
Rational Rose 2000e
Using Rose CORBA

Copyright © 1998–2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023326-000

Revision 2.0, March 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified
Process are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are
used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

ii Rational Rose 2000e, Using Rose CORBA

Contents

Contents iii

Preface vii

How This Manual Is Organized vii

Related Documentation ix

Online Help and Manuals ix

Chapter 1 Introduction to Rational Rose CORBA 1

What is Rational Rose CORBA? 1

Forward Engineering in Rational Rose CORBA 2

Reverse Engineering CORBA IDL 3

The Built-In CORBA Source Editor 4

About CORBA Properties and Specifications 5

Chapter 2 Mapping CORBA and Rational Rose Model Elements 7

General Guidelines 7

CORBA IDL Types 8
Fundamental Types 8
Template Types 9
User-Defined Types 9

Using Native Types 10
Rational Rose 2000e, Using Rose CORBA iii

Contents
Creating and Using Native Types 10

Nested and Unnested Classes 13

Stereotypes for CORBA Classes 13

Using Custom Specifications to Update Model Elements 14
Working with the Custom CORBA Class Specification 14
Defining Attributes and Operations for CORBA Classes 16
Working with the Custom CORBA Attribute Specification 16
Working with the Custom CORBA Operation Specification 18
Working with the Custom CORBA Component Specification 20

Include Path Mapping 21
Overview 21
Accessing the IncludePath Property 22
Extending the Project IncludePath 23

Directory Structure and Component Package Mapping 27
Example 28

IDL File and Rational Rose Component Mapping 30

Relationship Mapping — #Includes and Forward References 31
What Generates a Forward Reference? 31
What Generates a #Include Statement? 32
Example 1 - Using a Component Dependency to Map a #Include
Statement 33
Example 2 - Using a Class Association to Map a Forward
Reference 35

CORBA Module to Rational Rose Logical Package Mapping 38
Example 39

Chapter 3 Mapping CORBA Constants and Enums with Rational Rose
Classes 43

CORBA Constant Mapping 43
Example - Unnested CORBA Constant 44

CORBA Enumeration Mapping 46
Example - CORBA Enum 47
iv Rational Rose 2000e, Using Rose CORBA

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes 49

Overview 49

Interface Attribute and Operation Mapping 51
Interface Classes with Inheritance 52
Attributes Defined as Fundamental and Template Types 54

Example 54
Attributes Defined as References to User-defined Types 56

Example 57
Attributes Defined as Single-Dimension Arrays of User-Defined
Types 59

Example 60
Attributes Defined as a Bounded Sequence of User-Defined
Types 65

Example 65
Attributes Defined as Unbounded Sequence of User-defined
Types 71

Example 72

Chapter 5 Mapping CORBA Typedefs with Rational Rose Classes 77

Overview 77

Ways to Model a TypeDef 78
Example 1 - TypeDef Mapping Using Implementation Type 79
Example 2 - TypeDef Mapping Using an Association to an Unnested
User-Defined Type 81

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational
Rose Classes 83

Overview 83

CORBA Exception Mapping 84
Example 85

CORBA Struct Mapping 88
Example 88

CORBA Union Mapping 90
Example 90
Rational Rose 2000e, Using Rose CORBA v

Contents
More About CORBA Exception, Struct, and Union Mapping 93
Attributes Defined as Fundamental and Template Types 93

Example 93
Attributes Defined as References to User-defined Types 94

Example 95
Attributes Defined as Inline Definitions of User-Defined Types 97

Example 97
Attributes Defined as Single- or Multi-Dimension Arrays of User-
defined Types 100

Example 101
Attributes Defined as a Bounded Sequence of User-defined
Types 105

Example 105
Attributes Defined as Unbounded Sequence of User-defined
Types 110

Chapter 7 Forward and Reverse Engineering with Rational Rose
CORBA 115

Setting Project Properties 116

Forward Engineering 118
Assigning Classes to Components 118
Checking Model Syntax 119
Before You Generate Code 120
Generating CORBA IDL Code 121
Mapping Components During Code Generation 122
Displaying and Editing Generated Code 123

Setting the Default Editor 123
Using the BuiltIn Editor 125

Reverse Engineering 127

Index 129
vi Rational Rose 2000e, Using Rose CORBA

Preface

This guide, Rational Rose 2000e, Using Rose CORBA, is for anyone who
wants to use Rational Rose to model and forward engineer CORBA IDL
constructs or reverse engineer CORBA IDL source.

It assumes that you are familiar with CORBA IDL concepts and
constructs, and that you are comfortable with basic Rose concepts and
procedures.

If you need to learn to use Rose, you should run the Rose tutorial
included on your product CD.

How This Manual Is Organized

This manual contains the following seven chapters:

� Chapter 1—Chapter 1—Chapter 1—Chapter 1— Introduction to Rational Rose CORBA

Provides an overview of features, as well as basic forward, reverse
and round-trip engineering concepts as they apply to Rose CORBA.

� Chapter 2Chapter 2Chapter 2Chapter 2 — Mapping CORBA and Rational Rose Model Elements

Provides general mapping guidelines, information on valid CORBA
IDL types, nested and unnested classes, CORBA stereotypes, and
custom specifications. It also describes how to define IncludePath
settings, directory structures, IDL files, and certain Rose model
elements, considering their effects upon one another.

� Chapter 3Chapter 3Chapter 3Chapter 3 — Mapping CORBA Constants and Enums with
Rational Rose Classes

Provides detailed information and examples for mapping Rational
Rose model elements and CORBA Constants and Enums.
Rational Rose 2000e, Using Rose CORBA vii

Preface
� Chapter 4Chapter 4Chapter 4Chapter 4 — Mapping CORBA Interfaces with Rational Rose
Classes

Provides detailed information and examples for mapping Rose
model elements and CORBA Interfaces.

� Chapter 5Chapter 5Chapter 5Chapter 5 — Mapping CORBA Typedefs with Rational Rose
Classes

Provides detailed information and examples for mapping Rose
model elements and CORBA Typedefs.

� Chapter 6Chapter 6Chapter 6Chapter 6 — Mapping CORBA Exceptions, Structs, and Unions
with Rational Rose Classes

Provides detailed information and examples for mapping Rose
model elements and CORBA Exceptions, Structs, and Unions.

� Chapter 7Chapter 7Chapter 7Chapter 7 — Forward and Reverse Engineering with Rational Rose
CORBA

Provides detailed instructions for forward engineering Rose model
elements into CORBA IDL source and reverse engineering CORBA
IDL source into a Rose model.
viii Rational Rose 2000e, Using Rose CORBA

Related Documentation
Related Documentation

The information in this guide is also provided in the form of online help.
In addition, you will find context-based online help as you complete
procedures and work in the various Rational Rose CORBA dialog
boxes.

After installation and before you begin using Rational Rose CORBA,
please review any Readme.txt files and Release Notes to ensure that
you have the latest information about the product.

For additional resources, refer to the Using Rational Rose guide and
online help. If you are new to Rational Rose, visual modeling, or the
Unified Modeling Language (UML), you may also want to read the book,
Visual Modeling with Rational Rose and UML, included the Rose
product documentation kit.

Online Help and Manuals

Rational Rose CORBA includes comprehensive online help with
hypertext links and a two-level search index.

In addition, you can find all of the user manuals online. Please refer to
the Readme.txt file (found in the Rational Rose installation directory)
for more information.
Rational Rose 2000e, Using Rose CORBA ix

Chapter 1

Introduction to Rational Rose CORBA

What is Rational Rose CORBA?

Rational Rose CORBA is the Rational Rose add-in that allows you to:

� Forward engineer Rose model elements into CORBA-compliant IDL
code

� Reverse engineer CORBA IDL code into appropriate Rose model
elements

Rational Rose CORBA provides support for:

� Windows 95, Windows 98, Windows 2000 and Windows NT 4.0
platforms

� Model evolution from analysis to design

� Team development using configuration-management and version-
control systems

� Automatic generation of CORBA-compliant IDL source code

� Reverse engineering of CORBA-compliant IDL source code

� Round-trip engineering capability that synchronizes models and
generated IDL source across multiple iterations:

❑ Changes made to a model are carried through to code during
code generation.

❑ Changes made to code are carried back to the model during
reverse engineering.
Rational Rose 2000e, Using Rose CORBA 1

Chapter 1 Introduction to Rational Rose CORBA
� Design, modeling, and visualization of all CORBA IDL types,
including:

❑ Const

❑ Enum

❑ Struct

❑ Union

❑ Typedef

❑ Exception

❑ Interface

❑ Native

Forward Engineering in Rational Rose CORBA

In Rational Rose CORBA, forward engineering is the process of
generating CORBA source from one or more classes, packages, or
components in a Rational Rose model.

Forward engineering in Rational Rose CORBA is component-centered.
This means that the CORBA source generation is based on the
component specification rather than on the class specification.

This does not mean, however, that you must work only in component
diagrams in order to generate CORBA source. Instead, you can create
a class and then assign it to a valid CORBA component in the browser,
effectively creating the required component from your class.

Rational Rose CORBA maps the classes in your model to corresponding
CORBA constructs based upon the stereotypes you assign to them.
Any attributes and relationships you define for Rational Rose CORBA
classes map to CORBA IDL attributes. In addition, any operations you
define for Rational Rose CORBA Interfaces map to CORBA IDL
operations.

Note: The only CORBA class for which you can define operations is a
CORBA Interface class.
2 Rational Rose 2000e, Using Rose CORBA

Reverse Engineering CORBA IDL
Reverse Engineering CORBA IDL

Reverse engineering is the process of analyzing CORBA IDL source
code, mapping it to classes, components and relationships, and storing
these elements in a Rational Rose model.

For the most part, when you reverse engineer IDL code that you
previously forward-engineered from a Rational Rose model, your
original model elements remain the same, except that new information
or changes you entered into the IDL code are carried back into the
model. The exceptions to this rule are some special cases of Rational
Rose constructs that are provided for your convenience and are used
for one-time forward engineering only. See Chapter 4, Mapping CORBA
Interfaces with Rational Rose Classes, and Chapter 6, Mapping CORBA
Exceptions, Structs, and Unions with Rational Rose Classes, for details
on these special cases.
Rational Rose 2000e, Using Rose CORBA 3

Chapter 1 Introduction to Rational Rose CORBA
The Built-In CORBA Source Editor

Rational Rose CORBA provides a built-in source editor that allows you
to display and edit CORBA IDL code that you generated from a model.
The editor window provides easy navigation and uses color to identify
keywords, literals, and comments. For details on setting and using the
built-in CORBA editor, see Chapter 7, Forward and Reverse
Engineering with Rational Rose CORBA.
4 Rational Rose 2000e, Using Rose CORBA

About CORBA Properties and Specifications
About CORBA Properties and Specifications

Rational Rose provides two generic mechanisms for controlling how
model elements behave and how code is generated for them:

� Model properties, which provide global settings for a project and its
classes, attributes, operations, components, and roles

� Standard Specifications, which control individual classes,
attributes, operations, components, and roles

In addition to these mechanisms, Rational Rose CORBA provides a set
of context-based custom specifications. Custom CORBA specifications
extract settings from both the standard Rational Rose specifications
and the model property settings, enabling you to display and modify
certain CORBA-specific information using a single dialog. Any change
you make on a CORBA custom specification updates the
corresponding standard specification or model property as well.

Custom CORBA Specifications are available for:

� Project

� Class

� Attribute

� Operation

� Component

For information on updating the CORBA Custom Project Specification,
see Chapter 2, Mapping CORBA and Rational Rose Model Elements, and
Chapter 7, Forward and Reverse Engineering with Rational Rose
CORBA.

For information on updating CORBA Custom Class, Attribute,
Operation, or Component Specifications, see Using Custom
Specifications to Update Model Elements, in Chapter 2.

You cannot use CORBA Custom Specifications to create classes,
attributes or roles, operations, or components. You can only display
and modify the settings for existing elements. To create a model
element, use the standard Rational Rose toolbars and specifications.
Rational Rose 2000e, Using Rose CORBA 5

Chapter 2

Mapping CORBA and Rational Rose
Model Elements

General Guidelines

The mapping between CORBA IDL and Rational Rose model elements
is affected by several factors:

� Include Path definition in the Rational Rose model

� Directory structure of the IDL or the hierarchy of Rational Rose
component packages

� CORBA module definitions and Rational Rose logical package
definitions

� IDL file contents and Rational Rose component assignments

� IDL #include definitions and forward references and Rational Rose
relationship definitions

� IDL constructs and Rational Rose classes and stereotypes
Rational Rose 2000e, Using Rose CORBA 7

Chapter 2 Mapping CORBA and Rational Rose Model Elements
CORBA IDL Types

There are three categories of CORBA IDL types: Fundamental Types,
Template Types, and User-Defined Types. These types apply to
attributes and roles you define for CORBA classes in your model.

In addition, Rational Rose CORBA supports the use of native types,
which allow you to define new fundamental types that other CORBA
constructs can use as attribute types, or, in the case of operations, as
parameter or return types.

Fundamental Types

In a Rational Rose model, CORBA fundamental types are basic data
types. The following are valid CORBA fundamental types:

� Integer types

❑ short

❑ long

❑ long long

❑ unsigned short

❑ unsigned long

❑ unsigned long long

� Floating types

❑ float

❑ double

❑ long double

� char

� wchar

� boolean

� octet

� any

� object
8 Rational Rose 2000e, Using Rose CORBA

CORBA IDL Types
Template Types

Template types are specialized data types as defined in the CORBA
specification. The following are valid CORBA template types:

� sequence

� string

� wstring

� fixed

User-Defined Types

User-defined types map to CORBA constructs. You define these types
as model classes and then use them as attributes of other classes by
defining relationships to them. The following are valid CORBA user-
defined types:

� const

� enum

� struct

� union

� typedef

� exception

� interface

� native
Rational Rose 2000e, Using Rose CORBA 9

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Using Native Types

The native type maps to a Rational Rose class with the stereotype
CORBANative.

The native type, which is similar to a CORBA fundamental type, allows
you to specify programming language-dependent types for use by
object adapters. In CORBA IDL, the native type declaration allows
object adapters to define new fundamental types without requiring
changes to the Object Managament Group (OMG) IDL language
specifications.

Once you create the type, other CORBA constructs can use it, either as
an attribute, or, in the case of operations, as a parameter or return
type.

If you forward engineer a native type from Rose, you get a native
declaration in your IDL file.

If you reverse engineer a native declaration from CORBA IDL, Rational
Rose adds a class with a stereotype of CORBANative to your model.

Creating and Using Native Types

The following example shows a model with a CORBA native type class
called MyNative. This class defines a new fundamental type, which can
be used as an attribute type by other CORBA types in the model. In this
case, because of the association defined between myInterface and
MyNative, myInterface has an attribute whose type is the native type
defined by myNative.
10 Rational Rose 2000e, Using Rose CORBA

Using Native Types
Rational Rose 2000e, Using Rose CORBA 11

Chapter 2 Mapping CORBA and Rational Rose Model Elements
The following figure shows the fragment of CORBA IDL that
corresponds to these model elements.
12 Rational Rose 2000e, Using Rose CORBA

Nested and Unnested Classes
Nested and Unnested Classes

CORBA IDL constructs (user-defined types) can map to Rational Rose
model elements in two ways:

� Within a CORBA Interface definition

In this context, you define the type as a nested class of an interface
class. When you define the type in this way, other entities, such as
interfaces, can only reference the type in terms of the interface in
which it is nested.

� Outside a CORBA Interface definition

In this context, you define an independent class to represent the
type. When you define the type in this way, other entities, such as
interfaces, can reference the type directly.

In either case, you define the class with the stereotype that applies to
the particular CORBA type. For example, to create a class representing
a CORBA constant you, give it the stereotype CORBAConstantCORBAConstantCORBAConstantCORBAConstant.

When you forward engineer your model into CORBA IDL, Rational Rose
CORBA creates the IDL code for the class, mapping CORBA attributes
to the attributes and relationships defined in the model.

For an example of classes nested in a CORBA Interface, see the
Interface examples in Chapter 4.

Stereotypes for CORBA Classes

The valid stereotypes for CORBA classes are:

� CORBAConstant

� CORBAEnum

� CORBAException

� CORBAStruct

� CORBATypedef

� CORBAUnion

� CORBANative

� Interface
Rational Rose 2000e, Using Rose CORBA 13

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Using Custom Specifications to Update Model Elements

This subsection tells how to work with custom specifications for
CORBA classes, components, attributes and roles, and operations.

The custom CORBA Project Specification is used for IncludePath
Mapping, as well as for Forward and Reverse Engineering. For
information on using the custom Project Specification, see IncludePath
Mapping, later in this chapter, or see Forward Engineering and Reverse
Engineering in Chapter 7.

If the CORBA Add-In is active, there are several ways to access custom
specifications for CORBA model elements:

� Double-click a CORBA model element in a diagram or in the
browser.

� Select a CORBA model element in a diagram or in the browser and
press F4.

� Right-click a CORBA model element in a diagram or in the browser
and then click Open Specification on a context menu.

To open a standard Rational Rose Specification for a CORBA model
element when the CORBA Add-In is active, right-click the element in a
diagram or in the browser and then click Open Standard Specification
on the context menu.

Working with the Custom CORBA Class Specification

Custom Class Specifications vary according to the stereotype of the
class. In general, the custom Class Specification lets you display such
information as class name and stereotype, attribute and role order,
inheritance relationships and comments. With the exception of the
class stereotype, you can also edit this information in the custom
specification.

The custom Class Specification gives you access to attribute and role
order, but does not allow you to add, delete or edit the attributes or
roles themselves.

To access a CORBA custom Class Specification:

1. Right-click the class in a diagram or in the browser.

2. Click Open Specification.
14 Rational Rose 2000e, Using Rose CORBA

Using Custom Specifications to Update Model Elements
Here is a sample custom Class Specification for a CORBA Interface.

Keep in mind that each CORBA stereotype has a somewhat different
custom specification. For example, because Interfaces can have
inheritance (generalize) relationships, this Specification includes tools
that allow you to specify inheritance. Always use the field-based online
help to get full instructions for any of these specifications.

To display a CORBA custom Specification for a class, the class must
already be assigned to a component in your Component View and that
component must have its language set to CORBA.
Rational Rose 2000e, Using Rose CORBA 15

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Defining Attributes and Operations for CORBA Classes

There are several ways to add attributes and operations to CORBA
classes. The easiest and most common are:

� Right-click a class in a diagram or in the browser, and select New
Attribute or New Operation.

� Right-click a class in a diagram or in the browser, and select Open
Standard Specification. Then insert the attribute or operation on
the Attribute or Operation tab of the standard Rose Class
Specification.

You can only define operations for a CORBA Interface class. No
other CORBA class takes an operation.

When you add an attribute in Rose, its export control is set to
Private. Since Export Control has no meaning in CORBA IDL, you
can either change the setting to Public, or ignore the setting. In any
case, Rose CORBA ignores the Export Control setting during
forward and reverse engineering.

Working with the Custom CORBA Attribute Specification

Attribute Specifications let you display and modify CORBA class
attributes and roles.

Depending upon the stereotype of the class to which the attribute or
role belongs, you can specify data type, array dimensions,
implementation type, case specifier, role type, forward references, and
read/write accessibility.

To access a custom CORBA Attribute Specification:

1. Right-click the attribute or role in the browser.

2. Click Open Specification.
16 Rational Rose 2000e, Using Rose CORBA

Using Custom Specifications to Update Model Elements
Here is a sample custom Attribute Specification page. Notice that the
Type field provides a Browse button to allow you to select the
attribute’s type from valid CORBA types, as well as from the user-
defined types available in your model.

Remember that not all Attribute Specification pages look exactly like
this one. Use the field-based online help to get full instructions while
using any custom specification.
Rational Rose 2000e, Using Rose CORBA 17

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Working with the Custom CORBA Operation Specification

Operation Specifications let you display and modify the return type,
context, arguments, and raises relationships for a CORBA operation.

You can also set the operation’s onewayonewayonewayoneway modifier property. Use the
Browse button to select from the list of valid CORBA operation return
types.

To access a custom CORBA Operation Specification:

1. Right-click the Operation in the browser.

2. Click Open Specification.
18 Rational Rose 2000e, Using Rose CORBA

Using Custom Specifications to Update Model Elements
As its comment field shows, the following Operation Specification
describes a oneway operation called MyOperation1. Its return type is
double; it has no defined arguments; and it raises an exception called
MyException.

Use the field-based online help to get full instructions while using any
custom specification.

Only CORBA Interfaces can take operations.
Rational Rose 2000e, Using Rose CORBA 19

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Working with the Custom CORBA Component Specification

Component Specifications let you display and modify information
about a component, including other components for which to generate
#include statements, configuration management identifier
information, copyright information and comments.

To access a custom CORBA Component Specification:

1. Right-click the Component in a diagram or in the browser.

2. Click Open Specification.

The following sample custom Component Specification defines a
component called CustomerAccountInformation. Note that the
generated IDL code for this component will have a #include statement
for NewClass1.

Use the field-based online help to get full instructions while using any
custom specification.
20 Rational Rose 2000e, Using Rose CORBA

Include Path Mapping
Include Path Mapping

Overview

CORBA IncludePaths map to the project level IncludePath property in
Rational Rose. Each Include Path, in conjunction with any relative
directory paths you define, corresponds to a directory in which the
project’s IDL files can reside. Any paths you define are appended to the
INCLUDE Environment variable.

� During forward engineering, Rational Rose uses the Include Path to
create the directory structure for the IDL files it generates.

� During reverse engineering, Rational Rose uses the Include Path to
resolve the physical location of the IDL files being reversed into the
model.

Defining one or more Include Paths allows you to specify relative file
locations instead of entering fully qualified file names. This is
particularly useful if your project paths use many levels of
subdirectories.

You use a CORBA Project Property to define additional paths.

If you have defined any symbols in your model’s path map, you can
specify the symbol instead of the path. Then, if you want to display the
actual path instead of the symbol, you can check Resolve Path Map
Variables.
Rational Rose 2000e, Using Rose CORBA 21

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Accessing the IncludePath Property

To access the IncludePath property using the CORBA custom Project
Specification, click Tools > CORBA > Project Specification.
22 Rational Rose 2000e, Using Rose CORBA

Include Path Mapping
Extending the Project IncludePath

The IncludePath page of the custom Project Specification shows the
IncludePath settings that are currently defined in your Environment
variable. You can extend the IncludePath setting by adding entries to
the Directories section of the dialog.

You can also extend the project’s IncludePath by using the CORBA tab
of the standard Rose Project Properties Specification. However, if you
use this specification, you must use the IncludePath property field to
add additional directories to the IncludePath. There is no separate
Directories field on this standard specification.

Follow these steps to add entries to the Directories section of the
CORBA custom Project Specification:

1. Open the CORBA custom Project Specification and click the New
icon.
Rational Rose 2000e, Using Rose CORBA 23

Chapter 2 Mapping CORBA and Rational Rose Model Elements
2. Do any or both of the following:

❑ Enter a directory path or a path map variable in the field
provided.

❑ Click the Browse button and select a directory from the Select
Directory dialog box. Click OK.
24 Rational Rose 2000e, Using Rose CORBA

Include Path Mapping
3. Repeat Step 2 until you have entered or selected all necessary
directories. Your specification might look something like this:

4. If you entered any path map variables, you can click the Resolve
Pathmap Variables setting to change the virtual path to the physical
path name.
Rational Rose 2000e, Using Rose CORBA 25

Chapter 2 Mapping CORBA and Rational Rose Model Elements
In the following Project Specification, notice that $MyPath (the path
map variable shown in Step 3) has been converted to the path
defined for it in the model’s Path Map
(c:\corba\MyProjects\CorbaProj2).

In Rational Rose, a virtual path name is created by replacing an actual
pathname with a virtual path variable (or symbol) using the Path Map
Editor.

To see how this works, display the Virtual Path Map dialog box by
selecting File > Edit Path Map... from the menu. For detailed
information, click Help in this dialog box.
26 Rational Rose 2000e, Using Rose CORBA

Directory Structure and Component Package Mapping
Directory Structure and Component Package Mapping

A directory of CORBA IDL files maps to a component package in a
Rational Rose model.

If you forward engineer a component package, Rational Rose CORBA
forward engineers each component belonging to the package. The
result is a directory corresponding to the component package and,
within that directory, an IDL file for each component in the package.

Normally, you set up your model’s component view so that the package
hierarchy matches your project IncludePath. However, you can create
component packages and components outside of the IncludePath
hierarchy. If you do so, the Component Mapping dialog will appear
during forward engineering and require you to map the component (or
its parent package) to a valid IncludePath. See Mapping Components
During Code Generation in Chapter 7, for more information.

� If you create a hierarchy of packages in your model, this becomes a
hierarchy of subdirectories for your generated code. The hierarchy
is always relative to one of your model’s defined IncludePath
entries.

� If you reverse engineer a directory that contains individual IDL
files, the resulting model will define a component package that
corresponds to the directory, as well as a component for each IDL
file contained in that directory. The directory will be relative to one
of your model’s defined IncludePath entries.

� When you forward engineer a component, Rational Rose CORBA
attempts to locate a matching file within the appropriate
IncludePath. If it cannot find a matching file, it creates a new one.
Rational Rose 2000e, Using Rose CORBA 27

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Example

This example illustrates the relationship between component packages
in a model and the IDL directory structures that are created during
forward engineering.

Suppose you have a model with a component package structure like
the one shown in MyModel4.mdl. Notice that the Component View
contains a component package called My Projects, which contains a
package called CorbaProj1. CorbaProj1 contains a component called
Component1 (as well as other components).
28 Rational Rose 2000e, Using Rose CORBA

Directory Structure and Component Package Mapping
As you can see, when you generate code from Component1:Component1:Component1:Component1:

� The hierarchy of component packages maps to a hierarchy of
subdirectories, relative to the IncludePath (c:\corbac:\corbac:\corbac:\corba in this case).

� The component maps to an IDL file (Component1.idlComponent1.idlComponent1.idlComponent1.idl).

If you set the CreateMissingDirectories project property to True, Rational
Rose CORBA will create these subdirectories during forward
engineering if they do not already exist. (Use the Detail Page of the
Project Properties to set CreateMissingDirectories. See Chapter 7 for
instructions.)

You can reverse this example to illustrate the reverse engineering
process. However, the dependency relationship shown in the model
between Component1 and Component2 would only be added if the
Component2.idl file includes a #include reference to Component1.idl.
See Relationship Mapping — #Includes and Forward References, later
in this chapter, for more information.
Rational Rose 2000e, Using Rose CORBA 29

Chapter 2 Mapping CORBA and Rational Rose Model Elements
IDL File and Rational Rose Component Mapping

Each CORBA IDL file maps to a Rational Rose component whose
assigned language is CORBA. The name of the component is the same
as the simple (unqualified) name of the file. So, Component1Component1Component1Component1 in the
model corresponds to a single IDL file called Component1.idl.Component1.idl.Component1.idl.Component1.idl.

When you create logical classes in your model, you can assign one or
more of them to the same component. If you assign multiple classes to
the same component, a single IDL file will contain the CORBA IDL
source that you generate for all of its assigned classes.

If you do not explicitly assign a class to a component in your model,
Rational Rose CORBA creates a component with the same name as the
class. In this case, the IDL file you generate will contain the source for
this one class only.

The location of the IDL files and the placement of components within a
package hierarchy are affected by your project’s IncludePath entries
and mappings. For more information, see Directory Structure and
Component Package Mapping, earlier in this Chapter.
30 Rational Rose 2000e, Using Rose CORBA

Relationship Mapping — #Includes and Forward References
Relationship Mapping — #Includes and Forward References

When you forward engineer classes or components in a Rose model,
you get a single IDL file for each component.

You must assign each class to an appropriate component. (You can
assign multiple classes to a single component.) Then, whether you
forward engineer from the class or the component, Rose CORBA
generates or updates the IDL file for the component.

Component assignments, as well as any relationships you define for
classes or components, affect the IDL that Rose CORBA generates.

What Generates a Forward Reference?

For a client class that is in one of the following relationships, Rose
CORBA generates a forward reference:

� A dependency relationship between CORBA classes when the
supplier class is an interface

� An association relationship between CORBA classes when the
supplier class is an interface and the client role's
GenerateForwardReference property is set to True

Forward references are only valid when the supplier class is a CORBA
interface. To avoid circular #include statements, a forward reference is
generated whenever possible.
Rational Rose 2000e, Using Rose CORBA 31

Chapter 2 Mapping CORBA and Rational Rose Model Elements
What Generates a #Include Statement?

For a client class is in one of the following relationships, Rose CORBA
generates a #include statement instead of a forward reference:

� A dependency relationship between CORBA classes when the
supplier class is not an interface

� An association relationship between CORBA classes when the
supplier class is an interface, but the client role's
GenerateForwardReference property is set to False

� An association relationship between CORBA classes when the
supplier class is not an interface

� A generalization relationship between any CORBA classes,
regardless of the supplier class's stereotype and regardless of the
value of the client's GenerateForwardReference property.

The path name generated in a #include statement is scoped to be
relative to the project's IncludePath.
32 Rational Rose 2000e, Using Rose CORBA

Relationship Mapping — #Includes and Forward References
Example 1 - Using a Component Dependency to Map a #Include
Statement

This example shows a #include statement generated from components
that have a Uses (Dependency) relationship.

In this component diagram, Component1 is the supplier and
Component2 is the client in the relationship.
Rational Rose 2000e, Using Rose CORBA 33

Chapter 2 Mapping CORBA and Rational Rose Model Elements
When you forward engineer the components (or the package that
contains them), you get one IDL file for each component
(Component1.idl and Component2.idl).

The IDL code generated for Component2 is shown below. Because of
the relationship between the two components, Component2.idl
contains a #include statement for Component1.idl.
34 Rational Rose 2000e, Using Rose CORBA

Relationship Mapping — #Includes and Forward References
Example 2 - Using a Class Association to Map a Forward Reference

This example shows a forward reference generated from classes that
have an association relationship.

This class diagram defines a nondirectional association between two
interface classes (NewClassNewClassNewClassNewClass and NewClass2NewClass2NewClass2NewClass2).
Rational Rose 2000e, Using Rose CORBA 35

Chapter 2 Mapping CORBA and Rational Rose Model Elements
Both classes are assigned to a single component called MyIDLMyIDLMyIDLMyIDL, as
shown in the following component diagram.

When you forward engineer the classes (or the component to which
they are assigned), you get an IDL file called MyIDL.idl.
36 Rational Rose 2000e, Using Rose CORBA

Relationship Mapping — #Includes and Forward References
Notice the forward reference to NewClass2NewClass2NewClass2NewClass2 (boxed in the following
figure), which allows the code to identify NewClass2NewClass2NewClass2NewClass2 as an attribute of
NewClassNewClassNewClassNewClass before NewClass2NewClass2NewClass2NewClass2 is actually defined in the file.

In the IDL code, the name (declarator) of the attribute is the name of
the supplier role of the relationship (theNewClass2) and its type is the
fully qualified name of the supplier class (NewClass2).
Rational Rose 2000e, Using Rose CORBA 37

Chapter 2 Mapping CORBA and Rational Rose Model Elements
CORBA Module to Rational Rose Logical Package Mapping

A CORBA module maps to a logical package with the stereotype
CORBAModuleCORBAModuleCORBAModuleCORBAModule. As with any logical package, Rational Rose supports
hierarchical module structures by allowing a hierarchy of packages
within a model. However, the structure of logical packages in the model
does not affect the resulting IDL file structure. Only Component
Package structure maps to IDL file structure.

If you forward engineer a logical package stereotyped as
CORBAModule, the IDL files for any components assigned to the logical
classes belonging to that package will contain the module definition.

Conversely, if you reverse engineer IDL that contains a CORBA module
definition, that module will be added to the model as a logical package.
38 Rational Rose 2000e, Using Rose CORBA

CORBA Module to Rational Rose Logical Package Mapping
Example

In this example, you can see that the Retail Modules package contains
a nested package, whose stereotype is CORBAModule.

Looking at the browser window, notice that the CORBA module
contains a set of logical classes. Let’s assume that these logical classes
have been assigned to a component called
CustomerAccountInformationCustomerAccountInformationCustomerAccountInformationCustomerAccountInformation.
Rational Rose 2000e, Using Rose CORBA 39

Chapter 2 Mapping CORBA and Rational Rose Model Elements
When you forward engineer the logical package (Module1Module1Module1Module1), Rational
Rose CORBA generates the CORBA IDL for its classes and places the
code in a file called CustomerAccountInformation.idlCustomerAccountInformation.idlCustomerAccountInformation.idlCustomerAccountInformation.idl.

If you open this IDL file, you will see that it contains a CORBA module
definition in the format:

module moduleidentifier { definition_1; definition_2, … }

Note that the module identifier corresponds to the package name
(Module1Module1Module1Module1). In this case, the definitions correspond to interfaces
because the classes in Module1Module1Module1Module1 happened to be defined as CORBA
interfaces. However, the definition could be any of the following user-
defined types:

� Module

� Struct

� Exception

� Constant

� Typedef

� Union

� Enumeration

� Native
40 Rational Rose 2000e, Using Rose CORBA

CORBA Module to Rational Rose Logical Package Mapping
The following CORBA IDL file shows the code for Module1 as generated
in CustomerAccountInformation.idl.
Rational Rose 2000e, Using Rose CORBA 41

Chapter 3

Mapping CORBA Constants and Enums
with Rational Rose Classes

CORBA Constant Mapping

A CORBA Constant maps to a Rational Rose class with the stereotype
CORBAConstantCORBAConstantCORBAConstantCORBAConstant. You should set the Constant’s ImplementationType
property to a valid CORBA type before forward engineering. See CORBA
IDL Types, in Chapter 2, for more information.

Conversely, if you reverse engineer CORBA IDL code that defines a
Constant, Rational Rose CORBA adds the CORBAConstant class and
sets its ImplementationType in your model.
Rational Rose 2000e, Using Rose CORBA 43

Chapter 3 Mapping CORBA Constants and Enums with Rational Rose Classes
Example - Unnested CORBA Constant

The following example shows a class called NewClass, which is a
CORBA Constant. Its Implementation Type is short and its value is 10.

Note: For an example of a Constant nested in an Interface, see the
Interface examples in Chapter 4.
44 Rational Rose 2000e, Using Rose CORBA

CORBA Constant Mapping
The CORBA IDL code that maps to the Constant shows a simple one-
to-one correspondence to the Constant in the model. Because this
class is assigned to a component called LoanOfferLoanOfferLoanOfferLoanOffer, the IDL code is
generated in a file called LoanOffer.idlLoanOffer.idlLoanOffer.idlLoanOffer.idl.
Rational Rose 2000e, Using Rose CORBA 45

Chapter 3 Mapping CORBA Constants and Enums with Rational Rose Classes
CORBA Enumeration Mapping

A CORBA Enumeration maps to a Rational Rose class with the
stereotype CORBAEnumCORBAEnumCORBAEnumCORBAEnum.

In Rational Rose, you define the Enum’s values as attributes of the
class. You can specify the order of the enumeration by setting the
Order property for each of these attributes. If you do not specify
attribute order, Rose CORBA assigns the order to the enumeration
according to the order in which you list the attributes in the Class
specification.

When you forward engineer the Enum, Rational Rose CORBA
generates the IDL code that defines an Enum class and uses the
Rational Rose class’s attributes as the Enum values.

Do not assign data types to CORBA Enum attributes. Data types have
no meaning for Enums; if you specify them, Rational Rose CORBA
ignores them during forward engineering.

If you reverse engineer an Enum from CORBA IDL, Rational Rose
CORBA adds a class with a stereotype of CORBAEnumCORBAEnumCORBAEnumCORBAEnum to your model.
The attributes of the class correspond to the Enum values in the IDL
code.

Use the Enum’s custom Class Specification to change the order of its
attributes.
46 Rational Rose 2000e, Using Rose CORBA

CORBA Enumeration Mapping
Example - CORBA Enum

The following simple example shows class LoanOffer defined as a
CORBA Enum with three attributes:

� Approved

� Denied

� MoreInfoRequired
Rational Rose 2000e, Using Rose CORBA 47

Chapter 3 Mapping CORBA Constants and Enums with Rational Rose Classes
In this example, LoanOfferLoanOfferLoanOfferLoanOffer is assigned to Component1Component1Component1Component1, so its IDL code
is generated into Component1.idlComponent1.idlComponent1.idlComponent1.idl.

For an example of an Enum as the supplier in an association with an
Interface, see the Interface examples in Chapter 4. For an example of
an Enum as the supplier in an association with a Typedef, see the
Typedef examples in Chapter 5.
48 Rational Rose 2000e, Using Rose CORBA

Chapter 4

Mapping CORBA Interfaces with
Rational Rose Classes

Overview

A CORBA Interface maps to a Rational Rose class with the stereotype
InterfaceInterfaceInterfaceInterface. Interfaces are the only CORBA classes that can have
inheritance (generalize) relationships. They are also the only CORBA
classes for which you can define operations.

Any CORBA IDL types you define as classes nested in an Interface class
map to nested CORBA classes in the generated IDL code. (See Chapter
2 for information on CORBA IDL Types.)

Interface attributes and operations come from several sources:

� Attributes and operations you specify in the class specification
using CORBA fundamental or template types map to CORBA
attributes and operations, respectively.

� Relationships you define between the interface class and user-
defined types in the model map to CORBA attributes. (This
includes generalization relationships, which you can use to define
inheritance between interfaces.)

� Other, special cases map to CORBA attributes.
Rational Rose 2000e, Using Rose CORBA 49

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
In this model, a CORBA Interface called NewClass1NewClass1NewClass1NewClass1 has attributes that
come both from fundamental types and from an association with
another CORBA Interface called NewClass2NewClass2NewClass2NewClass2.
50 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Interface Attribute and Operation Mapping

Because the CORBA Interface attributes can take several forms, they
map to various elements in a Rational Rose model:

� Rational Rose attributes map to CORBA fundamental and template
types.

� Rational Rose relationship roles map to references to user-defined
types.

In addition, there are multiple ways of creating the following special
cases of CORBA Interface attribute definitions. Some methods are
applicable for one-time forward engineering only.

� Single-dimension array of user-defined types

� Bounded sequence of user-defined types

� Unbounded sequence of user-defined types

CORBA Interfaces are the only CORBA constructs that can have
operations. There is a one to one mapping between each Interface
operation in the model and each operation in CORBA IDL code.

See CORBA Exception Mapping in Chapter 6 for information on
modeling operation exceptions.

The following subsections provide mapping information and examples
of Interface inheritance, each form of Interface attribute, as well as
Interface operations.
Rational Rose 2000e, Using Rose CORBA 51

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Interface Classes with Inheritance

Interface classes are the only CORBA classes that can inherit from one
another. The following figure shows a set of Interfaces in an inheritance
(generalizes) relationship.

Instead of drawing inheritance relationships yourself, you can use
CORBA custom Class Specifications.

1. Open each class’s Custom Specification.

2. Use the tools in the Inherits From field to select or specify the
class’s inheritance and click OK.

3. In a class diagram, select one of the classes.

4. Select Expand Selected Elements... from the Query menu.
52 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
5. Follow the online help instructions to specify that you want to
show inheritance (generalize) relationships in your diagram.

If you examine the IDL code that maps to these Interfaces, you will see
that when one Interface inherits from another Interface, its name is
followed by a colon (::::) and the name of the class from which it inherits.
Rational Rose 2000e, Using Rose CORBA 53

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Attributes Defined as Fundamental and Template Types

An Interface attribute that is a CORBA fundamental type or template
type is represented in a model as an attribute with the following
properties:

� IsReadOnly, a boolean property of the attribute, set to True or
False

� Type, set to a CORBA fundamental type or template type.

For a complete list of fundamental and template types, refer to CORBA
IDL Types in Chapter 2.

Example

The following sample custom CORBA Specification defines an attribute
of a CORBA Interface as a fundamental type.
54 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
In this example the attribute type is boolean and the IsReadOnly
property is set to False (not selected). (ArrayDimensions does not
apply.)
Rational Rose 2000e, Using Rose CORBA 55

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Attributes Defined as References to User-defined Types
An Interface attribute that is a reference to a user-defined type is
represented in a model as a relationship of cardinality 1. In this
relationship, the Interface class is the client and the class which
represents the user-defined type is the supplier. The classes in this
relationship have the following properties:

� IsReadOnly is a boolean attribute of the supplier role.

� Type is the qualified name of the class representing the user-
defined CORBA type (a CORBA Enum, for example).
56 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Example

The following example shows an Interface (NewClass1) in an
association relationship with another Interface (NewClass2). You can
create this relationship between an Interface and any CORBA user-
defined type.

The Association Specification shows that the relationship is of
cardinality 1.
Rational Rose 2000e, Using Rose CORBA 57

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
The following figure shows the CORBA IDL that corresponds to the
definition of NewClass1, including its relationship to NewClass2.

Notice that:

� NewClass1’s attributes in the model (InterAtt1 and InterAtt2)
correspond to CORBA attribute definitions in the IDL file.

� NewClass1’s operation corresponds to a CORBA Interface operation
definition.

� There is another CORBA attribute whose name (called a declarator
in CORBA) is the name of the supplier role of the relationship
(MyNewClass2) and whose type is the fully qualified name of the
supplier class (NewClass2).
58 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Attributes Defined as Single-Dimension Arrays of User-Defined
Types

You can represent an Interface attribute that is a single-dimension
array of user-defined types by:

� Creating a relationship of bounded cardinality between the
Interface and a supplier class that represents the user-defined type

� Setting the supplier class’s BoundedRoleType property to Array

If you generate code from these elements and then reverse engineer the
generated IDL code, Rational Rose CORBA creates a nested CORBA
Typedef class. This class is the supplier in a relationship with the
Interface class.

When you apply cardinality to a relationship, you are indicating the
number of links allowed between one instance of a class and the
instances of another class. Bounded cardinality means that the
number of instances allowed is greater than zero, but is not infinity.

You can define the array as it will eventually be reverse-engineered, if
you prefer. However, you may find it easier to define it using bounded
cardinality and the BoundedRoleType property, as shown in the
following example. Just remember that your reverse-engineered model
will be correct, but, depending on your original definition, it may no
longer match your original model.
Rational Rose 2000e, Using Rose CORBA 59

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Example

The following example is a special case of Interface attribute definition.
It shows an Interface (NewClass1) in an association relationship with
a single-dimension array of a user-defined type called OneMoreEnum.
You can create this relationship between an Interface and any user-
defined type.
60 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
The following figure shows the specifications for the supplier role in the
association. Notice that the supplier's BoundedRoleType property is set
to Array and its Cardinality is bounded.
Rational Rose 2000e, Using Rose CORBA 61

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Next, let’s look at the CORBA IDL that corresponds to the definition of
NewClass1, including its relationship to OneMoreEnum. Notice that:

� NewClass1’s attributes (InterAtt1 and InterAtt2) in the model,
correspond to CORBA attribute definitions in the IDL file. Also, its
operation corresponds to a CORBA Interface operation definition.

� An IDL typedef statement defines the supplier class
(OneMoreEnum) as a single-dimensioned array of type
EnumSupplier_def, with a cardinality of 5. The name of the
supplier role (EnumSupplier) becomes an attribute of Interface
NewClass1 and its type is the type of the supplier class
(EnumSupplier_def).
62 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
If you reverse engineer this special case, your new model will define:

� The supplier role as a nested Typedef of the Interface

� A dependency between the Typedef and the Enum
Rational Rose 2000e, Using Rose CORBA 63

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
If you look in the Typedef’s specification, you will see that the bounded
cardinality you defined in the original model is now converted to the
value of the ArrayDimensions property.

Remember, this new model no longer matches your original model.
64 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Attributes Defined as a Bounded Sequence of User-Defined
Types

You can represent an Interface attribute that is a bounded sequence of
user-defined types by:

� Creating a relationship of bounded cardinality between the
Interface and a supplier class that represents the user-defined type

� Setting the supplier class’s BoundedRoleType property to Sequence

If you generate code from these elements and then reverse engineer the
generated IDL code, Rational Rose CORBA creates a nested CORBA
Typedef class. This class is the supplier in a relationship with the
Interface class. Remember this will no longer match your original
model.

Example

The following example is a special case of Interface attribute definition.
It shows an Interface (NewClass1) in an association relationship with
a bounded sequence of a user-defined type called OneMoreEnum. You
can create this relationship between an Interface and any user-defined
type.
Rational Rose 2000e, Using Rose CORBA 65

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
To create these model elements, you set the supplier’s
BoundedRoleType property to Sequence. Its cardinality must be
bounded.
66 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Here are the specifications for the supplier role in the association:
Rational Rose 2000e, Using Rose CORBA 67

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Now, look at the CORBA IDL that corresponds to the definition of
NewClass1, including its relationship to OneMoreEnum, as well as the
IDL definition for the Enum itself. Notice that:

� NewClass1’s attributes (InterAtt1 and InterAtt2) in the model,
correspond to CORBA attribute definitions in the IDL file. Also, its
operation corresponds to a CORBA Interface operation definition.

� An IDL typedef statement defines the supplier class
(OneMoreEnum) as a bounded sequence of type
EnumSupplier_def, with a dimension of 5 (to match the
cardinality you defined in the specification).

� The name of the supplier role (EnumSupplier) becomes an
attribute of Interface NewClass1 and its type is the type of the
supplier class (EnumSupplier_def).
68 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
If you reverse engineer this special case, your new model will define the
supplier role as a nested Typedef of the Interface.
Rational Rose 2000e, Using Rose CORBA 69

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
If you look in the Typedef’s specification, you will see that the
ImplementationType property has been set to the name of the Enum and
includes a dimension that matches the bounded cardinality you
originally defined.

Remember, this new model no longer matches your original model.
70 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Attributes Defined as Unbounded Sequence of User-defined
Types

You can represent an Interface attribute that is an unbounded
sequence of user-defined types by:

� Creating a relationship of unbounded cardinality between the
Interface and a supplier class that represents the user-defined type

� Setting the supplier class’s BoundedRoleType property to Sequence

If you generate code from these elements and then reverse engineer the
generated IDL code, Rational Rose CORBA creates a nested CORBA
Typedef class. This class is the supplier in a relationship with the
Interface class.

Remember this will no longer match your original model.
Rational Rose 2000e, Using Rose CORBA 71

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
Example

The following example is a special case of Interface attribute definition.
It shows an Interface (NewClass1) in an association relationship with
an unbounded sequence of a user-defined type (OneMoreEnum). You
can create this relationship between an Interface and any user-defined
type.

To create these model elements, you set the supplier’s
BoundedRoleType property to Sequence. Its cardinality must be
unbounded.
72 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
Here are the specifications for the supplier role in the association.
Rational Rose 2000e, Using Rose CORBA 73

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
The following figure shows the CORBA IDL that corresponds to the
definition of NewClass1, including its relationship to OneMoreEnum.

Notice that NewClass1’s attributes (InterAtt1 and InterAtt2) in the
model, correspond to CORBA attribute definitions in the IDL file. Also,
its operation corresponds to a CORBA Interface operation definition.

In addition, an IDL typedef statement defines the supplier class
(OneMoreEnum) as an unbounded sequence of type
EnumSupplier_def. The name of the supplier role (EnumSupplier)
becomes an attribute of Interface NewClass1 and its type is the type of
the supplier class (EnumSupplier_def).
74 Rational Rose 2000e, Using Rose CORBA

Interface Attribute and Operation Mapping
If you reverse engineer this special case, your new model will define the
supplier role as a nested Typedef of the Interface.
Rational Rose 2000e, Using Rose CORBA 75

Chapter 4 Mapping CORBA Interfaces with Rational Rose Classes
If you look in the Typedef’s specification you will see that the
ImplementationType property has been set to a sequence whose name is
the name of the Enum (OneMoreEnum). No Enum dimension is
included because you reverse engineered an unbounded sequence.
Remember, this new model no longer matches your original model.
76 Rational Rose 2000e, Using Rose CORBA

Chapter 5

Mapping CORBA Typedefs with
Rational Rose Classes

Overview

A CORBA Typedef maps to a Rational Rose class with the stereotype
CORBATypedefCORBATypedefCORBATypedefCORBATypedef. The Typedef may have a dependency to a class that
represents an IDL type.

The purpose of a Typedef is to create a synonym for another CORBA
IDL element. Among other uses, this provides a way to define a
sequence as an attribute of a CORBA Interface, something which you
could not otherwise do.

A Typedef can define a single element or an array of elements (that is,
an exception, struct, or union).

� If the Typedef defines a single element, you do not need to specify
the ArrayDimensions property.

� If the Typedef defines an array, you specify a string of one or more
array dimensions that apply to the Typedef class.
Rational Rose 2000e, Using Rose CORBA 77

Chapter 5 Mapping CORBA Typedefs with Rational Rose Classes
Ways to Model a TypeDef

There are two ways to model a CORBA TypeDef:

� Using the TypeDef's Class Specification

Create a class with the CORBATypeDef stereotype. Open the
class's custom specification and set the Implementation Type to a
CORBA type. This TypeDef can then be used as the supplier in an
association relationship with another CORBA class. In such cases,
the TypeDef becomes an attribute (by reference) of the client class.

� As a client in an association relationship to another CORBA class

Create a class with the CORBATypeDef stereotype, but do not set
its Implementation Type. Then, create an association relationship
in which the TypeDef is the client and another CORBA class is the
supplier. The supplier class provides the attributes of the TypeDef
by reference.

Do not directly specify attributes for a CORBA TypeDef, either in a
class diagram or in a standard class specification. Standard Rose
attributes will not generate correct CORBA IDL code. The TypeDef will
get its CORBA attributes in one of the ways listed above; that is, from
Implementation Type or from an association with a CORBA class.

Even though IDL grammar supports multiple declarators for a single
Typedef, Rational Rose Corba mapping functions do not. If you reverse
engineer IDL code that contains a Typedef with multiple declarators,
Rational Rose CORBA creates separate Typedefs for each declarator.
Conversely, if you model a Typedef with multiple declarators, you will
get an error during code generation.

The following subsections provide mapping information and examples
for the various forms of Typedef attributes.
78 Rational Rose 2000e, Using Rose CORBA

Ways to Model a TypeDef
Example 1 - TypeDef Mapping Using Implementation Type

The following example shows how to map a typedef using a CORBA
ImplementationType of sequence<short>. The typedef is then used in
the supplier role of an association with a CORBA interface called
NewClass1.
Rational Rose 2000e, Using Rose CORBA 79

Chapter 5 Mapping CORBA Typedefs with Rational Rose Classes
The following code fragment shows how these model elements map to
CORBA IDL:

� TypeDef1ForNewClass1 maps directly to a typedef statement. Its
characteristics come from the ImplementationType property in the
class specification.

� The interface called NewClass1 is defined with attributes that come
from:

❑ The NewClass1 class specification

❑ A reference to TypeDef1ForNewClass1, which comes from the
reference to the association (MyTypeDef1) between the Typedef
and the Interface
80 Rational Rose 2000e, Using Rose CORBA

Ways to Model a TypeDef
Example 2 - TypeDef Mapping Using an Association to an Unnested User-
Defined Type

This example shows how to create a CORBA typedef whose attributes
come from an association to unnested user-defined type, in this case a
CORBAEnum.
Rational Rose 2000e, Using Rose CORBA 81

Chapter 5 Mapping CORBA Typedefs with Rational Rose Classes
The following code fragment shows how these model elements map to
CORBA IDL:

Because the relationship is between TypeDefForMyEnum (client) and
MyEnum (an unnested user-defined type in the supplier role), a
reference to the enum becomes the attribute of the typedef.
82 Rational Rose 2000e, Using Rose CORBA

Chapter 6

Mapping CORBA Exceptions, Structs,
and Unions with Rational Rose Classes

Overview

The elements of CORBA Exceptions, Structs, and Unions can take
several forms, and therefore map to various elements in a Rational
Rose model:

� Rational Rose attributes map to CORBA fundamental and template
types

� Rational Rose relationship roles map to one of the following:

❑ References to user-defined types

❑ In-Line definitions of user-defined types

❑ Single- and multi-dimension arrays of user-defined types

In addition, there are multiple ways of creating the following special
cases of CORBA element definitions. Some methods are applicable for
one-time forward engineering only. For details, see the specific
information on the following special cases:

� Single-Dimension array of user-defined types

� Bounded sequence of user-defined types

� Unbounded sequence of user-defined types

The first part of this Chapter presents simple mapping examples for an
Exception, a Struct, and a Union. The remainder of the Chapter
describes and provides examples for the more complex relationships
that apply to all three CORBA types.
Rational Rose 2000e, Using Rose CORBA 83

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
CORBA Exception Mapping

A CORBA Exception maps to a Rational Rose class with the stereotype
CORBAExceptionCORBAExceptionCORBAExceptionCORBAException. The exception elements map to the class’s
attributes and relationships.

Rational Rose CORBA generates the attributes of the exception from a
combination of the class’s attributes, plus any user-defined types that
have a relationship with the class.

You generate the IDL code that raises the exception by setting the
Raises property on an operation of an Interface and forward
engineering the interface.
84 Rational Rose 2000e, Using Rose CORBA

CORBA Exception Mapping
Example

The following example models a CORBA Exception whose attributes
will come directly from its class definition, as well as from the
association it has with an Interface. It also shows the Interface whose
operation is defined to raise the Exception.
Rational Rose 2000e, Using Rose CORBA 85

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
Here is the custom Class Specification for the Exception. Note that its
attributes include the supplier role in the association relationship
between MyException and AutoLoanAcct.
86 Rational Rose 2000e, Using Rose CORBA

CORBA Exception Mapping
The following figure shows a fragment of CORBA IDL that corresponds
to elements defined in the model. Notice that the attributes of
MyException include its defined attributes, as well as a reference to the
AutoLoanAcct interface class. The reference to AutoLoanAcct comes
from the association between it and MyException. It also includes the
definition of MyOp1, which (in NewClass1) raises MyException.
Rational Rose 2000e, Using Rose CORBA 87

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
CORBA Struct Mapping

A CORBA Struct maps to a Rational Rose class with the stereotype
CORBAStructCORBAStructCORBAStructCORBAStruct. The data members of the Struct map to the class’s
attributes and relationships.

Rational Rose CORBA generates the attributes of the Struct from a
combination of the class’s attributes and any user-defined types that
have a relationship with the class.

Example

The following example defines MyStruct1MyStruct1MyStruct1MyStruct1, a simple CORBA Struct that
holds some basic identification information:
88 Rational Rose 2000e, Using Rose CORBA

CORBA Struct Mapping
Here is the CORBA IDL code that maps to MyStruct1MyStruct1MyStruct1MyStruct1:
Rational Rose 2000e, Using Rose CORBA 89

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
CORBA Union Mapping

A CORBA Union is a cross between a C language union and a switch
statement. A CORBA Union maps to a Rational Rose class with the
stereotype CORBAUnionCORBAUnionCORBAUnionCORBAUnion.

The Union elements map to the class’s attributes and relationships.
Rational Rose CORBA generates the attributes of the union from a
combination of the class’s attributes, plus any user-defined types that
have a relationship with the class.

The name of the CORBA IDL switch is a user-defined variable that
maps to the Union’s ImplementationType property in the model. The
elements of the Union are called cases and map to the attributes of the
Union in the model.

Example

The following example shows the characteristics of a simple CORBA
Union modeled in Rational Rose, as well as the CORBA IDL code that
maps to it.

Notice that the class’s stereotype is set to CORBAUnion. It has two
attributes (RetailAcctsRetailAcctsRetailAcctsRetailAccts and CorporateAcctsCorporateAcctsCorporateAcctsCorporateAccts) and its
ImplementationType property is set to acctype.
90 Rational Rose 2000e, Using Rose CORBA

CORBA Union Mapping
Rational Rose 2000e, Using Rose CORBA 91

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
In the CORBA IDL code that maps to this CORBA Union, notice that
the ImplementationType in Rational Rose maps to the switch variable in
the IDL switch statement. In addition, each of the attributes in the
Rational Rose class maps to a case statement that defines the possible
values of the Union.
92 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
More About CORBA Exception, Struct, and Union Mapping

The following subsections provide attribute mapping information and
examples that apply equally to Exceptions, Structs and Unions.

Attributes Defined as Fundamental and Template Types

An Exception, Struct, Or Union attribute that is a CORBA fundamental
type or template type is represented in a Rational Rose model as an
attribute whose Type is a CORBA fundamental type or template type.
You assign this Type in the attribute specification.

Example

This example shows a custom specification for the attribute of a
CORBA Exception (MyException).

Notice that the attribute’s Type is boolean (selectable from the list of
CORBA fundamental and template types) and that it is marked as
Is Read Only. Since the attribute is a fundamental type, the
ArrayDimensions property does not apply.
Rational Rose 2000e, Using Rose CORBA 93

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
The IsReadOnly property is valid for Exception attributes, but not for
attributes of Structs or Unions. If you open the custom specification for
a Struct or Union attribute, you will find this field unavailable.

Attributes Defined as References to User-defined Types

An Exception, Struct, or Union element that is a reference to a user-
defined type is represented in a Rose model as a relationship of
cardinality 1. In this relationship, the Exception, Struct, or Union is
the client class and the class that represents the user-defined type is
the supplier.
94 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
Example

The following example shows a CORBA Struct (MyStruct1) in an
association relationship with a CORBA Constant (NewClass). You can
create this relationship between an Exception, Struct, or Union and
any CORBA user-defined type. The Association Specification shows
that the relationship is of cardinality 1. (See CORBA IDL Types, in
Chapter 2, for information on user-defined types.)
Rational Rose 2000e, Using Rose CORBA 95

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
The following CORBA IDL code corresponds to the definition of
MyStruct1, including its relationship to NewClass. Notice that:

� MyStruct1’s attributes (Name, Address, City, State, Zip) in the
model, correspond to CORBA Struct elements in the IDL file.

� There is another CORBA Struct element whose name (called a
declarator in CORBA IDL) is the name of the supplier role of the
relationship (ConstSupplier) and whose type is the fully qualified
name of the supplier class (NewClass).

The supplier class can also be a single- or multi-dimension array. For
more information, see Attributes Defined as Single- or Multi-Dimension
Arrays of User-defined Types.
96 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
Attributes Defined as Inline Definitions of User-Defined Types

An Exception, Struct, or Union element that is comprised of an inline
definition of a CORBA user-defined type is represented in a Rose model
as an association relationship between the Exception, Struct, or Union
and a nested class. The Exception, Struct, or Union is client class and
the class that represents the user-defined type (the nested class) is the
supplier class. The cardinality of the relationship is 1.

Example

The following example shows a CORBA Struct (MyStruct1) in an
association relationship with a nested CORBA Enum
(MyStructNestedEnum).

The purpose of this relationship is to include an inline definition of a
user-defined type (the Enum) as an element of an Exception, Struct, or
Union. You can create this relationship between an Exception, Struct,
or Union and any CORBA user-defined type. The Association
Specification shows that the relationship is of cardinality 1.
Rational Rose 2000e, Using Rose CORBA 97

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
98 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
The following CORBA IDL code corresponds to the definition of
MyStruct1, including its relationship to MyStructNestedEnum.

Notice that MyStruct1’s attributes (Name, Address, City, State, Zip) in
the model, correspond to the CORBA Struct elements in the IDL file.

In addition, MyStructNestedEnum maps to a complete, inline
definition of the Enum within the IDL definition of MyStruct1.
Rational Rose 2000e, Using Rose CORBA 99

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
Attributes Defined as Single- or Multi-Dimension Arrays of User-defined
Types

There are two ways to represent an exception, struct, or union element
that is a single-dimension array of a user-defined type.

Method 1

The most straightforward way to define an attribute as a single- or
multi-dimension array of a user-defined type is to create an association
in which the supplier’s Bounded Role Type is set to Array and its Array
Dimensions property is set to the dimension(s) of the array.

For example, the following custom attribute specification defines an
attribute called ConstSupplier. The attribute is defined as a multi-
dimension array whose dimensions are [2][5] and whose Type is
NewClass, a user-defined CORBA class in the model. Note that a single-
dimension array would have only one value (for example, [2]) defined
in the Array Dimensions field.
100 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
Method 2 (Special Case)

An alternative definition that applies only to single-dimension arrays
calls for an association in which the supplier’s BoundedRoleType is set
to Array, but instead of defining the supplier’s array dimensions, you
define its Cardinality. The cardinality must be bounded.

If you use this method to generate code and then reverse engineer the
generated IDL code, Rose CORBA creates a relationship in which the
supplier’s ArrayDimensions property is set appropriately.

You can define the array as it will eventually be reverse-engineered
(Method 1), if you prefer. However, you may find it easier to define it
using bounded cardinality and the BoundedRoleType property. Just
remember that, depending on your original definition, your reverse-
engineered model may no longer match your original model.

Example

The following example is a special case of Exception, Struct, or Union
attribute definition . It shows a Struct (MyStruct1) in an association
relationship with a single-dimension array of a user-defined type
(NewClass). You can create this relationship between an Exception,
Struct, or Union and any user-defined type.
Rational Rose 2000e, Using Rose CORBA 101

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
To create these model elements, you set the supplier’s
BoundedRoleType property to Array. Its Cardinality must be bounded.
There is no need to set the ArrayDimensions property because the
array is single-dimension, and its value will be derived from the
cardinality you define.
102 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
The following figure shows the standard specifications for the supplier
role in the association.
Rational Rose 2000e, Using Rose CORBA 103

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
When you generate code for this relationship, you will note that Rose
CORBA uses the Cardinality you specified to create an array dimension
in the CORBA IDL code.

The following CORBA IDL code corresponds to the definition of
MyStruct1, including its relationship to NewClass. Notice that:

� MyStruct1’s attributes (Name, Address, City, State, Zip) in the
model correspond to elements of the Struct definition in the IDL
file.

� The code for MyStruct1 defines an element that is a single-
dimension array whose name (called a declarator in CORBA IDL) is
the supplier role (ConstSupplier), whose type is the supplier class
(NewClass) and whose single dimension is 3.
104 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
When you reverse engineer this code, Rose CORBA will:

� Set the ArrayDimensions property as defined in the generated
CORBA IDL code.

� Leave the Cardinality you originally defined on your diagram.

Remember that this new model no longer matches the original model.
Even though the cardinality you specified remains on the diagram, it
will be ignored in all future forward and reverse engineering activities.

Attributes Defined as a Bounded Sequence of User-defined Types

To define an attribute of an exception, struct, or union as a bounded
sequence of a user-defined type, you create an association in which the
supplier’s Bounded RoleType is set to Sequence and its Cardinality is
set to the dimension of the sequence.

If you generate code from these elements and then reverse engineer the
generated IDL code, Rose CORBA creates an attribute that corresponds
to the supplier role and whose type is set to the type and dimension of
the supplier. Remember this will no longer match your original model.

Example

The following example is a special case of Exception, Struct and Union
element definition. It shows a CORBA Struct (MyStruct1) in an
association relationship with a bounded sequence of a user-defined
type (NewClass). You can create this relationship between an
Exception, Struct, or Union and any user-defined type.
Rational Rose 2000e, Using Rose CORBA 105

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
To create these model elements, you set the supplier’s
BoundedRoleType property to Sequence. Its cardinality must be
bounded.
106 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
The following specifications define the supplier role in the association.
Rational Rose 2000e, Using Rose CORBA 107

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
The following CORBA IDL code corresponds to the definition of
MyStruct1, including its relationship to NewClass. Notice that:

� MyStruct1’s attributes (Name, Address, City, State, Zip) in the
model, correspond to elements of the Struct definition in the IDL
file.

� The definition of MyStruct1 includes a sequence whose name
(called a declarator in CORBA IDL) is the supplier role
(ConstSupplier), whose type is the supplier class (NewClass), and
whose dimension is 3.
108 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
If you reverse engineer this special mapping case, the new model
matches the generated code and looks like the following model.
Remember, this new model no longer matches the original model.
Rational Rose 2000e, Using Rose CORBA 109

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
Attributes Defined as Unbounded Sequence of User-defined Types

The following example is a special case of Exception, Struct, and Union
element definition. It shows a CORBA Struct (MyStruct1MyStruct1MyStruct1MyStruct1) in an
association relationship with an unbounded sequence of a user-
defined type (OneMoreEnum). You can create this relationship between
an Exception, Struct, or Union and any user-defined type.

To create these model elements, you set the supplier’s
BoundedRoleType property to Sequence. Its cardinality must be
unbounded.
110 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
The following specifications are for the supplier role in the association.
Rational Rose 2000e, Using Rose CORBA 111

Chapter 6 Mapping CORBA Exceptions, Structs, and Unions with Rational Rose
The following CORBA IDL code corresponds to the definition of
MyStruct1, including its relationship to NewClass. Notice that:

� MyStruct1’s attributes (Name, Address, City, State, Zip) in the
model, correspond to elements of the Struct definition in the IDL
file.

� The definition of MyStruct1 includes a sequence whose name
(called a declarator in CORBA IDL) is the supplier role
(ConstSupplier), whose type is the supplier class (NewClass), and
whose dimension is unspecified.
112 Rational Rose 2000e, Using Rose CORBA

More About CORBA Exception, Struct, and Union Mapping
If you reverse engineer this special mapping case, the new model
matches the generated code and looks like the following figure.
Remember, this new model no longer matches the original model.
Rational Rose 2000e, Using Rose CORBA 113

Chapter 7

Forward and Reverse Engineering with
Rational Rose CORBA

Forward engineering is the process of generating CORBA IDL code from
a Rational Rose model. Reverse engineering is the process of generating
model elements from CORBA IDL files.

As part of these processes, you might also check the syntax of model
elements, edit your code, and update your model.

Eventually, you will repeat the forward or reverse engineering process
in order to carry model changes forward into existing code or to carry
code changes back into your model. This last step is often referred to
as Roundtrip Engineering.

You can repeat the forward and reverse engineering processes as
necessary to keep your model and code in synch. Rational Rose CORBA
will preserve your changes throughout these iterations.

This chapter explains how to accomplish the various tasks that
comprise the forward and reverse engineering processes.
Rational Rose 2000e, Using Rose CORBA 115

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
Setting Project Properties

You can use the CORBA custom Project Specification to set values for
the following project-level properties, which affect forward and reverse
engineering:

� StopOnError

Indicates whether to stop code generation or reverse engineering
the first time Rational Rose CORBA encounters an error

� CreateMissingDirectories

Indicates whether to create directories as needed during forward
engineering

Use the following procedure to set values for these project properties:

1. Click Tools > CORBA > Project Specification.

2. Click the Detail tab.

❑ To set a property to True, select its checkbox.

❑ To set a property to False, clear its checkbox.
116 Rational Rose 2000e, Using Rose CORBA

Setting Project Properties
This page of the Project Specification also allows you to set the default
source editor. For details, see Setting the Default Editor, later in this
chapter.

For information about the IncludePath page of the Project
Specification, see Include Path Mapping in Chapter 2.
Rational Rose 2000e, Using Rose CORBA 117

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
Forward Engineering

Once your project properties are set, the tasks associated with forward
engineering are:

� Assign classes to components

� Check model syntax (optional)

� Generate code

� Display and edit generated code

Assigning Classes to Components

Assigning classes to components is a basic function of the Rational
Rose browser. You can assign multiple classes to the same component.
Each component generates code to a single .idl file.

If you do not assign a class to a component, during forward engineering
Rational Rose CORBA creates a component with the same name as the
class, and automatically assigns the class to the new component. The
disadvantage to allowing this automatic assignment is that you cannot
generate multiple related classes into a single source file.

To assign a class to a component:

1. In the browser, click and drag the class from the logical view to an
appropriate component in the component view.

2. Double-click the component to display its specification.

3. If it is not already set, set the Language field in the specification to
CORBA.

Assigning the language to CORBA makes the CORBA custom
specifications available for the component and its assigned classes.
This is the only way to activate the custom specifications.
118 Rational Rose 2000e, Using Rose CORBA

Forward Engineering
Checking Model Syntax

The CORBA syntax checker in Rational Rose finds rudimentary syntax
errors before you generate code. However, more complicated syntax
checking occurs automatically during code generation.

To check your model for CORBA syntax errors:

1. Click Tools > CORBA > Syntax Check.

2. Select Log from the Window menu to view information and errors.
Rational Rose 2000e, Using Rose CORBA 119

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
Before You Generate Code

If your model uses controlled units, you should verify that all of them
are loaded before you generate code. Although you are not required to
load all units, any code you generate in this way may be incorrect.
Some of the problems that can occur as a result of code generation with
unloaded controlled units are:

� If the supplier class of an Association or the Association itself is in
an unloaded controlled unit, no CORBA IDL Attribute will be
generated.

� If the supplier class of a Generalization relation is in an unloaded
controlled unit, no parent Interfaces will be generated.

� If the supplier component in a Dependency relation is in an
unloaded controlled unit, no #include statement will be generated.

If you do not load all of your model’s controlled units before beginning
code generation, Rose CORBA displays the following message:

Not all units are loaded. Incorrect code might be generated. Do you want
to continue?

You can continue at your own risk or load all units.
120 Rational Rose 2000e, Using Rose CORBA

Forward Engineering
Generating CORBA IDL Code

Follow these steps to generate CORBA source from a component
diagram in Rose:

1. Open your model and display a class or component diagram that
contains the elements for which you want to generate code.

2. Select one or more packages, classes, or components in the
diagram.

3. Click Tools > CORBA > Generate Code.

4. If you are prompted to map components during code generation,
follow the instructions in Mapping Components During Code
Generation, which immediately follows this procedure.

5. Check the Rose Log window to view the results of the CORBA
generation, including any errors that occurred.

6. Correct any errors and then repeat steps 3 through 5 until no
errors are returned.
Rational Rose 2000e, Using Rose CORBA 121

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
Mapping Components During Code Generation

In order to successfully generate code for a component, the component
must be mapped to one of your project’s IncludePath entries.

If you created a component outside a valid IncludePath hierarchy, the
Component Mapping dialog box will appear when you generate code,
requiring you to map the component (or its parent package) at that
time.

Follow these steps to map packages or components during code
generation:

1. From the list of IncludePath entries, select the path (directory
structure) in which to place the IDL file when it is generated.

2. From the list of unlocatable packages and components, select one
or more items to map to the currently selected IncludePath.

The list of unlocatable packages and components shows only the
topmost unlocatable level. Once you locate this level relative to
your chosen IncludePath, all of its subordinate packages and
components in your model will be located within this hierarchy.
122 Rational Rose 2000e, Using Rose CORBA

Forward Engineering
3. Click Map to map your selected package or component to the
selected directory structure and complete code generation.

In the sample dialog, the component package CorbaProj1 maps to
the IncludePath c:\CORBA\MyCorbaProjs. All packages and
components defined under CorbaProj1 will also be mapped within
this directory structure, but subordinate to CorbaProj1.

4. Go to Windows Explorer to trace the location of the subdirectories
and files that now belong to the hierarchy you defined. Notice that
component1.idl resides in the CorbaProj1 folder, and CorbaProj1 is
a subfolder of the IncludePath to which you mapped it.

Displaying and Editing Generated Code

Setting the Default Editor

Rational Rose CORBA provides an editor for viewing and editing
CORBA IDL (.idl.idl.idl.idl) files. This BuiltIn editor is the default editor for
viewing and changing IDL files generated from a model.

You can change the default editor for your model by setting or resetting
the model’s Editor property on the CORBA custom Project Specification.
Rational Rose 2000e, Using Rose CORBA 123

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
Follow these steps to set the default editor:

1. Click Tools > CORBA > Project Specification. This opens the
custom CORBA Project Specification.

2. Click the Detail tab.

3. Expand the Editor menu and select BuiltIn or WindowsShell, as
shown.

4. Click OK to set the Editor property.
124 Rational Rose 2000e, Using Rose CORBA

Forward Engineering
If you set the Editor property to BuiltIn, CORBA IDL source is displayed
using the built-in CORBA editor.

If you set the Editor property to WindowsShell, the source is displayed
using the application with which the file type is associated.

To associate a CORBA source file with an editor other than BuiltIn, go
to Windows Explorer and then click View > Options. On the File Types
tab, specify the application to use when opening .idl files.

Check Windows Help if you need more information on working with file
types.

Using the BuiltIn Editor

The generated CORBA source for each component is stored in a
separate .idl file. The generated source contains CORBA programming
elements based on the objects and relationships defined in your model.

After generating the CORBA IDL source, you will want to view, and
perhaps edit, the generated source. If you use the CORBA BuiltIn
editor, you will see the source displayed with the following
characteristics:

� Keywords in blue

� Literal strings in red

� Comments in green

You can use the Format menu in the built-in editor to change the
colors and fonts used to display the elements in your IDL code.
Rational Rose 2000e, Using Rose CORBA 125

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
Follow these steps to display and edit code using the BuiltIn Editor:

1. Select one or more classes or components whose generated IDL you
want to edit.

2. Click Tools > CORBA > Browse Code. One Editor window
containing the CORBA IDL file opens for each selected class or
component.

If you select multiple classes that are assigned to the same component,
each open Editor window will contain the same IDL file. To avoid
confusion in such cases, select the component rather than its assigned
classes.
126 Rational Rose 2000e, Using Rose CORBA

Reverse Engineering
Reverse Engineering

Reverse engineering is the process of creating or updating a model by
analyzing CORBA source. As Rational Rose CORBA reverse engineers
each IDL file, it finds the classes, components, attributes, roles, and
operations in the file and includes them in your model.

Follow these steps to reverse engineer CORBA IDL files:

1. If you are updating an existing model, open the model.

2. Click Tools > CORBA > Reverse Engineer.

3. Select a folder in the Tree to display the list of files it contains.

4. Do one of the following to place .idl files into the Selected Files list:

❑ In the list box, select one or more individual files and click Add.

❑ Click Add All to add all of the files in the selected folder.

❑ Click Add Recursive to add all of the files in the selected folder
and its subfolders.
Rational Rose 2000e, Using Rose CORBA 127

Chapter 7 Forward and Reverse Engineering with Rational Rose CORBA
5. Select one or more files in the Selected Files box or click Select All
to confirm the list of files to reverse engineer.

6. Click Reverse to create or update your model from the CORBA
source you specified. An error dialog displays, if any errors occur
during reverse engineering.

7. Check the Rose Log for a listing of any errors that might have
occurred.

8. If necessary, correct errors in the CORBA IDL source and repeat
steps 1 through 7.

9. Save the new or revised model.
128 Rational Rose 2000e, Using Rose CORBA

Index
Symbols
#include

circular 31
Using Dependency to map 33

A
about the builtin editor 123
accessing custom specifications 14, 18,

20
analyzing CORBA source. 127
any type 8
ArrayDimensions 77
arrays

mapping 83
assigning classes to components 31, 118
association

generating forward references from
(example) 35

association relationship
generating forward reference from 31

attribute specification, custom 16
Attributes

Defined as inline definitions of user-
defined types 97

Defined as References to User-de-
fined Types 94

Defined as unbounded sequence of
user-defined types 71
Rational Rose 2000e, Using Rose CORBA
Defined by association and depen-
dency to a nested user-de-
fined type 81

attributes
defined as bounded sequence of

user-defined types 65
defined as fundamental and template

types 54, 93
defined as references to user-defined

types 56
defined as single-dimension arrays of

user-defined types 59
defined by association and depen-

dency to an unnested user-
defined type 81

defined in-line and as references to
user-defined types 79

B
before you generate codecode generation

with controlled units 120
boolean type 8
Bounded cardinality 59
bounded cardinality 65
bounded sequence 65
bounded sequence of user-defined types

mapping 51
special case mapping 83

BoundedRoleType 71
129

Index
built-in editor 123
about 4
using 125

C
cardinality 59

unbounded 71
case statement 92
cases 90
categories of CORBA IDL types 8
char type 8
checking model syntax 119
circular #include 31
class specification

custom 14
class stereotypes

CORBA 13
classes, assigning to components 30
code generation

about 2
loading controlled units before 120
procedure 121

color, use in editor 125
comments 125
component mapping 30
component package mapping 27
component specifications, custom 20
Components

Mapping during code generation 122
const type 2, 9
Constant mapping 43
context-based specifications 5
controlled units

loading before code generation 120
CreateMissingDirectories 29, 116
creating native types 10
custom specifications

accessing 14, 18, 20
attribute 16
class 14
component 20
130
definition 5
operation 18
project 14
using to create inheritance 52

D
data members of struct 88
data types and enums 46
Declarators 78
default editor 123

setting 123
defining new fundamental types 10
Dependency

Using to map #include 33
dependency relationship

generating forward reference from 31
directory mapping 27
displaying and editing generated code

123
drawing inheritance relationships 52

E
editing generated code 123
editor

about 4
setting default 123

enum mapping 46
enum type 2, 9
enumeration mapping 46
exception mapping 83, 84
exception type 2, 9
exceptions 51
extending IncludePath settings 23

F
factors affecting mapping 7
features, Rational Rose CORBA 1
file structure 38
fixed type 9
Rational Rose 2000e, Using Rose CORBA

Index
floating types 8
Forward engineering

Tasks 118
forward engineering

about 2
defined 115

forward references
generating 31
generating from an association (ex-

ample) 35
Fundamental types 8
fundamental types

mapping 51, 83

G
generalize relationship 49, 52
GenerateForwardReference 31
generating code

procedure 121
generating CORBA source

about 2
generating forward references 31
generating forward references (example)

35
guidelines, mapping 7

H
hierarchy, package 27, 38

I
IDL file mapping 30
IDL file structure 38
ImplementationType 90, 92
INCLUDEenvironment variable 21
IncludePath mapping 21
IncludePath property 22
inheritance 49, 52, 53

drawing 52
in-line definitions of user-defined types
Rational Rose 2000e, Using Rose CORBA
mapping 83
integer types 8
interface type 2, 9
Interfaces

Attribute and operation mapping 51
interfaces

inheritance 52
mapping 49

IsReadOnly attribute 56

K
keywords 125

L
language-dependent types 10
literal 125
logical classes, assigning to components

30
logical package mapping 38

M
mapping components during code gener-

ation 122
mapping guidelines 7
model properties, purpose of 5
module mapping 38
Multi-dimension array

As supplier class 96
multi-dimension array

mapping 83
Multiple declarators 78

N
native type 2, 9, 10, 40
native types

creating 10
using 10

nested classes 13, 49
131

Index
nested typedef 65

O
object type 8
octet type 8
operation specifications, custom 18
operations 51

mapping 51
used with interface 49

P
package hierarchy 27
path map symbol 21
project properties

setting 116
project specification, custom 14
project-level properties, setting 116

R
raises property 84
references to user-defined types

mapping 83
Relationship mapping 31
relationship roles

mapping 51, 83
Reverse Engineering

about 3
reverse engineering

about 3
defined 115
procedure 127

roundtrip engineering 115

S
sequence

mapping 51, 83
sequence type 9
setting project properties 116
132
setting the default editor 123
Single-dimension array 96
single-dimension array 83
single-dimension array of user-defined

type 51, 83
special mapping cases 51, 83
specifications

custom 5
standard 5, 14

standard specifications 14
stereotypes

CORBA 13
StopOnError 116
string type 9
struct mapping 83, 88
struct type 2, 9
switch

defined 90
statement 90
variable 92

syntax checking 115, 119

T
template types

about 9
mapping 51, 83

type 56
typedef

mapping 77
purpose 77

typedef type 2, 9
Types

fixed 9
fundamental 8

types
any 8
boolean 8
categories of 8
char 8
const 2, 9
enum 2, 9
Rational Rose 2000e, Using Rose CORBA

Index
exception 9
fixed 9
floating 8
integer 8
interface 2, 9
native 2, 9
object 8
octet 8
sequence 9
string 9
struct 2, 9
template 9
typedef 2, 9
union 2, 9
user-defined 9
wchar 8
wstring 9

types, exception 2

U
unbounded cardinality 71
unbounded sequence of user-defined

types 51
unbounded sequence of user-defined

typessequence
mapping 83

union mapping 83, 90
union type 2, 9
unnested class 13
Unnested Constant 44
user-defined types 9, 56, 59, 84, 88, 90
Uses relationship

Generating #include from 33
using native types 10

W
wchar type 8
WindowsShell editor 125
wstring type 9
Rational Rose 2000e, Using Rose CORBA
 133

	Rational Rose 2000e Using Rose CORBA
	Contents
	Preface
	How This Manual Is Organized
	Related Documentation
	Online Help and Manuals

	Introduction to Rational Rose CORBA
	What is Rational Rose CORBA?
	Forward Engineering in Rational Rose CORBA
	Reverse Engineering CORBA IDL
	The Built-In CORBA Source Editor
	About CORBA Properties and Specifications

	Mapping CORBA and Rational Rose Model Elements
	General Guidelines
	CORBA IDL Types
	Fundamental Types
	Template Types
	User-Defined Types

	Using Native Types
	Creating and Using Native Types

	Nested and Unnested Classes
	Stereotypes for CORBA Classes
	Using Custom Specifications to Update Model Elements
	Working with the Custom CORBA Class Specification
	Defining Attributes and Operations for CORBA Classes
	Working with the Custom CORBA Attribute Specification
	Working with the Custom CORBA Operation Specification
	Working with the Custom CORBA Component Specification

	Include Path Mapping
	Overview
	Accessing the IncludePath Property
	Extending the Project IncludePath

	Directory Structure and Component Package Mapping
	Example

	IDL File and Rational Rose Component Mapping
	Relationship Mapping — #Includes and Forward References
	What Generates a Forward Reference?
	What Generates a #Include Statement?
	Example 1 - Using a Component Dependency to Map a #Include Statement
	Example 2 - Using a Class Association to Map a Forward Reference

	CORBA Module to Rational Rose Logical Package Mapping
	Example

	Mapping CORBA Constants and Enums with Rational Rose Classes
	CORBA Constant Mapping
	Example - Unnested CORBA Constant

	CORBA Enumeration Mapping
	Example - CORBA Enum

	Mapping CORBA Interfaces with Rational Rose Classes
	Overview
	Interface Attribute and Operation Mapping
	Interface Classes with Inheritance
	Attributes Defined as Fundamental and Template Types
	Example

	Attributes Defined as References to User-defined Types
	Example

	Attributes Defined as Single-Dimension Arrays of User-Defined Types
	Example

	Attributes Defined as a Bounded Sequence of User-Defined Types
	Example

	Attributes Defined as Unbounded Sequence of User-defined Types
	Example

	Mapping CORBA Typedefs with Rational Rose Classes
	Overview
	Ways to Model a TypeDef
	Example 1 - TypeDef Mapping Using Implementation Type
	Example 2 - TypeDef Mapping Using an Association to an Unnested User- Defined Type

	Mapping CORBA Exceptions, Structs, and Unions with Rational Rose Classes
	Overview
	CORBA Exception Mapping
	Example

	CORBA Struct Mapping
	Example

	CORBA Union Mapping
	Example

	More About CORBA Exception, Struct, and Union Mapping
	Attributes Defined as Fundamental and Template Types
	Example

	Attributes Defined as References to User-defined Types
	Example

	Attributes Defined as Inline Definitions of User-Defined Types
	Example

	Attributes Defined as Single- or Multi-Dimension Arrays of User-defined Types
	Example

	Attributes Defined as a Bounded Sequence of User-defined Types
	Example

	Attributes Defined as Unbounded Sequence of User-defined Types

	Forward and Reverse Engineering with Rational Rose CORBA
	Setting Project Properties
	Forward Engineering
	Assigning Classes to Components
	Checking Model Syntax
	Before You Generate Code
	Generating CORBA IDL Code
	Mapping Components During Code Generation
	Displaying and Editing Generated Code
	Setting the Default Editor
	Using the BuiltIn Editor

	Reverse Engineering

	Index

