
ClearQuest API Reference
support@rational.com
http://www.rational.com

IMPORTANT NOTICE

DISCLAIMER OF WARRANTY
Rational Software Corporation makes no representations or warranties, either
express or implied, by or with respect to anything in this guide, and shall not
be liable for any implied warranties of merchantability or fitness for a
particular purpose or for any indirect, special or consequential damages.

COPYRIGHT NOTICE
ClearQuest, copyright  1997-2000 Rational Software Corporation. All rights
reserved.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, photocopying, recording or
otherwise, without prior written consent of Rational Software Corporation. No
patent liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the preparation of
this book, Rational Software Corporation assumes no responsibility for errors
or omissions. This publication and features described herein are subject to
change without notice.

The program and information contained herein are licensed only pursuant to
a license agreement that contains use, reverse engineering, disclosure and
other restrictions; accordingly, it is “Unpublished — rights reserved under the
copyright laws of the United States” for purposes of the FARs.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARKS
Rational, ClearQuest, ClearCase, Purify, and Visual Quantify are U. S.
registered trademarks of Rational Software Corporation.

All other products or services mentioned in this guide are covered by the
trademarks, service marks, or product names as designated by the companies
who market those products.

PATENTS
Purify is covered by one or more of U.S. Patent Nos. 5,193,180 and 5,335,344
and 5,535,329. Purify is licensed under Sun Microsystems Inc.’s U.S. Pat. No.
5,404,499. Other U.S. and foreign patents pending.

Printed in the U.S.A.

C L E A R Q U E S T A P I

Contents
Using the ClearQuest API . 13

Using this reference manual . 14

Understanding the ClearQuest API . 16

Understanding ClearQuest API objects . 20

Working with sessions . 25

Working with queries . 29

Working with records . 33

Understanding user database objects . 37

Accessing the schema repository . 48

Understanding schema repository objects 53

Understanding the schema repository collection objects 61

Understanding additional database objects 64

Glossary . 79

Examples of hooks and scripts . 95

Enumerated Constants . 123

Session object . 131

BuildEntity method . 136

BuildQuery method . 138

BuildResultSet method . 140

BuildSQLQuery method . 142

DeleteEntity method . 144

EditEntity method . 146

FireRecordScriptAlias method . 148

GetAccessibleDatabases method . 149

GetAuxEntityDefNames method . 151

GetDefaultEntityDef method . 153

GetEnabledEntityDefs method . 154
iii

GetEnabledPackageRevs method . 155

GetEntity method . 156

GetEntityByDbId method . 158

GetEntityDef method . 160

GetEntityDefFamily method . 162

GetEntityDefFamilyNames method . 163

GetEntityDefNames method . 164

GetInstalledMasters method . 166

GetQueryEntityDefNames method . 168

GetReqEntityDefNames method . 170

GetServerInfo method . 172

GetSessionDatabase method . 173

GetSubmitEntityDefNames method . 174

GetUserEmail method . 176

GetUserFullName method . 178

GetUserGroups method . 180

GetUserLoginName method . 182

GetUserMiscInfo method . 184

GetUserPhone method . 186

GetWorkSpace method . 188

HasValue method . 189

IsMetadataReadonly method . 190

MarkEntityAsDuplicate method . 191

OpenQueryDef method . 193

OutputDebugString method . 194

UnmarkEntityAsDuplicate method . 195

UserLogon method . 197

Entity object . 199

AddFieldValue method . 206

BeginNewFieldUpdateGroup method . 208

Commit method . 210

DeleteFieldValue method . 212
iv

FireNamedHook method .214

GetActionName .216

GetActionType .217

GetAllDuplicates method .218

GetAllFieldValues method .220

GetDbId method .221

GetDefaultActionName .222

GetDisplayName method .223

GetDuplicates method .225

GetEntityDefName method .227

GetFieldChoiceList method .229

GetFieldChoiceType method .231

GetFieldMaxLength method .233

GetFieldNames method .234

GetFieldOriginalValue method .236

GetFieldRequiredness method .238

GetFieldsUpdatedThisAction method .240

GetFieldsUpdatedThisGroup method .242

GetFieldsUpdatedThisSetValue method 244

GetFieldType method .246

GetFieldValue method .248

GetInvalidFieldValues method .250

GetLegalActionDefNames method .251

GetOriginal method .253

GetOriginalID method .255

GetSession method .257

GetType method .259

HasDuplicates method .261

InvalidateFieldChoiceList function .263

IsDuplicate method .264

IsEditable method .266

IsOriginal method .268
v

LookupStateName method . 270

Revert method . 271

SetFieldChoiceList function . 273

SetFieldRequirednessForCurrentAction method 275

SetFieldValue method . 277

Validate method . 279

EntityDef object . 281

DoesTransitionExist method . 283

GetActionDefNames method . 285

GetActionDefType method . 287

GetActionDestStateName method . 289

GetFieldDefNames method . 290

GetFieldDefType method . 292

GetFieldReferenceEntityDef method . 294

GetHookDefNames method . 296

GetLocalFieldPathNames method . 298

GetName method . 299

GetStateDefNames method . 300

GetType method . 302

IsActionDefName method . 304

IsFamily method . 305

IsFieldDefName method . 306

IsStateDefName method . 307

IsSystemOwnedFieldDefName method 308

QueryDef object . 309

BuildField method . 316

BuildFilterOperator method . 318

Save method . 320

ResultSet Object . 321

AddParamValue method . 322

ClearParamValues method . 323

Execute method . 324
vi

GetColumnLabel method .326

GetColumnType method .327

GetColumnValue method .328

GetNumberOfColumns method .330

GetNumberOfParams method .331

GetParamChoiceList method .332

GetParamComparisonOperator method 333

GetParamFieldType method .334

GetParamLabel method .335

GetParamPrompt method .336

GetRowEntityDefName method .337

GetSQL method .338

LookupPrimaryEntityDefName method 339

MoveNext method .340

QueryFilterNode object .341

BuildFilter method .342

BuildFilterOperator method .344

AdminSession object .345

CreateDatabase method .355

CreateGroup method .357

CreateUser method .358

DeleteDatabase method .359

GetDatabase method .361

GetGroup method .363

GetUser method .365

Logon method .367

Database object .369

SetInitialSchemaRev method .390

Upgrade method .391

UpgradeMasterUserInfo method .392

Schema object .393

SchemaRev object .397
vii

GetEnabledEntityDefs method . 401

GetEnabledPackageRevs method . 402

User object . 403

SubscribeDatabase method . 416

UnsubscribeAllDatabases method . 417

UnsubscribeDatabase method . 418

Group object . 419

SubscribeDatabase method . 425

UnsubscribeAllDatabases method . 426

UnsubscribeDatabase method . 427

Databases collection object . 429

Item method . 431

EntityDefs collection object . 433

Item method . 435

Groups collection object . 437

Item method . 439

Schemas collection object . 441

Item method . 443

SchemaRevs collection object . 445

Item method . 447

Users collection object . 449

Item Method . 451

Attachment-Related Objects . 453

AttachmentFields collection object . 455

Item Method . 457

Attachment object . 459

Load method . 468

AttachmentField object . 471

Attachments collection object . 477

Add method . 480

Delete method . 482

Item method . 484
viii

DatabaseDescription object .487

GetDatabaseConnectString method .488

GetDatabaseName method .490

GetDatabaseSetName method .492

GetDescription method .494

GetIsMaster method .496

GetLogin method .498

EventObject object .501

FieldInfo object .507

GetMessageText method .508

GetName method .509

GetRequiredness method .510

GetType method .511

GetValidationStatus method .512

GetValue method .513

GetValueAsList method .514

GetValueStatus method .516

ValidityChangedThisAction method .517

ValidityChangedThisGroup method .519

ValidityChangedThisSetValue method .521

ValueChangedThisAction method .522

ValueChangedThisGroup method .524

ValueChangedThisSetValue method .526

History-Related Objects .527

HistoryFields collection object .529

Item method .531

HistoryField object .533

History object .537

Histories collection object .539

Item method .541

HookChoices object .543

AddItem method .544
ix

Sort method . 545

Link object . 547

GetChildEntity method . 548

GetChildEntityDef method . 549

GetChildEntityDefName method . 550

GetChildEntityID method . 551

GetParentEntity method . 552

GetParentEntityDef method . 553

GetParentEntityDefName method . 554

GetParentEntityID method . 555

OleMailMsg object . 557

AddBcc method . 558

AddCc method . 559

AddTo method . 560

ClearAll method . 561

Deliver method . 562

MoreBody method . 563

SetBody method . 564

SetFrom method . 565

SetSubject method . 566

CHARTMGR object . 567

MakeJPEG method . 575

MakePNG method . 576

SetResultSet method . 577

ReportMgr object . 579

ExecuteReport method . 580

GetQueryDef method . 581

SetHTMLFileName method . 582

WORKSPACE object . 583

GetAllQueriesList method . 584

GetChartDef method . 585

GetChartList method . 586
x

GetChartMgr method .588

GetQueryDef method .589

GetQueryList method .590

GetReportList method .592

GetReportMgr method .594

SaveQueryDef method .595

SetSession method .597

SetUserName method .598

ValidateQueryDefName method .599
xi

xii

Using the ClearQuest API
map

e
vides

er

arks

ork

ides

s for
This chapter introduces you, the ClearQuest Administrator, to the ClearQuest
application programming interface (API) you can use to customize ClearQuest with
code (hook scripts and external applications). This chapter includes the following
sections:

■ “Using this reference manual” on page 14, which provides a documentation road
and tells you where to find examples.

■ “Understanding the ClearQuest API” on page 16, which indicates what knowledg
this reference assumes you have, explains what the ClearQuest API is, and pro
guidelines for how you can use the API.

■ “Working with sessions” on page 25, which explains the fundamental object your
code always addresses first.

■ “Working with queries” on page 29, which explains how to fetch data from the us
database.

■ “Working with records” on page 33, which explains how to manipulate data in the
user database.

■ “Understanding user database objects” on page 37, which provides detailed rem
for the objects you use to work with records and queries.

■ “Accessing the schema repository” on page 48, which explains how to work with
metadata in the schema repository (master database).

■ “Understanding schema repository objects” on page 53, which explains how to w
with user data (records and queries).

■ “Understanding the schema repository collection objects” on page 61, which prov
remarks for accessing multiple schema repository objects.

■ “Understanding additional database objects” on page 64, which provides remark
attachments, database descriptions, record history, and more.
Using the ClearQuest API 13

mize

ize
Using this reference manual

This introductory section to the introductory chapter of the ClearQuest API Reference
provides an overview of ClearQuest documentation, where you can find examples of
code that uses the API, and how to use this reference.

You can get more information about administering ClearQuest, and about the
ClearQuest API. For an introduction to hook scripts, see the “Using hooks to custo
your workflow” chapter in Administering Rational ClearQuest.

ClearQuest documentation set

ClearQuest includes the following documentation, and we recommend that the
ClearQuest administer be familiar with each document.

Finding examples

For an introduction to hook scripts, see the chapter entitled “Using hooks to custom
your workflow” in Administering Rational ClearQuest, which includes some sample
code.

Everyone
Start Here

ClearQuest
Administrators

Introducing Rational ClearQuest

ClearQuest online Help Release Notes
Installing Rational ClearQuest
Administering Rational ClearQuest
ClearQuest Designer Tutorial
ClearQuest Designer online Help
ClearQuest API Reference

ClearQuest
Users
14 Using the ClearQuest API

ide
For additional examples of hooks and external applications, see the following.

■ the chapter entitled Examples of hooks and scripts in this reference

■ ClearQuest Designer Help > Working with hooks

■ the ClearQuest database that contains ClearQuest hooks, which is at
http://clearquest.rational.com/cqhooks/

Note: ClearQuest examples do not include error checking and assume that each call is
to a valid object.

Using this reference

We recommend that, the ClearQuest administrator interested in writing hook scripts and
external applications, do the following:

■ Read this introductory chapter before you begin working with the API

■ Have the ClearQuest documentation set available to you

In addition, we recommend that you read the following documents in the following
sequence:

1 Introducing Rational ClearQuest, a brief overview of the entire product.

2 ClearQuest Designer Tutorial, available from the Help menu of ClearQuest Designer,
which provides explanations and hands-on exercises.

3 “Using hooks to customize your workflow”, the scripting overview chapter in
Administering Rational ClearQuest.

4 The Working with hooks chapter of ClearQuest Designer Help, which provides
overview material, as well as procedures and sample code.

5 “Using the ClearQuest API” (this chapter), the definitive introduction to the API for
administrators writing hook scripts or external applications.

6 The ClearQuest database that contains ClearQuest hooks, which is on the World W
Web at
http://clearquest.rational.com/cqhooks/
Using the ClearQuest API 15

ns

 runs
Understanding the ClearQuest API

The Rational ClearQuest API Reference provides you, the ClearQuest administrator and
schema designer, with a comprehensive overview of the application programming
interface (API). The ClearQuest API is a set of objects and methods that you use to
write code that directs ClearQuest to meet your organization’s needs.

Knowledge assumed

The ClearQuest API Reference assumes that you are familiar with

■ scripting in VBScript or Perl, if you are writing hook scripts

■ the programming language you want to use, if you are writing external applicatio

■ relational database concepts, such as queries, tables, and unique keys

Ways to use the ClearQuest API

You can use this API to write code that runs within ClearQuest (hook code), or that
independently of an instance of the ClearQuest application.

Type of code Example

Hook scripts for your
ClearQuest schema

Modify records that users submit, and validate the records
before they are committed to the user database. (ClearQuest
Designer provides an editor for you to insert hook scripts.)

External applications that run
outside of ClearQuest

View or modify the data ClearQuest stores in the user database
and schema repository.
16 Using the ClearQuest API

osing

 Perl.

nt

erl,

like

ct.
Organization of the API Reference

The Rational ClearQuest API Reference consists of these sections:

■ Using the ClearQuest API (this chapter), which explains how to use this reference and
provides a conceptual overview to help you take advantage of the ClearQuest API.

■ Glossary, which provides a list of keys terms and their definitions.

■ Examples of hook scripts and external applications, which provide sample code.

■ Reference Tables (the main section of this reference), which provide details of syntax
and usage for each API object. This section also includes the Enumerated Constants.

■ Index, which provides an alphabetized listing of every class, method, and property.

Choosing a scripting language

The ClearQuest API is implemented as a COM library for VBScript/Visual Basic, and
as a Perl package, CQPerlExt package. You can write hook scripts in VBScript or Perl.
ClearQuest runs your hooks in VBScript or Perl, but not both at the same time.
ClearQuest Designer allows you to switch between scripting languages. See “Cho
a scripting language” in the chapter, “Using hooks to customize your workflow” in
Administering ClearQuest.

Note: You can write external applications in any programming environment that
supports OLE automation (such as Visual Basic or Visual C++), or that can embed

Using Perl

Perl, the Practical Extraction and Reporting Language, offers a platform-independe
solution for ClearQuest scripting. Hooks scripts you write in Perl support both the
ClearQuest clients running under Windows and UNIX.

ClearQuest API support for VBScript is different than that for Perl. When you use P
be aware that:

■ the prefix and syntax are different. See Notation Conventions for Perl.

■ you must use the prefix for Entity methods and properties inside hook scripts, un
VBScript, where the entity object is implicit.

■ Perl uses an array for hook choices instead of a HookChoices object

■ the eventObject is supported differently. See the section on the EventObject obje
Using the ClearQuest API 17

to a
 is
Using Perl modules

In addition to the CQPerlExt package, ClearQuest ships with most of the Perl5 modules
listed at http://www.cpan.org/modules, including the Win32 modules that enable your
Perl scripts to interface with Windows systems and applications.

Note: Rational Software has no relation to this site.

Using Perl for external applications

If you are planning to write an external application in Perl, make sure that it does not
invoke an action that triggers a Perl hook. Otherwise, the version of Perl that ClearQuest
uses causes the external application to fail. For this release, if you want to use Perl for
an external application, we recommend that you limit the external application to tasks
that are independent of actions, such as querying, reporting, and user administration.

We recommend you execute your external applications using the ClearQuest Perl
engine, CQPerl.

Notation Conventions for Perl

The table below outlines the Perl notational conventions of this document.

This document shows the syntax of Perl using the “get” and/or “set” prefix for calls
property. All the Perl “get” calls to a property return a value. The “Variant” datatype
unique to VBScript/Visual Basic.

Prefix Description

CQ Prefix for objects that the ClearQuest API can access through its
CQPerlExt package.
For example: CQEntity

$CQPerlExt::CQ Prefix for Perl Enumerated Constants.
For example, $CQPerlExt::CQ_ORACLE
18 Using the ClearQuest API

Using VBScript

VBScript, a subset of Microsoft Visual Basic, offers a convenient solution for
ClearQuest scripting within the Windows environment. For example, you might find it
easy to move certain code sections between a Visual Basic external application and a
VBScript hook script.

Notation Conventions for VBScript/Visual Basic

The table below outlines VBScript/Visual Basic notational conventions used in this
document.

Prefix Description

OAd Prefix for objects that the ClearQuest API can access through its
COM library.
For example: OAdEntity

Note: The Session and AdminSession objects do not use the OAd
prefix. (See Syntax for manually creating the Session object (or the
AdminSession object) in an external application)

AD Prefix for VBScript Enumerated Constants.
For example: AD_ORACLE
Using the ClearQuest API 19

Understanding ClearQuest API objects

In ClearQuest, the object you work with the most is the Entity object. The Entity object
represents a single data record. However, you must provide ClearQuest with verification
that you are authorized to access the database before you can work with any data
records.

ClearQuest uses a Session object to verify the user’s authority to access a given
database. When a user launches the ClearQuest client application, ClearQuest
automatically authenticates the user using the logon dialog box. However, developers of
stand-alone applications must use the methods of the Session object to log on to the
desired database.

The Session object acts as the primary root object to the remaining database objects. (To
learn about the other root object, the AdminSession object, see Using the AdminSession
object.) You use the Session object to

■ create or access many of the other objects in the system

■ create new records or modify existing records

■ create the query objects that enable you to search the database for a particular record
(or set of records)

You must acquire an Entity object before you can view or change the data in a record.

Using the methods of Entity, you can do the following.

■ Acquire information about the fields of the underlying record, and about any related
objects in the system (including duplicate records, attached files, and activity logs for
the record).

■ Acquire the metadata associated with the Entity object to determine the structure of
the record.
20 Using the ClearQuest API

emas.
of
Overview Diagram of API objects

The following diagram shows the types of objects you use to access a user database and
the relationships between them. The arrows indicate the direction in which you acquire
related objects. For example, from the Session object, you can acquire five different
types of objects directly: DatabaseDescription, Entity, EntityDef, QueryDef, and
ResultSet.

In some cases, objects have an indirect relationship. For example, the QueryDef and
ResultSet objects work together to run a query, but you create these objects separately
using methods of the Session object. The ResultSet object uses information from the
QueryDef object to perform the query.

The ClearQuest schema repository is the “master” database that contains your sch
In addition to the objects in the preceding diagram, ClearQuest also defines a set
objects for accessing the schema repository (see Accessing the schema repository),
Using the ClearQuest API 21

collection objects (see Understanding the schema repository collection objects), and
additional objects (see Understanding additional database objects.

Overview Table of the API objects

The tables below give a quick overview of the API in the order in which they appear.
The API include user database objects, schema repository objects, schema repository
collection objects, and additional objects.

User database objects are the objects your code works with the most.

Schema repository (master database) objects allow you to get and set certain kinds of
metadata.

User Database Object Description

Session object Access the user database; build a new record

Entity object Work with Record data: set field values, validate, commit, revert

EntityDef object View read-only meta-data: actions, fields, hooks, states, and
transitions applicable to a given record type.

QueryDef object Defines the query criteria

ResultSet Object Contains the data the query fetches

QueryFilterNode object Implements comparison filters for the query

Schema Repository
Objects

Description

AdminSession object Access the schema repository

Database object Represents the user database; use to get explicitly subscribed users

Schema object Lists the schema revisions in the schema repository

SchemaRev object Represents the schema revisions in the schema repository

User object Represents a user of a user database
22 Using the ClearQuest API

Schema repository collection objects are convenient for accessing with a single API
multiple schema repository objects. For more information, see Understanding the
schema repository collection objects.

Schema Repository
Collection Objects

Description

Databases collection object Collection of user databases

EntityDefs collection object Collection of EntityDef (record type) objects

Groups collection object Collection of user database groups

Schemas collection object Collection of schemas in the schema repository

SchemaRevs collection
object

Collection of schema revisions objects in the schema repository

Users collection object Collection of user database users
Using the ClearQuest API 23

The additional objects include API for working with attachments, database descriptions,
hooks, record history, charts, and reports. The additional objects include two collection
objects.

Additional Objects Description

AttachmentField object Represents a single attachment field in a record

AttachmentsFields collection
object

Represents the attachment fields in a record

Attachment object Stores an attachment file and information about it

Attachments collection object Represents a set of attachments in one attachment field of a record

DatabaseDescription object Provides information about a given database, including whether it is
a schema repository or a user database

EventObject object Provides read-only information about a record’s named hook

FieldInfo object Provides read-only information about a field in a user database
record (for example, what value it currently stores), but you typically
use the Entity object instead

HistoryField object Represents a single history field in a record

HistoryFields collection object Contains all history-related objects

History object Provides a string that describes the modifications a record has
undergone

Histories collection object Contains History objects

HookChoices object Lists choices in a CHOICE-LIST hook

Link object Connects an original record (parent) with the duplicate (child) record.

OleMailMsg object Supports an email notification hook

CHARTMGR object Provides an interface for creating charts

ReportMgr object Provides an interface for generating reports

WORKSPACE object Provides an interface for manipulating saved queries, reports, and
charts
24 Using the ClearQuest API

Working with sessions

Users access a ClearQuest database through a Session object. This object provides
methods for logging on to the database, viewing records (entities), and creating queries.
You can also use the Session object to store variables for the session.

Getting a Session Object

The Session object is the entry point for accessing ClearQuest databases. If you are
writing an external application, you must create a Session object and use it to log on to a
database. Once you have logged on to a database, you can use the Session object to

■ create new records or queries

■ edit existing records

■ view information about the database

For script hooks (VBScript and Perl), ClearQuest creates a Session object for your
hooks automatically when the user logs on to the database. The session object is
available through the entity object. In the context of a hook, to get a session object from
an entity object, use the following syntax.

Scripting
Language

Syntax for making a call to an Entity object in a hook

VBScript set currentSession = GetSession
VBScript hooks implicitly associate the Entity object with the current
record.

Perl ClearQuest provides two variables that you can use in the context of a Perl
hook: $entity and $session. In this context, you have two options:
either (1) make an explicit call to $entity->GetSession() such as
$currentSession=$entity->GetSession(); or (2) take advantage
of the convenient $session variable that implicitly associates itself with
the current session.
Using the ClearQuest API 25

For external applications, you must create a Session object manually. If you want to use
the adminSession object, the same rule applies.

Logging on to a database

To protect your databases from unauthorized users, ClearQuest requires that you log on
to a database before accessing its records. For hooks, this user authentication is handled
automatically by the ClearQuest client application. However, external applications must
log on programmatically by using the Session object.

To determine which database to log on to, and to perform the log on, follow these steps:

1 Get a list of the databases associated with a schema repository by calling the
GetAccessibleDatabases method of the Session object.

This method returns a collection of DatabaseDescription objects, each of which contains
information about a single user database.

2 Get the name of the database and enter an empty string ("") for the database set (the set
of databases to which a database belongs) by using the methods of the
DatabaseDescription object.

3 Log on to the database by calling the UserLogon method of the Session object.

Language
Example

Syntax for manually creating the Session object (or the
AdminSession object) in an external application

Visual Basic set currentSession = CreateObject("CLEARQUEST.SESSION")

set adminSession = CreateObject _
 ("ClearQuest.AdminSession")

Perl $currentSession = CQSession::Build();

$currentSession = CQAdminSession::Build();

When you are done with the object, destroy it:
CQAdminSession::Unbuild($currentSession);

CQAdminSession::Unbuild($currentAdminSession);
26 Using the ClearQuest API

You must have a valid login ID and password to log on to the database. As soon as you
log on, you can start looking through records and creating queries. (See the description
of the UserLogon method for usage information.)

Note: If your external application uses Session methods, the general rule is to call
UserLogon before calling other Session methods. However, there are two Session
methods that you can call before calling UserLogon: GetAccessibleDatabases method,
OutputDebugString method, UnmarkEntityAsDuplicate method.

Using session-wide variables

ClearQuest supports the use of session-wide variables for storing information. After you
create session-wide variables, you can access them through the current Session object
using functions or subroutines, including hooks, that have access to the Session object.
When the current session ends, all of the variables associated with that Session object
are deleted. The session ends when the user logs out or the final reference to the Session
object ceases to exist.

To access session-wide variables, use the NameValue property of the Session object.

To create a new variable, pass a new name and value to the NameValue property. If the
name is unique, the Session object creates a new entry for the variable and assigns to the
variable the value you provide. If the name is not unique, the Session object replaces the
previous value with the new value you provide.

To check whether a variable exists, use the HasValue method of the Session object.

The following example shows how to create a new variable and return its value. This
example creates the named variable "Hello" and assigns the value "Hello World" to it.

VB

Dim myValue
curSession = GetSession()

myValue = "Hello World"

’ Create and set the value of the "Hello" variable
curSession.NameValue("Hello") = myValue

’ Get the current value
Dim newValue
newValue = curSession.NameValue("Hello")
Using the ClearQuest API 27

Perl

You can use $session instead of defining
$curSession = $entity->GetSession();

myValue = "Hello World";

Create and set the value of the "Hello" variable
$session->SetNameValue("Hello", $myValue);

Get the current value
$newValue = session->GetNameValue("Hello");

Optional
$session->OutputDebugString($newValue);

Ending a session (for external applications)

Because hooks execute at predefined times during the middle of a session, when you
write a hook, your hook code does not end a session. The session ends automatically
when the user logs off.

However, when you write an external application, you must end the current session by
deleting the Session object that you have created. There is no explicit method for
logging off the database.

Your external application should end a session properly:

■ Delete any objects that you explicitly created and do not need any more.

Note: The session ends when the user logs out or the final reference to the Session
object ceases to exist.

Working with multiple sessions

Because each Session object is associated with a particular user, you can create multiple
Session objects for different users. Each Session object you create can access only the
information available to the associated user.

You cannot use one Session object to operate on the objects returned by another Session
object. All of the objects you create with a Session object are bound to that Session
object and cannot be used by other sessions. For example, if you have two sessions, A
and B, and you use session B to get an Entity object, session A cannot access that Entity
object.
28 Using the ClearQuest API

Working with queries

A query specifies criteria for fetching data from the database. You can search for data in
a ClearQuest database by using queries in hooks. You can create and run a query to
fetch data from the ClearQuest database according to the search criteria that you provide
in the query. The process of working with queries consists of four major steps.

1 Build a query (QueryDef) to specify what data you want.

2 Create a result set object to hold the data.

3 Execute the query, which populates a result set with the data it fetches from the
database.

4 Move through the result set.

Note: If you write a hook that operates only on the current Entity object, you do not
need to use a query.

Creating queries

Creating a query involves the creation of at least three separate objects: a QueryDef
object, a QueryFilterNode object, and a ResultSet Object. More complex queries might
also involve the creation of additional QueryFilterNode objects.

To create a query, follow these steps:

1 Create a QueryDef object and fill it with the search parameters.

To create this object, you can use either the BuildQuery method or the BuildSQLQuery
method of the Session object.

Note: We recommend that use the BuildQuery method. The BuildSQLQuery method
generates a ResultSet object directly from an SQL query string.

2 Use the methods of QueryDef to add search criteria and to specify the fields of each
record you want the query to return.

3 Create a ResultSet object to hold the returned data.

To create this object, call the BuildResultSet method of the Session object. On creation,
the ResultSet object creates a set of internal data structures using the information in the
Using the ClearQuest API 29

QueryDef object as a template. When the query is run, the ResultSet object fills these
data structures with data from the query.

4 Run the query by calling the ResultSet object’s Execute method.

5 Access the data using other methods of this object. (See Moving through the result set.)

Note: If you use the BuildSQLQuery method to create a query based on SQL syntax,
your query string must contain all of the desired search parameters. The
BuildSQLQuery method returns a ResultSet object directly, instead of returning a
QueryDef object.

Defining your search criteria

You define a query’s search criteria. As the query runs, ClearQuest compares your
criteria to the fields of each record in the database. Each time a record in the database
matches your criteria, ClearQuest returns the record in the ResultSet object.

For examples of building a query with the API, see Building queries for defects and
users in the chapter entitled Examples of hooks and scripts.

Using query filters

Each comparison is implemented by a filter, which is an instance of the
QueryFilterNode object. A filter allows you to compare a field to a single value or to a
range of values. The operator you choose for the filter determines the type of
comparison to perform. For a list of valid operators, see the CompOp enumerated type.

To create a hierarchical tree of filters, join them together with a Boolean operator and
nest some filters within other filters. Each filter consists of either a single condition or a
group of conditions joined together with an AND or an OR operator. As you build your
filters, you can nest more complex groups of filters to create a complex set of search
logic.
30 Using the ClearQuest API

Running queries

Rather than returning the entire record, ClearQuest returns only those fields of the
record that you specified by calling the BuildField method of the QueryDef object (see
Creating queries). The Execute method returns results in no particular order. Therefore,
the ResultSet object uses a cursor-based system to allow your code to move through the
records one by one.

To perform the search (execute the query), call the Execute method of the ResultSet
object.You can now use the methods of ResultSet to obtain information about the fields
of the record.

Working with a result set

Here are the steps to follow when using a ResultSet object:

1 Create the ResultSet object.

2 Run the query to fill the ResultSet with data.

3 Navigate (move) through the resulting data until you find the record you want.

4 Retrieve the values from the fields of the record.

Creating a result set

To create a ResultSet object, you use either the BuildResultSet method or the
BuildSQLQuery method of the Session object. Both of these methods return a ResultSet
object that is ready to run the query but which contains no data.

Running the query

To run the query, you call the Execute method of the ResultSet object. This method fills
the ResultSet with data from the database. The result set might be larger than is optimal
for the memory management of certain computers. Therefore, as you navigate through
the result set, ClearQuest transparently loads only the data you need. As you request
new data, ClearQuest transparently fetches them.
Using the ClearQuest API 31

Moving through the result set

To move to the first record in the result set, call the MoveNext method, which initializes
the cursor and moves it to the first record. You can now use the methods of ResultSet to
obtain information about the fields of first record.

To move to subsequent records, use the MoveNext method again.You can now use the
methods of ResultSet to obtain information about the fields of the current record.

Note: If you plan to view or modify a record, your query must ask ClearQuest to
return the ID field of the record. With this ID, you can then use the GetEntity method of
the Session object to obtain the corresponding Entity object. See Working with records.

Retrieving the values from the fields of the record

When you have the cursor at the row you want, use the GetColumnValue method to
fetch the value for a field of that record.

If you created your
query using ...

The order of the columns corresponds to ...

the QueryDef object the order in which you added fields using the BuildField method.

a SQL statement the SQL statement
(To discover which column has the data you want, use the ResultSet
object: GetNumberOfColumns method, the GetColumnType method,
and the GetColumnLabel method.)
32 Using the ClearQuest API

. Each
, a list
he

ition
rds

set.

 this
le to

ject’s
rd,
 for

iques

s the
Working with records

Databases use records to organize and store information. In ClearQuest, the term record
(entity) refers to a structure that organizes the information available for a single instance
of a record type (entity), such as “defect”. ClearQuest records can contain data from
multiple database tables.

ClearQuest uses instances of the Entity class to organize and manage record data
instance of the Entity class provides access to the values in the fields of the record
of the duplicates of the record, the history of the record, and any files attached to t
record.

Note: To use the methods of the Session object, you must already know the defin
of the record. You can use methods of the Session object to have a query find reco
that match criteria you define, and then work with the records in the query’s result
To learn how to use the API for queries, see Working with queries.

Getting entity objects

To create an Entity object, you use the Session object’s BuildEntity method. Calling
method creates a new Entity object and initiates a Submit action, making it possib
edit the default values in the Entity object.

To obtain an existing Entity object whose ID you know, you can use the Session ob
GetEntity method or GetEntityByDbId method. If you do not know the ID of the reco
you can use the Session object's BuildQuery method to create a query and search
records that match a desired set of criteria. Entity objects found using these techn
are read-only. To edit an Entity object, you must call the Session object's EditEntity
method.

After you acquire an Entity object, you can call its methods to perform tasks such a
following.

Task Entity object method to call

Examine or modify the values of a
field

GetFieldValue method, SetFieldValue method

Validate and commit the record Validate method, Commit method

Determine which fields must be filled
in by the user

GetFieldRequiredness method
Using the ClearQuest API 33

set.

ve

 the

Creating a new record

To create a new record, call the BuildEntity method of the Session object. The
BuildEntity method creates the record with a unique ID for the given user database and
initiates a "submit" action for the record. During the submit action, the record is
available for editing.

Editing an existing record

To edit an existing record, follow these steps:

1 Acquire the Entity object you want to edit by using the methods of the Session object.

Note: To use the methods of the Session object, you must already know the definition
of the record. You can use methods of the Session object to have a query find records
that match criteria you define, and then work with the records in the query’s result
To learn how to use the API for queries, see Working with queries.

2 Call the EditEntity method of the Session object.

Only one user at a time can edit a record. If you are creating a new record, you ha
permission to modify the contents of the record. However, if you are using the
EditEntity method to modify an existing record while someone else is modifying it,
record is locked. If another user has a prior lock on the record, you can modify the
record, but you cannot commit the record to the database with your changes.

Determine the acceptable values for
each field, and which fields have
invalid values

GetFieldType method, GetInvalidFieldValues method

Determine which fields have been
updated

GetFieldsUpdatedThisAction method,
GetFieldsUpdatedThisGroup method,
GetFieldsUpdatedThisSetValue method

Find other data records that are
considered duplicates of this one

GetDuplicates method

Find the original data record, if this
one is a duplicate

GetFieldOriginalValue method

Task Entity object method to call
34 Using the ClearQuest API

Using the methods of the Entity object, you can perform these tasks:

■ View or modify the values in the record’s fields.

■ Get additional information about the type of data in the fields or about the record as a
whole.

■ Change the behavior of a field for the duration of the current action.

Saving your changes

After you create or edit a record, save your changes to the database by following these
steps:

1 Validate that data in the record by calling the Validate method of the Entity object.

This method returns any validation errors so that you can fix them before you attempt to
save your changes.

2 Call the Commit method of the Entity object.

This method writes the changes to the database, ends the current action, and checks in
the record so that it cannot be edited.

Reverting your changes

If validation of a record fails, you will not be able to commit the changes to the
database. The safest solution is to revert the record to its original state and report an
error.

To revert a record, call the Revert method of the Entity object.

Viewing the contents of a record

If you do not want to edit the contents of a record, you can get the record and look at the
values in its fields. To view a record, get the record using one of the methods of the
Session object.

To view the contents of a record by using a Session object method, follow these steps:

1 Use the GetEntity method to acquire the record.

2 Use methods of the returned Entity object to access the record’s fields.
Using the ClearQuest API 35

To get a list of record types by name, use the following methods of the Session object.

To get the EntityDef object associated with a particular record type, use the
GetEntityDef method.

Ensuring that record data is current

In a multi-user system, you can view the contents of a record without conflicting with
other users. However, if another user is updating a record while you access a field of
that record, you might get the field’s old contents instead of the new contents. The
FieldInfo object returned by the GetFieldValue method of Entity contains a snapshot of
the field’s data.

To refresh your snapshot of a record, call GetFieldValue again to get a new FieldInfo
object.

Viewing the metadata of a record

To learn how to access metadata (information about a record and its fields), see
Accessing the schema repository.

To list the names of ... call this Session object method

All record types GetEntityDefNames method

Record types that have states GetReqEntityDefNames method

Record types that are stateless GetAuxEntityDefNames method

Record types that belong to a record type family GetQueryEntityDefNames method

Record types you can use to create a new record GetSubmitEntityDefNames method
36 Using the ClearQuest API

Understanding user database objects

The user database objects are the following:

Session object

See Working with sessions.

User Database Objects Description

Session object Access the user database; build a new record

Entity object Work with Record data: set field values, validate, commit, revert

EntityDef object View read-only meta-data: actions, fields, hooks, states, and
transitions applicable to a given record type.

QueryDef object Defines the query criteria

ResultSet Object Contains the data the query fetches

QueryFilterNode object Implements comparison filters for the query
Using the ClearQuest API 37

Entity object

An Entity object represents a record in the database.

Remarks:

Entity objects are some of the most important objects in ClearQuest. They represent the
data records the user creates, modifies, and views using ClearQuest. ClearQuest uses a
single Entity object to store the data from a single database record. All of the data
associated with that record is stored in the Entity object. When you want to view a field
of a record, you use the methods of Entity to request the information.

The structure of an Entity object is derived from a corresponding EntityDef object
(record type). The EntityDef object contains metadata that defines the generic properties
for a single type of Entity object. EntityDef objects can be state-based or stateless.

Accessing the fields of a record

Entity objects contain all of the data associated with the fields of a record. When you
need to know something about a field, you always start with the Entity object. In some
cases, you can call methods of Entity to get the information you need. However, you can
also use the Entity object to acquire a FieldInfo object, which contains additional
information about the field.

To acquire a FieldInfo object, call the GetFieldValue method.

To get the value stored in the FieldInfo object, call the GetValue method of the FieldInfo
object.

To acquire a collection of FieldInfo objects, one for each field in the record, call the
GetAllFieldValues method. (Note that GetAllFieldValues does not return the values in
attachment fields.)

To get a list of the names of all fields, call the GetFieldNames method.

To get the type of data stored in the field, call the GetFieldType method.

To find out the field’s behavior for the current action (mandatory, optional, or
read-only), call the GetFieldRequiredness method.

Although you would normally use a FieldInfo object to access a field, there are
situations where you must use methods of Entity.
38 Using the ClearQuest API

To set the value of a field, call the SetFieldValue method.

To compare the new value with the old value of a field (if you previously updated the
contents of a field), get the old value by calling the GetFieldOriginalValue method.

Note: Although you can get the behavior of a field using either an Entity object or
FieldInfo object, you can only use the SetFieldRequirednessForCurrentAction method
of Entity to set the field’s behavior.

To modify fields that contain choice lists, use the methods of the Entity object.

As you update the fields of a record, the Entity object gives you several ways to keep
track of all the modified fields. Because hooks can be written to modify other fields,
calling the SetFieldValue method might result in more than one field being changed. For
example, suppose you call SetFieldValue for Field X, and a field hook in Field X
changes the value of Field Y.

Note: You should be careful to avoid creating an infinite loop (hooks that call each
other).

■ To discover which fields were updated in the most recent call to SetFieldValue, call
the GetFieldsUpdatedThisSetValue method.

■ To discover which fields have been updated since the beginning of the current action,
call the GetFieldsUpdatedThisAction method.

■ To track changes during a specific period of code, surround calls to SetFieldValue
with the BeginNewFieldUpdateGroup method and GetFieldsUpdatedThisGroup
method.

Task Entity object method to call

To retrieve the list of permissible
values in the field

GetFieldChoiceList method

To get a constant indicating whether
or not you can add additional items
to the choice list.

GetFieldChoiceType method

To add items to a choice list that can
be modified

AddFieldValue method

To delete items from a choice list
that can be modified

DeleteFieldValue method
Using the ClearQuest API 39

’s

f

n
 set
thod.
od,

Committing entity objects to the database

Committing an entity object to the database is a two step process:

1 Validate the record you changed.

2 Commit the change.

Note: In the context of a hook, you do not have to commit modifications to the current
record. However, if you are writing an external application and want to retain the
changes you made to a record, you must commit those changes to the database yourself.

To validate a record, call the Validate method of the corresponding Entity object. This
method runs the schema’s validation scripts and returns a string containing any
validation errors. If this string is not empty, you can use the GetInvalidFieldValues
method to return a list of fields that contain invalid data. After fixing the values in these
fields, you must call Validate again. If the Validate method returns an empty string, there
are no more errors.

After you validate the record, and the validation succeeds, you commit your changes to
the database by calling the Commit method of the corresponding Entity object. When
you call the Commit method, ClearQuest writes the changes to the database and calls
the action’s commit hook. If the commit succeeds, ClearQuest launches the action
notification hook.

Note: For information about the order in which hooks fire, see “Execution order o
field and action hooks” in the “Using hooks to customize your workflow” chapter of
Administering ClearQuest.

If you decide that you do not want to commit your changes to the database, you ca
revert those changes by calling the Revert method of the Entity object. Reverting a
of changes returns the record to the state it was in before you called EditEntity me
If you revert the changes made to an Entity object created by the BuildEntity meth
the record is discarded altogether.

Note: ClearQuest does not recycle the visible IDs associated with records. If you
revert a record that was made editable by the BuildEntity method, the record is
discarded but its visible ID is not so that future records cannot use that ID.
40 Using the ClearQuest API

Working with duplicates

A duplicate record is one whose contents are essentially the same as another record. For
example, two different users might file defect reports for the same problem, not
knowing the other had filed a similar report. Rather than consolidate the defect
information and delete one of the records, ClearQuest allows you to link the records. In
your code, you might want to know if there are any records related to the current one so
that you can notify the user that additional information is available.

Finding duplicate records and the original record

You can use the methods of Entity to find the duplicates of a record or find the records
of which the current record is a duplicate. To determine if a record has one or more
duplicates, call the HasDuplicates method of Entity. To determine if the current record is
itself a duplicate, call the IsDuplicate method.

Finding duplicate objects and the original object

To get the duplicates of an object, you can use either the GetAllDuplicates method or
the GetDuplicates method. These methods follow the links associated with the Entity
object and return a list of the duplicates associated with it. The GetAllDuplicates
method returns not only the duplicates of the object, but also any duplicates of
duplicates, and so on. The GetDuplicates method returns only the immediate duplicates
of the Entity object.

To discover whether the current Entity object is the parent of the duplicates, call the
IsOriginal method. (You can also call the GetOriginalID method to return the object’s
visible ID instead of the object itself.)

To find out which Entity object is the parent of a group of duplicates, call the IsOriginal
method of each object until one of them returns True.
Using the ClearQuest API 41

ed of
th
Entities and Hooks

Inside a VBScript hook, ClearQuest supplies an implicit Entity object representing the
current data record. If your VBScript hook calls a method of Entity without supplying a
leading identifier, ClearQuest automatically uses this implicit Entity object. In addition,
ClearQuest hooks define an explicit "entity" variable to use if you want to specify the
object to which you are referring. The entity variable name is identical to the record type
name. If you are accessing the API from outside of a hook, or if you are accessing an
Entity object other than the implicit one, you must specify the other Entity object
explicitly. (Also, if you are using Perl, you must always supply an explicit variable, and
its name is "entity": see Getting a Session Object.)

The following examples show two ways to call the same method in a VBScript hook. In
the second example, the value, defect, represents the current entity (record type)
object.

fieldvalue = GetFieldValue("fieldname").GetValue()

or

fieldvalue = defect.GetFieldValue("fieldname").GetValue()

The Session object provides two methods to get an entity: BuildEntity method (to build
a new record) or GetEntity method (for an existing record). When you submit a new
record, BuildEntity automatically gets the entity. To get an existing record, you pass the
GetEntity method the unique identifier of the record and the record type name.

You identify Entity objects using the display name of the corresponding record type. For
stateless record types, you identify individual records using the contents of the unique
key field of the record type. For state-based record types, you identify records using the
record’s visible ID. ClearQuest assigns each new record a visible ID string compos
the logical database name and a unique, sequential number. For example, the ten
record in the database “BUGID” can have the visible ID “BUGID00000010”.
42 Using the ClearQuest API

The following VBScript example is from a hook that accesses two Entity objects: the
implicit object, and a duplicate object. The duplicate object corresponds to the record
whose ID is "BUGID00000031".

set sessionObj = GetSession
’ Call a method of the implicit Entity object.
set fieldvalue = GetFieldValue("fieldname")
’ VBScript assumes the current entity implicitly.
’ The fieldname must be valid or ClearQuest returns an error.
value = fieldvalue.GetValue()
’ Call the same method for the duplicate object, by explicitly acquiring
’ the other entity, which is of the defect record type.
set otherEntity = sessionObj.GetEntity("defect", "BUGID00000031")
set fieldvalue2 = otherEntity.GetFieldValue("fieldname")
value = fieldvalue2.GetValue()

As demonstrated in the preceding example, to access an Entity object other than the
implicit one from a VBScript hook, you must first acquire that Entity object. From
outside of a hook, you must always acquire the Entity object you are going to work
with.

Note: To learn more about acquiring existing Entity objects, see Working with
Queries or the methods of the current Session object.
Using the ClearQuest API 43

fields,
r

Def

ty
EntityDef object

An EntityDef object represents one of the record type in a schema.

Remarks:

In a schema, a record type specifies the metadata for one kind of record. The record type
metadata defines the generic structure of that record. Metadata does not include the user
data itself. Record type metadata includes the number of fields, the names of the fields,
which data type each field must contain, the names of permitted actions, the names of
permitted states, and so on.

An EntityDef object is the runtime representation of a record type. An EntityDef object
contains information ClearQuest uses to create corresponding Entity objects at runtime.
EntityDef objects can be either state-based or stateless. A state-based EntityDef object
contains information about the states in which a corresponding Entity object can be
placed. A stateless EntityDef object does not have any state information, but does
specify which field of the Entity object is used as the unique key.

You cannot create or modify EntityDef objects at runtime. To create a new EntityDef
object, you must define a corresponding record type using ClearQuest Designer. You
can use an EntityDef object to obtain information about the corresponding record type.
For example, you can use the GetFieldDefNames method, GetActionDefNames
method, and GetStateDefNames method to obtain the names of the record type’s
actions, and states, respectively. You can also use the GetFieldDefType method o
GetActionDefType method to obtain the type of a particular field or action.

You can use methods of the current Session object to discover the available Entity
objects.

Note: If you need to create a new data record, see the Session object’s BuildEnti
method.
44 Using the ClearQuest API

te the
ef

plest
ld

. The

ngle
ate
fine

ion
Def
QueryDef object

A QueryDef object defines the parameters for a query, which is used to retrieve specific
records from a database.

Remarks:

A QueryDef object contains a query expression and a list of display fields. The query
expression defines the search parameters for the query and can contain a complex set of
conditional statements. To run the query, you must create a ResultSet Object and call its
Execute method. (You can use the Session object’s BuildResultSet method to crea
ResultSet object.) The ResultSet object uses the list of display fields in the QueryD
object to summarize the search results.

To create a QueryDef object,

1 Call the Session object’s BuildQuery method. The BuildQuery methods returns an
QueryDef object with display fields and filters undefined.

2 Add the filters and fields for your query to the QueryDef object.

To create a query that returns all of the records in the database, you create the sim
QueryDef object by to the query one field that calls the QueryDef object’s BuildFie
method.

You can add filters and nodes to a QueryDef object to create more complex queries
nodes of a QueryDef object consist of one or more QueryFilterNode objects, each
containing one or more filters. Nodes group together each of their filters under a si
boolean operator. You use the QueryDef object’s BuildFilterOperator method to cre
the root node in this tree. After that, you use the methods of QueryFilterNode to de
the remaining nodes and filters. The filters themselves can use other comparison
operators to test the relationship of a field to the specified data.

Note: You can also construct a query from a raw SQL query string using the Sess
object’s BuildSQLQuery method. However, this technique does not create a Query
object.
Using the ClearQuest API 45

ResultSet Object

You can use a ResultSet object to execute a query and browse the query results.

Remarks:

When you create queries using the QueryDef object, you must create a corresponding
ResultSet object to run the query and obtain the results. Each ResultSet object is
customized for the query it is running. The ResultSet object contains data structures that
organize data from the query into rows and columns, where each row represents a single
data record and each column represents one field from that data record. After running
the query, you can navigate (move) from row to row, and from column to column, to
obtain the data you want.
46 Using the ClearQuest API

QueryFilterNode object

A QueryFilterNode object represents one node in the query-expression tree.

Remarks:

A query expression consists of one or more QueryFilterNode objects arranged
hierarchically. The root node is created by the QueryDef object’s BuildFilterOperator
method. The remaining nodes are all instances of the QueryFilterNode class. Each node
consists of one or more filters and a Boolean operator (specified using the BoolOp
enumerated constants).

To add a filter to a node, you call the node’s BuildFilter method. Using this method, you
specify a field and a specific value to compare, and you specify the comparison operator
to use (one of the CompOp enumerated constants). Although the node uses a Boolean
operator, you can add any number of filters to a node with the BuildFilter method.

You can also add other nodes. Using the BuildFilterOperator method of
QueryFilterNode, you can add nodes just as if they were an additional filter. By nesting
nodes in this fashion, you can create complex query expressions with the nodes and
filters forming a tree.
Using the ClearQuest API 47

Accessing the schema repository

Normally, you modify the schema repository (master database) using the ClearQuest
Designer. However, it is possible to get information from, and make limited changes to,
the schema repository using the ClearQuest API. Performing user administration, for
example, is among such tasks.

Objects in the schema repository

ClearQuest defines a set of objects for the schema repository:

Schema Repository
Object

Description

AdminSession object You use the AdminSession object to access the schema
repository. (This is analogous to using the Session object to
access a user database.)

Database object The database for user data, such as defects.

Schema object Each schema in the schema repository is represented by a
Schema object. You cannot modify schemas programmatically.
Use the ClearQuest Designer to make changes to a schema.
The Schema object provides you with a list of schema revisions
that you can use to upgrade a database.

SchemaRev object Each schema revision in the schema repository is represented
by a SchemaRev object. You cannot modify the SchemaRev
object programmatically. Use the ClearQuest Designer to make
changes to a schema.

Group object Each user group in the schema repository is represented by a
Group object. This object contains the basic group information,
including the users belonging to the group and the databases to
which the group is subscribed.

User object Each user account in the schema repository is represented by a
User object. This object contains the user’s profile information,
including the groups and databases to which the user is
subscribed.

collection objects See Understanding the schema repository collection objects
48 Using the ClearQuest API

Using the AdminSession object

Because the schema repository is different from your user databases, you cannot use the
normal Session object to log on to the schema repository and access its contents.
Instead, you must use an AdminSession object, which provides access to the schema
repository information.

Using the AdminSession object, you can access information about the user databases
associated with the schema repository. Each user database is represented by a Database
object. You can use this object to get and set information about the database, including
the login IDs, passwords, and database settings.

The schema repository also defines a set of collection objects for containing database,
group, user, schema, schema revisions, and record types:

■ Databases collection object

■ Groups collection object

■ Users collection object

■ Schemas collection object

■ SchemaRevs collection object

■ EntityDefs collection object

Logging on to the schema repository

You must log on to the schema repository before you can access its contents. The
AdminSession object controls access to the schema repository. The AdminSession
object is similar in purpose to the Session object, but provides access to schemas and
user profiles instead of to records.

You log on to the schema repository using the Logon method of the AdminSession
object. To use this method, you must know the login name and password. For more
information, see the Logon method.
Using the ClearQuest API 49

Getting schema repository objects

Most of the schema repository information can be found in the properties of various
objects. For example, the AdminSession object has properties that return a complete list
of the databases, schemas, users, and groups associated with the schema repository. The
AdminSession object also has methods that retrieve database, user, and group objects
whose name you already know. You can also use methods of the AdminSession object
to create new databases, user accounts, and groups.

Calling each of these methods creates a new object of the corresponding type. You can
then set data. The information in these objects is saved immediately to the schema
repository. If you are setting information related to users and groups, you must update
your user databases.

Updating user database information

ClearQuest immediately updates data in the schema repository, but not data of user
databases. To update the contents of a user database, you must call specific methods of
the Database object. The Database object allows you to update the following:

■ Users, groups, and database information for a specific database.

■ The schema revision the database uses.

To update the user and group information associated with the user database,

1 In the schema repository, make the changes you want to the user information.

2 Call the UpgradeMasterUserInfo method of the user Database object. This method
copies the changes from the schema repository to the user database.
50 Using the ClearQuest API

Performing user administration

You can perform user administration and update the database from ClearQuest
Designer. You can use either the User administration dialog in ClearQuest Designer, or
the API, to create new user accounts and groups and manipulate the attributes of
existing accounts. When you use the API, new objects you create are automatically
updated in the schema repository, but they are not updated in any associated user
databases until you specifically call the UpgradeMasterUserInfo method of the
corresponding Database object.

To create a new account, call the CreateUser method. This method returns a new User
object, which you can fill in with the user’s account information, including the user’s
name, phone number, email address, and access privileges. You can also subscribe the
user to one or more databases.

To get a User object for an existing user, call the GetUser method of the AdminSession
object, or iterate through the objects in the Users property.

To create a new group, call the CreateGroup method. This method returns a new Group
object, to which you can add new users.

To get an existing group, call the GetGroup method, or iterate through the Groups
property.

To add a user to a group, call the AddUser method of the Group object.

3 Use the group to add or remove user accounts.

Note: You cannot remove User or Group objects from the schema repository. Once
you create these objects, they remain permanently.
Using the ClearQuest API 51

Common API calls to get user information

ClearQuest also uses records to store user administration information. If you are writing
hook code, this information can be useful for controlling user privileges and access
permissions. You can get user administration information about the user logged into the
current session by using the following methods of the Session object.

User Administration Task Session object method to call

Get the name of the current user GetUserLoginName method

Get a list of groups to which the user
belongs.

GetUserGroups method

Get a user’s email address GetUserEmail method

Get a user’s full name GetUserFullName method

Get a user’s phone number GetUserPhone method

Get any additional information about
the user

GetUserMiscInfo method
52 Using the ClearQuest API

Understanding schema repository objects

The SchemaRepository objects allow you to get (and, in some cases, set) data in the
schema repository. The Schema Repository objects are:

■ AdminSession object

■ Database object

■ Schema object

■ SchemaRev object

■ User object

■ Group object
Using the ClearQuest API 53

AdminSession object

An AdminSession object allows you to create a session object associated with a schema
repository.

Remarks:

The AdminSession object is the starting point if you want to modify the information in a
schema repository. Unlike the Session object, you must create an instance of
AdminSession explicitly even if you are writing a hook. You create an AdminSession
object as follows:

set adminSession = CreateObject("ClearQuest.AdminSession")

After you create the AdminSession object, you must log on to the schema repository
using the Logon method of the AdminSession object. To log on to the database, you
must know the administrator’s login name and password, as well as the name of the
record containing the schema repository. When you are logged on, you can use the
methods of the AdminSession object to get information from the schema repository.
54 Using the ClearQuest API

Database object

A Database object stores information about a user database.

Remarks:

Use the Database object to change the properties associated with a database. Using the
properties of this object, you can get and set the database name, descriptive information,
timeout intervals, and login information. You can also use the methods of this object to
adjust the schema revision associated with the database.

Setting a property does not automatically update the corresponding value in the
database. To update the values in the database, you must call the ApplyPropertyChanges
method. When you call this method, ClearQuest updates the values of any database
properties that have changed.

To set the schema revision of a new database, create the database, then call the database
object’s SetInitialSchemaRev method.

To change the schema revision of an existing database, call the database object’s
Upgrade method.

To create a new user database by using the Database object, follow these steps:

1 Create the database by calling the CreateDatabase method of the current AdminSession
object.

2 Set the initial schema revision by using the SetInitialSchemaRev method.

Note: As new schema revisions become available, update the database by using the
Upgrade method.
Using the ClearQuest API 55

The following example shows you how to create a database and set its initial schema
revision.

set adminSession = CreateObject("ClearQuest.AdminSession")
set db = adminSession.CreateDatabase("newDB")

’ Set initial schema to first revision of "mySchema"
set schemas = adminSession.Schemas
set mySchema = schemas.Item("mySchema")
set schemaRevs = mySchema.SchemaRevs
set firstRev = schemaRevs.Item(1)
db.SetInitialSchemaRev(firstRev)

db.ApplyPropertyChanges
56 Using the ClearQuest API

Schema object

A Schema object contains information about a particular schema.

Remarks:

A Schema object represents a single schema in a master database. Use Schema objects
to refer to schemas and to get a list of the revisions of the schema that are available.

Note: The API does not allow you to create new schemas or modify existing schemas.
Schemas must be created or modified by using ClearQuest Designer. You can get a list
of schemas defined in the schema repository (master database) by accessing the
Schemas property of the AdminSession object.
Using the ClearQuest API 57

SchemaRev object

A SchemaRev object contains information about a single schema revision, including
information about its packages.

Remarks:

Schema revisions identify a particular version of a schema. You use schema revisions
when creating and updating databases.

To set the schema revision of a new database, create the database, then call the database
object’s SetInitialSchemaRev method.

To change the schema revision of an existing database, call the database object’s
Upgrade method.

To discover which packages and package revisions apply to the current user database,
use the GetEnabledPackageRevs method and the GetEnabledEntityDefs method.
58 Using the ClearQuest API

 and
d.
User object

A User object contains information about a single user account.

Remarks:

The information in a User object corresponds to the information on a user properties
page in ClearQuest Designer. To view a user properties page, use the user
administration tools in ClearQuest Designer to select the user and edit that user’s
information.

Using the User object, you can get or set a user’s personal information, including the
user’s name, email address, phone number, and access privileges. You can also use the
methods of User to change the databases to which the user is subscribed.

Changes you make to user accounts are reflected in the schema repository (master
database) as soon as you call UpgradeMasterUserInfo, but not in the associated user
databases.

To update the user databases, do one of the following:

■ Iterate through the databases in the AdminSession object’s Databases property
upgrade each database individually by calling its UpgradeMasterUserInfo metho

■ Use the user administration tools in ClearQuest Designer.
Using the ClearQuest API 59

Group object

A Group object contains information about a single group of users.

Remarks:

Groups allow you to administer users as one or more groups, which is more convenient
than administering each user separately. Use the Group object to get or modify the
properties of a group, including the group’s name and the databases to which it is
subscribed. You can also add users to the group.

Changes you make to groups are immediately reflected in the schema repository (master
database) but not the associated user databases. To update the user databases, use the
user administration tools in ClearQuest Designer.
60 Using the ClearQuest API

Understanding the schema repository collection objects

A collection is a container for objects. The schema repository (master database)
collection objects provide a convenient means to work with multiple instances of certain
schema repository objects, instead of having to work with each one individually:

■ Databases collection object

■ EntityDefs collection object

■ Schemas collection object

■ SchemaRevs collection object
Using the ClearQuest API 61

the

f

unt
the

unt

unt
the
Databases collection object

A Databases object is a collection object for Database objects.

Remarks:

You can get the number of items in the collection by accessing the value in the “Count
property” on page 430. Use the “Item method” on page 431 to retrieve items from
collection.

EntityDefs collection object

The EntityDefs object (EntityDefs) is a collection object that contains a collection o
EntityDef objects.

Groups collection object

A Groups object is a collection object for Group objects.

Remarks:

You can get the number of items in the collection by accessing the value in the “Co
property” on page 438. Use the “Item method” on page 439 to retrieve items from
collection.

Schemas collection object

A Schemas object is a collection object for Schema objects.

Remarks:

You can get the number of items in the collection by accessing the value in the Co
property. Use the Item method to retrieve items from the collection.

SchemaRevs collection object

A SchemaRevs object is a collection object for SchemaRev objects.

Remarks:

You can get the number of items in the collection by accessing the value in the “Co
property” on page 446. Use the “Item method” on page 447 to retrieve items from
collection.
62 Using the ClearQuest API

Users collection object

A Users object is a collection object for User objects.

Remarks:

You can get the number of items in the collection by accessing the value in the Count
property. Use the Item Method to retrieve items from the collection.
Using the ClearQuest API 63

Understanding additional database objects

The additional Database objects are:

■ AttachmentField object

■ AttachmentsFields collection object

■ Attachment object

■ Attachments collection object

■ DatabaseDescription object

■ EventObject object

■ FieldInfo object

■ HistoryField object

■ HistoryFields collection object

■ History object

■ Histories collection object

■ HookChoices object

■ Link object

■ OleMailMsg object

■ CHARTMGR object

■ ReportMgr object

■ WORKSPACE object
64 Using the ClearQuest API

he

ject

on
s
 you

ates
al

AttachmentField object

An AttachmentField object represents one attachment field in a record.

Remarks:

A record can have more than one field of type attachment list. Each AttachmentField
object represents a single attachment field in the record. An AttachmentFields collection
object represents the set of all the record’s attachment type fields.

The AttachmentField object has three properties:

■ “FieldName property” on page 476, which returns the field name

■ “DisplayNameHeader property” on page 474, which returns the unique keys of t
attachments

■ “Attachments property” on page 472, which returns an Attachments collection ob

Note: You cannot modify the properties of this object directly. However, you can
modify the attachments associated with this field. (See the Attachment object.)

AttachmentsFields collection object

An AttachmentFields object represents all of the attachment fields in a record.

Remarks:

AttachmentFields is a collection object similar to the standard Visual Basic collecti
objects. It is a container for a set of AttachmentField objects. The AttachmentField
object’s property and methods tell you how many items are in the collection and let
retrieve individual items. You cannot programmatically change the number of
attachment fields that the record type specifies. (The ClearQuest administrator cre
these fields using ClearQuest Designer.) However, you can add or remove individu
attached files using the methods of the Attachments collection object.

Every Entity object has exactly one AttachmentFields object. You cannot explicitly
create an AttachmentFields object. However, you can retrieve a pre-existing
AttachmentFields object from a given Entity object by invoking the Entity’s
AttachmentFields property.
Using the ClearQuest API 65

ed

ject.

ion

 in

ject’s
ieve,

y
Attachment object

An Attachment object represents a single attached file.

Remarks:

The attachment is physically stored in the user database.

An Attachment object

■ stores information about that file (description, unique key, path name, and size) in the
Attachment object’s properties

■ provides a means to manipulate the file

Note: The ClearQuest API does not permit you to alter that data inside an attach
file, but it does permit you to alter the descriptive information.

To attach files to a database, use the Add method of the Attachments collection ob
(You never create instances of Attachment directly.)

To retrieve an Attachment object, use the Item method of the Attachments object.

To delete an Attachment object, use the Delete method of the Attachments collect
object.

To copy an existing attachment to a new file, use the Load method.

Attachments collection object

The Attachments object represents the collection (container or set) of attachments
one attachment field of a record.

Remarks:

This object is a container for one or more Attachment objects. The Attachments ob
property and methods tell you how many items are in the collection and let you retr
add and remove individual items.

Every AttachmentField object has exactly one Attachments object. You retrieve it b
retrieving the AttachmentField object’s Attachments property.
66 Using the ClearQuest API

he

DBC

uld

reate
 are
DatabaseDescription object

The DatabaseDescription object provides information about a particular database.

Remarks:

If you already know which database to log on to, you do not need to obtain a
DatabaseDescription object to logon to the database. However, suppose that you want to
have a logon dialog that presents to the user a list of the available databases. You can
call the Session object’s GetAccessibleDatabases method, which returns a list of
DatabaseDescription objects.

When you have a DatabaseDescription object, you can

■ find the name of a particular database by using the GetDatabaseName method

■ find the name of the database set of which the database is a member by using t
GetDatabaseSetName method

■ get a "direct connect" string by using the GetDatabaseConnectString method (O
experts can use this string to log on to the database)

You can also use a DatabaseDescription object inside a hook. In this case, you wo
call the Session object’s GetSessionDatabase method to retrieve the
DatabaseDescription object that has information about the current database.

EventObject object

An EventObject contains information that is passed to the named hook of an Entity
object.

Remarks:

This object is not accessible through the normal object model and you should not c
this object directly. The properties of this object are for informational purposes and
read-only.
Using the ClearQuest API 67

FieldInfo object

A FieldInfo object contains static information about one field of a user data record.

Remarks:

The FieldInfo object contains the information about one field of an Entity object. You
can use the methods of FieldInfo to obtain the following information:

■ the name of the field

■ what type of data the field must contain

■ whether a value is required in the field

■ whether the field contains a value, and whether the value is valid

■ what the error message is for an invalid value

■ what the value stored in the field is

■ whether the value or validity of the field has changed

A FieldInfo object is an informational object. All of its methods are for getting, rather
than setting, values. To change the value stored in a field, use the SetFieldValue method
of Entity.

A FieldInfo object is a "snapshot" of the corresponding field in the database. If you
change the value of that field with a call to SetFieldValue, the existing FieldInfo object
does not reflect the change. To obtain an updated value for the field, you must get a new
FieldInfo object.

To get an instance of FieldInfo, call the GetFieldValue method of Entity, passing the
name of the field as an argument. Other methods of Entity allow you to return one or
more instances of FieldInfo that satisfy certain conditions. For for more details, see the
methods of the Entity object.

As a convenience, Entity contains a few methods that act as wrappers for FieldInfo
methods. For example, the GetFieldType method of Entity is equivalent to the GetType
method of FieldInfo. However, Entity also has some methods that have no FieldInfo
counterparts, such as the GetFieldOriginalValue method and the GetFieldChoiceList
method.
68 Using the ClearQuest API

HistoryField object

A HistoryField object represents one history field in a record.

Remarks:

The HistoryField object represents the history field in the record. (In the current version
of ClearQuest, there can be only one history field per record.) A HistoryFields
collection object represents the set of all the record’s history fields.

The HistoryField object has one property: the Histories property. This property contains
the set of History objects that describe the changes to the record.

HistoryFields collection object

The HistoryFields object represents all of the history fields in a record. (In the current
version of ClearQuest, there can be only one history field per record, so the
HistoryFields collection object always contains only one item.)

Remarks:

HistoryFields is a collection object similar to the standard Visual Basic collection
objects. It is a container for a set of HistoryField objects. The HistoryFields object’s
property and methods tell you how many items are in the collection and let you retrieve
individual items. You cannot add, remove, or modify the items.

Every Entity object has exactly one HistoryFields object. You cannot create a new
HistoryFields object. However, you can retrieve the pre-existing HistoryFields object
from a given Entity object by invoking Entity’s HistoryFields property.

History object

A History object contains information about a modification to a record.

Remarks:

The History object encapsulates the String that is displayed for one entry in a history
field of a data record. The History object has only one property: the Value property.
Using the ClearQuest API 69

Histories collection object

The Histories object represents the set of history entries in one history field of a record.

Remarks:

Histories is a collection object that is a container for a set of History objects. The
Histories object’s property and methods tell you how many items are in the collection
and let you retrieve those items.

Every HistoryField object has exactly one Histories object. You can retrieve it by
invoking HistoryField’s Histories property.
70 Using the ClearQuest API

HookChoices object

A HookChoices object represents the list of choices presented by a CHOICE_LIST
hook.

Remarks:

The HookChoices object is a special object that is invisible except inside a
CHOICE_LIST hook. This object has only one method, the AddItem method, which
you can use to add new items to the list.

The HookChoices object is stored in a variable called choices and you can only access it
by that name.

Note: For Perl, use a Perl array to return a choice list. See the Hook Choices Code
Example.
Using the ClearQuest API 71

Link object

A Link object connects two Entity objects.

Remarks:

Links are the edges in the tree of duplicates. Links point both to the original record (the
"parent") and to the duplicate record (the "child"). Both records must be state-based (as
opposed to stateless). However, the parent and child do not need not be based on the
same record type.

The methods of link allow you to retrieve:

■ the parent and child record objects that are linked together.

■ the ID strings for the parent and child.

■ the EntityDef that is the template for the parent or child.

■ the names of these EntityDefs

To create a Link object, use the MarkEntityAsDuplicate method of the Entity object that
is to become the duplicate. To delete the object, use the UnmarkEntityAsDuplicate
method.
72 Using the ClearQuest API

OleMailMsg object

An OleMailMsg object represents an e-mail message that you can send to your users.

Remarks:

The main purpose for the OleMailMsg object is to send e-mail messages from an action
notification hook. You can use the methods of this object to specify the contents of the
e-mail message including the recipients, sender, subject, and body text. You can then
use the Deliver method of this object to send the e-mail message.

This object does not support Perl. To create a new OleMailMsg object, you must use the
VBScript CreateObject method as follows:

 Dim mailmsg Set mailmsg = CreateObject("PAINET.MAILMSG")

When you have an OleMailMsg object, you can

■ add recipients using the AddTo, AddCc, and AddBcc methods

■ set the return address using the SetFrom method

■ add a subject line using the SetSubject method

■ set the body text of the e-mail message using the SetBody and MoreBody methods
Using the ClearQuest API 73

ying a

rtable
CHARTMGR object

The CHARTMGR object provides an interface for creating charts.

Remarks:

You can use this object to write external applications to execute charts defined in the
ClearQuest workspace. You can also modify the properties of this object to set the
attributes of the chart.

1 Verify that the WORKSPACE object is associated with a Session object.

2 Call the GetChartMgr method of the WORKSPACE object.

3 Execute a query by calling the ResultSet object’s Execute method.

4 Specify the data to use for the chart by calling the SetResultSet method and specif
ResultSet object containing the data your query generated.

5 Specify the chart to use in creating the image and generate the image.

Note: To generate a JPEG image, call the MakeJPEG method. To generate a Po
Network Graphics (PNG) image, call the MakePNG method.
74 Using the ClearQuest API

ReportMgr object

The ReportMgr object provides an interface for generating reports.

Remarks:

You can use this object to write external applications to execute reports defined in the
ClearQuest workspace. You can also use the methods of this object to check the status
and parameters of a report.

1 Associate the WORKSPACE object with a Session object.

This association makes it possible to access reports in the ClearQuest workspace.

2 Get a ReportMgr object by calling the GetReportMgr method of the WORKSPACE
object.

When you call GetReportMgr, you must specify the name of the report you want to
execute. ClearQuest associates that report with the returned ReportMgr object. To
execute a different report, you must create a new ReportMgr object.

3 Set the name of the file in which to put the report data by calling the
SetHTMLFileName method.

4 Execute the report by calling the ExecuteReport method.
Using the ClearQuest API 75

E

sion

tents
 the
ueries

ueries

 series
WORKSPACE object

The WORKSPACE object provides an interface for manipulating saved queries, reports,
and charts in the ClearQuest workspace.

Remarks:

You can use this object to

■ write external applications to examine the contents of the ClearQuest workspace

■ in conjunction with the QueryDef object to execute saved queries, the CHARTMGR
object to execute charts, and the ReportMgr object to execute reports.

If you already have a Session object, you can get the WORKSPACE object associated
with the current session by calling the Session object’s GetWorkSpace method.

If you do not have a Session object, your VB code can create a new WORKSPAC
object directly using the CreateObject method as follows:

set wkspcObj = CreateObject("CLEARQUEST.WORKSPACE")

Your Perl code uses this syntax:

$wkspcObj = new CQWorkspaceMgr

Before you can use a WORKSPACE object created using CreateObject, you must
assign a Session object to it. To assign a Session object, you must call the SetSes
method of the WORKSPACE object.

You use the methods of the WORKSPACE object to get information about the con
of the ClearQuest workspace. You can get a list of the queries, charts, or reports in
workspace. You can also separate items based on whether they are in the Public Q
folder or in a user’s Personal Queries folder. You can also use this object to save q
back to the workspace.

Pathnames in the Workspace

The workspace organizes items into a hierarchical structure that you navigate as a
of nested folders. This hierarchy resembles the Windows Explorer in that you can
expand or collapse folders to reveal the layered contents.
76 Using the ClearQuest API

You identify individual queries, charts, and reports using the pathname information for
that item. The pathname for an item is composed of the folder names enclosing it.
Folder names are separated using a forward slash (/) character. For example, the
pathname of a query called All Defects and located in the Public Queries
folder would have the pathname Public Queries/All Defects.

ClearQuest does not provide an explicit way to create new folders. However, you can
create nested folders implicitly when you save a query. The SaveQueryDef method lets
you specify pathname information for a query. If the folders in the pathname do not
exist, ClearQuest creates them (unless they are top-level folder). ClearQuest does not
allow you to create top-level folders; all elements must be nested inside either the
Public Queries or Personal Queries folders.
Using the ClearQuest API 77

78 Using the ClearQuest API

Glossary
mited

ster

o
closed

nd
 that

emas,

setting

. Use
e

e
ctions
access control

Access control limits the use or modification of actions to designated users. Access for
actions is set through the action’s Properties dialog and can be open to all users, li
to a specific group, or controlled by a hook. Access to fields is determined by the
Behaviors table.

action

Whenever you modify a record, you invoke an action from the Action menu to regi
the changes. Actions may result in a state transition or they may simply modify
information in the record’s fields. In ClearQuest, the Action menu displays only the
appropriate legal actions.

ClearQuest allows you to modify a record or to transition a record from one state t
another state. For example, you can transition a record from the open state to the
state.

In ClearQuest Designer: the ClearQuest administrator modifies the Actions table a
state transition matrix of each record type to define the legal actions for records of
type. The definition of each action is stored in the ClearQuest schema repository.

administrator

The person responsible for setting up schemas and databases at your company.

The ClearQuest administrator uses ClearQuest Designer to create and modify sch
databases, and forms. In addition, the administrator performs other tasks, such as
creating user groups and establishing permissions, maintaining the database and
up e-mail notification.

aging chart

Aging charts show how many records have been in the selected states for how long
aging charts to answers the questions: “How many defects have been open for on
week? For two weeks? For three weeks?”

API

Application Programming Interface.

ClearQuest contains a robust interface that administrators can use to customize th
behavior of their databases. The API consists of a set of objects, methods, and fun
Glossary 79

 axis
that can be called from hook code to perform tasks such as getting or setting the value of
a field.

attachment

ClearQuest allows you to associate a file with a particular record. Attachments are
stored in the ClearQuest user database, along with other data contained in the record.

attachment field

An attachment field is a field whose type is ATTACHMENT_LIST. An attachment field
stores attached files.

Attachment object

In the ClearQuest Designer API: An Attachment object stores information about a
single attached file.

Attachments object

In the ClearQuest Designer API: An Attachments object is a collection for Attachment
objects. The overall collection contains the attached files for a single field (represented
by an AttachmentField object).

AttachmentField object

In the ClearQuest Designer API: An AttachmentField object represents the attached
files for a single field. This object stores a reference to an Attachments object.

AttachmentFields object

In the ClearQuest Designer API: An AttachmentFields object is a collection object that
represents all of the attached files for a given record. This object stores references to one
AttachmentField object for every attachment field in the record.

bar chart

A bar chart illustrates comparisons among individual items. Categories are organized
horizontally, values vertically, to focus on comparing values. For example, the bar chart
“Defects by Engineer” displays the names of the engineers along the horizontal or x
and the type of defect along the vertical or y axis.
80 Glossary

or the
 of

rt

e
r you
with a

hema.

. Once
by
hema,
the

 form

behavior

The behavior of a field defines the access restrictions for the field. The behavior for a
given field can be READONLY, OPTIONAL, MANDATORY, or USE_HOOK. To set
the behavior for a field, modify the field’s entry in the Behaviors table.

change-state action

A change-state action moves a record from one state to another state.

chart

A chart is a graphical representation of a selected set of records, created usually f
purpose of comparing attributes of those records. There are several different kinds
charts including distribution charts, trend charts, and aging charts. Results can be
displayed using several different kinds of graphics, including bar chart and pie cha
graphics.

checkout/checkin

The two-part process that allows you to edit a schema and add a new version of th
schema to the ClearQuest schema repository. You can modify a schema only afte
check it out of the schema repository. A version of the schema can be associated
database only after you check it in to the schema repository.

A checkout allows you to add fields, record types, forms, states and actions to a sc

A checkin adds a new version of the schema to the ClearQuest schema repository
you check a schema into the schema repository, you can make changes to it only
creating a new version of the schema. You can save intermediate changes to a sc
without checking it into the schema repository and without updating the version of
schema.

control

A graphic element such as a text box, list box, button or picture that you place on a
to display data, enter data, perform an action, or make the form easier to read.

cursor

The cursor is a placeholder used while navigating through a result set. The cursor
indicates which row is currently being reviewed.
Glossary 81

database

In ClearQuest, the term database refers to the client database that contains all user data
and a copy of the schema associated with the database. The ClearQuest database
contains all forms, fields, the state transition matrix, and all data entered by users.
Compare with production database and test database.

DatabaseDescription object

In the ClearQuest Designer API: A DatabaseDescription object contains information
about a particular database. You can use this object to get information about the
database.

database set

A database set consists of a schema repository and all of the databases associated with
that repository. The databases in the set can be either production databases or test
databases.

dependent field

A dependent field is one whose value is affected by the values in other fields. To set up
a dependent field, you must create hooks that set the value of the field when the original
field (or fields) changes. Typically, you would modify one of the following hooks: the
field default value hook, the field value-changed hook, or the field choice-list hook.

Designer toolbar

In ClearQuest Designer: The Designer toolbar provides easy access to some of the more
commonly-used menu items.

destination state

When you perform an action that causes a state transition, the destination state is the
state to which the record is sent. The record originates from the source state.

distribution chart

Distribution charts are used to measure how many records fall into defined categories or
match the values you indicate.
82 Glossary

For example, use a distribution chart to see the current status of a group of records, or
see who has been assigned the most/least change requests. Another example is a chart
that details which records have the highest priority.

duplicate

In ClearQuest, the term duplicate refers to the nature of a record, action or field in the
state transition matrix.

A record that contains data already recorded in a previous entry is a duplicate. In the
case of defect tracking, a duplicate identifies a defect that has previously been reported.

duplicate action

A duplicate action marks a given record as a duplicate of another record.

entity object

In ClearQuest Designer: An entity object is a runtime object that represents a record in
the database.

entitydef object

In ClearQuest Designer: An entitydef object is a runtime object that represents the
metadata for a record. This metadata describes the structure of the record, including the
number of fields, their names, what data types they must contain, the names of the
permitted actions and states for this record type, and so on.

external application

You can write an external application in VBScript or Perl to perform tasks against a
ClearQuest database. An external application must begin by creating a session object
and logging in to a ClearQuest database. Among the tasks you can then perform are:
create a query, execute a saved query, create new records, perform actions on existing
records.

expression

Any combination of an operator, value, and field name that evaluate a single value.
Filters use expressions to define query criteria.
Glossary 83

es.

ords

its
efore

 the
rd

nt

t
cess
for

e
obal
field

A field represents a singular piece of data in a record. Fields can contain simple data
types such as numbers and strings or they can contain more complex information such
as references to other fields, dates, or the current state of a record.

FieldInfo object

In the ClearQuest Designer API: A FieldInfo object contains information about a
particular field. You can use this object to obtain the field’s value and other attribut

filter

In ClearQuest, filters are restrictions you place on a query to limit the number of rec
returned. Typically, a filter specifies which field values are needed to identify the
specific records you want to work with. For example, you can set up a filter that lim
the query to records submitted after a certain date. Records that were submitted b
the given date are not returned in the query results.

Filter dialog

In ClearQuest, use the Filter dialog to edit the criteria of a given filter.

form

A form provides a visual interface for entering data into a new record, for modifying
data in an existing record, or for specifying query information. You can create reco
forms or submit forms for your schema.

Form Layout toolbar

In ClearQuest Designer: The Form Layout toolbar allows you to adjust the alignme
and size of controls in a form.

hook

Hooks are entry points, like triggers, for pieces of code that ClearQuest executes a
specified times to more fully customize the product. Actions can have hooks for ac
control, initialization, notification, committal, and validation. Fields can have hooks
specifying default values, choice lists, and permissions and for handling tasks
associated with the field when it is validated or its value changes. Records can us
record scripts that allow you to trigger actions that are specific to a record type. Gl
84 Glossary

red
scripts allow you write a subroutine, such as an e-mail notification, that can be called
from any hook in any record type.

history

ClearQuest allows you to track all modifications of each record. The history of a record
includes the creation date and each modification made to the record, such as assigning a
defect to an engineer, adding details to the description field and resolving a defect.

history field

In ClearQuest Designer: A History field stores information about the actions that have
taken place on a record. Every record has an implicit history field associated with it.
You cannot create new history fields. You can place a history control on a form to allow
the user to view the history of a record.

History object

In the ClearQuest Designer API: A History object stores a text string describing an
action that was initiated on a record.

Histories object

In the ClearQuest Designer API: A Histories object is a collection that stores the History
objects associated with a single history field.

HistoryField object

In the ClearQuest Designer API: A HistoryField object represents the history entries
displayed in a single history field.

HistoryFields object

In the ClearQuest Designer API: A HistoryFields object is a collection that stores all of
the history information for a given record. This object stores references to one
HistoryField object for every history field used on the record type’s form.

HookChoices object

In the ClearQuest Designer API: A HookChoices object represents the choices sto
for a given field.
Glossary 85

nd
an
d.
import action

An import action is used when records are imported from another database. During an
import action, the new records are added to the database with only a limited amount of
validation. In particular, records are not validated to determine whether or not they
could have legally reached their current state.

initialization hook

In ClearQuest Designer: An initialization hook can be associated with an action to
initialize the fields of a record to some default values. Because this hook provides
access to all the fields of the record, you should use it primarily for complex
initialization. Compare with the default value hook for fields.

line chart

A line chart shows trends in data at equal intervals. Generally time elements are
displayed along one axis and values displayed along the alternate axis.

Link object

In the ClearQuest Designer API: A Link object represents a link between a duplicate
and its original record. You cannot create Link objects directly.

metadata

Metadata is information that describes other information. In ClearQuest, metadata is
used to specify the structure of records. Databases use metadata to perform searches.

modify action

A modify action allows users to modify the fields of a record without changing the
record’s state.

notification hook

In ClearQuest Designer: A notification hook can be associated with an action to se
notifications or to trigger other actions. For example, a notification hook can send
e-mail message to a group of people to alert them to changes in a particular recor

Operator

Operators act on field values to create a filter expression. Valid operators are:
86 Glossary

original

An original record is a record that has one or more duplicate records associated with it.
ClearQuest updates duplicate records using information in the original record.

Note: An original object can itself be a duplicate of another object.

parent

A parent record is the original record among two or more duplicate records. All other
records are children (or duplicates) of the parent and should draw their state information
from the parent.

IN Looks for single or multiple values (that is,
several different states).

EQUAL Looks for one value (that is, a specific record
description or date.)

CONTAINS Lets you look for text within a value (that is,
words or words that might exist in the records
you’re looking for).

IS NULL Looks for fields that have no value entered. Tip:
To look for fields that have any value, select the
Not check box with the IS NULL operator.

BETWEEN Lets you look for a range of numeric values such
as dates.

GREATER THAN Lets you look for values greater than the value
specified (that is, records entered after a certain
date).

GREATER THAN Lets you look for values less than the value
specified (that is, records entered before a certain
date).
Glossary 87

permission

Users must be granted permission to access a database or to access the fields of a record.
The ClearQuest administrator defines the permissions for each user using ClearQuest
Designer.

pie chart

A pie chart shows the relationship of items to the sum of the items, or as a percentage of
the whole. It always displays only one data series and is useful when you want to
emphasize a significant element.

poll interval

The poll interval for a database is the amount of time a database waits before checking
to see if a user’s connection is still valid.

production database

The production database is the database used by users to submit defects, run queries,
and modify records. The data in this database is used by the company to track defects
from the time they are found to the time they are fixed.

property

In VBScript, a property is a data member of an object. Properties contain readable (and
occasionally writable) values associated with the object.

query

A query is a request to the system to return a set of records that match the specified
search criteria. Queries use filters to set up the search criteria.

QueryDef object

In the ClearQuest Designer API: A QueryDef object contains the information for a
query, including the fields to display and the search criteria. You must use this object in
conjunction with a ResultSet object to initiate a query.

QueryFilterNode object

In the ClearQuest Designer API: A QueryFilterNode object contains information about
the search criteria in a query. This object represents a single condition in the search
88 Glossary

criteria. Multiple QueryFilterNode objects can be created and grouped to perform
complex searches.

record form

A record form is a form that can be used to display the contents of a record or to submit
new records. Every record type must have at least one record form, which ClearQuest
displays by default when you query the ClearQuest database. If a record type also has a
submit form, ClearQuest uses that form when submitting new records instead of the
record form.

record type

A record type is a template that defines the actions, fields, forms, behaviors, and state
information associated with a record. The state information associated with record types
defines the rules for how a record moves from state to state in the database. Schemas
can also contain stateless record types which do not move from state to state.

record type family

ClearQuest enables you to define a "family" of record types that have related
characteristics so that one query can be defined which will return the results from one of
these "families" of types. This will, among other things, enable you to run "todo" lists
across multiple record types, such as defects, enhancement requests, and tasks with a
single query.

result set

A result set contains the data returned from a database search (query). This data is
organized into rows and columns where each row represents a single record and each
column represents a designated field of the record.

ResultSet object

In the ClearQuest Designer API: A ResultSet object initiates a query and provides
methods to allow you to navigate through the search results.

schema

In ClearQuest, the term schema refers to all the attributes associated with a database.
This includes field definitions, field behaviors, the state transition table, actions, report
formats, and forms.
Glossary 89

or

The ClearQuest administrator creates and modifies schemas in ClearQuest Designer.
ClearQuest supports multiple schemas and multiple versions of each schema. Each
version of a schema can be associated with multiple databases.

ClearQuest allows you to update and delete a schema. There must always be at least one
schema in the ClearQuest schema repository .

schema repository

The schema repository is a master database that contains all the data associated with
existing schemas. No user data is stored in the schema repository.

Session object

In the ClearQuest Designer API: A Session object represents the context in which users
access a database. The Session object provides methods to allow the creation and
modification of records and queries.

source state

When you perform an action that causes a state transition, the source state is the state
from which the record originated. The record is sent to the destination state .

SQL

SQL stands for Standard Query Language and is a language supported by most
databases for specifying queries.

SQL editor

In ClearQuest, use the SQL editor to edit SQL expressions.

state

The state of a record refers to the record’s location in the record lifecycle. The
ClearQuest administrator defines the possible states in which a record can exist. F
example, a record is usually given the Submit state when it is first entered into the
system. From there, it might proceed to the Open state while the defect is being
examined, and then to the Fixed state when the defect has been corrected.
90 Glossary

tate.
r that

s to
ault
play

f the
rtificial

 day,
eing

 a
f the
state transition

A state transition occurs when a record moves from one state to a different state.
Actions trigger state transitions based on the rules set up in your system’s state
transition matrix.

state transition matrix

The state transition matrix defines the rules for moving from one state to another s
For each state, the administrator decides the appropriate set of state transitions fo
state and enters them into the matrix.

submit action

A submit action allows users to create new records in the database.

submit form

A submit form is a specialized type of form that is used only for adding new record
the ClearQuest database. If a submit form is available, it is used instead of the def
record form when adding new records. ClearQuest still uses the record form to dis
existing records in the database.

test database

A test database is a database used by the administrator to verify the correctness o
schema associated with the database. Typically, a test database contains a set of a
records whose contents are created solely for the purpose of testing.

trend chart

Trend charts show how many records were transitioned into the selected states by
week or month. In other words, they show you the rate at which new records are b
submitted, resolved or moved into other states.

UNC Pathname

A Uniform Naming Convention pathname allows you to fully specify the location of
file. A UNC Pathname includes the host machine and directory information and is o
format:

\\machine_name\directory\file.ext
Glossary 91

undo checkout

Cancels a schema checkout. ClearQuest cancels all edits to a schema and reverts to the
previously saved version of the schema when you undo a checkout. You can save
intermediate changes to a schema, without checking it into the schema repository or
updating the version of the schema. Once you check a schema into the schema
repository, you can only make changes to it by creating a new version of the schema.

unduplicate action

An unduplicate action removes the mark from a record that identifies it as a duplicate of
another record.

unique key

The database needs to know which column or combination of columns always have a
unique value. For record types that contain states, the unique key is the ID. For stateless
record types, the administrator must assign a unique key. For example, in a project table,
the Project Name could be the unique key. In the case that there are multiple versions of
the project, the Project Name and the Version can be the unique key.

upgrade database

The process of applying recent changes to a user database. The changes are created
using ClearQuest Designer and stored in the master database.

user

A ClearQuest user is someone who submits records to a database using ClearQuest or
who modifies existing records in a database. Users can also create their own custom
forms to use when creating queries but cannot modify the public forms provided with
the database. Compare with administrator.

user group

A user group is a list of users with similar privileges and access permissions. ClearQuest
uses user groups to limit access to certain actions. When access to an action is limited to
a user group, only members of that group may perform the action.
92 Glossary

validate

ClearQuest stores all schemas in the schema repository. Before checking in changes to a
schema ClearQuest validates all changes, verifying that field types and behavior are
valid. Some of the tests ClearQuest performs during the validation process are:

■ Validates that you have not used SQL reserved words incorrectly.

■ Validates that you have entered unique labels and names for fields and actions.

■ Validates that you have assigned a type to each field and a behavior for each state of
each field.

■ Validates that you have supplied a reference_to record type for each reference field.

■ Validates that you have defined a source state and a destination state for all state
transitions.

■ Validates that you have defined a unique key for all stateless record types.

validation hook

A validation hook verifies that the fields in a record do not contain illegal values.
Validation hooks can be associated with fields to verify the contents of the field
immediately or with actions to verify the fields in an entire record.

version

ClearQuest allows you to modify or update a schema. Each time that you checkout a
schema, ClearQuest creates a new version, or revision, of the schema. ClearQuest stores
each version of the schema in the schema repository. You can associate any version of a
schema to a database.

ClearQuest allows you to delete either the last version of the schema or the entire
schema.

Workspace

The Workspace displays the currently available elements in the left pane of the
ClearQuest component. Elements in the Workspace are displayed as a series of
navigable folders that can be expanded and collapsed as needed.

In ClearQuest, the Workspace displays your personal and system queries, charts, and
reports.
Glossary 93

In ClearQuest Designer, the Workspace displays the elements of the currently selected
schema. Schema elements include field and behavior tables, states and the state
transition matrix, forms and stateless record types, such as user and project tables.
94 Glossary

Examples of hooks and scripts
 119
The chapter contains the following hooks and scripts to help use the ClearQuest API to
meet your organization’s business needs:

■ “Getting and setting attachment information” on page 96

■ “Building queries for defects and users” on page 98

■ “Updating duplicate records to match the parent record” on page 103

■ “Managing records (entities) that are stateless and stateful” on page 105

■ “Extracting data about an EntityDef (record type)” on page 109

■ “Extracting data about a field in a record” on page 111

■ “Notifying users of changes to an entity (record)” on page 113

■ “Running a query and reporting on its result set” on page 115

■ “Getting session and database information” on page 117

■ “Running a query against more than one record type (multitype query)” on page

■ “Triggering a task with the destination state” on page 121

For more sample code, see Finding examples in the chapter entitled “Using the
ClearQuest API.”
Examples of hooks and scripts 95

code
e
Getting and setting attachment information

ClearQuest supports attachments, which enable ClearQuest users to add to a change
request record one or more files (text, spreadsheets, screen shots, diagrams, and more).
You can both get and set certain kinds of attachment information, such as the attachment
description.

 The following code fragment iterates over all the attachment fields of a record. For each
of the attachment fields, this code

■ prints the field names of the attachment_list type, which is a list of attached files (for
more information, see GetValueAsList method).

■ iterates over that attachment field’s attachments to print the file name, file size,
description, and content of each attachment.

To illustrate that the attachment’s description is a read/write property, the code also

■ alters the description of the attachment

■ prints the new description

Note: The following code fragment is a hook (for example, an action initialization
hook), and therefore “gets” the session object. However, you can also include this
in an external application if you manually create the session object and log on to th
database.

VBScript

 Dim attachFields ’This is an AttachmentFields collection object.
 Dim attachField ’ This is an AttachmentField object.
 Dim attaches ’This is an Attachments collection object.
 Dim myAttach ’This is an Attachment object.
 Dim session

 ’ for an external application in Visual Basic,
 ’ manually create the session object as follows:
 ' set session = CreateObject(‘CLEARQUEST.SESSION’)
 set session = GetSession()

 Set attachFields = AttachmentFields
 ' Iterate over the attachment fields on an Entity.
 For Each attachField In attachFields
 ' Print to the DBWin32.exe window.

 session.OutputDebugString attachField.FieldName
96 Examples of hooks and scripts

 Set attaches = attachField.Attachments
 ' iterate over the attachment’s field attachments

 For Each myAttach In attaches
 session.OutputDebugString myAttach.FileName
 session.OutputDebugString myAttach.FileSize
 session.OutputDebugString myAttach.Description

 ' Alter the description and print again
 myAttach.Description = "This is a new description."
 session.OutputDebugString myAttach.Description
 ' Use the Load method to write the object’s contents to a file.
 myAttach.Load("c:\temp\foo")
 ' Here, put some code to print out c:\temp\foo (for example).
 Next myAttach
 Next attachField

Perl

You can use the $session variable that ClearQuest provides.
 my $attachFields = $entity->GetAttachmentFields();
 foreach $attachField (@$attachFields) {
 $session->OutputDebugString($attachField->GetFieldName());

my $attaches = $attachField->GetAttachments();
 foreach $attach (@$attaches) {

$session->OutputDebugString($attach->GetFileName());
$session->OutputDebugString($attach->GetFileSize());
$session->OutputDebugString($attach->GetDescription());
Alter the description and print again
$attach->SetDescription(“This is a new description”);
$session->OutputDebugString($attach->Description());
Use the Load method to write the object’s contents to a file.
$attach->Load(“c:\temp\foo”);
Here, put some code to print out c:\temp\foo (for example).

}
}

Examples of hooks and scripts 97

 Building queries for defects and users

The following code fragments show how to build queries that fetch records from the
database by using criteria about defects and users. The samples use the QueryDef and
QueryFilterNode objects, as well as a Structured Query Language (SQL) query.

Note: You can use any of the following code fragments in a hook such as a field
choice list hook or a field validation hook. However, you can also include this code in
an external application if you manually create the session object and log on to the
database (instead of getting the session object).

Select all defects that belong to the “defect” record type:

VBScript

set session = GetSession
Set querydef = session.BuildQuery("defect")
querydef.BuildField("id")
querydef.BuildField("headline")

Set resultset = session.BuildResultSet(querydef)

Perl

You can use the $session variable that ClearQuest provides.
my $myQuerydef = $session->BuildQuery(“defect”);
$myQuerdef->BuildField(“id”);
$myQuerydef->BuildField(“headline”);

my $myResultset = $session->BuildResultSet($myQuerydef);
98 Examples of hooks and scripts

Select defects that match these criteria:

■ “beta2” planned release

■ “assigned to” user “johndoe”

VBScript

set session = GetSession
Set querydef = session.BuildQuery("defect")
querydef.BuildField("id")
querydef.BuildField("headline")

Set operator = querydef.BuildFilterOperator(AD_BOOL_OP_AND)
operator.BuildFilter("assigned_to", AD_COMP_OP_EQ, "johndoe")
operator.BuildFilter("planned_release", AD_COMP_OP_EQ, "beta2")

Set resultset = session.BuildResultSet(querydef)

Perl

You can use the $session variable that ClearQuest provides.
my $querydef = $session->BuildQuery(“defect”);
$querydef->BuildField(“id”);
$querydef->BuildField(“headline”);

my $operator =
$querydef->BuildFileterOperator($CQPerlExt::CQ_BOOL_OP_AND);
$operator->BuildFilter(“assigned-to”, $CQPerlExt::CQ_OOMP_OP_EQ,
“johndoe”);
$operator->BuildFilter(“planned_release, $CQPerlExt::CQ_OOMP_EQ,
“beta2”);

my $resultset = $session->BuildResultSet($querdef);
Examples of hooks and scripts 99

Select defects that match these criteria:

■ assigned to a certain set of users

■ planned for resolution during this release

■ not yet resolved

VBScript

set session = GetSession
Set querydef = session.BuildQuery("defect")
querydef.BuildField("id")
querydef.BuildField("component")
querydef.BuildField("priority")
querydef.BuildField("assigned_to.login_name")
querydef.BuildField("headline")

Set operator = querydef.BuildFilterOperator(AD_BOOL_OP_AND)
operator.BuildFilter("planned_release", AD_COMP_OP_EQ, "beta")
operator.BuildFilter("state", AD_COMP_OP_NEQ, "’resolved’,’verified’")
operator.BuildFilter("priority", AD_COMP_OP_IN, "(1,2)")

Set suboperator = operator.BuildFilterOperator(AD_BOOL_OP_OR)
suboperator.BuildFilter("assigned_to",AD_COMP_OP_IN, _

"’lihong’,’gonzales’,’nougareau’,’makamoto’")

Set resultset = session.BuildResultSet(querydef)
100 Examples of hooks and scripts

Perl

my $querydef = $session->BuildQuery("defect");
$querydef->BuildField("id");
$querydef->BuildField("component");
$querydef->BuildField("priority");
$querydef->BuildField("assigned_to.login_name");
$querydef->BuildField("headline");

my $operator = $querydef->BuildFilterOperator(CQPerlExt::CQ_BOOL_OP_AND);
$operator->BuildFilter("planned_release", CQPerlExt::CQ_COMP_OP_EQ,
"beta");
$operator.BuildFilter("state", CQPerlExt::CQ_COMP_OP_NEQ,
"’resolved’,’verified’");
$operator.BuildFilter("priority", CQPerlExt::CQ_COMP_OP_IN, "(1,2)");
my $suboperator =
$operator->BuildFilterOperator(CQPerlExt::CQ_BOOL_OP_OR);
$suboperator->BuildFilter("assigned_to",CQPerlExt::CQ_COMP_OP_IN,
 "’lihong’,’gonzales’,’nougareau’,’makamoto’");

my $resultset = $session->BuildResultSet(querydef);
Examples of hooks and scripts 101

ct”
Find the users in a certain group (software enginnering, sw_eng):

VBScript

set session = GetSession
Set querydef = session.BuildQuery("users")
querydef.BuildField("login_name")

Set operator = querydef.BuildFilterOperator(AD_BOOL_OP_AND)
operator.BuildFilter("group.name", AD_COMP_OP_EQ, "sw_eng")

Set resultset = session.BuildResultSet(querydef)

Perl

my $querydef = $session->BuildQuery("users");
$querydef->BuildField("login_name");

my $operator = $querydef->BuildFilterOperator(CQPerlExt::CQ_BOOL_OP_AND)
$operator->BuildFilter("group.name", CQPerlExt::CQ_COMP_OP_EQ, "sw_eng");

my $resultset = $session->BuildResultSet(querydef);

Find the default settings for when a user, John Doe (johndoe), submits a record. In this
example, certain field values are in a database table named “defect” (for the “defe
record type). This code builds a SQL query:

VBScript

set session = GetSession
Set resultset = session.BuildSQLQuery("select project,component,

 severity from defect where user=’johndoe’")
resultset.Execute ’ Launch the query

Perl

Perl hook scripts have the current session available in $session.
Therefore, in this context, it is not neccessary to call
$entity->GetSession()
my $resultset=$session->BuildSQLQuery("select project,component,

 severity from defect where user=’johndoe’");
$resultset->Execute; ’ Launch the query
102 Examples of hooks and scripts

Updating duplicate records to match the parent record

The following VBScript code fragment checks to see whether the record (entity) has
any duplicates (children). If so, the hook edits each of the duplicates with the "dupone"
action name, and sets the "action_info" field to indicate that the original (parent) record
is tested.

Note: We recommend you synchronize duplicates records with the original record by
using an action notification hook. An action notification hook fires after a record has
been successfully committed to the database. You can use an action commit hook
instead of an action notification hook. However, using an action commit hook creates a
risk: if the parent record is not committed to the database, but the children records are
committed to the database, your records will be out of synch.

Dim session ’ The current Session object
Dim parent_id ' The current Entity’s display name (ID string)
Dim dups ' Array of all direct duplicates of this Entity
Dim dupvar ' Variant containing a Link to a duplicate
Dim dupobj ' The same Link, but as an Object rather than a Variant
Dim entity ' The Entity extracted from the Link

If (HasDuplicates()) Then
Set session = GetSession
dups = GetDuplicates
parent_id = GetDisplayName
For Each dupvar In dups

' You could check these various functions for failures and then
' report any failures to the user (for example, using MsgBox).
' Failures are unlikely, but possible--for example, someone
' could concurrently "unmark" an entity as a duplicate.
Set dupobj = dupvar
Set entity = dupobj.GetChildEntity
session.EditEntity entity, "dupdone"
SetFieldValue "action_info", _

"Original " & parent_id & " is tested"
' commit the record to the database if validation returns no errors

 status = Validate
 if status = "" then
 Commit
 else

 Revert
 End If
Next

End If
Examples of hooks and scripts 103

104 Examples of hooks and scripts

Managing records (entities) that are stateless and stateful

Your schema has stateless records, such as the Project, and stated records, such as
Defect, which move from state to state. The ClearQuest API enables you to get and set
field values for both kinds of records. This external application example contains two
Visual Basic subroutines: No_state for stateless records, and Has_state for
records that have states. The example

1 Uses the Session’s BuildEntity method to create an Entity object.

2 Set the values in one or more fields.

3 Validates and commits the entity.

4 Retrieves and modifies the entity.

5 Reverts the entity.

The code invokes some external routines that are not shown here:

■ StdOut, which prints its arguments to a file

■ DumpFields, which prints out an entity’s fields to the standard output

■ ValidateAndCommit, which calls the Entity object’s Validate method and Commit
method

’ subroutine for stateless records
Sub No_state(session As Object)

Dim entity As Object
Dim failure As String

StdOut "Test for stateless entities is starting"

StdOut "submit a stateless entity"
Set entity = session.BuildEntity("project")

’ ignore failure
failure = entity.SetFieldValue("name", "initial project name")

DumpFields entity
ValidateAndCommit entity
Set entity = Nothing
Examples of hooks and scripts 105

StdOut "Reload, show values before modification"
Set entity = session.GetEntity("project", "initial project name")
DumpFields entity

StdOut "Modify, then show new values"
session.EditEntity entity, "modify"

’ ignore the failure
failure = entity.SetFieldValue("name", "modified project name")
DumpFields entity

StdOut "revert, then show restored values"
entity.Revert
DumpFields entity

StdOut "Modify again, and commit"
session.EditEntity entity, "modify"

’ ignore failure
failure = entity.SetFieldValue("name", "final project name")
ValidateAndCommit entity
Set entity = Nothing

StdOut "Reload, and show final result"
Set entity = session.GetEntity("project", "final project name")
DumpFields entity
Set entity = Nothing

StdOut "Test for stateless entities is done"
End Sub

’ subroutine for stateful records
Sub Has_states(session As Object)

Dim entity As Object ’ the entity that is stateful
 ’ failure message from functions that return strings

Dim failure As String
Dim failures As Object ’ iterator containing list of failure reasons
Dim id As Long ’ ClearQuest defect database ID

StdOut "Test for stateful entities is starting"
StdOut "submit a stateful entity"
Set entity = session.BuildEntity("defect")

’ ignore failures
failure = entity.SetFieldValue("headline", "man bites dog!")
failure = entity.SetFieldValue("project", "final project name")
failure = entity.SetFieldValue("submit_date", "03/18/2000 10:09:08")
106 Examples of hooks and scripts

id = entity.GetDbId

Open "XXStdout" For Append As #1
Print #1, "Entity id is"; id; Chr(10);
Close #1

DumpFields entity
ValidateAndCommit entity
Set entity = Nothing

StdOut "Reload, show values before modification"
Set entity = session.GetEntityByDbId("defect", id)
DumpFields entity

StdOut "Modify then show new values"
session.EditEntity entity, "modify"

’ ignore failure
failure = entity.SetFieldValue("headline", "man bites tree!")
DumpFields entity

StdOut "revert, then show restored values"
entity.Revert
DumpFields entity

StdOut "Modify again and commit"
session.EditEntity entity, "modify"

’ ignore failure
failure = entity.SetFieldValue("headline", "tree bites man!")
ValidateAndCommit entity
Set entity = Nothing

StdOut "Reload and show before changing state"
Set entity = session.GetEntityByDbId("defect", id)
DumpFields entity

StdOut "Change to new state, then show new values"
session.EditEntity entity, "close"
failure = entity.SetFieldValue("description", _

"looked like an oak tree") ’ ignore failure
DumpFields entity

StdOut "revert then show restored values"
entity.Revert
DumpFields entity

StdOut "Change to new state again then commit"
Examples of hooks and scripts 107

session.EditEntity entity, "close"
failure = entity.SetFieldValue("description", _

"man of steel, tree of maple") ’ ignore failure
ValidateAndCommit entity
Set entity = Nothing

StdOut "Reload, show final values"
Set entity = session.GetEntityByDbId("defect", id)
DumpFields entity
Set entity = Nothing

StdOut "Test of stateful entities is done"
End Sub
108 Examples of hooks and scripts

Extracting data about an EntityDef (record type)

To illustrate that you can manipulate metadata, this Visual Basic example of an external
application prints the following:

■ the name of the EntityDef

■ the names and types of each field and action it contains

■ the names of each state it contains

This subroutine makes use of another routine (not included here) called StdOut, which
prints its arguments to the standard output.

Sub DumpOneEntityDef(edef As Object)
’ The parameter is an EntityDef object.
Dim names As Variant
Dim name As String
Dim limit As Long
Dim index As Long

StdOut "Dumping EntityDef " & edef.GetName

StdOut " FieldDefs:"
names = edef.GetFieldDefNames
If IsArray(names) Then

index = LBound(names)
limit = UBound(names) + 1
Do While index < limit

name = names(index)
StdOut " " & name & " type=" & edef.GetFieldDefType(name)
index = index + 1

Loop
End If

StdOut " ActionDefs:"
names = edef.GetActionDefNames
If IsArray(names) Then

index = LBound(names)
limit = UBound(names) + 1
Do While index < limit

name = names(index)
StdOut " " & name & " type=" & edef.GetActionDefType(name)
index = index + 1

Loop
End If
Examples of hooks and scripts 109

If edef.GetType() = AD_REQ_ENTITY Then
StdOut " EntityDef is a REQ entity def" ’ stated record type
StdOut " StateDefs:"
names = edef.GetStateDefNames
If IsArray(names) Then

index = LBound(names)
limit = UBound(names) + 1
Do While index < limit

name = names(index)
StdOut " " & name
index = index + 1

Loop
End If

Else
StdOut " EntityDef is an AUX entity def" ’ stateless record type

End If

StdOut ""
End Sub
110 Examples of hooks and scripts

Extracting data about a field in a record

One of the most common API calls is to the FieldInfo object. For example, the FieldInfo
object has the GetValue method that enables you to get the value of a field in a record.

The following Visual Basic external application subroutine prints out the information
stored in a FieldInfo object. The code invokes an external routine that is not shown here:
StdOut, which prints its arguments to a file.

Sub DumpFieldInfo(info As Object) ’ The parameter is a FieldInfo object.
Dim temp As Long
Dim status As String
Dim validity As String
Dim valuechange As String
Dim validchange As String
Dim value As String

temp = info.GetValueStatus()
If temp = AD_VALUE_NOT_AVAILABLE Then

status = "VALUE_NOT_AVAILABLE"
ElseIf temp = AD_HAS_VALUE Then

status = "HAS_VALUE" value = "’" & info.GetValue() & "’"
ElseIf temp = AD_HAS_NO_VALUE Then

status = "NO_VALUE"
Else

status = "<invalid value status: " & temp & ">"
End If

temp = info.GetValidationStatus()
If temp = AD_KNOWN_INVALID Then

validity = "INVALID"
ElseIf temp = AD_KNOWN_VALID Then

validity = "VALID"
ElseIf temp = AD_NEEDS_VALIDATION Then

validity = "NEEDS_VALIDATION"
Else

validity = "<invalid validation status: " & temp & ">"
End If

valuechange = ""
If info.ValueChangedThisSetValue() Then

valuechange = valuechange & " setval=Y"
Else

valuechange = valuechange & " setval=N"
Examples of hooks and scripts 111

End If

If info.ValueChangedThisGroup() Then
valuechange = valuechange & " group=Y"

Else
valuechange = valuechange & " group=N"

End If

If info.ValueChangedThisAction() Then
valuechange = valuechange & " action=Y"

Else
valuechange = valuechange & " action=N"

End If

validchange = ""
If info.ValidityChangedThisSetValue() Then

validchange = validchange & " setval=Y"
Else

validchange = validchange & " setval=N"
End If

If info.ValidityChangedThisGroup() Then
validchange = validchange & " group=Y"

Else
validchange = validchange & " group=N"

End If

If info.ValidityChangedThisAction() Then
validchange = validchange & " action=Y"

Else
validchange = validchange & " action=N"

End If

StdOut "FieldInfo for field " & info.GetName()
StdOut " field’s value = " & value
StdOut " value status = " & status
StdOut " value change =" & valuechange
StdOut " validity = " & validity
StdOut " validity change =" & validchange
StdOut " error = ’" & info.GetMessageText() & "’"

End Sub
112 Examples of hooks and scripts

Notifying users of changes to an entity (record)

When you want a hook to fire after a record has been committed to the database, use an
action notification hook. For example, ClearQuest uses an action notification hook for
the e-mail notification feature that informs multiple users after one user has committed a
record to the database.

The following external application code fragment is a complete Visual Basic action
notification hook. This hook

■ fires when a record (entity) is modified

■ uses the Entity’s GetFieldOriginalValue method and GetFieldValue method to find the
values of each field before and after the modification

■ uses the Session method OutputDebugString method to display messages to a debug
window. (To see the debug window, go to the ClearQuest installation directory and
run the dbwin32.exe utility.)

Set session = GetSession
session.OutputDebugString "Modify action completed,” & _

“ action notification hook started"

fieldnames = GetFieldNames
If IsArray(fieldnames) Then

i = LBound(fieldnames)
limit = UBound(fieldnames) + 1
Do While i < limit

onename = fieldnames(i)
Set oldinfo = GetFieldOriginalValue(onename)
Set newinfo = GetFieldValue(onename)

oldstat = oldinfo.GetValueStatus
If oldstat = AD_HAS_NO_VALUE Then

oldempty = True
Else

oldempty = False
oldval = oldinfo.GetValue

End If

newstat = newinfo.GetValueStatus
If newstat = AD_HAS_NO_VALUE Then

newempty = True
Else

newempty = False
Examples of hooks and scripts 113

newval = newinfo.GetValue
End If
If oldstat = AD_VALUE_UNAVAILABLE Then

session.OutputDebugString "Field " & onename & _
": original value unknown"

Else
If newempty And Not oldempty Then

session.OutputDebugString "Field " & onename & _
" has its value deleted"

ElseIf oldempty And Not newempty Then
session.OutputDebugString "Field " & onename & " now = " & newval

ElseIf oldval <> newval Then
session.OutputDebugString "Field " & onename & " was = " & oldval
session.OutputDebugString "Field " & onename & " now = " & newval

Else
session.OutputDebugString "Field " & onename & " is unchanged"

End If
End If

i = i + 1
Loop

End If

session.OutputDebugString "Modify action and action “ & _
“notification hook completed"
114 Examples of hooks and scripts

Running a query and reporting on its result set

ClearQuest client provides powerful reporting capability in a graphical user interface
(GUI) environment. The ClearQuest API also supports programmatic reporting.

Sometimes all you need is the raw results rather than a highly formatted report. The
following Visual Basic subroutine in an external application:

■ uses an existing query object to run the query

■ prints out the name of the entitydef (record type) that the query runs against

■ iterates through all the records in the result set to print the label and value of each
field in each record. This subroutines makes use of two other routines, not included
here: StdOut, which prints its arguments to a file, and ToStr, which converts its
argument to a string.

Sub RunBasicQuery(session As Object, querydef As Object)
’ The parameters to this subroutine are a Session object and a
’ QueryDef object. It is assumed that the QueryDef is valid (for
’ example, BuildField has been used to select one or more fields to
’ retrieve).

Dim rsltset As Object ’ This is a ResultSet object
Dim status As Long
Dim column As Long
Dim num_columns As Long
Dim num_records As Long

Set rsltset = session.BuildResultSet(querydef)
rsltset.Execute

StdOut "primary entity def for query == " & _
rsltset.LookupPrimaryEntityDefName

num_columns = rsltset.GetNumberOfColumns
num_records = 0
status = rsltset.MoveNext
Do While status = AD_SUCCESS

num_records = num_records + 1
StdOut "Record #" & num_records

’ Note: result set indices are based 1..N, not the usual 0..N-1
column = 1
Do While column <= num_columns

StdOut " " & rsltset.GetColumnLabel(column) & "=" & _
Examples of hooks and scripts 115

ToStr(rsltset.GetColumnValue(column))
column = column + 1

Loop

StdOut ""
status = rsltset.MoveNext

Loop
End Sub
116 Examples of hooks and scripts

Getting session and database information

The following Visual Basic external application illustrates some of the Session and
DatabaseDescription methods. You need a session object to connect to the database. The
session object allows you to get information about the database (such as the SQL
connect string) and the user that is currently logged on. There are three steps to the
process:

1 Create the session object.

2 Log on to the database.

3 Do the tasks you want to do.

For more information, see the Session object and the DatabaseDescription object.

The following code prints out the information stored in the Session’s
DatabaseDescription object, as well as all the user-related information. This subroutine
makes use of another routine (not included here) called StdOut, which prints its
arguments to a file.

’ Connect via OLE to ClearQuest
Set session = CreateObject("CLEARQUEST.SESSION")

’ login_name, password, and dbname are Strings that have
’ been set elsewhere
session.UserLogon login_name, password, dbname, AD_PRIVATE_SESSION, ""

Set dbDesc = session.GetSessionDatabase
StdOut "DB name = " & dbDesc.GetDatabaseName
StdOut "DB set name = " & dbDesc.GetDatabaseSetName
StdOut "DB connect string = " & dbDesc.GetDatabaseConnectString

StdOut "user login name = " & session.GetUserLoginName
StdOut "user full name = " & session.GetUserFullName
StdOut "user email = " & session.GetUserEmail
StdOut "user phone = " & session.GetUserPhone
StdOut "misc user info = " & session.GetUserMiscInfo

StdOut "user groups:"
Set userGroups = session.GetUserGroups
Examples of hooks and scripts 117

If IsArray(userGroups) Then
i = 0
limit = UBound(userGroups) + 1
Do While i < limit

onename = userGroups(i)
StdOut " group " & onename
i = i + 1

Loop
End If
118 Examples of hooks and scripts

ion

t
Running a query against more than one record type (multitype query)

ClearQuest enables you to create a query that retrieves data from more than one record
type. A Multitype query fetches data from all the records types that belong to a given
"record type family". Here are some possible examples of record type families:

■ “change requests” include “defects”, “enhancement requests”, and “documentat
requests

■ “work orders” include “software fixes” and “hardware fixes”

■ “issues” includes “porting,” “features”, and “problem incidents”

To learn about record type families, look up “record type families” in the index of
Administrating ClearQuest.

This code fragment from an external application assumes that

■ the schema has one record type family, "TestFamily"

■ "TestFamily" contains two record types (for example, "Defect" and "Enhancemen
Request")

Note: The output of this code should be: TestFamily, True, True

Visual Basic:

Dim qryDef As OAdQuerydef
Dim resultSet As OAdResultset
Dim familyEntDef As OAdEntityDef

’ Insert code here to get the session object and log in to the database

families = session.GetEntityDefFamilyNames
If IsArray(families) Then
 Debug.Print UBound(families)
 For i = 0 To UBound(families)
 ’ Do something with families(i)
 Next i
 Set qryDef = session.BuildQuery(families(0))
 qryDef.BuildField ("Description")
 Set resultSet = session.BuildResultSet(qryDef)
 If qryDef.IsMultiType Then
 ’ Do something.
 End if
 Set familyEntDef = session.GetEntityDefFamily(families(0))
Examples of hooks and scripts 119

 If familyEntDef.IsFamily Then
 ’ Do something.
 End If
End If

Perl:

Insert code here to get the session object and log in to the database
$families = $session->GetEntityDefFamilyNames();
foreach $familyName in (@$families) {
print ($familyName);

}
if ($qryDef = $session->BuildQuery(@$families[0])) {
 # do something;
}
$qryDef->BuildField("Description");
$resultSet = $session->BuildResultSet($qryDef);
if ($resultSet->IsMultiType()) {
 # do something;
}
$familyEntDef = $session->GetEntityDefFamily(@$families[0]);
if ($familyEntDef->IsFamily()) {
 # do something;
}

120 Examples of hooks and scripts

 in

l if

 that
h
on.
Triggering a task with the destination state

To apply some conditional logic, you can determine the destination state of the record
currently undergoing an action. Here are some examples:

■ Send an email to the Project Manager if a user moves a priority 1 defect into the
“postponed” state.

■ Allow the user to modify (reapply the “opened” state) to a defect that is currently
the “resolved” state if, and only if, that user belongs to the Manager group.

The following action notification hook gets the destination state and sends an emai
the current record is being closed.

Note: This action notification hook uses a base action. A base action is an action
occurs with every action. A base action is convenient if you want a hook to fire wit
more than one action, such as an e-mail notification hook that fires with every acti

VBScript

Sub Defect_Notification(actionname, actiontype)
 ’ actionname As String
 ’ actiontype As Long
 ’ action = test_base
 set cqSes = GetSession
 actionName = GetActionName

 ’ NOTE: You can also have conditional logic based on the current action
 set entDef = cqSes.GetEntityDef(GetEntityDefName)
 if entDef.GetActionDestStateName(actionName) = "Closed" then
 ’ put send notification message code here
 end if

End Sub
Examples of hooks and scripts 121

Perl

sub Defect_Notification {
 my($actionname, $actiontype) = @_;
 # $actionname as string scalar
 # $actiontype as long scalar
 # action is test_base

 $actionName = $entity->GetActionName();

 # NOTE: You can also have conditional logic based on the current action

You can use the $session variable that ClearQuest provides.
 $entDef = $session->GetEntityDef($entitiy->GetEntityDefName());
 if ($entDef->GetActionDestStateName($actionName) eq "Closed") {
 # put send notification message code here
 }

}

122 Examples of hooks and scripts

Enumerated Constants
This topic lists all the constants used as arguments or return values by the methods and
properties in the ClearQuest API, except as otherwise noted.

Note: For the difference between VBScript and Perl constants, see Notation
Conventions for VBScript/Visual Basic and Notation Conventions for Perl.

ActionType

The ActionType constants define the legal action types in VBScript.

Constant Value Description

_SUBMIT 1 Create a new record.

_MODIFY 2 Change the contents of a record.

_CHANGE_STATE 3 Change the state of a record.

_DUPLICATE 4 Mark the record as a duplicate of another
record.

_GETACTIONNAME Get the name that belongs to the current
Entity object action.

_GETACTIONTYPE Get the action type that belongs to the
current Entity object method.

_UNDUPLICATE 5 Undo the DUPLICATE action.

_IMPORT 6 Import a new record.

_DELETE 7 Delete an entity.

_BASE 8 Base actions fire with all other actions. [See
the Schemas and Packages appendix of
Administrating ClearQuest.]

_RECORD_SCRIPT_ALIAS 9 Allows you to call one single method,
GetActionName, instead of having to call
three: EditEntity method, Validate method,
and Commit method.
Enumerated Constants 123

Behavior

The Behavior constants identify the behavior of the designated field.

BoolOp

The BoolOp constants identify the valid boolean operations.

CompOp

The CompOp constants identify the valid comparison operators.

Constant Value Description

_MANDATORY 1 A value must be provided. Corresponds to the
MANDATORY field behavior in the user
interface.

_OPTIONAL 2 A value may be provided but is not required.
Corresponds to the OPTIONAL field behavior in
the user interface.

_READONLY 3 The designated field cannot be changed.
Corresponds to the READONLY field behavior
in the user interface.

_USE_HOOK 4 The behavior of the field is determined by
calling the associated hook. Corresponds to the
USE_HOOK field behavior in the user interface.

Constant Value Description

_BOOL_OP_AND 1 Boolean AND operator

_BOOL_OP_OR 2 Boolean OR operator

Constant Value Description

_COMP_OP_EQ 1 Equality operator (=)

_COMP_OP_NEQ 2 Inequality operator (<>)

_COMP_OP_LT 3 Less-than operator (<)

_COMP_OP_LTE 4 Less-than or Equal operator (<=)
124 Enumerated Constants

DatabaseVendor

The DatabaseVendor constants identify the supported database types.

_COMP_OP_GT 5 Greater-than operator (>)

_COMP_OP_GTE 6 Greater-than or Equal operator (>=)

_COMP_OP_LIKE 7 Like operator (value is a substring of the string
in the given field)

_COMP_OP_NOT_LIKE 8 Not-like operator (value is not a substring of the
string in the given field)

_COMP_OP_BETWEEN 9 Between operator (value is between the
specified delimiter values)

_COMP_OP_NOT_BETWEEN 10 Not-between operator (value is not between
specified delimiter values)

_COMP_OP_IS_NULL 11 Is-NULL operator (field does not contain a
value)

_COMP_OP_IS_NOT_NULL 12 Is-not-NULL operator (field contains a value)

_COMP_OP_IN 13 In operator (value is in the specified set)

_COMP_OP_NOT_IN 14 Not-in operator (value is not in the specified set)

Constant Value Description

_SQL_SERVER 1 An SQL Server database.

_MS_ACCESS 2 An MS Access database.

_SQL_ANYWHERE 3 An SQL Anywhere database.

_ORACLE7 4 An Oracle database using Oracle7 client
networking software

Constant Value Description
Enumerated Constants 125

EntityType

The EntityType constants identify state-based or stateless records.

EventType

The Type constants identify the cause of hook invocations.

Constant Value Description

_REQ_ENTITY 1 State-based records

_AUX_ENTITY 2 Stateless records

_ANY_ENTITY 3 Either state-based or stateless records

Constant Value Description

_BUTTON_CLICK 1 The hook invocation is triggered by a push
button click.

_SUBDIALOG_BUTTON_CLICK 2 The hook invocation is triggered by a click
on the subdialog button.

_SELECTION 3 The hook invocation is triggered by an item
selection.

_DBLCLICK 4 The hook invocation is triggered by a point
device double-click.

_CONTEXTMENU_ITEM_SELECTION 5 The hook invocation is triggered by a
contextual menu selection.

_CONTEXTMENU_ITEM_CONDITION 6 Indicates whether the hook should enable
or disable a contextual menu item. A string
value of "1" indicates the item should be
enabled. A String value of "0" indicates the
item should be disabled.
126 Enumerated Constants

FetchStatus

The FetchStatus constants identify the status of moving the cursor in a request set.

FieldType

The FieldType constants identify the information contained in a field.

Constant Value Description

_SUCCESS 1 The next record in the request set was
successfully obtained.

_NO_DATA_FOUND 2 No more records were found in the request set.

_MAX_ROWS_EXCEEDED 3 Not used.

Constant Value Description

_SHORT_STRING 1 Simple text field (255 character limit)

_MULTILINE_STRING 2 Arbtitrarily long text

_INT 3 Integer

_DATE_TIME 4 Timestamp information

_REFERENCE 5 A pointer to a stateless record

_REFERENCE_LIST 6 A list of references

_ATTACHMENT_LIST 7 A list of attached files

_ID 8 A special string ID for records

_STATE 9 The current state of a state-based record

_JOURNAL 10 A special list of rows in a subtable that belongs
exclusively to this record

_DBID 11 A special internal numeric ID
Enumerated Constants 127

FieldValidationStatus

The FieldValidationStatus constants identify the status of the designated field.

QueryType

The QueryType constants indentify the type of stored query.

SessionType

The SessionType constants identify the type of session desired.

Constant Value Description

_KNOWN_VALID 1 The field’s value is known to be valid.

_KNOWN_INVALID 2 The field’s value is known to be invalid.

_NEEDS_VALIDATION 3 The field’s value may be valid but has not been
checked.

Constant Value Description

_LIST_QUERY 1 A list that corresponds to the result set grid in
ClearQuest Designer.

_REPORT_QUERY 2 A report that corresponds to a report in the
ClearQuest Designer workspace.

_CHART_QUERY 3 A chart that corresponds to a chart in the
ClearQuest Designer workspace.

Constant Value Description

_SHARED_SESSION 1 More than one client can access this session’s
data

_PRIVATE_SESSION 2 Only one client can access this session’s data

_ADMIN_SESSION 3 The system administrator is logged into the
session.
128 Enumerated Constants

ValueStatus

The ValueStatus constants identify the status of a field. OLEWKSPCQUERYTYPE

Note: The following constants do not use the notational convention.

The OLEWKSPCQUERYTYPE constants identify the desired source of a query.

OLEWKSPCREPORTTYPE

Note: The following constants do not use the notational convention.

The OLEWKSPCREPORTTYPE constants identify the desired source of a report.

Constant Value Description

_HAS_NO_VALUE 1 The field has no value set.

_HAS_VALUE 2 The field has a value.

_VALUE_NOT_AVAILABLE 3 The current state of the field prevents it from
returning a value.

Constant Value Description

OLEWKSPCQUERIESNONE 0 Do not return queries.

OLEWKSPCSYSTEMQUERIES 1 Return system queries only.

OLEWKSPCUSERQUERIES 2 Return user queries only.

OLEWKSPCBOTHQUERIES 3 Return either system or user queries.

Constant Value Description

OLEWKSPCREPORTSNONE 0 Do not return reports

OLEWKSPCSYSTEMREPORTS 1 Return system reports only.

OLEWKSPCUSERREPORTS 2 Return user reports only.

OLEWKSPCBOTHREPORTS 3 Return either system or user reports.
Enumerated Constants 129

130 Enumerated Constants

Session object
Session object properties:

Session object methods:

Property name Access Description

NameValue property Read/Write Gets or sets the value of one of this
property’s named variables.

Method name Description

BuildEntity method Creates a new record of the specified type and begins a Submit
action.

BuildQuery method Creates and returns a new QueryDef object for the specified record
type.

BuildResultSet method Creates and returns a result set that can be used to run a query.

BuildSQLQuery method Creates and returns a ResultSet object using a raw SQL string.

DeleteEntity method Deletes the specified record from the current database.

EditEntity method Performs the specified action on a record and makes the record
available for editing.

FireRecordScriptAlias method Calls the action that calls the hook script; use to simulate a user
choosing an action that launches a hook.

GetAccessibleDatabases
method

Returns a list of databases that are available for the specified user to
log in to.

GetAuxEntityDefNames
method

Returns an array of Strings, each of which corresponds to the name
of one of the schema stateless record types.

GetDefaultEntityDef method Returns the schema’s default EntityDef object.

GetEnabledEntityDefs
method

Returns the EntityDefs collection object enabled in the current

schema for a given package revision.

GetEnabledPackageRevs
method

Returns a collection object representing the packageRev set that is
enabled for the current revision of the schema.

GetEntity method Returns the specified record.

GetEntityByDbId method Returns the record with the specified database ID.
Session object 131

GetEntityDef method Returns the specified EntityDef object if it is a family.

GetEntityDefFamily method Returns the requested EntityDef object if it is a family.

GetEntityDefFamilyNames
method

Returns an array containing the requested EntityDef family names.

GetEntityDefNames method Returns an array containing the names of the record types in the
current database’s schema.

GetInstalledMasters method Returns the list of registered database sets and master databases.

GetQueryEntityDefNames
method

Returns an array containing the names of the record types that are
suitable for use in queries.

GetReqEntityDefNames
method

Returns an array containing the names of the state-based record
types in the current database’s schema.

GetServerInfo method Returns the name of the session’s OLE server.

GetSessionDatabase
method

Returns general information about the database that is being
accessed in the current session.

GetSubmitEntityDefNames
method

Returns an array containing the names of the record types that are
suitable for use in creating a new record.

GetUserEmail method Returns the electronic mail address of the user who is logged in for
this session.

GetUserFullName method Returns the full name of the user who is logged in for this session.

GetUserGroups method Returns a list of the groups to which the current user belongs.

GetUserLoginName method Returns the name that was used to log in for this session.

GetUserMiscInfo method Returns miscellaneous information about the user who is logged in
for this session.

GetUserPhone method Returns the telephone number of the user who is logged in for this
session.

GetWorkSpace method Returns the session’s WORKSPACE object.

HasValue method Returns a Bool indicating whether the specified session variable
exists.

IsMetadataReadonly method Returns a boolean indicating whether the session’s metadata is
read-only.

Method name Description
132 Session object

See Also:

Session and DatabaseDescription Code Example

MarkEntityAsDuplicate
method

Modifies the specified record to indicate that it is a duplicate of
another record.

OpenQueryDef method Loads a query from a file.

OutputDebugString method Specifies a message that can be displayed by a debugger or a
similar tool.

UnmarkEntityAsDuplicate
method

Removes the indication that the specified record is a duplicate of
another record.

UserLogon method Log in as the specified user for a database session.

Method name Description
Session object 133

is
you
with
not
NameValue property

Gets or sets the value of one of this property’s named variables.

VB Syntax:

session.NameValue name
session.NameValue name, newValue

Perl Syntax:

$database->GetNameValue(name);
$database->SetNameValue(name, newValue);

Member of: Session object

Remarks:

Use this property to get and set the values for session-wide variables. Because th
property consists of an array of values, you must specify the name of the variable
are interested in. If you set the value of a variable that does not exist, it is created
the specified value assigned to it. If you try to get the value of a variable that does
exist, an empty Variant is returned.

Examples:

set sessionObj = GetSession

’ Get the old value of the session variable "foo"
fooValue = sessionObj.NameValue("foo")

Identifier Description

session The Session object that represents the current database-access
session.

name A String containing the name of the variable to get or set.

newValue A reference to a Variant containing the new value for the variable.

Return value A Variant when getting a value. Nothing when setting a value.
134 Session object

’ Set the new value of "foo"
sessionObj.NameValue "foo", "bar"

See Also:

HasValue method
Session object 135

ake

he
 and

n
BuildEntity method

Creates a new record of the specified type and begins a "submit" action.

VB Syntax:

session.BuildEntity entitydef_name

Perl Syntax:

$session->BuildEntity(entitydef_name);

Member of: Session object

Remarks:

This method creates a new record and initiates a "submit" action, thus enabling you to
begin editing the record’s contents. (You do not need to call EditEntity method to m
the record editable.) You can assign values to the new record’s fields using the
SetFieldValue method of the returned Entity object. When you are done updating t
record, use the Validate method and Commit method of the Entity object to validate
commit any changes you made to the record, respectively.

The name you specify in the entitydef_name parameter must also correspond to a
appropriate record type in the schema. To obtain a list of legal names for
entitydef_name, use the GetSubmitEntityDefNames method.

Identifier Description

session The Session object that represents the current database-access
session.

entitydef_name A String containing the name of the EntityDef object to use as a
template when creating the record.

Return value A new Entity object that was built using the named EntityDef object
as a template.
136 Session object

Examples:

set sessionObj = GetSession

’ Create a new "defect" record
set entityObj = sessionObj.BuildEntity("defect")

See Also:

EditEntity method
GetEntity method
GetSubmitEntityDefNames method
Commit method of the Entity object
SetFieldValue method of the Entity object
Validate method of the Entity object
Entity object
Entity Code Example
Session object 137

 the
rch
d

ultSet
BuildQuery method

Creates and returns a new QueryDef object for the specified record type.

VB Syntax:

session.BuildQuery entitydef_name

Perl Syntax:

$session->BuildQuery(entitydef_name);

Member of: Session object

Remarks:

You can use the returned QueryDef object to build a query for searching records whose
record type matches the specified EntityDef. Before you can perform the search, you
must add at least one field to query’s display list by calling the BuildField method of
QueryDef object. You can also add filters to the QueryDef object to specify the sea
criteria. For more information on specifying this information, see the description an
methods of the QueryDef object.

The name you specify in the entitydef_name parameter must correspond to an
appropriate record type in the schema. To obtain a list of legal names for
entitydef_name, use the GetQueryEntityDefNames method.

Before you can run the query, you must associate the QueryDef object with a Res
Object. See the BuildResultSet method for information on how to do this.

Identifier Description

session The Session object that represents the current database-access
session.

entitydef_name A String containing the name of the EntityDef object to use as a
template when creating the record.

Return value A new QueryDef object. This object contains no filters or build
fields.
138 Session object

Examples:

set sessionObj = GetSession

’ Create a query for "defect" records
set queryDefObj = sessionObj.BuildQuery("defect")

See Also:

BuildResultSet method
GetEntityDefNames method
GetQueryEntityDefNames method
BuildField method of the QueryDef object
QueryDef object
ResultSet Object
BuildQuery Code Example
Session object 139

BuildResultSet method

Creates and returns a result set that can be used to run a query.

VB Syntax:

session.BuildResultSet querydef

Perl Syntax:

$session->BuildResultSet(querydef);

Member of: Session object

Remarks:

This method creates a ResultSet object for the specified QueryDef object. You can then
use the returned ResultSet object to run the query and store the resulting data.

Do not call this method until you have added all of the desired fields and filters to the
QueryDef object. This method uses the information in the QueryDef object to build the
set of data structures needed to store the query data. If you add new fields or filters to
the QueryDef object after calling this method, the ResultSet object will not reflect the
new additions. To run the query and fetch the resulting data, you must subsequently call
the ResultSet object’s Execute method.

Note:
To obtain the QueryDef object that you pass to this method, you must call the
BuildQuery method. To construct a ResultSet object directly from a raw SQL query
string, use the BuildSQLQuery method.

Identifier Description

session The Session object that represents the current database-access
session.

querydef A QueryDef object that defines the desired query.

Return value A ResultSet Object suitable for eventual execution of the query.
140 Session object

Examples:

set sessionObj = GetSession
’ Create a query and result set to search for all records.

set queryDefObj = sessionObj.BuildQuery("defect")
queryDefObj.BuildField("id")
set resultSetObj = sessionObj.BuildResultSet(queryDefObj)

See Also:

BuildQuery method
BuildSQLQuery method
Execute method of the ResultSet object
QueryDef object
ResultSet Object
BuildQuery Code Example
ResultSet Code Example
Session object 141

BuildSQLQuery method

Creates and returns a ResultSet object using a raw SQL string.

VB Syntax:

session.BuildSQLQuery SQL_string

Perl Syntax:

$session->BuildSQLQuery(SQL_string);

Member of: Session object

Remarks:

We recommend you use the ClearQuest API to define a query and filter(s),
as opposed to writing raw SQL.

Like BuildResultSet method, this method creates a ResultSet object that you can use to
run a query. Unlike BuildResultSet, this method uses a raw SQL string instead of a
QueryDef object to build the data structures of the ResultSet object. Do not call this
method until you have completely constructed the SQL query string.

Like BuildResultSet method, this method generates the data structures needed to store
the query data but does not fetch the data. To run the query and fetch the resulting data,
you must call the ResultSet object’s Execute method.

Unlike BuildResultSet, BuildSQLQuery makes no use of a QueryDef object, so the
query defined by the SQL string cannot be manipulated before constructing the
ResultSet.

Identifier Description

session The Session object that represents the current database-access
session.

SQL_string A String containing the raw SQL commands for the query.

Return value A ResultSet Object suitable for running the query.
142 Session object

Examples:

set sessionObj = GetSession

’ Create a SQL string to find all records and display their
’ ID and headline fields

sqlString = "select T1.id,T1.headline from defect T1 where T1.dbid <> 0"
set resultSetObj = sessionObj.BuildSQLQuery(sqlString)

See Also:

BuildQuery method
ResultSet Object
BuildQuery Code Example
Session object 143

DeleteEntity method

Deletes the specified record from the current database.

VB Syntax:

session.DeleteEntity entity, deleteActionName

Perl Syntax:

$session->DeleteEntity(entity, deleteActionName);

Member of: Session object

Remarks:

When you call this method, ClearQuest deletes the specified entity using the action
whose name you specified in the deleteActionName parameter. This action name must
correspond to a valid action in the schema and it must be legal to perform the action on
the specified entity.

Examples:

set sessionObj = GetSession

’ Delete the record whose ID is "BUGDB00000042" using the "delete" action
set objToDelete = sessionObj.GetEntity("defect", "BUGDB00000042")
sessionObj.DeleteEntity objToDelete, "delete"

Identifier Description

session The Session object that represents the current database-access
session.

entity The Entity object corresponding to the record to be deleted.

deleteActionName A String containing the name of the action to use when deleting the
entity.

Return value If there was a problem deleting the entity, this method returns a
String containing the error message, otherwise this method returns
an empty string ("").
144 Session object

See Also:

BuildEntity method
EditEntity method
GetEntity method
Entity object
Session object 145

mmit
EditEntity method

Performs the specified action on a record and makes the record available for editing.

VB Syntax:

session.EditEntity entity, edit_action_name

Perl Syntax:

$session->EditEntity(entity, edit_action_name);

Member of: Session object

Remarks:

The Entity object you specify in the entity parameter must have been previously
obtained by calling the GetEntityByDbId method or GetEntity method method, or by
running a query. If you created the Entity object using the BuildEntity method and have
not yet committed it to the database, the object is already available for editing.

To obtain a list of legal values for the edit_action_name parameter, call the
GetActionDefNames method of the appropriate EntityDef object.

After calling this method, you can call the methods of the Entity object to modify the
fields of the corresponding record. When you are done editing the record, validate it and
commit your changes to the database by calling the Entity object’s Validate and Co
methods, respectively.

Identifier Description

session The Session object that represents the current database-access
session.

entity The Entity object corresponding to the record that is to be edited.

edit_action_name A String containing the name of the action to initiate for editing. (For
example: "modify" or "resolve")

Return value None.
146 Session object

Examples:

set sessionObj = GetSession

’ Edit the record whose ID is "BUGDB00000010" using the "modify" action
set objToEdit = sessionObj.GetEntity("defect", "BUGDB00000010")
sessionObj.EditEntity objToEdit, "modify"

See Also:

BuildEntity method
GetEntity method
GetEntityByDbId method
Commit method of the Entity object
Validate method of the Entity object
GetActionDefNames method of the EntityDef object
Entity object
ActionType
Duplicates Code Example
Entity Code Example
Session object 147

FireRecordScriptAlias method

Calls the action that calls the hook script.

VB Syntax:

session.FireRecordScriptAlias entity, editActionName

Perl Syntax:

$session->FireRecordScriptAlias(entity, editActionName);

Member of: Session object

Remarks:

You can use this method to programmatically simulate a user choosing an action that
launches a hook. The method wraps a named hook script in an action.

See Also:

_RECORD_SCRIPT_ALIASconstant in ActionType
Commit method
EditEntity method
Validate method
FireNamedHook method
Notation Conventions

Identifier Description

entity The entity must be an entity object previously returned by
BuildEntity, GetEntityById, or GetEntityByDisplayName.

editActionName The edit action name must be the name of a valid action as
defined in the metadata.The action type must be
RECORD_SCRIPT_ALIAS or this method fails.

Return value A String containing the script return value determined by
the hook.
148 Session object

ase’s
GetAccessibleDatabases method

Returns a list of databases that are available for the specified user to log in to.

VB Syntax:

session.GetAccessibleDatabases master_db_name, user_login_name, database_set

Perl Syntax:

$session->GetAccessibleDatabases(master_db_name, user_login_name,
database_set);

Member of: Session object

Remarks:

This method returns only the databases that the specified user is allowed to log in to. If
the user_login_name parameter contains an empty String, this method returns a list of
all of the databases associated with the specified master database.

You can examine each DatabaseDescription object to get the corresponding datab
name and other information needed to log in to it.

Identifier Description

session The Session object that represents the current database-access
session.

master_db_name A String that specifies the schema repository.

user_login_name A String that specifies the user’s login.

database_set A String that specifies the database set in which to look for
accessible databases. By default, this argument should contain the
empty String.

Return value A Variant containing an Array whose elements are Variants of type
DatabaseDescription object.
Session object 149

Examples:

set sessionObj = GetSession

’ Get the list of databases in the
’ "ClearQuest 1.1" master database set.
databases = sessionObj.GetAccessibleDatabases("ClearQuest 1.1", "", "")
for each db in databases

’ Get the name of the database
dbName = db.GetDatabaseName

Next

See Also:

UserLogon method
GetDatabaseName method of the DatabaseDescription object
DatabaseDescription object
150 Session object

GetAuxEntityDefNames method

Returns an array of Strings, each of which corresponds to the name of one of the schema
stateless record types.

VB Syntax:

session.GetAuxEntityDefNames

Perl Syntax:

$session->GetAuxEntityDefNames();

Member of: Session object

Remarks:

The Array is never empty; at a minimum it will contain the names "users", "groups",
"attachments", and "history" which correspond to the system-defined stateless record
types.

Once you have the name of a stateless record type, you can retrieve the EntityDef object
for that record type by calling the GetEntityDef method.

Examples:

set sessionObj = GetSession

’ Get the list of names for the stateless record types.
entityDefNames = sessionObj.GetAuxEntityDefNames

’ Iterate over the non-system stateless record types
for each name in entityDefNames

if name <> "users" And name <> "groups" _

Identifier Description

session The Session object that represents the current database-access
session.

Return value A Variant containing an Array of Strings. Each String contains the
name of a stateless record type.
Session object 151

And name <> "attachments" And name <> "history" Then
set entityDefObj = sessionObj.GetEntityDef(name)

’ Do something with the EntityDef object
End If

Next

See Also:

GetEntityDef method
GetEntityDefNames method
GetQueryEntityDefNames method
GetReqEntityDefNames method
GetSubmitEntityDefNames method
152 Session object

thods
t
GetDefaultEntityDef method

Returns the schema’s default EntityDef object.

VB Syntax:

session.GetAuxEntityDefNames

Perl Syntax:

$session->GetAuxEntityDefNames();

Member of: Session object

Remarks:

This method returns the default EntityDef object as defined in the schema. For me
that require a named EntityDef object, ClearQuest uses the default EntityDef objec
when the name is the empty string ("").

Examples:

set sessionObj = GetSession

set defEntityDef = sessionObj.GetDefaultEntityDef

See Also:

GetEntityDef method
EntityDef object

Identifier Description

session The Session object that represents the current database-access
session.

Return value The default EntityDef object.
Session object 153

GetEnabledEntityDefs method

Returns the EntityDefs collection object enabled in the current schema for a given
package revision.

VB Syntax:

schemaRev.GetEnabledEntityDefs packName, rev

Perl Syntax:

$schemaRev->GetEnabledEntityDefs(packName, rev);

Member of: SchemaRev object, Session object

Remarks:

Use with GetEnabledPackageRevs method to discover which packages and package
revisions apply to the current user database.

See Also:

GetEnabledPackageRevs method
GetEnabledEntityDefs method of the SchemaRev object

Identifier Description

packName A String that specifies the package name.

rev A String that specifies the package revision.

Return value The EntityDefs object for the current package revision.
154 Session object

GetEnabledPackageRevs method

Returns a collection object representing the packageRev set that is enabled in the
current revision of the schema.

VB Syntax:

session.GetEnabledPackageRevs PackageName, RevString

Perl Syntax:

$session->GetEnabledPackageRevs(PackageName, RevString);

Member of: SchemaRev object, Session object

Remarks:

You can call this method from the Session object, in which case the schema revision is
already known when you log onto the user database.

See this method, GetEnabledPackageRevs method, in its other object, SchemaRev
object, for an alternative use.

See Also:

GetEntity method
GetEnabledPackageRevs method in SchemaRev object

Identifier Description

PackageName Name of the package.

RevString Represents the revision of the package.

Return values The collection object of the packageRev set.
Session object 155

e,
GetEntity method

Returns the specified record.

VB Syntax:

session.GetEntity entity def_name, display_name

Perl Syntax:

$session->GetEntity(entity def_name, display_name);

Member of: Session object

Remarks:

When requesting a state-based record type, the display_name parameter must contain
the visible ID of the record (for example, “DEF00013323”). For stateless record typ
this parameter must contain the value of the record’s unique key field.

To request a record using its database ID instead of its visible ID, use the
GetEntityByDbId method.

Examples:

set sessionObj = GetSession

set record1 = sessionObj.GetEntity("defect", "DEF00013323")

Identifier Description

session The Session object that represents the current database-access
session.

entity def_name A String that identifies the name of the record type to which the
record belongs.

display_name A String that identifies the record.

Return value An Entity object corresponding to the requested record.
156 Session object

See Also:

BuildEntity method
EditEntity method
GetEntityByDbId method
Entity Code Example
Session object 157

GetEntityByDbId method

Returns the record with the specified database ID.

VB Syntax:

session.GetEntityByDbId entitydef_name, db_id

Perl Syntax:

$session->GetEntityByDbId(entitydef_name, db_id);

Member of: Session object

Remarks:

Use this method to get a record whose database ID you know. You can get the database
ID of a record by calling the GetDbId method of the corresponding Entity object.

To request the record using its visible ID instead of its database ID, use the GetEntity
method.

Examples:

’ Save this record’s ID for later use.
set sessionObj = GetSession

id = entity.GetDbId

...

Identifier Description

session The Session object that represents the current database-access
session.

entitydef_name A String that identifies the name of the record type to which the
desired record belongs.

db_id A Long that is the number used by the database to identify the
record.

Return value An Entity object corresponding to the requested record.
158 Session object

’ Get the record again
set record = sessionObj.GetEntityByDbId("defect", id)

See Also:

BuildEntity method
EditEntity method
GetEntity method
GetDbId method of the Entity object
Entity Code Example
Session object 159

GetEntityDef method

Returns the specified EntityDef object.

VB Syntax:

session.GetEntityDef entitydef_name

Perl Syntax:

$session->GetEntityDef(entitydef_name);

Member of: Session object

Remarks:

You can use this method to get an EntityDef object for either state-based or stateless
record types. To get a list of all EntityDef names in the schema, call the
GetEntityDefNames method. You can call other methods of Session to return the names
of specific EntityDef subsets. To get an EntityDef that belongs to a family, use the
methods specifically for families (given in See Also below).

Examples:

set sessionObj = GetSession

’ Get the list of names of the state-based record types.
entityDefNames = sessionObj.GetEntityDefNames

’ Iterate over the state-based record types
for each name in entityDefNames

set entityDefObj = sessionObj.GetEntityDef(name)

Identifier Description

session The Session object that represents the current database-access
session.

entitydef_name A String containing the name of an EntityDef object.

Return value The requested EntityDef object.
160 Session object

’ Do something with the EntityDef object
Next

See Also:

GetAuxEntityDefNames method
GetEntityDefNames method
GetQueryEntityDefNames method
GetReqEntityDefNames method
GetSubmitEntityDefNames method
EntityDef object
GetEntityDefFamily method
GetEntityDefFamilyNames method
GetIsMaster method of the DatabaseDescription object DatabaseDescription object
Session object 161

GetEntityDefFamily method

Returns the named family EntityDef object.

VB Syntax:

session.GetEntityDefFamily entitydefName

Perl Syntax:

$session->GetEntityDefFamily(entitydefName);

Member of: Session object

Remarks:

Returns a valid object if entitydefName corresponds to a family. This method is
convenient if you expect the record type to belong to an family. Otherwise, see the
IsFamily method.

Example:

GetEntityDefFamily

Returns the name of a family EntityDef.

See Also:

IsFamily method
GetEntityDefFamilyNames method
GetIsMaster method of the DatabaseDescription object DatabaseDescription object

Identifier Description

session The Session object that represents the current database-access
session.

entitydefName A String containing the name of an EntityDef object.

Return value The requested EntityDef object.
162 Session object

GetEntityDefFamilyNames method

Returns an array that contains the names of all family EntityDefs in the schema
repository.

VB Syntax:

session.GetEntityDefFamilyNames

Perl Syntax:

$session->GetEntityDefFamilyNames();

Member of: Session object

Remarks:

Provides support for multitype queries.

See Also:

IsFamily method
GetEntityDefFamily method
GetEntityDefNames method

Identifier Description

session The Session object that represents the current database-access
session.

Return value The requested EntityDef names in a String array.
Session object 163

’s

ct
GetEntityDefNames method

Returns an array containing the names of the record types in the current database
schema.

VB Syntax:

session.GetEntityDefNames

Perl Syntax:

$session->GetEntityDefNames();

Member of: Session object

Remarks:

This method returns the names of all state-based and stateless record types.

After using this method to get the list of names, you can retrieve the EntityDef obje
for a given record type by calling the GetEntityDef method.

Examples:

set sessionObj = GetSession

’ Get the list of names of all record types.
entityDefNames = sessionObj.GetEntityDefNames

’ Iterate over all the record types
for each name in entityDefNames

set entityDefObj = sessionObj.GetEntityDef(name)

’ Do something with the EntityDef object
Next

Identifier Description

session The Session object that represents the current database-access
session.

Return value A Variant containing an array of Strings. Each string in the array
contains the name of a single EntityDef in the schema.
164 Session object

See Also:

GetAuxEntityDefNames method
GetEntityDef method
GetQueryEntityDefNames method
GetReqEntityDefNames method
GetSubmitEntityDefNames method
EntityDef object
Session object 165

GetInstalledMasters method

Returns the list of registered database sets and master databases.

VB Syntax:

session.GetInstalledMasters dbSets, masterDBs

Perl Syntax:

$session->GetInstalledMasters(dbSets, masterDBs);

Member of: Session object

Remarks:

The returned Variants always contain the same number of strings. The contents of both
Variants are ordered so that each schema repository (master database) listed in
masterDBs belongs to the database set at the same index in dbSets.

Examples:

set sessionObj = GetSession

Dim dbSets, masterDBs

sessionObj.GetInstalledMasters dbSets, masterDBs
For Each db in dbSets

Identifier Description

session The Session object that represents the current database-access
session.

dbSets An empty variant, which on return contains an array of strings. Each
string in the array corresponds to the name of a registered database
set.

masterDBs An empty variant, which on return contains an array of strings. Each
string in the array corresponds to the name of a registered master
database.

Return value None.
166 Session object

...
Next

See Also:

GetIsMaster method of the DatabaseDescription object
DatabaseDescription object
Session object 167

GetQueryEntityDefNames method

Returns an array containing the names of the record types that are suitable for use in
queries.

VB Syntax:

session.GetQueryEntityDefNames

Perl Syntax:

$session->GetQueryEntityDefNames();

Member of: Session object

Remarks:

You can use any of the names returned by this method in the entitydef_name parameter
for the BuildQuery method. (You can also retrieve an EntityDef object by calling the
GetEntityDef method.)

Note: The record types built into ClearQuest can be used in queries, so the returned
array is never empty.

Examples:

set sessionObj = GetSession
’ Get the list of names of the record types that support queries.
entityDefNames = sessionObj.GetQueryEntityDefNames

’ Iterate over the state-based record types
for each name in entityDefNames

set queryDefObj = sessionObj.BuildQuery(name)

Identifier Description

session The Session object that represents the current database-access
session.

Return value A Variant containing an array of Strings. Each String contains the
name of an EntityDef that can be used in a query.
168 Session object

’ Fill in the query parameters and run it
Next

See Also:

BuildQuery method
GetAuxEntityDefNames method
GetEntityDef method
GetEntityDefNames method
GetReqEntityDefNames method
GetSubmitEntityDefNames method
EntityDef object
Session object 169

ave at
. The
ndary

an be

ct
GetReqEntityDefNames method

Returns an array containing the names of the state-based record types in the current
database’s schema.

VB Syntax:

session.GetReqEntityDefNames

Perl Syntax:

$session->GetReqEntityDefNames();

Member of: Session object

Remarks:

State-based record types are templates for state-based records. Most databases h
least one state-based record type defining the type of data stored by the database
database may also have several supporting stateless record type containing seco
information.

Typically, the return value contains at least one name; however, the return value c
an empty Variant if no state-based record types exist in the schema.

After using this method to get the list of names, you can retrieve the EntityDef obje
for a given record type by calling the GetEntityDef method.

Examples:

set sessionObj = GetSession

’ Get the list of names of the state-based record types.
entityDefNames = sessionObj.GetReqEntityDefNames

Identifier Description

session The Session object that represents the current database-access
session.

Return value A Variant containing an array of Strings. Each string in the array
contains the name of one of the desired record types.
170 Session object

’ Iterate over the state-based record types
for each name in entityDefNames

set entityDefObj = sessionObj.GetEntityDef(name)
’ Do something with the EntityDef object

Next

See Also:

BuildQuery method
GetAuxEntityDefNames method
GetEntityDef method
GetEntityDefNames method
GetQueryEntityDefNames method
GetSubmitEntityDefNames method
EntityDef object
Session object 171

se to
GetServerInfo method

Returns a string identifying the session’s OLE server.

VB Syntax:

session.GetServerInfo

Perl Syntax:

$session->GetServerInfo();

Member of: Session object

Remarks:

Usually, this method returns a string such as "cqole" but the OLE server may choo
return a string that contains other information for identifying the server.

Examples:

set sessionObj = GetSession

serverName = sessionObj.GetServerInfo

See Also:

GetSessionDatabase method

Identifier Description

session The Session object that represents the current database-access
session.

Return value A String identifying the OLE server.
172 Session object

GetSessionDatabase method

Returns information about the database that is being accessed in the current session.

VB Syntax:

session.GetSessionDatabase

Perl Syntax:

$session->GetSessionDatabase();

Member of: Session object

Remarks:

This method differs from the GetAccessibleDatabases method in that it returns the
DatabaseDescription object associated with the current session. You can only call this
method after the user has logged in to a particular database.

Examples:

set sessionObj = GetSession

set dbDescObj = sessionObj.GetSessionDatabase

See Also:

GetAccessibleDatabases method
DatabaseDescription object
Session and DatabaseDescription Code Example

Identifier Description

session The Session object that represents the current database-access
session.

Return value A DatabaseDescription object that contains information about the
current database.
Session object 173

GetSubmitEntityDefNames method

Returns an array containing the names of the record types that are suitable for use in
creating a new record.

VB Syntax:

session.GetSubmitEntityDefNames

Perl Syntax:

$session->GetSubmitEntityDefNames();

Member of: Session object

Remarks:

This method returns the names that are valid to use for the entitydef_name parameter of
the BuildEntity method. Not all record types are appropriate for submitting new records.
For example, entries for the "users" stateless record type are added using the ClearQuest
Designer interface, so "users" is not included in the returned list of names. On the other
hand, "projects" would be included because the projects stateless record type has a
submit action.

Typically, the return value contains at least one name; however, the return value can be
an empty Variant if no state-based record types exist in the schema.

After using this method to get the list of names, you can retrieve the EntityDef object
for a given record type by calling the GetEntityDef method.

Identifier Description

session The Session object that represents the current database-access
session.

Return value A Variant containing an array of Strings. Each string contains the
name of one of the desired record types.
174 Session object

Examples:

set sessionObj = GetSession

’ Get the list of names of the appropriate record types.
entityDefNames = sessionObj.GetSubmitEntityDefNames

’ Iterate over the appropriate record types
for each name in entityDefNames

set entityDefObj = sessionObj.GetEntityDef(name)

’ Do something with the EntityDef object
Next

See Also:

GetAuxEntityDefNames method
GetEntityDef method
GetEntityDefNames method
GetQueryEntityDefNames method
GetReqEntityDefNames method
EntityDef object
Session object 175

 email
e
GetUserEmail method

Returns the electronic mail address of the user who is logged in for this session.

VB Syntax:

session.GetUserEmail

Perl Syntax:

$session->GetUserEmail();

Member of: Session object

Remarks:

If you have access to the schema repository, you can change the text of the user’s
address using the schema repository object User. Simply assign a new value to th
Email property of User.

Examples:

set sessionObj = GetSession

’ Get the user’s personal information
userName = sessionObj.GetUserFullName
userLogin = sessionObj.GetUserLoginName
userEmail = sessionObj.GetUserEmail
userPhone = sessionObj.GetUserPhone
userMisc = sessionObj.GetUserMiscInfo

Identifier Description

session The Session object that represents the current database-access
session.

Return value A String containing the email address of the user who is logged in for
this session.
176 Session object

See Also:

GetUserFullName method
GetUserGroups method
GetUserLoginName method
GetUserMiscInfo method
GetUserPhone method
Email property of the User object
User object
Session and DatabaseDescription Code Example
Session object 177

s full
GetUserFullName method

Returns the full name of the user who is logged in for this session.

VB Syntax:

session.GetUserFullName

Perl Syntax:

$session->GetUserFullName();

Member of: Session object

Remarks:

If you have access to the schema repository, you can change the text for the user’
name using the schema repository object User. Simply assign a new value to the
Fullname property of User.

Examples:

set sessionObj = GetSession

’ Get the user’s personal information
userName = sessionObj.GetUserFullName
userLogin = sessionObj.GetUserLoginName
userEmail = sessionObj.GetUserEmail
userPhone = sessionObj.GetUserPhone
userMisc = sessionObj.GetUserMiscInfo

Identifier Description

session The Session object that represents the current database-access
session.

Return value A String containing the full name (such as "Jenny Jones") of the user
who is logged in for this session.
178 Session object

See Also:

GetUserEmail method
GetUserGroups method
GetUserLoginName method
GetUserMiscInfo method
GetUserPhone method
Fullname property of the User object
User object
Session and DatabaseDescription Code Example
Session object 179

GetUserGroups method

Returns a list of the groups to which the current user belongs.

VB Syntax:

session.GetUserGroups

Perl Syntax:

$session->GetUserGroups();

Member of: Session object

Remarks:

The returned variant can be empty.

If you have access to the schema repository, you can change the groups to which the
user belongs using the Group object. To add a user to a group, call the AddUser method
of Group.

Examples:

set sessionObj = GetSession

’ Iterate over the user’s groups
userGroups = sessionObj.GetUserGroups
If IsEmpty(userGroups) = 0 Then
‘ Code to handle if no user groups exist
Else
For Each group in userGroups

...
Next

Identifier Description

session The Session object that represents the current database-access
session.

Return value A variant containing an array String of variants. Each String names a
group to which the current user belongs (that is, the user under
whose login name the database is currently being accessed).
180 Session object

See Also:

GetUserEmail method
GetUserFullName method
GetUserLoginName method
GetUserMiscInfo method
GetUserPhone method
AddUser method of the Group object
Group object
Session and DatabaseDescription Code Example
Session object 181

GetUserLoginName method

Returns the name that was used to log in for this session.

VB Syntax:

session.GetUserLoginName

Perl Syntax:

$session->GetUserLoginName();

Member of: Session object

Remarks:

Once created, you cannot change the login name of a user account. You must instead
create a new user with the new account name. You can do this from ClearQuest
Designer, or if you have access to the schema repository, you can use the AdminSession
object to create a new User object.

Examples:

set sessionObj = GetSession

’ Get the user’s personal information
userName = sessionObj.GetUserFullName
userLogin = sessionObj.GetUserLoginName
userEmail = sessionObj.GetUserEmail
userPhone = sessionObj.GetUserPhone
userMisc = sessionObj.GetUserMiscInfo

Identifier Description

session The Session object that represents the current database-access
session.

Return value A String containing the login name (such as "jjones") of the user who
is logged in for this session.
182 Session object

See Also:

GetUserEmail method
GetUserFullName method
GetUserGroups method
GetUserMiscInfo method
GetUserPhone method
AdminSession object
User object
Session and DatabaseDescription Code Example
Session object 183

he

 a
GetUserMiscInfo method

Returns miscellaneous information about the user who is logged in for this session.

VB Syntax:

session.GetUserMiscInfo

Perl Syntax:

$session->GetUserMiscInfo();

Member of: Session object

Remarks:

Miscellaneous information is any information that has been entered by the administrator
into that user’s profile. Information about the user’s login name, full name, email
address, phone number, and groups is stored separately and can be retrieved by t
corresponding Session methods.

If you have access to the schema repository, you can change the text of the
miscellaneous information using the schema repository object User. Simply assign
new value to the MiscInfo property of User.

Examples:

set sessionObj = GetSession

’ Get the user’s personal information
userName = sessionObj.GetUserFullName
userLogin = sessionObj.GetUserLoginName
userEmail = sessionObj.GetUserEmail
userPhone = sessionObj.GetUserPhone
userMisc = sessionObj.GetUserMiscInfo

Identifier Description

session The Session object that represents the current database-access
session.

Return value A String containing any miscellaneous information about the user.
184 Session object

See Also:

GetUserEmail method
GetUserFullName method
GetUserGroups method
GetUserLoginName method
GetUserPhone method
MiscInfo property of the User object
User object
Session and DatabaseDescription Code Example
Session object 185

 phone

GetUserPhone method

Returns the telephone number of the user who is logged in for this session.

VB Syntax:

session.GetUserPhone

Perl Syntax:

$session->GetUserPhone();

Member of: Session object

Remarks:

If you have access to the schema repository, you can change the text for the user’s
number using the schema repository object User. Simply assign a new value to the
Phone property of User.

Examples:

set sessionObj = GetSession

’ Get the user’s personal information
userName = sessionObj.GetUserFullName
userLogin = sessionObj.GetUserLoginName
userEmail = sessionObj.GetUserEmail
userPhone = sessionObj.GetUserPhone
userMisc = sessionObj.GetUserMiscInfo

Identifier Description

session The Session object that represents the current database-access
session.

Return value A String containing the telephone number (if known) of the user who
is logged in for this session.
186 Session object

See Also:

GetUserEmail method
GetUserFullName method
GetUserGroups method
GetUserLoginName method
GetUserMiscInfo method
Phone property of the User object
User object
Session and DatabaseDescription Code Example
Session object 187

ports
GetWorkSpace method

Returns the session’s WORKSPACE object.

VB Syntax:

session.GetWorkSpace

Perl Syntax:

$session->GetWorkSpace();

Member of: Session object

Remarks:

You can use the WORKSPACE object to manipulate saved queries, charts, and re
in the ClearQuest workspace.

Examples:

set sessionObj = GetSession

’ Get the workspace for manipulating query, chart, and report info.
wkSpc = sessionObj.GetWorkspace

See Also:

WORKSPACE object

Identifier Description

session The Session object that represents the current database-access
session.

Return value The WORKSPACE object belonging to the current session.
188 Session object

HasValue method

Returns a Bool indicating whether the specified session variable exists.

VB Syntax:

session.HasValue name

Perl Syntax:

$session->HasValue(name);

Member of: Session object

Remarks:

Session variables persist until the Session object is deleted. To get or set variables, use
the NameValue method.

Examples:

set sessionObj = GetSession

If HasValue("foo") Then
fooValue = sessionObj.NameValue("foo")

End If

See Also:

NameValue property

Identifier Description

session The Session object that represents the current database-access
session.

name A String containing the name of the session variable.

Return value True if the variable exists in this session, otherwise False.
Session object 189

IsMetadataReadonly method

Returns a Bool indicating whether the session’s metadata is read-only.

VB Syntax:

session.IsMetadataReadonly

Perl Syntax:

$session->IsMetadataReadonly();

Member of: Session object

Examples:

set sessionObj = GetSession

If sessionObj.IsMetadataReadonly Then
...

End If

See Also:

EntityDef object

Identifier Description

session The Session object that represents the current database-access
session.

Return value True if the metadata is read-only, otherwise False.
190 Session object

MarkEntityAsDuplicate method

Modifies the specified record to indicate that it is a duplicate of another record.

VB Syntax:

session.MarkEntityAsDuplicate duplicate, original, duplicate_action_name

Perl Syntax:

$session->MarkEntityAsDuplicate(duplicate, original, duplicate_action_name);

Member of: Session object

Remarks:

This method modifies the duplicate record but leaves the original unchanged. The state
of the duplicate may change, depending on the schema. Appropriate links are added to
the database. The duplicate is left in the "modify" state, which means that you can
subsequently update its fields and that eventually you must eventually validate and
commit it.

The administrator can set up different actions of type DUPLICATE. (For example, the
actions might have different restrictions on when they are available, or they might have
different hooks.) You must specify an action of type DUPLICATE in the
duplicate_action_name parameter.

Identifier Description

session The Session object that represents the current database-access
session.

duplicate The Entity object that is to be marked as a duplicate of original.

original The Entity object that is the original data record.

duplicate_action_name A String that specifies an action whose ActionType is DUPLICATE.
This parameter must identify a valid action for the duplicate record.

Return value None.
Session object 191

Examples:

set sessionObj = GetSession

’ Mark the entity with ID="BUGID00010345" as a duplicate of this entity.
’ Use the action named "duplicate".
set dupEntityObj = sessionObj.GetEntity("defect", "BUGID00010345")
sessionObj.MarkEntityAsDuplicate dupEntityObj, entity, "duplicate"

’ Validate and commit the duplicate entity since it
’ is currently modifiable.
error = dupEntityObj.Validate
if error = "" then

dupEntityObj.Commit
End If

See Also:

UnmarkEntityAsDuplicate method
Notation Conventions
192 Session object

OpenQueryDef method

Loads a query from a file.

VB Syntax:

session.OpenQueryDef filename

Perl Syntax:

$session->OpenQueryDef(filename);

Member of: Session object

Remarks:

This method loads a previously-defined query from a file. The query can be either a
built-in query or one saved by the user from ClearQuest.

Examples:

set sessionobj = GetSession

’ Get the query from file "C:\queries\myQuery.txt"
set queryDefObj = sessionObj.OpenQueryDef("C:\queries\myQuery.txt")

See Also:

QueryDef object

Identifier Description

session The Session object that represents the current database-access
session.

filename The name of the file from which to load the query information.

Return value A QueryDef object containing the query information.
Session object 193

OutputDebugString method

Specifies a message that can be displayed by a debugger or a similar tool.

VB Syntax:

session.OutputDebugString debugString

Perl Syntax:

$session->OutputDebugString(debugString);

Member of: Session object

Remarks:

The value of debugString is passed to the Win32 API call OutputDebugString. Various
tools like debuggers and Purify can detect this call and report the content of the string.
Normally, the debug message is invisible to users.

Examples:

set sessionObj = GetSession
sessionObj.OutputDebugString "This is a test message."

See Also:

UnmarkEntityAsDuplicate method

Identifier Description

session The Session object that represents the current database-access
session.

debugString A String containing the text to be displayed.

Return value None.
194 Session object

hod,
UnmarkEntityAsDuplicate method

Removes the indication that the specified record is a duplicate of another record.

VB Syntax:

session.UnmarkEntityAsDuplicate duplicate, action_name

Perl Syntax:

$session->UnmarkEntityAsDuplicate(duplicate, action_name);

Member of: Session object

Remarks:

This method breaks the linkage between a duplicate and original Entity object. You can
call this method to break a link that was established by the user or by calling the
MarkEntityAsDuplicate method. If the DUPLICATE action being undone caused a state
transition, that transition is undone unless a subsequent state transition occurred after
the DUPLICATE action. After this method returns, the record is editable and must be
validated and committed using the Entity object’s Validate method and Commit met
respectively.

Identifier Description

session The Session object that represents the current database-access
session.

duplicate The Entity object (currently marked as a duplicate) that is to be
modified.

action_name A String that specifies the action to be performed on the duplicate.
This parameter must contain the name of a valid action as defined in
the schema. Such an action must have the ActionType
UNDUPLICATE.

Return value None.
Session object 195

Examples:

set sessionObj = GetSession

’ Remove the duplicate status of the entity with ID="BUGID00010345".
’ Use the action named "unduplicate".
set oldDupEntityObj = sessionObj.GetEntity("defect", "BUGID00010345")
sessionObj.UnmarkEntityAsDuplicate oldDupEntityObj, "unduplicate"

’ Validate and commit the entity since it is currently modifiable.
error = oldDupEntityObj.Validate
if error = "" then

oldDupEntityObj.Commit
End If

See Also:

MarkEntityAsDuplicate method
Validate method of the Entity object
Entity object
Notation Conventions
196 Session object

UserLogon method

Log in as the specified user for a database session.

VB Syntax:

session.UserLogon login_name, password, database_name, session_type, database_set

Perl Syntax:

$session->UserLogon(login_name, password, database_name, session_type,
database_set);

Member of: Session object

Remarks:

Before calling this method, you should have already created and initialized a new
Session object. No other Session methods should be invoked before UserLogon, with

Identifier Description

session The Session object that represents the current database-access
session.

login_name A String that specifies the login name of the user.

password A String that specifies the user’s password.

database_name A String that specifies the name of the desired user database. (You
must not login to the master database using this method.)

session_type A Long whose value is a SessionType constant specifying whether
the session is shared (SHARED_SESSION) or private
(PRIVATE_SESSION). Data from a shared session can be
accessed by more than one client at a time. (ADMIN_SESSION is
not permitted.)

database_set A String that specifies the name of the master database. You should
set this string to the empty string ("").

Return value None.
Session object 197

the exception of the GetAccessibleDatabases method, OutputDebugString method, and
UnmarkEntityAsDuplicate method.

If you are writing hook code, you should not need to call this method. ClearQuest
creates the Session object for you and logs the user in before calling any hooks.

Examples:

The following example shows you how to log on to the database from a Visual Basic
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")

’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

dbName = db.GetDatabaseName
sessionObj.UserLogon "joe", "gh36ak3", dbName, AD_PRIVATE_SESSION, ""
’ Access the database

...
Next

See Also:

GetDatabaseConnectString method of the DatabaseDescription object
DatabaseDescription object
Session and DatabaseDescription Code Example
Notation Conventions
198 Session object

Entity object
Entity object properties

Entity object methods

Property name Access Description

AttachmentFields property Read-only Returns the AttachmentFields collection
object containing this Entity object’s
attachment fields.

HistoryFields property Read-only Returns the HistoryFieldscollection object
containing this Entity object’s history
fields.

Method name Description

AddFieldValue method Adds the specified value to the list of values in the named field.

BeginNewFieldUpdateGroup
method

Marks the beginning of a series of SetFieldValue calls.

Commit method Updates the database with the changes made to the Entity object.

DeleteFieldValue method Removes the specified value from the field’s list of values.

FireNamedHook method Executes a named hook of this record's EntityDef object.

GetActionName Returns the name of the action associated with the current Entity
object.

GetActionType Returns the type of the action associated with the current Entity
object.

GetAllDuplicates method Returns links to all of the duplicates of this Entity, including
duplicates of duplicates.

GetAllFieldValues method Returns an array of FieldInfo objects corresponding to all of the
Entity object’s fields.

GetDbId method Returns the Entity object’s database ID number.

GetDisplayName method Returns the unique key associated with the Entity.

GetDuplicates method Returns links to the immediate duplicates of this object.

GetEntityDefName method Returns the name of the EntityDef object that serves as a template
for this object.
Entity object 199

GetFieldChoiceList method Returns the list of permissible values for the specified field.

GetFieldChoiceType method Returns the type of the given choice-list field.

GetFieldMaxLength method Returns the maximum number of characters allowed for the
specified string field.

GetFieldNames method Returns the names of the fields in the Entity object.

GetFieldOriginalValue
method

Returns the FieldInfo containing the value that the specified field will
revert to, if the action is cancelled.

GetFieldRequiredness
method

Identifies the behavior of the specified field.

GetFieldsUpdatedThisAction
method

Returns a FieldInfo object for each field that was modified by the
most recent action.

GetFieldsUpdatedThisGroup
method

Returns a FieldInfo object for each field that was modified since the
most recent call to BeginNewFieldUpdateGroup method.

GetFieldsUpdatedThisSetVal
ue method

Returns a FieldInfo object for each of the Entity’s fields that was
modified by the most recent SetFieldValue call.

GetFieldType method Identifies the type of data that can be stored in the specified field.

GetFieldValue method Returns the FieldInfo object for the specified field.

GetInvalidFieldValues
method

Returns an array of FieldInfo objects corresponding to all the Entity’s
invalid fields.

GetLegalActionDefNames
method

Returns the names of the actions that can be used on this Entity
object.

GetOriginal method Returns the Entity object that is marked as the original of this
duplicate object.

GetOriginalID method Returns the visible ID of this object’s original Entity object.

GetSession method Returns the current Session object.

GetType method Returns the type (state-based or stateless) of the Entity.

HasDuplicates method Reports whether this object is the original of one or more duplicates.

InvalidateFieldChoiceList
function

Use with SetFieldChoiceList function to refresh values in a choice
list.

Method name Description
200 Entity object

See Also:

BuildEntity method of the Session object
EditEntity method of the Session object
GetEntity method of the Session object
GetEntityByDbId method of the Session object
EntityDef object
QueryDef object
ResultSet Object
Session object

IsDuplicate method Indicates whether this Entity object has been marked as a duplicate
of another Entity object.

IsEditable method Returns True if the Entity object can be modified at this time.

IsOriginal method Returns True if this Entity has duplicates but is not itself a duplicate.

LookupStateName method Returns the name of the Entity object’s current state.

Revert method Discards any changes made to the Entity object.

SetFieldChoiceList function Use with InvalidateFieldChoiceList function to reset choice list
values.

SetFieldRequirednessForCur
rentAction method

Sets the behavior of a field for the duration of the current action.

SetFieldValue method Places the specified value in the named field.

Validate method Validates the Entity object and reports any errors.

Method name Description
Entity object 201

t,
d or

AttachmentFields property

Returns the AttachmentFields collection object containing this Entity object’s
attachment fields.

VB Syntax:

 [entity.]AttachmentFields

Perl Syntax:

$entity->GetAttachmentFields();

Member of: Entity object

Remarks:

The AttachmentFields property is read-only; you cannot modify this field
programmatically. However, once you retrieve an individual AttachmentField objec
you can update its Attachments collection. In other words, within a field you can ad
remove individual Attachment objects, but you cannot modify the field itself (or the
collection of fields).

For an overview of attachments, see Attachment-Related Objects.

Example:

set fields = entity.AttachmentFields
For Each fieldObj in fields

’ Do something with each AttachmentField object

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed.

Return value An AttachmentFields collection object that contains all of the
AttachmentField objects currently associated with this Entity object.
202 Entity object

...
Next

See Also:

Attachment object
AttachmentField object
AttachmentFields collection object
Attachments collection object
Attachments Code Example
Entity object 203

ds.
HistoryFields property

Returns the HistoryFieldscollection object containing this Entity object’s history fiel

VB Syntax:

 [entity.]HistoryFields

Perl Syntax:

$entity->GetHistoryFields();

Member of: Entity object

Remarks:

This property is read-only; you cannot modify this field programmatically. For an
overview of history objects, see History-Related Objects.

Example:

set fields = entity.HistoryFields
For Each fieldObj in fields

’ Look at the contents of the HistoryField object

...
Next

See Also:

Histories collection object
History object

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed.

Return value A HistoryFields collection object that contains all the individual
HistoryField objects currently associated with this Entity object.
204 Entity object

HistoryField object
HistoryFields collection object
Entity object 205

AddFieldValue method

Adds the specified value to the list of values in the named field.

VB Syntax:

 [entity.]AddFieldValue field_name, new_value

Perl Syntax:

$entity->AddFieldValue(field_name, new_value);

Member of: Entity object

Remarks:

This method is similar to the SetFieldValue method, except that it adds an item to a list
of values, instead of providing the sole value. This method is intended for fields that
have can accept a list of values. If a field does not already contain a value, you can still
use this method to set the value of a field that takes a single value.

To determine whether a field contains a valid value, obtain the FieldInfo object for that
field and call the ValidityChangedThisSetValue method of the FieldInfo object to
validate the field.

You can call this method only if the Entity object is editable. To make an existing Entity
object editable, call the EditEntity method of the Session object.

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed.

field_name A String containing a valid field name of this Entity object.

new_value A Variant containing the new value to add to the field.

Return value If changes to the field are permitted, this method returns an empty
String; otherwise, this method returns a String containing an
explanation of the error.
206 Entity object

Examples:

AddFieldValue "field1", "option 1"
AddFieldValue "field1", "option 2"
AddFieldValue "field1", "option 3"

See Also:

DeleteFieldValue method
GetFieldValue method
SetFieldValue method
ValidityChangedThisSetValue method
ValueChangedThisSetValue method
EditEntity method of the Session object
FieldInfo object
Entity object 207

BeginNewFieldUpdateGroup method

Marks the beginning of a series of SetFieldValue calls.

VB Syntax:

[entity.]BeginNewFieldUpdateGroup

Perl Syntax:

$entity->BeginNewFieldUpdateGroup();

Member of: Entity object

Remarks:

You can use this method to mark the beginning of a group of calls to SetFieldValue
method You can later call the GetFieldsUpdatedThisGroup method to track which fields
were updated. This technique is useful for web-based systems where you might need to
track any changes to the fields in a form. For example, if the user moves to another web
page, you can call the GetFieldsUpdatedThisGroup method to save the current state of
the form and restore it when the user returns to that page.

Examples:

BeginNewFieldUpdateGroup
SetFieldValue "field1", "1"
SetFieldValue "field2", "submitted"
SetFieldValue "field3", "done"
updatedFields = GetFieldsUpdatedThisGroup

’ Iterate over all the fields that changed
For Each field In updatedFields

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value None.
208 Entity object

...
Next

See Also:

GetFieldsUpdatedThisAction method
GetFieldsUpdatedThisGroup method
GetFieldsUpdatedThisSetValue method
SetFieldValue method
ValidityChangedThisSetValue method of the FieldInfo object
FieldInfo object
Entity object 209

Commit method

Updates the database with the changes made to the Entity object.

VBScript Syntax:

[entity.]Commit

Perl Syntax:

$entity->Commit();

Member of: Entity object

Remarks:

This method applies commits any changes to the database. Before calling this method,
you must validate any changes you made to the Entity object by calling the Validate
method. The application can call the Commit method only if the Validate method
returns an empty string. After calling this method, the Entity object is no longer
editable.

You can call this method only if the Entity object is editable. To make an existing Entity
object editable, call the EditEntity method of the Session object.

Examples:

’ Modify the record and then commit the changes.
set sessionObj = GetSession
set entityObj = sessionObj.GetEntity("defect", "BUGID00000042")
sessionObj.EditEntity entityObj, "modify"

... ’ modify the Entity object

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value None.
210 Entity object

entityObj.Validate
entityObj.Commit

’ The Entity object is no longer editable

See Also:

IsEditable method
Revert method
Validate method
BuildEntity method of the Session object
EditEntity method of the Session object
Session object
Duplicates Code Example
Entity object 211

ever,
ield’s
o the

tity
DeleteFieldValue method

Removes the specified value from the field’s list of values.

VBScript Syntax:

[entity.]DeleteFieldValue field_name, old_value

Perl Syntax:

$entity->DeleteFieldValue(field_name, new_value);

Member of: Entity object

Remarks:

This method is intended only for those fields that can support a list of values. How
it is legal to use this method for a field that takes a single value. (In that case, the f
only value must be the same as old_value; the method then sets the field’s value t
empty value.)

You can call this method only if the Entity object is editable. To make an existing En
object editable, call the EditEntity method of the Session object.

Examples:

AddFieldValue "field1", "option 1"
AddFieldValue "field1", "option 2"

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String containing a valid field name of this Entity object.

old_value A Variant containing the value to remove from the field’s list of
values.

Return value If changes to the field are permitted, this method returns an empty
String; otherwise, this method returns a String containing an
explanation of the error.
212 Entity object

AddFieldValue "field1", "option 3"
DeleteFieldValue "field1", "option 2"
DeleteFieldValue "field1", "option 3"

See Also:

AddFieldValue method
GetFieldValue method
SetFieldValue method
ValidityChangedThisSetValue method
ValueChangedThisSetValue method
EditEntity method of the Session object
FieldInfo object
Entity object 213

FireNamedHook method

Executes a named hook of this record’s EntityDef object.

VBScript Syntax:

[entity.]FireNamedHook hookName, parameters

Perl Syntax:

$entity->FireNamedHook(hookName, parameters);

Member of: Entity object

Remarks:

You can use this method to execute a record hook at runtime. Record hooks are routines
you define and are specific to a particular record type. You can use record hooks in
conjunction with form controls or you can call them from other hooks. You define
record hooks using ClearQuest Designer. The syntax for record hooks is as follows:

Function EntityDefName_HookName(parameters)
’ parameter as Variant
’ EntityDefName_HookName as Variant

’ Hook program body
End Function

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

hookName A String containing the name of the hook to execute.

parameter(s) [A VB Variant or] a Perl string containing the parameters you want to
pass to the hook.

Return value A String indicating the status of calling the hook. If the hook
executed successfully, this method returns an empty string (""),
otherwise the returned string contains a description of the error.
214 Entity object

You cannot use this method to execute a field or action hook of a record. You also
cannot execute a global hook, except indirectly from the record hook.

You can call this method on an Entity object regardless of whether or not it is editable.
However, if your hook attempts to modify the Entity object, either your code or the
hook code must first call EditEntity method to make the Entity object editable.

If your hook accepts any parameters, put all of the parameters in a single Variant and
specify that Variant in parameters. The hook must be able to interpret the parameters
passed into it. Upon return, the hook can similarly return a Variant with any appropriate
return values.

Example:

’ Execute the hook "MyHook" with the specified parameters
Dim params(1)
params(0) = "option 1"
params(1) = "option 2"

returnValue = entity.FireNamedHook("MyHook", params)

See Also:

EditEntity method of the Session object
GetHookDefNames method of the EntityDef object
EntityDef object
Entity object 215

GetActionName

Returns the name of the current action associated with the current entity.

VBScript Syntax:

entity.GetActionName

Perl Syntax:

$entity->GetActionName();

Member of: Entity object

Remarks:

Used in base action hooks.

See Also:

GetActionType
ActionType

Identifier Description

entity An Entity object corresponding to a record in a schema.

Return value A String whose value provides the name of ActionType constant
_GETACTIONNAME.
216 Entity object

GetActionType

Returns the type of the current action associated with the current entity.

VBScript Syntax:

entitydef.GetActionType

Perl Syntax:

$entity->GetActionType();

Member of: Entity object

Remarks:

Used in base action hooks.

See Also:

GetActionName
ActionType

Identifier Description

entity An Entity object corresponding to a record in a schema.

Return value A String whose value is the ActionType constant
_GETACTIONNAME.
Entity object 217

GetAllDuplicates method

Returns links to all of the duplicates of this Entity, including duplicates of duplicates.

VBScript Syntax:

[entity.]GetAllDuplicates

Perl Syntax:

$entity->GetAllDuplicates();

Member of: Entity object

Remarks:

This method returns all duplicates, including duplicates of duplicates. To obtain only the
immediate duplicates of an object, call the GetDuplicates method instead.

Examples:

In the following example, entity1 is the original object. The objects entity2 and entity3
are duplicates of entity1. In addition, the object entity4 is a duplicate of entity3. Given
the following statement:

linkObjs = entity1.GetAllDuplicates

The linkObjs variable would be an array of 3 Link objects:

■ a link between entity1 and entity2

■ a link between entity1 and entity3

■ a link between entity3 and entity4

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of Link objects. If this object has no
duplicates, the return value is an Empty Variant.
218 Entity object

See Also:

GetDuplicates method
GetOriginal method
GetOriginalID method
HasDuplicates method
IsDuplicate method
IsOriginal method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Link object
Session object
Duplicates Code Example
Entity object 219

s.
GetAllFieldValues method

Returns an array of FieldInfo objects corresponding to all of the Entity object’s field

VBScript Syntax:

[entity.]GetAllFieldValue

Perl Syntax:

$entity->GetAllFieldValue();

Member of: Entity object

Remarks:

The FieldInfo objects are arranged in no particular order.

Examples:

’ Iterate through the fields and examine the field names and values
fieldObjs = GetAllFieldValues
For Each field In fieldObjs

fieldValue = field.GetValue
fieldName = field.GetName
...

Next

See Also:

GetFieldValue method
GetInvalidFieldValues method
FieldInfo object

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of FieldInfo objects, one for each field
in the Entity object.
220 Entity object

 keep
he
GetDbId method

Returns the Entity object’s database ID number.

VBScript Syntax:

[entity.]GetDbId

Perl Syntax:

$entity->GetDbId();

Member of: Entity object

Remarks:

The return value is a database ID. This value is used internally by the database to
track of records. Do not confuse this value with the defect ID number returned by t
GetDisplayName method.

Examples:

dbID = entity.GetDbId

See Also:

GetDisplayName method
Entity Code Example

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Long containing the Entity object’s database ID.
Entity object 221

GetDefaultActionName

Returns the default action name associated with the current state.

VBScript Syntax:

 [entity.]GetDefaultActionName

Perl Syntax:

$entity->GetDefaultActionName();

Member of: Entity object

Remarks:

This method allows you to programmaticaly move a defect through the default actions
(state transition matrix) set in ClearQuest Designer.

Whereas this method returns the default action name associated with the current state,
GetActionDestStateName method returns the destination state name associated with the
current action.

Examples:

DefaultActionName = entity.GetDefaultActionName
‘COMPLETE EXAMPLE FOR POST BETA.

See Also:

GetActionDestStateName method

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A String that returns the default action name associated with the
current state.
222 Entity object

he
 of

 key
will
ill

 types,

the
GetDisplayName method

Returns the unique key associated with the Entity.

VBScript Syntax:

 [entity.]GetDisplayName

Perl Syntax:

$entity->GetDisplayName();

Member of: Entity object

Remarks:

For state-based record types, the unique key is the record’s visible ID, which has t
format SITEnnnnnn (for example, 'PASNY00012332'), where SITE is an indication
the installation site and nnnnnn is the defect (bug) number.

For stateless record types, the unique key is formed from the values of the unique
fields defined by the administrator. If there is just a single unique key field, its value
be the unique key. If there are multiple fields forming the unique key, their values w
be concatenated in the order specified by the administrator. For state-based record
calling this method is equivalent to getting the value of the "id" system field using a
FieldInfo object.

The unique key should not be confused with the database ID, which is invisible to
user. The database ID is retrieved by the GetDbId method.

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A String containing the record type’s unique key.
Entity object 223

Examples:

’ Get the record ID using 2 different techniques and compare the results
displayName = GetDisplayName
idName = GetFieldValue("id").GetValue
If idName <> displayName Then

’ Error, these id numbers should match
End If

See Also:

GetDbId method
GetFieldValue method
GetValue method of the FieldInfo object
FieldInfo object
Duplicates Code Example
224 Entity object

GetDuplicates method

Returns links to the immediate duplicates of this object.

VBScript Syntax:

 [entity.]GetDuplicates

Perl Syntax:

$entity->GetDuplicates();

Member of: Entity object

Remarks:

This method returns only immediate duplicates; it does not return duplicates of
duplicates. To return all of the duplicates for a given Entity object, including duplicates
of duplicates, call the GetAllDuplicates method.

Examples:

In the following example, entity1 is the original object. The objects entity2 and entity3
are duplicates of entity1. In addition, the object entity4 is a duplicate of entity3. Given
the following statement:

linkObjs = entity1.GetDuplicates

The linkObjs variable would be an array of 2 Link objects:

■ a link between entity1 and entity2

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of Link objects. Each Link object points
to a duplicate of this object. If this object has no duplicates, the
return value is an Empty Variant.
Entity object 225

■ a link between entity1 and entity3

See Also:

GetAllDuplicates method
GetOriginal method
GetOriginalID method
HasDuplicates method
IsDuplicate method
IsOriginal method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Session object
Duplicates Code Example
226 Entity object

ntity

ods
GetEntityDefName method

Returns the name of the EntityDef object that is the template for this object.

VBScript Syntax:

 [entity.]GetEntityDefName

Perl Syntax:

$entity->GetEntityDefName();

Member of: Entity object

Remarks:

To get the corresponding EntityDef object, call the Session object’s GetEntityDef
method.

Before using the methods of EntityDef object, you should look at the methods of E
to see if one of them returns the information you need. Some of the more common
information available in an EntityDef object can also be obtained directly from meth
of Entity.

Examples:

set sessionObj = GetSession

’ Get the EntityDef of the record using GetEntityDefName
entityDefName = GetEntityDefName
set entityDefObj = sessionObj.GetEntityDef(entityDefName)

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A String containing the name of the EntityDef object upon which this
object is based.
Entity object 227

See Also:

GetEntityDef method
EntityDef object
228 Entity object

GetFieldChoiceList method

Returns the list of permissible values for the specified field.

VBScript Syntax:

 [entity.]GetFieldChoiceList field_name

Perl Syntax:

$entity->GetFieldChoiceList(field_name);

Member of: Entity object

Remarks:

The administrator specifies whether the legal values for a given field are restricted to the
contents of the choice list. If there is a restriction, specifying a value not in the choice
list causes a validation error. If there is no restriction, you may specify values not in the
choice list. (Note that any values you specify must still be validated.)

If this method returns an Empty Variant, it does not imply that all values are permitted;
it just means that the administrator has not provided any hints about the values
permitted in the field.

If the administrator chose to use a hook to determine the values of the choice list,
ClearQuest will have already executed the hook and cached the resulting values in a
HookChoices object. You can use that object to retrieve the values.

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of entity.

Return value A Variant containing an Array. Each element of the array contains an
acceptable value for the specified field. If a list of choices was not
provided with the field, the returned Variant is Empty.
Entity object 229

You can use the GetFieldNames method to obtain a list of valid names for the
field_name parameter.

Note: When calling this method from an external Visual Basic program, this method
throws an exception if entity is not editable.

Examples:

fieldValue = GetFieldValue("field1").GetValue

’ Check to see if the field’s current value is in the choice list
fieldChoiceList = GetFieldChoiceList("field1")
For Each fieldChoice in fieldChoiceList

If fieldValue = fieldChoice Then
’ This is a valid choice

End If
Next

See Also:

GetFieldChoiceType method
GetFieldNames method
HookChoices object
230 Entity object

GetFieldChoiceType method

Returns the type of the given choice-list field.

VBScript Syntax:

[entity.]GetFieldChoiceType field_name

Perl Syntax:

$entity->GetFieldChoiceType(field_name);

Member of: Entity object

Remarks:

The return value is either CLOSED_CHOICE or OPEN_CHOICE. If the return value is
CLOSED_CHOICE, the valid values for the field are limited to those specified in the
choice list. If the return value is OPEN_CHOICE, the user may select an item from the
choice list or type in a new value.

Examples:

’ If the field must have a value from a closed choice list, assign the
’ first the value in the list to the field by default.
choiceType = GetFieldChoiceType("field1")
If choiceType = AD_CLOSED_CHOICE Then

’ Set the field to the first item in the choice list.
fieldChoiceList = GetFieldChoiceList("field1")
SetFieldValue "field1", fieldChoiceList(0)

End If

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of entity.

Return value A Long indicating the type of the field.
Entity object 231

See Also:

GetFieldChoiceList method
GetFieldNames method
HookChoices object
Notation Conventions
232 Entity object

GetFieldMaxLength method

Returns the maximum number of characters allowed for the specified string field.

VBScript Syntax:

[entity.]GetFieldMaxLength field_name

Perl Syntax:

$entity->GetFieldMaxLength(field_name);

Member of: Entity object

Remarks:

This method is relevant only for fields whose type is SHORT_STRING.

Examples:

’ Check the maximum length of a string field.
fieldType = GetFieldType("field1")
If fieldType = AD_SHORT_STRING Then

maxLength = GetFieldMaxLength("field1")
End If

See Also:

GetFieldType method
FieldType
Notation Conventions

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of entity.The field must
contain a fixed-length string.

Return value A Long indicating the maximum number of characters the field can
store.
Entity object 233

GetFieldNames method

Returns the names of the fields in the Entity object.

VBScript Syntax:

[entity.]GetFieldNames field_name

Perl Syntax:

$entity->GetFieldNames(field_name);

Member of: Entity object

Remarks:

The list of names is returned in no particular order and there is always at least one field.
You must examine each entry in the array until you find the name of the field you are
looking for.

Examples:

set sessionObj = GetSession

’ Iterate through the fields and output
’ the field name, type, and value
fieldNameList = GetFieldNames
For Each fieldName in fieldNameList

set fieldInfoObj = GetFieldValue(fieldName)
fieldType = fieldInfoObj.GetType
fieldValue = fieldInfoObj.GetValue

sessionObj.OutputDebugString "Field name: " & fieldName & ", type=" _

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array whose elements are Strings. Each
String contains the name of one field.
234 Entity object

 & fieldType & ", value=" & fieldValue
Next

See Also:

GetFieldChoiceList method
GetFieldDefNames method
GetFieldRequiredness method
GetFieldType method
GetFieldValue method
Notification Hook Code Example
Entity object 235

GetFieldOriginalValue method

Returns the FieldInfo containing the value that the specified field will revert to, if the
action is cancelled.

VBScript Syntax:

[entity.]GetFieldOriginalValue field_name

Perl Syntax:

$entity->GetFieldOriginalValue(field_name);

Member of: Entity object

Remarks:

When you initiate an action, ClearQuest caches the original values of the record’s fields
in case the action is cancelled. You can use this method to return the original value of a
field that you have modified. You can get the original value of a field only while the
record is editable. The record’s notification hook is the last opportunity to get the
original value before a new value takes effect.

Examples:

’ Iterate through the fields and report which ones have changed.
fieldNameList = GetFieldNames
For Each fieldName in fieldNameList

originalValue = GetFieldOriginalValue(fieldName).GetValue
currentValue = GetFieldValue(fieldName).GetValue
If currentValue <> originalValue Then

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String containing a valid field name of this Entity object.

Return value A FieldInfo object that contains the original value for the specified
field.
236 Entity object

’ Report a change in the field value
OutputDebugString "The value in field " & fieldName & " has changed."

End If
Next

See Also:

GetFieldValue method
FieldInfo object
Notification Hook Code Example
Entity object 237

GetFieldRequiredness method

Identifies the behavior of the specified field.

VBScript Syntax:

[entity.]GetFieldRequiredness field_name

Perl Syntax:

$entity->GetFieldRequiredness(field_name);

Member of: Entity object

Remarks:

A field can be mandatory, optional, or read-only. If entity is not an editable Entity
object, this method always returns the value READONLY. If the Entity object is
editable, because an action has been initiated, the return value can be READONLY,
MANDATORY, or OPTIONAL.

This method never returns the value USE_HOOK. If the behavior of the field is
determined by a permission hook, ClearQuest will have already executed that hook and
cached the resulting value. This method then returns the cached value.

Note: Because hooks operate with administrator privileges, they can always modify the
contents of a field, regardless of its current behavior setting.

You can use the GetFieldNames method to obtain a list of valid names for the
field_name parameter.

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of entity.

Return value A Long that identifies the behavior of the named field. The value
corresponds to one of the Behavior enumeration constants.
238 Entity object

Examples:

’ Change all mandatory fields to optional
fieldNameList = GetFieldNames
For Each fieldName in fieldNameList

fieldReq = GetFieldRequiredness(fieldName)
if fieldReq = AD_MANDATORY Then

SetFieldRequirednessForCurrentAction fieldName, AD_OPTIONAL
End If

Next

See Also:

GetFieldNames method
GetRequiredness method of the FieldInfo object
FieldInfo object
Notation Conventions
Entity object 239

GetFieldsUpdatedThisAction method

Returns a FieldInfo object for each field that was modified by the most recent action.

VBScript Syntax:

[entity.]GetFieldsUpdatedThisAction field_name

Perl Syntax:

$entity->GetFieldsUpdatedThisAction();

Member of: Entity object

Remarks:

This method reports the fields that changed during the current action, that is, all fields
that changed after the call to BuildEntity or EditEntity returned. Fields that were
implicitly changed during the action’s startup phase are not reported; fields that were
modified by hooks during the initialization of the action are also not reported. This
method does report fields that were changed by hooks after the initialization phase of
the action; see the ClearQuest Designer documentation for the timing and execution
order of hooks.

As an example, if the user initiates a CHANGE_STATE action, the value in the record’s
"state" field changes but is not reported by this method. Similarly, if the
action-initialization hook of the action modifies a field, that change is not reported.
However, changes that occurred during a field value-changed hook or a validation hook
are reported because they occurr after the action is completely initialized.

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of FieldInfo objects. Each FieldInfo
object corresponds to a field of the Entity object whose value was
changed since the most recent action was initiated. If no fields were
updated, this method returns an Empty Variant.
240 Entity object

Examples:

set sessionObj = GetSession

’ Report any fields that changed during the recent action
fieldList = GetFieldsUpdatedThisAction
For Each field in fieldList

’ Report the field to the user
sessionObj.OutputDebugString "Field " & field.GetName & " changed."

Next

See Also:

BeginNewFieldUpdateGroup method
GetFieldsUpdatedThisAction method
GetFieldsUpdatedThisSetValue method
SetFieldValue method
ValidityChangedThisSetValue method of the FieldInfo object
FieldInfo object
Entity object 241

GetFieldsUpdatedThisGroup method

Returns a FieldInfo object for each field that was modified since the most recent call to
BeginNewFieldUpdateGroup method.

VBScript Syntax:

[entity.]GetFieldsUpdatedThisGroup

Perl Syntax:

$entity->GetFieldsUpdatedThisGroup();

Member of: Entity object

Remarks:

Use this method to mark the end of a group of calls to SetFieldValue method (You must
have previously called BeginNewFieldUpdateGroup method to mark the beginning of
the group.) This technique is useful for web-based systems where you might need to
track any changes to the fields in a form. For example, if the user moves to another web
page, you can call this method to save the current state of the form and restore it when
the user returns to that page.

Examples:

BeginNewFieldUpdateGroup
SetFieldValue "field1", "1"
SetFieldValue "field2", "submitted"
SetFieldValue "field3", "done"
updatedFields = GetFieldsUpdatedThisGroup

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of FieldInfo objects. Each FieldInfo
object corresponds to a field whose value changed since the most
recent call to BeginNewFieldUpdateGroup. If no fields were
updated, this method returns an Empty Variant.
242 Entity object

’ Iterate over all the fields that changed
For Each field In updatedFields

...
Next

See Also:

BeginNewFieldUpdateGroup method
GetFieldsUpdatedThisAction method
GetFieldsUpdatedThisSetValue method
SetFieldValue method
ValidityChangedThisSetValue method of the FieldInfo object
FieldInfo object
Entity object 243

ost

 by
if
 could
d as
GetFieldsUpdatedThisSetValue method

Returns a FieldInfo object for each of the Entity’s fields that was modified by the m
recent SetFieldValue call.

VBScript Syntax:

[entity.]GetFieldsUpdatedThisSetValue

Perl Syntax:

$entity->GetFieldsUpdatedThisSetValue();

Member of: Entity object

Remarks:

This method usually returns a single FieldInfo object for the field that was modified
SetFieldValue method. However, this method can return multiple FieldInfo objects
other fields are dependent on the field that was changed. In such a case, hook code
automatically modify the value of any dependent fields, causing them to be modifie
well and thus reported by this method.

Examples:

SetFieldValue "field1" "100"
modifiedFields = GetFieldsUpdatedThisSetValue
numFields = UBound(modifiedFields) + 1
If numFields > 1 Then

OutputDebugString "Changing field1 resulted in changes to " _

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of FieldInfo objects, one for each field
in the Entity object whose value was changed by the most recent
invocation of SetFieldValue. If no fields were modified, this method
returns an Empty Variant.
244 Entity object

& numFields & " other fields"
End If

See Also:

BeginNewFieldUpdateGroup method
GetFieldsUpdatedThisAction method
GetFieldsUpdatedThisGroup method
SetFieldValue method
ValidityChangedThisSetValue method of the FieldInfo object
FieldInfo object
Entity object 245

GetFieldType method

Identifies the type of data that can be stored in the specified field.

VBScript Syntax:

[entity.]GetFieldType field_name

Perl Syntax:

$entity->GetFieldType(field_name);

Member of: Entity object

Remarks:

The EntityDef object controls what type of data can be stored in each field of an Entity
object. Fields can store strings, numbers, timestamps, references, and so on. (See
FieldType for the complete list.)

You cannot change the type of a field using the API. The field type is determined by the
corresponding information in the EntityDef object and must be set by the administrator
using ClearQuest Designer.

You can use the GetFieldNames method to obtain a list of valid names for the
field_name parameter.

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of entity.

Return value A Long that identifies what type of data can be stored in the named
field. The value corresponds to one of the FieldType enumeration
constants.
246 Entity object

Examples:

set sessionObj = GetSession

’ Iterate through the fields and output
’ the field name and type.
fieldNameList = GetFieldNames
For Each fieldName in fieldNameList

fieldType = GetFieldType(fieldName)
sessionObj.OutputDebugString "Field name: " & fieldName & _

", type=" & fieldType
Next

See Also:

GetFieldNames method
GetType method of the FieldInfo object
FieldInfo object
Entity object 247

GetFieldValue method

Returns the FieldInfo object for the specified field.

VBScript Syntax:

[entity.]GetFieldValue field_name

Perl Syntax:

$entity->GetFieldValue(field_name);

Member of: Entity object

Remarks:

This method returns a FieldInfo object from which you can obtain information about the
field. This method does not return the actual value stored in the field. To retrieve the
actual value (or values), call this method first and then call the FieldInfo object’s
GetValue method or GetValueAsList method.

Examples:

set sessionObj = GetSession

’ Iterate through the fields and output
’ the field name and type.
fieldNameList = GetFieldNames
For Each fieldName in fieldNameList

fieldValue = GetFieldValue(fieldName).GetValue
sessionObj.OutputDebugString "Field name: " & fieldName & _

 ", value=" & fieldValue
Next

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String containing a valid field name of this Entity object.

Return value The FieldInfo object corresponding to the specified field.
248 Entity object

See Also:

AddFieldValue method
DeleteFieldValue method
GetAllFieldValues method
SetFieldValue method
GetValue method of the FieldInfo object
GetValueAsList method of the FieldInfo object
FieldInfo object
Notification Hook Code Example
Entity object 249

n fix
GetInvalidFieldValues method

Returns an array of FieldInfo objects corresponding to all the Entity’s invalid fields.

VBScript Syntax:

[entity.]GetInvalidFieldValues

Perl Syntax:

$entity->GetInvalidFieldValues();

Member of: Entity object

Remarks:

The FieldInfo objects are arranged in no particular order. Use this method before
committing a record to determine which fields contain invalid values, so that you ca
them.

See Also:

GetAllFieldValues method
GetFieldValue method
Validate method
ValidityChangedThisSetValue method of the FieldInfo object
FieldInfo object

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of FieldInfo objects. Each FieldInfo
object corresponds to a field of the Entity object that contains an
invalid value. If all of the fields are valid, this method returns an
Empty Variant.
250 Entity object

GetLegalActionDefNames method

Returns the names of the actions that can be used on this Entity object.

VBScript Syntax:

[entity.]GetLegalActionDefNames

Perl Syntax:

$entity->GetLegalActionDefNames();

Member of: Entity object

Remarks:

This method is similar to the GetActionDefNames method of EntityDef; however, the
list returned by this method contains only those actions that can be performed on the
Entity object in its current state. You can use this method before calling the Session
object’s EditEntity method to determine which actions you can legally perform on the
record.

Examples:

set sessionObj = GetSession

entityDefName = GetEntityDefName
set entityDefObj = sessionObj.GetEntityDef(entityDefName)

’ Search for a legal action with which to modify the record
actionDefList = GetLegalActionDefNames
For Each actionDef in actionDefList

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Variant containing an Array of Strings. Each String contains the
name of a legal action. If no actions can be performed on the Entity
object, the return value is an Empty variant.
Entity object 251

actionDefType = entityDefObj.GetActionDefType(actionDef)
if actionDefType = AD_MODIFY Then

sessionObj.EditEntity(entity, actionDef)
Exit For

End If
Next

See Also:

GetActionDefNames method
EditEntity method of the Session object
Session object
Notation Conventions
252 Entity object

inue

ou
te.
GetOriginal method

Returns the Entity object that is marked as the parent of this duplicate object.

VBScript Syntax:

[entity.]GetOriginal

Perl Syntax:

$entity->GetOriginal();

Member of: Entity object

Remarks:

Use this method to get the Entity object that is the immediate parent of this object.

The returned object may itself be a duplicate of another Entity object. To find the true
original, call the IsDuplicate method of the returned object. If IsDuplicate returns True,
call that object’s GetOriginal method to get the next Entity object in the chain. Cont
calling the IsDuplicate and GetOriginal methods until IsDuplicate returns False, at
which point you have the true original.

Note: It is an error to call this method for an Entity object that is not a duplicate. Y
should always call the IsDuplicate method first to verify that the object is a duplica

Examples:

’ Display a dialog box indicating which record is
’ the original of this record
If entity.IsDuplicate Then

’ Get the ID of this record
duplicateID = entity.GetDisplayName

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value The Entity object of which entity is a duplicate.
Entity object 253

’ Get the ID of the original record
set originalObj = entity.GetOriginal
originalID = originalObj.GetDisplayName
OutputDebugString "The parent of record " & duplicateID & _

" is record " & originalID
End If

See Also:

GetAllDuplicates method
GetDuplicates method
GetOriginalID method
HasDuplicates method
IsDuplicate method
IsOriginal method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Session object
Duplicates Code Example
254 Entity object

nal
other
f

and is
 ID
ck of

ou
te.
GetOriginalID method

Returns the visible ID of this object’s original Entity object.

VBScript Syntax:

[entity.]GetOriginalID

Perl Syntax:

$entity->GetOriginalID();

Member of: Entity object

Remarks:

Use this method to get the visible ID of the Entity object that is the immediate origi
of this object. The returned ID may correspond to an object that is a duplicate of an
Entity object. See the GetOriginal method for information on how to track a string o
duplicate records back to the source.

The returned ID is a string containing the defect number the user sees on the form
of the format SITEnnnnnnn (for example, "PASNY00012343"). Do not confuse this
with the invisible database ID, which is used internally by the database to keep tra
records.

Note: It is an error to call this method for an Entity object that is not a duplicate. Y
should always call the IsDuplicate method first to verify that the object is a duplica

Examples:

’ Display a dialog box indicating which record is
’ the original of this record

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A String containing the ID of this object’s original Entity.
Entity object 255

If entity.IsDuplicate Then
’ Get the ID of this record
duplicateID = entity.GetDisplayName

’ Get the ID of the original record
originalID = entity.GetOriginalID
OutputDebugString "The parent of record " & duplicateID & _

" is record " & originalID
End If

See Also:

GetAllDuplicates method
GetDuplicates method
GetOriginal method
HasDuplicates method
IsDuplicate method
IsOriginal method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Session object
Duplicates Code Example
256 Entity object

GetSession method

Returns the current Session object.

VBScript Syntax:

[entity.]GetSession

Perl Syntax:

$entity->GetSession();

Member of: Entity object

Remarks:

This method instantiates a new Session object using the current session information.
This method is intended for use in hook code only and should not be called from any
other context.

If you are creating a standalone application, you cannot call this method to obtain a
Session object. You must create your own Session object and pass it to any standalone
application methods that need it.

You can use this method to obtain the Session object associated with the current user.
See the description of the Session object for more information on how to use this object.

Examples:

set sessionObj = GetSession

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

For Perl hooks, see Getting a Session Object.

Return value The Session object representing the current database-access
session.
Entity object 257

See Also:

UserLogon method of the Session object
Session object
Duplicates Code Example
258 Entity object

GetType method

Returns the type (state-based or stateless) of the Entity.

VBScript Syntax:

[entity.]GetType

Perl Syntax:

$entity->GetType();

Member of: Entity object

Remarks:

You cannot change the type of an Entity object using the API. The type of a record is
determined by the corresponding record type and must be set by the administrator using
ClearQuest Designer.

Examples:

recordType = GetType
If recordType = AD_REQ_ENTITY Then

OutputDebugString "This record is a state-based record."
Else

OutputDebugString "This record is a stateless record."
End If

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Long whose value is an EntityType constant: REQ_ENTITY for a
state-based Entity object or AUX_ENTITY for a stateless Entity
object.
Entity object 259

See Also:

EntityType
Notation Conventions
260 Entity object

HasDuplicates method

Reports whether this object is the original of one or more duplicates.

VBScript Syntax:

[entity.]HasDuplicates

Perl Syntax:

$entity->HasDuplicates();

Member of: Entity object

Remarks:

An Entity can have more than one duplicate. Furthermore, an Entity can have duplicates
and also be a duplicate itself. See the IsDuplicate method and IsOriginal method for
details.

Examples:

originalID = GetDisplayName
If HasDuplicates Then

duplicateLinkList = GetDuplicates

’ Output the IDs of the parent/child records
For Each duplicateLink In duplicateLinkList

duplicateObj = duplicateLink.GetChildEntity
duplicateID = duplicateObj.GetDisplayName
OutputDebugString "Parent ID:" & originalID & _

" child Id:" & duplicateID
Next

End if

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Boolean whose value is True if the Entity has any duplicates,
otherwise False.
Entity object 261

See Also:

GetAllDuplicates method
GetDuplicates method
GetOriginal method
GetOriginalID method
IsDuplicate method
IsOriginal method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Session object
Duplicates Code Example
262 Entity object

t is
r a
InvalidateFieldChoiceList function

Erases the values in a (dynamic) choice list, which can then be reset with
SetFieldChoiceList function.

VBScript Syntax:

[entity.]InvalidateFieldChoiceList field_name

Perl Syntax:

$entity->InvalidateFieldChoiceList (field_name);

Member of: Entity object

Remarks:

Makes the “cached” choice list for the field invalid so that when GetFieldChoiceLis
called next time, the ClearQuest Form either gets a choice list from the database o
hook program.

Example:

void InvalidateFieldChoiceList(fieldname)

See Also:

SetFieldChoiceList function

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of an entity.

return value None.
Entity object 263

IsDuplicate method

Indicates whether this Entity object has been marked as a duplicate of another Entity
object.

SetFieldChoiceList function.

VBScript Syntax:

[entity.]IsDuplicate

Perl Syntax:

$entity->IsDuplicate();

Member of: Entity object

Remarks:

A duplicate object reflects the changes made to the original object. When an Entity
object is marked as a duplicate, any changes that occur to the original object are
reflected in the duplicate as well. ClearQuest maintains a link between the original
object and each one of its duplicates to update these changes.

Attempting to modify an object that is marked as a duplicate will result in an error; you
must modify the original object instead. To locate the original object, you can use the
GetOriginal method of the duplicate.

Examples:

’ Display a dialog box indicating which record is
’ the original of this record
If entity.IsDuplicate Then

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Boolean whose value is True if this Entity object has been marked
as a duplicate of another Entity object, otherwise False.
264 Entity object

’ Get the ID of this record
duplicateID = entity.GetDisplayName

’ Get the ID of the original record
set originalObj = entity.GetOriginal
originalID = originalObj.GetDisplayName
OutputDebugString "The parent of record " & duplicateID & _

" is record " & originalID
End If

See Also:

GetAllDuplicates method
GetDuplicates method
GetOriginal method
HasDuplicates method
IsOriginal method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Session object
Duplicates Code Example
Entity object 265

IsEditable method

Returns True if the Entity object can be modified at this time.

VBScript Syntax:

[entity.]IsEditable

Perl Syntax:

$entity->IsEditable();

Member of: Entity object

Remarks:

To edit an Entity object, you must either create a new object using the BuildEntity
method or open an existing object for editing with the EditEntity method. An Entity
object remains editable until you either commit your changes with the Commit method
or revert the Entity object with the Revert method.

Examples:

set sessionObj = GetSession

entityToEdit = sessionObj.GetEntity("BUGID00000042")
sessionObj.EditEntity(entityToEdit, "modify")

’ Verify that the entity object was opened for editing.
If Not entityToEdit.IsEditable Then

OutputDebugString "Error - the entity object could not be edited."
End If

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Boolean whose value is True if the Entity is currently editable,
otherwise False.
266 Entity object

See Also:

Commit method
Revert method
BuildEntity method of the Session object
EditEntity method of the Session object
Session object
Entity object 267

IsOriginal method

Returns True if this Entity has duplicates but is not itself a duplicate.

VBScript Syntax:

[entity.]IsOriginal

Perl Syntax:

$entity->IsOriginal();

Member of: Entity object

Remarks:

This method reports whether an Entity object is a true original, that is, one that is not
itself a duplicate. If this method returns True, then the IsDuplicate method must return
False and the HasDuplicates method must return True. An Entity object must have at
least one duplicate to be considered an original.

Examples:

’Display a dialog box indicating the IDs of the
’ the duplicates of this record
If entity.IsOriginal Then

’ Get the ID of this record
originalID = entity.GetDisplayName

’ Display the IDs of its duplicates
duplicateLinkList = entity.GetDuplicates
For Each duplicateLink In duplicateLinkList

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A Boolean whose value is True if this object has duplicates but is not
itself marked as a duplicate of any other Entity object.
268 Entity object

duplicateObj = duplicateLink.GetChildEntity
duplicateID = duplicateObj.GetDisplayName
OutputDebugString "Parent ID:" & originalID & _

" child Id:" & duplicateID
Next

End If

See Also:

GetAllDuplicates method
GetDuplicates method
GetOriginal method
GetOriginalID method
HasDuplicates method
IsDuplicate method
MarkEntityAsDuplicate method of the Session object
UnmarkEntityAsDuplicate method of the Session object
Session object
Duplicates Code Example
Entity object 269

e
tate,

tate
on.
LookupStateName method

Returns the name of the Entity object’s current state.

VBScript Syntax:

[entity.]LookupStateName

Perl Syntax:

$entity->LookupStateName();

Member of: Entity object

Remarks:

If the Entity object is not editable, this method simply returns the current state of th
record. If the Entity object is editable and the current action involves a change of s
this method returns the new state of the record.

Note: Calling this method from an action access-control hook returns the original s
of the record regardless of whether or not the current action is a change-state acti

Examples:

currentState = LookupStateName

See Also:

GetFieldValue method
EditEntity method of the Session object
Session object

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value A String containing the name of the Entity object’s current state. If
this Entity object is stateless, this method returns an empty String
('').
270 Entity object

se.
hod
Revert method

Discards any changes made to the Entity object.

VBScript Syntax:

[entity.]Revert

Perl Syntax:

$entity->Revert();

Member of: Entity object

Remarks:

Use this method to exit the transaction that allowed the record to be edited. You should
call this method if you tried to change a record and the Validate method returned an
error string.

You can call this method only if the Entity object is editable. To make an existing Entity
object editable, call the EditEntity method of the Session object. If you call this method
on a newly created Entity object, one that was created with the BuildEntity method, this
method cancels the submission of the record.

This method reverts the Entity’s fields to the values that were stored in the databa
After reverting, the Entity is no longer editable, so you must call the EditEntity met
again to make new modifications.

Examples:

set sessionObj = GetSession
entityToEdit = sessionObj.GetEntity("defect", "BUGID00000042")

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value None.
Entity object 271

sessionObj.EditEntity(entityToEdit, "modify")

’ Revert the changes to the record
entityToEdity.Revert

See Also:

Commit method
IsEditable method
Validate method
EditEntity method of the Session object
Session object
Entity Code Example
272 Entity object

SetFieldChoiceList function

Resets a dynamic choice list. Can be use with InvalidateFieldChoiceList function to
empty any values already stored.

VBScript Syntax:

 [entity.]SetFieldChoiceList fieldName, choiceList

Perl Syntax:

$entity->SetFieldChoiceList(fieldName, choiceList);

Member of: Entity object

Remarks:

Use this function to force the ClearQuest client to fetch the new choice list values. You
can set the values with this function or by other means (for example, a hook script).

You can design your schema so that ClearQuest recalculates a choice list every time a
user interacts with it (no cached values), or only the first time (cached values). If you
want to refresh cached values, call InvalidateFieldChoiceList function to empty any
cached values, then call SetFieldChoiceList to reinitialize the values. (The first time the
choice list appears, there is no need to call InvalidateFieldChoiceList function because
no values pre-exist in cache memory.)

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

fieldName A String that identifies a valid field name of an entity.

choiceList [A VB variant containing a string or] a Perl string array.

Return value None.
Entity object 273

Use these two methods in a Value-Changed Field hook. For example, if the end-user
selects a new item from the list of projects, the record type changes, and the form needs
a refreshed dependent choice list.

VBScript Example:

SetFieldChoiceList(fieldname, VARIANT choiceList)

Sets a list of acceptable values for the field. The parameter choiceList is of the type of
Variant and must contain an array of strings.
NOTE: In the current implementation, you cannot pass a reference to a variant.

Perl Example:
SetFieldChoiceList($fieldname, @choiceList)

Sets a list of acceptable values for the field. The parameter choiceList is of the type of
array and must contain an array of strings.

See Also:

InvalidateFieldChoiceList function
274 Entity object

SetFieldRequirednessForCurrentAction method

Sets the behavior of a field for the duration of the current action.

VBScript Syntax:

[entity.]SetFieldRequirednessForCurrentAction field_name, newValue

Perl Syntax:

$entity->SetFieldRequirednessForCurrentAction(field_name, newValue);

Member of: Entity object

Remarks:

Use this method to set the field behavior to mandatory, optional, or read-only. Once the
action has been committed, the behavior of the field reverts to read-only.

You can call this method only if the Entity object is editable. To make an existing Entity
object editable, call the EditEntity method of the Session object.

Examples:

’ Change all mandatory fields to optional
fieldNameList = GetFieldNames
For Each fieldName in fieldNameList

fieldReq = GetFieldRequiredness(fieldName)
if fieldReq = AD_MANDATORY Then

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String that identifies a valid field name of entity.

newValue A Long identifying the new behavior type of the field. This value
corresponds to one of the constants of the Behavior enumerated
type. (It is illegal to use the USE_HOOK constant.)

Return value None.
Entity object 275

SetFieldRequirednessForCurrentAction fieldName, AD_OPTIONAL
End If

Next

See Also:

GetFieldRequiredness method
Behavior
Notation Conventions
276 Entity object

SetFieldValue method

Places the specified value in the named field.

VBScript Syntax:

[entity.]SetFieldValue field_name, new_value

Perl Syntax:

$entity->SetFieldValue(field_name, new_value);

Member of: Entity object

Remarks:

If the field can be changed, this method sets its new value, regardless of whether that
value is valid, and returns the empty String. To determine whether a field contains a
valid value, obtain the FieldInfo object for that field and call the
ValidityChangedThisSetValue method of the FieldInfo object to validate the field.

If the field cannot be changed, the returned String indicates why the field cannot be
changed. Typical values include "no such field", "record is not being edited", and "field
is read-only".

If the field can have multiple values instead of just one, use the AddFieldValue method
to add each new value. It is still legal to use SetFieldValue; however, using

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

field_name A String containing a valid field name of this Entity object.

new_value A Variant containing the new setting for the field.

Return value If changes to the field are permitted, this method returns an empty
String; otherwise, this method returns a String containing an
explanation of the error.
Entity object 277

SetFieldValue on a field that already contains a list of values replaces the entire list with
the single new value.

You can call this method only if the Entity object is editable. To make an existing Entity
object editable, call the EditEntity method of the Session object.

Examples:

’ Set two field values, but only check errors for
’ the second field.
entity.SetFieldValue "field1", "new value"
returnVal = SetFieldValue("field2", "100")

See Also:

AddFieldValue method
GetFieldValue method
ValidityChangedThisSetValue method
ValueChangedThisSetValue method
FieldInfo object
Duplicates Code Example
Entity Code Example
278 Entity object

Validate method

Validates the Entity object and reports any errors.

VBScript Syntax:

[entity.]Validate

Perl Syntax:

$entity->Validate();

Member of: Entity object

Remarks:

Before an Entity can be committed, it must be validated (even if no fields have been
changed). If you are changing the contents of a record programmatically, you should
make sure that your code provides valid data.

You should not attempt to parse and interpret the returned String programmatically,
because the error text may change in future releases. If you want to try to correct the
value in an invalid field, you can use the GetInvalidFieldValues method to get the
FieldInfo object for that field.

You can call this method only if the Entity object is editable. To make an existing Entity
object editable, call the EditEntity method of the Session object.

Examples:

set sessionObj = GetSession

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding to
the current data record is assumed (VBScript only).

Return value If the Entity object is valid, this method returns the empty String (’’). If
any validation errors are detected, the String contains an
explanation of the problem, suitable for presenting to the user.
Entity object 279

set entityObj = sessionObj.GetEntity("defect", "BUGID00000042")
sessionObj.EditEntity entityObj, "modify" ...

’ modify the Entity object
entityObj.Validate
entityObj.Commit
’ The Entity object is no longer editable

See Also:

Commit method
GetInvalidFieldValues method
Revert method
FieldInfo object
Duplicates Code Example
280 Entity object

EntityDef object
EntityDef Methods

Method name Description

DoesTransitionExist method Returns the list of transitions that exist between two states.

GetActionDefNames method Returns the action names defined in the EntityDef object.

GetActionDefType method Identifies the type of the specified action.

GetActionDestStateName
method

Returns the name of the destination state of a given action def.

GetFieldDefNames method Returns the field names defined in the EntityDef object.

GetFieldDefType method Identifies the type of data that can be stored in the specified field.

GetFieldReferenceEntityDef
method

Returns the type of record referenced by the specified field.

GetHookDefNames method Returns the list of named hooks associated with records of this
type.

GetLocalFieldPathNames
method

Returns the path names of local fields.

GetName method Returns the name of the EntityDef object’s corresponding record
type.

GetStateDefNames method Returns the state names defined in the EntityDef object.

GetType method Returns the type (state-based or stateless) of the EntityDef.

IsActionDefName method Identifies whether the EntityDef object contains an action with the
specified name.

IsFamily method Returns true of a given entitydef defines a family.

IsFieldDefName method Identifies whether the EntityDef object contains a field with the
specified name.

IsStateDefName method Identifies whether the EntityDef object contains a state with the
specified name.

IsSystemOwnedFieldDefNam
e method

Returns a Bool indicating whether the specified field is owned by the
system.
EntityDef object 281

See Also:

Entity object
Session object
EntityDef Code Example
282 EntityDef object

DoesTransitionExist method

Returns the list of transitions that exist between two states.

VB Syntax:

[entitydef.]DoesTransitionExist sourceState, destState

Perl Syntax:

$entitydef->DoesTransitionExist(sourceState, destState);

Member of: EntityDef object

Remarks:

The list of transitions is returned in no particular order. You must examine each entry in
the array until you find the name of the action you are looking for.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

transitions = entityDefObj.DoesTransitionExist("open", "resoved")
If transitions <> Empty Then

’ Simply initiate an action using the first entry.
sessionObj.EditEntity entity, transitions(0)

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

sourceState A String containing the name of the state that is the source of the
transition.

destState A String containing the name of the state that is the destination of the
transition.

Return value If at least one transition between the two states exists, this method
returns a Variant containing a list of strings. Each string corresponds
to the name of an action. If no transitions exist, this method returns
an EMPTY variant.
EntityDef object 283

...
End If

See Also:

GetActionDefNames method
IsActionDefName method
284 EntityDef object

GetActionDefNames method

Returns the action names defined in the EntityDef object.

VB Syntax:

[entitydef.]GetActionDefNames

Perl Syntax:

$entitydef->GetActionDefNames();

Member of: EntityDef object

Remarks:

The list of actions is returned in no particular order. You must examine each entry in the
array until you find the name of the action you are looking for.

Like the other parts of an EntityDef object, the administrator sets the defined actions
using ClearQuest Designer. They cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

sessionObj.OutputDebugString "Action names for " & entityDefObj.GetName()

nameList = entityDefObj.GetActionDefNames()
For Each actionName in nameList

sessionObj.OutputDebugString actionName
Next

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A Variant containing an Array whose elements are Strings. Each
String names one action. If the EntityDef object has no actions, the
return value is an Empty variant.
EntityDef object 285

See Also:

GetActionDefType method
IsActionDefName method
ActionType
EntityDef Code Example
286 EntityDef object

GetActionDefType method

Identifies the type of the specified action.

VB Syntax:

[entitydef.]GetActionDefType action_def_name

Perl Syntax:

$entitydef->GetActionDefType(action_def_name);

Member of: EntityDef object

Remarks:

You can use the GetActionDefNames method to obtain the list of valid values for the
action_def_name parameter.

The record type controls what types of actions are permitted for a given record. (See the
ActionType for the complete list.)

Like the other parts of an EntityDef object, the administrator sets the defined actions
using ClearQuest Designer. They cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

sessionObj.OutputDebugString "Modify action names for " & _
entityDefObj.GetName()

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

action_def_name A String that identifies a valid action name of entitydef.

Return value A Long that specifies the type of the action specified in
action_def_name.The value corresponds to one of the ActionType
enumeration constants.
EntityDef object 287

’ List the action names whose type is "modify"
nameList = entityDefObj.GetActionDefNames()
For Each actionName in nameList

actionType = entityDefObj.GetActionDefType(actionName)
if actionType = AD_MODIFY Then

sessionObj.OutputDebugString actionName
End If

Next

See Also:

GetActionDefNames method
IsActionDefName method
EntityDef Code Example
Notation Conventions
288 EntityDef object

GetActionDestStateName method

Returns the destination state name associated with the current action.

VB Syntax:

entitydef.GetActionDestStateName actionDefName

Perl Syntax:

$entitydef->GetActionDestStateName(actionDefName);

Member of: EntityDef object

Remarks:

Use this call to allow an external application to navigate the state transition matrix.

Whereas GetDefaultActionName returns the default action name associated with the
current state, this method returns the destination state name associated with the current
action.

See Also:

GetDefaultActionName

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

actionDefName A String that identifies a valid action name.

Return value A String that specifies the destination state of a given action def.
EntityDef object 289

GetFieldDefNames method

Returns the field names defined in the EntityDef object.

VB Syntax:

entitydef.GetFieldDefNames

Perl Syntax:

$entitydef->GetFieldDefNames();

Member of: EntityDef object

Remarks:

The list of fields is returned in no particular order. You must examine each entry in the
array until you find the name of the field you are looking for.

Like the other parts of an EntityDef object, the administrator sets the defined fields
using ClearQuest Designer. They cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

sessionObj.OutputDebugString "Field names for " & entityDefObj.GetName()

’ List the field names in the record
nameList = entityDefObj.GetFieldDefNames()
For Each fieldName in nameList

sessionObj.OutputDebugString fieldName
Next

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A Variant containing an Array whose elements are Strings. Each
String contains the name of one field. If the EntityDef object has no
fields, the return value is an Empty variant.
290 EntityDef object

See Also:

GetFieldDefType method
IsFieldDefName method
EntityDef Code Example
EntityDef object 291

GetFieldDefType method

Identifies the type of data that can be stored in the specified field.

VB Syntax:

entitydef.GetFieldDefType field_def_name

Perl Syntax:

$entitydef->GetFieldDefType(field_def_name);

Member of: EntityDef object

Remarks:

You can use the GetFieldDefNames method to obtain a list of valid field names.

The record type controls what type of data can be stored in each field of a corresponding
data record. Fields can store strings, numbers, timestamps, references, and so on. (See
the FieldType for the complete list.)

Like the other parts of an EntityDef object, the administrator sets the defined fields
using ClearQuest Designer. They cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

sessionObj.OutputDebugString "Integer fields of " & _
entityDefObj.GetName()

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

field_def_name A String that identifies a valid field name of entitydef.

Return value A Long that specifies what type of data can be stored in the named
field. The value corresponds to one of the FieldType enumeration
constants.
292 EntityDef object

’ List the field names in the record that contain integers
nameList = entityDefObj.GetFieldDefNames()
For Each fieldName in nameList

fieldType = entityDefObj.GetFieldDefType(fieldName)
if fieldType = AD_INT Then

sessionObj.OutputDebugString fieldName
End If

Next

See Also:

GetFieldDefNames method
IsFieldDefName method
EntityDef Code Example
Notation Conventions
EntityDef object 293

GetFieldReferenceEntityDef method

Returns the type of record referenced by the specified field.

VB Syntax:

entitydef.GetFieldReferenceEntityDef field_name

Perl Syntax:

$entitydef->GetFieldReferenceEntityDef(field_name);

Member of: EntityDef object

Remarks:

The specified field must contain a reference to other records. The type of the specified
field must be one of the following: REFERENCE, REFERENCE_LIST,JOURNAL, or
ATTACHMENT_LIST.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

’ List the type of rence fields
nameList = entityDefObj.GetFieldDefNames()
For Each fieldName in nameList

fieldType = entityDefObj.GetFieldDefType(fieldName)
if fieldType = AD_REFERENCE Then

set refEDefObj = entityDefObj.GetFieldReferenceEntityDef(fieldName)
sessionObj.OutputDebugString refEDefObj.GetName()

End If
Next

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

field_name A String that identifies a valid field name of entitydef.

Return value An EntityDef object corresponding to the type of record referenced
by the specified field.
294 EntityDef object

See Also:

GetFieldDefType method
Notation Conventions
EntityDef object 295

GetHookDefNames method

Returns the list of named hooks associated with records of this type.

VB Syntax:

entitydef.GetHookDefNames field_def_name

Perl Syntax:

$entitydef->GetHookDefNames(field_def_name);

Member of: EntityDef object

Remarks:

This method returns the list of Named hooks. Named hooks (also referred to as record
hooks in the ClearQuest Designer user interface) are special functions used by
ClearQuest form controls to implement specific tasks.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

sessionObj.OutputDebugString "Hooks of " & entityDefObj.GetName()

’ List the record type’s hooks
nameList = entityDefObj.GetHookDefNames()
For Each hookName in nameList

sessionObj.OutputDebugString hookName
Next

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A Variant containing a list of strings. Each string corresponds to the
name of a hook associated with this record type. If no named hooks
are associated with this record type, this method returns an EMPTY
variant.
296 EntityDef object

See Also:

GetActionDefNames method
GetFieldDefNames method
EntityDef object 297

GetLocalFieldPathNames method

Returns the path names of local fields.

VB Syntax:

entitydef.GetLocalFieldPathNames visible_only

Perl Syntax:

$entitydef->GetLocalFieldPathNames(visible_only);

Member of: EntityDef object

Remarks:

Each string in the returned variant contains the path name of a single field.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

pathNames = entityDefObj.GetLocalFieldPathNames(False)
For Each name in pathNames

sessionObj.OutputDebugString "Path name: " & name
Next

See Also:

GetFieldDefNames method
IsFieldDefName method

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

visible_only A Bool, which if true restricts the list of fields to only those that are
visible.

Return value A Variant containing a list of strings.
298 EntityDef object

ator
GetName method

Returns the name of the EntityDef object’s corresponding record type.

VB Syntax:

entitydef.GetName

Perl Syntax:

$entitydef->GetName();

Member of: EntityDef object

Remarks:

Like the other parts of an EntityDef object, the name of an EntityDef object is
determined by the corresponding record type, whose name is set by the administr
using ClearQuest Designer. The name cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())
sessionObj.OutputDebugString "Name of record type: " & _

entityDefObj.GetName()

See Also:

GetType method
EntityDef Code Example

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A String whose value is the name of the EntityDef object’s
corresponding record type.
EntityDef object 299

GetStateDefNames method

Returns the state names defined in the EntityDef object.

VB Syntax:

entitydef.GetStateDefNames

Perl Syntax:

$entitydef->GetStateDefNames();

Member of: EntityDef object

Remarks:

Like the other parts of an EntityDef object, the administrator sets the defined states
using ClearQuest Designer. They cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

If entityDefObj.GetType = AD_REQ_ENTITY Then
sessionObj.OutputDebugString "States of record type: " & _

entityDefObj.GetName()

’ List the possible states of the record
nameList = entityDefObj.GetStateDefNames()
For Each stateName in nameList

sessionObj.OutputDebugString stateName
Next

End If

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A Variant containing an Array whose elements are Strings. Each
String contains the name of one state. If the EntityDef object has no
states, the return value is an Empty variant.
300 EntityDef object

See Also:

GetType method
IsStateDefName method
EntityDef Code Example
Notation Conventions
EntityDef object 301

GetType method

Returns the type (state-based or stateless) of the EntityDef.

VB Syntax:

entitydef.GetType

Perl Syntax:

$entitydef->GetType();

Member of: EntityDef object

Remarks:

Like the other parts of an EntityDef object, the type of an EntityDef object is determined
by the corresponding record type, whose type is set by the administrator using
ClearQuest Designer. The type cannot be set directly from the API.

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

If entityDefObj.GetType = AD_REQ_ENTITY Then
sessionObj.OutputDebugString "States of record type: " & _

entityDefObj.GetName()

’ List the possible states of the record
nameList = entityDefObj.GetStateDefNames()
For Each stateName in nameList

sessionObj.OutputDebugString stateName
Next

End If

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A Long whose value is an EntityType constant: REQ_ENTITY for a
state-based EntityDef object or AUX_ENTITY for a stateless
EntityDef object.
302 EntityDef object

See Also:

GetName method
EntityDef Code Example
Notation Conventions
EntityDef object 303

IsActionDefName method

Identifies whether the EntityDef object contains an action with the specified name.

VB Syntax:

entitydef.IsActionDefName name

Perl Syntax:

$entitydef->IsActionDefName(name);

Member of: EntityDef object

Examples:

set sessionObj = GetSession
set entityDefObj = sessionObj.GetEntityDef(GetEntityDefName())

If entityDefObj.IsActionDefName("open") Then
sessionObj.OutputDebugString "The record type supports the open action"

End If

See Also:

GetActionDefNames method
GetActionDefType method

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

name A String containing the name of the action to verify.

Return value True if name is the name of an actual action in the EntityDef object;
otherwise False.
304 EntityDef object

IsFamily method

Returns the boolean value of True if this entitydef defines a family.

VB Syntax:

entitydef.IsFamily entitydef

Perl Syntax:

$entitydef->IsFamily(entitydef);

Member of: EntityDef object

Remarks:

Use this call to determine whether a given entitydef is an entitydef or an entitydef
family. The IsFamily method fetches a flag marked on the EntityDef object.

See Also:

GetEntityDef method
GetEntityDefFamilyNames method

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

Return value A Boolean. True signifies the entitydef does define a family record
type.
EntityDef object 305

IsFieldDefName method

Identifies whether the EntityDef object contains a field with the specified name.

VB Syntax:

entitydef.IsFieldDefName name

Perl Syntax:

$entitydef->IsFieldDefName(name);

Member of: EntityDef object

See Also:

GetFieldDefNames method
GetFieldDefType method

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

name A String containing the name of the field to verify.

Return value True if name is the name of an actual field in the EntityDef object;
otherwise False.
306 EntityDef object

IsStateDefName method

Identifies whether the EntityDef object contains a state with the specified name.

VB Syntax:

entitydef.IsStateDefName name

Perl Syntax:

$entitydef->IsStateDefName(name);

Member of: EntityDef object

See Also:

GetStateDefNames method
EntityDef Code Example

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

name A String containing the name of the state to verify.

Return value True if name is the name of an actual state in the EntityDef object;
otherwise False.
EntityDef object 307

IsSystemOwnedFieldDefName method

Returns a Bool indicating whether the specified field is owned by the system.

VB Syntax:

entitydef.IsSystemOwnedFieldDefName field_name

Perl Syntax:

$entitydef->IsSystemOwnedFieldDefName(field_name);

Member of: EntityDef object

Remarks:

System-owned fields are used internally by ClearQuest to maintain information about
the database. You should never modify system fields directly as it could corrupt the
database.

See Also:

GetFieldDefNames method

Identifier Description

entitydef An EntityDef object corresponding to a record type in a schema.

field_name A String that identifies a valid field name of entitydef.

Return value True if the field is owned by the system, otherwise False.
308 EntityDef object

QueryDef object
QueryDef properties

QueryDef methods

See Also:

BuildQuery method of the Session object
ResultSet Object
Session object
BuildQuery Code Example

Property name Access Description

IsAggregated property Read-only Returns a Boolean indicating whether any
fields of the query are aggregated.

IsDirty property Read-only Returns a Boolean indicating whether the
query has changed.

IsMultiType method Read-only Returns a Boolean indicating whether the
QueryDef object is multitype.

Name property Read/Write Sets or returns the name associated with
the query.

QueryType property Read-only Returns an Integer indicating list, report, or
chart.

SQL property Read/Write Sets or returns the SQL string associated
with the query.

Method name Description

BuildField method Selects a field to include in the query’s search results.

BuildFilterOperator method Creates the top-level QueryFilterNode object for the query.

Save method Saves the query to the specified file.
QueryDef object 309

IsAggregated property

Returns a Bool indicating whether any fields of the query are aggregated.

VB Syntax:

querydef.IsAggregated

Perl Syntax:

$querydef->GetIsAggregated();

Member of: QueryDef object

Remarks:

Aggregated fields are grouped together for display in the resulting query or chart. This
property is read-only.

See Also:

SQL property

Identifier Description

querydef A QueryDef object.

Return value True if any of the fields in the query are aggregated, otherwise
False.
310 QueryDef object

IsDirty property

Returns a Boolean indicating whether the query has changed.

VB Syntax:

querydef.IsDirty

Perl Syntax:

$querydef->GetIsDirty();

Member of: QueryDef object

Remarks:

A QueryDef object is considered dirty if any of its fields or filters have changed since
the last time it was saved.

See Also:

Save method

Identifier Description

querydef A QueryDef object.

Return value True if the query has changed, otherwise False.
QueryDef object 311

IsMultiType method

Returns a Boolean indicating whether a given querydef has the property of being
multitype.

VB Syntax:

querydef.IsMultiType

Perl Syntax:

$querydef->IsMultiType();

Member of: QueryDef object

Remarks:

One use case for this method is to support querying similar record types (for example,
defects and enhancement requests) in a single query. This method can be used in
conjunction with GetEntityDefFamily method and GetEntityDefFamilyNames method.

See Also:

GetEntityDefFamily method
GetEntityDefFamilyNames method

Identifier Description

querydef A QueryDef object.

Return value True if the object is multitype.
312 QueryDef object

Name property

Sets or returns the name associated with the query.

VB Syntax:

querydef.Name [value]

Perl Syntax:

$querydef->GetName();
$querydef->SetName(newName);

Member of: QueryDef object

See Also:

Save method

Identifier Description

querydef A QueryDef object.

value A String containing the name of the query.
QueryDef object 313

QueryType property

Returns an integer indicating whether the saved query has the property of being a list, a
report, or a chart.

VB Syntax:

querydef.QueryType

Perl Syntax:

$querydef->GetQueryType();

Member of: QueryDef object

See Also:

QueryType enumerated constants

Identifier Description

querydef A QueryDef object.

Return value An Integer indicating whether a saved query is a list
(_LIST_QUERY), a report (_REPORT_QUERY), or or query
(_CHART_QUERY).
314 QueryDef object

SQL property

Sets or returns the SQL string associated with the query.

VB Syntax:

querydef.SQL [= Value]

Perl Syntax:

$querydef->GetSQL();
$querydef->SetSQL(string_of_SQL_statements);

Member of: QueryDef object

Remarks:

If you assign a value to this property, the QueryDef object uses your string instead of the
terms you have built using other methods of this object.

If you get the value of this property, the QueryDef object returns the SQL string that will
be executed when the query is run. If you had assigned a SQL string to this property
earlier, that string is returned; otherwise, this method generates a SQL string from the
terms that have been added to the QueryDef object so far.

See Also:

BuildSQLQuery method of the Session object
Session object

Identifier Description

querydef A QueryDef object.

value A String containing the SQL that will be executed when the query is
run.
QueryDef object 315

nt to
ich
thod,

the
ld in

 tree
BuildField method

Selects a field to include in the query’s search results.

VB Syntax:

querydef.BuildField field_name

Perl Syntax:

$querydef->BuildField(field_name);

Member of: QueryDef object

Remarks:

Before you run a query, you must specify at least one field to display in the search
results summary. You must call this method once to specify each field that you wa
display. The ResultSet object displays the fields from left to right in the order in wh
you added them to the QueryDef object. In other words, each time you call this me
you add the specified field to the end of the list; you cannot change this ordering.

Because you associate a QueryDef object with an EntityDef object when you call
BuildQuery method, the field_name parameter must contain the name of a valid fie
that EntityDef object. To obtain valid values for the field_name argument, you can
query the EntityDef object by calling its GetFieldDefNames method.

You can call BuildField either before or after constructing the query expression (the
of filter nodes).

Identifier Description

querydef A QueryDef object.

field_name A String identifying a valid field of the associated EntityDef object.

Return value None.
316 QueryDef object

See Also:

BuildFilterOperator method
BuildQuery method of the Session object
GetFieldDefNames method of the EntityDef object
EntityDef object
ResultSet Object
Session object
BuildQuery Code Example
QueryDef object 317

BuildFilterOperator method

Creates the top-level QueryFilterNode object for the query.

VB Syntax:

querydef.BuildFilterOperator bool_operator

Perl Syntax:

$querydef->BuildFilterOperator(bool_operator);

Member of: QueryDef object

Remarks:

This QueryDef method is the starting-point for building a query expression. You must
call this method to obtain the first filter in the query expression. From this filter, you can
construct additional filters to specify the criteria you want. The query expression is
constructed as a tree of Boolean operators. The tree is not necessarily binary; you can
add more than two conditions to a filter node.

For example:

(submitter = jjones OR submitter = clopez OR submitter = kwong) AND
submit_date < 01/03/2000

In this expression, the top-level Boolean operator is the AND operator. To start
constructing this query expression, you use this method to create the filter that has the
top-level operator:

filterNode1 = myQueryDef. BuildFilterOperator (AD_BOOL_OP_AND)

Identifier Description

querydef A QueryDef object.

bool_operator A Long whose value is one of the BoolOp enumeration constants.

Return value The newly created QueryFilterNode object.
318 QueryDef object

You use this method just once to construct the root of the tree. To continue adding
filters, you call the methods of the returned QueryFilterNode objects. For example, to
complete the previous expression, you would write the following code:

filterNode1.BuildFilter (’submit_date’, AD_COMP_OP_LT, ’1997-11-19’)
filterNode2 = filterNode1.BuildFilterOperator (AD_BOOL_OP_OR)
filterNode2.BuildFilter (’submitter’, AD_COMP_OP_EQ, ’jjones’)
filterNode2.BuildFilter (’submitter’, AD_COMP_OP_EQ, ’clopez’)
filterNode2.BuildFilter (’submitter’, AD_COMP_OP_EQ, ’kwong’)

More-complicated expressions are created by recursively attaching more nodes as
needed. For more information, see the QueryFilterNode object.

If a node contains only one condition, the value of the bool_operator parameter is
irrelevant. For example, if the entire query expression is ’SUBMITTER = JJONES’, you
could construct the query expression as follows:

’ You could use either AD_BOOL_OP_AND or AD_BOOL_OP_OR for this
’ expression since there is only one condition.
filterNode = myQueryDef.BuildFilterOperator (AD_BOOL_OP_AND)
filterNode.BuildFilter (’submitter’, AD_COMP_OP_EQ, ’jjones’)

Note: It is perfectly legal to create a QueryDef object that has no filtering (in other
words, no query expression). In this case, all of the records in the database are retrieved.

See Also:

BuildFilter method of the QueryFilterNode object
BuildFilterOperator method of the QueryFilterNode object
BoolOp enumerated type
QueryFilterNode object
BuildQuery Code Example
Notation Conventions
QueryDef object 319

Save method

Saves the query to the specified file.

VB Syntax:

querydef.Save fileName

Perl Syntax:

$querydef->Save(fileName);

Member of: QueryDef object

See Also:

Name property

Identifier Description

querydef A QueryDef object.

fileName A String containing the name of the file.

Return value A Bool containing the value True if the query was successfully
saved, otherwise False.
320 QueryDef object

ResultSet Object
ResultSet methods

See Also:

BuildResultSet method of the Session object
QueryDef object
Session object
ResultSet Code Example

Method name Description

AddParamValue method Assigns one or more values to a parameter.

ClearParamValues method Clears all values associated with a parameter.

Execute method Runs the query and fills the result set with data.

GetColumnLabel method Returns the heading text for the specified column.

GetColumnType method Returns the type of data stored in the specified column.

GetColumnValue method Returns the value stored in the specified column of the current row.

GetNumberOfColumns
method

Returns the number of columns in each row of the result set.

GetNumberOfParams
method

Returns the number of parameters in this query.

GetParamChoiceList method Returns a list of permitted values for the parameter.

GetParamComparisonOperat
or method

Returns the comparison operator associated with the parameter.

GetParamFieldType method Returns the field type of the parameter.

GetParamLabel method Returns the name of the parameter.

GetParamPrompt method Returns the prompt string displayed to the user for the given
parameter.

GetSQL method Returns the SQL string that expresses the query.

LookupPrimaryEntityDefNam
e method

Returns the name of the EntityDef object on which the query is
based.

MoveNext method Moves the cursor to the next record in the data set.
ResultSet Object 321

AddParamValue method

Assigns one or more values to a parameter.

VB Syntax:

resultset.AddParamValue param_number, value

Perl Syntax:

$resultset->AddParamValue(param_number, value);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

See Also:

ClearParamValues method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

value A Variant containing one or more values for the parameter.

Return value None.
322 ResultSet Object

ClearParamValues method

Clears all values associated with a parameter.

VB Syntax:

resultset.ClearParamValues param_number

Perl Syntax:

$resultset->ClearParamValues(param_number);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

See Also:

AddParamValue method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

Return value None.
ResultSet Object 323

Execute method

Runs the query and fills the result set with data.

VB Syntax:

resultset.Execute

Perl Syntax:

$resultset->Execute();

Member of: ResultSet Object

Remarks:

This method runs the query and creates the resulting data set in the database. Because
the resulting data set could be huge, this method does not copy the data set into the
program’s memory. When this method returns, the cursor is positioned before the first
record. You must call the MoveNext method before retrieving the first record’s values.
To retrieve values from a record, use the GetColumnValue method.

After executing the query, it is legal to get the SQL for the query by invoking the
GetSQL method.

You may call this method more than once. For example, you might want to rerun the
query if the data could have changed since the last time, or if you made changes to the
database yourself.

See Also:

GetColumnValue method
GetSQL method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

Return value None.
324 ResultSet Object

MoveNext method
BuildResultSet method of the Session object
Session object
ResultSet Code Example
ResultSet Object 325

GetColumnLabel method

Returns the heading text for the specified column.

VB Syntax:

resultset.GetColumnLabel columnNum

Perl Syntax:

$resultset->GetColumnLabel(columnNum);

Member of: ResultSet Object

Remarks:

Columns are numbered from 1 to N, not 0 to N-1.

See Also:

GetColumnType method
GetColumnValue method
GetNumberOfColumns method
ResultSet Code Example

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

columnNum A Long that specifies the desired index (1-based) into the array of
columns.

Return value A String containing the column label.
326 ResultSet Object

GetColumnType method

Returns the type of data stored in the specified column.

VB Syntax:

resultset.GetColumnType columnNum

Perl Syntax:

$resultset->GetColumnType(columnNum);

Member of: ResultSet Object

Remarks:

This method returns the underlying database type, rather than a FieldType, because the
result of a complex SQL query can include a column that does not correspond to a field
of a record.

Columns are numbered from 1 to N, not 0 to N-1.

See Also:

GetColumnLabel method
GetColumnValue method
GetNumberOfColumns method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

columnNum A Long that specifies the desired index (1-based) into the array of
columns.

Return value A Long whose value is a CType enumeration constant representing
this column’s underlying storage type in the database.
ResultSet Object 327

GetColumnValue method

Returns the value stored in the specified column of the current row.

VB Syntax:

resultset.GetColumnValue columnNum

Perl Syntax:

$resultset->GetColumnValue(columnNum);

Member of: ResultSet Object

Remarks:

If the cursor is not positioned at a record, or the field’s value has not been set, the
returned Variant will be NULL. To advance the cursor to the next row, you must call the
MoveNext method.

In the current version of the ClearQuest API, the Variant is always set as a string, but
future versions might let you initialize the Variant to the most appropriate native type.

Columns are numbered from 1 to N, not 0 to N-1.

See Also:

GetColumnLabel method
GetColumnType method
GetNumberOfColumns method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

columnNum A Long that specifies the desired index (1-based) into the array of
columns.

Return value A Variant that contains the value stored in the specified column of
the current row.
328 ResultSet Object

MoveNext method
ResultSet Code Example
ResultSet Object 329

GetNumberOfColumns method

Returns the number of columns in each row of the result set.

VB Syntax:

resultset.GetNumberOfColumns

Perl Syntax:

$resultset->GetNumberOfColumns();

Member of: ResultSet Object

See Also:

GetColumnLabel method
GetColumnType method
GetColumnValue method
ResultSet Code Example

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

Return value A Long indicating the number of columns in the result set.
330 ResultSet Object

GetNumberOfParams method

Returns the number of parameters in this query.

VB Syntax:

resultset.GetNumberOfParams

Perl Syntax:

$resultset->GetNumberOfParams();

Member of: ResultSet Object

See Also:

GetParamChoiceList method
GetParamComparisonOperator method
GetParamFieldType method
GetParamLabel method
GetParamPrompt method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

Return value A Long indicating the number of parameters in the query.
ResultSet Object 331

GetParamChoiceList method

Returns a list of permitted values for the parameter.

VB Syntax:

resultset.GetParamChoiceList param_number

Perl Syntax:

$resultset->GetParamChoiceList(param_number);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

See Also:

GetNumberOfParams method
GetParamComparisonOperator method
GetParamFieldType method
GetParamLabel method
GetParamPrompt method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

Return value A Variant containing the list of permitted values for the parameter. If
the Variant is empty, there are no restrictions on the parameter
values.
332 ResultSet Object

GetParamComparisonOperator method

Returns the comparison operator associated with the parameter.

VB Syntax:

resultset.GetParamComparisonOperator param_number

Perl Syntax:

$resultset->GetParamComparisonOperator(param_number);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

See Also:

GetNumberOfParams method
GetParamChoiceList method
GetParamFieldType method
GetParamLabel method
GetParamPrompt method
CompOp enumerated type

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

Return value A Long indicating the comparison operator for the parameter. The
value corresponds to a value in the CompOp enumerated type.
ResultSet Object 333

GetParamFieldType method

Returns the field type of the parameter.

VB Syntax:

resultset.GetParamFieldType param_number

Perl Syntax:

$resultset->GetParamFieldType(param_number);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

See Also:

GetNumberOfParams method
GetParamChoiceList method
GetParamComparisonOperator method
GetParamLabel method
GetParamPrompt method
FieldType enumerated type

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

Return value A Long indicating the field type of the parameter. The value
corresponds to a value in the FieldType enumerated type.
334 ResultSet Object

GetParamLabel method

Returns the name of the parameter.

VB Syntax:

resultset.GetParamLabel param_number

Perl Syntax:

$resultset->GetParamLabel(param_number);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

The name of the parameter is the name associated directly with the field and may not
correspond to the prompt displayed to the user.

See Also:

GetNumberOfParams method
GetParamChoiceList method
GetParamComparisonOperator method
GetParamFieldType method
GetParamPrompt method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

Return value A String containing the name of the parameter.
ResultSet Object 335

GetParamPrompt method

Returns the prompt string displayed to the user for the given parameter.

VB Syntax:

resultset.GetParamPrompt param_number

Perl Syntax:

$resultset->GetParamPrompt(param_number);

Member of: ResultSet Object

Remarks:

The parameter number is a Long whose value is between 1 and the total number of
parameters.

See Also:

GetNumberOfParams method
GetParamChoiceList method
GetParamComparisonOperator method
GetParamFieldType method
GetParamLabel method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

param_number A Long identifying the parameter. See Remarks.

Return value A String containing the prompt string displayed to the user.
336 ResultSet Object

GetRowEntityDefName method

Based on the result set, this method returns a String with the record type (EntityDef)
name of the current row.

VB Syntax:

resultset.GetRowEntityDefName

Perl Syntax:

$resultset->GetRowEntityDefName();

Member of: ResultSet Object

Remarks:

For a single-type query, the record type associated with the row is always the primary
entitydef. For multitype query, the entitydef can vary row by row. For example, defect
versus enhancement.

Examples:

See Running a query against more than one record type (multitype query).

See Also:

IsMultiType method

Identifier Description

resultset A ResultSet object, representing the rows of data that meet query
criteria.

Return value A String containing the name of the record type of the specified row.
ResultSet Object 337

GetSQL method

Returns the SQL string that expresses the query.

VB Syntax:

resultset.GetSQL

Perl Syntax:

$resultset->GetSQL();

Member of: ResultSet Object

Remarks:

A ResultSet can be based on either a QueryDef object or an SQL string. In either case,
you can retrieve the SQL commands that express the query. It is legal to invoke this
method either before or after you run the query by calling the Execute method.

See Also:

Execute method

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

Return value A String containing the raw SQL that expresses the query upon
which this ResultSet is based.
338 ResultSet Object

LookupPrimaryEntityDefName method

Returns the name of the EntityDef object on which the query is based.

VB Syntax:

resultset.LookupPrimaryEntityDefName

Perl Syntax:

$resultset->LookupPrimaryEntityDefName();

Member of: ResultSet Object

Remarks:

A ResultSet can based on either a QueryDef object or an SQL string. A query that uses
a QueryDef object must also have an associated EntityDef object, and thus this method
returns the name of that object.

See Also:

BuildQuery method of the Session object
EntityDef object
QueryDef object
Session object
ResultSet Code Example

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

Return value A String containing the name of the EntityDef object. If the query was
defined using the BuildSQLQuery method of Session, the resulting
String is Empty.
ResultSet Object 339

MoveNext method

Moves the cursor to the next record in the data set.

VB Syntax:

resultset.MoveNext

Perl Syntax:

$resultset->MoveNext();

Member of: ResultSet Object

Remarks:

The Execute method positions the cursor before the first record in the result set (not at
the first record). Before you can retrieve the data from the first record, you must call this
method to advance the cursor to that record.

See Also:

Execute method
GetColumnValue method
ResultSet Code Example

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

Return value A Long whose value is a FetchStatus enumeration constant
indicating whether the cursor movement was successful.
340 ResultSet Object

QueryFilterNode object
QueryFilterNode methods

See Also:

BuildQuery method of the Session object
ResultSet Object
QueryDef object
Session object
BuildQuery Code Example

Method name Description

BuildFilter method Adds a comparison operand to the node.

BuildFilterOperator method Creates a nested QueryFilterNode object that contains the specified
Boolean operator.
QueryFilterNode object 341

BuildFilter method

Adds a comparison operand to the node.

VB Syntax:

node.BuildFilter field_name, comparison_operator, value

Perl Syntax:

$node->BuildFilter(field_name, comparison_operator, value);

Member of: QueryFilterNode object

Remarks:

The operand created by this method consists of a field name, a comparison operator, and
a value. When the query is run, the value in the field is compared to the specified value
using the given comparison operator. The comparison yields a boolean value, which the
node uses in its own boolean comparison.

The value argument is a [VB Variant or] Perl reference to a string array to allow you to
specify an Array of values when appropriate. For example, if you wanted to find the
defects submitted between December 1 and December 15, 2000. you could construct the
following filter:

Identifier Description

node A QueryFilterNode object, representing one node in the query
expression.

field_name A String containing the name of a valid field in the EntityDef object
on which the current QueryDef object is based.

comparison_operator A Long whose value is one of the CompOp enumeration constants.

value [A VB Variant or] Perl reference to a string array containing the value
that you want to compare to the value in the specified field.

Return value None.
342 QueryFilterNode object

VB

Dim dateRange as Variant(2)
dateRange(0) = 2000-12-01
dateRange(1) = 2000-12-15
node.BuildFilter("submit_date", AD_COMP_OP_IN, dateRange)

Perl

@dateRange = (“2000-12-01”, “2000-12-15”);
$node->BuildFilter("submit_date", CQPerlExt::_COMP_OP_IN, \@dateRange);

Query expressions are not limited to being binary trees; you can call this method as
many times as you want for a given QueryFilterNode object. See the example given for
QueryDef’s BuildFilterOperator method.

To obtain valid values for the field_name argument, call the GetFieldDefNames method
of the EntityDef object upon which the query was based.

See Also:

BuildFilterOperator method
BuildFilterOperator method of the QueryDef object
QueryDef object
BuildQuery Code Example
Notation Conventions
QueryFilterNode object 343

BuildFilterOperator method

Creates a nested QueryFilterNode object that contains the specified Boolean operator.

VB Syntax:

node.BuildFilterOperator bool_operator

Perl Syntax:

$node->BuildFilterOperator(bool_operator);

Member of: QueryFilterNode object

Remarks:

This method creates a nested node (or subnode) in the query expression. The newly
created node operates at the same level as the filters in the QueryFilterNode object
specified in the node parameter and is subject to the same conditions. You can add
filters to the newly created node using the BuildFilter method just as you would for any
other node.

See Also:

BuildFilter method
BuildFilterOperator method of the QueryDef object
QueryDef object
BuildQuery Code Example

Identifier Description

node The QueryFilterNode object to which the newly created node will be
attached.

bool_operator A Long whose value is one of the BoolOp enumeration constants.

Return value The newly created QueryFilterNode object.
344 QueryFilterNode object

AdminSession object
An AdminSession object allows you to create a session object associated with a schema
repository.

Remarks:

The AdminSession object is the starting point if you want to modify the information in a
schema repository. Unlike the Session object, you must create an instance of
AdminSession explicitly even if you are writing a hook. You create an AdminSession
object as follows:

set adminSession = CreateObject("ClearQuest.AdminSession")

After creating the AdminSession object, you must log on to the schema repository using
the Logon method of the AdminSession object. To log on to the database, you must
know the administrator’s login name and password, as well as the name of the database
set containing the schema repository. Once you have logged on successfully, you can
use the methods of the AdminSession object to get information from the schema
repository.

Note: To learn about user administration, see Performing user administration in the
Using the ClearQuest API chapter.

Working With Databases

The AdminSession object also maintains a list of the user databases associated with the
schema repository. If you know the name of the database, you can get its corresponding
Database object by calling the GetDatabase method . If you do not know the name of
the database, you can iterate through the objects in the Databases property to find the
one you want. You can also disassociate a user database from the schema repository by
calling the DeleteDatabase method.
AdminSession object 345

Properties

Methods

See Also:

Session object

Property name Access Description

Databases property Read-only Returns the collection of databases
associated with the schema repository.

Groups property Read-only Returns the collection of groups
associated with the schema repository.

Schemas property Read-only Returns the collection of schemas
associated with the schema repository.

Users property Read-only Returns the collection of users associated
with the schema repository.

Method name Description

CreateDatabase method Creates a new database and associates it with the schema
repository.

CreateGroup method Creates a new group and associates it with the schema repository.

CreateUser method Creates a new user and associates it with the schema repository.

DeleteDatabase method Disassociates the specified database from the schema repository.

GetDatabase method Returns the database object with the specified name.

GetGroup method Returns the group object with the specified name.

GetUser method Returns the user object with the specified name.

Logon method Logs the specified user into the schema repository.
346 AdminSession object

Databases property

Returns the collection of databases associated with the schema repository.

VB Syntax:

adminSession.Databases

Perl Syntax:

$adminSession->GetDatabases();

Member of: AdminSession object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a Database object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set databaseList = adminSession.Databases
numDBs = databaseList.Count
For x = 0 to numDBs

set dbObj = databaseList.Item(x)
dbName = dbObj.DatabaseName
OutputDebugString "Found database: " & dbName

Next

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

Return value A Databases collection object containing the collection of all
databases defined in this schema repository.
AdminSession object 347

See Also:

Database object
Databases collection object
348 AdminSession object

Groups property

Returns the collection of groups associated with the schema repository.

VB Syntax:

adminSession.Groups

Perl Syntax:

$adminSession->GetGroups();

Member of: AdminSession object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a Group object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set groupList = adminSession.Groups
numGroups = groupList.Count
For x = 0 to numGroups

set groupObj= groupList.Item(x)
groupName = groupObj.Name
OutputDebugString "Found group: " & groupName

Next

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

Return value A Groups collection object containing all of the groups in the schema
repository.
AdminSession object 349

See Also:

Group object
Groups collection object
350 AdminSession object

Schemas property

Returns the collection of schemas associated with the schema repository.

VB Syntax:

adminSession.Schemas

Perl Syntax:

$adminSession->GetSchemas();

Member of: AdminSession object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a Schema object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set schemaList = adminSession.Schemas
numSchemas = schemaList.Count
For x = 0 to numSchemas

set schemaObj = schemaList.Item(x)
schemaName = schemaObj.Name
OutputDebugString "Found schema: " & schemaName

Next

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

Return value A Schemas collection object containing all of the schemas in the
master database.
AdminSession object 351

See Also:

Schema object
Schemas collection object
352 AdminSession object

Users property

Returns the collection of users associated with the schema repository.

VB Syntax:

adminSession.Users

Perl Syntax:

$adminSession->GetUsers();

Member of: AdminSession object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a User object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set userList = adminSession.Groups
numUsers = userList.Count
For x = 0 to numUsers

set userObj = userList.Item(x)
userName = userObj.Name
OutputDebugString "Found user: " & userName

Next

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

Return value A Users collection object containing all of the users in the schema
repository.
AdminSession object 353

See Also:

User object
Users collection object
354 AdminSession object

CreateDatabase method

Creates a new database and associates it with the schema repository.

VB Syntax:

adminSession.CreateDatabase databaseName

Perl Syntax:

$adminSession->CreateDatabase(databaseName);

Member of: AdminSession object

Remarks:

The new database object does not have any of its properties set. You can set the basic
database information (such as timeout intervals, login names, and passwords) by
assigning appropriate values to the properties of the returned Database object. You must
also call the returned object’s SetInitialSchemaRev method to assign a schema to the
database. See the Database object for more information on creating databases.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set newDatabaseObj = adminSession.CreateDatabase "NEWDB"

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

databaseName A String containing the name you want to give to the new database.

Return value A Database object representing the new database.
AdminSession object 355

See Also:

DeleteDatabase method
GetDatabase method
Databases property
SetInitialSchemaRev method of the Database object
Database object
356 AdminSession object

CreateGroup method

Creates a new group and associates it with the schema repository.

VB Syntax:

adminSession.CreateGroup groupName

Perl Syntax:

$adminSession->CreateGroup(groupName);

Member of: AdminSession object

Remarks:

The new group is subscribed to all databases by default. When you use the methods of
the Group object to add users and subscribe the group to one or more databases, the
groups or users are subscribed only to those you specify.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set newGroupObj = adminSession.CreateGroup "Engineers"

See Also:

GetGroup method
Groups property
Group object

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

groupName A String containing the name you want to give to the new group.

Return value A new Group object.
AdminSession object 357

CreateUser method

Creates a new user and associates it with the schema repository

VB Syntax:

adminSession.CreateUser userName

Perl Syntax:

$adminSession->CreateUser(userName);

Member of: AdminSession object

Remarks:

The returned object contains no information. To add user information to this object,
assign values to its properties. For information on user properties, see the User object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set newUserObj = adminSession.CreateUser "jsmith"

See Also:

GetUser method
Users property
User object

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

userName A String containing the name you want to give to the new user.

Return value A new User object.
358 AdminSession object

DeleteDatabase method

Disassociates the specified database from the schema repository.

VB Syntax:

adminSession.DeleteDatabase databaseName

Perl Syntax:

$adminSession->DeleteDatabase(databaseName);

Member of: AdminSession object

Remarks:

This method does not actually delete the specified database. Instead, it removes all
references to the database from the schema repository.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set newDatabase = adminSession.CreateDatabase "NEWDB"

...

’ Delete the database that was created earlier.
set oldDB = adminSession.DeleteDatabase "NEWDB"

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

databaseName A String containing the name of the database you want to delete.

Return value The Database object that was disassociated from the schema
repository.
AdminSession object 359

See Also:

CreateDatabase method
GetDatabase method
Databases property
Database object
360 AdminSession object

GetDatabase method

Returns the database object with the specified name.

VB Syntax:

adminSession.GetDatabase databaseName

Perl Syntax:

$adminSession->GetDatabase(databaseName);

Member of: AdminSession object

Remarks:

The databaseName parameter corresponds to the logical database name, that is, the
string in the Name property of the Database object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set dbObj = adminSession.GetDatabase "NEWDB"

See Also:

CreateDatabase method
Databases property

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

databaseName A String containing the name of the database object you want.

Return value The Database object with the specified name, or null if no such
database exists.
AdminSession object 361

Name property of the Database object
Database object
362 AdminSession object

GetGroup method

Returns the group object with the specified name.

VB Syntax:

adminSession.GetGroup groupName

Perl Syntax:

$adminSession->GetGroup(groupName);

Member of: AdminSession object

Remarks:

The groupName parameter corresponds to the value in the Name property of the Group
object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set groupObj = adminSession.GetGroup "Engineers"

See Also:

CreateGroup method
Groups property

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

groupName A String containing the name of the database object you want.

Return value The Group object with the specified name, or null if no such group
exists.
AdminSession object 363

Name property of the Group object
Group object
364 AdminSession object

GetUser method

Returns the user object with the specified name.

VBVB Syntax:

adminSession.GetUser userName

Perl Syntax:

$adminSession->GetUser(userName);

Member of: AdminSession object

Remarks:

The userName parameter corresponds to the value in the Name property of the User
object.

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

set userObj = adminSession.GetUser "talbert"

See Also:

CreateUser method
Users property

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

userName A String containing the name of the user object you want.

Return value The User object with the specified name, or null if no such user
exists.
AdminSession object 365

Name property of the User object
User object
366 AdminSession object

Logon method

Logs the specified user into the schema repository.

VB Syntax:

adminSession.Logon login_name, password, databaseSetName

Perl Syntax:

$adminSession->Logon(login_name, password, databaseSetName);

Member of: AdminSession object

Remarks:

Call this method after creating the AdminSession object but before trying to access any
elements in the schema repository. The user login and password must correspond to the
ClearQuest administrator or to a user who has access to the schema repository. The
administrator can grant access to users by enabling special privleges in their account.
Users with the Schema Designer privelege can modify the schemas in a database. Users
with the User Administrator privilege can create or modify groups and user accounts.
Users with the Super User privilege have complete access to the schema repository, just
like the administrator.

Identifier Description

adminSession The AdminSession object representing the current schema
repository access session.

login_name A String that specifies the login name of the user.

password A String that specifies the user’s password.

databaseSetName A String that specifies the name of the schema repository. Normally,
you should set this string to the empty string (““).

Return value None.
AdminSession object 367

Examples:

set adminSession = CreateObject("ClearQuest.AdminSession")
adminSession.Logon "admin", "admin", ""

See Also:

CreateUser method
Users property
UserLogon method of the Session object
Session object
368 AdminSession object

Database object
Database object properties

Property name Access Description

CheckTimeoutInterval Read/Write Sets or returns the interval at which to
check for user timeouts.

CheckTimeoutInterval
property

Read-only Sets or returns the interval at which to
check for user timeouts.

ConnectHosts property Read/Write Sets or returns the physical location of a
database server.

ConnectProtocols property Read/Write Sets or returns the network protocol list for
the database server.

DatabaseName Read/Write Sets or returns the physical name of the
database.

DBOLogin Read/Write Sets or returns the database owner’s login
name.

DBOPassword Read/Write Sets or returns the database owner’s
password.

Description Read/Write Sets or returns the descriptive comment
associated with the database.

Name Read Returns the logical database name.

ROLogin Read/Write Sets or returns the login name for users
who have read-only access to the
database.

ROPassword Read/Write Sets or returns the password for users who
have read-only access to the database.

RWLogin Read/Write Sets or returns the login name for users
who have read/write access to the
database.

RWPassword Read/Write Sets or returns the password for users who
have read/write access to the database.

SchemaRev Read-only Returns the schema revision currently in
use by the database.

Server Read/Write Returns the name of the server on which
the database resides.
Database object 369

Databases object methods

See Also:

CreateDatabase method of the AdminSession object
AdminSession object
Schema object
SchemaRev object

SubscribedGroups Read-only Returns the groups that are explicitly
subscribed to this database.

SubscribedUsers Read-only Returns the users that are explicitly
subscribed to this database.

TimeoutInterval Read/Write Returns the user timeout interval.

Vendor Read/Write Returns the vendor type of the database.

Method name Description

ApplyPropertyChanges Updates the database’s writable properties with any recent changes.

SetInitialSchemaRev Sets the initial schema revision of a new database.

Upgrade Upgrade this database to the specified schema revision.

UpgradeMasterUserInfo Upgrade this database’s user information.

Property name Access Description
370 Database object

CheckTimeoutInterval property

Sets or returns the interval at which to check for user timeouts.

VB Syntax:

database.CheckTimeoutInterval [= value]

Perl Syntax:

$database->GetCheckTimeoutInterval();
$database->SetCheckTimeoutInterval(newValue);

Member of: Database object

Remarks:

This property can be returned or set.

ClearQuest uses this property to determine how often it should check the status of user
connections. When the specified interval is up, ClearQuest checks each user connection
for activity. If no activity has been detected recently, ClearQuest checks the
TimeoutInterval property to see if the user’s connection has timed out.

See Also:

TimeoutInterval property

Identifier Description

database A Database object.

value A Long value indicating the number of milliseconds between checks.
Database object 371

ConnectHosts property

Sets or returns the host name list for the physical location of the database server.

VB Syntax:

database.ConnectHosts [= value]

Perl Syntax:

$database->GetConnectHosts();
$database->SetConnectHosts(string_for_the_host_connection);

Member of: Database object

Remarks:

This property can be returned or set. This property is used only in conjunction with
databases who Vendor property is SQL_ANYWHERE. This property corresponds to the
SQL Anywhere HOST database server option.

See Also:

ConnectProtocols property

Identifier Description

database A Database object.

value [A VB array of Strings or] a Perl reference to a string array. Each
String in the array contains a physical location of a database server.
372 Database object

ConnectProtocols property

Sets or returns the network protocol list for the database server.

VB Syntax:

database.ConnectProtocols [= value]

Perl Syntax:

$database->GetConnectProtocols();
$database->SetConnectProtocols(string_for_the_host_connection);

Member of: Database object

Remarks:

This property can be returned or set. This property is used only in conjunction with
databases who Vendor property is SQL_ANYWHERE. This property corresponds to the
SQL Anywhere -x database server option.

See Also:

ConnectHosts property

Identifier Description

database A Database object.

value [A VB array of Strings or] a Perl reference to an array of Strings.
Each String in the array contains the name of a network protocol for
the database server.
Database object 373

DatabaseName property

Sets or returns the physical name of the database.

VB Syntax:

database.DatabaseName [= value]

Perl Syntax:

$database->GetDatabaseName();
$database->SetDatabaseName(string_for_physical_database_name);

Member of: Database object

Remarks:

This property can be returned or set.

See Also:

Name property

Identifier Description

database A Database object.

value A String containing the file name of the database, including any
associated path information.
374 Database object

DBOLogin property

Sets or returns the database owner’s login name.

VB Syntax:

database.DBOLogin [= value]

Perl Syntax:

$database->GetDBOLogin();
$database->SetDBOLogin(string_for_db-owner_login_name);

Member of: Database object

Remarks:

This property can be returned or set. The database owner is the same as the database
administrator. This property is used primarily in conjunction with SQL Server
databases.

See Also:

DBOPassword property

Identifier Description

database A Database object.

value A String containing the database owner’s login name.
Database object 375

DBOPassword property

Sets or returns the database owner’s password.

VB Syntax:

database.DBOPassword [= value]

Perl Syntax:

$database->GetDBOPassword();
$database->SetDBOPassword(string_for_db-owner_password);

Member of: Database object

Remarks:

This property can be returned or set. The database owner is the same as the database
administrator. This property is used primarily in conjunction with SQL Server
databases.

See Also:

DBOLogin property

Identifier Description

database A Database object.

value A String containing the database owner’s password.
376 Database object

Description property

Sets or returns the descriptive comment associated with the database.

VB Syntax:

database.Description [= value]

Perl Syntax:

$database->GetDescription();
$database->SetDescription(string_describing_database);

Member of: Database object

Remarks:

This property can be returned or set.

Use this property to store additional information, such as the purpose of the database.

See Also:

Name property

Identifier Description

database A Database object.

value A String containing the database’s comment text.
Database object 377

Name property

Sets or returns the logical database name.

VB Syntax:

database.Name [= value]

Perl Syntax:

$database->GetName();
$database->SetName(string_for_database_name);

Member of: Database object

Remarks:

This property can be returned or set.

The logical database name is the name to use when referring to the database from
VBScript code or within queries. This property differs from the DatabaseName
property, which specifies the name of the database file on the server’s local file system.

See Also:

DatabaseName property

Identifier Description

database A Database object.

value A String containing the logical database name.
378 Database object

ROLogin property

Sets or returns the login name for users who have read-only access to the database.

VB Syntax:

database.ROLogin [= value]

Perl Syntax:

$database->GetROLogin();
$database->SetROLogin(string_for_read-only_login_name);

Member of: Database object

Remarks:

This property can be returned or set. This property is used only in conjunction with
databases whose Vendor property is SQL_SERVER.

The read-only login name and password are for users who need to view the information
in the database but who are not allowed to modify the contents of the database.

See Also:

ROPassword property
RWLogin property
Vendor property
Notation Conventions

Identifier Description

database A Database object.

value A String containing the read-only login name.
Database object 379

ROPassword property

Sets or returns the password for users who have read-only access to the database.

VB Syntax:

database.ROPassword [= value]

Perl Syntax:

$database->GetROPassword();
$database->SetROPassword(string_for_read-only_password);

Member of: Database object

Remarks:

This property can be returned or set. This property is used only in conjunction with
databases whose Vendor property is set to SQL_SERVER.

The read-only login name and password are for users who need to view the information
in the database but who are not allowed to modify the contents of the database.

See Also:

ROLogin property
RWPassword property
Vendor property
Notation Conventions

Identifier Description

database A Database object.

value A String containing the read-only password.
380 Database object

RWLogin property

Sets or returns the login name for users who have read/write access to the database.

VB Syntax:

database.RWLogin [= value]

Perl Syntax:

$database->GetRWLogin();
$database->SetRWLogin(string_for_read-write_login_name);

Member of: Database object

Remarks:

This property can be returned or set. This property is used in conjunction with SQL
Server and SQL Anywhere databases.

The read/write login name and password are for general-purpose users who need to
modify and view information in the database.

See Also:

ROLogin property
RWPassword property
Vendor property

Identifier Description

database A Database object.

value A String containing the read/write login name.
Database object 381

RWPassword property

Sets or returns the password for users who have read/write access to the database.

VB Syntax:

database.RWPassword [= value]

Perl Syntax:

$database->GetRWPassword();
$database->SetRWPassword(string_for_read-write-user_password);

Member of: Database object

Remarks:

This property can be returned or set. This property is used in conjunction with SQL
Server and SQL Anywhere databases.

The read/write login name and password are for general-purpose users who need to
modify and view information in the database.

See Also:

ROPassword property
RWLogin property
Vendor property

Identifier Description

database A Database object.

value A String containing the read/write password name.
382 Database object

SchemaRev property

Returns the schema revision currently in use by the database.

VB Syntax:

database.SchemaRev

Perl Syntax:

$database->GetSchemaRev();

Member of: Database object

Remarks:

This is a read-only property; it can be viewed but not set.

To change the schema revision of an existing database, you must upgrade the database
by calling the Upgrade method. If you are creating a new database, you can set its initial
schema revision using the SetInitialSchemaRev method.

See Also:

SetInitialSchemaRev method
Upgrade method
SchemaRev object

Identifier Description

database A Database object.

Return value An SchemaRev object corresponding to the schema revision in use
by this database.
Database object 383

Server property

Returns the name of the server on which the database resides.

VB Syntax:

database.Server [= value]

Perl Syntax:

$database->GetServer();
$database->SetServer(string_for_database_server_name);

Member of: Database object

Remarks:

This property can be returned or set.

See Also:

DatabaseName property

Identifier Description

database A Database object.

value A String containing the name of the server.
384 Database object

SubscribedGroups property

Returns the groups explicitly subscribed to this database.

VB Syntax:

database.SubscribedGroups

Perl Syntax:

$database->GetSubscribedGroups();

Member of: Database object

Remarks:

This is a read-only property; it can be viewed but not set. Each element in the returned
collection is a Group object. This property does not return the groups that are implicitly
subscribed to all databases.

See Also:

Group object
Groups collection object

Identifier Description

database A Database object.

Return value A Groups collection object containing the groups explicitly
subscribed to this database.
Database object 385

SubscribedUsers property

Returns the users that are explicitly subscribed to this database.

VB Syntax:

database.SubscribedUsers

Perl Syntax:

$database->GetSubscribedUsers();

Member of: Database object

Remarks:

This is a read-only property; it can be viewed but not set. Each element in the returned
collection is an User object. This property does not return the users that are implicitly
subscribed to all databases.

See Also:

User object
Users collection object

Identifier Description

database A Database object.

Return value A Users collection object containing the users explicitly subscribed
to this database.
386 Database object

TimeoutInterval property

Returns the user timeout interval.

VB Syntax:

database.TimeoutInterval [= value]

Perl Syntax:

$database->GetTimeoutInterval();
$database->SetTimeoutInterval(timeout_inverval);

Member of: Database object

Remarks:

This property can be returned or set.

ClearQuest periodically checks user connections and disconnects users who have been
idle for too long. If a user has been idle for a period of time greater than the value in this
property, ClearQuest disconnects the user’s session.

See Also:

CheckTimeoutInterval property

Identifier Description

database A Database object.

value A Long value indicating the number of milliseconds a user may be
idle before being disconnected from the database.
Database object 387

Vendor property

Sets or returns the vendor type of the database.

VB Syntax:

database.Vendor [= value]

Perl Syntax:

$database->GetVendor();
$database->SetVendor(constant_for_a_database_vendor);

Member of: Database object

Remarks:

This property can be returned or set.

See Also:

DatabaseVendor
Enumerated Constants

Identifier Description

database A Database object.

value A Short containing one of the DatabaseVendor enumerated
constants.
388 Database object

ApplyPropertyChanges method

Updates the writable properties of the user database’s with any recent schema changes.

VB Syntax:

database.ApplyPropertyChanges

Perl Syntax:

$database->ApplyPropertyChanges();

Member of: Database object

Remarks:

Call this method after you have set the properties of the user database to update the
corresponding values in the database. If you do not call this method, any recent changes
you made to the database will be lost. You do not have to call this method after a call to
either the SetInitialSchemaRev or Upgrade method.

See Also:

SetInitialSchemaRev method
Upgrade method

Identifier Description

database A Database object.

Return value None.
Database object 389

SetInitialSchemaRev method

Sets the initial schema revision of a new database.

VB Syntax:

database.SetInitialSchemaRev schemaRev

Perl Syntax:

$database->SetInitialSchemaRev(schemaRev);

Member of: Database object

Remarks:

After creating a new database, immediately call this method to set the database’s initial
schema revision. Calling this method on an existing database has no effect.

See Also:

Upgrade method
SchemaRev property

Identifier Description

database A Database object.

schemaRev A SchemaRev object corresponding to the desired schema revision.

Return value None.
390 Database object

Upgrade method

Upgrade this database to the specified schema revision.

VB Syntax:

database.Upgrade schemaRev

Perl Syntax:

$database->Upgrade(schemaRev);

Member of: Database object

Remarks:

Call this method to update the schema revision of an existing database. Do not use this
method to set the initial schema revision of the database; use the SetInitialSchemaRev
method instead.

See Also:

SetInitialSchemaRev method
UpgradeMasterUserInfo method
SchemaRev property

Identifier Description

database A Database object.

schemaRev A SchemaRev object corresponding to the desired schema revision.

Return value None.
Database object 391

UpgradeMasterUserInfo method

Upgrade this database’s user information.

VB Syntax:

database.UpgradeMasterUserInfo

Perl Syntax:

$database->UpgradeMasterUserInfo();

Member of: Database object

Remarks:

This method updates the user information in the master database. You should call this
function to upgrade the appropriate databases after making changes to the users and
groups of the master database.

See Also:

Upgrade method

Identifier Description

database A Database object.

Return value None.
392 Database object

Schema object
Schema Object Properties

Property name Access Description

Name property Read-only Returns a string containing the name of
the schema.

SchemaRevs property Read-only Returns the collection containing schema
revisions.
Schema object 393

Name property

Returns the name of this schema.

VBSyntax:

schema.Name

Perl Syntax:

$schema->GetName();

Member of: Schema object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

SchemaRevs property

Identifier Description

schema A Schema object.

Return value A String containing the name of this schema.
394 Schema object

SchemaRevs property

Returns the schema revisions associated with this schema.

VBSyntax:

schema.SchemaRevs

Perl Syntax:

$schema->GetSchemaRevs();

Member of: Schema object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a SchemaRev object.

See Also:

SchemaRev object

Identifier Description

schema A Schema object.

Return value A SchemaRevs collection object containing the schema revisions
associated with this schema.
Schema object 395

396 Schema object

SchemaRev object
SchemaRev object properties

SchemaRev object methods

See Also:

SetInitialSchemaRev method of the Database object
Upgrade method of the Database object
Database object
Schema object

Property name Access Description

Description property Read-only Returns a description of this schema
revision.

RevID property Read-only Returns the version ID of this schema
revision.

Schema property Read-only Returns the schema to which this revision
belongs.

GetEnabledEntityDefs
method

Returns the EntityDefs collection object enabled in the current
schema for a given package revision.

GetEnabledPackageRevs
method

Returns the package name and revision string for the current
package revision in an EntityDefs collection object.
SchemaRev object 397

Description property

Returns a description of this schema revision.

VBSyntax:

schemaRev.Description

Perl Syntax:

$schemaRev->GetDescription();

Member of: SchemaRev object

Remarks:

This is a read-only property; it can be viewed but not set.

The descriptive text is the comment string entered by the user when the schema was
checked in.

See Also:

Schema object

Identifier Description

schemaRev A SchemaRev object.

Return value A String containing the description of the schema revision.
398 SchemaRev object

RevID property

Returns the version number of this schema revision.

VBSyntax:

schemaRev.RevID

Perl Syntax:

$schemaRev->GetRevID();

Member of: SchemaRev object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Schema object

Identifier Description

schemaRev A SchemaRev object.

Return value A Long indicating the version number associated with this schema
revision.
SchemaRev object 399

Schema property

Returns the schema to which this revision belongs.

VBSyntax:

schemaRev.Schema

Perl Syntax:

$schemaRev->GetSchema();

Member of: SchemaRev object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Schema object

Identifier Description

schemaRev A SchemaRev object.

Return value A Schema object corresponding to the schema to which this revision
belongs.
400 SchemaRev object

GetEnabledEntityDefs method

Returns the EntityDefs collection object enabled in the current schema for a given
package revision.

VB Syntax:

schemaRev.GetEnabledEntityDefs packName, rev

Perl Syntax:

$schemaRev->GetEnabledEntityDefs(packName, rev);

Member of: SchemaRev object, Session object

Remarks:

Use with GetEnabledPackageRevs method to discover which packages and package
revisions apply to the current user database.

See Also:

GetEnabledPackageRevs method

Identifier Description

packName A String that specifies the package name.

rev A String that specifies the package revision.

Return value The EntityDefs object for the current package revision.
SchemaRev object 401

GetEnabledPackageRevs method

Returns a collection object representing the packageRev set that is enabled in the
current revision of the schema.

VB Syntax:

schemaRev.GetEnabledPackageRevs PackageName, RevString

Perl Syntax:

$schemaRev->GetEnabledPackageDefs(PackageName, RevString);

Member of: SchemaRev object, Session object

Remarks:

Use with GetEnabledEntityDefs method to discover which packages and package
revisions apply to the current user database.

You can also call this method from the Session object, in which case the schema
revision is already known when you log onto the user database.

See Also:

GetEnabledEntityDefs method
GetEnabledPackageRevs method in Session object

Identifier Description

PackageName Name of the package.

RevString Represents the revision of the package.

Return values The collection object of the packageRev set.
402 SchemaRev object

User object
User object properties

Property name Access Description

Active property Read/Write Indicates whether or not the user’s account
is active.

AppBuilder property Read/Write Indicates whether or not the user has
AppBuilder privileges.

Email property Read/Write Sets or returns the user’s email address.

Fullname property Read/Write Sets or returns the user’s full name.

Groups property Read-only Returns a collection of groups to which the
user belongs.

MiscInfo property Read/Write Sets or returns the user’s miscellaneous
information.

Name property Read-only Returns the user’s login name.

Phone property Read/Write Sets or returns the user’s phone number.

SubscribedDatabases
property

Read-only Returns the collection of databases to
which the user is subscribed.

SuperUser property Read/Write Indicates whether or not the user has
SuperUser privileges.

UserMaintainer property Read/Write Indicates whether or not the user has user
administration privileges.
User object 403

User object methods

See Also:

Users collection object

Method name Description

SubscribeDatabase method Subscribes this user to the specified database.

UnsubscribeAllDatabases
method

Unsubscribes the user from all databases.

UnsubscribeDatabase
method

Unsubscribes the user from the specified database.
404 User object

Active property

Indicates whether or not the user’s account is active.

VB Syntax:

user.Active [= value]

Perl Syntax:

$user->GetActive();
$user->SetActive(boolean_value);

Member of:

User object

Remarks:

This property can be returned or set.

Users whose accounts are inactive are not allowed to access any databases associated
with this master database. Setting this property to false effectively disables the user’s
account. To limit the user’s access to a specific set of databases, use the
SubscribeDatabase and UnsubscribeDatabase methods instead.

See Also:

SubscribeDatabase method
UnsubscribeDatabase method
SubscribedDatabases property
AppBuilder property
SuperUser property
UserMaintainer property

Identifier Description

user A User object.

value A Bool indicating whether the user’s account is active.
User object 405

AppBuilder property

Indicates whether or not the user has AppBuilder privileges.

VB Syntax:

user.AppBuilder [= value]

Perl Syntax:

$user->GetAppBuilder();
$user->SetAppBuilder(boolean_value);

Member of:

User object

Remarks:

This property can be returned or set.

Users with AppBuilder privileges can create and modify schemas in the master
database. (The value in this property corresponds to the Schema Designer checkbox in
the User Information dialog.)

See Also:

Active property
SuperUser property
UserMaintainer property
Schema object

Identifier Description

user User object.

value A Bool indicating whether or not the user’s account has AppBuilder
privileges.
406 User object

Email property

Sets or returns the user’s e-mail address.

Syntax:

VB Syntax:

user.SuperUser [= value]

Perl Syntax:

$user->GetEmail();
$user->SetEmail(e-mail_address_string);

Member of:

User object

Remarks:

This property can be returned or set.

See Also:

Fullname property
Name property

Identifier Description

user A User object.

value A String containing the user’s email address.
User object 407

Fullname property

Sets or returns the user’s full name.

VB Syntax:

user.Fullname [= value]

Perl Syntax:

$user->GetFullname();
$user->SetFullname(full_name_string);

Member of:

User object

Remarks:

This property can be returned or set.

See Also:

Email property
Name property

Identifier Description

user A User object.

value A String containing the user’s full name, as opposed to the user’s
login name.
408 User object

Groups property

Returns a collection of groups to which the user belongs.

VB Syntax:

user.Groups

Perl Syntax:

$user->GetGroups();

Member of:

User object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element of the returned collection is a Group object. To add users to a group, use
the AddUser method of the Group object.

See Also:

AddUser method of the Group object
Users collection object
Group object
Groups collection object

Identifier Description

user A User object.

Return value A Groups collection object containing the groups to which this user
belongs.
User object 409

MiscInfo property

Sets or returns the user’s miscellaneous information.

Syntax:

VB Syntax:

user.MiscInfo [= value]

Perl Syntax:

$user->GetMiscInfo();
$user->SetMiscInfo(user_info_string);

Member of:

User object

Remarks:

This property can be returned or set.

You can use the miscellaneous property to store extra information about the user, such
as the user’s postal address or an alternate phone number.

See Also:

Fullname property
Name property

Identifier Description

user A User object.

value A String containing miscellaneous information about the user.
410 User object

Name property

Returns the user’s login name.

VB Syntax:

user.Name

Perl Syntax:

$user->GetName();

Member of:

User object

Remarks:

This property is read-only.

See Also:

Fullname property

Identifier Description

user A User object.

Return value A String containing the user’s login name.
User object 411

Phone property

Sets or returns the user’s phone number.

VB Syntax:

user.Phone [= value]

Perl Syntax:

$user->GetPhone();
$user->SetPhone(phone_number_string);

Member of:

User object

Remarks:

This property can be returned or set.

See Also:

Fullname property
Name property

Identifier Description

user A User object.

value A String containing the user’s phone number.
412 User object

SubscribedDatabases property

Returns the collection of databases to which the user is subscribed.

VB Syntax:

user.SubscribedDatabases

Perl Syntax:

$user->GetSubscribedDatabases();

Member of:

User object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a Database object. If this returns an emty
collection or the collection has zero elements, the user is subscribed to all databases.

See Also:

SubscribeDatabase method
UnsubscribeAllDatabases method
UnsubscribeDatabase method
Database object
Databases collection object

Identifier Description

user A User object.

Return value A Databases collection object containing the databases to which the
user is subscribed.
User object 413

SuperUser property

Indicates whether or not the user has SuperUser privileges.

VB Syntax:

user.SuperUser [= value]

Perl Syntax:

$user->GetSuperUser();
$user->SetSuperUser(boolean_value);

Member of:

User object

Remarks:

This property can be returned or set.

Users with SuperUser privileges have full access to the master database and can
perform user administration tasks or create and modify schemas.

See Also:

Active property
AppBuilder property
UserMaintainer property

Identifier Description

user A User object.

value A Bool indicating whether or not the user’s account has SuperUser
privileges.
414 User object

UserMaintainer property

Indicates whether or not the user has user administration privileges.

VB Syntax:

user.UserMaintainer [= value]

Perl Syntax:

$user->user.GetUserMaintainer();
$user->user.SetUserMaintainer(boolean_value);

Member of:

User object

Remarks:

This property can be returned or set.

Users with SuperUser privileges can perform user administration tasks, such as adding
new users or modifying the accounts of existing users.

See Also:

Active property
AppBuilder property
SuperUser property

Identifier Description

user A User object.

value A Bool indicating whether or not the user’s account has user
administration privileges.
User object 415

SubscribeDatabase method

Subscribes this user to the specified database.

VB Syntax:

user.SubscribeDatabase database

Perl Syntax:

$user->SubscribeDatabase(database);

Member of: User object

Remarks:

Use this method to subscribe the user to additional databases. To unsubscribe the user,
use the UnsubscribeDatabase method. To get a list of the databases to which the user
belongs, get the collection of Database objects in the SubscribedDatabases property.

See Also:

UnsubscribeAllDatabases method
UnsubscribeDatabase method
SubscribedDatabases property

Identifier Description

user A User object.

database The Database object to which the user will be subscribed.

Return value None.
416 User object

UnsubscribeAllDatabases method

Unsubscribes the user from all databases.

VB Syntax:

user.UnsubscribeAllDatabases

Perl Syntax:

$user->UnsubscribeAllDatabases();

Member of: User object

Remarks:

Calling this method disassociates the user from all user databases in the master
database. The user’s account is still active.

See Also:

SubscribeDatabase method
UnsubscribeDatabase method
Active property
SubscribedDatabases property

Identifier Description

user A User object.

Return value None.
User object 417

UnsubscribeDatabase method

Unsubscribes the user from the specified database.

VB Syntax:

user.UnsubscribeDatabase database

Perl Syntax:

$user->UnsubscribeDatabase(database);

Member of: User object

Remarks:

Use this method to unsubscribe the user from a specific database. The user must be
subscribed to the specified database before calling this method. To get a list of the
databases to which the user belongs, get the collection of Database objects in the
SubscribedDatabases property.

See Also:

SubscribeDatabase method
UnsubscribeAllDatabases method
SubscribedDatabases property

Identifier Description

user A User object.

database The Database object from which the user will be unsubscribed.

Return value None.
418 User object

Group object
Group object properties

Methods

See Also:

Database object
User object

Property name Access Description

Active property Read/Write Indicates whether or not the group is
active.

SubscribedDatabases
property

Read-only Returns the collection of databases to
which this group is subscribed.

Name property Read/Write Sets or returns the name of the group.

Users property Read-only Returns the collection of users belonging
to this group.

Method name Description

AddUser method Adds a user to this group.

SubscribeDatabase method Subscribes this group to the specified database.

UnsubscribeAllDatabases
method

Unsubscribes the group from all databases.

UnsubscribeDatabase
method

Unsubscribes the group from the specified database.
Group object 419

Active property

Indicates whether or not the group is active.

VB Syntax:

group.Active [= value]

Perl Syntax:

$group->GetActive();
$group->SetActive(boolean_value);

Member of:

Group object

Remarks:

This property can be returned or set.

Members of an inactive group are not allowed to access any databases using the group’s
attributes. Access to a database is permitted If the user belongs to another group that has
access or if the user’s account is specifically subscribed to the database.

See Also:

Active property of the User object
User object

Identifier Description

group A Group object, representing the set of groups associated with the
current master database.

value A Bool indicating whether or not the group is active.
420 Group object

AddUser method

Adds a user to this group.

VB Syntax:

group.AddUser user

Perl Syntax:

$group->AddUser(user);

Member of: Group object

See Also:

User object

Identifier Description

group A Group object.

user The User object corresponding to the user account.

Return value None.
Group object 421

SubscribedDatabases property

Returns the collection of databases to which this group is subscribed.

VB Syntax:

group.SubscribedDatabases

Perl Syntax:

$group->GetSubscribedDatabases();

Member of:

Group object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is a Database object.

See Also:

SubscribeDatabase method
UnsubscribeAllDatabases method
SubscribedDatabases property of the User object
Database object
Databases collection object
User object

Identifier Description

group A Group object, representing the set of groups associated with the
current master database.

Return value A Databases collection object containing the databases to which this
group is subscribed.
422 Group object

Name property

Sets or returns the name of the group.

VB Syntax:

group.Name [= value]

Perl Syntax:

$group->GetGroups();
$group->SetGroups(string_of_group_name);

Member of:

Group object

Remarks:

This property can be returned or set.

See Also:

Active property

Identifier Description

group A Group object, representing the set of groups associated with the
current master database.

value A String containing the name of the group.
Group object 423

Users property

Returns the collection of users belonging to this group.

VB Syntax:

group.Users

Perl Syntax:

$group->GetUsers();

Member of:

Group object

Remarks:

This is a read-only property; it can be viewed but not set.

Each element in the returned collection is an User object. To add users to a group, use
the AddUser method.

See Also:

AddUser method
User object
Users collection object

Identifier Description

group A Group object, representing the set of groups associated with the
current master database.

Return value An Users collection object containing the users belonging to this
group.
424 Group object

SubscribeDatabase method

Subscribes this group to the specified database.

VB Syntax:

group.SubscribeDatabase database

Perl Syntax:

$group->SubscribeDatabase(database);

Member of: Group object

Remarks:

Use this method to subscribe the group to additional databases. To unsubscribe the
group, use the UnsubscribeDatabase method. To get a list of the databases to which the
group belongs, get the collection of Database objects in the Databases property.

See Also:

UnsubscribeAllDatabases method
UnsubscribeDatabase method
SubscribedDatabases property

Identifier Description

group A Group object.

database The Database object to which the group will be subscribed.

Return value None.
Group object 425

UnsubscribeAllDatabases method

Unsubscribes the group from all databases.

VB Syntax:

group.UnsubscribeAllDatabases

Perl Syntax:

$group->UnsubscribeAllDatabases();

Member of: Group object

Remarks:

Calling this method disassociates the group from all user databases in the master
database. The group is still active.

See Also:

SubscribeDatabase method
UnsubscribeDatabase method
Active property
SubscribedDatabases property

Identifier Description

group A Group object.

Return value None.
426 Group object

UnsubscribeDatabase method

Unsubscribes the group from the specified database.

VB Syntax:

group.UnsubscribeDatabase database

Perl Syntax:

$group->UnsubscribeDatabase(database);

Member of: Group object

Remarks:

Use this method to unsubscribe the group from a specific database. The group must be
subscribed to the specified database before calling this method. To get a list of the
databases to which the group belongs, get the collection of Database objects in the
Databases property.

See Also:

SubscribeDatabase method
UnsubscribeAllDatabases method
SubscribedDatabases property

Identifier Description

group A Group object.

database The Database object from which the group will be unsubscribed.

Return value None.
Group object 427

428 Group object

Databases collection object
Databases collection object properties

Databases collection object methods

See Also:

Database object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item method Returns the item at the specified index in the collection.
Databases collection object 429

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: Databases collection object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Item method

Identifier Description

collection A Databases collection object, representing the set of databases
associated with the current master database.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
430 Databases collection object

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: Databases collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A Databases collection object, representing the set of databases
associated with the current master database.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the unique key of the desired Database object.

Return value The Database object at the specified location in the collection.
Databases collection object 431

432 Databases collection object

EntityDefs collection object
EntityDefs collection object properties

EntityDefs collection object method

See Also:

EntityDef object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item method Returns the specified item in the collection.
EntityDefs collection object 433

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: EntityDefs collection object

Remarks:

This property is read-only.

See Also:

Item method
EntityDef object

Identifier Description

collection An EntityDefs collection object, representing the set of EntityDefs
available for fetching as a collection.

Return value A Long that specifies the number of items in the collection object.
This method returns zero if the collection contains no items.
434 EntityDefs collection object

Item method

Returns the specified item in the collection.

Syntax:

collection.Item itemNum
collection.Item name

Member of: EntityDefs collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection An EntityDefs collection object representing the set of EntityDefs in a
schema.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the unique key returned by the DisplayName
property of the desired EntityDefs.

Return value The EntityDef object at the specified location in the collection.
EntityDefs collection object 435

436 EntityDefs collection object

Groups collection object
Properties

Methods

See Also:

Group object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item method Returns the item at the specified index in the collection.
Groups collection object 437

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: Groups collection object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Item method

Identifier Description

collection A Groups collection object, representing the set of groups
associated with the current master database.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
438 Groups collection object

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: Groups collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A Groups collection object, representing the set of groups
associated with the current master database.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the unique key of the desired Group object.

Return value The Group object at the specified location in the collection.
Groups collection object 439

440 Groups collection object

Schemas collection object
Schemas collection properties

Schemas collection methods

See Also:

Schema object
SchemaRev object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item method Returns the item at the specified index in the collection.
Schemas collection object 441

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: Schemas collection object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Item method

Identifier Description

collection A Schemas collection object, representing the set of schemas
associated with the current master database.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
442 Schemas collection object

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: Schemas collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A Schemas collection object, representing the set of schemas
associated with the current master database.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the unique key of the desired Schema object.

Return value The Schema object at the specified location in the collection.
Schemas collection object 443

444 Schemas collection object

SchemaRevs collection object
SchemaRevs object property and method

See Also:

Schemas property of the AdminSession object
AdminSession objectSchemaRev object
Schemas collection object

Property and method Access Description

Count property Read-only Returns the number of items in the
collection.

Item method Read-only Returns the item at the specified index in
the collection.
SchemaRevs collection object 445

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: SchemaRevs collection object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Item method

Identifier Description

collection A SchemaRevs collection object, representing the set of schema
revisions associated with the current master database.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
446 SchemaRevs collection object

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: SchemaRevs collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A SchemaRevs collection object, representing the set of schema
revisions associated with the current master database.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the unique key of the desired SchemaRev object.

Return value The SchemaRev object at the specified location in the collection.
SchemaRevs collection object 447

448 SchemaRevs collection object

Users collection object
Users Collection Properties

Users Collection Methods

See Also:

User object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item Method Returns the item at the specified index in the collection.
Users collection object 449

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: Users collection object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

Item Method

Identifier Description

collection A Users collection object, representing the set of users associated
with the current master database.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
450 Users collection object

Item Method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: Users collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A Users collection object, representing the set of users associated
with the current master database.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the unique key of the desired User object.

Return value The User object at the specified location in the collection.
Users collection object 451

452 Users collection object

Attachment-Related Objects
The ClearQuest API provides four objects related to attachments:

AttachmentFields collection object

AttachmentField object

Attachments collection object

Attachment object

Remarks:

In ClearQuest the user can attach files to a defect (bug report) in an attachment field. A
record representing a defect can have multiple attachment fields, and each field can
have multiple attached files. For example, a record might have three separate
attachment fields: one for source code files, one for engineering specifications, and one
for documentation.

To support this functionality, the API provides four objects: AttachmentFields,
AttachmentField, Attachments, and Attachment.

The AttachmentFields object is the container object for all of the other objects. It
represents all of the attachment fields associated with a record. There can be only one
AttachmentFields object associated with a record. This object contains one or more
AttachmentField objects.

The AttachmentField object represents a single attachment field in a record. A record
can have multiple AttachmentField objects, each of which includes a single
Attachments object.

The Attachments object is a container object that stores one or more Attachment
objects. An Attachments object is always associated with a single AttachmentField
object.

An Attachment object contains a single attached file.

For more information about each object, click on the links above.

See Also:

Attachments Code Example
Attachment-Related Objects 453

454 Attachment-Related Objects

AttachmentFields collection object
AttachmentFields object properties

AttachmentFields object methods

See Also:

Attachment object
AttachmentField object
Attachments collection object
Attachment-Related Objects
Attachments Code Example

Property name Access Description

Count Property Read-only Returns the number of items in
thecollection.

Method name Description

Item Method Returns the specified item in thecollection.
AttachmentFields collection object 455

Count Property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: AttachmentFields collection object

Remarks:

This property is read-only.

Examples:

set attachFields = entity.AttachmentFields
numFields = attachFields.Count
For x = 0 to numFields

set oneField = attachFields.Item x
...

Next

See Also:

Item Method
Attachments Code Example

Identifier Description

collection An AttachmentFields collection object, representing all of the
attachment fields in a record.

Return value A Long indicating the number of items in the collection object. This
collection always contains at least one item.
456 AttachmentFields collection object

Item Method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: AttachmentFields collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

Examples:

set attachFields = entity.AttachmentFields
numFields = attachFields.Count
For x = 0 to numFields

set oneField = attachFields.Item x

Identifier Description

collection An AttachmentFields collection object, representing all of the
attachment fields in a record.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the FieldName property of the desired
AttachmentField.

Return value The AttachmentField object at the specified location in the
collection.
AttachmentFields collection object 457

...
Next

See Also:

Count Property
Attachments Code Example
458 AttachmentFields collection object

Attachment object
Attachment object properties

Attachment object methods

See Also:

AttachmentField object
AttachmentFields collection object
Attachments collection object
Attachment-Related Objects
Attachments Code Example

Property name Access Description

Description property Read/Write Sets or returns the description of the
attached file.

DisplayName property Read-only Returns the unique key used to identify the
attachment.

FileName property Read-only Returns the path name of the attached
file.

FileSize property Read-only Returns the size of the attached file in
bytes.

Method name Description

Load method Writes this object’s contents to the specified file
Attachment object 459

Description property

Sets or returns the description of the attached file.

VB Syntax:

attachment.Description [= value]

Perl Syntax:

$attachment->GetDescription();
$attachment->SetDescription(new_value);

Member of: Attachment object

Remarks:

This is a read-write property: Its value can be set, which is unlike the other Attachment
properties.

Examples:

’ This example assumes there is at least 1 attachment field
’ and 1 attachment associated with the record.
set currentSession = GetSession
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

set attachment = attachments.Item(x)
description = attachment.Description
key = attachment.DisplayName
currentSession.OutputDebugString "Unique key: " & key & " - _

Identifier Description

attachment An Attachment object, representing the attachment of a file to a
record.

Return value A String containing the descriptive text.
460 Attachment object

description: " & description
Next

See Also:

FileName property
Attachments Code Example
Attachment object 461

y is
DisplayName property

Returns the unique key used to identify the attachment.

VB Syntax:

attachment.DisplayName

Perl Syntax:

$attachment->GetDisplayName()

Member of: Attachment object

Remarks:

This is a read-only property; it can be viewed but not set.

The unique key is a concatenation of the file name, file size, description, and database
ID, each delimited by a newline (“\n”) character. However, the format of this propert
subject to change.

Examples:

’ This example assumes there is at least 1 attachment field
’ and 1 attachment associated with the record.
set currentSession = GetSession
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

set attachment = attachments.Item(x)
description = attachment.Description
key = attachment.DisplayName

Identifier Description

attachment An Attachment object, representing the attachment of a file to a
record.

Return value A String containing the unique key.
462 Attachment object

currentSession.OutputDebugString "Unique key: " & key & " - _
description: " & description

& description
Next

See Also:

Description property
FileName property
Attachment object 463

FileName property

Returns the path name of the attached file.

VB Syntax:

attachment.FileName

Perl Syntax:

$attachment->GetFileName()

Remarks:

This a read-only property; it can be viewed but not set.

Before the attachment has been committed to the database, this property contains the
original path name of the file. However, once the attachment has been committed, the
file exists in the database rather than in the file system, so the path information is
removed. For example, if you add the file C:projectsmyfilesexample.txt, it
will have that full name until the record is committed, whereupon the name will shrink
to example.txt.

It is legal in ClearQuest to attach two files with the same name and different path
information to the same database. ClearQuest does not rely on the filename alone when
locating the file internally.

Examples:

’ This example assumes there is at least 1 attachment field
’ and 1 attachment associated with the record.
set currentSession = GetSession
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

Identifier Description

attachment An Attachment object, representing the attachment of a file to a
record.

Return value A String containing the name of the attached file.
464 Attachment object

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

set attachment = attachments.Item(x)
fileName = attachment.FileName
fileSize = attachment.FileSize
currentSession.OutputDebugString "Attached file: " & fileName & " _

- size: " & fileSize
Next

See Also:

FileSize property
Add method of the Attachments object
Commit method of the Entity object
Attachments collection object
Entity object
Attachments Code Example
Attachment object 465

FileSize property

Returns the size of the attached file in bytes.

VB Syntax:

attachment.FileSize

Perl Syntax:

$attachment->GetFileSize();

Remarks:

This a read-only property; it can be viewed but not set.

This method should be called only after the attachment has been committed to the
database. If you call it earlier, the return value will be empty.

Examples:

’ This example assumes there is at least 1 attachment field
’ and 1 attachment associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

set attachment = attachments.Item(x)
fileName = attachment.FileName
fileSize = attachment.FileSize
OutputDebugString "Attached file: " & fileName & " - size: " _

& fileSize
Next

Identifier Description

attachment An Attachment object, representing the attachment of a file to a
record.

Return value A Long indicating the file’s size in bytes.
466 Attachment object

See Also:

FileName property
Attachments Code Example
Attachment object 467

o your
y in

g this
Load method

Writes this object’s contents to the specified file.

VB Syntax:

attachment.Load filename

Perl Syntax:

$attachment->Load(filename);

Remarks:

You can use this method to extract an attached file from the database and save it t
local file system. If a file with the same name already exists at the path you specif
the filename parameter, that file must writeable and its existing contents will be
replaced. The extracted file is not a temporary file; it persists after the process usin
API has terminated.

Examples:

’ This example assumes there is at least 1 attachment field
’ and 1 attachment associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

set attachment = attachments.Item(x)

Identifier Description

attachment An Attachment object, representing the attachment of a file to a
record.

filename A String containing the path name of the file you want to write. This
path name can be an absolute or relative path.

Return value A Boolean whose value is True if the operation was successful,
otherwise False.
468 Attachment object

fileName = "C:\attach" & x & ".txt"
Next

See Also:

Add method of the Attachments object
Attachments collection object
Attachments Code Example
Attachment object 469

470 Attachment object

AttachmentField object
AttachmentField object properties

See Also:

Attachment object
AttachmentFields collection object
Attachments collection object
Attachment-Related Objects
Attachments Code Example

Property name Access Description

Attachments property Read-only Returns this attachment field’s collection of
attachments.

DisplayNameHeader
property

Read-only Returns the unique keys of the
attachments in this field.

FieldName property Read-only Returns the name of the attachment field.
AttachmentField object 471

n still
ents

files
e
Attachments property

Returns this attachment field’s collection of attachments.

VB Syntax:

attachmentField.Attachments

Perl Syntax:

$attachmentField->GetAttachments();

Member of: AttachmentField object

Remarks:

This is a read-only property; the value can be viewed but not set. However, you ca
add items to (and remove items from) the collection using methods of the Attachm
object.

This property always returns an Attachments object, even if there are no attached
associated with the field. If the field has no attached files, the Count property of th
Attachments object contains the value zero.

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

Identifier Description

field An AttachmentField object representing one attachment field of a
record.

Return value An Attachments collection object, which itself contains a set of
Attachment objects.
472 AttachmentField object

set attachment = attachments.Item(x)

’Do something with the attachments
Next

See Also:

DisplayNameHeader property
FieldName property
Attachments Code Example
Attachment object
AttachmentField object 473

DisplayNameHeader property

Returns the unique keys of the attachments in this field.

VB Syntax:

attachmentField.DisplayNameHeader

Perl Syntax:

$attachmentField->GetDisplayNameHeader();

Member of: AttachmentField object

Remarks:

This is a read-only property; it can be viewed but not set. The unique keys are set using
ClearQuest Designer, not the ClearQuest API.

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

keys = attachField1.DisplayNameHeader
x = 0
For Each key in keys

OutputDebugString "Displaying key number " & x & " - " & key
x = x + 1

Next

Identifier Description

field An AttachmentField object representing one attachment field of a
record.

Return value A Variant containing an Array whose elements are Strings. Each
String contains the DisplayName property of one Attachment object
associated with this field.
474 AttachmentField object

See Also:

Attachments property
FieldName property
DisplayName property of the Attachment object
Attachment object
Attachments Code Example
AttachmentField object 475

FieldName property

Returns the name of the attachment field.

VB Syntax:

attachmentField.FieldName

Perl Syntax:

$attachmentField->GetFieldName();

Member of: AttachmentField object

Remarks:

This is a read-only property; it can be viewed but not set. The field name is set using
ClearQuest Designer, not the ClearQuest API.

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

name = attachField1.FieldName

See Also:

Attachments property
DisplayNameHeader property
Attachments Code Example

Identifier Description

field An AttachmentField object representing one attachment field of a
record.

Return value A String containing the name of the field.
476 AttachmentField object

Attachments collection object
Attachments object properties

Attachments object methods

See Also:

Attachment object
AttachmentField object
Attachment-Related Objects
Attachments Code Example

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Add method Adds an Attachment object to the collection.

Delete method Deletes an attached file from the collection.

Item method Returns the specified item in the collection.
Attachments collection object 477

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: Attachments collection object

Remarks:

This property is read-only.

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
numAttachments = attachments.Count
For x = 0 to numAttachments

set attachment = attachments.Item(x)

’ Do something with the attachments
Next

Identifier Description

collection An Attachments collection object, representing the set of
attachments in one field of a record.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
478 Attachments collection object

See Also:

Item method
Attachments Code Example
Attachments collection object 479

Add method

Adds an Attachment object to the collection.

VB Syntax:

attachments.Add filename, description

Perl Syntax:

$attachments->Add(filename, description);

Member of: Attachments collection object

Remarks:

This method creates a new Attachment object for the file and adds the object to the end
of the collection. You can retrieve items from the collection using the Item method.

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

set attachments = attachField1.Attachments
If Not attachments.Add("c;\attach1.txt", "Defect description") Then

OutputDebugString "Error adding attachment to record."
End If

Identifier Description

attachments An Attachments collection object, representing the set of
attachments in one field of a record.

filename A String containing the absolute or relative pathname of the file to be
attached to this field.

description A String that contains arbitrary text describing the nature of the
attached file.

Return value A Boolean that is True if the file was added successfully, otherwise
False.
480 Attachments collection object

See Also:

Count property
Delete method
Item method
Attachments Code Example
Attachments collection object 481

Delete method

Deletes an attached file from the collection.

VB Syntax:

attachments.Delete itemNum
attachments.Delete displayName

Perl Syntax:

$attachments->Delete(itemNum);
$attachments->DeleteByName(displayName);

Member of: Attachments collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(displayName). You can use the Count property and Item method to locate the correct
Attachment object before calling this method.

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

Identifier Description

attachments An Attachments collection object, representing the set of
attachments in one field of a record.

itemNum A Long that is an index into the collection. This index is 0-based and
points to the file that you want to delete.

displayName A String that serves as a key into the collection. Its value specifies
the DisplayName property of the Attachment object you want to
delete.

Return value A Boolean that is True if the file was deleted successfully, otherwise
False.
482 Attachments collection object

set attachments = attachField1.Attachments
If Not attachments.Delete(0) Then

OutputDebugString "Error deleting the attachment."
End If

See Also:

Count property
Add method
Item method
Attachments Code Example
Attachments collection object 483

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: Attachments collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

Examples:

’ This example assumes there is at least 1 attachment field
’ associated with the record.
set attachFields = entity.AttachmentFields
set attachField1 = attachFields.Item(0)

Identifier Description

collection An Attachments collection object, representing the set of
attachments in one field of a record.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the DisplayName propertyof the desired
Attachment.

Return value The Attachment object at the specified location in the collection.
484 Attachments collection object

set attachments = attachField1.Attachments
firstAttachment = attachments.Item(0)

See Also:

Count property
Attachments Code Example
Attachments collection object 485

486 Attachments collection object

DatabaseDescription object
Database description object methods

See Also:

GetSessionDatabase method of the Session object
Session object

Method name Description

GetDatabaseConnectString
method

Returns the "direct connect" string for logging into the database.

GetDatabaseName method Returns the name of the database.

GetDatabaseSetName
method

Returns the name of the database set of which this database is a
member.

GetDescription method Returns a string describing the contents of the database.

GetIsMaster method Returns a Bool indicating whether this database is a master
database.

GetLogin method Returns the database login associated with the current user.
DatabaseDescription object 487

 to

ant to

ic
GetDatabaseConnectString method

Returns the "direct connect" string for logging into the database.

VB Syntax:

dbDesc.GetDatabaseConnectString

Perl Syntax:

$dbDesc->GetDatabaseConnectString();

Member of: DatabaseDescription object

Remarks:

This method returns a database-specific “direct connect” string suitable for passing
an ODBC interface. The normal way of logging into a database is by invoking the
Session object’s UserLogon method. This method can be useful for experts who w
use DAO or other ODBC methods to read the ClearQuest database.

Examples:

The following example shows you how to logon to the database from a Visual Bas
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")
’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

dbConnectString = db.GetDatabaseConnectString

...
Next

Identifier Description

dbDesc A DatabaseDescription object containing information about one of
the installed databases.

Return value A String whose value is the “direct connect” string.
488 DatabaseDescription object

See Also:

UserLogon method of the Session object
Session object
Session and DatabaseDescription Code Example
DatabaseDescription object 489

 of
 each
rLogon

ic
GetDatabaseName method

Returns the name of the database.

VB Syntax:

dbDesc.GetDatabaseName

Perl Syntax:

$dbDesc->GetDatabaseName();

Member of: DatabaseDescription object

Remarks:

You can use the Session object’s GetAccessibleDatabases method to obtain a list
DatabaseDescription objects, and then use GetDatabaseName to get the name of
one. You use the name of the database as an argument to the Session object’s Use
method.

Examples:

The following example shows you how to logon to the database from a Visual Bas
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")

’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

If Not db.GetIsMaster Then
dbName = db.GetDatabaseName
‘Logon to the database
sessionObj.UserLogon "tom", "gh36ak3", dbName, AD_PRIVATE_SESSION, ""

Identifier Description

dbDesc A DatabaseDescription object containing information about one of
the installed databases.

Return value A String containing the name of the database.
490 DatabaseDescription object

End If
...

Next

See Also:

GetDatabaseSetName method
GetAccessibleDatabases method of the Session object
Session object
Session and DatabaseDescription Code Example
Notation Conventions
DatabaseDescription object 491

e user

lt
d.

ic
GetDatabaseSetName method

Returns the name of the database set of which this database is a member.

VB Syntax:

dbDesc.GetDatabaseSetName

Perl Syntax:

$dbDesc->GetDatabaseSetName();

Member of: DatabaseDescription object

Remarks:

You can use this method to get the database set name of this database. You can pass this
name to the the Session object’s GetAccessibleDatabases method to get a list of th
databases in the database set.

Note: By default, systems have only one database set. You can refer to this defau
database set using an empty string ("") instead of the name returned by this metho

Examples:

The following example shows you how to logon to the database from a Visual Bas
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")

’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

If Not db.GetIsMaster Then
bSetName = db.GetDatabaseSetName

Identifier Description

dbDesc A DatabaseDescription object containing information about one of
the installed databases.

Return value A String containing the name of the database set.
492 DatabaseDescription object

dbName = db.GetDatabaseName
’ Logon to the database
sessionObj.UserLogon "tom", "gh36ak3", dbName, AD_PRIVATE_SESSION, _

dbSetName
End If
...

Next

See Also:

GetDatabaseName method
GetAccessibleDatabases method of the Session object
Session object
Session and DatabaseDescription Code Example
Notation Conventions
DatabaseDescription object 493

GetDescription method

Returns a string describing the contents of the database.

VB Syntax:

dbDesc.GetDescription

Perl Syntax:

$dbDesc->GetDescription();

Member of: DatabaseDescription object

Remarks:

The description string is initially set when the database is created in ClearQuest
Designer. To modify this string programmatically, you must modify the Description
property of the Database object.

Examples:

The following example shows you how to logon to the database from a Visual Basic
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")
’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

 dbDescription = db.GetDescription
...

Next

Identifier Description

dbDesc A DatabaseDescription object containing information about one of
the installed databases.

Return value A String containing descriptive comments about the database.
494 DatabaseDescription object

See Also:

Description property of the Database object
Database object
DatabaseDescription object 495

GetIsMaster method

Returns a Boolean indicating whether this database is a master database.

VB Syntax:

dbDesc.GetIsMaster

Perl Syntax:

$dbDesc->GetIsMaster();

Member of: DatabaseDescription object

Remarks:

A master database is a schema repository for one or more user databases. When
manipulating the master database, you should use the methods of the AdminSession
object.

Examples:

The following example shows you how to logon to the database from a Visual Basic
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")
’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

If db.GetIsMaster Then
’ Create an AdminSession object and logon to the schema repository.
...

ElseIf
’Logon to the database using the regular Session object.
...

Identifier Description

dbDesc A DatabaseDescription object containing information about one of
the installed databases.

Return value True if this database is a master database, otherwise false.
496 DatabaseDescription object

End If
Next

See Also:

Logon method of the AdminSession object
AdminSession object
DatabaseDescription object 497

login

value.
If you
d call

base.
trator,

s user
GetLogin method

Returns the database login associated with the current user.

VB Syntax:

dbDesc.GetLogin

Perl Syntax:

$dbDesc->GetLogin();

Member of: DatabaseDescription object

Remarks:

The database login is not the same as the user’s ClearQuest login. The database
refers to the account name ClearQuest uses when initiating transactions with the
database. This value is set up in advance by the database administrator.

The user must be logged in to a database for this method to return an appropriate
For hook code writers, ClearQuest logs the user in to the database automatically.
are writing a standalone application, you must manually create a Session object an
the UserLogon method before calling this method.

For most users, this method returns the Read/Write login associated with the data
However, if the user associated with the current session is the ClearQuest adminis
this method returns the database-owner login instead. Similarly, if the user has a
read-only account, this method returns the read-only login.

If you have access to the schema repository, you can retrieve information about thi
database by accessing the properties of the corresponding Database object.

Identifier Description

dbDesc A DatabaseDescription object containing information about one of
the installed databases.

Return value A String containing the database login associated with the current
user.
498 DatabaseDescription object

Examples:

The following example shows you how to logon to the database from a Visual Basic
application.

set sessionObj = CreateObject("CLEARQUEST.SESSION")

’ Login to each database successively.
set databases = sessionObj.GetAccessibleDatabases
For Each db in databases

If Not db.GetIsMaster Then
’ Logon to the database.
sessionObj.UserLogon "tom", "gh36ak3", dbName, AD_PRIVATE_SESSION, _

dbSetName
’ Get the database login and password for "tom"
dbLogin = db.GetLogin
dbPassword = db.GetPassword

...
End If

Next

See Also:

DBOLogin property of the Database object
ROLogin property of the Database object
RWLogin property of the Database object
UserLogon method of the Session object
Database object
Session object
Notation Conventions
DatabaseDescription object 499

500 DatabaseDescription object

EventObject object
EventObject object properties

See Also

Entity object

Property name Access Description

CheckState [post-beta]

EditText property [post-beta]

EventType property Read-only Returns the type of event that caused the
hook invocation.

ItemName property Read-only Returns the name of the form item that
caused the hook to be invoked.

ObjectItem property Read-only Returns the entity object associated with
the current selection.

StringItem property Read-only Returns the name of the menu item hook.
EventObject object 501

EventType property

Returns the type of event that caused the hook invocation.

VB Syntax:

eventObject.Type

Perl Syntax:

$eventObject->Type();

Member of: EventObject object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

EventType

Identifier Description

eventObject An instance of EventObject.

Return value A Long whose value is one of the EventType enumerated constants.
502 EventObject object

ItemName property

Returns the name of the form item that caused the hook to be invoked.

VB Syntax:

eventObject.ItemName

Perl Syntax:

$eventObject->ItemName();

Member of: EventObject object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

ObjectItem property

Identifier Description

eventObject An instance of EventObject.

Return value A String containing the name of the form item from which the hook
was invoked.
EventObject object 503

ObjectItem property

Returns the entity object associated with the current selection.

VB Syntax:

eventObject.ObjectItem

Member of: EventObject object

Remarks:

This is a read-only property; it can be viewed but not set.

The Entity object contained in this property may not be the same object that invoked the
current hook. This property is set only when the EventType property contains the value
ITEM_SELECTION or ITEM_DLBCLICK.

See Also:

EventType property
Entity object

Identifier Description

eventObject An instance of EventObject.

Return value The Entity object associated with the current selection.
504 EventObject object

StringItem property

Returns the name of the menu item hook.

VB Syntax:

eventObject.StringItem

Perl Syntax:

$eventObject->StringItem();

Member of: EventObject object

Remarks:

This is a read-only property; it can be viewed but not set.

See Also:

EventType property
Notation Conventions

Identifier Description

eventObject An instance of EventObject.

Return value A String whose value indicates the menu item hook name when the
EventType property contains the value
CONTEXTMENU_ITEM_CONDITION; otherwise, this property
contains an empty value.
EventObject object 505

506 EventObject object

FieldInfo object
FieldInfo object methods

See Also:

GetFieldsUpdatedThisAction method
GetFieldsUpdatedThisGroup method
GetFieldsUpdatedThisSetValue method
Entity object
FieldInfo Code Example
Notification Hook Code Example

Method name Description

GetMessageText method Returns a String explaining why the value stored in the field is
invalid.

GetName method Returns the name of the field.

GetRequiredness method Identifies the behavior of the specified field.

GetType method Identifies the type of data that can be stored in this field.

GetValidationStatus method Identifies whether the field’s value is valid.

GetValue method Returns the field’s value as a single String.

GetValueAsList method Returns an Array of Strings containing the values stored in the field.

GetValueStatus method Identifies whether the field currently has a value.

ValidityChangedThisAction
method

Returns True if the field’s validity was changed by the most recent
action.

ValidityChangedThisGroup
method

Returns True if the field’s validity was changed by the most recent
group of SetFieldValue calls.

ValidityChangedThisSetValue
method

Returns True if the field’s validity was changed by the most recent
SetFieldValue method call.

ValueChangedThisAction
method

Returns True if this field’s value was modified by the most recent
action.

ValueChangedThisGroup
method

Returns True if the field’s value was modified by the most recent
group of SetFieldValue calls.

ValueChangedThisSetValue
method

Returns True if the field’s value was modified by the most recent
SetFieldValue method call.
FieldInfo object 507

GetMessageText method

Returns a String explaining why the value stored in the field is invalid.

VB Syntax:

fieldInfo.GetMessageText

Perl Syntax:

$fieldInfo->GetMessageText();

Member of: FieldInfo object

Remarks:

Call this method only when the GetValidationStatus method returns
KNOWN_INVALID, otherwise the results are undefined; an exception might be thrown
or an inaccurate message might be generated.

See Also:

GetValidationStatus method
FieldInfo Code Example
Notation Conventions

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A String that explains why this field’s value is invalid.
508 FieldInfo object

GetName method

Returns the name of the field.

VB Syntax:

fieldInfo.GetName

Perl Syntax:

$fieldInfo->GetName();

Member of: FieldInfo object

Remarks:

Field names are used by various methods to identify a specific field in an Entity object.

See Also:

GetFieldNames method of the Entity object
Entity object
FieldInfo Code Example

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A String containing the name of the field.
FieldInfo object 509

GetRequiredness method

Identifies the behavior of the specified field.

VB Syntax:

fieldInfo.GetRequiredness

Perl Syntax:

$fieldInfo->GetRequiredness();

Member of: FieldInfo object

Remarks:

A field can be mandatory, optional, or read-only. If the Entity does not have an action
running at the time this method is called, the return value will always be READONLY.
If an action is running, the return value can be READONLY, MANDATORY, or
OPTIONAL.

This method never returns the value USE_HOOK. If the behavior of the field is
determined by a permission hook, ClearQuest will have already executed that hook and
cached the resulting value. This method then returns the cached value.

See Also:

GetFieldRequiredness method of the Entity object
Entity object
Notation Conventions

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Long that identifies the behavior of this field. The value
corresponds to one of the Behavior enumeration constants (with the
exception of the USE_HOOK constant).
510 FieldInfo object

GetType method

Identifies the type of data that can be stored in this field.

VB Syntax:

fieldInfo.GetType

Perl Syntax:

$fieldInfo->GetType();

Member of: FieldInfo object

Remarks:

Fields can store strings, numbers, timestamps, references, and several other types. (See
FieldType for the complete list.)

See Also:

GetFieldType method of the Entity object
Entity object

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Long that specifies what type of data can be stored in this field.
The value corresponds to one of the FieldType enumeration
constants.
FieldInfo object 511

GetValidationStatus method

Identifies whether the field’s value is valid.

VB Syntax:

fieldInfo.GetValidationStatus

Perl Syntax:

$fieldInfo->GetValidationStatus();

Member of: FieldInfo object

Remarks:

The value in the field can be valid, invalid, or its status can be unknown. If field
validation has not yet been performed (for example, if this method is invoked inside a
hook), this method returns NEEDS_VALIDATION, whether or not the field has a value.

See Also:

GetMessageText method
FieldInfo Code Example
Notation Conventions

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Long that identifies the validation status of this field. The value
corresponds to one of the FieldValidationStatus enumeration
constants.
512 FieldInfo object

GetValue method

Returns the field’s value as a single String.

VB Syntax:

fieldInfo.GetValue

Perl Syntax:

$fieldInfo->GetValue();

Member of: FieldInfo object

Remarks:

This method returns a single String. If a field contains a list of values, the String
contains a concatenation of the values, separated by newline characters. For a field that
returns multiple values, you can use the GetValueAsList method to get a separate String
for each value.

See Also:

GetValueAsList method
GetFieldValue method of the Entity object
Entity object
FieldInfo Code Example
Notification Hook Code Example

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A String that contains the value or values stored in the field.
FieldInfo object 513

GetValueAsList method

Returns an Array of Strings containing the values stored in the field.

VB Syntax:

fieldInfo.GetValueAsList

Perl Syntax:

$fieldInfo->GetValueAsList();

Member of: FieldInfo object

Remarks:

It is legal to use this method for a scalar field (that is, one that contains a single value).
In that case, this method returns only one element in the Array (unless the field is empty
in which case an Empty Variant is returned).

To determine if a field can contain multiple values, call the GetType method on the
corresponding FieldInfo object. If the type of the field is REFERENCE_LIST,
ATTACHMENT_LIST, or JOURNAL, the field can contain multiple values.

Note: Fields whose type is either ATTACHMENT_LIST or JOURNAL cannot be
modified programmatically.

See Also:

GetValue method
AddFieldValue method of the Entity object
GetFieldValue method of the Entity object

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Variant containing an Array whose elements are Strings. Each
String contains the a single value stored in the field. If the field
contains no values, this method returns an Empty Variant.
514 FieldInfo object

FieldType
Entity object
Notation Conventions
FieldInfo object 515

GetValueStatus method

Identifies whether the field currently has a value.

VB Syntax:

fieldInfo.GetValueStatus

Perl Syntax:

$fieldInfo->GetValueStatus();

Member of: FieldInfo object

See Also:

GetValue method
GetFieldValue method of the Entity object
SetFieldValue method of the Entity object
Entity object
FieldInfo Code Example
Notification Hook Code Example

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Long that identifies the status of this field. The value corresponds
to one of the ValueStatus enumeration constants.
516 FieldInfo object

ValidityChangedThisAction method

Returns True if the field’s validity was changed by the most recent action.

VB Syntax:

fieldInfo.ValidityChangedThisAction

Perl Syntax:

$fieldInfo->ValidityChangedThisAction();

Member of: FieldInfo object

Remarks:

This method considers only those changes that were made after the action was initiated.
If the field was implicitly changed during action startup and not afterwards, this method
returns False. For example, if a CHANGE_STATE action moves the record from, say,
"assigned" to "resolved", the field "resolution info" might become mandatory. The
validity will therefore be "invalid" until you fill it in. However, this validity change will
not be reflected by ValidityChangedThisAction.

This mechanism only detects actions for the Entity object to which this field belongs. It
ignores actions on other Entity objects.

See Also:

ValidityChangedThisGroup method
ValidityChangedThisSetValue method
ValueChangedThisAction method
GetFieldsUpdatedThisAction method of the Entity object

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Boolean that is True if the field’s validity changed since the most
recent action was initiated, otherwise False.
FieldInfo object 517

Entity object
FieldInfo Code Example
518 FieldInfo object

ValidityChangedThisGroup method

Returns True if the field’s validity was changed by the most recent group of
SetFieldValue method calls.

VB Syntax:

fieldInfo.ValidityChangedThisGroup

Perl Syntax:

$fieldInfo->ValidityChangedThisGroup();

Member of: FieldInfo object

Remarks:

This method tells you whether the validity of the field changed. In some cases, the
validity can change even if this field’s value did not. For example, its validity might be
dependent upon another field’s value.

The grouping mechanism detects BeginNewFieldUpdateGroup and SetFieldValue calls
only for the Entity object to which this field belongs. It ignores calls that apply to other
Entity objects.

You can instead use the ValidityChangedThisSetValue method if you only care about
the most recent SetFieldValue call.

See Also:

ValidityChangedThisAction method
ValidityChangedThisSetValue method

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Boolean that is True if the field’s validity changed since the most
recent call to the BeginNewFieldUpdateGroup method, otherwise
False.
FieldInfo object 519

ValueChangedThisGroup method
BeginNewFieldUpdateGroup method of the Entity object
GetFieldsUpdatedThisGroup method of the Entity object
FieldValidationStatus
Entity object
FieldInfo Code Example
520 FieldInfo object

ValidityChangedThisSetValue method

Returns True if the field’s validity was changed by the most recent SetFieldValue call.

VB Syntax:

fieldInfo.ValidityChangedThisSetValue

Perl Syntax:

$fieldInfo->ValidityChangedThisSetValue();

Member of: FieldInfo object

Remarks:

This method tells you whether the validity of the field changed. (In some cases, the
validity can change even if this field’s value did not. For example, its validity might be
dependent upon another field’s value.)

This mechanism detects SetFieldValue calls only for the Entity object to which this field
belongs. It ignores SetFieldValue calls that apply to other Entity objects.

See Also:

ValidityChangedThisAction method
ValidityChangedThisGroup method
GetFieldsUpdatedThisSetValue method of the Entity object
SetFieldValue method of the Entity object
Entity object
FieldInfo Code Example

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Boolean that is True if the field’s validity was changed by the most
recent call to SetFieldValue, otherwise False.
FieldInfo object 521

ValueChangedThisAction method

Returns True if this field’s value was modified by the most recent action.

VB Syntax:

fieldInfo.ValueChangedThisAction

Perl Syntax:

$fieldInfo->ValueChangedThisAction();

Member of: FieldInfo object

Remarks:

This method considers changes that were made after the action was initialized, that is,
after the BuildEntity or EditEntity method returned. This method returns False if the
field was implicitly changed only during the action’s startup phase.

This mechanism detects actions that take place only on the Entity object to which this
field belongs. It ignores actions on other Entity objects.

See Also:

ValueChangedThisGroup method
ValueChangedThisSetValue method
BuildEntity method of the Session object
EditEntity method of the Session object
GetFieldsUpdatedThisAction method of the Entity object
Entity object

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Boolean that is True if the field’s value was changed since the
most recent action was initiated, otherwise False.
522 FieldInfo object

Session object
FieldInfo Code Example
FieldInfo object 523

ValueChangedThisGroup method

Returns True if the field’s value was modified by the most recent group of SetFieldValue
calls.

VB Syntax:

fieldInfo.ValueChangedThisGroup

Perl Syntax:

$fieldInfo->ValueChangedThisGroup();

Member of: FieldInfo object

Remarks:

This mechanism detects BeginNewFieldUpdateGroup and SetFieldValue calls only for
the Entity object to which this field belongs.

You can use the ValueChangedThisSetValue method if you only care about the most
recent SetFieldValue call.

See Also:

ValueChangedThisAction method
ValueChangedThisSetValue method
BeginNewFieldUpdateGroup method of the Entity object
GetFieldsUpdatedThisGroup method of the Entity object
SetFieldValue method of the Entity object

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Boolean that is True if the field’s value was changed since the
most recent invocation of BeginNewFieldUpdateGroup, otherwise
False.
524 FieldInfo object

Entity object
FieldInfo Code Example
FieldInfo object 525

ValueChangedThisSetValue method

Returns True if the field’s value was modified by the most recent SetFieldValue call.

VB Syntax:

fieldInfo.ValueChangedThisSetValue

Perl Syntax:

$fieldInfo->ValueChangedThisSetValue();

Member of: FieldInfo object

Remarks:

This method usually returns True only if this field was directly modified by a call to
SetFieldValue. However, this method can also return true if the field was modified
indirectly as a result of a hook.

This mechanism detects SetFieldValue calls only for the Entity object to which this field
belongs. It ignores SetFieldValue calls that apply to other Entity objects.

See Also:

GetFieldsUpdatedThisSetValue method of the Entity object
SetFieldValue method of the Entity object
FieldTypeEntity object
FieldInfo Code Example

Identifier Description

fieldInfo A FieldInfo object, which contains information about one field of a
user data record.

Return value A Boolean that is True if the field’s value was changed by the most
recent call to SetFieldValue, otherwise False.
526 FieldInfo object

History-Related Objects
The ClearQuest API provides four objects related to history:

HistoryFields collection object

HistoryField object

Histories collection object

History object

Remarks

In ClearQuest a defect (bug report) has history information associated with it. Each
record has a history field, and this field can have multiple history entries. Each history
entry is a line of text describing the modification. All history objects are read-only,
because the history entries for a data record are created automatically by ClearQuest.

To support this functionality, the API provides four objects: HistoryFields, HistoryField,
Histories, and History:

The HistoryFields object is the container object for all of the other objects. It represents
all of the history fields associated with a record. There can be only one HistoryFields
object associated with a record. This object contains one or more HistoryField objects.

The HistoryField object represents a single history field in a record. A record can have
multiple HistoryField objects, each of which includes a single Histories object.

The Histories object is a container object that stores one or more History objects. A
Histories object is always associated with a single HistoryField object.

A History object contains a string that describes the modifications to the record.

For details about each object, click on the links above.

See Also:

HistoryFields property of the Entity object
Entity object
History-Related Objects 527

528 History-Related Objects

HistoryFields collection object
HistoryFields collection properties

HistoryFields collection methods

See Also:

History object
Histories collection object
HistoryField object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item method Returns the specified item in the collection.
HistoryFields collection object 529

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: HistoryFields collection object

Remarks:

This property is read-only.

See Also:

Item method

Identifier Description

collection A HistoryFields collection object, representing all of the history fields
of a record.

Return value A Long indicating the number of items in the collection object. This
collection always contains at least one item.
530 HistoryFields collection object

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: HistoryFields collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A HistoryFields collection object, representing all of the history fields
of a record.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the field name of the desired HistoryField.

Return value The HistoryField object at the specified location in the collection.
HistoryFields collection object 531

532 HistoryFields collection object

HistoryField object
HistoryField object properties

See Also:

HistoryFields property of the Entity object
Entity object
History object
Histories collection object
HistoryFields collection object

Property name Access Description

DisplayNameHeader property Read-only Returns the unique keys of the history
items in this field.

FieldName property Read-only Returns the name of the history field.

Histories property Read-only Returns this history field’s collection of
History objects.
HistoryField object 533

DisplayNameHeader property

Returns the unique keys of the history items in this field.

VB Syntax:

historyField.DisplayNameHeader

Perl Syntax:

$historyField->GetDisplayNameHeader();

Member of: HistoryField object

Remarks:

This is a read-only property; it can be viewed but not set. The unique keys are set using
ClearQuest Designer, not the ClearQuest API.

See Also:

FieldName property

Identifier Description

field A HistoryField object, representing one field of a record.

Return value A Variant containing an Array whose elements are Strings. Each
String contains the unique key of the corresponding item in the
field’s collection of Histories objects.
534 HistoryField object

FieldName property

Returns the name of the history field.

VB Syntax:

historyField.FieldName

Perl Syntax:

$historyField->GetFieldName();

Member of: HistoryField object

Remarks:

This a read-only property; it can be viewed but not set. The field name is set using
ClearQuest Designer, not the ClearQuest API.

See Also:

DisplayNameHeader property

Identifier Description

field A HistoryField object, representing one field of a record.

Return value A String that contains the name of the field.
HistoryField object 535

Histories property

Returns this history field’s collection of History objects.

VB Syntax:

historyField.Histories

Perl Syntax:

$historyField->GetHistories();

Member of: HistoryField object

Remarks:

This a read-only property; the value can be viewed but not set.

See Also:

Histories collection object

Identifier Description

historyField A HistoryField object, representing one history field of a record.

Return value A Histories collection object, which itself contains a set of History
object objects.
536 HistoryField object

History object
History object properties

See Also:

Histories collection object
HistoryField object
HistoryFields collection object

Property name Access Description

Value property Read-only Returns the String that contains information about one
modification to a record, as displayed on one line of a
history field.
History object 537

Value property

Returns the String that contains information about one modification to a record, as
displayed on one line of a history field.

VB Syntax:

history.Value

Perl Syntax:

$history->GetValue();

Member of: History object

Remarks:

This a read-only property; it can be viewed but not set.

See Also:

History object

Identifier Description

History A History object, representing one modification to a record.

Return value A String containing the history information. The String consists of
several fields separated from each other by whitespace. In the
current implementation, these fields consist of a timestamp, the
user’s name, the action name, the old state, and the new state.
538 History object

Histories collection object
Properties

Methods

See Also:

History object
HistoryField object
HistoryFields collection object

Property name Access Description

Count property Read-only Returns the number of items in the
collection.

Method name Description

Item method Returns the specified item in the collection.
Histories collection object 539

Count property

Returns the number of items in the collection.

VB Syntax:

collection.Count

Perl Syntax:

$collection->Count();

Member of: Histories collection object

Remarks:

This property is read-only.

See Also:

Item method

Identifier Description

collection A Histories collection object, representing the set of history entries in
one history field of a record.

Return value A Long indicating the number of items in the collection object. This
method returns zero if the collection contains no items.
540 Histories collection object

Item method

Returns the specified item in the collection.

VB Syntax:

collection.Item itemNum
collection.Item name

Perl Syntax:

$collection->Item(itemNum);
$collection->ItemByName(name);

Member of: Histories collection object

Remarks:

The argument to this method can be either a numeric index (itemNum) or a String
(name).

See Also:

Count property

Identifier Description

collection A Histories collection object, representing the set of history entries in
one history field of a record.

itemNum A Long that serves as an index into the collection. This index is
0-based so the first item in the collection is numbered 0, not 1.

name A String that serves as a key into the collection. This string
corresponds to the value of the desired History object.

Return value The History object at the specified location in the collection.
Histories collection object 541

542 Histories collection object

HookChoices object
HookChoices object methods

See Also:

FieldInfo object
Hook Choices Code Example

Method name Description

AddItem method Adds a new item to the list of choices created by a CHOICE_LIST
hook.

Sort method Sorts the entries in the choice list.
HookChoices object 543

AddItem method

Adds a new item to the list of choices created by a CHOICE_LIST hook.

VB Syntax:

choices.AddItem newChoice

Member of: HookChoices object

Remarks:

The pre-existing HookChoices object is stored in a variable called choices that is visible
only within a CHOICE_LIST hook. In the syntax section of this method, choices is a
variable name that must be typed literally; it is not a placeholder for an arbitrary name
or expression. This is the only way to access a HookChoices object.

A CHOICE_LIST hook should call this method repeatedly to build up a list of choices
for the user. The object contains no items when you first access it. Add items in the
order in which you want them to appear, because the list is not automatically sorted.

There is no corresponding RemoveItem method. Duplicate items are not automatically
removed, but empty values are.

See Also:

HookChoices object
Hook Choices Code Example

Identifier Description

choices A special HookChoices object; see the remarks below.

newChoice A String containing the new text to be added to the list of choices
displayed to the user.

Return value None.
544 HookChoices object

Sort method

Sorts the entries in the choice list.

VB Syntax:

choices.Sort [sortAscending]

Member of: HookChoices object

Remarks:

The pre-existing HookChoices object is stored in a variable called choices that is visible
only within a CHOICE_LIST hook. In the syntax section of this method, choices is a
variable name that must be typed literally; it is not a placeholder for an arbitrary name
or expression. This is the only way to access a HookChoices object.

See Also:

AddItem method

Identifier Description

choices A special HookChoices object; see the remarks below.

sortAscending An optional flag to indicate the sorting direction. The default value for
this flag is true, which sorts the entries in ascending order. Specify
False to sort the entries in descending order.

Return value None.
HookChoices object 545

546 HookChoices object

Link object
Link object methods

See Also:

GetAllDuplicates method of the Entity object
GetDuplicates method of the Entity object
HasDuplicates method of the Entity object
IsDuplicate method of the Entity object
Entity object

Method name Description

GetChildEntity method Returns the Entity object that is the child (duplicate) in a pair of
linked Entity objects.

GetChildEntityDef method Returns the EntityDef object that is the template for the child
(duplicate) in a pair of linked Entity objects.

GetChildEntityDefName
method

Returns the name of the EntityDef object that is the template for the
child (duplicate) Entity object.

GetChildEntityID method Returns the ID String of the Entity object that is the child (duplicate)
in a pair of linked Entity objects.

GetParentEntity method Returns the record that is the parent (original) in a pair of linked
Entity objects.

GetParentEntityDef method Returns the EntityDef object that is the template for the parent
(original) in a pair of linked Entity objects.

GetParentEntityDefName
method

Returns the name of the EntityDef object that is the template for the
parent (original) Entity object.

GetParentEntityID method Returns the ID String of the Entity object that is the parent (original)
in a pair of linked Entity objects.
Link object 547

GetChildEntity method

Returns the Entity object that is the child (duplicate) in a pair of linked Entity objects.

VB Syntax:

link.GetChildEntity

Perl Syntax:

$link->GetChildEntity();

Member of: Link object

See Also:

GetAllDuplicates method of the Entity object
GetDuplicates method of the Entity object
IsOriginal method of the Entity object
Entity object
Duplicates Code Example

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value The Entity object that is the child (duplicate).
548 Link object

GetChildEntityDef method

Returns the EntityDef object that is the template for the child (duplicate) in a pair of
linked Entity objects.

VB Syntax:

link.GetChildEntityDef

Perl Syntax:

$link->GetChildEntityDef();

Member of: Link object

See Also:

GetParentEntityDef method
GetEntityDef method of the Session object
Session object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value An EntityDef object representing the record type of the child
(duplicate) record.
Link object 549

GetChildEntityDefName method

Returns the name of the EntityDef object that is the template for the child (duplicate)
Entity object.

VB Syntax:

link.GetChildEntityDefName

Perl Syntax:

$link->GetChildEntityDefName();

Member of: Link object

See Also:

GetParentEntityDefName method
GetEntityDefName method of the Entity object
Entity object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value A String containing the name of the EntityDef object that was used
as a template for the child (duplicate) Entity object.
550 Link object

GetChildEntityID method

Returns the ID String of the Entity object that is the child (duplicate) in a pair of linked
Entity objects.

VB Syntax:

link.GetChildEntityID

Perl Syntax:

$link->GetChildEntityID();

Member of: Link object

See Also:

GetParentEntityID method
GetDisplayName method of the Entity object
Entity object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value A String that identifies the child (duplicate) Entity object. This ID is
the unique key returned by the GetDisplayName method of Entity.
Link object 551

GetParentEntity method

Returns the record that is the parent (original) in a pair of linked Entity objects.

VB Syntax:

link.GetParentEntity

Perl Syntax:

$link->GetParentEntity();

Member of: Link object

See Also:

GetOriginal method of the Entity object
IsDuplicate method of the Entity object
Entity object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value The Entity object that is the parent (original).
552 Link object

GetParentEntityDef method

Returns the EntityDef object that is the template for the parent (original) in a pair of
linked Entity objects.

VB Syntax:

link.GetParentEntityDef

Perl Syntax:

$link->GetParentEntityDef();

Member of: Link object

See Also:

GetChildEntityDef method
GetEntityDef method of the Session object
Session object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value An EntityDef object representing the record type of the parent
(original) record.
Link object 553

GetParentEntityDefName method

Returns the name of the EntityDef object that is the template for the parent (original)
Entity object.

VB Syntax:

link.GetParentEntityDefName

Perl Syntax:

$link->GetParentEntityDefName();

Member of: Link object

See Also:

GetChildEntityDefName method
GetEntityDefName method of the Entity object
Entity object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value A String containing the name of the EntityDef object that was used
as a template for the parent (original) Entity object.
554 Link object

GetParentEntityID method

Returns the ID String of the Entity object that is the parent (original) in a pair of linked
Entity objects.

VB Syntax:

link.GetParentEntityID

Perl Syntax:

$link->GetParentEntityID();

Member of: Link object

See Also:

GetChildEntityID method
GetDisplayName method of the Entity object
Entity object

Identifier Description

link A Link object, which connects a parent and child Entity object to
each other.

Return value The String that identifies the parent (original) Entity object. This ID is
the unique key returned by the GetDisplayName method of Entity.
Link object 555

556 Link object

OleMailMsg object
OleMailMsg object methods

Method name Description

AddBcc method Add the e-mail address of a blind carbon-copy recipient to the mail
message.

AddCc method Add the e-mail address of a carbon-copy recipient to the mail
message.

AddTo method Add the e-mail address of a primary recipient to the mail message.

ClearAll method Resets the contents of the mail message object.

Deliver method Delivers the mail message.

MoreBody method Appends additional body text to the mail message.

SetBody method Sets the body text of the mail message.

SetFrom method Sets the return address of the mail message.

SetSubject method Sets the subject line of the e-mail message.
OleMailMsg object 557

AddBcc method

Add the e-mail address of a blind carbon-copy recipient to the mail message.

VB Syntax:

OleMailMsg.AddBcc newAddress

Perl Syntax:

$OleMailMsg->AddBcc(newAddress);

Member of: OleMailMsg object

Remarks:

Call this method once for every e-mail address you want to add to the blind-carbon copy
list. Each person you add to this list receives a copy of the e-mail message. However,
the e-mail addresses of people on this list are not included anywhere in the e-mail
message.

See Also:

AddCc method
AddTo method
ClearAll method
SetFrom method
SetSubject method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

newAddress A String containing the e-mail address of the recipient.

Return value None.
558 OleMailMsg object

AddCc method

Add the e-mail address of a carbon-copy recipient to the mail message.

VB Syntax:

OleMailMsg.AddCc newAddress

Perl Syntax:

$OleMailMsg->AddCc(newAddress);

Member of: OleMailMsg object

Remarks:

Call this method once for every e-mail address you want to add to the carbon-copy list.
Each person you add to this list receives a copy of the e-mail message. Addresses on the
carbon-copy list appear in the header of the e-mail message.

See Also:

AddBcc method
AddTo method
ClearAll method
SetFrom method
SetSubject method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

newAddress A String containing the e-mail address of the recipient.

Return value None.
OleMailMsg object 559

AddTo method

Add the e-mail address of a primary recipient to the mail message.

VB Syntax:

OleMailMsg.AddTo newAddress

Perl Syntax:

$OleMailMsg->AddTo(newAddress);

Member of: OleMailMsg object

Remarks:

Call this message once for every person you want to add to the recipient list. Each
person you add to this list receives a copy of the e-mail message. Addresses on the
recipient list appear in the header of the e-mail message.

See Also:

AddBcc method
AddCc method
ClearAll method
SetFrom method
SetSubject method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

newAddress A String containing the e-mail address of the recipient.

Return value None.
560 OleMailMsg object

ClearAll method

Resets the contents of the mail message object.

VB Syntax:

OleMailMsg.ClearAll

Perl Syntax:

$OleMailMsg->ClearAll();

Member of: OleMailMsg object

Remarks:

This method removes the intended recipients (including Cc and Bcc recipients), the
subject line, and the body text of the message. This method also resets the return address
to the e-mail address of the submitter of the record.

See Also:

AddBcc method
AddCc method
AddTo method
MoreBody method
SetBody method
SetFrom method
SetSubject method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

Return value None.
OleMailMsg object 561

Deliver method

Delivers the mail message.

VB Syntax:

OleMailMsg.Deliver

Perl Syntax:

$OleMailMsg->Deliver();

Member of: OleMailMsg object

Remarks:

After calling this method, you can make changes to the object without affecting the
e-mail message that was just sent.

See Also:

AddBcc method
AddCc method
AddTo method
ClearAll method
MoreBody method
SetBody method
SetFrom method
SetSubject method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

Return value A Long indicating the success or failure of the delivery. A value of 1
indicates that the message was sent successfully. A value of 0
indicates that the message could not be delivered.
562 OleMailMsg object

MoreBody method

Appends additional body text to the mail message.

VB Syntax:

OleMailMsg.MoreBody bodyText

Perl Syntax:

$OleMailMsg->MoreBody(bodyText);

Member of: OleMailMsg object

Remarks:

Use this method to add body text above and beyond what you added with the SetBody
method. You can call this method as many times as you like. Each call to this method
appends the specified text to the end of the message content.

This method does not add end-of-line characters or any other formatting characters
when appending the text; you must add these characters yourself to the string you pass
in to the bodyText parameter.

See Also:

ClearAll method
SetBody method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

bodyText A String containing the body text to add to the mail message.

Return value None.
OleMailMsg object 563

SetBody method

Sets the body text of the mail message.

VB Syntax:

OleMailMsg.SetBody bodyText

Perl Syntax:

$OleMailMsg->SetBody(bodyText);

Member of: OleMailMsg object

Remarks:

This method replaces any existing body text with the string you specify. If you added
any body text with previous calls to SetBody or MoreBody method, that text will be
lost.

This method does not add end-of-line characters or any other formatting characters
when appending the text; you must add these characters yourself to the string you pass
in to the bodyText parameter

See Also:

ClearAll method
MoreBody method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

bodyText A String containing the main body text of the mail message.

Return value None.
564 OleMailMsg object

SetFrom method

Sets the return address of the mail message.

VB Syntax:

OleMailMsg.SetFrom returnAddress

Perl Syntax:

$OleMailMsg->SetFrom(returnAddress);

Member of: OleMailMsg object

Remarks:

If you do not call this method, ClearQuest automatically sets the return address to the
e-mail address of the submitter of the record. You can call this method only once to add
a return address to the e-mail message.

See Also:

AddBcc method
AddCc method
AddTo method
ClearAll method
SetSubject method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

returnAddress A String containing the e-mail address to add to the From field of the
mail message.

Return value None.
OleMailMsg object 565

SetSubject method

Sets the subject line of the e-mail message.

VB Syntax:

OleMailMsg.SetSubject subjectText

Perl Syntax:

$OleMailMsg->SetSubject(subjectText);

Member of: OleMailMsg object

Remarks:

Call this method once to set text for the subject line. Subsequent calls to this method
replace the existing subject line with the new string.

See Also:

AddBcc method
AddCc method
AddTo method
ClearAll method
SetFrom method

Identifier Description

OleMailMsg An OleMailMsg object, representing the mail message to be sent.

subjectText A String containing the subject text to add to the message.

Return value None.
566 OleMailMsg object

CHARTMGR object
ChartMgr object properties

ChartMgr object methods

See Also:

ResultSet Object
WORKSPACE object

Property name Access Description

GrayScale property Read/Write Gets or sets the Bool that indicates whether or not
the chart should be created as a grayscale image.

Height property Read/Write Sets or gets the height of the image.

Interlaced property Read/Write Sets or gets whether or not PNG images are
interlaced.

OptimizeCompression
property

Read/Write Sets or gets whether or not the image
compression is optimized.

Progressive property Read/Write Sets or gets whether or not to create progressive
JPEG images.

Quality property Read/Write Sets or gets the quality factor used to generate the
image.

Width property Read/Write Sets or gets the width of the image.

Method name Description

MakeJPEG method Creates a JPEG image of the chart.

MakePNG method Creates a PNG image of the chart.

SetResultSet method Sets the result set used to generate the chart.
CHARTMGR object 567

GrayScale property

Gets or sets the Bool that indicates whether or not the chart should be created as a
grayscale image.

VB Syntax:

chartMgr.GrayScale
chartMgr.GrayScale isGrayScale

Perl Syntax:

$chartMgr->GetGrayScale();
$chartMgr->SetGrayScale(boolean_value);

Member of: CHARTMGR object

Remarks:

This property is set to False by default. You can set it to True if you want to generate
grayscale images.

See Also:

MakeJPEG method
MakePNG method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

isGrayScale True if the image should be created in grayscale, otherwise False.

Return value True if the image should be rendered as a grayscale image,
otherwise False to indicate the image will be rendered in color.
568 CHARTMGR object

Height property

Sets or gets the height of the image.

VB Syntax:

chartMgr.Height
chartMgr.Height newHeight

Perl Syntax:

$chartMgr->GetHeight();
$chartMgr->SetHeight(integer_for_height_in_pixels);

Member of: CHARTMGR object

Remarks:

You must set the height and width of the image separately. By default, ClearQuest sets
the height of images to 500 pixels.

See Also:

Width property
MakeJPEG method
MakePNG method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

newHeight An INT indicating the new height of the image in pixels.

Return value An INT indicating the height of the image in pixels
CHARTMGR object 569

Interlaced property

Sets or returns whether or not PNG images are interlaced.

VB Syntax:

chartMgr.Interlaced
chartMgr.Interlaced isInterlaced

Perl Syntax:

$chartMgr->GetInterlaced();
$chartMgr->SetInterlaced(boolean_value);

Member of: CHARTMGR object

Remarks:

This property is used when producing PNG images. By default, this property is set to
True.

See Also:

Progressive property
MakePNG method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

isInterlaced A Bool indicating whether or not PNG images should be created in
multiple passes.

Return value True if the MakePNG method will create an interlaced PNG image,
otherwise False.
570 CHARTMGR object

OptimizeCompression property

Sets or gets whether or not the image compression is optimized.

Syntax:

chartMgr.OptimizeCompression
chartMgr.OptimizeCompression useCompression

Perl Syntax:

$chartMgr->GetOptimizeCompression();
$chartMgr->SetOptimizeCompression(boolean_value);

Member of: CHARTMGR object

Remarks:

By default, this property is set to True.

See Also:

Quality property

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

useCompression A Bool indicating whether or not the image compression should be
optimized

Return value True if the image compression should be optimized, otherwise
False.
CHARTMGR object 571

Progressive property

Sets or gets whether or not to create progressive JPEG images.

Syntax:

chartMgr.Progressive
chartMgr.Progressive isProgressive

Perl Syntax:

$chartMgr->GetProgressive();
$chartMgr->SetProgressive(boolean_value);

Member of: CHARTMGR object

Remarks:

This property is used when producing JPEG images. By default, this property is set to
False.

See Also:

Interlaced property
MakeJPEG method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

isProgressive A Bool indicating whether or not JPEG images should be created in
multiple passes.

Return value True if the MakeJPEG method will create a progressive JPEG
image, otherwise False.
572 CHARTMGR object

Quality property

Sets or gets the quality factor used to generate the image.

Syntax:

chartMgr.Quality
chartMgr.Quality newValue

Perl Syntax:

$chartMgr->GetQuality();
$chartMgr->SetQuality(boolean_value);

Member of: CHARTMGR object

Remarks:

You use this property to determine how much time should be spent in generating an
image. Higher values indicate better compression but also mean that the image takes
more processing time to create. By default, this property is set to 100 for maximum
compression.

See Also:

OptimizeCompression property

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

newValue An INT between 1 and 100 indicating the new compression factor of
the image.

Return value An INT between 1 and 100 indicating the compression factor of the
image.
CHARTMGR object 573

Width property

Sets or gets the width of the image.

VB Syntax:

chartMgr.Width
chartMgr.Width newHeight

Perl Syntax:

$chartMgr->GetWidth();
$chartMgr->SetWidth(integer_for_width_in_pixels);

Member of: CHARTMGR object

Remarks:

You must set the height and width of the image separately. By default, ClearQuest sets
the width of images to 800 pixels.

See Also:

Height property
MakeJPEG method
MakePNG method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

newWidth An INT indicating the new width of the image in pixels.

Return value An INT indicating the new width of the image in pixels.
574 CHARTMGR object

MakeJPEG method

Creates a JPEG image of the chart.

VB Syntax:

chartMgr.MakeJPEG chartName

Perl Syntax:

$chartMgr->MakeJPEG(chartName);

Member of: CHARTMGR object

Remarks:

This image takes the data in the current result set and generates a JPEG image using the
current settings. If the image was created successfully, this method displays the image in
the ClearQuest client.

See Also:

Height property
OptimizeCompression property
Progressive property
Quality property
Width property
SetResultSet method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

chartName A String containing the pathname of the chart to use when
generating the image.

Return value True if the image was created successfully, otherwise False.
CHARTMGR object 575

MakePNG method

Creates a PNG image of the chart.

VB Syntax:

chartMgr.MakePNG chartName

Perl Syntax:

$chartMgr->MakePNG(chartName);

Member of: CHARTMGR object

Remarks:

This image takes the data in the current result set and generates a PNG image using the
current settings. If the image was created successfully, this method displays the image in
the ClearQuest client.

See Also:

Height property
Interlaced property
OptimizeCompression property
Quality property
Width property
SetResultSet method

Identifier Description

chartMgr The CHARTMGR object associated with the current session.

chartName A String containing the pathname of the chart to use when
generating the image.

Return value None.
576 CHARTMGR object

SetResultSet method

Sets the result set used to generate the chart.

VB Syntax:

chartMgr.SetResultSet resultSet

Perl Syntax:

$chartMgr->SetResultSet(resultSet);

Member of: CHARTMGR object

Remarks:

You must call this method before calling either MakeJPEG or MakePNG. This method
provides the data set from which the specified chart will be generated. You must call the
Execute method of the ResultSet object to generate the data before calling this method.

See Also:

MakeJPEG method
MakePNG method
Execute method of the ResultSet object
ResultSet Object

Identifier Description

chartMgr The CHARTMGR object associated with the current chartMgr.

resultSet The ResultSet object containing the data to use when generating
charts.

Return value None.
CHARTMGR object 577

578 CHARTMGR object

ReportMgr object
ReportMgr object methods

See Also:

WORKSPACE object

Method name Description

ExecuteReport method Executes the report and generates the resulting HTML file.

GetQueryDef method Returns the QueryDef object associated with the report.

SetHTMLFileName method Sets the output file name for the report.
ReportMgr object 579

ExecuteReport method

Executes the current report and generates the resulting HTML file.

VB Syntax:

reportMgr.ExecuteReport

Perl Syntax:

$reportMgr->ExecuteReport();

Member of: ReportMgr object

Remarks:

This method executes the current report and puts the resulting data into the current
destination file. You specify the report to execute when you create the ReportMgr
object. To set the destination file, you must call the SetHTMLFileName method prior to
calling this method.

ClearQuest outputs the report data in HTML format. You can view this data using an
HTML browser.

See Also:

GetReportMgr method
SetHTMLFileName method

Identifier Description

chartMgr The ReportMgr object associated with the current session.

Return value None.
580 ReportMgr object

GetQueryDef method

Returns the QueryDef object associated with the report.

VB Syntax:

reportMgr.GetQueryDef

Perl Syntax:

$reportMgr->GetQueryDef();

Member of: ReportMgr object

Remarks:

You can use the returned QueryDef object to get information about the query that was
used to generate the report.

See Also:

QueryDef object

Identifier Description

chartMgr The ReportMgr object associated with the current session.

Return value The QueryDef object associated with the report.
ReportMgr object 581

SetHTMLFileName method

Sets the output file name for the report.

VB Syntax:

reportMgr.SetHTMLFileName htmlPath

Perl Syntax:

$reportMgr->SetHTMLFileName(htmlPath);

Member of: ReportMgr object

Remarks:

You must call this method before calling the ExecuteReport method to set the location
of the report output file. You can specify path information in the htmlPath parameter to
put the report in a specific location.

See Also:

ExecuteReport method

Identifier Description

chartMgr The ReportMgr object associated with the current session.

htmlPath A String containing the pathname for the report file.

Return value None.
582 ReportMgr object

WORKSPACE object
Workspace object methods

See Also:

GetWorkSpace method of the Session object
CHARTMGR object
ReportMgr object
Session object

Method name Description

GetAllQueriesList method Returns the complete list of queries in the workspace.

GetChartDef method Returns the QueryDef object associated with the specified chart.

GetChartList method Returns the specified list of charts.

GetChartMgr method Returns the CHARTMGR object associated with the current session.

GetQueryDef method Returns the QueryDef object associated with the specified
workspace query.

GetQueryList method Returns the specified list of workspace queries.

GetReportList method Returns the specified list of reports.

GetReportMgr method Returns the ReportMgr object associated with the current session.

SaveQueryDef method Saves the query to the specified location in the workspace.

SetSession method Associates the specified Session object with this object.

SetUserName method Sets the current user name when searching for queries, charts, or
reports.

ValidateQueryDefName
method

Verifies that the specified query name and path info are correct.
WORKSPACE object 583

GetAllQueriesList method

Returns the complete list of queries in the workspace.

VB Syntax:

workspace.GetAllQueriesList

Perl Syntax:

$workspace->GetAllQueriesList();

Member of: WORKSPACE object

Remarks:

This method returns both the public queries defined by the ClearQuest administrator
and personal queries created by individual users.

See Also:

GetQueryDef method
GetQueryList method
QueryDef object

Identifier Description

workspace The Workspace object obtained from the current session.

Return value An array of strings, each of which contains the pathname of a query.
584 WORKSPACE object

GetChartDef method

Returns the QueryDef object associated with the specified chart.

VB Syntax:

workspace.GetChartDef chartName

Perl Syntax:

$workspace->GetChartDef(chartName);

Member of: WORKSPACE object

Remarks:

You use this method to get the query information associated with the specified chart.
You can use the returned QueryDef object to get information about the query, including
the name of the query and the SQL string used to execute the query.

See Also:

GetChartList method
GetChartMgr method
CHARTMGR object
QueryDef object

Identifier Description

workspace The Workspace object obtained from the current session.

chartName A String containing the workspace pathname of the chart.

Return value The QueryDef object associated with the chart.
WORKSPACE object 585

GetChartList method

Returns the specified list of charts.

VB Syntax:

workspace.GetChartList typeOfCharts

Perl Syntax:

$workspace->GetChartList(typeOfCharts);

Member of: WORKSPACE object

Remarks:

Returns the pathnames of the public or personal charts defined in the ClearQuest
workspace. The typeOfCharts parameter lets you specify the type of charts to return.
Specifying the constant OLEWKSPCSYSTEMQUERIES returns only the public charts
defined by the ClearQuest administrator. Specifying the constant
OLEWKSPCBOTHQUERIES returns a list of all of the charts in the workspace
(including those of all users).

To return only the charts defined by a particular user, first set the current user name by
calling the SetUserName method, then, call this method, specifying the constant
OLEWKSPCUSERQUERIES for the typeOfCharts parameter.

Identifier Description

workspace The Workspace object obtained from the current session.

typeOfCharts An INT indicating which types of charts should be returned. This
value corresponds to one of the The ValueStatus constants identify
the status of a field. OLEWKSPCQUERYTYPE enumerated
constants.

Return value An array of Strings, each of which contains the pathname of a single
chart.
586 WORKSPACE object

See Also:

GetChartDef method
GetChartMgr method
SetUserName method
CHARTMGR object
WORKSPACE object 587

GetChartMgr method

Returns the CHARTMGR object associated with the current session.

VB Syntax:

workspace.GetChartMgr

Perl Syntax:

$workspace->GetChartMgr();

Member of: WORKSPACE object

Remarks:

You can use the CHARTMGR object to generate charts and control the appearance of
the output files.

See Also:

GetChartDef method
GetChartList method
CHARTMGR object

Identifier Description

workspace The Workspace object obtained from the current session.

Return value The CHARTMGR object associated with the current session.
588 WORKSPACE object

GetQueryDef method

Returns the QueryDef object associated with the specified workspace query.

VB Syntax:

workspace.GetQueryDef queryName

Perl Syntax:

$workspace->GetQueryDef(queryName);

Member of: WORKSPACE object

Remarks:

You use this method to get the information associated with the specified workspace
query. You can use the returned QueryDef object to get information about the query,
including the name of the query and the SQL string used to execute the query.

See Also:

GetQueryList method
QueryDef object

Identifier Description

workspace The Workspace object obtained from the current session.

queryName A String containing the workspace pathname of the query

Return value The QueryDef object associated with the query.
WORKSPACE object 589

GetQueryList method

Returns the specified list of workspace queries.

VB Syntax:

workspace.GetQueryList typeOfQuery

Perl Syntax:

$workspace->GetQueryList(typeOfQuery);

Member of: WORKSPACE object

Remarks:

This method returns the pathnames of the public or personal queries defined in the
ClearQuest workspace. The typeOfCharts parameter lets you specify the type of queries
to return. Specifying the constant OLEWKSPCSYSTEMQUERIES returns only the
public queries defined by the ClearQuest administrator. Specifying the constant
OLEWKSPCBOTHQUERIES returns a list of all of the queries in the workspace
(including those of all users).

To return only the queries defined by a particular user, you must first set the current user
name by calling the SetUserName method. You can then call this method, specifying the
constant OLEWKSPCUSERQUERIES for the typeOfCharts parameter.

Identifier Description

workspace The Workspace object obtained from the current session.

typeOfQuery An INT indicating which types of queries should be returned. This
value corresponds to one of the The ValueStatus constants identify
the status of a field. OLEWKSPCQUERYTYPE enumerated
constants.

Return value An array of Strings, each of which contains the pathname of a single
query.
590 WORKSPACE object

See Also:

GetQueryDef method
SetUserName method
QueryDef object
WORKSPACE object 591

GetReportList method

Returns the specified list of reports.

VB Syntax:

workspace.GetReportList typesOfReports

Perl Syntax:

$workspace->GetReportList(typesOfReports);

Member of: WORKSPACE object

Remarks:

This method returns the pathnames of the public or personal reports defined in the
ClearQuest workspace. The typeOfCharts parameter lets you specify the type of reports
to return. Specifying the constant OLEWKSPCSYSTEMREPORTS returns only the
public reports defined by the ClearQuest administrator. Specifying the constant
OLEWKSPCBOTHREPORTS returns a list of all of the reports in the workspace
(including those of all users).

To return only the reports defined by a particular user, you must first set the current user
name by calling the SetUserName method. You can then call this method, specifying the
constant OLEWKSPCUSERREPORTS for the typeOfCharts parameter.

Identifier Description

workspace The Workspace object obtained from the current session.

typesOfReports An INT indicating which types of reports should be returned. This
value corresponds to one of the The ValueStatus constants identify
the status of a field. OLEWKSPCQUERYTYPE enumerated
constants.

Return value An array of Strings, each of which contains the pathname of a single
report.
592 WORKSPACE object

See Also:

GetReportMgr method
ReportMgr object
WORKSPACE object 593

GetReportMgr method

Returns the ReportMgr object associated with the current session.

VB Syntax:

workspace.GetReportMgr reportName

Perl Syntax:

$workspace->GetReportMgr(reportName);

Member of: WORKSPACE object

Remarks:

You can use the ReportMgr object to execute the specified report, check the status of the
report while it is being processed, or check the report parameters.

See Also:

ReportMgr object

Identifier Description

workspace The Workspace object obtained from the current session.

reportName A String containing the name of the report to run with the returned
ReportMgr object.

Return value A ReportMgr object you can use to run the specified report.
594 WORKSPACE object

SaveQueryDef method

Saves the query to the specified location in the workspace.

VB Syntax:

workspace.SaveQueryDef qdefName, qdefPath, queryDef, overwrite

Perl Syntax:

$workspace->SaveQueryDef(qdefName, qdefPath, queryDef, overwrite);

Member of: WORKSPACE object

Remarks:

The user logged into the current session must have access to the pathname specified in
the qdefPath parameter. (Thus, only users with administrative privileges can save
queries to the Public Queries folder.) If the pathname you specify in the qdefPath
parameter contains subfolders that do not exist, ClearQuest creates those folders
implicitly.

Identifier Description

workspace The Workspace object obtained from the current session.

qdefName A String containing the name of the query.

qdefPath A String containing the pathname of the folder in which you want to
save the query.

queryDef The QueryDef object representing the query you want to save.

overwrite A Bool indicating whether this query should overwrite a query with
the same name and path information.

Return value None.
WORKSPACE object 595

See Also:

GetQueryDef method
GetQueryList method
QueryDef object
596 WORKSPACE object

SetSession method

Associates the specified Session object with this object.

VB Syntax:

workspace.SetSession sessionObj

Perl Syntax:

$workspace->SetSession(sessionObj);

Member of: WORKSPACE object

Remarks:

If you create a WORKSPACE object without first having a Session object, you must
call this method before attempting to access any of the queries, charts, or reports in the
workspace.

See Also:

Session object

Identifier Description

workspace The Workspace object obtained from the current session.

sessionObj The Session object to associate with this object.

Return value None.
WORKSPACE object 597

ser’s
items
SetUserName method

Sets the current user name when searching for queries, charts, or reports.

VB Syntax:

workspace.SetUserName userName

Perl Syntax:

$workspace->SetUserName(userName);

Member of: WORKSPACE object

Remarks:

You should call this method before attempting to get any information located in a u
Personal Queries folder. You must call this method before requesting user-specific
with the GetChartList, GetQueryList, or GetReportList methods.

See Also:

GetChartList method
GetQueryList method
GetReportList method

Identifier Description

workspace The Workspace object obtained from the current session.

userName A String containing the login ID of the user.

Return value None.
598 WORKSPACE object

ValidateQueryDefName method

Verifies that the specified query name and path information are correct.

VB Syntax:

workspace.ValidateQueryDefName qdefName, qdefPath

Perl Syntax:

$workspace->ValidateQueryDefName(qdefName, qdefPath);

Member of: WORKSPACE object

Remarks:

You can use this method to ensure that the given name and path are valid in the
workspace.

See Also:

SaveQueryDef method

Identifier Description

workspace The Workspace object obtained from the current session.

qdefName A String containing the name of the query.

qdefPath A String containing the pathname of the folder containing the query.

Return value None.
WORKSPACE object 599

600 WORKSPACE object

R A T I O N A L C L E A R Q U E S T A P I R E F E R E N C E
Index
A
Accessing the fields of a record 38
Accessing the schema repository 37
Active property 405, 420
Add method 480
AddBcc method 558
AddCc method 559
AddFieldValue method 206
AddItem method 544
AddParamValue method 322
AddTo method 560
AddUser property 421
AdminSession object 54, 345
AppBuilder property 406
ApplyPropertyChanges method 389
Attachment object 66, 459
AttachmentField object 65, 471
AttachmentFields object 455
AttachmentFields property 202
Attachments collection object 66
Attachments object 477
Attachments property 472
AttachmentsFields collection

object 65

B
BeginNewFieldUpdateGroup

method 208
BuildEntity method 136
BuildField method 316
BuildFilter method 342
BuildFilterOperator method 318,

344
BuildQuery method 138
BuildResultSet method 140
BuildSQLQuery method 142

C
CHARTMGR object 74
CheckTimeoutInterval property 371
Choosing a scripting language 17
ClearAll method 561
ClearParamValues method 323
ClearQuest documentation set 14
Commit method 210
Committing entity objects to the

database 40
Common API calls to get user

information 52
Count Property 456
Count property 430, 434, 438, 442,

446, 450, 478, 530, 540
CreateDatabase method 355
CreateGroup method 357
CreateUser method 358
Creating a new record 34
Creating a result set 31
Creating queries 29

D
DatabaseDescription object 67, 487
DatabaseName property 374
Databases collection object 62
Databases property 347, 422
DBOLogin property 375
DBOPassword property 376
Defining your search criteria 30
Delete method 482
DeleteDatabase method 359
DeleteEntity method 144
DeleteFieldValue method 212
Deliver method 562
Description property 377, 398, 460
DisplayName property 462
DisplayNameHeader property 474,

534
DoesTransitionExist method 283

E
EditEntity method 146
601

602
Editing an existing record 34
Email property 407
Ending a session (for external

applications) 28
Ensuring that record data is

current 36
Entities and Hooks 42
Entity object 38, 199
EntityDef object 44, 281
EntityDefs collection object 62
EventObject object 67, 501
EventType property 502
Execute method 324

F
FieldInfo object 68, 507
FieldName property 476, 535
FileName property 464
FileSize property 466
Finding examples 14
FireNamedHook method 214
Fullname property 408

G
GetAccessibleDatabases

method 149
GetActionDefNames method 285
GetActionDefType method 287
GetAllDuplicates method 218
GetAllFieldValues method 220
GetAllQueriesList method 584
GetAuxEntityDefNames

method 151
GetChartDef method 585
GetChartList method 586
GetChartMgr method 588
GetChildEntity method 548
GetChildEntityDef method 549
GetChildEntityDefName

method 550
GetChildEntityID method 551
GetColumnLabel method 326
GetColumnType method 327
GetColumnValue method 328
GetDatabase method 361
GetDatabaseConnectString

method 488
GetDatabaseName method 490
GetDatabaseSetName method 492
GetDbId method 221
GetDefaultEntityDef method 153
GetDescription method 494
GetDisplayName method 223
GetDuplicates method 225
GetEntity method 156
GetEntityByDbId method 158
GetEntityDef method 160
GetEntityDefName method 227
GetEntityDefNames method 164
GetFieldChoiceList method 229
GetFieldChoiceType method 231
GetFieldDefNames method 290
GetFieldDefType method 292
GetFieldMaxLength method 233
GetFieldNames method 234
GetFieldOriginalValue method 236
GetFieldReferenceEntityDef

method 294
GetFieldRequiredness method 238
GetFieldsUpdatedThisAction

method 240
GetFieldsUpdatedThisGroup

method 242
GetFieldsUpdatedThisSetValue

method 244
GetFieldType method 246
GetFieldValue method 248
GetGroup method 363
GetHookDefNames method 296
GetInstalledMasters method 166
GetInvalidFieldValues method 250
GetIsMaster method 496
GetLegalActionDefNames

method 251
GetLocalFieldPathNames

method 298
GetLogin method 498
GetMessageText method 508
GetName method 299, 509
GetNumberOfColumns method 330
GetNumberOfParams method 331
GetOriginal method 253
GetOriginalID method 255
GetParamChoiceList method 332
GetParamComparisonOperator

method 333
GetParamFieldType method 334
GetParamLabel method 335
GetParamPrompt method 336
GetParentEntity method 552
GetParentEntityDef method 553
GetParentEntityDefName

method 554
GetParentEntityID method 555
GetPassword method 499
GetQueryDef method 589
GetQueryEntityDefNames

method 168
GetQueryList method 590
GetReportList method 592
GetReportMgr method 594
GetReqEntityDefNames

method 170
GetRequiredness method 510
GetServerInfo method 172
GetSession method 257
GetSessionDatabase method 173
GetSQL method 338
GetStateDefNames method 300
GetSubmitEntityDefNames

method 174
Getting a Session Object 25
Getting entity objects 33
Getting schema repository

objects 50
GetType method 259, 302, 511
GetUser method 365
GetUserEmail method 176
GetUserFullName method 178
GetUserGroups method 180
GetUserLoginName method 182
GetUserMiscInfo method 184
GetUserPhone method 186
GetValidationStatus method 512
GetValue method 513
GetValueAsList method 514
GetValueStatus method 516
GetWorkSpace method 188
Group object 60
Groups collection object 62
Groups property 349, 409

H
HasDuplicates method 261
HasValue method 189
Histories collection object 70
Histories object 539
Histories property 536
History object 69, 537
HistoryField object 69, 533
HistoryFields collection object 69
HistoryFields object 529
HistoryFields property 204
HookChoices object 71, 543

I
IsActionDefName method 304
IsAggregated property 310
IsDirty property 311
IsDuplicate method 264
IsEditable method 266
IsFieldDefName method 306
IsMetadataReadonly method 190
IsOriginal method 268
IsStateDefName method 307
IsSystemOwnedFieldDefName

method 308
Item Method 451, 457
Item method 431, 439, 443, 447, 484,

531, 541
ItemName property 503

K
Knowledge assumed 16

L
Link object 72, 547
Load method 468
Logging on to a database 26
Logging on to the schema

repository 49
Logon method 367
LookupPrimaryEntityDefName

method 339
LookupStateName method 270

M
MarkEntityAsDuplicate

method 191
MiscInfo property 410
MoreBody method 563
MoveNext method 340
Moving through the result set 32

N
Name property 313, 378, 394, 411,

423
NameValue property 134
603

604
O
OAdDatabase object 369
OAdDatabases object 429
OAdGroup object 419
OAdGroups object 437
OADSchema object 393
OADSchemaRev object 397
OADSchemaRevs object 445
OADSchemas object 441
OAdUser object 403
OADUsers object 449
ObjectItem property 504
Objects in the schema repository 48
OleMailMsg object 73, 557
OpenQueryDef method 193
Organization of the API

Reference 17
OutputDebugString method 194
Overview of the API objects 22

P
Pathnames in the Workspace 76
Performing user administration 51
Phone property 412

Q
QueryDef object 45, 309
QueryFilterNode object 47, 341

R
Remarks

38, 44, 45, 46, 47, 54, 55, 57, 58,
59, 60, 62, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76

ReportMgr object 75
ResultSet Object 46, 321
Retrieving the values from the fields

of the record 32
Revert method 271
Reverting your changes 35
RevID property 399
ROLogin property 379
ROPassword property 380
Running queries 31
Running the query 31
RWLogin property 381
RWPassword property 382
S
SaveQueryDef method 595
Saving your changes 35
Schema object 57
Schema property 400
SchemaRev object 58
SchemaRev property 383
SchemaRevs collection object 62
SchemaRevs property 395
Schemas collection object 62
Schemas property 351
Server property 384
Session object 37, 131
SetBody method 564
SetFieldRequirednessForCurren-

tAction method 275
SetFieldValue method 277
SetFrom method 565
SetInitialSchemaRev method 390
SetSession method 597
SetSubject method 566
SetUserName method 598
Sort method 545
SQL property 315
StringItem property 505
SubscribeDatabase method 416, 425
SubscribedDatabases property 413
SubscribedGroups property 385
SubscribedUsers property 386
SuperUser property 414

T
TimeoutInterval property 387

U
Understanding additional database

objects 64
Understanding ClearQuest API

objects 20
Understanding schema repository

objects 53
Understanding the ClearQuest

API 16
Understanding the schema reposi-

tory collection objects 61
Understanding user database

objects 53
UnmarkEntityAsDuplicate

method 195
UnsubscribeAllDatabases

method 417, 426
UnsubscribeDatabase method 418,

427
Updating user database

information 50
Upgrade method 391
UpgradeMasterUserInfo

method 392
User object 59
UserLogon method 197
UserMaintainer property 415
Users property 353, 424
Using Perl 17
Using query filters 30
Using session-wide variables 27
Using the AdminSession object 49
Using this reference 15
Using this reference manual 14
Using VBScript 19

V
Validate method 279
ValidateQueryDefName

method 599
ValidityChangedThisAction

method 517
ValidityChangedThisGroup

method 519
ValidityChangedThisSetValue

method 521
Value property 538
ValueChangedThisAction

method 522
ValueChangedThisGroup

method 524
ValueChangedThisSetValue

method 526
Vendor property 388
Viewing the contents of a record 35
Viewing the metadata of a record 36

W
Ways to use the ClearQuest API 16
Working with a result set 31
Working with duplicates 41
Working with multiple sessions 28
Working with queries 29
Working with records 33
Working with sessions 25
WORKSPACE object 76
605

606

	Using the ClearQuest API
	Using this reference manual
	ClearQuest documentation set
	Finding examples
	Using this reference

	Understanding the ClearQuest API
	Knowledge assumed
	Ways to use the ClearQuest API
	Organization of the API Reference
	Choosing a scripting language

	Understanding ClearQuest API objects
	Overview Diagram of API objects
	Overview Table of the API objects

	Working with sessions
	Getting a Session Object
	Logging on to a database
	Using session-wide variables
	Ending a session (for external applications)
	Working with multiple sessions

	Working with queries
	Creating queries
	Defining your search criteria
	Running queries
	Working with a result set

	Working with records
	Getting entity objects
	Creating a new record
	Editing an existing record
	Saving your changes
	Reverting your changes
	Viewing the contents of a record
	Viewing the metadata of a record

	Understanding user database objects
	Session object
	Entity object
	EntityDef object
	QueryDef object
	ResultSet Object
	QueryFilterNode object

	Accessing the schema repository
	Objects in the schema repository
	Using the AdminSession object
	Logging on to the schema repository
	Getting schema repository objects
	Updating user database information
	Performing user administration

	Understanding schema repository objects
	AdminSession object
	Database object
	Schema object
	SchemaRev object
	User object
	Group object

	Understanding the schema repository collection objects
	Databases collection object
	EntityDefs collection object
	Schemas collection object
	SchemaRevs collection object
	Users collection object

	Understanding additional database objects
	AttachmentField object
	AttachmentsFields collection object
	Attachment object
	Attachments collection object
	DatabaseDescription object
	EventObject object
	FieldInfo object
	HistoryField object
	HistoryFields collection object
	History object
	Histories collection object
	HookChoices object
	Link object
	OleMailMsg object
	CHARTMGR object
	ReportMgr object
	WORKSPACE object

	Glossary
	Examples of hooks and scripts
	Getting and setting attachment information
	Building queries for defects and users
	Updating duplicate records to match the parent record
	Managing records (entities) that are stateless and stateful
	Extracting data about an EntityDef (record type)
	Extracting data about a field in a record
	Notifying users of changes to an entity (record)
	Running a query and reporting on its result set
	Getting session and database information
	Running a query against more than one record type (multitype query)
	Triggering a task with the destination state

	Enumerated Constants
	ActionType
	Behavior
	BoolOp
	CompOp
	DatabaseVendor
	EntityType
	EventType
	FetchStatus
	FieldType
	FieldValidationStatus
	QueryType
	SessionType
	ValueStatus
	OLEWKSPCREPORTTYPE

	Session object
	NameValue property
	VB Syntax:
	session.NameValue name session.NameValue name, newValue
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	BuildEntity method
	VB Syntax:
	session.BuildEntity entitydef_name
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	BuildQuery method
	VB Syntax:
	session.BuildQuery entitydef_name
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	BuildResultSet method
	VB Syntax:
	session.BuildResultSet querydef
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	BuildSQLQuery method
	VB Syntax:
	session.BuildSQLQuery SQL_string
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	DeleteEntity method
	VB Syntax:
	session.DeleteEntity entity, deleteActionName
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	EditEntity method
	VB Syntax:
	session.EditEntity entity, edit_action_name
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	FireRecordScriptAlias method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetAccessibleDatabases method
	VB Syntax:
	session.GetAccessibleDatabases master_db_name, user_login_name, database_set
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetAuxEntityDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDefaultEntityDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetEnabledEntityDefs method
	Perl Syntax:
	Remarks:
	See Also:

	GetEnabledPackageRevs method
	$session->GetEnabledPackageRevs(PackageName, RevString);
	Remarks:
	See Also:

	GetEntity method
	Remarks:
	Examples:
	See Also:

	GetEntityByDbId method
	Remarks:
	Examples:
	See Also:

	GetEntityDef method
	Remarks:
	Examples:
	See Also:

	GetEntityDefFamily method
	Remarks:
	Example:
	See Also:

	GetEntityDefFamilyNames method
	Remarks:
	See Also:

	GetEntityDefNames method
	Remarks:
	Examples:
	See Also:

	GetInstalledMasters method
	Remarks:
	Examples:
	See Also:

	GetQueryEntityDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetReqEntityDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetServerInfo method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetSessionDatabase method
	VB Syntax:
	Perl Syntax:
	$session->GetSessionDatabase();
	Remarks:
	Examples:
	See Also:

	GetSubmitEntityDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUserEmail method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUserFullName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUserGroups method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUserLoginName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUserMiscInfo method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUserPhone method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetWorkSpace method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	HasValue method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	IsMetadataReadonly method
	VB Syntax:
	Perl Syntax:
	Examples:
	See Also:

	MarkEntityAsDuplicate method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	OpenQueryDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	OutputDebugString method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	UnmarkEntityAsDuplicate method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	UserLogon method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Entity object
	AttachmentFields property
	VB Syntax:
	Remarks:
	Example:
	See Also:

	HistoryFields property
	VB Syntax:
	Remarks:
	Example:
	See Also:

	AddFieldValue method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	BeginNewFieldUpdateGroup method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Commit method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	DeleteFieldValue method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	FireNamedHook method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Example:
	See Also:

	GetActionName
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetActionType
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetAllDuplicates method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetAllFieldValues method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDbId method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDefaultActionName
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDisplayName method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDuplicates method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetEntityDefName method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldChoiceList method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldChoiceType method
	VBScript Syntax:
	Perl Syntax:
	$entity->GetFieldChoiceType(field_name);
	Remarks:
	Examples:
	See Also:

	GetFieldMaxLength method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldNames method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldOriginalValue method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldRequiredness method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldsUpdatedThisAction method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldsUpdatedThisGroup method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldsUpdatedThisSetValue method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldType method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldValue method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetInvalidFieldValues method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetLegalActionDefNames method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetOriginal method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetOriginalID method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetSession method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetType method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	HasDuplicates method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	InvalidateFieldChoiceList function
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Example:
	See Also:

	IsDuplicate method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	IsEditable method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	IsOriginal method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	LookupStateName method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Revert method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	SetFieldChoiceList function
	VBScript Syntax:
	Remarks:
	VBScript Example:
	See Also:

	SetFieldRequirednessForCurrentAction method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	SetFieldValue method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Validate method
	VBScript Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	EntityDef object
	DoesTransitionExist method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetActionDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetActionDefType method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetActionDestStateName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetFieldDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldDefType method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetFieldReferenceEntityDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetHookDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetLocalFieldPathNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetStateDefNames method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetType method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	IsActionDefName method
	VB Syntax:
	Perl Syntax:
	Examples:
	See Also:

	IsFamily method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	IsFieldDefName method
	VB Syntax:
	Perl Syntax:
	See Also:

	IsStateDefName method
	VB Syntax:
	Perl Syntax:
	See Also:

	IsSystemOwnedFieldDefName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	QueryDef object
	IsAggregated property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	IsDirty property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	IsMultiType method
	VB Syntax:
	querydef.IsMultiType
	Perl Syntax:
	Remarks:
	See Also:

	Name property
	VB Syntax:
	Perl Syntax:
	See Also:

	QueryType property
	VB Syntax:
	See Also:

	SQL property
	VB Syntax:
	Remarks:
	See Also:

	BuildField method
	VB Syntax:
	querydef.BuildField field_name
	Perl Syntax:
	Remarks:
	See Also:

	BuildFilterOperator method
	VB Syntax:
	querydef.BuildFilterOperator bool_operator
	Perl Syntax:
	Remarks:
	See Also:

	Save method
	VB Syntax:
	querydef.Save fileName
	Perl Syntax:

	ResultSet Object
	AddParamValue method
	VB Syntax:
	resultset.AddParamValue param_number, value
	Perl Syntax:
	Remarks:
	See Also:

	ClearParamValues method
	VB Syntax:
	resultset.ClearParamValues param_number
	Perl Syntax:
	Remarks:
	See Also:

	Execute method
	VB Syntax:
	resultset.Execute
	Perl Syntax:
	Remarks:
	See Also:

	GetColumnLabel method
	VB Syntax:
	resultset.GetColumnLabel columnNum
	Perl Syntax:
	Remarks:
	See Also:

	GetColumnType method
	VB Syntax:
	resultset.GetColumnType columnNum
	Perl Syntax:
	Remarks:
	See Also:

	GetColumnValue method
	VB Syntax:
	resultset.GetColumnValue columnNum
	Perl Syntax:
	Remarks:
	See Also:

	GetNumberOfColumns method
	VB Syntax:
	resultset.GetNumberOfColumns
	Perl Syntax:
	See Also:

	GetNumberOfParams method
	VB Syntax:
	resultset.GetNumberOfParams
	Perl Syntax:
	See Also:

	GetParamChoiceList method
	VB Syntax:
	resultset.GetParamChoiceList param_number
	Perl Syntax:
	Remarks:
	See Also:

	GetParamComparisonOperator method
	VB Syntax:
	resultset.GetParamComparisonOperator param_number
	Perl Syntax:
	Remarks:
	See Also:

	GetParamFieldType method
	VB Syntax:
	resultset.GetParamFieldType param_number
	Perl Syntax:
	Remarks:
	See Also:

	GetParamLabel method
	VB Syntax:
	resultset.GetParamLabel param_number
	Perl Syntax:
	Remarks:
	See Also:

	GetParamPrompt method
	VB Syntax:
	resultset.GetParamPrompt param_number
	Perl Syntax:
	Remarks:
	See Also:

	GetRowEntityDefName method
	VB Syntax:
	resultset.GetRowEntityDefName
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetSQL method
	VB Syntax:
	resultset.GetSQL
	Perl Syntax:
	Remarks:
	See Also:

	LookupPrimaryEntityDefName method
	VB Syntax:
	resultset.LookupPrimaryEntityDefName
	Perl Syntax:
	Remarks:
	See Also:

	MoveNext method
	VB Syntax:
	resultset.MoveNext
	Perl Syntax:
	Remarks:
	See Also:

	QueryFilterNode object
	BuildFilter method
	VB Syntax:
	node.BuildFilter field_name, comparison_operator, value
	Perl Syntax:
	Remarks:
	See Also:

	BuildFilterOperator method
	VB Syntax:
	node.BuildFilterOperator bool_operator
	Perl Syntax:
	Remarks:
	See Also:

	AdminSession object
	Remarks:
	Working With Databases
	Properties
	Methods
	See Also:
	Databases property
	VB Syntax:
	Remarks:
	Examples:
	See Also:

	Groups property
	VB Syntax:
	$adminSession->GetGroups();
	Remarks:
	Examples:
	See Also:

	Schemas property
	VB Syntax:
	Remarks:
	Examples:
	See Also:

	Users property
	VB Syntax:
	Remarks:
	Examples:
	See Also:

	CreateDatabase method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	CreateGroup method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	CreateUser method
	Perl Syntax:
	$adminSession->CreateUser(userName);
	Remarks:
	Examples:
	See Also:

	DeleteDatabase method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDatabase method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetGroup method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetUser method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Logon method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Database object
	CheckTimeoutInterval property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	ConnectHosts property
	VB Syntax:
	database.ConnectHosts [= value]
	Perl Syntax:
	$database->GetConnectHosts(); $database->SetConnectHosts(string_for_the_host_connection);
	Remarks:
	See Also:

	ConnectProtocols property
	VB Syntax:
	database.ConnectProtocols [= value]
	Perl Syntax:
	$database->GetConnectProtocols(); $database->SetConnectProtocols(string_for_the_host_connection);
	Remarks:
	See Also:

	DatabaseName property
	VB Syntax:
	database.DatabaseName [= value]
	Perl Syntax:
	$database->GetDatabaseName(); $database->SetDatabaseName(string_for_physical_database_name);
	Remarks:
	See Also:

	DBOLogin property
	VB Syntax:
	database.DBOLogin [= value]
	Perl Syntax:
	Remarks:
	See Also:

	DBOPassword property
	VB Syntax:
	database.DBOPassword [= value]
	Perl Syntax:
	Remarks:
	See Also:

	Description property
	VB Syntax:
	database.Description [= value]
	Perl Syntax:
	$database->GetDescription(); $database->SetDescription(string_describing_database);
	Remarks:
	See Also:

	Name property
	VB Syntax:
	database.Name [= value]
	Perl Syntax:
	Remarks:
	See Also:

	ROLogin property
	VB Syntax:
	database.ROLogin [= value]
	Perl Syntax:
	Remarks:
	See Also:

	ROPassword property
	VB Syntax:
	database.ROPassword [= value]
	Perl Syntax:
	Remarks:
	See Also:

	RWLogin property
	VB Syntax:
	database.RWLogin [= value]
	Perl Syntax:
	Remarks:
	See Also:

	RWPassword property
	VB Syntax:
	database.RWPassword [= value]
	Perl Syntax:
	Remarks:
	See Also:

	SchemaRev property
	VB Syntax:
	database.SchemaRev
	Perl Syntax:
	Remarks:
	See Also:

	Server property
	VB Syntax:
	database.Server [= value]
	Perl Syntax:
	Remarks:
	See Also:

	SubscribedGroups property
	VB Syntax:
	database.SubscribedGroups
	Perl Syntax:
	Remarks:
	See Also:

	SubscribedUsers property
	VB Syntax:
	database.SubscribedUsers
	Perl Syntax:
	Remarks:
	See Also:

	TimeoutInterval property
	VB Syntax:
	database.TimeoutInterval [= value]
	Perl Syntax:
	$database->GetTimeoutInterval(); $database->SetTimeoutInterval(timeout_inverval);
	Remarks:
	See Also:

	Vendor property
	VB Syntax:
	database.Vendor [= value]
	Perl Syntax:
	$database->GetVendor(); $database->SetVendor(constant_for_a_database_vendor);
	Remarks:
	See Also:

	ApplyPropertyChanges method
	Perl Syntax:
	Remarks:
	See Also:

	SetInitialSchemaRev method
	Perl Syntax:
	Remarks:
	See Also:

	Upgrade method
	Perl Syntax:
	Remarks:
	See Also:

	UpgradeMasterUserInfo method
	Perl Syntax:
	Remarks:
	See Also:

	Schema object
	Schema Object Properties
	Name property
	VBSyntax:
	Remarks:
	See Also:

	SchemaRevs property
	VBSyntax:
	Remarks:
	See Also:

	SchemaRev object
	Description property
	VBSyntax:
	Remarks:
	See Also:

	RevID property
	VBSyntax:
	Remarks:
	See Also:

	Schema property
	VBSyntax:
	Remarks:
	See Also:

	GetEnabledEntityDefs method
	Perl Syntax:
	Remarks:
	See Also:

	GetEnabledPackageRevs method
	Remarks:
	See Also:

	User object
	Active property
	VB Syntax:
	Perl Syntax:
	$user->GetActive(); $user->SetActive(boolean_value);
	Remarks:
	See Also:

	AppBuilder property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Email property
	Syntax:
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Fullname property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Groups property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	MiscInfo property
	Syntax:
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Name property
	VB Syntax:
	Perl Syntax:
	$user->GetName();
	Remarks:
	See Also:

	Phone property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SubscribedDatabases property
	VB Syntax:
	Perl Syntax:
	$user->GetSubscribedDatabases();
	Remarks:
	See Also:

	SuperUser property
	VB Syntax:
	Perl Syntax:
	$user->GetSuperUser(); $user->SetSuperUser(boolean_value);
	Remarks:
	See Also:

	UserMaintainer property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SubscribeDatabase method
	VB Syntax:
	user.SubscribeDatabase database
	Perl Syntax:
	Remarks:
	See Also:

	UnsubscribeAllDatabases method
	VB Syntax:
	user.UnsubscribeAllDatabases
	Perl Syntax:
	Remarks:
	See Also:

	UnsubscribeDatabase method
	VB Syntax:
	user.UnsubscribeDatabase database
	Perl Syntax:
	Remarks:
	See Also:

	Group object
	Active property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	AddUser method
	group.AddUser user
	See Also:

	SubscribedDatabases property
	VB Syntax:
	Perl Syntax:
	$group->GetSubscribedDatabases();
	Remarks:
	See Also:

	Name property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Users property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SubscribeDatabase method
	VB Syntax:
	group.SubscribeDatabase database
	Remarks:
	See Also:

	UnsubscribeAllDatabases method
	VB Syntax:
	group.UnsubscribeAllDatabases
	Remarks:
	See Also:

	UnsubscribeDatabase method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Databases collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	See Also:

	EntityDefs collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Syntax:
	Remarks:
	See Also:

	Groups collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	See Also:

	Schemas collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	See Also:

	SchemaRevs collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	See Also:

	Users collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item Method
	Perl Syntax:
	Remarks:
	See Also:

	Attachment-Related Objects
	Remarks:
	See Also:

	AttachmentFields collection object
	AttachmentFields object properties
	AttachmentFields object methods
	See Also:
	Count Property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Item Method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Attachment object
	Description property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	DisplayName property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	FileName property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	FileSize property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Load method
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	AttachmentField object
	Attachments property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	DisplayNameHeader property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	FieldName property
	VB Syntax:
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Attachments collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Add method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Delete method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	DatabaseDescription object
	GetDatabaseConnectString method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDatabaseName method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDatabaseSetName method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetDescription method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetIsMaster method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	GetLogin method
	Perl Syntax:
	Remarks:
	Examples:
	See Also:

	EventObject object
	EventType property
	VB Syntax:
	eventObject.Type
	Perl Syntax:
	Remarks:
	See Also:

	ItemName property
	VB Syntax:
	eventObject.ItemName
	Perl Syntax:
	Remarks:
	See Also:

	ObjectItem property
	VB Syntax:
	eventObject.ObjectItem
	Remarks:
	See Also:

	StringItem property
	VB Syntax:
	eventObject.StringItem
	Perl Syntax:
	Remarks:
	See Also:

	FieldInfo object
	GetMessageText method
	VB Syntax:
	fieldInfo.GetMessageText
	Perl Syntax:
	Remarks:
	See Also:

	GetName method
	VB Syntax:
	fieldInfo.GetName
	Perl Syntax:
	Remarks:
	See Also:

	GetRequiredness method
	VB Syntax:
	fieldInfo.GetRequiredness
	Perl Syntax:
	Remarks:
	See Also:

	GetType method
	VB Syntax:
	fieldInfo.GetType
	Perl Syntax:
	Remarks:
	See Also:

	GetValidationStatus method
	VB Syntax:
	fieldInfo.GetValidationStatus
	Perl Syntax:
	Remarks:
	See Also:

	GetValue method
	VB Syntax:
	fieldInfo.GetValue
	Perl Syntax:
	Remarks:
	See Also:

	GetValueAsList method
	VB Syntax:
	fieldInfo.GetValueAsList
	Perl Syntax:
	Remarks:
	See Also:

	GetValueStatus method
	VB Syntax:
	fieldInfo.GetValueStatus
	Perl Syntax:
	See Also:

	ValidityChangedThisAction method
	VB Syntax:
	fieldInfo.ValidityChangedThisAction
	Perl Syntax:
	Remarks:
	See Also:

	ValidityChangedThisGroup method
	VB Syntax:
	fieldInfo.ValidityChangedThisGroup
	Perl Syntax:
	Remarks:
	See Also:

	ValidityChangedThisSetValue method
	VB Syntax:
	fieldInfo.ValidityChangedThisSetValue
	Perl Syntax:
	Remarks:
	See Also:

	ValueChangedThisAction method
	VB Syntax:
	fieldInfo.ValueChangedThisAction
	Perl Syntax:
	Remarks:
	See Also:

	ValueChangedThisGroup method
	VB Syntax:
	fieldInfo.ValueChangedThisGroup
	Perl Syntax:
	Remarks:
	See Also:

	ValueChangedThisSetValue method
	VB Syntax:
	fieldInfo.ValueChangedThisSetValue
	Perl Syntax:
	Remarks:
	See Also:

	History-Related Objects
	Remarks
	See Also:

	HistoryFields collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	See Also:

	HistoryField object
	DisplayNameHeader property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	FieldName property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Histories property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	History object
	Value property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Histories collection object
	Count property
	VB Syntax:
	collection.Count
	Perl Syntax:
	Remarks:
	See Also:

	Item method
	Perl Syntax:
	Remarks:
	See Also:

	HookChoices object
	AddItem method
	Remarks:
	See Also:

	Sort method
	Remarks:
	See Also:

	Link object
	GetChildEntity method
	Perl Syntax:
	$link->GetChildEntity();
	See Also:

	GetChildEntityDef method
	Perl Syntax:
	See Also:

	GetChildEntityDefName method
	Perl Syntax:
	See Also:

	GetChildEntityID method
	Perl Syntax:
	See Also:

	GetParentEntity method
	Perl Syntax:
	See Also:

	GetParentEntityDef method
	Perl Syntax:
	See Also:

	GetParentEntityDefName method
	Perl Syntax:
	See Also:

	GetParentEntityID method
	Perl Syntax:
	See Also:

	OleMailMsg object
	AddBcc method
	VB Syntax:
	OleMailMsg.AddBcc newAddress
	Perl Syntax:
	Remarks:
	See Also:

	AddCc method
	VB Syntax:
	OleMailMsg.AddCc newAddress
	Perl Syntax:
	Remarks:
	See Also:

	AddTo method
	VB Syntax:
	OleMailMsg.AddTo newAddress
	Perl Syntax:
	Remarks:
	See Also:

	ClearAll method
	VB Syntax:
	OleMailMsg.ClearAll
	Perl Syntax:
	Remarks:
	See Also:

	Deliver method
	VB Syntax:
	OleMailMsg.Deliver
	Perl Syntax:
	Remarks:
	See Also:

	MoreBody method
	VB Syntax:
	OleMailMsg.MoreBody bodyText
	Perl Syntax:
	Remarks:
	See Also:

	SetBody method
	VB Syntax:
	OleMailMsg.SetBody bodyText
	Perl Syntax:
	Remarks:
	See Also:

	SetFrom method
	VB Syntax:
	OleMailMsg.SetFrom returnAddress
	Perl Syntax:
	Remarks:
	See Also:

	SetSubject method
	VB Syntax:
	OleMailMsg.SetSubject subjectText
	Perl Syntax:
	Remarks:
	See Also:

	CHARTMGR object
	GrayScale property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Height property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Interlaced property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	OptimizeCompression property
	Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Progressive property
	Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Quality property
	Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Width property
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	MakeJPEG method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	MakePNG method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SetResultSet method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	ReportMgr object
	ExecuteReport method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetQueryDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SetHTMLFileName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	WORKSPACE object
	GetAllQueriesList method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetChartDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetChartList method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetChartMgr method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetQueryDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetQueryList method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetReportList method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	GetReportMgr method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SaveQueryDef method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SetSession method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	SetUserName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	ValidateQueryDefName method
	VB Syntax:
	Perl Syntax:
	Remarks:
	See Also:

	Index

