
Rational Rose 2000e
Rose Extensibility
User’s Guide

Copyright © 1998-2000 Rational Software Corporation.Copyright © 1998-2000 Rational Software Corporation.Copyright © 1998-2000 Rational Software Corporation.Copyright © 1998-2000 Rational Software Corporation.
All rights reserved.All rights reserved.All rights reserved.All rights reserved.

Part Number 800-023328-000

Revision 7.0, March 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified
Process are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are
used for identification purposes only and are trademarks or registered
trademarks of their respective companies. Basic Script is a trademark of
Summit Software, Inc.

ii Rational Rose 2000e, Rose Extensibility User’s Guide

Contents

List of Figures xiii

List of Tables xv

Preface xvii

Prerequisites xvii

How This Manual Is Organized xviii

Online Help xviii

Online Manual xix

Related Documentation xix

File Names xix

Chapter 1 Basic Extensibility Concepts 1

Rational Rose Extensibility 1

The REI Model and Rational Rose Extensibility 1

Rational Rose Scripting 4

Rational Rose Automation 4

Rational Rose Add-In Manager 5

Default Properties and Property Sets 5

Rational Rose Extensibility Type Libraries 5
Rational Rose 2000e, Rose Extensibility User’s Guide iii

Contents
Chapter 2 Customizing Rational Rose Menus 7

Extending Rational Rose Menus 7

Customizing Rational Rose Main Menus 7
Procedure 8
Adding Entries to a Rational Rose Menu File 9

Menu File Keywords 10
Menu Actions 11
Menu File Variables and Modifiers 12

Syntax Rules for Rational Rose Menu File Entries 15
Adding Scripts to a Rational Rose Menu 16
Adding or Editing the Virtual Path for Scripts 17
Sample Rational Rose Menu File 19

Customizing Rational Rose Shortcut Menus 21
Benefits 21
Limitations 22
Key Terms and Concepts 22

Language-Dependent 22
Language-Neutral 23
Language Add-In 23
Non-Language Add-In 24

Behind the Scenes of Shortcut Menus... 24
How Rational Rose Formats and Displays Shortcut Menu Items 24
Shortcut Menu Scenarios 26
Shortcut Menu Design Considerations 28
Procedure 29
Creating Events for Shortcut Menus 30

OnActivate 30
OnEnableContextMenuItems 30
OnSelectedContextMenuItem 31

Adding Menu Items to the Shortcut Menu 31
Working with Shortcut Menu Items 31
Working with the Shortcut Menu Item Collection 31
Editing Shortcut Menu Items 31
Changing the State of a Shortcut Menu Item 32
Sample Shortcut Menu Implementation Code 32
Sample Rational Rose Script Shortcut Menu Code 34
iv Rational Rose 2000e, Rose Extensibility User’s Guide

Chapter 3 Using the REI to Work with Rational Rose 39

Introduction 39

Getting the Rational Rose Application Object 39
Using Rational Rose Script 39
Using Rational Rose Automation 40

Associating Files and URLs with Classes 40

Managing Default Properties 41

Adding a Property to a Set 42
How To 42
Example 43
Notes on the Example 43

Creating a New Property 44
How To 44
Example 44
Notes on the Example 44

Deleting Model Properties 44

Getting Model Properties 45

Setting Model Properties 45
Setting Model Properties Using OverrideProperty 45

How To 45
Example 46
Notes on the Example 46

Setting Model Properties Using InheritProperty 46
How To 46
Example 47
Notes on the Example 47

Creating a New Property Set 47

Cloning a Property Set 47
How To 47
Example 48
Notes on the Example 48
Rational Rose 2000e, Rose Extensibility User’s Guide v

Contents
Deleting a Property Set 49
How To 49
Example 49
Notes on the Example 49

Getting and Setting the Current Property Set 49
How To 49
Example 50
Notes on the Example 50

Creating a User-Defined Property Type 51
How To 51
Example 52
Notes on the Example 52

Creating a New Tool 53

Placing Classes in Categories 53

Using Type Libraries for Rational Rose Automation 53
How To 53
Example 53

Working with Controllable Units 54

Working with Rational Rose Diagrams 54

Getting an Element from a Collection 55
Accessing Collection Elements By Count 55

How To 55
Example 55

Accessing Collection Elements By Unique ID 56
How To 56
Example 56

Accessing Collection Elements By Name 56
How To 56
Example 56
vi Rational Rose 2000e, Rose Extensibility User’s Guide

Chapter 4 Using the Rational Rose Script Editor 57

The Script Editor Window 57

Opening a Script 58

Creating New Rational Rose Scripts 58
Creating a New Script from Scratch 58
Creating a New Script from an Existing Script 59

Moving the Insertion Point in a Script 59
Moving the Insertion Point with the Mouse 59
Moving the Insertion Point to a Specified Line in Your Script 60

Selecting Text 60
Selecting Text with the Mouse 61
Selecting Text with the Keyboard 61
Selecting an Entire Line 62

Deleting, Cutting, Copying, and Pasting Text 62
Deleting Text 62
Cutting a Selection 62
Copying a Selection 62
Pasting the Contents of the Clipboard into Your Script 63

Adding Comments to a Script 63
Adding a Full-Line Comment 63
Adding a Comment at the End of a Line of Code 63

Finding and Replacing Text 64
Finding Specified Text 64
Replacing Specified Text 65

Running, Pausing, and Stopping Your Script 66
Running Your Script 66
Pausing an Executing Script 66
Stopping an Executing Script 66

Tracing Script Execution 67
Stepping Through Your Script 67
Displaying the Calls Dialog Box 68
Rational Rose 2000e, Rose Extensibility User’s Guide vii

Contents
Setting and Removing Breakpoints 69
Starting Debugging Partway through a Script 69
Continuing Debugging at a Line Outside the Current
Subroutine 69
Debugging Selected Portions of Your Script 70
Removing a Single Breakpoint Manually 70
Removing All Breakpoints Manually 70

Working with Watch Variables 71
Adding Watch Variables 71
Selecting Variables on the Watch List 72
Deleting Watch Variables 73
Modifying the Value of Variables on the Watch Variable List 73

Compiling Your Script 74

Using Interscript Calls 74
Guidelines for Using a Script to Call Another Script 74
Debugging Interscript Calls 75

Working with the Dialog Editor 75
Inserting a Dialog Box into Your Script 75
Editing an Existing Dialog Box 75
Displaying and Adjusting the Grid 76
Changing Titles and Labels 77
Assigning Accelerator Keys 78
Capturing Standard Windows Dialog Boxes 78
Testing Your Dialog Boxes 79
Incorporating Dialog Boxes or Controls into Your Script 80
Selecting Controls 81
Selecting Dialog Boxes 81
Repositioning Items 82

Repositioning Items with the Mouse 82
Repositioning Items with the Arrow Keys 82
Repositioning Dialog Boxes with the Dialog Information Dialog
Box 83
Repositioning Controls with the Dialog Information Dialog
Box 83
viii Rational Rose 2000e, Rose Extensibility User’s Guide

Resizing Items 84
Resizing Items with the Mouse 84
Resizing Items with the Information Dialog Box 84
Resizing Selected Items Automatically 84

Adding Controls 85
Duplicating Controls 86
Adding Pictures to a Dialog 86

Adding Pictures from Files 86
Adding Pictures from Picture Libraries 87

Pasting Items into Dialog Editor 87
Pasting Existing Dialog Boxes into Dialog Editor 87
Pasting Controls from Existing Dialog Boxes into Dialog
Editor 88

Displaying the Information Dialogs 88
Displaying the Information Dialog Boxes for Dialogs 88
Attributes You Can Adjust with the Dialog Box Information
Dialog Box 89
Displaying the Information Dialog Boxes for Controls 90
Attributes You Can Adjust with the Information Dialog Boxes for
Controls 90

Appendix A Rational Rose Script Editor Shortcuts 95

General Shortcuts 95

Navigating Shortcuts 96

Editing Shortcuts 97

Debugging Shortcuts 98

File Menu Shortcuts 98

Edit Menu Shortcuts 99

Debugger Menu Shortcuts 100
Rational Rose 2000e, Rose Extensibility User’s Guide ix

Contents
Appendix B Developing Add-Ins for Rational Rose 101

Introduction 101

Why Create Add-Ins? 103

Types of Add-Ins 103

What is in an add-in? 103
Main menus 104
Shortcut menu 104
Custom Specifications 104
Properties 105
Data types 105
Stereotypes 105
Online help 105
Context-sensitive help 105
Registering for events 105
Functionality 106

UNIX versus Windows 106

Creating portable add-ins 107

How to develop add-ins 108
Customizing Main Menus 109
Customizing the Shortcut Menu 110
Creating Custom Specifications 110
Customizing Properties 110

Design Considerations 110
Information in Property Files 111
Format for Property Files 112
Sample Property File 117
Creating Property Files 119
Testing Property Files 119

Customizing Data types 120
Customizing Stereotypes 120

Steps for Creating Add-In Stereotypes 121
Additional online help 126

Adding Online Help for Your Add-In 127
x Rational Rose 2000e, Rose Extensibility User’s Guide

Additional context-sensitive help 128
Main Menu Items 128
Model Properties 129

User manuals 129
Registering for events 129

Interface Versus Script Events 130
What events are available? 130
How to add events to your add-in 131

Updating the Registry 134
Registry Entries 134
Registering Custom Stereotypes 137
Updating the registry during installation 137
Registry File Anatomy 138

Installing, Setting up, and Uninstalling your add-in 139
Installation Reminders 139
Installing Add-Ins 140
Uninstalling Add-Ins 140

Activating and deactivating add-ins 141

Index 143
Rational Rose 2000e, Rose Extensibility User’s Guide xi

List of Figures

Figure 1 Rational Rose Extensibility Model — Logical View 2
Figure 2 Rational Rose Application and Extensibility Components 3
Figure 3 Adding Virtual Path for Scripts 18
Figure 4 Sample Rational Rose Menu File 19
Figure 5 Sample Code for Shortcut Menus 34
Figure 6 Property Specification Editor 41
Figure 7 Rational Rose Script Editor 58
Figure 8 Goto Line Dialog Box 60
Figure 9 Selected Script Text 61
Figure 10 Find Script Text Dialog Box 64
Figure 11 Replace Dialog Box 65
Figure 12 Script Calls Dialog Box 68
Figure 13 Add Watch Dialog Box 71
Figure 14 Modify Variable Dialog Box 73
Figure 15 Grid Dialog Box 76
Figure 16 Dialog Editor with Grid Displayed 77
Figure 17 Capturing a Dialog Box 78
Figure 18 Sample Dialog Box in Basic Script 81
Figure 19 Dialog Box Information Dialog Box 89
Figure 20 Control Information Dialog Box 90
Figure 21 Rational Rose Add-Ins Architecture 102
Figure 22 Sample Custom Properties 117
Figure 23 OLEServer Windows Registry Entry 131
Figure 24 Windows Registry Entries for Rational Rose Events 132
Rational Rose 2000e, Rose Extensibility User’s Guide xiii

List of Figures
Figure 25 Sample Event Handler Defining an Add-In’s Interfaces for Rational Rose
Events 133

Figure 26 Windows Registry Entries for an Add-In 134
Figure 27 Windows Registry Entry for an Add-In’s Custom Stereotype Configuration

File 137
xiv Rational Rose 2000e, Rose Extensibility User’s Guide

Rational Rose 2000e, Rose Extensibility User’s Guide xv

List of Tables

Table 1 Menu File Keywords 10
Table 2 Menu Actions 11
Table 3 Menu File Variables 13
Table 4 Menu File Modifiers 13
Table 5 Displaying Shortcut Menu Items 26
Table 6 Sample Watch Expressions 72
Table 7 General Shortcuts 95
Table 8 Navigating Shortcuts 96
Table 9 Editing Shortcuts 97
Table 10 Debugging Shortcuts 98
Table 11 File Menu Shortcuts 98
Table 12 Edit Menu Shortcuts 99
Table 13 Debugger Menu Shortcuts 100
Table 14 UNIX versus Windows 106
Table 15 Property file data types 115

Preface

The Rational Rose 2000e, Rose Extensibility User’s Guide describes the
Rational Rose Extensibility Interface (REI) and provides procedures for:

� Customizing (extending) Rational Rose menus

� Working with Rational Rose using the REI

� Working with the Rational Rose Script Editor, which is the scripting
environment for working with the REI

Prerequisites

This manual assumes that you are familiar with the Windows 95,
Windows 98, or Windows NT 4.0 operating environment, object
oriented design concepts, and how to use Rational Rose.

If you are unfamiliar with Rational Rose or object oriented design
concepts, you should refer to the Rational Rose 2000e, Using Rose
manual, as well as run the Rational Rose tutorial, which is included on
your product CD.

Also note that you may need to adapt the syntax listed for each REI
property and method to your particular programming language. If the
listed syntax, does not meet your needs, consult your programming
environment’s help, programming language books, and outside
documentation on the subject.
Rational Rose 2000e, Rose Extensibility User’s Guide xvii

Preface
How This Manual Is Organized

This manual contains the following four chapters and two appendixes:

� Chapter 1—Chapter 1—Chapter 1—Chapter 1—Basic Extensibility Concepts

Provides an overview of Rational Rose extensibility concepts.

� Chapter 2Chapter 2Chapter 2Chapter 2—Customizing Rational Rose Menus

Provides syntax, examples, and procedures for adding submenus
and menu commands to Rational Rose main and shortcut menus.
Also, describes how Rational Rose formats and displays shortcut
menu items.

� Chapter 3Chapter 3Chapter 3Chapter 3—Using the REI to Work with Rational Rose

Tells how to perform many common Rational Rose tasks by using
the Rational Rose Extensibility Interface, rather than the user
interface.

� Chapter 4Chapter 4Chapter 4Chapter 4—Using the Rational Rose Script Editor

Provides detailed instructions for working in the Rational Rose
Script Editor, your environment for creating, debugging and
running Rational Rose Script.

� Appendix A—Appendix A—Appendix A—Appendix A—Rational Rose Script Editor ShortCuts

Lists the shortcuts available when working in the Rational Rose
Script editor.

� Appendix BAppendix BAppendix BAppendix B—Developing Add-Ins for Rational Rose

Provides additional information for users who want to explore the
use of add-ins. Tells how to combine Rational Rose customizations
and automations into one package.

Online Help

Rational Rose includes comprehensive online help with hypertext links
and a two-level index. The online help includes all of the information
found in this guide, as well as all of the information contained in the
Rational Rose 2000e, Rose Extensibility Reference.
xviii Rational Rose 2000e, Rose Extensibility User’s Guide

Online Manual
Online Manual

Rational Rose includes all the user manuals online. Please refer to the
Readme.txt file (found in the Rational Rose installation directory) for
more information.

Related Documentation

After installation and before you begin using Rational Rose and the
Extensibility Interface, please review any readme.txt files and
Release Notes to ensure that you have the latest information about
the product. The release notes are included with your product
documentation and are available online from the Start menu. The
release notes also list the new and updated classes, properties, and
methods. This information allows existing users to quickly discover
what has changed since the last version of Rational Rose.

For additional resources, refer to the Using Rational Rose guide and
online help. If you are new to Rational Rose, visual modeling, or the
Unified Modeling Language (UML), you may also want to read the book,
Visual Modeling with Rational Rose and UML, included with your
product documentation.

File Names

Where file names appear in examples, Windows syntax is depicted. To
obtain a legal UNIX file name, eliminate any drive prefix and change the
backslashes to slashes:

c:\project\username

becomes

/project/username
Rational Rose 2000e, Rose Extensibility User’s Guide xix

Chapter 1

Basic Extensibility Concepts

Rational Rose Extensibility

Rational Rose provides several ways for you to extend and customize
its capabilities to meet your specific software development needs. You
can:

� Customize Rational Rose menus.

� Automate manual Rational Rose functions with Rational Rose
Scripts (for example, diagram and class creation, model updates,
document generation, etc.).

� Execute Rational Rose functions from within another application
by using the Rational Rose Automation object (RoseApp).

� Access Rational Rose classes, properties and methods right within
your software development environment by including the Rational
Rose Extensibility Type Library in your environment.

� Activate Rational Rose add-ins using the Add-In Manager.

The REI Model and Rational Rose Extensibility

The purpose of Rational Rose is to enable component based software
development. As you would expect, the Rational Rose application is
itself component-based, and is defined in the Rational Rose
Extensibility Interface (REI) Model.

The REI Model is essentially a metamodel of a Rational Rose model,
exposing the packages, classes, properties and methods that define
and control the Rational Rose application and all of its functions.
Rational Rose 2000e, Rose Extensibility User’s Guide 1

Chapter 1 Basic Extensibility Concepts
Figure 1 shows the logical packages that comprise the Rational Rose
Extensibility Interface Model. Refer to the Rational Rose Extensibility
Interface Reference or online help for details on the classes contained
in each package, and the properties and methods defined for each
class.

Figure 1 Rational Rose Extensibility Model — Logical View

You communicate with the Rational Rose Extensibility Interface
through Rational Rose Scripts or through Rational Rose Automation.
In either case, you will use the REI calls defined in the Rational Rose
Extensibility Model and described in the Rational Rose Extensibility
Reference and online help.

Figure 2 shows the components of Rational Rose and the Rational Rose
extensibility interface, and illustrates the relationships between them.
These components are:

� Rational Rose Application

The Rational Rose Extensibility objects that interface to Rational
Rose’s application functionality.
2 Rational Rose 2000e, Rose Extensibility User’s Guide

The REI Model and Rational Rose Extensibility
� Rational Rose Extensibility Interface

This is the common set of interfaces used by Rational Rose Script
and Rational Rose Automation to access Rational Rose.

� Rational Rose Script

The set of Rational Rose Script objects that allow Rational Rose
Scripts to automate Rational Rose Functionality.

� Rational Rose Automation

The set of Rational Rose Automation objects that allow Rational
Rose to function as an OLE automation controller or server.

� Diagrams

The Rational Rose Extensibility objects that interface to Rational
Rose’s diagrams and views.

� Model Elements

The Rational Rose Extensibility objects that interface to Rational
Rose’s model elements.

Figure 2 Rational Rose Application and Extensibility Components
Rational Rose 2000e, Rose Extensibility User’s Guide 3

Chapter 1 Basic Extensibility Concepts
Rational Rose Scripting

The Rational Rose Scripting language is an extended version of the
Summit BasicScript language. The Rational Rose extensions allow you
to automate Rational Rose-specific functions, and in some cases,
perform functions that are not available through the Rational Rose
user interface.

The Rational Rose script editor runs in the Rational Rose environment
and provides access to the scripting environment. Start the script
editor by clicking either Tools > New Script or Tools > Open Script.

Rational Rose provides a set of sample scripts that you can use as a
base from which to create your own scripts.

� Check the Scripts folder in your Rational Rose installation
directory for the complete list of available scripts.

� Use the Rational Rose Script Editor (click Tools > Open Script) to
view a sample script. If you want to edit the script, click File > Save
Script As to create a copy for your own use, leaving the sample
intact.

Use the online BasicScript and Rational Rose Script Language
References for complete script language information.

Rational Rose Automation

Rational Rose automation allows you to integrate other applications
with Rational Rose in two ways:

� Using Rational Rose as an automation controller, you can call an
OLE automation object from within a Rational Rose script. For
example, a Rational Rose script can use OLE automation to
execute functions in applications such as Word and Visual Basic.

� Using Rational Rose as an automation server, you can call its OLE
automation object from within other OLE-compliant applications.

Rational Rose Automation is accessible to automation controller
environments, such as Visual Basic, EXCEL, Summit BasicScript,
Softbridge Basic Language, C, C++, and others.
4 Rational Rose 2000e, Rose Extensibility User’s Guide

Rational Rose Add-In Manager
Rational Rose Add-In Manager

The Rational Rose Add-In Manager provides you with the facilities
required to install extensions you create as add-in components in the
Rational Rose Environment.

In the extensibility environment, you can manipulate add-ins using
calls to the RoseAddInManager object.

Default Properties and Property Sets

Each Rational Rose model has its own default properties. These default
properties are defined in a property file and are grouped into sets based
on:

� Type of model element

Class, component, relation, attributes, operations; and so on; the
objects that make up the model.

� Tool

Correponds to a tab in the property specification; a tool can be a
programming language tool, such as Java or C++; a database tool,
such as Oracle8; a user-defined add-in to Rational Rose, or some
other tool.

� Properties

The actual properties and property values defined in the set; these
must be appropriate to the model element and tool for which they
are being defined.

Note: You can define multiple sets of default properties for the same tool
and model element. For example, you might want one set of properties
for a class with a stereotype of Actor and a different set of properties for
a class with a stereotype of Interface. Both of these sets are still
considered default properties in that they are predefined for the model.
Defining multiple sets saves you work by minimizing the need to override
properties later.

Rational Rose Extensibility Type Libraries

Loading a type library for Rational Rose automation allows you to use
Rational Rose class names to access the Rational Rose Extensibility
Interface from your programming environment.
Rational Rose 2000e, Rose Extensibility User’s Guide 5

Chapter 1 Basic Extensibility Concepts
For example, if you are working in Visual Basic, instead of using the
Basic object type Object, you can use the name of the actual Rational
Rose class. You can also check the syntax of the properties and
methods at compile time (early binding) instead of when the code is
executed (late binding).

If you are working in Visual C, you can import RationalRose.tlb into
an MFC project. This generates ColeDispatchDriverColeDispatchDriverColeDispatchDriverColeDispatchDriver subclasses for
each REI class, and methods allowing access to REI properties and
methods.

Important:::: When you specify a Rational Rose class name in an
automation environment, you must add the prefix RoseRoseRoseRose to the class
name, unless the class name itself contains the word Rose already. (For
example, the Rational Rose class, RoseItem, does not require a prefix.)
This prefix prevents class name conflicts across applications.

For example, in Rational Rose Script, the syntax for declaring a
Category variable is:

Dim theCategory As Category

In Rational Rose Automation, the syntax for declaring a Category
variable is:

Dim theCategory As RoseCategory

For details on using type libraries in any automation environment,
refer to the documentation for your particular programming
environment.
6 Rational Rose 2000e, Rose Extensibility User’s Guide

Chapter 2

Customizing Rational Rose Menus

Extending Rational Rose Menus

Using the Rational Rose Extensibility Interface, you may add your own
menu options to one of Rational Rose’s menus (for example, File, Edit).
You can also add your own menu options to the Rational Rose shortcut
menu (displayed when you right-click).

This chapter explains how to customize:

� Rational Rose main menus

� Rational Rose shortcut menu

Customizing Rational Rose Main Menus

You can extend or customize Rational Rose menus by updating the
Rational Rose menu file, which Rational Rose reads during startup.

You can extend Rational Rose menus by adding:

� Submenus

� Menu options that execute any of the following:

❑ Rational Rose primitives

❑ Rational Rose scripts
Rational Rose 2000e, Rose Extensibility User’s Guide 7

Chapter 2 Customizing Rational Rose Menus
❑ System commands

❑ External programs

� Menu separators (lines between menu options, used to group
similar menu items)

Note: You can add information to existing menus (for example, File, Edit,
etc.); however, you cannot add new menus to the Rational Rose menu
bar.

The content of Rational Rose menus is defined in the Rose.mnu file. If
you want to customize Rational Rose menus, you must edit this file.

While you cannot add new menus to the Rational Rose menu bar, you
can add commands to the existing Rational Rose menus.

Use the procedures, commands, and syntax described in this chapter
to add Rational Rose menu commands that:

� Execute a program or shell script

� Execute a Rational Rose script

� Load or save controllable units

� Display a dialog for user input

� Change write protection for a controllable unit

� Execute an interface in a COM server (for example, from your add-
in)

Procedure

The following procedure outlines the general steps for customizing
Rational Rose menus.

The subsections following the procedure provide information on
command syntax, variables, and modifiers to use as you complete the
procedure.

Check the sample menu file at the end of this chapter for a complete
example that illustrates how to put the various menu elements
together into a working menu file.

1. Using any text editor, open the Rose.mnu file. (The file resides in
the directory where Rational Rose is installed.)

2. Add entries to Rose.mnu for any or all of the following:

❑ Submenus
8 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Main Menus
❑ Menu options

❑ Menu separators

Note: Pay close attention to the syntax rules that apply to your
entries to the Rational Rose menu file. For example, the syntax of the
menu specifications includes opening and closing braces. You must
include these braces in your specifications, or they will not work
properly. For complete details, see Syntax Rules for Rational Rose
Menu File Entries, later in this chapter.

3. If the menu item executes a script, add or edit Rational Rose’s
virtual path for scripts, unless one is already defined.

4. Save the file.

❑ To create another menu file while leaving the Rose.mnu file
intact, save the file under a different name. (Recommended)

❑ To overwrite the file, save it as Rose.mnu

Adding Entries to a Rational Rose Menu File

Using any text editor and the following information, you can add menu
entries to the Rational Rose menu file. The entries will appear on the
Rational Rose menu in the order in which you specify them.

As you add menu entries, you will specify:

� KeywordsKeywordsKeywordsKeywords that determine what to add to the menu (a submenu, a
menu option, a separator).

� Menu actionsMenu actionsMenu actionsMenu actions that specify what action to take when the menu item
is selected.

� ArgumentsArgumentsArgumentsArguments that further define a menu action, or that determine
the conditions under which a menu command is enabled or
disabled in Rational Rose.

Remember to follow all of the syntax rules as described in Syntax Rules
for Rational Rose Menu File Entries, later in this chapter. For example,
the syntax of the menu specifications includes opening and closing
braces. You must include these braces in your specifications, or they
will not work properly. Remember that each opening brace ({{{{) requires
a corresponding closing brace (}}}}).
Rational Rose 2000e, Rose Extensibility User’s Guide 9

Chapter 2 Customizing Rational Rose Menus
Menu File Keywords

Table 1 describes the valid keywords for your entries in the Rational
Rose menu file:

Table 1 Menu File Keywords

Keyword Description

Menu RoseMenu Enter the Menu keyword, followed by the Rational Rose
menu name to indicate the name of the menu being
extended.
For example, enter Menu Tools as the first line of an
entry that extends the Tools menu.

Menu “Menu Text” Enter the Menu keyword, followed by a text string to
indicate the name of a submenu being added to the
menu. Note that quotation marks are required if the
text string contains spaces.
For example, enter Menu “My Scripts” to add a
submenu called My Scripts.

Separator Enter the Separator keyword to add a separator to a
list of menu options. Remember the placement of the
Separator keyword controls the placement of the
separator line on the menu.

Option “Command
text”

Enter the Option keyword, followed by a text string to
indicate the name of the menu command being added to
the menu. Note that quotation marks are required if the
text string contains spaces.
For example, enter Option “Run My Script” to add a
menu command called Run My Script.
10 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Main Menus
Menu Actions

An action defines the result of activating a menu entry. The required
arguments can be supplied as keywords, constants, variables, or
variables with modifiers. Table 2 describes the valid menu actions for
your entries in the Rational Rose menu file.

Table 2 Menu Actions

Action Result

Block Displays a modal dialog with ‘arg’ as its prompt.
Used following ‘exec’ and an action such as the
Roseload command to suspend the following
action until the user chooses to continue.

Rosescript Script-
Path-and-Name

Executes a source or compiled image of a script.
You can specify the script name without its
extension. The Rosescript command will
search for the source script first and execute it if
found. If not found, it will search for and execute
the compiled script.

Exec program-name
[arg2 [arg3 ...[arg10]]]

Executes the program or shell script contained
in the file designated by program-name. (If the
program is not located in the current directory, it
must be in a directory in the execute path.)
If the final argument is of the form '-
F<filename>' then a file named <filename> is
created (if it does not already exist). All
arguments, except the last one are written to the
file, and <filename> is passed as the sole
argument to ‘program.’

Note:Note:Note:Note:

� F must be uppercase.

� It is up to ‘program’ to delete the file.

� To pass a string beginning with ‘-F’ as the
final parameter of an exec action, use ‘--F’
instead. (The character ‘^’ does NOT work in
this case.)

Roseload
ControlledUnit

Loads the designated controlled unit(s) from the
associated file.

Rosesave
ControlledUnit

Saves the designated controlled unit(s) to the
associated file.
Rational Rose 2000e, Rose Extensibility User’s Guide 11

Chapter 2 Customizing Rational Rose Menus
Menu File Variables and Modifiers

Rational Rose provides a set of variables that correspond to various
Rational Rose model items. You can use these variables in conjunction
with a set of modifiers to determine the conditions under which menu
items are enabled or disabled, as well as to specify specific menu
actions.

The format for specifying variables with modifiers is:

variable[:mod1[:mod2[...[:mod10]]]

Updateaccess
ControlledUnit

Sets the write protection for the controlled unit(s)
to that of their corresponding files.

InterfaceEventadd-in
interface

Executes the specified interface in the specified
add-in’s registered COM object. You are not
limited to Rational Rose events. You may specify
custom interfaces from your OLE server. Note
that quotation marks are required if the add-in
name contains spaces.
Examples:

� InterfaceEvent C++ OnBrowseHeader
When the user selects the menu option
corresponding to this menu action, Rational
Rose executes the OnBrowseHeader method
in the C++ OLE server.

� InterfaceEvent All OnBrowseHeader
When the user selects the menu option
corresponding to this menu action, Rational
Rose executes the OnBrowseHeader method
in all active add-ins’ OLE servers.

� InterfaceEvent "My AddIn" CheckFormat
When the user selects the menu option
corresponding to this menu action, Rational
Rose executes the add-in’s custom
CheckFormat method in the “My AddIn” OLE
server.

Action Result
12 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Main Menus
Variables

Table 3 lists the set of variables that are valid for extending Rational
Rose menus.

Table 3 Menu File Variables

Modifiers

Table 4 lists the set of modifiers that are valid for use with variables to
extend Rational Rose menus.

Table 4 Menu File Modifiers

Variable Description

%all_units List of controlled units in all models

%current_diagram Name of the current diagram

%true Boolean value true

%false Boolean value false

%model Name of the current model

%selected_items List of model elements selected in the current
diagram

%selected_units List of controlled units selected in the current
diagram

%uname Use in place of %selected_units:first:elide
See Modifiers for information on first and elide.

%ufile Use in place of %selected_units:first:file
See Modifiers for information on first and file.

Modifier Description

allfiles Applied to a unit or item name or a list of unit or item
names; evaluates to a string which contains the list of the
corresponding header and source file names.

basename Applied to a path, evaluates to a string that contains the
file name portion of the path.

Applied to a list of paths, evaluates to a string that
contains a list of file names. Each file name is extracted
from its corresponding path.
Rational Rose 2000e, Rose Extensibility User’s Guide 13

Chapter 2 Customizing Rational Rose Menus
codefile Applied to a unit or item name or a list of unit or item
names, does one of the following:

� Evaluates to a string which contains the complete path
of the codefile attribute associated with the unit.

� Evaluates to a string containing the name of the
controlled unit in which the item is located.

Applied to a list, evaluates to a string which contains the
list of corresponding file names.

directory Applied to a path which resolves to a file, evaluates to a
string that contains the directory portion of the path.

Applied to a path which resolves to a directory, evaluates
to a string that contains that path—no modification is
performed.

Applied to a list of paths, evaluates to a string that
contains a list of directories. Each directory is extracted
from its corresponding path using the preceding rules.

elide Applied to a unit or item name, evaluates to the first
space-delimited word in the name.

Applied to a list, equivalent to <list>:first:elide.

empty Applied to a list; evaluates to a boolean which is TRUE if
the list is empty.

false Applied to a boolean, evaluates to a boolean which is the
logical negation of its input.

file Applied to a controlled unit name, evaluates to a string
that contains the path of the file associated with (providing
persistent storage for) that controlled unit.

Applied to a list of controlled unit names, evaluates to a
string that contains a list of paths using the preceding rule
for each controlled unit name in the input list.

first Applied to an empty list, evaluates to NULL.

Applied to a non-empty list; evaluates to a string that
contains the first element of the list.

Modifier Description
14 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Main Menus
Syntax Rules for Rational Rose Menu File Entries

Follow these rules when specifying menu text:

� When a text string contains embedded spaces, enclose the string in
double quotation marks.

For example, “Run Script”

� When a text string has no embedded spaces (a single word, for
example), enter the string without any quotation marks.

For example, Validate

headerfile Applied to a unit or item name or a list of unit or item
names, does one of the following:

� Evaluates to a string which contains the name of the
item’s associated header file.

� Evaluates to a string containing a list of corresponding
header file names.

home_unit Applied to a model component name, evaluates to a string
containing the name of the controlled unit in which the
item is located.

multiple Applied to a list of unit, item, or file names, evaluates to
boolean which is TRUE if list has more than one element.

not A synonym (and preferred method) for false.

sourcefile Applied to a unit or item name, or to a list of unit or item
names, does one of the following:

� Evaluates to a string, which contains the name of the
item’s associated sourcefile.

� Evaluates to a string containing a list of corresponding
sourcefile names.

unary Applied to a list, evaluates to a boolean, which is TRUE if
the input list has exactly one element.

writeable Applied to a path resolving to a file, evaluates to a boolean,
which is TRUE if the file is writeable

Applied to a controlled unit name, evaluates to a boolean,
which is TRUE if the controlled unit is writable

Modifier Description
Rational Rose 2000e, Rose Extensibility User’s Guide 15

Chapter 2 Customizing Rational Rose Menus
� When a text string that is not enclosed in quotes includes a special
character, the special character could be misinterpreted as a
variable. For this reason, you must precede any special characters
(such as ^, “, or %) with an escape character. The escape character
for all special characters is ^.

Examples:

❑ Option Calculate^%

Creates a menu option whose text reads Calculate %.

❑ exec Notepad ^””c:\my files\file.txt”^”

Creates a menu action that executes the following
command line: notepad “c:\my files\file.txt”.

Note the escape character followed by an additional set of
quotation marks. One set of quotation marks is necessary
because there is a space in my files. The second set, each of
which is preceded by the ^ escape character, causes the actual
command line to include the quotation marks as part of the
command.

� To create a mnemonic for the menu, add an ampersand (&) before
the menu text.

For example, “&Run Script”

Allows users to execute the menu item by pressing CTRL+R.

� Menu text can include variables and modifiers.

For example, Option “Validate ”%model

Creates a menu option with the text Validate MyCurrentModel
(assuming the current model is called MyCurrentModel).

See Menu File Variables and Modifiers, earlier in this chapter, for
more information.

Adding Scripts to a Rational Rose Menu

If you create a Rational Rose script that you will use over and over
again, you may want to add it to a Rational Rose menu. For example,
if you write a script to create a particular report based on the contents
of a model, you will probably run that script periodically.
16 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Main Menus
Follow these steps to add such scripts to a Rational Rose menu:

1. Open the Rational Rose Menu file, or create a new one to use in its
place.

2. Edit the Path Map so that it includes a virtual script path. (See
Adding or Editing the Virtual Path for Scripts, next in this chapter.)

3. Modify the Rational Rose menu file to add the script under the
appropriate menu, being careful to follow all of the menu file
syntax rules. To do this:

❑ In the menu file, locate the menu specification that corresponds
to the Rational Rose menu to which you want to add the script.
Each menu specification is comprised of the Menu keyword
followed by the name of a Rational Rose menu. For example,
the Tools menu specification begins with Menu Tools.

❑ Within the appropriate menu specification, add a menu option
that specifies the text of the menu command that will run the
script (for example, Run Conversion Wizard).

❑ Enter a RoseScript menu action to cause the script to execute
when a user selects the menu command.

4. Save the updated menu file.

Adding or Editing the Virtual Path for Scripts

When you edit the Rational Rose menu file to include script
commands, you must include one of the following:

� The fully qualified name of the script file to execute

� The virtual path that maps to the actual path

Defining a virtual path for scripts simplifies the process of editing the
menu file by allowing you to specify the symbolic virtual path name
instead of the complete file path.
Rational Rose 2000e, Rose Extensibility User’s Guide 17

Chapter 2 Customizing Rational Rose Menus
Use the following procedure to add or edit a virtual path for scripts:

1. Start Rational Rose.

2. Click File > Edit Path Map to display the Virtual Path Map dialog box.

Figure 3 Adding Virtual Path for Scripts

3. Check for the $SCRIPT_PATH virtual symbol and do one of the
following:

❑ If the symbol exists, select it in the dialog to display its current
mapping information in the lower portion of the dialog.

❑ If the symbol does not exist, enter it in the Symbol field in the
lower portion of the dialog.

❑ Enter the actual path to your Rational Rose scripts, or use the
Browse button to locate and select the path. (Normally these
scripts reside in a ScriptsScriptsScriptsScripts subdirectory of the Rational Rose
installation directory.)

❑ When you make changes in the dialog, the Close button
becomes an OK button. Click OK to save your changes and exit
the Virtual Path Map dialog box.
18 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Main Menus
Sample Rational Rose Menu File

The following figure shows a portion of a Rational Rose menu file.

Figure 4 Sample Rational Rose Menu File

Note the following entries as you examine the menu specifications that
comprise this file:

� Separator Entry

A separator entry causes a separator line to appear between the
menu item above the keyword and the menu item below the
keyword. In this case, a separator line will appear above the
Rational on the Web submenu.
Rational Rose 2000e, Rose Extensibility User’s Guide 19

Chapter 2 Customizing Rational Rose Menus
� Menu Entry

A Rational Rose menu entry consists of the Menu keyword, followed
by the name of the Rational Rose menu being extended.

This menu file extends the Help menu, the Reports menu, and the
Tools menu (only partially in view).

� Submenu Entry

A submenu is a second level menu that appears under a menu. A
submenu entry looks just like a menu entry, with two exceptions:

❑ It appears within a Rational Rose menu specification. (In this
case, it is part of the Rational Rose Help menu specification.)

❑ The Menu keyword is followed by the submenu title. (Notice that
when the submenu title has embedded spaces, it is enclosed in
quotation marks.)

� Option Entry

Menu option entries define menu commands that you add to a
menu. They begin with the Option keyword and are followed by
the option title.

This file adds the following commands to the specified menus:

❑ Online Support (Rational on the Web submenu of the Help
menu)

❑ Rational Home Page (Rational on the Web submenu of the Help
menu)

❑ Show Participants in UC (Report menu)

❑ Documentation Report (Report menu)

� Menu Action

Menu actions tell Rational Rose what to do when the menu item is
selected. Each of the options in this file executes a Rational Rose
Script. The Menu Actions topic describes all of the available
actions.

� Menu Argument

Menu arguments can be included to enable or disable a menu item
under various circumstances. The arguments begin with either an
Enable or Disable keyword, followed by variables and modifiers
which define the circumstances.

In this case, the Show Participants in UC menu item will be enabled
only if at least one item is selected in the current diagram (that is,
the statement, “The list of selected items is empty” is false).
20 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
� Braces

Every menu specification entry must begin with a left brace ({) and end
with a right brace (}). The nested braces allow you to define the
hierarchy of a menu specification from the Rational Rose menu at the
high end to a submenu option at the low end.

Customizing Rational Rose Shortcut Menus

When you or the user of your add-in to Rational Rose right-clicks in
Rational Rose, a shortcut menu appears. The commands displayed on
the shortcut menu are determined by where you or your add-in user
clicks the mouse and what items are selected in the diagram or
browser. You can take advantage of this feature in your add-in’s
functionality so that your add-in user sees your shortcut menu items
when they right-click. If your add-in has features that you want to
include on a shortcut menu, the shortcut menu help topics explain
how to add items to the Rational Rose shortcut menu by using the
Rational Rose Extensibility Interface (REI).

Benefits

The REI exposure of Rational Rose’s shortcut menu interface provides
the following benefits:

� Quicker access to your add-in’s features for your customers

� Control of when the menu item displays on the shortcut menu

❑ Default (any time the user selects multiple different items, e.g.,
classes and packages, or has nothing selected)

❑ Diagram

❑ Package

❑ UseCase

❑ Class

❑ Attribute

❑ Operation

❑ Component

❑ Role

❑ Properties

❑ Model
Rational Rose 2000e, Rose Extensibility User’s Guide 21

Chapter 2 Customizing Rational Rose Menus
❑ DeploymentUnit

❑ ExternalDoc

� Control of the state in which your menu item displays on the
shortcut menu (enabled, disabled, checked, unchecked)

� Control of the order (but not position) of multiple menu items on
the shortcut menu

� Ability to add submenus to shortcut menu items

� Ability to add separator lines to the shortcut menu and submenus

� Ability to create one shortcut menu item that works for items
selected in the browser as well as in a diagram (you do not have to
create one menu item for items selected in the browser and
another menu item for items selected in the diagram)

Limitations

The position on the shortcut menu where your menu item displays is
controlled by Rational Rose. If you have more than one item on the
shortcut menu, however, you can control the order in which those
items display by adding the items (using the AddContextMenuItem
method) in the order in which you want the menu items displayed.

Key Terms and Concepts

Language-Dependent

Rational Rose model elements are language-dependent if they can be
associated with a specific language add-in, especially for code
generation. These model elements are:

� Associations

� Attributes

� Classes

� Components

� Operations

� Roles
22 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
Language-Neutral

Rational Rose model elements are language-neutral if they are not
associated with a specific language. They are not generated into code
(although model elements within them can be generated into code).
These model elements are:

� Activities*

� Decisions*

� DeploymentUnits

� Diagrams*

� ExternalDocs

� Models

� Packages*

� Properties

� States*

� Subsystems*

� Swimlanes*

� Synchronizations*

� Transitions*

� UseCases*

* These model elements make up a special subset of language-neutral
items. A language add-in can add shortcut menu items for these model
elements and get the OnContextMenuItem event for them, as long as
the language add-in is set as the default language.

In other words, if your language add-in is the default language, when
a user right-clicks on any of the above special language-neutral model
elements, the user sees your language add-in’s shortcut menu items
for these model elements. If your language add-in is not the default
language and the user right-clicks on one of these special language-
neutral model elements, the user does not see your shortcut menu
items for these model elements.

Language Add-In

A language add-in is an add-in whose Rational Rose Registry setting for
“LanguageAddIn” is set to Yes.
Rational Rose 2000e, Rose Extensibility User’s Guide 23

Chapter 2 Customizing Rational Rose Menus
Non-Language Add-In

A non-language add-in is an add-in whose Rational Rose Registry
setting for “LanguageAddIn” is set to No.

Behind the Scenes of Shortcut Menus...

When Rational Rose is started, it issues the OnActivate event and gets
shortcut menu items (ContextMenuItem) from each add-in.

When you or the user of your add-in right-clicks, Rational Rose sends
the OnEnableContextMenuItems event to the appropriate add-ins to
get the applicable menu states for the add-in’s ContextMenuItems.
Rational Rose then formats and displays the shortcut menu with
appropriate add-in menu items depending on:

� Where the user right-clicked

� What items are selected (e.g., class, package)

� For what context the add-in’s shortcut menu items are defined
(ContextMenuItemType)

See How Rational Rose Formats and Displays Shortcut Menu Items.

When the user selects a menu item from the shortcut menu, Rational
Rose sends the OnSelectedContextMenuItem to the appropriate add-
ins. It is then up to the add-in to map the event and arguments to one
of its methods.

The add-in then runs the method that corresponds to the selected
shortcut menu item.

How Rational Rose Formats and Displays Shortcut Menu Items

The methodology for which shortcut menu items display and when
they display makes the add-in a smart, seamless part of Rational Rose.
Rational Rose only displays your shortcut menu when it is appropriate
to do so. For example, Rational Rose displays your class shortcut items
for that particular class if the following conditions are all true:

� Your add-in is a language add-in (defined by the registry setting)

� Your user creates a class with your language

� You have created the appropriate shortcut menu items
(ContextMenuItems)
24 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
However, if your user creates a class with a different language add-in,
Rational Rose does not display your class shortcut menu items. (A
menu item for C++ classes might not make sense for a Visual Basic
class.) Because of the flexibility that Rational Rose gives you through
the REI to create shortcut menu items, it is also a complex concept. A
shortcut menu item might not display when expected. It is, therefore,
important to understand the scenarios (explained later in this chapter)
for the complete explanation of what is displayed and when it is
displayed.

Shortcut menu items created by a non-language add-in are always
displayed on the appropriate menu. Those items created by a language
add-in are displayed when the selected items have that language
assignment. Shortcut menu items created by a Language add-in are
also displayed when language-neutral items are selected and that
language is the Default Language. Whether Rational Rose displays a
particular shortcut menu item is dependent on the following
considerations:

� The Default Language setting (click Tools > Options > Notation)

� Whether the selected items are the same type

� Whether the selected items are language-dependent or language-
neutral

� Whether the selected items are associated with a particular
Language add-in

See the Scenarios for examples of how these issues affect shortcut
menu items.
Rational Rose 2000e, Rose Extensibility User’s Guide 25

Chapter 2 Customizing Rational Rose Menus
Shortcut Menu Scenarios

The following table describes all the possible scenarios for displaying
shortcut menu items.

Table 5 Displaying Shortcut Menu Items

Description Example Selected Items Displayed Shortcut Menu Items

Same
Language
dependent
types selected

Class 1 (Language A)
(Any Default Language)

Language add-in A’s rsClass
shortcut menu items
All non-language add-in’s rsClass
shortcut menu items

Class 1 (Language A)
Class 2 (Language A)
(Any Default Language)

Language add-in A’s rsClass
shortcut menu items
All non-language Add-in’s rsClass
shortcut menu items

Class 1 (Language A)
Class 2 (Language B)
(Any Default Language)

Language add-in A’s rsClass
shortcut menu items
Language add-in B’s rsClass
shortcut menu items
All non-language Add-in’s rsClass
shortcut menu items

Attribute 1 (Language A)
Attribute 2 (Language B)
(Any Default Language)

Language add-in A’s rsAttribute
shortcut menu items
Language add-in B’s rsAttribute
shortcut menu items
All non-language add-in’s
rsAttribute shortcut menu items

Different
language
dependent
types selected

Class 1 (Language A)
Class 2 (Language B)
Attribute 3 (Language A)
Attribute 4 (Language C)
(Any Default Language)

Language add-in A’s rsDefault
shortcut menu items
Language add-in B’s rsDefault
shortcut menu items
Language add-in C’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

Operation 1 (Language A)
Operation 2 (Language B)
Role 3 (Language A)
(Any Default Language)

Language add-in A’s rsDefault
shortcut menu items
Language add-in B’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items
26 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
Nothing
selected

(Default Language set to
Language A)

Language add-in A’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

(Default Language set to
Language B)

Language add-in B’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

Same
language
neutral type
selected

Diagram 1 (Created with
any language)
(Default Language set to
Language A)

Language add-in A’s rsDiagram
shortcut menu items
All non-language add-in’s
rsDiagram shortcut menu items

Diagram 1 (Created with
any language)
(Default Language set to
Language B)

Language add-in B’s rsDiagram
shortcut menu items
All non-language add-in’s
rsDiagram shortcut menu items

Diagram 1 (Created with
any language)
Diagram 2 (Created with
any language)
(Default Language set to
Language A)

Language add-in A’s rsDiagram
shortcut menu items
All non-language add-in’s
rsDiagram shortcut menu items

Same
language
neutral type
selected
(cont’d)

Diagram 1 (Created with
any language)
Diagram 2 (Created with
any language)
(Default Language set to
Language B)

Language add-in B’s rsDiagram
shortcut menu items
All non-language add-in’s
rsDiagram shortcut menu items

Different
language
neutral types
selected

Diagram 1 (Created with
any language)
Package 2 (Created with
any language)
Package 3 (Created with
any language)
(Default Language set to
Language A)

Language add-in A’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

Description Example Selected Items Displayed Shortcut Menu Items
Rational Rose 2000e, Rose Extensibility User’s Guide 27

Chapter 2 Customizing Rational Rose Menus
Note: If you want a shortcut menu item to display on more than one
menu (for example, for classes and the default), you must create a
separate ContextMenuItem for each item type (for example, one for
rsClassrsClassrsClassrsClass and one for rsDefaultrsDefaultrsDefaultrsDefault). See the sample code later in this chapter.

For more information on rsClassrsClassrsClassrsClass, rsAttributersAttributersAttributersAttribute, rsDefaultrsDefaultrsDefaultrsDefault, or
rsDiagramrsDiagramrsDiagramrsDiagram see ContextMenuItemType Enumeration in the Rational
Rose 2000e, Rose Extensibility Reference.

Shortcut Menu Design Considerations

To keep the shortcut menu from becoming too cluttered with many
different add-in menu options, try to keep menu items on the main
shortcut menu to a minimum. Use submenus as much as possible.
However, put all the important menu options on the main shortcut
menu. Put less important menu options on a submenu under a generic
main shortcut menu option.

Subsystem 1 (Created
with any language)
UseCase 2 (Created with
any language)
(Default Language set to
Language B)

Language add-in B’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

Combination
of Language-
dependent
and
Language-
neutral types
selected

Class 1 (Language A)
Package 2 (Created with
any language)
(Default Language set to
Language B)

Language add-in A’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

Class 1 (Language A)
Class 2 (Language B)
Package 3 (Created with
any language)
Package 4 (Created with
any language)
(Default Language set to
Language C)

Language add-in A’s rsDefault
shortcut menu items
Language add-in B’s rsDefault
shortcut menu items
All non-language add-in’s
rsDefault shortcut menu items

Description Example Selected Items Displayed Shortcut Menu Items
28 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
Also, Generate Code and Browse Code menu options are no longer
standard Rational Rose shortcut menu options. Each language add-in
is now responsible for creating and manipulating these options
according to their needs. This gives you greater control and flexibility
with these features. When creating menu items, make the caption
specific to your language (for example, Generate C++ Code, Generate
Visual Basic Code). This reduces confusion since the user of your add-
in could be using more than one language add-in in Rational Rose.
Place Generate Code and Browse Code at the top level of the shortcut
menu (as opposed to in a submenu).

You could also place shortcut menu items that open a custom
specification sheet at the top level of the shortcut menu. However, if
your add-in supports the OnPropertySpecOpen event, do not add a
custom specification menu item because it would be redundant. This
is due to the fact that when Rational Rose detects that the
OnPropertySpecOpen event is supported for an item, Rational Rose
adds the “Open Standard Specification” shortcut menu item (which
displays the standard Rational Rose specification) immediately after
the “Open Specification” shortcut menu item (which, in this context,
displays the add-in’s custom specification sheet).

Procedure

Follow these steps to customize the Rational Rose shortcut menu:

1. In order to use this feature of the REI, you must register your
product in the Rational Rose Add-In Manager.

2. Determine the following:

❑ What are your menu items?

❑ Through what states will each menu item go?

❑ Where should each menu item display (main shortcut menu or a
submenu)?

❑ In what order should your menu items display on the shortcut
menu or submenu?

❑ In which contexts should your menu options display (e.g.,
rsDefault, rsClass, rsPackage, etc.).

❑ What circumstances will change menu states for each menu
item?

❑ Which access keys, if any, should you assign to each menu
option?
Rational Rose 2000e, Rose Extensibility User’s Guide 29

Chapter 2 Customizing Rational Rose Menus
❑ Are there any other considerations that are specific to your
implementation?

3. Create the prototyped event methods, OnActivate,
OnEnableContextMenuItems, and
OnSelectedContextMenuItem customizing for your specific
needs.

4. Create ContextMenuItem objects for each menu item by using the
AddContextMenuItem method for each menu item. Use
AddContextMenuItem in the order in which you want the menu
items displayed on the shortcut menu.

5. Create your specific methods to support each ContextMenuItem
(shortcut menu item) that maps to a specific function of your add-
in. If the method already exists, update it as needed to take
advantage of the Rational Rose shortcut menu.

6. Create and incorporate menu state changes as needed for your
add-in. Use the MenuState property of the ContextMenuItem to
change menu states.

7. Determine if there are any additional steps necessary for your
specific implementation and perform those steps.

Creating Events for Shortcut Menus

To customize the Rational Rose shortcut menu feature, your add-in
must provide the following events:

OnActivate

Add shortcut menu items when your add-in gets the OnActivateOnActivateOnActivateOnActivate event.
If you do not already have this event in your add-in, you can customize
it using the following prototype:

void OnActivate (LPDISPATCH pRoseApp)

OnEnableContextMenuItems

Provide an OnEnableContextMenuItemsOnEnableContextMenuItemsOnEnableContextMenuItemsOnEnableContextMenuItems method in your add-in’s OLE
server with the following prototype:

Boolean OnEnableContextMenuItems (LPDISPATCH pRoseApp, VT_I2
itemType)

If your add-in does not provide this OnEnableContextMenuItemsOnEnableContextMenuItemsOnEnableContextMenuItemsOnEnableContextMenuItems
method, the system enables the shortcut menu items by default.
30 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
OnSelectedContextMenuItem

Provide an OnSelectedContextMenuItemOnSelectedContextMenuItemOnSelectedContextMenuItemOnSelectedContextMenuItem method in your add-in’s
OLE server with the following prototype:

Boolean OnSelectedContextMenuItem (LPDISPATCH pRoseApp, BSTR
internalName)

where internalName indicates the mapping from the selected shortcut
menu item to the add-in's corresponding functionality.

If your add-in does not provide this event, your add-in cannot respond
to a shortcut menu item selection.

Adding Menu Items to the Shortcut Menu

To create and add menu items to the shortcut menu, use the
AddContextMenuItemAddContextMenuItemAddContextMenuItemAddContextMenuItem Method.

Note: An add-in should add context menu items when it gets the
OnActivateOnActivateOnActivateOnActivate event.

Working with Shortcut Menu Items

When the user activates the shortcut menu with items selected in the
browser or a diagram, Rational Rose sends the
OnEnableContextMenuItemsOnEnableContextMenuItemsOnEnableContextMenuItemsOnEnableContextMenuItems event to the specified language Add-In.
The language add-in can then call GetSelectedItemsGetSelectedItemsGetSelectedItemsGetSelectedItems at the model level
to get all selected items, regardless of whether the user selected the
items in the browser or in a diagram.

Working with the Shortcut Menu Item Collection

To work with a subset or the set of all shortcut menu items, use the
GetContextMenuItemsGetContextMenuItemsGetContextMenuItemsGetContextMenuItems Method.

The add-in can then iterate through the collection of
ContextMenuItemsContextMenuItemsContextMenuItemsContextMenuItems by using the GetAtGetAtGetAtGetAt method, and setting the
MenuStateMenuStateMenuStateMenuState property accordingly.

Editing Shortcut Menu Items

To change the properties of the shortcut menu item, see the
ContextMenuItemContextMenuItemContextMenuItemContextMenuItem class properties and methods.
Rational Rose 2000e, Rose Extensibility User’s Guide 31

Chapter 2 Customizing Rational Rose Menus
Changing the State of a Shortcut Menu Item

To enable, disable, check, or uncheck a particular shortcut menu item,
change the ContextMenuItem’sContextMenuItem’sContextMenuItem’sContextMenuItem’s MenuStateMenuStateMenuStateMenuState property.

Sample Shortcut Menu Implementation Code

The following are sample pieces of code that you might use to add your
menu items to Rational Rose’s shortcut menu.

‘Customize OnActivate from the prototype
Sub OnActivate (LPDISPATCH pRoseApp)

. . .
‘Create all shortcut menu items
Set myNewMenuItem1 =

myAddIn.AddContextMenuItem (rsDefault, "Separator", “”)
Set myNewMenuItem2 = myAddIn.AddContextMenuItem (rsDefault,

"Submenu &Main Add-In Menu Caption", “”)
Set myNewMenuItem3 = myAddIn.AddContextMenuItem (rsDefault,

"&Caption 1", “internalName1”)
Set myNewMenuItem4 = myAddIn.AddContextMenuItem (rsDefault,

"C&aption 2", “internalName2”)
Set myNewMenuItem5 = myAddIn.AddContextMenuItem (rsDefault,

"endsubmenu", “”)
Set myNewMenuItem6 = myAddIn.AddContextMenuItem (rsDefault,

"Separator", “”)
. . .
End Sub ‘OnActivate event

. . .
‘Set initial state of each selectable shortcut menu item
myNewMenuItem2.MenuState = ENABLED
myNewMenuItem3.MenuState = ENABLED
myNewMenuItem4.MenuState = DISABLED
. . .

‘Customize OnEnableContextMenuItems from the prototype
Function OnEnableContextMenuItems (LPDISPATCH pRoseApp, VT_I2

itemType) As Boolean
. . .

End Function ‘OnEnableContextMenuItems event

. . .
32 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
‘Create each routine that corresponds to a selectable shortcut
‘menu item
Sub DoMenuOption1 (argument1, argument 2, …)

. . .
End Sub ‘DoMenuOption1 subroutine

Function DoMenuOption2 (argument1, argument2, …) As
returnValue2
. . .

End Function ‘DoMenuOption2 function

. . .

‘Customize OnSelectedContextMenuItem from the prototype to map
‘selectable shortcut menu items to functionality in this
‘ add-in.
Function OnSelectedContextMenuItem (LPDISPATCH pRoseApp, BSTR

internalName) As Boolean
Select Case internalName

Case internalName1
DoMenuOption1 (argument1, argument2, …)

Case internalName2
x = DoMenuOption2 (argument1, argument2, …)

End Select ‘internalName
. . .

End Function ‘OnSelectedContextMenuItem event

‘Main program functionality
Sub Main

. . .
End Sub ‘Main Program
Rational Rose 2000e, Rose Extensibility User’s Guide 33

Chapter 2 Customizing Rational Rose Menus
Sample Rational Rose Script Shortcut Menu Code

The sample RoseScript code below produced the following shortcut
menu:

Figure 5 Sample Code for Shortcut Menus

‘Subroutines to which the selectable shortcut menu items map
Sub internalName1

End Sub

Sub internalName2

End Sub

Sub internalName3

End Sub

Sub internalNameSub1

End Sub

Sub internalNameSub2
34 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
End Sub

Sub internalNameClass1

End Sub

Sub internalNameClass2

End Sub

Sub internalNameClass3

End Sub

Sub internalNameClassSub1

End Sub

Sub internalNameClassSub2

End Sub

Sub Main
‘Create a sample shortcut menu
Dim myAddIn As RoseAddIn
Dim myMenuItem As ContextMenuItem
Dim myMenuItem2 As ContextMenuItem
Dim myMenus As ContextMenuItemCollection
Dim menuCount As Integer
Dim i As Integer
Dim classFound As Boolean
Dim myItems As ItemCollection
Dim itemCount As Integer
Dim anItem As RoseItem
Dim myModel As Model

‘ContextMenuItemType enumeration
Const rsDefault As Integer = 0
Const rsClass As Integer = 4

‘MenuState enumeration
Const rsDisabled As Integer = 0
Const rsEnabled As Integer = 1
Rational Rose 2000e, Rose Extensibility User’s Guide 35

Chapter 2 Customizing Rational Rose Menus
Set myAddIn = ... ‘Get the add-in to which you want to add
‘shortcut menu items.

‘Create shortcut menu items for rsDefault
Set myMenuItem = myAddIn.AddContextMenuItem(rsDefault, "Add-

In Caption &1", "internalName1")
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Add-In Caption &2", "internalName2")
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Add-In Caption &3", "internalName3")
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Separator", "")
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Submenu &Main Add-In Menu Caption", "")
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"&Caption 1", "internalNameSub1")
Set myMenuItem2 = myAddIn.AddContextMenuItem (rsDefault,

"C&aption 2", "internalNameSub2")
Set myMenuItem2.MenuState = rsDisabled
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"endsubmenu", "")
Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Separator", "")

‘Create exact same shortcut menu items for rsClass
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Add-

In Caption &1", "internalNameClass1")
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Add-

In Caption &2", "internalNameClass2")
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Add-

In Caption &3", "internalNameClass3")
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass,

"Separator", "")
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass,

"Submenu &Main Add-In Menu Caption", "")
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass,

"&Caption 1", "internalNameClassSub1")
Set myMenuItem2 = myAddIn.AddContextMenuItem (rsClass,

"C&aption 2", "internalNameClassSub2")
Set myMenuItem2.MenuState = rsDisabled
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass,

"endsubmenu", "")
Set myMenuItem = myAddIn.AddContextMenuItem (rsClass,

"Separator", "")
36 Rational Rose 2000e, Rose Extensibility User’s Guide

Customizing Rational Rose Shortcut Menus
‘Check to see if the user has selected only Class items. If
‘so, enable the disabled shortcut menu option (Caption 2
‘on the submenu).
classFound = True
Set myItems = RoseApp.CurrentModel.GetSelectedItems ()
itemCount = myItems.Count
For i = 1 To itemCount

Set anItem = myItems.GetAt (i)
If anItem.Stereotype <> "Class" Then

classFound = False
End If

Next i

If classFound = True Then
myMenuItem2.MenuState = rsEnabled

End If

End Sub
Rational Rose 2000e, Rose Extensibility User’s Guide 37

Chapter 3

Using the REI to Work with Rational
Rose

Introduction

This chapter explains how to use the Rational Rose Extensibility
Interface (REI) to accomplish many tasks that you would otherwise
perform manually in the Rational Rose user interface.

This information is meant to orient you and to provide examples that
you can use as starting points in your work with the REI.

The information in this chapter is not exhaustive. You should refer to
the Extensibility Reference and Extensibility online help for complete
descriptions of all of the REI classes, properties and methods. As you
familiarize yourself with these, you will be able to realize the full
capabilities that the REI makes available to you.

Getting the Rational Rose Application Object

Whether you are using Rational Rose Script or Rational Rose
Automation, you must get the Rational Rose Application object in order
to control the Rational Rose application.

Using Rational Rose Script

All Rational Rose Script programs have a global object called RoseApp,
which has a property called CurrentModel. You must use
RoseApp.CurrentModel to initialize the global Rational Rose object and
subsequently open, control, save, or close a Rational Rose model from
within a script.
Rational Rose 2000e, Rose Extensibility User’s Guide 39

Chapter 3 Using the REI to Work with Rational Rose
The following sample code shows how to get the Rational Rose
application object in a Rational Rose Scripting context:

Sub GenerateCode (theModel As Model)
‘ This generates code

End Sub

Sub Main
GenerateCode RoseApp.CurrentModel

End Sub

Using Rational Rose Automation

To use Rational Rose as an automation server, you must initialize an
instance of a Rational Rose application object. You do this by calling
either CreateObject or GetObject (or their equivalents) from within the
application you are using as the OLE controller. These calls return the
OLE Object which implements Rational Rose API’s application object.

Refer to the documentation for the application you are using as OLE
controller for details on calling OLE automation objects.

The following sample code shows how to get the Rational Rose
application object in a Rational Rose Automation context:

Sub GenerateCode (theModel As Object)
‘ This generates code

End Sub

Sub Main
Dim RoseApp As Object
Set RoseApp = CreateObject (“Rose.Application”)
GenerateCode RoseApp.CurrentModel

End Sub

Associating Files and URLs with Classes

Because Class objects inherit properties from RoseItem, you can define
a set of external documents for any class. Each External Document
has either a path property or a URL property.

� The Path property specifies a path to the file that contains the
external document.

� The URL property specifies a Universal Resource Locator (URL) of a
corresponding internet document.
40 Rational Rose 2000e, Rose Extensibility User’s Guide

Managing Default Properties
Note: Use Extensibility online help or refer to the Extensibility Reference
for syntax and other information.

Managing Default Properties

In the Rational Rose user interface environment, you manage a model’s
properties by using the specification editor.

To access the specification editor, click Tools > Model Properties > Edit.

You then select the appropriate tool tab, element type, and property set
to edit. For example, in the following figure, the tool is JavaJavaJavaJava, the model
element type is ClassClassClassClass, and the property set is Set1Set1Set1Set1.

Figure 6 Property Specification Editor

From this point on, you can use the specification editor to edit
individual properties, as well as clone (copy) and edit property sets.
However, you cannot create new tools (tabs), new default property sets,
or property types. For these capabilities, you must use the Rational
Rose Extensibility Interface.
Rational Rose 2000e, Rose Extensibility User’s Guide 41

Chapter 3 Using the REI to Work with Rational Rose
For more information on editing default properties and sets in the
Rational Rose user interface, check the online help for information on
specifications, or refer to the Rational Rose 2000e, Using Rose manual.

The next sections of this chapter explain how to work with properties
and property sets in the extensibility environment.

In the Extensibility Interface, the DefaultModelProperties object
manages the default model properties for the current model, and is
itself a property of the model (expressed as
RoseApp.CurrentModel.DefaultProperties). For this reason, default
properties are applied to the current model only. When you create
default properties they are applied and saved for the current model,
but are not available to any new models you create.

To apply new properties to another model, re-run the script that
creates the properties, specifying the new model as the current model

Adding a Property to a Set

How To

To add a property to a property set, define a subroutine that uses the
DefaultModelProperties.AddDefaultProperty method. You will
notice that this method requires you to pass 6 parameters:

� Class Name

� Tool Name

� Set Name

� Name of the New Property

� Property Type

� Value of the New Property
42 Rational Rose 2000e, Rose Extensibility User’s Guide

Adding a Property to a Set
Example
Sub AddDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties
Set DefaultProps = theModel.DefaultProperties
myClass$ = theModel.RootCategory.GetPropertyClassName ()
b = DefaultProps.AddDefaultProperty (myClass$,

“ThisTool”, "Set1", "StringProperty", "String", "")
b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "IntegerProperty", "Integer", "0")
b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "FloatProperty", "Float", "0")
b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "CharProperty", "Char", " ")
b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "BooleanProperty", "Boolean", "True")
End Sub

Notes on the Example
1. When you specify the Class Name parameter, you must specify the

internal name of the model element. There are two ways to obtain
this information:

❑ If properties are already defined for this element, it will appear
in the specification dialog in the Rational Rose user interface.
Simply check the specification editor and use the Type drop-
down list to find the appropriate class name.

❑ Use the Element.GetPropertyClassName method. This is the
method used in the sample script. This example retrieves the
internal name and returns it in myClass$, which is then passed
as the class name parameter.

2. If the tool you specify does not exist, a new tool will be created. This
is actually the only way to add a new tool to a model.

3. This example adds a property of each of the predefined property
types (string, integer, float, char, boolean), with the exception of the
enumeration type. You use the enumerated type to create your
own property types and add enumerated properties to a set. See
Creating a User-Defined Property Type, later in this chapter, for
instructions and an example.
Rational Rose 2000e, Rose Extensibility User’s Guide 43

Chapter 3 Using the REI to Work with Rational Rose
Creating a New Property

How To

To create a new property that is not based on an existing property, use
the Element.CreateProperty method. However, if you simply want to
set an existing property to a different current value, you should use
Element.InheritProperty or Element.OverrideProperty instead.

Example
' Property creation:
b = theModel.RootCategory.CreateProperty (myTool,

"Saved", "True", "Boolean")
b = theModel.RootCategory.InheritProperty (myTool, "Saved")

Notes on the Example
1. The CreateProperty call in the example creates a new property

called SavedSavedSavedSaved. It applies to the tool MyToolMyToolMyToolMyTool, its value is TrueTrueTrueTrue and
its type is BooleanBooleanBooleanBoolean.

2. The InheritProperty call in the example deletes the property just
created. Because there is no default value to which such a property
can return, InheritProperty effectively deletes it from the model.

3. For more information, see Setting Model Properties Using
InheritProperty, Setting Model Properties Using OverrideProperty,
and Deleting Model Properties, later in this chapter.

Deleting Model Properties

If you are deleting a property that belongs to a property set, you can
use the DefaultModelProperties.DeleteDefaultProperty method to
delete the property from a model.

However, if you created a property using the Element.CreateProperty
method, that property is not part of a property set. To delete such a
property, use the Element.InheritProperty method.
44 Rational Rose 2000e, Rose Extensibility User’s Guide

Getting Model Properties
Getting Model Properties

The Element class provides two methods for retrieving information
about model properties:

� To get the current value for a model property, whether inherited or
overridden, use the Element.GetPropertyValue method. This
method returns the value as a string.

� To retrieve the property object itself, use the Element.FindProperty
method.

Setting Model Properties

There are several ways to set model properties using the Extensibility
Interface:

� Use the Element.OverrideProperty method to change only the value
of a property, and keep all other aspects of the property definition
intact.

� Use the Element.InheritProperty method to return a previously
overridden property to its original value.

� Use the Element.CreateProperty or the
DefaultModelProperties.AddDefaultProperty method to define a
new property from scratch.

For more information, see Creating a New Property, earlier in this
chapter.

Setting Model Properties Using OverrideProperty

How To

The Element.OverrideProperty method allows you to use the default
property definition and simply change its current value. Alternately,
you could create a brand new property by calling the
Element.CreateProperty method, but that would require you to specify
the complete property definition, not just the new value.

If the property you specify does not exist in the model’s default set, a
new property is created for the specified object only. This new property
is created as a string property.
Rational Rose 2000e, Rose Extensibility User’s Guide 45

Chapter 3 Using the REI to Work with Rational Rose
Example
Sub OverrideRadioProps (theCategory As Category)

b = theCategory.OverrideProperty (myTool$, "StringProperty",
"This string is overridden")

b = theCategory.OverrideProperty (myTool$,
"IntegerProperty", "1")

b = theCategory.OverrideProperty (myTool$, "FloatProperty",
"111.1")

b = theCategory.OverrideProperty (myTool$,
"EnumeratedProperty", "Value2")

End Sub

Notes on the Example
1. Each of the 4 lines of the sample subroutine changes the current

value of a specific property as follows:

❑ The property called StringPropertyStringPropertyStringPropertyStringProperty now has a value of ThisThisThisThis
string is overriddenstring is overriddenstring is overriddenstring is overridden.

❑ The property called IntegerPropertyIntegerPropertyIntegerPropertyIntegerProperty now has a value of 1.

❑ The property called FloatPropertyFloatPropertyFloatPropertyFloatProperty now has a value of 111.1.

❑ The property called EnumeratedPropertyEnumeratedPropertyEnumeratedPropertyEnumeratedProperty now has a value of
Value2Value2Value2Value2.

2. Everything except for current value (tool name, class name, set,
property name and property type) remains the same for the
properties.

Setting Model Properties Using InheritProperty

How To

Use the Element.InheritProperty method to reset an overridden
property to its original value.

You can also use this method to delete a property that you created
using the Element.CreateProperty method. Because there is no default
value to which such a property can return, InheritProperty effectively
deletes it from the model.
46 Rational Rose 2000e, Rose Extensibility User’s Guide

Creating a New Property Set
Example
Sub InheritRadioProps (theCategory As Category)

b = theCategory.InheritProperty (myTool$, "StringProperty")
b = theCategory.InheritProperty (myTool$, "IntegerProperty")
b = theCategory.InheritProperty (myTool$, "FloatProperty")
b = theCategory.InheritProperty (myTool$,

"EnumeratedProperty")
End Sub

Notes on the Example

Each of the 4 lines of the sample subroutine returns the current value
of the specified property to its original value.

Creating a New Property Set

To create a new property set from scratch, use the
DefaultModelProperties.CreateDefaultPropertySet method.

Cloning a Property Set

How To

Cloning allows you to create a copy of an existing property set for the
purpose of creating another property set. This is the easiest way to
create a new property set, and is particularly useful for creating
multiple sets of the same properties, but with different values specified
for some or all of the properties.

To clone a property set in a model, use the
DefaultModelProperties.CloneDefaultPropertySet method.
Rational Rose 2000e, Rose Extensibility User’s Guide 47

Chapter 3 Using the REI to Work with Rational Rose
Example
Sub CloneDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties
Set DefaultProps = theModel.DefaultProperties
AddDefaultProperties theModel
myClass$ = theModel.RootCategory.GetPropertyClassName ()
b = DefaultProps.CloneDefaultPropertySet (myClass$, myTool$,

"default", "SecondSet")
b = DefaultProps.CloneDefaultPropertySet (myClass$, myTool$,

"default", "ThirdSet")
b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "StringProperty", "String", "Unique to
SecondSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"SecondSet", "IntegerProperty", "Integer", "11")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"SecondSet", "FloatProperty", "Float", "89.9000")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"SecondSet", "EnumeratedProperty",
"EnumerationDefinition", "Value2")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"ThirdSet", "StringProperty", "String", "Unique to
ThirdSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"ThirdSet", "IntegerProperty", "Integer", "20")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"ThirdSet", "FloatProperty", "Float", "90.9000")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,
"ThirdSet", "EnumeratedProperty",
"EnumerationDefinition", "Value3")

End Sub

Notes on the Example
1. This example clones an existing property set twice in order to

define a total of three sets for the class and tool to which the sets
apply.

2. All three sets have the same properties as those defined in the
original set. In addition, several new properties are added to the
second set and several other new properties are added to the third
set.
48 Rational Rose 2000e, Rose Extensibility User’s Guide

Deleting a Property Set
Deleting a Property Set

How To

To delete an entire property set from a model, use the
DefaultModelProperties.DeleteDefaultPropertySet method.

Example
Sub DeleteDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties
Set DefaultProps = theModel.DefaultProperties
myClass$ = theModel.RootCategory.GetPropertyClassName ()

b = DefaultProps.DeleteDefaultPropertySet (myClass$,
myTool$, "SecondSet")

b = DefaultProps.DeleteDefaultPropertySet (myClass$,
myTool$, "ThirdSet")

b = theModel.RootCategory.SetCurrentPropertySetName
(myTool$, "default")

End Sub

Notes on the Example
1. The Element.GetPropertyClassName retrieves the valid internal

class name to pass as a parameter on the delete calls.

2. Each DefaultModelProperties.DeleteDefaultPropertySet call deletes
a property set from the model.

3. The Element.SetCurrentPropertySetName call sets the tool’s
current property set to its original set, which happens to be called
defaultdefaultdefaultdefault.

Getting and Setting the Current Property Set

How To

To find out which property set is the current set for a tool, use the
Element.GetCurrentPropertySetName method.
Rational Rose 2000e, Rose Extensibility User’s Guide 49

Chapter 3 Using the REI to Work with Rational Rose
To set the current property set to a particular set name, use the
Element.SetCurrentPropertySetName and specify the set of your
choice.

Note: When setting the current property set, you must supply a set
name that is valid for the specified tool. To retrieve a list of valid set
names for a tool, use Element.GetDefaultSetNames.

Example
Sub RetrieveElementProperties (theElement As Element)

Dim AllTools As StringCollection
Dim theProperties As PropertyCollection
Dim theProperty As Property
Set AllTools = theElement.GetToolNames ()
For ToolID = 1 To AllTools.Count

ThisTool$ = AllTools.GetAt (ToolID)
theSet$ = theElement.GetCurrentPropertySetName (ThisTool$)
Set theProperties = theElement.GetToolProperties

(ThisTool$)
For PropID = 1 To theProperties.Count

Set theProperty = theProperties.GetAt (PropID)
Next PropID

Next ToolID
End Sub

Notes on the Example
1. GetToolNames retrieves the tool names that apply to the model

element type called ElementElementElementElement and returns them as a string
collection called AllToolsAllToolsAllToolsAllTools.

2. The current property set is retrieved for each tool name.

3. GetToolProperties retrieves the property collection that belongs to
the current tool.

4. Each property that belongs to the tool’s property collection is
retrieved.
50 Rational Rose 2000e, Rose Extensibility User’s Guide

Creating a User-Defined Property Type
Creating a User-Defined Property Type

How To

Rational Rose Extensibility predefines the following set of property
types:

� String

� Integer

� Float

� Char

� Boolean

� Enumeration

When you add properties to a set, you specify one of these types.

In addition, you can define your own property types and add properties
of that type to a property set.

To create a user-defined property type, add a property whose type is
enumeration and whose value is a string that defines the possible
values for the enumeration.

Once you have defined the new type, adding a property of this new type
is like adding any other type of property.
Rational Rose 2000e, Rose Extensibility User’s Guide 51

Chapter 3 Using the REI to Work with Rational Rose
Example
Sub AddDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties
Set DefaultProps = theModel.DefaultProperties
myClass$ = theModel.RootCategory.GetPropertyClassName ()
b = DefaultProps.AddDefaultProperty (myClass$, "myTool",

"Set1", "MyNewEnumeration", "Enumeration",
"Value1,Value2,Value3")

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",
"Set1", "MyEnumeratedProperty", "MyNewEnumeration",
"Value1")

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",
"Set1", "isAppropriate", "Boolean", "True")

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",
"Set1", "mySpace", "Integer", "5")

End Sub

Sub Main
AddDefaultProperties (RoseApp.CurrentModel)

End Sub

Notes on the Example
1. This example uses Element.GetPropertyClassName to retrieve the

internal name of the class to which the property type will apply.

2. The first AddDefaultProperty call adds the enumeration and
defines its possible values in the string “Value1, Value2, Value3.”

3. The second AddDefaultProperty call adds a new property of the
new enumerated type; the property value is set to “Value1.”

4. If you want a new type to appear in the specification dialog in the
Rational Rose user interface, you must actually add a property of
that type to the set. Using the above example, if you simply created
the type MyNewEnumerationMyNewEnumerationMyNewEnumerationMyNewEnumeration, but did not add the property
MyEnumeratedPropertyMyEnumeratedPropertyMyEnumeratedPropertyMyEnumeratedProperty, MyNewEnumerationMyNewEnumerationMyNewEnumerationMyNewEnumeration would not appear
in Type drop-down. Once you add the actual property,
MyNewEnumerationMyNewEnumerationMyNewEnumerationMyNewEnumeration would appear in the list of types.
52 Rational Rose 2000e, Rose Extensibility User’s Guide

Creating a New Tool
Creating a New Tool

There is no explicit way to add a new tool (tab) to a model. However,
when you create a new property set or add a new property to a model,
you must specify the tool to which the property or set applies. If the
tool you specify does not already exist, it will be added during the
create or add process.

Placing Classes in Categories

� To create a new class and place it in a category, you use the
Category.AddClass method.

� To relocate an existing class from one category to another, use the
Category.RelocateClass method.

Using Type Libraries for Rational Rose Automation

How To

When you specify an REI class in an automation environment, you
must add the prefix RoseRoseRoseRose to the class name, unless the word Rose is
already part of the REI class name.

For more information on using Type Libraries with Rational Rose, see
Rational Rose Extensibility Type Libraries, in Chapter 1 of this guide.

Example
� In Rational Rose Script, the syntax for retrieving the Root Category

of a model (that is, its logical view) is:

Model.RootCategory

� In Rational Rose Automation, the syntax for retrieving the Root
Category of a model is:

RoseModel.RootCategory

� In both Rational Rose Script and Rational Rose Automation, the
syntax for retrieving the documentation belonging to a RoseItem is:

RoseItem.Documentation
Rational Rose 2000e, Rose Extensibility User’s Guide 53

Chapter 3 Using the REI to Work with Rational Rose
Working with Controllable Units

Working with controllable units allows you to divide a model into
smaller units. This is particularly useful for multi-user development,
as well as for placing a model under configuration management.

The methods that apply to working with controllable units are:

� ControllableUnit.Control method, which associates a controllable
unit with a file name, so that it can be passed to a configuration
management application.

� ControllableUnit.Uncontrol method, which removes the file
association from the unit.

� ControllableUnit.Load and Unload methods, which load or unload
parts of a model (for example, the units for which a person is
responsible).

� ControllableUnit.Save or ControllableUnit.SaveAs methods, which
actually write the specified controllable unit to a file.

Note: When you save a model, that will also save its controllable units.

Working with Rational Rose Diagrams

Each kind of Rational Rose diagram (class, component, scenario, etc.)
inherits from the Diagram class.

A diagram is made up of Items and ItemViews. An Itemview is the
physical representation of the actual Rational Rose item. As such, it is
an object with properties and methods that define its appearance in the
diagram window (position, color, size, etc). You can define multiple
ItemViews for any given RoseItem.

� Use Diagram.ItemViews to iterate through the collection of item
views belonging to a diagram.

� Use Diagram.Items to iterate through the items that exist in the
diagram.

� Use Diagram.GetViewFrom to find the first itemview of a given
item.

Note: You can only use GetViewFrom to retrieve the first itemview
defined for the item. Even if you have more than one view, you’ll
always only get the first.
54 Rational Rose 2000e, Rose Extensibility User’s Guide

Getting an Element from a Collection
� To find out which itemviews are currently selected in a diagram,
iterate through the diagram’s itemviews. As you retrieve each
itemview, use the ItemView.IsSelected method to find out whether
it is currently selected in the diagram. You can then retrieve the
selected itemview, or do any other processing you wish to do based
on whether itemview is selected.

� A short way to retrieve all selected items from a diagram is to use
the Diagram.GetSelectedItems method. Instead of iterating
through the diagram and checking each itemview, this method
simply returns everything that is selected.

Getting an Element from a Collection

There are three ways to get an individual model element from a
collection:

� Use the GetwithUniqueID method to directly access the element.

� Iterate through the collection using the element’s name using
FindFirst, FindNext, and GetAt.

� Iterate through the collection using Count followed by GetAt.

For more information, check the Extensibility Reference or online help
for Collection Properties and Methods.

Accessing Collection Elements By Count

How To

Follow these steps to access collection elements by count:

1. Iterate through the collection using the Count property.

2. Retrieve the specific element using the GetAt method when the
specific element is found.

Example
Dim AllClasses As ClassCollection
Dim theClass As Class
For ClsID = 1 To AllClasses.Count

Set theClass = AllClasses.GetAt (ClsID)
' ToDo: Add your code here...

Next ClsID
Rational Rose 2000e, Rose Extensibility User’s Guide 55

Chapter 3 Using the REI to Work with Rational Rose
Accessing Collection Elements By Unique ID

How To

The most direct and easiest way to get an element from within a
collection is by unique ID. Follow these steps to access collection
elements by unique ID:

1. Use the GetUniqueID method to obtain the element’s unique ID.

2. Use the GetwithUniqueID method, specifying the ID you obtained
in step 1.

Example
Dim theClasses As ElementCollection
Dim theClass As Element
theID =theClasses.theClass.GetUniqueID ()
theClass = theClass.GetwithUniqueID (theID)

Accessing Collection Elements By Name

How To

Follow these steps to access an operation belonging to a class:

1. Use FindFirst to find the first occurrence of the specified operation
in the collection

2. Use FindNext to iterate through subsequent occurrences of the
operation

3. Retrieve the specific operation using the GetAt method when the
specific operation is found

Example
Sub PrintOperations (theClass As Class, OperationName As

String)
Dim theOperation As Operation
OperID = theClass.Operations.FindFirst (OperationName$)
Do

Set theOperation = theClass.Operations.GetAt (OperID)
' ToDo: Add your code here...
OperID = theClass.Operations.FindNext (OperID,

OperationName$)
Loop Until OperID = 0

End Sub
56 Rational Rose 2000e, Rose Extensibility User’s Guide

Chapter 4

Using the Rational Rose Script Editor

The Rational Rose Script Editor provides your environment for
creating, debugging, and compiling scripts that work with the Rational
Rose Extensibility Interface.

The Script Editor Window

As shown in Figure 7, the Script Editor's application window contains
the following elements:

� Toolbar:Toolbar:Toolbar:Toolbar: a collection of tools that you can use to provide
instructions to the Script Editor

� Edit pane:Edit pane:Edit pane:Edit pane: a window containing the source code for the script you
are currently editing

� Watch pane:Watch pane:Watch pane:Watch pane: a window that opens to display the watch variable list
after you have added one or more variables to that list

� Pane separator:Pane separator:Pane separator:Pane separator: a divider that appears between the edit pane and
the watch pane when the watch pane is open
Rational Rose 2000e, Rose Extensibility User’s Guide 57

Chapter 4 Using the Rational Rose Script Editor
� Status bar:Status bar:Status bar:Status bar: displays the current location of the insertion point
within your script

Figure 7 Rational Rose Script Editor

Opening a Script

Use the following procedure to open a script in the Script Editor.

1. Click Tools > Open Script.

2. Select the script to open and select OK.

The script is displayed in a new Script Editor window.

Creating New Rational Rose Scripts

Creating a New Script from Scratch

Use the following procedure to create a new script in the Script Editor.

1. Click Tools > New Script.

2. Enter your script in the new Script Editor window.

3. Enter your script text.

4. Click File > Save As and save the new script.
58 Rational Rose 2000e, Rose Extensibility User’s Guide

Moving the Insertion Point in a Script
Creating a New Script from an Existing Script

Use the following procedure to create a new script from an existing
script:

1. Click Tools > Open Script.

2. Select a file from the list of available scripts.

3. Click OK to enter the Script Editor and display the script.

4. Select the script text and click Copy to save the script text to the
clipboard.

5. Click Tools > New Script.

6. Click Paste to paste the existing script text into the new script
window.

7. Click File > Save As and save the new script.

Moving the Insertion Point in a Script

There are two ways to move the insertion point in a script:

� With the mouse

� By specifying a line number

Moving the Insertion Point with the Mouse

Use the following procedure to use the mouse to reposition the
insertion point. This approach is especially fast if the area of the screen
to which you want to move the insertion point is currently visible.

1. Use the scroll bars at the right and bottom of the display to scroll
the target area of the script into view if it is not already visible.

2. Place the mouse pointer where you want to position the insertion
point.

3. Click the left mouse button.

The insertion point is repositioned.

Note: When you scroll the display with the mouse, the insertion point
remains in its original position until you reposition it with a mouse click.
If you attempt to perform an editing operation when the insertion point
is not in view, the Script Editor automatically scrolls the insertion point
into view before performing the operation.
Rational Rose 2000e, Rose Extensibility User’s Guide 59

Chapter 4 Using the Rational Rose Script Editor
Moving the Insertion Point to a Specified Line in Your Script

Use the following procedure to jump directly to a specified line in your
script. This approach is especially fast if the area of the screen to which
you want to move the insertion point is not currently visible but you
know the number of the target line.

1. Click Edit > Goto Line.

The Script Editor displays the Goto Line dialog box.

Figure 8 Goto Line Dialog Box

2. Enter the number of the line in your script to which you want to
move the insertion point.

3. Click OK button or press ENTER.

4. The insertion point is positioned at the start of the line you
specified. If that line was not already displayed, the Script Editor
scrolls it into view.

Note: The insertion point cannot be moved so far below the end of a
script as to scroll the script entirely off the display. When the last line
of your script becomes the first line on your screen, the script will stop
scrolling, and you will be unable to move the insertion point below the
bottom of that screen.

Selecting Text

There are three ways to select text in an open script:

� With the mouse

� With the keyboard

� By selecting an entire line
60 Rational Rose 2000e, Rose Extensibility User’s Guide

Selecting Text
Selecting Text with the Mouse

Use the following procedure to use the mouse to select text in your
script.

1. Place the mouse pointer where you want your selection to begin.

2. Do one of the following:

❑ While pressing the left mouse button, drag the mouse until you
reach the end of your selection, and release the mouse button.

❑ While pressing SHIFT, place the mouse pointer where you want
your selection to end and click the left mouse button.

The selected text is highlighted on your display.

Figure 9 Selected Script Text

Selecting Text with the Keyboard

Use the following procedure to use keyboard shortcuts to select text in
your script.

1. Place the insertion point where you want your selection to begin.

2. While pressing SHIFT, use one of the navigating keyboard
shortcuts to extend the selection to the desired ending point.

The selected text is highlighted on your display.
Rational Rose 2000e, Rose Extensibility User’s Guide 61

Chapter 4 Using the Rational Rose Script Editor
Selecting an Entire Line

Use the following procedure to use the keyboard to select one or more
whole lines in your script.

1. Place the insertion point at the beginning of the line you want to
select.

2. Press SHIFT + DOWN ARROW.

The entire line, including the end-of-line character, is selected.

3. To extend your selection to include additional whole lines of text,
repeat step 2.

Deleting, Cutting, Copying, and Pasting Text

Deleting Text

Do one of the following to remove characters, selected text, or entire
lines from your script.

� To remove a single character to the left of the insertion point, press
BACKSPACE once; to remove a single character to the right of the
insertion point, press DELETE once. To remove multiple
characters, hold down BACKSPACE or DELETE.

� To remove text that you have selected, press BACKSPACE or
DELETE.

� To remove an entire line, place the insertion point in that line and
press CTRL+Y.

Cutting a Selection

To cut text from your script and place it on the Clipboard, press
CTRL+X.

Copying a Selection

To copy text from your script and place it on the Clipboard, press
CTRL+C.
62 Rational Rose 2000e, Rose Extensibility User’s Guide

Adding Comments to a Script
Pasting the Contents of the Clipboard into Your Script

To paste the contents of the Clipboard into your script:

1. Position the insertion point where you want to place the contents of
the Clipboard.

2. Press CTRL+V.

Adding Comments to a Script

There are two types of comments you can add to a script:

� Adding a Full-Line Comment

� Adding a Comment at the End of a Line of Code

Adding a Full-Line Comment

Use the following procedure to designate an entire line as a comment.

1. Type an apostrophe (') at the start of the line.

2. Type your comment following the apostrophe.

When your script is run, the presence of the apostrophe at the start of
the line will cause the entire line to be ignored.

Adding a Comment at the End of a Line of Code

Use the following procedure to designate the last part of a line as a
comment.

1. Position the insertion point in the empty space beyond the end of
the line of code.

2. Type an apostrophe (').

3. Type your comment following the apostrophe.

When your script is run, the code on the first portion of the line will be
executed, but the presence of the apostrophe at the start of the
comment will cause the remainder of the line to be ignored.
Rational Rose 2000e, Rose Extensibility User’s Guide 63

Chapter 4 Using the Rational Rose Script Editor
Finding and Replacing Text

Finding Specified Text

Use the following procedure to locate instances of specified text quickly
anywhere within your script.

1. Move the insertion point to where you want to start your search.
(To start at the beginning of your script, press CTRL+HOME.)

2. Press CTRL+F.

The Script Editor displays the Find dialog box:

Figure 10 Find Script Text Dialog Box

3. In the Find What field, specify the text you want to find or select it
from the list of previous searches.

4. Click Find Next or press ENTER.

The Find dialog box remains displayed, and the Script Editor either
highlights the first instance of the specified text or indicates that it
cannot be found.

5. If the specified text has been found, repeat step 4 to search for the
next instance of it.

Note: If the FindFindFindFind dialog box blocks your view of an instance of the
specified text, you can move the dialog box out of your way and
continue with your search. You can also click Cancel, which removes
the Find dialog box while maintaining the established search criteria,
and then press F3 to find successive occurrences of the specified text.
(If you press F3 when you have not previously specified text for which
you want to search, the Script Editor displays the Find dialog box so
you can specify the desired text.)
64 Rational Rose 2000e, Rose Extensibility User’s Guide

Finding and Replacing Text
Replacing Specified Text

Use the following procedure to automatically replace either all
instances or selected instances of specified text.

1. Move the insertion point to where you want to start the
replacement operation. (To start at the beginning of your script,
press CTRL+HOME.)

2. Click Edit > Replace.

The Script Editor displays the Replace dialog box:

Figure 11 Replace Dialog Box

3. In the Find What field, specify the text you want to replace or select
it from the list of previous searches.

4. In the Replace With field, specify the replacement text or select it
from the list of previous replacements.

5. To replace selected instances of the specified text, click Find Next.

The Script Editor either highlights the first instance of the specified
text or indicates that it cannot be found.

6. If the specified text has been found, either click Replace to replace
that instance of it or click Find Next to highlight the next instance
(if any).

Each time you click Replace, the Script Editor replaces that
instance of the specified text and automatically highlights the next
instance.
Rational Rose 2000e, Rose Extensibility User’s Guide 65

Chapter 4 Using the Rational Rose Script Editor
Running, Pausing, and Stopping Your Script

Running Your Script

To compile and run your script from within the Script Editor, click Go
on the toolbar or press F5.

The script is compiled (if it has not already been compiled), the focus is
switched to the parent window, and the script is executed.

Note: During script execution, the Script Editor's application window is
available only in a limited manner. Some of the menu commands may be
disabled, and the toolbar tools may be inoperative.

You can also use the Application Class ExecuteScript method to run
scripts. See the ExecuteScript method for details.

Pausing an Executing Script

To suspend the execution of a script that you are running, press
CTRL+BREAK.

Execution of the script is suspended, and the instruction pointer (a
gray highlight) appears on the line of code where the script stopped
executing.

Note: The instruction pointer designates the line of code that will be
executed next if you resume running your script.

Stopping an Executing Script

Use the following procedure to stop the execution of a script that you
are running.

1. If it is not paused, pause the script.

2. Click StopDebugging on the toolbar (or press SHIFT+F5).

Note: Many of the functions of the Script Editor's application window
may be unavailable while you are running a script. If you want to stop
your script, but find that the toolbar is currently inoperative, press
CTRL+BREAK to pause your script, then click StopDebugging.
66 Rational Rose 2000e, Rose Extensibility User’s Guide

Tracing Script Execution
Tracing Script Execution

Stepping Through Your Script

Use the following procedure to trace the execution of your script with
either the StepInto or StepOver method:

1. Do one of the following:

❑ Click the StepInto or StepOver tool on the toolbar.

❑ Press F11(StepInto) or F10 (StepOver).

The Script Editor places the instruction pointer on the sub main
line of your script.

Note: When you initiate execution of your script using either of these
methods, the script will first be compiled, if necessary. Therefore,
there may be a slight pause before execution actually begins. If your
script contains any compile errors, it will not be executed. To debug
your script, first correct any compile errors, and then execute it again.

2. To continue tracing the execution of your script, repeat step 1.

Each time you repeat step 1, the Script Editor executes the line or
the procedure that contains the instruction pointer and then
moves the instruction pointer to the next line or procedure to be
executed.

3. When you finish tracing the execution of your script, either click
Go on the toolbar (or press F5) to run the script at full speed or
click Stop Debugging to halt execution of the script.
Rational Rose 2000e, Rose Extensibility User’s Guide 67

Chapter 4 Using the Rational Rose Script Editor
Displaying the Calls Dialog Box

When you are stepping through a subroutine, you may need to
determine the procedure calls by which you arrived at that point in
your script. Use the following procedure to use the Calls dialog box to
obtain this information.

1. Click Calls on the toolbar.

The Script Editor displays the Calls dialog box, which lists the
procedure calls made by your script in the course of arriving at the
present subroutine.

Figure 12 Script Calls Dialog Box

2. From the Calls dialog box, select the name of the procedure you
wish to view.

3. Click the Show button.

The Script Editor highlights the currently executing line in the
procedure you selected, scrolling that line into view if necessary.
(During this process, the instruction pointer remains in its original
location in the subroutine.)
68 Rational Rose 2000e, Rose Extensibility User’s Guide

Setting and Removing Breakpoints
Setting and Removing Breakpoints

You set and remove breakpoints in your script as part of the debugging
process.

Starting Debugging Partway through a Script

Use the following procedure to begin the debugging process at a
selected point in your script:

1. Place the insertion point in the line where you want to start
debugging.

2. To set a breakpoint on that line, click Toggle Breakpoint on the
toolbar (or press F9).

The line on which you set the breakpoint now appears in
contrasting type.

3. Click Go on the toolbar (or press F5).

The Script Editor runs your script at full speed from the beginning
and then pauses prior to executing the line containing the
breakpoint. It places the instruction pointer on that line to
designate it as the line that will be executed next when you either
proceed with debugging or resume running the script.

Continuing Debugging at a Line Outside the Current Subroutine

If you want to continue debugging at a line that isn't within the same
subroutine, use the following procedure to move the instruction
pointer to that line.

1. Place the insertion point in the line where you want to continue
debugging.

2. To set a breakpoint on that line, press F9.

3. To run your script, click Go on the toolbar (or press F5).

The script executes at full speed until it reaches the line containing
the breakpoint and then pauses with the instruction pointer on
that line. You can now resume stepping through your script from
that point.
Rational Rose 2000e, Rose Extensibility User’s Guide 69

Chapter 4 Using the Rational Rose Script Editor
Debugging Selected Portions of Your Script

If you only need to debug parts of your script, use the following
procedure to facilitate the task by using breakpoints.

1. Place a breakpoint at the start of each portion of your script that
you want to debug.

Note: Up to 255 lines in your script can contain breakpoints.

2. To run the script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing
the first breakpoint and then pauses with the instruction pointer
on that line.

3. Step through as much of the code as you need to.

4. To resume running your script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing
the second breakpoint and then pauses with the instruction
pointer on that line.

5. Repeat steps 3 and 4 until you have finished debugging the
selected portions of your script.

Removing a Single Breakpoint Manually

Use the following procedure to delete breakpoints manually one at a
time.

1. Place the insertion point on the line containing the breakpoint that
you want to remove.

2. Click Toggle Breakpoint on the toolbar, or press F9.

The breakpoint is removed, and the line no longer appears in
contrasting type.

Removing All Breakpoints Manually

To delete all breakpoints manually in a single operation, click
Debugger > Clear All Breakpoints.
70 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with Watch Variables
Working with Watch Variables

Watch variables allow you to track the changing values of variables in
a script.

Adding Watch Variables

Use the following procedure to add a variable to the Script Editor's
watch variable list.

1. Click Add Watch on the toolbar or press SHIFT+F9.

The Script Editor displays the Add Watch dialog box.

Figure 13 Add Watch Dialog Box

2. Use the controls in the Context box to specify where the variable is
defined (locally, publicly, or privately) and, if it is defined locally, in
which routine it is defined.

3. In the Variable Name field, enter the name of the variable you want
to add to the watch variable list.

You can only watch variables of fundamental data types, such as
Integer, Long, Variant, and so on; you cannot watch complex
variables such as structures or arrays. You can, however, watch
individual elements of arrays or structure members.

Use the following syntax to watch individual elements of arrays or
structure members in a script:
[variable [(index,...)] [.member [(index,...)]]...]

Where variable is the name of the structure or array variable,
index is a literal number, and member is the name of a structure
member.
Rational Rose 2000e, Rose Extensibility User’s Guide 71

Chapter 4 Using the Rational Rose Script Editor
For example, the following are valid watch expressions:
Table 6 Sample Watch Expressions

Note: If you are executing the script, you can display the names of all
the variables that are “in scope,” or defined within the current
function or subroutine, on the drop-down Variable Name list and
select the variable you want from that list.

4. Click OK or press ENTER.

If this is the first variable you are placing on the watch variable list,
the watch pane opens far enough to display that variable. If the
watch pane was already open, it expands far enough to display the
variable you just added.

Note: Although you can add as many watch variables to the list as
you want, the watch pane only expands until it fills half of the Script
Editor's application window. If your list of watch variables becomes
longer than that, you can use the watch pane's scroll bars to bring
hidden portions of the list into view.

Selecting Variables on the Watch List

In order to delete a variable from the Script Editor's watch variable list
or modify the value of a variable on the list, do one of the following:

� Place the mouse pointer on the variable you want to select and
click the left mouse button.

� If one of the variables on the watch list is already selected, use the
arrow keys to move the selection highlight to the desired variable.

Watch Variable Description

a(1) Element 1 of array a

person.age Member age of structure person

company(10,23).person.age Member age of structure person
that is at element 10,23 within
the array of structures called
company
72 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with Watch Variables
� If the insertion point is in the edit pane, press F6 to highlight the
most recently selected variable on the watch list and then use the
arrow keys to move the selection highlight to the desired variable.

Note: Pressing F6 again returns the insertion point to its previous
position in the edit pane.

Deleting Watch Variables

Use the following procedure to delete a selected variable from the Script
Editor's watch variable list.

1. Select the variable on the watch list.

2. Click Debugger > Delete Watch, or press DELETE.

Modifying the Value of Variables on the Watch Variable List

When the debugger has control, you can modify the value of any of the
variables on the Script Editor's watch variable list. Use the following
procedure to change the value of a selected watch variable.

1. Place the mouse pointer on the name of the variable whose value
you want to modify and double-click the left mouse button.

2. Select the name of the variable whose value you want to modify
and press ENTER or F2.

The Script Editor displays the Modify Variable dialog box.

Figure 14 Modify Variable Dialog Box

Note: The name of the variable you selected on the watch variable
list appears in the Name field.

When you use the Modify Variable dialog box to change the value of
a variable, you don't have to specify the context. The Script Editor
first searches locally for the definition of that variable, then
privately, then publicly.
Rational Rose 2000e, Rose Extensibility User’s Guide 73

Chapter 4 Using the Rational Rose Script Editor
3. Enter the new value for your variable in the Value field.

4. Click OK.

The new value of your variable appears on the watch variable list.

Compiling Your Script

Use the following procedure to create compiled script files from your
script source:

1. Click Tools > Open Script and select the file that contains the script
you want to compile.

2. Click Debugger > Compile, or press F7.

3. Enter the name of the file in which to save the compiled script and
select OK.

The script is compiled and saved in a file with a .ebx extension.

Note: You can also use the Application.CompileScriptFile method to
compile scripts. Check the Extensibility Reference or the Extensibility
Online Help for more details.

Using Interscript Calls

Guidelines for Using a Script to Call Another Script

You can write a script that includes code that calls and executes
another script. The following guidelines apply to this process:

� You can only call and execute a compiled script from within
another script.

� Use the LoadScript method to load the script into memory.

� Use the FreeScript to unload the script from memory.

� Even if you call LoadScript multiple times, the script is only loaded
into memory one time. However, for each LoadScript call you make,
you must include a corresponding FreeScript call. If you do not do
this, the script will not be unloaded from memory.
74 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
Debugging Interscript Calls

Use the following procedure to debug a script that uses interscript
calls:

1. Enter the call to the compiled script you are including and set a
breakpoint on the call.

2. Click Debugger > StepInto.

The Script Editor displays the source code for the compiled script you
are calling, and steps through it line by line.

When the trace of the called script is complete, the Script Editor
redisplays the calling script.

Note: The script you are calling must be compiled with debugging
turned on. See Compiling Your Script, earlier in this chapter, for details.

Working with the Dialog Editor

Inserting a Dialog Box into Your Script

To insert a dialog box into your script:

1. Place the insertion point where you want the BasicScript code for
the dialog box to appear in your script.

2. Click Edit > Insert Dialog.

The Script Editor's application window is temporarily disabled, and
Dialog Editor appears, displaying a new dialog box in its
application window.

3. Use the Dialog Editor to create your dialog box.

4. Exit and Return from Dialog Editor and return to the Script Editor.

The Script Editor automatically places the code for the dialog box
in your script at the location of the insertion point.

Editing an Existing Dialog Box

To edit an existing dialog box template in your script:

1. Select the BasicScript code for the entire dialog box template.

2. Click Edit > Edit Dialog.
Rational Rose 2000e, Rose Extensibility User’s Guide 75

Chapter 4 Using the Rational Rose Script Editor
The Script Editor's application window is temporarily disabled,
and Dialog Editor appears, displaying in its application window
a dialog box created from the code you selected.

3. Use the Dialog Editor to modify your dialog box.

4. Exit from the Dialog Editor and return to the Script Editor.

The Script Editor automatically replaces the BasicScript code
you originally selected with the revised code generated by the
Dialog Editor.

Displaying and Adjusting the Grid

Use the following procedure to display and adjust the X and Y settings,
which can help you position controls more precisely within your dialog
box:

1. Press CTRL+G.

The Dialog Editor displays the following dialog box:

Figure 15 Grid Dialog Box

2. To display the grid in your dialog box, click Show grid.

3. To change the current X and Y settings, enter new values in the X
and Y fields.

Note: The values of X and Y in the Grid dialog box determine the
grid's spacing. Assigning smaller X and Y values produces a more
closely spaced grid, which enables you to move the mouse pointer in
smaller horizontal and vertical increments as you position controls.
Assigning larger X and Y values produces the opposite effect on both
the grid's spacing and the movement of the mouse pointer. The X and
Y settings entered in the Grid dialog box remain in effect regardless
of whether you choose to display the grid.

4. Click OK or press ENTER.
76 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
The Dialog Editor displays the grid with the settings you specified.

Figure 16 Dialog Editor with Grid Displayed

5. With the grid displayed, line up the crosshairs on the mouse
pointer with the dots on the grid to position controls precisely and
align them with respect to other controls.

Changing Titles and Labels

Use the following procedure to change the title of a dialog box, as well
as the labels of group boxes, option buttons, push buttons, text
controls, and check boxes:

1. Display the Information dialog box for the dialog box whose title you
want to change or for the control whose label you want to change.

2. Enter the new title or label in the Text$ field.

Note: Dialog box titles and control labels are optional. Therefore, you
can leave the Text$ field blank.

3. If the information in the Text$ field should be interpreted as a
variable name rather than a literal string, click Variable Name.

4. Click OK or press ENTER.

The new title or label is now displayed on the title bar or on the
control.
Rational Rose 2000e, Rose Extensibility User’s Guide 77

Chapter 4 Using the Rational Rose Script Editor
Assigning Accelerator Keys

Use the following procedure to designate a letter from a control's label
to serve as the accelerator key for that control.

1. Display the Information dialog box for the control to which you
want to assign an accelerator key.

2. In the Text$ field, type an ampersand (&) before the letter you want
to designate as the accelerator key.

3. Click OK or press ENTER.

The letter you designated is now underlined on the control's label,
and users will be able to access the control by pressing ALT + the
underlined letter.

Capturing Standard Windows Dialog Boxes

Use the following procedure to capture the standard Windows controls
from any standard Windows dialog box in another application, and
insert those controls into the Dialog Editor for editing:

1. Display the dialog box you want to capture.

2. Open the Dialog Editor.

3. Click File > Capture Dialog.

The Dialog Editor displays a dialog box that lists all open dialog
boxes that it is able to capture:

Figure 17 Capturing a Dialog Box

4. Select the dialog box that you want to capture, then click OK.

Note: The Dialog Editor only supports standard Windows controls
and standard Windows dialog boxes. Therefore, if the target dialog
box contains both standard Windows controls and custom controls,
78 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
only the standard Windows controls will appear in the Dialog Editor's
application window. If the target dialog box is not a standard
Windows dialog box, you will be unable to capture the dialog box or
any of its controls.

Testing Your Dialog Boxes

The Dialog Editor lets you run your edited dialog box purposes. When
you click Test, your dialog box comes alive, which gives you an
opportunity to make sure it functions properly and fix any problems
before you incorporate the dialog box template into your script.

Before you run your dialog box, take a moment to look it over for basic
problems such as the following:

� Does the dialog box contain a command button—that is, a default
OK or Cancel button, a push button, or a picture button?

� Does the dialog box contain all the necessary push buttons?

� Does the dialog box contain a Help button if one is needed?

� Are the controls aligned and sized properly?

� If there is a text control, is its font set properly?

� Are the close box and title bar displayed (or hidden) as you
intended?

� Are the control labels and dialog box title spelled and capitalized
correctly?

� Do all the controls fit within the borders of the dialog box?

� Could you improve the design of the dialog box by adding one or
more group boxes to set off groups of related controls?

� Could you clarify the purpose of any unlabeled control (such as a
text box, list box, combo box, drop list box, picture, or picture
button) by adding a text control to serve as a de facto label for it?

� Have you made all the necessary accelerator key assignments?

� After you’ve fixed any elementary problems, you’re ready to run
your dialog box so you can check for problems that don’t become
apparent until a dialog box is activated.

Testing your dialog box is an iterative process that involves running the
dialog box to see how well it works, identifying problems, stopping the
test and fixing those problems, then running the dialog box again to
Rational Rose 2000e, Rose Extensibility User’s Guide 79

Chapter 4 Using the Rational Rose Script Editor
make sure the problems are fixed and to identify any additional
problems, and so forth—until the dialog box functions the way you
intend.

Use the following procedure to test your dialog box and fine-tune its
performance:

1. Click Run on the toolbar, or press F5, to make the dialog box
operational.

2. Check the dialog box’s functions.

3. To stop the test, click Run, press F5, or double-click the dialog
box's close box (if it has one).

4. Make any necessary adjustments to the dialog box.

5. Repeat steps 1-4 as many times as you need in order to get the
dialog box working properly.

Incorporating Dialog Boxes or Controls into Your Script

You create dialog boxes and dialog box controls in the Dialog Editor. To
incorporate them into a script, you copy them to the Clipboard. When
you copy the dialog to the Clipboard, it is stored in the form of Basic
Script statements. You then paste the contents of the Clipboard into
the script.

Use the following procedure to incorporate a dialog box or control into
your script:

1. Select the dialog box or control that you want to incorporate into
your script.

2. Press CTRL+C.

3. Open your script and paste in the contents of the Clipboard at the
desired point.
80 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
The dialog box template or control is now described in BasicScript
statements in your script, as shown in the following example:

Figure 18 Sample Dialog Box in Basic Script

Selecting Controls

Do one of the following to select a control in a dialog box:

� With the Pick tool active, place the mouse pointer on the desired
control and click the mouse button.

� With the Pick tool active, press the TAB key repeatedly until the
focus moves to the desired control.

The control is now surrounded by a thick frame to indicate that it
is selected and you can edit it.

Selecting Dialog Boxes

Do one of the following to select an entire dialog box:

� With the Pick tool active, place the mouse pointer on the title bar of
the dialog box or on an empty area within the borders of the dialog
box (that is, on an area where there are no controls) and click the
mouse button.

� With the Pick tool active, press the TAB key repeatedly until the
focus moves to the dialog box.

The dialog box is now surrounded by a thick frame to indicate that it
is selected and you can edit it.
Rational Rose 2000e, Rose Extensibility User’s Guide 81

Chapter 4 Using the Rational Rose Script Editor
Repositioning Items

Repositioning Items with the Mouse

Use the following procedure to reposition items in a dialog box or
control by dragging it with the mouse:

1. With the Pick tool active, place the mouse pointer on an empty area
of the dialog box or on a control.

2. Depress the mouse button and drag the dialog box or control to the
desired location.

Note: The increments by which you can move a control with the
mouse are governed by the grid setting. For example, if the grid's X
setting is 4 and its Y setting is 6, you'll be able to move the control
horizontally only in increments of 4 X units and vertically only in
increments of 6 Y units. This feature is handy if you're trying to align
controls in your dialog box. If you want to move controls in smaller or
larger increments, press CTRL+G to display the Grid dialog box and
adjust the X and Y settings.

Repositioning Items with the Arrow Keys

Use the following procedure to reposition items in a dialog box or
control by dragging it with the arrow keys:

1. Select the dialog box or control that you want to move.

2. Do one of the following:

❑ Press an arrow key once to move the item by 1 X or Y unit in the
desired direction.

❑ Steadily press an arrow key to “nudge” the item gradually along
in the desired direction.

Note: When you reposition an item with the arrow keys, a faint,
partial afterimage of the item may remain visible in the item's original
position. These afterimages are rare and will disappear once you test
your dialog box.
82 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
Repositioning Dialog Boxes with the Dialog Information
Dialog Box

Use the following procedure to reposition items in a dialog box or
control by using the Dialog Information dialog box.

1. Display the Dialog Box Information dialog box.

Note: For information on displaying the Dialog Information dialog
box, see Displaying the Dialog Information Dialog Box, later in this
chapter.

2. Do one of the following:

❑ Change the X and Y coordinates in the Position group box.

❑ Leave the X and/or Y coordinates blank.

3. Click OK or press ENTER.

If you specified X and Y coordinates, the dialog box moves to that
position. If you left the X coordinate blank, the dialog box will be
centered horizontally relative to the parent window of the dialog
box when the dialog box is run. If you left the Y coordinate blank,
the dialog box will be centered vertically relative to the parent
window of the dialog box when the dialog box is run.

Repositioning Controls with the Dialog Information Dialog
Box
1. Use the following procedure to move a selected control by changing

its coordinates in the Dialog Information dialog box for that control.

Note: For information on displaying the Dialog Information dialog
box, see Displaying the Dialog Information Dialog Box, later in this
chapter.

2. Display the Information dialog box for the control that you want to
move.

3. Change the X and Y coordinates in the Position group box.

4. Click OK or press ENTER.

The control moves to the specified position.
Rational Rose 2000e, Rose Extensibility User’s Guide 83

Chapter 4 Using the Rational Rose Script Editor
Resizing Items

Resizing Items with the Mouse

Use the following procedure to change the size of a selected dialog box
or control by dragging its borders or corners with the mouse:

1. With the Pick tool active, select the dialog box or control that you
want to resize.

2. Place the mouse pointer over a border or corner of the item.

3. Depress the mouse button and drag the border or corner until the
item reaches the desired size.

Resizing Items with the Information Dialog Box

Use the following procedure to change the size of a selected dialog box
or control by changing its Width or Height settings in the Information
dialog box.

1. Display the Information dialog box for the dialog box or control that
you want to resize.

2. Change the Width and Height settings in the Size group box.

3. Click the OK button or press ENTER.

The dialog box or control is resized to the dimensions you specified.

Resizing Selected Items Automatically

Use the following procedure to adjust the borders of certain controls
automatically to fit the text displayed on them.

To resize selected controls automatically:

1. With the Pick tool active, select the option button, text control,
push button, check box, or text box that you want to resize.

2. Press F2.

The borders of the control will expand or contract to fit the text
displayed on it.
84 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
Adding Controls

Use the following procedure to add one or more controls to your dialog
box using simple mouse and keyboard methods.

1. From the toolbar, choose the tool corresponding to the type of
control you want to add.

Note: When you pass the mouse pointer over an area of the display
where a control can be placed, the pointer becomes an image of the
selected control with crosshairs (for positioning purposes) to its upper
left. The name and position of the selected control appear on the
status bar. When you pass the pointer over an area of the display
where a control cannot be placed, the pointer changes into a circle
with a slash through it (the “prohibited” symbol).

Note: You can only insert a control within the borders of the dialog
box you are creating. You cannot insert a control on the dialog box's
title bar or outside its borders.

2. Place the pointer where you want the control to be positioned and
click the mouse button.

The control you just created appears at the specified location. (To
be more specific, the upper left corner of the control will
correspond to the position of the pointer's crosshairs at the
moment you clicked the mouse button.) The control is surrounded
by a thick frame, which means that it is selected, and it may also
have a default label.

After the new control has appeared, the mouse pointer becomes an
arrow, to indicate that the Pick tool is active and you can once
again select any of the controls in your dialog box.

3. To add another control of the same type as the one you just added,
press CTRL+D.

A duplicate copy of the control appears.

4. To add a different type of control, repeat steps 1 and 2.

5. To reactivate the Pick tool, do one of the following:

❑ Click the arrow-shaped tool on the toolbar.

❑ Place the mouse pointer on the title bar of the dialog box or
outside the borders of the dialog box (that is, on any area where
the mouse pointer turns into the “prohibited” symbol) and click
the mouse button.
Rational Rose 2000e, Rose Extensibility User’s Guide 85

Chapter 4 Using the Rational Rose Script Editor
Duplicating Controls

Use the following procedure to use the Dialog Editor's duplicating
feature, which saves you the work of creating additional controls
individually if you need one or more copies of a particular control:

1. Select the control that you want to duplicate.

2. Press CTRL+D.

A duplicate copy of the selected control appears in your dialog box.

3. Repeat step 2 as many times as necessary to create the desired
number of duplicate controls.

Adding Pictures to a Dialog

You can add pictures to a dialog from a file or from a picture library.

Adding Pictures from Files

Use the following procedure to display a Windows bitmap or metafile
from a file on a picture control or picture button control by using the
control's Information dialog box to indicate the file in which the picture
is contained.

1. Display the Information dialog box for the picture control or picture
button control whose picture you want to specify.

2. In the Picture source option button group, click File.

3. In the Name$ field, enter the name of the file containing the picture
you want to display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture
File dialog box and use it to find the file.

4. Click the OK button or press ENTER.

The picture control or picture button control now displays the
picture you specified.
86 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
Adding Pictures from Picture Libraries

Use the following procedure to display a Windows bitmap or metafile
from a file on a picture control or picture button control by using the
control's Information dialog box to indicate the file in which the picture
is contained.

1. Display the Information dialog box for the picture control or picture
button control whose picture you want to specify.

2. In the Picture source option button group, click File.

3. In the Name$ field, enter the name of the file containing the picture
you want to display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture
File dialog box and use it to find the file.

4. Click OK or press ENTER.

The picture control or picture button control now displays the
picture you specified.

Pasting Items into Dialog Editor

Pasting Existing Dialog Boxes into Dialog Editor

If you want to modify a BasicScript dialog box template contained in
your script, use the following procedure to select the template and
paste it into dialog editor for editing:

1. Copy the entire BasicScript dialog box template (from the Begin
Dialog instruction to the End Dialog instruction) from your script
to the Clipboard.

2. Open the Dialog Editor.

3. Press CTRL+V.

4. When the Dialog Editor asks whether you want to replace the
existing dialog box, click Yes.

The Dialog Editor creates a new dialog box corresponding to the
template contained on the Clipboard.
Rational Rose 2000e, Rose Extensibility User’s Guide 87

Chapter 4 Using the Rational Rose Script Editor
Pasting Controls from Existing Dialog Boxes into Dialog
Editor

If you want to modify the BasicScript statements in your script that
correspond to one or more dialog box controls, use the following
procedure to select the statements and paste them into Dialog Editor
for editing:

1. Copy the BasicScript description of the control(s) from your script
to the Clipboard.

2. Open Dialog Editor.

3. Press CTRL+V.

Dialog Editor adds to your current dialog box one or more controls
corresponding to the description contained on the Clipboard.

Displaying the Information Dialogs

There are two types of Information dialog boxes:

� Information Dialog Box for Dialogs

� Information Dialog Box for Controls

Displaying the Information Dialog Boxes for Dialogs

Do one of the following to display the Dialog Box Information dialog box
to check and adjust attributes that pertain to the dialog box as a whole:

� With the Pick tool active, place the mouse pointer on an area of the
dialog box where there are no controls and double-click the mouse
button.

� With the Pick tool active, select the dialog box and either click the
Information tool on the toolbar, press ENTER, or press CTRL+I.
88 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
The following figure shows the Dialog Box Information dialog box:

Figure 19 Dialog Box Information Dialog Box

Attributes You Can Adjust with the Dialog Box Information
Dialog Box

The Dialog Box Information dialog box can be used to check and adjust
the following attributes, which pertain to the dialog box as a whole.

� Position (optional): X and Y coordinates on the display, in dialog
units

� Size (mandatory): width and height of the dialog box, in dialog
units

� Style (optional): options that allow you to determine whether the
close box and title bar are displayed

� Text$ (optional): text displayed on the title bar of the dialog box

� Name (mandatory): name by which you refer to this dialog box
template in your BasicScript code

� Function (optional): name of a BasicScript function in your dialog
box

� Picture Library (optional): picture library from which one or more
pictures in the dialog box are obtained
Rational Rose 2000e, Rose Extensibility User’s Guide 89

Chapter 4 Using the Rational Rose Script Editor
Displaying the Information Dialog Boxes for Controls

Do one of the following to display the Information dialog box for a
control to check and adjust attributes that pertain to that particular
control.

� With the Pick tool active, place the mouse pointer on the desired
control and double-click the mouse button.

� With the Pick tool active, select the control and either click the
Information tool on the toolbar, press ENTER, or press CTRL+I.

The Dialog Editor displays an Information dialog box corresponding
to the control you selected. For example:

Figure 20 Control Information Dialog Box

Attributes You Can Adjust with the Information Dialog Boxes
for Controls

Control Information dialog boxes can be used to check and adjust the
attributes of the following controls:

� Default OK Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code
90 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
� Default Cancel Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

� Help Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ FileName$ (optional): Name of the help file that you want to
invoke

❑ Context& (mandatory): The context ID specifying which help
topic to jump to

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

� Push Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

� Option Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

❑ .Option Group (mandatory): name by which you refer to a group
of option buttons in your BasicScript code
Rational Rose 2000e, Rose Extensibility User’s Guide 91

Chapter 4 Using the Rational Rose Script Editor
� Check Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (mandatory): name by which you refer to a control in
your BasicScript code; also contains the result of the control
after the dialog box has been processed

� Group Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

� Text Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ Text$ (optional): text displayed on a control

❑ Font (optional): font in which text is displayed

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

� Text Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ Multiline (optional): option that allows you to determine whether
users can enter a single line of text or multiple lines

❑ .Identifier (mandatory): name by which you refer to a control in
your BasicScript code; also contains the result of the control
after the dialog box has been processed
92 Rational Rose 2000e, Rose Extensibility User’s Guide

Working with the Dialog Editor
� List Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (mandatory): name by which you refer to a control in
your BasicScript code; also contains the result of the control
after the dialog box has been processed

❑ Array$ (mandatory): name of an array variable in your
BasicScript code

� Combo Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (mandatory): name by which you refer to a control in
your BasicScript code; also contains the result of the control
after the dialog box has been processed

❑ Array$ (mandatory): name of an array variable in your
BasicScript code

� Drop List Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (mandatory): name by which you refer to a control in
your BasicScript code; also contains the result of the control
after the dialog box has been processed

❑ Array$ (mandatory): name of an array variable in your
BasicScript code

� Picture Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code
Rational Rose 2000e, Rose Extensibility User’s Guide 93

Chapter 4 Using the Rational Rose Script Editor
❑ .Identifier (optional): name of the file containing a picture that
you want to display or the name of a picture that you want to
display from a specified picture library

❑ Frame (optional): option that allows you to display a 3-D frame

� Picture Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box,
in dialog units

❑ Size (mandatory): width and height of the control, in dialog
units

❑ .Identifier (optional): name by which you refer to a control in
your BasicScript code

❑ .Identifier (optional): name of the file containing a picture that
you want to display or the name of a picture that you want to
display from a specified picture library
94 Rational Rose 2000e, Rose Extensibility User’s Guide

Appendix A

Rational Rose Script Editor Shortcuts

This appendix identifies the shortcuts that can be used with the
Rational Script Editor.

General Shortcuts
Table 7 General Shortcuts

Key Name(s) Description

F1 Provides context-sensitive help for selected menu
commands and variables in the watch pane, for BasicScript
terms in the edit pane that have been selected or that
contain the insertion point, and for displayed dialog boxes.

CTRL+F Displays the Find dialog box, which allows you to specify
text for which you want to search.

F3 Searches for the next occurrence of previously specified
text. If you have not previously specified text for which you
want to search, displays the Find dialog box.

ESC Deactivates the Help pointer if it is active. Otherwise,
compiles your script and returns you to the host
application.
Rational Rose 2000e, Rose Extensibility User’s Guide 95

Appendix A Rational Rose Script Editor Shortcuts
Navigating Shortcuts
Table 8 Navigating Shortcuts

Key Name(s) Description

UP ARROW Moves the insertion point up one line.

DOWN ARROW Moves the insertion point down one line.

LEFT ARROW Moves the insertion point left by one character
position.

RIGHT ARROW Moves the insertion point right by one character
position.

PAGE UP Moves the insertion point up by one window.

PAGE DOWN Moves the insertion point down by one window.

CTRL+PAGE UP Scrolls the insertion point left by one window.

CTRL+PAGE DOWN Scrolls the insertion point right by one window.

CTRL+LEFT ARROW Moves the insertion point to the start of the next word
to the left.

CTRL + RIGHT
ARROW

Moves the insertion point to the start of the next word
to the right.

HOME Places the insertion point before the first character in
the line.

END Places the insertion point after the last character in the
line.

CTRL+HOME Places the insertion point before the first character in
the script.

CTRL+END Places the insertion point after the last character in the
script.
96 Rational Rose 2000e, Rose Extensibility User’s Guide

Editing Shortcuts
Editing Shortcuts
Table 9 Editing Shortcuts

Key Name(s) Description

DELETE Removes the selected text or removes the character
following the insertion point without placing it on the
Clipboard.

BACKSPACE Removes the selected text or removes the character
preceding the insertion point without placing it on
the Clipboard.

CTRL+Y Deletes the entire line containing the insertion point
without placing it on the Clipboard.

TAB Inserts a tab character.

ENTER Inserts a new line, breaking the current line.

CTRL+C Copies the selected text, without removing it from the
script, and places it on the Clipboard.

CTRL+X Removes the selected text from the script and places
it on the Clipboard.

CTRL+V Inserts the contents of the Clipboard at the location
of the insertion point.

SHIFT + any
navigating shortcut

Selects the text between the initial location of the
insertion point and the point to which the keyboard
shortcut would normally move the insertion point.
(For example, pressing SHIFT + CTRL + LEFT
ARROW selects the word to the left of the insertion
point; pressing SHIFT+CTRL+HOME selects all the
text from the location of the insertion point to the
start of your script.)

CTRL+Z Reverses the effect of the preceding editing change(s).
Rational Rose 2000e, Rose Extensibility User’s Guide 97

Appendix A Rational Rose Script Editor Shortcuts
Debugging Shortcuts
Table 10 Debugging Shortcuts

File Menu Shortcuts
Table 11 File Menu Shortcuts

Key Name(s) Description

SHIFT+F9 Displays the Add Watch dialog box, in which you can
specify the name of a BasicScript variable. The Script
Editor then displays the value of that variable, if any, in
the watch pane of its application window.

ENTER or F2 Displays the Modify Variable dialog box for the selected
watch variable, which enables you to modify the value of
that variable.

F6 If the watch pane is open, switches the insertion point
between the watch pane and the edit pane.

CTRL+BREAK Suspends execution of an executing script and places the
instruction pointer on the next line to be executed.

F9 Sets or removes a breakpoint on the line containing the
insertion point.

F10 Activates the Step Over command, which executes the
next line of a BasicScript script and then suspends
execution of the script. If the script calls another
BasicScript procedure, BasicScript will run the called
procedure in its entirety.

F11 Activates the Step Into command, which executes the
next line of a BasicScript script and then suspends
execution of the script. If the script calls another
BasicScript procedure, execution will continue into each
line of the called procedure.

Key Name(s) Description

CTRL+W Compiles your script and returns you to the host
application.

CTRL+S Saves the currently open script.
98 Rational Rose 2000e, Rose Extensibility User’s Guide

Edit Menu Shortcuts
Edit Menu Shortcuts
Table 12 Edit Menu Shortcuts

Key Name(s) Description

CTRL+Z Reverses the effect of the preceding editing change(s).

CTRL+X Removes the selected text from the script and places it on
the Clipboard.

CTRL+C Copies the selected text, without removing it from the
script, and places it on the Clipboard.

CTRL+V Inserts the contents of the Clipboard at the current
position of the insertion point.

CTRL+A Selects all the text in the edit window.

CTRL+F Displays the Find dialog box, which allows you to specify
text for which you want to search. Remembers and
allows you to choose from a list of previous search
strings.

CTRL+H Displays the Replace dialog box, which allows you to
substitute replacement text for instances of specified
text. Remembers and allows you to choose from a list of
previous search and replace strings.

CTRL+G Presents the Goto Line dialog box, which allows you to
move the insertion point to the start of a specified line
number in your script.
Rational Rose 2000e, Rose Extensibility User’s Guide 99

Appendix A Rational Rose Script Editor Shortcuts
Debugger Menu Shortcuts
Table 13 Debugger Menu Shortcuts

Key Name(s) Description

F5 Runs the current script.

CTRL+SHIFT+F5 Restarts the current script beginning with the line at
which it was stopped using the Break command.

SHIFT+F5 Stops script execution.

F11 Steps through the script code line by line, tracing into
called procedures.

F10 Steps through the script code line by line without
tracing into called procedures.

F7 Compiles the current script without executing it.

SHIFT+F9 Displays the Add Watch dialog box, in which you can
specify the name of a BasicScript variable. That
variable, together with its value (if any), is then
displayed in the watch pane of the Script Editor's
application window.

DELETE Deletes a selected variable from the watch variable list.

ENTER Displays the Modify Variable dialog box for a selected
variable, which enables you to modify the value of that
variable.

F9 Toggles a breakpoint on the line containing the
insertion point.
100 Rational Rose 2000e, Rose Extensibility User’s Guide

Appendix B

Developing Add-Ins for Rational Rose

Introduction

This appendix is provided to give additional information for customers
wanting to explore the use of add-ins. However, creation of add-ins is
not directly supported by Rational Technical Support. Additional
support for add-ins is available through the Rational Unified Solutions
Partner Program and Rational University.

For more information on the Rational Unified Solutions Partner
Program see:

http://www.rational.com/corpinfo/partners/

For training on Rational Rose’s REI and add-ins see the “Extending
Rational Rose” course from Rational University:

http://www.rational.com/university/description/
Rational Rose 2000e, Rose Extensibility User’s Guide 101

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Add-in’s allow you to package customizations and automation of
several Rational Rose features through the Extensibility Interface (REI)
into one package. An add-in is a collection of some combination of the
following:

� Main menu items

� Shortcut menu items

� Custom specifications

� Properties

� Data types

� Stereotypes

� Online help

� Context-sensitive help

� Event handling

� Functionality through Rational Rose Scripts or controls (OLE-
server)

Rational Rose Script or any language such as VB or C++ that can
expose itself as an OLE server may be used to build an Add-in.

Figure 21 Rational Rose Add-Ins Architecture

Rational Rose

Add-In

Source Files
•Formatted ASCII (CSV)
•Standards (IDL, XML)
•Source code (C++)

COM Servers
•Office 97
•RequisitePro
•ClearQuest
•MS Repository

Rose Extensibility
Interface (REI)

•Application
•Model Semantics
•Diagrams
•Context Menus
•Add-Ins
•Properties

Add-In Registry
•events
•stereotype files
•property files
•menu files
•data types

Menus
•Rosescript
•COM server
•outside program

Extensible Properties
•new tools/tabs
•new properties

COM Client/Server
•Custom Spec Dialogs
•Logic of Add-In
•Respond to events
•Choice of languages

e.g. VB*, C++, Java, Delphi, ASP

Shared Libraries

Databases
•via ODBC

Events
•Rosescript
•COM server

Stereotypes
•icons
•string

RoseScript
•report generation • metrics
•custom dialogs • wizards
•consistency checking • import
•project estimation • export

Legend
Control
Data

Legend
Control
Data
102 Rational Rose 2000e, Rose Extensibility User’s Guide

Why Create Add-Ins?
For more information, see page 101.

Note: Servers that wish to use Rational Rose must use the supplied
typelib included with Rational Rose.

Why Create Add-Ins?

You might want to create an add-in as opposed to a script or program
if you answer “yes” to any of the following questions:

� Do you want to take advantage of Rational Rose events like
OnNewModel, OnAppInit?

� Do you want to interact with other Rational Rose add-ins?

Types of Add-Ins

There are two types of add-ins: basic and language. They are defined
below:

� Basic: A basic add-in is a non-language add-in that supplies its
own responses for events to execute third-party scripts or
executables, such as a Visual Basic program. It does not use the
component view for code generation. A basic add-in cannot register
for certain code generation-related events.

� Language: A language add-in takes advantage of the mapping to
components by defining a target language. It also supplies its own
responses for events that pertain to code generation and round-trip
engineering integration. Code generation and round-trip
engineering events include OnGenerateCode, OnBrowseBody, and
OnBrowseHeader. Language add-ins support custom data types
and overriding the default specification.

What is in an add-in?

Add-in’s customize or contain one or more of the following:

� Main menus

� Shortcut menu

� Custom specifications

� Properties
Rational Rose 2000e, Rose Extensibility User’s Guide 103

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

� Data types

� Stereotypes

� Online help

� Context-sensitive help

� Registering for events

� Functionality

Each of these are explained in the next sections.

Main menus

The Rational Rose main menus are the menus at the top of the Rational
Rose window, such as File, Edit, etc. These menus connect the user
interface to functionality in Rational Rose. You can customize these
menus to link functionality in your add-in to the Rational Rose user
interface.

Shortcut menu

The Rational Rose shortcut menu displays whenever you or your user
right-clicks on part of the user interface. The shortcut menu is another
link between the user interface and functionality in Rational Rose. You
can customize this menu to link functionality in your add-in to the
Rational Rose user interface.

Custom Specifications

Rational Rose displays a standard specification dialog for each model
element to allow definition and description of that model element. If
you are writing a language add-in, you can override the standard
Rational Rose specification dialog and display your own custom dialog.
This is useful to:

� Remove non-relevant or inappropriate information

� Target the dialog to your end-user’s needs

� Drive the dialog by stereotype or other characteristics, for example,
naming conventions
104 Rational Rose 2000e, Rose Extensibility User’s Guide

What is in an add-in?
For more information, see page 101.

Properties

Rational Rose model properties allow you to extend Rational Rose
model elements through additional properties and their values. You
can add custom tools (a tab on the specification dialog), sets, and
properties to store the information relevant to your add-in with each
Rational Rose model element. You can also use this information to
determine when functionality in your add-in should occur.

Data types

Rational Rose data types allow you to customize which selections your
user sees in the type drop down boxes for model elements associated
with your add-in.

Stereotypes

Rational Rose stereotypes allow you to customize the look of different
model elements as makes sense to your add-in. This custom look can
be as simple as an additional text string (for example, <<Special
Class>>), or as fancy as new icons for the diagram editor, toolbar
buttons, and browser icons.

Online help

Rational Rose provides extensive online help to explain the product.
You can also add your online help.

Context-sensitive help

Rational Rose provides context-sensitive help to provide quick, brief
information on the context. You can add context-sensitive help to your
add-in’s user interface. and your custom Rational Rose main menu
items, shortcut menu items, and properties.

Registering for events

Rational Rose provides several COM events for which your add-in can
register and respond.
Rational Rose 2000e, Rose Extensibility User’s Guide 105

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Functionality

Finally, you can write code to provide the dialogs and other
functionality desired in your add-in.

UNIX versus Windows

If you are developing add-ins for UNIX, you will run into the following
differences:

Table 14 UNIX versus Windows

The basic difference is that to create an add-in for UNIX, you must
“fake” setting up the “registry”. When creating a UNIX version, follow
these steps:

1. Copy the contents of rose.version/addins/cm directory to a new
directory in the rose.version/addins directory where version is the
installed version of Rational Rose.

For example:

cd rose.4.5.8153/addins
mkdir my_addin
cp cm/* my_addin

2. Change to the new directory

For example:

cd my_addin

Windows UNIX

GUI painter and capture GUI painter and capture

Custom dialogs Custom dialogs

API through COM MainWin—MainSoft Technology

Rose as COM client MainWin—MainSoft Technology

ODBC functions none

GUI drivers (for example, Send Keys) n/a
106 Rational Rose 2000e, Rose Extensibility User’s Guide

Creating portable add-ins
For more information, see page 101.

3. Rename cm.mnu and cm.reg to the name of your add-in

For example:

mv cm.mnu my_addin.mnu
mv cm.reg my_addin.reg

4. Edit your menu file (.mnu) to add the menus you want

The format is the same on Windows and UNIX

5. Edit the registry file (.reg) and replace “cm” with the name of your
add-in. You should change:

❑ HKEY_LOCAL_MACHINE

❑ InstallDir

❑ MenuFile

A global search and replace on the document should help.

6. Copy your add-in’s custom help file to the rose.version/help
directory where version is the installed version of Rational Rose.

For example:

cd rose.4.5.8153/help
cp /somepath/MyHelpFile.hlp .
cp /somepath/MyHelpFile.cnt .

Creating portable add-ins

To create add-ins that will be portable to other platforms, keep the
following recommendations in mind:

� Keep the logic of the integration in Rational Rose Script

� Keep dialogs and graphical user interfaces (GUIs) in Rational Rose
Script

� Import and export through ASCII files

� Do not use COM calls—write shell-accessible commands

� Test the operating system with the BasicScript object (for example,
Basic.OS)

� Use path map variables
Rational Rose 2000e, Rose Extensibility User’s Guide 107

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

How to develop add-ins

The following procedure gives you a high-level look at what you need to
do to develop your add-in:

1. Decide which language to use to create your add-in (Rational Rose
Script or a COM-enabled language such as Visual Basic, C++).

2. Decide whether you will be a basic or language add-in.

3. Decide which parts of Rational Rose you want to customize or use:

❑ Main menus

❑ Shortcut menus

❑ Custom Specifications

❑ Properties

❑ Data types

❑ Stereotypes

❑ Online help

❑ Context-sensitive help

❑ Registering for events

4. Design your add-in’s functionality.

5. Create all the pieces for your add-in that you decided you needed:

❑ Menu file (.mnu)

❑ Property file (.pty) to add new tools, sets, and properties

❑ Data types

❑ Stereotypes (.ini, .bmp, .wmf, .emf)

❑ Online and context-sensitive help (.hlp)

❑ Method for updating the registry file (.reg)

❑ Code to

– perform all the functions of your add-in (.ebs, .ebx, .exe, .dll,
etc.)

– register for and handle events

– create shortcut menu items

– define your custom specification dialogs

❑ Installation routine
108 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

❑ Uninstallation routine

❑ Hardcopy documentation

❑ Anything else specific to your needs

6. Test your add-in and its pieces

❑ Installation

❑ Activation

❑ New functionality

– Menu items

– Shortcut menu items

– Custom Specifications

– Properties

– Data types

– Stereotypes

– Online help

– Context-sensitive help

– Events

– All other add-in functionality

❑ Deactivation

❑ Uninstallation

7. Package your add-in and distribute to your customers (whether
internal or external).

Working with and customizing each of the items listed above (for
example, menus, properties) are explained in more detail in the next
sections.

Customizing Main Menus

Each add-in may introduce additions to the menus specific for that
add-in, using the menu file technology (*.mnu). This is the only way an
add-in can provide main menu items.

For more information on the syntax for the Rational Rose menu file
(*.mnu), see the Customizing Rational Rose Main Menus section earlier
in this User’s Guide.
Rational Rose 2000e, Rose Extensibility User’s Guide 109

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Note: If you choose to customize the main menus, you must update the
registry (discussed later in this appendix).

Customizing the Shortcut Menu

For information on customizing the shortcut menu, see the
Customizing Rational Rose Shortcut Menus section earlier in this User’s
Guide.

Creating Custom Specifications

To create and activate custom specifications, do the following:

1. Create a language add-in.

2. Register for the OnPropertySpecOpen event.

3. Implement an OnPropertySpecOpen interface in your add-in’s OLE
server.

4. Code your custom specification dialogs.

Customizing Properties

Properties are added to Rational Rose items by add-ins using the
existing property file (pty-file) technology. Each Add-in can optionally
supply its own property file that defines a name space for its properties
and a tab in the specification editor to hold the custom tool, sets, and
properties. You can only define one property file per add-in, but you
can define multiple tools, sets, and properties within that one file. The
property file is automatically enabled and disabled as your add-in is
enabled and disabled. Even when the property file is disabled, however,
your custom properties are persisted with the model file. To hide a tab,
the user can deactivate the corresponding add-in in Rational Rose.

Design Considerations

The ordering of the tabs (tools) must be independent of when, where,
and what add-ins are installed or activated. The tab name (tool name)
must be unique for each Add-in. Rational Rose has no capability to
detect conflicts. You must always have a “default” set for each of your
custom tools.
110 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Note: If you choose to add a property file, you must update the registry
(discussed later in this appendix).

You can also add, delete, and clone properties through the extensibility
interface. For more information on how to do this, see Managing
Default Properties and subsequent sections earlier in this User’s Guide.

Information in Property Files

Property Files contain the following information:

version

tool 1

default set__model element 1

property 1

property 2

...

property n

default set__model element 2

property 1

property 2

...

property n

default set__last model element

...

next set__model element 1

property 1

property 2

...

property n

next set__model element 2

...

next set__last model element

...

last set__model element 1
Rational Rose 2000e, Rose Extensibility User’s Guide 111

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

...

last set__last model element

...

tool 2

default set__model element 1

...

last set__last model element

...

last tool

...

Format for Property Files

Now that you have seen an overview of the information contained in
property files, it is time to look at their actual format. Keywords are
shown in bold, while variable information, that you need to set, is
shown in italics. Each element is explained at the end of the property
file format.

Comments about the property file
Begin version information
(object Petal

version number
_written "add-in name"
charSet 0)

End version information

Begin tool definition
(list Attribute_Set

Tool setup
(object Attribute

tool "tool"
name "propertyID"
value "809135966")

Begin set and model element definition
(object Attribute

tool "tool"
name "set__model element"
112 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

value (list Attribute_Set
Define first property
(object Attribute

tool "tool"
name "property"
value datatype)

Define second property
(object Attribute

tool "tool"
name "property"
value datatype)

...

Define nth property
(object Attribute

tool "tool"
name "property"
value datatype)

)
End property list

)
End set and model element list

Begin next set and model element list
(

...
)
End next set and model element list

)
End tool definition

Begin next tool definition. Repeat format.
(

...
)
End next tool definition
End property file
Rational Rose 2000e, Rose Extensibility User’s Guide 113

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

The property file is composed of the following elements:

� comments: Place a number sign (#) at the beginning of the line to
indicate that it is a comment line.

� number: Enter the petal version number that corresponds to the
version of Rational Rose for which you are writing your add-in. To
find out what this number is, first locate a model file (.mdl) saved
in the same version of Rational Rose. Next, open the model file in a
text editor, such as Notepad.

� add-in name: Enter the name you want to call your add-in. For
example, Rose/MyAddin v1.0

� tool: Enter the name of your tool. For example, My Tool. You may
define multiple tools for your add-in in one property file.

� value: Use the same value (809135966) for each of your tools. If
you run into problems, add 1 to the number.

� set__model element: Enter the name of your set and model
element. For example, default_Project, CompilerV1.0_Project,
CompilerV2.0_Project, default_Class. You may have multiple sets
and multiple model elements per tool. Valid model elements are:

❑ Association

❑ Attribute

❑ Category

❑ Class

❑ Has

❑ Inherit

❑ Module-Spec

❑ Module-Body

❑ Operation

❑ Param

❑ Project

❑ Role

❑ Subsystem

❑ Uses
114 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

� property: Enter the name of your property. For example,
minCount

� datatype: Enter the default value for the data type of your
property. For example, if your property is

❑ an integer, your default value may be 0

❑ a string, your default value may be “” or “Unknown”

❑ a boolean, your default value may be TRUE

The following table lists examples for each of the different data
types and how to format them in your property file. Note the cases
where quotes are used versus where they are not used.

Table 15 Property file data types

Data type
Example and
Default Format

String Name
blank

(object Attribute
tool "MyTool"
name "Name"
value "")

Integer minCount
0

(object Attribute
tool "myTool"
name "minCount"
value 0)

Boolean isRelated
FALSE

(object Attribute
tool "myTool"
name "isRelated"
value FALSE)
Rational Rose 2000e, Rose Extensibility User’s Guide 115

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Multi-line
string

Description
Blank

(object Attribute
tool "myTool"
name "Description"
value (value Text ""))

Enumeration
(setup)

Color
n/a

(object Attribute
tool "myTool"
name "Color"
value (list Attribute_Set

(object Attribute
tool "myTool"
name "Red"
value 100)

(object Attribute
tool "myTool"
name "Blue"
value 110)

(object Attribute
tool "myTool"
name "Green"
value 120))

Enumeration
(usage)

Shade
“Red”

(object Attribute
tool "myTool"
name "Shade"
value ("Color" 100))

Data type
Example and
Default Format
116 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Sample Property File

To add the tool, set, and properties (with default values) displayed in
the following property dialog box,

Figure 22 Sample Custom Properties

we created the following property file:

(object Petal
version 43)

(list Attribute_Set
(object Attribute

tool "myTool"
name "default__Category"
value (list Attribute_Set
Rational Rose 2000e, Rose Extensibility User’s Guide 117

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

(object Attribute
tool "myTool"
name "MyNewEnumeration"
value (list Attribute_Set

(object Attribute
tool "myTool"
name "Value1"
value 1)

(object Attribute
tool "myTool"
name "Value2"
value 2)

(object Attribute
tool "myTool"
name "Value3"
value 3)))

(object Attribute
tool "myTool"
name "MyEnumeratedProperty"
value ("MyNewEnumeration" 1))

(object Attribute
tool "myTool"
name "isAppropriate"
value TRUE)

(object Attribute
tool "myTool"
name "mySpace"
value 5))))

Note: This tool tab only displays on package specifications, since we
only defined them for packages (default__Category). To display this tab
for classes, duplicate the default__Category section and rename it to
default__Class.

For more examples of property files, see the .pty files that come with
Rational Rose.
118 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Creating Property Files

To create a property file, for inclusion with your add-in, do the
following:

1. Create a new text file with extension .pty in a text editor or copy an
existing .pty file.

2. Edit the property file (.pty) as desired. Use the explanations given
previously and existing property files to guide you.

Testing Property Files
1. Create and save a test model with all the model elements for which

you added properties.

2. Add the new property file by following menu path: Tools > Model
Properties > Add and selecting your property file (.pty).

3. Check the error log to make sure your model properties were all
loaded okay. For example:

16:35:51| [Add Model Properties]
16:35:51| Adding model properties from file C:\Program
Files\Rational\Rose 2000e\my model properties.pty.
16:35:51| A total of 4 model properties have been added to
the original model.

4. Test your new properties by opening the specification for each
affected model element. Look for:

� A new tab or tabs with your tool name or names

� Correct sets (default, plus any others) on each tool tab

� Correct properties for each set

� Correct default values for each property

� Correct data types for each property. For example, click on an
enumerated type to make sure that Rational Rose displays a
drop down box that includes all the valid values for your
enumeration.
Rational Rose 2000e, Rose Extensibility User’s Guide 119

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Customizing Data types

Add-ins may also choose to optionally supply a set of default data types
to be presented to the user for typing attributes, parameters, etc., in
Rational Rose specifications. These data types are defined in the
registry setting called FundamentalTypes. For information on
updating the FundamentalTypes registry setting, see the section in
this appendix, Updating the Registry.

Customizing Stereotypes

An Add-in may supply a set of stereotypes and an additional set of
metafile icons to represent them. These stereotypes will be loaded and
made available to Rational Rose when the Add-in is activated. Your
custom stereotypes are added to Rational Rose’s default set of
stereotypes for the UML. Custom stereotypes do not replace standard
ones. The location of your custom stereotypes is defined in the registry
setting called StereotypeCfgFile. For information on updating the
StereotypeCfgFile registry setting, see the section in this appendix,
Updating the Registry.

You may provide icons for your stereotypes or text. Stereotypes are
applicable to the following model elements:

� Association

� Attribute

� Class

� Component

� Component Package

� Connection

� Dependency

� Device

� Generalization

� Logical Package

� Operation

� Processor

� Use Case
120 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

� Use Case Package

You may create custom icons for one or more of the following:

� Diagram editor icons (.wmf, .emf) to display on diagrams

� Diagram toolbar icons (.bmp) to display on the toolbar buttons

� Browser list icons (.bmp) to display in the browser

Note: You only need one bitmap file for your diagram toolbar icons and
a separate bitmap file for all your custom browser icons. You do not need
separate bitmap files for each of these icons. An index into the bitmap is
used to indicate which bitmap goes with which stereotype.

Steps for Creating Add-In Stereotypes
1. Decide on the model element(s) and text stereotype name(s)

2. Decide which, if any, graphical representations you want to
customize:

� Editor

� ToolBar

� Browser

3. Define the stereotype in the stereotype INI file for the add-in

4. Create the custom icon graphics (.wmf, .emf, .bmp)

General INI File Format

Note: In addition to the description in the next pages, you can also find
information on custom stereotypes and the stereotype configuration file
in the Stereotypes chapter of the Rational Rose 2000e, Using Rose book
and online help.

The stereotype INI file contains the following information:

[General]

This section contains add-in specific settings such as the name
of the add-in and whether it is a language add-in.
Rational Rose 2000e, Rose Extensibility User’s Guide 121

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

[Stereotyped Items]

This section is like a table of contents for the stereotypes. It
contains a list of stereotyped REI objects. For example,
Class:Control, Component:DLL, Operation:Set.

[REI Item:Stereotype name]

This section contains the settings for each stereotype, including
any optional icon files and settings.

Example:

[General]
ConfigurationName=Name
IsLanguageConfiguration=Yes or No

[Stereotyped Items]
REI item:Stereotype name
REI item:Stereotype name
...
[REI item:Stereotype name]
Item=REI item
Stereotype=Stereotype name
optional icon settings:
Metafile=&/model-element.wmf
SmallPaletteImages=&/palette_icons.bmp
SmallPaletteIndex=Index
MediumPaletteImages=&/palette_icons.bmp
MediumPaletteIndex=Index
ListImages=&/stereotypes.bmp
ListIndex=Index
...
[REI item:Stereotype name]
Item=REI item
Stereotype=Stereotype name
optional icon settings:
Metafile=&/model-element.wmf
SmallPaletteImages=&/palette_icons.bmp
SmallPaletteIndex=Index
MediumPaletteImages=&/palette_icons.bmp
MediumPaletteIndex=Index
ListImages=&/stereotype.bmp
ListIndex=Index
122 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

The stereotype INI file is composed of the following elements:

� ConfigurationNameConfigurationNameConfigurationNameConfigurationName: This is the name of the add-in or name used
for maintenance.

� IsLanguageConfigurationIsLanguageConfigurationIsLanguageConfigurationIsLanguageConfiguration: Type Yes if your add-in is a language
add-in. Otherwise, type No. This information conditionalizes
stereotypes so that they only appear if the language of the model
element in Rational Rose is the same as the ConfigurationName
listed above.

� ItemItemItemItem: The model element for which you are defining a stereotype.

� StereotypeStereotypeStereotypeStereotype: The text string stereotype. This is the text to be
displayed between guillemets (<< >>).

� MetafileMetafileMetafileMetafile: The windows metafile (.wmf) or enhanced metafile (.emf)
containing your diagram editor icon stereotype.

❑ Windows Meta Files (wmf) may require additional extent settings

❑ Enhanced Meta Files (emf) are preferred

� SmallPaletteImagesSmallPaletteImagesSmallPaletteImagesSmallPaletteImages: The bitmap file (.bmp) containing all your
small icons for your toolbar buttons. This defines non-large icons
(15 pixels high x 16n wide).

� SmallPaletteIndexSmallPaletteIndexSmallPaletteIndexSmallPaletteIndex: The integer number indicating the location in
the bitmap file of the small toolbar button icon for this stereotype.
This index starts with 1.

� MediumPaletteImagesMediumPaletteImagesMediumPaletteImagesMediumPaletteImages: The bitmap file (.bmp) containing all your
medium icons for your toolbar buttons. This defines large icons (24
pixels high x 24n wide).

� MediumPaletteIndexMediumPaletteIndexMediumPaletteIndexMediumPaletteIndex: The integer number indicating the location
in the bitmap file of the medium toolbar button icon for this
stereotype. This index starts with 1.

� ListImagesListImagesListImagesListImages: The bitmap file (.bmp) containing all your custom
browser icons.

❑ device independent bitmaps

❑ 16 high x 16n pixels wide

❑ white background

❑ use paint or bitmap editor

❑ & is the installation directory
Rational Rose 2000e, Rose Extensibility User’s Guide 123

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

� ListIndexListIndexListIndexListIndex: The integer number indicating the location in the
bitmap file of the custom browser icon for this stereotype. This
index starts with 1.

The following sections focus on the different types of text and icon
stereotypes you can create. You do not need separate files for each of
these items; all text and icon information can go in one INI file.

Text-Only Stereotypes INI File

No custom icons are included—only the text stereotypes

Example:

[Stereotyped Items]
Class:Interface
Component:DLL
Component:ActiveX
Component:Application

[Class:Interface]
Item=Class
Stereotype=Interface

[Component:DLL]
Item=Component
Stereotype=DLL

[Component:ActiveX]
Item=Component
Stereotype=ActiveX

[Component:Application]
Item=Component
Stereotype=Application
124 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Custom Diagram Editor Icons INI File

Metafile must be used in the optional icon settings section to define
diagram icons.

Example:

[Class:Actor]
Item=Class
Stereotype=Actor
Metafile=&/Objectory/color/actor.wmf
SmallPaletteImages=&/Objectory/palette_icons.bmp
SmallPaletteIndex=1
MediumPaletteImages=&/Objectory/palette_icons.bmp
MediumPaletteIndex=2
ListImages=&/Objectory/list_icons.bmp
ListIndex=1

Custom Toolbar Button Icons INI File

SmallPaletteImages, SmallPaletteIndex, MediumPaletteImages, and
MediumPaletteIndex must be used in the optional icons settings
section to define diagram palette icons.

Example:

[Class:Actor]
Item=Class
Stereotype=Actor
Metafile=&/Objectory/color/actor.wmf
SmallPaletteImages=&/Objectory/palette_icons.bmp
SmallPaletteIndex=1
MediumPaletteImages=&/Objectory/palette_icons.bmp
MediumPaletteIndex=2
ListImages=&/Objectory/list_icons.bmp
ListIndex=1
Rational Rose 2000e, Rose Extensibility User’s Guide 125

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Custom Browser List Icons INI File

The [General] section is needed. ListImages and ListIndex must be
used in the optional icon settings section.

Example:

[General]
ConfigurationName=Oracle8
IsLanguageConfiguration=Yes

[Stereotyped Items]
Class:ObjectType
Class:ObjectTable
...

[Class:ObjectType]
Item=Class
Stereotype=ObjectType
ListImages=&/o8stereo.bmp
ListIndex=3

[Class:ObjectTable]
Item=Class
Stereotype=ObjectTable
ListImages=&/o8stereo.bmp
ListIndex=4

Additional online help

Each add-in may introduce additions to the on-line help when installed
or activated. These additions are activated when your add-in is
activated.

On-line help should cover the capabilities of the installed add-in. Each
add-in should have only one first level help book in the master table of
contents. So, for example, your add-in should add a single book, for
example “My AddIn”. There may be many books under that book, but
only one book should appear in the main Rational Rose help table of
contents.
126 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Adding Online Help for Your Add-In

To be included in the Rational Rose Help, the add-in .hlp and .cnt files
must reside in the same directory as the rest of the Rational Rose help.

� In Windows, the help directory is specified by the HelpFileDir
general Rational Rose registry setting. The registry key for this
setting is [HKEY_LOCAL_MACHINE\SOFTWARE\Rational
Software\Rose\HelpFileDir].

� In UNIX, the help directory is fixed: /rose.version/help where
version is the version of the currently installed Rational Rose (for
example, /rose.4.5.8153/help).

In addition, you must include the add-in.cnt file in the roseu.cnt file.
This is accomplished by doing the following:

1. Locate the Rational Rose help files.

2. Identify the roseX.cnt file you wish to use:

� Roseu.cnt supports the UML help variant

� Rosec.cnt supports the COM help variant

You may choose to maintain both if you refer to both the UML and
COM notations when running Rational Rose.

3. Make a backup copy of the RoseX.cnt file.

4. Open the roseX.cnt file.

5. Add the following lines to the top of the roseX.cnt file along with the
other Index and Link definitions:
:INDEX = title =filename.hlp
:LINK filename.hlp

Add the following line at the bottom of the roseX.cnt file:

:INCLUDE filename.cnt

where title is the text that appears in the title bar of the Contents
window of the add-in help file, filename.hlp is the name of the add-
in help file, and filename.cnt is the name of the add-ins’s contents
file.
Rational Rose 2000e, Rose Extensibility User’s Guide 127

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Additional context-sensitive help

To be consistent with Rational Rose, you can include context-sensitive
help in your add-in for your custom menu items, properties, and user
interface (your add-in’s dialogs, for example). Each context-sensitive
help topic must have an A-Keyword defined for it. Since menu items
and properties are Rational Rose features, we explain the format
needed to connect your custom menu items and properties to your
context-sensitive help. Create your A-Links for your context-sensitive
help in your chosen help authoring tool.

Main Menu Items

For main menu items, added via the menu file (.mnu), the format for
the A-Keyword is explained below.

For items on submenus:

Menu, Submenu, menu item

For items not on submenus (items located directly on Rational Rose
main menus)

Menu, menu item

For example, Tools, MyAddIn, MyScript would be the alias for a
context-sensitive help topic that explains the “MyScript” menu option
on the “MyAddIn” submenu of the “Tools” menu (Tools > MyAddIn >
MyScript).

Menu, submenu, and menu item names in the A-Keyword must
include all punctuation. For example, if your menu path includes
ellipsis:

Tools > My Language > Project Specification...

Your A-Keyword must also include ellipsis:

Tools, My Language, Project Specification...

Note: There is no F1 help for intermediary submenus, only for menu
items. So for the examples listed previously, there is no F1 help for
“MyAddIn” or “My Language”. If you have defined help topics and
A-Keywords, however, there is F1help for “MyScript” and “Project
Specification...”.
128 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Model Properties

The format for the A-Keyword is:

property (model element, tool)

where property is the name of your custom property, model element is
the name of the model element to which your property is applied, and
tool is the name of your tab (tool) in the specification.

For example, isAppropriate (Category, myTool) would be the alias for a
context-sensitive help topic that defines the “isAppropriate” property
that applies to the myTool Packages.

User manuals

You may supply your own soft or hard copy documentation, for your
add-in, that covers its installation, use and limitations.

Registering for events

You may register your add-in for Rational Rose’s events, thus triggering
functionality in your add-in when that event occurs in Rational Rose.
Since any number of add-ins may trigger on the same event, the order
in which your add-in entry points are called, must be independent of
when, where, and what add-ins are installed or activated.

Responses to events are usually coded as COM server interfaces, but
some events can be mapped to Rational Rose Scripts. Events map to
either an interface on your COM server or a Rational Rose Script, if the
particular event allows Rational Rose Script.

Some events only apply to language add-ins (for example,
OnGenerateCode, OnPropertySpecOpen).

Events fall into one of the following categories:

� Registry entry required

❑ Interface events

❑ Script events

� No registry entry needed, but an OLE server is required

Interface and Script Events are explained further in the next section.
Rational Rose 2000e, Rose Extensibility User’s Guide 129

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Interface Versus Script Events

Rational Rose’s registry-required events can be implemented in one of
two ways, interface or script. An interface event requires a registered
COM server (.dll) that includes an interface, named the same as the
event, to handle the event. A script event requires a script that can be
executed (.ebx) to handle the event.

What events are available?

General Events:

� Model-related: OnNewModel, OnCancelModel, OnCloseModel,
OnOpenModel, OnSaveModel

� Model element-related: OnNewModelElement,
OnModifiedModelElement, OnDeletedModelElement

� When the Rational Rose application is initialized: OnAppInit

� Add-In activation/deactivation: OnActivate, OnDeactivate

Code Generation-Related:

� Generating source code: OnGenerateCode

� Browsing source code: OnBrowseHeader, OnBrowseBody

GUI-related:

� Override the specification dialog box: OnPropertySpecOpen

� Extends the context menu: OnSelectedContextMenuItem,
OnEnableContextMenuItems

Each of these events are described in detail in the Rational Rose 2000e
Extensibility Reference Manual and online help along with warnings
and precautions. The detailed descriptions also include a Registry and
Server Requirements section explaining whether the event requires a
registry entry or OLE server.
130 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

How to add events to your add-in
1. Add your COM server to your add-in registry

2. Add events to your add-in registry

3. Define an interface for each event

4. Register your COM server with the operating system

Each of these steps are detailed in the next sections.

Step 1—Adding your COM server to the add-in registry

This step is optional for Rational Rose Script responses.

Set the OLEServerOLEServerOLEServerOLEServer registry value to the name of your COM object (for
example, MyAddIn.EventHandler):

Figure 23 OLEServer Windows Registry Entry
Rational Rose 2000e, Rose Extensibility User’s Guide 131

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Step 2—Adding events to the add-in registry

1. Create an Events registry subkey under your add-in’s subkey.

2. List each event your add-in is registering for in the Name column.

3. Set the Data column to the Value as indicated:

� “Interface” indicates a COM server call

� “eventName.ebx” indicates Rational Rose Script execution

Figure 24 Windows Registry Entries for Rational Rose Events

Note: The script file must reside in the add-in’s installation directory, as
specified by the add-in’s InstallDirInstallDirInstallDirInstallDir registry setting, or a subdirectory of
the add-in’s installation directory. If you choose to put the script in a
subdirectory of your add-in’s installation directory (for example,
\scripts), specify the subdirectory as part of the script file name (for
example, \scripts\OnNewModel.ebx).
132 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Step 3—Defining an interface for each event

For each event for which your add-in is registering, name your
interface or Rational Rose Script the same. For example, if your add-in
is registering for the OnNewModel event, you would have one of the
following:

� OnNewModel() interface in your OLE server

For example

Figure 25 Sample Event Handler Defining an Add-In’s Interfaces for
Rational Rose Events

Note: Your COM server should only contain those events that you are
responding to in your add-in.

� OnNewModel.ebx compiled Rational Rose Script

While the signature of the interface varies by event, most interface
signatures are:

void event name (LPDispatch pRoseApp)

Step 4—Register your COM server with the operating system

Add your COM server to the windows registry so that a client can get
to it by COM object name (for example, CreateObject/GetObject). This
is usually taken care of by the Integrated Development Environment
(IDE). For example, Visual Basic registers your dll for you. Otherwise,
to register your COM server, execute the command line:

regsvr32 file.dll

EventHandler

OnNewModel()
OnAppInit()
OnActivate()
OnDeactivate()

<<Interface>>
Rational Rose 2000e, Rose Extensibility User’s Guide 133

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

To verify that your COM server is registered, add a reference to it in the
object browser of your IDE.

Updating the Registry

Once the add-in is created, the following registry settings are necessary
to enable an add-in. They are placed as sub-keys to a sub-key that
represents the add-in name. The following would be an example of an
add-in named MyAddIn:

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational
Software\Rose\AddIns\MyAddIn]

The add-in registry information should be placed in the Rose\AddIns
folder of the registry.

Registry Entries

The following registry entries are available when introducing add-ins.

Figure 26 Windows Registry Entries for an Add-In
134 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

This list shows the registry sub-key names, descriptions, and defaults:

Active—Whether the Add-in is active or not. Settable by the user
through the Rational Rose Add-in Manager. Default set to “Yes.”

Company—Name of the independent software vendor (ISV) that
produced the add-in. For example, “Custom Software, Inc.”

Copyright—Specifies the copyright date of the add-in. For example,
“©1996-1997”

FundamentalTypes—A String list of data types that appear in pull
down menus for attributes when the add-in is active. This setting is
required for all language add-ins. For example,
“LOGICAL;CHAR;REAL” Note that this field is case sensitive.

HelpFileName—Name of the help file for the add-in, without any path
or extension. For example, “myOnlineHelp”

Note: All add-in help files, including .cnt files, need to be located in the
help directory specified by the HelpFileDir general Rational Rose
registry setting ([HKEY_LOCAL_MACHINE\SOFTWARE\Rational
Software\Rose]).

InstallDir—Directory where the add-in is installed. For example,
“d:\My AddIn”

LanguageAddIn—Whether the add-in is a Round Trip Engineering
(RTE) language add-in that wishes to use the component mapping
feature. For example, “Yes”

MenuFile—Name of the menu file (*.mnu) file that tailors Rational
Rose. It needs to be installed in InstallDir. For example,
“anaddin.mnu”

OLEServer—The name of the object that represents the OLE server
that Rational Rose communicates with, if the add-in uses an OLE
server. For example, “MyAddIn.EventHandler”

Note: The OLEServer value is case sensitive and only required if the
add-in is using an OLE server to handle events.

PropertyFile—Name of the *.pty property file for the Add-in for
example,“user.pty”. This needs to be installed in InstallDir. This
registry setting is required if the add-in is introducing properties.
Rational Rose 2000e, Rose Extensibility User’s Guide 135

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

StereotypeCfgFile—Specifies the custom stereotype configuration file
for the add-in for example, “stereotypes.ini”. This setting is required if
the add-in is introducing stereotypes. This needs to be installed in
InstallDir.

ToolDisplayName—Specifies the add-in’s tool name that gets
displayed on the properties tab and in the drop down list of languages
in Rational Rose. This name can be different than the name that is
used in the .pty file. Note that this is not a required setting. If this
setting is not specified, the ToolName is displayed on the properties
tab and in the drop down list of languages in Rational Rose. If this
setting is specified, this is the name that gets assigned to a component.
For example, “myLang” is the ToolName for the add-in, but “My
Proprietary Language” is the ToolDisplayName.

ToolList—Displays the list of additional tools or property pages
introduced by the add-in. Each tool is separated by a semi-colon. For
example, “myLang;Tool2”. This setting is only required if the add-in
introduces more than one property page.

ToolName—Specifies the add-in’s tool name, which must match the
tool name in the add-in’s .pty file (the name that gets assigned to a
component). For example, “myLang”, unless it’s overridden by a
ToolDisplayName. In that case, the ToolDisplayName is assigned to
the component.

Version—Version number of the add-in, (not Rational Rose). For
example, “1.2.3"
136 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Registering Custom Stereotypes

Add your stereotype INI file to the StereotypeCfgFiles subkey under the
Rose Subkey. Name your entry FileX where X is the next available
integer:

Figure 27 Windows Registry Entry for an Add-In’s Custom Stereotype
Configuration File

The stereotype configuration file (.ini) must be located in the directory
listed in the InstallDirInstallDirInstallDirInstallDir registry setting.

Updating the registry during installation

Since manual updates during installation are error-prone, we
recommend that you avoid manual updates, like regedit. Instead, we
suggest that you use an installation utility or execute a custom registry
file.

Installation utilities

Most installation utilities (for example, InstallShield) provide
programmatic interfaces to the registry. Follow your installation
utility’s directions for updating the registry.
Rational Rose 2000e, Rose Extensibility User’s Guide 137

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

Executing registry files

You can also update the registry by creating a registry file (.reg), then
executing it during the installation of your add-in. To create a custom
registry file, use one of the following methods:

� Create a registry file (.reg) from scratch in a text editor such as
Notepad following the traditional INI file format, or

� Copy and edit an existing registry file (.reg), or

� Manually create your registry entries (in regedit, for example) then
reverse engineer the format into a registry file (.reg):

❑ select existing add-in registry settings in a registry editor

❑ select the menu option to export the registry

Registry File Anatomy

A registry file (.reg) looks like the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational
Software\Rose\AddIns\MyAddIn]
"Active"="Yes"
"Company"="Add-Ins R US Software"
"Copyright"="Copyright © 1999 Add-Ins R US Software Corp."
"LanguageAddIn"="Yes"
"Version"="1.0"
"PropertyFile"="qa.pty"
"MenuFile"="myMenu.mnu"
"StereotypeCfgFile"="student.ini"
"OLEServer"="MyAddIn.EventHandler"
"InstallDir"="d:\\ProgramFiles\\Rational\\Rose 2000e\\My AddIn"
"ToolName"="QA"
"ToolDisplayName"="MyAddIn"
...
138 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Installing, Setting up, and Uninstalling your add-in

After you finish designing and coding your add-in, it will consist of a
combination of the following:

� Main menu items (.mnu)

� Shortcut menu items

� Custom specifications

� Properties (.pty)

� Data types

� Stereotypes (.ini, .bmp, .wmf, .emf)

� Online help (.hlp, .cnt)

� Context-sensitive help (.hlp)

� Event handling (.dll)

� Functionality through Rational Rose Scripts (.ebx) or controls
(OLE-server) (.dll, .exe)

� Installation script

� Uninstall script

The purpose of the last two items, installation and uninstall scripts, is
to introduce the files into the Rational Rose file structure and to
register their locations, as well as other data needed by the framework,
and to undo all this at a later time when the add-in is not wanted.

Installation Reminders

When creating your installation script, remember the following:

� Install the pieces of your add-in (menu file, property file, etc.) in the
subdirectory indicated in your add-ins InstallDir registry subkey.

� Update the roseX.cnt file as needed and install your help (.hlp) and
contents (.cnt) file in the same directory as the Rational Rose help
files.

� Update the windows registry, using your chosen method.
Remember to do the following:

❑ Create a registry subkey for your add-in (for example,
[HKEY_LOCAL_MACHINE\SOFTWARE\Rational
Software\Rose\AddIns\MyAddIn])
Rational Rose 2000e, Rose Extensibility User’s Guide 139

Appendix B Developing Add-Ins for Rational Rose
For more information, see page 101.

❑ Populate this subkey with the appropriate names and values
(for example, InstallDir, MenuFile)

❑ If using events, create an Events subkey under your add-in
subkey. Populate the events subkey with event names and
“Interface” or “EventName.ebx” values.

❑ If using custom stereotypes, add your stereotype configuration
file name (.ini) to the StereotypeCfgFile subkey.

❑ Create any other subkeys and registry entries needed for your
implementation.

Installing Add-Ins

It is possible for an add-in supplier to provide a programmatic and
complete install of the add-in, for example, by using InstallShield. The
same applies to reinstalls and updates. Installation changes will not
take affect while Rational Rose is running, but will take affect upon
start-up of Rational Rose.

Use the following steps to install an add-in on your Windows 95,
Windows 98, or Windows NT system:

1. Exit Rational Rose.

2. Insert the application’s CD ROM or other media and run the
setup.exe program.

3. Respond to the installation program’s dialogs to complete your
installation.

4. Restart Rational Rose. Confirm that your add-in is installed and
activated (checked) via the Rational Rose Add-In Manager menu.

Uninstalling Add-Ins

We recommend that you provide a programmatic and complete
uninstall of your add-in. Uninstall must remove not only the scripts,
menu files, properties files, and help files, but must also clean the
registry entries for the add-in.
140 Rational Rose 2000e, Rose Extensibility User’s Guide

How to develop add-ins
For more information, see page 101.

Activating and deactivating add-ins

Once an add-in is installed, it can be in an activated or deactivated
state. Immediately after installation, new add-ins start out as
activated.

When deactivated, an add-in is all but uninstalled:

� All menu items added by the add-in are removed.

� All property tabs added by the add-in disappear.

� All event bindings added by the add-in are disengaged.

Note: A user may want to deactivate an add-in for a short time to keep
it from functioning without actually uninstalling it.

Add-ins are activated and deactivated in the Rational Rose user
interface with the Add-In Manager. Add-ins are activated and
deactivated programmatically with the REI AddInManager class.
Rational Rose 2000e, Rose Extensibility User’s Guide 141

Index
Symbols
114
$SCRIPT_PATH 18
%all_units variable 13
%current_diagram variable 13
%false variable 13
%model variable 13
%selected_items variable 13
%selected_units variable 13
%true variable 13
%ufile variable 13
%uname variable 13
.bmp 121
.emf 121
.mnu 109
.pty 110, 112
.reg 138
.wmf 121

A
accelerator key, assigning 78
accessing collections

by count 55
by name 56
by unique id 56

activating, add-ins 141
Active registry entry 135
AddDefaultProperty method 45
Rational Rose 2000e, Rose Extensibility User’s Guid
Add-In Manager 5
adding

comments to scripts 63
controls 85
menu entries 9
property to a property set 42
tools 53
virtual path for scripts 17

add-ins
activating 141
active 135
A-Keywords 128
architecture 102
basic 103
COM servers 131
company name 135
contacting support 101
contents 103
context-sensitive help 105, 128
copyright 135
creating for UNIX 106
creating portable 107
data types 105, 120, 135
deactivating 141
developing 101, 108
events 105, 129, 130, 131, 132, 133
F1 128
functionality 106
help file name 135
inactive 135
e 143

Index
add-ins, continued
installation directory 135
installation utilities 137
installing 137, 139, 140
interface events 130
interfaces 133
language 103, 135
main menus 104, 109
manuals 129
menu file name 135
OLE server 135
online help 105, 126, 127
portable 107
properties 105, 110, 136
property files 111, 112, 135
Rational Unified Solutions Partner

Program 101
registering COM servers 133
registry 134
script events 130
setting up 139
shortcut menus 21, 104, 110
specifications 104, 110
stereotypes 105, 120, 121, 136
support 101
technical support 101
tool list 136
tools 136
training 101
types 103
uninstalling 139, 140
UNIX 106
updating registry 137
user manuals 129
version 136
why create 103

adjusting attributes 89, 90
adjusting grid 76
A-Keywords

add-ins 128
properties 129

allfiles modifier 13
144 Ra
application object 40
assigning accelerator keys 78
Associating Files and URLs with Classes

40
Attribute 112
Attribute_Set 112
attributes, adjusting 89, 90
automation controller 4
automation server 4
Automation, Rose 4

B
basename modifier 13
basic add-ins 103
BasicScript language 4
Block Action 11
Boolean 51
Braces 21
breakpoints

deleting manually 70
setting and removing 69

Browse Code 28
browser icons 120, 123, 124, 126

adding 105

C
Calls dialog box 68
capturing dialog boxes 78
Category.AddClass method 53
Category.RelocateClass method 53
changing

titles and labels 77
value of watch variable 73
write protection for a controllable

unit 8
Char 51
Classes in Categories 53
clipboard, pasting from 63
CloneDefaultPropertySet method 47
Cloning a property set 47
tional Rose 2000e, Rose Extensibility User’s Guide

Index
codefile modifier 14
collections

accessing by count 55
accessing by name 56
accessing by unique id 56
getting element from 55

COM servers 12, 129
registering 131, 133

comments
adding to script 63
property files 114

company name, add-ins 135
Company registry entry 135
compiling scripts 74
configuration files, stereotypes 121
ConfigurationName 123
context menus

See shortcut menus
context-sensitive help

add-ins 105, 128
main menus 128
properties 129

controllable units, working with 54
ControllableUnit.Control method 54
ControllableUnit.Load method 54
ControllableUnit.Save 54
ControllableUnit.SaveAs 54
ControllableUnit.Uncontrol method 54
ControllableUnit.Unload method 54
controller, automation 4
controls

adding 85
duplicating 86
incorporating in script 80
pasting into editor 88
repositioning 83
selecting 81

copying text 62
Copyright registry entry 135
copyright, add-ins 135
CreateDefaultPropertySet method 47
CreateProperty method 44, 45
Rational Rose 2000e, Rose Extensibility User’s Guid
creating
add-ins 103
custom specifications 110
new default property sets 41
new property 44
new property set 47
new property types 41
new scripts

from existing script 59
from scratch 58

new tools 41
portable add-ins 107
tool 53
UNIX add-ins 106
user-defined property type 51

current property set, getting and setting
49

Customized menus, capabilities of 8
customizing properties 110
customizing Rose menus, procedure 8
cutting text 62

D
data types

add-ins 105, 120, 135
customizing 105, 120
properties 115
property files 115

deactivating, add-ins 141
debugging a script 69, 70
default properties 5
DefaultModelProperties object 42
DeleteDefaultProperty method 44
DeleteDefaultPropertySet method 49
deleting

breakpoints manually 70
property 44
property set 49
text 62
watch variables 73

developing add-ins 101, 108
e 145

Index
diagram editor icons 120, 125
adding 105

diagram toolbar icons 120
Diagram.GetSelectedItems method 55
Diagram.GetViewFrom method 54
Diagram.Items method 54
Diagram.ItemViews method 54
Diagrams 3
dialog box

capturing 78
editing 75
incorporating in script 80
inserting in script 75
pasting into editor 87
repositioning 83
selecting 81
testing 79

dialog editor, working with 75
dialogs

adding pictures to 86, 87
displaying information about 88

directories
add-ins 135
installation 135

directory modifier 14
displaying

dialog for user input 8
grid 76
information about dialogs 88

duplicating controls 86

E
editing dialogs 75
elide modifier 14
empty modifier 14
Enumeration 51
events

adding to your add-in 131
add-ins 105, 129
available 130
COM 105
146 Ra
events, continued
defining interfaces for 133
details 130
interface 130, 132
main menus 12
OnActivate 30, 130
OnAppInit 130
OnBrowseBody 130
OnBrowseHeader 130
OnCancelModel 130
OnCloseModel 130
OnDeactivate 130
OnDeletedModelElement 130
OnEnableContextMenuItems 30,

130
OnGenerateCode 130
OnModifiedModelElement 130
OnNewModel 130
OnNewModelElement 130
OnOpenModel 130
OnPropertySpecOpen 28, 130
OnSaveModel 130
OnSelectedContextMenuItem 31,

130
registering 129, 132
registering COM servers 133
script 130, 132

Exec Action 11
executing

program or shell script 8
registry files 138
Rose script 8

Extending Rational Rose course 101
extending Rose, ways to 1
Extensibility Components 2

F
F1, add-ins 128
false modifier 14
file modifier 14
file names xix
tional Rose 2000e, Rose Extensibility User’s Guide

Index
Files, associating with Classes 40
finding

first itemview 54
procedure calls 68
text 64

FindProperty method 45
first modifier 14
Float 51
FundamentalTypes registry entry 120,

135

G
Generate Code 28
GetCurrentPropertySetName method 49
GetPropertyValue method 45
getting

current property set 49
element from collection 55
model properties 45
Rose Application object

Automation 40
Scripting 39

grid, displaying and adjusting 76

H
headerfile modifier 15
help

context-sensitive 105
online 105

help file name, add-ins 135
HelpFileName registry entry 135
home_unit modifier 15

I
icons

adding 105, 120
stereotypes 120

InheritProperty method 44, 45
inserting dialog in script 75
Rational Rose 2000e, Rose Extensibility User’s Guid
insertion point, moving 59, 60
installation directories, add-ins 135
installation utilities 137
InstallDir registry entry 135
installing, add-ins 139, 140
Integer 51
interface events 130, 132
InterfaceEvent action 12
interfaces 129

accessing 12
defining for events 133

interscript calls
debugging 75
guidelines for 74

IsLanguageConfiguration 123
Items 54
itemview

currently selected 55
finding first 54

ItemView.IsSelected method 55
ItemViews 54
iterating

through item views 54
through the items 54

L
labels, changing 77
language add-ins 23, 103

registry entry 135
LanguageAddIn registry entry 135
language-dependent 22
language-neutral 23
ListImages 123
ListIndex 124
Load or save controllable units 8
Logical View of REI Model 2
e 147

Index
M
main menus

add-ins 109
COM interfaces 12
context-sensitive help 128
customizing and extending 7, 104,

109
events 12

managing default properties 41
manuals, add-ins 129
MediumPaletteImages 123
MediumPaletteIndex 123
Menu Action 11, 20
Menu Argument 20
Menu Entry 20
menu files

Keywords 10
Modifiers 13
name 135
registry entry 135
syntax rules 15
Variables 13

MenuFile registry entry 135
menus

See also main menus
See also shortcut menus

Metafile 123
model elements 3

property files 114
stereotypes 123

modifying value of watch variable 73
multiple modifier 15
multiple sets 5

N
non-language add-ins 24, 103
not modifier 15
148 Ra
O
OLEServer registry entry 131, 135
OnActivate event 30, 130
OnAppInit event 130
OnBrowseBody event 130
OnBrowseHeader event 130
OnCancelModel event 130
OnCloseModel event 130
OnDeactivate event 130
OnDeletedModelElement event 130
OnEnableContextMenuItems event 30,

130
OnGenerateCode event 130
online help

adding 105, 127
add-ins 126
REI xviii

OnModifiedModelElement event 130
OnNewModel event 130
OnNewModelElement event 130
OnOpenModel event 130
OnPropertySpecOpen event 28, 110, 130
OnSaveModel event 130
OnSelectedContextMenuItem event 31,

130
opening a script 58
Option Entry 20
Option Keyword 10
organization of the manual xviii
OverrideProperty method 44, 45

P
pasting

controls into editor 88
dialog box into editor 87
text from clipboard 63

pausing an executing script 66
petal version number, property files 114
pictures, adding to dialog 86, 87
portable add-ins 107
tional Rose 2000e, Rose Extensibility User’s Guide

Index
prefix, Rose 53
prerequisites xvii
procedure calls, finding 68
properties

adding to a property set 42
add-ins 110
A-Keywords 129
context-sensitive help 129
creating 44
customizing 105, 110
data types 115
default 5
defined 5
deleting 44
getting model 45
in add-ins 105
registry entry 136
sets 110
setting 45
tool display name 136
tool name 136
tool registry entry 136
tools 110
tools list 136
types 51

property files 5
comments 114
creating 119
customizing 110
data types 115
design considerations 110
format 111, 112
model elements 114
petal version number 114
property name 115
registry entry 135
sample 117
sets 114
testing 119
tools 114

property name, property files 115
Rational Rose 2000e, Rose Extensibility User’s Guid
property sets
cloning 47
creating 47
deleting 49
multiple 5

Property Specification Editor 41
PropertyFile registry entry 135

R
Rational Rose Add-In Manager 5
Rational Rose Application 2
Rational Rose Application Components 2
Rational Rose Automation 3, 4

syntax for 6
type libraries for 53

Rational Rose diagrams, working with 54
Rational Rose Extensibility Interface 3
Rational Rose Extensibility Interface

(REI) Model 1
Rational Unified Solutions Partner Pro-

gram 101
readme.txt xix
regedit 138
registering for events 105, 129
registry

installing 138
updating 134, 137

registry entries 129
Active 135
Company 135
Copyright 135
FundamentalTypes 135
HelpFileName 135
InstallDir 135
LanguageAddIn 135
MenuFile 135
OLEServer 135
PropertyFile 135
StereotypeCfgFile 136
ToolDisplayName 136
ToolList 136
e 149

Index
registry entries, continued
ToolName 136
Version 136

registry files
executing 138
format 138

registry settings, exporting 138
regsvr32 133
REI Model

description 1
Logical View 2

release notes xix
removing breakpoints 70
replacing text 65
repositioning

controls 83
dialog boxes 83
items 82

resizing items 84
retrieving

all selected items 55
model properties 45

Rose menu file, sample 19
Rose Menus, Customizing 7
Rose prefix 53
Rose Script 3
Rose script editor 4
Rose Scripting language 4
Rose Scripts 129
Roseload Action 11
Rosesave Action 11
Rosescript Action 11
running a script 66

S
sample

property file 117
Rose menu file 19
scripts 4

Script Editor, application window 57
script events 130, 132
150 Ra
Scripting language 4
scripts

sample 4
virtual path for 17

selecting
control 81
dialog boxes 81
text 61, 62
variables 72

Separator Entry 19
Separator Keyword 10
server, automation 4
SetCurrentPropertySetName method 50
sets

properties 110
property files 114

setting
current property set 49
model properties 45

Using InheritProperty 46
Using OverrideProperty 45

setting up, add-ins 139
shortcut menu items

adding 31
changing states 32
displaying 26
editing 31
formatting and displaying 24
retrieving 31

shortcut menus
activities 23
add-ins 104, 110
benefits 21
customizing 21, 29, 104, 110
decisions 23
deployment units 23
designing 28
diagrams 23
events 30, 31
extending 7, 104
external documents 23
formatting 26
tional Rose 2000e, Rose Extensibility User’s Guide

Index
shortcut menus, continued
how it works 24
language-neutral model elements 23
limitations 22
menu items

adding 31
changing states 32
editing 31
formatting and displaying 24
retrieving 31

models 23
packages 23
properties 23
sample scripts 32, 34
scenarios 26
states 23
subsystems 23
swimlanes 23
synchronizations 23
transitions 23
use cases 23

SmallPaletteImages 123
SmallPaletteIndex 123
sourcefile modifier 15
specifications

add-ins 104, 110
custom, opening 28
customizing 104, 110
standard, opening 28

StepInto tool 67
StepOver tool 67
Stereotype 123
StereotypeCfgFile registry entry 120, 136
StereotypeCfgFiles 137
stereotypes

add-in type 123
add-ins 105
bitmap files 123, 124
browser icons 123, 124, 126
configuration file format 121
configuration name 123
creating 121
Rational Rose 2000e, Rose Extensibility User’s Guid
stereotypes, continued
customizing 105, 120
diagram editor icons 123, 125
enhanced metafile 123
icons 105
model elements 123
registering 137
registry entry 136
text string 123
text-only 124
toolbar button icons 123, 125
windows metafile 123

stopping an executing script 66
String 51
Submenu Entry 20
Summit BasicScript language 4
syntax

in Rose Automation 6
in Rose Script 6
REI xvii

syntax rules, menu file 15

T
testing dialog boxes 79
text-only stereotypes 124
titles, changing 77
Tool, defined 5
toolbar button icons 123, 125

adding 105
stereotypes 123

ToolDisplayName registry entry 136
ToolList registry entry 136
ToolName registry entry 136
tools

display name 136
list 136
name 136
properties 110
property files 114
registry entry 136

tracing script execution 67
e 151

Index
tracking variables 71
type libraries 5, 53
Type, defined 5
type, property 51

U
unary modifier 15
uninstalling, add-ins 139, 140
UNIX file names xix
UNIX versus Windows, add-ins 106
Updateaccess Action 12
URL, associating with Classes 40
user manuals, add-ins 129
using type libraries 53
utilities, installation 137

V
Variables 13
variables with modifiers, syntax 12
variables, tracking 71
Version registry entry 136
virtual path for scripts 17

W
watch list 72
watch variables, adding 71
working with controllable units 54
working with Rose diagrams 54
writeable modifier 15
152 Ra
tional Rose 2000e, Rose Extensibility User’s Guide

	Rational Rose 2000e Rose Extensibility User’s Guide
	Contents
	List of Figures
	List of Tables
	Preface
	Prerequisites
	How This Manual Is Organized
	Online Help
	Online Manual
	Related Documentation
	File Names

	Basic Extensibility Concepts
	Rational Rose Extensibility
	The REI Model and Rational Rose Extensibility
	Rational Rose Scripting
	Rational Rose Automation
	Rational Rose Add-In Manager
	Default Properties and Property Sets
	Rational Rose Extensibility Type Libraries

	Customizing Rational Rose Menus
	Extending Rational Rose Menus
	Customizing Rational Rose Main Menus
	Procedure
	Adding Entries to a Rational Rose Menu File
	Menu File Keywords
	Menu Actions
	Menu File Variables and Modifiers

	Syntax Rules for Rational Rose Menu File Entries
	Adding Scripts to a Rational Rose Menu
	Adding or Editing the Virtual Path for Scripts
	Sample Rational Rose Menu File

	Customizing Rational Rose Shortcut Menus
	Benefits
	Limitations
	Key Terms and Concepts
	Language-Dependent
	Language-Neutral
	Language Add-In
	Non-Language Add-In

	Behind the Scenes of Shortcut Menus...
	How Rational Rose Formats and Displays Shortcut Menu Items
	Shortcut Menu Scenarios
	Shortcut Menu Design Considerations
	Procedure
	Creating Events for Shortcut Menus
	OnActivate
	OnEnableContextMenuItems
	OnSelectedContextMenuItem

	Adding Menu Items to the Shortcut Menu
	Working with Shortcut Menu Items
	Working with the Shortcut Menu Item Collection
	Editing Shortcut Menu Items
	Changing the State of a Shortcut Menu Item
	Sample Shortcut Menu Implementation Code
	Sample Rational Rose Script Shortcut Menu Code

	Using the REI to Work with Rational Rose
	Introduction
	Getting the Rational Rose Application Object
	Using Rational Rose Script
	Using Rational Rose Automation

	Associating Files and URLs with Classes
	Managing Default Properties
	Adding a Property to a Set
	How To
	Example
	Notes on the Example

	Creating a New Property
	How To
	Example
	Notes on the Example

	Deleting Model Properties
	Getting Model Properties
	Setting Model Properties
	Setting Model Properties Using OverrideProperty
	How To
	Example
	Notes on the Example

	Setting Model Properties Using InheritProperty
	How To
	Example
	Notes on the Example

	Creating a New Property Set
	Cloning a Property Set
	How To
	Example
	Notes on the Example

	Deleting a Property Set
	How To
	Example
	Notes on the Example

	Getting and Setting the Current Property Set
	How To
	Example
	Notes on the Example

	Creating a User-Defined Property Type
	How To
	Example
	Notes on the Example

	Creating a New Tool
	Placing Classes in Categories
	Using Type Libraries for Rational Rose Automation
	How To
	Example

	Working with Controllable Units
	Working with Rational Rose Diagrams
	Getting an Element from a Collection
	Accessing Collection Elements By Count
	How To
	Example

	Accessing Collection Elements By Unique ID
	How To
	Example

	Accessing Collection Elements By Name
	How To
	Example

	Using the Rational Rose Script Editor
	The Script Editor Window
	Opening a Script
	Creating New Rational Rose Scripts
	Creating a New Script from Scratch
	Creating a New Script from an Existing Script

	Moving the Insertion Point in a Script
	Moving the Insertion Point with the Mouse
	Moving the Insertion Point to a Specified Line in Your Script

	Selecting Text
	Selecting Text with the Mouse
	Selecting Text with the Keyboard
	Selecting an Entire Line

	Deleting, Cutting, Copying, and Pasting Text
	Deleting Text
	Cutting a Selection
	Copying a Selection
	Pasting the Contents of the Clipboard into Your Script

	Adding Comments to a Script
	Adding a Full-Line Comment
	Adding a Comment at the End of a Line of Code

	Finding and Replacing Text
	Finding Specified Text
	Replacing Specified Text

	Running, Pausing, and Stopping Your Script
	Running Your Script
	Pausing an Executing Script
	Stopping an Executing Script

	Tracing Script Execution
	Stepping Through Your Script
	Displaying the Calls Dialog Box

	Setting and Removing Breakpoints
	Starting Debugging Partway through a Script
	Continuing Debugging at a Line Outside the Current Subroutine
	Debugging Selected Portions of Your Script
	Removing a Single Breakpoint Manually
	Removing All Breakpoints Manually

	Working with Watch Variables
	Adding Watch Variables
	Selecting Variables on the Watch List
	Deleting Watch Variables
	Modifying the Value of Variables on the Watch Variable List

	Compiling Your Script
	Using Interscript Calls
	Guidelines for Using a Script to Call Another Script
	Debugging Interscript Calls

	Working with the Dialog Editor
	Inserting a Dialog Box into Your Script
	Editing an Existing Dialog Box
	Displaying and Adjusting the Grid
	Changing Titles and Labels
	Assigning Accelerator Keys
	Capturing Standard Windows Dialog Boxes
	Testing Your Dialog Boxes
	Incorporating Dialog Boxes or Controls into Your Script
	Selecting Controls
	Selecting Dialog Boxes
	Repositioning Items
	Repositioning Items with the Mouse
	Repositioning Items with the Arrow Keys
	Repositioning Dialog Boxes with the Dialog Information Dialog Box
	Repositioning Controls with the Dialog Information Dialog Box

	Resizing Items
	Resizing Items with the Mouse
	Resizing Items with the Information Dialog Box
	Resizing Selected Items Automatically

	Adding Controls
	Duplicating Controls
	Adding Pictures to a Dialog
	Adding Pictures from Files
	Adding Pictures from Picture Libraries

	Pasting Items into Dialog Editor
	Pasting Existing Dialog Boxes into Dialog Editor
	Pasting Controls from Existing Dialog Boxes into Dialog Editor

	Displaying the Information Dialogs
	Displaying the Information Dialog Boxes for Dialogs
	Attributes You Can Adjust with the Dialog Box Information Dialog Box
	Displaying the Information Dialog Boxes for Controls
	Attributes You Can Adjust with the Information Dialog Boxes for Controls

	Rational Rose Script Editor Shortcuts
	General Shortcuts
	Navigating Shortcuts
	Editing Shortcuts
	Debugging Shortcuts
	File Menu Shortcuts
	Edit Menu Shortcuts
	Debugger Menu Shortcuts

	Developing Add-Ins for Rational Rose
	Introduction
	Why Create Add-Ins?
	Types of Add-Ins
	What is in an add-in?
	Main menus
	Shortcut menu
	Custom Specifications
	Properties
	Data types
	Stereotypes
	Online help
	Context-sensitive help
	Registering for events
	Functionality

	UNIX versus Windows
	Creating portable add-ins
	How to develop add-ins
	Customizing Main Menus
	Customizing the Shortcut Menu
	Creating Custom Specifications
	Customizing Properties
	Design Considerations
	Information in Property Files
	Format for Property Files
	Sample Property File
	Creating Property Files
	Testing Property Files

	Customizing Data types
	Customizing Stereotypes
	Steps for Creating Add-In Stereotypes

	Additional online help
	Adding Online Help for Your Add-In

	Additional context-sensitive help
	Main Menu Items
	Model Properties

	User manuals
	Registering for events
	Interface Versus Script Events
	What events are available?
	How to add events to your add-in

	Updating the Registry
	Registry Entries
	Registering Custom Stereotypes
	Updating the registry during installation
	Registry File Anatomy

	Installing, Setting up, and Uninstalling your add-in
	Installation Reminders
	Installing Add-Ins
	Uninstalling Add-Ins

	Activating and deactivating add-ins

	Index

