rf Rational Rose 2000e
‘ Forward and Reverse

Engineering with Ada 95

V.

Copyright © 1998-2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023222-000 Rev A
Revision 2.2, March 2000, for Rational Rose 2000e

This document is subject to change without notice.

Note the Reader's Comments form at the end of this book, which requests
your evaluation to assist Rational in preparing future documentation.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the
U.S. Government is subject to restrictions set forth in the applicable
Rational Software Corporation license agreement and as provided in
DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-
7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
52.227-14, as applicable.

“Rational”, the Rational logo, Rational Rose, ClearCase, and Rational
Unified Process are trademarks or registered trademarks of Rational
Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 ii

V‘ Contents

Chapter 1

Mapping the UML Notation
to Ada 95 — Code Generation 1

Introduction e 2
Name Space 2
Name Resolution 4
Code Generation Properties and Consistency 6
Classes oo 7
Tagged Implementation 8
Record Implementation 8
Mixin Implementation 14
Task Implementation 15
Protected Implementation 17
Parameterized Classes 20
Generic Implementation, 21
Unconstrained Type Implementation 23
Bound Classes 24
Generic Implementation, 24
Unconstrained Type Implementation 25
Utilities o 27
Metaclasses e 27
Attributes L 29
Has Relationships 31

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Contents

ASSOCIatioNS 35
Simple Associations 37
Association Classesc. .. 46

Dependency Relationships 53

Generalization Relationships (Inheritance) 53
Mixin Inheritance 54
Multiple Views Inheritance 58

Operations 65
Accessor Operationscuuiine... 66
Standard Operations 67
Subprogram Implementation 68
Visibility 69
Overriding e 69
Bodies 70

User-Defined Initialization, Assignment and Finalization .. 71

Chapter 2 Ada Code Generation 77
What is the Ada Generator? 77
Basic Steps for Iterative Code Development 78

The Generated Files 79
The Basic Code Contents 79
Entering Parameters for Parameterized classes 80
Entering Static Attributes and Metaclass Attributes ... 83
Evaluating the Generated Code 84
Completing the Implementation of the Generated Code . 85
RegeneratingCode, 86
Refining the Subsystem and View Structure 87
Determining the Directory for an Ada File 87
Mapping Classes and Modules to Ada Units 88
Specifying Filenames o L. 88
Specifying Additional Ada Unit Contents 89
Adding Structured Comments 89
AddingWith Clauses 89

iv Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Chapter 3 Reverse Engineering from Apex 91

Basic Operations 91
Creatingthe Model File 92
Displaying the Model 92

Dialog box options 93

How Ada is Represented in a Class Diagram 94
Mapping Package Specifications 95
Mapping Type Declarations 95
Mapping Subprogram Declarations 96
Mapping Object Declarations 96
Mapping “With” Clauses 96
Special Handling for Subsystems in the $SAPEX_BASE
DIirectory oo 97

Chapter 4 Ada 95 Code Generation Properties 99

Model Properties 100
Spec File Extension, 100
Spec File Backup Extension 100
Spec File Temporary Extension 101
Body File Extension 101
Body File Backup Extension 101
Body File Temporary Extension 101
Create Missing Directories 102
Generate Bodies 102
Generate Standard Operations 102
Implicit Parameter, 103
Stop On Error 103
Error Limit 103
File Name Format 104
Directory e 104

Class Properties 105
Code Name e 106
Type Name e 106
Type Visibility 107

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Contents

vi

Type Implementation 107
Type Control 108
Type Control Name 108
Type Definition 108
Record Implementation 109
Record Kind Package Name 109
IsLimited 109
IsSubtype 109
Generate ACCESS TYPE . v v v v it i it e e e e e e e 110
Access Type Name 110
Access Type Visibility 110
Access Type Definition 111
Maybe Aliased 111
Parameterized Implementation 111
ParentClassName 111
Enumeration Literal Prefix 112
Record Field Prefix 112
Array Of Type Name 112
Access Array Of Type Name 112
Array Of Access TypeName 112
Access Array Of Access TypeName 113
Array Index Definition 113
Generate Standard Operations 113
Implicit Parameter, 113
Implicit Parameter Name 114
Generate Default Constructor 114
Default Constructor Name 115
Inline Default Constructor 115
Generate Copy Constructor 115
Copy Constructor Name 116
Inline Copy Constructor 116
Generate Destructor 116
Destructor Name i 117
Inline Destructor 118
Generate Type Equality 118
Type Equality Name 118

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Inline Equality 119

Operation Properties 119
Code Name ittt 119
Subprogram Implementation 120
Renames e 120
Generate Overriding, 120
Implicit Parameter Mode 120
Generate Access Operation 121
Entry Code e 121
ExitCode e 121
Inline e 121
Entry Barrier Condition 121

Has Properties i 122
Code Name e 122
Name If Unlabeled 123
Record Field Implementation 123
Record Field Name 123
Generate Get, 124
Generate Access Get e e 124
GetName e 124
Inline Get 124
Generate Set e 125
Generate Access Set oo 125
SetName e 125
Inline Set e 125
Initial Value 126
Container Implementation 126
Container Generic it 126
Container Type i 126
Container Declarations 126

Attribute Properties o .. 127
Code Name 127
Record Field Implementation 128
Record Field Name 128
Generate Get e 128

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 vii

Contents

viii

Generate Access Get i e e 129
GetName e 129
Inline Get 129
Generate Set e 129
Generate Access Set e e 130
SetName 130
Inline Set 130
Association Role Properties 131
Code Namet e e 131
Name lf Unlabeled 131
Record Field Name 132
Generate Get 132
Generate Access Get i e e 132
GetName e 133
Inline Get 133
Generate Set e 133
SetName e 133
InlineSet 134
Initial Value 134
Container Implementation 134
Container GENeric 134
Container Type 134
Container Declarations 135
Association Properties 135
Name lf Unlabeled 135
Generate Get e 136
GetName e 136
Inline Get e 136
Generate Set e 136
SetName 137
Inline Set 137
Generate Associate 137
Associate Name e 138
Inline Associate, 138
Generate Dissociate 138

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Dissociate Name 138

Inline Dissociate 138
UML Package Properties 139
Directory e 139
Module Spec Properties o .. 139
Generate e 139
Copyright Notice, 139
Return Type 140
Generic Formal Parameters 140
Additional Withs 141
Module Body Properties 142
Generate e 142
Copyright Notice, 142
Return Type 142
Additional Withs 143
INdEX .. e 145

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Chapter 1

Mapping the UML Notation
to Ada 95 — Code Generation

This chapter contains the following topics:

= “Introduction” on page 2

= “Name Space” on page 2

= “Name Resolution” on page 4

= “Code Generation Properties and Consistency” on page 6

» “Classes” on page 7

= “Parameterized Classes” on page 20

= “Bound Classes” on page 24

= “Utilities” on page 27

s “Metaclasses” on page 27

= “Attributes” on page 29

s “Has Relationships” on page 31

= “Associations” on page 35

= “Dependency Relationships” on page 53

= “Generalization Relationships (Inheritance)” on page 53

= “Operations” on page 65

» “User-Defined Initialization, Assignment and Finalization” on
page 71

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Introduction

This chapter details the forward-engineering mapping between the
UML notation and the Ada 95 programming language.

Roughly speaking, classes are transformed into types declared in
library packages, utilities are transformed into library packages,
attributes and relationships are transformed into record
components. The main source of information for the code
generation are the class diagrams. Code generation properties may
be used to gain finer control over the way that code is produced. If
component diagrams are present, some of the information they
contain is also used by the code generator.

Because UML and Ada use the word “package” to designate two
different concepts, this document uses the phrase “UML package”
for a package in the UML acceptation, and the word “package”
without qualification for an Ada package. When necessary, the
phrases “logical UML package” and “component UML package” are
used to refer to UML packages in the logical view or in the
component view, respectively.

Name Space

This section defines how the naming of entities in the UML notation
corresponds to the naming of declarations in the generated Ada 95
code.

The following rules define the legal names for entities of a model
that is used to generate Ada 95 code:

= The name of any entity in a model may have the form:
identifier

where identifier is a legal Ada 95 identifier. In other words, the
name of any entity name may be an Ada simple name.

= The name of any class or module may also have the form (using
the same BNF notation as in the Ada 95 Reference Manual):

identifier{.identifier}

2 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Name Space

where identifier is a legal Ada 95 identifier. In other words, the
name of any class or module may be either an Ada simple name
or an Ada expanded name.

= The name of any normal or parameterized class (but not an
utility or a bound class) may also have the form:

identifier{.identifier}.identifier

In other words, a class name must either be an Ada simple name,
an Ada expanded name, or a pseudo-expanded name (an expanded
name followed by a colon and an identifier: this is called the colon
notation hereafter).

The code generator checks the legality of names, in particular in
terms of consistency with the Ada Reference Manual.

From the name of a class the code generator derives the name of a
library-level package (the package where the type and operations
associated with the class are declared) and the name of a type (the
type associated with the class) as follows:

= If the class is associated with a module, the package name is
the name of the associated module. The type name is given by
the code generation property TypeName, unless the class name
uses the colon notation, in which case the type name is the
segment following the colon in the class name.

» If the class is not associated with a module, and its name uses
the colon notation, the package name is made of the name
segments preceding the colon, and the type name is the name
segment following the colon.

= If the class name does not use the colon notation, the package
name is the name of the class, and the type name is given by
the code generation property TypeName.

The code generation property TypeName defaults to “Object”.

These rules support two different approaches to naming the
classes in the Rose model: either the class name reflects the
hierarchy of units, or the class name is for design purposes only,
and the hierarchical unit structure is defined using the mapping to
modules. In the former case, the colon notation may be used to
make the type names explicit in the class diagram. Alternatively,
the type names may be specified using the property TypeName.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 3

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

For utilities, similar rules are used, except that there is no type
declaration, so the TypeName property is irrelevant, and the colon
notation is not allowed.

Note that it is possible for several classes to map to types declared
in the same Ada package, either by using the colon notation, or by
using associations between classes and modules. However, such a
mapping is only legal if all classes that map to a given module are
part of the same UML package. In the case of associations between
classes and modules, the correspondence between logical and
component UML packages ensure that the mapping is always legal.
In the case of the colon notation, the legality of the mapping is
checked by the code generator.

Name Resolution

While a large part of the information in a model is entered
graphically by means of relationships and adornments, there are a
number of situations where the user enters textually in the model
a piece of information which designates a class. Examples of such
situations include the definition of the type of attributes or
parameters.

The code generator performs name resolution to determine the Ada
type to be generated in these circumstances. To explain how the
name resolution works, consider the case of class A having an
operation Op with a parameter (or result) type written as “B”. The
code generator performs the following operations:

= It finds all the relationships originating at class A. Note that
this includes in particular the dependency relationships, which
are not otherwise used for code generation (except that they
result in with clauses, as explained below). As a consequence,
dependency relationships may be used to introduce visibility
between classes for the sake of name resolution.

= It looks at the names of all classes which are the targets of
these relationships.

4 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Name Resolution

= If any of these classes is named “B” (the comparison is case-
insensitive, but must otherwise be exact), the type of the
parameter in the generated code is the Ada type generated for
class B. This ensures that the generated code is legal.
Assuming that the default properties are used for class B, the
generated code looks like:

procedure Op (X : B.Object);

= If any of the target classes is named “B:T” (the comparison with
the name segments preceding the colon is case insensitive, but
must otherwise be exact; the name segment following the colon
is ignored), the type of the parameter in the generated code is
the Ada type generated for class B:T, i.e. B.T. The generated
code looks like:

procedure Op (X : B.T);

= If none of the target classes is named “B” or “B:T”, the type of
the parameter in the generated code is simply copied from the
model. In this case, the generated code looks like:

procedure Op (X : B);

Note that this resolution mechanism applies regardless of whether
the parameter type is a simple name (like “B”), an expanded name
(like “B.C") or a colon notation (like “B:T” or “B.C:T"). If the
parameter type uses the colon notation, it will only match a class
name that also uses the colon notation. In all cases, the generated
code references the type name, not the class name.

It may be that there are ambiguities, for instance if the parameter
type is given as “B” and the set of target classes includes classes
named “B:T1” and “B:T2". In this case, an error message is emitted,
and the parameter type has to be made more explicit.

This name resolution mechanism makes it possible to use class
names everywhere in the model, and defer the mapping of class
names to Ada type names by setting the TypeName code generation
property and/or the mapping of classes to modules. Changing the
mapping of classes to types and modules doesn't require to change
the attributes, parameters, etc., scattered throughout the model.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 5

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Of course, the user may always enter an Ada type name for the type
field of an attribute or parameter, since such a name will not match
any class name, and will thus be copied verbatim in the generated
code. This may be useful for predefined types like Integer or
Calendar.Time, for which it would be cumbersome to create a class
in the model. However, it is strongly recommended that class
names, not type names, be used wherever possible in order to ease
maintenance of the model if the mapping of classes to types ever
has to change.

Code Generation Properties and Consistency

Various entities in a model have associated code generation
properties which may be used to control the way that the code is
produced. Often, there exist consistency requirements between the
values of the code generation properties of one or several entities.

These requirements come most of the time from language rules,
and ensure that the generated code is correct. To take an example,
in Ada 95, it is not possible to specify, when declaring a derived
type, if it is limited: it just inherits its limited-ness from the root of
the derivation tree. In Rose/Ada, the code generation property
IsLimited may be used to control whether or not the type generated
for a given class is limited. Clearly, it does not make sense for a root
class A to have IsLimited set to False, and for a class B, subclass
of A, to have IsLimited set to True.

In practice however, having to set code generation properties in a
consistent manner over large models may become burdensome. To
avoid this, some code generation properties are said to be dominant
over others. A dominant property determines the code generated,
and the dominated property is ignored altogether, even if it
specifies a different code generation. For instance, if a root class
has IsLimited set to True, the code generation property IsLimited
of its subclasses is not even considered: these classes will all be
limited.

In some circumstances, a property is dominant only when it has a
specific value (or set of values). For instance, the property
Typelmplementation dominates IsLimited only when it has the
values Task or Protected (because task types and protected types
are always limited).

6 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

Classes

One may however wish to be able to track and correct
inconsistencies where, for instance, IsLimited is set to True on the
root class but to False on some of its subclasses, Such
inconsistencies may turn out to be a problem in organizations
having strict quality assurance policies. To ease detection of
inconsistencies, the code generator emits a warning message
whenever it detects that a dominated property has a value which is
inconsistent with the dominant property.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

This section contains the following topics:

= “Tagged Implementation” on page 8

= “Record Implementation” on page 8

s “Mixin Implementation” on page 14

s “Task Implementation” on page 15

= “Protected Implementation” on page 17

If a “normal” class is associated with a module, that module must
be a non-generic package.

Normally, the type generated to represent objects of the class is a
non-limited, private type. This can be controlled using the code
generation properties IsLimited and TypeVisibility attached to the
class:

= For a class which has no superclass, the boolean code
generation property IsLimited may be set to True, in which case
a limited type is generated. The property IsLimited of a root
class dominates the same property for its subclasses.

= TypeVisibility can take two values: Public and Private. Setting
this property to Public causes the full type declaration to be
generated in the visible part of the associated library package.
Setting it to Private causes a private type to be generated.
TypeVisibility defaults to Private.

The scheme used to generate the code associated with a class is
governed by the code generation properties Typelmplementation
and TypeDefinition.

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

If TypeDefinition is not empty, it dominates Typelmplementation,
and the type generated uses the contents of that property
(technically, the contents of TypeDefinition must be an Ada type
definition). If for instance TypeDefinition is set to “range -1 .. 3”
then the generated type declaration is:

type Object is range -1 .. 3;

If TypeDefinition is empty (the default), Typelmplementation is
used to control the code generation scheme. Typelmplementation
can take one of five values: Tagged, Record, Mixin, Task or
Protected. In the rest of this section, we consider each of these
schemes in turn. In this discussion, unless otherwise specified we
assume the default values for properties IsLimited and
TypeVisibility.

Tagged Implementation

The class corresponds to a tagged type. If the class has no
superclass, the declaration of the corresponding type is:

type Obiject is tagged private;

If the class has a superclass, the declaration of the corresponding
type is:

type Object is new Superclass.Object with private;

If the class has more than one superclass, we are in a situation of
multiple inheritance, which is covered later.

If the class is abstract, the associated type declaration includes the
reserved word abstract:

type Object is abstract tagged private;

type Object is abstract new Superclass.Object
with private;

Record Implementation
= “SingleType Record Implementation” on page 10
= “MultipleTypes Record Implementation” on page 12

8 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

In this scheme, polymorphism (if any) is implemented using
records with variants. This means that if the class has any
subclass, an enumeration type is created to represent all possible
variants, and the record type declaration associated with the class
is a variant record gathering the attributes and relationships of all
the subclasses.

The properties Typelmplementation and IsLimited of the root class
dominate those of the subclasses. Also, none of the classes may be
marked abstract.

There are two ways that the record mapping can be implemented,
so the Record scheme is further controlled by the code generation
property Recordimplementation associated with the root class.
This property can take the two values SingleType and
MultipleTypes. The property Recordimplementation of the root
class dominates the same property for its subclasses.

Regardless of the mapping chosen, for a class which has no
superclass and no subclasses, the generated code is simply
(assuming the default values for the properties TypeVisibility and
IsLimited):

package A is
type Object is private;
private
type Object is
record

end record;
end A;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 9

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

When discussing the two possible record implementations in more
complex cases, we’ll use the following generalization hierarchy as
an example:

“FM g

r
18

SingleType Record Implementation

In this scheme, a single record type is created for the complete
generalization hierarchy. An enumeration type is created that lists
all the variants, and the structure of the record corresponds to that
of the generalization tree. For each subclass, a package is created
that declares a subtype or derived type with a discriminant
constraint (depending on the property IsSubtype). For leaf classes,
the discriminant is omitted. The code generated is as follows:

package Ais -- The root package
type A_Kinds is (Some_A, Some_B, Some_C,
Some_D, Some_E, Some_F);
type Object (Kind : A_Kinds := Some_A) is private;
private

10 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

type Object (Kind : A_Kinds := Some_A) is
record
Ca: Integer;
case Kind is
when Some_B =>
Cb : Integer;
when Some_C | Some_D | Some_E | Some_F =>
Cc : Integer;
case Kind is
when Some_D =>
Cd : Integer;
when Some_E | Some_F =>
Ce : Integer;
case Kind is
when Some_F =>
Cf : Integer;
when others =>
null;
end case;
when others =>
null;
end case;
when others =>
null;
end case;
end record;
end A;
with A;
package B is -- A leaf
type Object is private;
private
type Object is new A.Object (A.Some_B);
end B;
with A;
package C is -- An intermediate node
subtype C_Kinds is A.A_Kinds
range A.Some_C .. A.Some_F;
type Object (Kind : C_Kinds := A.Some_C) is private;

private
type Object (Kind : C_Kinds := A.Some_C) is
new A.Object (Kind);
end C;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 11

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

12

The prefix used to generate the names of the enumeration literals
is specified using the code generation property
EnumerationLiteralPrefix of the class. This property defaults to
“A_". In the above examples, we have assumed for readability that

it was set to “Some_".

Note that the code generator orders the enumeration literals in a
way that is suitable for the constraints on subtype Kinds in the
intermediate nodes.

The property TypeVisibility of the root class dominates the same
property for subclasses.

The SingleType mapping may result in name conflicts: if two
components of two classes in a generalization hierarchy have the
same name, they will clash when they are put together in the above
record type declaration. It is the user’s responsibility to avoid such
conflicts.

MultipleTypes Record Implementation

In this scheme, one record type is created for each class in the
hierarchy, and these types are aggregated in a discriminated
record at each level, according to the structure of the generalization
hierarchy. For subclasses, a subtype or derived type with a
discriminant constraint is created (depending on the property
IsSubtype). For leaf classes, the discriminant is omitted.

package A_Record_Kind is
type A_Kinds is (Some_A, Some_B, Some_C,
Some_D, Some_E, Some_F);
end A_Record_Kind;
with A_Record_Kind;
with B;
with C;
package A is
use A_Record_Kind;
subtype A_Kinds is A_Record_Kind.A_Kinds;
type Object (Kind : A_Kinds := Some_A) is private;
private

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

type Object (Kind : A_Kinds := Some_A) is
record
Ca: Integer;
case Kind is
when Some_B =>
The_B : B.Object;
when Some_C | Some_D | Some_E | Some_F =>
The_C : C.Object (Kind);
when others =>
null;
end case;
end record;
end A;

package B is
type Object is private;
private
type Object is
record
Cb : Integer;
end record;
end B;

with A_Record_Kind,;
with D;
with E;
package C is
use A_Record_Kind;
subtype C_Kinds is A_Kinds range Some_C .. Some_F;
type Object (Kind : C_Kinds := Some_C) is private;
private
type Object (Kind : C_Kinds := Some_C) is
record
Cc : Integer;
case Kind is
when A_Record_Kind.Some_D =>
The_D : D.Object(Kind);
when A_Record_Kind.Some_E |
A_Record_Kind.Some_F =>
The_E : E.Object(Kind);
when others =>
null;
end case;
end record;
end C;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 13

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

As before, the prefix used to generate the names of the
enumeration literals is specified using the code generation
property EnumerationLiteralPrefix of the root class, which was set
to “Some_" in the above example. Also, the prefix used to generate
the names of the intermediate record components is given by the
code generation property RecordFieldPrefix of the root class (this
property defaults to “The_”).

Finally, the name of the auxiliary package used to declare the
enumeration type Kinds is given by the code generation property
RecordKindPackageName of the root class. This property defaults
to “${class} Record_Kinds”.

Mixin Implementation

14

A class whose Typelmplementation property is set to Mixin must
be abstract. If that class has no superclass (see figure), the
following code is generated:

f, I""“""""|5,"_::|=||'T_|-|;||H;|"Iu'|_-|| =% Mz

generic
type Superclass is abstract tagged private;
package A is
type Object is abstract new Superclass with private;
-- declaration of the operations
-- of the class here.
private
type Object is new Superclass with
record
-- declaration of the attributes
-- and relationships
-- of the class here.
end record;
end A;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

If the class has (exactly one) superclass, B, then B must have its
Typelmplementation property set to Tagged (see figure), and the
generic formal part above is changed as follows:

[B_——{Typelmplemaniaiion => Tagged -
S Y
I ' Typalmplamentation == Mizn &
with B;
generic
type Superclass is abstract new B.Object with private;
package A is ...

Classes implemented according to the Mixin scheme are used in
multiple inheritance situations as explained later on.

Task Implementation

A class whose Typelmplementation property is set to Task must not
be abstract, and its code generation property IsLimited is
dominated. Also, its operations must all be procedures (as opposed
to functions). A task type is generated for such a class.

The operations are transformed into entries, and their
Subprogramlmplementation property is dominated. Depending on
the visibility of each operation, the entry is declared either in the
visible part or in the private part of the task type. No implicit
parameter is ever generated for an operation in the Task mapping,
because the implicit parameter is the task itself:
Typelmplementation dominates ImplicitParameter.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 15

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

16

For each visible operation of the class, a procedure is also
generated in the visible part of the package that declares the task
type. This procedure has the same profile as the corresponding
entry of the task, except for an additional parameter that
designates the object being operated upon. The name of this
additional parameter is given by the code generation property
ImplicitParameterName of the class. The body of each of these
procedures simply calls the corresponding entry of the given task
object.

The attributes and “has” relationships whose property
RecordFieldlmplementation is either Discriminant or
AccessDiscriminant are transformed into discriminants, as for any
composite type. The attributes and “has” relationships whose
property RecordFieldimplementation is Component, and the
associations, are transformed into variables declared in the task
body.

Accessor operations (Get and Set) are never generated for
attributes of a class whose Typelmplementation property is Task
(in other words, GenerateGet and GenerateSet are dominated).

An example of code generated for the Task mapping is as follows:

| Typelmplemeniztion == Task L

Cin afiibute 1
RecordFeldimplementziion =» Disaminam |

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

package A is
type Object (D : Integer := 0) is limited private;
procedure Op1l (This : Object);
private
task type Object (D : Integer := 0) is
entry Op1,;
private
entry Op2;
end Object;
end A;

with B;
package body A is

procedure Op1l (This : Object) is
begin

This.Op1;
end Op1l;

task body Obiject is
Attrl : Float;
Attr2 : Boolean := False;
Aggrl : B.Object;
Aggr2 : B.Handle;

end Object;

end A;

Classes implemented according to the Task mapping cannot be
used in generalization relationships.

Protected Implementation

A class whose Typelmplementation property is set to Protected
must not be abstract, and its code generation property IsLimited is
dominated. A protected type is generated for such a class.

The operations are transformed into protected functions or
protected procedures, except that an operation whose concurrent
behavior is specified as synchronous is transformed into an entry.
The code generation property EntryBarrierCondition of such an
operation contains the boolean expression used for the barrier of
the entry body. This property defaults to “True”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 17

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

18

Depending on the visibility of each operation, it is declared either
in the visible part or in the private part of the protected type. No
implicit parameter is ever generated for an operation in the
Protected mapping, because the implicit parameter is the protected
object itself: Typelmplementation dominates ImplicitParameter.

For each visible operation of the class, a subprogram is also
generated in the visible part of the package that declares the task
type. This subprogram has the same profile as the corresponding
protected subprogram, except for an additional parameter that
designates the object being operated upon. The name of this
additional parameter is given by the code generation property
ImplicitParameterName of the class. The body of each of these
subprograms simply calls the corresponding protected
subprogram of the given protected object.

The attributes and “has” relationships whose property
RecordFieldlmplementation is either Discriminant or
AccessDiscriminant are transformed into discriminants, as for any
composite type. The attributes and “has” relationships whose
property RecordFieldimplementation is Component, and the
associations, are transformed into components of the protected
object (and are thus declared in the private part).

An example of code generated for the Protected mapping is as
follows:

|T'.-p-el'rl|:||.-r-=l—.u1-:" =3 Proiacied ‘—|

A,

:I'""hE""“ ol On atvibute O L,
—r"'-._— RecordFieldlmplemeantaion == Dscrminard
S0] 1

]]
Sopy |

Conrcunenoy == Synchronous
ErringBarn erfCondidon == Atrs 0.0

ﬁ'\-r\-'u'n ahen Cigl
Agrt Apx?

=1 I

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Classes

package A is
type Object (D : Integer := 0) is limited private;
procedure Op1l (This : Object);
function Op2 (This : Object) return Integer;
private
protected type Object (D : Integer := 0) is
entry Op1l;
function Op2 return Integer;
private
procedure Op3;
Attr : Float;
Aggrl : B.Object;
Aggr2 : B.Handle;
end Object;
end A;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

19

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

with B;
package body A is

procedure Opl (This : Object) is
begin

This.Op1;
end Op1;

function Op2 (This : Object) return Integer is
begin

return This.Op2;
end Op2;

protected body Object is
entry Opl when Attr > 0.0 is
begin

end Op1l;
function Op2 return Integer is
begin

end Op2;
procedure Op3 is
begin

end Op3;
end Object;

end A;

Classes implemented according to the Protected mapping cannot
be used in generalization relationships.

Parameterized Classes

20

There exist two mappings for parameterized classes: either as types
declared in generic units, or as types with unconstrained
discriminants. Correspondingly, there exist two mappings for
bound classes: generic instantiations and constrained types. The
mapping is selected by the code generation property
Parameterizedlmplementation: if this property is set to Generic (the
default), the “generic” mapping is used, if it is set to Unconstrained
the “unconstrained type” mapping is used.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Parameterized Classes

In all cases, if a parameterized class is associated with a module,
the code generation property Parameterizedlmplementation must
be consistent with the nature of the associated module: if
Parameterizedimplementation is Generic, the associated module
must be a generic package, if it is Unconstrained it must be a non-
generic package.

If a class is parameterized, all its subclasses must also be
parameterized. The property Parameterizedlmplementation of a
root class dominates the same property for its subclasses.

= “Generic Implementation” on page 21
s “Unconstrained Type Implementation” on page 23

Generic Implementation

The root class is transformed into a type declared in a generic
library package. The exact nature of the type is controlled by the
property Typelmplementation, as for normal classes. The formal
part of the generic is extracted from the class specification. If
several parameterized classes are associated with the same library
package, they must all have the same formal part.

Subclasses are transformed into a tagged type declared in a generic
library package, but we have two cases to consider:

» If the generic library package is a child of the package that
contains the superclass, then its formal part only includes the
parameters extracted from the class specification of the
subclass.

Parameienzedimplemamalion = Geneno S

b |

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 21

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

22

generic

... -- parameters of the superclass
package A is

type Object is tagged private;

end A;

generic

... -- parameters of the subclass
package A.B is

type Object is new A.Object with private;

end A.B;

If, on the other hand, the generic library package is not a child
of the package that contains the superclass, then it must
import the superclass’ package as a generic formal package, as
shown on the following example:

&

1
[i
1
i

|
Paremeerizadmplementiaton == Genanc |—|

|

H|""'“"'

generic

... -- parameters of the superclass
package A is

type Object is tagged private;

end A;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Parameterized Classes

with A;
generic
with package Superclass is new A (<>);
-- parameters of the subclass
package B is
type Object is new Superclass.Object with private;

end B;

The name of the formal package parameter is given by the
property ParentClassName of the subclass, and defaults to
“Superclass”.

Unconstrained Type Implementation

The discriminant part of the type is derived from the class
parameters. Each class is transformed into a type having
unconstrained discriminants (without default values). For a
subclass, type derivation is used to add discriminants without
constraining the discriminants inherited from the parent type.

If one any of the parameters has a type of the form “access T” then
the property IsLimited is dominated, and a limited type is
generated for the class.

An example of code generated for the Unconstrained Type
implementation is as follows (assuming the default values for other
code generation properties):

;-E" 1 [Paarmics ol A
o 01 - Irtaga
A ' 02 sisais Klirg
———1
2] [Peametescil:

13 03 - Boplean
‘:

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 23

Chapter 1

Mapping the UML Notation to Ada 95 — Code Generation

package A is
type Object (D1 : Integer; D2 : access String) is
tagged limited
private;

end A;
with A;
package B is
type Object (D1 : Integer;
D2 : access String;
D3 : Boolean) is new A.Object (D1, D2)

with private;

end B;

Bound Classes

If a bound class is associated with a module, that module must be
a non-generic package.

The value of Parameterizedlmplementation for a parameterized
class (Generic or Unconstrained) determines the mapping chosen
for any bound class obtained by binding the parameters of that
parameterized class. In other words, the property
Parameterizedimplementation of a parameterized class dominates
the same property for the bound classes.

= “Generic Implementation” on page 24
= “Unconstrained Type Implementation” on page 25

Generic Implementation

24

The class is transformed into a library-level generic instantiation.
The actual parameters are extracted from the class specification.

Consider a bound class B1 obtained by binding the parameters of
a parameterized class P1. Say that P1 is not a root class, but has
instead a superclass P2. Because the actual parameters of B1 only
specify values for the parameters of P1, and not of P2, there must
exist a bound class B2, obtained by binding the parameters of a
parameterized class P2, from which B1 “inherits” the actual
parameters for P1.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Bound Classes

The UML notation does not allow inheritance relationships between
bound classes, because bound classes are fully specified by their
template. Therefore, the pseudo-inheritance between B1 and B2 is
represented by a dependency relationship labelled “parent”, as
shown on the diagram below:

[

o | s<bincle > | B |
é E

—

el
i

!'.1.' D — kst
srabinrhm

Based on this information, the code is generated in two different
ways depending on whether P1 had visibility over its ancestor by a
parent-child relationship or by a formal package (see above):

package B1 is new B2.P1 (...);

package B1 is new P1 (Superclass => B2, ...);

Unconstrained Type Implementation

The class is transformed into a type declaration that provides
discriminant constraints. Alternatively, a subtype is generated if
the boolean code generation property IsSubtype for the class is
True (this property defaults to False).

Each bound class must provide values for all parameters (i.e.,
constraints for all discriminants), including those inherited from
the generalization hierarchy.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 25

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

An example of code generated for the Unconstrained Type
implementation is as follows (assuming the default values for other
code generation properties):

- |Parametars ol A Y
0t :intagar
L2 ;. acoaas Sirrmg

JW--_ Parameders ol B by,
i]

D3 : Boolean

; Paremeters ol G: L
VI SRR L

- ‘o2 -
Some STing'Aconss
U3 Fake
package C is
subtype Constrained_Object is
B.Object
(D1 =>3,
D2 => Some_String'Access,
D3 => False);
type Object is Constrained_Object with private;
private
type Object is Constrained_Object with
record
end record;
end C;

26 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Utilities

Utilities

If an utility is associated with a module, that module must be a
non-generic package or subprogram. If an utility is not associated
with a module, it is transformed into a package. Similarly,
parameterized utilities are transformed into generic units, and
bound utilities are transformed into library-level instantiations.

If an utility is transformed into a package, no type declaration is
produced. Instead, each operation of the utility is transformed into
a subprogram in that package. Attributes of such an utility become
package-level declarations, regardless of the setting of the “static”
button.

If an utility is transformed in a subprogram, then the utility must
declare exactly one operation. Note that a bound utility must map
to the same kind of program unit as its template.

Metaclasses

A metaclass must not have any associated module. The attributes
and operations it declares are instead used to generate code for
classes that derive from that metaclass.

A metaclass attribute or relationship is transformed into a variable
or constant. Depending on the visibility of the attribute or
relationship, the variable is declared in the visible part (public), the
private part (protected or private) or the body (implementation) of
the package associated with each class that derives from the
metaclass.

A metaclass operation is transformed into a subprogram, which is
declared in the same package as each class which derives from the
metaclass. Each parameter (or result) of such a subprogram which
had a type name identical to that of the metaclass is transformed
into a class-wide parameter. Depending on the visibility of the
operation, the subprogram is declared in the visible part (public),
the private part (protected or private) or the body (implementation)
of the package associated with each class that derives from the
metaclass.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 27

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

An example of code generated for metaclasses is as follows. Note
that no module is generated for the metaclass A. Also note the
difference between class attributes and operations on one hand,
and metaclass attributes and operations on the other hand:

il o by

SRR T |
2K inimger
i 2]

E'f Fioat

| o

package B is

type Object is tagged private;
procedure Q (This : Object);

X ! Integer;
procedure P (This : Object'Class);

private
type Object is tagged
record
Y : Float;
end record;
end B;

28 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Attributes

Attributes

An attribute is generally transformed into a record component.
There exists two special cases for the generation of attributes: the
attributes of a metaclass are transformed into package-level
declarations, as explained above. The attributes of a normal class
which are marked as “static” are also transformed into package
level declarations. In fact, in term of code generation, static
attributes are handled exactly as attributes of metaclasses.

The record component corresponding to an attribute has a name
which is given by the code generation property RecordFieldName.

The code generated for an attribute is controlled by the code
generation property RecordFieldiImplementation. This property can
take the values Discriminant, AccessDiscriminant, and
Component (the default). For a parameterized class whose
Parameterizedimplementation is Unconstrained, the property
RecordFieldimplementation is dominated, and all attributes are
implemented as components. If a class has, in its generalization
hierarchy, an attribute implemented as an AccessDiscriminant,
then the property IsLimited is dominated, and a limited type is
generated for that class.

The semantics of RecordFieldimplementation is as follows:
» If RecordFieldimplementation is set to Discriminant, a normal
discriminant is generated, as in:

type Object (D : Integer := 3) is private;

» If RecordFieldimplementation is set to AccessDiscriminant, an
access discriminant is generated, as in:

type Object (D : access Integer) is limited private;

» If RecordFieldimplementation is set to Component, a normal
component is generated in the full type declaration, as in:

type Object is
record
C : Integer;
end record;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 29

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

30

All attributes (and “has” relationships; see below) whose
RecordFieldiImplementation property is either Discriminant or
AccessDiscriminant must agree on the existence of default values,
and on the visibility: either all have defaults, or none have defaults,
and they all have the same visibility. In addition, if the code
generation property Typelmplementation of the class is Tagged,
then it dominates the property InitialValue, and no default value is
generated.

The discriminants always appear in the full type declaration. For
private types, whether or not the discriminants appear in the
private type declaration depends on their visibility and on the
existence of defaults:

= If the discriminants have defaults, they appear in the private
type declaration only if their visibility is public. Otherwise, the
private type declaration does not include a discriminant part.

= If the discriminants don't have defaults, they appear in the
private type declaration only if their visibility is public.
Otherwise, the private type declaration includes an unknown
discriminant part, as in:

package A is
type Object (<>) is private;
private
type Object (D : Integer) is
record ... end record;
end A,

The case of a class inheriting discriminants from its superclass
(and possibly adding new discriminants) is handled in a manner
similar to the Unconstrained Type mapping of parameterized
classes.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Has Relationships

Has Relationships

“Has” relationships are not part of the UML notation. However, they
can be created in Rose using the View:As Booch option. When viewed
using the UML or OMT notation, they are displayed as
unidirectional aggregation relationships. However, they have
slightly different code generation properties than true
aggregations, because they gather together the properties borne by
associations and the properties borne by roles.

An “has” relationship is generally transformed into a record
component. There exists two special cases for the generation of
“has” relationships: the relationships of a metaclass are
transformed into package-level declarations, as explained above.
The relationships of a normal class which are marked as “static”
are also transformed into package level declarations. In fact, in
term of code generation, static “has” relationships are handled
exactly as “has” relationships of metaclasses.

In the rest of this discussion, we consider the case of class A having
a “has” relationship to class B.

The mapping of an “has” relationship depends on whether it is by-
value or by-reference:

= A by-value relationship is represented using the type
associated with B (either directly or through some container,
depending on the multiplicity of the relationship; see below).

= A by-reference relationship is represented using an access type
that designates the type associated with B (either directly or
through some container, depending on the multiplicity of the
relationship; see below). This access type is only created for
those classes that are the target of some by-reference “has”
relationship. There is only one such access type, even if class B
is the target of several “has” relationships.

The access type used to represent by-reference relationships
targeting B is declared in the package associated with class B. Its
name is given by the code generation property AccessTypeName of
class B (this property defaults to “Handle”). It is generated either in
the public part or in the private part, based on the code generation
property AccessTypeVisibility, which can take the values Public
(the default) and Private.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 31

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

32

If the code generation property AccessTypeDefinition of B is not
empty, it dominates, and the declaration of the access type uses
this property. Technically, AccessTypeDefinition must contain an
Ada type definition. For instance, if AccessTypeDefinition is set to
“access constant B.Object” the access type is declared as follows:

type Handle is access constant B.Object;

If the code generation property AccessTypeDefinition of B is empty
(the default), an access type is generated as follows:

= If B is associated with a tagged type, the access type is a class-
wide type:

type Handle is access B.Object; -- B not tagged
type Handle is access B.Object'Class; -- B tagged

= If the code generation property MaybeAliased for B is set to
True (it defaults to False), the access type is a general access-
to-variable type:

type Handle is access B.Object'Class;
-- B tagged, not aliased

type Handle is access all B.Object'Class;
-- B tagged, may be aliased

There may be circumstances where it is useful to have an access
type declaration generated for class B, even though B is not (or not
yet) the target of any by-reference “has” relationship. The code
generation property GenerateAccessType controls the generation of
an access type. It can take the values Auto and Always. The default
is Auto, and corresponds to the case where the generation of the
access type depends on the existence of a by-reference “has”
relationship. The value Always force the generation of an access
type declaration, regardless of the existence of by-reference “has”
relationships.

If the maximum allowable cardinality of the relationship is 1, the
type of the record component representing the relationship is
directly the object or access type associated to B, as explained
above.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Has Relationships

If, on the other hand, the maximum allowable cardinality of the
relationship is larger than 1, an intermediate container type is
required to support the one-to-many relationship. The scheme
used to generate the code associated with a one-to-many
relationship is governed by the code generation properties
Containerimplementation and ContainerType.

If ContainerType is not empty, it dominates
Containerlmplementation, and specifies the container type used to
represent the one-to-many relationship. The code generation
property ContainerDeclarations may be used to specify auxiliary
declarations that may be necessary to build the container type.

If ContainerType is empty (the default), Containerimplementation
is used to control the code generation scheme.
Containerimplementation can take the two values Generic and
Array, and defaults to Array. The semantics of this property is as
follows:

= If Containerimplementation is set to Generic, the generic unit
given by the property ContainerGeneric is instantiated, with a
single parameter which is the type corresponding to class B, or
the access type associated to B, depending on whether the
relationship is by-reference or by-value.

= If Containerimplementation is set to Array, an unconstrained
array type, and an access to that array type, are declared to
represent the one-to-many relationship. The array element type
is either the type associated to B (if the “has” relationship is by-
value) or the access type associated with B (if the relationship
is by-reference). The name of the array type and access type are
given by the code generation properties ArrayOfTypeName (or
ArrayOfAccessTypeName) and AccessArrayOfTypeName (or
AccessArrayOfAccessTypeName) of class B. These properties
default to Array_Of ${type}, Array_ Of ${access_type},
Access_Array_ Of ${type} and Access_Array Of ${access_type},
respectively. The index specification for the array types is given
by the code generation property ArraylndexDefinition, which
defaults to “Positive range <>".

The code generation property RecordFieldimplementation which
was discussed above in the context of attributes can also be applied
to “has” relationships, with the same semantics, except that
AccessDiscriminant is not allowed for a by-value relationship.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 33

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Note that the target of a “has” relationship must not be a class
whose Typelmplementation property is Mixin.

As an illustration of the implementation of “has” relationship,
consider the following class diagram:

MaybaAlassd == True L
ArayiTypeMame =» fArray O Sftype nama)

llul_ll'l';lllﬂll_'l ::-: Tris LI
AcoessATay HTypehlame == Accmss_Aray OH_Ehpe name] |

|
| Has1 |
i = Has? : i
| 1 r# e H"'“'-ﬂ._g i paa 1
— A [Hasd Sgl B
or
T

Hazd

';'liu.aﬁ" e —

i Fla-:a:!rn:l:n:llrj'ﬂﬁnn'mll.!-:r s .'I.En:-tl.-lnir.'nrl'l.rl-l.nll—l

Comtarned malmaiaion = Gerasn
CoriairnarGenan =» Lt |

|I'..‘.|:-1In|ru1rl-n'||:lun'-enl.:|.1m - ﬁ.rl:.','i-l

—_—
!
R W 1
Y
-

34 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

It results into the following code (note that only the “get” accessors
are shown; the “set” accessors have similar parameter types):

with List_Generic;
with B;
package A is
type Object (Hasb5 : access B.Object) is tagged limited private;
package B_List is new List_Generic (B.Object);
private
type Object (Hasb : access B.Object) is tagged limited
record
Hasl : B.Object;
Has2 : B.Handle;
Has3 : B.Access_Array_Of Object;
Has4 : B_List.List;
end record;
end A;

package B is
type Object is tagged private;
type Handle is access all Object’Class;
type Array_Of_Object is
array (Positive range <>) of Object;
type Access_Array_Of Objectis
access Array_Of_Object;
private

end B;

Associations

Associations fall into two categories:

s “Simple Associations” on page 37
= “Association Classes” on page 46

The generated code for both categories follows a number of
common principles.

Code is only generated for the roles which are marked as navigable
in the Rose model. If an association has no navigable role, no code
is generated for that association.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 35

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Code is only generated if the two classes that participate in the
association have their Type Implementation property set to Record
or Tagged. An error is emitted if an association involves classes
with a non-record, non-tagged implementation.

There exist many similarities between the mapping of associations
and that of “has” relationships:

= A role always becomes a component in a record or tagged type.

= The name of a role determines the name of the various
declarations generated for that role (record component,
accessor subprograms, etc.). If a role is unnamed, the name of
the class at the other end of the association is used to
determine the name of the declarations generated for that role.

= If a class is the target of a navigable by-reference role, an
access type is generated for that class. The characteristics of
that access type depend on the code generation properties
AccessTypeName, AccessTypeVisibility, AccessTypeDefinition
and MaybeAliased of the class.

= The mapping of a role depends on its multiplicity. If the
maximum allowable cardinality is larger than 1, a container
type is declared, as specified by the code generation properties
Containerlmplementation, ContainerType, ContainerGeneric
and ContainerDeclarations for the role.

= The code generation properties NamelfUnlabeled,
RecordFieldName, GenerateGet, GetName and InlineGet may
also be applied to a role, with a semantic similar to the
semantics they have for “has” relationships. The code
generation properties GenerateSet, SetName and InlineSet are
only used when the role belongs to a unidirectional association,
i.e., an association with only one navigable role. They are not
used when the role belongs to a bidirectional association, i.e.,
an association with two navigable roles.

36 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

Simple Associations

If a simple association has only one navigable role, the code
generated for that association is exactly identical to the code that
would be generated for an “has” relationship similar to that role.
Such an association may be marked “static”, in which case
package-level declarations are generated instead of record
components (again, this is identical to the case of an “has”
relationship).

A warning is emitted by the code generator when it encounters a
unidirectional association, because an association normally has
two navigable roles (and thus the presence of only one navigable
role may indicate a mistake).

The rest of this section pertains only to the case of a simple
association with two navigable roles.

The two classes which participate in the association must map to
the same package, either because their names use the colon
notation and have the same prefix, or because they are associated
with the same module (a package specification).

An association may have keys which are used to unambiguously
identify an object. Keys are handled by Rose/Ada exactly as
attributes of classes: they are normally generated as record
components, possibly with “get” and “set” accessors. If several
associations originating from the same class declare keys with the
same name, the record component is only generated once. An error
is detected in this case if the various keys don't have the same type.

A bidirectional association may not be marked “static”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 37

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Data Structures

If any role of a bidirectional association is by-value, an error is
detected.

If both roles of a bidirectional association are by-reference, the data
structures (record, components, discriminants, etc.) generated for
the association are exactly identical to the data structure that
would be generated for two by-reference “has” relationships. These
data structures depend on the multiplicity of the association. They
are shown below, assuming that both classes use the Tagged
implementation, and that arrays are used to represent
relationships with maximum allowable cardinality larger than 1.

In the following examples, the AccessTypeName class property and
the NamelfUnlabeled role property are set accordingly.

= For a one-to-one association, the generated data structures are
as follows:

L | ol |

AT |.l'-'|T.2

38 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

package A is

type T1 is tagged private;
type H1 is access T1'Class;

type T2 is tagged private;
type H2 is access T2'Class;

-- Operations go here
private

type T1 is tagged
record
-- Keys and attributes go here
The_T2: H2;
end record;

type T2 is tagged
record
-- Keys and attributes go here
The_T1:H1;
end record;

end A;

For a one-to-many association, the generated data structures

are as follows:

Al

a1z

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

39

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

package A is

type T1 is tagged private;
type H1 is access T1'Class;

type Array_Of_H1 is
array (Positive range <>) of H1,
type Access_Array_Of_H1 is access Array_Of_H1;

type T2 is tagged private;
type H2 is access T2'Class;

-- Operations go here
private

type T1 is tagged
record
-- Keys and attributes go here
The T2 :H2;
end record;

type T2 is tagged
record
-- Keys and attributes go here
The_T1s : Access_Array_Of H1,;
end record;

end A;

= For a many-to-many association, the generated data structures
are as follows:

40 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

package A is

type T1 is tagged private;
type H1 is access T1'Class;

type Array_Of_H1 is
array (Positive range <>) of H1,
type Access_Array_ Of H1 is access Array_Of H1,;

type T2 is tagged private;
type H2 is access T2'Class;

type Array_Of H2is
array (Positive range <>) of H2;
type Access_Array_Of H2 is access Array_Of H2;

-- Operations go here
private

type T1 is tagged
record
-- Keys and attributes go here
The_T2s : Access_Array_Of H2;
end record;

type T2 is tagged
record
-- Keys and attributes go here
The_T1s : Access_Array Of H1,;
end record;

end A;

Subprograms

A “get” accessor may be generated for each role in the association,

based on the code generation properties GenerateGet, GetName
and InlineGet of the role.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

41

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

42

Bidirectional associations must be created and deleted using the
subprograms Associate and Dissociate as explained below. This is
for integrity reasons: if two objects are linked by a bidirectional
association, it is important that each of them has a pointer to the
other. If “set” accessors were generated in that case, they could be
used to create a situation where object A has a pointer to object B,
but object B doesn't have a pointer to object A. Such a situation
doesn't correspond to an association, but to two aggregation
relationships. By generating Associate and Dissociate
subprograms instead of “set” accessors for bidirectional
associations, Rose/Ada prevents such violations of the association
model.

Two families of subprograms, named Associate and Dissociate by
default, may be generated for each role, under the control of the
code generation properties GenerateAssociate and
GenerateDissociate of the association. These subprograms are
used to establish or break an association by establishing or
breaking linkages between objects. The profiles of these
subprograms depend on the multiplicities of both roles, and on the
nature of the construct used to implement relationships with
maximum allowable cardinality larger than 1. The code shown
below corresponds to the case where the Containerimplementation
property of the roles is Array. If the Containerlmplementation is
Generic, or if a container type is provided, the name of the
container type is substituted to the name of the array type in the
subprogram declarations.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

Alternate names may be provided for the Associate and Dissociate
subprograms using the code generation properties AssociateName
and DissociateName. The code generation properties
InlineAssociate and InlineDissociate control whether or not a
pragma Inline is emitted for these subprograms.

= For a one-to-one association, the generated subprograms are
as follows:

f.1 3.1
|AT'| |.l'-'|T.E

procedure Associate
(This_H2 : in H2; This_H1 : in H1);

procedure Dissociate (This_H2 : in H2);
procedure Dissociate (This_H1 : in H1);

The semantics of Associate is that it establishes a two-way
linkage between the given objects. If the given objects are
already part of an association, this association is not broken,
but instead Associate raises the exception
System.Assertion_Error.

The semantics of Dissociate is that it breaks the linkage
between the given object and its correspondent (if any).
Dissociate may be used for either extremity of the association:
that's why there are two overloaded declarations, one taking an
H1, the other taking an H2.

= For a one-to-many association, the following Associate and
Dissociate procedures are generated in addition to the ones
described above for one-to-one associations:

Al Az

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 43

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

44

procedure Associate (This_H2 : in H2;
This_Array_Of H1:in Array_Of H1);

procedure Dissociate (This : in Array_Of _H1);

The semantics of Associate is that is establishes two-way
linkages between the object designated by This_H2 and each of
the objects designated by the pointers in This_Array_Of H1.
These linkages are added to those that might already exist
between the object designated by This_H2 and other objects of
type T1. If some of the objects designated by the pointers in
This_Array_Of H1 are already part of an association, the
exception System.Assertion_Error is raised.

The semantics of Dissociate is that it breaks the linkages
between each object designated by the pointers in
This_Array_Of H1 and the associated object of type T2.

For a many-to-many association, the following Associate and
Dissociate procedures are generated in addition to the ones
described above for one-to-one and one-to-many associations:

AT ATz

;

procedure Associate
(This_Array_Of_H2 : in Array_Of_H2;
This_H1 : in H1);
procedure Associate
(This_Array_Of H2 :in Array_Of H2;
This_Array_Of H1 :in Array_Of_H1);

procedure Dissociate (This : in Array_Of_H2);

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

The semantics of Associate is that is establishes two-way
linkages between the object designated by This_H1 (or by the
pointers in This_Array_Of H1) and each of the objects
designated by the pointers in This_Array Of H2. These
linkages are added to those that might already exist between
the designated objects designated by This_H2 and other objects
of type T1. Note that the exception System.Assertion_Error is
never raised by Associate for a many-to-many association
(notwithstanding what was said above for one-to-one and one-
to-many associations).

The semantics of Dissociate is that it breaks the linkages
between each object designated by the pointers in
This_Array_Of H2 and the associated objects of type T1.

= For an association having a finite multiplicity (e.g. 1..4), the
subprograms profiles and semantics are similar to those
corresponding to the unlimited case (e.g. one-to-many), except
that the Associate subprogram check the multiplicity
constraint (e.g. it is not possible to associate more than 4
objects of type T1 to an object of type T2). The exception
System.Assertion_Error is raised if this check fails.

Note that for associations having a role whose maximum allowable
cardinality is 1, Associate never replaces the current association, if
it turns out that the object on that role is already part of some
association. Instead, the exception System.Assertion_Error is
raised. On the other hand, for a role whose maximum cardinality
is unlimited, it is always possible to augment the current
association, so no exception is ever raised.

If replacement is needed for an association, it may be implemented
by successively calling Dissociate and Associate.

If the Association and Dissociate subprograms are passed null
pointers, they raise System.Assertion_Error. However, for the
versions of these subprograms which take arrays of access values,
it is acceptable for the arrays to contain null pointers: these null
pointers are simply skipped. Still, the entire array must contain at
least one non-null pointer.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 45

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

For one-to-one associations, and for one-to-many or many-to-
many associations with Containerlmplementation properties set to
Array, the bodies of the Associate and Dissociate procedures are
entirely generated by Rose/Ada, with the semantics explained
above. They perform storage management by reusing empty slots
in the arrays, allocating longer arrays if needed, and reclaiming
storage when appropriate. They also preserve the integrity of the
association by detecting the case where two of the access passed to
Associate denote the same object. Because the generated code is
part of a protected region, it can be modified by the user to meet
special needs. It is however recommended that the above
semantics be adhered to.

For one-to-many or many-to-many associations with a specific
ContainerType, or with a Containerimplementation set to Generic,
the bodies of the Associate and Dissociate procedures are left
empty.

Association Classes

46

For an association class, independent objects must be created to
hold the attributes of the association. Therefore, a type is generated
which corresponds to the association class. This type may be
generated in any package: it doesn't have to be located in the same
package which contains the two principal classes involved in the
association.

Data Structures

The generated data structures are similar to what would be
generated if the association class had a one-to-many association
with each of the two principal classes. However, these data
structures are essentially hidden, and the clients are only given
operations to query, create or delete the association, and
operations to read or modify the attributes of the association. This
ensures that the integrity of the association is preserved.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

The data structures are such that, from each end of the
association, it is possible to find a list of auxiliary records. Each of
these auxiliary records contains a value of the association class,
and two pointers to both ends of the association. So it is possible
to traverse from one end of the association to the other through the
auxiliary record. The auxiliary record and the associated type
declaration are not exported, to preserve the integrity of the
association.

The generated data structures for a many-to-many association
class are as follows:

[AT | a2

Hl

package B is
type T is tagged private;

-- Operations go here

private
type T is tagged
record
-- Attributes go here
end record;
end B;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 47

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

48

with B;
package A is

type T1 is tagged private;

type H1 is access T1'Class;

type Array_Of H1 is array (Positive range <>) of H1;
type Access_Array_Of H1 is access Array_Of H1;

type T2 is tagged private;

type H2 is access T2'Class;

type Array_Of_H2 is array (Positive range <>) of H2;
type Access_Array_Of H2 is access Array_Of H2;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

-- Operations go here
private

type Attribute_B is
record
Attribute : B.T;
The T1:H1,
The_T2: H2;
end record;

type Access_Attribute_B is access Attribute_B;

type Array_Of Access_Attribute_B is
array (Positive range <>) of
Access_Attribute_B;
type Access_Array_Of_Access_Attribute_B is
access Array_Of_Access_Attribute_B;

type T1 is tagged
record
-- Keys and attributes go here
The_B : Access_Array_Of _Access_Attribute_B;
end record;

type T2 is tagged
record
-- Keys and attributes go here
The_B : Access_Array_Of Access_Attribute_B;
end record;

end A;

Similar code would be generated in the one-to-one and one-to-
many cases.

Subprograms

Associate and Dissociate procedures are generated for the entire
association. These procedures are similar to those corresponding
to a simple association, except for that only one Associate
procedure is generated, regardless of the multiplicity. That's
because it is mandatory to specify, when establishing an

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 49

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

50

association, the value of the association class. The variants of the
Associate subprogram that would take array of accesses for the
principal classes would also have to take array of values for the
association class. This interface would be complex and difficult to
use, so it is not supported by Rose/Ada.

Two accessor subprograms are generated to read and modify the
value of the attributes of the association class. In order to
determine the association to modify, these subprograms take:

= One access value designating an object on the cardinality 1 role
of the association, for one-to-one and one-to-many
associations.

= Two access values, designating objects of the two principal
classes, for many-to-many associations.

That information makes it possible to unambiguously locate the
association whose attributes must be read or modified. The
generation of the “get” accessor is controlled by the properties
GenerateGet, GetName and InlineGet of the association. Similarly
the generation of the “set” accessor is controlled by the properties
GenerateSet, SetName and InlineSet of the association.

The generated subprograms for an association class are shown
below (we omit the Dissociate procedures which are exactly
identical to those generated for simple associations):

= For one-to-one association classes, the generated subprograms
are as follows:

[AT1] ATz |
| 0.1

IE

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Associations

procedure Associate (This_H1 :in H1;
This_H2 :inH;
This_T:in B.T);

function Get_T (This_H1 : in H1) return B.T;
function Get_T (This_H2 : in H2) return B.T;

procedure Set_T (This_H1 :in H1; This_T : in B.T);
procedure Set_T (This_H2 : in H2; This_T : in B.T);

= For one-to-many association classes, the generated
subprograms are as follows:

|.°-.T'| | ATZ |
' [k]

=M

procedure Associate (This_H1 :in H1,;
This_H2 :in H;
This_T:in B.T);

function Get_T (This_H1 : in H1) return B.T;

procedure Set_T (This_H1 :in H1; This_T : in B.T);

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 51

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

52

= For many-to-many association classes, the generated
subprograms are as follows:

[AT [a2

procedure Associate (This_H1 :in H1;
This_H2 :in H;
This_T :in B.T);

function Get_T (This_H1 : in H1;
This_H2 :in H2)
return B.T;

function Get_T (This_H2 : in H2) return B.T;

procedure Set_T (This_H1 :in H1;
This_H2 : in H2;
This_T :in B.T);

As in the case of simple associations, Rose/Ada generates a full
implementation for these subprograms if the roles with maximum
allowable cardinality larger than 1 are represented by arrays. It
generates a [statement] prompt otherwise. This implementation
checks the consistency of the operations, and raises
System.Assertions_Error if inconsistencies are detected. It also
performs storage management, allocating and reclaiming the
arrays and auxiliary records as appropriate.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Dependency Relationships

Dependency Relationships

A dependency relationship between two classes is transformed in a
with clause between the corresponding library units, unless of
course both classes happen to map to types in the same library
unit. Note that in addition to dependency relationships, with
clauses are also generated from the module dependencies
appearing in the component diagrams.

Generalization Relationships (Inheritance)

s “Mixin Inheritance” on page 54
“Multiple Views Inheritance” on page 58

To some extend, the generalization relationship has already been
discussed in the section about classes above.

The visibility of a generalization relationship is used to determine
how the type derivation is declared. If the relationship is public, the
derivation occurs in the visible part, with a private extension:

package Subclass is
type Object is new Superclass.Object with private;
private
type Object is new Superclass.Object with
record ... end record;
end Subclass;

If the relationship is not public, the derivation occurs in the private
part:

package Subclass is
type Object is tagged private;
private
type Object is new Superclass.Object with
record ... end record;
end Subclass;

If the class Subclass has its code generation property TypeVisibility
set to Public, then regardless of the visibility of the relationship, the
code is simply:

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 53

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

package Subclass is
type Object is new Superclass.Object with
record ... end record;
end Subclass;

The case of multiple inheritance is more complex. If a class A has
more than one superclass, there are two ways that this
relationship can be represented in Ada 95: “mixin” inheritance or
“multiple views” inheritance. The code generation properties
Typelmplementation of the superclasses of A determine what
mapping is used.

Mixin Inheritance

54

In mixin inheritance, exactly one of the superclasses of A must
have its code generation property Typelmplementation set to
Tagged. This superclass defines the “main” line of inheritance (or
generalization). All other superclasses must have their code
generation property Typelmplementation set to Mixin.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Generalization Relationships (Inheritance)

The type representing A is declared by deriving from its main
superclass, and instantiating the generic packages associated with
the mixin superclasses to add more primitive operations to the
resulting type. Assume that the main superclass is called A1 and
the mixin superclass A2. The generated code is as follows,
assuming that A1 and A2 each declare an operation (we use the
defaults for those code generation properties that have no direct
bearing on multiple inheritance):

| Typalmpbamrealaion == laggsd- | Iypalmalmatiaion == Mixim
| sl ; 1
Al | A |
sopt | i}
= —
L+ Ll |
LA]
| o) |
Typelmplamrattaion <= Tagged '|

package Al is
type Object is tagged private;
procedure Opl (This : Object);
private
type Object is tagged
record ... end record;
end Al;

generic
type Superclass is abstract tagged private;
package A2 is
type Object is abstract new Superclass with private;
procedure Op2 (This : Object);
private
type Object is abstract new Superclass with
record ... end record;
end A2;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 55

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

56

with A1l;
with A2;
package A is
package A2_lInstantiation is
new A2 (Superclass => Al1.Object);
type Object is new A2_Instantiation.Object with
private;
procedure Op (This : Object);
private
type Object is new A2_Instantiation.Object with
record ... end record,;
end A;

The case of triple inheritance and beyond is handled similarly, with
more instantiations adding more primitive operations. Assuming
that we add a mixin superclass, A3, to the above example, we
obtain the following code (Al and A2 are unchanged):

| ypstnpiarnarmalion = Iaglﬂ_lLI |ypelmplamaraion = Mixin Ly

A | az | _A3 |
St | opey)| o oe
=

Ll
-
et el

A

0y

Typedmp nm:'llnu:'.n = Tnl]-gﬂr.‘—l

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Generalization Relationships (Inheritance)

generic
type Superclass is abstract tagged private;
package A3 is
type Object is abstract new Superclass with private;
procedure Op3 (This : Object);
private
type Object is abstract new Superclass with
record ... end record;
end A3;

with A1;
with A2;
with A3;
package A is
package A2_lInstantiation is
new A2 (Superclass => Al1.Object);
package A3_Instantiation is
new A3 (Superclass => A2_Instantiation.Object);
type Object is
new A3_Instantiation.Object with private;
procedure Op (This : Object);
private
type Object is new A3_lInstantiation.Object
with record ... end record;
end A;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

57

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Note a constraint on mixin inheritance: if any of the mixins has a
superclass, it is necessary for the “main” superclass to be a
specialization of the same class (otherwise the instantiation would
be illegal). This means that the following diagram is illegal because
B is not identical to A and is not a subclass of A:

|T'.-p-=|'r'|:lrlr|:r|1-all:lr =x Tagged |-|

1t

—A

Ivpalmplareaniaion == Mas * |

| UI

| Typalmplameration == Tagged'

In the case of triple inheritance and beyond, this rule becomes
slightly more complicated: all the mixins must either have no
superclass, or have the same superclass, and the main class must
be identical to this common superclass, or inherit from it.

Multiple Views Inheritance

58

In multiple views inheritance, all the superclasses of A must have
their code generation property Typelmplementation set to Tagged.
In addition, one of the inheritance (or generalization) relationships
must be identified as the main line of descent by giving it the name
“main”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Generalization Relationships (Inheritance)

There are a number of restrictions on multiple views inheritance.
First, all superclasses must be limited, by setting their code
generation property IsLimited to True (or because IsLimited is
dominated by another property which forces limited-ness). Second,
the main inheritance relationship cannot be “less visible” than the
auxiliary relationships. For instance, it is not possible to have a
private main inheritance and a public auxiliary inheritance. On the
other hand, it is possible to have only private inheritance, or to
have a public main inheritance, a public auxiliary inheritance, and
another, private, auxiliary inheritance.

All the operations of the superclasses are inherited, and default
bodies are generated if necessary. If two operations coming from
different superclasses would result in homograph declarations for
the class A, the operation coming from the main line of inheritance
has precedence.

Assuming that the main superclass is called Al and the auxiliary
superclass is called A2, the following code is generated (again, we
use the defaults for those code generation properties that have no
direct bearing on multiple inheritance):

package Al is
type Object is tagged limited private;
procedure Opl (This : Object);
private
type Object is tagged limited
record ... end record;
end Al;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 59

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

package A2 is
type Object is tagged limited private;
procedure Op2 (This : Object);
private
type Object is tagged limited
record ... end record,
end A2;

with Al;

with A2;

package A is
type Views;

type A2_With_Back_Pointer
(Back : access Views'Class) is
new A2.0bject with null record;

type Views is abstract new Al.Object with
record
A2_View : A2_With_Back_Pointer (Views'’Access);
end record;

type Object is new Views with private;
procedure Op (This : Object);
procedure Op2 (This : Object);
private
type Object is new Views with
record ... end record,;
end A;

The body of subprogram Op2 is generated as follows, in order to
call the corresponding subprogram of the superclass:

procedure Op2 (This : Object) is
begin

A2.0p2 (A2.0bject (This.A2_View));
end Op2;

60 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Generalization Relationships (Inheritance)

The same scheme extends to triple inheritance and beyond. If we

add superclass A3, we obtain:

package A3 is
type Object is tagged limited private;
procedure Op3 (This : Object);
private
type Object is tagged limited
record ... end record;
end A3;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

61

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

with Al;

with A2;

with A3;

package A is
type Views;

type A2_With_Back_Pointer
(Back : access Views'Class) is
new A2.0bject with null record;

type A3_With_Back_Pointer
(Back : access Views'Class) is
new A3.0bject with null record,;

type Views is abstract new Al.Object with
record
A2_View : A2_With_Back_Pointer (Views'Access);
A3_View : A3_With_Back_Pointer (Views'Access);
end record,;

type Object is new Views with private;
procedure Op (This : Object);
procedure Op2 (This : Object);
procedure Op3 (This : Object);
private
type Object is new Views
with record ... end record;
end A;

62 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Generalization Relationships (Inheritance)

The interaction with the visibility of inheritance relationships is

worth expressing in detail. In the first case, if the inheritances from
Al and A2 are changed to be private (or protected), we don’t need
the intermediate type Views anymore, and the code generated for A

becomes:
_M | | A2 |
1:u|r| ’
| rrEnEnne
with Al;
with A2;
package A is

type Object is tagged limited private;
procedure Op (This : Object);
private
type A2_With_Back_Pointer
(Back : access Object’Class) is
new A2.0Object with null record;

type Object is new Al.Object with
record

A2_View : A2_With_Back_Pointer (Object'/Access);
end record;

procedure Op2 (This : Object);
end A;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 63

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

In the case of triple inheritance, if the visibility of the inheritance
from A3 is changed to private (or protected) the generated code for
A becomes:

A3

1Ir

|

R o

v |:"'|-'4-_'-=|
Il'hal fanca |

64 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Operations

with Al; with A2; with A3;
package A is
type Views;

type A2_With_Back_Pointer
(Back : access Views'Class) is
new A2.0Object with null record;

type Views is abstract new Al.Object with
record
A2_View : A2_With_Back_Pointer (Views'Access);
end record;

type Object is new Views with private;
procedure Op (This : Object);
procedure Op2 (This : Object);
private
type A3_With_Back_Pointer
(Back : access Object’Class) is
new A3.0Object with null record;
type Object is new Views with
record
A3_View : A3_With_Back_Pointer (Object'Access);

end record;

procedure Op3 (This : Object);
end A;

Operations

This section contains the following topics:

= “Accessor Operations” on page 66

= “Standard Operations” on page 67

= “Subprogram Implementation” on page 68
= “Visibility” on page 69

= “Overriding” on page 69

= “Bodies” on page 70

The operations given in a class specification are simply copied in
the generated code.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 65

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

If the code generation properties ImplicitParameter of the project
and of the class are both True, a first parameter may be added to
the profile of each operation. The type of this parameter is the type
associated with the given class, its mode is given by the code
generation property ImplicitParameterMode of the operation, and
its name is given by the code generation property
ImplicitParameterName of the class. These properties default to In
and “This”, respectively.

The code generation property ImplicitParameter at the project level
defaults to False. The code generation property ImplicitParameter
of the class defaults to True. By having two code generation
properties, one at the project level and one at the class level,
Rose/Ada supports the following usage patterns:

= The default is to never add this first parameter.

= By setting the code generation property ImplicitParameter to
True at the project level, a user may decide to add the first
parameter for all classes in the project.

= If some classes must be handled specially, and no first
parameter is required for them, the code generation property
ImplicitParameter of these classes may be set to False.

The code generation property ImplicitParameterMode can take the
values In, InOut and Out. There are also circumstances in which it
is useful to generate a subprogram taking an access parameter in
addition (or instead of) the subprogram taking an object parameter.
The code generation property GenerateAccessOperation controls
whether a subprogram taking an access parameter is generated.
This property is only used if ImplicitParameter is True.

Accessor Operations

66

Each attribute, “has” relationship, and association role has two
code generation properties, GenerateGet and GenerateSet, which
control generation of accessor operations for this attribute or
relationship. These properties default to False.

= The “get” accessor is used to read the corresponding attribute
or relationship. It is a function taking an object of the class and
returning the type of the attribute.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Operations

= The “set” accessor is used to update the corresponding
attribute or relationship. It is a procedure taking as in out
parameter an object of the class, and a value of the type of the
attribute.

For attributes and “has” relationships which are translated into
discriminants, the “set” accessor doesn't make sense, and is
therefore not generated (in other words, GenerateSet is dominated
by RecordFieldImplementation). The “get” accessor is not generated
either, because a discriminant is directly visible to clients, even for
a private type: GenerateGet is also dominated by
RecordFieldimplementation in this case.

In addition to (or instead of) the “get” and “set” accessors which
take object parameters, Rose/Ada can also generate accessors
which take access parameters. This is controlled by the code
generation properties GenerateAccessGet and GenerateAccessSet.

The boolean code generation properties InlineGet and InlineSet of
the attribute, relationship or role control whether a pragma Inline
is generated for the accessor operations. These properties default
to True.

Standard Operations

Standard operations, not explicitly present in the model, may be
generated if the code generation property
GenerateStandardOperations of the project is set to True (it
defaults to False):

= A constructor is generated if the code generation property
GenerateDefaultConstructor is not DoNotCreate (this property
may take the values Function, Procedure and DoNotCreate; the
default is Function). The name of the constructor is given by
DefaultConstructorName (this property defaults to “Create”).

= A copy constructor is generated if the code generation property
GenerateCopyConstructor is not DoNotCreate (this property
may take the values Function, Procedure and DoNotCreate; the
default is Function). The name of the constructor is given by
CopyConstructorName (this property defaults to “Copy”).

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 67

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

= A destructor is generated if the code generation property
GenerateDestructor is not DoNotCreate (this property may take
the values Procedure and DoNotCreate; the default is
Procedure). The name of the destructor is given by
DestructorName (this property defaults to “Free”).

= An equality operator is generated if the code generation
property GenerateTypeEquality is not DoNotCreate (this
property may take the values Function and DoNotCreate; the
default is DoNotCreate). The name of the operator is given by
TypeEqualityName (this property defaults to
“${quote}=${quote}”).

If an access type is generated for the class (in addition to the true
object type), and the class is not abstract, then the above
properties also control generation of the subprograms pertaining to
this access type. For instance, if GenerateCopyConstructor is set
to Function, and CopyConstructorName is set to “Copy”, two Copy
functions are generated: one for the object type, and one for the
associated access type. This rule only applies to the subprograms
described in this section: it doesn't apply to “get” and “set”
accessors, or to user-defined subprograms.

On an abstract class, the above subprograms, if generated, are
made abstract.

Note that making the constructors functions (as opposed to
procedures) on classes which map to limited types may lead to
difficulties, and is not recommended (although it may make sense
in some circumstances).

The boolean code generation properties InlineDefaultConstructor,
InlineDestructor, InlineCopyConstructor and InlineEquality of the
class control whether a pragma Inline is generated for the above
operations. All these properties default to False.

Subprogram Implementation

The code generation property Subprogramimplementation is used
to control the code generated for a subprogram body. This property
can take the values Body, Renaming, Separate, Abstract and Spec.
The default is Body. The semantics of these choices are as follows:

= If Subprogramimplementation is set to Body, a normal body is
generated.

68 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Operations

Visibility

Overriding

= If Subprogramlmplementation is set to Renaming, a renaming-
as-body is generated for the subprogram body. The name of the
renamed subprogram is obtained from the property Renames of
the operation.

» If Subprogramlimplementation is set to Separate, a stub is
generated instead of a normal body.

= If Subprogramimplementation is set to Abstract, no body is
generated, instead the specification of the subprogram includes
the reserved words “is abstract” (making it an abstract
subprogram). It is an error to set Subprogramlmplementation
to Abstract on an operation of a non-abstract class.

= If Subprogramlmplementation is set to Spec, no body is
generated, but the subprogram is not made abstract. This
option (which doesn't result in legal code) is intended to be
complemented by the insertion, in some protected region of the
generated code, of a pragma (like Import or Interface) which
specifies the implementation of the subprogram without
providing an explicit body.

In addition, the code generation property Inline is used to control
whether or not a pragma Inline is generated for the operation. This
property defaults to False.

The visibility of each operation determines where it is declared. A
public operation is declared in the visible part of the associated
package, a protected or private operation is declared in the private
part of the package, and an operation with only implementation
visibility is declared in the package body (note that such an
operation is not inherited).

The code generator takes care to generate the proper overriding
subprogram declarations whenever the language requires it:

» If an abstract operation is inherited by a concrete class. This
includes the case where the concrete class has several
superclasses, either because of mixin inheritance, or because
of multiple views inheritance.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 69

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

Bodies

70

= If a function returning a value of the superclass is inherited by
a concrete class. The language rules state that such a function
becomes abstract by derivation.

= If one of the “back pointer” types generated for multiple views
inheritance inherits an abstract operation. That's because the
“back pointer” types are always concrete.

In addition to these cases where overriding is required by the
language, the code generator also generates an overriding
declaration if the inherited operation has it code generation
property GenerateOverriding set to True. This property defaults to
True.

Each overriding subprogram declaration has the same parameter
names, modes and default values as that of the original
subprogram. The proper type name is substituted for each
controlling operand. The types of other operands are left
unchanged.

Rose/Ada generates a body for each overriding subprogram
declaration. This body does a view conversion of its controlling
parameters, and calls the corresponding operation of the parent
type (or superclass). While this implementation in itself is not
extremely useful, it turns out that most overridden subprograms
first call the operation of their parent type, and then perform
additional processing specific to the added record components. By
generating the call to the superclass’ operation, Rose/Ada makes
it easy to adhere to this model. (This is similar to sending a
message to super in languages like Smalltalk or Java.)

Note that there is not property GenerateOverriding for the “get” and
“set” accessor. That's because most of the time the inherited
implementation is appropriate. Therefore, no overriding
declaration is ever generated for these accessors.

Except for the accessor operations, the body generated for an
operation contains only a [statement] prompt. This ensures that
the code can be compiled under Rational Apex, but that any
attempt to execute an operation whose body is incomplete raises
Program_Error. Note that, if using another compiler, the prompt is
likely to result in syntax errors: legal code must be written to
replace these dummy bodies before the code can be compiled.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

User-Defined Initialization, Assignment and Finalization

The code generation properties EntryCode and ExitCode associated
with an operation contain Ada statements which are copied
verbatim at the beginning and at the end, respectively, of the
statement part of the generated body. These properties are empty
by default.

User-Defined Initialization, Assignment and Finalization

Controlled types may be produced for any type whose
Typelmplementation is Tagged. In addition to producing the proper
type structure, Rose/Ada is also capable of generating overriding
declarations for the procedures Initialize, Adjust and Finalize, and
for the operator “=".

The code generation property TypeControl of a class may take the
following values:

= None: the type is not a controlled type

= InitializationOnly: the type is a controlled type, with only user-
defined initialization.

= AssignmentFinalizationOnly: the type is a controlled type, with
only user-defined assignment and finalization.

= All: the type is a controlled type with both user-defined
initialization and user-defined assignment and finalization.

TypeControl defaults to None. For a class whose
Typelmplementation is not Tagged, TypeControl is dominated, and
the generated type is not a controlled type. A class whose
TypeControl property is not None must not be involved in a
multiple inheritance relationship.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 71

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

When discussing the effect of TypeControl, we'll use the following
class hierarchies as examples:

| 3]

TypeContml /= "-il.'w_'-: '

If TypeControl is not None, the declaration of the type associated
with a class is changed as follows:

= If the class has no superclass, the type is derived from
Ada.Finalization.Controlled or
Ada.Finalization.Limited_Controlled, depending on the value of
the property IsLimited. This derivation occurs on the full type
declaration:

package A is
type Object is tagged private;
private
type Object is new Ada.Finalization.Controlled with
record
-- Attributes go here
end record;
end A;

= If the class has a superclass, an auxiliary type is introduced,
which contains the attributes of the class, and is used to build
the actual type associated with the class. Again, this type is
derived from Ada.Finalization.Controlled or
Ada.Finalization.Limited_Controlled, depending on the value of
the property IsLimited:

72 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

User-Defined Initialization, Assignment and Finalization

with B;
package C is
type Object is new B.Object with private;
private
type Controlled_Object is new
Ada.Finalization.Controlled with
record
-- Attributes go here
end record;
type Object is new B.Object with
record
Contents_Of_C : Controlled_Object;
end record;
end C;

The name of the auxiliary controlled type is given by the code
generation property TypeControlName, which defaults to
Controlled_${type}. The name of the intermediate record
component is always Contents.

If the code generation property TypeControl is set to
InitializationOnly or to All, an overriding declaration for
Initialize is inserted in the private part of the package (even if
the controlled type is declared in the visible part):

package A is

type Object is tagged private;
private

type Objectis ...;

procedure Initialize (What : in out Object);
end A;

package C is

type Object is new B.Object with private;
private

type Controlled_Obiject is ...

procedure Initialize

(What: in out Controlled_Object);

type Object is new B.Object with ...

end C;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

73

Chapter 1 Mapping the UML Notation to Ada 95 — Code Generation

74

If the code generation property TypeControl is set to
AssignmentFinalizationOnly or to All, overriding declarations are
inserted for Adjust and Finalize in the private part of the package,
and a declaration for the operator “=" is inserted in the visible part.
Adjust is only declared if IsLimited is False:

package A is

type Object is tagged private;

function "=" (Left, Right : in Object) return Boolean;
private

type Objectis ...

procedure Adjust (What : in out Object);

procedure Finalize (What : in out Object);
end A;

with B;
package C is
type Object is new B.Object with private;
function "=" (Left, Right : in Object) return Boolean;
private
type Controlled_Object is ...
procedure Adjust (What : in out Controlled_Object);
procedure Finalize (What : in out Controlled_Object);
type Object is new B.Object with ...
end C;

In the declaration of procedures Initialize, Adjust and Finalize, the
name of the only parameter is given by the code generation
property ImplicitParameterName for the class. In the declaration of
operator “=", the parameters are named Left and Right.

The code generation property TypeControl, when it is not None,
dominates the properties GenerateDefaultConstructor,
DefaultConstructorName, GenerateCopyConstructor,
CopyConstructorName, GenerateDestructor, DestructorName,
GenerateTypeEquality and TypeEqualityName: no standard
operation is generated, and the name of the equality operator,
when it is generated, is always “=". This is because standard
operations and controlled types are two different mechanisms to
achieve similar effects, and they are not intended to coexist in a
single class.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

User-Defined Initialization, Assignment and Finalization

GenerateGet and GenerateSet may be used in conjunction with
controlled types: the accessor operations which are generated
correctly take into account the internal structure of the type
(possibly with an auxiliary controlled type) to access the various
components.

A class whose code generation property TypeControl is not None
may be abstract. However, the auxiliary controlled type (if
generated) is never made abstract, and the Initialize, Adjust and
Finalize procedures (if generated) are not made abstract either.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 75

Chapter 2

o
v

Ada Code Generation

This chapter contains the following topics:

= “What is the Ada Generator?” on page 77

= “Basic Steps for Iterative Code Development” on page 78
s “Refining the Subsystem and View Structure” on page 87
= “Specifying Additional Ada Unit Contents” on page 89

What is the Ada Generator?

The Ada Generator is the code generation capability that is
provided by the Ada 95 add-in to Rational Rose. The commands for
the Ada Generator are located in the Ada 95 submenu of the Rose
Tools menu.

You use the Ada Generator to generate Ada units from information
in a Rose model. These units contain Ada code constructs that
correspond to the notation items (classes, relationships, and
adornments) you have defined in the model via diagrams and
specifications.

The Ada Generator provides code-generation properties that
control the kinds of Ada code constructs that are generated for the
various kinds of notation items in the model. You can use the
default values for these properties or you can specify different
values to generate the code you want.

The Ada Generator inserts specially-marked code regions into the
generated files where you can add further code (for example, to fill
in extra private declarations in a package specification). By default,
such regions are preserved, so you can regenerate the file without
losing the code you added.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 77

Chapter 2 Ada Code Generation

The Ada Generator may generate code in a directory hierarchy or,
if Rational Apex is available, in subsystems and views. In order to
generate code in subsystems and views, the Apex add-in must be
activated, and the property CreateApexSubsystemAndView of the
Apex add-in must be set to “yes”. The Ada Generator, when
generating code for Apex, makes use of some properties defined by
the Apex add-in. These properties have a name which starts with
“Apex” and are described in the documentation for the Apex add-in.

Basic Steps for Iterative Code Development

78

The basic strategy for generating code is to use the default values
for code-generation properties initially, and later introduce non-
default values as needed. This section describes the steps for
generating Ada units from a Rose model.

This section contains the following topics:

= “The Generated Files” on page 79
= “The Basic Code Contents” on page 79
= “Entering Parameters for Parameterized classes” on page 80

= “Entering Static Attributes and Metaclass Attributes” on
page 83

= “Evaluating the Generated Code” on page 84

= “Completing the Implementation of the Generated Code” on
page 85

= “Regenerating Code” on page 86

In order to generate Ada 95 code, you must first activate the
Ada 95 add-in using the Add-In Manager, which is accessible from
the Add-Ins menu.

Then, you must set the default language for your model to be
Ada 95: choose the Tools:Options menu item, and in the Options dialog
box click the Notation tab; use the Default Language list to select

Ada 95.

You may generate a different language for some classes by
associating them with a component that has a different language.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Basic Steps for Iterative Code Development

By default, code is generated in the current directory or working
view (determined initially when you start Rose and changed each
time you open a model in a different view). If this is unacceptable,
you can specify a default view before generating code.

1. Start Rose, if necessary.

2. Create or open the Rose model from which you want to
generate code and display an appropriate class diagram.

3. Select one or more class items (classes, utilities, parameterized
classes and bound classes) or UML packages.

4. Choose the Code Generation command from the Tools:Ada 95
submenu. If code generation fails, inspect the log.

5. Evaluate the generated code. Based on your evaluation, you
can change the model and/or code-generation properties, and
then regenerate the code.

The Generated Files

The generated files are placed in a directory based on the properties
of the model and the component UML packages. By default, each
logical or component UML package in Rose is associated with an
Apex view within a subsystem (if Apex is available) or with a
hierarchy of directories (if Apex is not available).

In general one specification file (.1.ada) is generated for each class
you selected in the diagram. The name of each file is derived from
the name of the corresponding class. If you selected a UML
package, a file is generated for each class in the UML package.

Note that the generated file structure realizes the physical portion
of your Rose model. If you have developed only a logical model
(class diagrams), the Ada Generator assumes an implicit physical
model in which each class is effectively assigned to an implicit
module specification, and therefore an Ada package specification.

The Basic Code Contents

The content of the generated code is based on the notation items in
the logical portion of your model. In general:

s Each selected class generates a private record declaration and
visible operations in a package specification. In addition, an
optional access type, known as a handle, can be generated.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 79

Chapter 2 Ada Code Generation

= Each of a class’s “has” relationships generates a component.
The relationship’s containment and multiplicity partly
determine the type of the component, and may create
additional supporting type declarations.

» Each of a class’s navigable association roles generates a
component. The role's containment and multiplicity partly
determine the type of the component, and may create
additional supporting type declarations.

= Each operation in a class specification generates a subprogram
declaration in the package specification.

= Generalization relationships generate type derivation.

= Each selected utility generates a package specification with
subprogram and object declarations only.

= “Has”, generalization, association and dependency
relationships result in appropriate with clauses.

= If desired, a body is generated for each specification, with
stubbed code for the user-defined operations.

The Ada Generator takes into account all model information that
pertains to the selected class items, even information that does not
appear in the diagram. For example, a component is generated for
every “has” relationship that is defined for a class, including “has”
relationships defined on other diagrams or in the class
specification.

Entering Parameters for Parameterized classes

80

The parameters for parameterized classes are entered in Rose
using a dialog box which has two fields: Name and Type. Because
there is such a large variety of formal parameters in Ada generics,
and of discriminants in unconstrained types, users must follow a
convention that specifies the nature of the parameters. Roughly
speaking, the Name field contains the name of the parameter, and
may start with an Ada keyword that indicates its nature. The type
field contains any additional information that may be needed to
complete the formal parameter or discriminant declaration. The
Ada Generator adds the syntactic glue required by the language,
such as the reserved words with, is, new, and the colons and
semicolons.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Basic Steps for Iterative Code Development

Here is a detailed list of the possible formal parameters, and how
they may be entered in the Type and Name fields. Note that an
anonymous access type is only allowed if the Unconstrained Type
implementation is used. Conversely, formal types, procedures,
functions, packages, and formal object with an explicit mode are
only legal if the Generic implementation is used.

s Generic formal object: the Name field contains the name of the
object; the Type field contains its type, possibly followed by a
default value, and possibly preceded by a mode. For example:

Name: Foo
Type: inout Bar

or:

Name: Foo
Type: Bar:=3

In the case of the Unconstrained Type implementation, the
above notation may be used to represent an access
discriminant:

Name: Foo
Type: access Bar

= Generic formal type: the Name field contains the reserved word
type, followed by the name of the type, and by discriminants, if
any; the Type field contains the type definition. For example:

Name: type Foo (D : Integer := 3)
Type: tagged private

= Generic formal procedure: the Name field contains the reserved
word procedure, followed by the name and parameters of the
procedure; the Type field contains the default name for the
formal procedure, if any. For example:

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 81

Chapter 2 Ada Code Generation

82

Name: procedure Foo (X : in out Integer)
Type: Bar.Func

= Generic formal function: the Name field contains the reserved
word function, followed by the name, parameters and result
type of the function; the Type field contains the default name
for the formal function, if any. For example:

Name: function Foo (X : Float) return Boolean
Type: <>

= Generic formal package: the Name field contains the reserved
word package followed by the name of the formal package. The
Type field contains the name of the corresponding generic
package, followed by instantiation parameters. For example:

Name: package Foo
Type: List_Generic (<>)

For actual parameters (appearing in bound classes) the convention
is the following: the Name field contains the value of the actual
parameter, and the Type field contains the name of the formal
parameter. For example, if a parameterized class has the following
parameters:

Name: Foo
Type: Float
it may be instantiated using the following parameters:

Name: 3.14
Type: Foo

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Basic Steps for Iterative Code Development

Entering Static Attributes and Metaclass Attributes

Static attributes and metaclass attributes can result in a wide
variety of (package-level) declarations. They are entered in Rose
using a dialog box which has two fields: Name and Type. In order
to control the nature of the declaration that is generated, users
must follow the following conventions:

= The Name field must contain the simple name of the entity
being declared, i.e., the part that appears before the colon in
the Ada declaration. No colon or semicolon may appear in the
Name field.

= The Type field must contain anything that appears after the
colon in the Ada declaration. However, no initial value must be
specified. Instead, the code generation property InitialValue
must be used if an initial value is to be generated for the
declaration. No colon or semicolon may appear in the Type
field.

The following examples demonstrate how to use these fields, and
what is the corresponding Ada declaration:

= Variable:
Name: Foo
Type: Integer
Generated declaration:
Foo : Integer;
= Constant:
Name: Foo

Type: constant Boolean

Code generation property InitialValue: “False”
Generated declaration:

Foo : constant Boolean := False

= Named Number:

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 83

Chapter 2 Ada Code Generation

Name: Foo
Type: constant

Code generation property InitialValue: “3.14”
Generated declaration:

Foo : constant := 3.14;

= Exception:
Name: Foo
Type: exception
Generated declaration:
Foo : exception;

= Renaming:
Name: Foo
Type: Integer renames Bar
Generated declaration:

Foo : Integer := Bar;

Evaluating the Generated Code

84

After you have located the generated files, you evaluate them to
determine whether to use them as generated. Based on your
evaluation, you may decide to regenerate the code after refining the
model, adjusting the values of code-generation properties, or both.

Use the information provided in the rest of this chapter to guide
your evaluation. Each section lists some of the things you can
change about a particular aspect of code generation.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Basic Steps for Iterative Code Development

Completing the Implementation of the Generated Code

When you are satisfied with the way code is generated from your
model, you complete the code by implementing the package bodies.
If you did not use the Ada Generator to create stubbed bodies, you
can select the specifications in Apex, and choose the Build Body
command from the Compile menu. Rational recommends, however,
that you let Rose generate code for the bodies, since it will produce
the appropriate code regions.

To complete the implementation of your code, you may insert
additional statements and/or declarations in the preserved code
regions. A preserved code region is a special block of comments
starting with --## and containing the clause preserve=yesPreserved
code regions are preserved by the code generator the next time the
code is regenerated. This makes sure that you may continue
evolving your model in Rose after you have started refining the
implementation of the code. Note that some of the code regions that
Rose generate have preserve=nq so if you want them preserved, you
must change this clause to preserve=yes

You cannot add your own code regions: if you try to do this, they
will be considered orphaned by the code generator (see below). You
must use the code regions produced by the Ada Generator. Here is
a list of the code regions that the Ada Generator produces:

= The module.cp region, which appear at the beginning of the
unit, contains the text found in the property CopyrightNotice of
a Module Spec/Body. This region may be preserved if the
region is modified manually.

= The module.withs region, which follows the with clauses and
precedes the compilation unit, may be used to insert additional
with clauses, use clauses, or pragmas.

= The module.declarations region, which occurs at the beginning
of the package visible part and at the beginning of the package
body, may be used to insert additional declarations.

= The module.additionalDeclarations region, which occurs at the
end of the package visible part and at the end of the package
body, may be used to insert additional declarations.

= The module.privateDeclarations region, which occurs at the
beginning of the private part, may be used to insert additional
declarations.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 85

Chapter 2 Ada Code Generation

The module.additionalPrivateDeclarations region, which occurs
at the end of the private part, may be used to insert additional
declarations.

The module.statements region, which covers the statement
part of the package body, may be used to insert statements
which are executed at elaboration time. By default, the
statement part of any package body contains a single null
statement.

The class_name.operation_name%context.id.declarations
region, which covers the declarative part of each generated
subprogram, and may be used to insert declarations in the
subprogram body. The name of this section is generated by
Rose from the class name, the operation name, and various
other pieces of information that help disambiguate the identity
of the subprogram.

The class_name.operation_name%context.id.statements
region, which covers the statement part of each generated
subprogram, and may be used to insert statements in the
subprogram body. The name of this section is generated by
Rose from the class name, the operation name, and various
other pieces of information that help disambiguate the identity
of the subprogram.

Regenerating Code

86

You can regenerate code for a given set of class items by following
the same steps you used to generate the original code. When you
regenerate code into existing files, the current contents of these
files are saved in backup files before the new contents are written.
By default, each backup file has the extension .1.ad~ or .2.ad~, as
appropriate. The same backup files are overwritten each time you
regenerate code to the same source-code files. The regenerated
files:

Reflect any changes you made to the model or to properties.

Contain any code regions you edited in the previously
generated version of the files, provided that the preserve
keyword for each region was set to yes.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Refining the Subsystem and View Structure

Note that if you delete or rename a notation item for which a code
region was preserved, that region is “orphaned” when you
regenerate code. This means that the Ada Generator places the
code region in a special section at the end of the regenerated file so
that you can decide whether to reuse any of the edits you made in
that region. The Ada Generator automatically changes the preserve
keyword to no in orphaned regions, so that they are discarded the
next time you regenerate the file.

Refining the Subsystem and View Structure

This section contains the following topics:

= “Determining the Directory for an Ada File” on page 87
“Mapping Classes and Modules to Ada Units” on page 88
= “Specifying Filenames” on page 88

Determining the Directory for an Ada File

There are several properties which the Ada Generator uses when
determining the directory for an Ada file, if Apex is available:

= The project properties Directory and ApexView
» The UML package properties ApexSubsystem and ApexView

The directory for a module is based on the concatenation of the
project Directory property, and the UML package’'s ApexSubsystem
and ApexView properties. Modules must be contained within
component UML packages.

The directory for a class which has been assigned to a module is
determined by applying these rules to its assigned module. The
directory for a class which has not been assigned to a module is
based on the UML package to which it is assigned: if it is enclosed
in a logical UML package which is assigned to a component UML
package, its directory is created from the ApexSubsystem and
ApexView properties for the component UML package. If
ApexSubsystem is blank, the subsystem name is set to the name
of the component UML package.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 87

Chapter 2 Ada Code Generation

If it is enclosed in a logical UML package which is not assigned to
a component UML package, its directory is created from the default
values of ApexSubsystem and ApexView properties, plus the
project Directory property. If the default ApexSubsystem property
is blank, the subsystem name is set to the name of the logical UML
package.

If Apex is not available, a hierarchy of directories is created using
the name of the component UML packages (if they exist) or of the
logical UML packages (in the absence of component UML
packages).

Mapping Classes and Modules to Ada Units

By default, each class is assigned to an implicit module
specification. From these implicit modules, the Ada Generator
produces a package specification containing the class definition.
The units are generated according to the values in the default
module-spec property set.

To change the default mapping from classes to units, you may
either change the class name, or assign two or more classes to the
same module, as follows:

1. Introduce component diagrams into your model.

2. Create a module specification for each Ada specification you
want to generate.

3. Assign each class to the appropriate module via the class's
specification: to generate a package specification, you assign
the class to a module specification. To generate the code for
multiple classes in a single package, you assign each class to
the same module.

Specifying Filenames

88

The name of a generated file has two parts: a name and an
extension, separated by a period (for example, foo.1.ada). The
name is generated automatically, and the extension is controlled
by different code-generation properties. If you are using Rational
Apex, you should not change these values.

When afile is generated from a module, the filename is determined
by the name of the module: it is the same as the module name,
except in lowercase.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Specifying Additional Ada Unit Contents

In the default case where classes are mapped to implicit modules,
each implicit module assumes the name of the corresponding
class. Consequently, each generated filename is based on the
implicit module name (and, indirectly, on the class name).

To specify a non-default file name for a generated class, introduce
a component diagram, if necessary, and assign the class to a
module specification with the desired name.

Specifying Additional Ada Unit Contents

This section contains the following topics:

= “Adding Structured Comments” on page 89
s “Adding With Clauses” on page 89

You can tailor aspects of the structured comments and context
clauses that appear at the beginning of the generated Ada units.
You can also cause the Ada Generator to generate visible
declarations at the beginning of one or more units.

Adding Structured Comments

The Ada Generator inserts a block of structured comments at the
beginning of each generated file. You can set properties to generate
a copyright notice string in these comments.

In the default case where classes are mapped to implicit modules,
you edit properties in the default module-spec property set, which
is attached to the implicit modules. If you have explicitly assigned
classes to modules, you must edit each property set that is
attached to a module.

Adding With Clauses

By default, the Ada Generator produces with clauses in units based
on class relationships and module dependencies in your model. If
you want additional with clauses to appear in one or more
generated files, use one of the following methods, as appropriate.

If you want more generated units to reference each other in with
clauses, you can inspect the relationships among existing items in
the model to determine whether you have represented them
adequately.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 89

Chapter 2 Ada Code Generation

90

For example, you may find that you need to add a uses relationship
from one class to another, which will cause a with clause to be
generated in the first class's Ada unit. (A with clause is generated
only if the classes are generated in different units.)

Similarly, you can introduce dependencies among modules in a
module diagram, which result in generated with clauses.

If you want any of the generated units to reference units that are
not among the generated units, you can use the AdditionalWiths
property to insert additional with clauses to reference those units.

If you want to put a special with clause in just one or two generated
units, you can do so by editing these units directly. To do this, you
insert the desired with clauses between these source markers at
the beginning of the unit:

--##begin module.withs preserve=yes
--##tend module.withs

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

‘ Chapter 3
V‘ Reverse Engineering from Apex

Rose can analyze Ada 95 code compiled with Rational Apex and
generate a Rose model containing class and component diagrams
that present a high-level view of the code.

Note that this capability is only available for Ada units that have
been compiled with the Apex compiler, and that all units must be
in the installed (analyzed) or coded states.

This chapter contains the following topics:

= “Basic Operations” on page 91
= “Dialog box options” on page 93
= “How Ada is Represented in a Class Diagram” on page 94

Basic Operations

The reverse engineering tool can create both class diagrams and
component diagrams. Class diagrams show the high-level
relationships between Ada units and types, and the operations and
data structures associated with each type. Component diagrams
come in two forms:

= An Ada unit diagram, which displays the “with” structure of the
Ada units in a program, independent of subsystem structure.

= A subsystem diagram, which displays the import structure of
the views you specify.

Within each view is a display of the “with” structure of the Ada
units in that view.

= “Creating the Model File” on page 92
= “Displaying the Model” on page 92

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 91

Chapter 3 Reverse Engineering from Apex

Creating the Model File

No matter which type of diagram you want, the reverse engineering
tool always generates a model file, called rose_ada.mdl by default.
This file can be opened within Rose for layout and display.

Select the Ada unit or view you wish to diagram, and choose Reverse
Engineer... from the Rose:Ada Apex submenu. You will see the Reverse
Engineer dialog box, where you can modify various options. Choose
OK or Apply to create the model file. See “Dialog box options” on
page 93.

Displaying the Model

92

Once you have created the model file, you can load it into Rose.
Select the file in the directory viewer (you may need to do
File:Redisplay first). Then choose Start Rose from the Rose:Ada
submenu. This will invoke Rose and display the model.

Note: For traversal to work, you must invoke Rose from the Apex
menu. If Rose is already running before you started Apex, exit Rose
and restart from the Apex menu command.

Once Rose is invoked, your next action depends on whether you
created a class diagram or a component diagram. If you created a
class diagram, choose Tools:Layout Diagram to format the diagram. If
you created a component diagram, choose Browse:Component Diagram
Select the <Top Level>/Main component diagram and choose OK. When
the module is displayed, you will see the UML packages or units
displayed in a straight diagonal line. Layout the diagram by
choosing Tools:Layout Diagram .

If you created a component diagram, you can double-click on a
UML package box to see the units within that view. You will need
to run Tools:Layout Diagram on each UML package individually.

If you created a class diagram based on Apex views, you will see

UML packages in the top-level class diagram. Double-click on the
UML package to see the classes and utilities in that view. You will
need to run Tools:Layout Diagram on each UML package individually.

Use File:Save to save the model with the diagrams laid out.

To traverse from an unit in a Rose diagram to the actual Ada source
code, select the unit and choose Browse:Browse Spec . This will invoke
the Apex editor for that unit.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Dialog box options

Dialog box options

Here is a brief description of each option in the Reverse Engineer
dialog box:
Include Closure of Views/Units

With this button selected, reverse engineering processes all
selected views or units, plus the import closure or Ada closure. This
option is the default.

Exclude Views/Units with prefix

Use this option to exclude views or units starting with a given
prefix. For instance, you might want to exclude the
rational_dir/base/adaarea.

Include Views/Units With Prefix

Use this option to include only views or units starting with the
given prefix. This option would let you limit your diagram to a
particular project, for example.

Include only Views/Units selected

When this option is selected, only the views or units on the right
side of the Objects or Views area are included in the petal file.

Petal File Name

By default, reverse engineering creates a file called rose_ada.mdl.
Use this box to have it create a different file.

Include Classes

If you select this button, reverse engineer creates a class diagram
of the units or views selected.

Include Modules

If you select this button, reverse engineering creates a component
diagram of the units or views selected.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 93

Chapter 3 Reverse Engineering from Apex

If neither Include Classes nor Include Modules is selected, a
component diagram showing just the import structure of the
subsystems is created.

How Ada is Represented in a Class Diagram

94

The reverse engineering tool uses various algorithms to map Ada
constructs to the UML notation, based primarily on the mapping
described in Chapter 1.

This section contains the following topics:
“Mapping Package Specifications” on page 95

= “Mapping Type Declarations” on page 95

= “Mapping Subprogram Declarations” on page 96
= “Mapping Object Declarations” on page 96

= “Mapping “With” Clauses” on page 96

= “Special Handling for Subsystems in the $APEX_BASE
Directory” on page 97

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

How Ada is Represented in a Class Diagram

Mapping Package Specifications

An Ada package becomes a utility if contains subprograms which
are not operations of some class-like type declared in the same
package (see below). Each of these subprograms becomes an
operation of the utility.

Packages that contain only subprograms associated with some
class-like type do not correspond directly to an entity of the class
diagram (although the class-like types that they contain do). Their
name can still be used to generate the prefix of entity names that
use the colon notation.

All package specifications result in the creation of a package
specification module in the proper component diagram. The “with”
relationships between packages result in the creation of
dependency relationships between the corresponding modules.

Mapping Type Declarations

Only those types which are class-like result in the creation of a
class in the model. The distinction between class-like types and
other types is important, because it avoids cluttering the model
with classes that would correspond to minor type declarations,
introduced for low-level implementation reasons.

The definition of class-like types is as follows:

= A private or limited type is class-like (regardless of the nature of
its full type declaration.

= A record or tagged type is class-like (even if it is not private).

= A task or protected type is class-like (note that the existence of
a task or protected object doesn’t cause the creation of a class).

All other types are not class-like. Such types do not cause the
creation of a class, although they may be used to fill some other
information of the model (e.g., code generation properties). Note in
particular that (non-private) access and array types, which are
produced by the code generator to implement by-reference
relationships and multiplicities larger than 1, are not class-like

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 95

Chapter 3 Reverse Engineering from Apex

For record and tagged types, the components become either
attributes or “has” relationships. A “has” relationship is created if
the type of the component is a class-like type, or an access type
designating a class-like type, or an array type whose component is
class-like, or access to class-like. The containment and multiplicity
of the relationship is set accordingly, as well as the code generation
properties that describe the container and access types. In all other
cases an attribute is created.

The subprograms that include a class-like type as a parameter
become operations of the class.

Mapping Subprogram Declarations

All subprograms declared in an package specification, visible or
private, become operations. If there is a class-like type declaration,
and the subprogram includes a parameter of that type, or is a
function that returns that type, then the operation is assigned to
that class. Otherwise, the operation is assigned to the utility that
corresponds to the package.

Mapping Object Declarations

An object declaration is a variable, constant, or named number
declared in a package specification. Each object declaration
becomes a static attribute or “has” relationship.

If the package where the object is declared contains at least one
class-like type, and all subprograms are associated to classes, then
the objects become static attributes of the first class found in the
package. Otherwise, the objects become static attributes of the
utility.

An exception declaration, while not technically an object, maps to
an attribute using the same algorithms described above for
variables and constants.

Mapping “With” Clauses

96

Reverse engineering tracks the With clauses that would be
generated by the “has” relationships between the various classes in
the package specifications. The remaining “with” clauses, those
that are used for parameter types and return types, become
dependency relationships in the model.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

How Ada is Represented in a Class Diagram

Special Handling for Subsystems in the SAPEX_BASE Directory

Since the subsystems in the SAPEX_BASE directory are defined by
Apex, doing a complete analysis only wastes space in the model.
However, some analysis of the types defined in these subsystems is
required to guarantee that “has” relationships in other subsystems
have classes as their suppliers. Thus, reverse engineering
examines only the type declarations in these subsystems, and does
not evaluate attributes or operations.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 97

Chapter 4

Ada 95 Code Generation Properties

This chapter contains the following topics:

“Model Properties” on page 100
s “Class Properties” on page 105
= “Operation Properties” on page 119
= “Has Properties” on page 122
= “Attribute Properties” on page 127
= “Association Role Properties” on page 131
= “Association Properties” on page 135
= “UML Package Properties” on page 139
= “Module Spec Properties” on page 139
= “Module Body Properties” on page 142

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

99

Chapter 4 Ada 95 Code Generation Properties

Model Properties

This section contains the following topics:

“Spec File Extension” on page 100

“Spec File Backup Extension” on page 100
“Spec File Temporary Extension” on page 101
“Body File Extension” on page 101

“Body File Backup Extension” on page 101
“Body File Temporary Extension” on page 101
“Create Missing Directories” on page 102
“Generate Bodies” on page 102

“Generate Standard Operations” on page 102
“Implicit Parameter” on page 103

“Stop On Error” on page 103

“Error Limit” on page 103

“File Name Format” on page 104

“Directory” on page 104

Spec File Extension

The Spec File Extension property specifies the file name extension
that the Ada Generator uses when creating Ada specification files.
For Rational Apex the extension should be .1.ada.

Spec File Backup Extension

100

If the Ada Generator produces an Ada specification file that already
exists, the previous version of the file is renamed to a backup file.
The Spec File Backup Extension property specifies the file name
extension that the Ada Generator uses when creating backup files
for Ada specifications.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Model Properties

Spec File Temporary Extension
When the Ada Generator writes a specification file, it actually

writes the code to a temporary file. Once the code is completely
written, the following steps are taken:

1. The backup file (see the Spec File Backup Extension property)
is deleted, if there is one.

2. The existing specification file is renamed to the backup file,
assuming an existing specification file is present.

3. The temporary file is renamed to be the new specification file.

4. The Spec File Temporary Extension property specifies the
filename extension that the Ada Generator uses when creating
temporary specification files.

Body File Extension

The Body File Extension property specifies the file name extension
that the Ada Generator uses when creating Ada body files. For
Rational Apex, the extension should be 2.ada.

Body File Backup Extension

If the Ada Generator produces an Ada body file that already exists,
the previous version of the file is copied to a backup file. The Body
File Backup Extension property specifies the file name extension
that the Ada Generator uses when creating backup files for Ada

bodies.

Body File Temporary Extension

When the Ada Generator writes a body file, it actually writes the

code to a temporary file. Once the code is completely written, the

following steps are taken:

1. The backup file (see the Body File Backup Extension property)
is deleted, if there is one.

2. The existing body file is renamed to the backup file, assuming
an existing body file is present.

3. The temporary file is renamed to be the new body file.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 101

Chapter 4 Ada 95 Code Generation Properties

4. The Body File Temporary Extension property specifies the
filename extension that the Ada Generator uses when creating
temporary body files.

Create Missing Directories

The Create Missing Directories property indicates whether or not
the Ada Generator should create directories needed to mirror the
model's UML package hierarchy, or stop and report an error if such
directories are missing.

The default setting is True.

Generate Bodies

The Generate Bodies property indicates whether or not the Ada
Generator should create Ada body files for the classes or modules
that are selected for code generation.

When True, the Ada Generator will automatically create Ada bodies
for selected classes and for module specs which have
corresponding module bodies defined for them. Ada bodies will not
be created for module specs which have no corresponding module
body.

When False, the Ada Generator will not automatically create Ada
bodies for selected classes or module specs. Ada bodies will still be
created for module bodies that are explicitly selected.

The default setting is False.

Generate Standard Operations

102

The Generate Standard Operations property indicates whether or
not the Ada Generator should create the standard operations for
the classes selected for code generation. The property is used in
conjunction with the class property of similar name. When set to
True, the class property is then taken into consideration. When set
to False, no standard operations are generated.

The default setting is False.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Model Properties

Implicit Parameter

The Implicit Parameter property indicates whether or not the Ada
Generator should provide an implicit class parameter object for all
the user-defined operations of a class. The property is used in
conjunction with the class property of similar name. When set to
True, the class property is then taken into consideration. When set
to False, no implicit parameter is generated.

The default setting is False.

Stop On Error

The Stop On Error property indicates whether or not the Ada
Generator stops generating code when the error count threshold is
exceeded (see Error Limit property). This threshold does not apply
to warnings (for which there is no limit) or fatal errors (which cause
the Ada Generator to terminate immediately).

The default setting is True.

Error Limit

The Error Limit property specifies the error count threshold used
in conjunction with the Stop On Error property.

The default setting is 30.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 103

Chapter 4 Ada 95 Code Generation Properties

File Name Format

Directory

104

The File Name Format property controls the automatic generation
of directory and file names when the value of the model Directory
property, or a UML package Directory property is “AUTO
GENERATE".

The value is expected to be an integer followed by zero or more flag
characters. The integer is the maximum number of characters in a
file or directory name. The flags are:

retain underscores

\% retain vowels

u convert all letters to upper case

| convert all letters to lower case

X retain case

The default, if the property is blank, is to compress the filename to
8 characters on Windows, or 32 on UNIX, eliminate vowels first,
eliminate white-space, and eliminate underscores. When a blank
or underscore is eliminated, the next character is capitalized.

The Directory property specifies the project directory, which is the
directory in which all subsystems for a project are generated. This
property defaults to “AUTO GENERATE”, which tells the Ada
Generator to use the current working directory.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

Class Properties

This section contains the following topics:

= “Code Name” on page 106

. “Type Name” on page 106

s “Type Visibility” on page 107

s “Type Implementation” on page 107

= “Type Control” on page 108

s “Type Control Name” on page 108

s “Type Definition” on page 108

» “Record Implementation” on page 109

= “Record Kind Package Name” on page 109

= “Is Limited” on page 109

= “Is Subtype” on page 109

» “Generate Access Type” on page 110

s “Access Type Name” on page 110

= “Access Type Visibility” on page 110

s “Access Type Definition” on page 111

= “Maybe Aliased” on page 111

s “Parameterized Implementation” on page 111
» “Parent Class Name” on page 111

= “Enumeration Literal Prefix” on page 112

= “Record Field Prefix” on page 112

= “Array Of Type Name” on page 112

= “Access Array Of Type Name” on page 112

s “Array Of Access Type Name” on page 112

s “Access Array Of Access Type Name” on page 113
= “Array Index Definition” on page 113

= “Generate Standard Operations” on page 113
= “Implicit Parameter” on page 113

= “Implicit Parameter Name” on page 114

s “Generate Default Constructor” on page 114
= “Default Constructor Name” on page 115

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 105

Chapter 4 Ada 95 Code Generation Properties

Code Name

Type Name

106

= “Inline Default Constructor” on page 115
» “Generate Copy Constructor” on page 115
= “Copy Constructor Name” on page 116

= “Inline Copy Constructor” on page 116

= “Generate Destructor” on page 116

= “Destructor Name” on page 117

= “Inline Destructor” on page 118

= “Generate Type Equality” on page 118

= “Type Equality Name” on page 118

= “Inline Equality” on page 119

The Code Name property specifies the name for the class in the
generated code. You need to set this property only if you want the
class to be named differently than it is in the Rose model. This is
especially useful when the Rose model and code are expressed in
different natural languages. The value of this property should be a
valid Ada identifier.

The Type Name property determines the Ada type name used by
the Ada Generator to represent a Rose class. For example, if Type
Name is set to “File_Type ”, the Ada Generator will output:

type File_Type is ...;

if Type Name is set to “Object ”, the Ada Generator will output:

type Objectis ...;

You have the option of setting the Type Name property to ${class},
where the Ada Generator will use the name of the Rose class for the
name of the type.

Note, that this property is ignored if the class name uses the colon
notation, ClassName:TypeName.

The default setting is “Object”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

Type Visibility

The Type Visibility property controls the definition of the Ada type
used by the Ada Generator to represent a Rose class.

Public The type will be a public type.

Private The type will be a private type. The
corresponding complete type declaration will
appear in the private part of the Ada
specification.

The default setting is Private.

Type Implementation

The Type Implementation property controls the implementation of
the Ada type used by the Ada Generator to represent a Rose class.

Tagged The class corresponds to a tagged type.

Record The class is implemented using records and variants.

Mixin The class is represented as a generic used in multiple
inheritance.

Protected The class corresponds to a protected type.

Task The class corresponds to a task type.

The default setting is Tagged.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 107

Chapter 4 Ada 95 Code Generation Properties

Type Control

The Type Control property specifies whether a controlled type
implementation should be generated for the Ada type. The Type
Implementation property must be set to Tagged.

None The type is not a controlled type.

Initialization | The type is a controlled type, with only user-defined
Only initialization.

Assignment The type is a controlled type, with only user-defined
Finalization assignment and finalization.

Only

All The type is a controlled type with both user-defined
initialization and user-defined assignment and
finalization.

The default setting is None.

Type Control Name

The Type Control Name property controls the name of the auxiliary
controlled type.

The default setting is “Controlled_${type}”.

Type Definition

The Type Definition property allows a Rose class to be defined as
something other than one of the types available in Type
Implementation. When set, the Type Definition property dominates
the Type Implementation property. For example, if Type Definition
is set to “range 1 .. 500 ”, the Ada Generator will output:

type TypeNameis range 1 .. 500;

If Type Definition is set to “new String (1 .. 4) ”, the Ada
Generator will output:

type TypeNameis new String (1 .. 4);

108 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

Record Implementation

The Record Implementation property controls the implementation
of the Ada record type. It is used in conjunction with the property
Type Implementation when set to Record.

Single Type A single type is created for the complete
generalization hierarchy.

Multiple Types One record type is created for each class in the
generalization hierarchy.

The default setting is Single Type.

Record Kind Package Name

The Record Kind Package Name property controls the name of the
auxiliary package used to declare the enumeration type Kinds of
the root class.

The default setting is “${class}_Record_Kinds”.

Is Limited
The Is Limited property controls whether the type is limited. This
applies to tagged types and record types with private visibility.
The default setting is False.

Is Subtype

The Is Subtype property is used in conjunction with the Type
Definition property and a Single Type Record Implementation to
define a subtype declaration.

The default setting is False.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 109

Chapter 4 Ada 95 Code Generation Properties

Generate Access Type

The Generate Access Type property controls the generation of the
Ada type used by the Ada Generator for By-Reference instances of
the class.

Always The type will always be generated.

Auto The type will be defined as needed.

The default setting is Auto.

Access Type Name

The Access Type Name property determines the name of the type
created by the Ada Generator for By-Reference instances of the
class. For example, if Access Type Name is set to “Handle ”, the Ada
Generator will output:

type TypeNameis private;
type Handle is access TypeName,

If Access Type Name is set to “Object_Name
will output:

, the Ada Generator

type TypeNameis private;
type Object_Name is access TypeName,

The default setting is “Handle”.

Access Type Visibility

110

The Access Type Visibility property controls the definition of the
Ada type used by the Ada Generator for By-Reference instances of
the class.

Public The type will be defined as “access TypeName”.

Private The type will be defined as private.

The default setting is Public.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

Access Type Definition

The Access Type Definition property allows the access to a Rose
class to be defined as something other than:

type AccessTypeName is access TypeName,

If Access Type Definition is set to “array (Positive range 1 ..
10) of Object ”, the Ada Generator will output:

type AccessTypeName is
array (Positive range 1..10) of Object;

Maybe Aliased

The Maybe Aliased property specifies that the access type is a
general access-to-variable type. For example,

type AccessTypeName is access all TypeNaméClass;

The default setting is False.

Parameterized Implementation

The Parameterized Implementation property controls the mapping
of parameterized and bound classes.

Generic The type will be declared in generic units.

Unconstrained The discriminant part of the type is derived
from the class parameters.

The default setting is Generic.

Parent Class Name

The Parent Class Name property specifies the name used to
reference the superclass, for a parameterized class whose
Parameterized Implementation property has been set to Generic.

The default setting is “Superclass”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 111

Chapter 4 Ada 95 Code Generation Properties

Enumeration Literal Prefix

The Enumeration Literal Prefix property specifies the prefix that is
prefixed to enumeration literal values, that the Ada Generator
automatically generates.

The default setting is “A_".

Record Field Prefix

The Record Field Prefix property specifies the prefix that is prefixed
to component and discriminant identifiers, that the Ada Generator
automatically generates.

The default setting is “The_".

Array Of Type Name

The property Array Of Type Name specifies the name of the array
type of a one-to-many by-value “has” relationship. The string can
include the variable ${type}, which expands to the type name of the
class.

The default setting is “Array_Of ${type}".

Access Array Of Type Name

The property Access Array Of Type Name specifies the name of the
access type whose designated type is given by the property Array
Of Type Name.

The default setting is “Access_Array_ Of ${type}".

Array Of Access Type Name

112

The property Array Of Access Type Name specifies the name of the
array type of a one-to-many by-reference “has” relationship. The
string can include the variable ${access_type}, which expands to
the access type name of the class.

The default setting is “Array_Of ${access_type}".

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

Access Array Of Access Type Name

The property Access Array Of Access Type Name specifies the name
of the access type whose designated type is given by the property
Array Of Access Type Name.

The default setting is “Access_Array_Of ${access_type}”.

Array Index Definition

The property Array Index Definition supplies the index subtype
definition for the array type definitions given by the properties
Array Of Type Name and Array Of Access Type Name.

The default setting is “Positive range <>”.

Generate Standard Operations

The Generate Standard Operations property indicates whether or
not the Ada Generator should create the standard operations for

this class. Both the model and class property must be set to True
for this to take effect.

The default setting is True.

Note: To auto-generate set operation (Project/Class property
GenerateStandardOperations set to true) you must have the
attributes set to public.

Implicit Parameter

The Implicit Parameter property indicates whether or not the Ada
Generator should provide an implicit class parameter object for all
the user-defined operations of this class. Both the model and class
property must be set to True for this to take effect.

The default setting is True.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 113

Chapter 4 Ada 95 Code Generation Properties

Implicit Parameter Name

All operations of a class can have as an implicit parameter a class
object. The Implicit Parameter Name property specifies the formal
parameter name used by the Ada Generator for this class object.

For example, if the Implicit Parameter Name is set to “This 7, (the
property Generate Standard Operations must be active), the class
destructor will be declared as:

procedure Free (This : in out TypeName);

If Implicit Parameter Name is changed to “The_Object ”, the class
destructor would be:

procedure Free (The_Obiject : in out TypeName);

The Implicit Parameter Name property also controls the declaration
of the class parameter to the constructor subprogram, get/set
subprograms, inherited subprograms and subprograms for user-
defined operations. It does not affect the names of the class
parameters to the copy and equality subprograms.

The default setting is “This”.

Generate Default Constructor

114

The Generate Default Constructor property determines the kind of
subprogram declared as the class constructor by the Ada
Generator. The declaration of a class constructor can also be
suppressed. If Generate Default Constructor is set to Function, the
declaration output by the Ada Generator will be of the form:

function Create return TypeName,

If Generate Default Constructor is set to Procedure, the declaration
output by the Ada Generator will be of the form:

procedure Create
(ImplicitParameterName in out TypeName);

The properties Generate Standard Operations, Type Name, Implicit

Parameter Name, and Default Constructor Name also affect the
declaration of the class constructor.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

Function The class constructor will be declared as a
function.

Procedure The class constructor will be declared as a
procedure.

Do Not Create| No class constructor will be declared.

The default setting is Function.

Default Constructor Name

The Default Constructor Name property controls the simple name
of the class constructor subprogram. For example, if the Default
Constructor Name property is set to “Create ”, the Ada Generator
will output:

function Create return TypeName,

If the Default Constructor Name property is set to “New_Item ”, the
Ada Generator will output:

function New_Item return TypeName,

The default setting is “Create”.

Inline Default Constructor

The Inline Default Constructor property specifies whether an inline
pragma should be generated for the Default Constructor.

The default setting is False.

Generate Copy Constructor

The Generate Copy Constructor property determines the kind of
subprogram declared as the class constructor by the Ada
Generator. The declaration of a class constructor can also be
suppressed. If Generate Copy Constructor is set to Function, the
declaration output by the Ada Generator will be of the form:

function Copy (From : in TypeName) return TypeName,

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 115

Chapter 4 Ada 95 Code Generation Properties

If Generate Copy Constructor is set to Procedure, the declaration
output by the Ada Generator will be of the form:

procedure Copy (From : in TypeName,
To: in out TypeName);
Function The copy constructor will be declared as a
function.
Procedure The copy constructor will be declared as a
procedure.
Do Not Create| No copy constructor will be declared.

The default setting is Function.

Copy Constructor Name

The Copy Constructor Name property controls the simple name of
the class constructor subprogram. For example, if the Copy
Constructor Name property is set to “Copy”, the Ada Generator will
output:

function Copy return TypeName,

If the Copy Constructor Name property is set to “Clone_ltem ”, the
Ada Generator will output:

function Clone_ltem return TypeName,

The default setting is “Copy”.

Inline Copy Constructor

The Inline Copy Constructor property specifies whether an inline
pragma should be generated for the Copy Constructor.

The default setting is False.

Generate Destructor

The Generate Destructor property specifies whether a destructor is
declared by the Ada Generator.

116 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Class Properties

If Generate Destructor is set to Procedure, the declaration output
by the Ada Generator will be of the form:

procedure Free (ImplicitParameterName :in out TypeName);
The properties Generate Standard Operations, Type Name, Implicit

Parameter Name, and Destructor Name also affect the declaration
of the destructor.

Procedure The class destructor will be declared as a
procedure.

Do Not Create| No class destructor will be declared.

The default setting is Procedure.

Destructor Name

The Destructor Name property controls the simple name of the
class destructor subprogram by the Ada Generator. For example, if
the Destructor Name property is set to Free , the Ada Generator will

output:

procedure Free (
ImplicitParameterName
in out TypeName);

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 117

Chapter 4 Ada 95 Code Generation Properties

If the Destructor Name property is set to Deallocate_Item , the
Ada Generator will output:

procedure Deallocate_Item (
ImplicitParameterName
in out TypeName);

The default setting is “Free”.

Inline Destructor

The Inline Destructor property specifies whether an inline pragma
should be generated for the Destructor.

The default setting is False.

Generate Type Equality

The Generate Type Equality property determines whether the
function is declared or suppressed.

Function The type equality function will be declared.

Do Not Create No type equality function will be declared.

The default setting is Do Not Create.

Type Equality Name

118

The Type Equality Name property controls the designator of the
equality function declared by the Ada Generator to compare class
objects. For example, if the Type Equality Name property is set to
“${quote}=${quote}”:

function "=" (L, R : in TypeName)
return Boolean;

If the Type Equality Name property is set to “Is_Equal ”, the Ada
Generator will output:

function Is_Equal (L, R : in TypeName)
return Boolean;

The default setting is “${quote}=${quote}”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Operation Properties

Inline Equality

The Inline Equality property specifies whether an inline pragma
should be generated for the Equality operations.

The default setting is False.

Operation Properties

This section contains the following topics:

“Code Name” on page 119
= “Subprogram Implementation” on page 120
= “Renames” on page 120
= “Generate Overriding” on page 120
= “Implicit Parameter Mode” on page 120
s “Generate Access Operation” on page 121
= “Entry Code” on page 121
= “Exit Code” on page 121
= “Inline” on page 121
= “Entry Barrier Condition” on page 121

Code Name

The Code Name property specifies the name for the operation in the
generated code. You need to set this property only if you want the
operation to be named differently than it is in the Rose model. This
is especially useful when the Rose model and code are expressed in
different natural languages. The value of this property should be a
valid Ada identifier.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 119

Chapter 4 Ada 95 Code Generation Properties

Subprogram Implementation

The Subprogram Implementation property is used to control the
code generated for a subprogram body. This property can take on
the following values.

Abstract An abstract specification is generated.

Body A specification and body is generated.

Renaming | A specification and renaming-as-body is generated.

Separate A specification and stub is generated.

Spec A specification is generated.

The default setting is Body.

Renames

The Renames property is used in conjunction with the Subprogram
Implementation property when set to Renaming. It specifies the
name of the renamed subprogram.

Generate Overriding

The Generate Overriding property specifies whether an overriding
declaration should be generated.

The default setting is True.

Implicit Parameter Mode

The Implicit Parameter Mode property determines the mode of the
class parameter for standard and user-defined operations.

In The mode of the class parameter is “in”
In Out The mode of the class parameter is “in out”
Out The mode of the class parameter is “out”

The default setting is In Out.

120 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Operation Properties

Generate Access Operation

The Generate Access Operation property specifies whether an
access operation should be generated.

The default setting is False.

Entry Code

The Entry Code property provides the capability to insert code or
comments at the beginning of the subprogram. This property is
useful for inserting instrumentation, or adhering to documentation
standards.

Exit Code

The Exit Code property provides the capability to insert code or
comments at the end of the subprogram. This property is useful for
inserting instrumentation, or adhering to documentation
standards.

Inline

The Inline property specifies whether an inline pragma should be
generated for the operation.

The default setting is False.

Entry Barrier Condition

The Entry Barrier Condition property specifies the boolean
expression used for the barrier of the entry body.

The default setting is “True”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 121

Chapter 4 Ada 95 Code Generation Properties

Has Properties

Code Name

122

This section contains the following topics:

“Code Name” on page 122

“Name If Unlabeled” on page 123
“Record Field Implementation” on page 123
“Record Field Name” on page 123
“Generate Get” on page 124

“Generate Access Get” on page 124

“Get Name” on page 124

“Inline Get” on page 124

“Generate Set” on page 125

“Generate Access Set” on page 125

“Set Name” on page 125

“Inline Set” on page 125

“Initial Value” on page 126

“Container Implementation” on page 126
“Container Generic” on page 126
“Container Type” on page 126
“Container Declarations” on page 126

The Code Name property specifies the name for the “has”
relationship in the generated code. You need to set this property
only if you want the “has” relationship to be named differently than
it is in the Rose model. This is especially useful when the Rose
model and code are expressed in different natural languages. The
value of this property should be a valid Ada identifier.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Has Properties

Name If Unlabeled

The Name If Unlabeled property specifies the name which the Ada
Generator will use for an unlabeled “has” relationship. The string
can include the variable ${supplier}, which expands to the name of
the supplier class of the “has” relationship. For example, if class
Message and class Priority are the client and the supplier,
respectively, of an unlabeled “has” relationship, the string
“The_%${supplier}” resolves to “The_Priority”.

The default setting is “The_${supplier}”.

Record Field Implementation

The Record Field Implementation property controls the definition of
the field within the record type definition for the “has” relationship.

Component The relationship will be defined as a
component.
Discriminant The relationship will be defined as a

discriminant.

Access Discriminant| The relationship will be defined as an access
discriminant.

The default setting is Component.

Record Field Name

The Record Field Name property specifies the name the Ada
Generator outputs for the record field of a “has” relationship. The
string can include the variable ${supplier}, which expands to the
name of the supplier class of the “has” relationship, and the
variable ${relationship}, which expands to the name of the “has”
relationship itself.

If the variable ${relationship} is used, and the “has” relationship is
unlabeled, then the value of ${relationship} will be the value of the
property Name If Unlabeled.

The default setting is “${relationship}”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 123

Chapter 4 Ada 95 Code Generation Properties

Generate Get

The Generate Get property determines whether the function is
declared or suppressed by the Ada Generator.

Function The Get operation will be declared as a function.

Do Not Create | No Get operation will be declared.

The default setting is Function.

Generate Access Get

Get Name

Inline Get

124

The Generate Access Get property determines whether the function
is declared or suppressed by the Ada Generator.

Function The Access Get operation will be declared.

Do Not Create | No Access Get operation will be declared.

The default setting is Do Not Create.

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of a “has” relationship. The string can
include the variable ${supplier}, which expands to the name of the
supplier class of the “has” relationship, and the variable
${relationship}, which expands to the name of the “has”
relationship itself.

If the variable ${relationship} is used, and the “has” relationship is
unlabeled, then the value of ${relationship} will be the value of the
property Name If Unlabeled.

The default setting is “Get_${relationship}”.

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is True.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Has Properties

Generate Set

The Generate Set property determines whether the procedure is
declared or suppressed by the Ada Generator.

Procedure The Set operation will be declared.

Do Not Create | No Set operation will be declared.

The default setting is Procedure.

Generate Access Set

Set Name

Inline Set

The Generate Set property determines whether the procedure is
declared or suppressed by the Ada Generator.

Procedure The Set operation will be declared.

Do Not Create | No Set operation will be declared.

The default setting is Do Not Create.

The Set Name property specifies the name the Ada Generator
outputs for the set accessor of a “has” relationship. The string can
include the variable ${supplier}, which expands to the name of the
supplier class of the “has” relationship, and the variable
${relationship}, which expands to the name of the “has”
relationship itself.

If the variable ${relationship} is used, and the “has” relationship is
unlabeled, then the value of ${relationship} will be the value of the
property Name If Unlabeled.

The default setting is “Set_${relationship}”.

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is True.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 125

Chapter 4 Ada 95 Code Generation Properties

Initial Value
The Initial Value property attaches an initial value to a field
declaration, variable declaration, or constant declaration.
Container Implementation

The Container Implementation property controls the
implementation scheme for a container type by the Ada Generator.

Array Create an unconstrained array type and access to
that array type.

Generic Use the generic unit given by the property Container
Generic Name.

The default setting is Array.

Container Generic

The Container Generic property provides some control over the
generic package instantiated to handle one-to-many “has”
relationships. For example, if Container Generic is set to List
then the package List_Generic will be instantiated (if the
maximum allowable cardinality of the “has” relationship is larger
than 1). If Container Generic is changed to Queue, the package
Queue_Generic will be instantiated.

The default setting is “List”.

Container Type

The Container Type property specifies a data type for the record
field generated for a “has” relationship. The Container Type
property can be set to refer to an existing container class, and the
Ada Generator will use that container class instead of generating
its own container class.

Container Declarations

The Container Declarations property lets you create any
declarations, such as array type declarations or generic
instantiations, to support the Container Type property.

126 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Attribute Properties

Attribute Properties

This section contains the following topics:

= “Code Name” on page 127

= “Record Field Implementation” on page 128
= “Record Field Name” on page 128

» “Generate Get” on page 128

s “Generate Access Get” on page 129
s “Get Name” on page 129

= “Inline Get” on page 129

» “Generate Set” on page 129

s “Generate Access Set” on page 130
s “Set Name” on page 130

= “Inline Set” on page 130

Code Name

The Code Name property specifies the name for the attribute in the
generated code. You need to set this property only if you want the
attribute to be named differently than it is in the Rose model. This
is especially useful when the Rose model and code are expressed in
different natural languages. The value of this property should be a
valid Ada identifier.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 127

Chapter 4 Ada 95 Code Generation Properties

Record Field Implementation

The Record Field Implementation property controls the definition
of the field within the record type definition for attributes of the

class.
Component The attribute will be defined as a
component.
Discriminant The attribute will be defined as a

discriminant.

Access Discriminant| The attribute will be defined as an access
discriminant.

The default setting is Component.

Record Field Name

The Record Field Name property specifies the name the Ada
Generator outputs for the record field of an attribute. The string
can include the variable ${attribute}, which expands to the name of
the label of the class attribute in the model or the name specified
in the attribute's Code Name property.

The default setting is “${attribute}”.

Generate Get

The Generate Get property determines whether the function is
declared or suppressed by the Ada Generator.

Function The Get operation will be declared.

Do Not Create | No Get operation will be declared.

The default setting is Function.

128 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Attribute Properties

Generate Access Get

The Generate Access Get property determines whether the function
is declared or suppressed by the Ada Generator.

Function The Access Get operation will be declared.

Do Not Create | No Access Get operation will be declared.

The default setting is Do Not Create.

Get Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of an attribute. The string can include
the variable ${attribute}, which expands to the name of the label of
the class attribute in the model or the name specified in the
attribute's Code Name property

The default setting is “Get_${attribute}”.

Inline Get

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is True.

Generate Set

The Generate Set property determines whether the procedure is
declared or suppressed by the Ada Generator.

Procedure The Set operation will be declared.

Do Not Create | No Set operation will be declared.

The default setting is Do Not Create.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 129

Chapter 4 Ada 95 Code Generation Properties

Generate Access Set

The Generate Access Set property determines whether the
procedure is declared or suppressed by the Ada Generator.

Procedure The Access Set operation will be declared.

Do Not Create | No Access Set operation will be declared.

The default setting is Do Not Create.

Set Name

The Set Name property specifies the name the Ada Generator
outputs for the set accessor of an attribute. The string can include
the variable ${attribute}, which expands to the name of the label of
the class attribute in the model or the name specified in the
attribute's Code Name property

The default setting is “Set_${attribute}”.

Inline Set

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is True.

130 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Association Role Properties

Association Role Properties

Code Name

This section contains the following topics:

= “Code Name” on page 131

= “Name If Unlabeled” on page 131

= “Record Field Name” on page 132

» “Generate Get” on page 132

s “Generate Access Get” on page 132
s “Get Name” on page 133

= “Inline Get” on page 133

» “Generate Set” on page 133

s “Set Name” on page 133

= “Inline Set” on page 134

= “Initial Value” on page 134

= “Container Generic” on page 134

= “Container Type” on page 134

= “Container Declarations” on page 135

The Code Name property specifies the name for the association role
in the generated code. You need to set this property only if you want
the association role to be named differently than it is in the Rose
model. This is especially useful when the Rose model and code are
expressed in different natural languages. The value of this property
should be a valid Ada identifier.

Name If Unlabeled

The Name If Unlabeled property specifies the name to be used for
an unlabeled role. The Ada Generator uses the name of the role to
construct names for the corresponding component and get and set
operations. If the role is not named, the Ada Generator uses this
property to determine the name of the role.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 131

Chapter 4 Ada 95 Code Generation Properties

When the Ada Generator needs the name of the role to generate a
name for a component or a get or set operations, ${targetClass}
expands to the name of the association class or the association if
there is one. Otherwise it expands to the name of the supplier
class. If ${association} is used in the NamelfUnlabeled property, it
expands to the name of the association.

The default setting is “The_${targetClass}”.

Record Field Name

The Record Field Name property specifies the name the Ada
Generator outputs for the record field for an association role. The
string can include the variable ${target}, which expands to the
name of the target of the component. If there is an association
class, this is the name of the association class. If there is not an
association class, this is the name of the supplier role.

The default setting is “${target}”.

Generate Get

The Generate Get property determines whether the function is
declared or suppressed by the Ada Generator.

Function The Get operation will be declared.

Do Not Create No Get operation will be declared.

The default setting is Function.

Generate Access Get

The Generate Access Get property determines whether the function
is declared or suppressed by the Ada Generator.

Function The Access Get operation will be declared.

Do Not Create No Access Get operation will be declared.

The default setting is Do Not Create.

132 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Association Role Properties

Get Name

Inline Get

Generate Set

Set Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of an association role. The string can
include the variable ${target}, which expands to the name of the
target of the component. If there is an association class, this is the
name of the association class. If there is not an association class,
this is the name of the supplier role.

The default setting is “Get_${target}”.

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is True.

The Generate Set property determines whether the procedure is
declared or suppressed by the Ada Generator.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.

The default setting is Procedure.

The Set Name property specifies the name the Ada Generator
outputs for the set accessor of a “has” relationship. The string can
include the variable ${target}, which expands to the name of the
target of the component. If there is an association class, this is the
name of the association class. If there is not an association class,
this is the name of the supplier role.

The default setting is “Set_S${target}”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 133

Chapter 4 Ada 95 Code Generation Properties

Inline Set

Initial Value

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is True.

The Initial Value property attaches an initial value to a field
declaration.

Container Implementation

The Container Implementation property controls the
implementation scheme for a container type by the Ada Generator.

Array Create an unconstrained array type and access to
that array type.

Generic Use the generic unit given by the property Container
Generic Name.

The default setting is Array.

Container Generic

The Container Generic property provides some control over the
generic package instantiated to handle one-to-many “has”
relationships. For example, if Container Generic is set to List
then the package List_Generic will be instantiated (if the
maximum allowed cardinality of the “has” relationship is larger
than 1). If Container Generic is changed to Queue, the package
Queue_Generic will be instantiated.

The default setting is “List”.

Container Type

134

The Container Type property specifies a data type for the record
field generated for a “has” relationship. The Container Type
property can be set to refer to an existing container class, and the
Ada Generator will use that container class instead of generating
its own container class.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Association Properties

Container Declarations

The Container Declarations property lets you create any
declarations, such as array type declarations or generic
instantiations, to support the Container Type property.

Association Properties

This section contains the following topics:

= “Name If Unlabeled” on page 135
» “Generate Get” on page 136

s “Get Name” on page 136

= “Inline Get” on page 136

» “Generate Set” on page 136

= “Set Name” on page 137

= “Inline Set” on page 137

= “Generate Associate” on page 137
= “Associate Name” on page 138

= “Inline Associate” on page 138

= “Generate Dissociate” on page 138
= “Dissociate Name” on page 138

= “Inline Dissociate” on page 138

Name If Unlabeled

The Name If Unlabeled property specifies the name to be used for
an unlabeled association. The Ada Generator uses the name of the
association to construct names for the corresponding component
and get and set operations. If the association is not named, the Ada
Generator uses this property to determine the name of the
association.

When the Ada Generator needs the name of the association to
generate a name for a component or a get or set operations,
${targetClass} expands to the name of the association class or the
association if there is one. Otherwise it expands to the name of the
supplier class.

The default setting is “The_${targetClass}”.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 135

Chapter 4 Ada 95 Code Generation Properties

Generate Get

The Generate Get property determines whether the function is
declared or suppressed by the Ada Generator.

Function The Get operation will be declared as a function.

Do Not Create No Get operation will be declared.

The default setting is Function.

Get Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of an association class. The string can
include the variable ${association}, which expands to the name of
the association. If the association is unnamed, then the name of
the association class is used.

The default setting is “Get_${association}”.

Inline Get

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is False.

Generate Set

The Generate Set property determines whether the procedure is
declared or suppressed by the Ada Generator.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.

The default setting is Procedure.

136 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Association Properties

Set Name

Inline Set

The Set Name property specifies the name the Ada Generator
outputs for the Set accessor of an association class. The string can
include the variable ${association}, which expands to the name of
the association. If the association is unnamed, then the name of
the association class is used.

The default setting is “Set_${association}”.

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is False.

Generate Associate

The Generate Association property determines whether the
procedure is declared or suppressed by the Ada Generator.

Procedure The Associate operation will be declared.

Do Not Create No Associate operation will be declared.

The default setting is Procedure.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 137

Chapter 4 Ada 95 Code Generation Properties

Associate Name

The Associate Name property specifies the name the Ada Generator
outputs for the Associate operation of an association.

The default setting is “Associate”.

Inline Associate

The Inline Associate property specifies whether an inline pragma
should be generated for the Associate operation.

The default setting is False.

Generate Dissociate

The Generate Dissociate property determines whether the
procedure is declared or suppressed by the Ada Generator.

Procedure The Dissociate operation will be declared.

Do Not Create No Dissociate operation will be declared.

The default setting is Procedure.

Dissociate Name

The Dissociate Name property specifies the name the Ada
Generator outputs for the Dissociate operation of an association.

The default setting is “Dissociate”.

Inline Dissociate

The Inline Dissociate property specifies whether an inline pragma
should be generated for the Dissociate operation.

The default setting is False.

138 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

UML Package Properties

UML Package Properties

Directory

The Directory property specifies the UML package. This property
default to “AUTO GENERATE".

Module Spec Properties

This section contains the following topics:

s “Generate” on page 139

= “Copyright Notice” on page 139

= “Return Type” on page 140

= “Generic Formal Parameters” on page 140
= “Additional Withs” on page 141

Generate

The Generate property specifies whether or not the Ada Generator
will generate a code file for the module spec.

This property allows you to prevent code from ever being generated
for a module, such as modules in third party libraries, even if it is
selected when the Ada Generator is invoked.

The default value is True.

Copyright Notice

The Copyright Notice property contains text that is placed in a
comment block at the beginning of the Ada specification file created
by the Ada Generator for the module spec. This property can be
used to include copyright notices or project identification
information at the beginning of a module. The text in the Copyright
Notice property is preceded by comment delimiters (“--"), so they do
not need to be included in the text of the property itself.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 139

Chapter 4 Ada 95 Code Generation Properties

Return Type

The Return Type property specifies the subtype indication for the
return value of a subprogram module. For example, if the Return
Type property is set to Calendar.Time for a subprogram
specification module named Current_Time, the Ada Generator will
output:

function Current_Time return Calendar.Time;
If Return Type is set to blank, the Ada Generator will output:
procedure Current_Time;

The Return Type property is ignored when the module spec is not
a subprogram specification.

Generic Formal Parameters

140

The Generic Formal Parameters property is used to specify the
generic formal part of a generic module spec. For example, if the
Generic Formal Parameters property is set to “type Iltem is

private; ”, for a generic package specification module named
Stack, the Ada Generator will output:

generic
type Item is private;
package Stack is

end Stack;

If “Size : in Positive; ” is added to Generic Formal Parameters,
the Ada Generator will output:

generic
type Item is private;
Size : in Positive;
package Stack is

end Stack;

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Module Spec Properties

The Generic Formal Parameters property is ignored when the
module spec is not a generic. Additional generic formal parameters
may be added to the generic formal part if a generic class is
assigned to the module, because the generic formal parameters of
the generic class will be merged with those of the module.

Additional Withs

The Additional Withs property specifies additional with clauses to
be included in the context clause of the module spec. For example,
if the Additional Withs property is set to “Text_lo ” for a
subprogram specification module named Quadratic_Equation, the
Ada Generator will output:

-- Additional Withs:
with Text_lo;
procedure Quadratic_Equation;

If “Real_Operations " is added to Additional Withs, the Ada
Generator will output:

-- Additional Withs:

with Text_lo;

with Real_Operations;
procedure Quadratic_Equation;

Only the simple names of the library units should be listed in the
Additional Withs property, with one library unit per line.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 141

Chapter 4 Ada 95 Code Generation Properties

Module Body Properties

Generate

This section contains the following topics:

= “Generate” on page 142
“Copyright Notice” on page 142
“Return Type” on page 142

= “Additional Withs” on page 143

The Generate property specifies whether or not the Ada Generator
will generate a code file for the module body.

This property allows you to prevent code from ever being generated
for a module, such as modules in third party libraries, even if it is
selected when the Ada Generator is invoked.

The default value is True.

Copyright Notice

Return Type

142

The Copyright Notice property contains text that is placed in a
comment block at the beginning of the Ada body file created by the
Ada Generator for the module body. This property can be used to
include copyright notices or project identification information at
the beginning of a module. The text in the Copyright Notice
property is preceded by comment delimiters (“--"), so they do not
need to be included in the text of the property itself.

The Return Type property specifies the subtype indication for the
return value of a subprogram module. For example, if the Return
Type property is set to “Calendar.Time " for a subprogram body
module named Current_Time, the Ada Generator will output:

function Current_Time
return Calendar.Time is ...

If Return Type is set to blank, the Ada Generator will output:

procedure Current_Time is ...

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Module Body Properties

The Return Type property is ignored when the module body is not
a subprogram body.

Additional Withs

The Additional Withs property specifies additional with clauses to
be included in the context clause of the module body. For example,
if the Additional Withs property is set to “Text_lo ” for a
subprogram body module named Quadratic_Equation, the Ada
Generator will output:

-- Additional Withs:
with Text_lo;
procedure Quadratic_Equation is ...

If “Real_Operations " is added to Additional Withs, the Ada
Generator will output:

-- Additional Withs:

with Text_lo;

with Real_Operations;

procedure Quadratic_Equation is ...

Only the simple names of the library units should be listed in the
Additional Withs property, with one library unit per line.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 143

V‘ Index

A
Access Array Of Access Type Name

code generation class properties
113

Access Array Of Type Name

code generation class properties
112

Access Type Definition

code generation class properties
111

Access Type Name

code generation class properties
110

Access Type Visibility

code generation class properties
110

accessors 66

example for has relationship 35

never overridden 70

not generated for the task imple-
mentation 16

Set not generated for an associa-
tion 42

See also association classes, asso-
ciations, attributes, has re-
lationships, operations

Ada constructs
abstract subprogram 68, 69, 75

abstract type 8, 75

access discriminant 16, 18, 23, 29

access parameter 66, 67

access type 31

access-to-class-wide type 32

actual parameters of an instantia-
tion 24

barrier 17

child of a generic unit 21, 25

class-wide subprogram 27

constant 27

constrained type 20

context clause 53

controlled type 71

discriminant 16, 18, 23, 29

discriminant constraint 25

entry 15, 17

enumeration type 9

general access type 32

generic formal package 22, 25

generic formal part 21

generic instantiation 20, 24

generic package instantiation 55

generic unit 20, 21, 27

limited type 7, 29

non-private type 7

overriding subprogram declaration
69

package 27
package body 27

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 145

Index

package private part 18, 27, 53, 69

package visible part 16, 18, 27, 53,
69

pragma Import 69

pragma Inline 43, 69

pragma Interface 69

private extension 53

private type 7

private type with discriminants 30

protected function 17

protected procedure 17

protected type 17

record component 29

renaming-as-body 69

subprogram body 68, 70

subprogram body stub 69

subtype 25

tagged type 8

task type 15

type derivation 53

unconstrained type 20

unknown discriminant part 30

variable 27

variant record 9

with clause 53

Ada.Finalization.Controlled
See Ada constructs (controlled
type)
Ada.Finalization.Limited_Controlled
See Ada constructs (controlled
type)
Additional Withs
code generation module body prop-

erties 143

code generation module spec prop-
erties 141

Apex Model

code generation module spec prop-
erties 139

Array Index Definition

code generation class properties
113

Array Of Access Type

code generation class properties
112

Array Of Type Name

code generation class properties
112

assignment

user-defined 71
See also equality operator, finaliza-
tion, initialization
Associate

See association classes, associa-
tions

Associate Name

code generation association prop-
erties 138

association classes 46

data structures 47

integrity of 46

subprograms
accessors 50
Associate 49
Dissociate 49

for many-to-many associations
52
for one-to-many associations
51
for one-to-one associations 50
See also associations, roles

146 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

association properties

see code generation association
properties

association role properties

see code generation association role
properties

associations 35, 37

data structures
for many-to-many associations
40
for one-to-many associations
39
for one-to-one associations 38
integrity of 42
subprograms
Associate 42
Dissociate 42
for many-to-many associations
44
for one-to-many associations
43
for one-to-one associations 43
with finite multiplicity 45
See also association classes, roles
attribute properties

see code generation attribute prop-
erties

attributes 29

created by reverse engineering 96
entering metaclass attributes 83
entering static attributes 83

of a metaclass 27, 29

static 29

B

basic operations
reverse engineering 91

bidirectional associations

data structures 38

subprograms generated for 42

See also associations, association
classes

Body File Backup Extension

code generation model properties
101

Body File Extension

code generation model properties
101

Body File Temporary Extension

code generation model properties
101

bound classes 24

and parameterized classes 20

entering parameters for 82

generic implementation 24

unconstrained type implementa-
tion 25

See also parameterized classes

bound utilities 27

entering parameters for 82
See also parameterized utilities,
utilities
by-reference

has relationships 31
roles 36

by-value
has relationships 31

C

cardinality

of has relationships 32
of roles 36, 38

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 147

Index

See also multiplicity

class properties

see code generation class properties

classes 7

abstract 8, 68
created by reverse engineering 95
mixin implementation 14
protected implementation 17
record implementation 8
multiple types 12
single type 10
tagged implementation 8
task implementation 15
See also bound classes, bound util-
ities, metaclasses, parame-
terized classes,
parameterized utilities, util-
ities

class-like type

reverse engineering 95

code generation association properties

Associate Name 138
Dissociate Name 138
Generate Associate 137
Generate Dissociate 138
Generate Get 136
Generate Set 136

Get Name 136

Inline Associate 138
Inline Dissociate 138
Inline Get 136

Inline Set 137

Name If Unlabeled 135
Set Name 137

code generation association role prop-

148

erties
Code Name 131

Container Declarations 135
Container Generic 134
Container Implementation 134
Container Type 134
Generate Access Get 132
Generate Get 132

Generate Set 133

Get Name 133

Initial Value 134

Inline Get 133

Inline Set 134

Name If Unlabeled 131
Record Field Name 132

Set Name 133

code generation attribute properties

Code Name 127
Generate Access Get 129
Generate Access Set 130
Generate Get 128
Generate Set 129

Get Name 129

Inline Set 130

InlineGet 129

Record Field Implementation 128
Record Field Name 128
Set Name 130

code generation class properties 109

Access Array Of Access Type Name
113

Access Array Of Type Name 112

Access Type Definition 111

Access Type Name 110

Access Type Visibility 110

Array Index Definition 113

Array Of Access Type Name 112

Array Of Type Name 112

Code Name 106

Copy Constructor Name 116

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

Destructor Name 117
Enumeration Literal Prefix 112
Generate Access Type 110
Generate Copy Constructor 115
Generate Default Constructor 114
Generate Destructor 116
Generate Standard Operations 113
Generate Type Equality 118
Implicit Parameter 113

Implicit Parameter Name 114
Inline Copy Constructor 116
Inline Default Constructor 115
Inline Destructor 118
InlineEquality 119

Is Limited 109

Is Subtype 109

Maybe Aliased 111

Parameterized Implementation 111
Parent Class Name 111

Record Field Prefix 112

Record Implementation 109
Record Kind Package Name 109
Type Control 108

Type Control Name 108

Type Definition 108

Type Equality Name 118

Type Implementation 107

Type Name 106

Type Visibility 107

code generation has properties

CodeName 122

Container Declarations 126
Container Generic 126
Container Implementation 126
Container Type 126

Generate Access Get 124
Generate Access Set 125
Generate Get 124

Generate Set 125

Get Name 124

Initial Value 126

Inline Get 124

InlineSet 125

Name If Unlabeled 123

Record Field Implementation 123
Record Field Name 123

Set Name 125

code generation model properties

Body File Backup Extension 101
Body File Extension 101

Body File Temporary Extension
101

Create Missing Directories 102

Directory 104

Error Limit 103

File Name Format 104

Generate Bodies 102

Generate Standard Operations 102

Implicit Parameter 103

Spec File Backup Extension 100

Spec File Extension 100

Spec File Temporary Extension 101

Stop On Error 103

code generation module body proper-

ties
Additional Withs 143
Copyright Notice 142
Generate 142
Return Type 142

code generation module spec proper-

ties
Additional Withs 141
Apex Model 139
Copyright Notice 139
Generate 139

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 149

Index

Generic Formal Parameters 140
Return Type 140

code generation operation properties

Code Name 119

Entry Barrier Condition 121
Entry Code 121

Exit Code 121

Generate Access Operation 121
Generate Overriding 120

Implicit Parameter Mode 120
Inline 121

Renames 120

Subprogram Implementation 120

code generation properties

150

AccessArrayOfAccessTypeName 33
AccessArrayOfTypeName 33
AccessTypeDefinition 32, 36
AccessTypeName 31, 36
AccessTypeVisibility 31, 36
AdditionalWiths 90
ApexSubsystem 87
ArraylndexDefinition 33
ArrayOfAccessTypeName 33
ArrayOfTypeName 33
AssociateName 43
ContainerDeclarations 36
ContainerGeneric 33, 36
Containerlmplementation 33, 36
ContainerType 33, 36
CopyConstructorName 67
DefaultConstructorName 67
DestructorName 68
DissociateName 43
EntryBarrierCondition 17
EntryCode 71
EnumerationLiteralPrefix 12, 14
ExitCode 71

GenerateAccessGet 67

GenerateAccessOperation 66
GenerateAccessSet 67
GenerateAccessType 32
GenerateAssociate 42
GenerateCopyConstructor 67
GenerateDefaultConstructor 67
GenerateDestructor 68
GenerateDissociate 42
GenerateGet 36, 41, 50, 66, 75
GenerateOverriding 70
GenerateSet 36, 50, 66, 75
GenerateTypeEquality 68
GetName 36, 41, 50
ImplicitParameter 66
ImplicitParameterMode 66
ImplicitParameterName 16, 18, 66
Inline 69
InlineAssociate 43
InlineCopyConstructor 68
InlineDefaultConstructor 68
InlineDestructor 68
InlineDissociate 43
InlineEquality 68
InlineGet 36, 41, 50
InlineSet 36, 50
IsLimited 7, 59
IsSubtype 10, 25
MaybeAliased 32, 36
NamelfUnlabeled 36
Parameterizedlmplementation 20,
24

ParentClassName 23

RecordFieldlmplementation 16, 18,
29

RecordFieldName 29, 36
RecordFieldPrefix 14
Recordlmplementation 9
RecordKindPackageName 14
Renames 69

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

SetName 36, 50

Subprogramlmplementation 68

TypeControl 71

TypeDefinition 7

TypeEqualityName 68

Typelmplementation 7, 21, 54, 58,
71

TypeName 3
TypeVisibility 7, 53
code generation UML package proper-
ties
Directory 139
Code Name

code generation association role
properties 131

code generation attribute proper-
ties 127

code generation class properties
106

code generation has properties 122

code generation operation proper-
ties 119

code regions
See protected regions
colon notation 3

used in associations 37
See also naming

consistency

of code generation properties 6
See also dominance

constructor 67

See also copy constructor, destruc-
tor, equality operator

Container Declarations
code generation has properties 126

codegeneration association role
properties 135

Container Generic

code generation association role
properties 134
code generation has properties 126

Container Implementation

code generation association role
properties 134
code generation has properties 126

Container Type

code generation association role
properties 134
code generation has properties 126

container type

for has relationships 33
for roles 36

copy constructor 67

See also constructor, destructor,
equality operator

Copy Constructor Name

code generation class properties
116

Copyright Notice

code generation module body prop-
erties 142

code generation module spec prop-
erties 139

Create Missing Directories

code generation model properties
102

D
dependency relationships 53
created by reverse engineering 96

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 151

Index

representing “pseudo-inheritance”
for bound classes 25

destructor 68
See also constructor, copy con-
structor, equality operator
Destructor Name

code generation class properties
117

dialog box
reverse engineering 93
Directory
code generation model properties
104
code generation UML package
properties 139
Dissociate

See association classes, associa-
tions

Dissociate Name

code generation association prop-
erties 138

dominance

definition of 6
AccessTypeDefinition dominates
32

CopyConstructorName dominated
74
DefaultConstructorName dominat-
ed 74
DestructorName dominated 74
GenerateCopyConstructor domi-
nated 74
GenerateDefaultConstructor domi-
nated 74
GenerateDestructor dominated 74
GenerateGet dominated 16

GenerateSet dominated 16, 67

GenerateTypeEquality dominated
74

ImplicitParameter dominated 15,
18

IsLimited dominated 9, 23, 29

Parameterizedlmplementation
dominated 21

RecordFieldimplementation domi-
nated 29

Subprogramlmplementation domi-
nated 15

TypeEqualityName dominated 74
TypeVisibility dominated 12

E
Entry Barrier Condition

code generation operation proper-
ties 121

Entry Code

code generation operation proper-
ties 121

Enumeration Literal Prefix

code generation class properties
112
equality operator 68

user-defined 71
See also assignment, constructor,
copy constructor, destruc-
tor, finalization, initializa-
tion
Error Limit

code generation model properties
103

errors

due to abstract subprogram in a
non-abstract class 69

152 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

due to access discriminant for by-
value relationship 33

due to ambiguities in name resolu-
tion 5

due to association involving non-
tagged, non-record classes
36

due to by-value role in a bidirec-
tional association 38

due to controlled type involved in
multiple inheritance rela-
tionship 71

due to has relationship targeting a
mixin 34

due to inconsistency in visibility or
defaults of attributes 30

due to inconsistent module for a
parameterized class 21

due to inheritance inconsistency
for mixins 58

due to keys with the same name
but different types 37

due to protected implementation
and generalization relation-
ships 20

due to task implementation and
generalizationrelationships
17

due to violating restrictions on
multiple views inheritance
59

See also warnings

Exit Code

code generation operation proper-
ties 121

F

File Name Format

code generation model properties
104

finalization

user-defined 71
See also assignment, equality oper-
ator, initialization
free text 4

See also naming

G

generalization hierarchy

access discriminants and 29
parameters inherited from 25

represented by a single record type
10

represented by multiple record
types 12
See also generalization relation-
ships
generalization relationships 53

not supported for the protected im-
plementation 20
not supported for the task imple-
mentation 17
visibility 63
See also generalization hierarchy
Generate

code generation module body prop-
erties 142

code generation module spec prop-
erties 139
Generate Access Get

code generation association role
properties 132

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 153

Index

code generation attribute proper-
ties 129

code generation has properties 124
Generate Access Operation

code generation operation proper-
ties 121

Generate Access Set

code generation attribute proper-
ties 130

code generation has properties 125
Generate Access Type

code generation class properties
110

Generate Associate

code generation association prop-
erties 137

Generate Bodies

code generation model properties
102

Generate Copy Constructor

code generation class properties
115

Generate Default Constructor

code generation class properties
114

Generate Destructor

code generation class properties
116

Generate Dissociate

code generation association prop-
erties 138

Generate Get

code generation association prop-
erties 136

code generation association role
properties 132

code generation attribute 128

code generation has properties 124

Generate Overriding

code generation operation proper-
ties 120

Generate Set

code generation association prop-
erties 136

code generation association role
properties 133

code generation attribute proper-
ties 129

code generation has properties 125

Generate Standard Operations

code generation class properties
113
codegeneration model properties
102
Generate Type Equality

code generation class properties
118

Generic Formal Parameters

code generation module spec prop-
erties 140

Get
See accessors
Get Name

code generation association prop-
erties 136

code generation association role
properties 133

code generation attribute proper-
ties 129

code generation has properties 124

154 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

H
has properties

seecode generation has properties
has relationships 31

by-reference 31

by-value 31

created by reverse engineering 96
of a metaclass 27, 31

static 31

Implicit Parameter

code generation class properties
113

code generation model properties
103

Implicit Parameter Mode

code generation operation proper-
ties 120

Implicit Parameter Name

code generation class properties
114

Initial Value

code generation association role
properties 134
code generation has properties 126
initialization
user-defined 71
See also assignment, equality oper-
ator, finalization
Inline

code generation operation proper-
ties 121

Inline Associate

code generation association prop-
erties 138

Inline Copy Constructor
code generation class 116
Inline Default Constructor

code generation class properties
115

Inline Destructor

code generation class properties
118

Inline Dissociate

code generation association prop-
erties 138

Inline Equality

code generation class properties
119

Inline Get
code generation association prop-
erties 136
code generation association role
properties 133

code generation attribute proper-
ties 129

code generation has properties 124
Inline Set
code generation association prop-
erties 137
code generation association role
properties 134

code generation attribute proper-
ties 130

code generation has properties 125
Is Limited

code generation class properties
109

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 155

Index

Is Subtype

code generation class properties
109

K
keys 37

M
Maybe Aliased

code generation class properties
111

metaclasses 27
entering attributes 83
model properties
see code generation model proper-
ties
module

associated with a bound class 24

associated with a parameterized
class 21

associated with a utility 27

created by reverse engineering 95

mapping to modules in an associa-
tion 37

must not be associated with a
metaclass 27

module body properties

see code generation module body
properties

module spec properties

see code generation module spec
properties

multiple inheritance 54

mixin inheritance 15, 54
multiple views inheritance 58

multiplicity
of has relationships 31

of roles 36, 38
See also cardinality

N
Name If Unlabeled

code generation association prop-
erties 135

code generation association role
properties 131

code generation has properties 123

naming

Ada declarations 2
legality of names 3
package name 3
resolution of names in free text 4
type name 3
UML entities 2
navigable roles 35

non-navigable roles 35

operation properties

see code generation operation prop-
erties

operations 65

created by reverse engineering 96
implicit parameter 15, 18
overriding 69

standard 67

See also accessors

P
package
Ada acceptation 2

156 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

UML acceptation 2
parameterized classes 20

entering parameters for 80

generic implementation 21

unconstrained type implementa-
tion 23

See also bound classes
Parameterized Implementation

code generation class properties
111

parameterized utilities 27

entering parameters for 80
See also bound utilities, utilities

Parent Class Name

code generation class properties
111

protected regions 77, 85
R

Record Field Implementation

code generation attribute proper-
ties 128

code generation has properties 123
Record Field Name

code generation association role
properties 132

code generation attribute proper-
ties 128

code generation has properties 123

Record Field Prefix

code generation class properties
112

Record Implementation

code generation class properties
109

Record Kind Package Name 109
Renames

code generation operation proper-
ties 120

Return Type
code generation module body prop-
erties 142
code generation module spec prop-
erties 140
reverse engineering

attributes 96
classes 95
dependency rrelationships 96
dialog box 93
has relationships 96
mapping object declarations 96
mapping with clauses 96
module 95
operations 96
special handling for the
$APEX_BASE directory 97

static attribute 96
using 91
utilities 95

roles 35

accessors 41
by-reference 36
of a metaclass 27

S
Set

See accessors
Set Name

code generation association prop-
erties 137

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 157

Index

code generation association role
properties 133

code generation attribute proper-
ties 130

code generation has properties 125

Spec File Backup Extension

code generation model properties
100

Spec File Extension

code generation model properties
100

Spec File Temporary Extension

code generation model properties
101

standard operations 67
static

attributes 29
entering 83
has relationships 31

Stop On Error

code generation model properties
103

Subprogram Implementation 120
System.Assertion_Error
raised by Associate 45, 52

T
Type Control

code generation class properties
108

Type Control Name

code generation class properties
108

type declarations
mapping 95

Type Definition

clde generation class properties
108

Type Equality Name

code generation class properties
118

Type Implementation

code generation class properties
107

Type Name

code generation class properties
106

Type Visibility

code generation class properties
107

U
UML package properties
see code generation UML package
properties
unidirectional associations
code generated for 37
definition 36

See also associations, association
classes

utilities 27

created by reverse engineering 95
See also bound utilities, parame-
terized utilities

W

warnings
due to a unidirectional association
37

due to dominated code generation
properties 7

158 Rational Rose 2000e, Forward and Reverse Engineering with Ada 95

Index

See also errors
with clauses
reverse engineering 96

Rational Rose 2000e, Forward and Reverse Engineering with Ada 95 159

	Contents
	Chapter 1�
	Mapping the UML Notation to Ada 95 — Code Generation
	“Introduction” on page�2
	“Name Space” on page�2
	“Name Resolution” on page�4
	“Code Generation Properties and Consistency” on page�6
	“Classes” on page�7
	“Parameterized Classes” on page�20
	“Bound Classes” on page�24
	“Utilities” on page�27
	“Metaclasses” on page�27
	“Attributes” on page�29
	“Has Relationships” on page�31
	“Associations” on page�35
	“Dependency Relationships” on page�53
	“Generalization Relationships (Inheritance)” on page�53
	“Operations” on page�65
	Introduction
	This chapter details the forward-engineering mapping between the UML notation and the Ada 95 prog...

	Name Space
	The following rules define the legal names for entities of a model that is used to generate Ada 9...
	The name of any entity in a model may have the form:
	The name of any class or module may also have the form (using the same BNF notation as in the Ada...
	The name of any normal or parameterized class (but not an utility or a bound class) may also have...

	From the name of a class the code generator derives the name of a library-level package (the pack...

	Name Resolution
	If any of these classes is named “B” (the comparison is case- insensitive, but must otherwise be ...
	If any of the target classes is named “B:T” (the comparison with the name segments preceding the ...
	If none of the target classes is named “B” or “B:T”, the type of the parameter in the generated c...

	Code Generation Properties and Consistency
	Classes
	This section contains the following topics:
	“Tagged Implementation” on page�8
	“Record Implementation” on page�8
	“Mixin Implementation” on page�14
	“Task Implementation” on page�15

	If a “normal” class is associated with a module, that module must be a non-generic package.
	Normally, the type generated to represent objects of the class is a non-limited, private type. Th...
	If TypeDefinition is not empty, it dominates TypeImplementation, and the type generated uses the ...
	Tagged Implementation
	The class corresponds to a tagged type. If the class has no superclass, the declaration of the co...
	If the class has a superclass, the declaration of the corresponding type is:
	If the class is abstract, the associated type declaration includes the reserved word abstract:

	Record Implementation
	Regardless of the mapping chosen, for a class which has no superclass and no subclasses, the gene...
	SingleType Record Implementation
	MultipleTypes Record Implementation

	Mixin Implementation
	Task Implementation
	Protected Implementation

	Parameterized Classes
	“Generic Implementation” on page�21
	“Unconstrained Type Implementation” on page�23
	Generic Implementation
	Unconstrained Type Implementation

	Bound Classes
	“Generic Implementation” on page�24
	“Unconstrained Type Implementation” on page�25
	Generic Implementation
	Unconstrained Type Implementation

	Utilities
	Metaclasses
	Attributes
	Has Relationships
	If ContainerType is empty (the default), ContainerImplementation is used to control the code gene...
	It results into the following code (note that only the “get” accessors are shown; the “set” acces...

	Associations
	“Simple Associations” on page�37
	There exist many similarities between the mapping of associations and that of “has” relationships:
	Simple Associations
	Data Structures
	If any role of a bidirectional association is by-value, an error is detected.

	Subprograms

	Association Classes
	Data Structures
	Subprograms

	Dependency Relationships
	Generalization Relationships (Inheritance)
	“Mixin Inheritance” on page�54
	“Multiple Views Inheritance” on page�58
	Mixin Inheritance
	Multiple Views Inheritance

	Operations
	This section contains the following topics:
	“Accessor Operations” on page�66
	“Standard Operations” on page�67
	“Subprogram Implementation” on page�68
	“Visibility” on page�69
	“Overriding” on page�69

	Accessor Operations
	Standard Operations
	Subprogram Implementation
	Visibility
	Overriding
	Bodies

	User-Defined Initialization, Assignment and Finalization

	Chapter 2�
	Ada Code Generation
	This chapter contains the following topics:
	“What is the Ada Generator?” on page�77
	“Basic Steps for Iterative Code Development” on page�78
	“Refining the Subsystem and View Structure” on page�87

	What is the Ada Generator?
	Basic Steps for Iterative Code Development
	This section contains the following topics:
	“The Generated Files” on page�79
	“The Basic Code Contents” on page�79
	“Entering Parameters for Parameterized classes” on page�80
	“Entering Static Attributes and Metaclass Attributes” on page�83
	“Evaluating the Generated Code” on page�84
	“Completing the Implementation of the Generated Code” on page�85
	1. Start Rose, if necessary.
	2. Create or open the Rose model from which you want to generate code and display an appropriate ...
	3. Select one or more class items (classes, utilities, parameterized classes and bound classes) o...
	4. Choose the Code�Generation command from the Tools:Ada�95 submenu. If code generation fails, in...
	5. Evaluate the generated code. Based on your evaluation, you can change the model and/or code-ge...

	The Generated Files
	The Basic Code Contents
	Entering Parameters for Parameterized classes
	Generic formal type: the Name field contains the reserved word type, followed by the name of the ...
	For actual parameters (appearing in bound classes) the convention is the following: the Name fiel...

	Entering Static Attributes and Metaclass Attributes
	Generated declaration:

	Evaluating the Generated Code
	Completing the Implementation of the Generated Code
	You cannot add your own code regions: if you try to do this, they will be considered orphaned by ...

	Regenerating Code

	Refining the Subsystem and View Structure
	This section contains the following topics:
	“Determining the Directory for an Ada File” on page�87
	“Mapping Classes and Modules to Ada Units” on page�88
	“Specifying Filenames” on page�88

	Determining the Directory for an Ada File
	Mapping Classes and Modules to Ada Units
	1. Introduce component diagrams into your model.
	2. Create a module specification for each Ada specification you want to generate.
	3. Assign each class to the appropriate module via the class's specification: to generate a packa...

	Specifying Filenames

	Specifying Additional Ada Unit Contents
	This section contains the following topics:
	“Adding Structured Comments” on page�89
	“Adding With Clauses” on page�89

	Adding Structured Comments
	Adding With Clauses

	Chapter 3�
	Reverse Engineering from Apex
	This chapter contains the following topics:
	“Basic Operations” on page�91
	“Dialog box options” on page�93
	“How Ada is Represented in a Class Diagram” on page�94

	Basic Operations
	“Creating the Model File” on page�92
	Creating the Model File
	Displaying the Model

	Dialog box options
	Include Closure of Views/Units
	Exclude Views/Units with prefix
	Include Views/Units With Prefix
	Include only Views/Units selected
	Petal File Name
	Include Classes
	Include Modules

	How Ada is Represented in a Class Diagram
	This section contains the following topics:
	“Mapping Package Specifications” on page�95
	“Mapping Type Declarations” on page�95
	“Mapping Subprogram Declarations” on page�96
	“Mapping Object Declarations” on page�96
	“Mapping “With” Clauses” on page�96

	Mapping Package Specifications
	An Ada package becomes a utility if contains subprograms which are not operations of some class-l...
	Packages that contain only subprograms associated with some class-like type do not correspond dir...
	All package specifications result in the creation of a package specification module in the proper...

	Mapping Type Declarations
	Mapping Subprogram Declarations
	Mapping Object Declarations
	Mapping “With” Clauses
	Special Handling for Subsystems in the $APEX_BASE Directory

	Chapter 4�
	Ada 95 Code Generation Properties
	“Model Properties” on page�100
	“Class Properties” on page�105
	“Operation Properties” on page�119
	“Has Properties” on page�122
	“Attribute Properties” on page�127
	“Association Role Properties” on page�131
	“Association Properties” on page�135
	“UML Package Properties” on page�139
	“Module Spec Properties” on page�139
	Model Properties
	This section contains the following topics:
	“Spec File Extension” on page�100
	“Spec File Backup Extension” on page�100
	“Spec File Temporary Extension” on page�101
	“Body File Extension” on page�101
	“Body File Backup Extension” on page�101
	“Body File Temporary Extension” on page�101
	“Create Missing Directories” on page�102
	“Generate Bodies” on page�102
	“Generate Standard Operations” on page�102
	“Implicit Parameter” on page�103
	“Stop On Error” on page�103
	“Error Limit” on page�103
	“File Name Format” on page�104

	Spec File Extension
	Spec File Backup Extension
	Spec File Temporary Extension
	When the Ada Generator writes a specification file, it actually writes the code to a temporary fi...
	1. The backup file (see the Spec File Backup Extension property) is deleted, if there is one.
	2. The existing specification file is renamed to the backup file, assuming an existing specificat...
	3. The temporary file is renamed to be the new specification file.
	4. The Spec File Temporary Extension property specifies the filename extension that the Ada Gener...

	Body File Extension
	Body File Backup Extension
	Body File Temporary Extension
	1. The backup file (see the Body File Backup Extension property) is deleted, if there is one.
	2. The existing body file is renamed to the backup file, assuming an existing body file is present.
	3. The temporary file is renamed to be the new body file.
	4. The Body File Temporary Extension property specifies the filename extension that the Ada Gener...

	Create Missing Directories
	Generate Bodies
	Generate Standard Operations
	Implicit Parameter
	Stop On Error
	Error Limit
	File Name Format
	Directory

	Class Properties
	This section contains the following topics:
	“Code Name” on page�106
	“Type Name” on page�106
	“Type Visibility” on page�107
	“Type Implementation” on page�107
	“Type Control” on page�108
	“Type Control Name” on page�108
	“Type Definition” on page�108
	“Record Implementation” on page�109
	“Record Kind Package Name” on page�109
	“Is Limited” on page�109
	“Is Subtype” on page�109
	“Generate Access Type” on page�110
	“Access Type Name” on page�110
	“Access Type Visibility” on page�110
	“Access Type Definition” on page�111
	“Maybe Aliased” on page�111
	“Parameterized Implementation” on page�111
	“Parent Class Name” on page�111
	“Enumeration Literal Prefix” on page�112
	“Record Field Prefix” on page�112
	“Array Of Type Name” on page�112
	“Access Array Of Type Name” on page�112
	“Array Of Access Type Name” on page�112
	“Access Array Of Access Type Name” on page�113
	“Array Index Definition” on page�113
	“Generate Standard Operations” on page�113
	“Implicit Parameter” on page�113
	“Implicit Parameter Name” on page�114
	“Generate Default Constructor” on page�114
	“Default Constructor Name” on page�115
	“Inline Default Constructor” on page�115
	“Generate Copy Constructor” on page�115
	“Copy Constructor Name” on page�116
	“Inline Copy Constructor” on page�116
	“Generate Destructor” on page�116
	“Destructor Name” on page�117
	“Inline Destructor” on page�118
	“Generate Type Equality” on page�118
	“Type Equality Name” on page�118

	Code Name
	Type Name
	Type Visibility
	Type Implementation
	Type Control
	Type Control Name
	Type Definition
	Record Implementation
	Record Kind Package Name
	Is Limited
	Is Subtype
	Generate Access Type
	The Generate Access Type property controls the generation of the Ada type used by the Ada Generat...

	Access Type Name
	Access Type Visibility
	Access Type Definition
	Maybe Aliased
	Parameterized Implementation
	Parent Class Name
	Enumeration Literal Prefix
	Record Field Prefix
	Array Of Type Name
	Access Array Of Type Name
	Array Of Access Type Name
	Access Array Of Access Type Name
	Array Index Definition
	Generate Standard Operations
	Implicit Parameter
	Implicit Parameter Name
	Generate Default Constructor
	Default Constructor Name
	Inline Default Constructor
	Generate Copy Constructor
	The Generate Copy Constructor property determines the kind of subprogram declared as the class co...

	Copy Constructor Name
	Inline Copy Constructor
	Generate Destructor
	Destructor Name
	Inline Destructor
	Generate Type Equality
	Type Equality Name
	If the Type Equality Name property is set to “Is_Equal”, the Ada Generator will output:

	Inline Equality

	Operation Properties
	This section contains the following topics:
	“Code Name” on page�119
	“Subprogram Implementation” on page�120
	“Renames” on page�120
	“Generate Overriding” on page�120
	“Implicit Parameter Mode” on page�120
	“Generate Access Operation” on page�121
	“Entry Code” on page�121
	“Exit Code” on page�121
	“Inline” on page�121

	Code Name
	Subprogram Implementation
	Renames
	Generate Overriding
	Implicit Parameter Mode
	Generate Access Operation
	Entry Code
	Exit Code
	Inline
	Entry Barrier Condition

	Has Properties
	This section contains the following topics:
	“Code Name” on page�122
	“Name If Unlabeled” on page�123
	“Record Field Implementation” on page�123
	“Record Field Name” on page�123
	“Generate Get” on page�124
	“Generate Access Get” on page�124
	“Get Name” on page�124
	“Inline Get” on page�124
	“Generate Set” on page�125
	“Generate Access Set” on page�125
	“Set Name” on page�125
	“Inline Set” on page�125
	“Initial Value” on page�126
	“Container Implementation” on page�126
	“Container Generic” on page�126
	“Container Type” on page�126

	Code Name
	Name If Unlabeled
	Record Field Implementation
	Record Field Name
	Generate Get
	Generate Access Get
	Get Name
	Inline Get
	Generate Set
	Generate Access Set
	Set Name
	Inline Set
	Initial Value
	Container Implementation
	Container Generic
	Container Type
	Container Declarations

	Attribute Properties
	This section contains the following topics:
	“Code Name” on page�127
	“Record Field Implementation” on page�128
	“Record Field Name” on page�128
	“Generate Get” on page�128
	“Generate Access Get” on page�129
	“Get Name” on page�129
	“Inline Get” on page�129
	“Generate Set” on page�129
	“Generate Access Set” on page�130
	“Set Name” on page�130

	Code Name
	Record Field Implementation
	Record Field Name
	Generate Get
	Generate Access Get
	The Generate Access Get property determines whether the function is declared or suppressed by the...

	Get Name
	Inline Get
	Generate Set
	Generate Access Set
	The Generate Access Set property determines whether the procedure is declared or suppressed by th...

	Set Name
	Inline Set

	Association Role Properties
	This section contains the following topics:
	“Code Name” on page�131
	“Name If Unlabeled” on page�131
	“Record Field Name” on page�132
	“Generate Get” on page�132
	“Generate Access Get” on page�132
	“Get Name” on page�133
	“Inline Get” on page�133
	“Generate Set” on page�133
	“Set Name” on page�133
	“Inline Set” on page�134
	“Initial Value” on page�134
	“Container Generic” on page�134
	“Container Type” on page�134

	Code Name
	Name If Unlabeled
	Record Field Name
	Generate Get
	Generate Access Get
	Get Name
	Inline Get
	Generate Set
	Set Name
	Inline Set
	Initial Value
	Container Implementation
	Container Generic
	Container Type
	Container Declarations

	Association Properties
	This section contains the following topics:
	“Name If Unlabeled” on page�135
	“Generate Get” on page�136
	“Get Name” on page�136
	“Inline Get” on page�136
	“Generate Set” on page�136
	“Set Name” on page�137
	“Inline Set” on page�137
	“Generate Associate” on page�137
	“Associate Name” on page�138
	“Inline Associate” on page�138
	“Generate Dissociate” on page�138
	“Dissociate Name” on page�138

	Name If Unlabeled
	Generate Get
	Get Name
	Inline Get
	Generate Set
	Set Name
	Inline Set
	Generate Associate
	Associate Name
	Inline Associate
	Generate Dissociate
	Dissociate Name
	Inline Dissociate

	UML Package Properties
	Directory

	Module Spec Properties
	This section contains the following topics:
	“Generate” on page�139
	“Copyright Notice” on page�139
	“Return Type” on page�140
	“Generic Formal Parameters” on page�140

	Generate
	Copyright Notice
	Return Type
	If Return Type is set to blank, the Ada Generator will output:

	Generic Formal Parameters
	Additional Withs

	Module Body Properties
	This section contains the following topics:
	“Generate” on page�142
	“Copyright Notice” on page�142
	“Return Type” on page�142
	“Additional Withs” on page�143

	Generate
	Copyright Notice
	Return Type
	Additional Withs
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U
	W

	Index

