
Rational Rose 2000e
Using Rose J

Copyright © 1998–2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023323-000

Revision 3.0, March 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified
Process are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are
used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

ii Rational Rose 2000e, Using Rose J

Contents

Contents iii

List of Tables vii

Preface ix

How This Manual Is Organized ix

Related Documentation x

Online Help and Manuals x

Chapter 1 Introduction to Rational Rose J 1

What is Rational Rose J? 1

About Java API Classes and Frameworks 2

About Forward Engineering in Rational Rose J 3

About Reverse Engineering in Rational Rose J 4

About the Integration with Microsoft Visual J++ 5
Starting Rose from Visual J++ 5

About the Integration with IBM’s VisualAge for Java 6
Setting Up the Link 6
How the Link Works 6
How to Enable the Link 7

Initializing the VisualAge side of the link 7
Ending the link 7
Rational Rose 2000e, Using Rose J iii

Contents
Establishing the link from Rational Rose 7

Chapter 2 How Rational Rose J Models Java Elements 9

About Java Elements in a Rational Rose Model 9
How Model Properties and Specifications Affect Your Model 10

Java Class Path 14

Java Classes 17
Making a Rational Rose Class a Java Class 18
Supported Java Semantics for Classes 20

Java Variables (Fields) 22
Variables with Primitive Types 22
Changing String Variables to Attributes 22
Variables with Reference Types 23

Creating Variables through Associations 24
Creating Variables with User Data Types 26

Supported Java Semantics for Variables (Fields) 27

Arrays and Vectors 29

Java Methods 33
Supported Java Semantics for Methods 33

Java Extends 36

Java Implements 37

Java Interfaces 38

Java Nested and Inner Classes 39

Java (.java) Files 40
Java Components and Code Generation 42
Java Components and Reverse Engineering 43

Java Packages 44
Java Packages and Code Generation 44
Java Packages and Reverse Engineering 45

Java Imports 46
iv Rational Rose 2000e, Using Rose J

Java Beans 46
Read/Write Property 47
Support Individual Change Management 47
Property Types 47

Simple 47
Bound 48
Constrained 49

Javadoc and Comment Text 51

Chapter 3 Forward Engineering with Rational Rose J 55

About the Steps You Follow 55
Assign Java Classes to Java Components in Your Model 55
Check Syntax 56
Check the Class Path 56
Set the Project Properties that Affect Code Generation 56
Back Up Your Source 57
Generate Java Source Code from Your Model 58
View (Browse) and Extend the Generated Source 58

How Controlled Units Affect Code Generation 59

Mapping Components for Code Generation 60

Generating Java Source from a Component Diagram 61

Generating Java Source from a Class Diagram 61

Generating Code for Visual J++ 62
Generating VJ++ Code from a Rose Model 62

Viewing and Completing Java Source 62
Using the BuiltIn Editor 63
Browsing Java Source 64
Completing Generated Java Source 65

Chapter 4 Reverse Engineering with Rational Rose J 67

About Reverse Engineering 67

Reverse Engineering Java Source 68
Rational Rose 2000e, Using Rose J v

Contents
Reverse Engineering from Visual J++ 69

Appendix A Forward Engineering WalkThrough 71

Introduction 71

Walkthrough 72
Create a Class and Add a Method 72
Create a Component Package and Component 73
Assign the Class to the Component 74
Edit the New Method 75
Set the Class Path 77
Generate Java 78
View Java Source 79
Edit Java Source 80
Compile and Run 80

Appendix B Java to Rational Rose Mapping Quick Reference 81

Appendix C Rational Rose J Model Properties 83

Introduction 83

Project Properties 84

Class Properties 90

Operation Properties 91

Attribute Properties 92

Component (Module Body/Module Specification) Properties 94

Role Properties 95

Index 97
vi Rational Rose 2000e, Using Rose J

Rational Rose 2000e, Using Rose J vii

List of Tables

Table 1 Shortcut Keys for the BuiltIn Editor 64
Table 2 Java to Rational Rose Mapping Quick Reference 81
Table 3 Project Properties 84
Table 4 Class Properties 90
Table 5 Operation Properties 91
Table 6 Attribute Properties 92
Table 7 Component Properties 94
Table 8 Role Properties 95

Preface

This guide, Rational Rose 2000e, Using Rose J, is for anyone who wants
to use Rational Rose to model and generate Java constructs or reverse
engineer Java source.

It assumes that you are familiar with Java concepts and constructs,
and that you are comfortable with basic Rational Rose concepts and
procedures.

If you need to learn to use Rational Rose, you should run the Rational
Rose tutorial included on your product CD.

How This Manual Is Organized

This manual contains the following four chapters and three
appendices:

� Chapter 1—Chapter 1—Chapter 1—Chapter 1—Introduction to Rational Rose J

Provides an overview of features and basic forward, reverse and
round trip engineering concepts as they apply to Rational Rose J.

� Chapter 2Chapter 2Chapter 2Chapter 2—How Rational Rose J Models Java Elements

Provides a detailed mapping between Java and Rational Rose
constructs.

� Chapter 3Chapter 3Chapter 3Chapter 3—Forward Engineering with Rational Rose J

Provides detailed instructions for generating Java source from
elements in a Rational Rose model.

� Chapter 4Chapter 4Chapter 4Chapter 4—Reverse Engineering with Rational Rose J

Provides detailed instructions for reverse engineering Java source
and byte code into in a Rational Rose model.
Rational Rose 2000e, Using Rose J ix

Preface
� Appendix A—Appendix A—Appendix A—Appendix A—Forward Engineering WalkThrough

Provides a use case that creates a Java class and component and
generates Java source from the component.

� Appendix BAppendix BAppendix BAppendix B—Java to Rational Rose Mapping Quick Reference

Provides a quick reference table that maps Java and Rational Rose
constructs for forward or reverse engineering.

� Appendix C—Appendix C—Appendix C—Appendix C—Rational Rose J Model Properties

Describes all Rational Rose J properties, the model elements to
which they apply, and their default values.

Related Documentation

The information in this guide is also provided in the form of online
help. In addition, you will find context-based online help as you
complete procedures and work in the various Rational Rose J dialog
boxes.

After installation and before you begin using Rational Rose J, please
review any Readme.txt files and Release Notes to ensure that you
have the latest information about the product.

For additional resources, refer to the Rational Rose 2000e, Using Rose
guide and online help. If you are new to Rational Rose, visual modeling,
or the Unified Modeling Language (UML), you may also want to read the
book, Visual Modeling with Rational Rose and UML, which is included
in the Rose documentation kit.

Online Help and Manuals

Rational Rose J includes comprehensive online help with hypertext
links and a two-level search index.

In addition, you can find all of the user manuals online. Please refer to
the Readme.txt file (found in the Rational Rose installation directory)
for more information.
x Rational Rose 2000e, Using Rose J

Chapter 1

Introduction to Rational Rose J

What is Rational Rose J?

Rational Rose J is the Java add-in for Rational Rose. As such, it
provides:

� Support for model evolution from analysis to design

� Generation of Java source code from a model

� User extensible class path within the model

� Support for zip, jar and cab files in the class path

� Ability to drag and drop java, class, zip, jar and cab files into a
model diagram for quick reverse-engineering

� Automatic decompression for zip, jar, and cab files when reversed-
engineered into a model

� Design, modeling, and visualization of Java constructs, including
packages, classes, interfaces, imports, inheritance, fields,
methods, and modifiers

� User-controlled generation of default constructors, finalizers, and
static initializers, as well as user-defined generation of field-name
prefixes

� Smart component mapping on code generation

� Support for a default package

� Improved support for inner and anonymous classes

� Bean property generation (get/set methods)

� Built in color-coded editor

� Support for Java API frameworks
Rational Rose 2000e, Using Rose J 1

Chapter 1 Introduction to Rational Rose J
About Java API Classes and Frameworks

Rational Rose provides Frameworks that enable you to bring the class
libraries of the Java API into a model. When you load these base classes
into your model you can use them to derive your own classes.

There are two ways to bring a Java Framework into a model:

� For new models: You can load Java API classes into a new model
by using a Java Framework. If the Framework Add-In is active,
each time you start Rose or open a new model the Framework
dialog appears. (Click Add-Ins > Add-In Manager to check the status of
the Framework add-in.)

� For existing models: The framework elements are also available
as controlled units in the directory:

Rose\framework\frameworks\shared components

Use File > Units > Load to load the appropriate controlled units into
your model.

The Java frameworks include:

� JDK Framework. This is a reverse engineered model of current JDK
class files. It contains all of the classes in the Java packages and
some of the classes in the Sun package.

� JEnterprise Framework. This is a reverse-engineered model of
enterprise APIs. Use this framework as a starting point for
developing models that use Enterprise JavaBeans™, Java
Transaction Service™, or Java Naming & Directory Interface™
(JNDI) components. It also contains the same classes as the JDK
Framework. These packages are included to correctly resolve all
dependencies for classes in the com.java package. Other packages
included in this framework include:

❑ javax.ejb, the EJB Framework Package. EJB fully insulates
business application developers from the complexity of the
enterprise infrastructure (the plumbing).

❑ javax.jts, the Java Transaction Service Package. JTS is a low-
level API used by sophisticated transactional applications.

❑ javax.naming, the JNDI Framework Package. The Java Naming
& Directory Interface provides Java applications with multiple
naming and direct services in the enterprise.
2 Rational Rose 2000e, Using Rose J

About Forward Engineering in Rational Rose J
� JFC Framework. This is a reverse-engineered model of the JFC
class files from swingall.jar. The framework contains all of the
classes found in the com.java package. It also contains the JDK
class libraries in order to resolve all class dependencies for the
classes in the com.java package.

Note that since the framework classes are intended to be starting
points from which you can build your own classes, they do not have
private attributes, relationships, or operations.

For more information on activating and deactivating add-ins and using
frameworks, check the Help index or see the Using Rose manual.

About Forward Engineering in Rational Rose J

Forward engineering is the process of generating Java source from one
or more classes, packages, or components in a Rational Rose model.

Forward engineering in Rational Rose J is component-centered. This
means that the Java source generation is based on the component
specification rather than on the class specification.

This does not mean, however, that you must work only in component
diagrams in order to generate Java source. Instead, you can create a
class and then assign it to a valid Java component in the browser,
effectively creating the required component from your class.

When you forward engineer a class or package, its characteristics are
mapped to corresponding Java constructs. For example, classes in
Rational Rose are forward engineered as Java classes, Rational Rose
components are forward engineered as Java compilation units (.java
files), etc.

Also, when you forward engineer a package, a .java file is generated for
each component belonging to the package. Each component’s .java file
will contain the definitions for any classes assigned to that component.

For complete mapping information, refer to:

� How Rational Rose J Models Java Elements (Chapter 2)

� Java to Rational Rose Mapping Quick Reference (Appendix B)
Rational Rose 2000e, Using Rose J 3

Chapter 1 Introduction to Rational Rose J
Note that Rose J offers an auto synchronization feature that
automatically initiates code generation any time you create or modify
any Java construct in your model. You can enable the feature through
the Java Project Specification (Tools > Java > Project Specification > Detail).

For more information on forward engineering, refer to:

� Generating Java Source from a Component Diagram (Chapter 3)

� Generating Java Source from a Class Diagram (Chapter 3)

� Forward Engineering WalkThrough (Appendix A)

About Reverse Engineering in Rational Rose J

Reverse engineering is the process of analyzing Java source code,
mapping it to Rational Rose classes and components, and storing these
classes and components in a Rational Rose model.

You can use Rational Rose J to reverse engineer Java source from:

� Java source code (.java files)

� Java bytecode (.class files)

� .cab, .jar, and .zip files

You can drag and drop .java, .class, .cab, .jar, and .zip files from
another source (such as Microsoft Explorer) into a model. When you do
this, Rational Rose reverse engineers the files for you.

For complete mapping information, refer to:

� How Rational Rose J Models Java Elements (Chapter 2)

� Java to Rational Rose Mapping Quick Reference (Appendix B)

For more information on reverse engineering, refer to:

� Reverse Engineering Java Source (Chapter 4)
4 Rational Rose 2000e, Using Rose J

About the Integration with Microsoft Visual J++
About the Integration with Microsoft Visual J++

Rose J offers a seamless integration with Microsoft Visual J++. If you
have Rose running, you can activate Visual J++ simply by setting the
Virtual Machine property in the Rose J project specification to Microsoft,
then start generating code from your model. If Visual J++ is not
running when you generate code, Rose will automatically start it. The
code you generate either becomes part of a new VJ++ project or it
updates an existing project.

Alternatively, Visual J++ offers two ways to work with Rose:

� You can simply open Rose and a blank model, or

� You can reverse engineer your VJ++ project and update your Rose
model.

Both options are available from the VJ++ Tools menu. In both cases,
Visual J++ can launch Rose if it's not already running.

Note:

1. Many files in a VJ++ project inherit from one or more of the WFC
classes that Visual J++ provides. When you install Visual J++, these
classes are typically accessible in the VJ++ environment. For Rose J to
reverse engineer files that use these classes, you must first create an
externally accessible copy of the files on your hard drive. To do this,
enter the following command at a DOS prompt:

clspack -auto

2. Currently, there is no requirement that Visual J++ 6.0 be installed on
your system before you install the Rose to VJ++ link. However, if you
install Visual J++ after the link, you will need to register the vjrose dll.
To do this, go to the \Rose\java directory and from a DOS prompt, enter
the following:

Regsvr32 vjrose.dll

Starting Rose from Visual J++

In addition to code generation and reverse engineering (described in
Chapters 3 and 4 respectively), Visual J++ offers the option of starting
Rose without opening a specific model or reverse engineering VJ++
source. In Visual J++, click Tools > View Rose Model. If Rose isn’t active,
this starts it but doesn’t load a specific model.
Rational Rose 2000e, Using Rose J 5

Chapter 1 Introduction to Rational Rose J
About the Integration with IBM’s VisualAge for Java

IBM and Rational Rose support a link between Rose J and VisualAge
for Java™. This link enables you to:

� Generate code for a VisualAge project directly from a Rose model

� Reverse engineer code from a VisualAge project into a Rose model

Setting Up the Link

In order for the two tools to communicate you need to:

� Activate the link on the VisualAge side, then

� Set the Virtual Machine property in Rose to IBM (Tools > Java > Project
Specification > Detail)

Once the two environments are set up you can move code between
them by generating code from a Rose model or by reverse engineering
code from VisualAge into a Rose model.

Note that you cannot create new VisualAge projects from Rose. The link
works only with existing projects.

How the Link Works

When you activate the link between the two environments, you enable
Rose J to move code in and out of a VisualAge project. VisualAge is a
passive partner in the link since you initiate both code generation and
reverse engineering from Rose J.

When you generate code from a Rose model, you follow the same code
generation procedures that you would follow for any Java classes in a
model (Tools > Java > Generate Code). However, when Rose J creates the
code, it stages it first in the directory \Rose\java\YourProjectName,
then VisualAge imports the code from this file into its own repository.

Similarly, when you reverse engineer a VisualAge project into Rose, you
use the standard Rose J reverse engineering dialog. As with code
generation, the project is first written to a file in the \Rose\java
directory, then the code from the file is reverse-engineered into your
model.
6 Rational Rose 2000e, Using Rose J

About the Integration with IBM’s VisualAge for Java
Note that in order to reverse engineer files that import from the JDK,
JFC or any other library, you must have a reference to those libraries
in your classpath environment variable. For the libraries included with
VisualAge, you can add the following to your class path:

IBMJavaInstallationDirectory\ide\PROGRAM\LIB\CLASSES.ZIP

How to Enable the Link

To establish the link between Rose J and VisualAge for Java you need
to first initialize the link on the VisualAge side, then select a project on
the Rose J side.

Initializing the VisualAge side of the link
1. In VisualAge for Java, click File > Quick Start.

2. From the Quick Start dialog, click Basic and the RoseLink Plugin Toggle.
Click OK.

A message confirms that the link is successful.

Ending the link
1. In VisualAge for Java, click File > Quick Start.

2. From the Quick Start dialog, click Basic and the RoseLink Plugin Toggle.
Click OK.

3. A message notifies you that the link is active and prompts you
whether you want to terminate it. Click Yes to end the link.

Establishing the link from Rational Rose
1. Set the Virtual Machine property to IBM (Tools > Java > Project Specification >

Detail).

2. Click Tools > Java > IBM VisualAge for Java Project.

3. Select a VisualAge Project from the list and click OK.

Note that when you select a VisualAge project, Rose creates a new
Project model property setting called VAJavaProjectVAJavaProjectVAJavaProjectVAJavaProject. This model
property is set to the project name you selected.
Rational Rose 2000e, Using Rose J 7

Chapter 2

How Rational Rose J Models
Java Elements

About Java Elements in a Rational Rose Model

A good starting point for learning about Rational Rose J is to
understand how it models the Java elements you are most familiar
with. This chapter describes how the most commonly used Java
constructs are visualized in a Rational Rose model, including:

� Class path

� Java classes, variables, and methods

� Arrays and vectors

� Nested and inner classes

� Implements and extends relationships

� Interfaces

� .java files

� Packages and imports

� Java Beans

� Javadoc comments

In addition, this chapter explains how to view and set Java-specific
settings that control how these constructs are modeled.
Rational Rose 2000e, Using Rose J 9

Chapter 2 How Rational Rose J Models Java Elements
How Model Properties and Specifications Affect Your Model

There are two generic mechanisms that Rational Rose J uses to control
how your model elements behave and how Java source is generated for
them:

� Model properties. These properties provide global settings for a
project and its classes, attributes, operations, components, and
roles.
10 Rational Rose 2000e, Using Rose J

About Java Elements in a Rational Rose Model
� Standard Rational Rose specifications, which control individual
classes, attributes, operations, components, and roles.
Rational Rose 2000e, Using Rose J 11

Chapter 2 How Rational Rose J Models Java Elements
In addition to these, Rational Rose J offers an alternative set of context-
based custom Java specifications that extract settings from both the
standard Rational Rose specifications and the model property settings.
For example:

These custom specifications enable you to display and modify settings
in a single dialog that uses Java terms rather than Rational Rose/UML
terms. Any change you make on a Java specification updates the
corresponding Rational Rose specification or model property.
12 Rational Rose 2000e, Using Rose J

About Java Elements in a Rational Rose Model
The Java specifications are:

� Project SpecificationProject SpecificationProject SpecificationProject Specification - This consists of the Class Path, Detail, and
Style tabs.

The Class Path tab enables you to set up the CLASSPATHs that
Rose J will use when you generate code from a model or reverse
engineer existing source. (Setting the CLASSPATH is a required
step for both code generation and reverse engineering.)

The Detail tab enables you to establish default values for various
model properties and lets you control the behavior of Rose J
features. For example it lets you:

❑ Set default return types for methods, default data types for
variables, and the editor to use for browsing generated source
code.

❑ Enable automatic synchronization which causes Rose J to
automatically generate code whenever you create, delete, or
modify various Java constructs in your model.

❑ Specify the platform or IDE you’re using (Virtual Machine setting).
The Sun Microsystems JDK is the default, but Rose provides
integration with both Microsoft Visual J++ and IBM’s VisualAge
for Java.

❑ Disable the Rose J specifications (and enable the standard Rose
specification as the default specification).

The Style tab lets you choose which type of comment you
implement in the Java code that you generate. You can select the
standard Rose comment style, the standard Java comment style, or
you can generate Javadoc tags for creating HTML-based
documentation. It also lets you control how generated code is
indented and whether opening braces should start on a new line.

You access the Project Specifications from Tools > Java > Project
Specification.

� Class SpecificationClass SpecificationClass SpecificationClass Specification - This specification lets you add Java class
modifiers, generate constructors and finalizers, create extends and
implements relationships, and set the class access level (visibility).

� Field SpecificationField SpecificationField SpecificationField Specification - This specification lets you display and modify
how Rose models Java variables. It lets you specify modifiers,
access level, data type, initial value, and container class. It also lets
you create Java beans by setting bean-specific properties.
Rational Rose 2000e, Using Rose J 13

Chapter 2 How Rational Rose J Models Java Elements
� Method SpecificationMethod SpecificationMethod SpecificationMethod Specification - Using this specification, you can set a
method's modifiers, return type, and access level, as well as create
argument and throws (exception) relationships.

� Component SpecificationComponent SpecificationComponent SpecificationComponent Specification - Using this specification, you can view
and set the import specifications for the component, version
control tags that are included in the header of a .java file, copyright
notices, and comment text.

When a component or class becomes a Java-specific component or
class, the Java specification becomes the default specification that
appears when you double-click on any model element (either in the
browser or a diagram) associated with the component and class. If a
class or component is not associated with a particular language, the
standard Rose specification is the default. (Note that you can disable
the Rose J specifications via the Always Show Standard Specification Dialog for
Classes field on the Java Project Detail Specification.)

There are two ways that a class or component becomes a Java-specific
class or component:

� You use the Notation model property that establishes Java as your
default language. When you do this, every class or component that
you create automatically becomes a Java class or component.

� You assign a class to a component whose language is set to Java.
In this case, you create a component, set its language to Java, then
assign a class to the component. Here, the language assignment is
local to the component and its associated classes. Your global
language setting is something other than Java (usually Analysis).

Note that you can't use Java specifications to create model elements.
You can only display and modify the settings for existing elements. To
create a model element (such as a class, attribute, method, component,
etc.), use the shortcut menu or the standard Rose specifications.

Java Class Path

Rose J requires class path settings for the JDK API classes, as well as
for your own user libraries. A class path is a system environment
variable and is not specific to Rational Rose. Various Java tools and
applications (including the Java Virtual Machine) rely on your system’s
CLASSPATH settings to resolve references to user-defined classes,
specifically to package and import references.
14 Rational Rose 2000e, Using Rose J

Java Class Path
For reverse engineering, Rose J must have a class path to the JDK
class library. For example, depending on the version of the JDK you’re
using, you’ll need a CLASSPATH setting to classes.zip, rt.jar, or other
appropriate library file. (Check your JDK documentation for current
names and locations.) To illustrate, a sample path to the rt.jar file in
JDK 1.2.1 would be x:\jdk1.2.1\bin\jre\rt.jar.

When setting up your class path for your user libraries, consider:

� Where is the file? Specifically, what is the fully qualified path
name?

� What are the package or import statements in the source?

You must have a directory in your CLASSPATH setting for the leftmost
directory in a package/import statement. Rose converts each
package/import statement into a path in your file system, then adds
each directory in your CLASSPATH until it makes up a fully qualified
path to the class file.

You can use the Class Path tab of the Java Project Specification to
dynamically set up a specific class path tailored to your current model.

To display the Java Project Specification, click Tools > Java > Project
Specification.
Rational Rose 2000e, Using Rose J 15

Chapter 2 How Rational Rose J Models Java Elements
For example:

When you start Rational Rose, Rose J retrieves the current
CLASSPATH environment variable settings from your system and lists
them in the Environment section of the Java Project Specification.
(This section is read-only.)

Note: If you change your system’s class path environment variable, you
will want Rose J’s Java Project Specification to change as well. If your
system runs Windows NT, restarting Rational Rose updates the
specification. If you run Windows 9x you need to reboot your system to
update the specification.

You can use the Directories section of the Class Path tab if you want to
dynamically add directories that extend your class path. Any settings
you add here are saved with your model. (They aren’t added to your
class path environment variable.) You can add as many directories as
you need, when you need them.
16 Rational Rose 2000e, Using Rose J

Java Classes
To add or modify a path in this list, use the control buttons:

If you use path map variables in your model, select the Resolve Pathmap
Variables checkbox to change path map variables to physical path
(directory) names.

Java Classes

Rational Rose J models Java classes as Rational Rose classes:

You create a Java class in a model using the same techniques you use
to create any class in Rational Rose. Naturally, if you’ve reverse-
engineered Java classes into a model, Rational Rose J generates model
classes based on your code, including the components and packages
that reflect how your classes are organized.
Rational Rose 2000e, Using Rose J 17

Chapter 2 How Rational Rose J Models Java Elements
Making a Rational Rose Class a Java Class

A Rational Rose class takes on the personality of a Java class in three
ways:

� Your default notation for your model is set to Java (Tools > Options >
Notation > Default Language > Java). In this case, any new class you
create will be a Java class.

� Your default notation is not Java (for example, it’s the Analysis
default), but you assign a class to a component whose Language field
you’ve set to Java. As described in detail later in this chapter,
Rational Rose J uses Rational Rose components to model actual
.java files.

� You reverse-engineered Java classes into a model.

If Java is not your model’s default notation, or you don’t assign a class
to a Java component, the class can be affected in two significant ways:

� You won’t be able to open a Java specification for the class or for
any of its variables (fields), or methods. To set the properties you
want, you will need to use the standard Rational Rose
specifications.

� If you generate code for unassigned classes, Rational Rose J
creates a new component for each class using the class name. (If
you generate code for five unassigned classes, you end up with five
new components and five new .java files.)

If your goal is to generate multiple classes to a single .java file, you will
need to create the component and assign the classes to the component
before you generate the code.

Note: By default, the access control level for Rose classes is Public. If
you create and assign multiple classes to a component, make sure the
access control levels are correct. When you generate code from a model,
Rose J enforces the Java rule that the name of a public class must match
exactly the name of the component it is assigned to and there can be only
one public class assigned to a component.

There are several ways to create components and assign classes to
them. Here is one method:

1. Click Component View in the browser, then click the right mouse
button to display the shortcut menu.

2. From the shortcut menu click New > Component then key in a name
for the new component.
18 Rational Rose 2000e, Using Rose J

Java Classes
3. In the browser, double-click the new component to open its Rose
specification. Make sure the Language is set to Java:

Note: If you established Java as your model’s default language (via
the Notation tab in Model Properties) all components you create in your
model will automatically have Java set as the language.

4. To assign a class to the component, you can click the class in the
browser and drag it to the component. Or, you can open the
Components tab in the Class Specification and use the shortcut
menu to assign the class to the component from the list:
Rational Rose 2000e, Using Rose J 19

Chapter 2 How Rational Rose J Models Java Elements
Supported Java Semantics for Classes

The Java semantics that Rational Rose J supports (and generates code
for) include:

� Modifiers. These include public (always added by default),
abstract, final, and static

� Generators. These are finalizer, static initializer, instance
initializer, and default constructor. Of these, only the default
constructor is automatically generated.

� Constructor Visibility. You can set the visibility to public, private,
protected, or package. The default is public.

� Extends. You can indicate if a class extends another class.

� Implements. You can indicate if a class implements one or more
interfaces.

� DocComment. You can annotate the class declaration. There are
three types of comments you can generate: standard Rose format
(the default), standard Java format, or Javadoc comments with
specific tags for generating HTML-based documentation. See the
description of Javadoc later in this chapter for details.

In addition, be aware of these conventions which Rational Rose J
supports:

� Class names only need to be unique within the same Rational Rose
component package.

� If a class you create in Rational Rose J is a public class, its
associated component must have the same name, regardless of
how many other non-public classes are also associated with the
component. (For example, the public class Cats must be associated
with a component called Cats. The file Rational Rose J creates for
the code it generates will be named Cats.java.)
20 Rational Rose 2000e, Using Rose J

Java Classes
All Java semantics are available from the Java Class Specification:

Note: When you use the Java Class Specification to fine-tune a class
definition, the specification enforces standard Java rules. (For example,
it won’t let you add the final modifier to an abstract class.) If you use the
standard Rose specification instead, this checking is not done and errors
may not be obvious unless you check syntax, either explicitly (you can
select syntax checking from the Tools > Java menu) or as part of code
generation.
Rational Rose 2000e, Using Rose J 21

Chapter 2 How Rational Rose J Models Java Elements
Java Variables (Fields)

Rational Rose J models a Java variable either as an attribute of a class
or as a role in an association between two classes. The difference
between the two is based on the type you want to declare for the
variable.

Variables with Primitive Types

If the variable’s type is a primitive type (int, byte, short, long, float,
double, char, or boolean), the variable is modeled as an attribute of the
class. For example:

The code generated for the class would look like this:

class HelloWorldApp {
private int date;

}

There are several techniques for adding an attribute to a class,
including selecting the class in a class diagram, clicking the right
mouse button to display the shortcut menu, then clicking New Attribute.

Once you’ve added an attribute to a class, you can display its Java
Field Specification to make changes to its definition.

Changing String Variables to Attributes

By classic Java standards, String is a class, not a primitive data type.
When you reverse engineer Java code, Rose J parses a String variable
as a relationship to the class String in java.lang. If you prefer, you can
have Rose J model all String variables as though String were a
primitive data type by adding java.lang.String to the registry setting:

HKEY_LOCAL_MACHINE\SOFTWARE\Rational\Software\Rose\
AddIns\Java\FundamentalTypes
22 Rational Rose 2000e, Using Rose J

Java Variables (Fields)
For example:

Variables with Reference Types

There are two ways to create a reference variable:

� By drawing an association between classes

� By creating an attribute and designating a class as the attribute’s
data type
Rational Rose 2000e, Using Rose J 23

Chapter 2 How Rational Rose J Models Java Elements
Creating Variables through Associations

When a variable’s type is a reference to another class, you model this
relationship by creating an association between the class whose
variable you are defining and the class that models the entity you are
referencing. For example:

In this case, timeOfYear is a variable of the HelloWorldApp class. The
variable’s type is the class Season.

If you were to generate code for the HelloWorldApp class the variable
definitions would appear as:

private int date;
Season timeOfYear;

Note that Rational Rose J doesn’t generate code for the association
itself. Rather, it only generates code for a navigable role.

There are always two ends to an association, Role A and Role B. By
default, when you draw an association it’s one way (unidirectional).
You start from Role B and end at Role A with Role A being the navigable
role (also by default).

To generate a reference variable, you will always want the navigable
role to be associated with the class you’re referencing. Hence, in our
example, HelloWorldApp is Role B (we started drawing the association
from this class) Season is Role A and Season is the navigable role. This
way, we can generate the Season reference variable for the
HelloWorldApp class.
24 Rational Rose 2000e, Using Rose J

Java Variables (Fields)
There are two places where you can view and set a role’s navigability:

� On the Role Detail tab in the Association Specification:

� On the Rose J Field Specification:
Rational Rose 2000e, Using Rose J 25

Chapter 2 How Rational Rose J Models Java Elements
Note that you can draw associations without explicitly naming the
roles. In our example, we assigned the name timeOfYear to Role A. By
default, however, Rose assigns role names by adding the word the to
the class name at the other end of the association. For example, if we
hadn’t named the role, Rose would have named Role A
theHelloWorldApp and Role B theSeason. If we had used these names,
the generated code for HelloWorldApp would be:

public class HelloWorldApp
{

private Season theSeason;

When you generate code for a reference type of variable, you can use
the Generate Fully Qualified Type setting if you want Rose J to generate the
complete path of the type class in the source code. This is essential if
you have duplicate class names in different packages. It ensures that
the code references the correct class.

Creating Variables with User Data Types

Another way to create a reference variable is to create an attribute and
give it a data type of another class. For example:
26 Rational Rose 2000e, Using Rose J

Java Variables (Fields)
Now instead of showing an association to another class, the reference
variable looks like an attribute:

This seems like a simpler way to define reference variables but when
you generate code for the class then reverse-engineer it back into a
Rose model, Rose will convert the attribute to an association between
the two classes.

As with the alternative technique for creating reference variables, you
can use the Generate Fully Qualified Type setting if you want Rose J to
generate the complete path of the Type class in the source code.

Supported Java Semantics for Variables (Fields)

Rational Rose J supports (and generates code for) these semantics,
whether the variable is modeled as a class attribute or as a role:

� Type. This can be either a primitive type or a reference type. The
standard Rational Rose default type is int (integer). However, you
can establish a Java-specific default via the Detail tab of the Java
Project Specification:
Rational Rose 2000e, Using Rose J 27

Chapter 2 How Rational Rose J Models Java Elements
� Visibility. This can be public, private, package, or protected. Note
that if a variable’s type is primitive or if you use the Java Field
Specification to name the data type, the Rose J default is private. If
the type is a reference and you created it by drawing an
association, the default is public.

� Modifiers. These are final, static, volatile, and transient.

� Initial Value. You can define an initial value for the variable.

� Container Class. You can specify that a variable get its type from a
container class such as the Java Vector class or a container class
that you’ve developed. (Vectors and arrays are discussed in more
detail later in this chapter.)

� Java Bean Properties. These are discussed in more detail later in
this chapter.

� DocComment. You can annotate the variable declaration. There
are three types of comments you can generate: standard Rose
format (the default), standard Java format, or Javadoc comments
with specific tags for generating HTML-based documentation. See
the description of Javadoc later in this chapter for details.

All of these settings are available from the Java Field Specification.

Note: When you use the Java Field Specification to fine-tune a variable,
the specification enforces standard Java rules. If you use the standard
Rose specification instead, this checking is not done and errors may not
be obvious unless you check syntax, either explicitly (you can select
syntax checking from the Tools > Java menu) or as part of code generation.
28 Rational Rose 2000e, Using Rose J

Arrays and Vectors
In addition to these semantics, the Java Project Specification enables
you to establish default prefixes to use when generating code for
variables:

Arrays and Vectors

Rational Rose J models arrays and vectors the same way it models
variables, meaning that it uses attributes in a class and roles in
association relationships.

Note: Rational Rose J provides a convenient way to generate arrays
and vectors, but they are best forward-engineered (code generation)
only. If you subsequently reverse-engineer the generated code, the
model will vary from the original.

In this first example, consider two simple arrays of integers where the
brackets [] have been added to the attribute definitions:
Rational Rose 2000e, Using Rose J 29

Chapter 2 How Rational Rose J Models Java Elements
If you generated code from this class you would get:

public class SampleArraysAndVectors {
private int[] simpleArray;
private int anotherSimpleArray[];

To create an array of objects, you would create a variable exactly as
described for a variable with a referenced type. Namely, you would
draw the association between supplier and client, name a role as the
array, and disable the other role’s navigability.

To generate the variable as an array vs. a variable, you set array role’s
cardinality to a value greater than 1 (for example, n). The cardinality is
the setting that triggers Rational Rose J to generate the array. You set
cardinality in the Association Specification.

For example:

This construct would generate this code:

public class SampleArraysAndVectors {
private int[] simpleArray;
private int anotherSimpleArray[];
public otherType myOtherTypes1[];
30 Rational Rose 2000e, Using Rose J

Arrays and Vectors
Now consider vectors. You can create a vector by creating the same
association between classes as for an array, but identifying a container
class, such the Vector Java class from java.util, in the Java Field
Specification. (The presence of a value in the Container Class
overrides the cardinality that triggers an array.)

For example:

The code generated for this would be:

public class SampleArraysAndVectors {
private int[] simpleArray;
private int anotherSimpleArray[];
public otherType myOtherTypes1[];
public Vector myOtherTypes2;
Rational Rose 2000e, Using Rose J 31

Chapter 2 How Rational Rose J Models Java Elements
Another way to generate a vector would be to specify the variable’s
(role’s) type as java.util.Vector. For example:
32 Rational Rose 2000e, Using Rose J

Java Methods
Java Methods

Rational Rose J models Java methods as operations:

You can create a Java method using the same techniques you would
use to create an operation. For example, you can select a class, either
in the browser or in a diagram, click the right mouse button to display
the shortcut menu, then click New Operation.

Like attributes and roles, operations support Java-specific semantics
that enable you to generate Java methods. The easiest way to do this
is to use the Java Method Specification to select the semantics you
need.

Supported Java Semantics for Methods

The semantics Rational Rose J supports are:

� Return Type. You can opt for the default (void), or select from the
types defined in your model.

� Modifiers. These are abstract, final, static, synchronized, and
native.

� Visibility. These are public, private, protected, and package.

� Arguments

� Throws. You can identify the exception classes to associate with
the method.
Rational Rose 2000e, Using Rose J 33

Chapter 2 How Rational Rose J Models Java Elements
� DocComment. You can annotate the method declaration. There
are three types of comments you can generate: standard Rose
format (the default), standard Java format, or Javadoc comments
with specific tags for generating HTML-based documentation. See
the description of Javadoc later in this chapter for details.

All of these semantics are available from the Java Method
Specification:
34 Rational Rose 2000e, Using Rose J

Java Methods
In addition, when you reverse engineer existing Java classes whose
methods have code, the code is displayed in a read-only format from
the Code tab of the Java Method Specification. For example:

Note: When you use the Java Method Specification to fine-tune a
method definition, the specification enforces standard Java rules. If you
rely on the standard Rose specification instead, this checking is not done
and errors may not be obvious unless you check syntax, either explicitly
(you can select syntax checking from the Tools > Java menu) or as part of
code generation.
Rational Rose 2000e, Using Rose J 35

Chapter 2 How Rational Rose J Models Java Elements
Java Extends

Rational Rose J models Java extends relationships as generalization
relationships. For example, the Accipiter class below extends the Java
class Applet:

To create an extends relationship in a Rational Rose diagram, you can
use the Generalization drawing tool to draw the relationship from the
class that’s extending another class (e.g., from Accipiter in the example
above to Applet). Or, once the class exists and has been assigned to a
Java component, you can open the Java specification for the class and
use the Extends field to select a class.

Note: If you use the Java specification rather than the drawing tool to
create the extends generalization relationship, the relationship does not
show up on the class diagram unless you use the Expand Selected Classes
from the Query menu.

Rational Rose J supports the following semantics related to
generalization:

� Enforcement that a class only extends at most one other class.

� Allowance for an interface to extend multiple interfaces.
36 Rational Rose 2000e, Using Rose J

Java Implements
Java Implements

Rational Rose J models implements as a realization relationship
between a subclass and a superclass that has a stereotype of
Interface.

To create a Realize relationship, you can use the Realize drawing tool
to draw the relationship from the Java class (MyJavaClass) to the
Interface class (MyInterface). Or, you can use the Implements field in the
Java Class Specification to select the appropriate Interface.

Note: If you use the Java Specification rather than the drawing tool to
create the realizes relationship, the relationship does not show up on the
class diagram unless you use the Expand Selected Classes from the Query
menu.
Rational Rose 2000e, Using Rose J 37

Chapter 2 How Rational Rose J Models Java Elements
Java Interfaces

Rational Rose J models a Java interface as a class with a stereotype of
Interface.

A Java interface is essentially an abstract class that contains only
constant (static, final) variables and method signatures without
implementations.

You can use the Java Class, Field, and Method Specifications to define
a class that conforms to the semantics of a Java interface. Specifically,
you can:

� Assign the Interface stereotype to the class.

� Add the modifiers static and final to any variables that are part of
the interface.

� Define the method signatures that are part of the interface.

(Like all Java classes in a Rational Rose model, interface classes must
be associated with a component in order for Rational Rose J to generate
code for the class.)
38 Rational Rose 2000e, Using Rose J

Java Nested and Inner Classes
Java Nested and Inner Classes

In Java, a nested class is defined as a static class that is a member of
another class. An inner class is a non-static nested class. Rose J
models nested and inner classes as standard Rose nested classes. For
example:

You create a nested class by first creating the parent (or top) class.
From the parent’s Standard Class Specification (not the Java Class
Specification), click the Nested tab. From the shortcut menu click Insert
and enter the name of the nested class. Click Done.

To display a nested class in a diagram, either drag it from the browser
or click Query > Add Classes. The nested class is displayed in the list box
of Classes beside the name of the parent class. Select the nested class
and place it in the Selected Classes list box. When the diagram is
displayed, the nested class is displayed with the parent class name in
parenthesis below it.
Rational Rose 2000e, Using Rose J 39

Chapter 2 How Rational Rose J Models Java Elements
Java (.java) Files

Rational Rose J models .java files as Rational Rose components in a
model’s Component View.

Associated with those components are the Java classes that are part of
your model’s Logical View.

In Rational Rose, components and component diagrams represent the
physical (versus the logical) structure of your model. Hence, in code
generation and reverse engineering Rational Rose relies on
components to model the physical Java file structure. (And note that
in the example, components can be part of component packages, which
are Rational Rose J’s way of modeling Java packages.)

Rational Rose TipRational Rose TipRational Rose TipRational Rose Tip: To add existing .java and .class files as well as
compressed Java .zip, .cab, and .jar files to your model you can drag
and drop them into a diagram from other sources, such as from
Microsoft Explorer. When you do this, Rational Rose unpacks the files
and reverse engineers their contents into your model. Note, however,
that Rational Rose cannot recreate or repackage the .zip, .cab, and .jar
files when you generate code from your model.
40 Rational Rose 2000e, Using Rose J

Java (.java) Files
Once you’ve created a component and set its Language to Java, you can
use the Java Component Specification to display and modify settings:

These settings include:

� Imports. This field lists any additional Java import statements you
want to include when you generate Java code for a component. The
contents of this field (if any) are included directly in the generated
*.java file.

� CmIdentification. This is a version control identification tag
(character string) that you define and that is included in the header
of the .java file when you generate code for a class/component. By
default, this field is blank.

� Copyright. This is a copyright message (character string) that you
define and that is included in the header of the .java file when you
generate code for a class/component. By default, this field is
blank.

� DocComment. This text field enables you to add comments that
describe the component.There are three types of comments you
can generate: standard Rose format (the default), standard Java
format, or Javadoc comments with specific tags for generating
HTML-based documentation. See the description of Javadoc later
in this chapter for details.
Rational Rose 2000e, Using Rose J 41

Chapter 2 How Rational Rose J Models Java Elements
Java Components and Code Generation

In order to generate Java source code from your model, the Java class
or classes you’ve selected must be assigned to a component in your
model’s Component View.

If you don’t create components before you generate code for the
classes, Rational Rose J creates the components for you. Specifically,
it creates a component for each class you’ve selected. Each new
component will have the same name as the class assigned to it. When
code generation completes, you have a .java file for each class.

If you want to generate multiple classes to a single .java file, you need
to manually create a component, assign Java as its Component
Language (if Java is not your default model language), then assign the
class(es) to the new component.

You can then generate code from any of the classes or from the
component itself. The .java file that Rational Rose J generates contains
the code for all of the classes in the component.

Note: Rational Rose J enforces the rule that a .java file can contain no
more than one public class. It also enforces the requirement that the
component the public class is assigned to must have exactly the same
case-sensitive name as the class. (If the class CatsAndDogs is public, the
component it is assigned to must be called CatsAndDogs.) And be
careful…when you create a class in Rational Rose, the default access
level is always public.

If, in your model, you create a dependency between classes or
components, Rational Rose J generates the appropriate import
statements in the Java source code. For example, if a class is an applet
(it extends the applet class), when you generate code for the class,
Rational Rose J creates the import statement for the Java applet class:

import java.applet.Applet;

See Java Imports for more information about how Rational Rose J
models import statements.
42 Rational Rose 2000e, Using Rose J

Java (.java) Files
Java Components and Reverse Engineering

When you reverse engineer Java source, Rational Rose J creates the
Java components for you. For example, if you reverse engineer a .java
file that defines 10 classes, Rational Rose J creates a component using
the .java file name. All 10 classes in the model are assigned to that
component.

If your .java file contains import statements for other .java files,
Rational Rose J creates a dependency relationship between them. For
example, if you reverse engineer a class called CatsAndDogs that
extends the Java applet class, Rational Rose J creates a dependency
between CatsAndDogs and Applet. See Java Imports for more
information about how Rational Rose J models import statements.

Note that when Rational Rose J models components and component
packages from your Java source, it creates a mirror image of the
component structure in your Logical View using logical component
packages and logical components. For example, the source statement:

package Birds.Raptors;

generates this structure in your model:
Rational Rose 2000e, Using Rose J 43

Chapter 2 How Rational Rose J Models Java Elements
Java Packages

A Java package is the logical equivalent of a component package in
Rational Rose, with one very important distinction: where a Java
package is a collection of classes or other packages, a Rational Rose
component package is a collection of components or other component
packages. Rational Rose J is component-centered, meaning that each
Java class you model in Rational Rose (and that you intend to generate
Java source code for) has to be assigned to a Rational Rose component.
In this regard a component is Rational Rose’s way of modeling a .java
file.

Java Packages and Code Generation

When you generate code from your model, Rational Rose J:

� Creates the appropriate package declarations in your source.

� Creates the directory structure that mirrors the component
package structure in your model.

Consider this example from the browser:
44 Rational Rose 2000e, Using Rose J

Java Packages
If you generated Java source code from one of the classes in the model,
the code, including the Java package declaration would look like this:

And the directory structure in Rational Rose J would generate would
look like this:

Rational Rose J’s ability to automatically create new directories from
the packages in your model is controlled by the Create Missing Directories
property. You set this property via the Java Project Specification or via
Rational Rose model properties.

The class path setting you establish in Rational Rose J determines
which directory/package is at the top of your directory/package
structure. Note that the comment Rational Rose generates at the top of
the code example specifies the fully qualified path to the .java file. From
this comment, you know that the class path setting for the sample
model is set to D:\jdk1.1.6. There is no limit to how deeply you nest
your packages/directories.

Java Packages and Reverse Engineering

When you reverse engineer Java source, Rational Rose J creates the
Java component packages for you based on the package statements in
the code.
Rational Rose 2000e, Using Rose J 45

Chapter 2 How Rational Rose J Models Java Elements
Note that when Rational Rose J models components and component
packages from your Java source, it also creates a mirror image of the
component package structure in your Logical View using logical
component packages and logical components.

Java Imports

Java import specifiers resolve references to classes that are outside of
a .java file. An import specifier lists the fully qualified name of another
Java class.

For example, the import specifier import java.applet.Applet states that
the identifier Applet is a Java class defined in package java.applet.
Likewise, the import specifier import java.util.* states that at
compilation time, the class definitions scoped to the java.util package
should be included as valid Java identifiers. Rational Rose J will
generate import specifiers based on the following model relationships:

� Dependency relationship between components in different
packages

� Dependency relationship between a component and a package
other than the parent package of the component

� Dependency relationship between classes allocated to different
packages

� Association relationship between classes allocated to different
packages

� Generalization relationship between classes allocated to different
packages

� Realization relationship between classes allocated to different
packages

Java Beans

Rational Rose J models Java Beans as Rational Rose attributes or roles
with Java Bean properties. The properties are controlled by setting an
attribute’s or role’s model properties. You access these properties via
an attribute or association in the Rational Rose Specification, or by
using the Java Field Specification. (Java Custom Specifications are
only available when a class has been assigned to a component whose
language has been set to Java.)
46 Rational Rose 2000e, Using Rose J

Java Beans
Read/Write Property

You can specify whether or not a bean should allow an external
customer to set or get a property. If you select read access, Rational
Rose generates a bean get method. For write access, Rose generates a
bean set method.

Support Individual Change Management

If a bean property is bound or constrained, a Java Bean must inform
other classes through a registration mechanism. Rose enables a bean
to use a single registration class (the default behavior). Or you can elect
to have a property use its own registration mechanism. By specifying
that each property has its own change management listener, Rose
enables you to optimize classes and performance.

Property Types

The following are the property types you can set for Java beans.

Simple

This generates a property declaration and a get/set method, depending
on how you set the Read/Write property. For example, for a variable
named myProp of type myType, the following code is generated:

myType getMyProp() {
return myProp;
}

void setMyProp(myType aMyProp) {
myProp = aMyProp;
}

Rational Rose 2000e, Using Rose J 47

Chapter 2 How Rational Rose J Models Java Elements
Bound

For a Bound property setting, Rational Rose generates the import
statement:

import java.beans.*,

For the attribute, Rational Rose generates a declaration, a set method,
and an optional get method, depending on the setting of the
Read/Write property. (Note that a bound property without a set method
is inconsistent. If you specify that the variable is bound and read-only,
Rational Rose will issue a warning when you generate code.)

The get method is the same as the get method that is generated for the
Simple property setting.

If any variable of the class is bound and its Individual Change
Management property is not set (i.e., False), the set method and the
PropertyChangeSupport, common addPropertyChangeListener, and
removePropertyChangeListener methods are generated for the class as
follows:

protected PropertyChangeSupport commonPCS = new
PropertyChangeSupport(this);

void setMyProp(myType aMyProp) {
myType oldMyProp = myProp;
myProp = aMyProp;
commonPCS.firePropertyChange("myProp", oldMyProp, myProp);
}

public void addPropertyChangeListener(PropertyChangeListener
listener) {

commonPCS.addPropertyChangeListener(listener);
}

public void removePropertyChangeListener(PropertyChangeListener
listener) {

commonPCS.removePropertyChangeListener(listener);
}

48 Rational Rose 2000e, Using Rose J

Java Beans
If a variable’s Individual Change Management property is set (True),
the set method and the specific PropertyChangeSupport, specific
addPropertyChangeListener, and removePropertyChangeListener
methods are generated as follows:

protected PropertyChangeSupport myPropPCS = new
PropertyChangeSupport(this);

void setMyProp(MyType aMyProp) {
MyType oldMyProp = myProp;
myProp = aMyProp;
myPropPCS.firePropertyChange("myProp", oldMyProp, myProp);
}

public void addMyPropListener(PropertyChangeListener listener)
{

myPropPCS.addPropertyChangeListener(listener);
}

public void removeMyPropListener(PropertyChangeListener
listener) {

myPropPCS.removePropertyChangeListener(listener);
}

Note that if a variable has a primitive data type, the second and third
parameters of the calls to firePropertyChange would be the appropriate
object wrappers, as follows:

myPropPCS.firePropertyChange("myProp", new Integer(oldMyProp),
new Integer(myProp));

Constrained

For a Constrained property setting, Rational Rose generates the import
statement:

import java.beans.*,

For the variable, Rational Rose generates a declaration, a set method,
and an optional get method, depending on the setting of the
Read/Write property. (Note that a constrained property without a set
method is inconsistent. If you specify that the variable is constrained
and read-only, Rational Rose will issue a warning when you generate
code.)

The get method is the same as the get method that is generated for the
Simple property setting.
Rational Rose 2000e, Using Rose J 49

Chapter 2 How Rational Rose J Models Java Elements
If any variable of the class is constrained and its Individual Change
Management property is not set (i.e., False), the set method and the
VetoableChangeSupport instance, common
addVetoableChangeListener, and removeVetoableChangeListener
methods are generated for the class as follows:

protected VetoableChangeSupport commonVCS = new
VetoableChangeSupport(this);

void setMyProp(MyType aMyProp) throws PropertyVetoException {
commonVCS.fireVetoableChange("myProp", myProp, aMyProp);
myProp = aMyProp;
}

public void addVetoableChangeListener(VetoableChangeListener
listener) {

commonVCS.addVetoableChangeListener(listener);
}

public void removeVetoableChangeListener(VetoableChangeListener
listener) {

commonVCS.removeVetoableChangeListener(listener);
}

If a variable’s Individual Change Management property is set (True),
the set method and the specific VetoableChangeSupport instance,
specific addVetoableChangeListener, and
removeVetoableChangeListener methods are generated as follows:

void setMyProp(MyType aMyProp) throws PropertyVetoException {
myPropVCS.fireVetoableChange("myProp", myProp, aMyProp);
myProp = aMyProp;
}

public void addMyPropListener(VetoableChangeListener listener)
{

myPropVCS.addVetoableChangeListener(listener);
}

public void removeMyPropListener(VetoableChangeListener
listener) {

myPropVCS.removeVetoableChangeListener(listener);
}

50 Rational Rose 2000e, Using Rose J

Javadoc and Comment Text
Javadoc and Comment Text

Rational Rose specifications enable you to document your model
elements by adding text to various Documentation fields. Rose J uses
the text you supply to create comments in the Java code it generates.
There are three comment types that Rose J can generate:

� Rose Default. This style uses the standard /** */Rose comment
style. For example:

//Source file: c:/temp/MyNewClass.java
/**
This is a test of the comment style.
*/
public class MyNewClass
{

public MyNewClass() {}
}

� Asterisk Style. This style inserts an asterisk at the start of the
comment. This is the standard Java style. For example:
//Source file: c:/temp/MyNewClass.java
/**
* This is a sample asterisk style comment.
*/
public class MyNewClass
{

public MyNewClass() {}
}

Rational Rose 2000e, Using Rose J 51

Chapter 2 How Rational Rose J Models Java Elements
� Javadoc style. This style uses Javadoc tags that the Javadoc
compiler uses to create HTML pages that describe various Java
constructs such as classes, interfaces, constructors, methods, etc.
For example:
/**

* @param balance
* @param type
* @param number
* @return
* @exception
*
@roseuid 36782AC702D9
*/

public BankAccountServant(short balance, String type,
String number) {

balance_ = balance;
type_ = type;
number_ = number;

}

52 Rational Rose 2000e, Using Rose J

Javadoc and Comment Text
You set the style on from the Java Project Specification's Style tab.

If you select Javadoc as the style, you enable selection of any of the
Javadoc options listed. Note that @exception, @param, @return,
@serial, @serialdata, and @serialfield are generated only for methods.
All other tags listed are common to classes and methods. Note, too,
that the comment style you implement affects all Java elements in your
model.
Rational Rose 2000e, Using Rose J 53

Chapter 3

Forward Engineering with Rational
Rose J

About the Steps You Follow

Forward engineering with Rational Rose J is a process comprised of the
following major tasks:

� Assign Java classes to Java components in your model

� Check syntax (optional)

� Check the class path

� Set the Project Properties that affect code generation

� Back up your source

� Generate Java source code from your model

� View (browse) and extend the generated source

Assign Java Classes to Java Components in Your Model

Rational Rose J models .java files as components. (Your model's
Component View models your physical file structure.) Therefore, to
generate code successfully, Rose J requires that the Java classes in
your model be assigned to Java components in the Component View of
your model.

You have two assignment options:

� You can let Rose J create the components for you when you initiate
code generation for one or more classes. When you do this, Rose J
generates one .java file and one component for each class. In order
to take advantage of this feature, you must set the default notation
for your model to Java (Tools > Options > Notation > Default Language).
Rational Rose 2000e, Using Rose J 55

Chapter 3 Forward Engineering with Rational Rose J
Rose J will not automatically generate code for multiple classes to a
single .java file or component. (Note, too, that if you assign your
Java classes to a logical package, Rose J creates a mirror image of
your physical package in your Component View and uses it to
create a directory/Java package based on the model package.)

� You can create the components yourself then explicitly assign the
classes to the components. When you do this you can generate
multiple classes to a single .java file.

Check Syntax

This is an optional step. You can choose to check the syntax of your
model components before you try generating code. Note, though, that
syntax checking is done automatically for you when you generate code.
Rose J's Syntax checking is based on Java code semantics.

Check the Class Path

Rose J's Class Path tab of the Java Project Specification enables you
to set up a specific Java class path tailored to your current model.
Rose J uses this class path when you generate code or reverse engineer
existing Java source.

You can use the Directories field of the Class Path tab if you want to
dynamically add directories that extend your class path. Any settings
you add here are saved with your model. You can add as many
directories as you need, when you need them.

Set the Project Properties that Affect Code Generation

The properties that affect code generation are:

� Stop on Error. When enabled, Rose stops generating Java code at
the first error it encounters. By default, this property is not set,
thus allowing code generation to proceed even when there may be
errors. (Note that errors can be viewed via the Rational Rose Log
window.)

� Create Missing Directories. When the Create Missing Directories
setting is enabled (the default), Rose creates any undefined
directories that are referenced as packages in a Rose model when
you generate Java code.
56 Rational Rose 2000e, Using Rose J

About the Steps You Follow
� Automatic Synchronization Mode. When this feature is enabled,
Rose J automatically initiates code generation any time you create,
delete, rename, or modify a Java element in your library. By
default, this feature is off.

� VM or Virtual Machine. This setting determines which Java
environment or IDE you're working in. The default, Sun, indicates
you're working with a standard JDK. Alternatively, you could set
the VM to IBM for integrating with VisualAge for Java, or Microsoft
for integrating with Visual J++.

You can set the values for all of these settings via the Detail tab of the
Java Project Specification (Tools > Java > Project Specification).

In addition, you can determine the format for the code you generate
and control how comments are created with these properties:

� Indentation. You can specify whether to use spaces or tabs and
the number of spaces or tabs to use when formatting code. The
default is three spaces.

� Opening Braces. By default, opening braces start on a new line for
both classes and method declarations.

� Comment Style. Rose J generates comment text from your model
documentation fields according to the style you select: the Rose
default, standard Java comments, or Javadoc. If you select
Javadoc, Rose J generates the Javadoc tags you select. You can
use the Javadoc compiler to generate HTML documentation.

You can set the values for all of these settings via the Style tab of the
Java Project Specification (Tools > Java > Project Specification).

Back Up Your Source

When you generate code to an existing .java file, Rational Rose creates
a backup of your current source using the file extension .~jav.
However, if you intend to round-trip engineer your Java source, be sure
Rational Rose 2000e, Using Rose J 57

Chapter 3 Forward Engineering with Rational Rose J
to back it up before you begin. If you generate code from a model more
than once before looking for a backup, the .~jav file that Rose creates
will not contain your original code.

Generate Java Source Code from Your Model

You can generate source code from a diagram or from the browser. You
can select one or more classes or one or more components (logical or
physical) then use the Java > Tools or shortcut menu to select Generate
Java.

If this is the first time you've generated code for a model element, a
mapping dialog appears (and described in detail later in this chapter)
enabling you to map packages and components to your Rose J class
path settings. If there are errors or warnings, a message will alert you
and you can view the messages in the Rose Log window (available from
the Window menu). Once code generation is complete, the .java files and
related directory structure are in place. You can also view the newly
generated java source from within Rose.

Note that you can enable a Rose J feature that will automatically
initiate code generation any time you create or modify a Java element
in your model. The Automatic Synchronization Mode feature is available from
the Java Project Specification Detail tab (Tools > Java > Project Specification >
Detail).

View (Browse) and Extend the Generated Source

After generating Java, you may want to view (browse) the generated
source and create the actual functionality for your application or
applet.

Rational Rose J provides a Builtin Editor for viewing and editing the
Java source in .java files. This Builtin Editor is the default editor for a
model's generated .java files. You can control which source editor is the
default for your model by setting or resetting the model's Editor property
58 Rational Rose 2000e, Using Rose J

How Controlled Units Affect Code Generation
in the Detail tab of the Java Project Specification. If you prefer to use
another editor, you can change the setting to WindowsShell, but make
sure your file association for .java files has been set appropriately.

You can modify the generated source from within the editor. To update
your model with the changes, you need to reverse engineer the .java file
back into your model.

How Controlled Units Affect Code Generation

If you use controlled units, Rational strongly recommends that you
load all units before you generate code. Although you are not required
to do this, any code you generate may be incorrect or incomplete due
to missing model elements. Depending on how they are used,
controlled units can profoundly affect relationships and the Java
constructs that rely on them. Specifically:

� If the supplier class of an association or the association itself is in
an unloaded controlled unit, no Java field is generated for the
association.

� If the supplier class of a generalization relationship is in an
unloaded controlled unit, no Java depends relationship is
generated.

� If the supplier class of a realizes relationship is in an unloaded
controlled unit, no Java import statement for a component is
generated.

� If the supplier component in a dependency relationship is in an
unloaded controlled unit, no import package statement is
generated.

If you do not load all of your model’s controlled units before beginning
code generation, Rose J displays the following message:

Not all units are loaded. Incorrect code might be generated. Do you want to continue?

You can continue, but be aware of the possible risk.
Rational Rose 2000e, Using Rose J 59

Chapter 3 Forward Engineering with Rational Rose J
Mapping Components for Code Generation

During code generation, if a package or component in your model is not
mapped to a folder or file listed in your Rational Rose Java Class Path
setting, Rational Rose displays the Component Mapping dialog, which
allows you to do the mapping during code generation.

Follow these steps to map packages or components during code
generation (and remember that you cannot force this mapping to occur
before generation—the mapping dialog appears only after you’ve
initiated code generation and only if Rose J cannot determine the
appropriate mapping):

1. From the list of class path entries, click the path (directory
structure) where you want to put the .java file when it is generated.

2. From the list of packages and components, click one or more items
to map to the class path entry you selected.

Note that the list of packages and components shows only the
topmost level. Once you locate this level relative to your chosen
class path, all of its subpackages and components in your model
will be located within this hierarchy.

3. Click Map to map your selected package or component to the
selected directory structure and complete code generation.

In this sample dialog we map the component called Beaner.java to the
c:\javatest entry in the class path:
60 Rational Rose 2000e, Using Rose J

Generating Java Source from a Component Diagram
Generating Java Source from a Component Diagram

Follow these steps to generate Java source from a component diagram
in Rational Rose:

1. Open your model and display the component diagram that
contains the packages or components for which you want to
generate Java source.

2. Check your class path by opening the Java Project Specification:
click Tools > Java > Project Specification. If needed, use the Directories
field of the Class Path tab to extend your class path.

3. Select one or more packages and components in the diagram.

4. Click Tools > Java > Generate Code. If Rational Rose J cannot map the
component to an existing entry in your class path, it displays the
mapping dialog described in the previous subsection.

5. Check the Rational Rose Log window to view the results of the Java
generation, including any errors that may have occurred.

6. View and edit the generated code.

Generating Java Source from a Class Diagram

From a class diagram, you can generate Java source from classes or
from logical packages. If Java is not your model’s default language, you
need to assign the classes to appropriate Java components. If Java is
your default language, you can generate code for each class without
assigning a class to a component.

Follow these steps to generate Java source from classes in a class
diagram in Rational Rose:

1. Open your model and display the class diagram that contains the
classes and packages for which you want to generate Java source.

2. Check your class path by opening the Java Project Specification:
click Tools > Java > Project Specification. If needed, use the Directories
field of the Class Path tab to extend your class path.

3. Select one or more classes or packages in the diagram.

4. Click Tools >>>> Java > Generate Code. If Rational Rose J cannot map the
component to an existing entry in your class path, it displays the
mapping dialog described earlier in this chapter.
Rational Rose 2000e, Using Rose J 61

Chapter 3 Forward Engineering with Rational Rose J
5. Check the Rational Rose Log window to view the results of the Java
generation, including any errors that occurred.

6. Correct any errors and repeat steps 4 and 5 until no errors are
returned.

Generating Code for Visual J++

There are three ways to establish a link between Rose J and Microsoft
Visual J++:

� By generating source code from a Rose model

� By choosing Open Model from VJ++

� By reverse engineering files from the VJ++ Project Explorer

Both Rose and Visual J++ are able to activate each other, depending on
the operation you are performing.

Generating VJ++ Code from a Rose Model
1. Before generating code, make sure you set the Virtual Machine

property on the Java Project Specification to Microsoft.

2. Select the classes or components for which you want to generate
source code.

3. Click Tools > Java > Generate Java.

4. If Visual J++ is not open, it will automatically start. If the project
for which you're generating code already exists, Rose updates it.
Otherwise, a new project is created.

Note: In addition to code generation and reverse engineering, Visual
J++ offers the option of starting Rose without opening a specific model or
reverse engineering VJ++ source. From Visual J++, click Tools > View Rose
Model.

Viewing and Completing Java Source

The generated Java source for each component is stored in separate
.java.java.java.java files. The generated source contains Java programming elements
based on the objects and relationships defined in your model objects.

After generating Java, you will want to view (browse) the generated
source and create the actual functionality for your application or
applet.
62 Rational Rose 2000e, Using Rose J

Viewing and Completing Java Source
Using the BuiltIn Editor

Rational Rose J provides a Builtin Editor for viewing and editing the
Java source in .java files. This Builtin Editor is the default editor for a
model’s generated .java files.

You can control which source editor is the default for your model by
setting or resetting the model’s Editor property in the Java Project
Specification or in the model property settings.

For example:

If you prefer to use another editor as the default, set the Editor property
to WindowsShell. Just be sure you’ve made the appropriate association
between .java file types and the editor of your choice. (For example, in
Windows Explorer, click View > Options to display the File Types dialog.
Click JAVA files and edit the setting to point to the editor of your
choice.)

When you use the Builtin editor, you will see the source displayed with
the following characteristics:

� Keywords in blue

� Literal strings in red

� Comments in green

Use the editor’s Format menu to change the colors and fonts used, as
well as to set tabs for indention.

The following table lists the shortcut keys that the BuiltIn Editor
supports:
Rational Rose 2000e, Using Rose J 63

Chapter 3 Forward Engineering with Rational Rose J
Browsing Java Source

Follow these steps to browse (display) Java source created through
forward engineering:

1. Right-click the component or class whose source you want to
browse.

2. On the shortcut menu, click Java > Browse Code. The source file is
displayed using the application with which the file is associated.

Table 1 Shortcut Keys for the BuiltIn Editor

To Perform This Action... Use This Shortcut Key…

Clear DELETE

Copy CTRL+C or CTRL+INS

Cut SHIFT+DELETE

Find CTRL+F

Find next (used after CTRL+F) F3

Go to Beginning of Line HOME

Go to Bottom of File END+DOWN ARROW

Go to End of Line END

Go to Next Bookmark F2

Go to Top of File CTRL+HOME

Paste CTRL+V or SHIFT+INS

Replace CTRL+H

Select All CTRL+A

Select Down SHIFT+DOWN ARROW

Select from cursor location to beginning of line SHIFT+HOME

Select from cursor location to end of line SHIFT+END

Select from cursor location to bottom of file CTRL+SHIFT+END

Select from cursor location to top of file CTRL+SHIFT+HOME

Set Bookmark CTRL+F2

Undo ALT+BACKSPACE

Word Left CTRL+LEFT ARROW
64 Rational Rose 2000e, Using Rose J

Viewing and Completing Java Source
There are several reasons why a source file might not appear:

� The BuiltIn Editor is not your default editor and .java files are not
associated with an application.

In this case, from Windows Explorer click View > Options. Use the File
Types tab to specify the application to use when opening .java.java.java.java files.
Check Windows Help if you need more information on working with
file types.

� You reverse engineered a .class.class.class.class file. These files do not contain Java
source.

� There were errors when you attempted to generate code and code
generation did not complete. Check the Rational Rose Log for any
error messages.

Completing Generated Java Source

Suppose you created a component called HelloWorldAppHelloWorldAppHelloWorldAppHelloWorldApp in your model.
The generated Java source might look like this:
Rational Rose 2000e, Using Rose J 65

Chapter 3 Forward Engineering with Rational Rose J
You can complete the Java source by defining a mainmainmainmain method that
implements the actual functionality of the class. For example:

You can then reverse-engineer changes back into your model (and the
new code will appear on the Code tab of the Java Method
Specification). This is a very simple example of iterative development.
66 Rational Rose 2000e, Using Rose J

Chapter 4

Reverse Engineering with
Rational Rose J

About Reverse Engineering

Reverse engineering is the process of creating or updating a model by
analyzing Java source. As Rational Rose J reverse engineers each
source or byte code file, it finds the classes and objects in the file and
includes them in your Rational Rose model.

You can reverse engineer .java, .class, .cab, .jar, and .zip files. In fact,
you can initiate reverse-engineering by simply dragging and dropping
any of these file types into a Rose class diagram. Note, however, that if
you subsequently generate code from compressed files (.cab, .jar, or
.zip files), these files are not recompressed for you.

For complete information on how Java constructs map to Rational
Rose and UML, refer to:

� How Rational Rose J Models Java Elements (Chapter 2)

� Java to Rational Rose Mapping Quick Reference (Appendix B)

The remainder of this chapter provides detailed instructions for reverse
engineering Java source into a Rational Rose model.

Note: You must set have a class path setting to the Java API library in
order to reverse engineer existing source. Please read about the class
path in Chapter 2.
Rational Rose 2000e, Using Rose J 67

Chapter 4 Reverse Engineering with Rational Rose J
Reverse Engineering Java Source

Follow these steps to reverse engineer all or part of Java source code:

1. If you are updating an existing model, open the model.

2. Check your class path by opening the Java Project Specification:
click Tools > Java > Project Specification. If needed, use the Directories
field of the Class Path tab to extend your class path.
Note that you must have a class path to the Java API library in
order to reverse engineer. See Chapter 2 for details.

3. In the browser or in a class or component diagram, right-click to
display the shortcut menu. Click Java > Reverse Engineer. This
displays the Java Reverse Engineer dialog:

4. Click the Java file type whose code you want to reverse engineer.

5. Click a folder in the tree to display the list of files it contains.
(Traverse the tree to find the folder or subfolder that contains the
files to be reverse engineered.)
68 Rational Rose 2000e, Using Rose J

Reverse Engineering from Visual J++
6. Do one of the following to place the Java files of the type you
selected into the Selected Files list:

❑ In the list box, click on one or more individual files and click
Add.

❑ Click Add All to add all of the files.

❑ Click Add Recursive to take all of the files of the selected file type
that are contained in the currently selected folder and all of itsand all of itsand all of itsand all of its
subfolderssubfolderssubfolderssubfolders and place them in the Selected Files list.
(Use Add Recursive to select files in multiple folders without
having to search for and select each one.)

7. Click on one or more files in the Selected Files box or click Select All to
confirm the entire list of files to reverse engineer.

8. Click Reverse to create or update your model from the Java source
you specified.

9. If Rose J encounters an error, a message appears and you should
check the Rose Log window for a description of the error.
Otherwise, click Done to close the dialog.

When reverse engineering is complete, you can view the new model
elements in the browser, create your own logical views, and drag and
drop the new elements into the views you create.

Reverse Engineering from Visual J++

There are three ways to establish a link between Rose J and Microsoft
Visual J++:

� By generating source code from a Rose model

� By clicking Tools > Open Model from VJ++

� By reverse engineering files from the VJ++ Project Explorer

Both Rose and Visual J++ are able to activate each other, depending on
the operation you are performing.

To reverse engineer a VJ++ project into a Rose model, follow these
steps:

1. In Visual J++, select the project elements you want to bring into a
Rose model.

2. Click Tools > Update Rose Model.
Rational Rose 2000e, Using Rose J 69

Chapter 4 Reverse Engineering with Rational Rose J
3. If Rose is not already running, Visual J++ automatically starts it.
As reverse engineering progresses, the Virtual Machine property in
Rose is set to Microsoft (if it isn’t already set) and class path settings
are updated to reflect the VJ++ project.

4. When reverse engineering is complete, the new
classes/components are part of your model. (Check the browser.)

Note: In addition to code generation and reverse engineering, Visual
J++ offers the option of starting Rose without opening a specific model or
reverse engineering VJ++ source. From Visual J++, click Tools > View Rose
Model.
70 Rational Rose 2000e, Using Rose J

Appendix A

Forward Engineering WalkThrough

Introduction

This forward engineering walkthrough takes you through a use case
that creates a simple Java application which, when executed, displays
the message “Welcome to Rational Software!”

Note: These instructions assume that you are already comfortable with
the Rational Rose tool, browsing the various diagram types, creating
model elements, and so on. If not, you should complete the Rational Rose
tutorial (included on the product CD) before continuing with this Java use
case.
Rational Rose 2000e, Using Rose J 71

Appendix A Forward Engineering WalkThrough
Walkthrough

Create a Class and Add a Method
1. In the logical view of your new model, create a class called

WelcomeApp.

2. Right-click the WelcomeApp class and click New Operation to add a
new operation to the class. Name the operation main:
72 Rational Rose 2000e, Using Rose J

Walkthrough
Create a Component Package and Component
1. In the Component View, create a package called MyAppsMyAppsMyAppsMyApps.

2. Create a component called WelcomeAppWelcomeAppWelcomeAppWelcomeApp and assign it to the
MyApps package by dragging the component to the package name
in the browser.
Rational Rose 2000e, Using Rose J 73

Appendix A Forward Engineering WalkThrough
3. Double-click the component in the browser or in the diagram to
open its specification and verify that the Language field is set to Java.

Assign the Class to the Component
1. In the browser, drag the WelcomeApp class to the WelcomeApp

component to assign the class to the component.

2. Check the browser to make sure the class now has the component
name next to it in parentheses.

Note: By default, the WelcomeApp class is a public class. (When you
generate code for this class, Rational Rose J generates a public modifier.)
The component to which you assign any public class must have exactly
the same case-sensitive name.
74 Rational Rose 2000e, Using Rose J

Walkthrough
Edit the New Method
1. Double-click the main() operation (either in the browser or the

diagram) to open and edit its Java Method Specification.

2. Change the return class to void by clicking the browse button on
the Return field. This displays a list of the valid return classes.
Select void.

3. On the Method Specification, select the static modifier check box.
Rational Rose 2000e, Using Rose J 75

Appendix A Forward Engineering WalkThrough
4. On the Arguments field, click the new button to display a dialog that
allows you to name an argument and specify its type. For our
example, define an array (arg) of integers with a type of int:

5. Click OK to both the Define Argument dialog and to the Method
Specification to save your changes.
76 Rational Rose 2000e, Using Rose J

Walkthrough
Set the Class Path

Establish where you want Rational Rose J to put the files it generates
by setting the class path. (For details regarding setting the class path,
please see Chapter 2 of this manual.

1. Display the Java Project Specification: click Tools > Java > Project
Specification.

2. Click the new button to browse your system for the
folder/directories you want to include in your class path. For
example:

3. Click OK to save your changes.
Rational Rose 2000e, Using Rose J 77

Appendix A Forward Engineering WalkThrough
Generate Java
1. In the browser or in a diagram, right-click the WelcomeApp

component or class, click Java > Generate Java.

2. Since this is the first time you’ve generated code for this model,
Rational Rose J displays a mapping dialog prompting you to map
the file it will generate to a directory in your class path. Click on
the class path name to select it, click on the component name to
select it, then click Map:

3. As soon as the mapping is complete, code generation begins. Check
the Rational Rose Log window for information on errors.
78 Rational Rose 2000e, Using Rose J

Walkthrough
View Java Source
1. Right-click the WelcomeApp component or class, click Java > Browse

Java Source.

2. Your generated .java.java.java.java file is automatically opened and looks like
this:

3. Optionally, check Windows Explorer to find the new directory you
created and the generated .java.java.java.java file it contains.
Rational Rose 2000e, Using Rose J 79

Appendix A Forward Engineering WalkThrough
Edit Java Source
1. Add the command to print the Welcome to Rational Software!Welcome to Rational Software!Welcome to Rational Software!Welcome to Rational Software!

message (or any message you prefer).

2. Save the file.

Compile and Run
1. Use the javac compiler to compile your completed .java file.

2. Run the application and see what you get. (It should be the
message, “Welcome to Rational Software!”)
80 Rational Rose 2000e, Using Rose J

Appendix B

Java to Rational Rose Mapping Quick
Reference

The following table provides a concise mapping between elements of
the Java programming language and modeling elements of Rational
Rose:

Table 2 Java to Rational Rose Mapping Quick Reference

Java Element Rational Rose Model Element

Package Package in the Component View.

Import � Dependencies between components
and packages in the Component
View (forward and reverse
engineering).

� Relationships between classes which
are not located in the same package.
In forward engineering, generates a
Java import.

.java files Component (Module Specification) in
the Component View.

Class Class.

Interface Class with stereotype of “Interface.”

Implements
Relationship

Realizes relationship between Java
class (subclass) and Java interface
(superclass).

Extends Relationship � Generalization relationship between
Java classes.

� Generalization relationship between
Java interfaces.
Rational Rose 2000e, Using Rose J 81

Appendix B Java to Rational Rose Mapping Quick Reference
Field/variable � Attribute or Supplier relationship
between Rational Rose classes.

� Java instance variables have static
property value set to False.

� Java class variables have static
property set to True.

Method Operation.

Class Modifiers Properties on classes (e.g. class.final).
Abstract modifier is an element of a
Rational Rose class specification.

Field Modifiers Properties on fields and roles (final,
volatile, etc.). Static modifier is an
element of a Rational Rose role and
attribute specification.

Method Modifiers Properties on operations
(operation.static, operation.final, etc.).

{public, protected,
private} access

{public, protected, private} access.

package-level access Implementation access.

Table 2 Java to Rational Rose Mapping Quick Reference
82 Rational Rose 2000e, Using Rose J

Appendix C

Rational Rose J Model Properties

Introduction

Model properties control the way code is generated from the various
elements of a Rational Rose model.

� Project properties provide the high-level control of the code
generation process. For example, project properties determine
what to do when an error is encountered during code generation,
whether to create new directories as needed, and so on.

� Component (module), class, operation, attribute, and role
properties control the aspects of code generation that apply to each
specific model element, respectively.

This appendix describes all of the Rational Rose J model properties and
provides their default values.

You should note, however, that the descriptions of the model properties
do not take into account the syntax checking rules which are
embedded in the Rational Rose J code generator.

For example, although an attribute of a class can have its Attribute.Final,
Attribute.Volatile, and Attribute.Transient properties all marked as True, Rational
Rose J will issue a warning when you generate Java because this is not
allowed in the Java programming language.

Note: You can set properties by using the Java custom specifications for
class, field, method, and component. Or, you change the properties
directly. This is described in the Using Rational Rose manual.
Rational Rose 2000e, Using Rose J 83

Appendix C Rational Rose J Model Properties
Project Properties

Project properties provide the high-level control of the code generation
process. For example, project properties determine what to do when an
error is encountered during code generation, whether to create new
directories as needed, and so on.

The following table describes the project properties that apply to
Rational Rose J projects:

Table 3 Project Properties

Property Type Description Default

CreateMissingDirectories Boolean If True, Rose will
attempt to create any
undefined directories
referenced as part of
the Rose model.

True

StopOnError Boolean If True, Rose will halt
code generation on the
first error generated.

False

UsePrefixes Boolean If True, Rose will
prepend a user
specified prefix on
generated fields and
strip the prefixes
during reverse
engineering.

False

AutoSync Boolean If True, Rose J
automatically initiate
code generation
whenever you create,
delete, or modify a Java
element in your model.

False
84 Rational Rose 2000e, Using Rose J

Project Properties
Editor Enum Sets the editor to
launch when browsing
Java source code from
within Rose. If set to
BuiltIn, Rose opens its
own editor. Use
WindowsShell to enable
another editor such as
Notepad. (Make sure
your file associations
are set up correctly for
other editors.)

BuiltIn

VM Enum Sets the Java
environment (virtual
machine). Sun is based
on Sun Microsystem’s
Java Developer’s Kit
(JDK). If you select
Microsoft and you have
Visual J++ installed,
Rose can establish a
link between your
model and your VJ++
project when you
generate or reverse
engineer code.

Sun

ClassPath string Use the ClassPath to
identify the root
directory Rose will use
for the *.java files it
creates when you
generate (forward
engineer) code from a
model or reverse
engineer *.java files into
a model.

none

InstanceVariablePrefix String Prefix to prepend on
instance variables if
UsePrefixes = True

m_

ClassVariablePrefix String Prefix to prepend on
class variables if
UsePrefixes = True

s_

Table 3 Project Properties
Rational Rose 2000e, Using Rose J 85

Appendix C Rational Rose J Model Properties
DefaultAttributeDataType String Default data type string
to use for attributes if
Attribute.Type
specification field is
blank.

int

DefaultOperationReturnType String Default return type
string to use for
operations if
Operation.ReturnType
specification field is
blank.

Void

NoClassCustomDlg Boolean When set (True), Rose J
displays the standard
Rose specifications for
Java elements in your
model. It disables the
Rose J custom
specifications.

False

GlobalImports String When you enter one or
more values for this
property, Rose
automatically generates
import statements for
the classes/packages
you identify.

(blank)

OpenBraceClassStyle Boolean This setting lets you
indicate whether or not
an opening brace starts
on a new line in
generated Java code.
By default this setting
is enabled and opening
braces start on a new
line. If unchecked (or
set to False) an opening
brace can be inline.

True

Table 3 Project Properties
86 Rational Rose 2000e, Using Rose J

Project Properties
OpenBraceMethodStyle Boolean This setting lets you
indicate whether or not
an opening brace starts
on a new line in
generated Java code.
By default this setting
is enabled and opening
braces start on a new
line. If unchecked (or
set to False) an opening
brace can be inline.

True

UseTabs Boolean Use this setting if you
want to use tabs to
indent generated Java
code. (Your alternative
is to use spaces.) Use
the NumbertoUse setting
(or the SpacingItems model
property) to specify the
number of tabs to use.
The default is three
tabs. Note that using
spaces (not tabs) for
indenting is the default
setting.

False

UseSpaces Boolean Use this setting if you
want to use spaces to
indent generated Java
code. (Your alternative
is to use tabs.) Use the
NumbertoUse setting (or
the SpacingItems model
property) to specify the
number of spaces to
use. The default is
three spaces. Note that
using spaces for
indenting is the default
setting.

True

Table 3 Project Properties
Rational Rose 2000e, Using Rose J 87

Appendix C Rational Rose J Model Properties
SpacingItems Enum Use this setting to
specify how many
spaces or tabs to use
when indenting
generated Java code.
(This setting controls
the Use Tabs and Use
Spaces settings.) The
default is three.

3

RoseDefaultCommentStyle Boolean Use this setting to
enable the standard
Rose comment style in
generated code.

True

AsteriskCommentStyle Boolean Use this setting to
enable the standard
Java comment style in
generted code.

False

JavaCommentStyle Boolean Use this setting to
enable the Javadoc tags
that Rose J will insert
into generated code. By
enabling this setting,
you enable the @tag
options.

False

JavadocAuthor Boolean Enables the @author
Javadoc tag.

True

JavadocDeprecated Boolean Enables the
@deprecated Javadoc
tag.

False

JavadocException Boolean Enables the @exception
Javadoc tag.

True

JavadocParam Boolean Enables the @param
Javadoc tag.

True

JavadocReturn Boolean Enables the @return
Javadoc tag.

True

JavadocSee Boolean Enables the @see
Javadoc tag.

False

Table 3 Project Properties
88 Rational Rose 2000e, Using Rose J

Project Properties
JavadocSerial Boolean Enables the @serial
Javadoc tag.

False

JavadocSerialdata Boolean Enables the @serialdata
Javadoc tag.

False

JavadocSerialfield Boolean Enables the @serialfield
Javadoc tag.

False

JavadocSince Boolean Enables the @since
Javadoc tag.

False

JavadocVersion Boolean Enables the @version
Javadoc tag.

False

JavadocLink Boolean Enables the @link
Javadoc tag.

False

Table 3 Project Properties
Rational Rose 2000e, Using Rose J 89

Appendix C Rational Rose J Model Properties
Class Properties

During Java source generation, Rational Rose model classes are
mapped to Java classes. Class properties control the details of the
source generation for each Java class.

The following table describes the properties that apply to Rational Rose
model classes being generated into Java classes:

Table 4 Class Properties

Property Type Description Default

Final Boolean If True, Rational Rose will
include a final modifier in
the source code for the
class.

False

Static Boolean If True, Rational Rose will
include a static modifier
for the class.

False

GenerateDefault Constructor Boolean If True, Rational Rose will
include a default
constructor in the source
code for the class.

True

ConstructorIs Enum {public, protected,
private}. Represents the
access control for the
constructor to use if
GenerateDefault
Constructor = True.

public

GenerateFinalizer Boolean If True, Rational Rose will
include a finalizer in the
source code for the class.

False

GenerateStatic Initializer Boolean If True, Rational Rose will
include a static initializer
in the source code of the
class.

False

GenerateInstance Initializer Boolean If True, Rational Rose will
include an instance
initializer in the source
code of the class.

False
90 Rational Rose 2000e, Using Rose J

Operation Properties
Operation Properties

During Java source generation, Rational Rose model operations are
mapped to Java methods. Operation properties control the details of
the source generation for each Java method.

The following table describes the properties that apply to Rational Rose
model operations being generated into Java methods:

Table 5 Operation Properties

Property Type Description Default

Abstract Boolean If True, Rational Rose
will attempt to include
an abstract modifier in
the source code for the
operation.

False

Static Boolean If True, Rational Rose
will attempt to include a
static modifier in the
source code for the
operation.

False

Final Boolean If True, Rational Rose
will attempt to include a
final modifier in the
source code for the
operation.

False

Native Boolean If True, Rational Rose
will attempt to include a
native modifier in the
source code for the
operation.

False

Synchronized Boolean If True, Rational Rose
will attempt to include a
synchronized modifier in
the source code for the
operation.

False
Rational Rose 2000e, Using Rose J 91

Appendix C Rational Rose J Model Properties
Attribute Properties

During Java source generation, Rational Rose model attributes are
mapped to various types of Java modifiers. Attribute properties control
the details of the source generation for each Java modifier.

The following table describes the properties that apply to Rational Rose
model attributes being generated into Java modifiers:

Table 6 Attribute Properties

Property Type Description Default

Final Boolean If True, Rational Rose
will attempt to include a
final modifier in the
source code for the
attribute.

False

Transient Boolean If True, Rational Rose
will attempt to include a
transient modifier in
the source code for the
attribute.

False

Volatile Boolean If True, Rational Rose
will attempt to include a
volatile modifier in the
source code for the
attribute.

False

PropertyType String Supports values for
Java Beans, including
NotAProperty, Simple,
Bound, and
Constrained.

NotAProperty
92 Rational Rose 2000e, Using Rose J

Attribute Properties
IndividualChangeMgt Boolean Lets you specify the
registration mechanism
for a bean property.

False

Read/Write String Determines if Rational
Rose will generate a get
and/or set method for a
bean.

Read&Write

GenerateFullyQualifiedTypes Boolean When set, Rose J
generates fully qualified
path names for all type
classes.

False

Table 6 Attribute Properties
Rational Rose 2000e, Using Rose J 93

Appendix C Rational Rose J Model Properties
Component (Module Body/Module Specification) Properties

During Java source generation, Rational Rose model components
(modules) are mapped to Java compilation units. Component
properties control the details of the source generation for each Java
compilation unit.

The following table describes the properties that apply to Rational Rose
model components being generated into Java compilation units:

Table 7 Component Properties

Property Type Description Default

CopyrightNotice String Copyright message that
you define and that is
included in the header of
a generated .java file.

<<blank>>

CmIdentification String Represents a user-
defined version control
identification tag to
include in the header of
the compilation unit, if
any.

<<blank>>
94 Rational Rose 2000e, Using Rose J

Role Properties
Role Properties

During Java source generation, Rational Rose model roles are mapped
to various types of Java fields and modifiers. Role properties control the
details of the source generation for each Java compilation unit.

The following table describes the properties that apply to Rational Rose
model components being generated into Java compilation units:

Table 8 Role Properties

Property Type Description Default

ContainerClass String Specifies the
collection/container class name
to use if the supplier cardinality
of the relationship is
unbounded. If blank, singly-
dimensioned array is used.

<<blank>>

InitialValue String Specifies the initial value for the
Java field, if any.

<<blank>>

Final Boolean If True, Rational Rose will
attempt to include a final
modifier in the source code for
the relationship.

False

Transient Boolean If True, Rational Rose will
attempt to include a transient
modifier in the source code for
the relationship.

False

Volatile Boolean If True, Rational Rose will
attempt to include a volatile
modifier in the source code for
the relationship.

False
Rational Rose 2000e, Using Rose J 95

Appendix C Rational Rose J Model Properties
PropertyType String Supports values for Java Beans,
including NotAProperty, Simple,
Bound, and Constrained.

NotAProperty

Individual
ChangeMgt

Boolean Lets you specify the registration
mechanism for a bean property.

False

Read/Write String Determines if Rational Rose will
generate a get and/or set
method for a bean.

Read&Write

Table 8 Role Properties
96 Rational Rose 2000e, Using Rose J

Index
Symbols
~jav backup files 58

A
abstract modifier

class 20
methods 33

Abstract property 91
activating the link to Visual J++ 5
addPropertyChangeListener 48, 49
addVetoableChangeListener 50
analyzing Java source code 4
arguments for methods 33
arrays 29
assigning classes to components

how to 18
assigning Java classes to components 55
Association Specification 30
associations and variables (fields) 24
AsteriskCommentStyle property 88
attribute 22
attribute properties 92
Automatic Synchronization Mode 58
Automatic Synchronization Mode

property 57
automatically generating code 57
AutoSync property 84
Rational Rose 2000e, Using Rose J
B
backing up your source 57
Beans, Java 46
bound property (Java Beans) 48
braces, how formatted in generated code

57
browsing generated source 64
BuiltIn Editor

about 63
shortcut keys 63

Builtin Editor 58

C
cab files 40

drag and drop into a model 4, 67
cardinality 30
change management listener 47
Change Management, Individual 47
checking syntax 56
class

abstract 38
assigning to a component 18
comments 20
constructor visibility 20
default constructor 20
exception 33
extends 20
final 20
97

Index
finalizer 20
generators 20
how modeled 17
how to create 17
implements 20
interface 38
mapped to Java classes 3
modifiers 20
static 20
static initializer 20
stereotype 38

class files
cannot browse 65
drag and drop into a model 4

Class Path 45
class path, setting 14
class properties 90
ClassPath property 85
classpath, checking before code

generation 56
ClassVariablePrefix property 85
CmIdentification 41
CmIdentification property 94
code generation 55

from a class diagram 61
loading controlled units before 59
mapping components 60

code, displaying for a method 35
comments

for a class 20
for a variable (field) 28
for components 41
for methods 34

comments in generated code 57
completing generated source 62
Component Mapping dialog 60
component packages 40, 44, 45
component properties 94
Component Specification 14, 41
components

adding a copyright 41
and reverse engineering 43
98
as .java files 40
assigning classes to 55
CmIdentification 41
code generation 42
comments 41
imports 41

constrained property (Java Beans) 49
constructor visibility 20
ConstructorIs property 90
container class 28, 31
ContainerClass property 95
controlled units

loading before code generation 59
converting String to a primitive data type

22
Copyright 41
Copyright Notice 94
create

class 17
Create Missing Directories property 45,

56, 84

D
default constructor 20
default notation 55
default variable prefixes 29
DefaultAttributeDataType property 86
DefaultOperationReturnType property

86
design-level properties 84
disabling Rose J specifications 13
display generated source 64
drag and drop 4, 67

E
Editor property 63, 85
exceptions 33
extends 36

class 20
Rational Rose 2000e, Using Rose J

Index
F
field

comments 28
container class 28
final 28
primitive type 22
reference type 23
static 28
transient 28
volatile 28

Field Specficiation 28
Field Specification 13
fields

arrays 29
container class 31
default prefixes 29
modifiers 28
vectors 31
with reference types 23

file not associated with application 65
final modifier

class 20
methods 33
variable (field) 28

Final property 90, 91, 92, 95
finalizer, class 20
firePropertyChange 49
formatting generated code 13, 57
forward engineering 55

component diagrams used for 3
defined 3
generating from class diagram 61
generating from component diagram

61
of packages 3
overview 55
viewing and completing generated

source 62
Rational Rose 2000e, Using Rose J
G
generalization relationship 36
Generate Fully Qualified Types property

93
generated source

cannot browse 65
GenerateDefaultConstructor property 90
GenerateFinalizer property 90
GenerateInstanceInitializer property 90
GenerateStaticInitializer property 90
generating classes to a single file, 18
generating code automatically 57
generating code from a model 55
generating code to a Visual J++ project 5,

62
generating comments in code 13, 57
generating Java source

from class diagram 61
from component diagram 61

generators, class 20
GlobalImports property 86

H
HTML documentation from code 13

I
implements 37

class 20
imports 41, 42, 43, 46, 49
indentation in generated code 57
Individual Change Management 47
Individual ChangeMgt property 96
IndividualChangeMgt property 93
InitialValue property 95
inner class 39
InstanceVariablePrefix property 85
integrating with IBM’s VisualAge for

Java 6
integrating with Visual J++ 5, 57
interface 38
99

Index
J
jar files 40

drag and drop into a model 4
dragging and dropping into a model

67
Java Bean properties 28
Java Beans 46

bound property 48
constrained property 49
Individual Change Managemen 47
simple 47

Java Class
constructor visibility 20
default constructor 20
extends 20
generators 20
how modeled 17
implements 20
modifiers 20
static initializer 20

Java Component Specification 41
Java Field Specification 28

Java Bean properties 46
java files 4, 40
Java Method Specification 33, 34

Code sheet 35
Java model properties

overview 83
Java Project Specification

Create Missing Directories 45
directories, create missing 45
editor setting 63

Java Specifications
about 12

Java to UML mapping
list of Java constructs 9

JavaCommentStyle property 88
Javadoc tags in generated code 13
Javadoc, generating 57
JavadocAuthor property 88
JavadocDeprecated property 88
100
JavadocException property 88
JavadocLink property 89
JavadocParam property 88
JavadocReturn property 88
JavadocSee property 88
JavadocSerial property 89
JavadocSerialdata property 89
JavadocSerialfield property 89
JavadocSince property 89
JavadocVersion property 89

L
language, default 14
listener 47

M
mapping components for code

generation 60
method

displaying code for 35
method properties 91
Method Specification 14, 33, 34

Code tab 35
methods

abstract 33
arguments 33
comments 34
final 33
how modeled 33
native 33
static 33
synchronized 33
throws 33
visibility 33

Microsoft Visual J++ 5
model properties

about 10
overview 83

modifiers
class 20
Rational Rose 2000e, Using Rose J

Index
method 33
variables (fields) 28

N
native modifier 33
Native property 91
nested class 39
NoClassCustomDlg property 86
Notation model property 14
notation, setting the default 55

O
OpenBraceClassStyle property 86
OpenBraceMethodStyle property 87
operation properties 91

P
package 44

forward engineering a 3
packages 40
Path Map variables 17
primitive data types 22
project properties 84
Project Specification, about 13
properties

attribute 92
class 90
component 94
design-level 84
methods 91
operation 91
project 84
role 95

properties for code generation 56
properties, model

about 10
overview 83

PropertyChangeSupport 48, 49
PropertyType property 92, 96
Rational Rose 2000e, Using Rose J
public modifier
class 20

Q
quick reference

Java to Rose mapping 81

R
Read/Write property 93, 96

Java Beans 47
realization relationship 37
reference type 23
registration class 47
registration mechanism (Java Beans) 47
removePropertyChangeListener 48, 49
removeVetoableChangeListener 50
Resolve Pathmap Variables setting 17
reverese engineering a Visual J++ project

69
reverse engineering 67

components 43
defined 4
drag and drop files 4
procedure 67

role properties 95
roles 22, 29
Rose Specifications 11

as the default 13

S
setting comment style 13
setting the default notation 14
setting the Virtual Machine property 5
setting up the link to Visual J++ 57
simple property type (Java Beans) 47
SpacingItems property 88
specifications, Java

about 12
Specifications, Rose 11
101

Index
starting Visual J++ from Rose 62
static initializer 20
static modifier

class 20
methods 33
variable (field) 28

Static property 91
stereotype 38
Stop on Error property 56
StopOnError property 84
String variables 22
Support Individual Change Management

47
synchronized modifier 33
Synchronized property 91
synchronizing code generation 57
syntax, checking 56

T
throws 33
transient modifier 28
Transient property 92, 95
type

primitive 22
return 33

U
UsePrefixes property 84
UseSpaces property 87
UseTabs property 87
using the BuiltIn Editor 63

V
variable

arrays 29
comments 28
container class 28, 31
default prefixes 29
final 28
102
modifiers 28
primitive type 22
reference type 23
static 28
transient 28
vectors 31
volatile 28
with reference types 23

vectors 29, 31
version control identification tag 41
VetoableChangeSupport 50
viewing generated source 62
Virtual Machine property 5, 57
visibility

class 28
methods 33

visibility, constructor 20
Visual J++ 5
Visual J++, generating code 62
Visual J++, integrating with Rose 57
Visual J++, starting Rose from 5
VisualAge for Java 6
VM property 85
volatile modifier 28
Volatile property 92, 95

W
Windows Shell property 59
WindowsShell setting for editor 63

Z
zip files 40

dragging and dropping into a model
67

draging and dropping into a model 4
Rational Rose 2000e, Using Rose J

	Rational Rose 2000e Using Rose J
	Contents
	List of Tables
	Preface
	How This Manual Is Organized
	Related Documentation
	Online Help and Manuals

	Introduction to Rational Rose J
	What is Rational Rose J?
	About Java API Classes and Frameworks
	About Forward Engineering in Rational Rose J
	About Reverse Engineering in Rational Rose J
	About the Integration with Microsoft Visual J++
	Starting Rose from Visual J++

	About the Integration with IBM’s VisualAge for Java
	Setting Up the Link
	How the Link Works
	How to Enable the Link
	Initializing the VisualAge side of the link
	Ending the link
	Establishing the link from Rational Rose

	How Rational Rose J Models Java Elements
	About Java Elements in a Rational Rose Model
	How Model Properties and Specifications Affect Your Model

	Java Class Path
	Java Classes
	Making a Rational Rose Class a Java Class
	Supported Java Semantics for Classes

	Java Variables (Fields)
	Variables with Primitive Types
	Changing String Variables to Attributes
	Variables with Reference Types
	Creating Variables through Associations
	Creating Variables with User Data Types

	Supported Java Semantics for Variables (Fields)

	Arrays and Vectors
	Java Methods
	Supported Java Semantics for Methods

	Java Extends
	Java Implements
	Java Interfaces
	Java Nested and Inner Classes
	Java (.java) Files
	Java Components and Code Generation
	Java Components and Reverse Engineering

	Java Packages
	Java Packages and Code Generation
	Java Packages and Reverse Engineering

	Java Imports
	Java Beans
	Read/Write Property
	Support Individual Change Management
	Property Types
	Simple
	Bound
	Constrained

	Javadoc and Comment Text

	Forward Engineering with Rational Rose J
	About the Steps You Follow
	Assign Java Classes to Java Components in Your Model
	Check Syntax
	Check the Class Path
	Set the Project Properties that Affect Code Generation
	Back Up Your Source
	Generate Java Source Code from Your Model
	View (Browse) and Extend the Generated Source

	How Controlled Units Affect Code Generation
	Mapping Components for Code Generation
	Generating Java Source from a Component Diagram
	Generating Java Source from a Class Diagram
	Generating Code for Visual J++
	Generating VJ++ Code from a Rose Model

	Viewing and Completing Java Source
	Using the BuiltIn Editor
	Browsing Java Source
	Completing Generated Java Source

	Reverse Engineering with Rational Rose J
	About Reverse Engineering
	Reverse Engineering Java Source
	Reverse Engineering from Visual J++

	Forward Engineering WalkThrough
	Introduction
	Walkthrough
	Create a Class and Add a Method
	Create a Component Package and Component
	Assign the Class to the Component
	Edit the New Method
	Set the Class Path
	Generate Java
	View Java Source
	Edit Java Source
	Compile and Run

	Java to Rational Rose Mapping Quick Reference
	Rational Rose J Model Properties
	Introduction
	Project Properties
	Class Properties
	Operation Properties
	Attribute Properties
	Component (Module Body/Module Specification) Properties
	Role Properties

	Index

