your Oracle Forms application.
18 -7

Testing O racle Form s App lications
Distributing Your Application
The triggers and the Object Testing Library are not visible and are non-intrusive,
and there are no license restrictions on them. Therefore, you can leave them in the
application when you distribute it. In this case, you must distribute the Rational Test
Object Testing Library with your application.

You may freely distribute the Object Testing Library for Oracle Forms and the
Enabler. The Rational Test Enablers directory on the CD-ROM contains a Setup
wizard for these and other items. You may copy this directory to a network drive or
to a diskette for distribution to your developers.

Verifying that the Oracle Forms Extension Is Loaded
To test Oracle Forms applications, you should first verify that the Robot Oracle
Forms extension is loaded in Robot.

To verify that the extension is loaded:

1 . Start Robot.

2 . Click Tools → Extension M anager.

3 . Verify that O racle Form s is selected. If not, select it.

4 . To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5 . Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

N O TE: If you choose to remove the O bject Testing Library and triggers from
your application, follow the procedure in Running the Enabler on page 18-4. In
step 3, click Rem ove Rational Test O bject Testing Library.
18 -8

Record ing Actions and Testing O bjects
Recording Actions and Testing Objects

An Oracle Forms application is made up of visual and nonvisual objects.

ã Visual objects are GU I objects that you can see in the application. Examples are
check boxes and push buttons.

ã N onvisual objects are non-GU I objects that you cannot see in the application.
Examples are blocks and forms.

You can record actions against visual objects, and you can test both visual and
nonvisual objects.

Recording Actions
When you record actions against a visual Oracle object, Robot recognizes the object
by its internal name as follows:

ã W indow – Recognized by the window internal name assigned by the developer.

ã Item – Recognized by the block.item name assigned by the developer.

For example, if you click a button within a window, the script appears as follows:

Testing Objects
When you test a visual or nonvisual Oracle object, Robot can provide two views into
the Oracle application:

ã Full View – Includes all objects (visual and nonvisual) in the application. (This
is similar to the Ownership View in the Oracle Forms N avigator.) In this view,
items are children of blocks, which are children of a form. This view also
includes canvas-views and windows. When you select an object from the full
view, the object is identified by its complete path in the script.

ã GU I View – Includes only the visual (GU I) objects in the application. (This is
similar to the Visual View in the Oracle Forms N avigator.) In this view, all
objects are children of a window. When you select an object from the GU I view,
the object is identified by its block.item name relative to the window in the script.

window nam e

block.item nam e
18 -9

Testing O racle Form s App lications
The following figure shows the full view and the GU I view (collapsed):

To see both Robot views of an Oracle application:

1 . Start to create a verification point.

2 . In the Select O bject dialog box, click Browse to open the O bject List.

There are two types of branches under the O racleRootW indow branch:

ã The Form branch gives you a full view of all objects (visual and nonvisual) in the
application. (If you have multiple forms, Robot displays a full view for the active
form only.)

ã The W indow branches give you a GU I view of only the visual objects in the
application.

The fu ll view includes
visual and nonvisual
ob jects.

The GU I view includes
only visua l ob jects.
18 -10

Record ing Actions and Testing O bjects
The following figure shows the expanded full view of the Form branch:

The following figure shows the expanded GU I view of the Window branch:

The expanded fu ll view
includes ...

... item s as ch ild ren of
b locks, which are ch ildren
of the form , and ...

... canvas-views and
windows as ch ild ren of
the form .

The expanded GU I
view includes ...

... a ll visual item s as
ch ildren of the window.
1 8 -1 1

Testing O racle Form s App lications
Testing an Object’s Properties

You can use two methods to test the properties of an Oracle object:

ã O bject Properties verification point – U se to test properties while recording
or editing a script.

ã O bject Scripting com m ands – U se to test properties programmatically while
editing a script.

Object Properties Verification Point
You can use the Object Properties verification point to test any property that you can
access in PL/SQL (the O racle programming language) for the following objects:

ã Visual (GU I) objects:

Chart item Push Button item
Check Box item Radio Button item
Display item Radio Group item
Image item Text item
List item Oracle VBX Control item
OLE Container item Window

ã N onvisual (non-GU I) objects:

Block
Canvas-view
Form

N O TE: Before you can test an Oracle Forms application, you need to run the
Enabler. For instructions, see Making Oracle Forms Applications Testable on page 18-2.

N O TE: To test the properties of list of values (LOV) and record group objects,
see Object Scripting Commands on page 18-15 and Testing LOVs and Record Groups on
page 18-17.
18 -12

Testing an O bject’ s Properties
Testing Properties of Visual Objects
To test the properties of a visual (GU I) object:

1 . Start creating a Object Properties verification point as usual. (For instructions,
see Object Properties Verification Point in the Robot H elp Index.)

2 . When the Select Object dialog box appears, drag the Object Finder tool to the
object to test and release the mouse button. If the Select Object dialog box
appears again, click O K .

If you point to the title bar of a window (other than the Developer/2000 Forms
Runtime window), Robot captures the properties of all of the visual objects in
the window.

If you point to the title bar of the Developer/2000 Forms Runtime window,
Robot captures the properties of all of the visual and nonvisual objects in the
application. (For more information, see the next section, Testing Properties of
N onvisual Objects.)

3 . Complete the verification point as usual.

Testing Properties of Nonvisual Objects
To test the properties of a nonvisual object:

1 . Start creating a Object Properties verification point as usual. (For instructions,
see Object Properties Verification Point in the Robot H elp Index.)

2 . In the Select Object dialog box, click Browse to display the Object List. This is
a list of all objects on the desktop.

3 . Expand the W indow N am e= O racleRootW indow branch by double-clicking
the plus sign.

The nonvisual objects are contained in the Form branch of the
O racleRootW indow.

Conta ins the fu ll
view of ob jects,
which includes
nonvisual ob jects.
1 8 -1 3

Testing O racle Form s App lications
4 . Expand the Form branch by double-clicking the plus sign.

All of the blocks, canvas-views, and windows appear as children of the form.
Items appear as children of a block. (For information about working with the
Object List, see Selecting the Object to Test on page 6-10.)

5 . Select the object to test and click O K. If the Select O bject dialog box still appears,
click O K .

6 . Complete the verification point as usual.

N O TE: To capture the properties of all of the objects, you can drag the
Object Finder tool to the Developer/2000 Forms Runtime window and
release the mouse button (instead of clicking Browse). U sing Browse is
usually faster because you can select only the objects that you want to test
from the Object List before the properties are captured.

The form includes
b locks, item s,
canvas-views,
and windows.

N O TE: Visual items within the full view are children of blocks. If you select a
visual item from the full view, Robot tests its Oracle properties only. If you select
a visual item from the GU I view, Robot tests both its O racle properties and its
standard properties. For a description of the two views, see Testing Objects on page
18-9.
18 -14

Testing an O bject’ s Properties
Object Scripting Commands
You can manually add the O bject Scripting commands to any script to access
the properties of O racle Forms objects. For example, you can use the
SQAGetProperty command to retrieve the value of a specified property. (For
information about the O bject Scripting commands, see the SQABasic Language
Reference.)

The Object Scripting commands are especially useful for accessing the properties of
LOV and record group objects, which cannot easily be tested with the Object
Properties verification point.

To reference an LOV or record group object in an Object Scripting command, you
need to know the name assigned to the object within your Oracle Forms application.
Once you know the object name, you can access the following properties:

The following example uses the SQAGetProperty command to assign the value
of the Group_N ame property of an LOV object to a variable called Value:

Sub Main
 Dim Result As Integer
 Dim Value As Variant
 Window SetTestContext, "Name=OracleRootWindow", ""
 Result = SQAGetProperty("Type=Form;Name=FORM_NAME;\;
 Type=LOV;Name=LOV_NAME", "Group_Name", Value)
 MsgBox Value
End Sub

N O TE: For instructions about testing LOVs and record groups with verification
points, see Testing LOVs and Record Groups on page 18-17.

Object Type Properties

List of values (LO V) X_Pos
Y_Pos
Auto_Refresh
Group_N ame
Width
H eight

Record group Row_Count
Selection_Count
1 8 -1 5

Testing O racle Form s App lications
Testing an Object’s Data

You can use the O bject Data verification point to test the data in the following O racle
objects:

ã Base-table blocks and items

ã LOV and record group objects

For instructions about testing an object’s data, see Object Data Verification Point in the
Robot H elp Index.

Testing Base-Table Blocks and Base-Table Items
Several pre-defined data tests are supplied with Robot to test any base-table block or
base-table item. These tests include:

ã Current Record – Captures the currently selected record.

ã D isplayed Records – Captures the currently displayed records.

ã Entire Table – Captures the entire contents of the database table associated with
the object.

You can use the Object Data Test Definition to define additional data tests. (For
information, see Appendix B, Working with Data Tests.)

N O TE: Before you can test an Oracle Forms application, you need to run the
Enabler. For instructions, see Making Oracle Forms Applications Testable on page 18-2.

Pre-defined
data tests
18 -16

Testing an O bject’ s D ata
Testing LOVs and Record Groups
You can use the Object Data verification point to test the data in list of values (LOV)
and record group objects in Oracle Forms. (You can also use the Object Scripting
commands. For information, see Object Scripting Commands on page 18-15.)

To test an LO V or record group, you need to perform two steps:

1 . Create an .sqa text file containing information about the LOV or record group.

2 . Create the Object Data verification point.

Creating an .SQA Text File
Before you test an LOV or record group, you need to create an .sqa text file. To create
this file:

1 . Before creating the verification point, identify which LOV or record group
objects to test, including:

– The Form containing the LO V or record group.

– The internal Oracle name of the LOV or record group.

– The names of the data columns and each column’s data type (char, number,
or date).

You may need to get this information from the developer of the form.

2 . In the same directory as the form's executable (.fmx) file, create a text file with
the same name as the .fmx file, but with an .sqa extension.

For example, if the form’s executable file is O raapp32.fmx, create a text file
named O raapp32.sqa.

3 . In the .sqa text file, type:

– An [LOV] section containing the names of all LOVs to test.

– A [RECORD_GROU P] section containing the names of all record groups
to test.

– The name of each LO V, the name of each column, and the data type of each
column.

– The name of each record group, the name of each column, and the data type
of each column.

N O TE: Once you create the .sqa file, you can also test the properties of LOVs
and record groups using the Object Properties verification point.
1 8 -1 7

Testing O racle Form s App lications
The following figure shows an example.

After you create the .sqa file, you can capture the data in:

ã An LO V associated with a text item.

ã Any LO V or record group.

Once you create the .sqa file, you can also test the properties of LOVs and record
groups using the Object Properties verification point.

Capturing Data in an LOV Associated with a Text Item
If an LOV is associated with a text item, you can point to the text item to capture the
data in the LOV.

To capture the data:

1 . Display the form containing the LOV.

2 . Make sure the LOV is closed. You can capture the data in an LOV only when the
LOV is closed.

LO V section

Record Group section

LO V nam e
Colum n nam es and types

Record Group nam e
Colum n nam es and types

Text item

LO V associated with text
18 -18

Testing an O bject’ s D ata
3 . Start creating an Object Data verification point.

4 . When the Select Object dialog box appears, drag the Object Finder tool to the
text item and release the mouse button. If the Select O bject dialog box still
appears, click O K. The O bject Data Tests dialog box appears.

5 . From the D ata test list, select LO V Contents.

6 . Click O K to open the Object Data Verification Point dialog box.

If you typed incorrect information in the .sqa file, a message appears in the data
grid in the dialog box.

7 . Complete the verification point as usual.

Capturing Data in LOVs and Record Groups
To capture the data in any LOV or record group, you can select the object from the
Object List.

1 . Display the form containing the LOV or record group.

2 . If the form contains an LOV, make sure that the LOV is closed. You can capture
the data in an LOV or record group only when the LOV is closed.

3 . Start creating an Object Data verification point.

4 . In the Select O bject dialog box, click Browse to open the Object List dialog box.

5 . Expand the W indow N am e= O racleRootW indow branch by double-clicking
the plus sign.
1 8 -1 9

Testing O racle Form s App lications
6 . Expand the Form branch by double-clicking the plus sign.

If the LO V or record group objects do not appear in the Object List, check that
the .sqa file has been created in the same directory as the form’s executable file
and contains the correct information. For details, see Creating an .SQA Text File
on page 18-17.

7 . Select the object to test and click O K to open the O bject Data Verification Point
dialog box.

If you typed incorrect information in the .sqa file, a message appears in the data
grid in the dialog box.

8 . Complete the verification point as usual.

LO Vs and record groups
are ch ildren of the form .
18 -20

ã ã ã C H A P T E R 19

Testing HTML Applications
This chapter explains how to use Robot to test H TML applications. It includes the
following topics:

ã About Robot support for H TML applications

ã Configuring Internet Explorer for testing

ã Try It! with H TML

ã Making H TML applications testable

ã Testing data in H TML elements

ã H ow Robot maps H TML elements

ã Supported data tests for H TML testing

ã Testing properties of H TML elements

ã Playing back scripts in N etscape N avigator

ã Recording tips

ã Enhancing object recognition of H TML elements

About Robot Support for HTML Applications

Rational Robot provides comprehensive support for testing H TML applications that
run on the World Wide Web. Robot lets you test both static and dynamically-
generated pages accessed from both standard and secured H TTP servers, regardless
of make or model. Robot examines the data and properties of each H TML element,
letting you test the elements that appear on your Web pages, including table data,
links, and form elements, such as buttons, check boxes, lists, and text.

With Robot you can record and play back scripts in Microsoft Internet Explorer
versions 4.x and later and play back these same scripts in N etscape N avigator versions
4.x and later. Scripts can be played back on a variety of Windows platforms, including
Windows N T 4.0, Windows 2000, Windows 98, and Windows 95.
19 -1

Testing H TM L Applications
Configuring Internet Explorer for Testing

Before you record scripts, you should configure Internet Explorer so that scripts will
play back in the same way as when you recorded them. For best results, you should
configure Internet Explorer identically on both the computer that you record scripts
on and the computer that you play back scripts on. In addition, you should disable
the cookie prompt.

Disabling the Cookie Prompt
To disable the cookie prompt:

1 . Start Internet Explorer.

2 . Click View → Internet O ptions.

3 . Click O K .

Click the Advanced tab.

In the Cookies section ,
under Secur ity, m ake sure
that Prom pt before
accep t ing cookies is not
selected. You can select
either D isab le a ll cookie use
or A lways accep t cookies.
19 -2

Try It! with H TM L
Try It! with HTML

Robot comes with the Try it! with HTML card and sample application.

The Try it! card provides quick instructions for recording tests on the H TML
elements in the H TML application. The application contains elements that are
specific to the H TML development environment. For example, you can test the
properties and data of an H TML form.

Making HTML Applications Testable

To make H TML applications testable:

ã Verify that the H TML extension is loaded in Robot.

ã Enable H TML testing in Robot.

These steps are described in the following sections.

Verifying that the HTML Extension Is Loaded
To test H TML applications, you must first make sure that the H TML extension is
loaded in Robot. To do this:

1 . Start Robot.

2 . Click Tools → Extension M anager.

3 . Verify that H TM L-M SIE is selected. If not, select it.

4 . To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5 . Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Enabling HTML Testing in Robot
After loading the H TML extension, you must enable H TML testing so that Robot
can recognize H TML elements. You can do this either by starting Internet Explorer
through the Robot Start Browser command or by loading the Rational ActiveX Test
control.
19 -3

Testing H TM L Applications
To enable H TML testing using the Start Browser command:

1 . Start recording in Robot. To record, click the Record GU I Script button on the
Robot toolbar. For details, see Recording a N ew GUI Script on page 4-16.

2 . Type a script name or select a name from the list.

3 . Click O K to display the GU I Record toolbar.

4 . Click the D isplay GU I Insert Toolbar button on the GU I Record toolbar.

5 . Click the Start Browser button on the GU I Insert toolbar.

6 . Type the U RL of the H TML application that you plan to test, or click Browse
and select a local file.

7 . Type the name of a tag to uniquely identify this instance of the browser. By using
tags, you can test multiple instances of the browser.

8 . Click O K .

Robot starts Internet Explorer and navigates to the specified U RL.

9 . Continue recording in Robot, as described in Recording a N ew GUI Script on page
4-16.

Testing Data in HTML Elements

U se the Object Data verification point to test the data in H TML elements. For
example, you can use this verification point to test whether a purchase order has been
processed or whether a Submit button returns the page that it is supposed to. For
more specific information about verification points, see Chapter 6, Creating
Verification Points in GUI Scripts.

N O TE: If you start Internet Explorer outside of Robot without using the
Start Browser command, you must open the rbtstart.htm page in your
browser before loading the Web pages for testing. The rbtstart.htm page loads
the Rational ActiveX Test Control, which is required for H TML testing in
Robot. By default, this file is located in C:\Program Files\Rational\
Rational Test 7.
19 -4

Testing D ata in H TM L Elem ents
To test an H TML element’s data:

1 . Start recording in Robot, as described in Enabling HTML Testing in Robot on page
19-3.

2 . N avigate to the Web page that contains the elements to test. For example,
navigate to the page that is returned after the user submits a page to be processed.

3 . Click the O bject D ata Verification Point button on the GU I Insert toolbar.

4 . Assign a name, wait state, and expected result for the verification point and then
click O K , as described in Tasks Associated with Creating a Verification Point on page
6-6.

5 . In the Select Object dialog box, drag the O bject Finder tool over the page until
the element that you want to test appears in the TestTip, as described in Selecting
and Identifying the Object to Test on page 6-10.

For example, to test for the existence of a particular string of text on a page (any
text within the < BO DY> and < /BO DY> tags), drag the Object Finder tool over
the page until H TM LD ocum ent appears in the TestTip and in the Selected
Object field. You can see examples of these items in the following figure.

For a list of the H TML elements that you can test, see How Robot Maps HTML
Elements on page 19-8.

H TM LD ocum ent TestTip

O bject Finder too l
19 -5

Testing H TM L Applications
6 . Release the mouse button and click O K .

7 . If the Object Data Test dialog box appears, select the data test to use and
click O K .

There are five types of data tests that you can use on H TML elements. N ot all
tests are available for each type of element. For example, you might want to
perform a Contents data test on an H TMLDocument. The Contents data test
captures all of the visible text on the page, including text in forms fields, such as
list boxes and combo boxes. For information about the types of data tests that are
available for each element, see Supported Data Tests for HTML Testing on page
19-10.

8 . Select the verification method that Robot should use to compare the baseline
data captured while recording with the data captured during playback.

For example, you can use the Find Sub String Case Sensitive verification
method to verify that the text captured during recording exactly matches a
subset of the captured text during playback.

Suppose you want to verify that the text, thank you for shopping with Classics Online,
is returned after a customer submits a purchase order. By selecting the Find Sub
String Case Sensitive verification method, you can ensure that Robot will
always test for the text, thank you for shopping with Classics Online, regardless of the
text that surrounds it.

For more information about verification methods and the Object Data
Verification Point dialog box, see Working with the Data in Data Grids on page
6-19.

9 . Click O K .

1 0 . When finished, click the Stop Recording button on the GU I Record toolbar.
19 -6

Testing D ata in H TM L Elem ents
Additional Examples
This section provides some additional examples of creating Object Data verification
points for H TML elements.

To Test the Contents of a Drop-Down List Box
1 . Add an O bject Data verification point.

2 . Select the ListBox with the O bject Finder tool.

3 . Select a Contents data test.

4 . Select the Case Sensitive verification method to test for the entire contents of
the list box. Select the Find Sub String Case Sensitive verification method to
test for a subset of the list box items.

To Test for Text within a Table
1 . Add an O bject Data verification point.

2 . Select the H TMLTable object with the O bject Finder tool.

3 . Select a Contents data test.

4 . Select the Case Sensitive verification method to test for all of the text in the
table. Select the Find Sub String Case Sensitive verification method to test for
any text item with the table.

You can edit the text that the verification point captures. For information, see
Editing Data for a Clipboard or Object Data Verification Point on page 6-21.

To Test the Destination of a Link
1 . Add an O bject Data verification point.

2 . With the O bject Finder tool, select H TMLLink to test a text-based link or
H TMLImage to test an image link.

3 . For the text-based link, select a Contents data test to capture the U RL of the
destination. For an image link, select an H TMLText data test to capture the U RL
of the destination.

4 . Select the Case Sensitive verification method to test for the entire U RL. Select
the Find Sub String Case Sensitive verification method to test for part of the
U RL.
19 -7

Testing H TM L Applications
How Robot Maps HTML Elements

Robot maps H TML elements, such as IN PU T, SELECT, BODY, TABLE, and
others, to Robot object types, such as PushButton, ListBox, and H TMLDocument.
The following table describes these mappings.

Robot object
type

HTML element Description

PushButton < IN PU T type= Submit>
< IN PU T type= Reset>
< IN PU T type= Button>

< BU TTO N >

U sed for elements in forms
created with the < IN PU T>
tag where the type attributed
is either Submit or Reset.

CheckBox < IN PU T type= Checkbox> U sed for elements in forms
created with the < IN PU T>
tag where the type attributed
is Checkbox.

RadioButton < IN PU T type= Radio> U sed for elements in forms
created with the < IN PU T>
tag where the type attribute is
Radio.

ComboBox < SELECT size= 1>

< O PTIO N > . . .

< /SELECT>

U sed for elements in forms
created with the < SELECT>
tag where the size attribute is
equal to one.

ListBox < SELECT size= > n>

< O PTIO N > . . .

< /SELECT>

U sed for elements in forms
created with the < SELECT>
tag where the size attribute is
greater than one.

EditBox < IN PU T type= Text>
< IN PU T type= TextArea>

Text is for single line controls.
TextArea is for multiline
controls.

U sed for elements in forms
created with the < IN PU T>
tag where the type attribute is
equal to Text or TextArea.

H TMLLink < A> . . . < /A> U sed for anchor elements.

H TMLImage < IMG> U sed for server- and client-
side image maps or images on
a page.
19 -8

H ow Robot M aps H TM L Elem ents
H TMLDocument All text between < BO DY>
and < /BO DY>

U sed so that verification
points can access all of the
data on a page. Individual
elements are identified by tag
and name or prefix.

H TMLTable All text between < TABLE>
and < /TABLE>

U sed to test tables.
Verification points act on the
entire table. When capturing
object properties, each cell
appears as a separate
subelement.

H TMLActiveX < O BJECT> U sed to record against clicks
on ActiveX controls
embedded in the page.

H TML All other tags U sed for all other tags when
the tag has an ID or a name.
H TML can be used, for
example, to identify and test a
single paragraph on a page. In
this case, you must manually
insert an ID into the H TML
source to tag the particular
paragraph.

 (Continued)

Robot object
type

HTML element Description
19 -9

Testing H TM L Applications
Supported Data Tests for HTML Testing

The following table describes the data tests that are available for each Robot object
type supported in the H TML environment. For information about creating your
own data tests, see Appendix B, Working with Data Tests.

Robot object type Supported data test Description of data test

PushButton
CheckBox
RadioButton
EditBox

Contents Captures and compares visible text.

H TMLText Captures and compares the H TML source.

ComboBox
ListBox

Contents Captures and compares the text of all items in the box.

ItemData Captures and compares the value attribute in the H TML
source.

H TMLText Captures and compares the H TML source.

H TMLLink Contents Captures and compares the “href” of the anchor — that
is, the U RL of the destination.

H TMLText Captures and compares the H TML source.

H TMLImage H TMLText Captures and compares the H TML source of the image.

H TMLDocument Contents Captures and compares the visible text of the entire
document, including text in all of the elements in H TML
forms, such as list boxes and combo boxes.

H TMLText Captures and compares the H TML source of the entire
document.

Document U RL Captures the U RL of the document.

Document Title Captures the title of the document.

H TMLTable Contents Captures and compares the visible text of the entire table.

H TMLText Captures and compares the H TML source of the table.

H TMLActiveX N one
19 -10

Testing Properties of H TM L Elem ents
Testing Properties of HTML Elements

Another way to test your Web pages is to use the Object Properties verification point.

Properties describe an H TML element’s characteristics, such as its appearance, state,
behavior, and data. The Rational Object Testing technology inspects and verifies all
properties of the H TML elements in your application, including hidden properties
that cannot be tested manually.

For example, you can create an O bject Properties verification point to capture and
compare the modification date of a page or to determine whether a check box or a
radio button is selected.

The Object Properties verification point provides you with information about more
than 20 properties for each H TML element. Some properties provide you with the
same information as a data test. For example, a radio button’s Value property
provides you with the same information as a Contents data test.

For more information about the Object Properties verification point, see the Robot
H elp.

To test an H TML element’s properties:

1 . Start recording in Robot, as described in Enabling HTML Testing in Robot on page
19-3.

2 . N avigate to the Web page that contains the element to test.

3 . Click the O bject Properties Verification Point button on the GU I Insert
toolbar.

4 . Assign a name, wait state, and expected result for the verification point and then
click O K , as described in Tasks Associated with Creating a Verification Point on page
6-6.
1 9 -1 1

Testing H TM L Applications
5 . Select the element to test and then click O K . The element’s properties are
displayed as follows:

6 . Click O K to insert the verification point.

Playing Back Scripts in Netscape Navigator

With Robot, you can record scripts in Internet Explorer and play them back in
N etscape N avigator. N etscape playback requires at minimum a 200 MH z Pentium
with at least 64 MB of RAM.

Configuring Robot for Netscape Playback
To configure Robot for N etscape playback:

1 . In Robot, click Tools → Extension M anager and make sure that the H TM L-
N avigator extension is selected.

To improve performance, clear any extensions that are not used. Click O K.
Restart Robot to load the extension.

2 . In Robot, click Tools → GU I Playback O ptions and click the W eb Browser tab.
19 -12

Playing Back Scrip ts in N etscape N aviga tor
3 . Select N etscape N avigator 4 .x.

If you have multiple versions of N avigator, you can specify the full path to the
version of N avigator that you want to use for playback.

Alternatively, you can edit your script so that it will play back in N avigator. For
example, to specify N avigator playback, type one of the following commands in
your script:

SQASetDefaultBrowser "Navigator"

SQASetDefaultBrowser "Navigator=c:\program files\
netscape\communicator\program\netscape.exe"

U se the first command if you have only one version of N avigator on your
computer. U se the second command if you have multiple versions of N avigator
on your computer, replacing the program path indicated with the actual path on
your computer. Be sure to insert the command before the StartBrowser
command is invoked in the script.

Differences Between Internet Explorer and Navigator
Both Microsoft Internet Explorer and N etscape N avigator contain proprietary
extensions to the H TML standard. As a result, H TML documents are often
rendered differently in each browser.

N avigator support is provided for script playback only. In addition, you should be
aware of the following areas in which N avigator playback differs from Internet
Explorer playback:

ã The following Robot object types, which represent the Microsoft
implementation of Dynamic H TML, are not recognized by Robot during
N avigator playback:

– H TMLActiveX

– H TMLEmbed

– H TMLScriptlet
1 9 -1 3

Testing H TM L Applications
ã The following Robot object types do not support Robot action commands, such
as Click, Drag, and Scroll, during N avigator playback:

– H TMLTable

– H TML

ã H TMLImage is an all-inclusive object type encompassing image maps (both
client- and server-side), input images, and regular images. Actions for server-
side image maps are fully supported. H owever, when Robot plays back scripts in
N avigator, coordinate-based actions for client-side image maps are not
supported, and no actions are supported for input and regular images.

ã N ot all of the object properties recognized by Internet Explorer during
recording are supported by the N avigator extension. In addition, other object
properties may have different values because of browser differences.

ã The current Robot implementation of N avigator playback requires a Web server
that allows disk caching.

Recording Tips

This section provides suggestions to help you record scripts in Robot. It contains the
following tips:

ã Capturing the properties of Java applets in H TML pages

ã Synchronizing pages

ã Recording mouse movements

ã Ensuring browser compatibility

Capturing the Properties of Java Applets in HTML Pages
There are two ways to capture the properties of a Java applet embedded in a Web
page. You can either capture the properties of the entire window, or you can capture
the properties of the applet itself. Either way, you should first click Tools →
Extension M anager in Robot to verify that the Java extension is loaded.

To capture the entire window, including the applet:

1 . Add an O bject Properties verification point.

2 . With the O bject Finder tool, point to the title bar of the browser window until
W indow appears in the TestTip.
19 -14

Record ing T ips
3 . Click O K .

To capture only the properties of the Java applet:

1 . Add an O bject Properties verification point.

2 . With the Object Finder tool, point to the Java applet until JavaW indow appears
in the TestTip.

3 . Click O K .

Synchronizing Pages
Whenever you click on a page for the first time, Robot inserts a Browser NewPage
command into the script. This command causes Robot to wait for the contents of the
page to fully load before continuing, and also helps prevent timing problems that
could cause scripts to fail when they are played back. The following scenarios
illustrate how this works.

For more information about page synchronization, see the description of the
Browser command in the SQABasic Language Reference.

Capturing Properties or Data of Window Objects
Any time you plan to capture the data or properties of a window object, be sure to
click in the window before inserting an O bject Data or O bject Properties verification
point. Clicking in the window inserts a Browser NewPage command into the
script and ensures proper synchronization between pages.

Using the Browser’s Back and Forward Buttons
If you use the Back or Forward buttons to navigate to a previously viewed page while
recording a script, you must perform some action on the page before you click the
Back or Forward button again. Clicking on the page, for example, inserts the
Browser NewPage command into the script, and just as with the previous
example, ensures proper synchronization between pages.

N O TE: Do not point to the H TMLDocument object type. This object type
provides minimal detail about Java applets.
1 9 -1 5

Testing H TM L Applications
Recording Transactions
When you submit a purchase order for an e-commerce transaction, there may be a
substantial delay before the Web server responds with a confirmation. In fact, a Web
server may send one or more interim pages while it is processing the transaction.
Robot waits 30 seconds, by default, for this confirmation to arrive from the server. If
the confirmation requires additional time, you will see the warning N ew Page N ot
Found in the LogViewer after you play back the script. To correct this problem, edit
the script by adding a W ait value greater than 30 seconds to the Browser NewPage
command, as in the following example:

Browser NewPage, “HTMLTitle=Thank you for your order!”, ”Wait=45”

In this example, the use of H TM LTitle in the recognition string allows Robot to
identify the correct page at playback and skip over any interim pages. The W ait value
causes Robot to wait 45 seconds for this specific page to be displayed.

Recording Mouse Movements
With Dynamic H TML, it is possible to cause a page to change color or to cause text
on a page to update simply by moving the mouse over the page. To capture these
mouse movements:

1 . Start recording in Robot.

2 . N avigate to the page that contains the Dynamic H TML.

3 . Press CTRL+ SH IFT+ R to enter low-level recording mode.

4 . Move the pointer over the portion of the page that is affected by the mouse
movement.

5 . Press CTRL+ SH IFT+ R to stop low-level recording mode.

6 . Insert an Object Properties verification point.

For more information about low-level recording, see Switching to Low-Level Recording
on page 4-22.
19 -16

Enhancing O b ject Recogn it ion of H TM L Elem ents
Ensuring Browser Compatibility
To help ensure that scripts recorded in Internet Explorer play back as expected in
N avigator, observe the following recording tips:

ã Do not click on the scroll bars in Internet Explorer during recording. If you need
to scroll, pause the recording, scroll the window, and then resume recording.

ã Avoid using the Forward or Back arrows during recording in Internet Explorer.
If you find it necessary to use them, edit your script by replacing the arrows with
the following commands:

– Browser Back, "",""

– Browser Forward, "",""

For more information, see the SQABasic Language Reference.

ã Exit Internet Explorer by clicking the Close W indow button in the upper-right
corner of the window, rather than by clicking File → Close.

Enhancing Object Recognition of HTML Elements

Robot uses recognition methods to identify H TML elements in the application-
under-test. These recognition methods are saved as arguments in scripts to help
Robot identify these elements during playback. For example, Robot can identify a
link by the visible text of the link — that is, the text that a user clicks on. If this text
changes after a script has been recorded, the script may fail when it is played back.

The best way to ensure that Robot recognizes this link is to assign it an ID that will
always remain the same, even if the visible text changes — for example:

See About Our Product

To enhance the recognition of image elements, it is best to use either ALT tags or ID
tags, as shown in the following examples:

<img src="lookpix.gif" border =0 alt="Lookup a
document">

<img ID="SearchButton" src="searchpix.gif"
border=0>

For more information about recognition methods, see the SQABasic Language
Reference.
1 9 -1 7

Testing H TM L Applications
19 -18

ã ã ã C H A P T E R 20

Testing Java Applets and Applications
Java is an object-oriented programming language that lets you write programs that
can run on any computer that implements the Java Virtual Machine (JVM).

This chapter describes how to use Robot to test both Java applets running in a
browser and standalone Java applications. It includes the following topics:

ã About Robot support for Java

ã Making Java applets and applications testable

ã Setting up the sample Java applet

ã Testing data in Java components

ã Support for custom Java components

ã Supported data tests for Java testing

ã Testing properties of Java components

ã Enhancing object recognition of Java components

For a good introduction to Java concepts and terminology, read the Java language
overview at the following U RL:

http://java.sun.com/docs/overviews/java/java-overview-1.html
20 -1

Testing Java Applets and Applica tions
About Robot Support for Java

Rational Robot provides comprehensive support for testing GU I components in
both Java applets and standalone Java applications. With its Object Testing
technology, Robot examines the data and properties of Java components. This means
that Robot can do the following:

ã Determine the names of components in your program, and use those names for
object recognition.

ã Capture properties of Java components with the Object Properties verification
point.

ã Capture data in Java components with the Object Data verification point.

Robot includes several Java-specific object types for testing Java components,
including JavaPanel, JavaWindow, JavaSplitPane, JavaMenu, JavaPopupMenu,
JavaTable, JavaTableH eader, and JavaTree.

Robot scripts can be played back on a variety of Windows platforms, including
Windows N T 4.0, Windows 2000, Windows 98, and Windows 95, and are
transportable across the various Java platforms.

The following matrix presents an overview of the Java support in Robot:

For information about support for additional Java environments and foundation
classes, see the Rational Web site at www.rational.com.

Java Virtual Machines (JVM)

Su
pp

or
te

d
C

la
ss

 L
ib

ra
ri

es

Sun JDK 1.1, 1.2 Microsoft Java SDK 3.1 Netscape 4.05 and later
(Applets only)

AWT AWT AWT

JFC/Swing JFC/Swing JFC/Swing

WFC

Symantac Visual Cafe Symantac Visual Cafe Symantac Visual Cafe

KL Group KL Group KL Group

Extensibility Extensibility Extensibility
20 -2

About Robot Support for Java
Robot Support for Testing Java Applets and Applications
A Java applet is a Java program embedded inside a Web page or displayed with an
applet viewer. Java applications are standalone programs that require a Java Virtual
Machine (JVM) in order to run. Java applications create their own windows and are
not embedded inside Web pages.

Support for Testing Java Applets
Robot provides support for testing Java applets that run in the following
environments:

ã Internet Explorer 4.0 or later with the Microsoft Java Virtual Machine (JVM) or
with the Sun plug-in

ã N etscape 4.05 or later with the N etscape JVM or with the Sun plug-in

ã Microsoft Appletviewer

ã Sun Appletviewer from the Java Developer Kit (JDK) 1.1.4 or later

Support for Testing Java Applications
Robot provides support for testing standalone Java applications that run in the
following environments:

ã Sun JDK 1.1.4 or later

ã Sun Java Runtime Environment (JRE) 1.1.4 or later

ã Microsoft JVM (jview)

You can create Robot scripts that play back Java applications under Rational Quantify
and PureCoverage. For information, see Setting Diagnostic Tools Options on page 9-11.

Supported Foundation Class Libraries
With Robot you can test Java objects that are instances of the following class libraries
or objects that are derived from any of these class libraries:

ã Abstract Windowing Toolkit (AWT)

AWT is a collection of core graphical user interface classes that will run on any
supported Java platform.
20 -3

Testing Java Applets and Applica tions
ã Java Foundation Class (JFC)

JFC is an extension to AWT that provides additional graphical user interface
classes, such as:

– Swing

– Accessibility

– Drag and Drop

– Java-2D, Java-3D

– Windows Foundation Classes (WFC). Java programs using WFC
components run only on Microsoft JVMs.

ã Symantec Visual Cafe

ã KL Group

In future releases, Rational will provide support for additional foundation class
libraries. For information about the most recent enhancements, see the Rational
Web site.

Making Java Applets and Applications Testable

To make Java applets and applications testable, you need to:

ã Run the Java Enabler. The Java Enabler makes each host environment testable.

ã Verify that the Java extension is loaded. The Java extension includes those
additions to Robot that allow Robot to test Java.

These tasks are described in the following sections.

N O TE: For information about how to enable your computer to support other
foundation classes such as Swing, see Setting Up the Sample Java Applet on page
20-7.
20 -4

M aking Java Applets and Applications Testable
Running the Java Enabler
By default, Java testing is disabled in Robot. To enable Java testing, you need to run
the Java Enabler. The Java Enabler is a wizard that scans your hard drive looking for
Java environments such as Web browsers and Sun JDK installations that Robot
supports. The Java Enabler only enables those environments that are currently
installed.

To run the Java Enabler:

1 . Make sure that Robot is closed.

2 . Click Start → Program s → Rat iona l p roduct nam e → Rational Test →
Java Enabler.

3 . Select one of the available Java enabling types.

N O TE: If you install a new Java environment such as a new release of a browser
or JDK, you must rerun the Enabler after you complete the installation of the Java
environment. You can download updated versions of the Java Enabler from the
Rational Web site whenever support is added for new environments. To obtain
the most up-to-date Java support, simply rerun the Java Enabler.
20 -5

Testing Java Applets and Applica tions
4 . Select the environments to enable.

5 . Click N ext.

6 . Click Yes to view the log file.

The following table describes what the Java Enabler does to update the various Java
environments:

N O TE: If the Java Enabler does not find your environment, you must upgrade to
one of the supported versions and rerun the Java Enabler. For a list of supported
environments, see About Robot Support for Java on page 20-2.

With this Java environment The Java Enabler

Sun JDK 1.1 U pdates the CLASSPATH on Windows 95 and Windows
98 and the system CLASSPATH on N T 4.0 and
Windows 2000 to include the path to the sqarobot.jar file.

Sun JRE 1.1 U pdates the CLASSPATH on Windows 95 and Windows
98 and the system CLASSPATH on N T 4.0 and
Windows 2000. If the CLASSPATH is not used by the
Java application, you will need to manually add the
sqarobot.jar file to the CLASSPATH used by the
application.

Sun JDK 1.2 ã Copies the sqarobot.jar file to the Jre\Lib\Ext directory.
ã U pdates the accessibility.properties file to reference the

Robot runtime monitor class.
20 -6

Setting U p the Sam ple Java Applet
Verifying that the Java Extension Is Loaded
To test Java, you must first make sure that the Java extension is loaded in Robot.

To verify that the Java extension is loaded:

1 . Start Robot.

2 . Click Tools → Extension M anager.

3 . Verify that Java is selected. If not, select it.

4 . To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5 . Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Setting Up the Sample Java Applet

After you complete the tasks in the proceeding section, you can start testing your Java
applets or standalone applications, or you can learn more about testing Java by
installing the sample Java applet that Rational provides.

To use the sample applet, you must perform the following tasks:

1 . Install the sample Java applet.

2 . Install Sun’s Swing foundation classes. (Swing is a subset of JFC.)

3 . Start the sample Java applet.

These tasks are described in the following sections.

Microsoft JVM U pdates the trusted CLASSPATH in the registry.

N etscape JVM ã Copies the sqarobot.jar file to the Java\Classes directory
within the N etscape directory structure.

ã Copies the sqajava.dll file to the Java\Bin directory.
ã U pdates the awt.properties file in the Java\Classes

directory.

 (Continued)

With this Java environment The Java Enabler
20 -7

Testing Java Applets and Applica tions
Installing the Sample Java Applet
To install the sample Java applet:

1 . Click Start → Program s → Rat iona l p roduct nam e → Rational Test →
Set U p Rational Test Sam ples.

2 . Select Java Sam ple.

3 . Click N ext to complete the installation.

Installing the Swing Foundation Classes
The sample Java applet requires Sun’s JFC 1.1 or Swing foundation classes version
1.1 or later. You can download JFC/Swing from www.javasoft.com/products/jfc.
After you download the Swing foundation classes, you need to install them.

Installing Swing Under Windows NT 4.0
To install the Swing foundation classes on a computer running Windows N T 4.0:

1 . Double-click the file that you just downloaded to install Swing on your
computer.

2 . Click Start → Settings → Control Panel.

3 . Double-click System .

4 . Click the Environm ent tab.

5 . Click CLASSPATH under System Variables.

6 . Move the cursor to the end of the Value box. Type a semi-colon and the full path
to the swingall.jar file.

This file is installed when you install Swing. For example, if you installed
Swing-1.1 at the root of your C drive, you would type the following:

;c:\swing-1 .1 \swingall.jar

7 . Click Set.

8 . Click O K .

N O TE: When you run the Java Enabler, the Swing foundation classes are
automatically installed. For information, see Running the Java Enabler on page 20-5.
20 -8

Setting U p the Sam ple Java Applet
Installing Swing Under Windows 2000
To install the Swing foundation classes on a computer running Windows 2000:

1 . Double-click the file that you just downloaded to install Swing on your
computer.

2 . Click Start → Settings → Control Panel.

3 . Double-click System .

4 . Click the Advanced tab. Click Environm ent Variables.

5 . Click CLASSPATH under System Variables, and click Edit.

6 . Move the cursor to the end of the Variable Value box. Type a semi-colon and
the full path to the swingall.jar file.

This file is installed when you install Swing. For example, if you installed
Swing-1.1 at the root of your C drive, you would type the following:

;c:\swing-1 .1 \swingall.jar

7 . Click O K .

8 . Click O K .

Installing Swing Under Windows 98 and Windows 95
To install the Swing foundation classes on a computer running Windows 98 or
Windows 95:

1 . Double-click the file that you just downloaded to install Swing on your
computer.

2 . Edit the CLASSPATH environment variable in your workstation’s autoexec.bat
file to include the path to the swingall.jar file.
20 -9

Testing Java Applets and Applica tions
Starting the Sample Java Applet
To run your default browser and load the sample Java applet:

ã Click Start → Program s → Rational Test Sam ples → Java.

For instructions about using the Java applet, see the Try it! with Java card.

Testing Data in Java Components

U se the O bject Data verification point to test the data in Java components. For more
information about verification points, see Chapter 6, Creating Verification Points in
GUI Scripts and the Robot H elp.

To test a Java component’s data:

1 . Start recording in Robot. For details, see Recording a N ew GUI Script on page
4-16.

2 . Open the Java applet or application that you want to test.

If you plan to play back the script under Rational Quantify or PureCoverage to
test a Java application (not an applet), use the Start Java Application button on
the GU I Insert toolbar. For information about Q uantify and PureCoverage, see
Setting Diagnostic Tools Options on page 9-11. For information about starting a
Java application, see Starting an Application on page 5-1.

3 . N avigate to the page that you want to test.

4 . Start creating the O bject Data verification point. (For instructions, see Object
Data verification point in the Robot H elp Index.)
20 -10

Testing D ata in Java Com ponents
5 . Assign a name, wait state, and expected result for the verification point and then
click O K , as described in Tasks Associated with Creating a Verification Point on page
6-6.

6 . In the Select Object dialog box, drag the O bject Finder tool over the page until
the component you want to test appears in the TestTip, as described in Selecting
and Identifying the Object to Test on page 6-10.

For example, to test that a particular item in a ComboBox is selected, drag the
Object Finder tool over the page until Com boBox appears in the TestTip.

7 . Release the mouse button.

8 . If the dialog box is still open, click O K.

9 . If the Object Data Tests dialog box appears, select the data test to use and
click O K .

For example, to test that a particular element in a ComboBox is selected, select
the JavaActiveState data test. To test all of the elements in a ComboBox, select
the Contents data test.

1 0 . Complete the verification point as usual.

Com boBox

O bject Finder tool

TestT ip
2 0 -1 1

Testing Java Applets and Applica tions
Testing the Contents of a Java Panel
A feature unique to Java testing is the ability to collect and test the data for all the
known components on a Java panel. A panel is a container of components and other
panels that you have grouped together.

To test the contents of a Java panel:

1 . Repeat steps 1 – 5 from the section Testing Data in Java Components on page 20-10.

2 . In the Select Object dialog box, drag the O bject Finder tool over the page until
JavaPanel appears in the TestTip, as described in Selecting and Identifying the
Object to Test on page 6-10.

You can use the Object Data verification point to capture the active state of each
component in the panel. Robot inserts only the fields with dynamically
changing data, such as EditBox, RadioButton or ComboBox, into the panel’s
Object Data verification point. Components without active state (JavaPanels,
PushButtons, or Labels) are not saved in the verification point.

3 . Repeat steps 7 – 10 from the section Testing Data in Java Components on page
20-10.

JavaPanel

O bject Finder too l

TestT ip
20 -12

Support for Custom Java Com ponents
Support for Custom Java Components

With Java, you can create your own user-defined classes. For example, you can create
a new kind of button class that acts the same way as an existing AWT Button. If you
derive your new button from the AWT button class, Robot can map the new class
correctly.

Beyond the standard class libraries, Robot supports custom Java components in
other class libraries, such as those available with IBM Visual Age and other IDEs.
This extended Java support is provided through the Robot Java Open API.

By mapping a standard SQABasic object type (such as a push button or Java panel) to
a custom Java component, and by using the Java Open API to create a proxy interface
for the custom component, you can use Robot to test the custom component.

You map standard SQABasic object types with custom Java components in the Java
Class M apping tab of the Robot General Options dialog box, as shown here:

To display the Java Class Mapping tab in Robot:

ã Click Tools → Genera l O ptions. Click the Java Class M apping tab.
2 0 -1 3

Testing Java Applets and Applica tions
For More Information About Java Support
For information about mapping standard SQABasic object types to custom Java
components, click the H elp button in the Java Class M apping tab to display Robot
H elp for that topic, or search the Robot H elp index for Java Class Mapping tab.

For information about the Robot Java O pen API, open the online document
overview-summary.htm. By default, this file is located in the following path:

Program Files\Rational\Rational Test 7\JavaEnabler\api

You can also open this file through the Robot and SQ ABasic H elp systems wherever
you see the link to the Robot Java API Overview.

Supported Data Tests for Java Testing

The following table describes the data tests that are available for each Robot object
type supported in the Java environment.

Robot object type Supported data test Description of data test

PushButton, Label Contents Captures and compares visible text.

CheckBox
RadioButton

Contents Captures and compares visible text.

Java Active State Displays Selected or N ot Selected depending on the
current state.

EditBox Contents Captures and compares visible text.

Java Active State Captures and compares selected text.

ScrollBar, TrackBar Contents Displays the current value.

Java Active State Displays the Value, U nit Increment, and Block
Increment.

ListBox, ComboBox
ComboListBox

Contents Captures and displays all elements in the list box, combo
box, or combo list box.

Java Active State Captures and displays the currently selected elements.

TabControl Contents Captures and displays all of the tabs.

Java Active State Captures and displays the currently selected tab.

JavaTree Contents Captures and displays the contents of the Java tree.

Java Active State Captures and displays the currently selected elements in
the Java tree.
20 -14

Testing Propert ies of Java Com ponents
Testing Properties of Java Components

You can use the Object Properties verification point to test the properties of Java
components.

Properties describe a component’s characteristics such as its appearance, state,
behavior, and data. The Rational Object Testing technology inspects and verifies all
properties of the components in your application, including hidden properties that
cannot be tested manually.

To test the properties of Java components:

1 . Start recording in Robot. For details, see Recording a N ew GUI Script on page
4-16.

2 . N avigate to the page that contains the component you want to test.

3 . Start creating the Object Properties verification point as usual. (For instructions,
see Object Properties verification point in the Robot H elp Index.)

4 . Assign a name, wait state, and expected result for the verification point and then
click O K , as described in Tasks Associated with Creating a Verification Point on page
6-6.

JavaSplitPane Contents Captures and displays the current scroll value for the
pane.

JavaTable Contents Captures and displays each cell in the table.

JavaTableHeader Contents Displays each column header in the table.

JavaPanel
JavaWindow

Contents Captures and displays the data-sensitive objects in the
object and its children. A data -sensitive object is a
child or nested child of a selected object that contains
dynamically-generated data. Examples include
EditBoxes, CheckBoxes, and RadioButtons, but not
PushButtons.

JavaMenu
JavaPopupMenu

Contents Captures and displays the menu header and items for
each menu.

Java Active State Captures and displays the currently selected menu item.

Menu Test Captures and displays the menu header and items for
each menu, along with accelerator keys and mnemonic
specifiers.

 (Continued)

Robot object type Supported data test Description of data test
2 0 -1 5

Testing Java Applets and Applica tions
5 . In the Select Object dialog box, drag the O bject Finder tool over the page until
the component that you want to test appears in the TestTip, as described in
Selecting and Identifying the Object to Test on page 6-10.

For example, to test for the current, minimum, and maximum values in a
trackbar, drag the O bject Finder tool over the component until Trackbar
appears in the TestTip. See the following example.

6 . Release the mouse button. If the Select Object dialog box is still open, click O K.

The object’s properties appear:

Trackbar TestT ip

O bject Finder too l

Current va lue of trackbar

M axim um value of trackbar

M in im um value of trackbar
20 -16

Enhancing O bject Recogn ition of Java Com ponents
7 . Click O K to complete the verification point.

Enhancing Object Recognition of Java Components

Robot uses recognition methods to identify components in the application-under-
test. These recognition methods are saved as arguments in scripts so Robot can
correctly identify these component during playback. For example, Robot can
identify a Java Button by the visible text displayed on the button. If the text changes
after the script has been recorded, the script may fail when it is played back.

The best way to make sure that Robot recognizes a Java component is to assign a
name to the object in the Java code. Although Java supports several ways of doing
this, Robot works as follows:

ã If the component exports a public String getName() method and this
method returns a name that starts with a dot (.) character, Robot uses this name
to uniquely identify the component. The dot prefix is necessary to make sure
that the name has been explicitly set by the user and not set to a default value by
the browser.

This recognition method is available with all java.awt.Component derived
classes.

ã If the component contains an accessibleContext.accessibleName
property, Robot will use it to recognize the component.

This recognition method is available only with JFC-derived classes.

By assigning unique names to your Java components, you can make your scripts
more resilient.

N O TE: When you create an O bject Properties verification point, you can
edit the list of properties that are saved with the component. Robot saves the
list relative to the Java class name (for example, Java.awt.Button), not the
Robot command name (for example, PushButton). This allows you to save
derived classes with different lists of properties. For more information about
adding and removing properties from the properties list, see the Robot H elp.
2 0 -1 7

Testing Java Applets and Applica tions
20 -18

ã ã ã C H A P T E R 21

Testing PowerBuilder Applications
This chapter describes how to test 32-bit PowerBuilder applications with Rational
Robot. It includes the following topics:

ã About Robot support for PowerBuilder applications

ã Verifying that the PowerBuilder extension is loaded

ã Try it! with PowerBuilder

ã Recording actions on DataWindows

ã Testing an expression value of a DataWindow property

ã Testing DataStore controls and hidden DataWindows

ã Capturing data in a DropDownDataWindow and DropDownListBox

ã Testing the value of a DataWindow computed field

About Robot Support for PowerBuilder Applications

Rational Robot provides comprehensive support for testing 32-bit applications built
with PowerBuilder 5.0 through 7.0. Robot supports the testing of applications that
you migrate from one PowerBuilder version to another, and allows for the reuse of
scripts between Windows N T 4.0, Windows 2000, Windows 98, and Windows 95.

With its Object Testing technology, Robot examines data and properties that are not
visible to the user. Robot uses Object-Oriented Recording to recognize a
PowerBuilder object by its internal name.
21 -1

Testing PowerBu ilder Applica tions
You can use Robot to test all PowerBuilder and third-party components, including:

ã DataStore controls and hidden DataWindows

ã ActiveX controls

ã RichTextEdit controls

ã DataWindows with RichText presentation style

ã All properties of a DataWindow computed field, including expression and value

Verifying that the PowerBuilder Extension Is Loaded

To test PowerBuilder applications, you should first verify that the Robot
PowerBuilder extension is loaded in Robot.

To verify that the extension is loaded:

1 . Start Robot.

2 . Click Tools → Extension M anager.

3 . Verify that PowerBuilder is selected. If not, select it.

4 . To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5 . Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Try it! with PowerBuilder

Robot comes with the Try it! with PowerBuilder card and sample applet.

The Try it! card provides quick instructions for recording tests on objects in the
PowerBuilder applet. The applet contains objects that are specific to the
PowerBuilder development environment. For example, you can test the properties
and data of a DataWindow that contains DropDownDataWindow and computed
field.
21 -2

Recording Actions on D ataW indows
Recording Actions on DataWindows

Robot uses certain action parameters to identify a DataWindow row if the action is a
mouse click. These parameters help make your scripts more reliable and readable by
reducing the dependency on absolute positions.

These parameters are used when you record actions on:

ã DataWindows

ã DataWindow sub-objects

N O TE: For detailed information about DataWindow action parameters, see the
SQABasic Language Reference.
21 -3

Testing PowerBu ilder Applica tions
Parameters for a Mouse-Click Action
The following action parameters identify a DataWindow row if the action is a mouse
click:

Robot can record these action parameters for the following types of multi-row
DataWindow and DropDownDataWindow presentation styles: FreeForm, Grid,
OLE, RichText, and Tabular.

Robot records coordinates for all other DataWindow presentation styles and for
DropDownListBoxes.

Value-Based Recording
By using value-based recording, Robot lets you record actions on a DataWindow and
lets you play back those actions regardless of the position of records in the database.
Value-based action parameters are written to a script as column/value pairs, using
either the column number or the column name.

Action parameter Action during playback

Col=%;Value=x Clicks the row specified by the column/value pair. Col
is the numeric position of a DataWindow column and
Value is the contents of the cell located at the intersection
of column Col and the clicked row. (See the next section,
Value-Based Recording.)

ColName=$;Value=x Clicks the row specified by the column/value pair.
ColName is the developer-assigned name of a
DataWindow column, and Value is the contents of the
cell located at the intersection of column ColName and
the clicked row. (See the next section, Value-Based
Recording.)

CurrentRow Clicks the currently selected row in the DataWindow.

LastRow Clicks the last row in the DataWindow.

Row=% Clicks the row specified by the number (first row = 1).

Text Clicks the row identified by the visible text in the
DataWindow row.

VisibleRow=% Clicks the visible row specified by the number. The range
of row numbers begins with the first visible row.
21 -4

Testing an Expression Va lue of a D ataW indow Property
In the following example, when you select a cell in the tabular DataWindow, Robot
records a column/value pair to uniquely identify the row that was clicked.

This script shows that Robot:

– Recorded a Click in the DataWindow dw_customer_info

– In the column customername

– In the row with a customerid of 1

Robot detects which columns in a DataWindow are key columns, and then uses the
key columns in the column/value pairs. If there are no key columns, Robot uses as
many column/value pairs as necessary to uniquely identify the clicked row, starting
with the leftmost column.

Testing an Expression Value of a DataWindow Property

In PowerBuilder, the value of any property of a DataWindow or DataWindow sub-
object can be an expression. For example, you can have the background color of a
DataWindow dynamically vary based on a formula or comparison.

If a property's value comes from an expression, an Object Properties verification
point performed on a DataWindow returns both the current value and an
.Expression property whose value is the expression. In this case, you can test the
actual result and the expression itself.

If you select th is cell ...

... Robot writes th is in the scrip t.

The co lum n/value pa ir identifies the clicked row.
21 -5

Testing PowerBu ilder Applica tions
For example, if the value of Background.Color is an expression, an Object
Properties verification point returns both:

ã The Background.Color property with a value that is the actual result of the
expression.

ã The Background.Color.Expression property with a value that is the expression.
(The value of an .Expression property is always a string.)

Expressions that are used against objects within the detail band of a DataWindow are
reevaluated for every row. When Robot returns the values of such properties, they
are based on the state of the current row of the DataWindow. If you select a different
row and recapture the properties, you may get different values.

Testing DataStore Controls and Hidden DataWindows

You can test the properties and data of PowerBuilder objects even though they are
not visible in the application. By selecting from a list of all objects on the Windows
desktop, you can test:

ã N onvisual DataStore controls. (DataStore controls always appear as direct
children of the Windows desktop.)

ã H idden DataWindows (Visible property is False).

Current co lor
Expression
21 -6

Capturing D ata in a D ropD ownD ataW indow/ListBox
For information about selecting objects from the Windows desktop, see Selecting and
Identifying the Object to Test on page 6-10.

Capturing Data in a DropDownDataWindow/ListBox

To capture the data in a DropDownDataWindow or DropDownListBox, use the
Object Data verification point as follows:

1 . Start creating an Object Data verification point.

2 . In the Select Object dialog box, drag the Object Finder tool to the DWColumn
that contains the data.

If the DWColumn has a child dropdown, the TestTip shows D W Colum n
(Conta ins D ropD ownD ataW indow) or (Conta ins D ropD ownListBox) .

3 . Release the mouse button. If the Select O bject dialog box still appears, click O K.

The Object Data Tests dialog box appears.

4 . To capture the data stored in the child dropdown of the DataWindow or ListBox,
select the D ropD own Contents data test.

To capture the data in the DataWindow, select the D ataW indow Contents test.
(If the DWColumn does not contain a child dropdown, the data in the
DataWindow is captured automatically after step 3.)

5 . Click O K .

6 . Continue creating the verification point as usual.

The nonvisua l
D ataStore contro l is a
ch ild of the desktop.

Shows h idden
objects on the
desktop.
21 -7

Testing PowerBu ilder Applica tions
Testing the Value of a DataWindow Computed Field

The Object Properties verification point supports a Value property for a computed
field (DWComputedField) within a DataWindow. The Value property contains the
current result of the expression assigned to the computed field.

You can also test the Expression property, which contains the expression used to
calculate the value of the computed field.

Expression used to
ca lcu late the va lue

D WCom putedField

Current result of the
expression
21 -8

ã ã ã C H A P T E R 22

Testing PeopleTools Applications
This chapter describes the support that Rational Robot provides for testing
PeopleTools applications. It includes the following topics:

ã About Robot support for PeopleTools applications

ã Verifying that the PeopleTools extension is loaded

ã Testing a component’s properties

ã Testing a component’s data

ã PeopleTools commands

About Robot Support for PeopleTools Applications

Rational Robot provides comprehensive support for testing applications built with
PeopleTools versions 6.0 through 8.x. With its O bject Testing technology, Robot
examines data and properties that are not visible to the user. Robot uses Object-
Oriented Recording to recognize a PeopleTools component by its field name in the
database.

Robot provides end-to-end automated testing of your PeopleTools applications,
as follows:

If you have purchased Then

A PeopleTools application Your PeopleTools package includes a PeopleTools-only
version of Robot.

Rational Robot Support for testing PeopleTools applications with Robot
is available in addition to all the other features of Robot.

Rational TestFoundation You have access to a testing methodology and a
comprehensive collection of pre-recorded scripts for
PeopleTools applications.
22 -1

Testing PeopleToo ls Applica tions
You can use Robot to test the following PeopleTools components:

Grids Tab controls
Menu objects Toolbars
N avigator Panels Trees
Panels Tree Views
Spin controls

Verifying that the PeopleTools Extension Is Loaded

To test PeopleTools applications, you should first verify that the Robot PeopleTools
extension is loaded in Robot.

To verify that the extension is loaded:

1 . Start Robot.

2 . Click Tools → Extension M anager.

3 . Verify that PeopleTools is selected. If not, select it.

4 . To improve the performance of Robot, clear the check boxes of all environments
that you do not plan to test.

5 . Exit Robot.

The next time you start Robot, only the extensions for the selected environments are
loaded.

Testing a Component’s Properties

There are two methods that you can use to test the properties (attributes) of a
PeopleTools component:

ã O bject Properties verification point – U se to test properties while recording a
script.

ã O bject Scripting com m ands – U se to test properties programmatically while
editing a script. (For information, see the SQABasic Language Reference.)

N O TE: To test the properties of the entire panel, point to the window title
bar when selecting the object to test.
22 -2

Testing a Com ponent’ s D ata
Testing a Component’s Data

You can use the Object Data verification point to test the data in PeopleTools data-
aware components.

You can use the Object Data Test Definition to define user data tests. (For
information, see Appendix B, Working with Data Tests.)

PeopleTools Commands

The following commands are included in the SQ ABasic scripting language to
support the PeopleTools development environment. (For detailed information
about these commands, see the SQABasic Language Reference.)

N O TE: To test the data in the entire panel, point to the panel when selecting the
object to test.

Command Description

PSGrid Performs an action on a PeopleTools grid.

PSGridHeader Performs an action on a column header in a PeopleTools
grid.

PSGridHeaderVP Creates a verification point on a column header in a
PeopleTools grid.

PSGridVP Creates a verification point on a PeopleTools grid.

PSMenu Performs an action on a PeopleTools menu object.

PSMenuVP Creates a verification point on a PeopleTools menu
object.

PSNavigator Performs an action on a PeopleTools N avigator window
or a navigator map in the PeopleTools Business Process
Designer.

PSNavigatorVP Creates a verification point on a PeopleTools N avigator
window or a navigator map in the PeopleTools Business
Process Designer.

PSPanel Performs an action on a PeopleTools panel.

PSPanelVP Creates a verification point on a PeopleTools panel.

PSSpin Performs an action on a PeopleTools spin control.
22 -3

Testing PeopleToo ls Applica tions
PSSpinVP Creates a verification point on a PeopleTools spin
control.

PSTree Performs an action on a PeopleTools tree object.

PSTreeHeader Performs an action on a column header in a PeopleTools
tree object.

PSTreeHeaderVP Creates a verification point on a column header in a
PeopleTools tree object.

PSTreeVP Creates a verification point on a PeopleTools tree object.

 (Continued)

Command Description
22 -4

ã ã ã Part VII

Appendixes

ã ã ã A P P E N D I X A

Working With Toolbars
Each component of Rational Robot has two default toolbars:

ã Standard – Contains buttons for choosing the most frequently used commands
for that component.

ã Tools – Contains buttons for choosing other components.

Robot has several additional toolbars: GU I Record, GU I Playback, GU I Insert,
VU Record, and VU Insert.

All toolbar buttons correspond to menu commands. Click a toolbar button to
immediately access the menu command. The toolbar buttons are dynamic. This
means that some toolbar buttons are enabled only when you select related menu
or toolbar commands.

Viewing Information About Toolbar Buttons

There are several ways to view information about a toolbar button and its
corresponding menu command:

ã To see the name of the button in a yellow ToolTip, point to the button and
pause.

ã To see a brief description in the status bar, point to the button or menu
command.

ã To see more detailed information about the button or menu command, do one
of the following:

– Point to the button or menu command and press F1 .

– Click the H elp Pointer icon on the right side of the Standard toolbar, and
then point to the button or menu command and click the mouse button.
A-1

Working With Too lbars
Displaying Toolbars

To display or hide a toolbar:

ã Click View → Toolbars, and then click the name of the toolbar you want to
display or hide.

A check mark appears in front of the name of each displayed toolbar.

Anchoring and Floating Toolbars

The Standard and Tools toolbars are anchored (docked) within each component’s
main window below the menu bar. H owever, you can drag an anchored toolbar from
within a window and make it a floating (undocked) toolbar, which you can position
and resize independently of the main window. When you do this, the toolbar
remains visible even when you minimize a component or when the component is
hidden behind another application. You can also drag a floating toolbar and anchor
it inside of the window.

Floating toolbars are always on top of all other windows. This ensures that they are
never hidden. The following figure shows a floating toolbar and an anchored toolbar.

D rag the bar to create a float ing toolba r.

D rag the t it le ba r to m ove a float ing toolba r. D rag the
too lbar to a m enu bar to anchor it .

D rag an edge or corner to change the too lbar’ s shape.

Anchored toolbar

Floating too lbar
A-2

Sett ing Toolbar O ptions
Setting Toolbar Options

To set the toolbar options:

1 . Click View → Toolbars → Custom ize, or right-click a toolbar and click
Custom ize.

2 . In the Toolbars tab, select or clear the appropriate check boxes:

Show ToolT ips – Displays a ToolTip when you point to a button and pause.

Cool Look – Changes the appearance of the toolbar buttons so that they have no
borders. It does not change the behavior of the buttons.

Large Buttons – Changes the size of the toolbar buttons.

3 . Click O K .

Adding, Deleting, and Moving Toolbar Buttons

To add, delete or move a toolbar button:

1 . Click View → Toolbars → Custom ize, or right-click a toolbar and click
Custom ize.

2 . Click the Com m ands tab.

3 . To add a button, click a menu name from the Categories list. Each name in the
list represents a menu in the menu bar. Click a button to see its description. Drag
the button to the toolbar. Make sure you release the mouse button within the
toolbar.

4 . To delete a button, drag it anywhere outside the toolbar.

5 . To move a button, drag it to a new location.

6 . Click O K .

Creating Your Own Toolbar

To create a custom toolbar that contains just the buttons you want:

1 . Click View → Toolbars → Custom ize, or right-click a toolbar and click
Custom ize.

2 . Click the Toolbars tab.

3 . Click N ew.
A-3

Working With Too lbars
4 . Type the name for the new toolbar and click O K .

5 . Click the Com m ands tab.

6 . Click a menu name from Categories.

7 . Click a button to see its description. Drag the button to the new toolbar. Make
sure you release the mouse button within the new toolbar.

8 . Repeat steps 6 and 7 until you have finished adding buttons.

9 . Click O K .

Resetting and Deleting Toolbars

To restore a default toolbar to its original configuration or to delete a custom toolbar:

1 . Click View → Toolbars → Custom ize, or right-click a toolbar and click
Custom ize.

2 . In the Toolbars tab, do one of the following:

– To reset a default toolbar to its original configuration, highlight the toolbar
in the list and click Reset.

– To delete a custom toolbar, highlight the toolbar in the list and click D elete.

The name of this button changes depending on the type of toolbar that is
selected.

3 . Click O K .
A-4

ã ã ã A P P E N D I X B

Working with Data Tests
This appendix describes how to work with data tests, which are used with the Object
Data verification point. This appendix includes the following topics:

ã About data tests

ã An example of a data test

ã Creating or editing a custom data test

ã Copying, renaming, or deleting a data test

For information about the Object Data verification point, see Object Data verification
point in the Robot H elp Index.

About Data Tests

The Object Data verification point supports data tests to capture the data in objects.
In general, there are two types of data tests:

ã Built-in data tests – Delivered with Robot. Built-in tests are available to all
users no matter which repository they are using. These tests cannot be edited,
renamed, or deleted, but they can be copied and viewed.

ã Custom data tests – Created within your organization. Each custom data test
is stored in the repository that was active when the data test was created. If you
switch to a different repository, the custom data tests are not available unless you
recreate them in the new repository. Custom data tests can be edited, renamed,
and deleted.

When you use the O bject Data verification point to test an object that has more than
one data test, Robot displays a list of all of the object’s data tests (built-in and
custom).
B-1

Working with D ata Tests
You can select any of the tests in the list depending on what you want to capture and
test. For example, you might have data tests defined for a grid that let you:

ã Capture all of the data in the grid including fixed columns and rows, even if the
data is not visible on the screen.

ã Capture only selected or displayed data in the grid.

Before you create a custom data test, make sure you have the following:

ã Access to the documentation or H elp that came with the object that you want
to test.

ã A good understanding of the object’s properties and how the properties relate.

ã A good understanding of the Object Data verification point. For information,
see Object Data verification point in the Robot H elp Index.

An Example of a Data Test

One way to understand how to create a data test is to look at a built-in data test. This
section explains the All Data test for the MSFlexGrid control.

What the All Data Test Does
When you create an Object Data verification point on the MSFlexGrid, you can
select the All Data test in the dialog box that appears, as shown in the following
figure.

Bu ilt-in data test
supplied with Robot

Custom data test
created by custom er
B-2

An Exam ple of a D ata Test
When you use this data test, Robot captures the data from every cell in the
MSFlexGrid control, as shown in the following figures.

The Definition of the All Data Test
You cannot edit the All Data test, because it is a built-in test. However, you can view
the test’s definition for the MSFlexGrid by looking at the data test in the View O bject
Data Test dialog box.

Robot cycles th rough every
colum n and row in the
M SFlexGrid con tro l to extract
the va lues from each cell...

... and then d isp lays the
data in the Robot data grid .
B-3

Working with D ata Tests
The following figure shows the main information in the dialog box:

Because the MSFlexGrid control is a zero-based grid, the numbering for columns
and rows actually begins with zero. Therefore, the From box contain 0 as the first
column and row, and the To box subtracts 1 from the total number of columns and
rows.

Changing a Data Test Definition
Suppose you want to test only the first three rows in the control instead of all the
rows. You could do this by making a copy of the All Data test, and then editing the
copy so that the rows range from 0 to 2.

In ternal class nam e of the contro l

Collects data from the first co lum n (0) to
the last colum n (Cols -1)

Collects data from the first row (0) to
the last row (Rows -1)

Iden tif ies the current cell to test in the
grid using the Col and Row propert ies

N am e of the data test

Retrieves the va lue of the Text property

Collects data from row 0 to
row 2 (3 rows)

First 3 rows of data
B-4

Creating or Ed iting a Custom D ata Test
Creating or Editing a Custom Data Test

Data tests must be created before you begin to test your application. The tests that
you create are stored in the repository that is currently active when you create the
tests. If you switch to a different repository, the data tests will not be available unless
you recreate the data test in the new repository.

You can edit any custom data test. If you change the parameters of an existing data
test, it affects the behavior of all verification points that depend on the data test.

To create or edit a custom data test:

1 . Display the object for which you want to create the data test.

2 . In Robot, click Tools → O bject D ata Test D efinition.

3 . Click Select to open the Select O bject dialog box.

4 . Select the object for which you want to create the data test in one of the
following ways:

– Drag the O bject Finder tool over the object and release the mouse button.

As you move the Object Finder tool over an object, the object type appears
in the yellow TestTip.

– Click Browse to open the Object List dialog box, select the object from the
list, and click O K .

The Object List dialog box shows a hierarchical list of all objects on the
Windows desktop, including hidden objects.

5 . If the Select O bject dialog box is still open, click O K to close it.

The object classification of the selected object and its data tests appear in the
Object Data Test Definition dialog box.

If the object is U nknown (not defined), the Define Object dialog box appears.
Select an object type and click O K to open the O bject Data Test Definition
dialog box. (For information about defining an object, see Defining Unknown
Objects During Recording on page 4-21.)

6 . Do one of the following to display the Create/Edit Object Data Test dialog box:

– To create a new test, type a name (50 characters maximum) in the D ata test
nam e box and click N ew.

– To edit a custom test, select the test from the list and click Edit.

– To copy a test and edit the copy, select the test and click Copy. Type the new
name and click O K. Then, click Edit .
B-5

Working with D ata Tests
For example, if you copied the All Data test to a new test named Displayed Data,
and clicked Edit, the following dialog box would appear:

7 . Select a property from the Property to test list. This property is the one whose
values you want to capture in the data test.

8 . Select the Colum n check box to add parameters for the vertical axis. Select the
Row check box to add parameters for the horizontal axis.

9 . Type an expression in the From and To boxes, or click the Expression button to
the right of each box to build the expression.

An expression is a single value or property, or a combination of values,
properties, and operators.

For deta iled
in form ation
about an item ,
click the question
m ark, and then
click the item .
B-6

Creating or Ed iting a Custom D ata Test
If you click the Expression button, the Edit Expression dialog box appears.

Do the following if you clicked Expression:

1 0 . In the U sing box (in the Create/Edit O bject Data Test dialog box), type a
property or select it from the list to further define the property that you are
capturing and testing.

The U sing box specifies what property Robot will modify to affect its iteration.
For example, to iterate from row 0 to row Rows-1, Robot will set the Row
property.

1 1 . Select the check boxes under Additional param eters as needed.

1 2 . In the D escription box, type a description that indicates what the data test does.

1 3 . Optionally, click Test to do the following:

– Verify the syntax of the data test before you save it.

– If the syntax is correct, watch Robot perform the data test on the selected
object.

When the test has ended, Robot opens a dialog box with the captured data. Click
O K to close the dialog box.

1 4 . Click O K to save the test and automatically verify it.

If the syntax of the expression is incorrect, the incorrect area is highlighted so
you can correct it and then resave the test.

a. Type an
expression
here ...

b . Click Verif y to check the
syntax of the expression . Click
O K in the m essage box. If the
syntax is invalid , the incorrect
area is h igh ligh ted.

c. Click O K to accept the
expression. If you d id not verify
the expression , Robot verifies it
now. Click O K in the m essage
box. If the syntax is invalid , the
incorrect area is h igh lighted.

... or bu ild an
expression by
double-clicking
in these lists.
B-7

Working with D ata Tests
Copying, Renaming, or Deleting a Data Test

You can copy any built-in or custom data test to back it up or to create a new test from
an existing one. When you copy a data test, you can use the test only for objects of
the class for which the original data test was created.

You can rename any custom data test. H owever, scripts that contain the data test
under its original name will fail on playback unless you change the name in the
scripts.

You can delete any custom data test. H owever, scripts that contain the data test will
fail on playback unless you delete the test from the scripts.

To copy, rename, or delete a data test:

1 . Click Tools → O bject D ata Test D efinition.

2 . Select the data test.

3 . Do one of the following:

– To copy the test, click Copy. Type a new name (50 characters maximum)
and click O K .

– To rename the test, click Renam e. Type a new name (50 characters
maximum) and click O K .

– To delete the test, click D elete. Click O K to confirm the deletion.

If you renamed or deleted the data test, be sure to rename it or delete it in any scripts
that use that data test.
B-8

ã ã ã A P P E N D I X C

Standard Datapool Data Types
This appendix contains:

ã A table of standard data types

ã A table of minimum and maximum ranges for the standard data types

Standard Data Type Table

Data types supply datapool columns with their values. You assign data types to
datapool columns when you define the columns in the Datapool Specification
dialog box.

The standard data types listed in the following table are included with your Rational
Test software. U se these data types to help populate the datapools that you create.

The standard data types (plus any user-defined data types that you create) are listed
in the Datapool Specification dialog box under the heading Type. Type and the other
datapool column definitions (such as Length and Interval) referenced in the
following table are some of the definitions that you set in this dialog box.

N ote that related data types (such as cities and states) are designed to supply
appropriate pairings of values in a given datapool row. For example, if the
Cities - U .S. data type supplies the value Boston to a row, the State Abbrev. - U .S.
data type supplies the value MA to the row.
C-1

Standard D atapool D ata Types
Standard data type name Description Examples

Address - Street Street numbers and names. N o period after
abbreviations.

20 Maguire Road
860 S Los Angeles St 8th Fl
75 Wall St 22nd Fl

Cities - U .S. N ames of U .S. cities. Lexington
Cupertino
Raleigh

Company N ame Company names (including designations
such as Co and Inc where appropriate).

Rational Software Corp
TSC Div Harper Lloyd Inc
Sofinnova Inc

Date - Aug 10, 1994 Dates in the format shown.

The day portion of the string is always two
characters. Days 1 through 9 begin with a
blank space.

To include the comma (,) as an ordinary
character rather than as the .csv file delimiter,
the dates are enclosed in double quotes when
stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
01011900 and M aximum to 12312050.

Oct 8, 1997
Jun 17, 1964
N ov 10, 1978

If the comma is the delimiter,
the values are stored in the
datapool as follows:

"Oct 8, 1997"
"Jun 17, 1964"
"N ov 10, 1978"

Date - August 10, 1994 Dates in the format shown.

The day portion of the string is always two
characters. Days 1 through 9 begin with a
blank space.

To include the comma (,) as an ordinary
character rather than as the .csv file delimiter,
the dates are enclosed in double quotes when
stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
01011900 and M aximum to 12312050.

October 8, 1997
June 17, 1964
N ovember 10, 1978

If the comma is the delimiter,
the values are stored in the
datapool as follows:

"October 8, 1997"
"June 17, 1964"
"N ovember 10, 1978"
C-2

Standard D ata Type Table
Date - MM/DD/YY Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in M aximum
must be greater than the year in M inimum).

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 1999, set M inimum to
010100 and M aximum to 123199.

10/08/97
06/17/64
11/10/78

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"10/08/97"
"06/17/64"
"11/10/78"

Date - MM/DD/YYYY Dates in the format shown.

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
01011900 and M aximum to 12312050.

10/08/1997
06/17/1964
11/10/1978

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"10/08/1997"
"06/17/1964"
"11/10/1978"

Date - MMDDYY Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in M aximum
must be greater than the year in M inimum).

To set a range of dates from January 1, 1900
through December 31, 1999, set M inimum to
010100 and M aximum to 123199.

100897
061764
111078

Date - MM-DD-YY Dates in the format shown.

You can only specify a range of dates in the
same century (that is, the year in M aximum
must be greater than the year in M inimum).

To set a range of dates from January 1, 1900
through December 31, 1999, set M inimum to
010100 and M aximum to 123199.

10-08-97
06-17-64
11-10-78

 (Continued)

Standard data type name Description Examples
C-3

Standard D atapool D ata Types
Date - MMDDYYYY Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
01011900 and M aximum to 12312050.

10081997
06171964
11101978

Date - MM-DD-YYYY Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
01011900 and M aximum to 12312050.

10-08-1997
06-17-1964
11-10-1978

Date - YYYY/MM/DD Dates in the format shown.

To include the slashes (/) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
19000101 and M aximum to 20501231.

1997/10/08
1964/06/17
1978/11/10

If the slash is the delimiter,
the values are stored in the
datapool as follows:

"1997/10/08"
"1964/06/17"
"1978/11/10"

Date - YYYYMMDD Dates in the format shown.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
19000101 and M aximum to 20501231.

19971008
19640617
19781110

Date, Julian - DDDYY Dates in the format shown. DDD is the total
number of days that have passed in a year.
For example, January 1 is 001, and February
1 is 032.

To set a range of dates from January 1, 1900
through December 31, 1999, set M inimum to
00100 and M aximum to 36599.

28197
16964
31478

Date, Julian - DDDYYYY Dates in the format shown. DDD is the total
number of days that have passed in a year.
For example, January 1 is 001, and February
1 is 032.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
0011900 and M aximum to 3652050.

2811997
1691964
3141978

 (Continued)

Standard data type name Description Examples
C-4

Standard D ata Type Table
Date, Julian - YYDDD Dates in the format shown. DDD is the total
number of days that have passed in a year.
For example, January 1 is 001, and February
1 is 032.

To set a range of dates from January 1, 1900
through December 31, 1999, set M inimum to
00001 and M aximum to 99365.

97281
64169
78314

Date, Julian - YYYYDDD Dates in the format shown. DDD is the total
number of days that have passed in a year.
For example, January 1 is 001, and February
1 is 032.

To set a range of dates from January 1, 1900
through December 31, 2050, set M inimum to
1900001 and M aximum to 2050365.

1997281
1964169
1978314

Float - X.XXX Positive and negative decimal numbers in the
format shown.

Set Length to the number of decimal places
to allow (up to 6).

Set M inimum and M aximum to the range of
numbers to generate.

To generate numbers with more than 9 digits
(the maximum allowed with the Integers -
Signed data type), use the Float - X.XXX data
type and set D ecimals to 0.

243.63918
-95.99
155075028157503

Float - X.XXXE+ N N Positive and negative decimal numbers in the
exponential notation format shown.

Set Length to the number of decimal places
to allow (up to 6).

Set M inimum and M aximum to the range of
numbers to generate.

4.0285177E+ 068
-3.2381443E+ 024
8.8373255E+ 119

Gender Either M or F, with no following period. M
F

H exadecimal H exadecimal numbers. 1d6b77
ff
3824e7d

 (Continued)

Standard data type name Description Examples
C-5

Standard D atapool D ata Types
Integers - Signed Positive and negative whole numbers. This is
the default data type.

To include negative numbers in the list of
generated values, set M inimum to the lowest
negative number you want to allow.

Maximum range:

ã M inimum = -999999999 (-999,999,999)
ã M aximum = 999999999 (999,999,999)

For larger numbers, use a float data type.

If you do not specify a range, the default
range is 0 through 999,999,999.

U se this data type to generate unique data in
a datapool column (for example, when you
need a “key” field of unique data). You can
also use Read From File and user-defined
data types to generate unique data.

1349
-392993
441393316

N ame - Middle Masculine and feminine middle names.

If the middle name is preceded by a field with
masculine or feminine value (such as a
masculine or feminine first name), the
middle name is in the same gender category
as the earlier field.

Richard
Theresa
Julius

N ame - Prefix (e.g., Mr) Mr or Ms, with no following period.

If the name prefix is preceded by a field with
masculine or feminine value (such as a
masculine or feminine gender designation),
the name prefix is in the same gender
category as the earlier field.

Mr
Ms

N ames - First Masculine and feminine first names.

If the first name is preceded by a field with
masculine or feminine value (such as a
masculine or feminine name prefix), the first
name is in the same gender category as the
earlier field.

Richard
Theresa
Julius

N ames - Last Surnames. Swidler
Larned
Buckingham

 (Continued)

Standard data type name Description Examples
C-6

Standard D ata Type Table
N ames - Middle Initial Middle initials only, with no following
period.

B
M
L

Packed Decimal A number where each digit is represented by
four bits. Digits are non-printable.

N ote that commas and other characters that
may be used to represent a packed decimal
number may cause unpredictable results
when the datapool file is read.

N on-printable digits.

Phone - 10 Digit Telephone area codes, appropriate
exchanges, and numbers.

7816762400
4123818993
5052658498

Phone - Area Code Telephone area codes. To generate correct
area code lengths, set Length to 3.

781
412
505

Phone - Exchange Telephone exchanges. To generate correct
exchange lengths, set Length to 3.

676
381
265

Phone - Suffix Four-digit telephone numbers (telephone
numbers without area code or exchange). To
generate correct telephone number suffix
lengths, set Length to 4.

2400
8993
8498

Random Alphabetic String Strings of random upper case and lower case
letters.

Length determines the number of characters
generated.

AQSEFuOZU IU IpAGsEM
DESieAiRFiEqiEIDiicEw
edEIDiIcisewsDIEdgP

Random Alphanumeric
String

Strings of random upper case and lower case
letters and digits.

Length determines the number of characters
generated.

AYcH I8WmeMeM0AK4
H Sk9vGAQ U 79esDE
7Eeis93k4ELXie7S32siDI4E

 (Continued)

Standard data type name Description Examples
C-7

Standard D atapool D ata Types
Read From File Assigns values from an ASCII text file to the
datapool column. For example, you could
export a database column to a text file, and
then use this data type to assign the values in
the file to a datapool column.

You can use this data type to generate unique
data. You can also use the Integers - Signed
and user-defined data types to generate
unique data.

For information about using this data type,
see Creating a Column of Values Outside Rational
Test on page 10-39.

Any values in an ASCII text
file.

Space Character An empty string. ""

State Abbrev. - U .S. Two-character state abbreviations. MA
CA
N C

String Constant A constant with the value of Seed. The
datapool column is filled with this one
alphanumeric value.

1234
AAA
1b1b

Time - H H .MM.SS Times in the format shown. H ours range
from 00 (midnight) through 23 (11 pm).

To set a range of times from midnight to
2 pm, set M inimum to 0 and M aximum to
140000.

00.00.00 (midnight)
11.14.38
21.44.19

Time - H H :MM:SS Times in the format shown. H ours range
from 00 (midnight) through 23 (11 pm).

To include the colons (:) as ordinary
characters rather than as the .csv file
delimiter, the dates are enclosed in double
quotes when stored in the datapool.

To set a range of times from midnight to
2 pm, set M inimum to 0 and M aximum to
140000.

00:00:00 (midnight)
11:14:38
21:44:19

If the colon is the delimiter,
the values are stored in the
datapool as follows:

"00:00:00" (midnight)
"11:14:38"
"21:44:19"

Time - H H MMSS Times in the format shown. H ours range
from 00 (midnight) through 23 (11 pm).

To set a range of times from midnight to
2 pm, set M inimum to 0 and M aximum to
140000.

000000 (midnight)
111438
214419

 (Continued)

Standard data type name Description Examples
C-8

D ata Type Ranges
Data Type Ranges

The following table shows the minimum and maximum ranges for the standard
data types:

Zip Code - 5 Digit Five-digit U .S. postal zip codes. To generate
the correct zip code lengths, set Length to 5.

02173
95401
84104

Zip Code - 9 Digit N ine-digit U . S. postal zip codes. 021733104
954012694
841040190

Zip Code - 9 Digit with Dash N ine-digit U .S. postal zip codes with a dash
between the fifth and sixth digits.

02173-3104
95401-2694
84104-0190

Zoned Decimal Zoned decimal numbers. 3086036
450
499658196

 (Continued)

Standard data type name Description Examples

Type of range Limitation

Maximum hours 23

Maximum minutes 59

Maximum seconds 59

Maximum two-digit year 99

Maximum four-digit year 9999

Maximum months 12

Minimum six-digit date 010100 (January 1, 00)

Maximum six-digit date 123199 (December 31, 9999)

Minimum eight-digit date 01010000 (January 1, 0000)

Maximum eight-digit date 12319999 (December 31, 9999)

Minimum negative integer (Integers - Signed) -999999999 (-999,999,999)
C-9

Standard D atapool D ata Types
Maximum positive integer (Integers - Signed) 999999999 (999,999,999)

Maximum decimal places (Float data types) 6

Male/Female title Mr, Ms

Gender designation M, F

 (Continued)

Type of range Limitation
C-10

ã ã ã A P P E N D I X D

Rational Robot Command-line Options
You can use the Rational Robot command-line options to log in, open a script, and
play back the script.

SYNTAX

sqa7robo.exe [scriptname] [/user userid] [/password password]
[/repository repopath] [/project projectname] [/play]
[/purify] [/quantify] [/coverage] [/close] [/nolog]

Syntax Element Description

sqa7robo.exe Rational Robot executable file.

scriptname N ame of the script to run.

/user userid U ser name for log in.

/password password O ptional password for log in. Do not use this parameter if
there is no password.

/repository repopath Path of the repository that contains the script referenced in
scriptname.

/project projectname N ame of the project that contains the script referenced in
scriptname.

/play If this keyword is specified, plays the script referenced in
scriptname. If not specified, the script opens in the editor.

/purify U sed with /play. Plays back the script referenced in
scriptname under Rational Purify.
D -1

COMMENTS

U se a space between each keyword and between each variable.

If a variable contains spaces, enclose the variable in quotation marks.

If you log the output (by omitting /nolog), then the Robot log options (set in the
GU I Playback O ptions dialog box) determine whether the default log information
is used or whether you are prompted at the start of playback.

If you intend to run Robot unattended in batch mode, be sure to specify the
following options to get past the Rational Repository Login dialog box:

/user userid
/password password
/repository repopath
/project projectname

EXAMPLE

sqa7robo.exe VBMenus /user admin /repository “c:\Sample Files\Repo”
/project Default /play /close

In this example, the user “admin” opens the script “VBMenus”, which is in the
project “Default” and in the repository “c:\Sample Files\Repo”. The script is opened
for playback, and then it is closed when playback ends. The results are logged.

/quantify U sed with /play. Plays back the script referenced in
scriptname under Rational Quantify.

/coverage U sed with /play. Plays back the script referenced in
scriptname under Rational PureCoverage.

/close Closes Robot after playing back the script.

/nolog Does not log any output while playing back the script.

Syntax Element Description
D -2

ã ã ã A P P E N D I X E

Working with Manual and External Scripts
This appendix explains how to create and run manual and external scripts in
TestManager. It includes the following topics:

ã About manual scripting

ã Working with manual scripts in TestManager

ã Working with manual scripts on the Web

ã Working with external scripts

About Manual Scripting

The manual scripting feature in TestManager lets you create and run scripts for tests
that you cannot automate. A m anual script is a set of testing instructions to be run
by a human tester. The script can consist of steps and verification points that you type
into an editor.

A step is an instruction to be carried out by the tester when a manual script is run.
This could be as simple as a single sentence (such as “Reboot the computer”) or as
complex as a whole document. In general, a step consists of one or two sentences.

Within a manual script, a verification point is a question about the state of the
application (for example, “Did the application start?”). A verification point can
consist of any amount of text but is likely to be one or two sentences, usually ending
with a question mark.

After you create a manual script, you can run the script in TestManager or on
the Web.

When you run a manual script, you perform each step and indicate whether each
verification point passed or failed. You can then open the LogViewer and see the
results. If all of the verification points passed, then the script passes. If any verification
points failed, then the script fails.
E-1

As with other types of scripts, you can include your manual scripts in TestManager
reports.

Example of a Manual Script
The following manual script contains five steps and four verification points.

ã The steps are actions for you to take when you run the script.

ã The verification points are questions for you to answer.

Working with Manual Scripts in TestManager

The following table lists the tasks that you perform to work with manual scripts in
TestManager and where you can find information about each task.

The footprin t
ind icates a step to
be perform ed.

The check m ark
ind icates a verif icat ion
poin t that can pass or
fa il.

The N ote icon
ind icates that a note
exists. Click the icon
to open the note.

Task For more information, see

1 . Set the default editor. The next section, Setting the Default Editor for
Manual Scripts

2 . Plan the manual script. Planning a Manual Script on page E-3

3 . Create the manual script by entering
the steps and verification points.

Creating a Manual Script on page E-4

4 . Run the manual script. Running a Manual Script in TestManager on page
E-7
E-2

W orking w ith M anual Scripts in TestM anager
Setting the Default Editor for Manual Scripts
You can use either the grid editor or the text editor when you create a manual script.
The grid editor is a structured editor that makes it easy to enter your steps and
verifications points. The text editor is a free-form editor that makes it easy to
manipulate text.

To set the default editor in TestManager:

1 . Click Tools → O ptions. Click the M anual Script tab.

2 . Click Grid or Text , and then click O K .

This setting takes effect the next time you create or open a manual script.

Planning and Creating a Manual Script
When you plan a manual script in TestManager, you name it and set its properties.
You can also attach the script to a test requirement. After you plan the script, you
open it and create the script by entering the steps and verification points.

Planning a Manual Script
To plan a manual script:

1 . Do one of the following:

– To plan a script and attach it to a requirement, open the Requirements
H ierarchy. Right-click the requirement, and click Plan → M anual Script.

– To plan a script without attaching it to a requirement, make sure that no
requirement is selected. Click File → Plan → M anual Script.

Grid editor

Text ed itor
E-3

2 . In the Plan Script dialog box, type a name. Fill in other fields as appropriate.

3 . Click O K . The script is now planned.

Creating a Manual Script
To create a manual script after you have planned it:

1 . Do one of the following:

– Right-click the script in either the Requirements H ierarchy or the Script
Query window and click O pen.

– Click File → O pen → Script. Click the script and click O K.

The script opens in the default editor.

Type the nam e of
the scrip t.

To use an external
f ile, see Includ ing an
External File in a
M anual Scrip t on
page E-7 .

N O TE: For detailed information about planning a script, see Planning Scripts
on page 2-10.

N O TE: The grid editor is used in the following figure and in the rest of this
procedure. For information about the text editor, see the next section, Using
the Text Editor.
E-4

W orking w ith M anual Scripts in TestM anager
A manual script consists of items that can be steps (user actions) or verification
points. Steps are in black type, and verification points are in blue type.

2 . Type the first item. To create a new line in the same item, press CTRL+ EN TER.

The footprint icon at the beginning of the line identifies this as a step. If this item
is a verification point, click the Type cell to change the icon to a check mark.

3 . To type a note, click the N ote cell. Type the text and click O K . The N ote icon
appears in the cell. To view or edit the note, click the N ote icon.

4 . To start a new row, press the EN TER key or the down-arrow key.

By default, the EN TER key creates a new row. To change the function of EN TER
so that it creates a new line in the same item, open the TestManager Options
dialog box. In the Manual Script tab, clear Enter key m oves focus to next row.

5 . Type the next step or verification point.

If the text does not end with a question mark, then the type is set as a step
(footprint) when you start the next row. If the text does end in a question mark,
then the type is set as a verification point (check mark) when you start the next
row. To change the type, click the Type cell.

6 . Continue creating steps and verification points as needed.

Ind ica tes whether a row
is a step (footprin t) or a
verificat ion point (check
m ark).

U se to include a note.

Conta ins the step or verif icat ion point.

Right-click in any row ...

... to open a shortcut m enu.
E-5

7 . When finished, click File → Save.

When you save the script, the D eveloped check box in the Script Properties
dialog box is automatically selected. This setting is used by TestManager when
you run a Development Coverage report. For information about coverage
reports, see Coverage Reports on page 16-2.

8 . Click File → Close.

Using the Text Editor
The text editor is a free-form editor that is useful when you want to manipulate text
easily. For example, you can drag-and-drop words or lines in the text editor.

To set the text editor as the default editor in TestManager:

1 . Click Tools → O ptions. Click the M anual Script tab.

2 . Click Text and click O K .

The next time you create or open a manual script, it opens in the text editor.

In the text editor, you use a shortcut menu to mark items as steps and verification
points, and to create and view notes.

The start of an item (step or verification point) is indicated by the footprint or check
mark icon. All lines that do not begin with either of these icons are part of the
previous item.

N O TE: To create a manual script without first planning it, click File → N ew →
M anual Script . After saving the script, you can set the properties.

Ind icates whether
an item is a step
(footp rin t) or a
verificat ion point
(check m ark)

Ind ica tes a note

Conta ins the step or verif icat ion poin t

... to open a shortcut m enu.

Right-click any item ...
E-6

W orking w ith M anual Scripts in TestM anager
Including an External File in a Manual Script
Instead of typing the steps and verification points into the grid editor or text editor,
you can include an external file when you plan the script. This file can contain all of
the instructions to be used in the manual script. You can create this file with
N otepad, Microsoft Word, or any other program for which there is a file association.

To include an external file when you plan a script:

1 . Fill in the Plan Script dialog box. (For information, see Planning a Manual Script
on page E-3.)

2 . In the General tab, select U se external file.

3 . Type the full path and name of the file that contains the instructions, or use
Browse to locate the file.

4 . Optionally, click O pen to view the file.

5 . Select the D eveloped check box.

This setting is used by TestManager when you run a Development Coverage
report. For information about coverage reports, see Coverage Reports on page
16-2.

6 . Click O K .

When you run the script, TestManager opens the external file so that you can follow
the instructions. For more information, see Running a Manual Script that Includes an
External File on page E-9.

Running a Manual Script in TestManager
If you used the grid or text editor when you created a manual script, you do the
following when you run the script in TestManager:

ã Indicate that you have performed each step.

ã Indicate whether each verification point passed or failed.

For information, see the next section, Running a Manual Script Created with the Grid or
Text Editor.

N O TE: When you run a manual script that includes an external file, you can
indicate the results of the entire script (Pass or Fail), but you cannot indicate the
results of individual verification points.
E-7

If you included an external file when you created the manual script, you do the
following after you run the script in TestManager:

ã Indicate whether the entire script passed or failed.

For information, see Running a Manual Script that Includes an External File on page E-9.

Running a Manual Script Created with the Grid or Text Editor
If you created the manual script using the grid or text editor, follow these steps to run
the script:

1 . Click Tools → O ptions. Click the M anual Script tab.

2 . Select or clear Log unchecked steps as warnings and click O K .

If this is selected, W arning appears in the Result column of the log for each
unchecked step. If this is cleared, the Result column is blank for each unchecked
step. (Com plete always appears for each checked step.)

3 . Do one of the following:

– Right-click the script in either the Requirements H ierarchy or the Script
Query window and click Run.

– Click File → Run → Script. Click the script to run and click O K .

4 . Optionally, select Show O nly Verification Points to show all of the verification
points and hide all of the steps.

5 . Optionally, click All Pass to set the default result to Pass for all of the verification
points and to put checkmarks next to the steps.

6 . Perform the steps and verification points indicated in the manual script.

– For a step, select the check box in the Result column to indicate that you
have performed the step. When you view the log, Com plete appears in the
Result column of each checked step.

– For a verification point, click the cell in the Result column (where it says
N one) and click N one, Pass, or Fail. When you view the log, the result
appears in the Result column.

To view a note for a row, click the N ote icon. You cannot edit notes.
E-8

W orking w ith M anual Scripts in TestM anager
7 . To type a comment, click the Comment cell. Type the text and click O K . The
Comment icon appears in the cell. To view or edit the comment, click the
Comment icon.

When you view the log, the comment appears in the Result tab of the log event.

8 . When finished, click D one.

9 . Fill in the Specify Log Information dialog box and click O K .

1 0 . Click File → Close.

To view the results, see Viewing the Results in the LogViewer on page E-10.

Exam ple of Running a M anual Script
The following figure shows the results of running a manual script. When this manual
script was run, the first verification point failed. The Comment icon indicates that
there is a comment about the failure. When you view the log, you will be able to see
the failure and the comment.

Running a Manual Script that Includes an External File
If you included an external file when you planned the script, follow these steps to run
the script:

1 . Do one of the following:

– Right-click the script in either the Requirements H ierarchy or the Script
Query window and click Run.

– Click File → Run → Script. Click the script to run and click O K .

The external file opens.

Ind icates that
the step was
perform ed

Ind icates that the
verif icat ion point
fa iled

Click to see a
com m ent about
the fa ilu re.
E-9

2 . Follow the instructions in the file and determine whether the script passed or
failed.

3 . Minimize or close the external file.

4 . Fill in the Enter Results of the M anual Script dialog box.

You can indicate the results of the entire script but not of individual verification
points.

5 . When finished, click O K .

6 . Fill in the Specify Log Information dialog box and click O K .

To view the result, see the next section, Viewing the Results in the LogViewer.

Viewing the Results in the LogViewer
To view the results of running a manual script:

1 . Open the Asset Browser (click View → Asset Browser).

2 . Expand the Builds tree until the log name appears.

Click Pass or Fa il to ind icate
the resu lts of the entire scrip t.

D escribe the resu lts of running
the scrip t.
E-10

Working with M anua l Scrip ts on the W eb
3 . Double-click the log to open it in the LogViewer.

Working with Manual Scripts on the Web

After you create a manual script, you can run the script in TestManager or on the
Web. When you run a manual script on the Web using the Rational TestM anager -
M anual Script Execution component, you use a Web browser over the Internet to
access a Rational repository. This feature of TestManager lets you:

ã Run a manual script remotely over the Internet.

ã Remotely record results and add comments as you perform each task in a
manual script.

ã Include your manual script results in a TestManager coverage report.

Your Web server can be on the same computer as your Rational repository or on
another computer. U sing a Web browser, you type the machinename and alias
of the Web server to run a manual script stored in a repository. For more information
about setting up a Web browser and installing a Web server, see Installing a Web Server
on page E-14 and Setting Up a Web Browser on page E-21.

To see m ore deta ils
abou t th is event,
right-click the event
and click Propert ies ...

... and then click
the Result tab.

This is the text of
the com m ent.

This is the text of the
verificat ion point
or step.
E-1 1

The following figure shows a Web browser accessing the Web server to run a manual
script stored in a shared repository:

Overview of Tasks
The following table lists the tasks you perform to run a manual script on the Web
and where you can find information about each task.

Task For more information, see

1 . Check your software requirements. The next section, Software Requirements on
page E-13

2 . Install a Web Server. Installing a Web Server on page E-14

3 . Configure either Microsoft Internet
Information Server or the Microsoft
Personal Web Server.

Configuring a Microsoft Internet Information Server
on page E-16 or Configuring a Microsoft Personal
Web Server on page E-19

4 . Set up a Web browser. Setting Up a Web Browser on page E-21

5 . U se TestManager to create a manual
script.

Planning and Creating a Manual Script on page
E-3

6 . Run a manual script on the Web. Running a Manual Script on the Web on page
E-23

7 . View the results in the LogViewer. Viewing the Results in the LogViewer on page
E-10
E-12

Working with M anua l Scrip ts on the W eb
Software Requirements
Make sure that your server conforms to the following minimum requirements for a
Web server:

Software Requirements
For the Web server:

ã Windows 2000 Professional, Windows 2000 Server, Windows 2000 Advanced
Server, Windows 98, Windows 95, Windows N T 4.0 Workstation, or Windows
N T 4.0 Server.

ã Microsoft Internet Explorer 5.0 or later.

To access the Web server as a client, use one of the following Web browsers:

ã N etscape N avigator 4.0 or later

ã Microsoft Internet Explorer 4.0 or later

For Install

All versions of Windows 2000 Microsoft Internet Information Services 5.0 (IIS 5.0)
from the Windows 2000 CD

Windows 98, Windows 95, or the
Windows N T 4.0 Workstation

Microsoft Personal Web Server (PWS) from the
Windows N T 4.0 Option Pack (available from
Microsoft, www.microsoft.com)

Windows N T 4.0 Server Microsoft Internet Information Server (IIS) from the
Windows N T 4.0 Option Pack (available from
Microsoft, www.microsoft.com)

N O TE: We recommend that you use Windows 2000 Server, Windows
2000 Advanced Server, or Windows N T 4.0 Server, to run manual scripts
on the Web. You can not use a shared or networked repository with the
Windows 2000 Professional or Windows N T 4.0 Workstation.
E-1 3

About Shared Repositories
We recommend that when you create a repository, you make it a shared repository
so others can access your manual scripts over the Web. To share a repository, create
the repository in a shared directory and use the U niform N aming Convention
(U N C) for the directory name. (For more information about creating a shared
directory, see the Using the Rational Administrator manual or the Rational
Administrator H elp.)

Installing a Web Server
To install a Web server to run a manual script on the Web:

1 . Install the Rational TestM anager - M anual Script Execution component.

a. Turn on the computer to start Windows.

b. Log in using an account with Administrator privileges.

c. Quit all applications before installing any Rational products.

d. Insert the CD into your CD drive.
The installation starts automatically.

If the CD does not start automatically, click Start → Run. Type
drive: \SETU P.EX E, and then click O K .

e. At the Rational Software Setup page, click N ext.

f. Click Insta ll Rational Product, and then click N ext .

g. Select the license you want, and then click N ext. For information about
software licenses, click H elp, or see the Administering Licenses for Rational
Software manual or the Rational License Administrator H elp.

h. Click one of the following Rational testing products from the list of
available products, and then click N ext:

– Rational LoadTest

– Rational Robot

– Rational Suite Enterprise

– Rational Suite PerformanceStudio

– Rational Suite TestStudio

– Rational TeamTest
E-14

Working with M anua l Scrip ts on the W eb
i. Read the terms of the license agreement carefully, select one of the
following, and then click N ext.

– Yes, I accept the agreem ent. If you accept the agreement, the Setup
program continues.

– N o, I don’t accept the agreem ent. If you do not accept the agreement,
the Setup program ends.

j. At the Setup Configuration page, click Custom /Full, and then click N ext.

k. Optionally, clear all check boxes on the Choose Features page.

l. Select the W eb Server Com ponents check box.

m. Select the Rational TestM anager/W eb check box.
Installs the Rational TestM anager - M anual Script Execution
component.

n. Follow the on-screen instructions to complete the installation.

The Rational Setup wizard displays a series of dialog boxes that guide you
through the installation process and prompt you for information.

o. Click Finish when done.

Your system restarts.

2 . Install Microsoft Windows N T 4.0 Option Pack or Microsoft Internet
Information Services 5.0 on the Web server by doing one of the following:

– For a Web server running Windows 2000, install the Microsoft Internet
Information Services 5.0 from the Windows 2000 CD.

– For a Web server running Windows N T 4.0 Server, install the Microsoft
Internet Information Server (IIS) from the Windows N T 4.0 Option Pack.

– For a Web server running Windows 98, Windows 95, or Windows N T 4.0
Workstation, install the Microsoft Personal Web Server (PWS) from the
Windows N T 4.0 O ption Pack.

3 . Install Microsoft Internet Explorer 5.0 on the Web server.

4 . Configure the Microsoft Access Driver to run a manual script on the Web by
doing the following

a. Click Start → Settings → Control Panel.

N ote: If you want to create manual scripts on the Web server, then you
must install Rational Robot on the Web server.
E-1 5

b. Do one of the following

For Windows 2000, double-click Adm inistrative Tools, and then double-
click D ata Sources (O D BC).

For Windows 98, 95, N T 4.0 Workstation and Server, double-click O D BC
D ata Sources.

c. Click the Connection Pooling tab.

d. U nder O D BC D rivers, double-click M icrosoft Access D river (* .m db).

e. Select D on’t pool connections to this driver, and then click O K.

f. Click O K .

g. Restart the system.

5 . Configure the Web server to run a manual script on the Web by doing one of the
following:

– For a Web server running Windows 2000 Professional, Windows 98,
Windows 95, or a Windows N T 4.0 Workstation, see Configuring a Microsoft
Personal Web Server on page E-19.

– For a Web server running Windows N T 4.0 Server, Windows 2000 Server,
or Windows 2000 Advanced Server, see the next section, Configuring a
Microsoft Internet Information Server.

Configuring a Microsoft Internet Information Server
To configure the Microsoft Internet Information Server (IIS) on a Windows 2000
Server, Windows 2000 Advanced Server, or a Windows N T 4.0 Server:

1 . Do one of the following:

– For Windows 2000, click Start → Settings → Control Panel.
Double-click Adm inistrative Tools. Double-click Internet Services
M anager.

– For Windows N T 4.0, click Start → Program s → W indows N T 4 .0
O ption Pack → M icrosoft Internet Inform ation Server → Internet
Service M anager.

2 . Optionally, double-click Internet Inform ation Server to display all machines.

3 . Double-click machinename

where machinename is the network name of the Web server.

4 . Click D efault W eb Site.
E-16

Working with M anua l Scrip ts on the W eb
5 . Right-click, and then click N ew → Virtual D irectory.

6 . Do one of the following:

– For Windows 2000, click N ext, and then go to the next step.

– For Windows N T 4.0, go to the next step.

7 . Type an alias for the TestManager Web site.

For example: TM

8 . Click N ext.

9 . Type the drive and path of the location where you installed your Rational
software, or click Browse to select the drive and path.

For example, the default location is:

c:\Program Files\Rational\Rational Test 7\www\manual script

1 0 . Click N ext.

1 1 . Do one of the following:

For Windows 2000, select the following options to allow permissions to the
Rational repository:

– Read

– Run scripts (such as ASP)

For Windows N T 4.0 Server, select the following options to allow permissions
to the Rational repository:

– Allow Read Access

– Allow Script Access

– Allow Execute Access

1 2 . Do one of the following:

– For Windows 2000, click N ext, and then click Finish.

– For Windows N T, click Finish.

1 3 . Right-click the new alias, and then click Properties.

N O TE: Write down this alias. You must use this alias to run manual scripts
on this Web server through a Web browser.
E-1 7

1 4 . Click the D ocum ents tab.

Make sure that the following files appear under the Enable D efault D ocum ent
box:

– D efault.htm

– D efault.asp

If these file do not appear, do the following:

a. Click Add.

b. Type D efault.htm , and then click O K.

c. Type D efault.asp, and then click O K .

1 5 . Click the D irectory Security tab.

1 6 . U nder Anonym ous and Authentication Control, click Edit.

1 7 . Make sure that you select the Allow Anonym ous Access check box, and then
click Edit.

1 8 . Do one of the following:

– For Windows 2000, clear the Allow I IS to control password check box, and
then go to the next step.

– For Windows N T 4.0, Clear the Enable Autom atic Password
Synchronization check box, and then go to the next step.

1 9 . Type the U sernam e and Password for the user account either on this Web
server (if the repository is on the Web server), or on the domain (to access shared
repositories on other systems in the domain).

This user account must have permission to read and write into the repository.
All Web clients will use this account to access the repository through this Web
server.

2 0 . Click O K to close all windows.

N O TE: By configuring the permissions to this account, you can restrict
access to certain shared repositories. For more information about setting
permissions, see your Microsoft Windows 2000 or Windows N T 4.0
documentation.
E-18

Working with M anua l Scrip ts on the W eb
Configuring a Microsoft Personal Web Server

To configure the Microsoft Personal Web Server (PWS) on a Windows 2000
Professional, Windows 98, Windows 95, or Windows N T 4.0 Workstation server:

1 . Do one of the following:

– For Windows 2000 Professional, be sure to install the Internet Information
Services 5.0 (IIS 5.0) from the Windows 2000 Professional CD.

– For Windows 98, Windows 95, or Windows N T 4.0 Workstation, be sure to
install the Microsoft Personal Web Server (PWS) from the Windows N T
4.0 Option Pack (available from Microsoft, www.microsoft.com).

2 . Do one of the following:

– For Windows 2000 Professional, click Start → Settings → Control Panel.
Double-click Adm inistrative Tools. Double-click Personal W eb
M anager.

– For Windows 98, Windows 95, or Windows N T 4.0 Workstation, click
Start → Program s → W indows N T 4 .0 O ption Pack → M icrosoft
Personal W eb Server → Personal W eb M anager.

3 . Click Advanced.

4 . Select < H om e> .

5 . Click Add.

6 . U nder D irectory, type the drive and path of the location where you installed
your Rational software, or click Browse to select the drive and path.

For example, the default location is:

c:\Program Files\Rational\Rational Test 7\www\manual script

7 . U nder Alias, type the alias for the Web site.

For example: TM

N ote: If you use Windows N T 4.0 Workstation or Windows 2000 Professional
with the Personal Web Server, you can access only local repositories. To access
shared repositories with Windows 2000 Professional, Windows 98, or Windows
95, you must run PWS under a domain user account.

N O TE: Write down this alias. You must use this alias to run manual scripts
on this Web server through a Web browser.
E-1 9

8 . Do one of the following:

– For Windows 2000 Professional – U nder Access perm issions, select
Read and Script Source Access. U nder Application perm issions, select
Execute (including scripts).

– For Windows 98, Windows 95, or Windows N T 4.0 Workstation –
U nder Access, click all of the following: Read, Execute, and Scripts.

9 . Click O K .

1 0 . Do one of the following:

– For Windows 98, Windows 95, or Windows N T 4.0 Workstation,
click Properties → Exit.

– For Windows 2000 Professional, click File → Close.

1 1 . Complete the steps for either Windows 2000 Professional or for Windows 98,
Windows 95, or Windows N T 4.0 Workstation

For Windows 2000 Professional:

a. Click Start → Settings → Control Panel.

b. Double-click U sers and Passwords.

c. U nder the U ser N am e column, select:

IUSR_machinename

where machinename is the name of the Web server.

d. Click Properties.

e. Click the Group M em bership tab.

f. U nder O ther, select Adm inistrators.

g. Click O K . Click O K again.

h. Restart the system.

For Windows 98, Windows 95, or Windows N T 4.0 Workstation:

a. Click Start → Program s → Adm inistrative Tools (Com m on) →
U ser M anager.

b. U nder the U sernam e column, select:

IUSR_machinename

where machinename is the name of the Web server.

c. Click U ser → Properties.
E-20

Working with M anua l Scrip ts on the W eb
d. Click Groups.

e. U nder N ot m em bers of, select Adm inistrators, and then click Add.

f. Click O K . Click O K again.

g. Click U ser → Exit.

Setting Up a Web Browser
You can use N etscape N avigator 4.0 (or later) or Microsoft Internet Explorer 4.0 (or
later) as your Web browser for running manual scripts on the Web. You can use your
Web browser on a system running Microsoft Windows, U N IX, or Apple Macintosh
operating system software.

Netscape Navigator
To set up a N etscape N avigator browser for running manual scripts on the Web:

1 . Start N etscape N avigator.

2 . Click Edit → Preferences. U nder Category, click Advanced.

3 . Double-click Advanced, and click Cache to display the Cache panel.

4 . In the Cache panel, click Every tim e.

5 . Click O K .

Microsoft Internet Explorer
To set up a Microsoft Internet Explorer browser for running manual scripts
on the Web:

1 . Start Internet Explorer.

2 . For Internet Explorer 5.0, click Tools → Internet O ptions.

For Internet Explorer 4.0, click View → Internet O ptions.

3 . Click the General tab.

4 . U nder Tem porary Internet files, click Settings.

5 . U nder Check for newer versions of stored pages, click Every visit
to the page.

6 . Click O K . Click O K again.
E-2 1

Troubleshooting for Manual Scripting on the Web
This section lists some problems you may experience when running manual scripts
on the Web, a description of each problem, and the solution to take to correct each
problem.

Error m essage – N one.
Problem – You cannot connect from a Web browser to a Web server running the
Microsoft Personal Web Server (PWS).
Solution – If you restart a Web server running PWS, PWS may not start
automatically when the server restarts. This is an intermittent problem. To fix the
problem, restart PWS.

To restart PWS:

1 . Click Start → Program s → W indows N T 4 .0 O ption Pack → M icrosoft
Personal W eb Server → Personal W eb M anager.

2 . U nder Publishing, click Start .

3 . Click Properties → Exit .

Error m essage – U nable to connect to repository.
Problem – When you log into a repository from a Web browser, you get this error
message.
Solution – Make sure the Web server security permissions are set correctly. For
information about setting security permissions, see Configuring a Microsoft Internet
Information Server on page E-16 or Configuring a Microsoft Personal Web Server on page
E-19.

Error m essage – Error message that includes Server.ObjectCreate in the
message.
Problem – You get an error message when you select a manual script.
Solution – Make sure that you or the Web server administrator installs Microsoft
Internet Explorer 5.0 on the Web server.

Error m essage – N one.
Problem – When you type text in a dialog box and submit it, you get erratic behavior.
Alternatively, when you open a script, results and comments are already filled in
from the last session.
Solution – Disable caching on your Web browser. For information about disabling
caching, see Setting Up a Web Browser on page E-21.
E-22

Working with M anua l Scrip ts on the W eb
Error m essage – N one.
Problem – After you connect to the Web server, a Login dialog box appears. In the
Login dialog box, the repository select list is empty.
Solution – Create a repository and create manual scripts, or register an existing
repository that contains manual scripts.

To create a repository or register an existing repository:

1 . Do one of the following:

– For IIS, log into the user account of the virtual directory that you
configured for manual scripting on the Web. For information, see
Configuring a Microsoft Internet Information Server on page E-16.

– For PWS, log into the user account that the Web server runs under. For
information, see Configuring a Microsoft Personal Web Server on page E-19.

2 . Start the Rational Administrator and create a new repository, or register an
existing repository. For information about creating or registering a repository,
see the Using the Rational Administrator manual or the Rational Administrator
online H elp.

3 . If you create or register a shared repository, make sure that the permissions for
the repository directory are set for the virtual directory user account for IIS, or
for the user account that the Web server runs under for PWS.

4 . Restart the Web server.

Troubleshooting Your Web Server
If you have problems with your Web server, check to make sure that your Web server
meets the software requirements. For information, see Software Requirements on page
E-13.

Running a Manual Script on the Web
The manual script feature of TestManager lets you remotely run a manual script over
the Internet. You use a Web browser over the Internet to access a Rational repository.
You can remotely indicate results and add comments as you perform each task in a
manual script.

You can run any manual script on the Web if it was created using the grid or text
editor. If the manual script includes an external file, you can run it only in
TestManager.

To run a manual script on the Web:

1 . Start a Web browser, either N etscape N avigator 4.0 (or later) or Microsoft
Internet Explorer 4.0 (or later).
E-2 3

2 . Connect to the Web server by typing the following:

http://machinename/alias

where machinename is the network name of the Web server, and alias is
the name of an alias that you or your administrator set up on the Web server.

For example:
http://dell300/TM

For information about setting up an alias for a Web server running all versions
of Windows 2000, Windows 98, Windows 95, or Window N T 4.0 Workstation,
see Configuring a Microsoft Personal Web Server on page E-19. For a Web server
running Windows N T 4.0 Server, see Configuring a Microsoft Internet Information
Server on page E-16.

3 . Log into Manual Script Execution on the Web.

a. Type the user ID and password of the repository that contains the manual
scripts that you want to run. If you do not know the ID and password, see
your repository administrator.

b. Select or type the repository path or the U niform N aming Convention
(U N C) for a shared repository. You need permission to access a shared
repository. (For information about creating a shared repository, see the
Using the Rational Administrator manual or the Rational Administrator H elp.)

For example:

c:\defects\repo
or
\\dell300\defects\repo

c. If you select a repository from the list of repositories, a list of projects
appears. If you type in a repository path or U N C, click O K or press the TAB
key to display a list of projects in the Project box.

d. Select a project.

e. Click O K .

4 . Select a manual script from the list, and click O K.

5 . To change the options for running a manual script on the Web, click O ptions,
select the options, and click O K . The options are:

Show script without graphics – Improves the display speed of the manual script
Web page. Displays only text on the Web page.

Show only verification points – Shows verification points and hides all steps.
E-24

Working with M anua l Scrip ts on the W eb
Log unchecked steps as warnings – U nchecked steps appear as warnings in
the log.

T im eout interval in m inutes (2 0 -1 4 4 0) – Sets the length of time, in minutes,
before the Web browser session times out. You can set the time from 20 to 1440
minutes. The default time is set to 120 minutes.

6 . To view a note for a row, click the N ote icon. You cannot edit notes.

7 . Perform the steps and verification points indicated in the manual script.

– For a step, select the check box in the Result column to indicate that you
have performed the step. When you view the log, Com plete appears in the
Result column of each step that you checked.

– For a verification point, click the cell in the Result column (where it says
N one) and click N one, Pass, or Fail. When you view the log, the result
appears in the Result column.

To pass all verification points and steps, click Pass Results.

To clear all results, click Reset Results.

8 . To type a comment, click the Comment cell. Type the text and click O K .
The Comment icon appears in the cell. To view or edit the comment, click the
Comment icon.

When you view the log, the comment appears in the Result tab of the log event.

9 . When finished, click Subm it Results.

1 0 . Fill in the Specify Log Information dialog box and click O K .

1 1 . Click Log O ff or Select Script to run another manual script.

To view the results, see Viewing the Results in the LogViewer on page E-10.

N O TE: You must submit your results before the Web browser session times
out or you will lose all results and comments that you enter. (See step 9.)
E-2 5

Working with External Scripts

U sing TestManager, you can create an external script that lets you run an existing
executable program or a test program created with any tool. External testing lets you:

ã Run an external script using TestManager.

ã Integrate an external script with TestManager to record and view test results
using the LogViewer.

ã Include your external script in TestManager reports.

Planning an External Script
When you plan an external script, you name it, set its properties, and then type the
name of the external test that you want to run. You can also attach the script to a test
requirement.

To plan an external script in TestManager:

1 . Do one of the following to plan the script:

– To plan a script and attach it to a requirement, open the Requirements
H ierarchy. Right-click the requirement, and click Plan → External Script.

– To plan a script without attaching it to a requirement, make sure that no
requirement is selected. Click File → Plan → External Script .

2 . Click the General tab and fill in the Plan Script dialog box.

3 . Be sure to type the drive and path of the existing external test that you want to
run in the Com m and box, or click Browse to select the path. This command
runs the external test.

4 . Select the D eveloped check box.

This setting is used by TestManager when you run a Development Coverage
report. For information about coverage reports, see Coverage Reports on page
16-2.

5 . Click O K .

Logging Results of an External Script
To log the results of running an external script, you use the Rtresult.exe file
provided with your Rational software. You need to call the Rtresult.exe file from the
source code of your external test.
E-26

W orking with External Scripts
In your source code, use the following command:

RTRESULT.EXE /parameters

The following table lists the parameters that you can use to log the results of an
external script:

Syntax Element Description

/result Specifies whether the script passed or failed. Valid values:

pass – The default. The expected result is that the script passed.

fail – The expected result is that the script failed.

/note Specifies any additional text describing the results of an external
script. You must enclose the text within quotation marks if there is a
space within the text. You can enter up to 255 alphanumeric
characters.

To view these notes:

1. In the LogViewer, right-click the event.

2. Click Properties.

3. Click the Result tab. The note appears in the D escription box.
/ID Specifies that you are running more than one external script at the

same time. For information, see the next section, Logging Results of
Several External Scripts.

/customparam You can create your own custom parameters for an external script.
You must enclose the text within quotation marks if there is a space
within the text. You can enter up to 255 alphanumeric characters.

To view a custom parameter:

1. In the LogViewer, right-click the event.

2. Click Properties.

3. Click the Configuration tab.
E-2 7

Com m ents
Values that contain spaces must be enclosed within quotation marks.

Exam ple
rtresult.exe /result fail /note "This manual script should
fail to meet requirements." /DB2 "Indicates the database
the manual script runs against."

Logging Results of Several External Scripts
If you run more than one external test at the same time, you must supply an ID for
each external test to Rtresult.exe in order to store the test results in the appropriate
log.

When TestManager starts your external script, TestManager passes this ID to your
external test.

To log test results when running more than one external test at the same time:

1 . In the source code of each external test, you must store the ID value passed from
TestManager and use it when calling Rtresult.exe.

2 . Add the Rtresult.exe command and the ID parameter to the source code of each
external test. For information about each parameter, see Logging Results of an
External Script on page E-26.

For example: rtresult.exe /ID N /result pass

where N equals the ID passed to your test from TestManager.

3 . In TestManager, add %ID to the command line that starts an external test:

a. Start TestManager.

b. Click File → Plan → External Script.

c. Click the General tab.

d. Be sure to type the drive and path of the existing external test that you want
to run in the Com m and box, or click Browse to select the path. Then type
%ID after the drive and path.

For example: c:\mytests\extest.exe %ID

TestManager replaces %ID with a real ID when the external test executes.

e. Fill in the rest of the Plan Script dialog box.

f. Click O K .

4 . Run the scripts. For information, see the next section, Running an External Script.
E-28

W orking with External Scripts
Running an External Script
To run an external script:

1 . Do one of the following:

– Right-click the script in either the Requirements H ierarchy or the Script
Query window and click Run.

– Click File → Run → Script. Click the script to run, and then click O K.

2 . Fill in the Specify Log Information dialog box and click O K .

The external script runs the external test and stores the results in the LogViewer, if
you set up the external script to log the results. For information, see Logging Results of
an External Script on page E-26 and Logging Results of Several External Scripts on page
E-28. To view the results of an external script, see the next section, Viewing the Results
of Running an External Script.

Viewing the Results of Running an External Script
To view the results of running an external script:

1 . Open the Asset Browser (click View → Asset Browser).

2 . Expand the Builds tree until the log name appears.

3 . Double-click the log to open it in the LogViewer.

The Result column shows whether the external script passed or failed.

4 . To see more details about an event, right-click the event and click Properties.
Click the Result tab.

The D escription box shows the text of the note when you call Rtresult.exe with
the /note parameter. The Additional inform ation box is not used for external
scripts.

Click the Configuration tab.

Text appears in this tab when you call Rtresult.exe with the /custom parameter.
The Setting column displays the name of the custom parameter. The Value
column displays the text of the custom parameter.

For information about using the /note and /custom parameter, see Logging Results
of an External Script on page E-26.
E-2 9

E-30

Glossary
action object – In TestFactory, an object in the application map that represents an
action to which a control in the application responds. Typical actions are mouse
left-click, mouse right-click, and mouse left-double-click; the corresponding action
objects in the application map are LeftClick, RightClick, and LeftDoubleClick.

ActiveX control – A reusable software control that takes advantage of Object Linking
and Embedding (O LE) and Component Object Modeling (COM) technologies.
Developers can use ActiveX controls to add specialized functions to applications,
software development tools, and Web pages. Robot can test ActiveX controls in
applications.

actual results – In a functional test, the outcome of testing an object through a
verification point in a GU I script. Actual results that vary from the recorded baseline
results are defects or intentional changes in the application. See also baseline results.

Adm inistrator – See Rational Administrator.

Agent com puter – In LoadTest, a computer that has the Rational Agent software
installed and that plays back a virtual user or GU I script. In a LoadTest schedule,
you can identify the Agent computer on which to run a script. See also Rational Agent.

API recording – In Robot, a virtual user recording method that captures API calls
between a specific client application and a server. These calls are captured on the
client computer.

application m ap – In TestFactory, a hierarchical list of controls and actions in the
application-under-test, as well as the states of the application-under-test and the
transitions between those states. An application map can include U I objects and
action objects, as well as TestFactory objects such as Pilots, Test Suites, and scripts.

application-under-test – The software being tested. See also system-under-test.

Asset Browser – A window that displays testing resources such as builds, queries,
scripts, schedules, reports, report output, and logs. The Asset Browser is available in
TestManager and LoadTest.

AU T – See application-under-test.
Glossary-1

Glossary
autom ated testing – A testing technique in which you use software tools to replace
repetitive and error-prone manual work. Automated testing saves time and enables a
reliable, predictable, and accurate testing process.

AutoPilot – In TestFactory, a tool for running scripts, Test Suites, and Pilots. The
scripts and Test Suites can run on your local computer or on computers in the Test
Lab. The Pilots run on your local computer, and the scripts they generate can run on
your local computer or on computers in the Test Lab.

base state – In TestFactory, the known, stable state in which you expect the
application-under-test to be at the start of each script segment. See also script segment.

baseline results – In a functional test, the outcome of testing an object through a
verification point in a GU I script. The baseline results become the expected state of
the object during playback of the script. Actual test results that vary from the baseline
results are defects or intentional changes in the application. See also actual results.

best script – In TestFactory, an optimized script generated by a Pilot. A best script
contains the fewest number of script segments that provide the most coverage of the
source code or user interface in the application-under-test.

breakpoint – A feature of the Robot debugger. When you assign a breakpoint to a
line of code, and then run the script in the debugger environment, the script stops
executing at that line of code. Control returns to you, and the breakpoint line is
displayed. From here you can view variables, perform other debugging activities, and
continue executing the script.

build – A version of the application-under-test. Typically, developers add new
features or enhancements to each incremental build. As team members test a build,
they enter defects against those features that do not behave as expected. You use
TestManager to define and manage builds.

built-in data test – A data test that comes with Robot and is used with the Object
Data verification point. A data test uses a specific property of the object, in
conjunction with other parameters, to determine the data to capture. Although
built-in data tests cannot be edited, renamed, or deleted, they can be copied and then
edited, and they can be viewed. See also custom data test.

ClearQ uest – See Rational ClearQuest.

client/server – An architecture for cooperative processing in which the software
tasks are split between server tasks and client tasks. The client computer sends
requests to the server, and the server responds.

code coverage – In TestFactory, the percentage of code that is tested by a script.
This percentage is based on the portion of the code that a script touches, relative to
all code in the application-under-test. A Pilot can use code coverage to determine the
best script for a run. See also UI coverage.
Glossary-2

Glossary
com m and ID – In LoadTest’s VU language, an identifier for a command. Robot
automatically assigns a unique command ID, composed of an alphanumeric prefix
and a three-digit number, to each emulation command. Because command IDs
appear in both the virtual user script and the LoadTest report output, they enable you
to determine the relationship between an emulation command and its response
times.

com m and ID prefix – In LoadTest, a prefix for a unique emulation command ID.
The prefix defaults to the script name (up to the first seven characters). H owever,
you can define the prefix in the Generator tab of the Virtual U ser Record O ptions
dialog box.

custom data test – A customer-defined data test used with the O bject Data
verification point. A data test uses a specific property of the object, in conjunction
with other parameters, to determine the data to capture. Custom data tests are
created within your organization and are stored in the repositories that were active
when they were created. They can be edited, renamed, and deleted. See also built-in
data test.

data test – A test that captures the data of an object with the Object Data verification
point. See also built-in data test and custom data test.

datapool – A source of test data that GU I scripts and virtual user scripts can draw
from during playback. You can automatically generate datapools using TestManager,
or you can import datapool data from other sources such as your database.

dependency – In LoadTest, a method of coordinating an object in a schedule with
an event. For example, if the script Query is dependent upon the script Connect,
then Connect must finish executing before Query can begin executing. See also
event.

distributed architecture – Architecture in which computer systems work together
and communicate with each other across LAN , WAN , or other types of networks.
A client/server system is an example of distributed architecture.

distributed functional test – In LoadTest, a test that uses multiple Agent computers
to execute multiple GU I scripts written in the SQ ABasic language.

dynam ic load balancing selector – A type of selector in a LoadTest schedule. Items
in the selector, such as scripts, are executed according to a weight that you set.

em ulation com m ands – VU language statements or commands that emulate client
activity, evaluate the server’s responses, and perform communication and timing
operations. LoadTest stores the results of emulation commands in a log file, which
you can view from the LogViewer.
Glossary-3

Glossary
em ulation functions – VU language functions that emulate client activity and
evaluate the server’s responses. U nlike emulation commands, emulation functions
do not perform communication and timing operations, and they are not logged.

environm ent control com m ands – VU language commands that let you control a
virtual user’s environment by changing the VU environment variables. For example,
you can set the level of detail that is logged or the number of times that virtual users
attempt to connect to a server.

event – An item in a LoadTest schedule upon which another item is dependent.
For example, if the script Connect sets an event and the script Query depends on this
event, Connect must finish executing before Query can begin executing. See also
dependency.

external script – A script that runs a program created with any tool. You plan and
run external scripts in TestManager.

fixed user group – In LoadTest, a group that contains a scalable number of users.
When you create a fixed user group, you indicate the maximum number of users that
you will run in the group. Typically, you use fixed user groups in functional tests,
which do not add a workload to the system.

flow control statem ents – In the VU and SQABasic languages, statements that let
you add conditional execution structures and looping structures to a script.

functional test – A test to determine whether a system functions as intended.
Functional tests are performed on GU I objects and objects such as hidden
DataWindows and Visual Basic hidden controls.

Grid Com parator – The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in grid formats. The Grid
Comparator displays the differences between the recorded baseline data and the
actual data captured during playback.

GU I script – A type of script written in the SQABasic language. It contains GU I
actions such as keystrokes and mouse clicks. Typically, a GU I script also contains
verification points for testing objects over successive builds of the application-under-
test.

GU I user – The type of user that is emulated when a GU I script is executed.
Only one GU I user at a time can run on a computer.

hidden object – An object that is not visible through the user interface. H idden
objects include objects with a visible property of False and objects with no GU I
component.

ID E – Integrated Development Environment. This environment consists of a set of
integrated tools that are used to develop a software application. Examples of IDEs
supported by Robot include Oracle Forms, PowerBuilder, Visual Basic, and Java.
Glossary-4

Glossary
Im age Com parator – The Robot component for reviewing and analyzing bitmap
image files for Region Image and Window Image verification points. The Image
Comparator displays differences between the recorded baseline image and the actual
image captured during playback. The Image Comparator also displays unexpected
active windows that appear during playback.

instrum entation – In TestFactory, the process of inserting code coverage counters
into the application-under-test. These counters record how much code is executed
during a script run. See also object code instrumentation and source code instrumentation.

load – See workload.

load balancing – See workload balancing.

LoadTest – See Rational LoadTest.

log – A repository object that contains the record of events that occur while playing
back a script or running a schedule. A log includes the results of all verification points
executed as well as performance data that can be used to analyze the system’s
performance.

LogViewer – See Rational LogViewer.

low-level recording – A recording mode that uses detailed mouse movements and
keyboard actions to track screen coordinates and exact timing. During playback, all
actions occur in real time, exactly as recorded.

m anual script – A set of testing instructions to be run by a human tester. The
script can consist of steps and verification points. You create manual scripts in
TestManager.

M aster com puter – A computer that executes LoadTest. From this computer, you
create, run, and monitor schedules. When the run is finished, you use it to analyze
test results.

m ix-ins – See Pilot mix-ins.

network recording – In Robot, a virtual user recording method that records packet-
level traffic. This traffic is captured on the wire.

next available selector – In LoadTest schedules, a selector that distributes each item
such as a script, delay, or other selector to an available computer or virtual user. This
type of selector is used in a GU I schedule. The next available selector parcels out the
items sequentially, based on which computers or virtual users are available.
Glossary-5

Glossary
object – An item on a screen, such as a window, dialog box, check box, label, or
command button. An object has information (properties) associated with it and
actions that can be performed on it. For example, information associated with the
window object includes its type and size, and actions include clicking and scrolling.
In some development environments, a term other than object is used. For example,
the Java environment uses component, and the H TML environment uses element.

object code instrum entation – In TestFactory, the process of inserting code
coverage counters into the executable file of the application-under-test. These
counters record how much of the program a script tests. See also instrumentation and
source code instrumentation.

O bject-O riented Recording® – A script recording mode that examines objects in
the application-under-test at the Windows layer. Robot uses internal object names to
identify objects, instead of using mouse movements or absolute screen coordinates.

O bject Properties Com parator – The Robot component that you use to review,
analyze, and edit the properties of objects captured by an Object Properties
verification point. The Object Properties Comparator displays differences between
recorded baseline data and the actual data captured during playback.

O bject Scripting com m ands – A set of SQABasic commands for accessing an
application’s objects and object properties. You add Object Scripting commands
manually when editing a script.

O bject Testing® – A technology used by Robot to test any object in the application-
under-test, including the object’s properties and data. O bject Testing lets you test
standard Windows objects and IDE-specific objects, whether they are visible in the
interface or hidden.

O CI – O bject Code Insertion. The Rational technology used in TestFactory to
instrument object code and measure how much of the application-under-test a script
tests. See also code coverage and object code instrumentation.

perform ance test – A test that determines whether a multi-client system performs
within user-defined standards under varying loads. Performance tests are always run
from a schedule in LoadTest.

Pilot – In TestFactory, a tool for generating scripts automatically.

Pilot m ix-ins – In TestFactory, a list of Pilots that are executed on a random basis
during the run of a lead Pilot. Mix-ins are useful for randomly testing multiple areas
of the application-under-test. To make tests more realistic, you can combine mix-ins
and scenarios.

Pilot scenario – An ordered list of Pilots that are executed during the run of a Pilot.
A Pilot scenario is useful for testing U I objects that need to be exercised in a specific
order. To make tests more realistic, you can combine scenarios and mix-ins.
Glossary-6

Glossary
project – A collection of data, including test assets, defects, requirements, and
models, that can facilitate the development and testing of one or more software
components.

proxy recording – In Robot, a virtual user recording method that captures the client/
server conversation on the network wire rather than on the client computer. Proxy
recording allows Robot to capture network packets that are not visible to it during
network recording — for example, if the client and server are in different network
segments.

query – A request for information stored in the repository. A query consists of a filter
and several visible attributes — the columns of data to display, the width of the
column, and the sort order.

random selector – A type of selector in a LoadTest schedule. Items in the selector,
such as scripts, are randomly executed. Random selectors can be with replacement,
where the odds are the same, or without replacement, where the odds change with
each iteration.

Rational Adm inistrator – The component for creating and maintaining repositories,
projects, users, groups, computers, and SQL Anywhere servers.

Rational Agent – The LoadTest software that resides on a shared network drive and
runs on each computer where testing occurs. The entries specified in a schedule play
back on the Agent computer, which reports on their progress and status as they run.
See also Agent computer.

Rational ClearQ uest – The Rational product for tracking and managing defects and
change requests throughout the development process. With ClearQ uest, you can
manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.

Rational LoadTest – The Rational Test component for running performance,
stress, scalability, multi-user, and distributed functional tests on multiple Agents
connected by a network. With LoadTest, you can initiate test runs and monitor tests
from a master computer that manages the test process. LoadTest is available only in
Rational Suite PerformanceStudio.

Rational LogViewer – The Robot component for displaying logs, which contain the
record of events that occur while playing back a script or running a schedule. Also,
the component from which you start the four Comparators.

Rational Perform anceArchitect – The Rational component that lets you test the
performance of COM/DCO M applications. With Rational PerformanceArchitect,
you can create a Rose sequence or collaboration diagram, convert it to a virtual user
script, and then use Rational Suite PerformanceStudio to edit the script and run the
performance tests.
Glossary-7

Glossary
Rational repository – A database that stores application testing information, such as
test requirements, scripts, and logs. All Rational Suite TestStudio and Rational Suite
PerformanceStudio products and components on your computer update and
retrieve data from the same connected repository. A repository can contain either
a Microsoft Access or a Sybase SQL Anywhere database.

Rational RequisitePro – The Rational product for organizing, managing, and
tracking the changing requirements of your system.

Rational Robot – The Rational product for recording, playing back, debugging, and
editing scripts.

Rational SiteCheck – The Robot component for managing your intranet or World
Wide Web site. You can use SiteCheck to visualize the structure of your Web site,
and you can use it with Robot to automate Web site testing.

Rational Synchronizer – The Rational tool that ensures the consistency of data
across several Rational products.

Rational TestAccelerator – An agent application that executes scripts. TestFactory
uses computers running TestAccelerator as remote machines on which to run
automated distributed tests.

Rational TestFactory – The Rational Test component for mapping an application-
under-test and generating scripts automatically. TestFactory is available in Rational
Suite TestStudio and Rational Suite PerformanceStudio.

Rational TestM anager – The Robot component for managing the overall testing
effort. You use it to define and store information about test documents,
requirements, scripts, schedules, and sessions.

Report Layout Editor – The TestManager component for customizing the layout of
reports.

repository – See Rational repository.

RequisitePro – See Rational RequisitePro.

Robot – See Rational Robot.

scalable user group – In LoadTest, a group that contains a varying number of users.
When you create a scalable user group, you assign it a percentage of the total
workload. Assume you have a scalable user group that is 50 percent of the workload.
If you run a test with 10 users, the group will contain 5 users. If you run a test with
100 users, the group will contain 50 users.

scenario – In LoadTest, a modular group of scripts and other items in a schedule that
is used by more than one user group. A scenario can contain scripts, delays, and
synchronization points.
Glossary-8

Glossary
scenario – See Pilot scenario.

schedule – In LoadTest, structure that you create to specify how scripts should be
played back. A schedule can contain GU I scripts and virtual user scripts, and can
indicate the number of times to repeat a script and the computer on which the script
will run. In performance testing, a schedule is used to create a workload. In
distributed functional testing, a schedule is used to distribute scripts among various
computers.

script – A set of instructions used to navigate through and test an application. You
can generate scripts in a variety of ways. You can use Robot to record scripts used in
functional testing and performance testing. You can also use TestManager to create
and manage manual scripts, and to manage external scripts created with a third-party
testing tool. A script can have properties associated with it, such as the purpose of the
script and requirements for the script. See also external script, GUI script, manual script,
and virtual user script.

script outline – In TestFactory, the readable version of a script. A script outline
contains a description of the actions that Robot performs while running the script.

script segm ent – In TestFactory, a section of a script that tests a particular
element of product functionality. A Pilot generates a script segment by starting the
application-under-test in a base state, navigating through the part of the product that
you are testing, and returning the application-under-test to the base state. See also
base state.

seed – An initial number fed to a random number generator. U sing the same seed
produces the same series of random numbers. In LoadTest, you use seeds to generate
think times.

selector – An item that you insert in a LoadTest schedule to indicate how often and
in what order to run scripts.

sequentia l selector – In a LoadTest schedule, a type of selector that executes each
script, delay, or other item in the same order in which it appears in the schedule.

session – In virtual user recording, one or more scripts that you record from the time
you begin recording until the time you stop recording. Typically, the scripts in a
session represent a logical flow of tasks for a particular user, with each script
representing one task. For example, a session could be made up of three scripts:
login, testing, and logout. In TestFactory, a session is the period of time that the
TestFactory application or a window is open.

shared variable – An integer variable that multiple scripts and multiple virtual users
can read and write to. You can see the value of a shared variable while monitoring a
LoadTest schedule. For example, you can set a shared variable as a flag to end a
playback session. Each script can check the flag to see if the session should end. When
that flag is set, exit tasks can be performed.
Glossary-9

Glossary
shell script – A script that calls or groups several other GU I scripts and plays them
back in sequence. Shell scripts provide the ability to create comprehensive tests and
then store the results in a single log.

SiteCheck – See Rational SiteCheck.

source code instrum entation – In TestFactory, the process of inserting code into
the source code of the application-under-test. This code measures how much of the
source code a script tests. See also instrumentation and object code instrumentation.

SQ ABasic – The Robot scripting language for recording GU I actions
and verifying GU I objects. SQ ABasic contains most of the syntax rules and core
commands that are contained in the Microsoft Basic language. In addition,
SQABasic has commands that are specifically designed for automated testing.
See also VU .

stable load – In LoadTest, a condition that occurs when a specified number of
virtual users have logged on to the system-under-test and are active. When the stable
load criterion is met, LoadTest begins measuring the load.

streak – When running a virtual user schedule in LoadTest, a series of successes or
failures for emulation commands. You can see a streak while monitoring a schedule.

structura l test – A test to determine whether the structure of a Web site is consistent
and complete. A structural test ensures that an application’s interdependent objects
are properly linked together. You perform a structural test using SiteCheck.

synchronization point – In LoadTest, a place where emulated virtual users stop and
wait until all other synchronized users reach that point. When all users reach the
synchronization point, they are released and continue executing.

Synchronizer – See Rational Synchronizer.

system tuning – In LoadTest, the process of optimizing a system’s performance by
changing hardware resources and software configuration parameters while using a
constant workload.

system -under-test – The system being tested. This includes the computers and any
software that can generate a load on the system, networks, user interfaces, CPU s, and
memory. See also application-under-test.

test assets – The resources that facilitate the planning or development phases of
the testing effort. Examples of test assets include scripts, schedules, sessions, test
documents, and test requirements.

test developm ent – The process of developing tests to verify the operation of a
software application. This includes creating scripts that verify that the application-
under-test functions properly. Test development lets you establish the baseline of
expected behavior for the application-under-test.
Glossary-10

Glossary
test docum ents – Test plans, project schedules, resource requirements, and any
other documents that are important to your project. You develop your test
documents using your own word processing or scheduling program; you then
reference the name and location of the document in TestManager. This lets
members of the test and development team locate documents quickly.

Test Lab – A collection of computers on which TestAccelerator is running. In
TestFactory, you can distribute the scripts associated with a Pilot, a Test Suite, or the
AutoPilot to run on computers in the Test Lab. See also Rational TestAccelerator.

Test Suite – In TestFactory, a tool for running a collection of scripts as a group.

TestAccelerator – See Rational TestAccelerator.

TestFactory – See Rational TestFactory.

TestM anager – See Rational TestManager.

Text Com parator – The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in any format except grids. The
Text Comparator displays the differences between the recorded baseline results and
the actual results.

think tim e – In virtual user and GU I scripts, think times are delays that simulate a
user’s pauses to type or think while using an application. With virtual user scripts,
LoadTest calculates the think time at runtime, based on think time VU environment
variables that are set in the script. You can set a maximum think time in Robot. With
GU I scripts, Robot uses the actual delays captured between keystrokes, menu
choices, and other actions.

transaction – In LoadTest, a logical unit of work performed against a server. For
example, submitting a search query or submitting a completed form to a Web server
are both transactions.

transaction rate – In LoadTest, the playback speed calculated as a function of
number of transactions per unit of time. For example, if a script contains one
transaction, and each script is started at half-second intervals, your transaction rate
would be 2 per second.

transactor – In LoadTest, an item that you insert in a LoadTest schedule to indicate
the number of user-defined transactions that a virtual user performs in a given time
period.

U I coverage – In TestFactory, the percentage of objects in the application map that
are tested by a Pilot-generated script. This percentage is the proportion of U I objects
that the script touches, relative to all U I objects available to the Pilot. A Pilot can use
U I coverage to determine the best script for a run. See also code coverage.
Glossary-1 1

Glossary
U I object properties – Attributes of object classes and U I objects that TestFactory
uses to map applications and generate scripts.

unexpected active window – A window that appears during script playback that
interrupts the script playback process and prevents the expected window from being
active. For example, an error message generated by the application-under-test is an
unexpected active window. You can view unexpected active windows in the Image
Comparator.

user group – In LoadTest, a collection of users that execute similar tasks and
generate the same basic workload. Accountants and data entry operators are examples
of user groups.

verification – The process of comparing the test results from the current build of the
software to its baseline results.

verification point – A point in an SQABasic script that confirms the state of one or
more objects. During recording, a verification point captures object information
from the application-under-test and stores it as the baseline. During playback, a
verification point recaptures the object information and compares it to the baseline.
In a manual script, a verification point is a question about the state of the application-
under-test.

virtual user – In LoadTest, a type of user that is emulated when a virtual user script
is executed. A computer can run multiple virtual users simultaneously.

virtual user script – A type of script written in the VU language. Virtual user scripts
contain client/server requests and responses as well as user think times.

VU – The Robot scripting language for recording a client’s requests to a server.
VU provides most of the syntax rules and core commands available in the C
programming language. In addition, VU has emulation commands and functions
that are specifically designed for automated performance testing. See also SQABasic.

wait state – A delay or timing condition that handles time-dependent activities.

workload – In LoadTest, the set of all activities that users perform in an actual
production setting of the system-under-test. You can use LoadTest to emulate a
workload.

workload balancing – In LoadTest, the act of distributing activities so no one system
or device becomes a bottleneck.

workload m odel – In LoadTest, the workload model is represented as a schedule.
You can play back this schedule and analyze the response times.
Glossary-12

ã ã ã Index
A
access order of datapool rows 8-3

acknowledging results for GU I script playback 9-5

adding

build states 3-9

custom fields to scripts 2-16

features to GU I scripts 5-1

masks during recording 14-17

properties in Object Properties Comparator 11-7

query filter statements 15-6, 15-7

addresses data type C-2

Administrator 1-2

alphanumeric values, testing 6-3

Alphanumeric verification point 6-3, 12-1

animation mode for debugging 7-13

applets, Java 20-3

applications

Java 20-3

starting 5-1

Apply a U ser-Defined DLL test function verification
method 6-15

ASCII text files 8-42

Asset Browser, displaying builds in 3-4

associating

schedules with test requirements 2-19

scripts with test requirements 2-13

variable names and datapool columns 8-42

attaching

files to defects 10-19

LoadTest schedules to test requirements 2-19

scripts to test requirements 2-13

Auto Mask feature in Image Comparator 14-12

automatically generating values for user-defined data
types 8-33

automatically masking differences in Image
Comparator 14-12

autonaming GU I scripts 4-7

B
baseline file, editing

in Grid Comparator 13-8

in O bject Properties Comparator 11-9

in Text Comparator 12-5

baseline file, replacing

in Grid Comparator 13-11

in Image Comparator 14-17

in O bject Properties Comparator 11-12

in Text Comparator 12-7

baseline file, saving

in Grid Comparator 13-11

in Image Comparator 14-18

in O bject Properties Comparator 11-12

in Text Comparator 12-7

batch compiling scripts and library source files 7-8

breakpoints, setting and clearing 7-11

Browser N ewPage command 19-15

browsers

playing back scripts in Internet Explorer 19-2

playing back scripts in N etscape N avigator 19-12

recording scripts in Internet Explorer 19-2

requirements for running manual scripts on the
Web E-13
Index-1

Index
setting up Microsoft Internet Explorer E-21

setting up N etscape N avigator E-21

Build Listing reports 16-4

build states 3-4, 3-9, 3-10

Build tab of O utput window 7-9

builds

copying 3-7

creating 3-5

deleting 3-7

intentional changes to 10-10

organizing in the Asset Browser 3-4

renaming 3-7

built-in data tests B-1

By Content identification method 6-16

By Key/Value identification method 6-17

By Location identification method 6-16

By Title identification method 6-16

C
C+ + applications

enabling for testing 4-5

recognition order preference 4-10

C+ + Recognition Order preference 4-10

calling scripts from within scripts 5-3

Case-Insensitive verification method 6-14

Case-Sensitive verification method 6-14

changing

color of masks and differences in Image
Comparator 14-7

column order in LogViewer 10-8

how differences are determined in Image
Comparator 14-7

identification methods in Object Properties
Comparator 11-12

object class mappings 4-15

projects 1-16

script properties in Robot 4-24

verification method in Object Properties
Comparator 11-11

child requirements, inserting 2-7

choosing query fields to display 15-5

cities data type C-2

clearing breakpoints 7-11

ClearQuest 10-14

Clipboard verification point 6-3

clipboard, testing content of 6-3

collapsing/expanding log events in LogViewer 10-7

columns in data grids

changing widths 6-22

testing titles 6-20

transposing with rows 6-23

columns in datapools

assigning data types to 8-20

assigning values from a text file 8-42, C-8

deleting 8-26

editing column definitions, in TestManager 8-25

editing values, in TestManager 8-26

example of column definition 8-23

field values and 8-39

length of 8-21

maximum number 8-3, 8-12, 8-18, 8-42

names correspond to script variables 8-20, 8-42

setting numeric ranges in 8-22

setting unique values in 8-21

unique 8-37

values supplied by data types 1-4, 8-6

columns in LogViewer

changing order 10-8

changing widths 10-8

Log file section 10-5

columns in queries 15-10

command-line options D-1

comma-separated-value format for datapools 8-39

comments in GU I scripts 5-8

company names data type C-2
Index-2

Index
Comparators

Grid 13-1

Image 14-1

Object Properties 11-1

Text 12-1

viewing verification points in 10-9

comparing differences

in Grid Comparator 13-6

in Image Comparator 14-6

in O bject Properties Comparator 11-6

in Text Comparator 12-5

compiling

locating errors 7-9

scripts and library source files 7-7

virtual user scripts 2-16

Computer Listing reports 16-4

configuring

Microsoft Internet Information Server E-16

Microsoft Personal Web Server E-19

configuring Windows 2000 Web servers E-16

constant value data type C-8

constant values, examining 7-13

Content identification method 6-16

cookie prompt, disabling in Internet Explorer 19-2

copying

builds 3-7

data from actual to baseline file in Grid
Comparator 13-10

data from actual to baseline file in O bject
Properties Comparator 11-11

data from actual to baseline file in Text
Comparator 12-6

data from baseline file in Grid Comparator 13-10

data from baseline file in Object Properties
Comparator 11-10

data from baseline file in Text Comparator 12-6

data tests B-8

datapools 8-27

log filters in LogViewer 10-12

low-level scripts 7-5

masks in Image Comparator 14-11

OCR regions in Image Comparator 14-15

references to test documents 2-2

reports 16-17

user-defined data types 8-36

verification points 6-25

Coverage reports

about 16-2

creating 16-7

opening 16-14

running 16-11, 16-13

creating

builds 3-5

Coverage reports 16-7

datapools outside Rational Test 8-38

datapools, in TestManager 8-18

Listing reports 16-4

log filters in LogViewer 10-11

masks in Image Comparator 14-10

OCR regions in Image Comparator 14-13

queries 15-4

query filters 15-6, 15-7

references to test documents 2-2

Test Results Progress reports 16-15

user-defined data types 8-9

credit card numbers 8-24

.csv datapool files 8-3, 8-29

cursors

datapool 8-3

disabling wrapping for unique row retrieval 8-37

synchronizing in Grid Comparator 13-6

custom data tests B-1

custom object classes 4-14

customer support xxiii
Index-3

Index
customizing

field labels and values 2-23

script properties 2-16

scripts and schedules 2-22

cutting

data from baseline file in Grid Comparator 13-10

data from baseline file in Object Properties
Comparator 11-10

data from baseline file in Text Comparator 12-6

masks in Image Comparator 14-11

OCR regions in Image Comparator 14-15

D
data grids

definition 6-15

working with 6-19

Data options

in Planning Coverage reports 16-8

in Test Results Progress reports 16-16

data tests B-1

copying B-8

creating B-5

deleting B-8

example B-2

expressions B-6

renaming B-8

data types

assigning to a datapool column 8-20

copying 8-36

creating 8-9

deleting 8-36

determining which data types you need 8-8

editing values in standard data types 8-32

editing values in user-defined data types 8-31

importing user-defined 8-35

list of standard data types C-1

minimum and maximum values C-9

renaming 8-35

role of 1-4, 8-6

standard and user-defined 8-7

data, testing in objects 6-4

datapools

access order 8-3

adding commands to GU I scripts 8-13

assigning data types to 8-20

copying 8-27

creating in TestManager 8-18

creating outside Rational Test 8-38

cursors 8-3

data types 1-4, 8-6

deleting 8-28

deleting columns from 8-26

editing column definitions, in TestManager 8-25

editing values, in TestManager 8-26

example of column definition 8-23

example of value generation 8-24

exporting 8-30

field separators 8-39

files 8-3, 8-29

finding data types for 8-8

generating data, in TestManager 8-18

importing from another project 8-29

importing from outside Rational Test 8-28

limits 8-3

maximum number of columns 8-3, 8-12, 8-18,
8-42

numeric ranges in 8-22

overview 8-4

planning 8-4

populating with values, in TestManager 8-18

renaming 8-27

role of 8-2, 8-4

row access order 8-3

separator characters 8-39

setting unique values in 8-21
Index-4

Index
datapools (continued)

structure 8-39

unique row retrieval 8-37

where stored 8-3

DataWindow Contents data test 21-7

DataWindows in PowerBuilder

computed fields 21-8

expression values 21-5

hidden 21-6

recording actions 21-3

dates

Julian C-4, C-5

setting ranges C-2, C-3, C-4

dates data types C-2, C-3, C-4

debugging GU I scripts 7-9

animation mode 7-13

clearing breakpoints 7-11

executing to a selected line 7-13

setting breakpoints 7-11

stepping into scripts 7-11

decimal numbers 8-21, C-5

declarations, global 5-15

Default object order preference 4-10

defects

entering in ClearQuest 10-18

finding 10-21

generating from LogViewer 10-18

modifying 10-21

TestStudio defect form 10-16

tracking 10-14

defining

custom field labels and values 2-23

datapool columns 8-25

default build view 3-5

delay values

adding to scripts 5-10

options for GU I script playback 9-7

deleting

build states 3-10

builds 3-7

columns in queries 15-10

data tests B-8

datapool column definitions 8-26

datapools 8-28

LoadTest schedules 2-21, 15-3

log files in LogViewer 10-6

log filters in LogViewer 10-12

low-level scripts 7-6

masks in Image Comparator 14-12

object class mappings 4-15

OCR regions in Image Comparator 14-16

properties in Object Properties Comparator 11-7

references to test documents 2-2

reports 16-17

requirements 2-22

scripts 2-18, 7-15, 15-3

sessions 15-3

user-defined data types 8-36

verification points 6-25

delimiters for datapool fields 8-39

design specifications, referencing 2-15

detaching

schedules from test requirements 2-20

scripts from test requirements 2-15

Development Coverage reports 16-2, 16-9

diagnostic tools options 9-11

differences

changing color of, in Image Comparator 14-7

changing how determined, in Image Comparator
14-7

comparing in Object Properties Comparator
11-6

displaying in Image Comparator 13-1, 14-6

locating in Grid Comparator 13-6

locating in Image Comparator 14-6
Index-5

Index
differences (continued)

locating in O bject Properties Comparator 11-7

locating in Text Comparator 12-5

playback/environmental 10-10

disabling cookie prompt in Internet Explorer 19-2

display options

in Development Coverage reports 16-9

in Execution Coverage reports 16-10

in Grid Comparator 13-5

in Planning Coverage reports 16-8

displaying

builds in Asset Browser 3-4

log properties 3-9

masks in Image Comparator 14-9

schedule statistics 2-21

script statistics 2-16

divide by zero errors, detecting 9-16

documenting GU I scripts 5-8

DropDown Contents data test 21-7

DropDownDataWindows in PowerBuilder 21-7

DropDownListBoxes in PowerBuilder 21-7

duplicating

masks in Image Comparator 14-11

OCR regions in Image Comparator 14-16

DWColumns in PowerBuilder 21-7

E
editing

build states 3-10

data in baseline file in Grid Comparator 13-8

data in data grid 6-21

datapool column definitions in TestManager
8-25

datapool values in TestManager 8-26

log filters in LogViewer 10-11

masks in Image Comparator 14-9

menu items in Grid Comparator 13-9

references to test documents 2-2

requirement properties 2-7, 2-21

scripts 7-1, 7-2

standard data type values 8-32

user-defined data type definitions 8-32

user-defined data type values 8-31

values in Properties list in Comparator 11-9

verification points 6-23

editing baseline file

in Grid Comparator 13-8

in O bject Properties Comparator 11-9

in Text Comparator 12-5

editor for manual scripts E-3

empty string data type C-8

Enabler for O racle Forms 18-2

enabling applications for testing 4-5

ending recording of GU I scripts 4-23

entering defects 10-18

environment differences 10-10

error recovery options for GU I script playback 9-9

errors

detecting during playback 9-16

locating after compiling 7-9

evaluating failures in LogViewer 10-9

Excel, creating datapool files with 8-40

executable files, starting 5-1

executing to a selected line during debugging 7-13

Execution Coverage reports 16-2, 16-10, 16-13

expected results for verification points 6-9

exponential notation data type C-5

exporting datapools 8-30

expressions

in data tests B-6

in PowerBuilder applications 21-5

Extension Manager

Java 20-1

Oracle Forms 18-8
Index-6

Index
PeopleTools 22-2

PowerBuilder 21-2

Visual Basic 17-3

external C libraries 2-16

external scripts

about E-26

logging results of E-26, E-28

planning E-26

running E-29

viewing results of run E-29

F
failures

evaluating in LogViewer 10-9

setting error recovery options 9-9

See also differences

features, adding to GU I scripts 5-1

adding to existing GU I scripts 7-2

comments 5-8

delay values 5-10

inserting calls to scripts 5-3

log messages 5-9

starting applications 5-1

timers 5-6

verification points 5-4

field separator characters for datapools 8-39

fields in datapools. See columns in datapools

File Comparison verification point 6-3

File Existence verification point 6-3

file types

.csv (datapool files) 8-3, 8-29

.ord (object order preference files) 4-14

.rec (as SQABasic library source files) 5-12

.rec (SQABasic script files) 2-10

.sbh (SQABasic header files) 5-14

.sbl (SQABasic library source files) 5-12

.sbx (SQABasic library runtime files) 5-13

.spc (datapool specification files) 8-3, 8-29

.sqa (LOV text files) 18-17

files

comparing 6-3

datapool file location 8-3

testing existence of 6-3

filtering Log Event column in LogViewer 10-11

filters

creating complex query 15-7

creating simple query 15-6

for logs 10-11

Find Sub String Case-Insensitive verification method
6-14

Find Sub String Case-Sensitive verification method
6-14

first names data type C-6

float data types C-5

floating point numbers 8-21, C-5

functional specifications, referencing 2-15

G
gender data type (M, F) C-5

general protection faults, detecting 9-16

generating

defects 10-18

log files 3-2

reports in LogViewer 10-13

values in datapools, in TestManager 8-18, 8-24

Generic object type, defining unknown objects as 4-9,
4-21

global

declarations 5-15

header files 5-15

library source files 5-13

global.sbh file 5-15

global.sbl file 5-13

GPFs, detecting during playback 9-16
Index-7

Index
Grid Comparator 13-1

comparing actual and baseline files 13-6

copying data from actual to baseline file 13-10

cutting or copying data from baseline file 13-10

editing baseline file 13-8

editing data in baseline grid 13-8

editing menu items 13-9

grid window 13-4

locating differences 13-6

main window 13-3

pasting data into baseline file 13-10

replacing baseline file 13-11

saving baseline file 13-11

setting display options 13-5

starting 13-2, 13-3

synchronizing cursors 13-6

synchronizing scroll bars 13-5, 13-6

transposing grid data 13-5

user interface 13-3

using keys to compare data 13-7

grid editor for manual scripts E-3, E-6

grid window in Grid Comparator 13-4

grouping scripts for playback 4-26

GU I Insert toolbar 4-20

GU I playback options 9-4

GU I Record toolbar 4-20

GU I recording options 4-6

GU I scripts

adding features 7-2

adding user actions 7-2

autonaming 4-7

coding manually 4-24

creating modular scripts 4-3

datapools and 8-12

debugging 7-9

deleting 2-18

ending recording 4-23

pausing recording 4-20

playing back 9-1, 9-18

recording 4-1, 4-16

recording options 4-6

recording workflow 4-2

resuming recording 4-20

shell scripts 4-26

test environment 4-3

testing 4-25

viewing results of playback 9-20

when to use 2-12

See also scripts

GU I scripts and datapools 8-12

adding datapool commands 8-13

assigning datapool values to variables 8-15

associating variable names and datapool columns
8-15, 8-42

example script 8-16

substituting variables for literal values 8-14

tips during recording 8-12

H
header files 5-11, 5-14

help desk xxiii

hexadecimal data type C-5

hidden object, selecting 6-12

hot keys

restoring Robot window during recording 4-19

turning low-level recording on and off 4-22

hotline support xxiii

H TML support

testing applications 19-1

testing data in elements 19-4, 19-7
Index-8

Index
I
IDE applications

enabling for testing 4-5

H TML 19-1

Java 20-1

Oracle Forms 18-1

PeopleTools 22-1

PowerBuilder 21-1

Visual Basic 17-1

identification methods

changing in Object Properties Comparator 11-12

for verification points 6-15

identifying objects to test 6-13

IIS. See Microsoft Internet Information Server

IIS and Windows 2000 E-16

Image Comparator 14-1

automatically masking differences 14-12

changing color of masks and differences 14-7

changing how differences are determined 14-7

displaying differences 13-1, 14-6

image properties 14-8

locating differences 14-6

main window 14-4

Mask/OCR list 14-5

masks 14-9

moving image 14-8

replacing baseline file 14-17

saving baseline file 14-18

starting 14-2

status bar 14-6

unexpected active windows 14-18

user interface 14-4

zooming image 14-8

images, testing 6-5, 14-1

IME (Input Method Editor) 8-9, 8-11, 8-20, 8-23

importing

datapools from another project 8-29

datapools from outside Rational Test 8-28

requirements from PowerBuilder libraries (.pbl)
2-7

user-defined data types 8-35

include files 2-16

Input Method Editor 8-11, 8-20, 8-23

Input Method Editor (IME) 8-9

inserting

child requirements 2-7

columns in queries 15-10

features in GU I scripts 5-1

requirements 2-5

installing

Microsoft Internet Information Server E-14

Microsoft Personal Web Server E-14

TestManager - Manual Script Execution
component E-14

Web servers E-14

Windows N T Option Pack 4.0 E-14

integer data type C-6

invalid op codes, detecting 9-16

J
Japanese characters 8-8, 8-11

Java applets and applications 20-3

Java Developer Kit (JDK) 20-3

Java Enabler 20-4

Java extension, enabling 20-1

Java Virtual Machine (JVM) 20-1

Julian date data types C-4, C-5
Index-9

Index
K
Kanji characters 8-11

Katakana characters 8-11

Key/Value identification method 6-17

keyboard actions, tracking during recording 4-22

keys

in unique datapool rows 8-36

using to compare data in columns 6-17, 13-7

keystrokes, waiting for during playback 9-7

L
labeling test requirement revisions 2-6

last names data types C-6

library source files

compiling 7-7

creating and editing 5-12

global 5-13

role of 5-11

links, testing H TML 19-7

listing builds sequentially or by state 3-4

Listing reports

creating 16-4

definition 16-2

opening 16-7

running 16-5

literal value data type C-8

LoadTest schedules

attaching to test requirements 2-19

deleting 2-21

deleting from Query window 15-3

detaching from test requirements 2-20

displaying statistics for 2-21

planning 2-19

locating differences

in Grid Comparator 13-6

in Image Comparator 14-6

in O bject Properties Comparator 11-7

in Text Comparator 12-5

locating failed log events in LogViewer 10-8

Location identification method 6-16

Log Event column 10-11

log events in LogViewer

collapsing and expanding 10-7

filtering 10-11

locating failed events 10-8

properties 10-7

log file section of LogViewer 10-5

log messages, adding to GU I scripts 5-9

log options for GU I script playback 9-5

log window, modifying in LogViewer 10-7

logs

definition 9-5

deleting in LogViewer 10-6

deleting in TestManager 3-8

displaying properties of 3-9

external scripts E-26, E-28

generating 3-2

in LogViewer 10-1

manual scripts E-10

opening from LogViewer 10-6

opening from TestManager 3-9

renaming in TestManager 3-8

LogViewer 10-1

changing column order 10-8

collapsing log events 10-7

columns 10-5

deleting log files 10-6

entering defects 10-14, 10-18

evaluating failures 10-9

expanding log events 10-7
Index-1 0

Index
filtering Log Event column 10-11

generating reports 10-13

locating failed log events 10-8

log filters 10-11

main window 10-5

modifying log window 10-7

opening from TestManager 3-9

opening log files 10-6

reports 10-13

setting default report layout 10-13

starting 10-3

usage scenarios 10-2

user interface 10-5

viewing log event properties 10-7

low-level recording

copying scripts 7-5

deleting scripts 7-6

hot keys for 4-22

renaming scripts 7-4

switching to 4-22

viewing scripts 7-4

M
manual scripts

about E-1

editor E-3

external files in E-7, E-9

planning and creating E-3

running in TestManager E-7

viewing results of run E-10

manual scripts on the Web

about E-11

running E-23

setting options for E-24

troubleshooting E-22

Web browsers for E-21

mapping

object types and classes 4-14

scripts with test requirements 2-13

masks in Image Comparator 14-9

adding during recording 14-17

automatically masking differences 14-12

changing color of 14-7

creating 14-10

displaying 14-9

measuring duration of events 5-6

menu items, editing in Grid Comparator 13-9

Menu verification point 6-4

menus, testing 6-4, 6-20

Microsoft Excel, creating datapool files with 8-40

Microsoft Internet Explorer, setting up for manual
scripts on the Web E-21

Microsoft Internet Information Server

configuring E-16

installing E-15

Microsoft Personal Web Server

configuring E-19

installing E-15

middle initials data type C-7

middle names data type C-6

modifying

build states 3-10

defects 10-21

object class mappings 4-15

Module Existence verification point 6-4

modules, testing existence of 6-4

mouse movements, tracking during recording 4-22

moving

image in Image Comparator 14-8

masks in Image Comparator 14-10

OCR regions in Image Comparator 14-14

schedules to another requirement 2-20

scripts to another requirement 2-15, 2-20
Index-1 1

Index
multi-byte characters

in user-defined data types 8-8, 8-9, 8-11

typing in datapool column names 8-20, 8-23

N
names data types

company names C-2

first names C-6

last names C-6

middle initials C-7

middle names C-6

titles (Mr, Ms) C-6

naming scripts when recording 4-7

N etscape N avigator

playing back scripts in 19-12

setting up for manual scripts on the Web E-21

numbers data type C-6

N umeric Equivalence verification method 6-14

N umeric Range verification method 6-15

numeric values, testing 6-3

O
object data tests B-1

Object Data verification point 6-4, B-1

Object Finder tool 6-11

object mapping 4-14

object order preference

creating 4-14

selecting 4-10

Object Properties Comparator 11-1

adding properties to test 11-7

changing identification methods 11-12

changing verification methods 11-11

copying values from actual to baseline file 11-11

copying values from baseline file 11-10

displaying differences in baseline and actual files

11-6

editing baseline file 11-9

editing values in Properties list 11-9

locating differences 11-7

main window 11-3

Objects hierarchy 11-4

pasting values into baseline file 11-10, 11-11

Properties list 11-4

removing properties 11-7

replacing baseline file 11-12

saving baseline file 11-12

starting from LogViewer 11-2

starting from Robot 11-2

user interface 11-3

working in Properties list 11-6

Object Properties verification point 6-4

object recognition methods

creating new order preference 4-14

customizing the order 4-12

selecting order preference 4-10

object types and classes, mapping 4-14

Object-Oriented Recording 4-22

objects

identifying the object to test 6-13

Object Properties Comparator 11-1

selecting the object to test 6-10

unknown 4-8, 4-21, B-5

Objects hierarchy in O bject Properties Comparator
11-4

OCR regions

copying 14-15

creating 14-13

cutting 14-15

duplicating 14-16

moving 14-14

pasting 14-15

resizing 14-14
Index-1 2

Index
opening

Coverage reports 16-14

Listing reports 16-7

log files in LogViewer 10-6

Query Properties dialog box 15-4

scripts from LogViewer 10-10

test documents from TestManager 2-3

Test Results Progress reports 16-17

Oracle Forms support 18-1

making applications testable 18-3

Rational Test Enabler 18-2

recording actions 18-9

testing base-table blocks and items 18-16

testing data 18-16

testing LOVs 18-17

testing objects 18-9

testing properties 18-12

testing record groups 18-17

Try it! sample applet 18-2

verifying that extension is loaded 18-8

.ord files for object order preferences 4-14

P
packed decimal data type C-7

pasting

data to baseline file in Grid Comparator 13-10

data to baseline file in Object Properties
Comparator 11-10, 11-11

data to baseline file in Text Comparator 12-6

masks in Image Comparator 14-11

OCR regions in Image Comparator 14-15

pausing recording of GU I scripts 4-20

PeopleTools support 22-1

commands 22-3

testing data 22-3

testing properties 22-2

verifying that extension is loaded 22-2

PerformanceStudio 1-13

phone numbers data types C-7

planning

custom fields in scripts 2-23

datapools 8-4

LoadTest schedules 2-19

scripts 2-10

Planning Coverage reports 16-2, 16-8

playback differences 10-10

playing back GU I scripts 9-1, 9-18

acknowledging results 9-5

delays between commands 9-7

delays between keystrokes 9-7

detecting GPFs 9-16

error recovery options 9-9

in debugging mode 7-10

log options 9-5

playback options 9-4

Trap options 9-16

under PureCoverage 9-11

under Purify 9-11

under Quantify 9-11

unexpected active window options 9-10

wait state options 9-7

PlayJrnl command for low-level recording 4-23

populating datapools

example 8-24

in TestManager 8-18

PowerBuilder support 21-1

DataStore controls 21-6

DataWindows 21-3, 21-5, 21-6, 21-8

DropDownDataWindows/ListBoxes 21-7

importing requirements from a library (.pbl) 2-7

Try it! sample applet 21-2

verifying that extension is loaded 21-2

prefixes, autonaming GU I scripts 4-7

preprocessor directives 2-17
Index-1 3

Index
printing

reports in LogViewer 10-13

scripts 7-7

SQABasic files 7-7

Progress report 16-3

project header files, creating and editing 5-14

projects

changing 1-16

working with 2-4

properties

adding and removing in Object Properties
Comparator 11-7

log event 10-7

testing objects 6-4

Properties list in Object Properties Comparator 11-4

editing values in 11-9

working in 11-6

properties of scripts

defining in Robot 4-24

defining in TestManager 2-11

PureCoverage, using with Robot 9-11

Purify, using with Robot 9-11

PWS. See Microsoft Personal Web Server

Q
Quantify, using with Robot 9-11

queries

choosing the fields to display 15-5

creating complex filters 15-7

creating simple filters 15-4

running 15-2

setting options 15-9

specifying sort order 15-5

Query U pdate button 15-3

Query window 15-2, 15-3, 15-10

Quick Reports in LogViewer

generating 10-13

printing 10-13, 10-14

setting default layout 10-13

working with 10-13

writing to a file 10-13

R
random alphabetic string data type C-7

random alphanumeric string data type C-7

random datapool access 8-3

random value seed 8-22

ranges in dates C-2, C-3, C-4

Rational Administrator 1-2

Rational ClearQuest 10-14

Rational LogViewer 10-1

Rational PureCoverage, using with Robot 9-11

Rational Purify, using with Robot 9-11

Rational Quantify, using with Robot 9-11

Rational repository

about 1-2

managing with Rational Administrator 1-2

selecting 1-15

Rational RequisitePro 1-14, 2-4

Rational Suite PerformanceStudio 1-13

Rational Synchronizer 1-14

Rational technical support xxiii

Rational Test Enabler for Oracle Forms 18-3

Rational TestManager - Manual Script Execution

running manual scripts on the Web E-11

Read From File data type 8-42, C-8

unique values 8-44

.rec library files 5-12

.rec script files 2-10
Index-1 4

Index
recording GU I scripts 4-1, 4-16

and unknown objects 4-8, 4-21

creating modular scripts 4-3

ending 4-23

mapping object types and classes 4-14

pausing 4-20

process 4-1

recording options 4-6

restoring main window 4-19

resuming 4-20

selecting object order preference 4-10

workflow 4-2

records in datapools. See rows in datapools

referencing

include files and external C libraries 2-16

specification files 2-15, 2-20

test documents 2-2

Region Image verification point 6-5, 14-1

regions of screen, testing 6-5

regression testing phase 9-2

renaming

builds 3-7

data tests B-8

datapools 8-27

log filters in LogViewer 10-12

low-level scripts 7-4

references to test documents 2-2

reports 16-17

user-defined data types 8-35

verification points 6-25

replacing baseline file

in Grid Comparator 13-11

in Image Comparator 14-17

in O bject Properties Comparator 11-12

in Text Comparator 12-7

Report Layout Editor 16-5

reports in LogViewer

generating 10-13

printing 10-14

setting default report layout 10-13

reports in TestManager

copying 16-17

Coverage reports 16-7

deleting 16-17

layouts 16-5

Listing reports 16-4

renaming 16-17

Test Results Progress reports 16-15

repositories, shared E-14

repository

managing with Rational Administrator 1-2

selecting 1-2

requirements

attaching schedules to 2-19

attaching scripts to 2-13

attributes and revisions of 2-6, 2-21

editing 2-7, 2-21

labeling revisions of 2-6

managing 2-21

types of 2-6

Requirements H ierarchy

building 2-5

definition 2-3

expanding and collapsing 2-9

RequisitePro 1-14, 2-4

resizing

masks 14-11

OCR regions 14-14

results of playback, viewing 9-20

resuming recording of GU I scripts 4-20

revisions, test requirement 2-6

Robot main window, restoring during recording 4-19

row access order 8-3

rows in data grid, transposing with columns 6-23
Index-1 5

Index
rows in datapools

access order 8-3

maximum number 8-3

records and 8-39

unique 8-37

rtresults.exe, logging results and E-26

running

Execution Coverage reports 16-13

external scripts E-29

GU I scripts 9-1

Listing reports 16-5

manual scripts in TestManager E-7

manual scripts on the Web E-23

Planning Coverage or Development Coverage
reports 16-11

queries 15-2

Test Results Progress reports 16-16

S
saving baseline file

in Grid Comparator 13-11

in Image Comparator 14-18

in O bject Properties Comparator 11-12

in Text Comparator 12-7

saving scripts and SQABasic files 7-7

.sbh header files 5-14

.sbl library files 5-12

.sbx library runtime files 5-13

Schedule Listing reports 16-4

scientific notation data type C-5

script command failures 9-9

Script Listing reports 16-4

script properties

defining in Robot 4-24

defining in TestManager 2-11

scripts

attaching to test requirements 2-13

compiling 7-7

compiling virtual user 2-16

customizing properties 2-16

deleting 2-18, 7-15

deleting from Query window 15-3

detaching from test requirements 2-15

displaying statistics for 2-16

editing 7-1

external E-26

manual E-1, E-11

moving to another requirement 2-15, 2-20

opening from LogViewer 10-10

overview 2-10

planning 2-10

printing 7-7

saving 7-7

variable names and datapool column names 8-20

See also GU I scripts

scroll bars, synchronizing in Grid Comparator 13-5,
13-6

scrolling in Text Comparator 12-4

seed for random datapool values 8-22

selecting objects to test 6-10

selecting reports 16-3

separator characters for datapools 8-39

sequential datapool access 8-3

unique row retrieval and 8-38

Session Listing reports 16-4

sessions, deleting from Query window 15-3

setting breakpoints 7-11

sharing repositories E-14

shell scripts 4-26

shuffle datapool access 8-3

unique row retrieval and 8-38

single step execution during debugging 7-11

software requirements for Web servers E-13
Index-1 6

Index
sorting queries 15-5

space data type C-8

.spc datapool specification files 8-3, 8-29

specification files, referencing 2-15

.sqa files for LOV objects 18-17

SQABasic files

compiling 7-7

header files 5-15

library source files 5-13

printing 7-7

saving 7-7

template file 5-16

SQABasic header files 5-11, 5-14

sqatrap.log 9-17

stack overflows, detecting 9-16

standard data types

editing values in 8-32

list of C-1

minimum and maximum values C-9

role of 8-7

when to use 8-8

Start Application command 5-2

Start Browser command 5-2

Start Java Application command 5-2

starting

applications 5-1

Grid Comparator 13-2

Image Comparator 14-2

LogViewer 10-3

Object Properties Comparator 11-2

Text Comparator 12-2

state abbreviations data type C-8

statistics, displaying 2-16

stepping into scripts during debugging 7-11

stepping out of called scripts during debugging 7-11

stepping over command lines during debugging 7-11

steps in manual scripts E-1

stopping recording of GU I scripts 4-23

street names data type C-2

string constant data type C-8

structure of datapools 8-39

support, technical xxiii

Swing foundation classes, installing 20-8

Synchronizer 1-14

synchronizing

cursors in Grid Comparator 13-6

GU I scripts with application 5-10

playback with application 9-7

scroll bars in Grid Comparator 13-5, 13-6

T
tables, testing H TML 19-7

technical support xxiii

template file 5-16

test development phase 9-2

Test Document Listing reports 16-4

test documents

creating 2-2

editing references 2-2

renaming references to 2-2

test environment

setting up for playback 9-3

setting up for recording 4-3

test plans 2-1

test requirements

attributes of 2-6

definition 2-3

See also requirements

Test Results Progress reports

creating 16-15

definition 16-3

opening 16-17

running 16-16
Index-1 7

Index
TestManager - Manual Script Execution component

installing E-14

TestManager reports 16-17

testproc.tpl file 5-16

TestStudio defect schema and form 10-15

Text Comparator 12-1

comparing actual and baseline files 12-5

copying data from actual to baseline file 12-6

cutting or copying data from baseline file 12-6

editing baseline file 12-5

locating differences 12-5

main window 12-3

pasting data into baseline file 12-6

replacing baseline file 12-7

saving baseline file 12-7

scrolling in text windows 12-4

starting from LogViewer 12-3

starting from Robot 12-2

text windows 12-4

user interface 12-3

viewing verification point properties 12-5, 13-7

Word Wrap option 12-4

text editor for manual scripts E-3, E-6

text files, assigning values to a datapool column 8-42,
C-8

text windows of Text Comparator 12-4

time data types C-8

timeout values

for script playback 9-7

for verification points 6-8

timers in GU I scripts 5-6

inserting 5-7

playing back scripts 5-8

uses for 5-6

Title identification method 6-16

toolbars, working with A-1

top menus, testing 6-20

transposing columns and rows in data grid 6-23

transposing grid data in Grid Comparator 13-5

Trap options for GU I script playback 9-16

Trap utility

setting options to detect GPFs 9-16

troubleshooting

manual scripts on the Web E-22

Web servers E-23

types of reports 16-1

U
U .S. cities data type C-2

U .S. state abbreviations data type C-8

U AEs, detecting 9-16

U N C, using for directory names E-14, E-24

unexpected active windows

definition 9-10

detecting during playback 9-10

image files in Image Comparator 14-18

options for GU I script playback 9-10

U niform N aming Convention. See U N C

unique datapool rows

guidelines for 8-36

Read From File data type and 8-44

setting unique values 8-21

user-defined data types and 8-10

unknown objects

controlling how Robot responds to 4-8

defining during recording 4-21

defining while creating data tests B-5

unrecoverable application errors, detecting 9-16

user actions

adding to existing GU I scripts 7-2

definition 4-1

U ser Listing reports 16-4
Index-1 8

Index
user-defined data types

automatically generating values for 8-33

copying 8-36

creating 8-9

deleting 8-36

editing definitions of 8-32

editing values in 8-31

importing 8-35

renaming 8-35

role of 8-7

unique values 8-10

when to use 8-8

U ser-Defined verification method 6-15

V
Value identification method 6-17

variable names, and datapool column names 8-20,
8-42

variable values, examining 7-13

Variables window 7-13

verification methods

changing in Object Properties Comparator 11-11

for verification points 6-14

verification point properties

in O bject Properties Comparator 11-7

in Text Comparator 12-5

verification points 6-1

adding 5-4

before you create 6-6

copying 6-25

definition 4-2

deleting 6-25

editing 6-23

expected results 6-9

failures 9-9

identification methods 6-15

identifying objects to test 6-13

library files and 5-11

manual scripts E-1

renaming 6-25

selecting objects to test 6-10

types 6-3

verification methods 6-14

viewing in Comparators 6-24, 9-21, 10-9

wait state values 6-8

Verify that selected field is blank verification method
6-15

viewing

datapool values in TestManager 8-26

log event properties in LogViewer 10-7

logs 3-9

test documents 2-3

user-defined data type values 8-31

verification points in the Comparators 10-9

virtual user scripts 2-12, 2-16

Visual Basic support 17-1

Try it! sample applet 17-3

verifying that extension is loaded 17-3

VU compiler 2-16

W
wait state options for GU I script playback 9-7

Web browsers, setting up for manual scripts on the
Web E-21

Web servers

installing E-14

troubleshooting E-23

Web Site Compare verification point 6-5

Web Site Scan verification point 6-5

Window Existence verification point 6-5

Window Image verification point 6-5, 14-1
Index-1 9

Index
windows

setting wait values for 9-7

testing existence of 6-5

testing images 6-5

unexpected during playback 9-10

Windows 2000 and IIS (Internet Information Server)
E-16

Word Wrap option in Text Comparator 12-4

writing reports to a file in LogViewer 10-13

Z
zip code data types C-9

zoned decimal data type C-9

zooming image in Image Comparator 14-8
Index-2 0

	Contents
	Preface
	Other Resources
	Using Help
	Dialog Box Help
	Menu Command Help
	Toolbar Button Help

	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction to Rational Robot
	What Is Rational Robot?
	Managing the Rational Repository with the Administrator
	Planning and Managing Tests in TestManager
	Developing Tests in Robot
	Creating Datapools
	Analyzing Results in the LogViewer and Comparators
	Managing Intranet and Web Sites with SiteCheck and Robot

	Using Robot with Other Rational Products
	Testing Applications with Rational TestFactory
	Managing Defects with Rational ClearQuest
	Collecting Diagnostic Information During Playback
	Performance Testing with Rational Suite PerformanceStudio
	Managing Requirements with Rational RequisitePro
	Sharing Data with Other Rational Products

	Starting Robot and Its Components
	Logging in
	Changing to Another Project
	Opening Other Rational Products and Components

	Tasks You Can Perform with Robot and Its Components

	Planning Your Tests
	Working with Test Plans and Other Test Documents
	Creating Test Document References
	Editing Test Document References
	Viewing Test Documents

	Defining Test Requirements
	Working with Projects
	Building the Requirements Hierarchy
	Inserting a Requirement
	Inserting a Child Requirement
	Importing Requirements from PowerBuilder Libraries
	Editing Requirement Properties
	Expanding and Collapsing the Requirements Hierarchy
	Reparenting Child Requirements

	Planning Scripts
	About Scripts
	Assigning a Name and Other Properties
	Attaching Scripts to Test Requirements
	Attaching Scripts from the Requirements Hierarchy
	Attaching Scripts from the Plan Script Dialog Box
	Detaching a Script from a Requirement
	Moving a Script from One Requirement to Another

	Referencing Specification Files
	Customizing Script Properties
	Displaying Script Statistics
	Referencing Include Files and External C Libraries
	Controlling Whether Robot Starts After Planning a Script
	Deleting Scripts
	Importing Scripts from Other Projects

	Planning LoadTest Schedules
	Attaching Schedules to Test Requirements
	Attaching Schedules from the Requirements Hierarchy
	Attaching Schedules from the Plan Schedule Dialog Box
	Detaching a Schedule from a Requirement
	Moving a Schedule from One Requirement to Another

	Referencing Specification Files
	Customizing Schedule Properties
	Displaying Schedule Statistics
	Deleting Schedules

	Managing Requirements
	Editing Requirement Properties
	Deleting Requirements

	Customizing Scripts and LoadTest Schedules
	Customizing the Environment List
	Customizing the Purpose List
	Defining Custom Field Labels and Values
	Defining Custom Field Labels
	Modifying Custom Field Values
	Adding Custom Field Values

	Managing Builds, Log Folders, and Logs
	Overview
	Using Builds in Functional Testing
	Generating Log Files
	Organizing Log Folders
	Naming Log Folders for LoadTest Users

	Displaying Builds in the Asset Browser
	Creating a New Build
	Copying, Renaming, and Deleting Builds
	Renaming and Deleting Logs and Log Folders
	Displaying Log Properties
	Viewing Logs
	Working with Build States

	Recording GUI Scripts
	The Recording Process
	The Recording Workflow
	Before You Begin Recording
	Establishing Predictable Start and End States for Scripts
	Setting Up Your Test Environment
	Creating Modular Scripts
	Planning Scripts in TestManager

	Enabling IDE Applications for Testing
	Setting GUI Recording Options
	Naming Scripts Automatically
	Controlling How Robot Responds to Unknown Objects
	Selecting an Object Order Preference

	Using Advanced Features Before Recording
	Customizing the Object Recognition Method Order
	Important Notes
	Changing the Order of Object Recognition Methods
	Creating a New Object Order Preference

	Mapping Object Types and Classes Before Recording
	Defining an Object Class Mapping
	Modifying or Deleting a Custom Class Name

	Recording a New GUI Script
	Restoring the Robot Main Window During Recording
	Using the GUI Record and GUI Insert Toolbars
	Pausing and Resuming the Recording of a Script
	Defining Unknown Objects During Recording
	Important Notes

	Switching to Low-Level Recording
	Ending the Recording of a GUI Script

	Defining Script Properties
	Coding a GUI Script Manually
	Testing Your Recorded Script
	Playing Back the Script
	Editing and Compiling the Script
	Debugging the Script

	Creating Shell Scripts to Play Back Scripts in Sequence
	Creating a Shell Script
	Playing Back a Shell Script

	Adding Features to GUI Scripts
	Starting an Application
	Inserting a Call to Another Script
	Inserting Verification Points
	Inserting Timers
	Uses for Timers
	Measuring General Application Performance
	Measuring Specific Task Performance

	Inserting a Timer
	Playing Back a Script that Includes Timers

	Inserting Comments
	Inserting Log Messages
	Inserting Delay Values
	Using the Insert Menu
	Customizing SQABasic Scripts
	Library Source Files
	Creating and Editing .sbl Library Source Files
	Creating and Editing .rec Library Source Files
	Adding Procedures to the Global Library Source File
	Using Library Source Files

	SQABasic Header Files
	Creating and Editing Repository-Wide Header Files
	Creating and Editing Project Header Files
	Adding Declarations to the Global Header File
	Using SQABasic Header Files

	Header and Library Source File Examples
	Example Script
	Example Library Source File (Tstlibrary.sbl)
	Example Header File (Tstheader.sbh)

	The Template File

	Creating Verification Points in GUI Scripts
	About Verification Points
	Verification Points and Data Files
	Verification Points and Scripts

	Types of Verification Points
	Before You Create a Verification Point
	Tasks Associated with Creating a Verification Point
	Starting to Create a Verification Point
	Setting a Wait State for a Verification Point
	Setting the Expected Result for a Verification Point
	Selecting and Identifying the Object to Test
	Selecting the Object to Test
	Identifying the Object to Test

	Selecting a Verification Method
	Selecting an Identification Method
	By Content
	By Location
	By Title
	By Key/Value
	List of Identification Methods

	Working with the Data in Data Grids
	Selecting the Data to Test in a Data Grid
	Testing Column Titles or Top Menus in a Data Grid
	Editing Captured Data in a Data Grid
	Editing Data for a Clipboard or Object Data Verification Point
	Editing Data for a Menu Verification Point
	Restrictions on Editing Data

	Changing a Column Width in a Data Grid
	Transposing Columns and Rows in a Data Grid

	Editing a Verification Point
	Viewing a Baseline File
	Renaming a Verification Point
	Copying a Verification Point
	Deleting a Verification Point

	Editing, Compiling, and Debugging Scripts
	Editing the Text of a Script
	Adding a User Action to an Existing GUI Script
	Adding a Feature to an Existing GUI Script
	Working with Low-Level Scripts
	Viewing Low-Level Scripts
	Renaming a Low-Level Script
	Copying a Low-Level Script
	Deleting a Low-Level Script

	Saving Scripts and SQABasic Files
	Printing a Script or SQABasic File
	Compiling Scripts and SQABasic Library Source Files
	Compiling One or All Scripts and Library Source Files
	Batch Compiling Scripts and Library Source Files
	Locating Compilation Errors

	Debugging GUI Scripts
	Setting and Clearing Breakpoints
	Executing to a Selected Line
	Executing in Animation Mode
	Examining Variable Values

	Deleting Scripts

	Working with Datapools
	What Is a Datapool?
	Datapool Tools
	Managing Datapool Files

	Datapool Cursor
	Row Access Order

	Datapool Limits
	What Kinds of Problems Does a Datapool Solve?

	Planning and Creating a Datapool
	Data Types
	Standard and User-Defined Data Types
	Finding Out What Data Types You Need
	Finding Values in GUI Scripts

	Creating User-Defined Data Types
	Generating Unique Values from User-Defined Data Types
	Generating Multi-Byte Characters

	Using Datapools with GUI Scripts
	Recording a GUI Script
	Adding Datapool Commands to a GUI Script
	Substituting Variables for Literal Values
	Assigning Datapool Values to Variables

	Example GUI Script

	Managing Datapools
	Creating a Datapool with TestManager
	If There Are Errors
	Viewing Datapool Values
	Making the Datapool Available to a Script
	Defining Datapool Columns
	Example of Datapool Column Definition
	Example of Datapool Value Generation

	Editing Datapool Column Definitions with TestManager
	If There Are Errors
	Deleting a Datapool Column

	Editing Datapool Values with TestManager
	Renaming a Datapool
	Copying a Datapool
	Deleting a Datapool
	Importing a Datapool
	Datapool Location
	Importing a Datapool from Another Project

	Exporting a Datapool

	Managing Data Types
	Editing User-Defined Data Type Values
	Editing Standard Data Type Values
	Editing User-Defined Data Type Definitions
	How to Edit User-Defined Data Type Definitions

	Generating Values for a User-Defined Data Type
	Importing a User-Defined Data Type
	Renaming a User-Defined Data Type
	Copying a User-Defined Data Type
	Deleting a User-Defined Data Type

	Generating and Retrieving Unique Datapool Rows
	What You Can Do to Guarantee Unique Row Retrieval

	Creating a Datapool Outside Rational Test
	Datapool Structure
	Example Datapool

	Example Using Microsoft Excel
	Saving the Datapool in Excel

	Matching Datapool Columns with Script Variables
	Maximum Number of Imported Columns

	Creating a Column of Values Outside Rational Test
	Step 1. Create the File
	Step 2. Assign the File’s Values to the Datapool Column
	Generating Unique Values

	Playing Back GUI Scripts
	Playback Phases
	Test Development Phase
	Regression Testing Phase

	Restoring the Test Environment Before Playback
	Setting GUI Playback Options
	Acknowledging the Results of Verification Point Playback
	Setting Log Options for Playback
	Setting Wait State and Delay Options
	Setting Wait State Options
	Setting Delay Options for Commands and Keystrokes

	Setting Error Recovery Options
	Setting Unexpected Active Window Options
	Setting Diagnostic Tools Options
	About Purify and Robot
	About Quantify and Robot
	About PureCoverage and Robot
	How the Diagnostic Tools Work with Robot
	Setting the Options
	Viewing the Playback Results

	Setting the Trap Options to Detect GPFs
	Important Notes
	Uses for Trap
	Starting Trap
	Analyzing Results in the Sqatrap.log File

	Playing Back a GUI Script
	Viewing Results in the Rational LogViewer
	Analyzing Verification Point Results with the Comparators

	Reviewing Logs with the LogViewer
	Overview
	Usage Scenarios

	Starting the LogViewer
	Starting the LogViewer Automatically from Robot
	Starting the LogViewer Automatically from LoadTest
	Starting the LogViewer from TestManager
	Starting the LogViewer from a Rational Test Product
	Starting the LogViewer from the Desktop

	The LogViewer Main Window
	Opening a Log File
	Deleting a Log File
	Viewing Log Event Properties
	Modifying the Log Window
	Collapsing and Expanding Log Events
	Changing Column Widths
	Changing the Column Order

	Locating Failed Log Events
	Evaluating Verification Point Failures in a Comparator
	Viewing a Verification Point in the Comparators
	Viewing a Script
	Playback/Environmental Differences
	Intentional Changes to an Application Build

	Filtering the Log Event Column
	Applying a Log Filter
	Creating or Editing a Log Filter
	Copying, Renaming, and Deleting a Log Filter

	Working with Reports
	Setting a Default Report Layout
	Generating, Printing, and Saving a Quick Report

	Entering and Modifying Defects
	About ClearQuest and Defect Tracking
	About the Rational TestStudio Schema
	About the TestStudio Defect Form

	Starting ClearQuest
	Entering Defects
	Finding Defects
	Modifying Defects

	Using the Object Properties Comparator
	Overview
	Starting the Object Properties Comparator
	Starting the Comparator from Robot
	Starting the Comparator from the LogViewer

	The Main Window
	The Objects Hierarchy and the Properties List
	Changing the Window Focus and Section Widths
	Working Within the Objects Hierarchy
	Working Within the Properties List

	Locating and Comparing Differences
	Viewing Verification Point Properties
	Adding and Removing Properties
	Adding Properties to the Properties List
	Removing Properties from the Properties List

	Editing the Baseline File
	Editing a Value in the Properties List
	Cutting, Copying, and Pasting a Value
	Copying Values from the Actual to the Baseline File
	Changing a Verification Method
	Changing an Identification Method
	Replacing the Baseline File

	Saving the Baseline File

	Using the Text Comparator
	Overview
	Starting the Text Comparator
	Starting the Comparator from Robot
	Starting the Comparator from the LogViewer

	The Main Window
	The Text Window
	Scrolling the Text Window
	Changing the Widths of the Text Panes
	Using Word Wrap

	Locating and Comparing Differences
	Viewing Verification Point Properties
	Editing the Baseline File
	Editing Data in the Baseline File
	Cutting, Copying, and Pasting Data
	Copying Data from the Actual to the Baseline File
	Replacing the Baseline File

	Saving the Baseline File

	Using the Grid Comparator
	Overview
	Starting the Grid Comparator
	Starting the Comparator from Robot
	Starting the Comparator from the LogViewer

	The Main Window
	The Grid Window
	Differences List

	Setting Display Options
	Changing the Column Widths
	Transposing the Grid Data
	Synchronizing the Scroll Bars
	Synchronizing the Cursors

	Locating and Comparing Differences
	Viewing Verification Point Properties
	Using Keys to Compare Data Files
	Editing the Baseline File
	Editing Data in the Baseline Grid
	Editing a Menu Item
	Cutting, Copying, and Pasting Data
	Copying Data from the Actual to the Baseline File
	Replacing the Baseline File

	Saving the Baseline File

	Using the Image Comparator
	Overview
	Starting the Image Comparator
	Starting the Comparator from Robot
	Starting the Comparator from the LogViewer

	The Main Window
	The Image Window
	Differences List
	Mask/OCR List
	The Status Bar

	Locating and Comparing Differences
	Changing How Differences are Determined
	Changing the Color of Masks, OCR Regions, or Differences
	Moving and Zooming An Image
	Viewing Image Properties
	Working with Masks
	Displaying Masks
	Creating Masks
	Moving and Resizing Masks
	Moving Masks
	Resizing Masks

	Cutting, Copying, and Pasting Masks
	Duplicating Masks
	Deleting Masks
	Automatically Masking a Difference

	Working with OCR Regions
	Creating an OCR Region
	Moving and Resizing OCR Regions
	Moving OCR Regions
	Resizing OCR Regions

	Cutting, Copying, and Pasting an OCR Region
	Duplicating OCR Regions
	Deleting OCR Regions
	Replacing the Baseline File

	Saving the Baseline File
	Viewing Unexpected Active Window

	Querying the Rational Repository
	Overview
	Running Queries
	The Query Window
	Deleting Scripts, Schedules, and Sessions

	Creating New Queries
	Opening the Query Properties Dialog Box
	Choosing Fields to Display
	Specifying the Sort Order
	Adding a Filter Statement
	Adding a Simple Filter Statement
	Building Complex Filter Statements

	Editing Existing Queries
	Viewing Query Properties

	Setting Query Options
	Configuring the Query Window
	Replacing or Inserting a Column
	Deleting a Column

	Running TestManager Reports
	Types of Reports
	Listing Reports
	Coverage Reports
	Progress Reports

	Selecting Which Reports to Use
	Working with Listing Reports
	Creating Listing Reports
	Running Listing Reports
	Opening Listing Reports

	Working with Coverage Reports
	Creating Coverage Reports
	Creating Planning Coverage Reports
	Creating Development Coverage Reports
	Creating Execution Coverage Reports

	Running Planning and Development Coverage Reports
	Running Execution Coverage Reports
	Opening Coverage Reports

	Working with the Test Results Progress Report
	Creating a Test Results Progress Report
	Running a Test Results Progress Report
	Opening a Test Results Progress Report

	Copying, Renaming, and Deleting Reports

	Testing Visual Basic Applications
	About Robot Support for Visual Basic Applications
	Try it! with Visual Basic
	Verifying that the Visual Basic Extension Is Loaded

	Testing Oracle Forms Applications
	About Robot Support for Oracle Forms Applications
	Try it! with Oracle Forms
	Making Oracle Forms Applications Testable
	Installing the Rational Test Oracle Forms Enabler
	Running the Enabler on Your Application
	What Happens When You Run the Enabler?
	Running the Enabler
	Distributing Your Application

	Verifying that the Oracle Forms Extension Is Loaded

	Recording Actions and Testing Objects
	Recording Actions
	Testing Objects

	Testing an Object’s Properties
	Object Properties Verification Point
	Testing Properties of Visual Objects
	Testing Properties of Nonvisual Objects

	Object Scripting Commands

	Testing an Object’s Data
	Testing Base-Table Blocks and Base-Table Items
	Testing LOVs and Record Groups
	Creating an .SQA Text File
	Capturing Data in an LOV Associated with a Text Item
	Capturing Data in LOVs and Record Groups

	Testing HTML Applications
	About Robot Support for HTML Applications
	Configuring Internet Explorer for Testing
	Disabling the Cookie Prompt

	Try It! with HTML
	Making HTML Applications Testable
	Verifying that the HTML Extension Is Loaded
	Enabling HTML Testing in Robot

	Testing Data in HTML Elements
	Additional Examples
	To Test the Contents of a Drop-Down List Box
	To Test for Text within a Table
	To Test the Destination of a Link

	How Robot Maps HTML Elements
	Supported Data Tests for HTML Testing
	Testing Properties of HTML Elements
	Playing Back Scripts in Netscape Navigator
	Configuring Robot for Netscape Playback
	Differences Between Internet Explorer and Navigator

	Recording Tips
	Capturing the Properties of Java Applets in HTML Pages
	Synchronizing Pages
	Capturing Properties or Data of Window Objects
	Using the Browser’s Back and Forward Buttons
	Recording Transactions

	Recording Mouse Movements
	Ensuring Browser Compatibility

	Enhancing Object Recognition of HTML Elements

	Testing Java Applets and Applications
	About Robot Support for Java
	Robot Support for Testing Java Applets and Applications
	Support for Testing Java Applets
	Support for Testing Java Applications

	Supported Foundation Class Libraries

	Making Java Applets and Applications Testable
	Running the Java Enabler
	Verifying that the Java Extension Is Loaded

	Setting Up the Sample Java Applet
	Installing the Sample Java Applet
	Installing the Swing Foundation Classes
	Installing Swing Under Windows NT 4.0
	Installing Swing Under Windows 2000
	Installing Swing Under Windows 98 and Windows 95

	Starting the Sample Java Applet

	Testing Data in Java Components
	Testing the Contents of a Java Panel

	Support for Custom Java Components
	For More Information About Java Support

	Supported Data Tests for Java Testing
	Testing Properties of Java Components
	Enhancing Object Recognition of Java Components

	Testing PowerBuilder Applications
	About Robot Support for PowerBuilder Applications
	Verifying that the PowerBuilder Extension Is Loaded
	Try it! with PowerBuilder
	Recording Actions on DataWindows
	Parameters for a Mouse-Click Action
	Value-Based Recording

	Testing an Expression Value of a DataWindow Property
	Testing DataStore Controls and Hidden DataWindows
	Capturing Data in a DropDownDataWindow/ListBox
	Testing the Value of a DataWindow Computed Field

	Testing PeopleTools Applications
	About Robot Support for PeopleTools Applications
	Verifying that the PeopleTools Extension Is Loaded
	Testing a Component’s Properties
	Testing a Component’s Data
	PeopleTools Commands

	Working With Toolbars
	Viewing Information About Toolbar Buttons
	Displaying Toolbars
	Anchoring and Floating Toolbars
	Setting Toolbar Options
	Adding, Deleting, and Moving Toolbar Buttons
	Creating Your Own Toolbar
	Resetting and Deleting Toolbars

	Working with Data Tests
	About Data Tests
	An Example of a Data Test
	What the All Data Test Does
	The Definition of the All Data Test
	Changing a Data Test Definition

	Creating or Editing a Custom Data Test
	Copying, Renaming, or Deleting a Data Test

	Standard Datapool Data Types
	Standard Data Type Table
	Data Type Ranges

	Rational Robot Command-line Options
	Working with Manual and External Scripts
	About Manual Scripting
	Example of a Manual Script

	Working with Manual Scripts in TestManager
	Setting the Default Editor for Manual Scripts
	Planning and Creating a Manual Script
	Planning a Manual Script
	Creating a Manual Script
	Using the Text Editor
	Including an External File in a Manual Script

	Running a Manual Script in TestManager
	Running a Manual Script Created with the Grid or Text Editor
	Running a Manual Script that Includes an External File

	Viewing the Results in the LogViewer

	Working with Manual Scripts on the Web
	Overview of Tasks
	Software Requirements
	Software Requirements

	About Shared Repositories
	Installing a Web Server
	Configuring a Microsoft Internet Information Server
	Configuring a Microsoft Personal Web Server
	Setting Up a Web Browser
	Netscape Navigator
	Microsoft Internet Explorer

	Troubleshooting for Manual Scripting on the Web
	Troubleshooting Your Web Server

	Running a Manual Script on the Web

	Working with External Scripts
	Planning an External Script
	Logging Results of an External Script
	Logging Results of Several External Scripts
	Running an External Script
	Viewing the Results of Running an External Script

	Glossary
	Index

