
CLEARCASE REFERENCE MANUAL

R e l e a s e 4 . 1 a n d l a t e r

Windows Edition

800-023812-000

/vobs/doc/ccase/ref/cc_ref_vol1.ntTTL.fm — August 24, 2000 10:57 am

ClearCase Reference Manual
Document Number 800-023812-000 November 2000

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice
Copyright © 1992, 2000 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation
Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks
Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, ClearDDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
disclaims all other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface ..xi

admin_server .. 1

albd_server .. 2

annotate.. 4

att_clnt.. 10

Attache ... 12

attache_command_line_interface... 15

attache_graphical_interface .. 22

attcmd... 34

catcr .. 36

catcs .. 44

cc.magic, default.magic ... 46

cd... 51

chactivity.. 54

chbl ... 57

checkin ... 60

checkout ... 66

checkvob .. 76

chevent ... 85

chflevel ... 91

chfolder .. 94

chmaster... 97

chpool... 103

chproject... 106

chstream... 111

chtype... 113

chview .. 118

clearaudit ... 121

cleardescribe.. 124

cleardiff .. 125

clearexport_ccase.. 128

clearexport_cvs ... 135
 Contents iii

clearexport_ffile... 142

clearexport_pvcs ... 147

clearexport_rcs .. 153

clearexport_sccs .. 161

clearexport_ssafe... 169

clearhistory .. 176

clearimport... 177

clearlicense... 183

clearmake ... 189

clearprompt ... 205

cleartool .. 209

comments ... 218

config_ccase ... 221

config_record... 224

config_spec... 228

cptype ... 244

credmap.. 247

creds.. 249

db_dumper, db_loader .. 251

db_server.. 252

deliver... 253

derived_object ... 261

describe... 263

diff ... 275

diffbl.. 283

diffcr.. 285

dospace... 292

edcs ... 298

endview.. 301

env_ccase.. 304

errorlogs_ccase .. 311

events_ccase... 312

file.. 319

find .. 321

findmerge... 330

fmt_ccase .. 345
iv ClearCase Reference Manual

get ... 360

getcache.. 364

getlog.. 368

help ... 372

hostinfo .. 375

import... 377

license.db ... 380

ln ... 383

lock.. 388

lockmgr .. 395

ls .. 397

lsactivity... 404

lsbl... 407

lscheckout .. 410

lsclients... 415

lscomp .. 418

lsdo ... 420

lsfolder ... 424

lshistory.. 427

lslocal.. 435

lslock... 437

lsmaster .. 443

lspool .. 448

lsprivate ... 451

lsproject .. 456

lsregion... 459

lsreplica .. 461

lssite .. 464

lsstgloc.. 466

lsstream .. 469

lstype .. 472

lsview ... 477

lsvob ... 482

lsvtree ... 486

lsws ... 490
 Contents v

vi ClearCase Reference Manual

Figures

Figure 1 Renaming a Branch vs. Renaming a Branch Type ..114

Figure 2 Conversion of RCS Revisions...156

Figure 3 Conversion of RCS Subbranches ...157

Figure 4 Conversion of SCCS Revisions ..163

Figure 5 Conversion of SCCS Subbranches...164

Figure 6 Data Flow in a clearmake Build...191

Figure 7 CR Hierarchy Created by Complete Build: ’clearmake hello.exe’................................226
Figures vii

viii ClearCase Reference Manual

Tables

Table 1 Interactive Resolution of Checkout Problems ...70

Table 2 Specifying a View in a chmaster Command..98

Table 3 ClearCase/ClearCase LT Items Included in Data File ...129

Table 4 Operations That Generate Event Records ..314

Table 5 Variants for ClearCase and ClearCase LTObjects...350

Table 6 Variants for UCM Objects...352

Table 7 Variants for Replicated Objects..354
Tables ix

x ClearCase Reference Manual

Preface

ClearCase® is a comprehensive software configuration management system. It manages

multiple variants of evolving software systems, tracks which versions were used in software

builds, performs builds of individual programs or entire releases according to user-defined

version specifications, and enforces site-specific development policies.

ClearCase LT offers capabilities like those of ClearCase, but for the smaller software

development group.

ClearCase AttacheTM (abbreviated to “Attache” in this manual) provides a ClearCase client

solution for Microsoft® Windows® users. For more information, see the ClearCase Attache Manual.

ClearCase MultiSite® (abbreviated to “MultiSite” in this manual) is a layered product option for

ClearCase. It supports parallel software development and software reuse across project teams

that are distributed geographically.

About This Manual

This manual includes detailed reference information for ClearCase, ClearCase LT, Attache, and

MultiSite. It describes command syntax and use, and is not intended to be a learning tool. This

manual assumes you have already learned about these products through other means.

The reference pages are in alphabetical order in two volumes. Each reference page has an

Applicability section that lists the products to which the page applies. Within each reference

page, product-specific information is annotated “ClearCase only,” “ClearCase LT only,” and so

on. In this context, the term ClearCase always refers only to ClearCase, not to ClearCase LT,

ClearCase Attache, ClearCase MultiSite, nor to the ClearCase Product Family (CPF) in general.
Preface xi

ClearCase Documentation Roadmap

More Information

ClearCase Reference Manual
ClearCase Online Help
clearcase.rational.com

ClearCase
Administration

Administering ClearCase
ClearCase Product Family Installation Notes

ClearCase MultiSite Manual

Project
Management

Managing Software Projects with ClearCase

Orientation

Introduction to ClearCase
ClearCase and MultiSite Release Notes

ClearCase Tutorials

Development

Developing Software with ClearCase

Build
Management

ClearCase OMAKE Manual (Windows)
Building Software with ClearCase
xii ClearCase Reference Manual

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xiii

Command Examples

Reference pages for commands have usage examples. The examples for cleartool subcommands

and Attache commands begin with the cmd-context variable. This reflects the fact that the

commands are invoked differently, depending on the operating context:

➤ Attache — cmd-context represents the workspace prompt. If the example looks like this:

cmd-context checkin –nc hello.c

you would enter the following at the workspace prompt:

checkin –nc hello.c

➤ ClearCase in single-command mode — cmd-context indicates that you must type cleartool,
then the rest of the input, at your regular command prompt. If the example looks like this:

cmd-context checkin –nc hello.c

you would enter the following at your command prompt:

cleartool checkin –nc hello.c

➤ ClearCase in interactive cleartool mode — cmd-context represents the interactive cleartool
prompt. If the example looks like this:

cmd-context checkin –nc hello.c

you would enter the following at the cleartool> prompt (type cleartool to enter interactive

mode):

checkin –nc hello.c

If an example uses wildcards or quoting, use interactive cleartool mode so that the wildcards

and quotes will be interpreted correctly. (Many Windows NT shells do not handle wildcards

and quoting correctly.)

Online Documentation

The ClearCase Product Family (CPF) graphical interfaces include a standard Windows help

system.
xiv ClearCase Reference Manual

There are three ways to access the online help system: the Help menu, the Help button, or the F1

key. Help>Help Topics provides access to the complete set of online documentation. For help on

a particular context, press F1. Use the Help button on various dialog boxes to get information

specific to that dialog box.

CPF products also provide access to full reference pages (detailed descriptions of commands,

utilities, and data structures) using the man command. Without any argument man displays the

overview reference page for the command line interface. For information about using a

particular command, specify the command name as an argument.

Examples:

> cleartool man (display the cleartool overview page)

> clearguide man (display the man reference page)

attache-workspace> man checkout (display the Attache checkout reference page)

CPF products provide access to syntax for individual commands. The –help command option

displays individual subcommand syntax. For example:

> cleartool lsprivate –help
Usage: lsprivate [-tag view-tag] [-invob vob-selector] [-long | -short]
 [-size] [-age] [-co] [-do] [-other]

Without any argument, cleartool help displays the syntax for all cleartool commands.

Additionally, the online tutorials provide important information on setting up a user’s

environment, along with a step-by-step tour through each product’s most important features.
Preface xv

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
xvi ClearCase Reference Manual

 ClearCase Reference Pages 1

admin_server

admin_server
ClearCase administration server

APPLICABILITY

SYNOPSIS
The admin_server is invoked as needed by the albd_server process

DESCRIPTION

This short-lived server performs miscellaneous administrative support functions for

albd_server, including these:

• Retrieving logs for getlog.

• rgy_switchover processing—moving registry files and reconfiguring clients

SEE ALSO

albd_server, getlog, rgy_switchover

Product Command Type

ClearCase command

ClearCase LT command

albd_server
albd_server
Location broker daemon / master server

APPLICABILITY

SYNOPSIS

Invoked by the Windows NT Service Contol Manager at system startup time

DESCRIPTION

Each ClearCase and ClearCase LT host runs an albd_server process (Atria location broker

daemon). Depending on whether ClearCase or ClearCase LT is installed, albd_server starts up

and dispatches messages to some or all of the following servers:

A client program sends a request to an albd_server process (often, running on another host) to

find the port number (socket address) of the server it wants to access. Thereafter, the client

communicates directly with the specific server. If necessary, albd_server starts the server before

passing its port number to the client.

STARTING THE LOCATION BROKER

albd_server is invoked when you start ClearCase or ClearCase LT. A local administrator can

also start albd_server manually from the ClearCase or ClearCase LT icon on Control Panel, from

the Services Startup tab, or with the following command:

> net start albd

Product Command Type

ClearCase command

ClearCase LT command

db_server VOB database server, short-lived

vob_server VOB data storage server, long-lived

vobrpc_server Remote-access VOB database and data storage server, long-lived

promote_server Derived object data storage server, short-lived

view_server View server, long-lived

admin_server Administrative support server; offloads functions from the

albd_server
2 ClearCase Reference Manual

albd_server
SERVICES FILE PORT ASSIGNMENT

When started, the albd_server looks for a port assignment in the file

%SystemRoot%\System32\drivers\etc\services. If a port is not defined there, the albd_server
uses port 371.

ALBD_SERVER CONFIGURATION FILE

albd_server reads configuration file ccase-home-dir\config\services\albd.conf during startup to

determine which services to provide. Do not modify this file.

OTHER ALBD_SERVER FUNCTIONS

In addition to its other duties, albd_server performs the following functions:

• On the networkwide license server host, albd_server fields license-verification requests from

hosts throughout the network. See license.db and clearlicense for more information.

• On the networkwide registry server host, albd_server fields requests for registry information

from hosts throughout the network. See lsvob, lsview, and registry_ccase for more

information.

FILES

system directory (for example, %SystemRoot%\system32)

ccase-home-dir\config\services\albd.conf

WINDOWS REGISTRY KEYS

 HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\LicenseKeys

SEE ALSO

clearlicense, license.db, lockmgr, registry_ccase
 ClearCase Reference Pages 3

annotate
annotate
Annotates lines of text file / time stamps, user names, and so on

APPLICABILITY

SYNOPSIS
ann⋅otate [–a⋅ll | –rm] [–nco] [–out pname]

[–s⋅hort | –l⋅ong | –fmt format[,hdr-format[,elide-format]]]
[–rmf⋅mt rm-format] [–nhe⋅ader]

[–nda⋅ta | –f⋅orce] pname ...

DESCRIPTION

The annotate command lists the contents of a version, annotating each line to indicate when, and

in which version, the line was added. You can customize the annotations using the –fmt option,

which is described in the fmt_ccase reference page. By default, annotate writes its output to a file

with the .ann extension. You can send output to standard output, or to an arbitrary file, with the

–out option.

Line of Descent

Each version has a line of descent, a sequence of ancestor versions going all the way back to

\main\0. The default listing has a header section that includes the event records of all the

versions in the line of descent of the annotated version.

Type Manager Interface

The annotate command extracts information from the element’s versions. To do so, it invokes the

annotate method of the element’s type manager. Only the text_file_delta and z_text_file_delta
type managers (which correspond to the predefined element types text_file and

compressed_text_file) include an annotate method. You must use the –ndata option when

annotating versions of other element types.

REPORT FORMAT

The default report format includes the following components:

• Element pathname — Shows the path of the element being annotated.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
4 ClearCase Reference Manual

annotate
• Heading section — Lists the event record for each version along the line of descent, in

standard cleartool lshistory format.

• Text line annotations — Includes a bar graph indicating how long ago the line first

appeared in an ancestor version, along with that version’s time stamp, creator, and

version-ID.

• Elision strings — Replace text line annotations that would duplicate the annotation on the

preceding line. An elision string includes the bar graph and a single dot (.) character.

• Source lines from the specified version — Any TAB characters in source lines are

expanded according to the value of environment variable CLEARCASE_TAB_SIZE (default: 8).

If you use the –rm or –all option, the report also includes deletion annotations. These appear on

text lines that are not in the annotated version, but do exist in some other version of the element.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply. Other restrictions:

See the Type Manager Interface section.

OPTIONS AND ARGUMENTS

INCLUDING OTHER TEXT LINES. Default: The listing includes only text lines that are present in the

specified version.

–a⋅ll
Expands the listing to include all text lines that occurred in any version of the element,

including lines in versions that are not along the line of descent. (Lines from versions

outside the line of descent are annotated as UNRELATED; this annotation appears in the

same column used to annotate deletion lines.)

–rm
Also includes removed lines—text lines that were present in one or more versions along

the line of descent, but do not appear in the specified version. See also the –rmfmt
option.

HANDLING OF CHECKED-OUT VERSIONS. Default: An error occurs if you specify a checked-out

version. (The type manager can annotate checked-in versions only.)

–nco
If you specify a checked-out version, annotate uses the version from which it was

checked out.

DESTINATION OF LISTING. Default: Command output is sent to the file input-file.ann.

–out output-pname
If output-pname is a file name, redirects command output to the specified file

(overwriting the file if it already exists). If output-pname is a single hyphen character
 ClearCase Reference Pages 5

annotate
(–out –), sends command output to stdout. If output-pname is a directory, places

command output for each annotated version in a file within that directory (which must

already exist).

If you use this option when annotating more than one version, output-pname must be a

directory.

REPORT FORMAT. Default: The source file is listed as described in REPORT FORMAT on page 4.

–s⋅hort
Uses predefined annotation format strings that yield an abbreviated report.

–l⋅ong
Uses predefined annotation format strings that yield a verbose report.

–fmt format[,hdr-format[,elide-format]]
Specifies a display format for primary annotations, and optionally, for the header section

and/or elision strings. Format strings must be enclosed in quotes. The default format is
"%BAd %Sd %-8.8u %-16.16Vn | " .

Use a hyphen (-) to designate a default format string. For example, to supply a

hdr-format, but not a primary annotation format, use the construction –fmt –, hdr-format.
It is usually desirable to terminate the hdr-format with a <NL> character, by using \n.

If you omit the elide-format, it is computed based on the primary line-by-line annotation:

all characters except <TAB> and the vertical bar (|) in the primary annotation are replaced

by <SPACE>, and the middle character, if it is a <SPACE>, is replaced by a period (.).

In general, it is simpler to use fixed-width fields, not <TAB>-character specifiers (\t), to
create aligned columns of annotations. See the fmt_ccase reference page for more details

on composing format strings.

–rmf⋅mt rm-format
Specifies a format for deletion annotations (see also –rm and –all). The default format is

"DEL %Sd %-8.8u | " .

–f⋅orce
Displays each text-line’s annotation, even if it duplicated the previous line’s annotation.

This option suppresses use of elision strings.

PARTIAL REPORTS. Default: The report includes both a header section and the annotated text lines.

–nhe⋅ader
Suppresses the header section; the report consists of the annotated text lines only.

–nda⋅ta
Suppresses the annotated text lines; the report consists of the header section only.
6 ClearCase Reference Manual

annotate
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Annotate a source file, using the short format.

cmd-context annotate -short msg.c

Annotated result written to "msg.c.ann".

type msg.c.ann

24-Apr-99 anne \main\rel2_bugfix\9
12-Mar-99 ravi \main\rel2_bugfix\8
.
.
.
23-Apr-99 rks \main\48 (REL2)
20-Apr-99 spc \main\47
.
.
.

20-May-98 | #include "hello.h"
. |
. | char *

21-Apr-99 | env_user() {
. | char * user_env;
. | user_env = getenv("USER");

.

.

.
. | time_t clock;

24-Mar-99 | char *s;
20-Sep-98 |
14-Jun-99 | s = ctime(&clock);

. | s[strlen(s)-1] = ’ ’;

. | return s;
20-May-98 | }
 ClearCase Reference Pages 7

annotate
• Annotate a source file, using the long format.

cmd-context annotate -long msg.c

Annotated result written to "msg.c.ann".

type msg.c.ann

• Annotate a source file and write the output to standard output. Display deletion lines,

customize the annotation format, and suppress the header output.

cmd-context annotate -out - -fmt "%Sd %-8.8u | " -rm -nheader util.c

• Customize the header format, but use the default format for text line annotations.

cmd-context annotate -out - -fmt "-,Version %Vn created by %u.\n" util.c

02-Apr-99.10:51:54 ##### Steve (scd.user@reach)\main\rel2_bugfix\1
a test

.

.

.

01-Apr-99.16:19:25 scd \main\1 | #include "hello.h"
02-Apr-99.10:51:54 scd \main\rel2_bugfix\1 | /* a test */
01-Apr-99.16:19:25 scd \main\1 |
.
.
.
. |char *
. | hello_msg() {
.
.
.

20-May-98 anne | | #include "hello.h"
. | |
. | | char *
. | | env_user() {
. | DEL 08-Feb-99 gcd | return getenv("USER");
08-Feb-99 gcd | | char *str = getenv("USER");
. | | if (strcmp(str,"root") == 0)
.
.
.

8 ClearCase Reference Manual

annotate
SEE ALSO

fmt_ccase, type_manager

version \main\3 created by anne.
version \main\2 created by anne.
version \main\1 created by rick.
version \main\0 created by rick.

20-May-98 rick \main\1 | #include "hello.h"
. |
. | char *
. | env_user() {
08-Feb-99 anne \main\3 | char *str = getenv("USER");
. | if (strcmp(str,"root") == 0)
.
.
.

 ClearCase Reference Pages 9

att_clnt
att_clnt
Attache user-level commands (command-line interface)

APPLICABILITY

SYNOPSIS
att_clnt [–exit] { {checkin | ci} [–c⋅omment comment | –nc⋅omment] pname...

{checkout | co} [–c⋅omment comment | –nc⋅omment] pname...

{uncheckout | unco} pname...

import [–ci] [–c⋅omment comment | –nc⋅omment] pname...

[exec] command [arguments ...] }

DESCRIPTION

A command-line interface that makes it possible to execute any Attache command and any

cleartool command supported by Attache (except lsvtree –graphical) from a command shell or

from scripts. For a list of Attache commands, see the attache_command_line_interface reference

page.

att_clnt.exe is a Windows program, and can be run from a DOS command line in Windows NT

or Windows 95. It cannot be executed from a command line in Windows 3.x, but it can be invoked

from another program.

NOTE: Do not use att_clnt scripts on Windows 95. The DOS shell in Windows 95 does not wait

for a Windows program to complete. Once the program starts, another command can be

executed. Therefore, a script file containing several att_clnt commands in sequence will run in

parallel, rather than one at a time.

USAGE OVERVIEW

There are four commands specially recognized by att_clnt: checkin, checkout, uncheckout, and

import. For each of these commands, att_clnt displays a special dialog box. In addition, for

import, att_clnt excludes intermediate build files produced by Visual C++.

Using the exec argument passes the arguments following it to the Attache command interpreter

with no special treatment. Therefore,

att_clnt exec checkin

is not the same as

att_clnt checkin

Product Command Type

Attache command
10 ClearCase Reference Manual

att_clnt
OPTIONS AND ARGUMENTS

EXITING THE ATTACHE INTEGRATION CLIENT. Default: att_clnt does not exit after the command

execution completes, so the command results can be read from the output window. To terminate

the program, click Close.

–exit
Causes att_clnt to terminate after command execution. It can be used in scripts for

unattended operation.

RUNNING AN ATTACHE COMMAND FROM THE ATTACHE INTEGRATION CLIENT. Default: None.

[exec] command [arguments ...]

Passes the arguments to the Attache command interpreter. File-name arguments can have

absolute or relative pathnames.

The Attache commands checkin, checkout, uncheckout, and import can be run with or

without the exec argument. If used without exec, a special dialog box is displayed for

each command. Used with exec, these commands work as specified in their respective

reference pages. For all other commands, specifying exec has no effect.

SEE ALSO

attache, attcmd
 ClearCase Reference Pages 11

Attache
Attache
Overview of the Attache client program

APPLICABILITY

SYNOPSIS
attache [ws-name | –n]

DESCRIPTION

The Attache client program runs on your personal computer and enables you to access ClearCase

versioned object bases (VOBs) on UNIX or Windows NT hosts running the workspace helper

program ws_helper.

OPTIONS AND ARGUMENTS

SPECIFYING THE INITIAL WORKSPACE. Default: The workspace, if any, that was active when

Attache was last exited.

ws-name
Specifies the workspace name or the view-tag name of an existing workspace to which

Attache will be set on startup.

–n
Starts Attache with no initial workspace.

ATTACHE INSTALLATION DIRECTORY

Attache documentation refers to the installation directory with the symbol attache-home-dir,

which by default is C:\Program Files\Rational\Attache, except on Windows 3.x, where it is

C:\RATIONAL\ATTACHE.

STARTING ATTACHE

On both Windows 95 and Windows NT, Attache can be started from the command line. On

Windows 95 or Windows NT 4.0 Attache can also be started by clicking > Start > Programs >

ClearCase > Attache. On other Windows platforms, Attache can be started via the Attache icon

in the ClearCase Program Group or by clicking File > Run in File Manager or the Program

Manager. Starting Attache opens an Attache window as shown here.

Product Command Type

Attache command
12 ClearCase Reference Manual

Attache
See the attache_graphical_interface reference page for a description of the menus, browsers and

buttons, and the attache_command_line_interface reference page for an overall description of

the commands.

ATTACHE COMMAND TOOL

The Attache command tool (attcmd.exe) is a command-line interface primarily intended for use

in scripts. It can be used in a single-command mode or interactively. The command tool is

available on Windows 95 and Windows NT, but not on Windows 3.x.

The Attache command tool can be started from the command line. The Attache command tool

can also be started by clicking > Start > Programs > ClearCase > Attache Command Tool.

See the attcmd reference page for a description of the command tool.

ATTACHE INTEGRATION CLIENT

The Attache Integration Client is a command-line interface primarily intended to be invoked by

other tools, for example, Visual C++ 1.5 or 2.x. It can be invoked from the command shell on

Windows 95 or Windows NT. The integration client is available on Windows 3.x but it cannot be

invoked from the command shell. See the att_clnt reference page for a description of the Attache

integration tool.

Title Bar
Menu Bar
Tool Bar

Directory List

Browser
Window

Separator Bar

Command
Window
and
Transcript

Status Bar

graphical
interface

command-line
window
 ClearCase Reference Pages 13

Attache
ATTACHE’S STARTUP DIRECTORY

There is a separate startup directory associated with the Attache client process. This directory

changes depending on how Attache is started:

• If started from the command line, it is the directory from which you start attache.

• In Windows 95 and Windows NT 4.0:

• If you are using a shortcut, the startup directory defaults to the bin subdirectory of

attache-home-dir, but it can be changed using Properties.

• In Windows 3.1 and Windows NT 3.51:

• It is the “working directory” specified in Attache’s program item properties, if Attache

is started from the icon.

After the Attache client process is started, this directory never changes. This start-up directory

serves as the default location for a newly created workspace storage directory if a full local
pathname is not specified.

USER NAME AND PASSWORD

User name and password information for the helper host is required for Attache use. If this

information has not been set up in the configuration database, it will be requested when you

make or set to a workspace. User names on UNIX and Windows NT helper hosts take different

forms. On Windows NT helper hosts, the username is a combination of domain name and user

name, for example, rational\jed, and on UNIX hosts, the user name stands alone.

GETTING HELP

Attache provides an online help facility:

• Hypertext Help System — From the menu bar Help>Contents to enter Attache’s

hypertext online help system.

ERROR LOG

Some of the warning and error messages displayed by Attache commands are also written to log

files located in directory /var/adm/atria/log on a UNIX ClearCase host, or to the Windows NT

event log on a Windows NT ClearCase host.

SEE ALSO

attache_graphical_interface, attache_command_line_interface, attcmd, att_clnt, ws_helper
14 ClearCase Reference Manual

attache_command_line_interface
attache_command_line_interface
Using Attache commands

APPLICABILITY

SYNOPSIS
command [options/args]

DESCRIPTION

Attache commands create, modify, and manage the information in the workspace, that is, local files.

Attache, the PC interface to ClearCase version-control and configuration management software,

has a rich set of commands that create, modify, and manage the information in ClearCase VOBs

and views. Commands are entered in the Attache client Command window or by using the menus

and buttons provided through the graphical user interface. See the attache_graphical_interface
reference page for a description of the graphical user interface.

ATTACHE COMMANDS

This reference page does not describe the individual commands:

Product Command Type

Attache general information
 ClearCase Reference Pages 15

attache_command_line_interface
ATTACHE COMMAND WINDOW

The Command window is an editable text window with keyboard input available at the

command prompt line. By default, the Command window occupies the portion of the Attache

Window directly above the Status Bar. The Command window also serves as a transcript pad,

annotate

catcr

catcs

cd

checkin

checkout

checkvob

chevent

chpool

chtype

clearlicense

cptype

describe

diff

diffcr

edcs

find

findmerge

get

getcache

getlog

help

hostinfo

import

ln

lock

ls

lscheckout

lsclients

lsdo

lshistory

lslock

lslocal

lspool

lsprivate

lsregion

lsreplica

lstype

lsview

lsvob

lsvtree

lsws

make

man

merge

mkattr

mkattype

mkbranch

mkbrtype

mkdir

mkelem

mkeltype

mkhlink

mkhltype

mklabel

mklbtype

mkpool

mkregion

mktag

mktrigger

mktrtype

mkview

mkvob

mkws

mount

mv

mvws

protect

put

pwd

pwv

quit

recoverview

reformatview

reformatvob

register

relocate

rename

reserve

rmattr

rmbranch

rmdo

rmelem

rmhlink

rmlabel

rmmerge

rmname

rmpool

rmregion

rmtag

rmtrigger

rmtype

rmver

rmvob

rmview

rmws

setcache

setcs

setws

shell

space

startview

umount

uncheckout

unlock

unregister

unreserve

update

winkin

wshell
16 ClearCase Reference Manual

attache_command_line_interface
retaining approximately (limited by available memory in the system) the most recent 200 lines;

you can scroll the transcript horizontally and vertically.

You enter all Attache commands at the command prompt, which is the name of your current

working directory. You can type commands, or copy them from other places in the window and

paste them at the prompt.

You can move the cursor with the keyboard’s arrow keys or with the mouse. To reexecute a

previously entered command, place the cursor anywhere in the line of that command and press

ENTER. You can edit the command before pressing ENTER; this makes it easy to correct typing

errors and to modify previously entered commands.

GETTING HELP FOR COMMANDS

Attache provides several online help facilities for its commands:

• Syntax summary — To display a syntax summary for an individual command, use the

–help option:

mklabel –help (syntax of one command)

• Reference pages — Use man command_name or help command_name to display the

reference page for an Attache or ClearCase command.

• Hypertext Help System — On the command menu, click Help>Contents to enter

Attache’s hypertext online help system and choose ClearCase Reference from the Main
Contents.

USAGE OVERVIEW

A single Attache command can be invoked from the prompt in the Command window using this

syntax:

command [options-and-args]

Command Options

Command options may appear in any order, but all options must precede any nonoption

arguments (typically, names of files, versions, branches, and so on). If an option is followed by

an additional argument, such as –branch \main\bugfix, there must be white space between the

option string and the argument. If the argument itself includes space characters, it must be

enclosed in quotes.

Command Abbreviations and Aliases

Many command names and option words can be abbreviated. A command’s syntax summary

indicates all valid abbreviations. For example:

–pre⋅decessor

This means that you can abbreviate the option to the minimal –pre, or to any intermediate

spelling: –pred, –prede, and so on.
 ClearCase Reference Pages 17

attache_command_line_interface
For option words, the minimal abbreviation is always three characters or fewer.

A few commands have a built-in command alias. For example, checkin’s alias is ci; checkout’s
alias is co. These commands are equivalent:

cmd-context checkin test.c

cmd-context ci test.c

PATHNAMES IN ATTACHE COMMANDS

Many Attache commands require a pathname as an argument, such as the name of a file element,

directory element, or view-private file. In most cases you can use full remote, drive-relative, or

relative pathnames, but full local pathnames have very limited use. A full local pathname begins

with a drive letter and designates a file that physically exists on the PC; a full remote pathname

begins with a slash or backslash and designates a file in your view. Full local pathnames are

allowed in only four cases: the ws-pname argument to mkws, the @pname argument for put, get,
find, update, or findmerge, the project configuration file for Update, and the file argument to the

–exclude option for import.

Although, in general, remote pathnames are correct in Attache commands, there are restrictions:

• If your view host supports names longer than those supported on your local host, attempts

to download a pathname with any component longer than that maximum result in an error.

• If your view host supports pathnames longer than those supported on your local host,

attempts to download a pathname longer than that maximum result in an error.

• If your view host supports file names with mixed case, attempts to download a file whose

name contains any uppercase characters result in a warning. Uploading a file using

wildcard expansion, or by uploading its directory, creates the remote file with all lowercase

characters.

• If your view host is a Windows NT machine, remote pathnames cannot specify drive names

or UNC-prefixes, except in cases that access only remote files, for example, the lshistory or

lsvob commands. Using a command such as get will attempt to download the pathname,

resulting in an error.

For help in addressing these issues in your environment, see Resolving File-Naming Issues in
Cross-Platform Development in the ClearCase Attache Manual.

For a workspace using a Windows NT helper, there is an implicit subst of a drive, for example,

Z:, for the current view, and a change to that drive. Thus, Z: is equivalent to M:\myview, and a

pathname reference such as \my_vob is really a reference to Z:\my_vob. Pathnames beginning

with a backslash (\) or slash (/), such as \my_vob are called drive-relative, rather than full,

because they do not begin with a drive letter. Drive-relative pathnames assume the current drive.
18 ClearCase Reference Manual

attache_command_line_interface
In many cases, you can also use a ClearCase-defined variant: a version-extended pathname (full,

drive-relative, or relative) or in some cases a view-extended pathname (full or relative).

Slash (/) and backslash (\) are interchangeable in pathnames. For example:

A relative pathname does not begin with a slash or backslash and is relative to your working

directory. For example:

For both full or relative pathnames:

• The standard pathname of an element implicitly references the version selected by the

current view. (This feature is called transparency.)

• A view-extended pathname references the version of the element selected by the specified

view. However, using view-extended names to access files in another workspace does not

work because the version selected by that view may be different from the file in the

associated workspace.

• A VOB-extended pathname references an object using a VOB database identifier. The most

commonly used is a version-extended pathname, which references a particular version of an

element using its unique version-ID (test.c@@\main\bugfix\4) or using a version label
(test.c@@\RLS2.0). Other kinds of VOB-extended pathnames:

For more information, see the version_selector and pathnames_ccase reference pages.

PROCESSING OF SYMBOLIC LINKS

Downloading a pathname that contains a symbolic link downloads a copy of the file or directory

the link points to, rather than the link itself.

In addition, Attache commands do not traverse VOB symbolic links; rather, they operate on the

link objects themselves. For example:

• You cannot check out a VOB symbolic link, even if it points to an element.

C:\users\smg\test\test.c (full local pathname to workspace file)
\vob_proj\test\test.c (drive-relative remote pathname to Windows NT

helper host; also called an ‘VOB pathname’, because
it begins with a VOB-tag (\vob_proj))

M:\smg_view\myvob\src\main.c (view-extended full pathname (VOB object); the M:
drive constitutes ‘view-extended namespace’)

\myvob\src\main.c@@\main\3 (version-extended drive-relative remote pathname)

test.c (relative pathname)
..\lib (relative pathname)

hello.c@@ (extended pathname to element object)
hello.c@@\main\bugfix (extended pathname to branch object)
 ClearCase Reference Pages 19

attache_command_line_interface
• A describe command lists information on a VOB symbolic link object, not on the object to

which it points.

• A mklabel –recurse command walks the entire subtree of a directory element, but it does

not traverse any VOB symbolic links it encounters.

COMMAND-LINE PROCESSING

Attache interprets the command line and recognizes various special characters and constructs:

Attache does not expand environment variables.

PERMISSIONS CHECKING

Each Attache command description lists the permissions required for using the command. The

chtype command, for example, lists these requirements for changing an element type:

element owner, VOB owner, member of the ClearCase group

This means that you must be the owner of the element whose type is to be changed, the owner

of that element’s VOB, or a member of the ClearCase group. Otherwise, Attache does not allow the

chtype operation to proceed.

For details, see the permissions reference page.

OBJECT LOCKING

ClearCase provides for temporary access control through explicit locking of individual objects

with the lock command. When an object is locked, it cannot be modified by anyone (except those

explicitly excluded from the lock), even a member of the ClearCase group, the VOB owner, and the

user who created the lock.

character escape (^) The two-character sequence ^special-char suppresses the special

meaning of the character.

single-quoting (‘ ‘) Allows white space characters and other special characters to be

included as part of the command argument. Within a single-quoted

string (’ ... ’), a double-quote character has no special meaning, and ^’
is replaced by ’.

double-quoting (" ") Allows white space characters and other special characters to be

included as part of the command argument. Within a double-quoted

string (" ... "), ^" is replaced by ", and ^’ is replaced by ’.
commenting (#) Command lines that begin with a number sign (#) are ignored.

wildcards File-name patterns (including *, ?, and so on) that are not enclosed in

quotes are expanded as described in the wildcards reference page.

These patterns are also supported in config specs. (The meaning of

ellipsis is slightly different in config specs; see the config_spec
reference page.)
20 ClearCase Reference Manual

attache_command_line_interface
Attache command descriptions list the locks that can prevent a command from being executed,

even if you have the necessary permissions. For example, the chtype command lists three locks

that would prevent you from changing an element type:

VOB, element type, pool (non-directory elements only)

This means that chtype would fail if the VOB containing the element were locked, if the

element’s type were locked (such as the text_file type), or the storage pool containing the

(nondirectory) element were locked.

SEE ALSO

man, help, attache, attache_graphical_interface, fmt_ccase, lock, permissions, profile_ccase,

version_selector, attcmd, att_clnt
 ClearCase Reference Pages 21

attache_graphical_interface
attache_graphical_interface
Attache windows, toolbar, and menus

APPLICABILITY

SYNOPSIS
Attache’s windows, browsers, toolbar, and menus

DESCRIPTION

The graphical user interface enables you to interact with the Attache client through its toolbar,

menus, and browsers.

GETTING HELP

Attache provides online help facilities:

• Hypertext Help System — On the command menu, click Help>Contents to enter

Attache’s hypertext online help system to see the Table of Contents for the Help System.

ATTACHE’S WINDOWS

Command Window

The Command window is an editable text window with keyboard input available at the command
prompt. By default, the Command window occupies the portion of the Attache Window directly

above the Status Bar. To change the size of the Command window, or to completely obscure it,

move the separator bar up or down. The size is remembered, and this configuration is used each

time you start Attache. The Command window is the main component of Attache’s

command-line interface. See the attache_command_line_interface reference page for more

information.

Browser Window

The Browser window is an adjustable pane above the Command window, containing the File
Browser. You can change the size of this window, or obscure it completely by moving the

separator bar up or down. The size is remembered, and this configuration is used each time you

start Attache. The File Browser window displays your local files (Workspace Contents) and all

the VOBs mounted on your helper host and visible through the current view (View Contents).

Selections you make in the Browser window enable the different toolbars and commands. You

can select items in several ways:

In the left side of this window:

Product Command Type

Attache general information
22 ClearCase Reference Manual

attache_graphical_interface
• Clicking a + expands the directory or icon; clicking a – collapses it

• Clicking a folder or icon displays its contents in the right side of the window

In the right side of this window:

• A single click selects a single item

• Selecting a single item followed by pressing SHIFT and clicking a second item selects the

range of items from the first to the second, inclusive

• Pressing CTRL and clicking selects discontiguous items

• Double-clicking a folder opens it; double-clicking a file item invokes its associated

application. If the file is not already local, Attache first opens the get dialog box for the file.

To refresh the Browser window manually, use View>Refresh.

ATTACHE’S TOOLBAR

Button Name Function Menu Equivalent
Corresponding
Command

Cut Cuts the selected text to the

clipboard

Edit>Cut CTRL+Q

Copy Copies the selected text to the

clipboard

Edit>Copy CTRL+C

Paste Pastes the text from the clipboard Edit>Paste CTRL+V

Paste
submit

Pastes the text from the clipboard

after moving the insertion point to

the end of the buffer

Edit>Paste submit CTRL+SHIFT+INS

Update Downloads all nonwritable files

created since you last updated your

workspace

File>Update
Workspace

update

Get Opens the Get dialog box for the

Browser selection

Version>Get get

Put Uploads specified writable files from

your workspace to the associated

view

Version>Put put
 ClearCase Reference Pages 23

attache_graphical_interface
Import Creates an element corresponding to

each selected file or directory in a

workspace subtree

Version>Import import

Checkout Opens the Checkout dialog box for

the Browser selection

Version>Checkout checkout

Checkin Opens the Checkin dialog box for

the Browser selection

Version>Checkin checkin

Uncheckout Opens the Uncheckout dialog box

for the Browser selection

Version>Uncheckout uncheckout

Properties Displays descriptive information for

the Browser selection

Version>Properties describe

History Displays the version history for the

Browser selection

Version>History lshistory

Version
Tree

Displays the graphical version tree

for the Browser selection

Version>Version Tree lsvtree –graphical

Diff vs.
Predecessor

Displays the differences between the

Browser selection and its

predecessor version

Version>Diff vs.
Predecessor

diff –pred
–graphical

Merge Executes the findmerge command

for the Browser selection

Version>Merge findmerge

Command
Shell

Starts up the MS-DOS Prompt in the

current working directory of the

workspace

File>Command Shell wshell

Stop
Execution

Cancels the currently executing

command as soon as possible. The

Stop Execution button is available

only when a command is active.

File>Stop Execution —

Button Name Function Menu Equivalent
Corresponding
Command
24 ClearCase Reference Manual

attache_graphical_interface
ATTACHE’S MENUS

Summary

Commands
Corresponding
Command

When Is It Enabled?

File Menu

New Workspace mkws Always

Open Workspace setws If workspaces have been created

Update Workspace update If there is a current workspace

Delete Workspace rmws If workspaces have been created

Workspace Properties — If a workspace is selected in the file browser

Edit Config Spec edcs If there is a current workspace

Change Directory cd If a directory is selected in the File Browser

Command Shell wshell If there is a current workspace

Stop Execution — Only when a command is active

Exit quit Always

Edit Menu

Cut CTRL+X If text is selected in the Command Window

Copy CTRL+C If text is selected in the Command or Browser

Window

Paste CTRL+V If text has been cut or copied to the clipboard

Paste/Submit CTRL+SHIFT+INS If text has been cut or copied to the clipboard

Find These are not

ClearCase find
Always

Find Next If Find has been invoked with a search string
 ClearCase Reference Pages 25

attache_graphical_interface
Version Menu

Import import If one or more files or directories are selected in the

File Browser

Remove rmname If one or more files or directories are selected in the

File Browser

Get get If one or more files or directories are selected in the

File Browser

Put put If one or more files or directories are selected in the

File Browser

Checkout checkout If one or more files or directories are selected in the

File Browser

Checkin checkin If there is a current workspace

Uncheckout uncheckout If there is a current workspace

Properties describe If one or more files or directories are selected in the

File Browser

History lshistory If one or more files or directories are selected in the

File Browser

Version Tree lsvtree –graphical If one or more files or directories are selected in the

File Browser

Diff vs. Predecessor diff –graphical
–predecessor

If one or more files or directories are selected in the

File Browser

Merge findmerge If there is a current workspace

Options Menu

Preferences — Always

Fonts — If the command-line interface is active

View Menu

Toolbar — always

Commands
Corresponding
Command

When Is It Enabled?
26 ClearCase Reference Manual

attache_graphical_interface
File>New Workspace

New Workspace creates a workspace and, if Use existing view is not selected, its associated view
for a view host running ClearCase. You are prompted for the workspace name (also the view-tag
name), the workspace storage directory, the workspace helper host (defaults to the view host), and if

you are creating a new view, the view host, the view storage directory in which to create the view,

and the global pathname to that directory.

File>Open Workspace

Open Workspace sets you to a workspace. Choosing a workspace name from the list will change

your environment to the selected workspace.

File>Update Workspace

Update Workspace downloads the files specified in the project configuration file to your

workspace. You can specify a log file for the operation by choosing Log update activity to this
file. You are prompted for the full pathname of the file. You can specify whether to Get all
versions or to Find versions checked in since the specified time and download only them. You

can also choose whether to Recurse into the subdirectories of the directories specified in the

project configuration file. After an Update has been performed using a given project

configuration file, the time of the Update is remembered. This time is used automatically by the

Find versions checked in since option the next time the Update dialog box is opened for that

configuration file, unless you specify a different time. You can list the files that would be

downloaded without performing the Update by selecting Display changed versions but do not
download in conjunction with the Find versions checked in since option.

Status Bar — Always

Refresh — Always

Help Menu

Contents — Always

How to Use Help — Always

Tutorial — Always

About Attache — Always

Commands
Corresponding
Command

When Is It Enabled?
 ClearCase Reference Pages 27

attache_graphical_interface
File>Delete Workspace

Delete Workspace removes the selected workspace. Removing a workspace causes all its local

files and subdirectories to be deleted including its workspace storage directory, even if it is being

shared with another workspace.The view associated with the workspace is not deleted unless it

was created with the same mkws or File>New Workspace command as the workspace.

File>Workspace Properties>Workspace

Workspace specifies the following attributes for the selected workspace: Workspace and view
tag name, Workspace storage directory, and the Initial working directory. The Workspace and

view tag name and the Workspace storage directory are set when you create the workspace using

mkws or File>New Workspace. The default Initial working directory is set to root (\).Change

the default by entering the full pathname of the preferred Initial working directory in this field.

File>Workspace Properties>Helper

Helper is used to specify the Helper host, Login username, and Login password of the selected

workspace. The default Helper host is set when the workspace is created using mkws or

File>New Workspace. Change the default by entering a new Helper host name in this field. You

can edit the Login username and Login password fields. The Login password is encrypted.

Delete the current password by clicking Delete Password. You can also choose to Delete view
when workspace is deleted.

File>Workspace Properties>Update Status

For a selected workspace, Update Status displays the Time of last successful update and the

Project config file used in that update.

File>Edit Config Spec

Edit Config Spec brings up the Notepad in which to modify the current config spec. On return,

you are prompted about whether to accept this as the current config spec or to abort.

File>Change Directory

Change Directory changes your working directory to that of the selected directory in both the

workspace and the view.

File>Command Shell

Command Shell starts the MS-DOS Prompt in the current working directory of the workspace.

File>Stop Execution

Stop Execution cancels the currently executing command as soon as possible.

File>Exit

Exit quits the Attache program.
28 ClearCase Reference Manual

attache_graphical_interface
Edit>Cut

Cut moves the text selected in the Command Window to the clipboard.

Edit>Copy

Copy makes a copy of the text selected in the Command Window on the clipboard. Executing a

Copy command while the browser has the focus puts the pathnames of selected items on the

clipboard.

Edit>Paste

Paste copies the text from the clipboard to the Command Window.

Edit>Paste/Submit

Paste/Submit moves the insertion point to the end of the buffer before pasting.

Edit>Find

Find searches for an occurrence of a text string in the Command window. You are prompted for

the string, whether to Match case, and the Direction in which to search.

Edit>Find Next

Find Next reexecutes the search with the same string.

Version>Import

Import creates an element corresponding to each selected file or directory in a workspace, if the

element does not already exist in the VOB. You can enter a new comment or accept the last

comment entered in this Attache session. Selecting Exclude files matching patterns contained
in this file specifies the pathname of a file containing file-name patterns that are not to be

imported. You can use Browse to specify an existing file or Edit to change a file. If Checkin initial
versions of new elements is selected, Import creates the new element and version \main\0,

checks out the element, then uploads and checks in a new version containing the data in the

workspace file. Selecting Lower-case new element names causes new element names to be

created all lower-case in Windows 95 and Windows NT. Windows 3.x creates element names in

lowercase by default.

Version>Remove

Remove executes the rmname command for the selected element name or VOB symbolic link

listed in the Remove Names dialog box. The directory is checked out, if needed.

Version>Get

Get downloads files or directories selected from the File Browser to your workspace. You can

specify a log file for the operation by choosing Log download activity to this file. You are

prompted for the full pathname of the file. You can choose to Overwrite local files for any

existing writable file of the same name, to Prompt for Overwrite confirmation with existing
 ClearCase Reference Pages 29

attache_graphical_interface
writable files, or to select the Do Not Overwrite local files option. There is also a Recurse
through subdirectories toggle switch to download the full directory tree beneath your selection

and a Preserve timestamps from remote files toggle switch to allow you to download the files
while maintaining their date and time.

Version>Put

Put uploads files or directories selected from your workspace to the associated view. You can

specify a log file for the operation by choosing Log download activity to this file. You are

prompted for the full pathname of the file. There is also a Recurse through subdirectories toggle

switch to upload the full directory tree beneath your selection and a Preserve timestamps from
remote files toggle switch to allow you to upload the files while maintaining their date and time.

Version>Checkout

Checkout checks out files or directories selected from the File Browser. You can enter a new

checkout comment or accept the last checkout comment entered in this Attache session. If you

click Query for each file, you are prompted for comments in the Command window; otherwise,

the comment is used for each checkout. The Comment text box may be left empty. You can also

select the check box for an Unreserved checkout, which is not selected by default.

Version>Checkin

Checkin checks in a list of versions selected from the File Browser. You can enter a new checkin

comment or (by leaving the Comment text box empty) accept the default comment which is the

checkout comment for the first selected version. Any comment specified is used for all

checked-in files, as long as Query for each file is not selected. To use the checkout comment for

all files being checked in, select Use Checkout comment for each file. If you select Query for
each file, you are prompted for comments in the Command window. You can also select Checkin
even if identical, which is not selected by default.

Version>Uncheckout

Uncheckout cancels the checkout of one or more files or directories as selected from the File

Browser. You can specify which checkouts to cancel by selecting All selected elements or

Checked-out elements in all current work activities. To save the current checked-out version as a

view-private file, select the Keep view-private copies check box .

Version>Properties>General

For a selected element, General displays as a Description the comment the user supplied when

creating the element, and the Element Type.

For a version, General displays as a Description the last comment issued on the checkin or

checkout of the version.
30 ClearCase Reference Manual

attache_graphical_interface
For a checked-out version, General also displays the view from which the version is checked-out

(Checkout View), whether it is a Reserved checkout, and the name the Predecessor version for

the checked-out file.

Version>Properties>Labels

Labels displays any labels attached to the version selected in the File Browser.

Version>Properties>Attributes

Attributes displays the Type and Value of any attribute for the version or element selected in the

File Browser.

Version>Properties>HyperLinks

HyperLinks displays the list of hyperlinks for the version or element selected in the File Browser.

Version>Properties>Triggers

For directory elements, Triggers displays the list of triggers that fire on operations involving the

element (Attached Triggers) and the list of triggers inherited by elements created within the

directory (Inherited Triggers).

For file elements, Triggers displays an Attached Triggers list.

Version>Properties>Protection

Protection displays the meaningful access permissions (read, write, execute) for the particular

element type selected in the File Browser. Access permissions are displayed in three sections:

Owner, Group, and World. Not all permissions are meaningful in the VOB. Available check boxes

indicate that the permission is meaningful; dimmed check boxes indicate that the permission is

not.

Version>Properties>Lock

Lock displays whether the element selected in the File Browser is Locked with a lock command

or Obsolete with a lock –obsolete command. The Description field displays the comment the

user specified when locking or obsoleting the element, and Excluded Users displays a list of user

names to which the lock does not apply.

Version>History

History executes the lshistory command for the file or directory selected in the File Browser.

Version>Version Tree

Version Tree executes the lsvtree –graphical command for the file or directory selected in the File
Browser.
 ClearCase Reference Pages 31

attache_graphical_interface
Version>Diff vs. Predecessor

Diff vs. Predecessor executes the diff –graphical –predecessor command for the file or directory

selected in the File Browser.

Version>Merge

Merge executes the findmerge command for one or more files selected in the File Browser. Merge

allows you to consider merges either for Selected elements only, or All elements in containing
VOBs (–all), or in All VOBs (–avobs), or for a specific Project configuration file. The merge

action can be one of Display needed merges only (–print), Character mode merge (–merge),

Graphical mode merge (–graphical), or Graphical mode only when there are conflicts (–merge
–graphical). The source version can be one of the specified Version specifier (–fversion), the

Latest version on the checked-out branch (–flatest), or the Version selected by this view (–ftag).

Click Browse to see a list of views. As options, you can specify Recurse into subdirectories
(–nrecurse), Prompt for each needed merge (–okmergel or –okgraphical), and Serial output
format (–serial). The Comment box may be left empty. For more information, see the findmerge
reference page.

Options>Preferences>Login Info

Login Info stores your user name and password information, which is used when you connect

to a workspace using File>New Workspace or the mkws or setws commands. If you have

different user name and password combinations for different ClearCase hosts, you can store a

different combination for each workspace by selecting Current workspace only, or you may

choose to be prompted for this information, rather than to store it.

Options>Preferences>Registry

Registry is used to specify the ClearCase registry host and the ClearCase network region.

Options>Preferences>View Attributes

View Attributes specifies the interop text mode for new views created by the mkws command

or File>New Workspace. Each view has an associated text mode that determines whether line

terminators are presented to the view exactly as stored. This is important if you are sharing files

between the PC and UNIX machines, and if you run applications on the PC requiring that lines

be terminated with line feed and carriage return characters. The values you can specify are those

allowed by the –tmode option to the mkview command; see the mkview reference page.

Options>Preferences>Options

Compress during file transfer specifies whether to compress files during transfer between the

workspace and the view and to uncompress them after the transfer to improve performance over

slow communications lines. Display properties in workspace contents browser enables the

display in the Workspace browser of properties that are always visible in the View browser.

Unreserved flag set for checkout operations allows you to change the default checkout mode to

unreserved.
32 ClearCase Reference Manual

attache_graphical_interface
Options>Font

Font is used to specify the Font, Font style, Size, and Script used in the Command Window.

View>Toolbar

If selected, the Toolbar is displayed. This is a toggle switch.

View>Status Bar

If selected, the Status Bar is displayed. This is a toggle switch.

View>Refresh

Refresh updates the display for the Browser window.

Help>Contents

Contents starts the online help system at the main Table of Contents.

Help>How to Use Help

Help on Help provides information about using the Windows Help System.

Help>Tutorial

Tutorial starts the interactive Attache online Tutorial.

Help>About

About provides information about the Attache executable, including the version number.

SEE ALSO

attache, attache_command_line_interface, attcmd, att_clnt
 ClearCase Reference Pages 33

attcmd
attcmd
Attache user-level commands (command-line interface)

APPLICABILITY

SYNOPSIS

• Single-command mode:

attcmd [–ws ws-name] subcommand [options/args]

• Interactive mode:

> attcmd [–ws ws-name]

attcmd> subcommand [options/args]

.

.

.

attcmd> quit

• Display version information for Attache:

attcmd –ver⋅sion

DESCRIPTION

attcmd is a console version of the Attache command-line interface. It is similar to the command

window in the Attache graphical user interface (see the attache_command_line_interface
reference page for more information). It is intended primarily for users who want to embed

Attache operations in scripts or invoke them from other tools.

attcmd accepts all commands which are valid in the Attache command window, except for these:

• describe –graphical

• lshistory –graphical

• lsvtree –graphical

NOTE: attcmd is a 32-bit Windows console application and is available on Windows 95 and

Windows NT only.

attcmd SUBCOMMANDS

This reference page does not describe the individual attcmd subcommands. For a list of the

attcmd subcommands, see the attache_command_line_interface reference page.

Product Command Type

Attache command
34 ClearCase Reference Manual

attcmd
USAGE OVERVIEW

You can use attcmd in either single-command mode or interactive mode. A single Attache command

can be invoked from the shell using this syntax:

attcmd [–ws ws-name] subcommand [options/args]

If you want to enter a series of subcommands, enter the attcmd command with no subcommand

arguments. This places you at the interactive mode prompt:

attcmd>

You can then issue any number of subcommands (called “commands” from now on), ending

with quit to return to the shell.

IDENTIFYING THE WORKSPACE

The –ws option can be used to specify which workspace in which to start. If not specified, then

the current working directory is used to determine the workspace. If the current working

directory is in or under a workspace, that workspace is set. If it is not, no workspace is set on

startup and the setws command must be used to set a workspace.

After startup, if the current working directory is within the startup workspace, attcmd attempts

to change to that directory after connecting to the workspace helper host. The attempt may fail

if the directory does not exist in the view associated with the workspace. In this case, the initial

working directory is the root directory.

INPUT REDIRECTION

Command input is read from the standard input, but input redirection generally does not work.

Whenever a remote command is executed, any input which occurs during command execution

is sent to the remote command process. Therefore, if input were redirected from a file, for

example, the first command which caused remote command execution would cause the rest of

the input file to be read and sent to the remote process.

EXIT STATUS

If you exit attcmd by entering a quit command in interactive mode, the exit status is 0 (zero). The

exit status from single-command mode depends on whether the command succeeded (zero exit

status) or generated an error message (nonzero exit status).

SEE ALSO

attache, attache_command_line_interface
 ClearCase Reference Pages 35

catcr
catcr
Displays configuration record created by clearmake, omake, or clearaudit

APPLICABILITY

SYNOPSIS
catcr [–r⋅ecurse | –fla⋅t | –uni⋅on | –che⋅ck [–uni⋅on] | –mak⋅efile]

[–sel⋅ect do-leaf-pattern] [–ci] [–typ⋅e { f | d | l } ...]
[–ele⋅ment_only] [–vie⋅w_only] [–cri⋅tical_only] [–nam⋅e tail-pattern]

[–zer⋅o] [–wd] [–nxn⋅ame] [–l⋅ong | –s⋅hort] do-pname ...

DESCRIPTION

The catcr command displays the configuration records (CRs) for the specified derived objects (DOs)

and, optionally, for their build dependencies. The ClearCase make tool (clearmake or omake)

creates a CR each time it executes a build script that creates one or more DOs.

NOTE: ClearCase creates configuration records for dynamic views only.

For more information about configuration records and derived objects, see Derived Objects and
Configuration Records in Building Software with ClearCase.

CRs and clearaudit

The clearaudit utility produces a CR when it exits. In this case, the build consists of all commands

executed in the audited shell.

Controlling the Report

catcr allows precise control over report contents and format. It includes input and output filters

and supports a variety of report styles. Input filters, such as –select, control which DOs are

visited. All visited DOs can potentially appear in the final listing. Output filters, such as

–view_only, control which DOs actually appear in the final listing. Often, this is a subset of all

visited DOs.

You can tailor the report in several ways:

• Generate a separate report for each derived object on the command line (default), or a

single, composite report for all derived objects on the command line (–union).

Product Command Type

ClearCase cleartool subcommand

Attache command
36 ClearCase Reference Manual

catcr
• Specify which derived objects to consider when compiling report output. The –recurse,

–flat, –union, –ci, and –select options control which subtargets are visited. They generate

recursive or flat-recursive reports of subtargets, visit checked-in DOs, and allow you to visit

DOs with a particular name only.

• Select the kinds of items that appear in the report. The –element_only, –view_only, –type,

–name, and –critical_only options exclude certain items from the report.

• Display the CR in makefile format (–makefile), rather than in a section-oriented format.

• Choose a normal, long, or short report style. Expanding the listing with –long adds

comments and supplementary information; restricting the listing with –short lists file

system objects only. You can also list simple pathnames rather than version-extended

pathnames (–nxname), and relative pathnames rather than full pathnames (–wd).

The –check option determines whether the CR contains any unusual entries. For example, it

determines whether the CR contains multiple versions of the same element, or multiple

references to the same element with different names.

By default, catcr suppresses a CR entirely if the specified filters remove all objects (useful for

searching). With the –zero option, the listing includes the headers of such CRs.

DOs in Unavailable Views

catcr maintains a cache of tags of inaccessible views. For each view-tag, the command records the

time of the first unsuccessful contact. Before trying to access a view, the command checks the

cache. If the view’s tag is not listed in the cache, the command tries to contact the view. If the

view’s tag is listed in the cache, the command compares the time elapsed since the last attempt

with the time-out period specified by the CCASE_DNVW_RETRY environment variable. If the

elapsed time is greater than the time-out period, the command removes the view-tag from the

cache and tries to contact the view again.

The default time-out period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

REPORTING ON DERIVED-OBJECT SUBTARGETS. Default: catcr lists the derived-object subtargets

used to build do-pname, but it does not examine or display subtarget CRs. The –recurse, –flat,
–union, –check, and –makefile options direct catcr to recurse into subtarget CRs. Use –select to

isolate the CRs of one or more subtargets; use –ci to examine the CRs of pre-built, checked-in DO
versions.
 ClearCase Reference Pages 37

catcr
–r⋅ecurse
Displays the CRs of any derived objects that are subtargets of do-pname. Each CR is

displayed separately.

–fla⋅t
Similar to –recurse, but consolidates the CRs into a single list of versions and derived

objects, with no duplicate entries. –flat produces one report for each do-pname on the

command line. The report includes file-system objects only; no headers, variables and

options, or build scripts. A number preceding each filename indicates the total number

of times it was referenced during the build.

–uni⋅on
Produces one report for all derived objects on the command line. Like –flat, it
consolidates the CRs of each do-pname and its subtargets into a single list of objects, with

no duplicate entries. It then combines the separate lists into a single report with no

duplicates. The report includes file-system objects only—no headers, variables and

options, or build scripts are included.

–che⋅ck [–uni⋅on]

Flags entries in the CR that have unusual characteristics. It may optionally be specified

with –union. This option determines whether a CR contains any of the following:

–mak⋅efile
Similar to –recurse, but displays the CR in simple makefile format. The listing includes

the dependencies and build script for each of the derived object’s subtargets. Always

include the –wd option with –makefile; this causes catcr to list pathnames with respect

to the initial working directory of the build. (Note that this differs from the standard

behavior of –wd). If you fail to include –wd, cleartool displays a warning message, and

then displays the makefile without modifying dependency pathnames.

–sel⋅ect do-leaf-pattern
Starts the listing at the subtarget of do-pname that match the specified pattern.

do-leaf-pattern can be a pattern (see the wildcards_ccase (ClearCase) or wildcards
(Attache) reference page) that matches a simple file-name; it must not include a slash

• Versions that are not currently checked in. This includes versions that no longer

exist (an intermediate version that only existed as a view-private file, for

example), versions that are currently checked out, and versions that were

explicitly removed with the rmver command.

• Multiple versions of the same element. This can occur, for example, if a build used

multiple libraries, which were built from different source versions.

• Multiple references to the same element with different names, such as a renamed

element in different directory versions.
38 ClearCase Reference Manual

catcr
character (\) or the ellipsis wildcard (...). Alternatively, it can be a standard pathname

of a derived object.

This option is useful for isolating a derived object that was built as a dependency of

another one. For example, this command displays the CR of the derived object named

hello.obj that was used to build hello.exe in the current view:

cmd-context catcr -select hello.obj hello.exe

–ci (for use in recursive listings only)

By default, recursive listings do not display CRs for DO versions. This option displays the

CRs for DO versions. –ci only has effect with –recurse, –flat, –union, and –makefile.

SPECIFYING KINDS OF OBJECTS TO DISPLAY. Default: catcr reports on all objects in the CR, which

may include source files, directories, and symbolic links; derived objects; makefiles; view-private

files; and non-MVFS objects that were explicitly declared as dependencies.

–typ⋅e { f | d | l } ...
Restricts the listing to files only (f), or to directories only (d), or to links only (l). If you

omit –type, a –short listing includes files only and a –long listing includes all three kinds.

To specify multiple kinds of objects, group them into a single argument: –type fd.

–ele⋅ment_only
Lists versions of elements only, including checked-out versions. This option excludes

from the listing derived objects (except DO versions), view-private files and directories,

symbolic links, and non-MVFS objects.

NOTE: If a view-private file listed in the CR is converted to an element after the creation

of the CR, and has at least one checked-in version, it is considered to be an element and

is listed by –element_only.

–vie⋅w_only
Lists view-private objects only, including checked-out versions of elements. If you

specify this option along with –element_only, the listing includes only checked-out

versions of elements.

–cri⋅tical_only
Excludes from the listing any objects marked as “noncritical” in the CR. Objects with

that property typically have it because the user specified the objects as dependents of the

.NO_DO_FOR_SIBLING special target in a clearmake makefile, or as dependents of

the .NODO_FOR_SIBLING special target in an omake makefile.

–nam⋅e tail-pattern
Restricts the MVFS objects listing to those whose final pathname component match the

specified pattern. tail-pattern can include any of the wildcard characters described in the

wildcards_ccase (ClearCase) or wildcards (Attache) reference page.
 ClearCase Reference Pages 39

catcr
CONTROLLING REPORT APPEARANCE. Default: catcr reports, in three sections, on MVFS objects,

variables and options, and the build script. The report uses full pathnames, and it omits

comments and directory versions.

–zer⋅o
Includes the CR header and options section, even if the specified filters remove all

objects. The listing includes the target name, current view, and so on, but no information

on particular file-system objects.

–wd
Lists pathnames relative to the current working directory, rather than full pathnames.

With –makefile, displays pathnames relative to the initial working directory of the build.

–nxn⋅ame
Lists simple pathnames for MVFS objects, rather than version-extended pathnames or

DO-IDs.

–l⋅ong
Expands the listing to include the kinds of objects in the CR and comments. With

–makefile, adds comments only. For example, an object may be listed as a version, a

directory version, or derived object. (See ls –long for a complete list.) Comments indicate

whether an object is in makefile , a referenced derived object , or a new derived

object .

–s⋅hort
Restricts the listing to file-system objects only (omits header information, variables and

options, and build scripts). With –makefile, the listing also includes build scripts.

SPECIFYING THE DERIVED OBJECT. Default: None.

do-pname ...

One or more pathnames, specifying the derived objects whose CRs are to be included in

the listing. A standard or view-extended pathname specifies the DO in the view. An

extended pathname with a DO-ID specifies a particular DO, irrespective of view (for

example, hello.obj@@24–Mar.11:32.412).

Use the lsdo command to list derived objects with their DO-IDs.

do-pname can be a DO version, specified with any version-specification method

(standard pathname, version-extended pathname, and so on).

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.
40 ClearCase Reference Manual

catcr
In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

NOTE: Most examples show the same CR processed with different options. Some output lines

have been split for clarity.

• List the CR for a derived object in the current view named bgrs.exe.

cmd-context catcr bgrs.exe

• Combine all CRs associated with bgrs.exe and its subtargets into a single listing.

cmd-context catcr -flat bgrs.exe

Target bgrs.exe built by jones.dvt
Host "oxygen" running NT 3.51 (i486)
Reference Time 11-Dec-94.12:02:39, this audit started 11-Dec-94.12:04:52
View was oxygen:C:\USERS\jones\views\940615.vws
Initial working directory was Y:\vob1\docaux\bgr

MVFS objects:

\vob1\docaux\bgr\libbgr\libbgr.lib@@10-Dec.16:45.1893
\vob1\docaux\bgr\bgrs@@11-Dec.12:05.1956
\vob1\docaux\bgr\buga@@11-Dec.12:04.1926
.
.
.

\vob1\docaux\bgr\bugs.obj@@11-Dec.12:03.1902
\vob1\docaux\bgr\bugsched.obj@@11-Dec.12:04.1953
.
.
.

Build Script:

link /out:bgrs.exe main.obj pick.obj bugs.obj bugr.obj bugi.obj bugf.obj
bugc.obj bugl.obj buge.obj bugd.obj buga.obj bugh.obj bugw.obj
bugfld.obj bugdt.obj bugu1.obj bugu2.obj bugsched.obj
..\libbgr\libbgr.lib

 ClearCase Reference Pages 41

catcr
The integer at the beginning of an entry indicates the number of times the object was

referenced during the build. For example, \vob1\docaux\bgr\bugs.h was referenced 20

times.

• Excerpt from the CR for the bugsched.o subtarget of bgrs.exe the versions of elements

involved in the build.

cmd-context catcr -select bugsched.o -element_only bgrs.exe

• List only header files (.h extension) involved in the build of a particular derived object.

cmd-context catcr -name '*.h' bgrs.exe

MVFS objects:

1 \vob1\docaux\bgr\buga.c@@\main\1 <19-Dec-94.11:49:03>
1 \vob1\docaux\bgr\bugc.c@@\main\1 <19-Dec-94.11:49:09>
1 \vob1\docaux\bgr\bugd.c@@\main\1 <19-Dec-94.11:49:14>
20 \vob1\docaux\bgr\bugs.h@@\main\3 <17-Jun-94.23:55:22>
1 \vob1\docaux\bgr\bugsched.c@@\main\1 <19-Dec-94.11:50:07>
.
.
.

2 \vob1\docaux\bgr\bugw.obj@@11-Dec.12:04.1932
2 \vob1\docaux\bgr\main.obj@@11-Dec.12:03.1896

Target bugsched.o built by akp.user
Host "oxygen" running NT 3.51 (i486)
Reference Time 11-Dec-94.15:23:21, this audit started
11-Dec-.94.15:23:39
View was oxygen:\users\people\akp\views\940615.vws
Initial working directory was J:\vob1\docaux\bgr

MVFS objects:

\vob1\docaux\bgr\bugs.h@@\main\3 <17-Jun-94.23:55:22>
\vob1\docaux\bgr\bugsched.c@@\main\2 <11-Dec-94.15:23:04>
\vob1\docaux\bgr\libbgr\stint.h@@\main\2 <08-Sep-94.10:06:04>

Build Script:

del -f bugsched.obj ; cl /c /I ..\libbgr -DBSD -DSCCS /Zi ..\bugsched.c

42 ClearCase Reference Manual

catcr
SEE ALSO

clearaudit, clearmake, config_spec, diffcr, ls, lsdo, rmdo, wildcards, wildcards_ccase, Building
Software with ClearCase

MVFS objects:

20 \vob1\docaux\bgr\bugs.h@@\main\3 <17-Jun-94.23:55:22>
19 \vob1\docaux\bgr\libbgr\intstint.h@@\main\1 <19-Dec-94.11:54:50>
36 \vob1\docaux\bgr\libbgr\stint.h@@\main\2 <08-Sep-94.10:06:04>
1 \vob1\docaux\bgr\spar.h@@\main\1 <19-Dec-94.11:50:42>
 ClearCase Reference Pages 43

catcs
catcs
Displays the config spec of a view

APPLICABILITY

SYNOPSIS
catcs [–tag view-tag]

DESCRIPTION

The catcs command displays a view’s config spec. This command does not require a product

license.

In a dynamic view, if the working directory view differs from the set view, catcs displays a warning

and uses the working directory view. You cannot set a snapshot view; therefore, there is no

distinction between the working directory view and the set view.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: Displays the config spec of the current view.

–tag view-tag
The view-tag of any view; the view need not be active.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Display the current view’s config spec.

cmd-context catcs

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
44 ClearCase Reference Manual

catcs
element * CHECKEDOUT
\main\LATEST

• Display the config spec of the view with view-tag jackson_fix.

cmd-context catcs -tag jackson_fix

element * CHECKEDOUT
element * ...\rel2_bugfix\LATEST
element * \main\LATEST -mkbranch rel2_bugfix

SEE ALSO

edcs, lsview, mktag, pwv, setcs, config_spec
 ClearCase Reference Pages 45

cc.magic, default.magic
cc.magic, default.magic
File typing rules

APPLICABILITY

SYNOPSIS

• File-typing rule:

file-type-list : selection-expression ;

• File type list:

file-type [file-type ...]

• Selection expression:

selection-op [arg(s)] [logical-op selection-op [arg(s)]] ...

DESCRIPTION

A magic file contains an ordered set of file-typing rules, which ClearCase and ClearCase LT use to

determine a list of file types for an existing file system object, or for one that is about to be created.

A rule can use the object’s name, its stat data, or its contents. File-typing involves searching one

or more magic files for the first rule that matches a file-system object; finding a match yields a

single file type or an ordered list of file types; failing to find a match produces an error.

ClearCase and ClearCase LT perform file-typing when you create a new element with mkelem,

but do not specify an element type (with –eltype). (If you are converting a view-private file to an

element with mkelem –ci or mkelem –nco, the file’s contents are also used in the file-typing.)

The resulting file type list is compared with the VOB’s set of element types (which includes both

element types in the VOB and element types in the Admin VOB hierarchy associated with the

VOB). The first file type that matches an element type is chosen as the element type; if no file type

matches any existing element type, an error occurs:

cleartool: Error: Can’t pick element type from rules ...

Following are examples of file-typing rules:

Product Command Type

ClearCase data structure

ClearCase LT data structure
46 ClearCase Reference Manual

cc.magic, default.magic
directory : -stat d ;
c_source source text_file : -printable & -name "*.c" ;
sh_script script text_file : -printable & (-name ".profile" | -name "*.sh") ;
archive library file: !-printable & -name "*.a" ;

Search Path

ClearCase and ClearCase LT support a search path for magic files. If MAGIC_PATH is set in your

environment (to a semicolon-separated list of directories), ClearCase searches files with a .magic
extension in these directories. In each directory, files are processed in alphabetical order. As soon

as a matching rule is found, the search ends. If multiple rules match a file type, the first rule

encountered is used.

If MAGIC_PATH is not set, this default search path is used:

%HOME%\.magic;ccase-home-dir\config\magic

FILE-TYPING RULES

Each file-typing rule has the following format:

file-type-list : selection-expression ;

A single text line can contain multiple rules. Conversely, a single rule can span several lines; each

intermediate line must end with a backslash (\). A line that begins with a number sign (#) is a

comment.

NOTE: The semicolon (;) that terminates a rule must be separated from the preceding characters

by white space.

FILE TYPE LIST

A file-type-list is an ordered list of one or more names, separated by white space. Only letters,

digits, and underscores (_) are permitted in these names. Depending on the file-typing situation,

each name must match either an element type defined in some VOB, or an icon name specified

in an icon file. To avoid errors, always make the final name one of the predefined element types

(see Predefined Element Types in the mkeltype reference page). These names are also included in

the system-default icon file.

Following are some file-type-list examples:

text_file
backup_dir directory
manual_page text_file
cplusplus_src src_file text_file

Here is a scenario that calls for a lengthy file type list:

Your host mounts several VOBs, in which different sets of element types are defined. Perhaps one

VOB defines element type pscript for Perl scripts, a second VOB defines element type batch_file
 ClearCase Reference Pages 47

cc.magic, default.magic
for all shell scripts, and a third VOB does not define any special element type for scripts. Your

file-typing rules must be appropriate for all the VOBs. For example:

pscript batch_file text_file : -name "*.pl" ;
batch_file text_file : -name "*.bat" ;

Magic File:

pscript batch_file text_file : -name "*.pl" ;
shscript batch_file text_file : -name "*.sh" ;

SELECTION EXPRESSION

A selection-expression consists of one or more selection operators and their arguments, connected by

logical operators. Examples:

-name "*.c"
-name "*.[ch]"
-name "*.c" | -name "*.h"
-printable
!-printable
-stat d

Selection Operators and Arguments

Any abbreviation of a selection operator name is accepted. For example, you can abbreviate

–name to –n, –na, or –nam.

All string arguments must be enclosed in double quotes. Use \” to include a double-quote

character in a string argument.

If the file-system object already exists, any of the selection operators listed below can produce a

match. If you are determining the file type for a nonexistent object (for example, an element that

is about to be created with mkelem), only the –name operator can produce a match.

–name pattern
Matches an object’s simple filename (leaf name) against pattern. pattern is a

double-quoted string, and can include any ClearCase/ClearCase LT wildcard, except for

the ellipsis (...). See the wildcards_ccase reference page for a complete list.

–stat stat_char
Matches an object against the specified stat file type. stat_char is a single character:

r Regular file

d Directory

c Character device; not supported for Windows files

b Block device; not supported for Windows files

f FIFO (named pipe); not supported for Windows files

s Socket; not supported for Windows files
48 ClearCase Reference Manual

cc.magic, default.magic
NOTE: The types c, b, f, and s can be used on Windows if they are pointed at a UNIX file.

–magic byte_offset, data_type, value
–magic byte_offset, string

Matches an object against a magic value: a number or string at a specified offset within

the object’s first physical block (512 bytes).

–printable
Matches an object if it is a printable file:

Remember that mkelem can create an element object that corresponds to an empty (and

therefore unprintable) file.

–token string
Matches an object if the specified double-quoted string occurs in its first physical block

(512 bytes).

l Symbolic link

byte_offset The byte offset from the beginning of the file.

data_type The architecture-specific data format of the numeric

value argument that follows:

byte value is an 8-bit byte.

l_short value is a little-endian

16-bit shortword.

l_long value is a little-endian

32-bit longword.

b_short value is a big-endian 16-bit

shortword.

b_long value is a big-endian 32-bit

longword.

value A numeric magic value, expressed as an integer in

hexadecimal, octal, or decimal:

0x ... A hexadecimal value

0 ... An octal value

... (Any other form) A

decimal value

string A nonnumeric magic value, expressed as a

double-quoted string.

• Its first block must contain only characters evaluating to TRUEby the isprint and

isspace routines.

• Its first block must have an average line length <= 256.
 ClearCase Reference Pages 49

cc.magic, default.magic
Logical Operators

File-typing rules can use the following logical operators, listed in decreasing order of precedence:

NOTE: The effect of the unary NOT operator may depend on whether or not an object exists. It

cannot produce a match if the selection operator is inappropriate.

EXAMPLES

• Assign the file types source_file and text_file to files whose file-name extension is .c or .h.

source_file text_file : -name "*.c" | -name "*.h" ;

• Assign the file types cplspls_source and text_file to printable files whose file-name

extension is .cxx or .c++.

cplspls_source text_file : -printable & (-name "*.cxx" | -name "*.c++") ;

• Assign the file types csh_script and text_file to printable files that begin with the character

string #!, and whose first block contains the string csh.

csh_script text_file : -printable & -magic 0,"#!" & -token "csh" ;

• Assign the file type directory to all directory objects.

directory : -stat d ;

• Assign the file types doc_file and text_file to printable files with the file-name extension .txt
or .doc.

doc_file text_file : -printable & (-name "*.doc" | -name "*.txt");

FILES

ccase-home-dir\config\magic\default.magic

SEE ALSO

mkelem, mkeltype, wildcards_ccase

(0) Parentheses for grouping

! Unary NOT

& Logical AND

&& Logical AND

| Logical OR

|| Logical OR
50 ClearCase Reference Manual

cd
cd
Changes the current working directory

APPLICABILITY

SYNOPSIS
cd [dir-pname]

DESCRIPTION

The cd command works differently depending on whether you are using a dynamic view or a

snapshot view.

Changing Directories in a Dynamic View

The cd command changes the current working directory, as does the standard cd command. In

Attache, the current directory is changed both in the workspace and the view, and is set as the

command prompt in the Command Window. In ClearCase, ClearCase LT, and MultiSite, this

command is intended for use in interactive cleartool and multitool sessions and in batch files

that simulate interactive sessions.

In ClearCase and ClearCase LT, with a view-extended pathname, cd also changes your working
directory view. The specified view’s config spec determines which versions of elements are visible

in your new working directory.

With a version-extended pathname that specifies an element or branch, cd changes your current

working directory to a location in version-extended namespace, wherein element and branch names

are treated like directories in a read-only file system. The best way to leave version-extended

namespace is to change directories to a full pathname. Typing cd .. does not exit

version-extended namespace until you ascend past the VOB root directory. (See the

pathnames_ccase reference page.)

Changing Directories in a Snapshot View

The cd command changes the current working directory. If dir-pname specifies a snapshot view,

cd changes the view context to that of the snapshot view.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand
 ClearCase Reference Pages 51

cd
View Selection Precedence

Regardless of the view type, view-selection precedence is as follows:

1. If you specify a a view-extended name, that view is used.

2. Otherwise, the view implied by the current directory is used.

3. Otherwise, the view that has been set (if any) is used.

Attache’s Client Process Startup Directory

A separate startup directory is associated with the Attache client process. This directory changes

depending on how Attache is started. For example, it is the working directory specified in

Attache’s program item properties if Attache is started from the icon. Once the Attache client

process is started, this directory never changes.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE NEW WORKING DIRECTORY. Default: Changes to your home directory in

ClearCase, ClearCase LT and MultiSite; or the home directory on the helper host in Attache,

determined by the value of the HOME environment variable, the value of the HOMEDRIVE and

HOMEPATH environment variables, or the user profile.

dir-pname
The pathname of the directory to become your current working directory. You can

specify a view-extended or version-extended pathname, as described above.

In Attache, the pathname may or may not exist locally, and may even be invalid on the

local file system. No error occurs unless you try to download a file at that pathname.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change to the release subdirectory of the current working directory’s parent.

cmd-context cd ..\release (in Attache, type this command at a workspace prompt)

• Change to the directory in extended namespace that represents the main branch of element

hello.c.
52 ClearCase Reference Manual

cd
cmd-context cd hello.c@@\main (in Attache, type this command at a workspace prompt)

• (ClearCase/ClearCase LTMultiSite only) Change to a directory in extended namespace, and

then return to the original directory.

cmd-context cd src@@

cmd-context pwd
M:\workvu\vob1\src@@

cmd-context cd \workvu\vob1\src

cmd-context pwd
M:\workvu\vob1\src

• (Attache only) Change to a directory in extended namespace, and then return to the original

directory.

\vobs1\> cd src@@

\vobs1\src@@> pwd
\vob1\src@@

\vobs1\src@@> cd \vob1\hw\src

\vobs1\hw\src> pwd
\vob1\hw\src

SEE ALSO

attache_command_line_interface, attache_graphical_interface, config_spec,

pathnames_ccase, pwd, pwv, setview, view
 ClearCase Reference Pages 53

chactivity
chactivity
Changes a UCM activity

APPLICABILITY

SYNOPSIS

chact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
{ [–hea⋅dline headline activity-selector ...] |

[–fcs⋅et src-activity-selector –tcs⋅et dest-activity-selector version-pname[,...] }

DESCRIPTION

The chactivity command modifies one or more UCM activities. Use this command for these

tasks:

• Change an activity’s headline

• Move versions from the change set of one activity to the change set of another activity

Note that changing the headline for an activity does not affect its name (its unique identifier). See

rename for related information.

The destination activity must exist before you can move a change set and both the source and

destination activities must be in the same stream. Use lsactivity –long to list the pathnames of

change set versions associated with an activity.

PERMISSIONS AND LOCKS

Permissions Checking: In ClearCase, you must be the owner of the activity, the UCM project VOB,

or a member of the ClearCase group.In ClearCase LT, you must be the owner of the activity, the

UCM project VOB, or logged in at the ClearCase LT server host as the local administrator.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB or

the activity.

Mastership: The current replica must master the activity.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
54 ClearCase Reference Manual

chactivity
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

MODIFY AN ACTIVITY’S HEADLINE. Default: None.

–hea⋅dline headline
Specifies a new headline for the activity. The headline argument can be a character string

of any length. Use double quotes to enclose a headline with spaces or special characters.

SPECIFYING THE ACTIVITY. Default: None.

activity-selector ...
Specifies one or more activities to modify.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

SPECIFYING THE SOURCE AND DESTINATION ACTIVITIES. Default: None.

–fcs⋅et src-activity-selector
Specifies the activity from which to move versions.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

–tcs⋅et dest-activity-selector
Specifies the activity to move versions to. These versions are recorded in the activity’s

change set.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with
 ClearCase Reference Pages 55

chactivity
the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

version-pname[,...]
One or more version-extended pathnames that specify the versions to be moved to

another change set.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Change an activity’s headline.

cmd-context chactivity -headline "Fix front matter" fix_copyright
Changed activity "fix_copyright".

• Move a version from one activity’s change set to another activity’s change set.

cmd-context chactivity -fcset update_date ^
-tcsets fix_copyright add_proc@@\main\chris_webo_dev\1

Moved version "add_proc@@\main\chris_webo_dev\1" from activity
"update_date" to activity "fix_copyright".

SEE ALSO

lsactivity, mkactivity, rename, rmactivity
56 ClearCase Reference Manual

chbl
chbl
Changes a UCM baseline

APPLICABILITY

SYNOPSIS

chbl [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]
{ [–inc⋅remental | –fu⋅ll] [–level promotion-level] }

baseline-selector ...

DESCRIPTION

The chbl command modifies one or more UCM baselines. You can modify a baseline’s labeling

status or assign a new promotion level to a baseline.

Baseline Labels

Baselines can be unlabeled, incrementally labeled, or fully labeled. Only labeled baselines can be

used to configure streams (see the reference pages for rebase andmkstream).

Promotion Levels

Promotion levels must be defined in the baseline’s project VOB, before they can applied to

baselines. See the setplevel reference page for information on promotion levels.

The promotion levels available in a VOB can be listed by running the describe command on the

UCM project VOB object.

PERMISSIONS AND LOCKS

Permissions Checking: In ClearCase, you must be the owner of the baseline, the project VOB

owner, or a member of the ClearCase group. In ClearCase LT, you must be the owner of the

baseline, the project VOB owner, or logged in at the ClearCase LT server host as the local

administrator.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB or

the baseline.

Mastership: The current replica must master the baseline.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 57

chbl
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CHANGING A BASELINE’S LABELING STATUS. Default: None.

–inc⋅remental
Changes the labeling status for an unlabeled baseline to incremental. This option has no

effect if the baseline is already incrementally or fully labeled.

–fu⋅ll
Changes the labeling status for a baseline from unlabeled or incremental to full. This

option has no effect if the baseline is already fully labeled. A chbl –full operation make

take a long time for components with many elements.

ASSIGNING PROMOTION LEVELS. Default: No change in promotion level.

–level promotion-level
Sets the promotion level for the specified baselines. The specified promotion level must

defined in the baseline’s project VOB.

SPECIFYING THE BASELINE. Default: None.

baseline-selector ...

Specifies one or more baselines to modify.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Change an unlabeled baseline to be incrementally labeled. The baseline specifier includes a VOB

component, which must be the baseline’s project VOB.

cmd-context chbl -incremental testbl.121@\vobs\core_projects
58 ClearCase Reference Manual

chbl
Begin incrementally labeling baseline "testbl.121".
Done incrementally labeling baseline "testbl.121".

• Change a baseline’s promotion level and check the labeling status. The baseline specifier

includes a VOB component, which must be the baseline’s project VOB.

cmd-context chbl -full -level TESTED testbl.121@\vobs\core_projects

Change baseline "testbl.121".
Baseline "testbl.121" is already fully labeled.

SEE ALSO

describe, diffbl, lsbl, lscomp, mkbl, rmbl, setplevel
 ClearCase Reference Pages 59

checkin
checkin
Creates a permanent new version of an element

APPLICABILITY

SYNOPSIS
checkin | ci [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–nwa⋅rn]

[–cr] [–pti⋅me] [–kee⋅p | –rm] [–fro⋅m source-pname]

[–ide⋅ntical] { –cact | activity-selector ... | pname ... }

DESCRIPTION

To create a new version of an element, checkin makes changes in the VOB and in the view.

Actions Taken in the VOB

For one or more elements, checkin creates a successor to a version that was previously checked

out in the current view: the predecessor version. The version number of the successor is the next

unused number on the branch. (If one or more versions have been deleted from the end of the

branch with rmver, it may seem that some version numbers have been skipped.) An appropriate

message is displayed:

Checked in "msg.c" version "\main\bugfix\26".

In Attache, any existing local files corresponding to pathname arguments are uploaded before

performing the checkin remotely; directories are not uploaded.

A checkin event record is created, which can be listed with the lshistory command:

cmd-context lshistory msg.c
06-Aug.12:09 akp create version "msg.c@@\main\bugfix\26"

.

.

.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
60 ClearCase Reference Manual

checkin
Only elements can be checked in. You cannot check in a view-private or local file; you must first

make an element of the same name. Use the mkelem –ci command to simultaneously create an

element and check in a view-private or local file as its first version.

Actions Taken in the View

checkin works differently in different contexts.

• Dynamic view. By default, the new version of a file element is created by copying the

contents of the view-private file named pname (the checked-out version) to the VOB, and then

deleting that file. The –keep and –from options alter this behavior.

• Snapshot view. By default, the new version of a file element is created by copying the

contents of the file named pname (the checked-out version) to the VOB. The checked-in version

remains in the view. (This version may not be the one specified by the config spec.) The

–keep and –from options alter this behavior. If multiple instances of this file element are

loaded into the view (because the load rules specify a linked file in more than one location),

checkin updates each instance of the file with the checked-in version.

• Attache. By default, the new version of a file element is created by uploading the local file

named pname to the view, copying the contents of the uploaded view-private file named

pname (the checked-out version) to the VOB, deleting that file in the view, and then setting the

local file to read-only. The –keep and –from options alter this behavior.

After the element is checked in, your view typically selects the version you just created.

However, in a dynamic view and Attache it is possible that your view selects another version

(perhaps on another branch), because that version is specified by your config spec rules. In this

case, checkin displays a warning message. In Attache, the workspace copy is not updated.

In Attache, a warning is issued for each argument that has no corresponding local file, but the

command will still execute remotely. For each successfully checked-in version, the local file is

changed to be read-only.

METADATA AND THE CHECKED-IN VERSION

From the viewpoint of the VOB database, the new, checked-in version is the same object as the

checked-out version. Thus, any metadata items (version labels, attributes, hyperlinks) that were

attached to the checked-out version remain attached to the new version. And, for example,

checkin followed by mklabel is equivalent to mklabel followed by checkin.

CHECKIN OF RESERVED AND UNRESERVED CHECKOUTS

At the time you enter a checkin command, there may be several checkouts of the same version.

At most one of the checkouts (perhaps yours) is reserved; all the others are unreserved. Your

checkin command succeeds in either of these cases:

• Yours was a reserved checkout.

• All checkouts were unreserved, and no one has checked in a successor version.
 ClearCase Reference Pages 61

checkin
If the command fails because someone else has a reserved checkout, you must wait until that

checkout is resolved, with checkin, uncheckout, or unreserve. If the command fails because

someone has checked in a successor version ahead of you, you can check in your work by

performing the following steps:

1. Merge from the current LATEST version on the branch to your checked-out version.

2. Enter the checkin command again.

CHECKIN OF DERIVED OBJECTS

(Dynamic views and Attache only) You can check in a derived object to make it a version of an

element (a DO version). By default, both the data and configuration record of a derived object are

checked in. To save disk storage, you can use the –cr option to check in only the configuration

record, not the data. Checking in a nonshareable DO converts the DO, its sibling DOs, and its

sub-DOs to shareable DOs.

clearmake can reuse or winkin a derived object only if it is stored under its original pathname.

Thus, a DO version created under an alternate name with checkin –from cannot be used by

clearmake for build avoidance. (clearmake can still use the derived object named in the –from
option, which is unaffected by this command.)

See the mkelem reference page for information on creating a file element for a DO, and see

Building Software with ClearCase for information regarding subsequent operations on DO

versions.

PERMISSIONS AND LOCKS

Permissions Checking: checkin performs the following permission checks:

• In Clearcase, for all elements, an error occurs if you are not the user who checked out the

element, the element’s owner, the VOB owner, or a member of the ClearCase group.

• In ClearCase LT, for all elements, an error occurs if you are not the user who checked out

the element, the element’s owner, the VOB owner, or if you are not logged in at the

ClearCase LT server host as the local administrator.

See the permissions reference page.

Locks: checkin fails if any of the following objects have been locked: VOB, element type, branch

type, element, branch, pool (file elements only).

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your home directory’s .clearcase_profile file in ClearCase and ClearCase LT or

your remote home directory’s .clearcase_profile file in Attache (default: –cqe). See

CUSTOMIZING COMMENT HANDLING in the comments reference page. Comments can be

edited with chevent.
62 ClearCase Reference Manual

checkin
–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NOTE: If a checkout comment exists (specified with the checkout command and/or generated to

record changes to a checked-out directory), you can make it the checkin comment by using either

of the following commands:

• checkin –nc
• checkin –cqe; at the prompt, press CTRL+Z ENTER or .RETURN

• checkin; at the prompt, press CTRL+Z ENTER or .RETURN

Any other entry at the –cqe prompt specifies a new checkin comment, discarding the checkout

comment (if any) for that element. The –c and –cq options always discard the checkout comment

(if any) for each element processed.

SUPPRESSING WARNING MESSAGES Default: Warning messages are displayed.

–nwa⋅rn
Suppresses warning messages.

CHECKING IN DERIVED OBJECTS. Default: checkin checks in both the data and configuration

record for a derived object.

–cr (For derived-object checkin only)

Checks in only the configuration record for the specified derived objects. Each new DO

version will have a configuration record, but no data. You can use many cleartool
commands with such DO versions, such as catcr, diffcr, and mklabel (but not lsdo). DO

versions are also visible when you use the ls command. However, a version created with

this option cannot be opened or executed, because there is no data.

MANAGING SOURCE FILES. Default:

• In a dynamic view, checkin deletes each view-private, checked-out pname file after using it

to create a new version.

• In a snapshot view, checkin uses the checked-out pname file to create a new version, then

loads the checked-in version into the view.

You can use the following options (which have no meaning for directory elements) to save

view-private copies, or to check in source files from other locations.

–kee⋅p
Saves the current contents of each checked-out version in a view-private file, in addition

to creating a new version. The view-private file gets a name of the form pname.keep (or

possibly, pname.keep.n). In Attache, this file is not downloaded to the workspace. –keep
is the default when you use the –from option, because the current contents of the

checked-out version would otherwise be lost.
 ClearCase Reference Pages 63

checkin
–rm
Removes each pname file after creating a new version. In a dynamic view, this is the

default if you do not use the –from option. This option does not affect the Attache

workspace.

–fro⋅m source-pname
Uses the contents of source-pname as the new version, instead of the view-private file

pname. By default, –keep is invoked to preserve the contents of the view-private pname.

In Attache, if source-pname exists in the workspace, it is uploaded first. The source-pname
file itself is not affected. This option makes it easy to copy data from another location

(outside the VOB, perhaps) into an element’s version tree.

When using this option, specify only one pname argument.

NOTE: In a snapshot view, you cannot use a view-extended pathname as source-pname.

MISCELLANEOUS OPTIONS. Default: checkin resets the new version’s modification time to the

check-in time. Also, checkin cancels the checkin operation for files managed by certain type

managers, if the contents of the files match their predecessor versions.

–pti⋅me
Preserves the modification time of the file being checked in. If you omit this option,

cleartool or Attache sets the modification time of the new version to the checkin time.

–ide⋅ntical
Checks in the element even if the predecessor version is identical to the checked-out

version. By default, the checkin operation is canceled in such cases.

NOTE: This situation applies only to elements whose type manager computes

version-to-version deltas (for example, elements of type text_file, binary_delta_file, and

compressed_text_file). If an element’s type manager does not compute deltas, checkin
always creates a new version, whether or not it is identical to its predecessor. For

example, a new version is always created for an element of type file, which uses the

whole_copy type manager.

SPECIFYING OBJECTS TO CHECK IN. Default: None.

–cact
Checks in each checked-out version in the change set of the current UCM activity in your

view.

activity-selector ...

Checks in each checked-out version in the change set of each specified activity. Specify

activity-selector in the form activity:activity-name[@vob-selector]

activity-name name of the activity
64 ClearCase Reference Manual

checkin
pname ...

The pathnames of one or more elements to be checked in.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• After verifying its checkout comment, check in element util.c, using that comment.

cmd-context lscheckout –long util.c
10-May-99.16:11:07 Chuck Jackson (jackson.dvt@oxygen)
checkout version "util.c" from \main\4 (reserved)
by view: cj (“oxygen:c:\users\views\cj.vws")
"revise syntax"

cmd-context checkin –nc util.c
Checked in "util.c" version "\main\5".

• Check in an element from an alternate file, discarding the checked-out version. Provide a

comment on the command line.

cmd-context checkin –rm –from c:\users\cep\util.c –c "Release 1.1 update" util.c
Checked in "util.c" version "\main\6".

• (ClearCase only) Check in only the configuration record of a derived object, discarding its

data.

cmd-context checkin –nc –cr hello
Checked in "hello" version "\main\1".

SEE ALSO

attache_command_line_interface, attache_graphical_interface, checkout, clearmake,

config_spec, get, lshistory, merge, mkelem, mkeltype, mklabel, profile_ccase, put, rmver,
setwork, uncheckout
 ClearCase Reference Pages 65

checkout
checkout
Creates a modifiable copy of a version

APPLICABILITY

SYNOPSIS
checkout | co [–res⋅erved | –unr⋅eserved [–nma⋅ster]]

[–out dest-pname | –nda⋅ta] [–pti⋅me]

[–bra⋅nch branch-pname | –ver⋅sion] [–nwa⋅rn]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–q⋅uery | –nq⋅uery]

pname ...

DESCRIPTION

For one or more elements, the checkout command checks out a branch (typically, the most recent

version on a branch). In most cases, this creates a writable copy of that version in the current view

(the checked-out version), but see the CHECKING OUT A DO VERSION section. An appropriate

message is displayed. For example:

Checked out "msg.c" from version "\main\bugfix\25".

If you are checking out in a UCM view, the view must be set to a UCM activity (see setactivity).

Checked-out elements are added to the change set of the UCM activity you set.

In Attache, files checked-out successfully are downloaded to the workspace after the checkout
command is executed remotely. If a local file exists, and is both writable and different from the

checked-out version, the user is queried before the local file is overwritten, but the file is always

checked out in the view. Checked-out directories are created locally if they do not already exist

in the workspace. All downloaded files are made writable.

A checkout record is created; it can be listed with the lscheckout command:

cmd-context lsco msg.c
05-Aug.20:50 akp checkout version "msg.c" from \main\bugfix\25 (reserved)

If a view-private object already exists with the same name as an element being checked out,

checkout responds as follows:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
66 ClearCase Reference Manual

checkout
• In a dynamic view, it displays this error message:

Not a vob object: pname

To check out the element, rename or remove the view-private object with the standard

operating system command and enter the checkout command again.

• In a snapshot view, the behavior is different for view-private directories and view-private

files:

• A view-private directory that corresponds to a directory in the VOB namespace is

checked out. That is, checkout creates a checkout record in the VOB for the directory

element. Any changes to the checked-out directory in the view are added to the VOB at

checkin.

• A view-private file with the same name as an element being checked out is treated as a

hijacked file. checkout asks whether you want to use the file as the checked-out version;

if you do not, the view-private file is renamed.

• In Attache, checkout saves the private object in the view, not in the workspace.

Before using a command that changes the contents of a directory (mkelem, mkdir, rmname, ln,

or mv), you must first check out the directory. Each of these commands appends an appropriate

line to the directory’s checkout comment. For example, using mkelem to create a new element

within a directory adds a line like this one:

Added file element "wel.c".

RESERVED AND UNRESERVED CHECKOUTS

A version can have at most one reserved checkout and any number of unreserved checkouts.

Performing a reserved checkout (without using the –version option) guarantees you the right to

create a successor to the version you checked out. If several users perform unreserved checkouts,

any one of them (and only one) can create a successor version.

The predecessor version of your checked-out file may not be the latest on the branch from which

you checked out your version; this situation can occur if the –version option or unreserved

checkouts are used. In this case, you must merge from the latest version on the branch to your

checked-out version before you can check in your version.

You can change the reserved state of a checked-out version with the reserve and unreserve
commands.

MultiSite Only: Checking Out a Branch Mastered at Another Site

If the VOB containing the element is replicated, the checkout command fails if you try to check

out a branch mastered by a different replica:
 ClearCase Reference Pages 67

checkout
cleartool checkout –nc file1.txt
cleartool: Error: Unable to perform operation "checkout" in replica
"lexington" of VOB "/vobs/dev".
cleartool: Error: Master replica of branch "/main" is "london".
cleartool: Error: Unable to check out "file1.txt".

If you need to do work on a branch mastered by another replica, you have two choices:

• Request mastership of the branch and wait until the mastership is transferred to your

current replica before checking out the branch.

• Check out the branch and do your work while waiting for mastership to be transferred. You

can request mastership before or after checking out the branch. To check out the branch, use

checkout –unreserved –nmaster, which performs a nonmastered checkout. When the

mastership of the branch is transferred to your current replica, you may have to perform a

merge before checking in your work. Therefore, do not use this option if you cannot merge

versions of the element (for example, if the versions are in binary format).

To request mastership, ask the administrator at the master replica to transfer mastership, or use

the reqmaster command. Consult your ClearCase administrator to make sure mastership

requests with reqmaster are enabled and that the replicas are at the correct feature level.

NONSTANDARD CHECKOUTS

By default, the checkout command checks out these versions:

• The most recent version on a branch, if you are using a dynamic view

• The version currently loaded in the view, if you are using a snapshot view

To modify a different version, you can either use the –version option or create a subbranch at that

version. (See the mkbranch reference page). Furthermore, from a single view, you can have only

one checkout per element at a time.

When you use the –version option, you can specify the version either by setting your config spec

to use that version, or by specifying a version-extended pathname as the pname argument. After

you make your changes, you must merge from the latest version of the element before you can

perform a checkin.

You can check out a version that your config spec does not currently specify, either by using the

–branch option or by specifying a pname argument that is a branch pathname (for example,

msg.c@@/main/rel4_bugfix). In such cases, a warning message appears:

cleartool: Warning: Version checked out is different from version previously
selected by view.

CHECKING OUT A DO VERSION

(Dynamic view only) If the version being checked out is a derived object (DO version), checkout
attempts to winkin the DO to your view. If it cannot perform the winkin, it copies the DO’s data
68 ClearCase Reference Manual

checkout
instead. A winkin cannot be performed if you use the –out option to specify a destination in

another VOB, or in a non-VOB location, such as C:\tmp.

See Building Software with ClearCase for additional information on the behavior of checked-out

DO versions.

AUTO-MAKE-BRANCH

If the config spec specifies a version using a rule with a –mkbranch branch-type clause (see also

config_spec), checkout works as follows:

1. Creates a branch of type branch-type.

2. Checks out (version 0 on) the new branch.

Except for some extra messages, the behavior is no different from an ordinary checkout. The

checked-out version has the expected contents, because version 0 on the new branch has the

same contents as the version at the branch point.

NOTE: (MultiSite sites only) If the VOB is replicated, the current replica must master all the branch

types specified in your config spec. Otherwise, auto-make-branch fails.

Multiple-Level Auto-Make-Branch

A config spec can include a cascade of auto-make-branch rules, causing checkout to create

multiple branching levels at once. checkout keeps performing auto-make-branch until version 0

on the newly created branch is not selected by a rule with a –mkbranch clause. For example:

If you check out an element in a view that currently selects the version labeled MYLABEL:

1. A branch of type br1 is created at the MYLABEL version (Rule4).

2. Rule 3 now selects the newly created version ...\br1\0, so a branch of type br2 is created at

that version.

3. Version ...\br1\br2\0 is checked out. The checked-out version has the same contents as the

MYLABEL version, and is selected by Rule1. When you edit and check in a new version,

...\br1\br2\1, the view selects it with Rule2.

RESOLVING CHECKOUT PROBLEMS INTERACTIVELY

The checkout command can encounter problems when attempting to check out an element. If

you use the –query option, ways for you to resolve the problem are suggested.

1 element * CHECKEDOUT

2 element * ...\br2\LATEST

3 element * ...\br1\LATEST -mkbranch br2

4 element * MYLABEL -mkbranch br1

5 element * \main\LATEST
 ClearCase Reference Pages 69

checkout
CHECKED-OUT FILES

Any checked-out file can be read, edited, and deleted like any ordinary file.

Dynamic Views

You have write permission on a checked-out file only if you have write permission on the set

view’s view storage directory. If you have write permission on the view storage directory for the

view you are using, you have write permission on a checked-out file in that view.

Table 1 Interactive Resolution of Checkout Problems

Checkout Problem Likely Cause Suggested Resolution

Automatic branch

creation fails (all view

types; nonexplicit version

checkout only)

A mkbranch rule in the view’s config spec can fail if

the branch exists. For a dynamic view, the config spec

does not select the branch before specifying that the

branch should be created (as it should), or a time rule

prevents it from seeing the branch. A snapshot view

may have the same problems with its config spec; but

more often, the branch was created after the view was

lasted updated.

Check out the LATEST
version on the branch; for

an out-of-date snapshot

view, this means an

update of the element

followed by a checkout of

LATEST.

Non-LATEST version

selected (all view types;

nonexplicit version

checkout only)

The config spec selects a version that is not the

LATEST on the branch, and there is no mkbranch rule.

This can occur because a label or a time rule selects

elements.

Check out the LATEST
version.

Target branch is already

reserved (all view types)

Another view holds a reserved checkout of the target

branch.

Check out the branch as

unreserved.

Snapshot view is out of

date (snapshot views

only; nonexplicit version

checkout only)

The snapshot view is not up to date with the VOB. If

the element being checked out were updated, a

different version would be loaded.

Update of the element

and then check out the

updated version.

File is hijacked and does

not correspond to the

selected version

(snapshot views only)

This can occur when the file is in the

hijacked/nocheckout state or when the checkout

explicitly specifies a different version.

Check out the hijacked

file; or, merge the hijacked

version and the selected

version, and use the

merge result as the

checkout data.
70 ClearCase Reference Manual

checkout
Snapshot Views

The initial permissions on the checked-out file are determined by this algorithm:

• Start with the permissions of the element itself. (See the mkelem and protect reference

pages.)

• Add a write permission wherever the element itself has a read permission (user, group,

and/or other).

You can change the permissions of the checked-out file by changing the file properties, but you

must use the protect command to change the permissions of the element itself.

Attache Only

A checked-out file is a workspace-local object.

CHECKEDOUT BUT REMOVED FILES

There may be no object in the view located at the pathname of the checked-out version. This can

happen if any of these conditions are true:

• You have deleted the file with del.

• You renamed the file with rename.

• You used checkout –out to copy the checked-out version to another location.

• You used checkout –ndata to create only a checkout record for the version.

• A permission problem occurred and checkout was unable to write the file. In this case,

cancel the checkout (use uncheckout), fix the permission problem, and check out the file

again.

A dir command does not show the missing file, but the cleartool ls and Attache ls commands

display the pathname of the checked-out version with the notation:

msg.c@@\main\CHECKEDOUT from \main\3 [checkedout but removed]

PERMISSIONS AND LOCKS

Permissions Checking: checkout performs the following permission checks:

• In ClearCase, for any element, an error occurs if you are not a member of the element’s

group, the element’s owner, the VOB owner, or a member of the ClearCase group.

• In ClearCase LT, for any element, an error occurs if you are not a member of the element’s

group, the element’s owner, the VOB owner, or if you are not logged in at the ClearCase LT

server host as the local administrator.

See the permissions reference page.
 ClearCase Reference Pages 71

checkout
Locks: checkout fails if any of the following objects are locked: VOB, element type, branch type,

element, branch.

Other restrictions: (replicated VOBs only) checkout fails if the current replica does not master the

branch you are checking out, unless you use –unreserved –nmaster.

OPTIONS AND ARGUMENTS

RESERVED AND UNRESERVED CHECKOUTS. Default: checkout reserves the branch unless a

different default has been specified in profile_ccase.

–res⋅erved
Reserves the branch: no user in another view can perform a reserved checkout of the

same branch (but any number of unreserved checkouts can be performed); no new

versions can be created on the branch until your checkout is changed to unreserved with

unreserve or resolved with checkin or uncheckout.

–unr⋅eserved [–nma⋅ster]

Leaves the branch unreserved: other users, in other views, can check out the same version

(but at most one of the checkouts can be reserved).

With –nmaster, checks out the branch even if the current replica does not master the

branch. Do not use this option if you cannot merge versions of the element.

See the checkin reference page for a discussion of how new versions are created from

reserved and unreserved checkouts.

CREATION OF CHECKED-OUT VERSION IN VIEW. Default: (file elements only) Creates in the view:

• A view-private file for the version being checked out with the same pathname as the

element (dynamic view).

• A modifiable copy of the version being checked out with the same pathname as the element

(snapshot view).

Attache downloads a copy of that file to the workspace.

EXCEPTION: (Dynamic views only) If the version being checked out is a derived object, it is

winked in to the view.

–out dest-pname
(Does not apply to directories or DO versions) Creates a writable file under an alternate

filename (perhaps in a different directory); in Attache, the file is downloaded to the

workspace. No view-private file named pname is created. The cleartool ls and Attache ls
commands list the element as checkedout but removed .

–nda⋅ta
(Does not apply to directories) Creates a checkout record for the version, but does not

create an editable file containing its data; in Attache, no file is downloaded to the
72 ClearCase Reference Manual

checkout
workspace. The ls command lists the file as checked out but removed . This option is

useful for checking out files that will be completely overwritten (for example, staged

binaries or other files that are copied into place).

PRESERVING MODIFICATION TIME. Default: In a dynamic view, checkout resets the file’s

modification time to the checkout time. In a snapshot view, checkout preserves the file’s

modification time.

–pti⋅me
Preserves the modification time of the file being checked out. This option is silently

ignored when you use it in a snapshot view.

NON-STANDARD CHECKOUTS. Default: If pname specifies a particular branch, check out that

branch, that is, the latest version on the branch. Otherwise, do the following:

• In a dynamic view, check out the latest version on the branch.

• In a snapshot view, check out the version that is currently in the view.

checkout creates a copy of each checked-out version and names it pname.

–bra⋅nch branch-pname
Specifies the branch whose most recent version is to be checked out. For example, to

check out the latest version on branch ports, specify –branch \main\ports.

–ver⋅sion
Allows the checkout of a version that is not the latest on its branch.

SUPPRESSING WARNING MESSAGES Default: Warning messages are displayed.

–nwa⋅rn
Suppresses warning messages.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

QUERYING FOR THE RESOLUTION OF CHECKOUT PROBLEMS. Default: No querying.

–q⋅uery
Query for the resolution of a checkout problem.

–nq⋅uery
Do not query for the resolution of a checkout problem.

ELEMENT ARGUMENT. Default: None.
 ClearCase Reference Pages 73

checkout
pname ...

Pathnames of one or more elements to be checked out.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Check out the currently selected version of element hello.c, with no comment.

cmd-context checkout –nc hello.c
Checked out "hello.c" from version "\main\3".

• Check out the latest version on the rel2_bugfix branch of file msg.c, to another file name.

cmd-context checkout –nc –branch \main\rel2_bugfix –out msg_test.c msg.c
Checked out "msg.c" from version "\main\rel2_bugfix\1".

cmd-context ls msg_test.c msg.c
msg_test.c
msg.c@@\main\rel2_bugfix\CHECKEDOUT from \main\rel2_bugfix\1 [checked out
but removed]

• (ClearCase and ClearCase LT only) Check out the latest version on the rel2_bugfix branch

of file msg.c, using an extended pathname to indicate the branch. This command checks out

the same version as the preceding example.

cmd-context checkout –nc msg.c@@\main\rel2_bugfix
Checked out "msg.c" from version "\main\rel2_bugfix\1".

• Check out an old version of the file hello.h, using an extended pathname to indicate the

version. (Before you check in your revised version, you must perform a merge.)

cmd-context checkout –c "attempt fix of old bug" -version hello.h@@\main\1
Checked out "hello.h" from version "\main\1".

• Perform an unreserved checkout of element hello.h. Provide a comment on the command

line.

cmd-context checkout –c "modify local defines"–unreserved hello.h
Checked out "hello.h" from version "\main\2".

• Check out hello.c. Then, change your mind and cancel the checkout, removing the

view-private copy.
74 ClearCase Reference Manual

checkout
cmd-context checkout –nc hello.c
Checked out "hello.c" from version "\main\1".

cmd-context uncheckout –rm hello.c
Checkout cancelled for "hello.c".

SEE ALSO

checkin, config_spec, lscheckout, merge, profile_ccase, reserve, uncheckout, unreserve
 ClearCase Reference Pages 75

checkvob
checkvob
Finds and fixes inconsistencies between VOB database and storage pools, problems with

hyperlinks, and problems with global types

APPLICABILITY

SYNOPSIS

• Check/fix storage pools

checkvob [–vie⋅w view-tag] [–log log-dir-pname] [–fix [–f⋅orce] [–ign⋅ore]]

[–dat⋅a] [–pro⋅tections] [–deb⋅ris] [–set⋅up]

{ –poo⋅l [–sou⋅rce] [–der⋅ived] [–cle⋅artext] { vob-stg-pname | pname-in-vob }

| [–loc⋅k] file-pname ...
}

• Check/fix hyperlinks

checkvob –hli⋅nks [–to | –fro⋅m] [–hlt⋅ype hltype-selector]

[–f⋅orce] [–pna⋅me] object-selector ...

• Check/fix global types

checkvob –glo⋅bal [–log log-pname] [–fix [–f⋅orce]]

[–acq⋅uire] [–pro⋅tections] [–loc⋅k | –unl⋅ock]

{ vob-selector | global-type-selector }

DESCRIPTION

checkvob can find and fix problems with storage pools, with hyperlinks, and with global types

in an admin VOB hierarchy. For more information, see Administering ClearCase.

PERMISSIONS AND LOCKS

Permissions Checking: In ClearCase, to use –fix, you must be the VOB owner or a member of the

ClearCase group. To use –hlink, you must be object group member, object owner, VOB owner,

or a member of the ClearCase group.

In ClearCase LT, to use –fix, you must be the VOB owner or logged in at the ClearCase LT server

host as the local administrator. To use –hlink, you must be object group member, object owner,

VOB owner, or logged in at the ClearCase LT server host as the local adminsitrator.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
76 ClearCase Reference Manual

checkvob
See the permissions reference page.

Locks: Without –fix (check-only mode), checkvob processing is not affected by locks, and it does

not lock any objects. With –fix, checkvob processing is affected as follows:

• The VOB must be unlocked (or locked with lock –nusers user-running-checkvob).

• Problems cannot be fixed if the affected element or pool is locked. Use –ignore to modify

this behavior.

• It may be difficult to fix ownership and naming problems with global types if local copies or

eclipsing ordinary types are locked.

OPTIONS AND ARGUMENTS

The following sections describe the options and arguments for storage pool mode, hyperlink

mode, and global types mode. For more details on fix-mode processing, see Administering
ClearCase.

Storage Pool Mode

SPECIFYING A VIEW. Default: Uses the current view context. If you attempt to run checkvob
without a view context, you are prompted to continue. Without a view context, checkvob cannot

generate VOB pathnames in problem object reports, so it reports OIDs instead of pathnames. In

general, run checkvob from a view.

–vie⋅w view-tag
Uses view view-tag to resolve any file-pname arguments, and to construct VOB object

pathnames in output. This option exists primarily to permit checkvob to run on VOB

servers where the MVFS is not installed (hosts where you cannot establish a working

view context).

LOG FILE DIRECTORY. Default: checkvob creates in the current directory a log file directory named

checkvob.date-time. With –pool, several log files are created, including a summary file and one

file per pool analyzed. Otherwise, a single transcript file stores a report on each individual file

examined.

–log log-dir-pname
Specifies an alternative directory for the log file directory. If log-dir-pname already exists,

checkvob returns an error.

FIX MODE. Default: Reports any problems, but does not try to fix them.

WARNING: Fixing problems detected with –data can update the VOB irreversibly. If source or DO

data containers are missing from the storage pools when checkvob runs, it updates the VOB

database, dereferencing these containers with the equivalents of rmver -data (for missing source

containers) and rmdo (for missing DO containers).
 ClearCase Reference Pages 77

checkvob
–fix
Directs checkvob to try to correct any problems it finds. Without –force, –fix prompts

you before fixing any problem object. You must run checkvob from the VOB server host

to use –fix.

For details on how checkvob tries to fix the various problems it detects, see

Administering ClearCase.

–f⋅orce
Minimizes interactive prompts when checkvob runs with –fix.

–ign⋅ore
Ignores element and pool locks during fix processing. Use of –ignore requires that the

VOB be locked for all users except the user running checkvob (lock –nusers). This

option is not recommended for general use. It exists primarily to support automatic

checkvob invocations when vob_restore is run.

DATABASE/POOL INCONSISTENCIES. Default: Scans pools or individual file containers looking for

all detectable problems.

–dat⋅a
Identifies missing data containers. checkvob scans the VOB database and source pools

to confirm the existence of each data container known to the database.

NOTE: During check processing, a “healthy” element is one whose containers have the

right names, in the right locations, with the right permissions. checkvob does not detect

container data corruption.

–pro⋅tections
Identifies access control problems on data containers.

–deb⋅ris
Scans storage pools for data containers not referenced by the VOB database. –debris is

meaningful only when used with –pool. In general, checkvob –fix –debris moves debris

to the applicable pool’s lost_found directory. See Administering ClearCase for details.

SETUP MODE. Default: None. Specify –setup to run checkvob in setup mode.

–set⋅up
Prepares newly reformatted VOB for checkvob processing.

Prepares a VOB for vob_snapshot/vob_restore/checkvob processing. See

Administering ClearCase.

POOL MODE. Default: None. Specify –pool and a vob-stg-pname argument in order to process one

or more storage pools. If you do not use –pool, see the Individual File Mode options on page 79.

–poo⋅l
Runs checkvob in pool mode. See Administering ClearCase.
78 ClearCase Reference Manual

checkvob
–sou⋅rce
–der⋅ived
–cle⋅artext

Processes the VOB’s source, derived object (DO), and/or cleartext pools. If you omit all

of these options, checkvob processes all pool kinds.

vob-stg-pname
pname-in-vob

Identifies the VOB; required with –pool.

INDIVIDUAL FILE MODE. Default: None. If you do not use the –pool option, you must specify one

or more file-pname arguments.

–loc⋅k
Locks each element during check processing. checkvob always locks an element during

fix processing.

file-pname ...
Specifies one or more VOB objects having associated data containers—file elements,

versions, or DOs. checkvob compares each data container’s location and permissions

against what is expected by the VOB database.

Hyperlink Mode

HYPERLINK MODE. Default: None. Use –hlinks to run checkvob in hyperlink mode. checkvob
prompts for confirmation before deleting each partially unavailable hyperlink it detects.

–hli⋅nks
Runs checkvob in hyperlink mode.

–to
–fro⋅m

Checks only hyperlinks to or from the specified objects.

–hlt⋅ype hyperlink-type-selector
Checks only hyperlinks of type hyperlink-type-selector. Specify hyperlink-type-selector in

the form hltype:type-name[@vob-selector]

–f⋅orce
Deletes broken hyperlinks without prompting for confirmation.

type-name Name of the hyperlink type

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted).
 ClearCase Reference Pages 79

checkvob
–pna⋅me
Interprets each object-selector argument as a pathname.

object-selector ...

Specifies the objects whose broken hyperlinks are to be found and deleted. Note that if

you specify a VOB, checkvob does not check all hyperlinks in that VOB; it checks only

the hyperlinks attached to the VOB object itself. Specify object-selector in one of the

following forms:

Global Types Mode

GLOBAL TYPES MODE. Default: None. You must specify –global.

–global
Runs checkvob in global types mode.

pname
• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies an element, branch, or version,

independent of view.

• The pathname of a VOB symbolic link.

NOTE: If pname has the form of an object selector, you must include the –pname option

to indicate that pname is a pathname.

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the

VOB-tag (whether or not the VOB is

mounted) or of any file-system object within

the VOB (if the VOB is mounted). It cannot

be the pathname of the VOB storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
80 ClearCase Reference Manual

checkvob
LOG FILE. Default: checkvob creates in the current directory a file named checkvob.date.time.

–log log-pname
Specifies an alternative pathname for the log file. If log-pname already exists, checkvob
returns an error.

FIX MODE. Default: Reports any problems, but does not try to fix them.

–fix
Directs checkvob to try to correct any problems it finds. Without –force, –fix prompts

you before fixing any problem object.

For details on how checkvob tries to fix the various problems it detects, see

Administering ClearCase.

–f⋅orce
Minimizes interactive prompts when checkvob runs with –fix.

–acquire
Lists/fixes eclipsing local copies and eclipsing ordinary types

–protections
Lists/fixes mismatched protections between global types and their local copies.

–lock
–unlock

Lists/fixes eclipsing local locks. In fix mode, –lock locks the global type and –unlock
removes the lock entirely.

vob-selector
Specifies a VOB in an admin VOB hierarchy. checkvob checks/fixes all global types

found in the hierarchy. Specify vob-selector in the form vob:pname-in-vob

pname-in-vob can be the pathname of the VOB-tag (whether or not the VOB is mounted)

or of any filesystem object within the VOB (if the VOB is mounted). It cannot be the

pathname of the VOB storage directory.

global-type-selector
Specifies a global type to be checked for problems. Specify global-type-selector in one of

the following forms:

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]
 ClearCase Reference Pages 81

checkvob
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Check a single element’s data container.

cmd-context checkvob \vob_lib\gui.c

The session’s log directory is 'checkvob.11-Apr-98.05.21.17'.

===
Processing element "\vob_lib\gui.c@@".
Checking status of 1 referenced containers in pool "s\sdft"...
Initial container status: 0 missing, 0 misprotected.
===

• Perform a routine check on a small, healthy VOB’s source pools.

cmd-context lsvob \vob_lib2

* \vob_lib2 \\saturn\vobstore\vob_lib2.vbs

cmd-context checkvob –pool –source \\saturn\vobstore\vob_lib2.vbs

===
Starting "source pool" processing at 10-Apr-98.06:35:11

Running from host: saturn
VOB hostname: saturn
VOB host storage pathname: C:\vobstore\lib2.vbs
VOB global storage pathname: \\saturn\vobstore\lib2.vbs
VOB replica oid: 0cdc7b37.f48611cc.b3d5.00:01:80:02:bc:53
VOB host reference time: 10-Apr-98.06:29:59
Processing pools: sdft
Processing of misprotected containers is: ENABLED
Processing of ndata containers is: ENABLED
Processing of unreferenced containers is: ENABLED
Fix processing mode: DISABLED

Poolkind transcript log:
checkvob.20-Apr-98.12.10.40\poolkind_source\transcript
===
... progress messages ...
82 ClearCase Reference Manual

checkvob
===
Completed "source pool" processing at 10-Apr-98.06:35:37

"source pool" Processing Summary:
Referenced Container Check Processing Time: 00:00:20
*** Referenced Container Fix Processing was not performed.
Unreferenced Container Check Processing Time: 00:00:05
*** Unreferenced Container Fix Processing was not performed.

Installed type managers are OK.

Pool root storage areas are OK.

Pool: s\sdft
Referenced container check processing:
 229 containers checked
 0 ndata 0 misprotected
 22 objects checked
 0 ndata 0 misprotected
Unreferenced container check processing:
 229 containers checked (47778 kbytes)
 0 unreferenced but under age (0 kbytes)
 0 unreferenced but maybe needed (0 kbytes)
 0 unreferenced containers (0 kbytes, 0 empty)

The VOBs source pools are healthy.

Poolkind transcript log:
checkvob.20-Apr-98.12.10.40\poolkind_source\transcript
===

• Check all global types in the admin VOB hierarchy containing the VOB \dev.
 ClearCase Reference Pages 83

checkvob
cmd-context checkvob –global vob:\dev

The session’s log file is "checkvob.30-Jul-99.17:28:55".
Starting analysis of Admin VOB hierarchy.

Analysis of Admin VOB hierarchy complete.
5 VOBs analyzed, no hierarchy errors found.

Starting "global type" processing.

Detection of eclipsing local copies is: ENABLED
Detection of protection mis-matches is: ENABLED
Detection of eclipsing local locks is: ENABLED
Correction of detected errors is: DISABLED

Completed "global type" processing.
Processed 8 global types in 5 VOBs.

FILES

current-dir\checkvob.date-time (default log-pname for –global)
current-dir\checkvob.date-time\ (default log-dir)

log-dir\.summary
log-dir\poolkind_cleartext\transcript
log-dir\poolkind_derived\transcript
log-dir\poolkind_source\transcript
log-dir\summary
vob-storage-dir\vob_server.conf
vob-storage-dir\s\sdft\pool_id
vob-storage-dir\c\cdft\pool_id
vob-storage-dir\d\ddft\pool_id

SEE ALSO

reformatvob, rmdo, rmver, type_manager, vob, vob_restore, vob_snapshot
84 ClearCase Reference Manual

chevent
chevent
Changes the comment string in existing event record

APPLICABILITY

SYNOPSIS
chevent [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–app⋅end | –ins⋅ert | –rep⋅lace]

{ –eve⋅nt [–inv⋅ob vob-selector] event-ID ...

| [–pna⋅me] pname ...

| object-selector ...

}

DESCRIPTION

The chevent command modifies or replaces the comment string in one or more existing event
records. It is useful for correcting typing errors, and for including information that was omitted

in the original comment.

There are several ways to specify an event record whose comment you want to change:

• If you specify a checked-out version, chevent changes the comment in the checkout event

record.

• If you specify any other object, chevent changes that object’s creation event record. For

example, if you specify a label type object, chevent changes the comment supplied when

that label type was created with mklbtype.

• You can change the comment in an arbitrary event record by passing its event-ID to the

–event option. Use the command lshistory –eventid to capture event-IDs. (Event-IDs

remain valid until the VOB is reformatted with reformatvob.)

See the events_ccase reference page for details on the operations that cause event records to be

created, and how event records are attached to objects. See also the comments reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

ClearGuide clearguide subcommand
 ClearCase Reference Pages 85

chevent
PERMISSIONS AND LOCKS

Permissions Checking: To modify an event’s comment:

• In ClearCase, you must be the user associated with the event, the object owner, the VOB

owner, or a member of the ClearCase group.

• In ClearCase LT, you must be the user associated with the event, the object owner, the VOB

owner, or logged in at the ClearCase LT server host as the local administrator.

See the permissions reference page.

Locks: Even if you have permission to execute this command, locks cause it to fail as follows:

OPTIONS AND ARGUMENTS

SPECIFYING THE COMMENT CHANGE. Default: For each object or event, chevent prompts for a

comment string to apply to the corresponding event record.

–c⋅omment comment
Specifies a character string to replace the existing comment or be added to it.

–cfi⋅le comment-file-pname
Specifies a text file whose contents are to be placed in the event record.

NOTE: A final newline character in this file is included in the comment.

–cq⋅uery
Prompts for one comment, which will be used to update all of the event records.

–cqe⋅ach
Same as default—prompts for a separate comment string for each object or event ID.

–nc⋅omment
No comment. When combined with –replace, this option removes the existing comment.

Otherwise, it nullifies the effect of chevent.

SPECIFYING HOW TO CHANGE THE COMMENT. Default: The new comment is appended to the

existing one.

Object Locks that Prevent Changing the Object’s Events

VOB VOB

Pool VOB, pool

Element VOB, element type

Type VOB, type

Branch, Version VOB, element type, element, branch type, branch

Hyperlink VOB, hyperlink type
86 ClearCase Reference Manual

chevent
–app⋅end
Same as default.

–ins⋅ert
The new comment is inserted before the existing one.

–rep⋅lace
The existing comment is discarded; the new comment replaces it.

SPECIFYING EVENT RECORDS TO BE CHANGED. You can indicate which event record is to be

changed by specifying a file-system object, a non-file-system object, or a numerical event-ID.

Default: None.

–eve⋅nt [–inv⋅ob vob-selector] event-ID ...

Specifies one or more events by their numeric event-IDs. The –event keyword can

appear anywhere an option is valid; the event-ID arguments must appear at the end of

the command (that is, after all options). By default, event-IDs specify events in the VOB

containing the current working directory; use –invob vob-selector to specify another

VOB.

To determine the event-ID of an event, use lshistory –eventid.

[–pna⋅me] pname ...

A standard pathname or VOB-extended pathname, indicating the creation event record

for an element, branch, or version object. The standard pathname of an element specifies

the version in your view. The –pname option is required only if the pathname looks like

an object-selector (for example, an element named pool:one).

Specifying a checked-out version changes its checkout version comment. You can use

any of the following to specify the checked-out version:

object-selector ...

One or more object-selectors, in any of these forms:

hello.h (standard pathname)
hello.h@@\main\rel2_bugfix\CHECKEDOUT (extended pathname to checked-out

“placeholder” version)

hello.h@@\main\rel2_bugfix\CHECKEDOUT.465 (placeholder version has unique
numeric suffix)

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.
 ClearCase Reference Pages 87

chevent
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Add a creation comment for an element, verifying the change with describe.

cmd-context chevent hello.c@@
Comments for "hello.c":
Main module of greeting program.
.
Modified event of file element "hello.c".

cmd-context describe hello.c@@

file element "hello.c@@"
created 04-Dec-98.14:38:26 by anne.user
 "Main module of greeting program"
 element type: text_file
source pool: p1 cleartext pool: pc1

• Add a header to a checked-out version’s checkout comment.

cmd-context lscheckout bye.c
13-May.13:58 anne checkout version "bye.c" from \main\11 (reserved)
"Improve error handling."

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
88 ClearCase Reference Manual

chevent
cmd-context chevent –insert –c "Fix bug #2493:" bye.c
Modified event of version "bye.c".

cmd-context lscheckout bye.c
13-May.13:58 anne checkout version "bye.c" from \main\11 (reserved)
"Fix bug #2493:
 Improve error handling."

• Update a branch type creation comment.

cmd-context chevent –append brtype:v1_bugfix
Comments for "v1_bugfix":
Branches should sprout from the version labeled 'V1'
.
Modified event of branch type "v1_bugfix".

cmd-context lstype brtype:v1_bugfix
28-Mar.16:26 ali branch type "v1_bugfix"
 "Branch for fixes to version 1.
 Branches should sprout from the version labeled 'V1'"

• Delete the comment on a branch object.

cmd-context chevent –replace –nc welcome.c@@\main\v1_bugfix
Modified event of branch "welcome.c".

• Find the event-ID for an operation and append a comment string to the one already

assigned to that event. Then verify that the new comment was added.

cmd-context lshistory –long –eventid util.c
event 45678:
21-Mar-99.14:45:20 Anne Duvo (anne@neptune)
destroy sub-branch "bugfix" of branch "util.c@@\main"
“Destroyed branch “\main\bugfix"."
.
.
.

cmd-context chevent –c "bugfix merge completed." –append –event 45678
Modified event "45678".

cmd-context lshistory –long –eventid util.c
event 45678:
21-Mar-99.14:45:20 Anne Duvo (anne@neptune)
destroy sub-branch "bugfix" of branch "util.c@@\main"
 "Destroyed branch "\main\bugfix".
"bugfix merge completed."
.
.
.

 ClearCase Reference Pages 89

chevent
SEE ALSO

events_ccase, lock, lshistory, mktrtype, vob_scrubber
90 ClearCase Reference Manual

chflevel
chflevel
Raises the feature level of a VOB

APPLICABILITY

SYNOPSIS

• Analyze and possibly raise the feature level of a VOB on the local host:

chflevel [–f⋅orce] –auto

• Raise the feature level of a MultiSite replica:

chflevel –rep⋅lica feature-level replica-selector

• Raise the feature level of a MultiSite VOB family:

chflevel [–f⋅orce] [–ove⋅rride] –fam⋅ily feature-level vob-selector

DESCRIPTION

The chflevel command raises the feature level of a VOB. A feature level is an integer that is

incremented at each ClearCase and ClearCase LT release that introduces features that affect

VOBs created in an earlier ClearCase or ClearCase LT release. The purpose of raising feature

levels is to make all features in a release available to users of the VOB that was created in the

earlier release.

Every ClearCase and ClearCase LT release is associated with a feature level. Read ClearCase and
MultiSite Release Notes for information on which releases correspond to which feature levels.

Raising the Feature Levels of VOBs

To raise the feature level of a VOB, use the chflevel command with the –auto option at the host

running the VOB server.

In some circumstances—for example, when you describe a VOB—you will notice MultiSite

terms such as VOB family. This kind of information is of interest only to MultiSite users.

Raising the Feature Levels of MultiSite VOBs

Raising the feature level of a MultiSite VOB prevents features from being used at one replica that

are not meaningful to other replicas that are at a lower feature level.Thus, feature level control

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 91

chflevel
makes it unnecessary to upgrade all replicas in a VOB family to a new ClearCase release

simultaneously.

Every VOB replica has a feature level, and every VOB family has a feature level:

• The replica feature level is the feature level that is equal to or less than the feature level of

the ClearCase release installed on the host where the replica’s server runs.

• The family feature level is the feature level that is equal to or less than the lowest replica

feature level found among members of the VOB family.

You must raise the replica feature levels before raising the VOB family feature level. After raising

the feature level of replicas in the VOB family, raise the VOB family feature level to the lowest

feature level of any replica in the family.

For more information, see ClearCase MultiSite Manual.

PERMISSIONS AND LOCKS

Permissions Checking: In ClearCase, you must be the VOB owner or a member of the ClearCase

group. In ClearCase LT, you must be the VOB owner or logged in at the ClearCase LT server host

as the local administrator. See the permissions reference page.

Locks: chflevel fails if the VOB or VOB replica is locked.

Mastership: A replica whose feature level is to be raised must master its own replica object. The

family feature level can be raised only through the replica that masters the VOB object.

Other restrictions: (MultiSite) If the current family feature level is less than or equal to 1, the first

replica whose feature level is raised must be the replica that masters the VOB object.

OPTIONS AND ARGUMENTS

–aut⋅o
Lists each VOB on the local host, annotated with its replication state, family feature level,

and replica feature level. For unreplicated VOBs only, this option offers to raise the

feature levels. You must raise the feature levels of replicated VOBs using the command

synopses for MultiSite.

–f⋅orce
When specified with the –auto option, this option raises the feature levels of

unreplicated VOBs without prompting for confirmation.

When specified with the –family option, this option forces MultiSite replicas on the local

host to the feature level specified by –family without prompting. This option may fail to

force the family feature level unless you also specify –override.

–rep⋅lica feature-level replica-selector
Raises the feature level of the specified MultiSite replica.
92 ClearCase Reference Manual

chflevel
–ove⋅rride
Overrides the check that ensures that the feature level specified by –family is less than

or equal to the lowest feature level found among replicas in the family. When specified

with the –force option, forcibly raises the VOB family feature level without prompting.

When specified without –force, –override lists replicas that are below the specified

family feature level.

NOTE: Do not use the –force and –override options together unless you are certain that

all replicas are at the feature level specified by –family.

–fam⋅ily feature-level vob-selector
Raises the feature level of the specified MultiSite VOB family.

EXAMPLES

• Raise the feature levels of any unreplicated VOBS running on the local host without

prompting for confirmation and list the feature levels of any replicated VOBs on this host.

cmd-context chflevel –force –auto

• Raise the feature level of the replica rome to 2.

cmd-context chflevel –replica 2 replica:rome

• Raise the feature level of the VOB family \tmp\testvob to 2.

cmd-context chflevel –family 2 vob:\tmp\testvob

• Raise the family feature level of the current VOB to 2. Override the check to ensure that

family feature level 2 is no higher than the lowest replica feature level found among replicas

in this VOB family.

cmd-context chflevel –force –override –family 2 vob:.

SEE ALSO

chmaster, describe
 ClearCase Reference Pages 93

chfolder
chfolder
Modifies a UCM folder

APPLICABILITY

SYNOPSIS
chfolder [–c⋅omment comment | –cfi⋅le comment-file-pname |

–cq⋅uery | –cqe⋅ach |–nc⋅omment]
{ [–tit⋅le title] [–to to-folder-selector] }

folder-selector ...

DESCRIPTION

The chfolder command modifies one or more UCM folders. Use it for these tasks:

• To change the title of a folder

• To move a folder to another location in the folder hierarchy of a project VOB. The

RootFolder cannot be moved.

Note that changing a folder’s title does not affect its name (its unique identifier). See rename for

related information.

PERMISSIONS AND LOCKS

Permissions Checking:

• In ClearCase, you must be the owner of the folder, the UCM project VOB owner, or a

member of the ClearCase group.

• In ClearCase LT, you must be the owner of the folder, the UCM project VOB owner, or

logged on at the ClearCase LT server host as the local administrator.

Locks: An error occurs if there are locks on any of the following objects: the folder, the UCM

project VOB.

Mastership: The current replica must master the folder.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
94 ClearCase Reference Manual

chfolder
OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ASSIGNING A NEW TITLE. Default: None.

–tit⋅le title
Specifies the new title for the folder. The title argument can be a character string of any

length. Use double quotes to enclose a title with special characters.

MOVING A FOLDER. Default: None.

–to to-folder-selector
Specifies the new parent folder. The to-folder and the folder you are moving must belong

to the same UCM project VOB.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

SPECIFYING THE FOLDER TO CHANGE. Default: None.

folder-selector ...
Specifies one or more folders to modify. RootFolder cannot be moved.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Assign a new title to the Parsers folder. Note the VOB component of the folder-specifier must be

the folder’s project VOB.

cmd-context chfolder -title "Team Parser Projects" Parsers@/vobs/core_projects
Changed folder "Parsers@\vobs\core_projects".

• Make the folder Core_Parsers a subfolder of RootFolder. Note that the folder’s project VOB

is given as the VOB component of the folder-specifier.
 ClearCase Reference Pages 95

chfolder
cmd-context chfolder -to RootFolder Core_Parsers@/vobs/core_projects
Changed folder "Core_Parsers@\vobs\core_projects".

SEE ALSO

lsfolder, mkfolder, rmfolder, rename
96 ClearCase Reference Manual

chmaster
chmaster
Transfer mastership of VOB-database object

APPLICABILITY

SYNOPSIS
chmaster [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery

| –cqe⋅ach | –nc⋅omment]
{ master-replica-selector object-selector ...

| [–pname] master-replica-selector branch-or-element-pname ...

| –def⋅ault [–pname] branch-pname ...

| –def⋅ault brtype-selector ...

| –all [–force old-replica-selector] [–l⋅ong] [–vie⋅w view-tag] master-replica-selector
}

DESCRIPTION

This command transfers the mastership of one or more objects from one VOB replica to another.

Only the current replica is affected immediately; other replicas are notified of the mastership

transfers through the normal exchange of update packets.

Mastership restricts some of the operations you can perform on an object. For information on

mastership restrictions, see ClearCase MultiSite Manual.

To limit use of this command to a certain set of users, you can create triggers. For more

information, see Implementing Project Development Policies in Managing Software Projects with
ClearCase.

SPECIFYING A VIEW CONTEXT

The chmaster command requires a view context. If you are not in a set view or working directory

view on UNIX or a view drive on Windows, you can specify a view on the command line, as

shown in Table 2. If you specify a dynamic view, it must be active on your host.

NOTE: A view you specify in the chmaster command takes precedence over your current set view,

working directory view, or view drive.

Product Command Type

ClearCase cleartool subcommand

MultiSite multitool subcommand
 ClearCase Reference Pages 97

chmaster
RESTRICTIONS

Mastership Checking: An object’s mastership can be changed only at its master replica. Using both

–all and –force overrides this restriction, but you must not use the –force option except in special

circumstances. (See the description of the –all option.)

Permissions Checking: Restrictions depend on the kind of object:

Table 2 Specifying a View in a chmaster Command

Argument How To Specify a View

object-selector
brtype-selector

Use a view-extended pathname as the vob-selector portion of the

argument. For example:

lbtype:LABEL1@/view/jtg/vobs/dev
brtype:v1.0_bugfix@/view/jtg/vobs/dev
lbtype:LABEL1@s:\dev
brtype:v1.0_bugfix@s:\dev

branch-or-element-pname Specify branch-or-element-pname as a view-extended pathname.

For example:

/view/jtg/vobs/dev/cmd.c@@
s:\dev\cmd.c@@

branch-pname Specify branch-pname as a view-extended pathname. For

example:

/view/jtg/vobs/dev/cmd.c@@/main
s:\dev\cmd.c@@\main

master-replica-selector (for

the chmaster –all variant)

Use the –view option or use a view-extended pathname as the

vob-selector portion of the argument. For example:

–view jtg replica:lex@\dev
replica:lex@/view/jtg/vobs/dev
replica:lex@s:\dev

element Must be element creator, element owner, VOB owner, root user (UNIX), or member

of the ClearCase group (Windows)

replica Must be VOB owner, root user (UNIX), or member of the ClearCase group
(Windows)

others Must be object creator, object owner, VOB owner, root user (UNIX), or member of

the ClearCase group (Windows)
98 ClearCase Reference Manual

chmaster
See the permissions reference page in the ClearCase Reference Manual.

Locks: Restrictions depend on the kind of object:

Other Restrictions: You cannot transfer mastership of a branch if the branch is checked out

reserved or if it is checked out unreserved without the –nmaster option.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See the comments reference

page. To edit a comment, use cleartool chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with one of the MultiSite comment options.

SPECIFYING THE OBJECTS. Default: None.

master-replica-selector object-selector ...

Transfers mastership of objects specified with object-selector to the VOB replica specified

with master-replica-selector. Specify master-replica-selector in the form

[replica:]replica-name[@vob-selector]

Object whose mastership is
changing

Locks on these objects cause the chmaster command to fail

Element Element, element type, VOB

Branch Branch, branch type, VOB

Type object Type object, VOB

Hyperlink Hyperlink type, VOB

Baseline Baseline, VOB, replica, components associated with the

baseline

Component Component, VOB, replica

replica-name Name of the replica (displayed with lsreplica)

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
 ClearCase Reference Pages 99

chmaster
Specify object-selector in one of the following forms:

[–pname] master-replica-selector branch-or-element-pname ...

Transfers mastership of the specified branches or elements to the VOB replica specified

with master-replica-selector. A branch pathname takes the form element-name@@/branch...,

for example, foo.c@@/main/bugfix, and an element pathname takes the form

element-name@@, for example, foo.c@@. If branch-or-element-pname has the form of an

object selector, you must include the –pname option to indicate that pname is a

pathname.

–a⋅ll [–f⋅orce old-replica-selector] [–l⋅ong] [–vie⋅w view-tag] master-replica-selector
CAUTION: Incorrect use of the –force form of the command can lead to irreparable

divergence among the replicas in a VOB family.

Transfers to master-replica-selector mastership of all objects that are located in and

mastered by the current replica. (The chmaster command determines the current replica

by using the vob-selector you specify as part of master-replica-selector. If you do not include

a vob-selector, chmaster uses the replica containing the current working directory.)

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

vob-selector vob:pname-in-vob

where

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

attribute-type-selector [attype:]type-name[@vob-selector]

branch-type-selector [brtype:]type-name[@vob-selector]

element-type-selector [eltype:]type-name[@vob-selector]

hyperlink-type-selector [hltype:]type-name[@vob-selector]

label-type-selector [lbtype:]type-name[@vob-selector]

hlink-selector [hlink:]hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

replica-selector [replica:]replica-name[@vob-selector]

baseline-selector [baseline:]baseline-name[@vob-selector]

component-selector [component:]component-name[@vob-selector]
100 ClearCase Reference Manual

chmaster
If errors occur, the command continues. After finishing, it reports that not all mastership

changes succeeded.

With –long, chmaster lists the objects whose mastership is changing.

With –view, chmaster uses the specified view as the view context.

With –force, chmaster transfers mastership of all objects in the replica specified with

old-replica-selector. Also, chmaster associates nonmastered checkouts with the new

replica. Use this form of chmaster only when replica old-replica-selector is no longer

available (for example, was deleted accidentally). Before entering this command, you

must make sure that old-replica-selector masters itself or is mastered by the replica that it

last updated. Then, enter the chmaster command at the last-updated replica. You must

also send update packets from the last-updated replica to all other remaining replicas in

the VOB family. For more information, see the rmreplica reference page.

RETURNING MASTERSHIP OF BRANCHES TO DEFAULT STATE. Default: None.

–def⋅ault [–pname] branch-pname ...

Transfers mastership of branch-pname to the replica that masters the branch type. If

branch-pname has the form of an object selector, you must include the –pname option to

indicate that branch-pname is a pathname.

–def⋅ault brtype-selector ...

Removes explicit mastership of branches that are mastered explicitly by the current

replica and are instances of the type brtype.

NOTE: You can use this command only at the replica that masters the branch type.

EXAMPLES

• At replica paris, transfer mastership of label type VERSION1.0 to the osaka replica.

multitool chmaster osaka lbtype:VERSION1.0
Changed mastership of "VERSION1.0" to "osaka"

• At replica paris, transfer mastership of element list.c to the evanston replica.

multitool chmaster evanston list.c@@
Changed mastership of "list.c" to "evanston"

• At the replica that is the master of replica osaka, make osaka self-mastering.

multitool chmaster osaka replica:osaka
Changed mastership of "osaka" to "osaka"

• At replica paris, transfer the mastership of branch bar.c@@\main\v3_dev to osaka.

multitool chmaster osaka bar.c@@\main\v3_dev
Changed mastership of branch "\tromba\bar.c@@\main\v3_dev" to "osaka"
 ClearCase Reference Pages 101

chmaster
• For all objects mastered by the current replica, transfer mastership to paris.

multitool chmaster –all paris
Changed mastership of all objects

• Same as the preceding example, but have chmaster list each object whose mastership is

changing, and specify a view context.

multitool chmaster –all –long paris@s:\dev
Changed mastership of label type VERSION1.0
Changed mastership of replica osaka
Changed mastership of all objects

• Return mastership of a branch to the replica that masters the branch type, and then remove

its explicit mastership.

At the replica that masters the branch:

multitool describe –fmt "%[master]p\n" brtype:v3_bugfix
boston@\dev

multitool chmaster boston@\dev \dev\acc.c@@\main\v3_bugfix
Changed mastership of branch "\dev\acc.c@@\main\v3_bugfix" to
"boston@\dev"

multitool syncreplica –export –fship boston@\dev
Generating synchronization packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\outgoing\sync_sf_19-May-99.09.33.02_3447_1
...

At the replica that masters the branch type:

multitool syncreplica –import –receive
Applied sync. packet c:\Program Files\Rational\ClearCase\var
\shipping\ms_ship\incoming\sync_sf_19-May-99.09.33.02_3447_1
to VOB \\minuteman\vobstg\source_boston

multitool chmaster –default brtype:v3_bugfix
Changed mastership of branch type "v3_bugfix" to "default"

SEE ALSO

reqmaster, syncreplica (in the ClearCase MultiSite Manual)
102 ClearCase Reference Manual

chpool
chpool
Changes the storage pool to which an element is assigned

APPLICABILITY

SYNOPSIS
chpool [–f⋅orce] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] pool-selector pname ...

DESCRIPTION

The chpool command changes the source storage pool, derived object storage pool, or cleartext storage
pool to which one or more elements are assigned.

For a file element:

• Changing the source pool moves the data containers that store all existing versions from the

current pool to the specified pool.

• Changing the cleartext pool designates a different location for new cleartext versions.

Existing cleartext versions remain where they are, and are eventually scrubbed. (See the

scrubber reference page.)

• An error occurs if you attempt to assign a file element to a derived object pool; file elements

have source and cleartext pools only.

For a directory element:

• Changing the source pool or the cleartext pool affects pool inheritance by new elements.

Elements created within the directory are assigned to the new pool; the pool assignments of

existing elements do not change.

• Changing the derived object pool designates a new location for shared derived objects with

pathnames in that directory. The promote_server program copies data containers to the

new pool; he existing contents of the old pool do not change, and are eventually deleted by

scrubber.

Product Command Type

ClearCase cleartool subcommand

Attache command
 ClearCase Reference Pages 103

chpool
Commands for Listing Pools

The lspool command lists a VOB’s storage pools. The describe command includes storage pool

assignments in its listing for an element. To reference an element (rather than one of its versions),

append the extended naming symbol to the element’s standard pathname:

cmd-context describe msg.c@@

PERMISSIONS AND LOCKS

Permissions Checking: For each object processed, you must be one of the following: VOB owner,

member of the ClearCase group. See the permissions reference page.

Locks: An error occurs if any of the following objects are locked: VOB, element type, element,

pool.

OPTIONS AND ARGUMENTS

USER INTERACTION. Default: Prompts for confirmation before moving data containers.

–f⋅orce
Suppresses the confirmation step.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE POOL. Default: None.

pool-selector
An existing storage pool. Specify pool-selector in the form [pool:]pool-name[@vob-selector]

SPECIFYING THE ELEMENTS. Default: None.

pname ...

One or more pathnames, each of which specifies a file or directory element. A standard

pool-name Name of the storage pool

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted).
104 ClearCase Reference Manual

chpool
pathname is valid; you do not need to append the extended naming symbol. (Specifying

a version or a branch is generally equivalent to specifying its element.)

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Reassign all elements in the current directory that have a .c extension to cleartext pool

cltxt2.

cmd-context chpool –force cltxt2 *.c

Changed pool for "cm_add.c" to "cltxt2".
Changed pool for "cm_fill.c" to "cltxt2".
Changed pool for "convolution.c" to "cltxt2".
Changed pool for "msg.c" to "cltxt2".
Changed pool for "test_cmd.c" to "cltxt2".
Changed pool for "util.c" to "cltxt2".

• Change the default source pool for the src directory, so that new elements created in this

directory are assigned to the c_pool pool.

cmd-context chpool c_pool src

Changed pool for "src" to "c_pool".

• Change the source pool for hello.c to sdft, the VOB’s default source pool. (Assumes the

element had been assigned to a different pool.)

cmd-context chpool sdft hello.c

Move all versions of element "hello.c"? [no] yes
Changed pool for "hello.c" to "sdft".

SEE ALSO

lspool, mkdir, mkelem, mkpool, profile_ccase, promote_server, scrubber
 ClearCase Reference Pages 105

chproject
chproject
Modifies a UCM project

APPLICABILITY

SYNOPSIS
chproj⋅ect [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–tit⋅le title]

 [–amo⋅dcomp component-selector[,...]]

 [–to to-folder-selector]

 [–reb⋅ase-level promotion-level]

 [–policy policy-keyword[,...]] [–npolicy policy-keyword[,...]]

 [–crm⋅enable ClearQuest-user-database-name | –ncr⋅menable] }

 project-selector ...

DESCRIPTION

The chproject command modifies one or more UCM projects. Use it to:

• Change a project’s title

• Add one or more modifiable components to a project

• Move a project to another folder

• Change the promotion level required of a baseline before it can be used in a rebase

operation.

• Set policy for a project.

• Enable or disable a project for use with Rational ClearQuest

Project Titles

Note that changing a project’s title does not affect its name (its unique identifier). See rename for

related information.

Adding New Components

Over time, a project’s scope can broaden, and you may need to add writable components to the

project’s integration stream. The –amodcomp option allows you to add one or more modifiable

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
106 ClearCase Reference Manual

chproject
components. Components can be added to project development streams with the rebase
–baseline command.

Setting Required Promotion Levels for Recommended Baselines

A project’s rebase level is defined as the minimum promotion level a baseline must have to be

recommended in a rebase operation. For example, if ProjectA has three promotion levels,

REJECTED, TESTED, and RELEASED (in ascending order), and TESTED in the rebase level,

only baselines that are labeled TESTED or RELEASED are included in the project’s list of

recommended baselines. See rebase and setplevel for more information.

Project Policies

You can set or unset projectwide policies, such as specifying that views attached to the

integration stream must be snapshot views. Policies are identified on the command line by their

keyword. The following table describes these policies and lists the keywords used to set them.

Using Rational ClearQuest with UCM projects

You can link or unlink a UCM project to a ClearQuest database with the –crmenable or

–ncrmenable options. When you ClearQuest-enable a UCM project that contains UCM activities,

for each UCM activity, a ClearQuest record of type UCMUtilityActivity is created and linked to

the activity. This process is called activity migration. If you disable a link to ClearQuest, from a

UCM project that contains activities, all its activities are unlinked from their ClearQuest records.

All ClearQuest-enabled projects in the same UCM project VOB must link to the same ClearQuest

user database.

The –crmenable and –ncrmenable options display a summary of the number of activities that

have been migrated or unlinked.

Policy Keyword

Recommend snapshot views for integration

work. Dynamic views are suggested if this

policy is not set.

POLICY_WIN_INT_SNAP

Recommend snapshot views for

development work. Dynamic views are

suggested if this policy is not set.

POLICY_WIN_DEV_SNAP

Require a development stream to be based

on the current recommended baselines

before it can be used to deliver changes to

the integration stream.

POLICY_DELIVER_REQUIRE_REBASE

Do not allow delivery from a development

stream that has checkouts.

POLICY_DELIVER_NCO_DEVSTR
 ClearCase Reference Pages 107

chproject
You are informed if activities cannot be migrated or linked because they are not mastered in the

current UCM project VOB replica. If any are discovered, you are informed of the number of

activities for which this is true and shown a list of replicas from which to run the command again

to correct the problem.

Detecting and Correcting Incorrectly Enabled Activities

You can also use the –crmenable and –ncrmenable options to check for possible linking errors.

If you believe that your ClearQuest-enabled project may contain activities that are not linked to

a ClearQuest record, run the chproject –crmenable command. This scans all activities in the

project, skipping activities that are already linked and migrating all activities that are not linked.

To check for linked activities in projects that have been disabled for use with ClearQuest, run the

chproject –ncrmenable. This removes links between activities as needed. See Managing Software
Projects with ClearCase for further information.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: An error occurs if there are locks on any of the following objects: the project or the UCM

project VOB.

Mastership: The current replica must master the project.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cq). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ASSIGNING A NEW TITLE. Default: None.

–tit⋅le title
Specifies a new title for the project. The title argument can be a character string of any

length. Enclose a title with special characters in double quotes

ADDING TO THE LIST OF MODIFIABLE COMPONENTS FOR A PROJECT. Default: None.

–amo⋅dcomp component-selector[,...]

Adds one or more components to the project’s set of modifiable components.

component-selector is of the form: [component:]component-name[@vob-selector] and vob is

the component’s UCM project VOB.

MOVING THE PROJECT TO ANOTHER FOLDER. Default: None.
108 ClearCase Reference Manual

chproject
–to to-folder-selector
Moves one or more projects to the specified folder.The to-folder and project must have

the same UCM project VOB.

folder-selector is of the form: [folder:]folder-name[@vob-selector] and vob is the folder’s

UCM project VOB.

CHANGING THE RECOMMENDED PROMOTION LEVEL FOR A REBASE OPERATION. Default: None.

–reb⋅ase_level promotion-level
Changes the promotion level required for baselines to be recommended baselines in a

rebase operation. For each component, the latest baseline in the integration stream at or

above this promotion level is recommended.

SETTING PROJECT POLICY. Default: None.

–policy policy-keyword
Activates the specified policy. See Project Policies on page 107

–npolicy policy-keyword
Removes the specified policy. See Project Policies on page 107

LINKING A PROJECT TO RATIONAL CLEARQUEST. Default: None.

–crm⋅enable ClearQuest-user-database-name
Enables a link from the project to the specified Rational ClearQuest database. The

schema of the ClearQuest database must be UCM-enabled, and your system must be

configured for the correct schema repository.

–ncr⋅menable
Disables use of Rational ClearQuest.

SELECTING A PROJECT. Default: None.

project-selector ...
Specifies one or more projects to modify.

project-selector is of the form: [project:]project-name[@vob-selector] and vob is the project’s

UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.
 ClearCase Reference Pages 109

chproject
Add the modifiable component, webo_modeler, to the project.

cmd-context chproject -amod webo_modeler webo_proj1@\webo_pvob

Changed modifiable component list for project "webo_proj1@\webo_pvob".

SEE ALSO

chbl, lscomp, lsproject, mkproject, mkcomp, rebase, rmproject
110 ClearCase Reference Manual

chstream
chstream
Modifies a UCM stream

APPLICABILITY

SYNOPSIS

chstream [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–title title] stream-selector ...

DESCRIPTION

The chstream command allows you to assign a new title to a stream. The stream’s UUID

(universal unique identifier) is not changed. See rename for related information.

PERMISSIONS AND LOCKS

Permissions Checking:

• In ClearCase, you must be the owner of the stream, the VOB owner, or a member of the

ClearCase group.

• In ClearCase LT, you must be the owner of the stream, the VOB owner, or logged in at the

ClearCase LT server host as the local administrator.

Locks: An error occurs if there are locks on the following objects: the UCM project VOB, the

stream.

Mastership: The current replica must master the stream.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING A NEW STREAM TITLE Default: None.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 111

chstream
–title title
Specifies the new title for the stream. The title argument can be a character string of any

length. Enclose a title with special characters in double quotes.

SPECIFYING THE STREAM. Default: None.

stream-selector ...
Specifies one or more streams to be modified.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change the title of a stream.

cmd-context chstream -title "jamaica blue" java-int@vobs/javaprojvob

SEE ALSO

 lsstream, mkstream, rename, rmstream
112 ClearCase Reference Manual

chtype
chtype
Changes the type of an element or renames a branch

APPLICABILITY

SYNOPSIS
chtype [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–f⋅orce] [–pna⋅me] type-selector { pname ... | object-selector ... }

DESCRIPTION

The chtype command changes the element type of one or more existing elements or renames one

or more existing branches. These operations involve changing the type object associated with the

element or branch.

Changing an Element’sType

You can use chtype to convert an element from one element type to another (for example, from

file to text_file). Typically, you change an element’s type to change the way its versions are

stored. For example, versions of a file element are stored in separate data containers in a VOB

source pool. Converting the element to type text_file causes all its versions to be stored in a single

data container, as a set of deltas (version-to-version differences); this saves disk space.

Restrictions. All versions of an element must fit the new element type. For example, converting

an element to type text_file fails if any of its versions contains binary data, rather than text. You

cannot convert files to directories, and vice versa.

Renaming a Branch

You can use chtype to rename a branch (for example, from bugfix to maintenance). ClearCase

and ClearCase LT implement a branch as an instance of a branch type object. Thus, “change the

branch from A to B” actually means “change the branch from an instance of branch type A to an

instance of branch type B.”

NOTE: Don’t confuse the renaming of a particular branch (chtype) with the renaming of a branch

type (rename). Figure 1 illustrates the difference.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 113

chtype
Figure 1 Renaming a Branch vs. Renaming a Branch Type

PERMISSIONS AND LOCKS

Permissions Checking:

• In ClearCase:

• For an element type, you must be the element owner, VOB owner, or a member of the

ClearCase group

• For a branch type, you must be the branch creator, the element owner, the VOB owner,

or a member of the ClearCase group

• In ClearCase LT:

• For an element type, you must be the element owner, the VOB owner, or logged in at the

ClearCase LT server host as the local administrator.

• For a branch type, you must be the branch creator, the element owner, the VOB owner,

or logged in at the ClearCase LT server host as the local administrator.

See the permissions reference page.

Locks: An error occurs if any of the following objects are locked:

before renaming with chtype

branch type A

branch in
element X

after renaming with chtype

branch type B

branch type A

branch in
element X

Renaming a Particular Branch:

before renaming with rename

branch type old

after renaming with rename

branch type new

branchbranch

Renaming a Branch Type:
114 ClearCase Reference Manual

chtype
See also the permissions reference page.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: chtype prompts for confirmation if changing an element’s type will

change the way its versions are stored in the VOB storage pool.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE NEW TYPE. Default: None.

type-selector
An element type or branch type. The type must already exist. (Exception: If you specify

a global element type or global branch type, a local copy of the type is created if one does

not already exist.) Specify type-selector in the form [type-kind:]type-name[@vob-selector]

SPECIFYING THE ELEMENTS, BRANCHES, OR ACTIVITIES. Default: None.

[–pna⋅me] pname ...

One or more pathnames, each of which specifies a file or directory element. A standard

pathname is valid; you need not append the extended naming symbol. That is,

specifying a version is equivalent to specifying its element. Specifying a branch (for

example, foo.c@@\main\bugfix causes an error.

Element type: VOB, element type, element, pool

Branch type: VOB, element type, element, branch type, branch.

Activity type: VOB, activity type, activity

type-kind One of

brtype branch type

eltype element type

actype activity type

type-name Name of the type object

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)
 ClearCase Reference Pages 115

chtype
If pname has the form of an object selector (for example, eltype:fl2), you must use the

–pname option to indicate that it is a pathname. The –pname option must precede

non-option arguments; for example:

cmd-context chtype –nc –force –pname eltype:c_source eltype:fl2

object-selector ...

The object-selector arguments can be one of the following:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Convert an element to type file.

cmd-context chtype file hello.c

Change version manager and reconstruct all versions for "hello.c"? [no]
yes
Changed type of element "hello.c" to "file".

• Change branch rel2_bugfix to branch maintenance, providing a comment.

cmd-context chtype -c "rel2_bugfix no longer in use" maintenance
util.c@@\main\rel2_bugfix

Changed type of branch "util.c@@\main\rel2_bugfix" to "maintenance".

• Convert a library to compressed_file format, suppressing confirmation prompts.

cmd-context chtype -force compressed_file libutil.lib

Changed type of element "libutil.lib" to "compressed_file".

• One or more extended pathnames, each of which specifies a particular branch of

an element. For example:

foo.c@@\main\bugfix
bar.c@@\main\maint\bug405

• One or more activities. Specify activity-selector in the form

activity:activity-name[@vob-selector]

activity-name Name of the activity
116 ClearCase Reference Manual

chtype
SEE ALSO

cc.magic, mkbrtype, mkelem, mkeltype, profile_ccase, rename
 ClearCase Reference Pages 117

chview
chview
Changes properties of a view

APPLICABILITY

SYNOPSIS

• ClearCase:

chview { [–cac⋅hesize size] [–sha⋅reable_dos | –nsh⋅areable_dos] [–reado⋅nly | –readw⋅rite] }

{ –cvi⋅ew | view-tag }

• ClearCase LT:

chview { [–cac⋅hesize size] [–reado⋅nly | –readw⋅rite] } { –cvi⋅ew | view-tag }

DESCRIPTION

The chview command changes various properties of a view, including the cache size, the type of

DOs the view creates, and the access mode. The view server can be running when you enter this

command.

Cache Size

The –cachesize option changes the cache size for a view and is equivalent to the setcache –view
–cachesize command. For information on view caches, see the setcache reference page.

ClearCase Only—Type of Derived Objects Built in a Dynamic View

The –shareable_dos and –nshareable_dos options change the properties of the derived objects
(DOs) created by future builds in the dynamic view. Shareable DOs are available for winkin by

other views; nonshareable DOs are not available for winkin by other views. Both kinds of DOs

have configuration records, but clearmake does not write shopping information for

nonshareable DOs into the VOB. For more information about shareable and nonshareable DOs,

see Building Software with ClearCase.

Using the –shareable_dos or –nshareable_dos option does not change the properties of the

existing DOs in the view. To make a nonshareable DO shareable, you must use the winkin
command. You cannot make a shareable DO nonshareable.

NOTE: You can change the DO property of the view while a clearmake or omake build is running

in the view. The build will use the new property after completing the current target build.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
118 ClearCase Reference Manual

chview
ClearCase Only—Access Mode in a Dynamic View

The –readonly and –readwrite options change the access mode for the view’s private

data-storage area. By default, views have read-write access. If you change a view’s property to

read-only, you cannot use the view to perform any operation that creates new files in

view-private storage (for example, checkouts or builds).

Changing a view’s property to read-only does not prevent users from changing the view’s config

spec. For information on restricting changes to the config spec, see the mkview reference page.

PERMISSIONS AND LOCKS

Permissions: You must be the view owner.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

–cac⋅hesize size
Specifies a size for the view_server cache. size must be an integer value of bytes,

optionally followed by the letter k to specify kilobytes or m to specify megabytes; for

example, 800k or 3m.

–sha⋅reable_dos
Specifies that DOs created by future builds in the view are shareable.

–nsh⋅areable_dos
Specifies that DOs created by future builds in the view are not shareable.

–reado⋅nly | –readw⋅rite
Changes the access mode of the view.

–cvi⋅ew
Changes the properties of the current view.

view-tag
Changes the properties of the view specified by view-tag.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Change the cache size for view smg_test.
 ClearCase Reference Pages 119

chview
cmd-context chview –cachesize 500k smg_test
The new view server cache limits are:
Lookup cache: 49152 bytes
Readdir cache: 204800 bytes
File stats cache: 86016 bytes
Object cache: 172032 bytes
Total cache size: 512000 bytes

• (ClearCase only) Change the current view to create nonshareable DOs.

cmd-context chview –nshareable_dos –cview
Properties: nshareable_dos

SEE ALSO

mkview, lssite, setsite, winkin
120 ClearCase Reference Manual

clearaudit
clearaudit
Non-clearmake build and shell command auditing facility for dynamic views

APPLICABILITY

SYNOPSIS
clearaudit [shell_cmd]

DESCRIPTION

NOTE: clearaudit is applicable to dynamic views only.

The clearaudit command runs an audited shell with the same view and working directory as the

current process. MVFS files created within an audited shell (or any of its children) are derived
objects (DOs). When it exits, an audited shell creates a configuration record (CR) and associates it

with each of the newly created DOs.

The CR and DOs produced by clearaudit are similar to those created by clearmake. They can be

listed, compared, and deleted with the same cleartool commands used for other DOs (see

below). They can be shared with other views through explicit winkin commands, but they

cannot be winked in by clearmake. They can be checked in as DO versions. For more information

about configuration records, see Derived Objects and Configuration Records in Building Software with
ClearCase.

clearaudit itself is not a shell. It starts an audit and then executes an underlying shell. clearaudit
determines which shell to run as follows:

• First choice: the value of environment variable CLEARAUDIT_SHELL, which must be the full

pathname of a program

• Second choice: the value of environment variable COMSPEC, which must be the full

pathname of a program

• If neither EV is set: cmd.exe

The process from which you invoke clearaudit must have a view context; the audited process

uses that view. An error occurs if the invoking process has no view context.

Location of Temporary Build Files

clearaudit creates temporary build files in the directory specified by the CCASE_AUDIT_TMPDIR

environment variable. If this EV is not set or is set to an empty value, clearaudit creates

temporary files in the directory specified by the TMP environment variable. All temporary files

Product Command Type

ClearCase command
 ClearCase Reference Pages 121

clearaudit
are deleted when clearaudit exits. If the value of CCASE_AUDIT_TMPDIR is a directory under a

VOB-tag, clearaudit prints an error message and exits.

Auditing Any Process

clearaudit can be used to document the work performed by any process. For example, you can

use clearaudit to audit a backup operation, producing a configuration record that describes

exactly which files and/or versions were saved.

Auditing a Non-ClearCase make

You can also use clearaudit to produce derived objects and configuration records for software

builds performed with another make program, such as nmake. Follow these guidelines:

• Set the value of COMSPEC to ccase-home-dir\bin\clearaudit in the makefile.

• Set your process’s CLEARAUDIT_SHELL environment variable to your normal shell, for

example, %SYSTEMROOT%\system32\cmd.exe. This prevents recursive invocation of

clearaudit: if CLEARAUDIT_SHELL is not set, clearaudit attempts to start the shell specified in

COMSPEC, which was set to clearaudit.

• If you want to produce a single CR for each target’s build script, structure your makefiles so

that each build script is a single shell command. Use continuation lines (^) as necessary.

OPTIONS AND ARGUMENTS

shell_cmd
One or more words, which are passed as arguments to %CLEARAUDIT_SHELL% (or

%COMSPEC%, or cmd.exe).

NOTE: Some shells, including cmd.exe, require the use of the /c shell option, which tells the shell

what command to execute. This option must precede any shell_cmd arguments.

EXAMPLES

• Run program myscr in an audited command shell.

C:\> clearaudit /c myscr

• Run program validation_suite in an audited third-party shell tool.

C:\> set CLEARAUDIT_SHELL= R:\MKSNT\mksnt\bin\sh.exe

C:\> clearaudit /c validation_suite

• This example shows a typical CR produced by clearaudit. It describes all files produced by

a software build with Microsoft’s nmake. View-private files are marked with time stamps.
122 ClearCase Reference Manual

clearaudit
Target ClearAudit_Shell built by block.user
Host "starfield" running Windows NT 3.5
Reference Time 16-Nov-98.10:24:08, this audit started 16-Nov-98.10:24:08
View was \\saturn\vw_store\proj3\941931.vws
Initial working directory was m:\vobs\src\test

MVFS objects:

\myvob\src\test\hello@@16-Nov.10:25.16742
\myvob\test\hello.c <16-Nov-98.10:11:34>
\myvob\test\hello.o@@16-Nov.10:25.16740
\myvob\test\makefile <16-Nov-98.10:23:57>

• Run a batch file that performs a backup in an audited shell; create an empty derived object

(bkup_do) whose CR lists all of the backed-up objects.

C:\> clearaudit /c audit_bkup C:\users e:

Batch file audit_bkup:

rem
echo Audited backup of %1
echo Backup destination is %2
backup %1 %2 /s
rem
echo Creating derived object bkup_do
echo "" > .\bkup_dofc

SEE ALSO

catcr, clearmake, diffcr, lsdo, omake, pwv, rmdo, scrubber

Building Software with ClearCase
 ClearCase Reference Pages 123

124 ClearCase Reference Manual

cleardescribe

cleardescribe
Lists or changes the properties of an object graphically

APPLICABILITY

SYNOPSIS

cleardescribe { object-selector | pname } ...

DESCRIPTION

The cleardescribe command invokes the describe command with the –graphical option.

OPTIONS AND ARGUMENTS

The syntax of the cleardescribe command is the same as that for the graphical version of

describe. See the describe reference pages for a description of the command-line options.

SEE ALSO

describe, chevent, lstype, lslock, mklabel, rmlabel, mktrigger, rmtrigger, lock, unlock, reserve,

unreserve, protect, mkattype, mkbrtype, mkeltype, mkhltype, mklbtype, mktrtype

Product Command Type

ClearCase command

ClearCase LT command

cleardiff
cleardiff
Compares or merges text files

APPLICABILITY

SYNOPSIS

• Compare files:

cleardiff [–dif⋅f_format | –ser⋅ial_format | –col⋅umns n]

[–hea⋅ders_only | –qui⋅et | –sta⋅tus_only] [–b⋅lank_ignore] pname1 pname2 ...

• Merge files:

cleardiff –out output-pname [–bas⋅e pname] [–q⋅uery | –qal⋅l | –abo⋅rt]
[–dif⋅f_format | –ser⋅ial_format | –col⋅umns n]

[–hea⋅ders_only | –qui⋅et | –sta⋅tus_only] pname1 pname2 ...

DESCRIPTION

cleardiff is a line-oriented file comparison and merge utility with a character-based user

interface. It can process up to 32 files.

Alternative interfaces: cleardiff can be invoked with the cleartool diff command to perform a

file comparison, or with the cleartool merge subcommand to perform a merge.

NOTE: You cannot compare directory versions with cleardiff; you must use diff. (The diff
command first analyzes the directory versions, then calls cleardiff, using the type manager
mechanism.)

See the diff and merge reference pages for discussions of how files are compared and merged.

OPTIONS AND ARGUMENTS

–dif⋅f_format
–ser⋅ial_format
–col⋅umns n (mutually exclusive)

–diff_format reports both headers and differences in the same style as diff, and

suppresses the file summary from the beginning of the report.

–serial_format reports differences with each line containing output from a single file,

instead of using a side-by-side format.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 125

cleardiff
–columns establishes the overall width of a side-by-side report. The default width is 80

(that is, only the first 40 or so characters of corresponding difference lines appear). If n
does not exceed the default width, this option is ignored.

NOTE: Any of the following options can be invoked with the diff –options or merge –options
commands.

–hea⋅ders_only
–qui⋅et
–sta⋅tus_only (mutually exclusive)

–headers_only lists only the header line of each difference. The difference lines

themselves are omitted.

–quiet suppresses the file summary from the beginning of the report.

–status_only suppresses all output, returning only an exit status: a 0 status indicates that

no differences were found; a 1 status indicates that one or more differences were found.

This option is useful in shell scripts.

–b⋅lank_ignore
Ignores extra white space characters in text lines: leading and trailing white space is

ignored altogether; internal runs of white space characters are treated like a single

<SPACE> character.

–out output-pname
Stores the output of a merge in file output-pname. This file is not used for input, and must

not already exist.

–bas⋅e pname
Makes file pname the base contributor for the comparison or merge. If you omit this

option, the pname1 argument becomes the base contributor, and the comparison or

merge automatically runs with the –qall option invoked.

–q⋅uery
–qal⋅l
–abo⋅rt (mutually exclusive)

–query turns off automatic merging for nontrivial merges (where two or more

contributors differ from the base contributor) and prompts you to proceed with every

change in the from-versions. Changes in the to-version are accepted unless a conflict

exists.

–qall turns off automatic acceptance of changes in which only one contributor differs

from the base contributor. cleardiff prompts for confirmation of such changes, as it does

when two or more contributors differ from the base contributor.
126 ClearCase Reference Manual

cleardiff
–abort is intended for use with scripts or batch jobs that involve merges. It allows

completely automatic merges to proceed, but aborts any merge that requires user

interaction.

pname1 pname2 ...

The pathnames of contributors to compare or merge. These can be view-extended or

version-extended pathnames. Only one such argument is required if you also specify a

file with the –base option.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Compare the current version of an element with a scratch copy in your home directory.

z:\myvob> cleardiff msg.c C:\users\susan\msg.c.tmp

<<< file 1: msg.c
>>> file 2: C:\users\susan\msg.c.tmp

------------[changed 5]--------|-----------[changed to 5]------------

static char msg[256];	static char msg[BUFSIZ];

-----------[changed 9-11]------|-----------[changed to 9]------------
env_user(), | env_user(), env_home(), e+
env_home(), |-
env_time()); |

-|

• Compare the most recent versions on two branches of an element.

y:\lib_vob> cleardiff util.c@@\main\LATEST util.c@@\main\rel2_bugfix\LATEST

SEE ALSO

diff, merge, type_manager
 ClearCase Reference Pages 127

clearexport_ccase
clearexport_ccase
Copies ClearCase or ClearCase LT data to a different VOB

APPLICABILITY

SYNOPSIS
clearexport_ccase [–r] [–s date-time | –I { now | date-time }]

[–t temp-dir-pname] [–T translation-pname]

[–o datafile-pname] [source-name ...]

DESCRIPTION

The clearexport_ccase utility plays a central role in cross-VOB maintenance by copying VOB

objects from one VOB to another, specifically:

• Elements

• All the elements and links cataloged within a directory

• A hierarchy of directories, file elements, and VOB symbolic links

For information on moving elements from one VOB to another or splitting a VOB into two or

more VOBs, see relocate.

The copy procedure involves two stages: export and import. During the export stage, you invoke

clearexport_ccase in the VOB where the data to be moved resides. clearexport_ccase creates a

datafile (by default, named cvt_data), and places in it descriptions of the objects in the VOB (for

details, see Table 3).

In the import stage, you invoke clearimport on the datafile. clearimport reads the descriptions in

the datafile and imports the information into the new VOB. Use the same config spec (the same

view) for both the export and import phases.

NOTE: You cannot run clearexport_ccase on UNIX and then run clearimport on Windows to

import the data, or vice versa. However, you can transfer data in either direction between a UNIX

VOB and a Windows VOB by mounting the UNIX VOB on your Windows machine and running

both clearexport_ccase and clearimport on the Windows machine.

Product Command Type

ClearCase command

ClearCase LT command
128 ClearCase Reference Manual

clearexport_ccase
Contents of the Datafile

Table 3 describes which aspects of objects clearexport_ccase includes in the data file. Not all

objects are included in all circumstances; for example, derived objects are not available in

snapshot views.

Table 3 ClearCase/ClearCase LT Items Included in Data File

Item
Description
included in
data file?

Notes

Directory element Yes The datafile includes descriptions only of the elements and

cataloged links in the directory version selected by the current

view; thus, for example, metadata associated with the directory

version is not exported. Even exporting all directories in a VOB

may miss the elements not included in the VOB as it is currently

seen by the view.

File element Yes If the element has a user-defined element type, an error occurs if

you invoke clearimport in a VOB in which that element type is not

defined. (clearimport makes no effort to verify that the element

type is defined the same way in both VOBs.) clearexport_ccase
includes in the datafile descriptions of any attributes attached to an

element object itself.

By default, clearexport_ccase includes descriptions of all versions

in the datafile, but you can specify command options to limit the

versions that are included.

Checked-out versions No When clearexport_ccase processes a checked-out version, it issues

a warning message and does not include a description of the

checked-out version in the datafile.

Symbolic links Yes

Checked-in DOs Yes Config records of checked-in DOs are copied to the new VOB when

you invoke clearimport (ClearCase only).

Event records Yes

Type objects Yes

Attributes Yes

Labels Yes
 ClearCase Reference Pages 129

clearexport_ccase
TRANSLATION OF BRANCHES AND VERSION LABELS

A label type cannot have the same name as a branch type within the same VOB. If

clearexport_ccase encounters a label-branch naming conflict, it renames one of them. For

example, the label rel2 may become rel2_1. Such renaming can introduce inconsistencies over

multiple runs of clearexport_ccase. The same label may be renamed during one run, but not

during others. You can enforce consistency by using the same translation file in multiple

invocations of clearexport_ccase. If you name such a file, using the –T option, clearexport_ccase
uses it to:

• Look up each label or branch to determine whether it has been translated previously. If a

match is found, the current name is translated the same way.

• Record each translation of a new label or branch for use in future lookups.

The first time you use clearexport_ccase, use –T to create a new translation file. On subsequent

invocations of clearexport_ccase, use –T again and specify the same translation file, for

consistent name translation.

Syntax of Translation File

The translation file consists of one or more lines in the following form:

{ label | branch } old-name new-name

For example, to rename the branch type pre_import_work to post_import_work and the label

BL1.7 to IMPORT_BASE, the translation file contains the lines:

branch pre_import_work post_import_work
label BL1.7 IMPORT_BASE

No blank lines are allowed in the file.

Hyperlinks Some Only hyperlinks that represent merges (hyperlinks of type Merge)

are described in the datafile.

Triggers No

Contents of lost+found
directory

See Notes To include the contents of lost+found in the datafile, make

lost+found the current directory, and then run clearexport_ccase.

Table 3 ClearCase/ClearCase LT Items Included in Data File

Item
Description
included in
data file?

Notes
130 ClearCase Reference Manual

clearexport_ccase
HANDLING OF ELEMENTS THAT CANNOT BE EXPORTED

When clearexport_ccase encounters an element that cannot be exported (for example, a file with

format problems or a broken symbolic link), it prints an error and continues. After creating the

data file, the command prints a summary of the elements that could not be exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: The datafile includes the version of a directory

or file element currently selected by your view. If you specify a directory as a source-name
argument: clearexport_ccase processes the files in that directory but ignores the contents of the

subdirectories; and clearimport creates a directory element for source-name and for each of its

subdirectories.

–r
clearexport_ccase descends recursively into all source-name arguments that are

directories. The recursive descent involves only the currently selected version of each

directory element.

SELECTIVE CONVERSION OF FILES. Default: clearexport_ccase processes all elements it encounters.

–s date-time
clearexport_ccase processes only versions modified with new metadata (labels,

branches, attributes, and so on.) or created since the specified time. Exception:

clearexport_ccase processes a branch created at an old version if one or more new

versions exist on the branch. Use this option for regular, incremental updating of an

element from another one that is still under development. Be sure to specify a date-time
that covers the entire period since the preceding update. In other situations, it is

probably better to use –I instead of –s.

NOTE: In an incremental updating situation, if you remove a label or branch from an

imported version, clearimport does not remove the label or branch from the target

element.

Specify the time in one of the following formats:

date.time | date | time | now
where:

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
 ClearCase Reference Pages 131

clearexport_ccase
Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default is today. If you omit the

century, year, or a specific date, the most recent one is used. Specify UTC if you want to

resolve the time to the same moment in time regardless of time zone. Use the plus (+) or

minus (-) operator to specify a positive or negative offset to the UTC time. If you specify

UTC without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates

before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

–I { now | date-time }

Processes only the important versions of an element, but includes all versions created

since the specified time. A version is important if any of these conditions are true:

DIRECTORY FOR TEMPORARY FILES. Default: clearexport_ccase uses the value of the TMP

environment variable as the directory for temporary files.

–t temp-dir-pname
Specifies an alternate directory for temporary files. This directory must already exist.

TRANSLATION OF BRANCHES AND LABELS. Default: As described in the section TRANSLATION OF
BRANCHES AND VERSION LABELS on page 130, clearexport_ccase may rename a branch or

label type to avoid naming conflicts.

–T translation-file
Uses the specified translation file to control conversion of label and branch names.

STORAGE LOCATION OF DATAFILE. Default: clearexport_ccase creates datafile cvt_data in the

current working directory.

–o datafile-pname
Stores the datafile in the specified location. An error occurs if datafile already exists.

SPECIFYING FILES TO BE PROCESSED. Default: clearexport_ccase processes the current working

directory (equivalent to specifying "." as the source-name argument). clearimport creates an

element in the target VOB for each element in the current working directory. clearimport creates

a directory element in the target VOB for each subdirectory of the current working directory.

long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec

• It is the most recent version on its branch.

• It has a version label.

• It has an attribute.

• A subbranch is sprouted from it.

• Either end of a merge arrow hyperlink is connected to it.
132 ClearCase Reference Manual

clearexport_ccase
source-name ...

One or more pathnames, specifying elements and/or directory versions:

Each source-name must be a simple file or directory name. This enables clearimport to
reliably access the source data. Specifying a parent directory (..) causes an error, as does

any pathname that includes a backslash (\) . Thus, before entering this command,

change to the directory in or under which the elements to be exported reside.

EXAMPLES

• Create entries in the datafile for the entire tree under directory element src, exporting

important versions created before 1999 and all versions created since the beginning of 1999.

c:\> clearexport_ccase -r -I 1-Jan-1999 src

• Create entries in the datafile for the elements in the current working directory, but not in any

subdirectories; store the datafile in a file named newcvt.

e:\> clearexport_ccase -o newcvt .

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate

• For each specified element, clearimport re-creates some or all of its versions.

• For each specified directory version, clearexport_ccase places descriptions in the

datafile for all the elements it catalogs. clearimport either reuses an existing

directory (creating a new version if new elements are added) or creates a directory

element with a single version for the specified directory itself, and for its

subdirectories.
 ClearCase Reference Pages 133

clearexport_ccase
134 ClearCase Reference Manual

clearexport_cvs
clearexport_cvs
Converts CVS files to elements

APPLICABILITY

SYNOPSIS
clearexport_cvs [–r] [–s date-time | –I { now | date-time }]

[–V] [–S] [–A] [–t temp-dir-pname] [–T translation-file]

[–o datafile-pname] [source-name ...]

DESCRIPTION

The clearexport_cvs command processes Concurrent Versions Systems (CVS) files so they can be

imported into ClearCase or ClearCase LT elements and versions. The source data can range from

a single file to an entire directory tree.

During the export stage, you invoke clearexport_cvs in the area where the CVS files reside.

clearexport_cvs creates a datafile (by default, named cvt_data), and places in it descriptions of

elements, branches, and versions. clearexport_cvs follows symbolic links it encounters during

the export stage.

In the import stage, you invoke clearimport on the datafile to import information into the new

VOB.

clearexport_cvs ignores most information in CVS files that is not related to version-tree structure.

clearexport_cvs converts each CVS symbol, which names a revision or branch, into the

appropriate construct: version label or branch. You can specify a translation file to control

naming, enforcing consistency over multiple invocations of clearexport_cvs. You can use the –S
and –V options to preserve CVS state attributes and CVS revision numbers as attributes of the

corresponding ClearCase or ClearCase LT versions. The –A option enables you to export CVS

Attic subdirectories.

clearexport_cvs and clearimport use magic files to determine which element type to use for each

element clearimport creates. For more information on magic files and file typing, see the

cc.magic reference page.

NOTE: You cannot run clearexport_cvs on UNIX and then run clearimport on Windows to import

the data, or vice-versa. However, you can transfer data in either direction between UNIX and

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 135

clearexport_cvs
Windows by mounting the UNIX VOB or file-system on the Windows machine and running both

clearexport_cvs and clearimport on the Windows machine.

CVS Files, Working Files, and Locks

clearexport_cvs works directly with the structured CVS files. It does not process the working

files created with co and co –l commands. Be sure to check in working files with the ci command

before running the exporter. clearexport_cvs issues warning messages when it encounters

checked-out files, but it still processes them.

clearexport_cvs ignores all CVS locks.

CVSROOT Environment Variable

You must set the environment variable CVSROOT for the cvs command to work. If, for example,

CVSROOT is set to /usr/src/cvs and an element archive is found in the CVS repository as

/usr/src/cvs/gui/windows/main.cxxx,v, then an extraction command for a version of the element

would look like

cvs get –Q –p –r1.1 gui/windows/main.cxx

SPECIAL CHARACTERS IN FILE NAMES

During import, clearimport invokes a shell to extract data from the datafile. clearimport can

handle some, but not all, characters that are special to shells. Import fails for any file name that

includes any of these characters:

‘ ’ “ <Tab > [] ? * %

For example:

Before running clearexport_cvs, rename any file whose name contains these characters.

NOTE: If you specify datafile-pname or source-name and any of the names include spaces, you must

enclose the name in double quotes. For example:

> clearexport_cvs "src files"

HANDLING OF CVS SYMBOLS

A CVS symbol is a mnemonic name for a particular revision or branch of an CVS file.

clearexport_cvs translates the symbols to version labels and branch names (more precisely, to

names of label types and branch types).

Succeeds Fails
foo&bar foo[bar

MY_LIB yellow‘sunset

file name file*name
136 ClearCase Reference Manual

clearexport_cvs
• Translation to version labels — Suppose an CVS symbol, RLS_1.3, names a revision, 3.5.

clearexport_cvs places a description of label type RLS_1.3 in the datafile, and clearimport
imports that label type and assigns a label of that type to the version created from the CVS

revision.

• Handling of magic branches — When clearexport_cvs encounters a magic branch with a

symbolic name in a CVS archive, it determines whether any versions have been checked in

on that branch. If there are any, the magic branch’s symbolic name is used as the name of

the ClearCase/ClearCase LT branch; otherwise, the branch is ignored.

• Translation to branch names — Suppose an CVS symbol, rls_1.3_fixes, names a branch

3.5.1. clearexport_cvs outputs a description of branch type rls_1.3_fixes, and clearimport
creates a branch of that type at the ClearCase or ClearCase LT version created from CVS

revision 3.5.

Because there is no concept of a subbranch of the main branch, clearexport_cvs does not process

single-digit symbols that name CVS branches. If an CVS symbol includes characters that are not

valid in names of label types or branch types, clearexport_cvs replaces the offending name. For

example, the CVS symbol C++ can be renamed to “C..”.

A label type cannot have the same name as a branch type within the same VOB. If the same CVS

symbol names both a revision and a branch—not necessarily in the same CVS file—

clearexport_cvs renames one of them. For example, after exporting a symbol FX354, which

names a branch, it may encounter the same symbol as the name of a revision in another CVS file.

In this case, it creates label type FX354_1.

Translation File

This renaming of CVS symbols can introduce inconsistencies over multiple runs of

clearexport_cvs. The same symbol may be renamed during processing of some CVS files, but not

change during processing of other files. You can enforce consistency by using the same

translation file in multiple invocations of clearexport_cvs. If you name such a file, using the –T
option, clearexport_cvs uses it as follows:

• To look up each CVS symbol to see how to translate it to a label type or branch type. If a

match is found, the symbol is translated the same way.

• To record each translation of a new CVS symbol for use in future lookups.

The first time you use clearexport_cvs, use –T to create a new translation file. On subsequent

invocations of clearexport_cvs, use –T again, specifying the same translation file for consistent

name translation.

The translation file consists of one or more lines in the following form:

{ label | branch } old-name new-name
 ClearCase Reference Pages 137

clearexport_cvs
For example, to rename the branch type pre_import_work to post_import_work and the label

BL1.7 to IMPORT_BASE, the translation file contains the lines:

branch pre_import_work post_import_work
label BL1.7 IMPORT_BASE

No blank lines are allowed in the file.

HANDLING OF OBJECTS THAT CANNOT BE EXPORTED

When clearexport_cvs encounters a file or directory that cannot be exported (for example, a file

with format problems, or a broken symbolic link), it prints an error and continues. After creating

the data file, the command prints a summary of the files and directories that could not be

exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: If you specify a directory as a source-name
argument: (1) clearexport_cvs Processes the files in that directory but ignores the contents of the

subdirectories; (2) clearimport creates a directory element for source-name and for each of its

subdirectories.

–r
clearexport_cvs descends recursively into all source-name arguments that are directories.

SELECTIVE CONVERSION OF FILES. Default: clearexport_cvs processes all CVS revisions it finds.

–s date-time
clearexport_cvs processes only CVS revisions that have been modified since the time

specified. Use this option for regular, incremental updating of an element from an CVS

file that is still under development. Be sure to specify a date-time that covers the entire

period since the preceding update. In other situations, it is probably better to use –I
instead of –s.

clearexport_cvs determines whether to process an CVS archive by using the

last-modified date/time of the archive. If this date/time is before the date-time you

specify with –s, clearexport_cvs does not process any of the revisions in the archive. If

the archive’s date/time is after the date-time you specify, clearexport_cvs processes the

following revisions in the archive:

• All revisions created since the specified date-time
• All revisions that have labels

• All revisions from which branches sprout
138 ClearCase Reference Manual

clearexport_cvs
NOTE: In an incremental updating situation, if you remove a label or branch from an CVS

revision, clearimport does not remove the label or branch from the element.

Specify the time in one of the following formats:

date.time | date | time | now
where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

–I { now | date-time }

Processes important revisions only, but includes all revisions created since the specified

time. A revision is important if any of these conditions is true:

PRESERVATION OF CVS INFORMATION AS ATTRIBUTES. Default: clearexport_cvs does not attach

attributes to versions exported from CVS revisions.

–V
Attaches an attribute of type CVS_REVISION to each newly created version. The string

value of the attribute is the CVS revision number of the exported revision. (clearimport
creates attribute type CVS_REVISION, if necessary.)

If you use the –s option with this option, clearimport attaches CVS_REVISION
attributes only to revisions created after the date-time you specified.

Each attribute requires about 1 KB of storage in the VOB database.

–S
If a CVS revision’s state is not the default (Exp), attaches an attribute of type

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec

• It is the most recent version on its branch.

• It has a label.

• A subbranch is sprouted from it.
 ClearCase Reference Pages 139

clearexport_cvs
CVS_STATE to the newly created version. The string value of the attribute is the CVS

state attribute of the exported revision.

–A
Specifies that files found in CVS Attic subdirectories are to be exported as if they were

part of the main repository directory. For example, the CVS file, ./proj/Attic/main.c,v is

exported as the element ./proj/main.c.

DIRECTORY FOR TEMPORARY FILES. Default: clearexport_cvs uses the value of the TMP

environment variable as the directory for temporary files.

–t temp-dir-pname
Specifies an alternate directory for temporary files. This directory must already exist.

HANDLING OF BRANCHES AND LABELS. Default: As described in the section HANDLING OF CVS
SYMBOLS on page 136, clearexport_cvs may rename a branch or label type to avoid naming

conflicts.

–T translation-file
Uses the specified translation file to control and record the conversion of CVS symbols

to version labels and branch names.

STORAGE LOCATION OF DATAFILE. Default: clearexport_cvs creates datafile cvt_data in the current

working directory.

–o datafile-pname
Stores the datafile at the specified location. An error occurs if datafile already exists.

SPECIFYING FILES TO BE EXPORTED. Default: clearexport_cvs processes the current working

directory (equivalent to specifying "." as the source-name argument). If you specify a directory as

a source-name argument: (1) clearexport_cvs processes the files in that directory but ignores the

contents of the subdirectories; (2) clearimport creates a directory element for source-name and for

each of its subdirectories (except one named CVS or cvs).

source-name ...

One or more pathnames, specifying CVS files and/or directories:

Each source-name must be a simple file or directory name. This enables clearimport to
reliably access the source data when it is executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a backslash (\).

• For each specified CVS file, clearexport_cvs places a description in the datafile.

• For each specified directory, clearexport_cvs places descriptions in the datafile for

each of the CVS files it contains. clearimport creates a directory element for the

specified directory itself, and for its subdirectories (except one named CVS).
140 ClearCase Reference Manual

clearexport_cvs
Thus, before entering this command, you should change to the directory in or under

which the CVS files to be exported reside. If the CVS files reside in CVS subdirectories,

use the –r option to enable clearexport_cvs to find them.

EXAMPLES

• Create a datafile for a single CVS file.

c:\> clearexport_cvs myprogram.c,v

• Process three CVS files in the current working directory and store the datafile in file

cvt_include.

c:\> clearexport_cvs -o cvt_include bgr1.h,v bgr2.h,v bgr3.h,v

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate
 ClearCase Reference Pages 141

clearexport_ffile
clearexport_ffile
Converts flat files to element versions

APPLICABILITY

SYNOPSIS
clearexport_ffile [–r] [–o datafile-pname] [–s date-time]

[–b target-branch [–v version-id]] [–t temp-dir-pname]

[source-name ...]

DESCRIPTION

The clearexport_ffile command processes flat files so that they can be imported into elements
and/or used to update existing elements. The source data can range from a single file to an entire

directory tree.

Export Stage

During the export stage, you invoke clearexport_ffile in the area where the original flat files

reside. clearexport_ffile creates a datafile (by default, named cvt_data), which contains

descriptions of files and directories. The source-name must be a file or directory in your current

working directory, or the current working directory itself.

By default, clearexport_ffile processes every file in the current working directory, including

invisible files (file names that begin with a dot; for example, .login). Be sure to delete superfluous

files and directories, such as text-editor backup files, before entering this command.

Import Stage

In the import stage, you invoke clearimport on the datafile to import information into the new

VOB. If any of the files to be imported reside in subdirectories below the current working

directory, clearimport creates corresponding directory elements.

clearexport_ffile and clearimport use magic files to determine which element type to use for

each element clearimport creates. For more information on magic files and file typing, see the

cc.magic reference page.

NOTE: You cannot run clearexport_ffile on UNIX and then run clearimport on Windows to

import the data, or vice-versa. However, you can transfer data in either direction between UNIX

Product Command Type

ClearCase command

ClearCase LT command
142 ClearCase Reference Manual

clearexport_ffile
and Windows by mounting the UNIX VOB or file-system on your Windows machine and

running both clearexport_ffile and clearimport on the Windows machine.

HANDLING OF OBJECTS THAT CANNOT BE EXPORTED

When clearexport_ffile encounters a file or directory that cannot be exported (for example, a file

with format problems, or a broken symbolic link), it prints an error and continues. After creating

the data file, the command prints a summary of the files and directories that could not be

exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: If you specify a directory as a source-name
argument: (1) clearexport_ffile processes the files in that directory but ignores the contents of the

subdirectories; (2) clearimport creates a directory element for source-name and for each of its

subdirectories.

–r
clearexport_ffile descends recursively into all source-name arguments that are

directories.

STORAGE LOCATION OF DATAFILE. Default: clearexport_ffile creates datafile cvt_data in the current

working directory.

–o datafile-pname
Stores the datafile in the specified location. An error occurs if datafile already exists.

SELECTIVE CONVERSION OF FILES. Default: clearexport_ffile converts all files it encounters.

–s date-time
clearexport_ffile processes only files modified since the specified moment. Specify the

time in one of the following formats:date.time | date | time | now
where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
 ClearCase Reference Pages 143

clearexport_ffile
(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

CREATING NEW VERSIONS ON A BRANCH. Default: clearimport creates new versions of a file or

directory element on the element’s main branch.

–b target-branch [–v version-id]

Converts each file to a version on branch target-branch of the new or existing element.

Whenever clearimport creates a new element in the target VOB, it also revises the parent

directory element on branch target-branch. To prevent directory branching, you can check

out all directories on any branch before importing. clearimport then uses the

checked-out directories.

If branch type target-branch does not already exist in the target VOB, clearimport creates

it. If an existing element already has a branch of this type, the new version extends this

branch; otherwise, clearimport sprouts target-branch from version \main\LATEST
(\main\0 for new elements). To specify another version from which to sprout the

branch, use the –v option.

For example, if you use clearexport_ffile –b bugfix and bugfix does not already exist,

clearimport creates new versions on the bugfix branch and sprouts it from the latest

version on branch main:

If you use clearexport_ffile –b bugfix –v \main\v1.0\FCS_VER and bugfix does not

already exist, clearimport creates new versions on the bugfix branch and sprouts it from

the version on the \main\v1.0 branch labeled FCS_VER:

main

bugfix

v1.0

main

bugfix

v1.0

FCS_VER
144 ClearCase Reference Manual

clearexport_ffile
DIRECTORY FOR TEMPORARY FILES. Default: clearexport_ffile uses the value of the TMP

environment variable as the directory for temporary files.

–t temp-dir-pname
Specifies an alternate directory for temporary files. This directory must already exist.

SPECIFYING FILES TO BE EXPORTED. Default: clearexport_ffile processes the current working

directory (equivalent to specifying "." as the source-name argument). clearexport_ffile processes

each file in the current working directory. clearimport creates a directory element for each

subdirectory of the current working directory.

source-name ...

One or more pathnames, specifying flat files and/or directories:

Each source-name must be a simple file or directory name. This enables clearimport to
reliably access the source data. Specifying the parent directory (..) causes an error, as

does any pathname that includes a backslash (\). Thus, before entering this command,

change to the directory where (or under which) the flat files to be exported reside. To

process all the files in a single directory, change either to that directory or to its

immediate parent.

EXAMPLES

• Export the directory tree \scratch\exper.

cd \scratch (go to parent of standard directory tree to be converted)

clearexport_ffile –r exper (create the datafile)
VOB directory element ".".
VOB directory element "exper".
Exporting element "exper\ar.c" ...
Extracting element history ...
Completed.
Exporting element ...
Creating element ...
...
Exporting element ...
Creating element ...
Element "exper\util.c" completed.
Creating datafile cvt_data ...

• For each specified file, clearexport_ffile creates an entry in the datafile with a

command to import it as a version.

• For each specified directory, clearexport_ffile creates entries for all the files it

contains. clearimport creates a directory element with one version for the

specified directory itself, and for its subdirectories.
 ClearCase Reference Pages 145

clearexport_ffile
• Export the directory tree \dev\src. Specify that clearimport is to create new versions on

branch bugfix, sprouted from version /main/LATEST.

cd \dev

clearexport_ffile –r –b bugfix

• Export the directory tree \dev\src. Specify that clearimport is to create new versions on

branch bugfix, sprouted from version \main\v1.0\FCS_VER.

cd \dev

clearexport_ffile –r –b bugfix –v \main\v1.0\FCS_VER

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate
146 ClearCase Reference Manual

clearexport_pvcs
clearexport_pvcs
Converts PVCS files to elements

APPLICABILITY

SYNOPSIS
clearexport_pvcs [–r] [–s date-time | –I { now | date-time }]

[–V] [–G] [–t temp-dir-pname] [–T translation-file]

[–o datafile-pname] [source-name ...]

DESCRIPTION

The clearexport_pvcs command processes PVCS files so they can be imported into elements and

versions. The source data for export can range from a single file to an entire directory tree.

During the export stage, you invoke clearexport_pvcs in the directory where the PVCS files

reside. clearexport_pvcs creates a datafile (by default, named cvt_data) and places in it

descriptions of elements, branches, and versions.

In the import stage, you invoke clearimport on the datafile to import information into the new

VOB.

clearexport_pvcs ignores most information in PVCS files that is not related to version-tree

structure. clearexport_pvcs converts each PVCS label, which names a revision or branch, into the

appropriate construct: version label or branch. (You can specify a translation file to control

naming, enforcing consistency over multiple invocations of clearexport_pvcs.) You can use the

–V option to preserve PVCS revision numbers as attributes of the corresponding ClearCase or

ClearCase LT versions.

clearexport_pvcs and clearimport use magic files to determine which element type to use for

each element clearimport creates. For more information on magic files and file typing, see the

cc.magic reference page.

NOTE: You cannot run clearexport_pvcs on UNIX and then run clearimport on Windows to

import the data, or vice-versa. However, you can transfer data in either direction between UNIX

and Windows by mounting the UNIX VOB or file-system on your Windows machine and

running both clearexport_pvcs and clearimport on the Windows machine.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 147

clearexport_pvcs
PVCS Files, Workfiles, and Locks

clearexport_pvcs works directly with PVCS files. It does not process the workfiles created with the

get command. Be sure to check in workfiles with the put command before running the exporter.

clearexport_pvcs issues warning messages when it encounters checked-out files, but it still

processes them. clearexport_pvcs ignores all PVCS locks.

If PVCS files are stored in VCS (or vcs; case is not important) subdirectories, clearexport_pvcs
collapses the subdirectory level. For example, PVCS file .\proj\VCS\main.c,v becomes element

.\proj\main.c.

SPECIAL CHARACTERS IN FILE NAMES

During import, clearimport invokes a shell to extract data from the datafile. clearimport can

handle some, but not all, characters that are special to shells. Import fails for any file name that

includes any of these characters:

‘ ’ “ <Tab > [] ? * %

For example:

Before running clearexport_pvcs, rename any file whose name contains these characters.

NOTE: If you specify datafile-pname or source-name and any of the names include spaces, you must

enclose the name in double quotes. For example:

> clearexport_pvcs "src files"

HANDLING OF PVCS SYMBOLS

A PVCS symbol is a mnemonic name for a particular revision or branch of a PVCS file.

clearexport_pvcs translates the symbols to version labels and branch names (more precisely, to

names of label types and branch types).

• Translation to version labels — Suppose a PVCS symbol, RLS_1.3, names a revision, 3.5.

clearexport_pvcs places a description of label type RLS_1.3 in the datafile, and clearimport
imports that label type and assigns a label of that type to the appropriate version.

• Translation to branch names — Suppose a PVCS symbol, rls_1.3_fixes, names a branch,

3.5.1. clearexport_pvcs outputs information about branch type rls_1.3_fixes, and

clearimport creates a branch of that type at the appropriate version.

Because there is no concept of a subbranch of the main branch, clearexport_pvcs does not

process single-digit symbols that name PVCS branches. If a PVCS symbol includes characters

Succeeds Fails
foo&bar foo[bar

MY_LIB yellow‘sunset

file name file*name
148 ClearCase Reference Manual

clearexport_pvcs
that are not valid in names of label types or branch types, clearexport_pvcs replaces the

offending name. For example, the PVCS symbol C++ may be renamed to “C..”.

A label type cannot have the same name as a branch type within the same VOB. If the same PVCS

symbol names both a revision and a branch—not necessarily in the same PVCS file—

clearexport_pvcs renames one of them. For example, after exporting a symbol FX354, which

names a branch, it may encounter the same symbol as the name of a revision in another PVCS

file. In this case, it creates label type FX354_1.

Translation File

Renaming PVCS symbols can introduce inconsistencies over multiple runs of clearexport_pvcs.

The same symbol may be renamed during processing of some PVCS files, but not chang during

processing of other files. You can enforce consistency by using the same translation file in multiple

invocations of clearexport_pvcs. If you name such a file, using the –T option, clearexport_pvcs
uses it as follows:

• To look up each PVCS symbol to see how to translate it to a label type or branch type. If a

match is found, the symbol is translated the same way.

• To record each translation of a new PVCS symbol, for use in future lookups.

The first time you use clearexport_pvcs, use –T to create a new translation file. On subsequent

invocations of clearexport_pvcs, use –T again, specifying the same translation file, for consistent

name translation.

The translation file consists of one or more lines in the following form:

{ label | branch } old-name new-name

For example, to rename the branch type pre_import_work to post_import_work and the label

BL1.7 to IMPORT_BASE, the translation file contains the lines:

branch pre_import_work post_import_work
label BL1.7 IMPORT_BASE

No blank lines are allowed in the file.

HANDLING OF OBJECTS THAT CANNOT BE EXPORTED

When clearexport_pvcs encounters a file or directory that cannot be exported (for example, a file

with format problems or a broken symbolic link), it prints an error and continues. After creating

the data file, it prints a summary of the files and directories that could not be exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.
 ClearCase Reference Pages 149

clearexport_pvcs
OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: If you specify a directory as a source-name
argument: (1) clearexport_pvcs processes the files in that directory but ignores the contents of

the subdirectories; (2) clearimport creates a directory element for source-name and for each of its

subdirectories.

–r
clearexport_pvcs descends recursively into all source-name arguments that are

directories.

SELECTIVE CONVERSION OF FILES. Default: clearexport_pvcs processes all files it encounters.

–s date-time
clearexport_pvcs processes only versions modified since the time specified. Use this

option for regular, incremental updating of an element from a PVCS file that is still under

development. Be sure to specify a date-time that covers the entire period since the

preceding update. In other situations, it is better to use –I instead of –s.

clearexport_pvcs determines whether to process a PVCS archive by using the

last-modified date/time of the archive. If this date/time is before the date-time you

specify with –s, clearexport_pvcs does not process any of the revisions in the archive. If

the date/time is after the date-time you specify, clearexport_pvcs processes the following

revisions:

NOTE: In an incremental updating situation, if you remove a label or branch from a PVCS

version, clearimport does not remove the label or branch from the

ClearCase/ClearCase LT element.

Specify the time in one of the following formats:

date.time | date | time | now
where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

• All revisions created since the specified date-time
• All revisions that have labels

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
150 ClearCase Reference Manual

clearexport_pvcs
the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

–I { now | date-time }

Processes important versions only, but includes all versions created since the specified

time. A version is important if any of these conditions is true:

PRESERVATION OF PVCS INFORMATION AS ATTRIBUTES. Default: clearexport_pvcs does not attach

attributes to versions exported from PVCS revisions.

–V
Attaches an attribute of type PVCS_REVISION to each newly created version. The

string value of the attribute is the PVCS revision number of the exported revision.

(clearimport creates attribute type PVCS_REVISION, if necessary.)

If you use the –s option with this option, clearimport attaches PVCS_REVISION
attributes only to revisions created after the date-time you specified.

Each attribute requires about 1 KB of storage in the VOB database.

–G
If a PVCS revision has a promotion group, attaches an attribute of type PVCS_GROUP
to the newly created version. The string value of the attribute is the promotion group of

the exported revision. (clearimport creates attribute type PVCS_GROUP, if necessary.)

If you use the –s option with this option, clearimport attaches PVCS_GROUP attributes

only to revisions created after the date-time you specified.

Each attribute requires about 1 KB of storage in the VOB database.

DIRECTORY FOR TEMPORARY FILES. Default: clearexport_pvcs uses the value of the TMP

environment variable as the directory for temporary files.

–t temp-dir-pname
Specifies an alternate directory for temporary files. This directory must already exist.

TRANSLATION OF BRANCHES AND LABELS. Default: As described in the section HANDLING OF
PVCS SYMBOLS on page 148, clearexport_pvcs may rename a branch or label type to avoid

naming conflicts.

• It is the most recent version on its branch

• It has a label

• A subbranch is sprouted from it
 ClearCase Reference Pages 151

clearexport_pvcs
–T translation-file
Uses the specified translation file to control and record the conversion of PVCS symbols

to version labels and branch names.

STORAGE LOCATION OF DATAFILE. Default: clearexport_pvcs creates datafile cvt_data in the

current working directory.

–o datafile-pname
Stores the datafile at the specified location. An error occurs if datafile already exists.

SPECIFYING FILES TO BE EXPORTED. Default: clearexport_pvcs processes the current working

directory (equivalent to specifying “.”as the source-name argument). clearimport creates an

element in the new VOB for each element in the current working directory. clearimport creates

a directory element in the new VOB for each subdirectory of the current working directory

(except one named PVCS or pvcs).

source-name ...

One or more pathnames, specifying PVCS files and/or directories:

Each source-name must be a simple file or directory name. This enables clearimport to
reliably access the source data when it is executed. Specifying the parent directory (..)
causes an error, as does specifying any pathname that includes a backslash (\) character.

Thus, before entering this command, have the directory in or under which the elements

to be exported reside.

EXAMPLES

• Create entries in the datafile for the entire tree under directory element src, exporting

important versions created before 1999 and all versions created since the beginning of 1999.

c:\> clearexport_pvcs -r -I 1-Jan-1999 src

• Create entries in the datafile for the elements in the current working directory, but not in any

subdirectories; store the datafile in a file named newcvt.

c:\> clearexport_pvcs -o newcvt .

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate

• For each specified PVCS file, clearexport_pvcs places a description in the datafile.

• For each specified directory version, clearexport_pvcs places descriptions in the

datafile for all the elements it catalogs. clearimport creates a directory element for

the specified directory itself, and for its subdirectories.
152 ClearCase Reference Manual

clearexport_rcs
clearexport_rcs
Converts RCS files to elements

APPLICABILITY

SYNOPSIS
clearexport_rcs [–r] [–s date-time | –I { now | date-time }]

[–V] [–S] [–t temp-dir-pname] [–T translation-file]

[–o datafile-pname] [source-name ...]

DESCRIPTION

The clearexport_rcs command processes Revision Control System (RCS) files so they can be

imported into ClearCase or ClearCase LT elements and versions. The source data can range from

a single file to an entire directory tree.

During the export stage, you invoke clearexport_rcs in the area where the RCS files reside.

clearexport_rcs creates a datafile (by default, named cvt_data), and places in it descriptions of

elements, branches, and versions. clearexport_rcs follows symbolic links it encounters during

the export stage.

In the import stage, you invoke clearimport on the datafile to import information into the new

VOB.

clearexport_rcs ignores most information in RCS files that is not related to version-tree structure.

clearexport_rcs converts each RCS symbol, which names a revision or branch, into the

appropriate construct: version label or branch. You can specify a translation file to control

naming, enforcing consistency over multiple invocations of clearexport_rcs. You can use the –S
and –V options to preserve RCS state attributes and RCS revision numbers as attributes of the

corresponding ClearCase or ClearCase LT versions.

clearexport_rcs and clearimport use magic files to determine which element type to use for each

element clearimport creates. For more information on magic files and file typing, see the

cc.magic reference page.

NOTE: You cannot run clearexport_rcs on UNIX and then run clearimport on Windows to import

the data, or vice-versa. However, you can transfer data in either direction between UNIX and

Windows by mounting the UNIX VOB or file-system on the Windows machine and running both

clearexport_rcs and clearimport on the Windows machine.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 153

clearexport_rcs
RCS Files, Working Files, and Locks

clearexport_rcs works directly with the structured RCS files. It does not process the working files
created with co and co –l commands. Be sure to check in working files with the ci command

before running the exporter. clearexport_rcs issues warning messages when it encounters

checked-out files, but it still processes them.

clearexport_rcs ignores all RCS locks.

If RCS files are stored in RCS (or rcs; case is not important) subdirectories, clearexport_rcs
collapses the subdirectory level in the export process. For example, RCS file

.\proj\RCS\main.c,v becomes element .\proj\main.c.

SPECIAL CHARACTERS IN FILE NAMES

During import, clearimport invokes a shell to extract data from the datafile. clearimport can

handle some, but not all, characters that are special to shells. Import fails for any file name that

includes any of these characters:

‘ ’ “ <Tab > [] ? * %

For example:

Before running clearexport_rcs, rename any file whose name contains these characters.

NOTE: If you specify datafile-pname or source-name and any of the names include spaces, you must

enclose the name in double quotes. For example:

> clearexport_rcs "src files"

HANDLING OF RCS SYMBOLS

An RCS symbol is a mnemonic name for a particular revision or branch of an RCS file.

clearexport_rcs translates the symbols to version labels and branch names (more precisely, to

names of label types and branch types).

• Translation to version labels — Suppose an RCS symbol, RLS_1.3, names a revision, 3.5.

clearexport_rcs places a description of label type RLS_1.3 in the datafile, and clearimport
imports that label type and assigns a label of that type to the version created from the RCS

revision.

• Translation to branch names — Suppose an RCS symbol, rls_1.3_fixes, names a branch

3.5.1. clearexport_rcs outputs a description of branch type rls_1.3_fixes, and clearimport

Succeeds Fails
foo&bar foo[bar

MY_LIB yellow‘sunset

file name file*name
154 ClearCase Reference Manual

clearexport_rcs
creates a branch of that type at the ClearCase or ClearCase LT version created from RCS

revision 3.5.

Because there is no concept of a subbranch of the main branch, clearexport_rcs does not process

single-digit symbols that name RCS branches. If an RCS symbol includes characters that are not

valid in names of label types or branch types, clearexport_rcs replaces the offending name. For

example, the RCS symbol C++ can be renamed to “C..”.

A label type cannot have the same name as a branch type within the same VOB. If the same RCS

symbol names both a revision and a branch—not necessarily in the same RCS file—

clearexport_rcs renames one of them. For example, after exporting a symbol FX354, which

names a branch, it may encounter the same symbol as the name of a revision in another RCS file.

In this case, it creates label type FX354_1.

Translation File

This renaming of RCS symbols can introduce inconsistencies over multiple runs of

clearexport_rcs. The same symbol may be renamed during processing of some RCS files, but not

chang during processing of other files. You can enforce consistency by using the same translation

file in multiple invocations of clearexport_rcs. If you name such a file, using the –T option,

clearexport_rcs uses it as follows:

• To look up each RCS symbol to see how to translate it to a label type or branch type. If a

match is found, the symbol is translated the same way.

• To record each translation of a new RCS symbol for use in future lookups.

The first time you use clearexport_rcs, use –T to create a new translation file. On subsequent

invocations of clearexport_rcs, use –T again, specifying the same translation file for consistent

name translation.

The translation file consists of one or more lines in the following form:

{ label | branch } old-name new-name

For example, to rename the branch type pre_import_work to post_import_work and the label

BL1.7 to IMPORT_BASE, the translation file contains the lines:

branch pre_import_work post_import_work
label BL1.7 IMPORT_BASE

No blank lines are allowed in the file.

VERSION TREE STRUCTURE AFTER CONVERSION

Revisions on the main branch of an RCS file have two-digit identifiers (for example, 1.2). These

revisions become versions on the main branch of the element, as illustrated in Figure 2.
 ClearCase Reference Pages 155

clearexport_rcs
Figure 2 Conversion of RCS Revisions

Note that the major revision substructure in the RCS revision tree is lost in the translation—all

the RCS revisions become versions on the main branch. However, you can use the –V option to

preserve this information in the form of attributes attached to the versions.

Revisions on subbranches of an RCS file have identifiers consisting of an even number of digits;

no fewer than four (for example, 1.2.1.5, 1.2.1.5.1.3). These revisions become versions on

subbranches of the element, as illustrated in Figure 3.

RCS ClearCase or ClearCase LT

main

0

1

2

3

4

5

6

1.0

1.1

1.2

2.0

3.0

3.1
156 ClearCase Reference Manual

clearexport_rcs
Figure 3 Conversion of RCS Subbranches

clearimport creates branch types with three-digit names (1.2.1 in the example above). Thus, RCS

revision 1.2.1.3 becomes version 3 on branch 1.2.1.

HANDLING OF OBJECTS THAT CANNOT BE EXPORTED

When clearexport_rcs encounters a file or directory that cannot be exported (for example, a file

with format problems, or a broken symbolic link), it prints an error and continues. After creating

the data file, the command prints a summary of the files and directories that could not be

exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: If you specify a directory as a source-name
argument: (1) clearexport_rcs Processes the files in that directory but ignores the contents of the

subdirectories; (2) clearimport creates a directory element for source-name and for each of its

subdirectories.

–r
clearexport_rcs descends recursively into all source-name arguments that are directories.

SELECTIVE CONVERSION OF FILES. Default: clearexport_rcs processes all RCS revisions it finds.

RCS ClearCase or ClearCase LT

main

1.2.1
1.2

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

3 0

1

2

3

4

 ClearCase Reference Pages 157

clearexport_rcs
–s date-time
clearexport_rcs processes only RCS revisions that have been modified since the time

specified. Use this option for regular, incremental updating of an element from an RCS

file that is still under development. Be sure to specify a date-time that covers the entire

period since the preceding update. In other situations, it is probably better to use –I
instead of –s.

clearexport_rcs determines whether to process an RCS archive by using the

last-modified date/time of the archive. If this date/time is before the date-time you

specify with –s, clearexport_rcs does not process any of the revisions in the archive. If

the archive’s date/time is after the date-time you specify, clearexport_rcs processes the

following revisions in the archive:

NOTE: In an incremental updating situation, if you remove a label or branch from an RCS

revision, clearimport does not remove the label or branch from the element.

Specify the time in one of the following formats:

date.time | date | time | now
where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

–I { now | date-time }

Processes important revisions only, but includes all revisions created since the specified

time. A revision is important if any of these conditions is true:

• All revisions created since the specified date-time
• All revisions that have labels

• All revisions from which branches sprout

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec

• It is the most recent version on its branch.

• It has a label.
158 ClearCase Reference Manual

clearexport_rcs
PRESERVATION OF RCS INFORMATION AS ATTRIBUTES. Default: clearexport_rcs does not attach

attributes to versions exported from RCS revisions.

–V
Attaches an attribute of type RCS_REVISION to each newly created version. The string

value of the attribute is the RCS revision number of the exported revision. (clearimport
creates attribute type RCS_REVISION, if necessary.)

If you use the –s option with this option, clearimport attaches RCS_REVISION
attributes only to revisions created after the date-time you specified.

Each attribute requires about 1 KB of storage in the VOB database.

–S
If an RCS revision’s state is not the default (Exp), attaches an attribute of type

RCS_STATE to the newly created version. The string value of the attribute is the RCS

state attribute of the exported revision.

DIRECTORY FOR TEMPORARY FILES. Default: clearexport_rcs uses the value of the TMP environment

variable as the directory for temporary files.

–t temp-dir-pname
Specifies an alternate directory for temporary files. This directory must already exist.

HANDLING OF BRANCHES AND LABELS. Default: As described in the section HANDLING OF RCS
SYMBOLS on page 154, clearexport_rcs may rename a branch or label type to avoid naming

conflicts.

–T translation-file
Uses the specified translation file to control and record the conversion of RCS symbols

to version labels and branch names.

STORAGE LOCATION OF DATAFILE. Default: clearexport_rcs creates datafile cvt_data in the current

working directory.

–o datafile-pname
Stores the datafile at the specified location. An error occurs if datafile already exists.

SPECIFYING FILES TO BE EXPORTED. Default: clearexport_rcs processes the current working

directory (equivalent to specifying "." as the source-name argument). If you specify a directory as

a source-name argument: (1) clearexport_rcs processes the files in that directory but ignores the

contents of the subdirectories; (2) clearimport creates a directory element for source-name and for

each of its subdirectories (except one named RCS or rcs).

source-name ...

One or more pathnames, specifying RCS files and/or directories:

• A subbranch is sprouted from it.
 ClearCase Reference Pages 159

clearexport_rcs
Each source-name must be a simple file or directory name. This enables clearimport to
reliably access the source data when it is executed. Specifying the parent directory (..)
causes an error, as does any pathname that includes a backslash (\).

Thus, before entering this command, you should change to the directory in or under

which the RCS files to be exported reside. If the RCS files reside in RCS subdirectories,

use the –r option to enable clearexport_rcs to find them.

EXAMPLES

• Create a datafile for a single RCS file.

c:\> clearexport_rcs myprogram.c,v

• Process three RCS files in the current working directory and store the datafile in file

cvt_include.

c:\> clearexport_rcs -o cvt_include bgr1.h,v bgr2.h,v bgr3.h,v

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate

• For each specified RCS file, clearexport_rcs places a description in the datafile.

• For each specified directory, clearexport_rcs places descriptions in the datafile for

each of the RCS files it contains. clearimport creates a directory element for the

specified directory itself, and for its subdirectories (except one named RCS).
160 ClearCase Reference Manual

clearexport_sccs
clearexport_sccs
Converts SCCS files to ClearCase or ClearCase LT elements

APPLICABILITY

SYNOPSIS
clearexport_sccs [–r] [–s date-time | –I { now | date-time }]

[–V] [–t temp-dir-pname] [–T translation-file]

[–o datafile-pname] [source-name ...]

DESCRIPTION

The clearexport_sccs command exports Source Code Control System (SCCS) files so they can be

imported into ClearCase or ClearCase LT elements and versions. The source data can range from

a single file to an entire directory tree.

During the export stage, you invoke clearexport_sccs in the area where the SCCS files reside.

clearexport_sccs creates a datafile (by default, named cvt_data) containing descriptions of

elements, branches, and versions. If any of the files to be processed reside below (rather than in)

the current working directory, clearexport_sccs includes descriptions of the corresponding

directory element(s) in datafile. clearexport_sccs follows symbolic links it encounters during the

export stage.

In the import stage, you invoke clearimport on datafile to import information into the new VOB.

clearexport_sccs ignores information in SCCS files that is not related to version-tree structure;

this includes flags, ID keywords, user lists, and Modification Request numbers. You can specify

a translation file to control naming, enforcing consistency over multiple invocations of

clearexport_sccs. You can use the –V option to preserve SCCS-IDs as attributes of the

corresponding ClearCase or ClearCase LT versions.

clearexport_sccs and clearimport use magic files to determine which element type should be

used for each element clearimport creates. For more information on magic files and file typing,

see the cc.magic reference page.

NOTE: You cannot run clearexport_sccs on UNIX and then run clearimport on Windows to

import the data, or vice-versa. However, you can transfer data in either direction between UNIX

and Windows by mounting the UNIX VOB or file-system on your Windows machine and

running both clearexport_sccs and clearimport on the Windows machine.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 161

clearexport_sccs
S-Files, G-Files, and P-Files

clearexport_sccs works directly with the structured SCCS s-files, which have the s. filename

prefix. It does not process the g-files created with get and get –e commands. Be sure to check in

such files with the delta command before running clearexport_sccs. clearexport_sccs issues

warning messages when it encounters checked-out files, but it still processes them.

Other than issuing warning messages for checked-out files, clearexport_sccs ignores the p-files

created by get –e.

If s-files are stored in SCCS (or sccs; case is not important) subdirectories, clearexport_sccs
collapses the subdirectory level. For example, SCCS file ./proj/SCCS/s.main.c becomes element

./proj/main.c.

Multiple-Pass Export

You can process an SCCS file in several passes. For example, you can use clearexport_sccs to

process major revision level 1, and use it again to process major revision level 2. On the

subsequent passes, clearimport updates an existing element correctly if that VOB element has

not been modified in the interim.

SPECIAL CHARACTERS IN FILE NAMES

During import, clearimport invokes a shell to extract data from the datafile. clearimport can

handle some, but not all, characters that are special to shells. Import fails for any file name that

includes any of these characters:

‘ ’ “ <Tab > [] ? * %

For example:

Before running clearexport_sccs, rename any file whose name contains these characters.

NOTE: If you specify datafile-pname or source-name and any of the names include spaces, you must

enclose the name in double quotes. For example:

> clearexport_sccs "src files"

VERSION TREE STRUCTURE AFTER CONVERSION

Revisions on the main branch of an SCCS file have two-digit identifiers (for example, 1.2). These

revisions become versions on the main branch of the element, as illustrated in Figure 4.

Succeeds Fails
foo&bar foo[bar

MY_LIB yellow‘sunset

file name file*name
162 ClearCase Reference Manual

clearexport_sccs
Figure 4 Conversion of SCCS Revisions

Note that the major revision substructure in the SCCS revision tree is lost in the translation—all

the SCCS revisions become versions on the main branch. (But you can use the –V option to

preserve this information in the form of attributes attached to the versions.)

Revisions on subbranches of an SCCS file have four-digit identifiers (for example, 1.2.1.5). These

revisions become versions on subbranches of the element, as illustrated in Figure 5.

SCCS ClearCase or ClearCase LT

main

0

1

2

3

4

5

6

1.0

1.1

1.2

2.0

3.0

3.1
 ClearCase Reference Pages 163

clearexport_sccs
Figure 5 Conversion of SCCS Subbranches

Branch types are created with three-digit names (1.2.1 in the example above). Thus, SCCS

revision 1.2.1.3 becomes version 3 on branch 1.2.1.

Branches Off Branches

Although it is not illustrated in Figure 5,clearexport_sccs can handle SCCS files that include

branches off branches. clearexport_sccs uses the information in the SCCS delta list to determine

which SCCS versions are the predecessors of other versions, then uses an algorithm to determine

the correct branching structure.

TRANSLATION FILE

An SCCS branch ID is a name for a particular branch of an SCCS file. clearexport_sccs translates

the symbols to names of branch types. Suppose an SCCS symbol, rls_1.3_fixes, names a branch

3.5.1. clearexport_sccs exports a description of branch type rls_1.3_fixes, and clearimport creates

a branch of that type at the ClearCase or ClearCase LT version created from SCCS revision 3.5.

You can enforce consistency of translation by using a translation file to control the names of

branches created from SCCS branches. If you name such a file using the –T option,

clearexport_sccs uses it as follows:

• To look up each SCCS branch ID to see how to translate it to the name of a branch type. If a

match is found, the branch ID is translated the same way.

• To record each translation of a new SCCS branch ID for use in future lookups.

SCCS ClearCase or ClearCase LT

main

1.2.1
1.2

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

3 0

1

2

3

4

164 ClearCase Reference Manual

clearexport_sccs
The first time you use clearexport_sccs, use –T to create a new translation file. On subsequent

invocations of clearexport_sccs, use –T again, specifying the same translation file for consistent

name translation.

Syntax of Translation File

The translation file consists of one or more lines in the following form:

branch old-name new-name

For example, to rename the branch type pre_import_work to post_import_work and the branch

type old_tests to obsolete_tests, the translation file contains the lines:

branch pre_import_work post_import_work
branch old_tests obsolete_tests

No blank lines are allowed in the file.

HANDLING OF OBJECTS THAT CANNOT BE EXPORTED

When clearexport_sccs encounters a file or directory that cannot be exported (for example, a file

with format problems, or a broken symbolic link), it prints an error and continues. After creating

the data file, the command prints a summary of the files and directories that could not be

exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: If you specify a directory as a source-name
argument: (1) clearexport_sccs processes the files in that directory but ignores the contents of the

subdirectories; (2) clearimport creates a directory element for source-name and for each of its

subdirectories.

–r
clearexport_sccs descends recursively into all source-name arguments that are

directories.

SELECTIVE CONVERSION OF FILES. Default: clearexport_sccs processes all SCCS revisions it finds.

–s date-time
clearexport_sccs processes only SCCS revisions that have been modified since the time

specified. Use this option for regular, incremental updating of an element from an SCCS

file that is still under development. Be sure to specify a date-time that covers the entire

period since the preceding update. In other situations, it is probably better to use –I
instead of –s.
 ClearCase Reference Pages 165

clearexport_sccs
clearexport_sccs determines whether to process an SCCS archive by using the

last-modified date/time of the archive. If this date/time is before the date-time you

specify with –s, clearexport_sccs does not process any of the revisions in the archive. If

the archive’s date/time is after the date-time you specify, clearexport_sccs processes the

following revisions:

NOTE: In an incremental updating situation, if you remove a branch from an SCCS

revision, clearimport does not remove the branch from the ClearCase or ClearCase LT

element.

Specify the time as follows:

date.time | date | time | now
where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

–I { now | date-time }

Processes important revisions only, but includes all revisions created since the specified

time. A version is important if any of these conditions is true:

PRESERVATION OF SCCS-IDS AS ATTRIBUTES. Default: clearexport_sccs does not attach attributes to

versions exported from SCCS revisions.

–V
Attaches an attribute of type SCCS_ID to each newly created version. The string value

• All revisions created since the specified date-time
• All revisions from which branches sprout

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec

• It is the most recent version on its branch.

• It has a label.

• A subbranch is sprouted from it.
166 ClearCase Reference Manual

clearexport_sccs
of the attribute is the SCCS-ID of the exported SCCS revision. (clearimport creates

attribute type SCCS_ID, if necessary.)

If you use the –s option with this option, clearimport attaches SCCS_ID attributes only

to revisions created after the date-time you specified.

Each attribute requires about 1 KB of storage in the VOB database.

DIRECTORY FOR TEMPORARY FILES. Default: clearexport_sccs uses the value of the TMP

environment variable as the directory for temporary files.

–t temp-dir-pname
Specifies an alternate directory for temporary files. This directory must already exist.

BRANCH NAME TRANSLATION. Default: As described in the section VERSION TREE STRUCTURE
AFTER CONVERSION on page 162, clearexport_sccs creates ClearCase or ClearCase LT branch

names based on the SCCS revision IDs.

–T translation-file
Uses the specified translation file to control the mapping between SCCS branches and

ClearCase or ClearCase LT branches. See also the TRANSLATION FILE on page 164.

STORAGE LOCATION OF DATAFILE. Default: clearexport_sccs creates datafile cvt_data in the current

working directory.

–o datafile-pname
Stores the datafile in the specified location. An error occurs if datafile already exists.

SPECIFYING FILES TO BE EXPORTED. Default: clearexport_sccs processes the current working

directory (equivalent to specifying "." as the source-name argument). If you specify a directory as

a source-name argument: (1) clearexport_sccs processes the s-files in that directory but ignores the

contents of the subdirectories; (2) clearimport creates a directory element for source-name and for

each of its subdirectories (except one named SCCS or sccs).

source-name ...

One or more pathnames, specifying s-files and/or directories:

Each source-name must be a simple file or directory name. This enables clearimport to
reliably access the source data. Specifying the parent directory (..) causes an error, as

does any pathname that includes a backslash (\) character.

• For each specified s-file, clearexport_sccs converts some or all of its SCCS

revisions to ClearCase or ClearCase LT versions.

• For each specified directory, clearexport_sccs places descriptions in the datafile for

all the s-files it contains. clearimport creates a directory element for the specified

directory itself, and for its subdirectories (except one named SCCS or sccs).
 ClearCase Reference Pages 167

clearexport_sccs
Thus, before entering this command, you should change to the directory where (or

under which) the s-files to be exported reside. If the s-files reside in SCCS subdirectories,

use the –r option to enable clearexport_sccs to find them.

EXAMPLES

• Create a datafile for a single SCCS file.

c:\> clearexport_sccs s.myprogram.c

• Process three SCCS files in the current working directory and store the datafile in file

cvt_include.

c:\> clearexport_sccs -o cvt_include s.bgr1.h s.bgr2.h s.bgr3.h

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate
168 ClearCase Reference Manual

clearexport_ssafe
clearexport_ssafe
Convert SourceSafe files to ClearCase/ClearCase LT elements

APPLICABILITY

SYNOPSIS
clearexport_ssafe [–r] [–s date-time | –I { now | date-time }]

[–V] [–b target-branch [–v version-id]]

[–T translation-file] [–o datafile-pname] [source-name]

DESCRIPTION

clearexport_ssafe and clearimport allow you to copy SourceSafe files to a VOB. You can copy a

single file, multiple files, or an entire project tree.

During the export stage, you invoke clearexport_ssafe while connected to any SourceSafe

project. clearexport_ssafe creates a datafile (by default, cvt_data), and places in it the

descriptions of elements and versions.

In the import stage, you invoke clearimport on the datafile. clearimport reads the descriptions

in the datafile and imports the information into the VOB.

clearexport_ssafe converts each SourceSafe label into a ClearCase or ClearCase LT version label.

clearexport_ssafe creates separate elements for each SourceSafe file. You can specify a translation

file to control naming of labels, enforcing consistency over multiple invocations of the command.

You can use the –V option to preserve SourceSafe version numbers as attributes of the

corresponding ClearCase/ClearCase LT versions.

NOTE: clearexport_ssafe and clearimport use magic files to determine which element type

should be used for each element clearimport creates. For more information on magic files and

file typing, see the cc.magic reference page.

NOTE: clearexport_ssafe uses the value of the TMP environment variable as the directory for

temporary files.

SourceSafe Checked-out Files

clearexport_ssafe issues warning messages when it encounters checked-out SourceSafe files, but

still processes the files.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 169

clearexport_ssafe
SourceSafe Executable in PATH

For clearexport_ssafe to work, the SourceSafe command-line executable, ss.exe, must be in your

PATH environment variable. ss.exe must work without prompting you for a user name and

password. To prevent prompting, you might need to use a SourceSafe user name that matches

your NT login user name, or you might need to set the SSUSER environment variable and set the

corresponding password to blank, or no password.

SPECIAL CHARACTERS IN FILENAMES

During import, clearimport invokes a shell to extract data from the datafile. clearimport can

handle some, but not all, characters that are special to shells. The import fails for any filename

that includes any of these characters:

‘ ’ “ <Tab > [] ? * %

For example:

Before running clearexport_ssafe, rename any filename that contains these characters.

TRANSLATION FILE

Renaming of SourceSafe labels can introduce inconsistencies over multiple runs of

clearexport_ssafe. The same label might be renamed during processing of some SourceSafe files,

but remain unchanged during processing of other files. You can enforce consistency by using the

same translation file in multiple invocations of clearexport_ssafe. If you name such a file (using

the –T option), clearexport_ssafe uses it to:

• Look up each SourceSafe label to determine how to translate it to a

ClearCase/ClearCase LT label type. If a match is found, clearexport_ssafe translates the

label the same way.

• Record each translation of a new SourceSafe label for use in future lookups.

The first time you use clearexport_ssafe, use –T to create a new translation file. On subsequent

invocations of clearexport_ssafe, use –T again and specify the same translation file, for

consistent name translation.

Syntax of Translation File

The translation file consists of one or more lines in the following form:

label old-name new-name

For example, to rename the label BL1.7 to IMPORT_BASE and the label BL2 to

IMPORT_BASE2, the translation file would be:

Succeeds Fails
foo&bar foo?bar

MY_LIB yellow‘sunset
170 ClearCase Reference Manual

clearexport_ssafe
label BL1.7 IMPORT_BASE
label BL2 IMPORT_BASE2

No blank lines are allowed in the file.

SHARES

clearexport_ssafe does not preserve shares as hard links during conversion. Instead, shares

become separate elements.

LABELS

clearexport_ssafe converts a SourceSafe label into a ClearCase/ClearCase LT label with the

same name.

BRANCHES

clearexport_ssafe does not convert SourceSafe branches to ClearCase/ClearCase LT branches.

Instead, clearexport_ssafe creates separate elements.

PINS

clearexport_ssafe translates SourceSafe pins to ClearCase/ClearCase LT version labels named

PINNED.

NO DELTAS

SourceSafe lets you assign the NO DELTAS attribute to elements, which directs SourceSafe to

keep only the current version of the element. SourceSafe keeps a history of all versions, but the

contents of only the current version. clearexport_ssafe creates an empty version for each of the

previous versions of the element, and a version with contents for the current version. Because

ClearCase and ClearCase LT do not include a feature comparable to NODELTAS, when you create

new versions of the element, the previous versions and their contents are stored. You can,

however, use the rmver –data command to remove a version’s contents.

HANDLING OF OBJECTS THAT CANNOT BE EXPORTED

When clearexport_ssafe encounters a file or directory that cannot be exported (for example, a file

with format problems, or a broken symbolic link), it prints an error and continues. After creating

the data file, the command prints a summary of the files and directories that could not be

exported.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. clearexport_ssafe processes the files in your SourceSafe

current project. You cannot specify a pathname with the source-name argument.
 ClearCase Reference Pages 171

clearexport_ssafe
–r
clearexport_ssafe descends recursively into all subprojects of your current project.

NOTE: Do not specify the RECURSIVE variable in your SourceSafe initialization file (.ini).

SELECTIVE CONVERSION OF FILES. Default: clearexport_ssafe processes all files it encounters.

–s date-time
clearexport_ssafe processes only files that have been modified since the specified time.

Use this option for regular, incremental updating of an element from a SourceSafe file

that is still under development. Be sure to specify a date-time that covers the entire period

since the preceding update. In other situations, it is better to use –I instead of –s.

clearexport_ssafe determines whether to process a SourceSafe file by using the

last-modified date/time of the file. If this date/time is before the date-time you specified

with –s, clearexport_ssafe does not process any of the versions of the file. If the

date/time is after the date-time you specified, clearexport_ssafe processes the following

versions:

NOTE: In an incremental updating situation, if you remove a label from a SourceSafe file,

clearimport does not remove the label from the ClearCase/ClearCase LT element.

–I { now | date-time }

Processes important versions only, but includes all versions created since the specified

time. A version is important if:

To export only important versions, use –I now. The time is specified in one of the

following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit the time, it

defaults to 00:00:00 . If you omit the date, it defaults to today. If you omit the century,

• all versions created since the specified date-time
• all versions that have labels

• it is the most recent version

• it has a label

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
172 ClearCase Reference Manual

clearexport_ssafe
year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, it defaults to Greenwich Mean Time (GMT). (Dates

before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

PRESERVATION OF SOURCESAFE INFORMATION AS ATTRIBUTES. Default: clearexport_ssafe does not

attach attributes to versions exported from SourceSafe versions.

–V
Attaches an attribute of type SSAFE_VERSION to each newly-created version. The

string value of the attribute is the SourceSafe version number of the processed version.

(clearimport creates attribute type SSAFE_VERSION, if necessary.)

If you use the –s option with this option, clearimport attaches SSAFE_VERSION
attributes only to versions created after the date-time you specified.

Each attribute requires about 1KB of storage in the VOB database.

CREATING NEW VERSIONS ON A BRANCH. Default: clearimport creates new versions of a file or

directory element on the element’s main branch.

–b target-branch [–v version-id]

Converts each file to a version on branch target-branch of the new or existing element.

Whenever clearimport creates a new element in the target VOB, it also revises the parent

directory element on branch target-branch. To prevent directory branching, you can check

out all directories on any branch before importing. clearimport then uses the

checked-out directories.

If branch type target-branch does not already exist in the target VOB, clearimport creates

it. If an existing element already has a branch of this type, the new version extends this

branch; otherwise, clearimport sprouts target-branch from version \main\LATEST
(\main\0 for new elements). To specify another version from which the branch should

sprout, use the –v option.

For example, if you use clearexport_ssafe –b bugfix and bugfix does not already exist,

clearimport will create new versions on the bugfix branch and sprout it from the latest

version on branch main:
 ClearCase Reference Pages 173

clearexport_ssafe
If you use clearexport_ssafe –b bugfix –v \main\v1.0\FCS_VER and bugfix does not

already exist, clearimport will create new versions on the bugfix branch and sprout it

from the version on the \main\v1.0 branch labeled FCS_VER:

TRANSLATION OF LABELS. Default: clearexport_ssafe may automatically rename a label type to

avoid naming conflicts.

–T translation-file
Uses the specified translation file to control and record the conversion of SourceSafe

label names to ClearCase/ClearCase LT version labels.

STORAGE LOCATION OF DATAFILE. Default: clearexport_ssafe creates the datafile cvt_data in the

current working directory.

–o datafile-pname
Stores the datafile at the specified location. An error occurs if datafile already exists.

NOTE: Do not specify the OUTPUT variable in your SourceSafe initialization file (.ini).

SPECIFYING FILES TO BE EXPORTED. Default: The SourceSafe current project (equivalent to

specifying “.”as the source-name argument). clearexport_ssafe processes each SourceSafe file in

the current project, and creates a directory element for each subproject of the current project.

source-name
The name of the SourceSafe current project, or a file or subproject in that project:

main

bugfix

v1.0

main

bugfix

v1.0

FCS_VER
174 ClearCase Reference Manual

clearexport_ssafe
The source-name must be a SourceSafe file or project in the SourceSafe current project.

This enables clearimport to reliably access the source data.

clearexport_ssafe processes files and subprojects from only your SourceSafe current

project. You cannot use source-name to specify a pathname that is not in your SourceSafe

current project.

EXAMPLES

• Create entries in the datafile for the elements in the current project, processing important

versions created before 1999 and all versions created since the beginning of 1999.

c:\> clearexport_ssafe –r –I 1-Jan-1999

• Create entries in the datafile for the elements in the current project, but not in any

subprojects; store the datafile in a file named newcvt.

c:\> clearexport_ssafe –o newcvt .

• In SourceSafe, display your SourceSafe current project.

c:\> ss cp

• In SourceSafe, list the contents of your SourceSafe current project.

c:\> ss dir

SEE ALSO

clearexport_*, clearimport, events_ccase, relocate

• For each SourceSafe file, clearexport_ssafe places a description in the datafile.

• For the current project, clearexport_ssafe places a description in the datafile for all

the elements it catalogs. clearimport creates a directory element for the specified

project itself, and for its subprojects.
 ClearCase Reference Pages 175

176 ClearCase Reference Manual

clearhistory

clearhistory
Shows event records for VOB-database objects graphically

APPLICABILITY

SYNOPSIS

clearhistory [–nop⋅references [[–min⋅or] [–nco] [–sin⋅ce date-time]

[–use⋅r login-name] [–bra⋅nch branch-type-selector]]]

[[–r⋅ecurse | –d⋅irectory | –a⋅ll | –avo⋅bs]

[–pna⋅me] pname ...

| object-selector ...

]

DESCRIPTION

The clearhistory command invokes lshistory with the –graphical option.

OPTIONS AND ARGUMENTS

The syntax of the clearhistory command is the same as the graphical version of lshistory. See the

lshistory reference pages for a description of the command-line options.

SEE ALSO

chevent, cleardescribe, describe, events_ccase, fmt_ccase, lscheckout, lshistory, lspool, lstype,

lsvtree

Product Command Type

ClearCase command

ClearCase LT command

clearimport
clearimport
Reads data files created by clearexport tools and import elements into a VOB

APPLICABILITY

SYNOPSIS
clearimport [–v⋅erbose] [–i⋅dentical] [–n⋅setevent] [–master] [–pcase]

[–d⋅irectory destination-dir] [–c⋅omment comment] [–no⋅load] datafile

DESCRIPTION

During the import stage, you invoke clearimport within an existing VOB on the datafile created

by clearexport_*. For each object processed by clearexport_* and entered in datafile, clearimport
does one of the following things:

• Creates a new element with the same versions as the original.

The user who invokes clearimport becomes the owner of the elements that clearimport
creates. clearexport_* and clearimport use magic files to determine which element type to

use for each element clearimport creates. For more information on magic files and

file-typing, see the cc.magic reference page.

• Checks out an existing element (optionally, on a branch) and checks in a new version for

each original version that has not already been imported

If any of the original files were located in subdirectories, clearimport creates corresponding

directory elements.

clearimport uses your view context to select the directory version into which it imports elements.

However, when clearimport creates directory versions, it creates them on the main branch. The

exceptions are as follows:

• If a directory already exists in the target VOB, you can check it out on a branch, and

clearimport uses that version

• If you are exporting with clearexport_ffile and you use the –b option, clearimport imports

to the specified branch

When importing into a snapshot view, you can improve performance significantly by specifying

–noload.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 177

clearimport
Requirements and Restrictions

You must observe the following requirements and restrictions:

• If you are importing ClearCase or ClearCase LT files, use the same config spec (the same

view) for the export phase (invocation of clearexport_ccase) and the import phase

(invocation of clearimport).

• Do not run clearimport in a view that has file elements checked out from the target VOB. If

clearimport is importing to a checked-out element in the target VOB, it cancels the checkout

(uncheckout) of that element and deletes the view-private file from the view storage

directory. Any changes that you made to the file are lost.

• Do not run clearimport in a UCM view. If you do, clearimport fails with an error message.

• When you import PVCS, RCS, SourceSafe, or SCCS files, clearimport uses an extraction

command specific to the version-control product. You must have this extraction command

in your path during import:

PVCS and SCCS use the same command; make sure the correct one is in your path.

• Do not run clearexport_* on UNIX and then run clearimport on Windows to import the

data, or vice-versa. However, you can transfer data in either direction between UNIX and

Windows by mounting the UNIX VOB or file-system on your Windows machine and

running both clearexport_* and clearimport on the Windows machine.

Creation of Event Records During the Import Phase

clearimport documents changes to the VOB by creating event records:

• Each time clearimport creates a new file element, it stores an import file element event

record, along with the standard create element event record, in the VOB database. The

import file element event record is associated with the parent directory element, not

with the new file element itself. clearimport creates the import event record only if the

object is more than 24 hours old.

• Each time clearimport creates a new version, it annotates the standard create version

event record with the comment from the original version.

• Each time clearimport creates a new VOB symbolic link, it creates a standard create

symbolic link event record.

Product Extraction Command

PVCS get
RCS co
SourceSafe ss.exe
SCCS get
178 ClearCase Reference Manual

clearimport
• clearimport always stamps the import file element event record with the current time.

It stamps the create version and create element event records according to the original

data unless you use the –nsetevent option.

• clearimport stamps the event record for the creation of a branch with the same time stamp

as the version at which it was created.

NOTE: When clearimport creates a branch, the branch and version 0 of the element inherit the

history information (user, group, and time stamp) of the version from which the branch

sprouts.

• clearimport stamps the event record for attachment of an attribute, label, or merge arrow

with the same time stamp as the associated version.

• clearimport stamps event records for the creation of directory elements and type objects

with the current time, and attaches the comment created by importer or the comment

given with the –comment option.

Incremental Import and Restartability

clearimport can skip certain versions or entire elements, which gives you some flexibility:

• You can import an element in several passes. You may use incremental import for

time-budgeting reasons (when there are too many versions to import at once), or because

the original element is still being developed.

• You can restart clearimport if it terminates prematurely for any reason. clearimport quickly

updates versions it has already imported, effectively resuming where it left off.

CAUTION: If you invoke clearimport with the –nsetevent option, it creates ClearCase or

ClearCase LT versions that are newer than all the original files to be imported; thus, it is not

restartable.

For each source version, clearimport does not create a corresponding version if it already exists

on the target branch—that is, if it has the same time stamp (or a more recent one). However, even

when clearimport bypasses version creation, it still updates the new version’s metadata, such as

version labels, using information from the source version.

Preserving the Case of Files

By default, clearimport converts all file names to lower case. This is generally the simplest and

most efficient way to import files when you use the MVFS option of case insensitive mode (the

default). Converting file names on import mirrors the behavior of new files created in

case-insensitive mode. For more information, see Administering ClearCase.

Use the –pcase option when you need to preserve the case of files being imported; for example,

when you import files whose names differ only in case (for example, Makefile and makefile) and

you have disabled case-insensitive mode.
 ClearCase Reference Pages 179

clearimport
Handling of Unreadable or Troublesome Elements

clearimport prints an error when it cannot read an element version specified in the export data

file. It creates version 0 of the unreadable element and continues to process the export datafile.

Additionally, if clearimport has any difficulty importing any elements, it prints a list of such

elements after it finishes.

PERMISSIONS AND LOCKS

Permissions Checking: Unless you use the -nsetevent option, you must be the VOB owner or one

of the following: a member of the ClearCase group (ClearCase) or the local administrator of the

ClearCase LT server host (ClearCase LT).

Locks: An error occurs if the target VOB is locked.

OPTIONS AND ARGUMENTS

VERBOSITY OF OUTPUT. Default: clearimport prints a header for each kind of type creation (label,

branch, attribute, and so on). When it creates directory elements, file elements, and VOB

symbolic links, it prints a header as well as element names and version-IDs. When the import is

completed, clearimport prints a message indicating that it has closed the directories.

–v⋅erbose
clearimport prints messages when it performs these operations: creates types, branches,

directories, VOB symbolic links, attributes, or version labels; draws merge arrows;

makes branches or elements obsolete; checks in or cancels checkouts of directories; and

checks out onto a branch (when using a datafile created by clearexport_ffile –b).

CREATION OF IDENTICAL SUCCESSOR VERSIONS. Default: When you invoke clearimport on a

datafile created by clearexport_ffile, it does not create a new version that is identical to its

predecessor.

–i⋅dentical
Creates a new version even if it is identical to its predecessor, but only if the file has a

more recent date than the date on the version in the VOB.

TRANSCRIPTION OF HISTORY INFORMATION. Default: The exporters extract historical information

from each object and place it in the object’s description in the datafile. The create version and

create element event records created for the object by clearimport have the same

information—user, group, and time stamp—as the original object.

NOTE: When clearimport creates a branch, the branch and version 0 of the element inherit the

history information of the version from which the branch sprouts.

–n⋅setevent
Event records and historical information for new elements and versions reflect who ran

the execution of clearimport and when, not the original data. You cannot use this option

when you import a datafile created with clearexport_ccase.
180 ClearCase Reference Manual

clearimport
CAUTION: If you invoke clearimport with the –nsetevent option, it is not restartable.

MASTERSHIP OF THE MAIN BRANCH. Default: Assigns mastership of the element’s main branch to

the VOB replica that masters the main branch.

–master
Assigns mastership of the main branch of the element to the VOB replica in which you

execute the clearimport command.

PRESERVE CASE OF FILES. Default: clearimport converts all file names to lower case.

–pcase
Preserves the case of files being imported.

SPECIFYING A DESTINATION DIRECTORY. Default: clearimport imports elements into the current

directory.

–d⋅irectory destination-dir
clearimport imports elements into the specified VOB directory.

EVENT RECORDS AND COMMENTS. Default: clearimport attaches the comment “created by

importer” to any directories created during the import process.

–c⋅omment comment
clearimport attaches the specified comment instead of the default comment.

SUPPRESSING SNAPSHOT VIEW LOADS. Default: Imported elements are loaded into the snapshot

view.

–no⋅load
Suppresses the loading of imported elements into snapshot views (this option is

inapplicable to dynamic views). The view’s config_spec must include a load rule that

specifies the destination of the imported elements and a version-selection rule that

specifies /main/LATEST. To see the new elements, you must update the view after the

import operation (see update).

Specifying this option can improve clearimport performance substantially. If you also

specify the –identical option, clearimport does not compare element versions to

determine if they are identical. Used with –noload, –identical can result in a further

improvement in clearimport performance.

SPECIFYING THE DATA FILE. Default: None. You must specify the datafile on which you want to

invoke clearimport.

datafile
File created by clearexport_* command (by default, named cvt_data).
 ClearCase Reference Pages 181

clearimport
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Invoke clearimport on cvt_data, forcing creation of identical versions and attaching a comment

to new directories.

c:\> net use * \\view\newview (set a view context)

Drive F: is now connected to \\view\newview.
The command completed successfully.

c:\> f:

f:\> cd newvob (go to VOB directory where data is to be imported)

f:\newvob> clearimport -identical –c "rick’s import" c:\src\cvt_data (invoke clearimport)

• Invoke clearimport on cvt_data, enabling verbose output and importing elements into the

\newvob directory.

c:\> net use y: \\view\view1

Drive Y: is now connected to \\view\view1.
The command completed successfully.

c:\> y:

y:\> clearimport -verbose -directory \newvob cvt_data

SEE ALSO

chtype, clearexport_ccase, clearexport_cvs, clearexport_ffile, clearexport_pvcs,

clearexport_rcs, clearexport_sccs, clearexport_ssafe, events_ccase, protect, rename, update
182 ClearCase Reference Manual

clearlicense
clearlicense
Monitors and controls the product license database

APPLICABILITY

SYNOPSIS
clearlicense [–pro⋅duct product-name] [–hos⋅tid | –rel⋅ease [username | user-ID] ...]

DESCRIPTION

The clearlicense command reports the status of the ClearCase and Attache user licensing facility.

You can also use this command to release users’ licenses, making them available to other users.

HOW LICENSING WORKS

ClearCase and Attache implement an active user floating license scheme. To use ClearCase or

Attache you must obtain a product-specific license. When you run Attache or any ClearCase

program, it attempts to obtain a license for you. If you get one, you can keep it for an extended

period: entering any ClearCase or Attache command renews it. If you do not enter any command

for a substantial period, another user can take your license.

One or more hosts in the local area network are designated as license server hosts. Each of these

hosts has a LicenseKeys value in the Windows NT registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion. The LicenseKeys value

(on the Licensing tab in the ClearCase Control Panel on the license server host) stores one or

more license entries.

Each license entry defines a specified number of licenses, allowing that number of ClearCase or

Attache users to be active at the same time. See the license.db reference page for a description of

the license entry format.

NOTE: One or more of your network’s license server hosts can be UNIX hosts. A UNIX license

server host stores license entries in the file /var/adm/atria/license.db.

License Priorities

Each user can (but need not) be assigned a license priority in the license database. Each user

specified in a -user line gets a priority number: the first user gets priority 1 (highest priority),

the second user gets priority 2, and so on. All users who are not specified in any -user line share

the lowest priority.

Product Command Type

ClearCase command

MultiSite command
 ClearCase Reference Pages 183

clearlicense
Getting a License

(ClearCase only) When you first run a ClearCase tool, or first enter a Windows command to

access VOB data though a view, a license-verification request is made.

(Attache only) When you first attempt to connect to the workspace helper, a license-verification

request is made. The helper acts as a remote ClearCase user, requesting a ClearCase license on

behalf of the Attache client. This license becomes the Attache license; the helper sets flags when

it calls on ClearCase so that no new ClearCase license is consumed.

When requesting a license for either ClearCase or Attache, the license-verification check follows

this process:

1. The product software on your host determines the license server host to use; this value is

specified on the Licensing tab in the ClearCase Control Panel.

2. It makes an RPC call to the license server process on that license server host, to verify your

right to use the product. (The license server process is actually albd_server, performing these

duties in addition to its other tasks.)

3. The license server process determines your rights and sends back an appropriate message.

4. Depending on the message sent by the license server, your command either proceeds or fails.

Subsequently, similar license-verification checks are performed on periodically. The sections that

follow describe in detail how users get and lose licenses.

In the following cases, you get a license and become an active user:

• The current number of active users is less than the maximum number specified by the entry

or entries on the Licensing page in the ClearCase applet. In this case, you are granted a

license.

• All licenses are currently in use, but there is a user whose license priority is lower than

yours. In this case, you are allowed to bump that other user, getting his or her license.

NOTE: Some commands do not require a license; this is noted in the individual reference pages.

Losing a License

When you get a license, its time-out period is set. As you continue to use ClearCase or Attache

commands and data, your license is periodically refreshed. (The time-out period is reset.) If you

do nothing with ClearCase or Attache in the time-out period, you lose your license and it

becomes available to other users.

NOTE: The time-out period for ClearCase is 60 minutes; a shorter time-out interval can be

configured in the license database with the –timeout option. The time-out period for Attache is

one week and cannot be changed. See the license.db reference page for more information.

You can also lose your license before the time-out period is over:
184 ClearCase Reference Manual

clearlicense
• A user with a higher license priority can precede you in the queue.

• You or another user can explicitly release (revoke) your license, using clearlicense –release.

It is possible to regain a license immediately after losing it.

NOTE: Applications that periodically browse and/or update file system resources, even when

idle, will prevent your license from being released. Such applications include Windows Explorer

and Visual C++.

License Expiration

Each license entry can have an expiration date. (The expiration time is at 00:00 hours on that

date.) During the 72-hour period before the expiration date, attempts to use a license from that

license entry succeed, but a warning message appears. After the expiration time, attempts to use

those licenses fail.

THE CLEARLICENSE REPORT

Following is a typical clearlicense report:

License server on host "kronos".
Running since Monday 4/04/99 15:53:13.

LICENSES:
 Max-Users Expires Password [status]

19 none 2aae4b60.b4ac4f0f.02 [Valid]

 Maximum active users allowed: 19
 Current active users: 6
 Available licenses: 13

ACTIVE users:
User Priority Time-out in
rdc 2 59 minutes (at 10:44:20)
chris 1 26 minutes (at 10:10:45)
cheryl none 23 minutes (at 10:07:27)

License Usage Statistics:
2 licenses revoked today 4/14/99.
0 license requests denied.
0 active users bumped by preferred user.

The following sections explain the parts of this report.

License Server Field

The license server is the albd_server process on the license server host. The report lists the time

at which albd_server first processed a license-verification request.
 ClearCase Reference Pages 185

clearlicense
Licenses

The information in this section is gathered from the license entry line(s) on the Licensing tab.

Each such –license line generates a separate line in this report. The status can be one of the

following:

The “current active users” number summarizes the information in the next section of the report.

Active Users

Each line in this section describes one active user. The priority none indicates that the user is not

specified in any -user entry and, thus, has the lowest license priority.

License Usage Statistics

This section lists licensing activity statistics, compiled since the time the license server

(albd_server) started execution:

• The number of explicit license revocations (clearlicense –release) that have occurred since

the beginning of the period (for Attache) or today (for all other products)

• The number of times a user failed to get a license

• The number of times a lower-priority user was bumped by a higher priority user

OPTIONS AND ARGUMENTS

Default: A report on licenses and user activity for all products with valid licenses is displayed, in

the format described above.

–pro⋅duct product-name
Specifies the product whose licensing information is to be displayed or changed.

product-name must match (including capitalization) the word that follows –license in the

product’s license entry—for example: ClearCase, Attache, MultiSite, and

Attache-MultiSite.

–hos⋅tid
Displays the machine identifier of the host on which you invoke the command (for

ClearCase) or the helper host’s machine identifier (for Attache).

To obtain the license-server-host-ID for the License Registration Form (located in the

ClearCase and MultiSite Installation and Release Notes; to be used when you want to add

licenses to an existing license database or add a license server host), log in to the current

or future license server host and run clearlicense –hostid.

Valid The expiration date (if any) for this set of licenses has not yet arrived.

Warning You are now in the 72-hour period preceding the expiration time.

Expired This set of licenses has expired.
186 ClearCase Reference Manual

clearlicense
–rel⋅ease [username | user-ID] ...

Specifies users (by user name or by numeric user-ID) whose licenses are to be revoked.

Using –release without an argument causes your own license to be revoked. To

discourage license battles among users, albd_server prevents this option from being

used an excessive number of times during any single period (for Attache) or day (for all

other products).

LICENSING ERRORS

This section describes errors typically encountered in licensing.

Problems with License Host File

If the Windows registry key value LicenseHost does not exist or is empty, this message appears:

Additional error messages may be displayed or written to the Event Viewer:

Error: You do not have a license to run ClearCase.

Error: Your license server is not specified.

Error: Unable to query value of LicenseKeys in the NT Registry; NT error
Windows-NT-status-code.

Error: Unable to read LicenseKeys from the NT Registry; NT error
Windows-NT-status-code.

Problems with License Server Host

If the license server host specified on the Licensing tab cannot be contacted, this message

appears:

In addition, error messages are displayed or are logged to the Event Viewer:

Error: Cannot contact license server host " hostname"
defined in
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\LicenseHost.

Error: You do not have a license to run ClearCase.

Error: Error Windows-NT-status-code reading license server hostname from the NT
Registry.

mvfs: ERROR: view view-tag not licensed! (in Attache, appears on the console of helper host)
command-name: .: Input/Output error (in Attache, appears in the Command window)

mvfs: ERROR: view view-tag not licensed! (in Attache, appears on the console of helper host)
command-name: .: I/O error (in Attache, appears in the Command window)
 ClearCase Reference Pages 187

clearlicense
Losing a License

If you lose your license while a view is active, this message appears when you try to use the

product:

SEE ALSO

albd_server, license.db

mvfs: ERROR: view shtest - all licenses in use! (in Attache, appears on the
console of helper host)
188 ClearCase Reference Manual

clearmake
clearmake
ClearCase build utility; maintains, updates, and regenerates groups of programs

APPLICABILITY

SYNOPSIS

• Build a target:

clearmake [–f makefile] ... [–ukinservwdpqUNR]

[–C compat-mode] [–V | –M] [–O | –T | –F]

[–A BOS-file] ... [macro=value ...] [target-name ...]

• Display version information for clearmake:

clearmake { –ver⋅sion | –VerAll }

DESCRIPTION

clearmake is ClearCase’s variant of the UNIX make utility. It features a Gnu make compatibility

mode, which enables you to use clearmake with makefiles that were constructed for use with

Gnu make.

clearmake features a number of ClearCase extensions:

• Configuration Lookup—A build-avoidance scheme that is more sophisticated than the

standard scheme, which is based on the time stamps of built objects. Configuration lookup

also includes automatic dependency detection. For example, this guarantees correct build

behavior as C-language header files change, even if the header files are not listed as

dependencies in the makefile.

• Derived Object Sharing—Developers working in different views can share the files created

by clearmake builds.

• Creation of Configuration Records—Software bill-of-materials records that fully document

a build and support the ability to rebuild.

NOTE: clearmake is intended for use in dynamic views. You can use clearmake in a snapshot view,

but most of the features that distinguish it from ordinary make programs—build avoidance,

build auditing, derived object sharing, and so on—are not enabled in snapshot views. (Parallel

builds are enabled.) The rest of the information in this reference page assumes you are using

clearmake in a dynamic view.

Product Command Type

ClearCase command
 ClearCase Reference Pages 189

clearmake
Related Reference Pages

The following reference pages include information related to clearmake operations and results:

See also Building Software with ClearCase.

View Context Required

For a build that uses the data in one or more VOBs, the command interpreter from which you

invoke clearmake must have a view context; you must be on the dynamic-views drive (default:

M:\) or a drive assigned to a view. If you want derived objects to be shared among views, you

must be on a drive assigned to a view.

You can build objects in a standard directory, without a view context, but this disables many of

clearmake’s special features.

clearmake AND MAKEFILES

clearmake is designed to read makefiles in a way that is compatible with other make variants.

For details, including discussions of areas in which the compatibility is not absolute, see Using
clearmake Compatibility Modes in Building Software with ClearCase.

For more information about makefiles and clearmake, see clearmake Makefiles and BOS Files in

Building Software with ClearCase.

HOW BUILDS WORK

In many ways, ClearCase builds adhere closely to the standard make paradigm:

1. You invoke clearmake, optionally specifying the names of one or more targets. (Such

explicitly specified targets are called “goal targets.”)

omake Builds software on Windows NT and provides compatibility

with PC-based make products.

clearaudit Runs audited builds.

lsdo (cleartool subcommand) Lists derived objects created by

clearmake, omake, or clearaudit.
catcr (cleartool subcommand) Displays configuration records

created by clearmake, omake, or clearaudit.
diffcr (cleartool subcommand) Compares configuration records

created by clearmake, omake, or clearaudit.
rmdo (cleartool subcommand) Removes a derived object from a

VOB.

winkin (cleartool subcommand) Winks in a derived object to a view

or to the VOB.
190 ClearCase Reference Manual

clearmake
2. clearmake reads zero or more makefiles, each of which contains targets and their associated

build scripts. It also reads zero or more build options specification (BOS) files, which

supplement the information in the makefiles.

3. clearmake supplements the makefile-based software build instructions with its own built-in

rules, or (when it runs in a compatibility mode) with built-in rules specific to that mode.)

4. For each target, clearmake performs build avoidance, determining whether it actually needs

to execute the associated build script (target rebuild). It takes into account both source

dependencies (Have any changes occurred in source files used in building the target?) and

build dependencies (Must other targets be updated before this one?).

5. If it decides to rebuild the target, clearmake executes its build script.

The following sections describe special clearmake build features in more detail. Figure 6

illustrates the associated data flow.

Figure 6 Data Flow in a clearmake Build

CONFIGURATION RECORDS AND DERIVED OBJECTS

In conjunction with the MVFS file system, clearmake audits the execution of all build scripts,

keeping track of file use at the system-call level. For each execution of a build script, it creates a

configuration record (CR), which includes the versions of files and directories used in the build, the

build script, build options, (for example, macro assignments) and other related information. A

copy of the CR is stored in the VOB database of each VOB in which the build script has built new

objects.

A file created within a VOB by a build script is called a derived object (DO), and it can be shareable

or nonshareable. When a shareable derived object is built in a view, a corresponding VOB

database object is also created. This enables any view to access and possibly share (subject to

access permissions) any derived object, no matter what view it was originally created in.

source
data
files

existing

new

configuration
environment

makefiles

new

clearmake

build
options
spec files

variables

configuration
records

derived
objects

records
 ClearCase Reference Pages 191

clearmake
When a build tool creates a nonshareable derived object, the tool does not write any information

about the DO to the VOB. Therefore, the DO is invisible to other views and cannot be winked in

by them. Builds that create nonshareable DOs are called express builds. For more information

about using express builds, see Preventing Winkin to Other Views on page 193.

NOTE: Symbolic links created by a build script and files created in non-VOB directories are not

DOs. See MVFS FILES AND NON-MVFS OBJECTS on page 193.

For each build script execution, ClearCase logically associates each DO created with the build

script’s CR.

You can suppress the creation of CRs and derived objects with the –F option. For details on CRs,

derived objects, see Derived Objects and Configuration Records in Building Software with ClearCase.

For information on ClearCase-specific special targets, see clearmake Makefiles and BOS Files in

Building Software with ClearCase.

Configuration Record Hierarchies

A typical makefile has a hierarchical structure. Thus, a single invocation of clearmake to build a

high-level target can cause multiple build scripts to be executed and, accordingly, multiple CRs

to be created.

CONFIGURATION LOOKUP AND WINKIN

For directory targets, clearmake uses standard make logic.

When a target names a nondirectory file in a VOB, clearmake (by default) uses configuration
lookup to determine whether a build is required. This involves comparing the CRs of existing DOs

with the current build configuration:

• The versions of elements selected by the view’s config spec.

• The build options to be applied, as specified on the clearmake command line, in the

environment, in makefile(s), or in build options specification file. See BUILD OPTIONS
SPECIFICATION FILE on page 194.

• The build script to be executed.

In performing configuration lookup, clearmake considers a DO version (a derived object that has

been checked in as a version of an element) only if the version’s element has the same pathname

as the original derived object. That is, if you copy a DO to a different location from where it was

created and check it in there, clearmake does not consider the DO version.

clearmake first tries to avoid rebuilding by reusing a DO in the current view; this succeeds only

if the CR of the candidate DO matches the current build configuration. For the purpose of

rebuilding, a branch/0 version of a file selected by a view is considered to match its non-zero

predecessor version in a CR.
192 ClearCase Reference Manual

clearmake
clearmake can also avoid rebuilding by finding a shareable DO, built in another view, whose CR

matches the current build configuration. In this case, it winks in (winkin) that derived object,

causing it to be shared among views. Other derived objects created by the same build script

(siblings) are winked in at the same time. clearmake rebuilds a target only if it cannot locate any

existing derived object that matches the current build configuration.

The .cmake.state File

The .cmake.state file is a view-private cache of config records for derived objects built in the

view. clearmake creates this file in the directory that was current when the build started. During

subsequent builds in that directory in the view, clearmake references the file instead of

communicating with the VOB. This makes configuration lookup faster, improving clearmake
performance.

You can delete .cmake.state files if they get too large. When clearmake looks for a .cmake.state
file and it doesn’t exist, no errors occur and clearmake creates a new file.

Suppressing Configuration Lookup

You can override the default configuration lookup behavior with command options and

ClearCase special targets. (For information on ClearCase special targets, see clearmake Makefiles
and BOS Files in Building Software with ClearCase). For example, –T turns off configuration lookup,

basing rebuild decisions on time stamps, and –V disables winkin of DOs from other views.

Preventing Winkin to Other Views

You can prevent derived objects that you create from being winked in to other views by using

express builds. During an express build, clearmake creates nonshareable DOs. These DOs have

config records, but clearmake does not write information about the DOs into the VOB. DOs

created during an express build are invisible to other views. To use express builds, invoke

clearmake in a view configured with the nonshareable DOs property:

• To configure an existing view for express builds, use chview –nshareable_dos view-tag. See

the chview reference page for more information.

• To create a new view and configure it with the nonshareable DOs property, use the mkview
command and specify the –nshareable_dos option. See the mkview reference page for

more information.

• Use the –T or –F options to create view-private files only.

• Use special targets that prevent winkin; for example, .NO_WINK_IN. For more

information, see clearmake Makefiles and BOS Files in Building Software with ClearCase.

• Set an environment variable that will be recorded in the config records clearmake creates.

MVFS FILES AND NON-MVFS OBJECTS

All files with pathnames below a VOB-tag (VOB mount point) are termed MVFS files:
 ClearCase Reference Pages 193

clearmake
• Checked-in versions of file elements (data stored in VOB)

• Checked-out versions of file elements (data stored in view)

• Other view-private files

• Derived objects

Conversely, a non-MVFS object is any file or directory whose pathname is not under a VOB-tag;

such objects are not version controlled. By default, non-MVFS objects are not audited during

clearmake builds. Non-MVFS files that are read during a build are not included in the detected

dependency list of the CR, and non-MVFS files that are created are not ClearCase derived objects.

A CR includes information on a non-MVFS object used by a build script only if either of these

conditions are true:

• The object appears as an explicit dependency in the makefile.

• The object can be inferred to be a dependency through clearmake’s file-name extension

rules.

The explicit dependency is referred to as a makefile dependency. For example:

src.o : c:\msvc20\include\stdio.h

BUILD OPTIONS SPECIFICATION FILE

A build options specification (BOS) file is a text file containing macro definitions and/or

ClearCase special targets. We recommend that you place nonpermanent option specifications

(for example, a macro that specifies “compile for debugging”) in a BOS file, instead of on the

clearmake command line. This minimizes the likelihood of having clearmake perform a rebuild

unexpectedly (for example, because you specified /Zi on a compiler command line last time, but

forgot to specify it this time).

See clearmake Makefiles and BOS Files in Building Software with ClearCase for details.

clearmake SLEEP

clearmake can monitor the current VOB’s lock status during a build, so that if an administrator

locks the VOB while clearmake is running, the build does not terminate abnormally. Before

executing the build script and before creating a derived object and configuration record,

clearmake checks the lock status of the current VOB. If the VOB is locked, clearmake starts a

sleep-check cycle. When it finds the VOB unlocked, the build proceeds.

NOTE: clearmake starts the sleep-check cycle even if the user who invokes the build is on the

exception list for the lock.

When a sleep-check cycle begins, clearmake prints a message announcing the sleep, its duration,

and the reason for it. Initially, clearmake checks the lock status 10 times, waiting 60 seconds

between attempts. clearmake then increments the sleep time by 5 seconds and again tries 10

times, and so on. clearmake prints a sleep message at the start of each group of 10 retries.
194 ClearCase Reference Manual

clearmake
This implementation does not guarantee that the build will not terminate abnormally. There are

still a few “windows of failure.” The build script will fail and terminate abnormally, and the

build will terminate if any of these conditions is true:

• The build script modifies the VOB, either by running a cleartool command that modifies

the VOB, or simply removing the derived object which is the target of the build.

• The build script writes to another VOB other than the current VOB, and the other VOB is

locked.

• The VOB becomes locked in the short time between the check and the build script

execution, and the build script has an action that modifies the VOB.

By default, clearmake checks the VOB containing the working directory that was current at the

start of the build. To check a set of VOBs, set the environment variable CCASE_BLD_VOBS to the

list of VOB-tags to check. Separate the VOB-tags in the list with a space, tab (\t), semicolon (;), or

comma (,).

To disable the checks, set the environment variable CCASE_BLD_NOWAIT. When this environment

variable is set, clearmake does not check for a VOB-lock (or wait for the VOB to be unlocked).

CACHING UNAVAILABLE VIEWS

When clearmake shops for a derived object to wink in to a build, it may find DOs from a view

that is unavailable (because the view server host is down, the albd_server is not running on the

server host, and so on). Attempting to fetch the DO’s configuration record from an unavailable

view causes a long time-out, and the build may reference multiple DOs from the same view.

clearmake and other cleartool commands that access configuration records and DOs (lsdo,

describe, catcr, diffcr) maintain a cache of tags of inaccessible views. For each view-tag, the

command records the time of the first unsuccessful contact. Before trying to access a view, the

command checks the cache. If the view’s tag is not listed in the cache, the command tries to

contact the view. If the view’s tag is listed in the cache, the command compares the time elapsed

since the last attempt with the time-out period specified by the CCASE_DNVW_RETRY environment

variable. If the elapsed time is greater than the time-out period, the command removes the

view-tag from the cache and tries to contact the view again.

NOTE: The cache is not persistent across clearmake sessions. Each recursive or individual

invocation of clearmake attempts to contact a view whose tag may have been cached in a

previous invocation.

The default time-out period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.
 ClearCase Reference Pages 195

clearmake
BUILD REFERENCE TIME AND BUILD SESSIONS

clearmake takes into account the fact that as your build progresses, other developers can

continue to work on their files, and may check in new versions of elements that your build uses.

If your build takes an hour to complete, you do not want build scripts executed early in the build

to use version 6 of a header file, and scripts executed later to use version 7 or 8. To prevent such

inconsistencies, clearmake locks out any version that meets both of these conditions:

• The version is selected by a config spec rule that includes the LATEST version label.

• The version was checked in after the time the build began (the build reference time).

This reference-time facility applies to checked-in versions of elements only; it does not lock out

changes to checked-out versions, other view-private files, and non-MVFS objects. clearmake
adjusts for the fact that the system clocks on different hosts in a network may be somewhat out

of sync (clock skew).

For more information, see Pointers on Using ClearCase Build Tools in Building Software with
ClearCase.

EXIT STATUS

clearmake returns a zero exit status if all goal targets are successfully processed. It returns a

nonzero exit status in two cases:

• clearmake itself detects an error, such as a syntax error in the makefile. In this case, the error

message includes the string “clearmake”.

• A makefile build script terminates with a nonzero exit status (for example, a compiler

error).

See also the description of the –q option.

OPTIONS AND ARGUMENTS

clearmake supports the options below. In general, standard make options are lowercase

characters and clearmake extensions are uppercase. Options that do not take arguments can be

combined on the command line (for example, –rOi).

–f makefile
Use makefile as the input file. If you omit this option, clearmake looks for input files

named makefile and Makefile (in that order) in the current working directory. You can

use more than one –f makefile argument pair. Multiple input files are effectively

concatenated.

–u
(Unconditional) Rebuild all goal targets specified on the command line, along with the

recursive closure of their dependencies, regardless of whether they need to be rebuilt.

(See also –U.)
196 ClearCase Reference Manual

clearmake
–k
Abandon work on the current entry if it fails, but continue on other targets that do not

depend on that entry.

–i
Ignore error codes returned by commands.

–n
(No-execute) List command lines from the makefile for targets which need to be rebuilt,

but do not execute them. Even lines beginning with an at-sign (@) are listed. See clearmake
Makefiles and BOS Files in Building Software with ClearCase.

Exception: A command containing the string $(MAKE) is always executed.

–s
(Silent) Do not list command lines before executing them.

–e
Environment variables override macro assignments within the makefile. (But

macro=value assignments on the command line or in a build options spec override

environment variables.)

–r
(No-rules) Do not use the built-in rules in file ccase-home-dir\etc\builtin.mk. When used

with –C, this option also disables reading platform-specific startup files. See the –C
option for more information.

–v
(Verbose) Slightly more verbose than the default output mode. These features are

particularly useful:

–w
(Working directory) Prints a message containing the working directory both before and

after executing the makefile.

–d
(Debug) Quite verbose; appropriate only for debugging makefiles.

–p
(Print) Lists all target descriptions and all macro definitions, including target-specific

macro definitions and implicit rules, and stops before executing anything.

• Listing of why clearmake does not reuse a DO that already appears in your view

(for example, because its CR does not match your build configuration, or because

your view does not have a DO at that pathname)

• Listing of the names of DOs being created
 ClearCase Reference Pages 197

clearmake
–q
(Query) Evaluates makefile targets, but does not run the build scripts. clearmake returns

0 if the targets are up to date, and 1 if any targets need to be rebuilt. Note that clearmake
treats a winkin of a derived object as a rebuild, so clearmake –q returns 1 if a DO can be

winked in for a target.

–U
Unconditionally builds goal targets only. Subtargets undergo build avoidance. If you

don’t specify any target on the command line, the default target is the goal. (The –u
option unconditionally builds both goal targets and build dependencies.)

–N
Disables the default procedure for reading one or more BOS files. For a description of the

default procedure, see clearmake Makefiles and BOS Files in Building Software with
ClearCase.

–R
(Reuse) Examines sibling derived objects (objects created by the same build rule that

created the target) when determining whether a target object in a VOB can be reused (is

up to date). By default, when determining whether a target can be reused, clearmake
ignores modifications to sibling derived objects. –R directs clearmake to consider a

target out of date if its siblings have been modified or deleted.

–C compat-mode
(Compatibility) Invokes one of clearmake’s compatibility modes. (Alternatively, you can

use environment variable CCASE_MAKE_COMPAT in a BOS file or in the environment to

specify a compatibility mode.) compat-mode can be one of the following:

For details on compatibility mode features, see Using clearmake Compatibility Modes in

Building Software with ClearCase.

–V
(View) Restricts configuration lookup to the current view only. Winkin is disabled. This

option is mutually exclusive with –M.

–M
(Makefile) Restricts dependency checking to makefile dependencies only—those

gnu Emulates the Free Software Foundation’s Gnu make program. To

define built-in make rules, clearmake reads file

ccase-home-dir\etc\gnubuiltin.mk instead of

ccase-home-dir\etc\builtin.mk.

std Invokes the standard clearmake with no compatibility mode

enabled. Use this option to nullify a setting of the environment

variable CCASE_MAKE_COMPAT.
198 ClearCase Reference Manual

clearmake
dependencies declared explicitly in the makefile or inferred from a suffix rule. All

detected dependencies are ignored. For safety, this disables winkin.

For example, a derived object in your view may be reused even if it was built with a

different version of a header file than is currently selected by your view. This option is

mutually exclusive with –V.

–O (Objects)

–T (Time stamps)

–F (Files)

(–O, –T, and –F are mutually exclusive.)

–O compares only the names and versions of objects listed in the targets’ CRs; it does

not compare build scripts or build options. This is useful when this extra level of

checking would force a rebuild that you do not want. Examples:

–T makes rebuild decisions using the standard algorithm, based on time stamps;

configuration lookup is disabled. (A CR is still created for each build script execution.)

NOTE: This option causes both view-private files and derived objects to be used for build

avoidance. Because the view-private file does not have a CR to be included in the CR

hierarchy, the hierarchy created for a hierarchical build has a gap wherever clearmake
reuses a view-private file for a subtarget.

–F works like –T, but also suppresses creation of configuration records. All MVFS files

created during the build are view-private files, not derived objects.

–A BOS-file ...

You can use this option one or more times to specify BOS files to be read instead of, or

immediately after, the ones that are read by default. Using –N along with this option

specifies “instead of”; omitting –N causes clearmake to read the –A file after reading the

standard BOS files.

Alternatively, you can specify a semicolon-separated list of BOS file pathnames as the

value of environment variable CCASE_OPTS_SPECS.

–ver⋅sion
Prints version information about the clearmake executable.

• The only change from the previous build is the setting or canceling of a

“compile-for-debugging” option.

• A target was built using a makefile in the current working directory. Now, you

want to reuse it in a build to be performed in the parent directory, where a

different makefile builds the target (with a different script, which typically

references the target using a different pathname).
 ClearCase Reference Pages 199

clearmake
–VerAll
Prints version information about the clearmake executable and the ClearCase DLLs that

clearmake uses.

MAKE MACROS AND ENVIRONMENT VARIABLES

String-valued variables called make macros can be used anywhere in a makefile: in target lists,

in dependency lists, and/or in build scripts. For example, the value of make macro CFLAGS can

be incorporated into a build script as follows:

cl $(CFLAGS) msg.c

Environment variables (EVs) can also be used in a makefile, but only in a build script. For

example:

print:
print_report -style $$PRT_STYLE -dest $${PRT_DEST}.rpt

clearmake converts the double-dollar-sign ($$) to a single dollar sign; the EV is expanded in the

shell in which the build script executes only if the shell recognizes the dollar sign ($) (cmd.exe
does not).

Conflict Resolution

Conflicts can occur in specifications of make macros and environment variables. For example,

the same make macro might be specified both in a makefile and on the command line; or the

same name may be specified both as a make macro and as an environment variable.

clearmake resolves such conflicts similarly to other make variants; it uses the following priority

order, from highest to lowest:

1. Target-specific macros specified in a BOS file

2. Target-specific macros specified in a makefile

3. Make macros specified on the command line

4. Make macros specified in a BOS file

5. Make macros specified in a makefile

6. Environment variables

7. Built-in macros

Using the –e option gives environment variables higher priority than make macros specified in

a makefile.

Conflict Resolution Details. The following discussion treats this topic more precisely but less

concisely.

clearmake starts by converting all EVs in its environment to make macros. (SHELL is an

exception—see SHELL Environment Variable on page 201.) These EVs are also placed in the
200 ClearCase Reference Manual

clearmake
environment of the shell process in which a build script executes. Then, it adds in the make

macros declared in the makefile. If this produces name conflicts, they are resolved as follows:

• If clearmake was not invoked with the –e option, the macro value overwrites the EV value

in the environment.

• If clearmake was invoked with the –e option, the EV value becomes the value of the make

macro.

Finally, clearmake adds make macros specified on the command line or in a BOS file; these

settings are also added to the environment. These assignments always override any others that

conflict. (A command-line assignment overrides a BOS setting of the same macro.)

SHELL Environment Variable

clearmake does not use the SHELL environment variable to select the shell program in which to

execute build scripts. It uses cmd.exe, unless you specify another program with a SHELL macro.

You can specify SHELL on the command line, in the makefile, or in a build options spec; the

value of SHELL must be a full pathname, including the file extension.

NOTE: If clearmake determines that it can execute the build script directly, it does not use the shell

program even if you specify one explicitly. If you use .bat files in build scripts, you must make

them executable (use the cleartool protect command). To force clearmake to always use the shell

program, set the environment variable CCASE_SHELL_REQUIRED.

Specifying Command Options in an Environment Variable

The CCASE_MAKEFLAGS and MAKEFLAGS environment variables provide an alternative (or

supplementary) mechanism for specifying clearmake command options. These environment

variables can contain a string of keyletters, the same letters used for clearmake command-line

options. (However, clearmake does not allow options that take arguments in a

CCASE_MAKEFLAGS or MAKEFLAGS string. See Special Environment Variables for information about

specifying options that are not supported through CCASE_MAKEFLAGS or MAKEFLAGS.)

For example, the commands

are equivalent to this one:

clearmake combines the value of CCASE_MAKEFLAGS or MAKEFLAGS with the options specified

on the command line (if any). The combined string of keyletters becomes the value of the macro

MAKEFLAGS, available to build scripts.

setenv CCASE_MAKEFLAGS ei (options set in environment)
clearmake foo

clearmake -ei foo (options set on command line)
 ClearCase Reference Pages 201

clearmake
This is very useful for build scripts that involve recursive invocations of clearmake. When

clearmake –n is applied to such a build script, all the nested invocations of clearmake pick up

the “no-execute” option from the value of CCASE_MAKEFLAGS or MAKEFLAGS. Thus, no targets

are actually rebuilt, even though many levels of clearmake command may be executed. This is

one way to debug all of the makefiles for a software project without building anything.

clearmake uses one of CCASE_MAKEFLAGS or MAKEFLAGS, but not both. If CCASE_MAKEFLAGS is

set, clearmake uses it. If CCASE_MAKEFLAGS is not set, clearmake looks for MAKEFLAGS.

If you use other make programs in addition to clearmake, putting clearmake-specific options in

the MAKEFLAGS environment variable may cause the make programs to generate errors.

Therefore, we suggest you use the CCASE_MAKEFLAGS and MAKEFLAGS environment variables in

the following ways:

Special Environment Variables

The environment variables described below are also read by clearmake at startup. In some cases,

as noted, you can also specify the information as a make macro on the command line, in a

makefile, or in a BOS file.

CCASE_AUDIT_TMPDIR (or CLEARCASE_BLD_AUDIT_TMPDIR)

Sets the directory where clearmake and clearaudit create temporary build audit files. If

this variable is not set or is set to an empty value, clearmake creates these files in the

directory specified by the TMP environment variable. All temporary files are deleted

when clearmake exits. If the value of CCASE_AUDIT_TMPDIR is a directory under a

VOB-tag, clearmake prints an error message and exits.

NOTE: Multiple build clients can use a common directory for audit files. Names of audit

files are unique because clearmake names them using both the PID of the clearmake
process and the hostname of the machine on which the process is running.

Default:None.

CCASE_BLD_NOWAIT

Turns off clearmake’s sleep-check cycle during a build. When this environment variable

If you use... Use...

clearmake only CCASE_MAKEFLAGS

clearmake and other make programs, but do

not use clearmake-specific options

MAKEFLAGS

clearmake and other make programs, and do

use clearmake-specific options

CCASE_MAKEFLAGS (all options) for

clearmake builds

MAKEFLAGS (all options except

clearmake-specific options) for other make
builds
202 ClearCase Reference Manual

clearmake
is set, clearmake does not check for a VOB-lock (or wait for the VOB to be unlocked). See

clearmake SLEEP on page 194 for more information.

CCASE_BLD_VOBS

A list of VOB-tags (separated with a space, tab (\t), semicolon (;), or comma (,)) to be

checked for lock status during a build. If a VOB on this list is locked, clearmake goes into

a sleep-check cycle. See clearmake SLEEP on page 194 for more information.

CCASE_DNVW_RETRY

Specifies time-out period, in minutes, for clearmake to wait before trying to contact an

inaccessible view listed in its cache. To disable the cache, set CCASE_DNVW_RETRY to 0.

Default: 60 minutes.

CCASE_MAKE_CFG_DIR (or CLEARCASE_MAKE_CONFIG_DIR)

Expands to the full pathname of the clearmake configuration directory in the ClearCase

installation area—typically ccase-home-dir\config\clearmake.

CCASE_MAKE_COMPAT (or CLEARCASE_MAKE_COMPAT)

Specifies one of clearmake’s compatibility modes. This EV takes the same values as the

–C option. Specifying a –C option on the command line overrides the setting of this EV.

This EV may also be coded as a make macro, but only in a BOS file (not in a makefile).

Default: None.

CCASE_OPTS_SPECS (or CLEARCASE_BLD_OPTIONS_SPECS)

A semicolon-separated list of pathnames, each of which specifies a BOS file to be read.

You can use this EV instead of specifying BOS files on the command line with one or

more –A options.

Default: None.

CCASE_SHELL_FLAGS (or CLEARCASE_BLD_SHELL_FLAGS)

Specifies command options to be passed to the subshell program that executes a build

script command.

Default: None.

CCASE_SHELL_REQUIRED

Forces clearmake to execute build scripts in the shell program you specify with the

SHELL macro. To make clearmake execute builds scripts in the shell program, set this

EV to TRUE. To allow clearmake to execute build scripts directly, unset the EV.

Default: clearmake executes build scripts directly.

CCASE_VERBOSITY (or CLEARCASE_BLD_VERBOSITY)

Sets the clearmake message logging level, as follows:

1 Equivalent to –v on the command line
 ClearCase Reference Pages 203

clearmake
If you also specify –v or –d on the command line, the higher value prevails.

Default: 0

CMAKE_PNAME_SEP

Sets the pathname separator for pathnames constructed by clearmake. This variable can

also be coded as a make macro in the makefile or in a BOS file.

Default: If this variable is not set or is set to any other value than / or \ (the slashes),

clearmake uses \ (a backslash) as the pathname separator.

EXAMPLES

• Unconditionally build the default target in a particular makefile, along with all its

dependent targets.

z:\src> clearmake -u -f project.mk

• Build target hello without checking build scripts or build options during configuration

lookup. Be moderately verbose in generating status messages.

z:\src> clearmake -v -O hello

• Build the default target in the default makefile, with a particular value of make macro

INCL_DIR. Base rebuild decisions on time-stamped comparisons instead of performing

configuration lookup, but still produce CRs.

y:\> clearmake -T INCL_DIR=\src\include_test

• Build target bgrs.exe, restricting configuration lookup to the current view only. Have

environment variables override makefile macro assignments.

z:\src> clearmake -e -V bgrs.exe

FILES

ccase-home-dir\etc\builtin.mk

SEE ALSO

clearaudit, omake, promote_server, scrubber

Building Software with ClearCase

2 Equivalent to –d on the command line

0 or undefined Equivalent to standard message logging level
204 ClearCase Reference Manual

clearprompt
clearprompt
Prompt for user input

APPLICABILITY

SYNOPSIS

• Prompt for text:

clearprompt text –out⋅file pname [–mul⋅ti_line]

[–def⋅ault string | –dfi⋅le pname]

–pro⋅mpt prompt_string

• Prompt for pathname:

clearprompt file –out⋅file pname [–pat⋅tern match_pattern]

[–def⋅ault filename | –dfi⋅le pname] [–dir⋅ectory dir_path]

–pro⋅mpt prompt_string

• Prompt for list:

clearprompt list –out⋅file pname [–items choice[,choice] [–choices] | –dfi⋅le pname]

–pro⋅mpt prompt_string

• Prompt for continue-processing choice:

clearprompt proceed [–typ⋅e type] [–def⋅ault choice]

[–mas⋅k choice[,choice]] –pro⋅mpt prompt_string

• Prompt for yes-no choice:

clearprompt yes_no [–typ⋅e type] [–def⋅ault choice]

[–mas⋅k choice[,choice]] –pro⋅mpt prompt_string

proceed choice is one of: proceed, abort

yes_no choice is one of: yes, no, abort

type is one of: ok, warning, error

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 205

clearprompt
DESCRIPTION

Using pop-up windows, the clearprompt command prompts the user for input, then either

stores the input in a file or returns an appropriate exit status. clearprompt is designed for use in

trigger action and GUI scripts. (See the mktrtype reference page.)

A trigger action script (or any other script) can use the exit status of clearprompt proceed or

clearprompt yes_no to perform conditional processing:

OPTIONS AND ARGUMENTS

text [–mul⋅ti_line]

file
list
proceed
yes_no

(Mutually exclusive) Specifies the kind of user input to be prompted for:

text prompts for a single text line (with no trailing <NL> character). text –multi_line
works just like cleartool comment input: in command-line mode, the user can enter any

number of lines.

file prompts for a file name.

list prompts for a choice from a list of items.

proceed prompts for a choice between the alternatives proceed and abort. The default

for this option is proceed unless you override it by specifying –default abort.

yes_no prompts for a choice among the alternatives yes, no, and abort. The default for

this option is yes unless you override it by specifying –default no or –default abort.

–out⋅file pname
Specifies the file to which the user’s input is written.

–def⋅ault string
Specifies the default text to be written to the –outfile file if the user clicks OK .

–def⋅ault filename
Specifies the default file name string to be written to the –outfile file if the user clicks OK
.

User Selection Exit Status

yes 0

proceed 0

no 256 (hex 100)

abort 512 (hex 200)
206 ClearCase Reference Manual

clearprompt
–dfi⋅le pname
A variant of –default; reads the default text from a file instead of the command line. With

the list argument, –dfile reads a list of comma-separated items from a file instead of from

the command line.

–def⋅ault choice
Specifies the choice made if the user clicks OK . The specified default is silently included

in the –mask list.

–typ⋅e type
Specifies the severity level: ok, warning, or error. The only effect is in the way the user is

prompted for input.

–ite⋅ms choice[,choice]

Restricts the universe of choices for a list interaction.

–choices
Allows the user to select more than one choice from the list.

–mas⋅k choice[,choice]

Restricts the choices for a proceed or yes_no interaction. Defaults for proceed and

yes_no, whether or not they are explicitly specified, are included among the –mask
arguments.

–pat⋅tern match_pattern
–dir⋅ectory dir_path

The file prompt window contains a pathname filter. By default, this window displays the

names of all files in the current working directory. You can use the –directory and/or

–pattern option to specify a different directory and/or file name pattern (for example,

*.c) to restrict which file names are displayed. The user can change the filter after the file

browser appears.

–pro⋅mpt prompt_string
Specifies a message to be displayed, presumably explaining the nature of the interaction.

EXAMPLES

NOTE: See the mktrtype reference page for additional examples.

• Prompt the user to enter a name, writing the user’s input to file uname. Use the value of the

USER environment variable if the user presses RETURN.

Z:\myvob> clearprompt text -outfile uname -default %USER% ^
-prompt "Enter User Name:"

• Ask a question and prompt for a yes/no response. Make the default response no.

y:\> clearprompt yes_no -prompt "Do You Want to Continue?" ^
-default no -mask yes,no
 ClearCase Reference Pages 207

clearprompt
• Ask a question and prompt for a yes/abort response, excluding no as a choice. The default

is yes because no default is explicitly specified.

y:\> clearprompt yes_no -prompt "OK to continue?" -mask abort

• Prompt for a file name. Restrict the choices to files with a .c extension, and write the user’s

selection to a file named myfile.

c:\> clearprompt file -prompt "Select File From List" -outfile myfile ^
-pattern ’*.c’

SEE ALSO

mktrigger, mktrtype
208 ClearCase Reference Manual

cleartool
cleartool
ClearCase and ClearCase LT user-level commands (command-line interface)

APPLICABILITY

SYNOPSIS

• Single-command mode:

cleartool subcommand [options/args]

• Interactive mode:

c:> cleartool [–e]

cleartool> subcommand [options/args]
.
.
.

cleartool> quit

• Display version information for the kernel, and cleartool:

cleartool –ver⋅sion

• Display version information for the kernel, cleartool, and the ClearCase or ClearCase LT

DLLs that cleartool uses:

cleartool –VerAll

DESCRIPTION

cleartool is the primary command-line interface to ClearCase and ClearCase LT version-control

and configuration management software. It has a rich set of subcommands that create, modify,

and manage the information in VOBs and views.

cleartool SUBCOMMANDS

Each cleartool subcommand is described in its own reference page, but not all subcommands are

available in ClearCase LT.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 209

cleartool
GETTING HELP

cleartool provides several online help facilities for its subcommands:

annotate

catcr

catcs

cd

chactivity

chbl

checkin

checkout

checkvob

chevent

chflevel

chfolder

chmaster

chpool

chproject

chstream

chtype

chview

cptype

describe

deliver

diff

diffbl

diffcr

dospace

edcs

endview

file

find

findmerge

get

getcache

getlog

help

hostinfo

ln

lock

ls

lsactivity

lsbl

lscheckout

lsclients

lscomp

lsdo

lsfolder

lshistory

lslock

lsmaster

lspool

lsprivate

lsproject

lsregion

lsreplica

lssite

lsstgloc

lsstream

lstype

lsview

lsvob

lsvtree

man

merge

mkactivity

mkattr

mkattype

mkbl

mkbranch

mkbrtype

mkcomp

mkdir

mkelem

mkeltype

mkfolder

mkhlink

mkhltype

mklabel

mklbtype

mkpool

mkproject

mkregion

mkstgloc

mkstream

mktag

mktrigger

mktrtype

mkview

mkvob

mount

mv

protect

protectvob

pwd

pwv

quit

rebase

recoverview

reformatview

reformatvob

register

relocate

rename

reqmaster

reserve

rmactivity

rmattr

rmbl

rmbranch

rmcomp

rmdo

rmelem

rmfolder

rmhlink

rmlabel

rmmerge

rmname

rmpool

rmproject

rmregion

rmstgloc

rmstream

rmtag

rmtrigger

rmtype

rmver

rmview

rmvob

setactivity

schedule

setcache

setcs

setplevel

setsite

shell

space

startview

umount

uncheckout

unlock

unregister

unreserve

update

winkin
210 ClearCase Reference Manual

cleartool
• Syntax summary — To display a syntax summary for an individual subcommand, use the

help subcommand or the –help option:

• Reference pages — cleartool has its own interface to the Windows Help Viewer. Enter

cleartool man command-name to display the reference page for a command.

Reference pages are also accessible from the online help system’s main contents.

See the man reference page for more information.

USAGE OVERVIEW

You can use cleartool in either single-command mode or interactive mode. A single cleartool
command can be invoked from the command interpreter using this syntax:

cleartool subcommand [options-and-args]

If you want to enter a series of subcommands, enter the cleartool command with no arguments.

This places you at the interactive mode prompt:

cleartool>

You can then issue any number of subcommands (simply called “commands” from now on),

ending with quit to return to the command interpreter. You can continue cleartool commands

onto additional lines with the caret (^).

You can also use the –e option with cleartool. This places you in interactive mode, but if an error

message occurs on one of the commands, you exit interactive mode. This is useful when running

scripts.

Use cleartool –version to display this information”

• The version of the kernel (output of mvfsversion command)

• The version of cleartool that you are using

• Any ClearCase or ClearCase LT patches installed on your machine

The cleartool –VerAll command displays this information plus version information for the

ClearCase or ClearCase LT DLLs that cleartool uses.

Command Options

Command options may appear in any order, but all options must precede any nonoption

arguments (typically, names of files, versions, branches, and so on). If an option is followed by

an additional argument, such as –branch \main\bugfix, there must be white space between the

cleartool help (syntax of all subcommands)
cleartool help mklabel (syntax of one subcommand)
cleartool mklabel –help (syntax of one subcommand)
 ClearCase Reference Pages 211

cleartool
option string and the argument. If the argument itself includes space characters, it must be

enclosed in quotes.

Command Abbreviations and Aliases

Many subcommand names and option words can be abbreviated. A subcommand’s syntax

summary indicates all valid abbreviations. For example:

–pre⋅decessor

This means that you can abbreviate the option to the minimal –pre, or to any intermediate

spelling: –pred, –prede, and so on.

For option words, the minimal abbreviation is always three characters or fewer.

A few cleartool commands have a built-in command alias. For example, checkin’s alias is ci;
checkout’s alias is co. These commands are equivalent:

cleartool checkin test.c

cleartool ci test.c

ARGUMENTS IN cleartool COMMANDS

Arguments in cleartool commands specify objects—either file-system objects (which may or

may not be in a VOB) or non-file-system VOB objects. File-system objects are elements, versions,

VOB symbolic links, derived objects, view-private directories, and view-private files. File-system

objects also include files, and directories that have been loaded into a snapshot view. Examples of

arguments that specify file-system objects:

cleartool ls .
cleartool mkelem new_doc
cleartool checkin -nc ..\src\main.h

Non-file-system VOB objects include types (attribute, branch, element, hyperlink, label, replica,

trigger), pools, hyperlinks, replicas, and VOBs. Examples of arguments that specify

non-file-system VOB objects:

cleartool lock brtype:v2_release
cleartool describe vob:\smg_tmp
cleartool mkhltype tested_by

The sections File-System Objects on page 213 and Non-File-System VOB Objects on page 214 give

more details about specifying objects.

NOTE: If a nonoption argument begins with a hyphen (–), you may need to precede it with a

double-hyphen argument to prevent it from being interpreted as an option.
212 ClearCase Reference Manual

cleartool
Slashes and Backslashes

Slashes (/) and backslashes (\) can be used interchangeably in pathnames in cleartool
commands. For example, the following command is legal on a Windows host:

z:\myvob> cleartool ls /srcvob/util.c

File-System Objects

To specify a file-system object as an argument, you can use either a full or relative pathname. In

many cases, you can also use these variants: a view-extended pathname (full or relative) or a

version-extended pathname (full or relative).

A full pathname begins with an optional drive letter and a backslash (\). For example:

NOTE: In general, you perform ClearCase and ClearCase LT operations in a view context, on a

drive assigned with the Windows net use command or by clicking Tools➔Map Network Drive
in Windows Explorer. It is rare to work directly on M:, the default dynamic-views drive.

However, it is common to use view-extended pathnames that include the M:\view-tag prefix.

A relative pathname does not begin with a backslash. For example:

NOTE: Pathnames relative to another drive (for example, c:\lib\util.o when c:\ is not the current

drive) are not supported.

For both full and relative pathnames:

c:\users\smg\test\test.c (full pathname (non-VOB object))
e:\myvob\src\main.c (full pathname to VOB object — e: is assigned

to a view)
\myvob\src\main.c (full pathname to VOB object; also called an

absolute VOB pathname, because it begins
with a VOB-tag (\myvob); only legal if
current drive is assigned to a view; also used in
config specs)

m:\smg_view\myvob\src\main.c (view-extended full pathname (VOB object);
the M: drive constitutes ‘view-extended
namespace’)

e:\vob_src\view_priv_dir\view_priv_file (full pathname (view-private file))
\myvob\src\main.c@@\main\3 (version-extended full pathname)

test.c (relative pathname)
..\lib (relative pathname)
tcp\libw.lib (relative pathname)
test.c@@\main\4 (version-extended relative pathname)
 ClearCase Reference Pages 213

cleartool
• The standard Windows pathname of an element implicitly references the version selected

by the current view.

• A view-extended pathname references the version of the element selected by the specified

view.

• A version-extended pathname directly references a particular version in an element’s

version tree.

For more information, see the version_selector and pathnames_ccase reference pages.

NOTE: Although the ClearCase MVFS uses case-insensitive lookup by default, cleartool itself is

case-sensitive.

Non-File-System VOB Objects

In cleartool commands, you specify non-file-system VOB objects (VOBs, types, pools,

hyperlinks, and replicas) with object selectors.

Object selectors identify non-file-system VOB objects with a single string:

[prefix:]name[@vob-selector]

where

prefix
Identifies the kind of object. The prefix is optional if the context of the command implies

the kind of object. For example,

cleartool mkbrtype brtype:v3_bugfix

is equivalent to

cleartool mkbrtype v3_bugfix

If a context does not imply any particular kind of object, cleartool assumes that a name
argument with no prefix is a pathname. For example, the command cleartool describe
ddft describes a filesystem object named ddft but cleartool describe pool:ddft describes

the ddft pool.

If the name of a file-system object looks like a prefix:name argument, you must use the

–pname option to identify it. (In the mkhlink command, the options –fpname and

–tpname serve the same function.) For example, to describe a file named lbtype:L, enter

this command:

cleartool describe –pname lbtype:L

name
The name of the object. See the section Object Names on page 215 for the rules about

composing names.
214 ClearCase Reference Manual

cleartool
vob-selector
VOB specifier. The default is the current working directory, unless the reference page

specifies otherwise. Specify vob-selector in the form [vob:]pname-in-vob (for some

commands, the vob: prefix is required; this is noted in the reference page)

Object Names

In object-creation commands, you must compose the object name according to these rules:

• It must contain only letters, digits, and the special characters underscore (_), period (.), and

hyphen (-). A hyphen cannot be used as the first character of a name.

• It must not be a valid integer or real number. (Be careful with names that begin with “0x”,

“0X”, or “0”, the standard prefixes for hexadecimal and octal integers.)

• It must not be one of the special names “ . “, “ .. “, or “ ... “.

Consult your operating system documentation for information about the maximum length of

object names.

PROCESSING OF VOB SYMBOLIC LINKS

In general, cleartool commands do not traverse VOB symbolic links; rather, they operate on the

link objects themselves. For example:

• You cannot check out a VOB symbolic link, even if it points to an element.

• A describe command lists information on a VOB symbolic link object, not on the object to

which it points.

• A mklabel –recurse command walks the entire subtree of a directory element, but it does

not traverse any VOB symbolic links it encounters.

COMMAND-LINE PROCESSING

Single-Command Mode

In single-command mode, the cleartool command you enter is processed first by the Windows

command interpreter and C run-time library, then by cleartool:

1. The standard command interpreter, cmd.exe, expands environment variables, but does no

special processing for file-name patterns, quotes, or other special characters (including the

asterisk (*) and question mark (?) characters, which are expanded by individual commands).

2. The C run-time library does interpret quotes, stripping each pair and passing its contents

through to cleartool as a single argument. (To pass a quote character through to cleartool,
escape it with the backslash (\).)

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
 ClearCase Reference Pages 215

cleartool
3. cleartool processes the resulting argument list directly, without any further interpretation.

Some third-party shells perform additional command-line processing before passing the

argument list through to cleartool. All descriptions and examples of cleartool command usage

assume the standard cmd.exe interpreter.

Interactive Mode

In interactive mode, cleartool itself interprets the command line; it recognizes various special

characters and constructs:

In interactive mode, cleartool does not expand environment variables.

OBJECT LOCKING

ClearCase and ClearCase LT provide temporary access control through explicit locking of

individual objects with the lock command. When an object is locked, it cannot be modified by

anyone (except those explicitly excluded from the lock), even by a member of the ClearCase

group (ClearCase), the local administrator at the ClearCase LT server host (ClearCase LT), the

VOB owner, or the user who created the lock.

cleartool command descriptions list the locks that can prevent a command from being executed,

even if you have the necessary permissions. For example, the chtype command lists three locks

that would prevent you from changing an element type:

VOB, element type, pool (non-directory elements only)

Line continuation (^) A ^<NEWLINE> sequence is replaced by a <SPACE> character.

Character escape (\) The two-character sequence \ special-char suppresses the special

meaning of the character.

Single-quoting (‘ ‘) Allows white-space characters and other special characters to be

included in command argument. Within a single-quoted string (’ ...

’), a double-quote character (") has no special meaning, and \ ’ is
replaced by ’.

Double-quoting (" ") Allows white-space characters and other special characters to be

included in command argument. Within a double-quoted string (" ...

"), \" is replaced by ", and \ ’ is replaced by ’.
Commenting (#) Command lines that begin with a number sign (#) are ignored.

Wildcards Filename patterns (including *, ?, and so on) that are not enclosed in

quotes are expanded as described in the wildcards_ccase reference

page. These patterns are also supported in config specs. (The

meaning of ellipsis is slightly different in config specs; see the

config_spec reference page.)
216 ClearCase Reference Manual

cleartool
This means that chtype would fail if the VOB containing the element were locked, if the

element’s type were locked (such as the text_file type), or if the storage pool containing the

(nondirectory) element were locked.

EXIT STATUS

If you exit cleartool by entering a quit command in interactive mode, the exit status is 0. The exit

status from single-command mode depends on whether the command succeeded (zero exit

status) or generated an error message (nonzero exit status).

Note that for the diff command, success means finding no differences.

SEE ALSO

comments, fmt_ccase, pathnames_ccase, permissions, profile_ccase, view, version_selector,
wildcards_ccase
 ClearCase Reference Pages 217

comments
comments
Event records and comments

APPLICABILITY

DESCRIPTION

Each change to a VOB (checkin of new version, attaching of a version label, and so on) is

accompanied by the creation of an event record in the VOB database. Many commands allow you

to annotate the event records they create with a comment string. Commands that display event

record information (describe, lscheckout, lshistory, lslock, lspool, lsreplica, and lstype) show

the comments, as well. See the fmt_ccase reference page for a description of the report-writing

facility built into these commands.

All commands that accept comment strings recognize the same options:

–c⋅omment comment-string
Specifies a comment for all the event records created by the command. The comment

string must be a single command-line token; typically, you must quote it.

–cfi⋅le comment-file-pname
Specifies a text file whose contents are to be placed in all the event records created by this

command.

NOTE: A final line-terminator in this file is included in the comment.

In Attache, the text file must be on the local host. Specifying a relative pathname for

comment-file-pname begins from Attache’s startup directory, not the working directory, so

a full local pathname is recommended. For a file in DOS format, any final line-terminator

is included in the comment.

–cq⋅uery
Prompts for one comment, to be placed in all the event records created by the command.

–cqe⋅ach
For each object processed by the command, prompts for a comment to be placed in the

corresponding event record.

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information
218 ClearCase Reference Manual

comments
–nc⋅omment
(no additional comment) For each object processed by the command, creates an event

record with no user-supplied comment string.

A –cq or –cqe comment string can span several lines; to end a comment, enter an EOF character

at the beginning of a line, typically by pressing CTRL-Z and pressing ENTER, or typing a period

character (.) and pressing ENTER. For example:

cmd-context checkout main.c

Checkout comments for "main.c":

This is my comment; the following line terminates the comment.
.
Checked out "main.c" from version "\main\3"

The chevent command revises the comment string in an existing event record. See the

events_ccase reference page for a detailed discussion of event records.

Specifying Comments Interactively

cleartool can reuse a previously specified comment as the default comment. If the environment

variable CLEARCASE_CMNT_PN specifies a file, that file is used as a comment cache:

• When a cleartool subcommand prompts for a comment, it offers the current contents of file

%CLEARCASE_CMNT_PN% as the default comment.

Exception: If an element’s checkout record includes a comment, that comment is the default

for checkin, not the contents of the comment cache file.

• When a user interactively specifies a comment string to a cleartool subcommand, it updates

the contents of CLEARCASE_CMNT_PN with the new comment. (The comment cache file is

created if necessary.)

NOTE: A comment specified noninteractively (for example, with the command cleartool
mkdir –c “test files”), does not update the comment cache file.

The value of CLEARCASE_CMNT_PN can be any valid pathname. Using a simple file name (for

example, .ccase_cmnt) can implement a comment cache for the current working directory;

different directories then have different .ccase_cmnt files. Using the full pathname

%HOME%\.ccase_cmnt implements a cache of the individual user’s comments, across all

VOBs.

If environment variable CLEARCASE_CMNT_PN is not defined in a cleartool process, a default

comment is supplied only in certain situations:

• Any comment specified by the user when checking out an element becomes the default

comment for checking in that same element.
 ClearCase Reference Pages 219

comments
• When the user checks in a directory element, the default comment is a set of

program-generated comments describing the directory-level changes.

CUSTOMIZING COMMENT HANDLING

Each command that accepts a comment string has a comment default, which takes effect if you

enter the command without any comment option. For example, the checkin command’s

comment default is –cqe, so you are prompted to enter a comment for each element being

checked in. The ln command’s comment default is –nc: create the event record without a

comment.

You can customize comment handling with a user profile file, .clearcase_profile, in your home

directory (in Attache, on your helper host). For example, you can establish –cqe as the comment

default for the ln command. See the profile_ccase reference page for details.

SEE ALSO

Reference pages for individual commands
220 ClearCase Reference Manual

config_ccase
config_ccase
ClearCase and ClearCase LT configuration

APPLICABILITY

SYNOPSIS

Files and Windows registry keys used by ClearCase and ClearCase LT server processes to

configure system operation

DESCRIPTION

ClearCase and ClearCase LT processes create and consult the files and registry key values

described in the sections below.

Values in Registry Key HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\ CurrentVersion

The setup program sets these values based on user input at installation time. You can modify

most of them from the Control Panel. (We recommend that you do not modify these values

directly with the Windows Registry Editor.)

Product Command Type

ClearCase data structure

ClearCase LT data structure

Registry Key Description Edited with

AtriaRegy The network’s registry server host. See the registry_ccase
reference page.

Registry tab

InteropRegion The UNIX region whose VOBs will be accessed from

Windows machines.

Registry tab

LicenseHost (Required for each ClearCase host) Contains the name of

the host that acts as the ClearCase license server host for the

local host.

Licensing tab

LicenseKeys (License server host only) The license database, which

defines a set of ClearCase licenses. See the license.db and

clearlicense reference pages.

Licensing tab

ProductHome The directory in which ClearCase or ClearCase LT is

installed on the local host.

-

RegBackup (Registry server host only) The name of the backup

registry server host.

Registry tab

Region The local network region. See registry_ccase. Registry tab
 ClearCase Reference Pages 221

config_ccase
Values in Registry Key HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security

Files in ccase-home-dir\config\services

Anyone can read or write this directory.

Files in ccase-home-dir\var\rgy

Anyone can read or write this directory.

Files in ccase-home-dir\var\cache

Information written and used by local server processes.

Files in ccase-home-dir\var\config

Anyone can read or write to this directory.

SEE ALSO

albd_server, license.db

ServerType (Registry server host only) Stores the character string

master on a registry server host.

-

RegPasswd (Registry server host only) The tag registry password, as supplied by the

command rgy_passwd. See also registry_ccase.

albd.conf Defines the services provided by the albd_server. See the

albd_server reference page for details.

vob_tag, vob_object,
view_tag, view_object

The VOB and view registry files. See the registry_ccase
reference page.

var\cache\ClearCase_check A subdirectory, populated with zero-length files, used for

ClearCase licensing.

db.conf Configuration information for the file, vista.tjf, which is a

journal of VOB updates. This file can grow large, especially

as a result of such operations as rmver, rmview, rmtype, and

scrubber. To limit the size of vista.tjf, create the file db.conf
(in ccase-home-dir\var\config) and add the line

 –journal_file_limit bytes

where bytes may not be less than 5000000. Setting this value

too low may degrade performance.

Registry Key Description Edited with
222 ClearCase Reference Manual

config_ccase
 ClearCase Reference Pages 223

config_record
config_record
Bill of materials for clearmake or omake build or clearaudit shell

APPLICABILITY

DESCRIPTION

A configuration record (CR) is a metadata item that contains information gathered in a ClearCase

build audit. Build audits are performed by clearmake or omake in conjunction with the MVFS
during execution of a target rebuild, which typically involves execution of a single build script.

For a double-colon target, the rebuild may involve execution of multiple build scripts.

clearaudit enables build auditing during execution of an arbitrary program (typically a shell).

One CR is written each time a target rebuild creates one or more derived objects. A configuration

record is logically associated with, and can be accessed through, all the derived objects created

during the build audit. The CR is the bill of materials for the derived object.

A CR is created only when you invoke clearmake or omake from a dynamic view.

MVFS OBJECTS AND NON-MVFS OBJECTS

In a configuration record, two kinds of file-system objects are distinguished.

• An MVFS object is a file or directory in a VOB.

• A non-MVFS object is an object not accessed through a VOB (compiler, system-supplied

header file, temporary file, and so on).

CONTENTS OF A CONFIGURATION RECORD

A configuration record provides a build’s bill of materials and documents its assembly

procedure. A CR can include several sections. If the CR is created by clearaudit, it does not

include sections related to build scripts.

Header Section

As displayed by catcr, the Header section of a CR includes the following lines:

• Makefile target associated with the build script and the user who started the build:

Target util.obj built by akp.dvt

For a CR produced by clearaudit, the target is ClearAudit_Shell .

Product Command Type

ClearCase data structure
224 ClearCase Reference Manual

config_record
• Host on which the build script was executed:

Host ’mars’ running Windows NT 4.0

• Reference time of the build (the time clearmake, omake, or clearaudit began execution),

and the time when the build script for this particular CR began execution:

Reference Time 15–Sep–99.08:18:56, this audit started 15–Sep–99.08:19:00

In a hierarchical build, involving execution of multiple build scripts, all the resulting CRs

share the same reference time. (For more on reference time, see the clearmake reference

page.)

• View storage directory of the view in which the build took place:

View was \\mars\views\930825.vws

• Working directory at the time build script execution or clearaudit execution began:

Initial working directory was s:\proj\hw\src

MVFS Objects Section

The MVFS Objects section of a CR includes this information:

• Each MVFS file or directory read during the build. This includes versions of elements and

view-private files used as build input, and checked-out versions of file elements.

• Each derived object produced by the target rebuild.

Non-MVFS Objects Section

The Non-MVFS Objects section of a CR includes each non-MVFS file that appears as an explicit

dependency in the makefile.

This section is omitted if there are no such files or if the CR was produced by clearaudit.

Variables and Options Section

The Variables and Options section of a CR lists the values of make macros referenced by the build

script.

This section is omitted from a CR produced by clearaudit.

Build Script Section

The Build Script section of a CR lists the script that was read from a makefile and executed by

clearmake or omake.

This section is omitted from a CR produced by clearaudit.
 ClearCase Reference Pages 225

config_record
CONFIGURATION RECORD HIERARCHIES

A typical makefile has a hierarchical structure. Thus, a single invocation of clearmake or omake
to build a high-level target can cause multiple build scripts to be executed and, accordingly,

multiple CRs to be created. Such a set of CRs can form a configuration record hierarchy, which

reflects the structure of the makefile.

For example, consider this hierarchical makefile:

hello.exe: hello.obj msg.obj libhello.lib (top-level target)
link /out:hello.exe hello.obj msg.obj libhello.lib
date > $(TEMP)\flag.hello

hello.obj: (second-level target)
cl /c hello.c

msg.obj: (second-level target)
cl /c msg.c

libhello.lib: user.obj env.obj (second-level target)
lib /out:libhello.lib user.obj env.obj

user.obj: (third-level target)
cl /c user.c

env.obj: (third-level target)
cl /c env.c

A complete build of target hello.exe produces the CR hierarchy shown in Figure 7.

Figure 7 CR Hierarchy Created by Complete Build: ’clearmake hello.exe’

An individual parent-child link in a hierarchy is established in either of these ways:

hello.exe

msg.objhello.objlibhello.lib

env.objuser.obj
226 ClearCase Reference Manual

config_record
• In a target/dependencies line — For example, the following target/dependencies line

declares derived objects hello.obj, msg.obj, and libhello.lib to be build dependencies of

derived object hello.exe:

hello.exe: hello.obj msg.obj libhello.lib
...

Accordingly, the CR for hello.exe is the parent of the CRs for the .obj files and the .lib file.

• In a build script — For example, in the following build script, derived object libhello.lib in

another directory is referenced in the build script for derived object hello.exe:

hello.exe: $(OBJS)
 cd ..\lib & $(MAKE) libhello.lib

link /out: hello.exe $(OBJS) ..\lib\libhello.lib

Accordingly, the CR for hello.exe is the parent of the CR for libhello.lib.

NOTE: The recursive invocation of clearmake in the first line of this build script produces a

separate CR hierarchy, which is not necessarily linked to the CR for hello.exe. It is the second

line of the build script that links the CR for ..\lib\libhello.lib with that of hello.exe by

causing link to read ..\lib\libhello.lib and making it a detected dependency.

PHYSICAL STORAGE OF CONFIGURATION RECORDS

When a derived object is created in a view, both its data container and its associated

configuration record are stored in the view’s private storage area. The CR is stored in the view

database, in compressed format. To speed configuration lookup during subsequent builds in this

view, a compressed copy of the CR is also cached in a view-private file, .cmake.state, located in

the directory that was current when the build started.

When the DO is winked in to another view (or the VOB, for a nonshareable DO), or is checked in

as a DO version:

• promote_server copies the data container to a VOB storage pool.

• The CR moves from the view’s private storage area to the VOB database.

The process of winking in an entire set of sibling DOs may involve making copies of the CR in

multiple VOB databases.

SEE ALSO

catcr, clearaudit, clearmake, diffcr, lsdo, view_scrubber

Building Software with ClearCase
 ClearCase Reference Pages 227

config_spec
config_spec
Rules for selecting versions of elements to appear in a view

APPLICABILITY

SYNOPSIS

• Standard Rule:

scope pattern version-selector [optional-clause]

• Create Branch Rule:

mkbranch branch-type-name [–override]

...

[end mkbranch [branch-type-name]]

• Time Rule:

time date-time
...

[end time [date-time]]

• File-Inclusion Rule:

include config-spec-pname

• Load Rule (for snapshot views):

load pname ...

DESCRIPTION

A view’s config spec (configuration specification) contains an ordered set of rules for selecting

versions of elements. The view’s associated view_server process populates a view with versions

by evaluating the config spec rules.

In a dynamic view, version selection is dynamic. Each time a reference is made to a file or directory

element—either by ClearCase software or by standard programs—the view_server uses the

config spec to select a particular version of the element. (In practice, a variety of caching

techniques and optimizations reduce the computational requirements.)

Product Command Type

ClearCase data structure

ClearCase LT data structure
228 ClearCase Reference Manual

config_spec
In a snapshot view, users invoke an update operation to select versions from the VOB.

Config Spec Storage / Default Config Spec

Each view is created with a copy of the systemwide default config spec,

ccase-home-dir\default_config_spec:

Modifying this file changes the config spec that newly created views receive, but does not affect

any existing view.

An individual view’s config spec is stored in its view storage directory, in two forms:

• Source format — The user-visible version, config_spec, contains only the series of config

spec rules.

• Compiled format — A modified version, .compiled_spec, includes accounting

information. This version is created and used by the view_server process.

Do not modify either of these files directly; instead, use the commands listed below. Different

views’ config specs are independent: they may contain the same set of rules, but changing one

view’s config spec never affects any other view.

Commands for Maintaining Config Specs

Commands for manipulating config specs:

You can edit a config spec on the Config Spec tab in the Properties of View Browser or during

view creation with the View Creation Wizard.

HOW A CONFIG SPEC SELECTS VERSIONS

The set of elements considered for version selection is different for the two kinds of views:

• In a dynamic view, all elements in VOBs mounted on the current host are considered for

version selection.

• In a snapshot view:

• If you are updating a loaded element, the behavior is the same as in a dynamic view and

the selected version is loaded into the view.

element * CHECKEDOUT (For any element, select the checked out version, if any)
element * \main\LATEST (otherwise, select most recent version on the main

branch)

catcs Lists a view’s config spec.

setcs Makes a specified file a view’s config spec.

edcs Revises the current config spec of a view.

update –add_loadrules Adds load rules to the config spec of a snapshot view while

updating the view.
 ClearCase Reference Pages 229

config_spec
• If you are not updating and the element is loaded, the selection from the last update is

used.

• If the element isn’t loaded at all, the behavior is the same as in a dynamic view.

For each element, the following procedure determines which version, if any, is in the view.

1. The view’s associated view_server process tries to find a version of the element that matches

the first rule in the config spec:

• If such a version exists, that version is in the view.

• If multiple versions match the rule, an error occurs, and no version of the element is in

the view. ClearCase and ClearCase LT commands that access the element print errors

like this one:

cleartool: Error: Trouble looking up element "ht.c" in directory ".".

Standard commands that access the element print errors like this one:

The request could not be performed because of an I/O device error.

• If no version matches the first rule, the search continues.

2. If no matching version was found for the first rule, the view_server tries to find a version

that matches the second rule.

3. The view_server continues in this way until it finds a match or until it reaches the last rule.

Order Is Important

Because the rules in a config spec are processed in order, varying the order may affect version

selection. For example, suppose this rule appears near the beginning of a config spec:

element * \main\LATEST

Any subsequent rules in the config spec will never be used, because the rule will always provide

a match; every element has a most-recent version on its main branch.

NOTE: The order in which the load rules for a snapshot view are specified is not important.

CHECKEDOUT Rule for Snapshot Views

The config spec for a snapshot view must contain element * CHECKEDOUT as the first element

rule.

Failure to Select Any Version

If no version of an element matches any rule in the config spec:

• In a dynamic view:

• The element’s data is not accessible through the view. The standard dir command and

other standard programs print a not found error when attempting to access the element.
230 ClearCase Reference Manual

config_spec
• The ClearCase/ClearCase LT ls command lists the element with a [no version

selected] annotation. You can specify the element in commands that access the VOB

database only, such as describe, lsvtree, and mklabel.

• In a snapshot view, the element will not be loaded.

View-Private Files

A view’s config spec has no effect on the private objects in a view, such as view-private files,

links, directories; or, in the case of a dynamic view, derived objects. View-private objects are

always accessible.

Exception: (Dynamic views only) If a config spec lacks a CHECKEDOUT rule, the view-private

file that is a file element’s checked-out version is not visible. See Special Version Selectors below.

OVERALL SYNTAX GUIDELINES

Each config spec rule must be contained within a single physical text line; you cannot use a caret

(^) or other line continuation character to continue a rule onto the next line. Multiple rules can

be placed on a single line, separated by semicolon (;) characters.

Lines that begin with a number sign (#) are comments.

Extra white space (SPACE, TAB, vertical-tab, and form-feed) characters are ignored, except

within the version selector. If a version selector includes white space, enclose it in single quotes.

If a load rule specifies a file or directory name that includes one or more SPACE characters, you

must enclose the entire pathname in either single-quotes (‘) or double quotes (“).

In general, VOBs, views, and the ClearCase and ClearCase LT tools that access them are

case-sensitive. Therefore, config spec rules must use case-correct pathnames.

You can use slashes (/) or backslashes (\) as pathname separators in pathname patterns and

version selectors unless you are sharing the config spec between UNIX and Windows hosts. In

that case, you must use slashes. (See SHARING CONFIG SPECS BETWEEN UNIX AND
WINDOWS HOSTS.)

SHARING CONFIG SPECS BETWEEN UNIX AND WINDOWS HOSTS

Windows and UNIX clients can share config specs, which are portable between the two

operating systems. That is, clients on both systems, using views whose storage directories reside

on either kind of host, can set and edit the same set of config specs. However, Windows and

UNIX network regions often use different VOB-tags to register the same VOBs. Only

single-component VOB-tag names, like \src2vob, are permitted on Windows clients;

multiple-component VOB-tags, like /vobs/src/proj1, are common on UNIX. When the VOB-tags

diverge between regions, config spec element rules that use full pathnames (which include

VOB-tags) are resolvable (at config spec compile time) only by hosts in the applicable network

region. This implies a general restriction regarding shared config specs: a given config spec must

be compiled only by hosts on one operating system or the other—the operating system for which
 ClearCase Reference Pages 231

config_spec
full pathnames in element rules make sense. That is, a config spec with full pathnames can be

shared across network regions, even when VOB-tags disagree, but it must be compiled in the

right place.

This restriction does not apply if any of the following are true:

• The config spec’s element rules use relative pathnames only, which do not include VOB-tags.

• Shared VOBs are registered with identical, single-component VOB-tags in both Windows

and UNIX network regions. (The VOB-tags \r3vob and /r3vob are logically identical,

differing only in their leading slash characters.)

• The config spec does not include any load rules or element rules.

Config Spec Compilation

An in-use config spec exists in both text file and compiled formats (both of which are visible in

the view’s storage directory). A config spec in its compiled form is portable. The restriction is that

full VOB pathnames in element rules must be resolvable at compile time. A config spec is

compiled if a client executes either of these cleartool commands: edcs or setcs –current.
Therefore, if a client on the “wrong” operating system recompiles a config spec with one of these

commands, the config spec becomes unusable by any client using that view. If this happens,

simply recompile the config spec on the “right” operating system.

A sample element rule that could be problematic:

element /vob_p2/src/* /main/rel2/LATEST

If the VOB is registered with VOB-tag \vob_p2 on a Windows network region, but with VOB-tag

/vobs/vob_p2 on a UNIX network region, only Windows clients can compile the config spec.

Pathname Separators

When writing config specs to be shared by Windows and UNIX clients, use the slash (/), not the

backslash (\), as the pathname separator in pathname patterns and version selectors. ClearCase

and ClearCase LT on Windows can parse either separator in pathnames; ClearCase and

ClearCase LT on UNIX recognizes / only.

STANDARD RULES

A standard version-selection rule takes this form:

scope pattern version-selector [optional-clause]

The following subsections describe these components.

Scope

The scope specifies that the rule applies to all elements, or restricts the rule to a particular type of

element.
232 ClearCase Reference Manual

config_spec
element
The rule applies to all elements.

element –file
The rule applies to file elements only. This includes any element created with a mkelem
command that omits –eltype directory (or a user-defined element type derived from

directory).

element –directory
The rule applies to directory elements only. This includes any element created with mkdir
or mkelem –eltype directory (or a user-defined element type derived from directory).

element –eltype element-type
The rule applies only to elements of the specified element type (predefined or

user-defined). This mechanism is not hierarchical: if element type aaa is a supertype of

element type bbb, the scope element –eltype aaa does not include elements whose type

is bbb. To specify multiple element types, you must use multiple rules:

element –eltype aaa * RLS_1.2
element –eltype bbb * RLS_1.2

Selecting Versions of VOB Symbolic Links. There is no VOB symbolic link scope. A VOB

symbolic link is cataloged (listed) in one or more versions of a directory element. The link

appears in a view if both of these conditions are true:

• One of those directory versions is selected by the view’s config spec.

• The config spec includes any element rule, even a –none rule.

Pattern

A pathname pattern, which can include any ClearCase/ClearCase LT wildcard (see the

wildcards_ccase reference page for a complete list). For example:

*
Matches all element pathnames; does not match recursively.

*.c
Matches all element pathnames with a .c extension.

src\util.c
Matches any element named util.c that resides in any directory named src.

\vob6\include\util.h
Matches one particular element.

src\...\util.c
Matches any element named util.c that resides anywhere within the subtree of a

directory named src (including in src itself).
 ClearCase Reference Pages 233

config_spec
src\...*.c
Matches all elements with a .c extension located in or below any directory named src.

src\...
Matches the entire directory tree (file elements and directory elements) starting at any

directory named src.

NOTE: In non-config-spec contexts, the ... pattern matches directory names only.

Restrictions:

• A view-extended pathname pattern is not valid.

• A relative pathname pattern must start below the VOB-tag (VOB mount point, VOB root

directory). For example, if the VOB-tag is \src3, src3\include\utility.h is not a valid

pattern.

• A full pathname pattern must specify a location at or beneath a valid VOB-tag. For

example, if the VOB-tag is \src3, then \src3\... and \src3\include\... are both valid.

The setcs or edcs command fails if it encounters an invalid location in any config spec rule:

cleartool: Error: No registered VOB tag in path: "..."

• VOB symbolic links are not valid in pathname patterns.

• Patterns can be specified using either backslashes (\) or slashes (/).

Version Selector

You can use a version label, version-ID, or any other standard version selector. See the

version_selector reference page for a complete list. Some examples follow:

\main\4
Version 4 on an element’s main branch.

REL2
The version to which version label REL2 has been attached. An error occurs if more than

one version of an element has this label.

...\mybranch\LATEST
The most recent version on a branch named mybranch; this branch can occur anywhere

in the element’s version tree.

\main\REL2
The version on the main branch to which version label REL2 has been attached.

{created_since(yesterday)}
The version that has been created since yesterday. An error occurs if more than one
234 ClearCase Reference Manual

config_spec
version satisfies this query. Because all queries are evaluated at run time, the value

yesterday is always interpreted relative to the day that the query is executed.

{QA_Level>3}
The version to which attribute QA_Level has been attached with a value greater than 3.

An error occurs if more than one version satisfies this query.

...\mybranch\{QA_Level>3}
The most recent version on a branch named mybranch satisfying the attribute query.

Standard version selectors cannot select checked-out versions in a config spec rule. (They can in

other contexts, such as the find command.) Instead, you must use the special version selector,

CHECKEDOUT, described below.

Special Version Selectors. The following special version selectors are valid only in a config spec

rule, not in any other version-selection context:

CHECKEDOUT
Matches the checked-out version of an element, if this view has a pending checkout. It

doesn’t matter where (on which branch of the element) the checkout occurred; there is

no possibility of ambiguity, because only one version of an element can be checked out

to a particular view.

This special version selector actually matches the checked-out version object in the VOB

database, which is created by the checkout command.

For file elements, standard commands access the view-private file created by checkout
at the same pathname as the element.

–config do-pname [–select do-leaf-pattern] [–ci]
This special version selector replicates the configuration of versions used in a particular

clearmake build. It selects versions listed in one or more configuration records associated

with a particular derived object: the same set of versions that would be listed by a catcr
–flat command. See the catcr reference page for explanations of the specifications that

follow the –config keyword.

When you set or edit a config spec, the view_server resolves the do-pname with respect

to the view’s preexisting config spec, not on the basis of any preceding rules in the config

spec being evaluated.

If the configuration records list several versions of the same element, the most recent

version is selected to appear in the view. In such cases, a warning message is displayed

when the config spec is set.

–none
Generates an ENOENT (No such file or directory) error when a standard UNIX

operating system program references the element. For dynamic views:
 ClearCase Reference Pages 235

config_spec
–error
Like –none, except that the annotation generated by the cleartool ls command is error

on reference .

Optional Clause

Some config spec rules can include an additional clause, which modifies the rule’s meaning.

–time date-time
Modifies the meaning of the special version label LATEST: the rule selects from a branch

the last version that was created before a particular time. The date-time argument is

specified in one of the standard formats:

date.time | date | time | now
where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

• No error occurs when a standard dir command lists the element’s entire parent

directory; the element is included in such a listing. This also applies to other

readdir situations, such as expansion of wildcard characters and emacs file name

completion.

• An error occurs when a standard dir command names the element explicitly

(perhaps after wildcard expansion), or whenever the name is processed in an ls
–F command, when the entire directory is listed with ls –l, and so on.

• The cleartool ls command always lists the element, annotating it with no

version selected .

• In ClearCase and ClearCase LT commands, the element’s standard pathname

refers to the element itself. (–none suppresses the transparency mechanism—

translation of an element’s standard pathname into a reference to a particular

version.)

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
236 ClearCase Reference Manual

config_spec
The creation times of the versions on the branch are looked up in their create version

event records. (No error occurs if you use a –time clause in a rule that does not involve

the version label LATEST; the clause has no effect.)

The –time clause in a particular rule overrides any general time rule currently in effect.

(See TIME RULES on page 239.)

Restriction: –time must precede any other optional clauses.

Examples:

The date/time specification is evaluated when you set or edit the config spec, and

whenever the view_server process is started (for example, with startview or setview
(dynamic views only)). Thus, the meaning of a relative specification, such as today, may

change over time. However, the date/time is not evaluated at run time. Therefore if you

last performed one of the commands listed above four days ago, the meaning of a

relative specification, such as today, has the value of the date four days ago, not the value

of the date today.

–nocheckout
Disables checkouts of elements selected by the rule.

–mkbranch branch-type-name
Implements the auto-make-branch facility. When a version selected by this rule is checked

out:

 \main\LATEST –time 10–Jul.19:00 Most recent version on main branch, as

of 7 P.M. on July 10.

 ...\bugfix\LATEST –time yesterday Most recent version on a branch named

bugfix (which can be at any branching

level), as of the beginning of yesterday

(12 A.M.).

\main\bugfix\LATEST –time Wed.12:00 Most recent version on subbranch

bugfix of the main branch, as of noon on

the most recent Wednesday.

–time 5–Dec.13:00 December 5, at 1 P.M.

–time 11:23:00 Today, at 11:23 A.M.

–time 12–jun–99 June 12, 1999, at 00:00 A.M.

–time now Today, at this moment.

–time 9-Aug.10:00UTC August 9, at 10 A.M. GMT.

• A branch of type branch-type-name is created at that version.

• Version 0 on the new branch is checked out, instead of the version that was

originally selected.
 ClearCase Reference Pages 237

config_spec
(This is a slight oversimplification. See Multiple-Level Auto-Make-Branch on page 238.) A

mkelem command invokes the auto-make-branch facility if the config spec includes a

\main\LATEST rule with a –mkbranch clause.

Restrictions: You cannot use –mkbranch in combination with –none or –error.

Multiple-Level Auto-Make-Branch

A config spec can include a cascade of auto-make-branch rules, causing checkout to create

multiple branching levels at once. checkout keeps performing auto-make-branch until version 0

on the newly created branch is not selected by a rule with a –mkbranch clause; then, it checks

out that version. For example:

If you check out an element in a view that currently selects the version labeled MYLABEL:

1. A branch of type br1 is created at the MYLABEL version (Rule (4)).

2. Rule (3) now selects the newly created version ...\br1\0, so a branch of type br2 is created at

that version.

3. Version ...\br1\br2\0 is checked out. The checked-out version has the same contents as the

MYLABEL version, and is selected by Rule (1). When you edit and check in a new version,

...\br1\br2\1, the view will select it with Rule (2).

CREATE BRANCH RULES

A create branch rule takes the following form:

mkbranch branch-type-name [–override]

<config spec lines>
[end mkbranch [branch-type-name]]

This rule is similar to the –mkbranch clause; use it when you want to add a –mkbranch clause

to many lines in a complex config spec.

mkbranch branch-type-name [–override]

Attaches an implicit –mkbranch branch-type-name clause to all element rules between

mkbranch and end mkbranch (or the end of the file) that do not have a –mkbranch
clause or include the CHECKEDOUT version selector.

Specifying –override will override any explicit –mkbranch clauses or mkbranch rules

within the scope and replace them with –mkbranch branch-type-name. Use –override if

you do not want multilevel branch creation.

(1) element * CHECKEDOUT

(2) element * ...\br2\LATEST

(3) element * ...\br1\LATEST -mkbranch br2

(4) element * MYLABEL -mkbranch br1

(5) element * \main\LATEST
238 ClearCase Reference Manual

config_spec
end mkbranch [branch-type-name]

Ends the mkbranch branch-type-name rule. If end mkbranch is omitted, the rule is ended

at the end of the config spec. The branch-type-name argument is optional, but if you

include it, it must match the branch type specified with the mkbranch rule.

mkbranch and end mkbranch rules may be nested. For example:

element * .../branch2/LATEST
mkbranch branch2

element * .../branch1/LATEST
mkbranch branch1

element * /main/LATEST

end mkbranch branch1
end mkbranch branch2

Checking out foo.c creates foo.c@@/main/branch1/branch2/CHECKEDOUT. This is a

multiple-level mkbranch.

TIME RULES

A time rule takes this form:

time date-time
[end time [date-time]]

It is analogous to the optional –time clause. A time rule modifies the meaning of the special

version label LATEST in subsequent rules, with the following exceptions:

• An optional –time clause in a particular rule overrides any general time rule currently in

effect.

• A subsequent time rule cancels and replaces an earlier one.

Use end time to limit the effect of a time rule to a certain range. The date-time argument is

optional with end time, but if you include it, it must match the date-time argument specified with

the time rule.

Time rules may be nested.

The date-time specification is evaluated when you set or edit the config spec, and whenever the

view_server process is started (for example, with startview or setview (dynamic views only)).

Thus, the meaning of a relative specification, such as today, may change over time. However, the

date-time is not evaluated at run time. So if you last performed one of the commands listed above

four days ago, the meaning of a relative specification, such as today, has the value of the date four

days ago, not the value of the date today.
 ClearCase Reference Pages 239

config_spec
FILE-INCLUSION RULES

A file-inclusion rule takes this form:

include config-spec-pname

The argument specifies a text file containing one or more config spec rules (possibly other

include rules). Include files are reread on each execution of setcs and edcs. A file-inclusion rule

must be the last rule in a line. For example,

include config-spec-pname

and

time date-time; include config-spec-pname

are both valid.

LOAD RULES

Load rules define which elements are loaded (copied) into a snapshot view (by contrast, element

rules define which version of an element is selected). A load rule takes this form:

load pname ...

The argument specifies one or more file or directory elements. Naming a directory element

implies the directory and all elements below the directory. Naming a file element specifies that

element only.

More than one load rule can appear in a config spec; you must have at least one to see any files

in a snapshot view. (Load rules in the config spec of a dynamic view are ignored.)

Load rules can be positioned anywhere in a config spec, and their order is irrelevant.

An element can be selected by more than one load rule without causing an error.

VOB links (both symbolic links and hard links) are followed, and the link target is copied into the

snapshot view at the location in which the link appeared.

EXAMPLES

• Include a standard set of rules to be used by every user on a particular project.

include \proj\cspecs\v1_bugfix_rules

• Modify the meaning of “most recent” to mean “as of 7 P.M. on July 10.”

time 10-Jul.19:00
element \atria\lib* ...\new\LATEST
element * \main\LATEST

end time

• Select version 3 on the main branch of a particular header file.
240 ClearCase Reference Manual

config_spec
element \proj1\include\utility.h \main\3

• Select the most recent version on the main branch for all elements with a .c file-name

extension.

element *.c \main\LATEST

• Select the most recent version on the bugfix branch.

element * ...\bugfix\LATEST

• Select versions of elements from a particular development branch, or with a related label.

• Select versions of C language source files (.c file extension) based on the value of an

attribute. A config spec such as this may be used by a developer to select versions of files for

which he is responsible.

• Use the –mkbranch qualifier to create a new BL3 branch automatically. Create the branch

off the version labeled BL2.6, or the latest version on the main branch if no version is

labeled BL2.6.

• Same as above, but use a mkbranch rule.

element * CHECKEDOUT
element * ...\maint\LATEST

(If no checked-out version, select latest
version on the ’maint’ branch, which
may or may not be a direct subbranch
of main)

element * BL2.6 (Else, select version labeled ’BL2.6’
from any branch)

element * \main\LATEST

element * CHECKEDOUT
element –file *.c \main\{RESPONSIBLE=="jpb"} (For any ’.c’ file, select latest version

on main branch for which ’jpb’ is
responsible)

element –file \project\utils\...*.c \main\BL2.6 (Else, select version labeled BL2.6 on
main branch from \project\utils
directory, or any of its subdirectories)

element * \main\LATEST

element * CHECKEDOUT
element * ...\bl3_bugs\LATEST

(If no version is checked out, select
latest version on ’bl3_bugs’ branch)

element -file * BL2.6 –mkbranch bl3_bugs (Else, select version labeled ’BL2.6’
and create ’bl3_bugs’ branch on
checkout)

element -file * \main\LATEST –mkbranch bl3_bugs (Else, select latest version on main
branch and create new branch on
checkout)
 ClearCase Reference Pages 241

config_spec
element * CHECKEDOUT
element * ...\bl3_bugs\LATEST
mkbranch bl3_bugs
element -file * BL2.6
element -file * \main\LATEST
end mkbranch bl3_bugs

• Select the version labeled REL3 for all elements, preventing any checkouts to this view:

element * REL3 –nocheckout

• Select the most recent version on the bug_fix_v1.1.1 branch, making sure that this branch is

a subbranch of bug_fix_v1.1, which is itself a subbranch of bug_fix_v1.

element * CHECKEDOUT
element * bug_fix_v1.1.1\LATEST
element * ...\bug_fix_v1.1\LATEST –mkbranch bug_fix_v1.1.1
element * ...\bug_fix_v1\LATEST –mkbranch bug_fix_v1.1
element * \main\LATEST –mkbranch bug_fix_v1

When a user checks out an element for which none of these branches yet exists, a cascade of

auto-make-branch activity takes place:

Z:\myvob> cleartool checkout -nc .

Created branch "bug_fix_v1" from "." version "\main\0".
Created branch "bug_fix_v1.1" from "." version "\main\bug_fix_v1\0".
Created branch "bug_fix_v1.1.1" from "." version
"\main\bug_fix_v1\bug_fix_v1.1\0".
Checked out "." from version
"\main\bug_fix_v1\bug_fix_v1.1\bug_fix_v1.1.1\0".

• Modify the previous config spec to create branch bug_fix_v2 off an existing branch rather

than creating multiple subbranches.

element * CHECKEDOUT
mkbranch bug_fix_v2 –override
element * bug_fix_v1.1.1\LATEST
element * ...\bug_fix_v1.1\LATEST –mkbranch bug_fix_v1.1.1
element * ...\bug_fix_v1\LATEST –mkbranch bug_fix_v1.1
element * \main\LATEST –mkbranch bug_fix_v1
end mkbranch bug_fix_v2

• For a snapshot view, select the most recent version on the main branch. Use load rules to

select in the applets VOB all elements below the \cmdlg directory and one specific element

in the \testdlg directory.
242 ClearCase Reference Manual

config_spec
element * CHECKEDOUT
element *... \main\LATEST
load \applets\cmdlg
load \applets\testdlg\opendlg.h

FILES

ccase-home-dir\default_config_spec
view-storage-directory\config_spec
view-storage-directory\.compiled_spec

SEE ALSO

catcs, checkout, checkin, edcs, ls, mkbranch, setcs, setview, version_selector, view,

view_server
 ClearCase Reference Pages 243

cptype
cptype
Makes a copy of an existing type object.

APPLICABILITY

SYNOPSIS
cptype [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–rep⋅lace]

existing-type-selector new-type-selector

DESCRIPTION

The cptype command creates a new type object (for example, a label type or attribute type) that

is a copy of an existing type object. The existing and new objects can be in the same VOB, or in

different VOBs. The copy can have the same name as the original only if you are making the copy

in a different VOB.

The original and copy do not retain any connection after you execute cptype. They are merely

two objects with the same properties, and perhaps even the same name.

EXCEPTION: Global types are handled differently. For more information, see Administering
ClearCase.

Ordinary Types and AdminVOB Hierarchies (ClearCase Only)

When you copy an ordinary type object to a VOB that is part of an AdminVOB hierarchy,

ClearCase determines whether the new type name is already defined as a global type in the

administrative VOB of the copy’s destination VOB. If it is, cptype fails with an explanatory

message. When this is the case, you can do one of the following things:

• Specify a different name for the copy

• Try using the original type object in the VOB where you wanted to make the copy

Handling of Supertypes

The cptype command recursively copies the supertypes of the original type to the copy’s

destination VOB.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
244 ClearCase Reference Manual

cptype
Firing of mktype Triggers

When you copy a type, the cptype command fires any mktype triggers attached to the

destination VOB.

MultiSite Mastership of Original Type Objects

When you copy a type from one VOB replica to another, using the same name as that of the

original type, the replica where the original type resides must master that type; otherwise,

cptype fails with an explanatory message. This behavior ensures that mastership of the type is

consistent throughout replicas in the VOB family.

PERMISSIONS AND LOCKS

Permissions Checking: Creating a copy of an existing type object requires the same permissions as

are required to create the original type object. Refer to the descriptions of the type-object creation

commands (mklbtype, mkattype, and the like) and the permissions reference page.

Locks: An error occurs if the VOB of the new object is locked. With the –replace option, an error

occurs if the type object being replaced is locked.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, preserving the

comment associated with the original type. Any new comment you specify is appended to the

preserved comment. (The file .clearcase_profile defines default commenting behavior; you can

also edit comments using chevent.)

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

REPLACING AN EXISTING TYPE OBJECT. Default: An error occurs if new-type-selector already exists.

–rep⋅lace
Replaces the definition of new-type-selector with the definition of existing-type-selector. An

error occurs if existing-type-selector and new-type-selector have the same definition. If you

specify –c or –cfile with –replace, the comment appears in the event record for the

modification (displayed with lshistory –minor); it does not replace the object’s creation

comment (displayed with describe). Use chevent to change a creation comment.

SPECIFYING THE EXISTING AND NEW TYPE OBJECTS. Default: None.

existing-type-selector
new-type-selector

The name of an existing type object, and a name for the new copy. Specify

existing-type-selector in the form type-kind:type-name[@vob-selector] and new-type-selector in

the form [type-kind]:type-name[@vob-selector]
 ClearCase Reference Pages 245

cptype
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Make a copy of a label type object, in the same VOB.

cmd-context cptype lbtype:RE1.3 REL1.4

• Copy a branch type object, to create an object with the same name in a different VOB.

cmd-context cptype -c "copied from source VOB" ^
brtype:proj_test3.7@\projsrc proj_test3.7@\projtest

• Replace the definition of the trigger type label_it with the description of label_it from

another VOB.

cmd-context cptype –replace trtype:label_it@\stage label_it@\dev

SEE ALSO

describe, lstype, mkhltype, profile_ccase, type_object

type-kind One of

attype Attribute type

brtype Branch type

eltype Element type

hltype Hyperlink type

lbtype Label type

trtype Trigger type

type-name Name of the type object

See the Object Names section in the cleartool reference page

for rules about composing names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
246 ClearCase Reference Manual

credmap
credmap
Display username/UID and group name/GID on Windows NT and UNIX

APPLICABILITY

SYNOPSIS

ccase-home-dir\etc\utils\credmap remote-host

DESCRIPTION

Use the credmap utility to check that your Windows NT user and group assignments match

those on the UNIX side. credmap returns the following values:

• The Windows NT username and the primary group name used by ClearCase/ClearCase LT

• The UNIX user ID and primary group ID

A mismatch returns a UNIX user ID or primary group ID of -2 ; in this case, you should:

1. Run the id command on the UNIX host to determine the correct UNIX user and group IDs.

2. Make the proper adjustment to either the UNIX user account information or the

Windows NT security account information.

NOTE: Mismatches can also occur in the group ID list; to prevent permission problems, the group

list for Windows NT users should include all groups known to the UNIX VOBs.

See Administering ClearCase for more information.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

remote-host
UNIX host running the NFS daemon or authentication server.

EXAMPLES

• Check Windows NT user anne’s user and group IDs against their counterparts on UNIX

host saturn:

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 247

credmap
c:\Program Files\Rational\ClearCase> \etc\utils\credmap saturn
Identity on local Windows NT system:

User: anne (0x1003f2)
Primary group: user (0x1003ff)
Groups:

Administrators (0x20220)
Domain Users (0x100201)

Identity on host "saturn":
User ID: 1149 (0x47d)
Primary group ID: 20 (0x14)
Group ID list:

-2 (0xfffffffe)

Run the id command on a UNIX system to verify that the UNIX User ID and Primary group

ID values correspond with UNIX user anne and group user:

% id
uid=1149(anne) gid=20(user)

SEE ALSO

creds, Administering ClearCase
248 ClearCase Reference Manual

creds
creds
Display user and group information

APPLICABILITY

SYNOPSIS
ccase-home-dir\etc\utils\creds options

DESCRIPTION

The creds utility displays user and group information for the currently logged-in user for the

local Windows NT host. The value of the user’s Primary Group is affected by the

CLEARCASE_PRIMARY_GROUP environment variable. If this EV is set, creds displays its value,

which is used only for ClearCase/ClearCase LT processing. If this EV is not set, creds displays

the user’s Windows NT primary group.

creds also displays the user’s ClearCase/ClearCase LT privilege status:

You do not have to be in the ClearCase group to use ClearCase. However, members of this group

have more privileges to create and modify ClearCase objects. See the permissions reference page

for more information.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

By default, creds displays the credentials for the current user. Lookup is done on the local

machine. To display a usage message, type the following command:

creds –h

EXAMPLES

• Display credentials for the current user.

Product Command Type

ClearCase command

ClearCase LT command

You have ClearCase administrative
privileges

You are a member of the ClearCase group.

You do not have ClearCase administrative
privileges

You are not a member of the ClearCase
group.
 ClearCase Reference Pages 249

creds
c:\Program Files\Rational\ClearCase> \etc\utils\creds
Login name: jeri
UID: 0x10040a
Primary group: user (0x100432)
Groups:
user (0x100432)
doc (0x303eb)
Administrators (0x20220)
Users (0x20221)
Domain Users (0x100201)

Current user is ClearCase privileged

SEE ALSO

credmap, permissions, Administering ClearCase
250 ClearCase Reference Manual

 ClearCase Reference Pages 251

db_dumper, db_loader

db_dumper, db_loader
Dumps/loads a VOB database

APPLICABILITY

SYNOPSIS
Invoked as needed by cleartool’s reformatvob subcommand

DESCRIPTION

These programs are called by the reformatvob command to update a VOB database:

• The db_dumper program converts binary VOB database files to ASCII files.

• The db_loader program reads the ASCII files, creating a new VOB database that uses the

up-to-date schema.

reformatvob invokes a VOB’s own copy of db_dumper: when the VOB is created with mkvob,

a db_server running on the VOB host copies file ccase-home-dir\bin\db_dumper.exe into the

new VOB’s database subdirectory.

When loading a VOB database, reformatvob always invokes the same program:

ccase-home-dir\bin\db_loader.

SEE ALSO

reformatvob

Product Command Type

ClearCase command

ClearCase LT command

252 ClearCase Reference Manual

db_server

db_server
Database server program

APPLICABILITY

SYNOPSIS
Invoked as needed by the albd_server program

DESCRIPTION

A host’s db_server processes handle VOB database transactions on that host, in response to

requests from ClearCase or ClearCase LT client programs: clearmake, cleartool, and so on. These

programs do not access VOB databases directly. Instead, they send database transaction requests

to a db_server process, which runs on the host where the VOB storage area resides (the VOB

host). The db_server process, running under group name clearcase (inherited from the

albd_server, which spawns it), accesses the database. Database transactions include the

following:

• Creating and modifying metadata (such as attaching a label to a version)

• Reading metadata (such as finding the labels attached to a version)

• Writing event records (such as the one that records a checkout command)

• Writing configuration records

• Reading event records and configuration records

Each db_server process services a single client at a time, but can operate on any number of VOBs.

A client establishes a connection to a db_server with the help of the albd_server on the VOB host.

The connection is made either with an available db_server, or with a newly created one. The

connection is broken when the client exits (or fails to make a database transaction over an

extended period). At that point, the db_server becomes available for use by another client;

eventually, an unconnected db_server is terminated by albd_server.

ERROR LOG

The db_server process sends warning and error messages to the Windows event log.

SEE ALSO

albd_server

Product Command Type

ClearCase command

ClearCase LT command

deliver
deliver
Delivers changes in a UCM development stream to the project’s integration stream

APPLICABILITY

SYNOPSIS
• Deliver changes in the development stream using the graphical user interface:

deliver –g⋅raphical [–str⋅eam stream-selector] [–to integration-view-tag]

• Cancel or obtain the status of a deliver operation in progress:

deliver { –can⋅cel | –sta⋅tus [–l⋅ong] } [–str⋅eam stream-selector]

• Preview a deliver operation:

deliver –preview [–s⋅hort | –l⋅ong] [–str⋅eam stream-selector] [–to integration-view-tag]

[–act⋅ivities activity-selector ...]

• Deliver changes in the development stream:

deliver [–str⋅eam stream-selector] [–to integration-view-tag] [–act⋅ivities activity-selector[,...]]

[–com⋅plete] [–gm⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l] [–ser⋅ial] [–f⋅orce]

• Resume or complete work on a deliver operation:

deliver { –res⋅ume |–com⋅plete } [–str⋅eam stream-selector] [–gm⋅erge | –ok]

[–q⋅uery | –ab⋅ort | –qal⋅l] [–ser⋅ial] [–f⋅orce]

 DESCRIPTION

The deliver command lets you deliver work from your development stream to the project’s

integration stream. Work is delivered from your development stream to an integration view.

There may be several steps to delivering work:

• Previewing the changes to be delivered

• Identifying the activities you want to deliver

• Resolving merge conflicts

• Testing and building work in the integration stream

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 253

deliver
• Completing a deliver operation, which checks in new versions and records other

information.

If a deliver operation is interrupted through a system interrupt or user action, you must explicitly

resume or cancel the deliver operation.

In general, it is good practice to check in all work to your development stream before beginning

a deliver operation.

The Integration Activity

The deliver operation creates a UCM activity called the integration activity, which records a

change set for the deliver operation. The activity name is of the form

deliver.stream-name.date-stamp. When the deliver operation begins, the integration activity

becomes the current activity for the integration view in use.

One-Step Deliver Operation

You can deliver your work in one step by specifying the –complete and –force options. The

–force option suppresses prompting for user input during the deliver operation. The –complete
option causes the deliver operation to continue to completion after the merge phase. Use this

feature carefully to avoid the possibility of delivering merged files that may not compile.

Using deliver with MultiSite

The deliver command determines whether the integration stream and development stream are

mastered at different replicas. If they are, a remote deliver operation is put into effect. The

development stream is assigned a posted status.

After the stream is in the posted state, the deliver operation can be continued only by someone

working at the integration stream’s replica. Generally, this is the team’s project integrator. Also,

once posted, the deliver operation can be canceled only by a user at the replica where the

integration stream resides.

The deliver –status command reports on any remote deliver operation in progress for the

specified stream. Using this information, the project integrator can then cancel or continue the

deliver operation, using the –cancel option to halt the deliver operation, or the –resume or

–complete options to continue the deliver operation.

You can create activities and perform checkins and checkouts for your development stream

while the remote deliver is in process. However, you cannot perform any of the following

operations while a remote deliver operation is in progress:

• Add, remove, or create baselines

• Add or remove components

• Rebase the development stream

• Post another deliver operation.
254 ClearCase Reference Manual

deliver
PERMISSIONS AND LOCKS

Permissions Checking: None.

Locks: An error occurs if there are locks on any of the following objects: development stream,

UCM project VOB.

Mastership: The current replica must master the development streams.

OPTIONS AND ARGUMENTS

INVOKING THE GRAPHICAL USER INTERFACE: Default. Nongraphical interface.

–g⋅raphical
Invokes the graphical user interface for deliver.

SPECIFYING THE SOURCE AND DESTINATION FOR THE DELIVER OPERATION. Default: The source is

the stream attached to the current view. The default destination is the integration stream of the

development stream’s project, using either a view attached to the integration stream owned by

the current user, or the integration view used by the last deliver operation executed by the

current user.

–stre⋅am from-stream-selector
Specifies a development stream that is the source for the deliver operation.

stream-selector is of the form: [stream:]stream-name[@vob-selector] and vob is the stream’s

UCM project VOB.

–to integration-view-tag
Specifies a view attached to the integration stream for the development stream’s project.

CANCELLING A DELIVER OPERATION. Default: None.

–can⋅cel
Halts a deliver operation in progress, returning the source and destination streams to

their states before the deliver operation began. However, this option cannot undo a

deliver operation after the completion phase has begun.

Also use –cancel when a deliver operation is interrupted with CTRL+C or when it

encounters an external error or condition that requires more information.

OBTAINING THE STATUS OF A DELIVER OPERATION. Default: None.

–sta⋅tus
Displays the status of a deliver operation. You are informed whether a deliver operation

is in progress for the specified stream, whether the deliver is to a local stream or a remote

stream, and, in the case of a remote deliver, whether the posted deliver has been merged

with the integration stream.
 ClearCase Reference Pages 255

deliver
PREVIEWING THE RESULTS OF A DELIVER OPERATION. Default: For each activity that would be

delivered, displays the owner, activity-selector, and title.

–pre⋅view
Shows activities that would be delivered if you were to execute the deliver operation for

the specified stream. These are any activities that have changed since the last deliver

operation from this stream. Use –preview only when there is no deliver operation in

progress for the stream.

CONTROLLING OUTPUT VERBOSITY. Default: Varies according to the kind of output that the

options described here modify: see the descriptions of –status and –preview.

–l⋅ong
As a modifier of –status or –preview, displays a list of versions that may require

merging, in addition to the default information displayed by –status or –preview.

–s⋅hort
Modifies the –preview option. (Currently, this option does not modify the default

–preview output.)

SELECTING ACTIVITIES TO DELIVER. Default: Delivers all activities in the stream that have changed

since the last deliver operation from the stream.

 –act⋅ivities activity-selector, ...
Specifies a list of activities to deliver. The list of activities must be self-consistent: they

must not depend on the inclusion of any unspecified activities. For example, activity A2

is dependent on activity A1 if they both contain versions of the same element and A2

contains a later version than A1. Additionally, any activities that have been included in

baselines but not delivered must also be delivered if there are changes for that

component in the specified activities. If the list of activities you specify is incomplete, the

additional required activities are listed and the operation fails.

activity-selector is of the form: [activity:]activity-name[@vob-selector] where vob is the

activity’s UCM project VOB.

RESUMING A DELIVER OPERATION. Default: None.

–res⋅ume
Resumes a deliver operation from the point at which it has been suspended.

COMPLETING A DELIVER OPERATION. Default: None.

–com⋅plete
Completes a deliver operation. Verifies that changes from the activities being delivered

have been merged with versions in the project integration stream and that merge

conflicts have been resolved. Checks in resulting new versions to the integration stream
256 ClearCase Reference Manual

deliver
and records that the deliver operation has been made. If merge conflicts exist, the deliver

operation is suspended.

Use this option to bring a deliver operation through the completion phase or to resume

a suspended deliver operation. To complete a deliver operation, you must specify this

option—checking in merged versions to the integration view alone does not complete

the deliver operation.

When used for a deliver operation in progress, this option implies the –resume option—

that is, deliver –complete reports any merges that are still required and attempts to

resolve them.

MERGING. Default: Merging works as automatically as possible, prompting you to make a choice

in cases where two or more nonbase contributors differ from the base contributor. For general

information, see the findmerge reference page.

–gm⋅erge
Performs a graphical merge for each element that requires it. This option does not

remain in effect after a deliver operation is interrupted.

–ok
Pauses for verification on each element to be merged, allowing you to process some

elements and skip others. This option does not remain in effect after a deliver operation

is interrupted.

–q⋅uery
Turns off automated merging for nontrivial merges and prompts you for confirmation

before proceeding with each change in the from-versions. Changes in the to-version are

automatically accepted unless a conflict exists. This option does not remain in effect after

a deliver operation is interrupted.

–abo⋅rt
Cancels a merge if it is not completely automatic. This option does not remain in effect

after a deliver operation is interrupted.

–qal⋅l
Turns off all automated merging. Prompts you for confirmation before proceeding with

each change. This option does not remain in effect after a deliver operation is

interrupted.

–ser⋅ial
Use a serial format when reporting differences among files. Differences are presented in

a line-by-line comparison with each line from one contributor, instead of in a

side-by-side format. This option does not remain in effect after a deliver operation is

interrupted.

CONFIRMATION STEP. Default: Prompts for use input.
 ClearCase Reference Pages 257

deliver
–f⋅orce
Suppresses prompting for user input during the course of a deliver operation. The –force
option does not remain in effect if the deliver operation is interrupted. You must include

it again on the command line when you restart the deliver operation with –resume or

–complete. The merge options to the deliver command are not affected by the –force
option.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Start a deliver operation using command defaults.

cmd-context deliver -to webo_integ

Changes to be DELIVERED:
FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".
Do you wish to continue with this deliver operation? [no] yes
Needs Merge "\view\webo_integ\webo_modeler/design\foo" [(automatic) to
\main\integration\1 from \main\integration\chris_webo_dev\1 (base also
\main\integration\1)]
Checked out "\view\webo_integ\webo_modeler\design\foo" from version
"\main\integration\1".

Attached activities:
activity:deliver.chris_webo_dev.20000606.160519@\webo_pvob "deliver
chris_webo_dev on 06/06/00 16:05:19."

Needs Merge "\view\webo_integ\webo_modeler\design\foo" [to
\main\integration\CHECKEDOUT from \main\integration\chris_webo_dev\1 base
\main\integration\1]
Trivial merge: "\view\webo_integ\webo_modeler\design\foo" is same as base
"\view\webo_integ\webo_modeler\design\foo@@\main\integration\1".
Copying
"\view\webo_integ\webo_modeler\design\foo@@\main\integration\chris_webo_de
v/1" to output file.
258 ClearCase Reference Manual

deliver
Moved contributor "\view\webo_integ\webo_modeler\design/foo" to
"\view\webo_integ\webo_modeler\design\foo.contrib".
Output of merge is in "\view\webo_integ\webo_modeler\design\foo".
Recorded merge of "\view\webo_integ\webo_modeler\design\foo".

Deliver has merged
FROM: stream "chris_webo_dev"
TO: stream "integration"
Using integration view: "webo_integ".
Build and test are necessary in integration view "webo_integ"
to ensure that the merges were completed correctly. When build and
test are confirmed, run "cleartool deliver -complete".

• Complete a deliver operation that is in progress.

cmd-context deliver –complete

Resume deliver
FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".
Do you wish to continue with this deliver operation? [no] yes
Are you sure you want to complete this deliver operation? [no] yes
Deliver has completed

FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".

• Check the status of a deliver operation.

cmd-context deliver –status

Deliver operation in progress on stream "stream:chris_webo_dev@\webo_pvob"
Started by "ktessier" on "14-Jun-00.16:07:46"
Using integration activity "deliver.chris_webo_dev.20000614.160746".
Using view "webo_integ".
Activities will be delivered to stream "stream:integration@\webo_pvob".

Development Stream Baselines:
baseline:deliverbl.chris_webo_dev.20000614.160746.129@\webo_pvob
Activities:
activity:fix_copyright@\webo_pvob
activity:update_date@\webo_pvob
activity:fix_defect_215@\webo_pvob

• Cancel a deliver operation that is in progress.

cmd-context deliver –cancel
 ClearCase Reference Pages 259

deliver
Cancel deliver
FROM: stream "chris_webo_dev"
TO: stream "integration"

Using integration view: "webo_integ".
Are you sure you want to cancel this deliver operation? [no] yes
Private version of "\view\webo_integ\webo_modeler\design\add_proc" saved
in "\view\webo_integ\webo_modeler\design\add_proc.keep".
Deliver of stream "chris_webo_dev" canceled.

SEE ALSO

checkin, checkout, findmerge, rebase, setactivity
260 ClearCase Reference Manual

derived_object
derived_object
File built in a dynamic view by clearmake, omake, or clearaudit, with an associated

configuration record

APPLICABILITY

DESCRIPTION

A derived object (DO) is a file created within a VOB directory during clearmake or omake’s

execution of a build script from a dynamic view, or during execution of an audited shell invoked

with clearaudit from a dynamic view.

For more information on derived objects, see Derived Objects and Configuration Records and

Working with Derived Objects and Configuration Records in Building Software with ClearCase.

COMMANDS FOR WORKING WITH DERIVED OBJECTS

ClearCase includes the following commands for working with derived objects and their

associated configuration records:

lsdo, describe
Lists a VOB’s derived objects. lsdo does not list DO versions; describe does.

describe –fmt "%On"
Lists a derived object’s OID.

rmdo
Deletes derived objects and their data containers.

scrubber
Deletes derived objects and their data containers.

catcr
Lists the CR associated with a derived object.

diffcr
Lists the differences between two CRs.

mklabel –config
mkattr –config

Attaches labels and attributes to the versions listed in a CR.

Product Command Type

ClearCase data structure
 ClearCase Reference Pages 261

derived_object
winkin
Winks in a derived object or a CR hierarchy of DOs to your dynamic view.

-config rule in config spec
Configures a dynamic view to select the versions listed in a CR.

SEE ALSO

catcr, clearmake, diffcr, lsdo, rmdo, scrubber, view_scrubber, winkin, Building Software with
ClearCase
262 ClearCase Reference Manual

describe
describe
Describes an object

APPLICABILITY

SYNOPSIS

• ClearCase, Attache, and MultiSite only—Describe objects in graphical format:

des⋅cribe –g⋅raphical { object-selector | pname } ...

• ClearCase LT—Describe objects in graphical format:

des⋅cribe –g⋅raphical { object-selector | pname } ...

• Describe objects:

des⋅cribe [–local] [–l⋅ong | –s⋅hort | –fmt format-string]

[–ala⋅bel { label-type-selector [,...] | –all }]
[–aat⋅tr { attr-type-selector [,...] | –all }]
[–ahl⋅ink { hlink-type-selector [,...] | –all }]
{ [–cvi⋅ew] [–ver⋅sion version-selector | –anc⋅estor]

[–ihl⋅ink { hlink-type-selector [,...] | –all }]
[–pre⋅decessor] [–pna⋅me] pname ...

| –typ⋅e type-selector ...

 | –cact
| object-selector ...

}

DESCRIPTION

The describe command lists information about VOBs and the objects they contain. For example:

• Attributes and/or version labels attached to a particular version

• Hyperlinks attached to a particular object

• Predecessor version of a particular version

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand
 ClearCase Reference Pages 263

describe
• Views that have checkouts.

• Views that have unshared derived objects in a particular VOB (describe –long vob:)
(ClearCase and Attache dynamic views only)

• Family feature level of a VOB or the replica feature level of a MultiSite VOB replica. This

information is of interest only to MultiSite users.

describe produces several kinds of listings:

• File-system data — Provides information on elements, branches, versions, derived objects,

and VOB symbolic links.

The description of an element (for example, describe hello.h@@) includes a listing of the

storage pools to which the element is currently assigned. (See mkpool and chpool for more

information.)

A version’s description includes the version-ID of its predecessor version.

An ordinary derived object is listed with derived object in its header. A derived object that

has been checked in as a version of an element (DO version) is listed with derived object

version in its header.

• Type object — Provides information on a VOB’s type objects (for example, on a specified list

of label types). This form of the command displays the same information as lstype –long.

• Hyperlink object — Provides information on a hyperlink object.

• Storage pool — Provides information on a VOB’s source, derived object, and cleartext

storage pools. This form of the command displays the same information as lspool –long.

• VOB object — Provides information on the object that represents the VOB itself. This

includes such information as its storage area, creation date, owner, and related views.

• VOB replica — Provides information on the object that represents a VOB replica, including

the replica’s master replica, host, mastership request setting, and feature level. For more

information on replicas, see ClearCase MultiSite Manual.

• UCM objects — Provides information on UCM objects: activities, baselines, components,

folders, projects, and streams. This form of the command displays information similar to

that displayed by the UCM commands lsactivity –long, lsbl –long, lscomp –long, lsfolder
–long, lsproject –long, and lsstream –long.

Access Control Information

For an MVFS object, describe lists the object’s protections. For information on access control, see

Administering ClearCase and the reference pages for protect and protectvob.
264 ClearCase Reference Manual

describe
Unavailable Remote VOB

File-system objects can be hyperlinked to objects in another VOB. If the other VOB is currently

unavailable (perhaps it has been unmounted), describe tries to be helpful:

cleartool: Error: Unable to locate versioned object base with object id:
 "51023fa9.68b711cc.b358.08:00:69:02:1d:c7".
.
.
.

Hyperlinks:
@183@\view1\proj1 M:\view1\proj1\elem2.c@@\main\2 -> <object not available>

Versions Without Data

The description of a version can include the annotation [version has no data] . A file element

version can be created without data, using checkin –cr; an existing version’s data can be

removed with rmver –data.

Hyperlink Inheritance

By default, a version inherits a hyperlink attached to any of its ancestor versions, on the same

branch or on a parent branch. Inherited hyperlinks are listed only if you use the –ihlink option.

A hyperlink stops being passed down to its descendents if it is superseded by another hyperlink

of the same type, explicitly attached to some descendent version. You can use a null-ended

hyperlink (from-object, but no to-object) as the superseding hyperlink to effectively cancel

hyperlink inheritance.

DOs in Unavailable Views

NOTE: Derived objects may be present only in ClearCase and Attache dynamic views.

describe maintains a cache of tags of inaccessible views. For each view-tag, describe records the

time of the first unsuccessful contact. Before trying to access a view, describe checks the cache. If

the view’s tag is not listed in the cache, describe tries to contact the view. If the view’s tag is listed

in the cache, describe compares the time elapsed since the last attempt with the time-out period

specified by the CCASE_DNVW_RETRY environment variable. If the elapsed time is greater than the

time-out period, describe removes the view-tag from the cache and tries to contact the view

again.

The default timeout period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

For more information, see CACHING UNAVAILABLE VIEWS in the clearmake reference page or

CACHING UNAVAILABLE VIEWS in the omake reference page.
 ClearCase Reference Pages 265

describe
Objects in Replicated VOBs

The describe command shows additional information for objects in MultiSite replicated VOBs:

• For objects that have mastership, describe shows the master replica of the object.

NOTE: If the object is a local instance of a global type and you do not specify –local, describe
shows the master replica of the global type.

• For attribute types, hyperlink types, and label types, describe shows the instance

mastership of the type (whether the type’s mastership can be shared by multiple replicas).

• For branches and branch types, describe shows the mastership request setting of the object.

This setting controls whether users at other sites can request mastership of instances of the

type.

For more information about replicated VOBs, see ClearCase MultiSite Manual.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

DESCRIBING OBJECTS GRAPHICALLY. Default: Describes objects in nongraphical form.

–g⋅raphical
Starts a browser that describes objects.

DESCRIBING LOCAL COPIES OF GLOBAL TYPES. Default: describe displays information about the

global type object for the specified object-selector.

–local
Displays information for the local copy of the specified object-selector. For more

information about global types, see Administering ClearCase.

REPORT FORMAT. Default: Lists the object’s name and some additional information.

–l⋅ong
Expands the listing. With vob:, for example, lists all views that have checkouts or

unshared derived objects associated with the specified VOB. This listing includes the

UUIDs of those views, which can be used with rmview.

–s⋅hort
Lists only an object’s pathname. The effect is slightly different when used in combination

with –alabel, –aattr, –ahlink, –ihlink, or –predecessor.

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.
266 ClearCase Reference Manual

describe
DESCRIBING OBJECTS IN OTHER VIEWS. Default: If you use a view-extended pathname to specify

an object in (or as seen through) another view, describe lists that view’s name for the object:

version: "M:\gamma\vob1\project\src\util.c"

–cvi⋅ew
Lists an object using the current view’s name for it.

version: "M:\gamma\vob1\project\src\all_util.c"

This option is useful when different views select different directory versions, in which

elements have been renamed.

–cact
Describes the current activity for your view.

EXCERPTING DESCRIPTION INFORMATION. Default: describe lists the predecessor (if the object is a

version), and reports on all of the object’s version labels, attributes, and hyperlinks. With one or

more of the following options, the report includes the extended pathname of the object and the

requested information only—for example, only a listing of the predecessor version and version

label.

–ala⋅bel { label-type-selector[,...] | –all }
–aat⋅tr { attr-type-selector[,...] | –all }
–ahl⋅ink { hlink-type-selector[,...] | –all }
–ihl⋅ink { hlink-type-selector[,...] | –all }
–pre⋅decessor

Specify one or more of these options to excerpt information from the overall description

of an object. A list of names of type objects must be comma-separated, with no white

space; you can use the special keyword –all to specify all types of a particular kind.

If you combine –fmt with any of these options, describe uses the format-string to

construct and display the object’s extended pathname.

For the type-selector arguments, use one of the type selectors shown in the object-selector
description.

If you specify –short as well, the listing is restricted even further.

–predecessor Only the version-ID of the predecessor version is listed.

–alabel Only the version labels are listed.

–aattr Only the attribute values are listed.
 ClearCase Reference Pages 267

describe
SPECIFYING THE OBJECTS TO BE DESCRIBED. Default: describe expects at least one argument that

names an element, branch, version, VOB link, derived object, or hyperlink (pname, DO-name, or

hlink-selector). You can use –version or –ancestor to control the way pname arguments are

interpreted.

[–pna⋅me] pname ...

One or more pathnames, indicating objects to be described: elements, branches,

versions, or derived objects. If pname has the form of an object selector, you must include

the –pname option to indicate that pname is a pathname.

–ahlink The listing includes the pathnames of the objects hyperlinked to

pname, annotated with → (listed object is the to- object) or ← (listed

object is the from-object).

For example:

-> M:\gamma\vob1\proj\include\db.c@@\main\52
<- M:\gamma\vob1\proj\bin\vega@@\main\5

Inherited hyperlinks are not included in this listing.

–ihlink The listing includes the hyperlinks inherited by pname, which must

specify a version. Pathnames of the from-object and to- object are

listed, one of which is an ancestor of pname, or is pname itself. (That

is, –ihlink also includes hyperlinks that are attached to pname
itself.)

• A standard or view-extended pathname to an element specifies the version

selected by the view.

• A standard or view-extended pathname to a derived object specifies the DO in the

view.

• An extended pathname specifies an element, branch, version, or derived object,

different from the one selected by the view. For example:

foo.c (version of foo.c selected by current view)
foo.o (derived object foo.o built in or winked in to

current view)
M:\gamma\vob1\proj\src\foo.c (version of foo.c selected by another view;

however, the current view must select some
version of foo.c)

M:\gamma\vob1\proj\src\foo.o (derived object foo.o built in another view)
foo.c@@\main\5 (version 5 on main branch of foo.c)
foo.o@@11-Nov.09:19.219 (derived object, specified by DO-ID)
foo.c@@\REL3 (version of foo.c with version label REL3;

however, the view must select some version of
foo.c)
268 ClearCase Reference Manual

describe
For versions, –version overrides these interpretations of pname.

–ver⋅sion version-selector
(For use with versions only) For each pname, describes the version specified by

version-selector. This option overrides both version selection by the view and

version-extended naming. See the version_selector reference page for syntax details.

–anc⋅estor
(For use with elements and versions only) Describes the closest common ancestor

version of all the pname arguments, which must all be versions of the same element. See

the merge reference page for a information about closest common ancestors.

–typ⋅e type-selector ...

Lists information about the type objects specified by the type-name arguments. If there

are multiple types with the same name (for example, a label type and a hyperlink type

are both named REL3), all of them are listed. Use one of the type-selectors shown in the

description of the object-selector argument.

object-selector ...

One or more object-selectors, indicating objects to be described. Specify object-selector in

one of the following forms:

foo.c@@ (the element foo.c)
foo.c@@\main (the main branch of element foo.c)

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB

storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
 ClearCase Reference Pages 269

describe
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Describe the version of element msg.c selected by your view.

cmd-context describe msg.c
version "msg.c@@\main\3"

created 08-Dec-98.12:12:55 by Chuck Jackson (test user) (cj.dvt@oxygen)
Element Protection:

User : sgd : r--
Group: user : r--
Other: : r--

element type: c_source
predecessor version: \main\2
Labels:

REL6
REL1

• Describe a branch of an element, specifying it with an extended pathname.

The following object selectors are valid only if you use UCM:

activity-selector activity:activity-name[@vob-selector]

baseline-selector baseline:baseline-name[@vob-selector]

component-selector component:component-name[@vob-selector]

folder-selector folder:folder-name[@vob-selector]

project-selector project:project-name[@vob-selector]

stream-selector stream:stream-name[@vob-selector]
270 ClearCase Reference Manual

describe
cmd-context describe util.c@@\main\rel2_bugfix
branch "util.c@@\main\rel2_bugfix"

created 08-Dec-98.12:15:40 by Bev Jackson (test user) (bev.dvt@oxygen)
branch type: rel2_bugfix
Element Protection:

User : sgd : r--
Group: user : r--
Other: : r--

element type: text_file
branched from version: \main\31

• Describe the label type REL3.

cmd-context describe lbtype:REL3
label type "REL3"

created 08-Dec-98.12:13:36 by Bev Jackson (test user) (bev.dvt@oxygen)
owner: bev
group: dvt
scope: this VOB (ordinary type)
constraint: one version per branch

• Create a Tested attribute type and apply the attribute to the version of element util.c
selected by your current view. Then, use describe to display the newly applied attribute

value, and use the –fmt option to format the output.

cmd-context mkattype -nc -default '"TRUE"' Tested

cmd-context mkattr -default Tested util.c

cmd-context describe -aattr -all -fmt "Name: %Xn\nType of object: %m\n" util.c
Name: util.c@@\main\CHECKEDOUT
Type of object: version
 Attributes:
 Tested = "TRUE"

• Describe ddft, the current VOB’s default derived object storage pool.

cmd-context describe pool:ddft
pool "ddft"

created 15-Dec-98.09:34:00 by jenny.adm@oxygen
"Predefined pool used to store derived objects."
owner: jenny
group: dvt
kind: derived pool
pool storage global pathname "\\oxygen\users\vb_store\tut\tut.vbs\d\ddft"
maximum size: 0 reclaim size: 0 age: 96

• Describe how the current view names an element that is named hello.mod in the

jackson_fix view.
 ClearCase Reference Pages 271

describe
cmd-context describe -cview M:\jackson_fix\users_hw\src\hello.mod
version "M:\jackson_fix\users_hw\src\hello.c@@\main\4"

created 08-Dec-98.12:16:29 by Chuck Jackson (test user) (cj.dvt@oxygen)
Element Protection:

User : sgd : r--
Group: user : r--
Other: : r--

element type: text_file
predecessor version: \main\3

• Describe the VOB containing the current working directory. List views with checkouts or

unshared derived objects in that VOB.

cmd-context describe -long vob:.
versioned object base "\hw"

created 15-Dec-98.09:34:00 by jenny.adm@oxygen
 "VOB dedicated to development of "hello, world" program"

VOB family feature level: 2
VOB storage host:pathname "oxygen:c:\users\vb_store\tut\tut.vbs"
VOB storage global pathname "\\oxygen\users\vb_store\tut\tut.vbs"
VOB ownership:

owner jackson
group dvt

VOB holds objects from the following views:
oxygen:\vb_store\tut\old.vws [uuid

249356fe.d50f11cb.a3fd.00:01:56:01:0a:4f]

• Describe a hyperlink.

cmd-context describe hlink:Merge@516262@\vob1
hyperlink "Merge@516262@\vob1"

created 14-Jul-98.16:43:35 by Bill Bo (bill.user@uranus)
Merge@516262@\vob1

M:\view1\vob1\proj\lib\cvt\cvt_cmd.c@@\main\v1.1_port\8 ->
M:\view1\vob1\proj\lib\cvt\cvt_cmd.c@@\main\71

• Describe a derived object in the current working directory.

cmd-context describe util.obj
derived object "util.o@@11-Apr.12:03.33"
 created 11-Apr-98.12:03:33 by Anne Duvo (anne.dev@oxygen)
 references: 2 (shared)
 derived pool: ddft
 => saturn:\users\anne\views\anne_main.vws
 => oxygen:\users\jackson\views\jackson_proj2.vws

• For a particular element, list its name, element type, attached triggers, and cleartext and

source pools.
272 ClearCase Reference Manual

describe
cmd-context describe –fmt ^
"%n\n\t%[type]p\n\t%[triggers]p\n\t%[pool]Cp,%[pool]p\n" file.txt@@
file.txt@@

text_file
(CI_TRIG, CO_TRIG)
cdft,sdft

• For a branch type in a replicated VOB, list the master replica of the branch type.

cmd-context describe –fmt "%n\t%[master]p\n" brtype:main
main lex@\dev

• For the current VOB, list the OID, replication status, MS-DOS text mode setting, and

creation comment.

cmd-context describe –fmt "%On\n%[vob_replication]p\n%[msdostext_mode]p\n%c" ^
vob:.
46cf5bfd.240d11d3.a37e.00:01:80:7b:09:69
unreplicated
disabled
storage of header files

• Describe the local copy of global label type REL6.

cmd-context describe –local lbtype:REL6
label type "REL6"

created 28-Jul-99.14:00:26 by smg.user@neon
"Automatically created label type from global definition in VOB

"\admin"."
owner: smg
group: user
scope: this VOB (local copy of global type)
constraint: one version per element
Hyperlinks:

GlobalDefinition -> lbtype:REL6@\admin

• Describe the current VOB, its hyperlinks being of particular interest.

cmd-context describe –long vob:.
 ClearCase Reference Pages 273

describe
versioned object base "/vobs/doc"
created 07-Nov-91.16:46:28 by ratl.user
"ClearCase documentation VOB."
VOB family feature level: 1
VOB storage host:pathname "mercury:\usr3\vobstorage\doc_vob"
VOB storage global pathname "\\mercury\usr3\vobstorage\doc_vob"
VOB ownership:

owner 4294967294
group user

Hyperlinks:

AdminVOB -> vob:\vobs\admin

This VOB has a hyperlink named AdminVOB; it points from the current VOB to the VOB

vob:\vobs\admin. If it were pointing to the current VOB, the listing would show

Hyperlinks:

AdminVOB <- vob:\vobs\admin

Now describe the hyperlink AdminVOB.

cmd-context describe hltype:AdminVOB

hyperlink type "AdminVOB"
created 07-Nov-91.16:46:28 by ratl.user
"Predefined hyperlink type used to link a VOB to another VOB with
administrative information."
owner: 4294967294
group: user
scope: this VOB (ordinary type)

SEE ALSO

chflevel, chpool, fmt_ccase, lsactivity, lsbl, lscomp, lsdo, lshistory, lspool, lsproject, lsstream,

lstype, merge, mkpool, protect, protectvob, rmview, version_selector
274 ClearCase Reference Manual

diff
diff
Compares versions of a text-file element or a directory

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only—Display differences graphically:

diff –g⋅raphical [–tin⋅y] [–hst⋅ack | –vst⋅ack] [–pre⋅decessor]

[–opt⋅ions pass-through-opts] pname ...

• ClearCase and ClearCase LT only—Display differences nongraphically:

diff [–ser⋅ial_format | –dif⋅f_format | –col⋅umns n]

[–opt⋅ions pass-through-opts] [–pre⋅decessor] pname ...

• Display differences graphically:

diff –g⋅raphical [–tin⋅y] [–hst⋅ack | –vst⋅ack] [–pre⋅decessor | –vie⋅w]

[–opt⋅ions pass-through-opts] pname ...

• Attache only—Display differences nongraphically:

diff [–ser⋅ial_format | –dif⋅f_format | –col⋅umns n]

[–opt⋅ions pass-through-opts] [–pre⋅decessor | –vie⋅w] pname ...

DESCRIPTION

ClearCase and ClearCase LT Only

The diff command calls an element-type-specific program (the compare method for the type) to

compare the contents of two or more file elements, or two or more directory elements. Typically,

the files are versions of the same file element.

You can also use this command to compare ordinary text files.

diff uses the type manager mechanism to determine how to compare the specified objects. For

more information, see the type_manager reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 275

diff
Attache Only

The diff command compares the contents of two or more file elements or two or more directory

elements. Typically, the files are versions of the same file element. For a file diff, any

locally-referenced files are used as contributors; any nonlocal files are downloaded temporarily.

diff presumes that all files are text files, using the built-in textual diff and merge compare

methods, and bypassing the type manager mechanism. For more information, see the

type_manager reference page.

TEXT FILE COMPARISON REPORT FORMAT

Each difference is reported as one or more pairwise differences. For example, if three

contributors all differ from the base contributor in a particular section, diff lists the file1-file2

difference, followed by the file1-file3 difference, followed by the file1-file4 difference.

Side-by-Side File Comparison Report Style

The default file-comparison report begins with a file summary, which lists all the input files and

their assignments as file 1 , file 2 , and so on. If no differences are detected among the files,

this listing is replaced by the message Files are identical .

The remainder of the report is a series of pairwise differences, each of which is preceded by a

descriptive header line:

******************************** (file summary)
<<< file 1: util.c@@\main\1
>>> file 2: util.c@@\main\3

----------[after 15]-----|-------[inserted 16]------- (header)

-| char *s; (difference)
|-

---------[changed 18]----|-----[changed to 19-21]---- (header)
return ctime(&clock); | s = ctime(&clock); (difference)

-| s[strlen(s)-1] = ’\0’;
return s;

The –quiet and –diff_format options suppress the file summary. The –headers_only option

suppresses the differences, listing the header lines only.

Header Lines. Each header line indicates which text lines in the input files were changed, and

how they were changed. The words describe the change in terms of how the first file was

changed to produce the second file. Header lines can have the following formats, where each of

A, B, and so on may be a single line number (for example, 46) or a range (for example, 256–290):

------------[after A]------------|------------[inserted B]-------------

Insertion of one or more lines. B indicates where the inserted lines occur in the second file. A
indicates the corresponding point in the first file.
276 ClearCase Reference Manual

diff
-----------[deleted C]-----------|--------------[after D]--------------

Deletion of one or more lines. C indicates which lines from the first file were deleted. D
indicates the corresponding point in the second file.

--------[deleted/moved C]--------|----------[after D now B]-----------

Deletion of one or more lines from the first file, to which there corresponds an insertion of

the same lines in the second file. Typically, this indicates that a range of lines was moved

from one location to another; see inserted/moved below. C indicates where the lines were

deleted from the first file; B indicates the location where these same lines were inserted in the

second file. D indicates the point in the second file that corresponds to C.

-----------[changed X]-----------|------------[changed to Y]-----------

One or more lines changed in place. X indicates which lines in the first file were changed. Y
indicates where the replacement lines occur in the second file.

----------[after A was C]--------|----------[inserted/moved B]--------

Insertion of one or more lines in the second file, to which there corresponds a deletion of the

same lines from the second file. Typically, this indicates that a range of lines was moved from

one location to another; see deleted/moved above. B indicates where the lines were inserted

in the second file; C indicates where these same lines were deleted from the first file; A
indicates the point in the first file that corresponds to B.

Differences. diff can report a difference in several ways. When comparing files, its default is to

list corresponding lines side by side, and possibly truncated.

A plus sign (+) at the end of a difference line indicates that it has been truncated in the report. To

see more of such lines, you can increase the report width using the –columns option. The minus

signs (–) along the vertical separator line indicate the endpoints of the groups of differing lines.

They help to distinguish empty lines in the input files from blank space in command output.

Other File Comparison Report Styles

The –serial_format option causes the differences to be reported as entire lines, in

above-and-below format instead of side-by-side format. For example:

-----[after 15 inserted 16]-----
> char *s;
-----[18 changed to 19-21]-----
< return ctime(&clock);

> s = ctime(&clock);
> s[strlen(s)-1] = ’ ’;
> return s;
 ClearCase Reference Pages 277

diff
The –diff_format option causes both the headers and differences to be reported in the style of the

UNIX diff utility, writing a list of the changes necessary to convert the first file being compared

into the second file, as follows:

• The first number (or range of numbers in the form n,n) indicates line numbers in the first

file being compared.

• The second value is one of the following: a d c. These indicate whether lines are to be added

deleted, or changed.

• The second number (or range of numbers) indicates line numbers in the second file being

compared.

When diff compares multiple files, it adds file-identification annotations to the diff-style

headers.

The –graphical option displays differences graphically.

DIRECTORY-COMPARISON ALGORITHM AND REPORT FORMAT

For a comparison of directory versions, diff uses a directory-element-specific compare method,

whose report format is very similar to the one described in Side-by-Side File Comparison Report
Style on page 276.

Kinds of Directory Entries

A version of a VOB directory can contain several types of entries:

• File Elements — Reported by diff as the element’s name (in this directory version), the

element’s creation time, and the username of the element’s creator. For example:

obj2 12-Aug.14:00 akp

NOTE: Multiple VOB hard links to the same element will have the same creator and creation

time, but different names.

• Directory Elements — Reported by diff in the same way as file elements, except that a

backslash (\) is appended to the element name. For example:

sub6\ 13-Aug.15:00 akp

• VOB Symbolic Links — Reported by diff as the link’s name (in this directory version),

followed by – and the text (contents) of the link; the link’s creation time; and the username

of the element’s creator. For example:

doctn -> ..\vob1\doctn 13-Aug.08:44 akp

How Differences Are Reported

The diff report is a series of differences, each of which focuses on one directory entry. A

difference can be a simple addition or deletion; it can also involve the renaming of an existing
278 ClearCase Reference Manual

diff
object, or the reuse of an existing name for another object. The following examples illustrate the

various possibilities.

--|---------------[added]-------------
-| obj2 12-Aug.14:00 akp

An object named obj2 was added (mkelem, mkdir, or ln) in the second version of the directory.

---------------[removed]--------------|-----------------------------
obj5 12-Aug.14:00 akp |-

An object named obj5 was removed (rmname) in the second version of the directory.

---------------[renamed]--------------|--------[renamed to]-------
obj3 12-Aug.14:00 akp | obj3.new 12-Aug.14:00 akp

An object named obj3 was renamed (mv) to obj3.new in the second version of the directory.

-------------[old object]-------------|--------[new object]-------
obj4 12-Aug.14:04 akp | obj4 19-Oct.17:10 akp

In the second version of the directory, an object named obj4 was removed (rmname) and another

object was created with that same name.

----------[old link text]-------------|------[new link text]----
doc -> ..\vob1\doc 13-Aug.08:44 akp | doc -> ..\vb\doc 19-Sep.21:01 akp

(Special case of the preceding example) In the second version of the directory, a VOB symbolic

link named doc was removed (rmname) and another VOB symbolic link was created with that

same name.

---------------[renamed]--------------|---[renamed to]------------
obj4 12-Aug.14:01 akp | obj1 12-Aug.14:01 akp
---------------[removed]--------------|-----------------------------
obj1 12-Aug.14:00 akp |-

These two differences show that in the second version of the directory, an object named obj1 was

removed and another object was renamed from obj4 to obj1.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

In ClearCase and ClearCase LT, with the exception of –predecessor and –options, diff options

are the same as those of cleardiff.

REPORTING DIFFERENCES GRAPHICALLY. Default: Reports differences in nongraphical form and

uses the default display font.
 ClearCase Reference Pages 279

diff
–g⋅raphical [–tin⋅y]

Displays differences graphically. With –tiny, a smaller font is used to increase the

amount of text displayed in each display pane.

CONTRIBUTOR PANE STACKING. Default: Each of the two or more contributors being compared or

merged is displayed in a separate subwindow, or contributor pane. By default, these panes are

displayed, or stacked, horizontally (side by side), with the base contributor on the left.

–hst⋅ack
Displays the contributor panes horizontally (the default behavior).

–vst⋅ack
Stacks the contributor panes vertically, with the base contributor at the top.

OUTPUT FORMAT. Default: Reports differences in the format described in How Differences Are
Reported on page 278.

–ser⋅ial_format
Reports differences with each line containing output from a single file, instead of in a

side-by-side format.

–dif⋅f_format
Reports both headers and differences in the same style as the UNIX diff utility (see Other
File Comparison Report Styles on page 277), and suppresses the file summary from the

beginning of the report.

–col⋅umns n
Establishes the overall width of a side-by-side report. The default width is 80; only the

first 40 or so characters of corresponding difference lines appear. If n does not exceed the

default width, this option is ignored.

COMPARISON OF A VERSION WITH ITS PREDECESSOR. Default: None.

–pre⋅decessor
Effectively converts the first pname argument into two names: (1) the predecessor version
of pname in the version tree; (2) pname itself. If pname specifies a checked-out version, the

predecessor is the version from which it was checked out.

An error occurs if the pname does not specify a version:

cleartool: Error: Not a vob object: "myfile.c".

(ATTACHE ONLY) SPECIFYING THE BASIS OF THE COMPARISON. Default: None.

–vie⋅w
Supports file elements only. Converts the first pname argument into two names: (1) the

version of pname selected by the view; (2) pname itself. If pname is not already present in

the workspace, using –view results in a comparison of pname with itself.
280 ClearCase Reference Manual

diff
PASSING THROUGH OPTIONS TO THE COMPARE METHOD. Default: Does not pass any special

options to the underlying compare method (in ClearCase and ClearCase LT, typically, the

cleardiff program).

–opt⋅ions pass-through-opts
Specifies one or more compare method options that are not directly supported by diff.

Use quotes if you are specifying more than one pass-through option; diff must see them

as a single command-line argument. For example, this command passes through the

–quiet and –blank_ignore options:

cmd-context diff –options "–qui –b" –pred util.c

For descriptions of the options valid in ClearCase and ClearCase LT, see the cleardiff
reference page. Attache accepts the following pass-through options:

SPECIFYING THE DATA TO BE COMPARED. Default: None.

pname ...

One or more pathnames, indicating the objects to be compared: versions of file elements,

versions of directory elements, or any other files. If you don’t use –predecessor or –view,

you must specify at least two pname arguments.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• (Attache only) Compare the version of foo.c selected by the current view with the version in

the current workspace.

cmd-context diff –view foo.c

–hea⋅ders_only
–qui⋅et (mutually exclusive)

–headers_only lists only the header line of each difference. The differences

themselves are omitted.

–quiet suppresses the file summary from the beginning of the report.

–b⋅lank_ignore
Ignores extra white space characters in text lines: leading and trailing white

space is ignored altogether; internal runs of white-space characters are

treated like a single SPACE character.
 ClearCase Reference Pages 281

diff
• (ClearCase and ClearCase LT only) Compare the version of a file element in the current

view with the version in another view.

cmd-context diff util.c Z:\jackson_hw\src\util.c

• (Attache only) Compare the version of a file element in the current workspace with an older

version.

cmd-context diff util.c util.c\@@\main\1

• Compare the version of foo.c in the current view with its predecessor version.

cmd-context diff –predecessor foo.c

• Compare your unreserved checkout of hello.c with the latest checked-in version on the

main branch.

cmd-context diff hello.c hello.c@@\main\LATEST

• Compare three files: the version of msg.c selected by the current view, its predecessor

version, and msg.SAVE in your home directory.

cmd-context diff –predecessor msg.c \users\anne\msg.SAVE

• (ClearCase and ClearCase LT only) Start the Diff Merge Tool to compare the version of

util.c in the current view with a version on the rel2_bugfix branch.

cmd-context diff –graphical util.c util.c@@\main\rel2_bugfix\LATEST

• (Attache only) Use diff –graphical to compare two files in different local directories. (This

command must be entered on a single line.)

cmd-context diff –graphical \users\jed\jed_ws\vob_des\source\test.c
\users\jpb\my_proj\test_NEW.c

SEE ALSO

attache_command_line_interface, diffcr, merge, type_manager
282 ClearCase Reference Manual

diffbl
diffbl
Compares the contents of UCM baselines or streams

APPLICABILITY

SYNOPSIS
diffbl [–act⋅ivities] [–ver⋅sions] [–fir⋅st_only]

{ baseline-selector1 | stream-selector1 }

{ baseline-selector2 | stream-selector2 }

DESCRIPTION

The diffbl command compares the contents of two baselines or streams and displays any

differences it finds. You can choose to see differences in terms of activities or versions, or both.

You can use the diffbl command to compare a baseline and a stream, a baseline and a baseline,

or a stream and a stream. When specifying a stream, all baselines in the stream are used in the

comparison as well as any changes in the stream that are not yet captured in a baseline.

The diffbl command must be issued from a view context to display versions. The view context

is needed to resolve pathnames of versions.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE INFORMATION TO DISPLAY. Default: –activities.

–act⋅ivities
Displays differences in terms of activities.

–ver⋅sions
Displays differences in terms of versions.

–fir⋅st_only
Shows only those changes that appear in the first object specified for the comparison.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 283

diffbl
SELECTING THE OBJECTS TO COMPARE. Default: None.

baseline-selector1
stream-selector1

Specifies an object to use in the comparison.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB. stream-selector is of the form:

[stream:]stream-name[@vob-selector] and vob is the stream’s UCM project VOB.

baseline-selector2
stream-selector2

Specifies an object to use in the comparison.

baseline-selector is of the form: [baseline:]baseline-name[@vob-selector] and vob is the

baseline’s UCM project VOB. stream-selector is of the form:

[stream:]stream-name[@vob-selector] and vob is the stream’s UCM project VOB.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Compare activities in two streams:

cmd-context diffbl stream:java_int stream:java_dev

<< deliver.java_dev.19990917.140443 "deliver java_dev on 09/17/99
14:04:43."

<< deliver.java_dev.19990917.141046 "deliver java_dev on 09/17/99
14:10:46."

• Compare baselines in two streams:

cmd-context diffbl -ver stream:java_int stream:java_dev

<< /vobs/parser/myfile.c@@/main/java_int/2

<< /vobs/parser/myfile.c@@/main/java_int/3

SEE ALSO

chbl, lsbl, mkbl, rmbl
284 ClearCase Reference Manual

diffcr
diffcr
Compares configuration records created by clearmake, omake, or clearaudit

APPLICABILITY

SYNOPSIS
diffcr [–r⋅ecurse | –fla⋅t] [–sel⋅ect do-leaf-pattern] [–ci] [–typ⋅e { f | d | l } ...]

[–ele⋅ment_only] [–vie⋅w_only] [–cri⋅tical_only] [–nam⋅e tail-pattern]

[–wd] [–nxn⋅ame] [–l⋅ong | –s⋅hort] do-pname-1 do-pname-2

DESCRIPTION

The diffcr command compares the configuration records (CRs) of two derived objects. A CR is

produced by clearmake, clearaudit, or omake when it finishes executing a build script in a

dynamic view. By comparing CRs, you can determine these differences:

• Versions of MVFS objects used as sources or produced during the build (includes elements

and other objects whose pathnames are under a VOB mount point)

• (For builds performed with omake) Versions of non-MVFS objects that appeared as

makefile dependencies during the build (explicit dependencies declared in the makefile)

• The total number of times an object was referenced during a build, and the first target in

which that object was referenced

• Build options (which can come from the command line, the Windows environment, the

makefile itself, and so on)

• The build script executed

• Noncritical differences, such as the date/time of the build, dynamic view name, or host

name

NOTE: Not all of this information is available from configuration records of DOs created by

clearaudit.

The do-pname arguments specify the derived objects to be compared. You can specify a derived

object in these ways:

• Use a derived-objectID (DO-ID), which identifies a derived object created in any dynamic

view. A DO-ID takes the following form:

Product Command Type

ClearCase cleartool subcommand

Attache command
 ClearCase Reference Pages 285

diffcr
DO-pname@@creation_date.creation_time.id-number

For example:

myprog.obj@@11–Nov.17:39.3871

To display a derived object’s DO-ID, use lsdo.

• Use a standard pathname, which identifies a DO created in the current dynamic view. For

example, myprog.obj.

• Use a view-extended pathname, which identifies a DO created in another dynamic view.

For example, M:\jpb_view\vob1\src\myprog.obj.

You can compare a nonshareable DO in your view to a nonshareable DO created in another view,

but you must use a view-extended pathname to specify the DO in the other view.

diffcr supports the same filter and report style options as the catcr command. This means that

you can restrict the comparison to particular subtargets of the do-pnames, control which objects

appear in the listing, select how pathnames are displayed, and expand the listing to include

comments and other supplementary information. See the catcr reference page for additional

information.

DOs in Unavailable Views

diffcr maintains a cache of tags of inaccessible views. For each view-tag, the command records

the time of the first unsuccessful contact. Before trying to access a view, the command checks the

cache. If the view’s tag is not listed in the cache, the command tries to contact the view. If the

view’s tag is listed in the cache, the command compares the time elapsed since the last attempt

with the timeout period specified by the CCASE_DNVW_RETRY environment variable. If the

elapsed time is greater than the timeout period, the command removes the view-tag from the

cache and tries to contact the view again.

The default timeout period is 60 minutes. To specify a different timeout period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

COMPARING DIFFERENCES IN SUBTARGETS. Default: diffcr compares the CRs for do-pname-1 and

do-pname-2 only, not for any of their subtargets.

–r⋅ecurse
Compares the CRs of the two specified derived objects, and their common subtargets.

Each pair of CRs is compared separately. By default, a recursive comparison does not

descend into DO versions; use –ci to override this.
286 ClearCase Reference Manual

diffcr
–fla⋅t
Similar to –recurse, but consolidates the CRs for each do-pname-n into a single list, with

no duplicates, and then compares the lists. The report includes file system objects only;

no headers, variables and options, or build scripts. It also includes the total number of

times each object was referenced during the build, and the first target in which that

object was referenced (First seen in target).

–sel⋅ect do-leaf-pattern
Starts the comparison at the subtargets of do-pname that match do-leaf-pattern (which can

include pattern-matching characters; see the ClearCase wildcards_ccase or Attache

wildcards reference page). This option is useful for focusing on a particular object (for

example, object module hello.obj) that was built as part of a larger object (for example,

executable hello.exe).

–ci (for use with –recurse or –flat only)

Descends into the CRs of DO versions that were used as build sources.

SPECIFYING KINDS OF OBJECTS TO DISPLAY. Default: diffcr reports on all objects in the CRs, which

may include source files and directories; derived objects; makefiles; view-private files, and (for

builds performed with omake) non-MVFS objects that were explicitly declared as dependencies.

–typ⋅e { f | d | l } ...
Lists file-system objects of a particular kind: files (f) directories (d), or links (l). The

default value varies with the report style: normal and short listings (–short) default to f;

long listings (–long) default to fdl. You may specify multiple kinds of objects by

grouping them into a single argument; –type fd, for example.

–ele⋅ment_only
Lists versions of elements only, including checked-out versions. This option excludes

from the listing derived objects (except DO versions), view-private files and directories,

and non-MVFS objects.

–vie⋅w_only
Lists view-private objects only, including checked-out versions of elements. If you

specify this option along with –element_only, the listing includes only checked-out

versions of elements.

–cri⋅tical_only
Excludes from the listing any differences in objects marked as “noncritical” in the CR.

Objects with that property typically have it because the user specified them as

dependents of the .NO_DO_FOR_SIBLING special target in a clearmake makefile or as

dependents of the .NODO_FOR_SIBLING special target in an omake makefile.

–nam⋅e tail-pattern
Considers the entry for a file system object only if its final pathname component matches
 ClearCase Reference Pages 287

diffcr
the specified pattern. See the ClearCase wildcards_ccase or Attache wildcards reference

page for a list of pattern-matching characters.

CONTROLLING REPORT APPEARANCE. Default: diffcr reports, in three sections, on MVFS objects,

variables and options, and the build script. The report uses full pathnames, and it omits

comments and directory versions.

–wd
Lists pathnames relative to the current working directory, rather than as full pathnames.

–nxn⋅ame
Lists simple pathnames for MVFS objects, rather than version-extended pathnames or

DO-IDs.

–l⋅ong
Expands the report to include the kinds of objects in the CR, and comments. For

example, an object may be listed as a version, a directory version, or derived object (see ls
–long for a complete list). Comments indicate whether an object is in a makefile, a

referenced derived object, or a new derived object.

–s⋅hort
Restricts the report to file-system objects only (omits header information, variables and

options, and build scripts).

SPECIFYING THE DERIVED OBJECTS. Default: None.

do-pname-1, do-pname-2
Standard pathnames and/or DO-IDs of two derived objects to be compared. Either or

both can be a DO version.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Compare the CRs of two derived objects built at the name bgrs.exe. Use lsdo to determine

the DO-ID of the derived object that is not visible in the current dynamic view.

cmd-context lsdo -zero bgrs.exe

11-Dec.15:24 "bgrs.exe@@11-Dec.15:24.1487"
11-Dec.12:05 "bgrs.exe@@11-Dec.12:05.1256"

cmd-context diffcr –flat bgrs.exe bgrs.exe@@11-Dec.12:05.1956
288 ClearCase Reference Manual

diffcr
< Reference Time 11-Dec-98.15:23:52, this audit started 11-Dec-98.15:23:59
> Reference Time 11-Dec-98.12:02:39, this audit started 11-Dec-98.12:04:52
< View was DRIVE:\users\jones\views\main.vws [uuid
66e68edc.471511cd.ac55.08:00:2b:33:ec:ab]
> View was DRIVE:\users\jones\views\r1_fix.vws [uuid
8b468fd0.471511cd.aca5.08:00:2b:33:ec:ab]

MVFS objects:

 < \vob1\docaux\bgr\bgrs.exe@@11-Dec.15:24.1987
> \vob1\docaux\bgr\bgrs.exe@@11-Dec.12:05.1956

< \vob1\docaux\bgr\bugs.obj@@11-Dec.15:23.1981
> \vob1\docaux\bgr\bugs.obj@@11-Dec.12:03.1902

< \vob1\docaux\bgr\bugsched.obj@@11-Dec.15:23.1984
> \vob1\docaux\bgr\bugsched.obj@@11-Dec.12:04.1953

The comparison shows that the builds used different versions of the object modules bugs.obj
and bugsched.obj.

• Compare the same two derived objects again, this time including the CRs of all subtargets.

cmd-context diffcr -flat bgrs.exe bgrs.exe@@11-Dec.12:05.1956
 ClearCase Reference Pages 289

diffcr

MVFS objects:

< First seen in target "bugs.obj"
< 1 \vob1\docaux\bgr\bugs.c@@\main\2 <11-Dec-98.15:22:53>
> First seen in target "bugs.obj"
> 1 \vob1\docaux\bgr\bugs.c@@\main\1 <19-Dec-97.11:49:54>

< First seen in target "bugsched.obj"
< 1 \vob1\docaux\bgr\bugsched.c@@\main\2 <11-Dec-98.15:23:04>
> First seen in target "bugsched.obj"
> 1 \vob1\docaux\bgr\bugsched.c@@\main\1 <19-Dec-97.11:50:07>

< First seen in target "bgrs.exe"
< 1 \vob1\docaux\bgr\bgrs.exe@@11-Dec.15:24.1987
> First seen in target "bgrs.exe"
> 1 \vob1\docaux\bgr\bgrs.exe@@11-Dec.12:05.1956

< First seen in target "bgrs.exe"
< 2 \vob1\docaux\bgr\bugs.obj@@11-Dec.15:23.1981
> First seen in target "bgrs.exe"
> 2 \vob1\docaux\bgr\bugs.obj@@11-Dec.12:03.1902

< First seen in target "bgrs.exe"
< 2 \vob1\docaux\bgr\bugsched.obj@@11-Dec.15:23.1984
> First seen in target "bgrs.exe"
> 2 \vob1\docaux\bgr\bugsched.obj@@11-Dec.12:04.1953

The integer at the beginning of an entry indicates the number of times the object was

referenced during the build. The first seen in target message indicates the first target

rebuild in which the object was referenced.

• For the same two derived objects as in the preceding examples, compare the file element

versions used to build subtarget bugsched.obj. Report the differences in short format.

cmd-context diffcr -short -select bugsched.obj -type f -element_only bgrs.exe ^
bgrs.exe@@11-Dec.12:05.1956

< \vob1\docaux\bgr\bugsched.c@@\main\2
> \vob1\docaux\bgr\bugsched.c@@\main\1

• Compare two builds of program main, listing only those entries that involve the file

src\prog.c.

cmd-context diffcr -recurse -name prog.c main1 main2
290 ClearCase Reference Manual

diffcr
SEE ALSO

catcr, clearaudit, clearmake, ls, lsdo, make, rmdo, wildcards, wildcards_ccase
 ClearCase Reference Pages 291

dospace
dospace
Reports on VOB disk space used for shared derived objects

APPLICABILITY

SYNOPSIS

• Report VOB disk space used for shared derived objects:

dospace [–upd⋅ate] [–sin⋅ce date-time] [–bef⋅ore date-time] [–ref⋅erences {0,1,n}]

[–top number | –a⋅ll] [–siz⋅e size] [–reg⋅ion network-region] [–poo⋅l pool-name] vob-tag ...

• Report disk space in raw format:

dospace [–upd⋅ate] –dum⋅p [–reg⋅ion network-region] vob-tag...

• Generate and cache data on disk space used for local VOBs:

dospace –gen⋅erate [–scr⋅ub days] [vob-tag ...]

DESCRIPTION

The dospace command displays data on VOB disk space used for shared derived objects. The

report shows which views refer to shared DOs and shows how much disk space is used by the

shared DOs that each view refers to.

You can use this information to identify views that should no longer refer to the DOs. Removing

references to the DOs in those views can allow the disk space used by the DOs in the VOB to be

reclaimed. When a DO no longer appears in any view, the scrubber utility, usually run as a

periodically scheduled job, can remove the DO and its associated storage from the VOB.

The dospace command has a number of options that determine the range of derived objects and

views it reports. By default, the command displays total disk space used for DOs in the specified

VOBs and then lists the top 10 views in order of disk space used by DOs that appear in those

views.

By default, dospace uses previously generated, cached data. The –update option generates fresh

data and updates the cache before displaying the report.

The –generate option is intended for use by scheduled jobs. By default, the ClearCase scheduler

periodically runs dospace with the –generate option to generate and cache data on disk space

used by derived objects for all local VOBs. See the schedule reference page for information on

describing and changing scheduled jobs.

Product Command Type

ClearCase cleartool subcommand
292 ClearCase Reference Manual

dospace
PERMISSIONS AND LOCKS

Permissions Checking: For the –update option, you must have Change or Full access in the

ClearCase scheduler ACL on the host where each VOB storage directory resides. See the

schedule reference page. For the –generate option, you must be one of the following for each

VOB: VOB owner, member of the ClearCase group. See the permissions reference page.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING CREATION TIMES OF DOS IN THE REPORT. Default: No restrictions.

–sin⋅ce date-time
Restricts the report to DOs that were last accessed at or after date-time. For the format of

date-time, see the lshistory reference page.

–bef⋅ore date-time
Restricts the report to DOs that were last accessed before date-time. For the format of

date-time, see the lshistory reference page.

SPECIFYING REFERENCE COUNTS OF DOS IN THE REPORT. Default: Reports disk space used by DOs

with reference counts greater than or equal to 1.

–ref⋅erences {0,1,n}

Restricts the report to DOs with the specified reference counts. The reference count is the

number of views in which a DO appears. A value of n reports on DOs that appear in 2

or more views. Each time the DO is winked in to another view, its reference count is

incremented. Each time the DO is deleted from a view, its reference count is

decremented.

SPECIFYING NUMBER OF VIEWS IN THE REPORT. Default: Lists top 10 views in space used.

–top number | –a⋅ll
Restricts the report to the top number of views (default 10) in amount of VOB disk space

used by DOs that appear in those views. The –all option reports all views that have

references to DOs in the specified VOBs, subject to any restrictions imposed by other

options.

SPECIFYING MINIMUM DISK SPACE USED BY EACH VIEW IN THE REPORT. Default: No restrictions.

–siz⋅e size
Restricts the report to those views each of which accounts for at least size kilobytes of

VOB disk space used by DOs that appear in that view.

SPECIFYING THE STORAGE POOL. Default: All derived object pools.
 ClearCase Reference Pages 293

dospace
–poo⋅l pool-name
Restricts disk space data in the report to the derived object storage pool whose name is

pool-name.

SPECIFYING THE VOB. Default: For the –generate option, all local VOBs. Otherwise, no default;

you must specify a VOB-tag.

vob-tag ...
One or more VOB-tags specifying the VOBs to report. Each VOB-tag must be valid in the

region specified by –region.

–reg⋅ion network-region
Specifies the network region in which each vob-tag resides. The default is the region of the

local host.

REPORTING RAW DATA. Default: Formatted report data.

–dum⋅p
Reports data in a raw form, with no filtering options (such as –since or –size) applied.

This form is intended for use by user-created scripts or other programs that do advanced

data analysis or formatting.

DISPLAYING AND CACHING UP-TO-DATE DATA. Default: Uses cached data.

–upd⋅ate
Computes and caches data on DO disk space usage at the time the command is issued,

instead of using cached data, and then displays a report. The computation can take a

significant amount of time.

GENERATING, CACHING, AND SCRUBBING DATA. Default: None.

–gen⋅erate
Computes and caches data on DO disk space used at the time the command is issued but

does not display a report. The VOB storage directories for all specified VOBs must reside

on the local host. If no vob-tag argument is specified, the command generates data for all

VOBs on the local host. The computation can take a significant amount of time. This

option is intended to be used by periodic jobs run by the ClearCase scheduler.

–scr⋅ub days
Deletes cached records of data on DO disk space used that are older than the specified

number of days. A value of –1 deletes all cached records other than the one generated by

the current invocation of the command, if any. This option is intended to be used in

conjunction with the –generate option by periodic jobs run by the ClearCase scheduler.

The default scheduled job specifies a value of –1 for the –scrub option.
294 ClearCase Reference Manual

dospace
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Report the top 10 views in disk space used by DOs each of which appears in only one view.

cmd-context dospace –references 1 \bigapp

K Bytes Date.Time VOB
141284 25-Jul-99.01:51:53 \bigapp

K Bytes View
11026 dave

7722 sue_bl4
7500 cindy_v3.2.1
7224 release
6263 jack_build
5159 terry_v4
4871 v3.2.1.win
4855 birdseye
4268 v3.2.win
3903 andrea_40

• Report disk space used by DOs last accessed before June 1, 1999, and list all views that

account for at least 3 MB each of DO space.

cmd-context dospace –before 01-Jun-1999 –all –size 3000 \bigapp
 ClearCase Reference Pages 295

dospace
Using 02-May-99.01:45:06 ("3 months") for before date.time.
01-Jun-99.01:45:06 ("2 months") is next before bucket.

K Bytes Date.Time VOB
159562 01-Aug-99.01:51:53 \bigapp
K Bytes View

28734 v3.1.1_pfm.re
28734 v3.1.1_pfm.bld
19208 v3.1.1.bld
19197 v3.1.1.re
14169 dave

7501 cindy_v3.2.1
7231 release
4866 birdseye
4102 v3.2.win
3987 kim_v3.2
3714 v3.2_pfm.bld
3587 sue_mtypes
3538 proj_v3.nt
3386 [uuid: f532a8f2.afb711d2.a4e2.00:01:72:31:df:c2]

machine1:c:\users\jack\jack_v3.3

• Generate and cache data on disk space used by DOs in a VOB and then report the top 10

views in disk space used.

cmd-context dospace –update \bigapp

Job is running on remote host ("server1"), waiting for it to finish.
..........
Job completed successfully on remote host ("server1").

K Bytes Date.Time VOB
371523 01-Aug-99.01:45:06 \bigapp

K Bytes View
30428 v3.2.1.bld
30329 v3.1.1_rev.bld
30329 v3.1.1_rev.re
29986 joe_v4.0_merge
29905 v3.2.1.re
29888 v3.2_rev.bld
28152 v3.2_rev.re
26549 winapp_v4.0.bl4.nt
25670 v3.2.1.bld
25663 v3.2.1.re

• Report disk space used by DOs in raw format.

cmd-context dospace –dump \smallapp
296 ClearCase Reference Manual

dospace
start time: 932879789
run time: 14
bucket 0: 86400 1 day
bucket 1: 259200 3 days
bucket 2: 604800 1 week
bucket 3: 1209600 2 weeks
bucket 4: 2592000 1 month
bucket 5: 5270400 2 months
bucket 6: 7862400 3 months
bucket 7: 10540800 4 months
bucket 8: 13132800 5 months
bucket 9: 15811200 6 months
bucket 10: 23673600 9 months
bucket 11: 31536000 1 year
bucket 12: 47347200 1.5 years
bucket 13: 63158400 2 years
bucket 14: 94694400 3 years
bucket 15: 0 more than 3 years
pool: ddft 73e0001b.747d11cb.a0ea.08:00:09:25:75:d8
all: 0 1 0 0 0 0 0 0 92321 0 0 0 0 0 0 0 0 0
all: 0 -2 0 0 0 96198 0 0 0 27647 0 0 0 0 0 0 0 0
view: 59f62178.580511d2.af73.00:01:80:9a:19:fe machine2

C:\views\app2.1_win.vws
view: 0 -2 0 0 0 96198 0 0 0 27647 0 0 0 0 0 0 0 0
view: 8054b303.63ba11d2.bcef.00:01:80:90:ae:6d machine8

D:\users\mary\vws\mary_test.vws
view: 0 -2 0 0 0 96198 0 0 0 27647 0 0 0 0 0 0 0 0
view: e7ca6e7a.990811d2.a1dc.00:01:80:85:f3:f5 machine4

C:\views\jeff\jeff_build.vws
view: 0 -2 0 0 0 96198 0 0 0 0 0 0 0 0 0 0 0 0
view: ac6db1f1.bd4811d2.b314.00:01:80:a2:f2:c3 machine7

D:\users\sue\views\app_axp.vws
view: 0 1 0 0 0 0 0 0 92321 0 0 0 0 0 0 0 0 0

SEE ALSO

schedule, space

Building Software with ClearCase
 ClearCase Reference Pages 297

edcs
edcs
Edits the config spec of a view

APPLICABILITY

SYNOPSIS

• ClearCase, Attache only—Edit the config spec of a dynamic view:

edcs [–tag view-tag] [file]

• ClearCase, ClearCase LT, Attache—Edit the config spec of a snapshot view:

edcs [file]

DESCRIPTION

This command does not require a product license.

The Edit Session

The edcs command revises a view’s config spec by invoking a text editor on an existing config
spec (ClearCase and ClearCase LT) or by downloading a config spec into a temporary file and

invoking a text editor on an existing config spec (Attache). The config spec can be one of the

following:

• The view’s current config spec

• Atext file that you want to edit and then make the view’s config spec. (If you don’t need to

edit the file, use setcs.)

In ClearCase and ClearCase LT, the text editor invoked by edcs is specified by the VISUAL

environment variable; if this EV is not set, edcs uses the value of the EDITOR environment

variable. If neither EV is set, edcs invokes the Notepad.

After the Edit Session

At the end of the edit session, there is a confirmation step. For dynamic views, this prompt is:

Set config spec for view “ view-tag”? [yes]

For snapshot views, this prompt is:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
298 ClearCase Reference Manual

edcs
Set config spec and load snapshot view “ view-tag”? [yes]

If you answer yes:

• In ClearCase and ClearCase LT, the modified config spec is set as the view’s config spec. (In

a snapshot view, there is an additional confirmation step if the edits to the config spec cause

elements to be unloaded from the snapshot view.)

NOTE: In a snapshot view, setting the config spec initiates an update -noverwrite operation.

To execute this command on the command line, you must be in or under the root directory

of the snapshot view.

• In Attache, the changed file is uploaded and a remote setcs command is issued.

If you answer no, the command is canceled; the view retains its current config spec.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: Edits and sets a config spec for the current view.

–tag view-tag
The view-tag of any dynamic view; the view need not be active.

NOTE: To edit the config spec of a snapshot view, you must be in that view. However, in

a snapshot view, you can use this option to edit the config spec of a dynamic view.

SPECIFYING THE CONFIG SPEC FILE. Default: Edits the view’s current config spec.

file
The pathname of a file to be used as input to the edit session.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• (ClearCase and ClearCase LT only) If the file does not exist, edcs creates it.

• (Attache only) If the file does not exist locally, edcs downloads it if it exists

remotely, or creates it locally if it does not exist. The named file is saved both

locally and remotely. Both the local and remote temporary files are deleted after

the file has been uploaded.
 ClearCase Reference Pages 299

edcs
• Edit the config spec of the current view.

cmd-context edcs

• Edit the config spec of the dynamic view with the view-tag jackson_fix.

cmd-context edcs –tag jackson_fix

• Use a text file named cspec_rel3 as input to an edit session, producing a new config spec for

the current view.

cmd-context edcs cspec_rel3

SEE ALSO

attache_command_line_interface, attache_graphical_interface, catcs, config_spec, lsview,

mktag, setcs, update
300 ClearCase Reference Manual

endview
endview
Deactivates a view

APPLICABILITY

SYNOPSIS
endview [–ser⋅ver] view-tag

DESCRIPTION

Deactivates the specified view. The exact behavior varies according to the kind of view.

We recommend against deactivating a view for the purpose of backing it up.

Dynamic View

The endview command deactivates the dynamic view. It removes all references to the view from

the MVFS on the current host. The view-tag disappears from the MVFS directory (by default,

M:\). The –server option terminates the view’s view_server process. Without –server, endview
does not affect the view’s availability from computers other than the current one.

If a Windows drive was assigned to the view, the drive is marked unavailable in the drive table

(see the net use command) and can be reused.

In a mixed UNIX/Windows environment, any NFS drive that was mounted to support access to

the view storage directory gets unmounted (assuming no other active views or VOBs require it).

In Attache, if you execute endview for a view associated with the current workspace, the

command fails with the message

Cannot stop the view associated with the current workspace .

CAUTION: Processes set to or associated with a view are stranded if you deactivate that view

without exiting the processes. This can cause MVFS activities to fail. To recover from this

situation, use startview to restart the view on all computers that were using it, or kill the

processes manually with the Task Manager. To avoid this situation, follow these guidelines:

• Before running endview (without –server) on your computer, exit all processes on your

computer that are set to or associated with the view. This includes any processes started by

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 301

endview
other users. If the processes are running when you deactivate the view, they will be

stranded.

• Before running endview –server, exit all processes set to or associated with the view. This

includes processes on other computers and/or processes started by other users.

Snapshot View

When issued with the -server option, endview ends the view’s view_server process on the host

where the view-storage directory resides. Any ClearCase or ClearCase LT command issued from

the view-storage directory restarts the snapshot view’s view_server process.

endview used without the -server option has no effect on a snapshot view.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required unless you specify the –server option,

in which case you must have permission to modify the view. Locks: No locks apply.

OPTIONS AND ARGUMENTS

STOPPING THE VIEW SERVER. Default: endview does not stop the view’s view_server process; the

view remains accessible from other network hosts.

–ser⋅ver
Terminates the view’s view_server process.

SPECIFYING THE VIEW TO DEACTIVATE. Default: None. You must supply a view-tag.

view-tag
Deactivates view view-tag if view-tag specifies a dynamic view. If view-tag specifies a

snapshot view, -server must also be specified to deactivate the view.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Deactivate the dynamic view r3_main on the local host. Do not terminate the view_server
process.

cmd-context endview r3_main

• Same as previous example, but terminate the view_server process, making the view

temporarily unavailable to all hosts.
302 ClearCase Reference Manual

endview
cmd-context endview –server r3_main

• Stop and restart the dynamic view alh_main, which is currently assigned to drive w:.

cmd-context endview alh_main

cmd-context startview alh_main

net use
...
Unavailable W: \\view\alh_main ClearCase Dynamic Views
...

net use w: \\view\alh_main
Command completed successfully.

• Deactivate the snapshot view r4_main.

cmd-context endview –server r4_main

SEE ALSO

startview, view, view_server
 ClearCase Reference Pages 303

env_ccase
env_ccase
Environment variables

APPLICABILITY

DESCRIPTION

This reference page describes the environment variables (EVs) used by ClearCase, ClearCase LT,

MultiSite, and Attache commands, programs, utilities, and software installation scripts. .

NOTE: This reference page does not describe all environment variables. Omitted are the EVs used

by triggers and by the find commands; see the mktrtype, find, and findmerge reference pages for

descriptions.

ATRIAHOME (environment variable)

Installation directory for ClearCase, ClearCase LT, and MultiSite; same as Windows

Registry value

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ProductHome.

This EV is set by the albd_server when it runs a schedule request. For more information,

see the schedule reference page.

NOTE: You can create ATRIAHOME as a user or system environment variable, but the

albd_server will overwrite it when it runs a schedule request.

Default: Directory in which you installed ClearCase or ClearCase LT (the installation

default is c:\Program Files\Rational\ClearCase)

CCASE_AUDIT_TMPDIR (or CLEARCASE_BLD_AUDIT_TMPDIR)

Sets the directory where clearmake and clearaudit create temporary build audit files. If

this variable is not set or is set to an empty value, clearmake creates these files in the

directory specified by the TMP environment variable. All temporary files are deleted

when clearmake exits. If the value of CCASE_AUDIT_TMPDIR is a directory under a

VOB-tag, clearmake prints an error message and exits.

Product Command Type

ClearCase general information

ClearCase LT general information

MultiSite general information

Attache general information
304 ClearCase Reference Manual

env_ccase
NOTE: Multiple build clients can use a common directory for audit files. Names of audit

files are unique because clearmake names them using both the PID of the clearmake
process and the host name of the machine on which the process is running.

Default: None.

CCASE_BLD_NOWAIT

Turns off clearmake’s sleep-check cycle during a build. When this environment variable

is set, clearmake does not check for a VOB-lock (or wait for the VOB to be unlocked). See

clearmake SLEEP on page 194 for more information.

CCASE_BLD_VOBS

A list of VOB-tags (separated with a space, tab (\t), semicolon (;), or comma (,)) to be

checked for lock status during a build. If a VOB on this list is locked, clearmake goes into

a sleep-check cycle. See clearmake SLEEP on page 194 for more information.

CCASE_DNVW_RETRY

Specifies time-out period, in minutes, for clearmake, omake, catcr, describe, or lsdo to

wait before trying to contact an inaccessible view listed in its cache. To disable the cache,

set CCASE_DNVW_RETRY to 0. For more information, see CACHING UNAVAILABLE
VIEWS in the clearmake reference page or CACHING UNAVAILABLE VIEWS in the

omake reference page.

Default: 60 minutes.

CCASE_MAKE_CFG_DIR (or CLEARCASE_MAKE_CONFIG_DIR)

In a makefile read by clearmake, expands to the full pathname of the clearmake
configuration directory in the ClearCase installation area — typically

ccase-home-dir\config\clearmake.

CCASE_MAKE_COMPAT (or CLEARCASE_MAKE_COMPAT)

Specifies one of clearmake’s compatibility modes. This EV takes the same values as

clearmake’s –C option. Specifying –C on the command line overrides the setting of this

EV.

Default: None.

CCASE_MAKEFLAGS

Provides an alternative or supplementary mechanism for specifying clearmake
command options. CCASE_MAKEFLAGS can contain the same string of key letters used for

command-line options, except that options that take arguments are not allowed. Options

on the clearmake command line override the setting of this environment variable if there

is a conflict.

clearmake uses either CCASE_MAKEFLAGS or MAKEFLAGS, but not both. If

CCASE_MAKEFLAGS is set, clearmake uses it. If CCASE_MAKEFLAGS is not set, clearmake
looks for MAKEFLAGS.
 ClearCase Reference Pages 305

env_ccase
NOTE: CCASE_MAKEFLAGS is useful if you use multiple make programs. In this case,

putting options that are specific to clearmake in the MAKEFLAGS environment variable

causes problems for the other make programs.

Default: None.

CCASE_OPTS_SPECS (or CLEARCASE_BLD_OPTIONS_SPECS)

A semicolon-separated list of pathnames, each of which specifies a BOS file to be read by

clearmake. You can use this EV instead of specifying BOS files on the clearmake
command line with one or more –A options.

Default: Undefined.

CCASE_SHELL_FLAGS (or CLEARCASE_BLD_SHELL_FLAGS)

Specifies clearmake command options to be passed to the subshell program that

executes a build script command.

Default: None.

CCASE_SHELL_REQUIRED

Forces clearmake to execute build scripts in the shell program you specify with the

SHELL macro. To make clearmake execute builds scripts in the shell program, set this

EV to TRUE. To allow clearmake to execute build scripts directly, unset the EV.

Default: clearmake executes build scripts directly.

CCASE_VERBOSITY (or CLEARCASE_BLD_VERBOSITY)

An integer that specifies the clearmake message logging level, as follows:

If you also specify –v or –d on the command line, the higher value prevails.

Default: 0

CLEARAUDIT_SHELL

The program that clearaudit runs in an audited shell. You must set this environment

variable to the program’s full pathname; for example, \windows\system32\cmd.exe or

\users\anne\bin\myscript.

Default: clearaudit runs the program specified by the SHELL environment variable or, if

SHELL is undefined, cmd.exe.

See also: SHELL.

CLEARCASE_AVOBS

A list of VOBs to process when you use the –avobs option in the find, findmerge,

1 Equivalent to –v on the command line

2 Equivalent to –d on the command line

0 or undefined Equivalent to standard message logging level
306 ClearCase Reference Manual

env_ccase
lscheckout, lshistory, or rmview commands. If this EV is not set, specifying –avobs
invokes the command on all VOBs mounted on the host. If there are many such VOBs,

the command can take a long time to complete.

Specify CLEARCASE_AVOBS as a list of VOB-tags separated by semicolons, commas, or

white-space characters.

Default: None.

CLEARCASE_CMNT_PN

The pathname of the file in which cleartool and multitool cache the most recent

user-supplied comment. Defining/removing this EV enables/disables comment

caching.

CLEARCASE_OBSO_SYN

Detects instances of the obsolete option-argument style of specifying an object (see

Non-File-System VOB Objects in the cleartool reference page).

If you set this environment variable to the value WARN, it issues warnings when it detects

obsolete syntax. When set to SILENT, it silently accepts obsolete syntax. When set to

FAIL , it issues errors when it detects obsolete syntax.

Default: FAIL .

CLEARCASE_PRIMARY_GROUP

Overrides a user’s Windows primary group assignment. This environment variable

must be a per-user variable (not a system variable) and can be set only to a group that

already appears in the user’s group list.

CLEARCASE_PROFILE

The file containing your ClearCase or ClearCase LT user profile, which includes rules

that determine the comment option default for one or more cleartool and multitool
commands. This setting must be a full pathname.

Default: For ClearCase and ClearCase LT, .clearcase_profile in your home directory (in

Attache, on your helper host)

CLEARCASE_TAB_SIZE

Specifies the tab width for output produced by cleardiff and source lines listed by the

annotate command.

Default: 8

CLEARCASE_TRACE_TRIGGERS

A flag variable: if defined with a nonzero value, it causes all triggers to behave when

they fire as if they were defined with the –print option. See the mktrtype reference page.

Default: Undefined.
 ClearCase Reference Pages 307

env_ccase
CLEARCASE_VOBLOCKWAIT

(MultiSite only) Specifies the number of minutes for syncreplica to keep retrying exports

or imports when the VOB is locked. During that time, syncreplica retries the write

operation every minute. If the time elapses and the VOB is still locked, syncreplica exits

with an error. For more information, see the syncreplica reference page in ClearCase
MultiSite Manual.

CMAKE_PNAME_SEP

Sets the pathname separator for pathnames constructed by clearmake. This variable can

be set in the makefile, in a BOS file, on the command line, or as an environment variable.

Default: If this variable is not set or is set to any other value than a slash (/) or a backslash

(\), clearmake uses a backslash (\) as the pathname separator.

COMSPEC

The default command shell program to be run by various ClearCase or ClearCase LT

commands and programs, including the shell command, and the clearaudit utility (if

the environment variable CLEARAUDIT_SHELL is undefined).

Default: Set by Windows to cmd.exe

EDITOR

VISUAL

The pathname of a text editor. The edcs subcommand invokes the editor specified by the

environment variable VISUAL (first choice), or EDITOR (second choice). If the pathname

contains spaces, you enclose the pathname in quotes. For example:

"c:\Program Files\tools\editor.exe"

Default: notepad

EXPORT_REPLACE_CHAR

A character used by the clearexport_* utilities to replace invalid characters in exported

label and branch names.

Default: . (period character)

EXPORT_REPLACE_COMM

A character string used in the data file created by clearexport_ffile as the comment for

create version event records.

Default: made from flat file .

EXPORT_REPLACE_STRING

A character string used by the clearexport_* utilities to replace an invalid string in

exported labels and branch names. This environment variable is used if the exporter

cannot replace invalid characters with the EXPORT_REPLACE_CHAR EV.
308 ClearCase Reference Manual

env_ccase
Default: REPLACED

HOME

User’s home directory; must be set for ClearCase and ClearCase LT to work correctly.

HOME is used to search for various resources, including file typing information (see also

the cc.magic reference page). HOME must be a full pathname, including drive

specification. For example, C:\users\anne is a legal value; \users\anne is not.

NOTE : Windows sets two variables, HOMEDRIVE and HOMEPATH, which combine to

specify the current user’s home directory as supplied by the Administrator when the

user account was created. So, unless HOMEDRIVE and HOMEPATH have been reassigned,

HOME can be set to %HOMEDRIVE%%HOMEPATH%.

MAGIC_PATH

A semicolon-separated list of directories to be searched for magic files. Various

ClearCase and ClearCase LT programs consult magic files to perform file-typing on file

system objects. See the cc.magic reference page.

Default: home-directory\.magic;ccase-home-dir\config\magic\

MAKEFLAGS

Provides an alternative (or supplementary) mechanism for specifying clearmake
command options. MAKEFLAGS can contain the same string of keyletters used for

command-line options, except that options that take arguments are not allowed. Options

on the clearmake command line override the setting of this environment variable if there

is a conflict.

See also the description of the CCASE_MAKEFLAGS environment variable.

Default: None.

PATH

The standard executable program search path. The Install Wizard adds the directory

ccase-home-dir\bin to your search path.

Default: Set from the system and user path values in the Windows registry.

NOTE: Do not specify an MVFS path as a value for PATH.

ProductHome (Windows NT Registry key value)

Installation directory for ClearCase and ClearCase LT software. This value is stored in

the Windows registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion.

Default: C:\Program Files\Rational\ClearCase

SHELL

The default shell program to be run by various commands and programs, including the
 ClearCase Reference Pages 309

env_ccase
shell command and the clearaudit utility (if the environment variable

CLEARAUDIT_SHELL is undefined).

Default: Not set by most Windows shells; some shells that are ported from UNIX (for

example, Hamilton csh, MKS korn sh, etc.) may set it.

TZ

Time zone for the host. If the TZ environment variable is set to a value different from the

time maintained by the operating system, the TZ time rather than the system time is

used. In this case, file creation and change dates can be in error, and config specs do not

work as expected.

SEE ALSO

mktrtype, find, and findmerge for information about other environment variables
310 ClearCase Reference Manual

 ClearCase Reference Pages 311

errorlogs_ccase

errorlogs_ccase
Error messages

APPLICABILITY

SYNOPSIS
%SystemRoot%\system32\eventvwr.exe

DESCRIPTION

The various server and user programs can write messages to the Windows application event log.

The source of all ClearCase-related messages is ClearCase; the source of ClearCase LT-related

messages is ClearCase LT. A typical event log entry includes the date and time of the error, the

software module in which the error occurred, the current user, and an error-specific message. The

following is a sample message generated by the view_server:

01/05/99 13:07:49 view_server(19314): Error: Set configuration
spec of .compiled_spec failed

As errors accumulate, the error log files grow. Use the Event Viewer to save or delete logs.

MVFS Log

By default, the MVFS logs status messages to the file C:\mvfslogs. You can use the MVFS tab in

the ClearCase Control Panel to change this pathname. By default, the scheduler periodically runs

a job that deletes MVFS log files more than seven days old. See the schedule reference page for

information on describing and changing scheduled jobs.

SEE ALSO

getlog, schedule, ClearCase and ClearCase LT server programs (view_server, lockmgr, and so

on.)

Product Command Type

ClearCase data structure

ClearCase LT data structure

events_ccase
events_ccase
Operations and event records

APPLICABILITY

DESCRIPTION

Nearly every operation that modifies the VOB creates an event record in the VOB database. For

example, if you create a new element, attach a version label, or lock the VOB, an event record

marks the change.

Event records are attached to specific objects in VOB databases. Thus, each object (including the

VOB object itself) accumulates a chronological event history, which you can display with the

command lshistory.

In addition, you can do the following:

• Customize event history reports with lshistory –fmt; see the fmt_ccase reference page.

• Scrub minor event records from the VOB database to save space; see the vob_scrubber
reference page.

• Assign triggers to many event-causing operations (mkelem, checkout, and mklabel, for

example); see the mktrtype reference page.

• Change the comment stored with an event; see the chevent reference page.

Contents of an Event Record

An event record stores information for various operations:

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

obj-name The object(s) affected

obj-kind The kind of object (file element, branch, or label type, for example)

user-name The user who changed the VOB database

host-name The client host from which the VOB database was changed

operation The operation that caused the event (usually a cleartool command like

checkout or mklabel)
date-time When the operation occurred (reported relative to the local time zone)
312 ClearCase Reference Manual

events_ccase
VOB Objects and Event Histories

The following kinds of VOB-database objects have event histories, which you can display with

lshistory:

VOB

VOB storage pool

Element

Branch

Version

VOB symbolic link

Hyperlink

Derived Object (no creation event)

Replica

Type

Attribute type

Branch type

Element type

Hyperlink type

Label type

Trigger type

Each time an object from any of these categories is created, it begins its own event history with a

creation event. (Derived objects are an exception; ClearCase stores a DO’s creation time in its

config record, not in an event record.) As time passes, some objects—VOBs and elements, in

particular—can accumulate lengthy event histories.

Do not confuse type objects (created with mkattype, mkbrtype, mkeltype, mkhltype, mklbtype,

and mktrtype) with the instances of those types (created with mkattr, mkbranch, mkelem,

mkhlink, mklabel, and mktrigger). The type objects are VOB-database objects, with their own

event histories. Individual branches, elements, and hyperlinks are also VOB-database objects.

However, individual attributes, labels, and triggers are not VOB-database objects and, therefore,

do not have their own event histories. Their create and delete events (mkattr/rmattr,
mklabel/rmlabel, and mktrigger/rmtrigger) are recorded on the objects to which these

metadata items are attached.

Operations that Cause Event Records to be Written

The following kinds of operations cause event records to be written to the VOB database:

event-kind A description of the event, derived from a combination of the operation and

obj-kind fields

comment A text string that is generated by ClearCase or ClearCase LT, provided by

user-name, or a combination of both
 ClearCase Reference Pages 313

events_ccase
• Create or import a new object.

• Destroy (remove) an object.

• Check out a branch.

• Modify or delete version data.

• Modify a directory version’s list of names.

• Attach or remove an attribute, label, hyperlink, or trigger.

• Lock or unlock an object.

• Change the name or definition of a type or storage pool.

• Change a branch or element’s type.

• Change an element’s storage pool.

• Change the protections for an element or derived object.

Table 4 lists event-causing operations as you may see them in lshistory output that has been

formatted with the –fmt option’s %o (operation) specifier. Note that most operations correspond

exactly to cleartool subcommands.

Key to Table 4

Symbol Meaning

M Causes a minor event (see lshistory –minor)

T Can have a trigger (see mktrtype)

S Resulting event records can be scrubbed (see vob_scrubber)

C Generates a comment (see the comments reference page)

Table 4 Operations That Generate Event Records

Operation that
Generates the
Event Record

Notes (see
key above)

Commands that
Always Cause the
Operation

Commands that
May Cause the
Operation

Object to Which Event
Record Is Attached

checkin T checkin, mkelem,

mkbranch
clearimport,
relocate

Newly created version

checkout T checkout clearimport,
findmerge,

mkelem,

mkbranch, relocate

Checked-out branch (event

deleted automatically at

checkin or uncheckout)
314 ClearCase Reference Manual

events_ccase
chmaster T C chmaster, reqmaster
(reqmaster is not

triggerable)

Object whose mastership was

changed

chpool M S C chpool Element

chtype M T S C chtype Element or branch

import clearimport Imported element or type

importsync C syncreplica –import Replica

lnname M T S C ln, ln –s, mkelem,

mkdir, mv
relocate Directory version

lock T S C lock (Various) Locked object (type, pool,

VOB, element, or branch)

mkattr M T S C mkattr clearimport,
mkhlink, relocate

Element, branch, version,

hlink, or VOB symlink

mkbranch T mkbranch, mkelem checkout,
clearimport,
relocate

New branch

mkelem T C mkelem, mkdir clearimport,
relocate

New element

mkhlink M T S C mkhlink clearimport,
findmerge, merge,

relocate

Hyperlink object and

from-object, and for

bidirectional hyperlinks,

to-object (unless cross-VOB

hyperlink)

mklabel M T S C mklabel clearimport,
relocate

Version

mkpool mkpool Storage pool object

mkreplica mkreplica Replica

Table 4 Operations That Generate Event Records

Operation that
Generates the
Event Record

Notes (see
key above)

Commands that
Always Cause the
Operation

Commands that
May Cause the
Operation

Object to Which Event
Record Is Attached
 ClearCase Reference Pages 315

events_ccase
mkslink T ln –s clearimport,
relocate

Directory version

mktrigger M T S mktrigger relocate Element

mktype T mk**type clearimport,
relocate

Newly created type object

mkvob mkvob (causes

numerous creation

events), mkreplica
–import

VOB

modpool M S C mkpool –update Storage pool

modtype M S C mk**type –replace Type object

protect M S C protect Element or DO

reconstruct M S checkvob –fix Element

reformatvob reformatvob VOB

rename (pool) M C rename Storage pool

rename (type) M T C rename Type object

reserve M T reserve Checked-out version

rmattr M T S rmattr (See mkattr)

rmbranch T S C rmbranch Parent branch

rmelem T S C rmelem relocate VOB

rmhlink M T S C rmhlink, rmmerge From-object, to-object (unless

cross-VOB, unidirectional),

VOB

rmlabel M T S rmlabel Version

Table 4 Operations That Generate Event Records

Operation that
Generates the
Event Record

Notes (see
key above)

Commands that
Always Cause the
Operation

Commands that
May Cause the
Operation

Object to Which Event
Record Is Attached
316 ClearCase Reference Manual

events_ccase
Operations and Triggers

Each of the following superoperations represents a group of the above event-causing operations.

See mktrtype for information on how to use the following keywords to write triggers for groups

of operations.

MODIFY_TYPE MODIFY_DATA

MODIFY_ELEM MODIFY_MD

Table 4 omits the triggerable operations uncheckout and chevent; as these operations do not

cause event records to be stored in the VOB database.

Event Visibility

This section describes where, directly or indirectly, you may encounter event record contents.

The following commands include event history information in their output, which can be

formatted with the –fmt option:

rmname M T S C rmname, rmelem,

mv
Directory version(s)

rmpool S C rmpool VOB

rmtrigger M T S rmtrigger Element

rmtype T S C rmtype VOB

rmver M T S C rmver checkvob –fix Element

unlock T S unlock (various) Unlocked object

unreserve M T unreserve Checked-out version

describe lshistory
lsactivity lslock
lsbl lspool
lscheckout lsproject
lscomp lsreplica
lsdo lsstream
lsfolder lstype –long

Table 4 Operations That Generate Event Records

Operation that
Generates the
Event Record

Notes (see
key above)

Commands that
Always Cause the
Operation

Commands that
May Cause the
Operation

Object to Which Event
Record Is Attached
 ClearCase Reference Pages 317

events_ccase
Comments and Event Records

The set of ClearCase and ClearCase LT commands named in Table 4 matches almost exactly the

set of commands that accept user comments as input. (reformatvob, which takes no comment, is

the only exception.) When you supply comments to a ClearCase or ClearCase LT command,

your comment becomes part of an event record.

Some cleartool commands create a comment even if you do not provide one. These generated

comments describe the operation in general terms, such as “modify metadata” or “create

directory element.” User comments, if any, are appended to generated comments. For a complete

description of comment-related command options and comment processing, see the comments
reference page.

SEE ALSO

chevent, cleartool, comments, fmt_ccase, lshistory, mktrtype, vob_scrubber
318 ClearCase Reference Manual

file
file
Displays the element type ClearCase or ClearCase LT would use for a file

APPLICABILITY

SYNOPSIS
file [–invob pname] [–all] pname...

DESCRIPTION

The file command is similar to the UNIX file(1) command, which determines the file type of a

specified file. cleartool file displays the element type ClearCase or ClearCase LT would use for

the specified file if the file were converted to an element.

file uses the following process to find the element type:

1. Search magic files for the first rule that matches the file’s type.

For more information on magic files, file-typing, and the search path for magic files, see the

cc.magic reference page.

2. Compare the element types in the rule with the element types in a particular VOB.

By default, file uses the VOB containing the view-private file. If the file is not in a VOB, the

command uses the VOB containing the current working directory.

3. Display the first element type in the rule that exists in the VOB.

file processes the element types in the rule from left to right. (In a magic file rule, element

types are listed from most to least specific.) For example, with a rule like the following:

txt document text_file : -printable & -name "*.[tT][xX][tT]" ;

file first looks for an element type named txt and displays it if it exists in the VOB. If txt
doesn’t exist in the VOB, file looks for an element type named document and displays it if it

exists. If document doesn’t exist, file displays the text_file element type.

For information about creating new element types in a VOB, see the mkeltype reference page.

PERMISSIONS AND LOCKS

Permissions: No special permissions needed.

Locks: No locks apply.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 319

file
OPTIONS AND ARGUMENTS

–invob vob-pname
Compares the potential element types against the list of element types in the specified

VOB.

–all
Skips the comparison with the list of element types in the VOB and prints every element

type in the magic file rule.

EXAMPLES

• Display the element type that would be used for a view-private HTML file.

cleartool file foo.html
foo.html: html

• List all possible element types for a view-private HTML file.

cleartool file –all foo.html
foo.html: html_source html web_file source text_file

• Display the element type that would be used if the file were converted to an element in the

VOB \dev.

cleartool file –invob \dev foo.html
foo.html: html_source

FILES

ccase-home-dir\config\magic\default.magic

SEE ALSO

cc.magic, mkelem, mkeltype, type_manager
320 ClearCase Reference Manual

find
find
Uses a pattern, query, or expression to search for objects

APPLICABILITY

SYNOPSIS

• Find objects visible in the directory structure seen in the current view:

find pname ... selection-options action-options

• Find all objects in the VOB:

find [pname...] –a⋅ll [–vis⋅ible | –nvi⋅sible] selection-options action-options

• Find objects throughout all mounted VOBs:

find –avo⋅bs [–vis⋅ible | –nvi⋅sible] selection-options action-options
selection-options:

–nam⋅e pattern
–dep⋅th | –nr⋅ecurse | –d⋅irectory
–cvi⋅ew
–use⋅r login-name
–gro⋅up group-name
–typ⋅e { f | d | l } ...
–fol⋅low
–nxn⋅ame
–ele⋅ment query
–bra⋅nch query
–ver⋅sion query

 ClearCase and ClearCase LT action-options (at least one required, multiple allowed):

–pri⋅nt
–exe⋅c command-invocation
–ok command-invocation ...

Attache action-options (at least one required, multiple allowed except with –get):
–get [–compress] [–ove⋅rwrite |–nov⋅erwrite] [–pti⋅me] [–log pname]

–pri⋅nt

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 321

find
–exe⋅c command-invocation
–ok command-invocation ...

DESCRIPTION

The find command starts with a certain set of objects, selects a subset of the objects, and then

performs an action on the subset. The selected objects can be elements, branches, versions, or VOB

symbolic links. The action can be to list the objects, or to execute a command on each object,

either conditionally or unconditionally.

Typically, you start with all objects in a directory tree as seen in your view. You can also start with

all objects in one or more VOBs, regardless of their visibility in a particular view.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE STARTING SET OF OBJECTS. Default: None. You must specify one of the following:

• One or more elements, using pname arguments

• One or more VOBs, using the –all option

• All mounted VOBs, using the –avobs option

NOTE: Processing all of a VOB’s elements using –all or –avobs is an order of magnitude faster

than going through its entire directory tree by specifying the VOB’s root directory as a pname
argument. With these options, the order in which elements are processed and/or reported is very

different from directory-tree order.

pname ...

One or more file and/or directory elements. find starts with the elements, branches, and

versions that are part of the specified file elements and the subtrees under the specified

directory elements.

In Attache, arguments of the form @pname can be used to add the contents of the local

file pname as pathname arguments. The pathname arguments can contain wildcards, and

must be listed in the file one per line, or also be of the form @pname. Specifying a relative

pathname for @pname begins from Attache’s startup directory, not the working directory,

so a full local pathname is recommended.

–a⋅ll
With pname arguments, modifies the meaning of each argument to specify its entire VOB,

not just a single file or directory. Without any pname arguments, specifies the VOB

containing the current working directory.

NOTE: When you use find –all, only one instance of an element is reported, even if there

is one or more VOB hard links that point to the element. Either the element name or one

of the VOB hard links is displayed.
322 ClearCase Reference Manual

find
–avo⋅bs
By default, find starts with all the elements, branches, and versions in all the VOBs

mounted on the local host or on the helper host (Attache). A snapshot view issues a

warning if all mounted VOBS have not been loaded into the view.

If the CLEARCASE_AVOBS EV is set to a semicolon-separated list of VOB-tags, this set of VOBs is

used instead. In Attache, this environment variable must be set in the helper process.

CONSIDERING OBJECTS THAT ARE NOT CURRENTLY VISIBLE. Default: All elements in the VOB are

included, whether or not they are visible in the view.

–vis⋅ible
Includes only those elements, along with their branches and versions, that are visible

(have a standard pathname) in the view.

–nvi⋅sible
Includes only those elements, along with their branches and versions, that are not visible

(do not have a standard pathname) in the view.

SELECTING ELEMENTS USING STANDARD CRITERIA. The following options use the specified

criteria to select subsets of objects.

–nam⋅e pattern
Selects the subset of objects whose element names match the specified file-name pattern.

pattern must be a leaf name. (See the wildcards_ccase (ClearCase and ClearCase LT) or

wildcards (Attache) reference page.)

–dep⋅th
Causes directory entries to be processed before the directory itself.

–nr⋅ecurse
For each directory element, selects the objects in the element itself, and in the file and

directory elements within it, but does not descend into its subdirectories.

–d⋅irectory
For each directory, examines only the directory itself, not the directory or file elements,

or VOB symbolic links it catalogs.

–cvi⋅ew
Modifies the set of objects selected by the –element, –branch, and –version queries (if

any):

If you did not specify –version, replaces each element and branch with the version that

is currently in the view. (No substitution is performed on VOB symbolic links.)

If you did specify –version, further restricts the subset to versions that are currently in

the view.
 ClearCase Reference Pages 323

find
–use⋅r login-name
Selects only those objects in the subset of elements owned by user login-name.

–gro⋅up group-name
Selects only those objects in the subset of elements belonging to group group-name.

–typ⋅e f
–typ⋅e d
–typ⋅e l

Selects the subset of objects of a certain kind: file elements (f), directory elements (d), or

VOB symbolic links (l). To include multiple kinds of objects, group the key letters into a

single argument (–type fd), or use multiple options (–type f –type d).

–fol⋅low
Traverses VOB symbolic links during the walk of the directory tree.

USE OF EXTENDED PATHNAMES. Default: find submits the objects it selects to the specified action

using extended pathnames, such as foo.c@@ (element), foo.c@@\main (branch), or

foo.c@@\main\5 (version).

–nxn⋅ame
Removes the extended naming symbol (by default, @@) and any subsequent version-ID

or branch pathname from the name of each selected object. Duplicate names that result

from this transformation are suppressed. In effect, this option transforms extended

names into standard operating system names (in Attache, for the helper host); it also

transforms names of branches or versions into names of elements. In Attache, this

selection-option is always applied when the –get action is used.

SELECTING ELEMENTS USING QUERIES. The options in this section select a subset of objects using

the VOB query language, which is described in the query_language reference page. You can use

these options in any combination. They are always applied in this order, successively refining the

set of selected objects: first –element, then –branch, then –version. The result of applying one or

more of these options is a set of objects at the finest level of granularity level: all versions if you

used –version, or else all branches if you used –branch, or else all elements if you used –element.
If you use none of these options, the set includes elements and VOB symbolic links. There is no

way to use a query to select a set of VOB symbolic links.

–ele⋅ment query
Selects element objects using a VOB query; all of a selected element’s branches and

versions are also selected. Using this option with a brtype query makes find –all much

faster in a large VOB where the specified branch type exists on a relatively small number

of elements.

–bra⋅nch query
From the set of objects that survived the element-level query (if any), selects branch

objects using a VOB query; all of a selected branch’s versions are also selected.
324 ClearCase Reference Manual

find
–ver⋅sion query
From the set of objects that survived the element-level and branch-level queries (if any),

selects version objects using a VOB query.

SPECIFYING THE ACTION. Default: None. You must specify an action to be performed on the

selected objects. You can specify a sequence of several actions, using two –exec options, or –exec
followed by –print, and so on. In Attache, you cannot specify –get with any of the other actions.

(Attache only) –get [–compress] [–ove⋅rwrite | –nov⋅erwrite] [–pti⋅me] [–log pname]

Causes files matching a query to be downloaded to the workspace. See the get reference

page for explanations of the specifications following the –get keyword.

–pri⋅nt
Lists the names of the selected objects, one per line.

–exe⋅c command-invocation
Execute the specified command (in Attache, on the helper host) once for each selected

object. If you invoke a command built in to the Windows shell (for example, cd, del, dir,
or copy), you must invoke the shell with cmd /c. For example:

–exec "cmd /c copy %CLEARCASE_PN% %HOME%"

If a path within command-invocation contains spaces, you must embed it in quotation

marks. For example, in cleartool single-command mode (note the backslash used to

escape the second quotation mark):

–exec "cmd /c copy %CLEARCASE_PN% \"c:\find results""

In cleartool interactive mode (no escape character needed):

–exec 'cmd /c copy %CLEARCASE_PN% "c:\find results"'

–ok command-invocation
For each selected object, displays a confirmation prompt; if you respond yes, executes

the specified command (in Attache, on the helper host).

When using the –exec or –ok command invocation, do not use braces ({ }) to indicate a selected

object, or use a quoted or escaped semicolon to terminate the command. Instead, enter the entire

command as a quoted string; use one or more of these environment variables to reference the

selected object:

CLEARCASE_PN

Pathname of selected element or VOB symbolic link

CLEARCASE_XN_SFX

Extended naming symbol (default: @@)
 ClearCase Reference Pages 325

find
CLEARCASE_ID_STR

Branch pathname of a branch object (\main\rel2_bugfix); version-ID of a version object

(\main\rel2_bugfix\4); null for an element

CLEARCASE_XPN

Full version-extended pathname of the selected branch or version (concatenation of the

three preceding variables)

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

List all file elements in and below the current working directory.

cmd-context find . –type f –print
.\Makefile@@
.\hello.c@@
.\hello.h@@
.\msg.c@@
.\util.c@@

This listing includes the extended naming symbol. The –nxname option suppresses this

symbol.

• List all objects owned by user smg throughout all mounted VOBs.

cmd-context find –avobs –user smg –print
\work_vob\hw\util.c@@
\work_vob\hw\hello.c@@
\smg_tmp\bin@@\main\6\misc\main\3\text@@
\smg_tmp\bin@@\main\6\misc\main\3\Makefile@@
\smg_tmp\bin@@\main\6\misc\main\3\test.c@@
...

• List the version labeled REL1 for each element in or below the current working directory.

cmd-context find . –version "lbtype(REL1)" –print
.@@\main\1
.\Makefile@@\main\1
.\hello.c@@\main\2

• Excluding any elements that do not have both labels, list all versions in the current VOB

labeled either REL1 or REL2 but not both.
326 ClearCase Reference Manual

find
cmd-context find –all –element '{lbtype_sub(REL1) && lbtype_sub(REL2)}' ^
–version '{(lbtype(REL1) && ! lbtype(REL2)) || ^
(lbtype(REL2) && !lbtype(REL1))}' –print
\dev\testfile.txt@@\main\43
\dev\testfile.txt@@\main\68
\dev\util.c@@\main\50
\dev\util.c@@\main\58
...

• (ClearCase and ClearCase LT only) List each header file (*.h) for which some version is

labeled REL2 or REL3.

cmd-context find . –name '*.h' –element 'lbtype_sub(REL2) ^
|| lbtype_sub(REL3)' –print
.\hello.h@@

• (Attache only) Download to your workspace each header file (*.h) for which some version

is labeled REL2 or REL3. Note that the wildcard pattern *.h must be enclosed in quotes so

that it is not expanded.

cmd-context find . –name '*.h' –element 'lbtype_sub(REL2) || lbtype_sub(REL3)'
–get

• (Attache only) Download to your workspace each source file (*.c) created since yesterday.

The set of files brought across can easily be restricted further.

cmd-context find . –name '*.c' –avobs –version '{created_since(yesterday)}' –get

• List all versions that have a QAed attribute with the string value "Yes" .

cmd-context find . –version QAed == "YES" –print

.\Makefile@@\main\2

.\hello.c@@\main\4

.\hello.h@@\main\1

.\util.c@@\main\2

.\util.c@@\main\rel2_bugfix\1

• List the standard name of each element that has (or contains a branch or version that has) a

BugNum attribute with the value 189 .

cmd-context find . –nxname –element attr_sub(BugNum,==,189) –print
.\hello.c

• For each element that has had a merge from the rel2_bugfix branch to the main branch,

archive the current version of the element to your home directory (in Attache, on the helper

host).

cmd-context find . –element merge(\main\rel2_bugfix,\main) ^
–exec 'cmd /c copy %CLEARCASE_PN% %HOME%'
 ClearCase Reference Pages 327

find
• If any element’s most recent version on the main branch is missing label REL3, label it.

cmd-context find . –version 'version(\main\LATEST) && ! lbtype(REL3)' ^
–exec 'cleartool mklabel –replace REL3 %CLEARCASE_XPN%'

• Attach a Testing attribute with string value "Done" to all versions labeled REL2.

cmd-context find .–ver lbtype(REL2) ^
–exec 'cleartool mkattr Testing \"Done\" %CLEARCASE_XPN%'

• Conditionally delete all branches of type experiment.

ClearCase and ClearCase LT:

cmd-context find . –branch brtype(experiment) ^
–ok 'cleartool rmbranch –force %CLEARCASE_XPN%'

Attache:

cmd-context find . –branch brtype(experiment) –ok 'cleartool rmbranch –force
%CLEARCASE_XPN%'

• Change all elements currently using storage pool my_cpool to use pool cdft instead.

ClearCase:

cmd-context find . –all –element pool(my_cpool) ^
–exec 'cleartool chpool cdft %CLEARCASE_PN%'

Attache:

cmd-context find . –all –element pool(my_cpool) –exec 'cleartool chpool cdft
%CLEARCASE_PN%'

• Obsolete elements that are no longer visible.

cmd-context find . –all –nvisible –exec 'cleartool lock –obsolete %CLEARCASE_PN%'

• List merges (recorded by hyperlinks of type Merge) involving versions located at the ends

of branches named gopher.

. cmd-context find . –version version(...\gopher\LATEST) –print ^
–exec 'cleartool describe –short –ahlink Merge %CLEARCASE_XPN%'
.@@\main\gopher\1
-> \vob1\proj\src@@\main\146
.\base.h@@\main\gopher\1
-> \vob1\proj\src\base.h@@\main\38
.\main.c@@\main\gopher\1
-> \vob1\proj\src\main.c@@\main\42

• In the current directory and its subdirectories, list element versions that are on the branch

main_dev and that were created in May of this year and that are not the LATEST versions.
328 ClearCase Reference Manual

find
cmd-context find . –version "{brtype(main_dev) && created_since(30-Apr) &&
(! created_since(31-May)) && (! version(\main\main_dev\LATEST))}" -print

SEE ALSO

describe, ls, query_language, wildcards, wildcards_ccase
 ClearCase Reference Pages 329

findmerge
findmerge
Searches for elements that require a merge /optionally perform merge

APPLICABILITY

SYNOPSIS

• ClearCase, ClearCase LT only—Search for elements:

findm⋅erge { pname ... | [pname ...] –a⋅ll | –avo⋅bs | activity-selector ... –fcs⋅ets }

{ –fta⋅g view-tag | –fve⋅rsion version-selector | –fla⋅test }
[–dep⋅th | –nr⋅ecurse | –d⋅irectory] [–fol⋅low] [–vis⋅ible]

[–use⋅r login-name] [–gro⋅up group-name] [–typ⋅e { f | d | fd }]

[–nam⋅e pattern] [–ele⋅ment query]

[–nze⋅ro] [–nba⋅ck] [–why⋅not] [–log pname]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–unr⋅eserved] [–q⋅uery | –abort | –qal⋅l] [–ser⋅ial]
{ –pri⋅nt [–l⋅ong | –s⋅hort | –nxn⋅ame]

| –mer⋅ge | –okm⋅erge | –g⋅raphical |–gm ⋅erge | –okg⋅merge
| –exe⋅c command-invocation
| –ok command-invocation
| –co

} ...

• Attache only—Search for elements:

findm⋅erge { pname ... | [pname ...] –a⋅ll | –avo⋅bs }

{ –fta⋅g view-tag | –fve⋅rsion version-selector | –fla⋅test }
[–dep⋅th | –nr⋅ecurse | –d⋅irectory] [–fol⋅low] [–vis⋅ible]

[–use⋅r login-name] [–gro⋅up group-name] [–typ⋅e { f | d | fd }]

[–nam⋅e pattern] [–ele⋅ment query]

[–nze⋅ro] [–nba⋅ck] [–why⋅not] [–log pname]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–unr⋅eserved] [–ser⋅ial]
{ –pri⋅nt [–l⋅ong | –s⋅hort | –nxn⋅ame]

| –mer⋅ge –abort | –okm⋅erge –abort | –g⋅raphical | –gm⋅erge [–qal⋅l]| –okg⋅merge

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
330 ClearCase Reference Manual

findmerge
| –exe⋅c command-invocation
| –ok command-invocation
| –co

} ...

DESCRIPTION

For one or more elements, the findmerge command determines whether a merge is required

from a specified version to the version in your view, then executes one or more actions:

• Listing the elements that require a merge

• Performing the required merges, checking out elements as necessary; in Attache, the

merges are done locally

• Performing an arbitrary command

findmerge works as follows:

1. It considers a set of elements, which you specify using syntax similar to that of the find
command.

2. For each of these elements, findmerge examines the relationship between the version in your

view and the version specified by the –ftag, –fversion, or –flatest option. It determines

whether a merge is required from that other version to your view’s version.

3. findmerge then performs the actions you specify with –print, –exec, and/or the various

–merge variants. (In Attache, if merges are performed, the resulting merged files are left in

your workspace.

4. (Attache only) Local directories are not updated after a directory merge; the user must issue

get commands to update merged directories.

Keep in mind that nontrivial merge capability is guaranteed to work only for elements whose

type manager implements the merge or xmerge methods. See the type_manager reference page

for more information.

Using findmerge with UCM Activities

To use findmerge with UCM activities, you specify one or more activities and the option –fcsets.

(The activity-selector arguments must precede the –fcsets option.) Each version listed in a change

set becomes the from-version in a merge operation. As always, the to-version is the one in your

view.

(ClearCase and ClearCase LT only) For other elements—for example, those of type file—the type

manager may or may not be able to merge the data in the versions that findmerge identifies. For

some elements, you may need to perform the merge manually, as follows:

1. Check out the element
 ClearCase Reference Pages 331

findmerge
2. Incorporate data from the version on another branch into your checked-out version, using a

text editor or some other tool

3. Connect the appropriate versions with a merge arrow, using merge –ndata

(Attache only) For some elements, namely, those not containing text, you need to perform the

merge manually, as follows:

1. Check out the element

2. Incorporate data from the version on another branch into your checked-out version, using a

text editor or some other tool

3. Connect the appropriate versions with a merge arrow, using merge –ndata

Deferring Merges with the -print Option

If you specify –print as the action (and you do not also specify any of the merge actions),

findmerge does not actually perform any merges. Instead, it shows what merge activity would

be required:

Needs Merge "proj.c" [to \main\41 from \main\v2_plus\6 base \main\v2_plus\3]
Log has been written to "findmerge.log.16-Nov-98.17:39:18"

.

.

.

In addition, it writes a set of shell commands to perform the required merges to a log file. In

Attache, the log file is in the view:

cleartool findmerge proj.c@@\main\41 -fver \main\v2_plus\6 -log nul -merge
-cqe

.

.

.

At some later point, you can execute the commands in the log file—all at once, or a few at a time.

In Attache, the commands in the log file can be executed only on the helper host.

If the directory version from which you are merging contains new files or subdirectories,

findmerge –print does not report on those files or directories until you merge the directory

versions. Therefore, you may want to run findmerge twice: once to merge the directory versions,

and again with the –print option to report which files need to be merged. You can then cancel the

checkout of the directories if you do not want to save the directory merge.
332 ClearCase Reference Manual

findmerge
Incomplete Reporting of Required Merges

Under some circumstances, findmerge –print does not detect all the required merges (that is, all

the merges that findmerge –merge would perform). This occurs if one or more directory merges

are required, but are not performed.

By default, findmerge merges a directory before determining merge requirements for the

elements cataloged within the directory. Thus, if merging directory srcdir makes a newly created

file element, patch.c, appear, findmerge proceeds to detect that patch.c itself also needs to be

merged. But if the only specified action is –print, then findmerge can determine only that srcdir
must be merged; it cannot determine that patch.c must also be merged.

This incomplete reporting also occurs in these situations:

• You decline to merge a directory when prompted by the –okmerge or –okgmerge option.

• You specify –depth, which causes the elements cataloged in a directory to be processed

before the directory element itself.

• You use –directory or –nrecurse to suppress processing of the elements cataloged in a

directory.

• You use –type f, which suppresses processing of directory elements.

You can use the following procedure to guarantee that the log file produced by findmerge –print
includes all the required file-level merges within the directory tree under srcdir:

1. Actually perform all the directory-level merges:

cmd-context findmerge srcdir –type d –merge

2. Generate a log file containing the findmerge commands required for files within the merged

directory hierarchy:

cmd-context findmerge srcdir –type f –print

In ClearCase and ClearCase LT, executing the log file produces results identical to entering the

single command findmerge srcdir –merge.

findmerge Algorithm

The findmerge command uses one of two algorithms to locate and examine elements. When the

number of elements to be examined is below a certain threshold (approximately 100), findmerge
uses the algorithm that uses the VOB’s metadata. When the number of elements exceeds the

threshold, findmerge uses the algorithm that requires walking through the VOB’s directory

structure. The directory walkthrough method is slower than the metadata method.
 ClearCase Reference Pages 333

findmerge
PERMISSIONS AND LOCKS

Any user can enter a findmerge command. If the specified action involves checking out and/or

merging files, you must have the appropriate permissions for those commands. See the checkout
and merge reference pages for more information.

OPTIONS AND ARGUMENTS

SPECIFYING THE ELEMENTS TO BE CONSIDERED. Default: None.

pname ...

One or more file and/or directory elements; only the specified file elements and the

subtrees under the specified directory elements are considered.

In Attache, arguments of the form @pname can be used to add the contents of the local file

pname as pathname arguments. The pathname arguments can contain wildcards (see the

wildcards reference page), and must be listed in the file one per line, or also be of the

form @pname. Specifying a relative pathname for @pname begins from Attache’s startup

directory, not the working directory, so a full local pathname is recommended.

–all
pname ... –all

Appending –all to a pname list (or an @pname list in Attache) causes all the elements in

the VOB containing the pname to be considered, whether or not they are visible in your

view. By itself, –all specifies the top-level directory of the VOB containing the current

working directory.

findmerge performs additional work after processing the VOB directory tree if you use

–all or –avobs in combination with –ftag; in this case, it issues a warning message for

each element that does not appear in the to-view, but does appear in the from-view.

–avo⋅bs
Considers all elements in the VOBs active (mounted) on the local host in ClearCase or

on the helper host in Attache. (If environment variable CLEARCASE_AVOBS is set to a

semicolon-separated list of VOB-tags, this set of VOBs is used instead. In Attache, the

environment variable must be set in the helper process.)

activity-selector ...

One or more UCM activities. Specify activity-selector in the form

activity:activity-name[@vob-selector]. You must specify the –fcsets option immediately

following this argument.

SPECIFYING THE FROM–VERSION. Default: None. You must use one of these options to specify

another version of each element, to be compared with the version in your view.

–fta⋅g view-tag
Compare with the version in the view with the version in the view specified by view-tag.
334 ClearCase Reference Manual

findmerge
view-tag may not specify a snapshot view. A version of the same element is always used,

even if the element has a different name in the other view.

–fve⋅rsion version-selector
Compare with the version specified by the version-selector. A version selector involving

a branch type, for example, ...\branch1\LATEST, is optimized for selecting the set of

elements to consider and performs better than other types of queries. In the case where

the branch exists only on a relatively small number of elements in the VOB, this option

performs much better than other types of queries.

–fla⋅test
(Consider only elements that are currently checked out.) Compare with the most recent

version on the branch from which your version was checked out. This option is useful

with elements for which you have unreserved checkouts: if one or more new versions have

been checked in by other users, you must merge the most recent one into your

checked-out version before you can perform a checkin.

–fcs⋅ets
Consider all the versions in the change set of each specified activity-selector argument.

NARROWING THE LIST OF ELEMENTS TO BE CONSIDERED. Use the following options to select a

subset of the elements specified by pname arguments and the –all or –avobs option.

–dep⋅th
Causes directory entries to be processed before the directory itself.

–nr⋅ecurse
For each directory element, considers the file and directory elements within it, but does

not descend into its subdirectories.

–d⋅irectory
For each directory, considers only the directory itself, not the directory or file elements,

or VOB symbolic links it catalogs.

–fol⋅low
Causes VOB symbolic links to be traversed.

–use⋅r login-name
Considers only those elements owned by user login-name.

–gro⋅up group-name
Considers only those elements belonging to group group-name.

–typ⋅e f
–typ⋅e d
–typ⋅e fd

Considers file elements only (f), directory elements only (d), or both (fd).
 ClearCase Reference Pages 335

findmerge
–nam⋅e pattern
Considers only those elements whose leaf names match the specified file-name pattern.

(See the wildcards_ccase or wildcards (Attache) reference page.)

–ele⋅ment query
Considers only those elements that satisfy the specified query (same as the

ClearCase/ClearCase LT/Attache find command). A simple branch query, for example,

brtype(br1), is optimized for selecting the set of elements to consider and performs

better than other types of queries. When the branch exists only on a relatively small

number of elements in the VOB, this option performs much better than other types of

queries.

SPECIAL VERSION TREE GEOMETRY: MERGING FROM VERSION 0. If a merge is required from a

version that happens to be version 0 on its branch, findmerge’s default behavior is to perform

the merge and issue a warning message:

Element "util.c" has empty branch [to \main\6 from \main\br1\0]

More often, findmerge determines that no merge is required from a zeroth version; it handles this

case as any other no-merge-required case.

The following option overrides this default behavior.

–nze⋅ro
Does not perform a merge if the from-contributor is version 0 on its branch. This gives

you the opportunity to delete the empty branch, and then perform a merge from the

version at which the branch was created.

SPECIAL VERSION TREE GEOMETRY: MERGE BACK-AND-OUT TO SUBBRANCH. findmerge flags this

special case with a warning message:

Element "msg.c" requests merge to \main\12 backwards on same branch from
\main\18

This situation arises in these cases:

• You are merging from a parent branch to a subbranch.

• For a particular element, no subbranch has been created yet.

• Your config spec selects a version of that element using a –mkbranch config spec rule.

In this case, findmerge’s default behavior is to perform the merge by checking out the element

(which creates the subbranch at the to-version), then overwriting the checked-out version with

the from-version.

The following option overrides this default behavior.
336 ClearCase Reference Manual

findmerge
–nba⋅ck
Does not perform the merge in the case described earlier. It may be appropriate to

simulate the merge by moving the version label down to the from-version. Note,

however, that this alternative leaves the element without a subbranch, which may or

may not be desirable.

VERBOSITY OF MERGE ANALYSIS. By default, findmerge:

• Silently skips elements that do not require a merge.

• (If you use –all or –avobs in combination with –ftag) Issues a warning message if your

config spec does not select any version of an element, but the config spec of the view

specified with –ftag does. (For example, this occurs when a new element has been created in

the from-view.)

The following options override this behavior.

–why⋅not
For each element that does not require a merge, displays a message explaining the

reason. This is especially useful when you are merging between views whose

namespaces differ significantly.

–vis⋅ible
Suppresses the warning messages for elements that are not visible in the current view.

LOGGING OF MERGE ANALYSIS. Default: A line is written to a merge log file (in Attache, in the

working directory in the view) for each element that requires a merge. The log takes the form of

a batch file that can be used to perform, at a later time (in Attache, on the helper host), merges

that are not completed automatically (see –print and –abort, for example). A number sign (#) at

the beginning of a line indicates that the required merge was performed successfully. The log

file’s name is generated by findmerge and displayed when the command completes.

NOTE: In Attache, the log file can be executed later, but the results may differ since copies of

versions in the workspace are not taken into account. The commands can be cut and pasted from

this log into the Attache command window, which will work correctly.

–log pname
Creates pname as the merge log file (in Attache, on the helper host), instead of selecting

a name automatically. To suppress creation of a merge log file, use –log NUL.

SPECIFYING CHECKOUT COMMENTS. Default: When findmerge checks out elements in order to

perform merges, it prompts for a single checkout comment (–cq). You can override this behavior

with your .clearcase_profile file. See CUSTOMIZING COMMENT HANDLING in the comments
reference page. Edit comments with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.
 ClearCase Reference Pages 337

findmerge
AFFECTING TYPE OF CHECKOUT. Default: If the findmerge action performs a checkout, it is a

reserved checkout.

–unr⋅eserved
Performs any findmerge checkouts as unreserved checkouts.

MERGE OPTIONS. If you have findmerge actually perform merges, you can specify the following

options, which work exactly as they do in the merge command. (In ClearCase and ClearCase LT,

–abort and –qall are mutually exclusive.)

–q⋅uery (ClearCase and ClearCase LT only)

Turns off automatic merging for nontrivial merges and prompts you to proceed with

every change in the from-versions. Changes in the to-version are accepted unless a

conflict exists.

–abo⋅rt
Cancels a merge if it is not completely automatic. In Attache, –abort is required with

–merge and –okmerge.

–qal⋅l
Turns off automated merging. In Attache, turns off automated merging when in

graphical mode. Prompts you to determine whether you want to proceed with each

change.

–ser⋅ial
Reports differences with each line containing output from one contributor, instead of in

a side-by-side format.

ACTIONS TO BE PERFORMED ON THE SELECTED ELEMENTS. Default: None.

–pri⋅nt [–l⋅ong | –s⋅hort | –nxn⋅ame]

Lists the names of the elements that require a merge. The default listing includes the

version-IDs of the to-versions and from-versions, and that of the base contributor

(common ancestor):

Needs Merge "Makefile" [to \main\7 from \main\br1\1 base \main\6]

Specifying –short reduces the listing to version-extended pathnames of the to- and

from-versions:

Makefile@@\main\7 Makefile@@\main\br1\1

Specifying –long adds to the default listing a description (describe command output) of

the from-version:
338 ClearCase Reference Manual

findmerge
Needs Merge "Makefile" [to \main\7 from \main\br1\1 base \main\6]
version "Makefile@@\main\br1\1"

created 09-Nov-98.11:18:39 by Allison K. Pak (akp.user@neptune)
element type: text_file
predecessor version: \main\br1\0

Specifying –nxname reduces the listing to just the standard pathname of the element:

.\Makefile

–mer⋅ge –abort (–abort only with Attache)

–okm⋅erge –abort (–abort only with Attache)

–g⋅raphical
–gm⋅erge
–okgm⋅erge

(Valid only for elements whose type manager implements the merge method. See the

type_manager reference page for more information.) Performs a merge for each element

that requires it.

Three kinds of interfaces can be used: the –merge option performs a character-oriented

merge, the –graphical option invokes the Merge Manager, and the –gmerge option

invokes the graphical merge utility. All these actions attempt to check out the to-version,

if it is not already checked out to your view. In Attache, only noninteractive merges are

allowed in character mode; interactive merges must be done in graphical mode.

The ok variants pause for verification on each element, thus allowing you to process

some elements and skip others.

SPECIAL CASE: Specifying –merge –gmerge causes findmerge to perform a

character-oriented merge in –abort mode; if the merge aborts (because it could not

proceed completely automatically), the interactive graphical merge tool is invoked.

–exe⋅c command-invocation
–ok command-invocation

Runs the specified command for each selected element. findmerge does not perform a

checkout operation when either of these options is specified. With –ok, findmerge
pauses for verification on each element, thus allowing you to process some elements and

skip others.

If you invoke a command built in to the Windows shell (for example, cd, del, dir, or

copy), you must invoke the shell with cmd /c. For example:

–exec 'cmd /c copy %CLEARCASE_PN% %HOME%'

If a path within command-invocation contains spaces, you must embed it in quotation

marks. For example, in cleartool single-command mode (note the backslash used to

escape the second quotation mark):
 ClearCase Reference Pages 339

findmerge
–exec "cmd /c copy %CLEARCASE_PN% \"c:\findmerge results""

In cleartool interactive mode (no escape character needed):

–exec 'cmd /c copy %CLEARCASE_PN% "c:\findmerge results"'

Like the find command, findmerge sets the following variables in the specified

command’s environment:

–co
Attempts to check out the destination if it is not already checked out to your view. May

be used as part one of a two-pass invocation of findmerge, where the second part uses

an option such as –exec.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• (ClearCase and ClearCase LT only) Compare a source file version in your current view to a

version on another branch. Log the results of the comparison, but do not perform the

merge. (If a merge is required, the log file stores a command that performs the merge.)

cmd-context findmerge msg.c –fversion \main\rel2_bugfix\LATEST –print
Needs Merge "msg.c" [to \main\2 from \main\rel2_bugfix\1 base \main\1]
A ’findmerge’ log has been written to "findmerge.log.04-Feb-99.10:01:23"

> type findmerge.log.04-Feb-99.10.01.23
cleartool findmerge msg.c@@\main\2 -fver \main\rel2_bugfix\1 -log nul
-merge

• (Attache only) Compare a source file version in your current workspace or view to a version

on another branch. (If the file does not exist in your workspace, the version in your view is

used.) Log the results of the comparison, but do not perform the merge. (If a merge is

CLEARCASE_PN Pathname of element

CLEARCASE_XN_SFX Extended naming symbol (default: @@)

CLEARCASE_ID_STR Version-ID of to-version

CLEARCASE_XPN Version-extended pathname of to-version

CLEARCASE_F_ID_STR Version-ID of from-version

CLEARCASE_FXPN Version-extended pathname of from-version

CLEARCASE_B_ID_STR Version-ID of base contributor version
340 ClearCase Reference Manual

findmerge
required, the log file on the helper host stores a command that performs the merge, but only

from the helper host.)

cmd-context findmerge msg.c –fversion \main\rel2_bugfix\LATEST –print
Needs Merge "msg.c" [to \main\2 from \main\rel2_bugfix\1 base \main\1]
A ’findmerge’ log has been written to "findmerge.log.04-Feb-99.10:01:23"

cmd-context shell type findmerge.log.04-Feb-99.10:01:23
cleartool findmerge msg.c@@/main/2 -fver /main/rel2_bugfix/1 -log
/dev/null -merge

• (ClearCase and ClearCase LT only) For the current directory subtree, compare all versions

visible in the current view against the versions in another view. Print a list of versions that

require merging, but do not perform the merge. For versions where no merge is required,

explain why.

cmd-context findmerge . –ftag rel2_bugfix_view –whynot –print
No merge ".\Makefile" [\main\3 descended from \main\2]
No merge ".\cm_add.c" [element not visible in view rel2_bugfix_view]
No merge ".\hello.c" [to \main\4 from version zero \main\rel2_bugfix\0]
. . .

A ’findmerge’ log has been written to "findmerge.log.04-Feb-99.11:00:59"

type findmerge.log.04-Feb-99.11.00.59
cleartool findmerge .\msg.c@@\main\2 -fver \main\rel2_bugfix\1 -log nul
-merge

• (Attache only) For the current directory subtree, compare all versions visible in the current

view against the versions in another view. Print a list of versions that require merging, but

do not perform the merge. For versions where no merge is required, explain why.

cmd-context findmerge . –ftag rel2_bugfix_view –whynot –print
No merge ".\Makefile" [\main\3 descended from \main\2]
No merge ".\cm_add.c" [element not visible in view rel2_bugfix_view]
No merge ".\hello.c" [to \main\4 from version zero \main\rel2_bugfix\0]

.

.

.

A ’findmerge’ log has been written to "findmerge.log.04-Feb-99.11:00:59"

shell type findmerge.log.04-Feb-99.11.00.59
cleartool findmerge .\msg.c@@\main\2 –fver \main\rel2_bugfix\1 –log nul
-merge

• (ClearCase and ClearCase LT only) For the current directory subtree, compare versions

visible in the current view against versions on another branch, and perform any required

merges. The resulting log file annotates all successful merges with a number sign (#) .
 ClearCase Reference Pages 341

findmerge
cmd-context findmerge . –fversion \main\rel2_bugfix\LATEST –merge
Needs Merge ".\util.c" [to \main\3 from \main\rel2_bugfix\2 base
\main\rel2_bugfix\1]
Comment for all listed objects:
Merge from rel2_bugfix branch.
.

Checked out "util.c" from version "\main\3".

<<< file 1: M:\view1\george_fig_hw\src\util.c@@\main\rel2_bugfix\1
>>> file 2: .\util.c@@\main\rel2_bugfix\2
>>> file 3: .\util.c

-------[changed 7-8 file 1]--------|------[changed to 7-12 file 3]-----

if (user_env) | if (user_env) {
return user_env; | if (strcmp(user_env,"root") == +

.

.

.

Moved contributor ".\util.c" to ".\util.c.contrib".
Output of merge is in ".\util.c".
Recorded merge of ".\util.c".
A ’findmerge’ log has been written to "findmerge.log.24-Mar-99.13.23.05"

type findmerge.log.24-Mar-99.13.23.05

#cleartool findmerge .\util.c@@\main\3 -fver \main\rel2_bugfix\2 -log nul
-merge -c "Merge from rel2_bugfix branch."

• (Attache only) For the current directory subtree, compare versions visible in the current

view against versions on another branch, and perform any required merges.

cmd-context findmerge . –fversion \main\rel2_bugfix\LATEST –merge –abort
Needs Merge ".\util.c" [to \main\3 from \main\rel2_bugfix\2 base
\main\rel2_bugfix\1]
Comment for all listed objects:
Merge from rel2_bugfix branch.
.

342 ClearCase Reference Manual

findmerge
Checked out "util.c" from version "\main\3".

<<< file 1: M:\view1\george_fig_hw\src\util.c@@\main\rel2_bugfix\1
>>> file 2: .\util.c@@\main\rel2_bugfix\2
>>> file 3: .\util.c

-------[changed 7-8 file 1]--------|------[changed to 7-12 file 3]-----

if (user_env) | if (user_env) {
return user_env; | if (strcmp(user_env,"root") == +

.

.

.

Output of merge is in ".\util.c".
Recorded merge of ".\util.c".
A ’findmerge’ log has been written to "findmerge.log.24-Mar-99.13.23.05"

cmd-context shell type findmerge.log.24-Mar-99.13.23.05
#cleartool findmerge .\util.c@@\main\3 -fver \main\rel2_bugfix\2 -log nul
-merge -c "Merge from rel2_bugfix branch."

• As in the previous commands, merge from another branch. This time, if any merge cannot

be completed automatically (two or more contributors modify the same line from the base

contributor), start the graphical merge utility to complete the merge.

cmd-context findmerge . –fversion \main\rel2_bugfix\LATEST –merge –gmerge

• (ClearCase and ClearCase LT only) For the current directory subtree, compare all versions

visible in the current view to versions on another branch. Follow any VOB symbolic links.

Log the results of the comparison, but do not perform the merge. The current directory

contains a symbolic link to the beta directory. The findmerge command follows that link

and determines that version 1 of foo.c on the bugfix branch should be merged with version

4 on the main branch.

cmd-context findmerge . –fol –fversion \main\bugfix\LATEST –print
Needs Merge "\usr2\home\ktessier\testvobs\testvob\testdir\beta\foo.c"
[to \main\4 from \main\bugfix\1 base \main\3]
Needs Merge ".\update [to \main\4 from \main\bugfix\1 base \main\2]
Log has been written to "findmerge.log.02-Jul-99.14:07:49".

• (ClearCase and ClearCase LT only) For the current directory subtree, compare all versions

visible in the current view to versions on another branch. Do not consider elements

contained in any of the current directory’s subdirectories. Log the results of the comparison,

but do not perform the merge. The first invocation of findmerge detects no required merges

in the current directory element or the file and directory elements it contains. Invoking

findmerge from the subdirectory source detects a required merge. Invoking findmerge
 ClearCase Reference Pages 343

findmerge
without the –nr option at source’s parent directory also detects the required merge because

findmerge descends into source.

cmd-context findmerge . –nr –fversion \main\bugfix\LATEST –print

% cd source

cmd-context findmerge . –nr –fversion \main\bugfix\LATEST –print
Needs Merge ".\update" [to \main\4 from \main\bugfix\1 base \main\2]
Log has been written to "findmerge.log.02-Jul-99.14:17:15".

• (ClearCase and ClearCase LT only) For the current directory only, compare the directory

version visible in the current view to a version on another branch. Do not consider the

elements contained in those directories. Log the results of the comparison but do not

perform the merge. The findmerge command discovers that the version of the directory on

the rel1 branch contains a file that is not in the version of the directory visible in the current

view; therefore, version 2 of the directory on the rel1 branch should be merged with version

2 on the main branch. Because the findmerge command specifies –dir, it does not evaluate

this file for merging.

cmd-context findmerge . –dir –fversion \main\rel1\LATEST –print
Needs Merge "." [(automatic) to \main\2 from \main\rel1\2 (base also
\main\2] Log has been written to "findmerge.log.03-Jul-99.15:30:46".

• Invoke the Merge Manager from the command line and complete the merge using the

Merge Manager.

findmerge . -fver .../mybranch/LATEST -graphical

SEE ALSO

find, merge, update
344 ClearCase Reference Manual

fmt_ccase
fmt_ccase
Format strings for command output

APPLICABILITY

SYNOPSIS

• –fmt option syntax (used in various reporting commands: annotate, describe, lshistory,

lscheckout, and so on):

–fmt "format-string"

format-string is a character string, composed of alphanumeric characters, conversion
specifications, and escape sequences. It must be enclosed in double quotes (").

Conversion specifications:

Escape sequences:

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

%a Attributes (modifiers: N, S, [attr-name])

%c Comment string (modifiers: N)

%d Date (modifiers: S, V, N, A, MA, BA, OA)

%e Event description

%f Checked-out version information (modifiers: R, T, [text])
%h Host name

%i Indent level (modifier: [indent-level])
%l Labels (modifiers: C, N)

%m Object kind (version, derived object, and so on) (modifiers: K)

%n Name of object (modifiers: D, E, L, O, S, PS, PV, V, X)

%o Operation kind (checkin, lock, mkelem, and so on)

%p Property value (modifiers: [property], C, D, O, S, T)

%[c]t Starting column number (modifiers: N, S, T)

%u User/group information (modifiers: F, G, L)

%% % character

\n <NL>
 ClearCase Reference Pages 345

fmt_ccase
DESCRIPTION

Many ClearCase, ClearCase LT and Attache commands read information from a VOB database,

format the data, and send it to standard output. (In most cases, the information is stored in event
records, written by the command when it creates or modifies an object in a VOB. See the

events_ccase reference page.) Some of these commands have a –fmt option, which you can use

to format simple reports on VOB contents. Note that –fmt is a mutually exclusive alternative to

the –short and –long options.

The following example shows how output-formatting options affect an lshistory command.

cmd-context lshistory -since 1-Feb util.c
10-Feb.11:21 anne create version "util.c@@\main\rel2_bugfix\1"
 "fix bug: extra NL in time string"
10-Feb.11:21 anne create version "util.c@@\main\rel2_bugfix\0"
10-Feb.11:21 anne create branch "util.c@@\main\rel2_bugfix"

cmd-context lshistory -short -since 1-Feb util.c
util.c@@\main\rel2_bugfix\1
util.c@@\main\rel2_bugfix\0
util.c@@\main\rel2_bugfix

cmd-context lshistory -fmt "\tElement: %-13.13En Version: %Vn\n" -since 1-Feb util.c
Element: util.c Version: \main\rel2_bugfix\1
Element: util.c Version: \main\rel2_bugfix\0
Element: util.c Version: \main\rel2_bugfix

(A \t escape sequence tabs output to the next tab stop. Tab stops occur at eight-character

intervals, except as described in the annotate reference page.)

CONVERSION SPECIFICATIONS

A conversion specification identifies a particular data item to display and specifies its display

format.

Syntax
%[min][.max][MODIFIER [, ...]]keyletter

The conversion specification format closely resembles that of the C-language function printf():

• Percent sign (%)

• Optionally, a minimum and/or maximum field display width specifier, of the form min.max
(see Specifying Field Width on page 355)

\t <TAB>

\’ Single quote

\\ Literal (uninterpreted) backslash

\nnn Character specified by octal code
346 ClearCase Reference Manual

fmt_ccase
• Optionally (for some conversion specs), one or more modifier characters (uppercase) that

specify one or more variants, and/or, a bracket-enclosed parameter (see the %a conversion

specification)

• A key letter (lowercase), which indicates the kind of data to display

Unlike printf() specifiers, conversion specifications are not replaced by arguments supplied

elsewhere on the command line; they are replaced automatically by cleartool or Attache, usually

with field values extracted from event records.

These are the conversion specifications:

%a
All attached attributes. Attributes are listed as attr-name=value pairs. These pairs are

enclosed in parentheses and separated by a comma-space combination (,SPACE).

Variants:

%c
Comment string. The user-supplied or system-generated comment stored in an event

record. A newline character is appended to the comment string for display purposes

only. Variant:

%d
Date/Time. The time stamp of the operation or event, in date.time format. Variants:

%Na No commas. Suppress the parentheses and commas in attribute list

output; separate multiple attributes with spaces only.

%Sa Value only. Display attribute values only (rather than attr=value)

%[attype]a This attribute only. Display only the specified attribute, if it has been

attached to the object

%Nc No newline. Do not append a newline character to the comment string.

%Sd (Short) Date only.

%Vd (Very long) Day of week, date, and time.

%Nd (Numeric) Date and time in numeric form — yyyymmdd. time (time
reported in 24-hour format).

%Ad Age in days.

%MAd Age in months.
 ClearCase Reference Pages 347

fmt_ccase
%e
Event kind; a brief description of the event. The event kind is derived programmatically

from an event record’s name, object kind, and operation kind fields. Sample event kinds:

create version
create branch
make hyperlink "Merge" on version
make label "REL2" on version
lock branch type

%f
Checked-out version information — For an element checked out to your view, the

version-ID of the checked-out element; for an element that is not checked out to your

view, displays nothing. Variants:

%h
Name of the host where the event originated (the host on which the user %u was

running when she or he caused the event). The host name is stored in the

ComputerName key in the Windows Registry.

%BAd Age as a bar graph (longer bars for more recent events). A bar graph is

drawn as a sequence of 0-5 number signs (#), representing the elapsed

time since the reported operation as follows:

Less than a week

Less than a month

Less than three months

Less than six months

Less than a year

More than a year

%OAd Age as a bar graph (longer bars for older events). A bar graph is drawn

as a sequence of 0-5 number signs (#), representing the elapsed time

since the reported operation as follows:

More than a year

Less than a year

Less than six months

Less than three months

Less than a month

Less than a week

%Rf Checkout status — reserved or unreserved .

%Tf View tag — the view-tag of the view that checked out the element.

%[text]f Text — Displays text as a prefix to the version-ID.
348 ClearCase Reference Manual

fmt_ccase
%l
Labels — For versions, all attached labels; the null string otherwise. Labels are output as

a comma-separated list, enclosed in parentheses. A <SPACE> character follows each

comma. Variants:

%m
Object kind — The kind of object involved in the operation. For example:

file element
branch
version
stream
derived object
branch type
label type

Variant:

%n
Name of object — For a file-system object, the extended pathname (including the

version-ID for versions, and the DO-ID for derived objects); for a type object, its name.

Variants:

%Cl Max labels — Specify the maximum number of labels to display with

the max-field-width parameter (see Specifying Field Width on page 355). If

there are more labels, "..." is appended to the output. If no

max-field-width is specified, the maximum defaults to three.

%Nl No commas — Suppress the parentheses and commas in label list

output; separate labels with spaces only.

%Km Object selector kind — For example, brtype or lbtype. For more

information about object selectors, see the cleartool reference page.

%Dn Database identifier (DBID) — The unique database identifier of the

object.

%En Element name — For a file-system object, its standard file or element

name, or its pathname; for a type object, its name.

%Ln Leaf name — For any named object, its simple name. The terminal node

of a pathname. This modifier can be combined with others.

%On Object identifier (OID) — The unique identifier of a VOB object.

%Sn Short name — For a version, a short form of the version-ID:

branch-pathname/ version-number. For other objects, the null string.

%PSn Predecessor Short name — For a version, a short form of the

predecessor version’s version-ID: branch-pathname/version-number. For

other objects, the null string.
 ClearCase Reference Pages 349

fmt_ccase
%o
Operation kind — The operation that caused the event to take place; commonly, the

name of a cleartool subcommand or an Attache command. For example:

mkelem
mklabel
checkin
checkout

See the events_ccase reference page for a complete list of operations and the commands

that cause them.

%[p]p
Property value — Displays the value of the property specified in square brackets. The

following tables list variants and the objects to which they apply. For ClearCase and

ClearCase LT variants, see Table 5. For UCM variants, see Table 6. For MultiSite variants,

see Table 7.

%Vn Version ID — For a version or derived object, the version-ID; for other

objects, the null string.

%PVn Predecessor Version ID — For a version, the predecessor version’s

version-ID; for other objects, the null string.

%Xn Extended name — Same as default %n output, but for checked-out

versions, append the.extension @@\branch-pathname\CHECKEDOUT. For

non-file-system objects, prints the object selector. For more information

about object selectors, see the cleartool reference page.

Table 5 Variants for ClearCase and ClearCase LTObjects

Variant Applies to Description

%[name]p All objects Same as %n, including variants.

%[object_kind]p All objects Kind of object. For example: version , file element ,

directory element , versioned object base ,

replica , branch type , and so on.

%[locked]p All objects that can be

locked

Lock status of the object: locked , unlocked , or

obsolete .

%[version_predecessor]p Versions Version-ID (branch pathname and version number) of

the version’s predecessor version.
350 ClearCase Reference Manual

fmt_ccase
%[type]p Versions, elements Name of version or element’s element type (see

type_manager for a list of element types); not to be

confused with the object kind (for which the conversion

specification is %m).

%[triggers]p Elements List of trigger types attached to element. Does not list

all-element triggers. The list is displayed in the

following format:

(trtype, trtype, trtype, ...)

%[triggers]Np Elements Suppresses parentheses and commas.

%[pool]p Elements, shared

derived objects

For an element, name of source pool. For a shared DO,

name of DO pool.

%[pool]Cp Elements Name of cleartext pool.

%[pool]Dp Shared derived objects Name of derived object pool.

%[pool]Sp Elements Name of source pool.

%[DO_kind]p Derived objects Kind of derived object: shared , unshared ,

non-shareable .

%[DO_ref_count]p Derived objects Reference count for derived object.

%[slink_text]p VOB symbolic links Target of symbolic link, as displayed by cleartool ls.

Table 5 Variants for ClearCase and ClearCase LTObjects

Variant Applies to Description
 ClearCase Reference Pages 351

fmt_ccase
The variants in Table 6 apply only to UCM objects.

%[slink_text]Tp VOB symbolic links Target of symbolic link, after link is traversed.

%[type_scope]p Metadata object types Object type’s scope.

• ordinary means that use of the type is limited to

the current (or specified) VOB

• global means that the VOB is an administrative

VOB and the type can be used in any client VOB of

the admin VOB or in any client VOB of a

lower-level Admin VOB within an Admin VOB

hierarchy

• local copy means that the type has been copied to

the VOB from the Admin VOB that contains the

master version of the type’s definition

%[type_constraint]p Branch types, label

types

Constraint on type object: one version per element

or one version per branch .

%[trigger_kind]p Trigger types Kind of trigger type: element trigger , all element

trigger , type trigger .

%[msdostext_mode]p VOBs State of MS-DOS text mode setting for VOB: enabled or

disabled .

%[group]p Group name.

%[owner]p Login name of the object’s owner.

Login name of the objects‘ owner. The optional F
argument lists the owner’s full name.

Table 6 Variants for UCM Objects

Variant Applies to Description

%[stream]p UCM activities The stream containing the activity.

%[crm_record_id]p UCM activities A ClearQuest record ID.

Table 5 Variants for ClearCase and ClearCase LTObjects

Variant Applies to Description
352 ClearCase Reference Manual

fmt_ccase
The variants in Table 7 apply only to objects in replicated VOBs (ClearCase MultiSite product).

%[component]p UCM baselines The component associated with the baseline.

%[label_status]p UCM baselines The label status of a baseline: full, incremental, or

unlabeled.

%[root_dir]p UCM components The root directory for the component.

%[contains_folders]p UCM folders Subfolders of the folder.

%[folder]p UCM folders The parent folder for the folder.

%[contains_projects]p UCM folders Projects contained by the folder.

%[istream]p UCM projects The project integration stream.

%[dstreams]p UCM projects The project development streams.

%[folder]p UCM projects The parent folder for the project.

%[mod_comps]p UCM projects The modifiable components for a project.

%[def_rebase_level]p UCM projects The promotion level required of a baseline before it can

be used as the source of a rebase operation.

%[rec_bls]p UCM projects The project’s recommended baselines.

%[activities]p UCM streams Activities that are part of the stream.

%[project]p UCM streams The project the stream is part of.

%[found_bls]p UCM streams The foundation baselines for the stream.

%[views]p UCM streams Views attached to the stream.

%[versions]p UCM activities Space separated list of versions in activity’s change set.

Table 6 Variants for UCM Objects

Variant Applies to Description
 ClearCase Reference Pages 353

fmt_ccase
Table 7 Variants for Replicated Objects

Variant Applies to Description

%[master]p All objects that have

mastership

Name of object’s master replica.

%[master]Op All objects that have

mastership

OID of object’s master replica.

%[reqmaster]p Replicas, branch types,

branches

Request for mastership status of the object.

For a replica:

• disabled means that requests for mastership are

not enabled in the replica

• enabled means that requests for mastership are

enabled in the replica

For a branch type:

• all instances denied means that requests for

mastership of any instance of the branch type are

denied

• all instances allowed means that requests for

mastership of any instance of the branch type will

be allowed (unless mastership requests for the

specific branch are denied)

For a branch:

• denied means that requests for mastership of the

branch are denied

• allowed means that requests for mastership of the

branch are allowed

%[type_mastership]p Attribute types,

hyperlink types, label

types

Kind of mastership of the type: shared or unshared .

%[vob_replication]p VOBs Replication status of VOB: replicated or

unreplicated .

%[replica_name]p VOBs Replica name of the specified VOB.

%[replica_host]p Replicas Name of replica host.
354 ClearCase Reference Manual

fmt_ccase
%[c]t
Starting column number — Starts printing at the column number specified in square

brackets. An overflow condition exists if the current position on the line is beyond the

starting column number. By default, when an overflow condition occurs, the %t
directive is ignored. Variants:

%u
Login name of the user associated with the event. Variants:

%%
Percent character (%).

Specifying Field Width

A conversion specification can include an optional field width specifier, which assigns a minimum

and/or maximum width, in characters, to the data field display. For example, the conversion

specifier %10.15Lu will display, for each output line, the user’s login name and group with a

minimum of 10 characters (space padded if necessary) but not more than 15.

Usage rules:

• A single number is interpreted as a minimum width.

• To supply only a maximum width, precede the number with a decimal point (for example,

%.10En) or with a zero and decimal point (%0.10En).

• To specify a constant display width, set the minimum and maximum widths to the same

value (%20.20c).

• Values smaller than the specified minimum width are right-justified (padded left). A

negative minimum width value (%–20.20c) left-justifies short values.

• Values longer than the specified maximum width are truncated from the right. A negative

maximum width value (%15.–15Sn) truncates long values from the left.

%[c]Nt When an overflow condition occurs, print a newline and resume

printing at the starting column number.

%[c]St When an overflow condition occurs, print one space before printing the

next value.

%[c]Tt When an overflow condition occurs, print a tab before printing the next

value.

%Fu Full name of the user. This information is taken from the password

database.

%Gu Group name of the user.

%Lu Login name and group of the user, in the form user. group.
 ClearCase Reference Pages 355

fmt_ccase
• A maximum width specifier has special meaning when used with the %Cl specifier. For

example, %.5Cl prints a version’s first five labels only, followed by "..." .

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Format the output from lsco –cview.

cmd-context lsco -cview -fmt "\t%-10.10n (from %8.8PVn) %d %u\n"

util.c (from \main\23) 24-Jun-99.14:12:48 anne
main.c (from \main\46) 23-Jun-99.18:42:33 anne
msg.c (from bugfix\11) 23-Jun-99.10:45:13 anne
msg.h (from bugfix\3) 22-Jun-99.14:51:55 anne

• Format the event history of a file element. (The command line, including the quoted format

string, constitutes a single input line. The input line below is broken to improve readability.

Spaces are significant.)

cmd-context lshistory -fmt "OBJ-NAME: %-20.20n\n USER: %-8.8u\n DATE: %d\\n
OPERATION:\t%-12.12o\n OBJ-TYPE:\t%-15.15m\n EVENT:\t%e\n
COMMENT: %c\n" util.c

OBJ-NAME: util.c@@main3
USER: anne
 DATE: 10-May-99.09:24:38

 OPERATION: checkin
 OBJ-TYPE: version
 EVENT: create version

 COMMENT: fix bug r2-307

OBJ-NAME: util.c@@main2
 USER: anne
 DATE: 10-May-99.09:09:29

 OPERATION: checkin
 OBJ-TYPE: version
 EVENT: create version

COMMENT: ready for code review

• Describe a checked-out element, util.c.

cmd-context describe -fmt "\tVer:\t%f\n\tPrefix:\t%[MY TEXT]%f\n\t
Status:\t%Rf\n\tView:\t%Tf\n" util.c
356 ClearCase Reference Manual

fmt_ccase
Ver: \main\23
Prefix: MY TEXT\main\23
Status: reserved
View: eba_view

• Display the type of a file element.

cmd-context describe -fmt "Type: %[type]p\n" util.c@@
Type: text_file

• Display the target of a symbolic link and the target after the link is traversed.

cmd-context describe –fmt "%n\t%[slink_text]p\t%[slink_text]Tp\n" link1.txt
link1.txt file.txt ..\dev\file.txt

• Display the master replica of all label types in a VOB replica.

cmd-context lstype –fmt "Label type: %n\tMaster: %[master]p\n" –kind lbtype
Label type: BACKSTOP Master: evanston@\tromba
Label type: CHECKEDOUT Master: evanston@\tromba
Label type: LATEST Master: evanston@\tromba
Label type: V3.4 Master: paris@\tromba

• Display the name of an element, using tabular format. The command is a single input line;

line breaks are added for readability.

cmd-context describe -fmt
"%[4]tName:%[6]t%[name]p\n
%[4]tName:%[6]Nt%[name]p\n
%[4]tName:%[6]St%[name]p\n
%[4]tName:%[6]Tt%[name]p\n" util.c

Name:util.c@@\main\30
Name:

util.c@@\main\30
Name: util.c@@\main\30
Name: util.c@@\main\30

• Mimic the output from lshistory –long. Note that in cleartool single-command mode,

backslashes (\) are used to escape double quotes in the format string.
 ClearCase Reference Pages 357

fmt_ccase
cleartool lshistory -fmt "%d %Fu (%u@%h)\n %e \"%n\"\n \"%Nc\"\n" util.c
11-May-99.09:24:38 Anne Duvo (anne@neptune)

create version "util.c@@\main\3"
"fix bug r2-307"

10-May-99.09:09:29 Ravi Singha (ravi@mercury)
create version "util.c@@\main\2"
"ready for code review"

.

.

.

• Describe the element main.c in detail. This example illustrates many of the conversion

specifications (but does not use field width specifiers). Again, the command is a single

input line; line breaks are added for readability.

cmd-context describe -fmt "Name (default): %n\n
Element name: %En\n
Leaf name: %Ln\n
Short name: %Sn\n
Predecessor short name: %PSn\n
Version ID: %Vn\n
Predecessor version ID: %PVn\n
Extended name: %Xn\n
Attributes: %a\n
Attr values only: %Sa\n
Attrs without commas or parens: %Na\n
This attr only: %[Tested]a\n
Comment: %c
Date/Time: \tdefault: %d\n
\t\tshort: %Sd\n
\t\tlong: %Vd\n
Age in days: %Ad\n
Age in months: %MAd\n
Age graph (long = new): %BAd\n
Age graph (long = old): %OAd\n
Host: %h\n
Labels: %Cl\n
Labels without commas or parens: %Nl\n
Object kind: %m\n
Operation kind: %o\n
Event kind: %e\n
User (default): %u\n
Full user name: %Fu\n
Group name: %Gu\n
Long name: %Lu\n\n" main.c
358 ClearCase Reference Manual

fmt_ccase
Name (default): main.c@@\main\34
Element name: main.c
Leaf name: 34
Short name: \main\34
Predecessor short name: \main\33
Version ID: \main\34
Predecessor version ID: \main\33
Extended name: main.c@@\main\34
Attributes: (Tested="yes", QAlevel=4, Responsible="anne")
Attr values only: ("yes", 4, "anne")
Attrs without commas or parens: Tested="yes" QAlevel=4 Responsible="anne"
This attr only: (Tested="yes")
Comment: still needs QA
Date/Time: default: 30-Jul-99.15:02:49

short: 30-Jul-99
long: Tuesday 07/30/99 15:02:49

Age in days: 42
Age in months: 1
Age graph (long = new): ####
Age graph (long = old): ##
Host: neptune
Labels: (Rel3.1C, Rel3.1D, Rel3.1E)
Labels without commas or parens: Rel3.1C Rel3.1D Rel3.1E
Object kind: version
Operation kind: checkin
Event kind: create version
User (default): anne
Full user name: Anne Duvo
Group name: dev
Long name: anne.dev

SEE ALSO

annotate, cleartool, describe, events_ccase, lsactivity, lsbl, lscheckout, lscomp, lsdo, lsfolder,
lshistory, lslock, lspool, lsproject, lsreplica, lsstream, lstype, reqmaster, type_manager
 ClearCase Reference Pages 359

get
get
In ClearCase and ClearCase LT, copies a specified version of a file element into a snapshot view.

In Attache, downloads files to an Attache workspace

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT:

get –to dest-pname pname

• Attache:

get [–r⋅ecurse] [–compress] [–ove⋅rwrite | –nov⋅erwrite] [–pti⋅me] [–to pname]

[–log pname] pname...

DESCRIPTION

ClearCase and ClearCase LT

Use the get command to copy a specified version of a file element into your snapshot view. You

must issue the get command from the root directory of a snapshot view or any directory below it.

You can use this command as follows:

• To read versions of file elements that are not selected by the view’s config spec, either

because the element is not specified by a load rule, or because you want to see a version of a

loaded element other than the one currently in the view. You cannot perform ClearCase or

ClearCase LT operations on these nonloaded versions copied into your view with the get
command.

• To get an updated copy of a version currently loaded in your view.

The get command copies only file elements into a view.

Attache

This command downloads the specified files to the workspace.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
360 ClearCase Reference Manual

get
PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

ClearCase and ClearCase LT

SPECIFYING THE DESTINATION FILE NAME. Default: None.

dest-pname
Specifies a pathname for the version. If you do not specify a directory name, the file is

copied into the current directory. By requiring a destination pathname, the get command

is prevented from overwriting any version already loaded into your view.

SPECIFYING THE FILE TO COPY. Default: None.

pname
Specifies the version of the file element to copy into the view. Use a version-extended
pathname to copy a version other than the one currently loaded in the view. Specifying a

pathname that contains a symbolic link causes the link target to be downloaded.

Attache

SPECIFYING THE FILES TO BE DOWNLOADED. Default: None.

pname...

Specifies the files, directories, and/or links to be downloaded. Downloading a pathname

containing a symbolic link, downloads a copy of the file or directory the link points to,

rather than the link itself. Wildcard patterns are expanded with reference to the view. In

addition, arguments of the form @pname can be used to add the contents of the local file

pname as pathname arguments. The pathname arguments can contain wildcards (see the

wildcards reference page), and must be listed in the file one per line, or also be of the

form @pname. Specifying a relative pathname for @pname begins from Attache’s startup

directory, not the working directory, so a full local pathname is recommended.

SPECIFYING HOW THE FILES ARE TO BE DOWNLOADED. Default: When a directory is specified, its

file contents are downloaded. If a destination file that is identical in contents with the source file

already exists, it is not overwritten. If an existing destination file is read-only and differs from the

source, it is always overwritten. If the destination file exists and is writable, an overwrite query

is issued.

–ove⋅rwrite
Suppresses the query and causes all writable files to be overwritten.

–nov⋅erwrite
Suppresses the query and causes no writable file to be overwritten.
 ClearCase Reference Pages 361

get
–to pname
Specifies a destination file name or directory. If the specified destination is a directory, it

becomes a prefix for each downloaded file name. If the specified destination is a file, or

does not exist, then only one source argument can be specified, and it must be a file.

–pti⋅me
Causes the last-modified time stamp of the destination file to be set to that of the source

file. –ptime has no effect on directories.

–compress
Causes files to be compressed while being uploaded and uncompressed after the

transfer to improve performance over slow communications lines. The default behavior

for this option can be set with the Preferences command on the Options menu.

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

get downloads the contents of that directory, but not the contents of any of its subdirectories.

NOTE: This includes directories in the version-extended namespace, which represent elements

and their branches. For example, specifying foo.c@@/main/bug403 as an argument downloads

the contents of that branch: all the versions on the branch, providing the resulting filenames are

valid on your client host.

–r⋅ecurse
Includes files from the entire subtree below any subdirectory included in the top-level

listing. Directories are created as necessary and the current directory is taken into

account if relative patterns are given.

SPECIFYING A FILE TRANSFER LOG. Default: None.

–log
Specifies a log file for the operation. The log file lists the workspace-relative pathname

of each file transferred by the Attache get command, as well as an indication of any

errors that occur during the operation. Log file pathnames are absolute, not relative to

the current workspace root.

Each line in a log file is a comment line, except for the names of files which were not

transferred. Log files, therefore, can be used as indirect files to redo a file transfer

operation.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.
362 ClearCase Reference Manual

get
In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

ClearCase and ClearCase LT

• Copy the version loaded in the view into the current directory.

cmd-context get –to foo.c.temp foo.c

• Copy \dev\hello_world\foo.c@@\main\2into the current directory.

cmd-context get –to foo.c.temp \dev\hello_world\foo.c@@\main\2

• Copy \dev\hello_world\foo.c@@\main\2 into the C:\build directory.

cmd-context get –to C:\build\foo.c.temp \dev\hello_world\foo.c@@\main\2

Attache

• Download all files in the current directory to the current Attache workspace, keeping their

original time stamps. Do not overwrite any files writable already in the current workspace.

cmd-context get –noverwrite –ptime *

• Download to the current Attache workspace the file file.c in the current directory and

rename it tempfile.c.

cmd-context get –to tempfile.c file.c

• Download to the current Attache workspace a more recent version of the file file.c in the

current directory and compress while transferring.

cmd-context get –compress file.c
Overwrite existing file c:\jed_ws\my_vob_tag\src\file.c? [no] y

• Download to the current Attache workspace all of the files and subdirectories beneath the

directory my_dir.

cmd-context get –r my_dir

• Download to the current Attache workspace all of the files specified in

c:\users\jed\get_file, and do not overwrite writable files. (Note that the output from the

wshell command appears in a separate window.)

cmd-context wshell type c:\users\jed\get_file
\proj\src*.c
\proj\include*.h

cmd-context get –noverwrite @c:\users\jed\get_file

SEE ALSO

checkin, checkout, config_spec, update, version_selector
 ClearCase Reference Pages 363

getcache
getcache
Displays cache information

APPLICABILITY

SYNOPSIS

• Display/reset statistics for a view:

getcache –vie⋅w [–a⋅ll | –s⋅hort] [–reset] { –cvi⋅ew | view-tag }

• Display the default cache size for the current host:

getcache –vie⋅w –hos⋅t

• Display the site-wide default size for view caches:

getcache –vie⋅w –sit⋅e

• ClearCase dynamic views and Attache only—Display cache information for the MVFS:

getcache –mvfs [–s⋅hort]

DESCRIPTION

The getcache command displays cache information for a view. In ClearCase dynamic views and

and Attache, you can also use getcache to get information on the multiversion file system

(MVFS). View cache information includes cumulative statistics about the number of operations

performed and the size of each of the view’s caches. (You can specify the total size for the view’s

caches with the setcache command; that total is allocated among the individual caches.) getcache
can also reset the view statistics with the –reset option.

NOTE: Two sets of statistics are kept for a view: the set displayed by –all, which is reset only when

the view_server is restarted (with endview –server or by rebooting); and the normal set, which

you can zero with the –reset option.

With the –host option, getcache displays the default size of the view cache for the current host.

With the –site option, getcache displays the site-wide default size for view caches. With the

–mvfs option, getcache displays information about a host’s MVFS caches, which are used to

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
364 ClearCase Reference Manual

getcache
optimize file-system performance. (For more information on optimizing performance, see the

chapters on performance tuning in Administering ClearCase.)

getcache can sometimes reports cache use greater than 100%. The Object cache, in particular, can

show usage exceeding 100% because other objects, including cache objects, can reference the

Object cache. Usually, this means the Object cache size is too small compared to the sizes of

other caches.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE CACHE INFORMATION TO DISPLAY. Default: None.

–vie⋅w
Displays cache information for a single view.

–vie⋅w –hos⋅t
Displays the default cache size for the current host. If this value has not been set,

getcache displays the following message:

No host-wide default view cache size is known.

This value is stored in the ccase-home-dir\var\config\view_cache_size file and is set

with setcache –view –host.

–vie⋅w –sit⋅e
Displays the site-wide default size for view caches. If this value has not been set,

getcache displays the following message:

No site-wide default view cache size is known.

This value is stored in the ClearCase or ClearCase LT site config registries and is set with

setcache –view –site or setsite.

–mvfs
Displays cache information for the MVFS. These values are set with setcache –mvfs.

SPECIFYING HOW MUCH INFORMATION TO DISPLAY. Default: With –view, displays statistics

gathered since the last reset and the current cache sizes. With –mvfs, displays current cache

sizes/utilizations and advice on cache sizing.

–a⋅ll
Displays view statistics since the time that the view_server was started. These statistics

are not reset when you execute getcache –reset.

–view –s⋅hort
Displays only cache sizes.
 ClearCase Reference Pages 365

getcache
–mvfs –s⋅hort
Displays only cache sizes and utilizations.

RESETTING VIEW STATISTICS. Default: The counters for the normal set of view statistics keep

running.

–reset
Displays current statistics, resets them to zero, and prints a summary to the view log.

SPECIFYING A VIEW. Default: None.

–cvi⋅ew
Displays or resets statistics for the current view.

view-tag
Specifies the view whose statistics are displayed or reset.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Display cache information for the cep_dev view:

cmd-context getcache –view cep_dev

Lookup cache: 29% full, 1121 entries (56.8K), 15832 requests, 75% hits
Readdir cache: 4% full, 24 entries (36.5K), 4159 requests, 83% hits
Fstat cache: 31% full, 281 entries (105.1K), 55164 requests, 100% hits
Object cache: 26% full, 1281 entries (176.6K), 40626 requests, 72% hits
Total memory used for view caches: 375.0Kbytes
The current view server cache limits are:
Lookup cache: 201312 bytes
Readdir cache: 838860 bytes
Fstat cache: 352296 bytes
Object cache: 704592 bytes
Total cache size limit: 2097152 bytes

• Display cache information for the MVFS:

cmd-context getcache –mvfs
366 ClearCase Reference Manual

getcache
Mnodes: (active/max) 1043/4096 (25.464%)
Mnode freelist: 885/900 (98.333%)
Cltxt freelist: 41/819 (5.006%)

DNC: Files: 219/800 (27.375%)
Directories: 108/200 (54.000%)
ENOENT: 106/400 (26.500%)

RPC handles: 2/5 (40.000%)

Attribute cache miss summary (for tuning suggestions, see the
documentation for administering ClearCase):
Attribute cache total misses: 1215 (100.00%)
Close-to-open (view pvt) misses: 434 (35.72%)
Generation (parallel build) misses: 0 (0.00%)
Cache timeout misses: 297 (24.44%)
Cache fill (new file) misses: 1 (0.08%)
Event time (vob/view mod) misses: 484 (39.84%)

SEE ALSO

mkview, mvfscache, setcache, setsite, view, view_server
 ClearCase Reference Pages 367

getlog
getlog
Displays log entries

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Display logs graphically:

getlog –g⋅raphical [–hos⋅t hostname | –cvi⋅ew | –tag view-tag | –vob pname-in-vob]

• ClearCase and Attache only—Display logs nongraphically:

getlog [–las⋅t [#_lines] | –fu⋅ll | –sin⋅ce date-time | –aro⋅und date-time [#_minutes]]

[–hos⋅t hostname | –cvi⋅ew | –tag view-tag | –vob pname-in-vob]

{ –a⋅ll | log-name ... }

• ClearCase and Attache only—Display the current set of logs:

getlog –inq⋅uire [–hos⋅t hostname]

• ClearCase LT only—Display logs graphically:

getlog –g⋅raphical

• ClearCase LT only—Display logs nongraphically:

getlog [–las⋅t [#_lines] | –fu⋅ll | –sin⋅ce date-time | –aro⋅und date-time [#_minutes]]

{ –a⋅ll | log-name ... }

• ClearCase LT only—Display the current set of logs:

getlog –inq⋅uire

DESCRIPTION

The getlog command displays extracts from one or more log entries. Run getlog –inquire to

return a list of the available logs.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
368 ClearCase Reference Manual

getlog
NOTE: If the host for which you are trying to view log entries is having problems (for example,

the albd_server is not functioning correctly or the host cannot spawn an admin_server), you

may have to open the Windows NT Event Viewer to view the log entries.

ClearCase and Attache Only—Using getlog

getlog does not need a license, so you can use it to help diagnose problems on your license server

host. In Attache, when a command fails because of an error on the helper host, if the helper is still

active, you can use getlog on the client to fetch the helper error messages.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

DISPLAYING ENTRIES GRAPHICALLY. Default: Entries are displayed in the current command

window.

–g⋅raphical
Starts a log browser.

SPECIFYING LOG EXTRACTS. Default: Displays the last 10 lines for the specified logs (equivalent to

specifying –last 10).

–las⋅t [#_lines]

Gets the last #_lines lines for the specified logs. The default value of #_lines is 10.

–fu⋅ll
Gets the complete contents of the specified logs.

–sin⋅ce date-time
–aro⋅und date-time [#_minutes]

The –since option gets log entries made since date-time. The –around option gets log

entries #_minutes minutes either side of date-time. The default value of #_minutes is 10. If

you specify either of these options for an unformatted log file, getlog prints an error.

(getlog –inquire indicates unformatted logs.)

The date-time argument can have any of the following formats:

date.time | date | time | now
where:

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
 ClearCase Reference Pages 369

getlog
Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

SPECIFYING WHICH HOST’S LOGS TO DISPLAY. Default for ClearCase and Attache: Get the current

host’s log files. These options are not applicable to ClearCase LT, where the host is always the

ClearCase LT server host.

–hos⋅t hostname
Gets logs from hostname.

–cvi⋅ew
Gets logs from the current view’s view host.

–tag view-tag
Gets logs from the view server host of the specified view.

–vob pname-in-vob
Gets logs from the VOB server host of the specified VOB.

SPECIFYING THE LOGS TO DISPLAY. Default: None. You must specify one or more log names, –all
to view all logs, or –inquire to return the list of available logs.

–inq⋅uire
Returns the list of available logs, which can vary with the host’s installed product set and

configuration. Unformatted logs are annotated with the string (unformatted) .

–a⋅ll
Displays every available log file.

log-name ...
Specifies one or more logs of interest. Use –inquire to list valid log names.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Return the list of available logs.
370 ClearCase Reference Manual

getlog
cmd-context getlog –inquire
host_agent ClearCase Host Agent log

cccredmgr ClearCase cccredmgr log
vobsnap ClearCase VOB snapshot log

vob_scrubber ClearCase vob scrubber log (unformatted)
vob ClearCase vob_server log

view ClearCase view_server log
...

• Display the last 10 lines of the current host’s vob_server log.

cmd-context getlog vob
==
Log Name: vob Hostname: superior Date: 24-Feb-99.16:51:02
Selection: Last 10 lines of log displayed
--
02/22/99 00:52:52 vob_server(183): debug=0, verbose=0, dont_fsync=0, check_for_nulls=0,
wait_time=500ms
02/22/99 00:52:52 vob_server(183): UID: 1049610 GID: 1049650
02/22/99 00:52:52 vob_server(183): using C:\USERS\vobs\ms_test.vbs, on host: superior
02/22/99 00:52:51 vob_server(183): addr = 0, port= 1247
02/22/99 00:50:37 vob_server(167): debug=0, verbose=0, dont_fsync=0, check_for_nulls=0,
wait_time=500ms
02/22/99 00:50:37 vob_server(167): UID: 1049610 GID: 1049650
02/22/99 00:50:37 vob_server(167): using C:\USERS\vobs\smg_bld.vbs, on host: superior
02/22/99 00:50:36 vob_server(167): addr = 0, port= 1201
02/19/99 01:10:47 vob_server(166): debug=0, verbose=0, dont_fsync=0, check_for_nulls=0,
wait_time=500ms
02/19/99 01:10:47 vob_server(166): UID: 1049610 GID: 1049650
===

SEE ALSO

errorlogs_ccase
 ClearCase Reference Pages 371

help
help
Displays help on command usage, or (on Attache only) a reference page

APPLICABILITY

SYNOPSIS
h⋅elp [command-name]

command-name –h⋅elp

DESCRIPTION

This command does not require a product license.

ClearCase, ClearCase LT, MultiSite only

The help command displays a usage message for all cleartool or multitool subcommands, or for

one particular subcommand. You can also use help as a command option. For example:

cmd-context lsco –help

Attache only

When used as a command name, this command is a synonym for man.

help formats and displays the specified on-line reference page. For local and hybrid commands, or

if your helper is running on a UNIX host, you can use any valid command abbreviation or alias.

For example:

cmd-context help uncheckout (full command name)

cmd-context help uncheck (abbreviation – local or hybrid command or UNIX only)

cmd-context help unco (alias – local or hybrid command or UNIX only)

With no arguments, help displays the Attache overview reference page. man is a synonym for

help.

When used as a –help command option, it displays a usage message for one particular

command. You can use any valid command abbreviation or alias for any command. For example:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand
372 ClearCase Reference Manual

help
cmd-context lsco –help

Usage: lscheckout | lsco [–long | –short | -fmt format] [–cview]
 [–brtype branch-type] [–me | –user login-name]
 [–recurse | –directory | –all | –avobs] [–areplicas]
 [pname ...]

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

ClearCase, ClearCase LT, MultiSite only

SPECIFYING A SUBCOMMAND. Default: Displays syntax summaries for all cleartool or multitool
subcommands, grouped by function (not alphabetically).

command-name –h⋅elp
h⋅elp command-name

Displays the syntax summary for one cleartool or multitool subcommand.

Attache only

SPECIFYING THE REFERENCE PAGE. Default: Displays the overview reference page for Attache.

command_name
The name (or abbreviation, or alias) of an Attache local or hybrid command; or the name

of any other reference page.

GETTING USAGE INFORMATION. Default: None.

command-name –h⋅elp
Displays the syntax summary for one Attache command.

EXAMPLES

• (Attache only) Display the reference page for the checkout command.

cmd-context help checkout

• (ClearCase, ClearCase LT, MultiSite only) Display a usage message for the checkout
command.

cmd-context help checkout

Usage: checkout | co [-reserved | -unreserved] [-out dest-pname | -ndata]
[-branch branch-pname | -version]
[-c comment | -cfile pname | -cq | -cqe | -nc] pname ...

• Display a usage message for the checkout command using the –help option.

cmd-context checkout -help
 ClearCase Reference Pages 373

help
Usage: checkout | co [-reserved | -unreserved] [-out dest-pname | -ndata]
[-branch branch-pname | -version]
[-c comment | -cfile pname | -cq | -cqe | -nc] pname ...

• (Attache only) Display the Attache overview reference page.

cmd-context help

SEE ALSO

attache_command_line_interface, man
374 ClearCase Reference Manual

hostinfo
hostinfo
Displays configuration data for one or more hosts

APPLICABILITY

SYNOPSIS

hostinfo [–l⋅ong] [–pro⋅perties [–ful⋅l]] [hostname ...]

DESCRIPTION

For one or more hosts, the hostinfo command displays basic system and ClearCase or

ClearCase LT configuration data. When you run hostinfo on an Attache client host, hostinfo
displays information about the ClearCase helper host.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

REPORT FORMAT. Default: hostinfo displays a one-line report for each host.

–l⋅ong
Expands the listing to include the host’s ClearCase registry region, registry server host,

and license server host.

–pro⋅perties
Reports the following properties of the host:

With the –full option, reports the following additional properties for UNIX hosts:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

• Backup registry host

• Registry interoperability region

• MVFS scaling factor and some cache sizes

• Release number and build creation date for all installed ClearCase Product

Family products

• Installation model (for example, standard or full)
 ClearCase Reference Pages 375

hostinfo
SPECIFYING HOSTS. Default: hostinfo displays only local host information.

hostname ...
Specifies one or more network hosts.

EXAMPLES

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Display condensed information about the local host, mercury.

cmd-context hostinfo

mercury: ClearCase 4.0 (Windows NT 4.0 (build 1381) Service Pack 5
Pentium)

• Display expanded information about remote host neptune.

cmd-context hostinfo –long neptune

Client: neptune
Product: ClearCase 4.0
Operating system: Windows NT 4.0 (build 1381) Service Pack 5
Hardware type: Pentium
Registry host: saturn
Registry region: devel
License host: venus

• Display properties of host neptune.

cmd-context hostinfo –properties neptune

neptune: ClearCase 4.0 (Windows NT 4.0 (build 1381) Service Pack 5
Pentium)

Backup registry host: uranus
Registry interoperability region: devel_ux
Scaling factor to initialize MVFS cache sizes: 1
Installed product: MultiSite version 4.0 (Tue Jul 13 15:27:36 1999)
Installed product: ClearCase version 4.0 (Tue Jul 13 15:27:36 1999)

SEE ALSO

clearlicense, registry_ccase

• ClearCase or ClearCase LT installation directory (ccase-home-dir)

• Date and time of ClearCase or ClearCase LT installation

• Release area from which ClearCase or ClearCase LT was installed

• Names of all installed components
376 ClearCase Reference Manual

import
import
Creates an element (if one does not exist) corresponding to each selected file or directory in a

workspace subtree

APPLICABILITY

SYNOPSIS
import [–ci] [–exc⋅lude exclude-pname] [–lca⋅se]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pname ...

DESCRIPTION

The import command creates an element corresponding to each file or directory name in the

workspace, if the element does not already exist in the VOB. For each file in the specified subtree,

import checks to see whether an element of that name exists in the VOB. If not, import invokes

mkelem on the file.

PERMISSIONS AND LOCKS

Permissions Checking: For checked-out directories, permissions checking and locks are the same

as for checkout. For created elements, permissions checking and locks are the same as for

mkelem.

OPTIONS AND ARGUMENTS

CHECKOUT OF THE NEW ELEMENT. Default: mkelem checks out the new element. The file in the

workspace becomes the checked-out version of the element. If –ci option is not specified, the

local files are made writable.

–ci
Creates the new element and version \main\0, checks out the element, then uploads

and checks in a new version containing the data in the workspace file. Local files that

correspond to successfully checked-in versions are read-only.

SPECIFYING WHICH FILES TO EXCLUDE. Default: None.

–exc⋅lude exclude-pname
Specifies a local file containing patterns of files to be excluded during the import. This

exclude-pname contains a list of file names, one or more per line, separated by tabs or

spaces. The file name arguments may contain standard wildcard patterns. Specifying a

Product Command Type

Attache command
 ClearCase Reference Pages 377

import
relative pathname for exclude-pname begins from Attache’s startup directory, not the

working directory, so a full local pathname is recommended.

CREATING NEW ELEMENT NAMES IN LOWERCASE. Default: In Windows 95 or Windows NT, the

default is to create the filename as it exists in the workspace. In Windows 3.x, the default is to

create all new element names in all lower-case by default.

–lca⋅se
Specifies that all new element names are created in all lower-case. When the –lcase
option is used and import converts the fiele name to lowercase, the file in the workspace

is also renamed to match the new element.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE FILES TO BE IMPORTED. Default: None.

pname...

Specifies the files to be imported. Wildcard patterns apply to the workspace contents;

/ (slash) denotes the workspace root. For example, /vobs/gui/*.c refers to all of the .c files

in the /vobs/gui subdirectory of the workspace. Either slashes or backslashes can be

used.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Import all .c files in your current working directory

cmd-context import *.c

• Import all files excluding executables and dynamically linked libraries from the directory

foo. The file ex_file contains the text “*.exe *.dll.”

cmd-context import –exclude c:\users\jed\ex_file foo*

• Import all .c files in the workspace directory src and check them in after they are created

cmd-context import –ci src/*.c
378 ClearCase Reference Manual

import
• Import all files in the workspace directory foo, creating foo in the VOB if it does not exist.

cmd-context import foo

SEE ALSO

attache_command_line_interface, checkout, mkelem, wildcards
 ClearCase Reference Pages 379

license.db
license.db
ClearCase and Attache networkwide license database

APPLICABILITY

SYNOPSIS

• Specify a set of licenses:

–license ClearCase vendor any.max-users expiration-date password

• Specify license timeout period (ClearCase only):

–timeout minutes

• Specify users’ license priorities:

–user { user-name | user-ID } ...

• Forbid product use by certain users:

–nuser user-name ...

• Enable auditing of licensing activity:

–audit

DESCRIPTION

One or more hosts in the network must be designated as license server hosts. Each one must also

be an installation host: a host on which the ClearCase software is installed. Networkwide licensing

of ClearCase and Attache use is established as follows:

• On a license server host — Add license keys:

a. Open the ClearCase Control Panel (accessible from the Windows NT Control Panel).

b. Click the Licensing tab.

c. Select the check box The local system can act as a license server.

d. Type the license key in the license keys field and click the OK button.

This procedure creates (or appends data to) the LicenseKeys value in the Windows registry

key HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion. This one-line or

multi-line value is the license database. You can also edit this registry key directly, but we

recommend that you use the ClearCase GUI.

Product Command Type

ClearCase data structure

Attache data structure
380 ClearCase Reference Manual

license.db
Only the ClearCase administrator should edit the LicenseKeys value on the license server.

• On each installation host — Assign a license server host:

a. Open the ClearCase Control Panel (accessible from the Windows Control Panel).

b. Click the Licensing tab.

c. Clear the check box if it is selected.

d. Type the name of the license server host in the Host box and click OK.

This procedure places the name of the license server host in the LicenseHost value of the

Windows registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion. You can also edit

this registry key directly, but we recommend that you use the ClearCase GUI.

To use ClearCase or Attache, each user must have a license, which grants the user the privilege

to use ClearCase or Attache commands and data on any number of hosts in the network. If no

more licenses are available at a particular time, a user with a higher license priority bumps

(replaces) a lower priority user. The highest priority level is 1.

Use the clearlicense utility to determine your current licensing status.

LICENSE DATABASE FORMAT

The license database contains several kinds of lines. A line can define a multiuser license, specify

users’ license priorities, or enable auditing of licensing activity.

License Set Definition Lines

When you first obtain ClearCase or Attache, you receive a single line of text, which defines a

certain number of licenses. This line must be entered exactly as provided on the license server

host, either at installation time, or later, using the Licensing tab in the ClearCase Control Panel.

Most licenses are locked to their particular license server host. You cannot move the license

database to any other host without invalidating the license. If the vendor field is TEMPORARY, you

can move the license database around the network, to any ClearCase installation host.

The license database can contain any number of –license lines. All the lines are effectively

combined into a single license; the maximum numbers accumulate to determine the total

number of license slots. Alternatively, it may be better to split licenses among two or more license

servers. This increases product availability: if one license server host goes down, the licenses on

the other license server hosts can still be used.

User Priority Lines

The license database can contain any number of –user lines, each of which specifies one or more

users (by name or by numeric ID). All these lines are effectively concatenated into a single license

priority list. The first user on the list has the highest priority; each successive user has a lower

priority. Users not listed can still use the products but they share the lowest priority.
 ClearCase Reference Pages 381

license.db
Excluded User Lines

The license database can contain any number of –nuser lines, each of which specifies one or more

users (by name or by numeric ID). The specified users cannot obtain a license and thus are

completely forbidden from using the product.

–user and –nuser lines can be intermixed. If a user is named in both kinds of line, the first entry

is used.

Audit-Enable Line

A line consisting of the single word –audit enables auditing of license activity. An audit message

is logged to the event log when these events occur:

• A user is granted a new license.

• A user is denied a license because all licenses are in use.

• A user entered a clearlicense –release command (the success or failure of the command is

also logged.

Timeout Line

By default, a ClearCase license granted to a user expires in 60 minutes if the user does not enter

any additional ClearCase commands. A –timeout line changes the expiration interval to the

specified number of minutes. The minimum interval is 30 minutes; there is no maximum

interval.

The time-out for Attache licenses is one week and cannot be changed.

EXAMPLES

• The following line defines a ClearCase license for a maximum of 10 active users. The license

expires on November 16, 1999.

-license ClearCase ATRIA *.10 19981116 2adde977.1360cb11.02

• The following lines define licenses that accommodate a total of 13 active users. User adm is

assigned the highest priority, smith the next highest, and akp the next highest. The 10-user

license expires at the beginning of November 16, 1999, but the 3-user license has no

expiration date.

-license ClearCase ATRIA *.10 19981116 2adde977.1360cb11.02
-license ClearCase ATRIA *.3 NONE 2adde9b9.682410da.02
-user adm
-user smith akp

SEE ALSO

albd_server, clearlicense
382 ClearCase Reference Manual

ln
ln
Creates VOB hard link or VOB symbolic link

APPLICABILITY

SYNOPSIS

• Create one link:

ln [–s⋅link] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–nco [–f⋅orce]] pname link-pname

• Create one or more links in a specified directory:

ln [–s⋅link] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–nco [–f⋅orce]] pname [pname ...] target-dir-pname

DESCRIPTION

The links created with the ln command (VOB symbolic links or VOB hard links) are cataloged in

directory versions, in the same way as elements. By default, a link can be created in a directory

only if that directory is checked out. A VOB link becomes visible to those using other views only

when you check in the directory in which you create the link. (ln appends an appropriate line to

the directory’s checkout comment. The line is also the default checkin comment.)

In a snapshot view, this command executes the update command for elements affected by the

link operation.

VOB SYMBOLIC LINKS

A VOB symbolic link (created if you use the –slink option) is a separate, unversioned object. It

contains a character string, the link text, in the form of a pathname. You can attach attributes and

hyperlinks, but not version labels, to a VOB symbolic link.

You cannot check out a VOB symbolic link. To revise a VOB symbolic link, check out its directory,

remove the link with rmname, create a new link, and check in the directory. (Note that if you use

the –nco option, the checkout and checkin steps are not required.)

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 383

ln
Symbolic links that point to files outside the ClearCase MVFS are not supported by the Windows

operating system. Although the ln command creates the link, the link does not appear in a

standard directory listing; it is displayed only by the cleartool ls command. (This is true for all

symbolic links that do not point to a valid MVFS pathname.)

We recommend that you use relative VOB symbolic links instead of absolute symbolic links.

Absolute VOB symbolic links require you to use absolute pathnames from the view-tag level (for

example, \view-tag\VOB-tag\filename), and therefore are valid only in the view in which they

were created.

NOTE: Although an absolute symbolic link that includes the view-tag at the beginning works

when you are in the view, an absolute symbolic link pointing to a pathname that begins with a

VOB-tag (for example, cleartool ln \my_vob\file my_link) does not work.

VOB HARD LINKS

A VOB hard link (created if you omit the –slink option) is an additional name for an existing

element. We recommend that you use VOB symbolic links instead of VOB hard links whenever

possible.

When you check out a VOB hard link (that is, check out the element it names), all the other names

for the element are listed by theClearCase/ClearCase LT/Attache ls command as checkedout

but removed and does not appear in Windows Explorer. The element is checked out, but there

are no view-private files with the other names. The command lscheckout –all lists the

checked-out element only once.

After you check in the element or cancel the checkout (using uncheckout), the other names for

the element are listed by the ls command as disputed checkout, checkedout but removed

and will not appear in Windows Explorer. To update the state of the other names, use the

setcs –current command.

You cannot make a VOB hard link to a derived object.

VOB Hard Links and Directory Merges

The merge and findmerge commands can merge both file elements and directory elements.

Merging versions of a directory element can involve creating a hard link to a directory or

removing a hard link from a directory:

• Working on a subbranch, a user checks out directory src, and then uses mkdir to create

directory element testing within src or uses rmname to remove testing from the src
directory.

• When the subbranch is merged back into the main branch, a hard link named testing is

made in (or removed from) a main-branch version of src, referencing the directory element

already cataloged in the subbranch version.
384 ClearCase Reference Manual

ln
ClearCase, ClearCase LT and Attache allow creation of hard links to directories only in this

directory-merge context: the two links (both named testing in the example above) must occur in

versions of the same directory element (src in the example above).

VOB Hard Links in Snapshot Views

In a snapshot view, a VOB hard link is a copy of its target.

RECOVERING A REMOVED ELEMENT

You can use ln to recover an element that you mistakenly removed from a VOB directory with

rmname. See the rmname reference page for details. Note that you cannot use ln to link elements

that are in the lost+found directory.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required if you checked out the directory. To use the

–nco option, you must be VOB owner or a member of the ClearCase group (ClearCase) or logged

in at the ClearCase LT server host as the local administrator (ClearCase LT).

See the permissions reference page.

Locks: An error occurs if the VOB is locked.

OPTIONS AND ARGUMENTS

TYPE OF LINK. Default: Creates one or more VOB hard links.

–s⋅link
Creates VOB symbolic links.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CREATING A LINK IN A CHECKED-IN DIRECTORY VERSION. Default: You must check out a directory

to create a link in it.

–nco [–f⋅orce]

Prompts for confirmation, then creates the link in the checked-in directory version that

you specify. Use the –force option to suppress the confirmation prompt.

NOTE: You cannot use –nco in a replicated VOB.

SPECIFYING THE LINK TARGET. Default: None.

pname ...

Specifies an existing element; each pname must be a standard or view-extended
 ClearCase Reference Pages 385

ln
pathname. For VOB hard links, each pname must specify an existing element (it cannot

be a VOB symbolic link) in the same VOB as the link being created.

SPECIFYING THE NAME OF THE NEW LINK. Default: None.

link-pname
A pathname within the same VOB as pname, at which one new VOB hard link or VOB

symbolic link is to be created. An error occurs if an object already exists at link-pname.

target-dir-pname
The pathname of an existing directory element in the same VOB as the pname argument.

ln creates a new link in this directory for each preceding pname argument.

NOTE: This form of the command is intended for the creation of hard links. If you use this

form to create symbolic links, make sure the links do not point to themselves. For

example, the following command creates circular links:

cleartool ln –s file.txt dir1
Link created: "dir1\file.txt".

cd dir1

cleartool ls
file.txt -> file.txt

The following command creates symbolic links that are not circular:

cleartool ln –s ..\file.txt .
Link created: ".\file.txt".

cd dir1

cleartool ls
file.txt -> ..\file.txt

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Create a VOB hard link, hw.c, as another name for element hello.c.

cmd-context ln hello.c hw.c

Link created: "hw.c".

• Create a VOB symbolic link, messages.c, pointing to msg.c.
386 ClearCase Reference Manual

ln
cmd-context ln -slink msg.c messages.c

Link created: "messages.c".

• Create a group of hard links in the subd directory for all .h files in the current working

directory.

cmd-context ln *.h subd
Link created: "subd\hello.h".
Link created: "subd\msg.h".
Link created: "subd\util.h".

• As a member of the ClearCase group, create a VOB symbolic link in the checked-in directory

version \vobs_hw@@\main\3 that points to hello.c in the current working directory.

cmd-context ln -slink -nco hello.c ..\vobs_hw@@\main\3\hello.c
Modify checked-in directory version “\vobs_hw@@\main\3”? [no] yes
Link created: “..\vobs_hw@@\main\3\hello.c”.

SEE ALSO

describe, mv, rename, update
 ClearCase Reference Pages 387

lock
lock
Locks an object

APPLICABILITY

SYNOPSIS
lock [–rep⋅lace] [–nus⋅ers login-name[,...] | –obs⋅olete]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–pna⋅me] pname ...

| object-selector ...

}

DESCRIPTION

The lock command creates a lock on an entire VOB, or on one or more file-system objects, type

objects, or VOB storage pools. A lock on an object disables operations that modify the object; a

lock has no effect on read operations, such as lshistory. (Exception: see the Storage Pool Lock:
Cleartext Pool section.)

The VOB does not need to be mounted for you to lock type objects, storage pools, or the VOB

itself. However, you need a view context (and therefore a mounted VOB if you’re using a dynamic
view) to lock elements or versions.

The following sections describe the several kinds of locks.

VOB Lock

Locking an entire VOB disables all write operations to that VOB and forces a database checkpoint

by causing a state flush. A typical application is locking a VOB to prevent it from being modified

during backup.

You must lock a VOB before backing it up, and you cannot use the –nusers option. With –nusers,

it is possible that the VOB will be modified during the backup, and the nuser lock does not

perform a database checkpoint.

NOTE: Locking a VOB does not lock its cleartext storage pools, because this would prevent read

access to text_file, compressed_text_file, and binary_delta_file elements. (For example, it would

prevent a locked VOB from being backed up.) To completely lock a VOB, you must also lock its

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
388 ClearCase Reference Manual

lock
cleartext pools, using one or more lock pool: commands. You may want to do this to move a

cleartext pool.

Type Lock

In general, locking a type object disables these kinds of operations:

• Operations that create, delete, or modify instances of the type

• Operations that delete or modify the type object itself (for example, renaming it)

The following sections describe how these general rules apply to the different kinds of type

objects.

• Element Type. If an element type is locked, you cannot:

• Use it in an rmtype or rename command

• Create an element of that type with mkelem or mkdir

• Change an existing element to that type with chtype

• Modify the element’s version tree with checkout, checkin, or mkbranch

• Branch Type. If a branch type is locked, you cannot:

• Use it in an rmtype, rename, or mkbrtype –replace command

• Create a branch of that type with mkbranch

• Rename (that is, change the type of) an existing branch to or from that type with chtype

• Modify the branch with checkout or checkin

• Cancel a checkout using uncheckout

• Attach a label using mklabel

• Remove a label using rmlabel or mklabel -replace

You can create a subbranch at any version on a locked branch, using mkbranch. (Creating a

subbranch does not modify the branch itself.)

• Label Type. If a label type is locked, you cannot:

• Use it in an rmtype, rename, or mklbtype –replace command

• Attach or remove a version label of that type with mklabel or rmlabel (This includes

moving a label from one version to another with mklabel –replace.)

• Attribute Type. If an attribute type is locked, you cannot:

• Use it in an rmtype, rename, or mkattype –replace command
 ClearCase Reference Pages 389

lock
• Attach or remove an attribute of that type with mkattr or rmattr (This includes moving

an attribute from one version to another with mkattr –replace.)

• Hyperlink Type. If a hyperlink type is locked, you cannot:

• Use it in an rmtype, rename, or mkhltype –replace command

• Create or remove a hyperlink of that type with mkhlink or rmhlink

• Trigger Type. If a trigger type is locked, you cannot:

• Use it in an rmtype, rename, or mktrtype –replace command

• (If created with mktrtype –element) Create or remove a trigger of that type with

mktrigger or rmtrigger

In general, locking a trigger type does not inhibit triggers of that type from firing. Exception:

trigger firing is inhibited if a trigger type created with mktrtype –element –all or mktrtype
–type is made obsolete (using lock –obsolete).

Storage Pool Lock

Locking a VOB storage pool inhibits commands that create or remove the pool’s data containers.

It also prevents the pool’s scrubbing parameters from being modified with mkpool –update. The

following sections describe how this principle applies to the different kinds of storage pools.

• Source Pool. If a source storage pool is locked, you cannot:

• Create an element that would be assigned to that pool, with mkelem or mkdir. (A new

element inherits its pool assignments from its parent directory element.)

• Change an existing element’s pool assignment to/from that pool, with chpool.

• Change an element’s element type with chtype, if the change would require recreation

of source data containers (for example, changing from type file to type text_file).

• Check in a new version of an element assigned to that pool.

• Create or remove a branch of an element assigned to that pool, with mkbranch or

rmbranch.

• Remove a version of an element assigned to that pool, or remove the element itself, with

rmver or rmelem.

• Derived Object Pool. If a derived object storage pool is locked:

• clearmake cannot winkin a previously unshared derived object in a directory assigned to

that pool. (The invocation of promote_server to copy the data container from

view-private storage to the derived object storage pool fails.)

• scrubber cannot remove data containers from the pool.
390 ClearCase Reference Manual

lock
• An rmdo command fails for a derived object whose data container is in that pool.

• Cleartext Pool. If a cleartext storage pool is locked:

• An attempt to read (for example, with type) a version of an element assigned to that pool

may fail. (It fails if a new cleartext data container for that version would have been

created and cached in the cleartext pool.)

LOCKING OR UNLOCKING GLOBAL TYPES

Locking or unlocking a global type or one of its local copies locks or unlocks the global type and

all local copies. For more information, see Administering ClearCase.

OBSOLETE OBJECTS

An object becomes obsolete if it is processed with a lock –obsolete command. An obsolete type

object or obsolete storage pool is not only locked, but is also invisible to certain forms of the

lstype, lslock, lspool, and lsvtree commands. An obsolete VOB or obsolete VOB object is no

different from one with an ordinary lock. You can change an object’s status from obsolete to

locked by using a lock –replace command:

cmd-context lock –obsolete brtype:test_branch (make a branch type obsolete)

Locked branch type "test_branch".

cmd-context lock –replace brtype:test_branch (change the branch type to ’just locked’)

Similarly, you can use a lock –replace command to make a locked object obsolete.

REMOVING LOCKS

The unlock command removes a lock from an object, reenabling the previously prohibited

operations.

PERMISSIONS AND LOCKS

Kind of Object Users Permitted to Lock the Object
Type object Type owner, VOB owner, member of the ClearCase group

(ClearCase), local administrator of the ClearCase LT server host

(ClearCase LT)

Storage pool VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT)

VOB VOB owner, member of the ClearCase group (ClearCase), local

administrator of the ClearCase LT server host (ClearCase LT)

Element Element owner, VOB owner, member of the ClearCase group

(ClearCase), local administrator of the ClearCase LT server host

(ClearCase LT)
 ClearCase Reference Pages 391

lock
See the permissions reference page.

Locks: The command fails if the VOB containing the object is locked.

MULTISITE MASTERSHIP

(Replicated VOBs only) A lock –obsolete command fails if the current replica does not master

the object. However, a regular lock command succeeds even if the current replica does not have

mastership. (Regular locks are not replicated and obsolete locks are.)

OPTIONS AND ARGUMENTS

REPLACING AN EXISTING LOCK. Default: An error occurs if you attempt to lock an object that is

already locked.

–rep⋅lace
(Cannot be used when locking an entire VOB) Uses a single atomic transaction to replace

an existing lock with a new lock. (If you use two commands to unlock the object and

then lock it again, there is a short interval during which the object is unprotected.)

You can use this option to change a object’s status from just locked to obsolete.

SPECIFYING THE DEGREE OF LOCKING. Default: Locks an object to all users, but does not make the

object obsolete.

–nus⋅ers login-name [,...]

Allows the specified users to continue using the object, which becomes locked to all

other users. The list of user names must be comma-separated, with no white space.

–obs⋅olete
Locks an object for all users, and also makes it obsolete.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See CUSTOMIZING COMMENT
HANDLING in the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE OBJECTS TO BE LOCKED. Default: The final arguments are assumed to be the

names of elements and/or branches. To lock another kind of object, you must use an

object-selector prefix.

When locking type objects and storage pools, the command processes objects in the VOB

containing the current working directory. To lock an entire VOB, you must specify a VOB.

Branch Branch creator, element owner, VOB owner, member of the

ClearCase group (ClearCase), local administrator of the

ClearCase LT server host (ClearCase LT)
392 ClearCase Reference Manual

lock
[–pna⋅me] pname ...

object-selector ... (mutually exclusive)

One or more names, specifying the objects to be locked. To lock an element, you can

specify the element itself (for example, foo.c@@) or any of its versions (for example, foo.c
or foo.c@@\RLS1.3).To lock a branch, use an extended pathname (for example,

foo.c@@\main\rel2_bugfix). If pname has the form of an object selector, you must use

the –pname option to indicate that pname is a pathname.

Specify object-selector in one of the following forms:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Lock three label types for all users.

cmd-context lock lbtype:REL1 lbtype:REL1.1 lbtype:REL2

Locked label type "REL1".
Locked label type "REL1.1".
Locked label type "REL2".

• Obsolete a branch type.

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]
 ClearCase Reference Pages 393

lock
cmd-context lock -obsolete brtype:rel2_bugfix

Locked branch type "rel2_bugfix".

• Lock the VOB containing the current working directory.

cmd-context lock vob:.
Locked versioned object base "\users_hw".

• Lock the test branch type for all users except gomez and jackson.

cmd-context lock –nusers gomez,jackson brtype:test

Locked branch type "test".

• Lock elements with a .c extension for all users. Then try to check out one of the locked

elements.

cmd-context lock *.c

Locked file element "hello.c".
Locked file element "msg.c".
Locked file element "util.c".

cmd-context checkout –nc msg.c

cleartool: Error: Lock on file element prevents operation "checkout".
cleartool: Error: Unable to check out "msg.c".

SEE ALSO

unlock
394 ClearCase Reference Manual

lockmgr
lockmgr
VOB database access arbitrator

APPLICABILITY

SYNOPSIS
Invoked at ClearCase or ClearCase LT startup time

DESCRIPTION

Each VOB host runs one database lock manager process, lockmgr. This process arbitrates

transaction requests to all VOB databases on that host from ClearCase or ClearCase LT client

programs throughout the network. The calling program polls lockmgr, which either grants or

prohibits access to the requested data. If the data is available, the transaction proceeds

immediately: the data is read or written, and output is returned to the calling program. If the data

is unavailable (locked because another caller has been granted write access to the data), the caller

waits until lockmgr grants it access to the data.

At system startup time, the Service Control Manager starts the lockmgr service with the options

and default values described in the OPTIONS AND ARGUMENTS section. To change these

values, create the following Windows registry key:

HKEY_LOCAL_MACHINE\ SOFTWARE\Atria\ClearCase\CurrentVersion
LockMgrCmdLine: REG_SZ : –a almd –u num –f num

OPTIONS AND ARGUMENTS

SPECIFYING THE LOCKMGR SOCKET. Default: almd

–a almd
Specifies the name of the socket created by the lockmgr. Do not change this value.

SPECIFYING THE SIZE OF THE REQUEST QUEUE. Default: 128.

–q num
Specifies the number of lock requests for locks to be queued. The Lock Manager delays

queuing lock requests in excess of this value. As a rule, this value ought to be five times

the average number of users waiting for locks. (In this context, users means db_server
processes and RPC server processes.)

SPECIFYING THE NUMBER OF USERS. Default: 128.

Product Command Type

ClearCase command

ClearCase LT command
 ClearCase Reference Pages 395

lockmgr
–u num
Specifies the number of concurrent users the Lock Manager supports. In this context,

user means a db_server or vobrpc_server process. Each active view requires one

vobrpc_server process for each VOB that the view accesses. Various operations that

display VOB information (for example, from cleartool or Windows Explorer) will cause

a db_server process to be allocated. In general, if the number of db_server and

vobrpc_server processes on a single VOB server host approaches the number of users

the Lock Manager is configured to support, increase the –u parameter.

SPECIFYING THE NUMBER OF FILES. Default:128.

–f num
Specifies the number of concurrent files the Lock Manager supports. In this context, file
means one of the seven files that constitute a VOB database. If you have more than 36

VOBs on a single VOB server host, increase the –f parameter to a value at least seven

times the number of VOBs on the host.

ERROR LOG

The lockmgr sends warning and error messages to the Windows Event Viewer.

SEE ALSO

albd_server, db_server, vobrpc_server
396 ClearCase Reference Manual

ls
ls
Lists VOB-resident objects, elements loaded into a snapshot view, and view-private objects in a

directory

APPLICABILITY

SYNOPSIS
ls [–r⋅ecurse | –d⋅irectory] [–l⋅ong | –s⋅hort] [–vob⋅_only | –vie⋅w_only]

[–nxn⋅ame] [–vis⋅ible] [pname ...]

DESCRIPTION

The ls command lists VOB-resident objects, elements loaded into a snapshot view, and view-private
objects in a directory.

Listing Format

The default listing includes this information:

• The name of each element cataloged in the current directory, with the version-ID of the

particular version in the view. Also included is the version selector part of the config spec

rule that selects this version. In a snapshot view, you see the message <rule info

unavailable> if ls encounters errors

• The name of each view-private object in the current directory

• In a dynamic view, the name of each derived object (DO) visible in the view, along with its

unique DO-ID

The listing for an element or a derived object in a dynamic view may also include an annotation

that indicates an unusual or noteworthy state. For example, the listing for an element that has

been checked out to your view identifies the version that was checked out:

hello.c@@\main\CHECKEDOUT from \main\4 Rule: CHECKEDOUT

The following annotations may appear when you issue ls from any type of view:

eclipsed

No version of the element is selected because a view-private object with the same name

exists in your view. Typical occurrence: you create a view-private file in your view; then

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 397

ls
an element with the same pathname is created in another view. In your view, an ls
–vob_only shows the element to be eclipsed.

eclipsed by checkout

(Appears only when you use the –vob_only option) No version from the element’s

version tree is selected, because the element has been checked out in this view, and a

checked-out version always eclipses all checked-in versions.

checkedout but eclipsed

The element has been checked out in this view, but there is no CHECKEDOUT config

spec rule; thus, the checked-out version is not visible in the view.

checkedout but removed

The element was checked out in this view, but the view-private file was subsequently

removed. You may have removed the file with del. ClearCase, ClearCase LT, and

Attache remove it (in effect) when you check out a file with checkout –out, or when you

check out a DO version.

NOTE: If a file element has several names, by virtue of one or more VOB hard links,

checking out the element under one name causes all the other names to be listed with this

annotation. (The element is checked out, but there are no view-private files with the

other names.)

no version selected

The element is not selected by any config spec rule, or is selected by a –none config spec

rule.

error on reference

The element is selected by an –error config spec rule.

The following annotations may appear when you issue ls from a dynamic view:

no config record

(Shareable derived objects only) The derived object’s data container is still stored in the

view, but the derived object in the VOB database (and, typically, its associated

configuration record) have been deleted by rmdo. This can occur only in the view in

which the derived object was originally built.

disputed checkout

The element is considered to be checked out by the view_server but is not so indicated

in the VOB database (or vice versa). This can occur during the short interval in which a

checkin or checkout is in progress.

removed with white out

The derived object was winked in by, and is still referenced by, the current view, but it

has been forcibly removed from the VOB database with rmdo. The derived object is not

recoverable.
398 ClearCase Reference Manual

ls
The following annotations may appear when you issue ls from a snapshot view:

not loaded

The element is not loaded into the snapshot view. Either there are no load rules

specifying the element, or the version-selection rules do not select any version of the

element.

loaded but missing

A version of the element was loaded into the view, but you have deleted or renamed the

file in the view (possibly using the del command). To copy the version back into the

view, use the cleartool get command (note that generates a hijacked file) or update the

snapshot view, specifying the pathname to the missing file.

hijacked

The version in the view was modified without being checked out.

overridden

The element is loaded in the snapshot view, but its file type is not the same as the

corresponding object in the VOB; or the element is not loaded in the snapshot view, but

an object with the same name exists in the view.

special selection

The version you checked in (and, hence, the version currently in the view) is not the

version that the config spec selects from the VOB. For more information, refer to the

section, Actions Taken in the View on page 61, in the checkin reference page.

nocheckout

The version hijacked in the view is no longer the version the config spec selects from the

VOB. To prevent losing changes in the version selected by the config spec, you cannot

check out the hijacked file. To check in your modifications, you must fix the hijack

condition:

(You can use the graphical update tool to do the checkout and merge operations.)

deleted version

The version currently in the view has been removed from the VOB (for example, by the

rmver command). Use the update command to copy a valid version into the view.

1. Rename the hijacked file and update the file.

2. Check out the version from which you hijacked the file.

3. Copy your hijacked file over the checked-out version.

4. Merge from the current version to your checked-out version.

You can now check in your version.
 ClearCase Reference Pages 399

ls
Elements Suppressed from the View

The listing includes elements selected with –none and –error config spec rules, and elements that

are not selected by any config spec rule. You can specify such elements in commands that access

the VOB database only, such as describe, lsvtree, and mklabel.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

ls lists the contents of that directory, but not the contents of any of its subdirectories.

NOTE: This includes directories in version-extended namespace, which represent elements and

their branches. For example, specifying foo.c@@\main\bug403 as an argument lists the contents

of that branch: all the versions on the branch.

–r⋅ecurse
Includes a listing of the entire subtree below any subdirectory included in the top-level

listing. VOB symbolic links are not traversed during the recursive descent.

–d⋅irectory
Lists information on a directory itself, rather than its contents.

REPORT FORMAT. Default: The default report format is described in the Listing Format section.

–l⋅ong
For each object, lists the config spec rule matching the object, and classifies each object.

The classification can be one of: version, directory version, file element, directory

element, view-private object, derived object, derived object version, or symbolic link.

For each derived object, ls –long indicates whether the DO is nonshareable, unshared,

promoted, or shared.

–s⋅hort
Restricts the listing of each entry to its version-extended pathname only.

–nxn⋅ame
Lists simple pathnames instead of version-extended pathnames.

VOB/VIEW RESTRICTION. Default: The listing includes both objects in VOB storage and objects in

view storage.

–vob⋅_only
Restricts the listing to objects in the VOB storage, including versions of elements and

VOB links. This may also add some entries to the listing: those for the underlying

elements that are eclipsed by checked-out versions.
400 ClearCase Reference Manual

ls
–vie⋅w_only
Restricts the listing to objects that belong logically to the view: view-private files,

view-private directories, and view-private links; checked-out versions; and all derived

objects visible in the view.

NOTE: Checked-out directories are listed by –vob_only, and not by –view_only.

NOTE: Derived objects visible in the view are listed by –view_only (and not –vob_only),

regardless of whether they are (or ever have been) shared.

–vis⋅ible
Restricts the listing to objects visible to the standard dir command.

SPECIFYING THE OBJECTS TO BE LISTED. Default: The current working directory (equivalent to

specifying “.” as the pname argument). If you don’t specify any other options, all files and links

in the current working directory are listed; all subdirectory entries are listed, but not the contents

of these subdirectories.

pname ...

Restricts the listing to the specified files, directories, and/or links. pname may be a view-

or VOB-extended pathname to list objects that are not in the view, regardless of whether

the view is a snapshot view or a dynamic view (see pathnames_ccase).

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

NOTE: In some examples, output is wrapped for clarity.

• List the VOB-resident objects and view-private objects in the current working directory.

cmd-context ls
 ClearCase Reference Pages 401

ls
Makefile@@\main\3 Rule: \main\LATEST
bug.report
cm_add.c@@\main\0 Rule: \main\LATEST
cm_fill.c@@\main\0 Rule: \main\LATEST
convolution.c@@\main\CHECKEDOUT from \main\0 Rule: CHECKEDOUT
edge.sh
hello@@24-Mar.11:32.418
hello.c@@\main\CHECKEDOUT from \main\4 Rule: CHECKEDOUT
hello.h@@\main\CHECKEDOUT from \main\2 Rule: CHECKEDOUT
hello.o@@24-Mar.11:32.412
hw.c@@\main\4 Rule: \main\LATEST
include@@\main\CHECKEDOUT Rule: CHECKEDOUT

• List the objects in the current working directory, with annotations.

cmd-context ls -long

version Makefile@@\main\3 Rule: element * \main\LATEST
view private object bug.report
version cm_add.c@@\main\0 Rule: element * \main\LATEST
derived object (unshared) hello@@24-Mar.11:32.418
version hello.h@@\main\CHECKEDOUT from \main\2

Rule: element * CHECKEDOUT
derived object (unshared) hello.o@@24-Mar.11:32.412
directory version include@@\main\CHECKEDOUT

Rule: element * CHECKEDOUT
symbolic link messages.c --> msg.c
version msg.c@@\main\1 Rule: element * \main\LATEST
view private object util.c.contrib

• List only the view-private objects in the current working directory.

cmd-context ls -view_only

bug.report
hello@@24-Mar.11:32.418
hello.c@@\main\CHECKEDOUT from \main\4 Rule: CHECKEDOUT
hello.h@@\main\CHECKEDOUT from \main\2 Rule: CHECKEDOUT
hello.o@@24-Mar.11:32.412
msg.o@@23-Mar.20:42.379
util.c@@\main\CHECKEDOUT from \main\4 Rule: CHECKEDOUT
util.o@@24-Mar.11:32.415

• List the contents of the directory in extended namespace that corresponds to the main
branch of element util.c.
402 ClearCase Reference Manual

ls
cmd-context ls util.c@@\main
util.c@@\main\0
util.c@@\main\1
util.c@@\main\2
util.c@@\main\3
util.c@@\main\CHECKEDOUT
util.c@@\main\LATEST
util.c@@\main\REL2
util.c@@\main\REL3
util.c@@\main\rel2_bugfix

view private object util.c.contrib

• List any checked-out directories.

cmd-context ls –directory –vob_only

.@@\main\CHECKEDOUT from \main\4 Rule: CHECKEDOUT

SEE ALSO

checkout, config_spec, lsprivate, lsvtree, pathnames_ccase, uncheckout
 ClearCase Reference Pages 403

lsactivity
lsactivity
Lists information about UCM activities

APPLICABILITY

SYNOPSIS
lsact⋅ivity [–s⋅hort | –l⋅ong | –fmt format-string |

–anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in stream-selector-name |

–cac⋅t | [–cac⋅t] –vie⋅w view-tag | –cvi⋅ew | activity-selector ...]

DESCRIPTION

The lsactivity command lists information about UCM activities.

PERMISSIONS, LOCKS, AND MASTERSHIP

Permissions Checking: No special permissions required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

SPECIFYING OUTPUT FORMAT Default: A one-line summary of the activity.

–s⋅hort
Displays only the name of each activity.

–l⋅ong
Displays a detailed description of each activity.

–fmt format-string
Displays information in the format specified by format-string. See the fmt_ccase
reference page.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays the containing stream, project, and folder for one or more activities. For

information on the –fmt option, see the fmt_ccase reference page. The –depth option sets

the number of levels displayed. The depth argument must be a positive integer.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
404 ClearCase Reference Manual

lsactivity
SPECIFYING THE ACTIVITY. Default: –cview.

–inv⋅ob vob-selector
Displays a list of all activities in the specified project VOB.

–in stream-selector
Displays a list of all activities in the specified stream.

–cac⋅t
Displays information for the current activity.

–vie⋅w view-tag
For the specified view, displays a list of all activities in its stream.

–cvi⋅ew
For the current view, displays a list of all activities in its stream.

activity-selector ...
Specifies one or more activities to list.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display detailed information for an activity.

cmd-context lsactivity -l fix_copyright
 ClearCase Reference Pages 405

lsactivity
activity "fix_copyright"
06-Jun-00.15:49:23 by Ken Tessier (ktessier.user@mymachine)
owner: ktessier
group: user
stream: chris_webo_dev@\webo_pvob
title: Fix copyright text
change set versions:
\webo_modeler\design\add_proc@@\main\chris_webo_dev\1
\webo_modeler\design\foo@@\main\integration\chris_webo_dev\1

• Display a short description of the current activity. This is the currently set activity for the

view from which the command was issued.

cmd-context lsact -cact

06-Jun-00.17:16:12 update_date ktessier "Update for new date
convention"

SEE ALSO

chactivity, mkactivity, rmactivity
406 ClearCase Reference Manual

lsbl
lsbl
Lists information about a UCM baseline

APPLICABILITY

SYNOPSIS

• List baseline information per stream or component or by promotion level:

lsbl [–s⋅hort | –l⋅ong | –fmt format-string | –tre⋅e]

[–lev⋅el promotion-level | [–ltl⋅evel promotion-level] [–gtl⋅evel promotion-level]]

[–str⋅eam stream-selector | –com⋅ponent component-selector]

• List information for one or more specific baselines:

lsbl [–s⋅hort | –l⋅ong | –fmt format-string] [–tre⋅e] [baseline-selector ...]

DESCRIPTION

The lsbl command lists information for one or more UCM baselines.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE OUTPUT. Default: A one-line summary of each baseline.

–s⋅hort
Displays only the name of each baseline.

–l⋅ong
Displays detailed information for each baseline, including ownership, creation, and

label information and the UCM stream, component, change sets, and promotion level

associated with the baseline.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

details.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 407

lsbl
–tre⋅e
Displays a list of streams and baselines associated with one or more baselines. The list is

indented to show the order of succession for baselines.

FILTERING BY PROMOTION LEVEL. Default: All promotion levels.

–lev⋅el promotion-level
Displays a list of baselines that are at the specified promotion level. An error results if

the specified level is not in the project VOB’s current list of valid promotion levels. This

option modifies the –stream and –component options. For general information on

promotion levels, see the setplevel reference page.

–ltl⋅evel promotion-level
Displays a list of baselines whose promotion level is lower than the one specified by the

promotion-level argument. For example, if your project has four promotion levels in this

order: PROTOTYPE, REVIEWED, TESTED, CERTIFIED, and you use the argument

–ltlevel TESTED, the lsbl command displays a list of all baselines whose promotion

level is PROTOTYPE or REVIEWED. This option modifies the –stream and

–component options.

–gtl⋅evel promotion-level
Displays a list of baselines whose promotion level is greater than the one given. This

option modifies the –stream and –component options.

SPECIFYING THE BASELINE. Default: Baselines in the UCM project VOB of the current directory.

–str⋅eam stream-selector
Displays a list of baselines created in the specified stream.

–com⋅ponent component-selector
Displays a list of baselines of the specified component.

baseline-selector ...
Specifies one or more baselines for which information is displayed.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display a one-line summary (the default) of baselines of the specified component.

cmd-context lsbl -component parser@/vobs/core_projects
408 ClearCase Reference Manual

lsbl
17-Sep-99.12:06:59 parser_INITIAL.112 bill "parser_INITIAL"
 component: parser

• Display a description of baselines created in a stream:

cmd-context lsbl -stream java_int@/vobs/core_projects

17-Sep-99.13:56:10 testbl.121 bill "testbl"
 stream: java_int
 component: parser
17-Sep-99.14:05:30 new_bl.121 bill "new_bl"
 stream: java_int
 component: parser

SEE ALSO

chbl, deliver, describe, diffbl, mkbl, rebase, rmbl, setplevel
 ClearCase Reference Pages 409

lscheckout
lscheckout
Lists checkouts of an element

APPLICABILITY

SYNOPSIS

• (ClearCase and ClearCase LT only) List checkouts graphically:

lsc⋅heckout –g⋅raphical pname

• List checkouts in the command window:

lsc⋅heckout | lsco [–l⋅ong | –s⋅hort | –fmt format-string] [–cvi⋅ew]

[–brt⋅ype branch-type-selector]

[–me | –use⋅r login-name]

[–r⋅ecurse | –d⋅irectory | –a⋅ll | –avo⋅bs] [–are⋅plicas]

[pname ...]

DESCRIPTION

The lscheckout command lists the checkout records (the checkouts) for one or more elements.

There are many controls for specifying the scope: which elements, directories, or VOBs; which

user; which view; and so on.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

(CLEARCASE AND ClearCase LT ONLY) LISTING CHECKOUTS GRAPHICALLY. Default: Lists checkouts in

the command window.

–g⋅raphical
Starts the Find Checkouts tool to display checkouts.

REPORT FORMAT. Default: The listing of a checkout event record looks like this:

31-Aug.20:19 drp checkout version "lscheckout.txt" from \main\24 (reserved)
“delete extra spaces”

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
410 ClearCase Reference Manual

lscheckout
–l⋅ong
Expands the listing to include the view to which the element is checked out.

–s⋅hort
Restricts the listing to the pathnames of checked-out elements.

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

SELECTING CHECKOUT RECORDS TO LIST. Default: The listing includes all checkouts for the

specified elements, including checkouts made in any view by any user.

–me
Restricts the listing to your own checkouts.

–use⋅r login-name
Restricts the listing to checkouts made by the specified user.

–cvi⋅ew
Restricts the listing to checkouts made in the current view.

–brt⋅ype branch-type-selector
Restricts the listing to checkouts on branches of the specified type. Specify

branch-type-selector in the form [brtype:]type-name[@vob-selector]

SPECIFYING THE ELEMENTS. Default: The current working directory (equivalent to specifying “.”
as the pname argument). If you don’t specify any options, lscheckout lists all checkouts of

elements in the current directory, to any view. If the current directory is itself checked out, this is

also indicated.

pname ...

One or more pathnames, specifying file elements and/or versions of directory elements.

(A pathname to a directory specifies the version in the view.)

type-name Name of the branch type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

• For each pname that specifies a file element, the listing includes that element’s

checkout event records.
 ClearCase Reference Pages 411

lscheckout
The following options modify the processing of the pname arguments.

–r⋅ecurse
Lists the checkouts of elements in the entire subtree below any directory encountered in

the current view. VOB symbolic links are not traversed during the recursive descent.

–d⋅irectory
Lists the checkouts (if any) of a directory itself, rather than the checkouts of elements

cataloged in it.

–a⋅ll
Lists all the checkouts in the VOB containing pname. If you don’t specify any pname
arguments, lists all checkouts in the VOB containing the current working directory.

NOTE: A file element can have several names, by virtue of one or more VOB hard links.

Checking out such an element under one name causes all the names to be listed as

checked out. However, the –all option lists the checked-out element only once.

–are⋅plicas
Lists checkouts of the element specified by pname in all replicas of the VOB that contains

pname. If you don’t specify any pname arguments, lists all checkouts in all replicas of the

VOB containing the current working directory.

The following option is mutually exclusive with pname arguments:

–avo⋅bs
Similar to –all, but includes checkouts in all VOBs active (mounted) on the local host. (If

environment variable CLEARCASE_AVOBS is set to a semicolon-separated list of VOB-tags,

this set of VOBs is used instead.)

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the checkouts in the current working directory.

cmd-context lscheckout

• For each pname that specifies a version of a directory element, the listing includes

checkout event records of elements cataloged in that directory version—but not

checkout records for the pname directory itself.
412 ClearCase Reference Manual

lscheckout
08-Dec.12:17 jackson checkout version "hello.c" from \main\4 (reserved)
08-Dec.12:17 jackson checkout version "hello.h" from \main\1 (unreserved)
 "modify local defines"
08-Dec.12:17 jackson checkout version "msg.c" from \main\rel2_bugfix\0
(reserved)

• List only the names of elements checked out to the current view.

cmd-context lscheckout –short –cview

hello.c
hello.h
hw.c
include

• List the checkouts in all directories at or below the current directory.

cmd-context lscheckout –recurse

08-Dec.12:17 jackson checkout version "hello.c" from \main\4 (reserved)
08-Dec.12:17 jackson checkout version "hello.h" from \main\1 (unreserved)

"modify local defines"
08-Dec.12:17 jackson checkout version "msg.c" from \main\rel2_bugfix\0
(reserved)
08-Dec.12:17 jackson checkout directory version "subd" from \main\1
(reserved)
08-Dec.12:17 jackson checkout version ".\subd\util.h" from \main\0
(reserved)

• List elements checked out by the user in all mounted VOBs.

cmd-context lscheckout –avobs –me

08-Dec.12:17 jackson checkout version "\users_hw\src\hello.c" from \main\4
(reserved)
08-Dec.12:17 jackson checkout version "\users_hw\src\hello.h" from \main\1
(unreserved)

"modify local defines"
08-Dec.12:17 jackson checkout directory version "\users_hw\release" from
\main\0 (reserved)
08-Dec.12:17 jackson checkoutversion "\users_hw\src\msg.c" from
\main\rel2_bugfix\0 (reserved)
08-Dec.12:17 jackson checkout version "\users_hw\src\util.h" from \main\0
(reserved)

• For all checkouts in the current directory, list the checkout date, user name, element name,

predecessor version, host, checkout status, and element type. (The command line, including

the quoted format string, constitutes a single input line. The input line below is broken to

improve readability. Spaces are significant.)
 ClearCase Reference Pages 413

lscheckout
cmd-context lsco –fmt "%d\t%Lu\t%En\n\tPredecessor:
%[version_predecessor]p\n\tHost: %h\n\tStatus: %Rf\n\tElement type: %[type]p\n"
16-Jun-99.15:23:15 lee.user files.txt

Predecessor: \main\96
Host: neon
Status: unreserved
Element type: text_file

09-Jun-99.15:39:09 susan.user mkfile.fm
Predecessor: \main\27
Host: pluto
Status: reserved
Element type: frame_document

16-Jun-99.12:23:11 cheryl.user mktype.fm
Predecessor: \main\115
Host: troy
Status: reserved
Element type: frame_document

10-Jun-99.12:29:30 john.user files.txt
Predecessor: \main\26
Host: marcellus
Status: reserved
Element type: text_file

SEE ALSO

checkin, checkout, lsprivate, uncheckout
414 ClearCase Reference Manual

lsclients
lsclients
Displays the client host list for a ClearCase license or registry server host, or for a ClearCase LT

server host

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only:

lsclients –hos⋅t hostname [–typ⋅e { registry | license | all }] [–s⋅hort | –l⋅ong]

• ClearCase LT only:

lsclients [–s⋅hort | –l⋅ong]

DESCRIPTION

On every ClearCase license server host and registry server host, the albd_server process

maintains a list of current client hosts. On the ClearCase LT server host, albd_server maintains a

list of hosts that are clients of its registry. If a client host does not access a server host for 30 days,

albd_server drops it from that server host’s client host list.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING A HOST. Default: None. You must supply a license or registry server host name.

–hos⋅t hostname
Specifies the registry or license server host. Only license and registry server hosts

maintain client lists. If you specify a host that is not a license or registry server host,

lsclients prints a message indicating that the host has no clients.

SPECIFYING THE TYPE OF SERVER HOST. Default: –all.

–typ⋅e { registry | license | all }
Use –type registry or –type license to restrict the listing to include only clients of registry

server hosts or clients of license server hosts, respectively.

Product Command Type

ClearCase cleartool subcommand

Attache command

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 415

lsclients
LISTING FORMAT. Default: Display a one-line description of each client.

–s⋅hort
Displays client host names only.

–l⋅ong
ClearCase and Attache only—Expands the listing to include each client’s registry server

host, registry region, license server host, and date and time of the last server access.

ClearCase LT only—Displays information about the client host, including the date and

time of the last server access.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• Display the client list for license server host merlin.

cmd-context lsclients –host merlin –type license...
apple: ClearCase 4.0 (Windows NT 3.51 (build 1057) Pentium
orange: ClearCase 4.0 (Windows NT 3.50 (build 807) 486
quince: ClearCase 4.0 (Windows NT 3.51 (build 1057) Pentium
...

• Display the long format client list for registry server host saturn.

cmd-context lsclients –host saturn –long

...
Client: neptune

Product: ClearCase 4.0
Operating system: Windows NT 3.51 (build 1057)
Hardware type: 486
Registry host: saturn
Registry region: devel
License host: venus
Last registry access: 08-Apr-99.15:12:43
Last license access: never

...

WINDOWS REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region
416 ClearCase Reference Manual

lsclients
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\LicenseHost

SEE ALSO

albd_server, clearlicense, registry_ccase
 ClearCase Reference Pages 417

lscomp
lscomp
Lists information for a UCM component

APPLICABILITY

SYNOPSIS
lscomp [–s⋅hort | –l⋅ong | –fmt format-string |–tre⋅e]

[–inv⋅ob vob-selector | component-selector ...]

DESCRIPTION

The lscomp command lists information describing one or more UCM components.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE OUTPUT. Default: A one-line summary.

–s⋅hort
Displays only the name of each component.

–l⋅ong
Displays an expanded multiple-line listing for each component, similar to the describe
–long command.

–fmt format-string
Displays information using the specified format-string. See the fmt_ccase reference page

for details.

–tre⋅e
Recursively lists baselines and streams in the specified components. Output format is

similar to that of the lsvtree command.

SPECIFYING THE COMPONENT Default: All components in the project VOB of the current directory.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
418 ClearCase Reference Manual

lscomp
–inv⋅ob vob-selector
Displays information for all components in the specified project VOB.

component-selector ...
Specifies one or more components for which information is displayed.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display a description of components in the specified VOB.

cmd-context lscomp -invob /vobs/projects

17-Sep-99.12:06:59 parser bill "parser"
root directory: "/vobs/parser"

29-Mar-99.17:23:16 applets pklenk "applets"
root directory: "/vobs/applets"

29-Mar-99.17:23:25 booch pklenk "booch"
root directory: "/vobs/booch"

29-Mar-99.17:23:37 libobj pklenk "libobj"
root directory: "/vobs/libobj"

29-Mar-99.17:23:44 stage pklenk "stage"
root directory: "/vobs/stage"

29-Mar-99.17:23:50 sun5_stage pklenk "sun5_stage"
root directory: "/vobs/sun5_stage"

29-Mar-99.17:24:01 nt_i386_stage pklenk "nt_i386_stage"
root directory: "/vobs/nt_i386_stage"

29-Mar-99.17:24:57 sys pklenk "sys"
root directory: "/vobs/sys"

SEE ALSO

describe, lsbl, mkcomp, rmcomp
 ClearCase Reference Pages 419

lsdo
lsdo
Lists derived objects created by clearmake, omake, or clearaudit (dynamic views only)

APPLICABILITY

SYNOPSIS
lsdo [–r⋅ecurse] [–me] [–l⋅ong | –s⋅hort | –fmt format-string] [–zer⋅o]

[–sti⋅me | –sna⋅me] [–nsh⋅areable_dos] [pname ...]

DESCRIPTION

The lsdo command lists information about one or more derived objects (DOs) in a VOB. Derived

objects are created by clearmake, omake, and clearaudit when these tools are invoked from a

dynamic view. lsdo lists derived objects without respect to which dynamic views (if any) reference

them. At any given time, a dynamic view sees at most one derived object at a given pathname.

By default, lsdo lists all derived objects built at a given pathname, except for the following kinds

of DOs:

• Unshared DOs with a zero reference count (unless you use the –zero option).

• DO versions, derived objects that are checked in as versions of elements.

• Nonshareable DOs built in other dynamic views. (The –nshareable_dos option lists only

nonshareable DOs in the current dynamic view.)

• Derived objects created with one name and subsequently renamed (for example, by

winkin –out or the Windows ren command).

You can use pname arguments to restrict the listing to derived objects with particular pathnames,

or to all the derived objects in particular directories. You can specify a derived object with a

standard pathname, or with an extended name that includes a derived object’s unique DO-ID.

DOs in Unavailable Dynamic Views

lsdo maintains a cache of tags of inaccessible dynamic views. For each view-tag, lsdo records the

time of the first unsuccessful contact. Before trying to access a dynamic view, lsdo checks the

cache. If the view’s tag is not listed in the cache, lsdo tries to contact the dynamic view. If the

view’s tag is listed in the cache, lsdo compares the time elapsed since the last attempt with the

time-out period specified by the CCASE_DNVW_RETRY environment variable. If the elapsed time

Product Command Type

ClearCase cleartool subcommand

Attache command
420 ClearCase Reference Manual

lsdo
is greater than the time-out period, lsdo removes the view-tag from the cache and tries to contact

the dynamic view again.

The default timeout period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: If any pname argument is a directory, the DOs in

pname are listed, but not the DOs in any subdirectories of pname.

–r⋅ecurse
Includes DOs in the entire subtree below any pname that is a directory (or the current

working directory if you don’t specify any pname arguments). VOB symbolic links are

not traversed during the recursive descent into a directory.

SELECTION OF DERIVED OBJECTS. Default: lsdo lists DOs created by any user, but excludes DOs

whose data containers no longer exist.

–me
Restricts the listing to derived objects that you created.

–zer⋅o
Includes in the listing unshared (that is, never-shared) derived objects with zero

reference counts. Such objects cannot be candidates for configuration lookup and winkin,

because their data containers no longer exist.

–nsh⋅areable_dos
Lists only nonshareable DOs created in the current dynamic view, by any user.

CONTROLLING REPORT APPEARANCE. Default: Each DO’s listing includes its extended name

(including DO-ID) along with creation-related data: time, user name, and host name. For

example:

11-Jun.12:00 akp "hello.obj@@11-Jun.12:00.554" on neptune

In a listing of several DOs, the entries are sorted by derived object name. Within a group of

like-named DOs, the entries are sorted chronologically, most recent entry first. The –long, –short,
and –fmt options are mutually exclusive; the –sname and –stime options are mutually exclusive.

–l⋅ong
Expands the listing to include a DO’s size in bytes, the last access time, the reference

count, and the dynamic views that reference the DO.
 ClearCase Reference Pages 421

lsdo
–s⋅hort
Restricts the listing for a DO to its extended name (including DO-ID).

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

–sti⋅me
Sorts all entries chronologically, most recent entry first.

–sna⋅me
(Same as default) Sorts entries alphabetically by name.

SPECIFYING THE DERIVED OBJECTS. Default: Lists all derived objects created in the current

working directory.

pname ...
Standard pathnames and/or DO-IDs:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List, in reverse chronological order, all derived objects that you have created in the current

working directory.

cmd-context lsdo –stime –me –short

• A directory name causes all derived objects built in that directory to be listed.

• A standard or view-extended pathname of a file causes all derived objects built

under that name to be listed.

• A pathname that includes a unique DO-ID (for example,

conv.obj@@19-Nov.21:28.127450) specifies a particular derived object to be listed.
422 ClearCase Reference Manual

lsdo
ctl.exe@@14-May.15:18.339307
ctl_V.obj@@14-May.15:18.339305
libcmd.lib@@14-May.15:16.339302
libcmd_V.obj@@14-May.15:16.339300
cmd_type.obj@@14-May.15:15.339297
cmd_view.obj@@14-May.15:15.339294
cmd_utl.obj@@14-May.15:15.339291
cmd_trig.obj@@14-May.15:14.339288
cmd_lh.obj@@14-May.15:14.339285

• List information on a derived object, identified by its extended pathname.

cmd-context lsdo util.obj@@08-Dec.12:06.231
08-Dec.12:06 "util.obj@@08-Dec.12:06.231"

• List all nonshareable DOs in and under the current working directory.

cmd-context lsdo –recurse –nshareable_dos
20-Oct.16:35 "foo4.obj@@20-Oct.16:35.2147484252"
21-Oct.11:39 "foo7.dir\foo.cr_test.obj@@21-Oct.11:39.2147484095"

• List all derived objects created in the current working directory with file name hello. Use

the long format, to show which dynamic views reference the DOs; include DOs that are not

referenced by any dynamic view.

cmd-context lsdo –long –zero hello.exe
08-Dec-98.12:06:19 Chuck Jackson (test user) (jackson.dvt@oxygen)
 create derived object "hello.exe@@08-Dec.12:06.234"

size of derived object is: 18963
last access: 29-Jan-99.13:56:56

references: 1 => oxygen:C:\users\vobstore\tut\old.vws
08-Dec-98.12:05:35 Chuck Jackson (test user) (jackson.dvt@oxygen)
 create derived object "hello.exe@@08-Dec.12:05.143"

size of derived object is: 18963
last access: 29-Jan-99.13:56:56
references: 0

• List the name, kind, and reference count of each derived object in the current working

directory.

cmd-context lsdo –fmt "%n\t%[DO_kind]p\t%[DO_ref_count]p\n"
foo.c@@08-May.20:00.354170 shared 3
foo.c@@10-Jun.18:35.236855 shared 2
foo.c@@25-Sep.04:00.456 unshared 1
...

SEE ALSO

catcr, clearaudit, clearmake, diffcr, fmt_ccase, omake, rmdo
 ClearCase Reference Pages 423

lsfolder
lsfolder
Lists information about UCM folders

APPLICABILITY

SYNOPSIS
lsfolder [–s⋅hort | –l⋅ong | –fmt format-string |

–tre⋅e [–fmt format-string] [–dep⋅th depth] |

–anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in folder-selector |

–vie⋅w view-tag | –cvi⋅ew | folder-selector ...]

DESCRIPTION

The lsfolder command displays information describing one or more UCM folders.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

CHOOSING A DISPLAY FORMAT. Default: A one-line summary.

–s⋅hort
Displays only the the name of each folder.

–l⋅ong
Displays a detailed listing for a folder.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

further information.

–tre⋅e [–fmt format-string] [–dep⋅th depth]

Displays information about a folder and its contents. Default output format is similar to

that of the lsvtree command.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
424 ClearCase Reference Manual

lsfolder
The –fmt option displays information in the format specified by the format-string
argument. See the fmt_ccase reference page for details.

 The –depth option lists the hierarchy of objects to the level specified by the depth
argument. The depth argument must be a positive integer.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays information about a folder and any parent folders.

The –fmt option formats information using the specified format-string. See the fmt_ccase
reference page for further information.

The –depth option specifies how many levels to display. The depth argument must be a

positive integer: a value of zero lists the entire hierarchy.

SPECIFYING A FOLDER. Default: All folders in the project VOB of the current directory.

–inv⋅ob vob-selector
Displays a list of folders in the specified project VOB.

–in folder-selector ...

Displays a list of subfolders of the specified folder or folders.

–vie⋅w view-tag
Displays information about the parent folder of the stream attached to the specified

view.

–cvi⋅ew
Displays information about the parent folder of the stream attached to the current view.

folder-selector ...
Specifies one or more folders to list.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display a one-line summary of the specified folder.

cmd-context lsfolder Core_Parsers@/vobs/core_projects

17-Sep-99.11:21:36 Core_Parsers bill "Core_Parsers"

• Display a long listing for the specfied folder.
 ClearCase Reference Pages 425

lsfolder
cmd-context lsfolder -long RootFolder@/vobs/core_projects

folder "RootFolder"
 17-Sep-99.10:52:34 by Bill Marrs (bill.user@propane)
 "Predefined Root folder."
 owner: bill
 group: user
 title: Root folder
 contains folders:
 Parsers
 Core_Parsers
 contains projects:
 Java_Parser

SEE ALSO

chfolder, mkfolder, rmfolder
426 ClearCase Reference Manual

lshistory
lshistory
Lists event records for VOB-database objects

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only—Display event records graphically:

lsh⋅istory –g⋅raphical [–nop⋅references [[–min⋅or] [–nco]

[–sin⋅ce date-time] [–use⋅r login-name]

[–bra⋅nch branch-type-selector]]]

[[–r⋅ecurse | –d⋅irectory | –a⋅ll | –avo⋅bs]

[–pna⋅me] pname ...

| object-selector ...

]

• ClearCase LT only—Display event records graphically:

lsh⋅istory –g⋅raphical [–nop⋅references [[–min⋅or] [–nco]

[–sin⋅ce date-time] [–use⋅r login-name]

[–bra⋅nch branch-type-selector]]]

[[–r⋅ecurse | –d⋅irectory | –a⋅ll | –avo⋅bs]

[–pna⋅me] pname ...

| object-selector ...

]

• Display event records in the command window:

lsh⋅istory [–l⋅ong | –s⋅hort | –fmt format-string] [–eve⋅ntid]

[–min⋅or] [–nco] [–las⋅t [num-events]]

[–sin⋅ce date-time] [–me | –use⋅r login-name]

[–bra⋅nch branch-type-selector]

[[–r⋅ecurse | –d⋅irectory | –a⋅ll | –avo⋅bs | –local]
[–pna⋅me] pname ...

| object-selector ...

]

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 427

lshistory
DESCRIPTION

The lshistory command lists event records in reverse-chronological order, describing operations

that have affected a VOB’s data. There are several kinds of listing:

• File-system data history — Lists events concerning elements, branches, versions, and VOB

links. This includes records for creation and deletion of objects, and records for attaching

and removal of annotations: version labels, attributes, and hyperlinks.

• Hyperlink history — Lists events concerning hyperlink objects: creation, deletion,

attaching/removal of attributes.

• Type history — Lists events concerning type objects that have been defined in the VOB.

• Storage pool history — Lists events concerning the VOB’s storage pools.

• VOB history — Lists events concerning the VOB object itself. This includes the deletion of

type objects and elements from the VOB.

• VOB replica history — Lists events concerning a VOB replica, including synchronization

updates.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

Default: If you don’t specify any objects to be listed, lshistory displays events for the file-system

objects in the current working directory and events for the directory element itself. (This is

equivalent to specifying “.” and “.@@” as the pname arguments.) The following sections describe

how to produce a report on other file system objects, or on other kinds of objects.

LISTING EVENT RECORDS GRAPHICALLY. Default: Lists event records in the command window.

–g⋅raphical
Starts a browser that displays event records.

IGNORING PREFERENCES SETTINGS. Default: Displays the history browser with your saved

settings for filtering.

–nop⋅references
Temporarily overrides filtering settings. When used alone, uses default settings

(displays all events except minor events). When used in combination with one or more

of –minor, –nco, –since, –user, or –branch, overrides your current filtering settings.

NOTE: You cannot save your History Browser settings during a session that you invoked

using the –nopreferences option.

REPORT FORMAT. Default: Default report formats appear below.
428 ClearCase Reference Manual

lshistory
Default report format for an element:

02-Feb.10:51 scd create version "msg.c@@\main\rel2_bugfix\1"
 "Version for branch creation test"
02-Feb.10:51 scd create version "msg.c@@\main\rel2_bugfix\0"
02-Feb.10:51 scd create branch "msg.c@@\main\rel2_bugfix"
.
.
.
01-Feb.16:17 scd create file element "msg.c@@"

Default report format for a hyperlink:

08-Feb.11:25 scd create hyperlink "Merge@535@\tmp\scd_reach_hw"

Default report format for a storage pool:

01-Feb.16:05 scd create pool "cdft"
 "Predefined pool used to store cleartext versions."

–l⋅ong
Expands the listing to include other object-specific information.

–s⋅hort
Restricts the listing to names only: pathnames of file-system objects, names of type

objects, or names of storage pools.

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

–eve⋅ntid
Displays a numerical event-ID on the line preceding each event record (even if you use

–fmt). You can change the comment assigned to an arbitrary event record by supplying

an event-ID to the chevent –event command. Event-IDs remain valid until the VOB is

reformatted with reformatvob.

SELECTING EVENTS FOR THE SPECIFIED OBJECTS. Default: The report includes all the major events

in the entire histories of the selected objects.

NOTE: When using one or more of these options with lshistory –graphical, you must precede

them with the –nopreferences option (the –branch option also has this requirement).

–min⋅or
Includes less important events in the listing: attaching of attributes, version labels, and

so on. For type objects and storage pools, minor events include rename operations and

changes to pool parameters (mkpool –update).
 ClearCase Reference Pages 429

lshistory
–nco
Excludes checkout version events (the ones listed by the lscheckout command).

–las⋅t [num-events]

Lists the specified number of events, starting with the most recent. If num-events is not

specified, lists the most recent event. If you also specify –since and num-events is greater

than the number of events returned by –since, lshistory lists only the events returned by

–since.

NOTE: This option is mutually exclusive with –recurse.

–sin⋅ce date-time
Lists events recorded since (that is, at or after) the specified date-time.

The date-time argument can have any of the following formats:

date.time | date | time | now

where:

Specify time in 24-hour format, relative to the local time zone. If you omit the time, the

default value is 00:00:00. If you omit date, the default is today. If you omit the century,

year, or a specific date, the most recent one is used. Specify UTC if you want to resolve

the time to the same moment in time regardless of time zone. Use the plus (+) or minus

(-) operator to specify a positive or negative offset to the UTC time. If you specify UTC
without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates before

January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

Examples:

22-November-1999
sunday
yesterday.16:00
8-jun
13:00
today
9-Aug.10:00UTC

–me
Lists events recorded for commands entered by the current user.

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec
430 ClearCase Reference Manual

lshistory
–use⋅r login-name
Lists events recorded for commands entered by the specified user.

FILE SYSTEM DATA HISTORY. Use the following to specify one or more file-system objects for a

history listing.

–bra⋅nch branch-type-selector
Restricts the report to events relating to branches of the specified type. If you use this

option with –graphical, you must precede –branch with the –nopreferences option.

Specify branch-type-selector in the form [brtype:]type-name

–r⋅ecurse
Processes the entire subtree below any directory element encountered. VOB symbolic

links are not traversed during the recursive descent.

NOTE: This option is mutually exclusive with –last.

–d⋅irectory
Lists information on a directory element itself, rather than on its contents.

–a⋅ll
Reports on all objects in the VOB containing pname: file-system objects, type objects, and

storage pools. If you omit pname, this option uses the VOB containing the current

working directory. Specifying –all implicitly specifies –local.

–avo⋅bs
Similar to –all, but includes all VOBs active (mounted) on the local host. (If environment

variable CLEARCASE_AVOBS is set to a semicolon-separated list of VOB-tags, this set of

VOBs is used instead.) If a VOB has multiple replicas, events from all the replicas are

reported. Specifying –avobs implicitly specifies –local.

–local
Reports on local copies of types specified with object-selector. By default, lshistory
displays the history of the global type for the object selector you specify. For more

information about global types, see Administering ClearCase.

–pna⋅me
Indicates that pname is a file-system object. Use this option when pname has the form of

an object selector (for example, lbtype:V3.0).

pname ...

One or more pathnames, specifying elements and/or VOB symbolic links whose history

is to be listed.

type-name Name of the branch type

See the Object Names section in the cleartool reference page

for rules about composing names.
 ClearCase Reference Pages 431

lshistory
NOTE: You cannot use a pname argument like foo.c@@\main to restrict the report in this

way.

object-selector ...

The object whose event records are to be displayed. The object must be in the VOB

containing the current working directory, unless you use the @vob-selector suffix. Specify

object-selector in one of the following forms:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the event history of an element.

cmd-context lshistory hello.c

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-ystem object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
432 ClearCase Reference Manual

lshistory
08-Dec.12:05 jackson import file element "hello.c@@"
20-May.15:41 cory create version "hello.c@@\main\3" (REL2)
 "include name, home dir, and time in message
 KNOWN BUG: extra NL at end of time message"
07-May.08:34 akp create version "hello.c@@\main\2" (REL1)
 "ANSI compatibility: declare return value type, make explicit return
value
 also: clean up wording for The Boss"
04-May.13:35 akp create version "hello.c@@\main\1"
 "first implementation"
04-May.13:35 akp create version "hello.c@@\main\0"
04-May.13:35 akp create branch "hello.c@@\main"
04-May.13:35 akp create file element "hello.c@@"

• List the events for an element that occurred after March 20, 1999, at 3 P.M. Include minor

events in the listing, such as metadata modifications.

cmd-context lshistory –minor –since 20-mar-99.15:00 hello.c

08-Dec.12:05 jackson import file element "hello.c@@"
20-May.17:35 cory modify meta-data version "hello.c@@\main\3" (REL2)
 "Added label "REL2"."
20-May.15:41 cory create version "hello.c@@\main\3" (REL2)
 "include name, home dir, and time in message
 KNOWN BUG: extra NL at end of time message"
15-May.14:46 ross modify meta-data version "hello.c@@\main\2" (REL1)
 "Added label "REL1"."
07-May.08:34 akp create version "hello.c@@\main\2" (REL1)
 "ANSI compatibility: declare return value type, make explicit return
value
 also: clean up wording for The Boss"
04-May.13:35 akp create version "hello.c@@\main\1"
 "first implementation"
04-May.13:35 akp create version "hello.c@@\main\0"
04-May.13:35 akp create branch "hello.c@@\main"
04-May.13:35 akp create file element "hello.c@@"
 "first implementation"

• List the history of a label type, using the long format.

cmd-context lshistory –long lbtype:REL1

08-Jan-99.12:05:43 Chuck Jackson (test user) (jackson.dvt@oxygen)
 import label type "REL1"
15-Apr-99.14:45:00 ross.devt@neptune
 create label type "REL1"
 "create label for Release 1 of "hello world" program"
 ClearCase Reference Pages 433

lshistory
• For all elements in the current working directory, list events involving the rel2_bugfix
branch.

cmd-context lshistory –branch rel2_bugfix

24-Mar.12:45 jackson create version "msg.c@@\main\rel2_bugfix\0"
24-Mar.12:45 jackson create branch "msg.c@@\main\rel2_bugfix"
 "release 2 bugfixes"
23-Mar.20:40 jackson create version "util.c@@\main\rel2_bugfix\1"
 "fix bug: extra NL in time string"
23-Mar.20:39 jackson create version "util.c@@\main\rel2_bugfix\0"
23-Mar.20:39 jackson create branch "util.c@@\main\rel2_bugfix"

• List the latest event for every file element in or below the current directory.

cleartool find . –type f –exec "cleartool lshistory –last %CLEARCASE_XPN%"
09-Jun.17:25 lee create version ".\file.txt@@\main\1"
07-Jun.15:33 cty create version ".\tests.txt@@\main\33"
17-May.23:44 ben create version ".\dir1\comp.c@@\main\bugfix\45"
...

• List the history of the VOB object itself for the current VOB.

cmd-context lsh vob:.

10-Dec.08:01 gomez unlock versioned object base
" m:\view1\gomez\personal"
09-Dec.15:48 gomez lock versioned object base
" m:\view1\gomez\personal"
 "Locked for all users."
02-Oct.19:46 gomez create versioned object base
" m:\view1\gomez\personal"
 "gomez’s personal vob"

• Start a history browser, overriding the saved filtering settings and displaying events for the

hello.c element that are related to the v4_test branch and created since January 1, 1999.

cmd-context lshistory –graphical –nopreferences –since 01-jan-99 –branch v4_test hello.c

SEE ALSO

chevent, describe, find, events_ccase, fmt_ccase, lscheckout, lspool, lstype, lsvtree
434 ClearCase Reference Manual

lslocal
lslocal
Lists the files in the workspace

APPLICABILITY

SYNOPSIS
lslocal [–r⋅ecurse] [–mod⋅ified] [–nco] [pname...]

DESCRIPTION

The lslocal command lists the name of the files in the workspace.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

lslocal lists the contents of that directory, but not the contents of any of its subdirectories.

–r⋅ecurse
Includes a listing of the entire subtree below any subdirectory included in the top-level

listing. VOB symbolic links are not traversed during the recursive descent.

SPECIFYING THE OBJECTS TO BE LISTED. Default: If you don’t specify any other options, all files in

the current working directory are listed; all subdirectory entries are listed, but not the contents of

these subdirectories.

–mod⋅ified
Restricts the listing to writable files only.

–nco
Restricts the listing to writable files corresponding to elements that are not checked out

to the workspace view. This will help you to identify files you modified without

checking them out, for example, while you were working disconnected from the view.

pname...

Restricts the listing to the specified files and/or directories. Wildcard patterns apply to

the workspace contents; / (slash) denotes the root of the workspace. For example, /*.c
refers to all of the .c files in the workspace root. (See the wildcards reference page for

more information.) You can use either slashes or backslashes.

Product Command Type

Attache command
 ClearCase Reference Pages 435

lslocal
EXAMPLES

• List the files downloaded to the current workspace working directory.

\tmp\jo_agora_hw\src> lslocal
\tmp\jo_agora_hw
\tmp\jo_agora_hw\src

• List the writable files in the current working directory of the workspace that are not checked

out.

\tmp\jo_agora_hw\src> lslocal –nco

• List the writable files in the specified directory of the current workspace.

\tmp\jo_agora_hw\src> lslocal –modified \tmp\jo_agora_hw\src
\tmp\jo_agora_hw\src\hello.c

• List all the files in the current workspace.

\tmp\jo_agora_hw\src> lslocal –recurse \
\tmp
\tmp\jo_agora_hw
\tmp\jo_agora_hw\src
\tmp\jo_agora_hw\src\hello.c
\tmp\jo_agora_hw\src\Makefile
\tmp\jo_agora_hw\src\hello.h
\tmp\jo_agora_hw\src\msg.c
\tmp\jo_agora_hw\src\util.c

SEE ALSO

get, ls
436 ClearCase Reference Manual

lslock
lslock
Lists locks on objects

APPLICABILITY

SYNOPSIS
lslock [–local] [–l⋅ong | –s⋅hort | –fmt format-string] [–obs⋅olete]

[[–a⋅ll] [–pna⋅me] pname ...

| object-selector ...

]

DESCRIPTION

The lslock command lists locks that have been placed on one or more VOB-database objects

(with the lock command). The listing can include all the locks created within a VOB or a

particular set of locks:

• Locks on elements or branches

• Locks on type objects

• Locks on VOB replica objects

• Locks on VOB storage pools

• The lock on the VOB object itself

Obsolete Type Objects

Type objects can be rendered obsolete with the lock –obsolete xxtype: command. lslock lists an

obsolete type object if you specify its name with a type-name argument or you use the –obsolete
option.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING LOCK STATE OF LOCAL COPIES OF GLOBAL TYPES. Default: lslock displays the lock state of

the global type for the object selector you specify.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 437

lslock
–local
Displays the lock state of the local copy of the global type. For more information, see

Administering ClearCase.

REPORT FORMAT. Default: A lock listing looks like this:

01-Sep.08:42 drp lock attribute type "AT2" (locked)
 "Locked for all users."

–l⋅ong
Expands the listing with more time-specific and user-specific information.

–s⋅hort
Restricts the listing to names of locked objects only.

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

LISTING OBSOLETE OBJECTS. Default: An obsolete object is not listed unless you specify it with a

command-line argument.

–obs⋅olete
Includes obsolete objects in the listing. (Has no effect if you specify one or more objects

with arguments.)

SPECIFYING THE LOCKED OBJECTS. Default: Lists all the locks created in the VOB containing the

current working directory.

[–pna⋅me] pname ...

One or more pathnames, each of which specifies an element or branch:

(Versions cannot be locked; a pathname to a version references the element object.) Using

pname arguments restricts the listing to locks on those particular objects (but see the –all
description below).

If pname has the form of an object selector, you must include the –pname option to

indicate that pname is a pathname.

NOTE: Specifying an element lists only the lock on the element itself, not on any of its

branches.

–all
For each pname argument, lists all locks in the VOB containing pname. Has no effect if you

foo.c Element foo.c
foo.c@@ Element foo.c
foo.c@@\main\bugfix Branch of element foo.c
438 ClearCase Reference Manual

lslock
don’t specify any pname argument (because the default is to list all locks in the current

VOB).

object-selector ...

One or more non-file-system VOB objects. The objects must exist in the VOB containing

the current working directory, unless you specify another VOB with @vob-specifier.
Specify object-selector in one of the following forms:

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the locks on three label types.

cmd-context lslock lbtype:REL1 lbtype:REL1.1 lbtype:REL2

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag
(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB
storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]
 ClearCase Reference Pages 439

lslock
08-Dec.12:19 jackson lock label type "REL1" (locked)
 "Locked for all users."
08-Dec.12:19 jackson lock label type "REL1.1" (locked)
 "Locked for all users."
08-Dec.12:19 jackson lock label type "REL2" (locked)
 "Locked for all users."

• List the lock on a particular branch of a particular element.

cmd-context lslock util.c@@\main\rel2_bugfix

08-Dec.12:19 jackson lock branch "util.c" (locked)
 "Locked for all users."

• List the entire-VOB lock on the current VOB, in long format.

cmd-context lslock –long vob:.

08-Dec-98.14:57:58 Chuck Jackson (test user) (jackson.dvt@oxygen)
 lock versioned object base "s:\people\chuck\hw.vbs" (locked)
 "Locked for all users."

• List all locked objects (including the obsolete ones) in the current VOB.

cmd-context lslock –obsolete

08-Dec.12:18 jackson lock file element
"M:\view1\users_hw\src\hello.c@@" (locked)

"Locked for all users."
08-Dec.12:19 jackson lock label type "REL1" (locked)
 "Locked for all users."
08-Dec.12:19 jackson lock label type "REL2" (locked)
 "Locked for all users."
08-Dec.12:18 jackson lock branch type "test" (locked)
 "Locked except for users: gomez jackson"
08-Dec.12:18 jackson lock branch type "patch3" (obsolete)
 "Locked for all users (obsolete)."
08-Dec.12:18 jackson lock file element

"M:\view1\users_hw\src\convolution.c@@" (locked)
"Locked for all users."
08-Dec.12:19 jackson lock branch

"M:\view1\users_hw\src\util.c@@\main\rel2_bugfix@@" (locked)
"Locked for all users."

• List the locks on two of the current VOB’s storage pools.

cmd-context lslock pool:staged pool:cdft
440 ClearCase Reference Manual

lslock
08-Dec.12:19 jackson lock pool "staged" (locked)
 "Locked for all users."
08-Dec.12:19 jackson lock pool "cdft" (locked)
 "Locked for all users."

SEE ALSO

lock, ls, lshistory, lspool, lstype, unlock, fmt_ccase
 ClearCase Reference Pages 441

lslock
442 ClearCase Reference Manual

lsmaster
lsmaster
Lists objects mastered by a replica

APPLICABILITY

SYNOPSIS

lsmaster [–kind object-selector-kind[,...]] [–fmt format-string] [–view view-tag]

[–inr⋅eplicas { –all | replica-name[,...] }] master-replica-selector ...

DESCRIPTION

This command lists objects mastered by a particular replica. By default, the command uses only

the information known to your current replica. If you list objects mastered by a sibling replica,

changes that have not been imported at your current replica are not reflected in the output. For

example, a label type is added at replica london, but replica lex has not yet received the update

packet containing the change. If you enter the command cleartool lsmaster london at the lex
replica’s site, the output does not include the new label type.

To retrieve mastership information from a sibling replica, use the –inreplicas option. This form

of the command contacts the sibling replicas, so it works only between sites that have IP

connections. If lsmaster cannot contact a sibling replica, it prints an error and tries to contact the

next replica you specified.

For more information on mastership, see ClearCase MultiSite Manual.

Object Name Resolution

If you have a view context, lsmaster uses the view to resolve object identifiers (OIDs) of

filesystem objects to the names of the objects. If you do not have a view context, lsmaster prints

OIDs for filesystem objects. You can specify a view context with the –view option.

When you specify –inreplicas, lsmaster prints OIDs for objects whose creation operations have

not yet been imported at your current replica.

RESTRICTIONS

Mastership Checking: None.

Permissions Checking: No special permissions are required.

Locks: No locks apply.

Product Command Type

ClearCase cleartool subcommand

MultiSite multitool subcommand
 ClearCase Reference Pages 443

lsmaster
OPTIONS AND ARGUMENTS

SPECIFYING THE OBJECT KINDS. Default: lsmaster lists all objects mastered by the replica.

–kind object-selector-kind[,...]
Limits the listing to the specified object kinds. The list of object kinds must be

comma-separated, with no spaces. object-selector-kind can be one of the following values:

Values for ClearCase:

attype
branch
brtype
delem (directory element)

eltype
felem (file element)

hlink
hltype
lbtype
slink
vob

Values for ClearCase UCM:

activity
baseline
component
folder
project
stream

Values for MultiSite:

replica

Values for ClearGuide:

activity
actype

REPORT FORMAT. Default: For file-system objects, the master replica, object kind, and OID of each

object are listed. For example:

master replica: lex@dev file element:oid:40e022a3.241d11ca ...

For non-file-system objects, the master replica, object kind, and name of each object are listed. For

example:

master replica: lex@\dev brtype:main
444 ClearCase Reference Manual

lsmaster
–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this option.

SPECIFYING A VIEW CONTEXT. Default: The command uses your current view context.

–view view-tag
Specifies a view.

SPECIFYING THE REPLICA FROM WHICH TO RETRIEVE INFORMATION. Default: The command uses

the information in your current replica.

–inr⋅eplicas { –all | replica-name[,...] }
With –all, retrieves information from all replicas in the VOB family (except ghost

replicas). Otherwise, retrieves information from the sibling replicas you specify. The list

of replicas must be comma-separated, with no spaces.

SPECIFYING THE REPLICA WHOSE MASTERED OBJECTS ARE DISPLAYED. Default: No default; you

must specify a replica.

master-replica-selector ...

Lists objects mastered by the specified replica. Specify master-replica-selector in the form

[replica:]replica-name[@vob-selector]

EXAMPLES

• List all objects mastered by the replica sf.

replica-name Name of the replica

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
 ClearCase Reference Pages 445

lsmaster
multitool lsmaster –view v4.1 –fmt "%m:%n\n" sf@\dev
directory element:\dev.@@
directory element:\dev\lib@@
directory element:\dev\tests@@
...
file element:\dev\lib\file.c@@
file element:\dev\lib\file2.c@@
...
symbolic link:\dev\doc
symbolic link:\dev\lib\imsg.h
...
hyperlink:Merge@2@\dev
hyperlink:Merge@3@\dev
...

• List all label types mastered by the replica lex.

cleartool lsmaster –fmt "%m:%n\n" –kind lbtype lex@\doc
label type:LATEST
label type:CHECKEDOUT
label type:BACKSTOP
label type:REL1
...

• List all element types, label types, and branch types mastered by the replica sf.

cleartool lsmaster –kind eltype,lbtype,brtype sf
master replica: sf@\dev "element type" file_system_object
master replica: sf@\dev "element type" file
master replica: sf@\dev "element type" directory
...
master replica: sf@\dev "branch type" main
master replica: sf@\dev "branch type" dev_sf
master replica: sf@\dev "branch type" dev_sf_smg_private
...
master replica: sf@\dev "label type" LATEST
master replica: sf@\dev "label type" V2.0
master replica: sf@\dev "label type" V2.0.2
...

• List the name and creation comment of each element type mastered by the replica london.

Contact the london replica to retrieve the data.
446 ClearCase Reference Manual

lsmaster
multitool lsmaster –inreplicas london –fmt "%n\t%c\n" \
–kind eltype london@\dev
In replica "london"
binary_delta_file Predefined element type used to represent a file
in binary delta format.
...

• List information from all replicas in the VOB family about the objects mastered by the

replica sf. Do not use a view context.

multitool lsmaster –inreplicas –all sf@\dev
In replica "london"
master replica: sf@\dev "versioned object base" \dev
master replica: sf@\dev "directory element"
(oid:40e0000b.241d23ca.b3df.08:00:69:02:05:33)
master replica: sf@\dev "directory element"
(oid:40e0000b.241d23ca.b3df.08:00:69:02:05:33)
...
In replica "lex"
...

Use a view context:

multitool lsmaster –view v4.1 –inreplicas –all sf@\dev
In replica "london"
master replica: sf@\dev "versioned object base" \dev
master replica: sf@\dev "directory element" M:\v4.1\dev\.@@
master replica: sf@\dev "directory element" M:\v4.1\dev\lib@@

• List information from the london replica about the objects mastered by the replica lex.

multitool lsmaster –view v4.1 –inreplicas london lex@\doc

SEE ALSO

chmaster, describe, reqmaster
 ClearCase Reference Pages 447

lspool
lspool
Lists VOB storage pools

APPLICABILITY

SYNOPSIS
lspool [–l⋅ong | –s⋅hort | –fmt format-string] [–obs⋅olete]

[–inv⋅ob vob-selector | pool-selector ...]

DESCRIPTION

The lspool command lists information about one or more VOB storage pools. This listing does

not include the elements assigned to the pool; use the find command for this purpose. For

example:

cmd-context find M:\view1\vob1\include -element ’pool(src_pool_2)’ -print

Obsolete Storage Pools

Storage pools can be rendered obsolete with the lock –obsolete command. The

obsolete/nonobsolete status of a pool affects some forms of this command.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: A storage pool listing looks like this:

20-Nov-1999 drp pool "cdft"

–l⋅ong
Expands the listing to pool parameters and pathnames.

–s⋅hort
Restricts the listing to pool names only.

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

Product Command Type

ClearCase cleartool subcommand

Attache command
448 ClearCase Reference Manual

lspool
LISTING OBSOLETE POOLS. Default: If you don’t specify any pool-name argument, a VOB’s obsolete

pools are suppressed from the listing.

–obs⋅olete
Includes obsolete pools in the listing when you don’t specify any pool-name argument.

Has no effect if you specify one or more pool-name arguments.

SPECIFYING THE POOLS. Default: Lists all storage pools in the VOB containing the current working

directory.

–inv⋅ob vob-selector
The VOB whose storage pools are to be listed. Specify vob-selector in the form

[vob:]pname-in-vob

pool-selector ...

One or more names of storage pools to be listed. A pool is listed whether or not it is

obsolete. Specify pool-selector in the form [pool:]pool-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List all storage pools for the VOB containing the current working directory.

cmd-context lspool

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted).

pool-name Name of the storage pool

vob-selector Object-selector for a VOB, in the same format as –invob.
 ClearCase Reference Pages 449

lspool
08-Dec.12:1 jackson pool "c_pool"
 "pool for c source files"
15-Dec.09:34 jenny pool "cdft"
 "Predefined pool used to store cleartext versions."
08-Dec.12:21 jackson pool "cltxt2"
15-Dec.09:34 jenny pool "ddft"
 "Predefined pool used to store derived objects."
08-Dec.12:21 jackson pool "do1"
08-Dec.12:21 jackson pool "my_ctpool"
 "alternate cleartext pool"
15-Dec.09:34 jenny pool "sdft"
 "Predefined pool used to store versions."
08-Dec.12:19 jackson pool "staged"

• List information about a particular storage pool, in long format.

cmd-context lspool –long do1

pool "do1"
08-Dec-99.12:21:13 by jackson.dvt@oxygen
owner: jackson
group: dvt
kind: derived pool
pool storage global pathname "P:\vbstore\tut\tut.vbs\d\do1"
maximum size: 10000 reclaim size: 8000 age: 168

• List a particular storage pool, verifying that it is obsolete.

cmd-context lspool –short cltxt2

cltxt2 (obsolete)

SEE ALSO

chpool, mkpool
450 ClearCase Reference Manual

lsprivate
lsprivate
Lists objects in a dynamic view’s private storage area

APPLICABILITY

SYNOPSIS
lsp⋅rivate [–tag view-tag] [–inv⋅ob vob-selector] [–l⋅ong | –s⋅hort]

[–siz⋅e] [–age] [–co] [–do] [–oth⋅er]

DESCRIPTION

The lsprivate command lists the file-system objects that belong to a dynamic view:

• View-private files, links, and directories

• Derived objects, including

• Nonshareable derived objects

• Unshared derived objects

• Shared derived objects that are cataloged in (visible through) the dynamic view, even

though their data containers are stored in a VOB storage pool

• Checked-out versions of file elements

Except for the shared derived objects, all of these objects are stored in the dynamic view’s private

storage area.

This command does not list checked-out directory elements, because such a checkout does not

produce a view-private object. To list directory checkouts, use the lscheckout command.

The objects are listed with full pathnames (thus including the VOB-tag), one per line.

NOTE: lsprivate does not work in a snapshot view. In a snapshot view, (cleartool) ls -recurse
-view_only provides output equivalent to that of lsprivate.

STRANDED VIEW-PRIVATE FILES

lsprivate sometimes lists a view-private file in a special way, because the file has become

stranded: it has no name in the VOB namespace, as currently constructed by your dynamic view.

There are several possible causes and, hence, several actions you can take.

Product Command Type

ClearCase cleartool subcommand

Attache command
 ClearCase Reference Pages 451

lsprivate
File Still Accessible Through Some Directory Version

The lsprivate listing for a file can include a version-extended pathname to some directory

element:

M:\jc_vw\jc_hw\src@@\main\3\subdir1\canUCme

In this example, file canUCme is stranded because its parent directory, subdir1, does not appear

in the dynamic view as it is currently configured; but the file can be accessed through version
\main\3 of directory element src, which contains an entry for subdir1. (Note that you cannot

use this pathname to access the view-private object. A version-extended pathname can refer only

to an element, branch, or version—not to a view-private file.)

To make a stranded file visible again, you must make its parent directory visible, by

reconfiguring the dynamic view (in this case, to select version \main\3 of directory element src).

VOB Is Inactive

If a VOB is not currently active on your host, all view-private files corresponding to that VOB are

temporarily stranded. lsprivate displays a warning message and prefixes a number sign (#) to

pathnames within that VOB:

cleartool: Warning: VOB not mounted: “M:\jc_vw\jc_hw”
VOB UUID is 1127d379.428211cd.b3fa.08:00:69:06:af:65

.

.

.

#M:\jc_vw\jc_hw\src\.cmake.state
#M:\jc_vw\jc_hw\src\findmerge.log.18-Mar-99.13:43:27
#M:\jc_vw\jc_hw\src\hello
#M:\jc_vw\jc_hw\src\hello.o

.

.

.

Reactivating the VOB on your host restores lsprivate command output to normal for pathnames

within that VOB.

VOB Is Inaccessible

If a VOB has been unregistered, all view-private files corresponding to that VOB are temporarily

stranded; if the VOB has been deleted, the view-private files are stranded permanently. lsprivate
cannot distinguish these cases; it may inefr the VOB’s probable VOB-tag, but it lists the

view-private files with an Unavailable–VOB prefix:
452 ClearCase Reference Manual

lsprivate
cleartool: Error: Unable to get VOB object registry information for
replica uuid "1127d379.428211cd.b3fa.08:00:69:06:af:65".

cleartool: Warning: VOB is unavailable -- using name: "<Unavailable-VOB-1>".
If it has been deleted use ’recoverview -vob <uuid>’
VOB UUID is 1127d379.428211cd.b3fa.08:00:69:06:af:65
Last known location of storage is phobos:\users\people\david\tut\tut.vbs

#<Unavailable-VOB-1>\<DIR-3587d464.428211cd.b40c.08:00:69:06:af:65>\.cmake.sta
te
#<Unavailable-VOB-1>\<DIR-3587d464.428211cd.b40c.08:00:69:06:af:65>\findmerge.
log.18-Mar-99.13:43:27

The procedure for cleaning up stranded view-private files is described in Administering
ClearCase.

Directory Element Has Been Deleted

If a directory element (or its entire VOB) has been deleted, all the corresponding view-private

files are permanently stranded. They are listed with the VOB’s UUID, as above, with no remedy

possible, except to use recoverview to move the files to the dynamic view’s lost+found directory

(as described in Administering ClearCase).

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: The current dynamic view is listed; a working directory view

takes precedence over a set view.

–tag view-tag
The view-tag of any registered dynamic view to which you have read access.

LISTING STYLE. Default: Checked-out versions are annotated with [checkedout] .

–l⋅ong
Lists objects in the style of ls –long.

–s⋅hort
Lists pathnames only, without annotations.

–siz⋅e
Lists each file’s size in bytes. At the end of the listing, lists the total size of view private

files and of shared DOs in the view.

–age
Lists the last access time of each file.

SELECTING OBJECTS TO LIST. Default: All of the dynamic view’s objects are listed. You can use -co,

-do, and -other in any combination to specify a partial listing.
 ClearCase Reference Pages 453

lsprivate
–inv⋅ob vob-selector
Restricts the listing to objects for the specified VOB. Specify vob-selector in the form

[vob:]pname-in-vob

NOTE: Specifying a pathname within the VOB does not limit the listing to objects in and

below that directory.

–co
Lists checked-out versions of file elements. (Checked-out directory elements are never

listed by lsprivate.)

–do
Lists derived objects.

–oth⋅er
Lists view-private files and directories that are neither checked-out versions of file

elements nor derived objects.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the private objects in the dynamic view with view-tag jc_vw, from the VOB identified

by the pathname M:\jc_vw\jc_hw\src.

cmd-context lsprivate -tag jc_vw -invob M:\jc_vw\jc_hw\src

M:\jc_vw\jc_hw\src\bug.report
M:\jc_vw\jc_hw\src\convolut.c [checkedout]
M:\jc_vw\jc_hw\src\edge.sh
M:\jc_vw\jc_hw\src\hello.c [checkedout]
M:\jc_vw\jc_hw\src\hello.h [checkedout]
M:\jc_vw\jc_hw\src\hello.o
M:\jc_vw\jc_hw\msg.o
M:\jc_vw\jc_hw\util.c [checkedout]
M:\jc_vw\jc_hw\util.c.contrib
M:\jc_vw\jc_hw\util.c.contrib.1
M:\jc_vw\jc_hw\util.o

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
454 ClearCase Reference Manual

lsprivate
• List all checked-out versions of elements in the current dynamic view, from all VOBs.

cmd-context lsprivate –co

M:\jc_vw\jc_hw\src\convolut.c [checkedout]
M:\jc_vw\jc_hw\src\hello.c [checkedout]
M:\jc_vw\jc_hw\src\util.c [checkedout]
M:\jc_vw\vob1\doc\PLAN\DocProp [checkedout]
M:\jc_vw\vob1\doc\ref_man\test\attest.dat [checkedout]
M:\jc_vw\vob1\doc\ref_man\test\testelem.c [checkedout]

• List all elements in the current dynamic view, from all VOBs, using a long listing.

cmd-context lsprivate –long

view private
object M:\jc_vw\tmp_vob\scd_reach\src\findmerge.log.04-Feb-99.10:01:01
view private
object M:\jc_vw\tmp_vob\scd_reach\src\findmerge.log.04-Feb-99.11:00:59
version M:\jc_vw\doc\reqs@@\main\CHECKEDOUT from \main\33
Rule: element * CHECKEDOUT
version M:\jc_vw\doc\specs@@\main\CHECKEDOUT from \main\7
Rule: element * CHECKEDOUT

• List the size and age of all private objects in the current dynamic view.

cmd-context lsprivate –size –age
\sg_test\bar

Size: 10
Age: 05-Apr-99.16:00:54

\sg_test\foo
Size: 10
Age: 05-Apr-99.16:00:53

\sg_test\foobar
Size: 20
Age: 05-Apr-99.16:00:55

total size of view private files is 40
total size of shared derived objects is 0

SEE ALSO

checkout, ls, lscheckout
 ClearCase Reference Pages 455

lsproject
lsproject
 Lists information about a UCM project

APPLICABILITY

SYNOPSIS
lsproj⋅ect [–s⋅hort | –l⋅ong | –fmt format-string |

–tre⋅e [–fmt format-string] [–dep⋅th depth] |

–anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in folder-selector |

 –vie⋅w view-tag | –cvi⋅ew | project-selector ...]

DESCRIPTION

The lsproject command lists information for one or more UCM projects.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

SELECTING A DISPLAY FORMAT. Default: A one-line summary.

–s⋅hort
Displays project names only.

–l⋅ong
Displays a detailed listing for a project, similar to the describe –long command.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

details.

–tre⋅e [–fmt format-string] [–dep⋅th depth]

Displays information for a project, including its hierarchy of streams and activities. By

default output is presented in a version-tree format. You can modify how information is

displayed with the –fmt and –depth options.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
456 ClearCase Reference Manual

lsproject
The –fmt option displays information using the specified format. See the fmt_ccase
reference page for more information.

The –depth option lists the hierarchy of objects to the level specified by the depth
argument. The depth argument must be a positive integer.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays information about one or more projects and its parent folders.

The –fmt option displays information using the specified format. See the fmt_ccase
reference page for further information.

 The –depth option lists the hierarchy of objects to the level specified by the depth
argument. The depth argument must be a positive integer.

SPECIFYING THE PROJECT. Default: All projects in the project VOB of the current directory.

–inv⋅ob vob-selector
Displays a list of all projects in the specified project VOB.

–in folder-selector
Displays a list of projects in the specified folder.

–vie⋅w view-tag
Displays information for the project containing the stream attached to the specified view.

–cvi⋅ew
Displays information for the project containing the stream attached to the current view.

project-selector ...
Specifies one or more projects to list.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display a detailed description of the specified project.

cmd-context lsproject -long Java_Parser_Project_28174@/vobs/core_projects
 ClearCase Reference Pages 457

lsproject
project "Java_Parser_Project_28174"
17-Sep-99.11:24:18 by BillM (bill.user@propane)
 owner: bill
 group: user
 folder: RootFolder
 title: Java Parser Project
 development streams:
 modifiable components:
 default rebase promotion level: TESTED
 recommended baselines:
 policies:
 UnixIntVSnap disabled
 UnixDevVSnap disabled
 WinIntVSnap disabled
 WinDevVSnap disabled
 DeliverReqRebase disabled
 DeliverAllowNCoDevStr disabled

• Display a one-line summary of the project visible from the specified view.

cmd-context lsproject –view java_int

17-Sep-99.11:24:18 Java_Parser_Project_28174 bill "Java Parser Project"

SEE ALSO

chproject, mkproject, rmproject
458 ClearCase Reference Manual

lsregion
lsregion
Lists ClearCase network regions

APPLICABILITY

SYNOPSIS
lsregion [–s⋅hort | –l⋅ong] ['region-tag-pattern' ...]

DESCRIPTION

The lsregion command lists one or more ClearCase network regions.

To be accessible to cleartool subcommands, including lsregion, a region must have an entry in

the regions registry file, which is located in the directory ccase-home-dir\var\rgy on the

network’s registry server host. See registry_ccase for more information about registry files.

NOTE: To display the name of the registry server host for which entries are displayed, use the

hostinfo –long command.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: lsregion displays only region names.

–s⋅hort
Same as the default. Displays only region names.

–l⋅ong
Displays region names and their comment strings.

SPECIFYING THE REGIONS LISTED. Default: Lists all registered network regions.

'region-tag-pattern' ...
Confines the listing to regions that match one or more region-tag-patterns. A

region-tag-pattern can include pattern-matching characters as described in

wildcards_ccase. Enclose each pattern within single quotes.

Product Command Type

ClearCase cleartool subcommand

Attache command
 ClearCase Reference Pages 459

lsregion
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List all ClearCase network regions known to the current host’s registry server host.

cmd-context lsregion
dev_unix
support
winnt1
...

• Display all information registered for each network region that matches the wildcard

pattern *winnt* .

cmd-context lsregion –long '*winnt*'
Tag: winnt1 "region defined automatically"
Tag: winnt2 "region defined implicitly by V2.x client"

FILES

ccase-home-dir\var\rgy\regions

WINDOWS REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Region

SEE ALSO

mkregion, rmregion, registry_ccase
460 ClearCase Reference Manual

lsreplica
lsreplica
Lists VOB replicas

APPLICABILITY

SYNOPSIS
lsrep⋅lica [–l⋅ong | –s⋅hort | –fmt format]

[–sib⋅lings
| [–sib⋅lings] –invob vob-selector
| replica-selector ...

]

DESCRIPTION

This command lists the VOB replicas in a VOB family. lsreplica lists information on all VOB-replica
objects recorded in the VOB database of the current replica (except for deleted replicas, known as

ghost replicas). Other replicas may exist, but the packets containing their creation information

have not yet been imported at the current replica.

RESTRICTIONS

Mastership Checking: None.

Permissions Checking: No special permissions are required.

Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: Includes creation event information for each replica.

–l⋅ong
Includes each replica’s creation information, master replica, mastership request setting,

ownership information, and host. If the current replica is in the process of restoration,

this option annotates the listings of other replicas from which restoration updates are

required. (See the restorereplica reference page in ClearCase MultiSite Manual.)

–s⋅hort
Lists only replica names.

Product Command Type

ClearCase cleartool subcommand

Attache command

MultiSite multitool subcommand
 ClearCase Reference Pages 461

lsreplica
–fmt format
Lists information using the specified format string. See fmt_ccase for details on using

this report-writing facility.

–sib⋅lings
Lists the VOB family members of the current replica, but does not list the current replica

itself. This option is useful when you are writing scripts that process only sibling

replicas.

SPECIFYING THE VOB FAMILY. Default: Lists VOB family members of the replica containing the

current working directory.

–invob vob-selector
Lists the replicas of the specified VOB family. Specify vob-selector in the form

[vob:]pname-in-vob

SPECIFYING THE REPLICA. Default: Lists all known replicas of the VOB family.

replica-selector ...

Restricts the listing to one or more replicas. Specify replica-selector in the form

[replica:]replica-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the names of all replicas of the VOB containing the current working directory.

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

replica-name Name of the replica

vob-selector VOB family of the replica; can be omitted if the current

working directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)
462 ClearCase Reference Manual

lsreplica
multitool lsreplica –short
evanston
osaka
paris

• List the names of all siblings of the VOB containing the current working directory.

multitool lsreplica –short –siblings
osaka
paris

• List all replicas of the VOB whose VOB-tag is \gvob_ech.

cmd-context lsreplica –invob \gvob_ech

• List the name, master replica, and replica host of all replicas in the VOB family \dev.

cmd-context lsreplica –fmt ^
"Name: %n\n\tMaster replica: %[master]p\n\tReplica host: %[replica_host]p\n" ^
-invob \dev
Name: lex

Master replica: lex@\dev
Replica host: minuteman

Name: cup
Master replica: lex@\dev
Replica host: surfer

SEE ALSO

describe, lsvob, mkreplica (in the ClearCase MultiSite Manual)

For VOB replica “\gvob_ech”:

11-Mar.13:42 david replica "original"

11-Mar.13:45 david replica "second_rep"
 ClearCase Reference Pages 463

lssite
lssite
Lists site-wide default properties

APPLICABILITY

SYNOPSIS
lssite [–inq⋅uire | setting-name]

DESCRIPTION

The lssite command lists site-wide properties set in the ClearCase or ClearCase LT site config

registry, and properties that are not currently set.

If you have not set any site-wide properties in the registry use lssite –inquire to list all available

properties and their default values. To change the value of a property (that is, set the property in

the registry), use the setsite command.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING PROPERTY NAMES. Default: lssite lists the site-wide properties that are set in the registry.

The properties are displayed in the form name=value.

–inq⋅uire
Lists all available properties and their values. If a property is not set in the registry, lssite
displays the default value. An asterisk before a property indicates that it is set in the

registry.

NOTE: The default view cache size is different for 32-bit and 64-bit computers. Therefore,

if the view cache size is not set in the registry, lssite –inquire output displays the default

size for the computer on which you entered the command.

setting-name
Displays the property and its value. An asterisk before a property indicates that it is set

in the registry.

Product Command Type

ClearCase command

ClearCase LT command
464 ClearCase Reference Manual

lssite
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List properties that have been set in the registry.

cmd-context lssite
view_cache_size=204800

• List all available properties.

cmd-context lssite –inquire
view_cache_size=204800
view_shareable_dos=TRUE
view_interop_text_mode=FALSE

SEE ALSO

getcache, mkview, setcache, setsite
 ClearCase Reference Pages 465

lsstgloc
lsstgloc
Lists view and VOB server storage locations.

APPLICABILITY

SYNOPSIS

• ClearCase:

lsstgloc [–vie⋅w | –vob] [–s⋅hort | –l⋅ong] [–reg⋅ion network-region] [–hos⋅t hostname]

[stgloc-name | ‘stgloc-name-pattern‘ ... | –sto⋅rage stgloc-pname]

• ClearCase LT:

lsstgloc [–vie⋅w | –vob] [–s⋅hort | –l⋅ong]

[‘stgloc-name-pattern‘ ... | –sto⋅rage stgloc-pname]

DESCRIPTION

The lsstgloc command lists registry information about server storage locations for views and/or

VOBs.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF SERVER STORAGE LOCATION TO BE LISTED. Default: Both view and VOB

server storage locations.

–vie⋅w
Lists server storage locations for views only.

–vob
Lists server storage locations for VOBs only.

SPECIFYING OUTPUT VERBOSITY. Default: Displays a one-line summary of the registry

information.

–s⋅hort
Lists server storage location names only.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
466 ClearCase Reference Manual

lsstgloc
–l⋅ong
Lists the server storage location’s name, region, UUID, global path (ClearCase only),

server host, and server host path.

SPECIFYING THE NETWORK REGION. Default: The local host’s network region. (Use the hostinfo
–long command to display the network region.) See the registry_ccase reference page for a

discussion of network regions.

–reg⋅ion network-region
Lists server storage locations in the specified network region.

SPECIFYING THE HOST. Default: All server storage locations registered for the local network

region.

–hos⋅t hostname
Lists only server storage locations residing at the specified host.

SPECIFYING THE SERVER STORAGE LOCATION. Default for ClearCase: All server storage locations in

the local network region. Default for ClearCase LT: All server storage locations.

‘stgloc-name-pattern‘ ...
Lists server storage locations whose names match the specified patterns (see

wildcards_ccase). Enclose each name pattern in quotes.

–sto⋅rage stgloc-pname
Lists the specified server storage location.

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the server storage locations.

cmd-context lsstgloc
Views \\saturn\ccstg_d\views
VOBs \\saturn\ccstg_d\VOBs
test_BRAD \\pluto\c\temp\test_BRAD

• List the server storage location named test_BRAD.

cmd-context lsstgloc test_BRAD
test_BRAD \\pluto\c\temp\test_BRAD

• List details of the server storage location at \\saturn\ccstg_d\VOBs.
 ClearCase Reference Pages 467

lsstgloc
cmd-context lsstgloc -long -storage \\saturn\ccstg_d\VOBs
Name: VOBs
Type: VOB
Region: lexington
Storage Location uuid: 3988ccaa.412d11d4.a313.00:01:80:7c:c6:73
Global path: \\saturn\ccstg_d\VOBs
Server host: saturn
Server host path: d:\ClearCase_Storage\VOBs

SEE ALSO

mkstgloc, mkview, mkvob, registry_ccase, rmstgloc
468 ClearCase Reference Manual

lsstream
lsstream
Lists information about one or more UCM streams

APPLICABILITY

SYNOPSIS
lsstream [–s⋅hort | –l⋅ong | –fmt format-string

| –tre⋅e [–fmt format-string] [–dep⋅th depth]

| –anc⋅estor [–fmt format-string] [–dep⋅th depth]]

[–inv⋅ob vob-selector | –in project-selector | –vie⋅w view-tag
| –cvi⋅ew |stream-selector ...]

DESCRIPTION

The lsstream command displays information about one or more streams.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions are required.

Locks: No locks apply.

Mastership: Mastership does not apply.

OPTIONS AND ARGUMENTS

SELECTING A DISPLAY FORMAT. Default: One-line summary.

–s⋅hort
Displays only the name of each stream.

–l⋅ong
Displays detailed information for each stream, including the project it’s associated with

and the stream’s name and title, activities, and foundation baselines.

–fmt format-string
Displays information in the specified format. See the fmt_ccase reference page for

details.

–tre⋅e [–fmt format-string] [–dep⋅th depth]

Displays information for a stream, including its hierarchy of streams and activities. By

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand
 ClearCase Reference Pages 469

lsstream
default output is presented in a version-tree format. You can modify how information is

displayed with the –fmt and –depth options.

The –fmt option presents information using the specified format string. See the

fmt_ccase reference page for further information.

The –depth option specifies the number of levels displayed. The depth argument must be

a positive integer.

–anc⋅estor [–fmt format-string] [–dep⋅th depth]

Displays information for a stream, including its containing project and folders. By

default, output is presented in a version-tree format. You can modify how information

is displayed with the –fmt and –depth options.

 The –fmt option presents information using the specified format string. See the

fmt_ccase reference page for further information.

The –depth option sets the number of levels displayed. The depth argument must be a

positive integer.

SPECIFYING THE STREAM. Default: –cview.

–inv⋅ob vob-selector
Displays a list of all streams in the specified UCM project VOB.

–in project-selector
Displays a list of all streams for the specified project and highlights the integration

stream.

–vie⋅w view-tag
Displays information for the stream connected to the specified view.

–cvi⋅ew
Displays information for the stream connected to the current view.

stream-selector ...
Displays information for specified stream or streams.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.
470 ClearCase Reference Manual

lsstream
EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

Display a one-line summary of the stream attached to the specified view.

cmd-context lsstream –view java_int

17-Sep-99.11:54:50 java_int bill "Deliver your changes here"

• For all streams in the project VOB, display a detailed listing for the current stream using a

tree format. The asterisk (*) indicates java_int is the stream attached to the current view.

% cd \vobs\core_projects

cmd-context lsstream -tree
*java_int stream "Deliver your changes here"

rebase.java_int.19990917.132524 activity "rebase Deliver your
changes here on 09/17/99 13:25:24."

activity990917.133218 activity "activity990917.133218"
activity990917.133255 activity "my new activity"
new_activity activity "new_activity"
toms_edit activity "toms_edit"
activity990917.134751 activity "activity990917.134751"
deliver.java_dev.19990917.140443 activity "deliver java_dev

on 09/17/99 14:04:43."
deliver.java_dev.19990917.141046 activity "deliver java_dev

on 09/17/99 14:10:46."

java_dev stream "java_dev"
activity990917.140331 activity "activity990917.140331"

SEE ALSO

chstream, mkstream, rmstream
 ClearCase Reference Pages 471

lstype
lstype
Lists a VOB’s type objects

APPLICABILITY

SYNOPSIS

• (not in Attache) List type objects graphically:

lstype –g⋅raphical [–kin⋅d type-kind] [–inv⋅ob vob-selector]

• List type objects in the command window:

lstype [–local] [–l⋅ong | –s⋅hort | –fmt format-string] [–obs⋅olete]

{ –kin⋅d type-kind [–inv⋅ob vob-selector]

| type-selector ...

}

DESCRIPTION

The lstype command lists information about one or more of a VOB’s type objects.

Obsolete Type Objects

Type objects can be rendered obsolete with the lock –xxtype –obsolete command. lstype lists an

obsolete type object only if you either specify its name with a type-name argument or use the

–obsolete option.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

(NOT IN ATTACHE) LISTING TYPE OBJECTS GRAPHICALLY. Default: Lists type objects in the command

window.

–g⋅raphical
Starts a type object browser to display type objects.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
472 ClearCase Reference Manual

lstype
LISTING LOCAL COPIES OF GLOBAL TYPES. Default: In addition to types in the specified VOB, lstype
lists all global types in associated administrative VOBs.

–local
Lists ordinary types and local copies of global types. For more information about global

types, see Administering ClearCase.

LISTING FORMAT. Default: A type object listing looks like this:

07-Nov-1998 sakai element type "text_file"

–l⋅ong
Expands the listing to include any type-specific parameters (for example, that a label

type is one-per-element or that an element type inherited its type manager from the

text_file supertype and so on.)

–s⋅hort
Restricts the listing to type names only.

–fmt format-string
Lists information using the specified format string. See the fmt_ccase reference page for

details on using this report-writing facility.

LISTING OBSOLETE TYPES. Default: If you don’t specify any type-name argument, only the

nonobsolete types of the specified kind are listed.

–obs⋅olete
Includes obsolete type objects in the listing when you don’t specify any individual type

objects with type-name arguments. Has no effect if you specify one or more type-name
arguments.

SPECIFYING THE KIND OF TYPE OBJECT. Default: None.

–kin⋅d type-kind
A kind of type object. All objects of this kind are listed. type-kind can be one of:

attype, brtype, eltype, hltype, lbtype, trtype

SPECIFYING THE VOB. Default: Lists type objects in the VOB that contains the current working

directory.

–inv⋅ob vob-selector
The VOB whose type objects are to be listed. Specify vob-selector in the form

[vob:]pname-in-vob

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)
 ClearCase Reference Pages 473

lstype
SPECIFYING INDIVIDUAL TYPE OBJECTS. Default: None.

type-selector ...

One or more names of type objects. The listing includes only the named objects. Specify

type-selector in the form [type-kind:]type-name[@vob-selector]

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

List all branch types defined in the VOB containing the current working directory.

cmd-context lstype –kind brtype

15-Dec.09:34 jenny branch type "main"
 "Predefined branch type used to represent the main branch of elements."
08-Dec.12:12 jackson branch type "test"
 "test development branch"
08-Dec.12:12 jackson branch type "patch2"
08-Dec.12:12 jackson branch type "patch3"
08-Dec.12:12 jackson branch type "rel2_bugfix"

• List all label types defined in the current VOB. Use the short format, and include obsolete

label types.

cmd-context lstype –kind lbtype –obsolete –short

type-kind One of

attype Attribute type

brtype Branch type

eltype Element type

hltype Hyperlink type

lbtype Label type

trtype Trigger type

type-name Name of the type object. See the Object Names section in the

cleartool reference page for rules about composing names.

vob-selector Object-selector for a VOB, in the same format as with –invob,

above.
474 ClearCase Reference Manual

lstype
BACKSTOP
CHECKEDOUT
LATEST
REL1 (obsolete)
REL2
REL3
V2.7.1 (obsolete)

Note that the listing includes the three predefined label types, BACKSTOP, LATEST, and

CHECKEDOUT.

• List information about a particular user-defined element type, in long format.

cmd-context lstype –long eltype:c_source

element type "c_source"
08-Dec-98.12:12:38 by jackson.dvt@oxygen
owner: jackson
group: dvt
scope: this VOB (ordinary type)
type manager: text_file_delta (inherited from type "text_file")
supertype: text_file
meta-type of element: file element

• List information about a particular trigger type, in long format.

cmd-context lstype –long trtype:trig1

trigger type "trig1"
08-Dec-98.12:14:08 by jackson.dvt@oxygen
owner: jackson
group: dvt
element trigger
pre-operation MODIFY_ELEM
action: -exec checkcmt

• List information about a particular hyperlink type.

cmd-context lstype –long hltype:design_spec

hyperlink type "design_spec"
08-Dec-98.12:13:31 by Chuck Jackson (test user) (jackson.dvt@oxygen)
"source to design document"
owner: jackson
group: dvt
scope: this VOB (ordinary type)

• List the name, lock status, master replica, and scope of all label types in the VOB \stage.

(The command line, including the quoted format string, constitutes a single input line. The

input line below is broken to improve readability. Spaces are significant.)
 ClearCase Reference Pages 475

lstype
cmd-context lstype –fmt "%n\n\tLock status: %[locked]p\n\tMaster replica:
%[master]p\n\tScope: %[type_scope]p\n" -kind lbtype
V3.BL3

Lock status: unlocked
Master replica: lex
Scope: ordinary

V3.BL4
Lock status: locked
Master replica: lex
Scope: global

V4.0.DOC
Lock status: unlocked
Master replica: doc_clone
Scope: ordinary

V4.0.HELP
Lock status: unlocked
Master replica: doc_clone
Scope: ordinary

• List the name, kind, and creation comment of a particular trigger type.

cmd-context lstype -fmt "%n\t%[trigger_kind]p\n\t%c" trtype:cmnt
cmnt element trigger

prompt user for comment

SEE ALSO

describe, rmtype, rename, type_object
476 ClearCase Reference Manual

lsview
lsview
Lists view registry entries

APPLICABILITY

SYNOPSIS

• ClearCase and Attache only:

lsview [–s⋅hort | –l⋅ong] [–hos⋅t hostname]

[–pro⋅perties [–ful⋅l] | –age] [–reg⋅ion network-region]

[–cview | view-tag ... | –sto⋅rage view-storage-dir-pname ... | –uui⋅d view-uuid]

• ClearCase LT only:

lsview [–s⋅hort | –l⋅ong] [–pro⋅perties [–ful⋅l] | –age]

[–cview | view-tag ... | –sto⋅rage view-storage-dir-pname ... | –uui⋅d view-uuid]

DESCRIPTION

In ClearCase and Attache, the lsview command lists one or more views, including nonactive

dynamic views. In ClearCase LT, lsview lists views registered at the ClearCase LT server host. To

be accessible to cleartool subcommands and Attache commands, including lsview, a view

requires these registry entries:

• One entry in the view_object registry file

• One or more entries in the view_tag registry file

These files, view_object and view_tag, constitute the view registry and are located in directory

ccase-home-dir\var\rgy on the network’s registry server host. The registry_ccase reference page

describes the registry files in detail.

ClearCase and Attache Only—Default Output

In ClearCase and Attache, the lsview command lists all views registered for the current network

region by default, whether or not they are active. The default output line for each listed view

shows:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
 ClearCase Reference Pages 477

lsview
• Whether the view is active on the host (* indicates the active dynamic view; active snapshot

views are listed, but not annotated with a *)

NOTE: lsview does not report unmounted local views as active even if they have running

servers. Also, lsview does not report removed views as active.

• The view-tag

• The view-storage directory pathname

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default for ClearCase and Attache: See the ClearCase and Attache Only—Default
Output section. Default for ClearCase LT: Similar to that of ClearCase and Attache, but no

information about dynamic views is listed.

–s⋅hort
Restricts the listing to view-tags only.

–l⋅ong
Expands the listing to include all information stored in the view registry regarding the

listed views (see the registry_ccase reference page).

ClearCase and Attache only—The network accessibility information includes the global

path to the view if a value is set for this property; otherwise, lists the host name and

host-local path only.

ClearCase LT only—The network accessibility information lists the host name and the

host-local path.

–pro⋅perties [–ful⋅l]
Reports the following properties:

With the –full option, reports the following additional properties:

• When and by whom the view was created, last modified, and last accessed

• Permissions for the view owner, view group members, and others

• When and by whom view-private data was last accessed

• When and by whom a view-private object was last updated

• When and by whom the config spec was last updated

• For a dynamic view, when and by whom a derived object was last created,

promoted, and winked in
• For a dynamic view, whether it creates shareable derived objects or nonshareable

derived objects
478 ClearCase Reference Manual

lsview
–age
Reports when and by whom the view was last accessed.

SPECIFYING THE VIEWS. Default for ClearCase and Attache: Views registered for the local network

region. Default for ClearCase LT: All views registered at the ClearCase LT server host.

–hos⋅t hostname
Confines the listing to views whose storage directories reside on host hostname.

–reg⋅ion network-region
Confines the listing to the views registered for a particular network region. (The mkview
and mktag commands have a –region option, which can be used to assign view-tags to

specific network regions.) The network-region argument can include pattern-matching

characters as described in wildcards_ccase (ClearCase) or wildcards (Attache). If the

network-region argument includes pattern-matching characters, enclose it in single

quotes.

–cvi⋅ew
Lists the current view.

view-tag ...

Specifies a single view to be listed. The view must be registered, but it need not be active

to be listed with lsview. The view-tag argument can include pattern-matching characters

as described in wildcards_ccase or wildcards. Enclose in single-quotes any view-tag
argument that includes pattern-matching characters.

–sto⋅rage view-storage-dir-pname ...

One or more views, identified by full pathnames to their storage directories.

–uui⋅d view-uuid
A single view, specified by its UUID (universal unique identifier).

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List the views registered for the local network region.

• The view’s text mode
• Whether the view is a dynamic view or a snapshot view

• Whether the view is read-only or writable
 ClearCase Reference Pages 479

lsview
cmd-context lsview

* mainRel5 \\pluto\c\views\mainRel5.vws
anneRel5 \\jupiter\users\views\anneRel5.vws

* anneTest \\neptune\anne\vw_store\anneTest.vws
nordTest \\luna\users\nord\nordTest.vws

* nordRel5 \\luna\share\vw_store\nordRel5.vws
nordRel4 \\luna\share\vw_store\nordRel4.vws

• List, using the long display format, the registry information for the view with view-tag

mainRel5.

cmd-context lsview –long mainRel5

Tag: mainRel5
 Global path: \\pluto\viewshare\mainRel5.vws
 Server host: pluto
 Region: main_headqtrs
 Active: YES
 View tag uuid:a9c1ba4d.853e11cc.a96b.08:00:69:06:05:d8
View on host: pluto
View server access path: C:\views\mainRel5.vws
View uuid: a9c1ba4d.853e11cc.a96b.08:00:69:06:05:d8

• For a particular host, list the views whose view-tags match a wildcard pattern.

cmd-context lsview –host saturn '*anne*'

* anne_main \\saturn\c\users\anne\views\anne_main.vws
anne_rel2 \\saturn\c\users\anne\views\anne_rel2.vws

• List full view properties.

cmd-context lsview –properties –full anne_main

anne_main \\saturn\disk1\views\anne_main.vws
Created 18-Jun-99.17:41:34 by anne.user@saturn
Last modified 22-Jul-99.15:42:16 by sue.user@pluto
Last accessed 22-Jul-99.15:42:16 by sue.user@pluto
Last read of private data 21-Jul-99.17:06:20 by anne.user@saturn
Last derived object promotion 11-Mar-99.12.31.20 by anne.user@saturn
Last config spec update 18-Jun-99.17:55:27 by anne.user@saturn
Last derived object winkin 21-Jul-99.17:05:49 by anne.user@saturn
Last derived object creation 21-Jul-99.17:06:18 by anne.user@saturn
Last view private object update 22-Jul-99.15:42:16 by sue.user@pluto
Text mode: msdos
Properties: dynamic readwrite shareable_dos
Owner: ACME\anne : rwx (all)
Group: ACME\user : rwx (all)
Other: : r-x (read)
480 ClearCase Reference Manual

lsview
SEE ALSO

mktag, mkview, register, registry_ccase, unregister, view
 ClearCase Reference Pages 481

lsvob
lsvob
Lists VOB registry entries

APPLICABILITY

SYNOPSIS

• ClearCase only—List VOBs using the graphical VOB browser:

lsvob –g⋅raphical [–reg⋅ion network-region]

• ClearCase and Attache only—List VOBs in the command window:

lsvob [–s⋅hort | –l⋅ong] [–hos⋅t hostname] [–reg⋅ion network-region]

[vob-tag ... | –sto⋅rage vob-storage-dir-pname ... | –uui⋅d vob-uuid]

• ClearCase LT only—List VOBs using the graphical VOB browser:

lsvob –g⋅raphical

• ClearCase LT only—List VOBs in the command window:

lsvob [–s⋅hort | –l⋅ong] [vob-tag ... | –sto⋅rage vob-storage-dir-pname ... | –uui⋅d vob-uuid]

DESCRIPTION

The lsvob command lists one or more VOBs. To be accessible to cleartool subcommands and

Attache commands, including lsvob, a VOB must be registered. That is, it must have an entry in

the vob_object file on the registry server host (ClearCase and Attache), or on the ClearCase LT

server host (ClearCase LT). In addition, each VOB typically has one or more entries in the

vob_tag registry file; you cannot mount, or even create, a VOB without assigning a tag to it. (See

the mkvob reference page; the registry_ccase reference page describes the registry files in detail.)

ClearCase and Attache Only—Default Output

In ClearCase and Attache, lsvob lists all VOBs registered for the current network region by

default, whether or not they are mounted (active). The default output line for each listed VOB

looks like this:

* \src1 \\sunfield\c\vbstore\src1_vob private

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
482 ClearCase Reference Manual

lsvob
The four output fields report:

• Whether the VOB is mounted (*)

• The VOB-tag

• The VOB storage directory pathname

• Whether the VOB is public or private (see the mkvob reference page)

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default for ClearCase and Attache: See the ClearCase and Attache Only—Default
Output section. Default for ClearCase LT: One-line summary.

–l⋅ong
Expands the listing to include all information stored in the VOB registry regarding the

listed VOBs. (See the registry_ccase reference page.)

ClearCase and Attache only—The network accessibility information includes the global

path to the view if a value is set for this property; otherwise, lists the host name and

host-local path only.

ClearCase LT only—The network accessibility information lists the host name and the

host-local path.

–s⋅hort
Restricts the listing to VOB-tags only.

LISTING THE VOBS GRAPHICALLY. Default: Lists the VOBs in the command window.

–g⋅raphical
Starts the VOB Browser to list the VOBs.

SPECIFYING THE VOBS. Default for ClearCase and Attache: Lists all VOBs registered for the local

network region, both mounted and unmounted, public and private. Default for ClearCase LT: Lists

all VOBs on the ClearCase LT server.

–hos⋅t hostname
Confines the listing to VOBs whose storage directories reside on host hostname.

–reg⋅ion network-region
Confines the VOB listing to include only the VOBs registered for one or more network

regions. (The mkvob and mktag commands have a –region option, which can be used

to assign VOB-tags to specific network regions.) Unless you use the –graphical option,

the network-region argument can include pattern-matching characters as described in the
 ClearCase Reference Pages 483

lsvob
wildcards_ccase reference page and the Attache wildcards reference page. Single-quote

the network-region argument, if it includes pattern-matching characters.

vob-tag ...

Specifies one or more VOBs to be listed. A VOB must be registered, but it need not be

mounted, to be listed with lsvob. The vob-tag argument can include pattern-matching

characters as described in wildcards_ccase or wildcards. Enclose in single quotes any

vob-tag argument that includes pattern-matching characters.

–sto⋅rage vob-storage-dir-pname ...

One or more VOBs, identified by full pathnames to their storage directories.

–uui⋅d vob-uuid
Lists the VOB with the specified universal unique identifier (UUID).

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

List the VOBs registered for the local network region.

cmd-context lsvob

* \demo \\neptune\vbstore\demo_vob public
* \src1 \\sunfield\users\vbstore\src1_vob public
* \design \\luna\vbstore\design_vob public

\doc \\sunfield\users\vbstore\doc_vob public
* \stage \\pluto\vbstore\stage_vob public

\bugvob \\luna\users\anne\vbstore\bug_vob private

• List, using the long display format, the registry information for the VOB with VOB-tag

\vob12. The output line Active: YES indicates that the VOB is currently mounted.

cmd-context lsvob –long \vob12
484 ClearCase Reference Manual

lsvob
Tag: \vob12
 Global path: \\sol\vbstore\vob12.vbs
 Server host: sol
 Access: public

Region: us_west
 Active: YES
 Vob tag replica uuid:cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3
Vob on host: sol
Vob server access path: c:\vbstore\vob12.vbs
Vob family uuid: aed00001.9d3e11ca.bc4c.00:01:53:00:e8:c3
Vob replica uuid: cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

• For a particular host, list the VOBs whose VOB-tags match a wildcard pattern.

cmd-context lsvob –host host4 '*anne*'

* \anne_test2 \\saturn\users\anne\vbstore\test2.vbs public
* \anne_work \\saturn\users\anne\vbstore\work.vbs private

• Use a VOB browser to list all VOBs in the rd_east region.

cmd-context lsvob –graphical –region rd_east

SEE ALSO

mktag, mkvob, mount, register, umount, unregister, registry_ccase
 ClearCase Reference Pages 485

lsvtree
lsvtree
Lists version tree of an element

APPLICABILITY

SYNOPSIS

• Display the version tree in graphical form:

lsvtree –g⋅raphical [–a⋅ll] [–nme⋅rge] [–nco] pname ...

• List the version tree in the command window:

lsvtree [–nr⋅ecurse] [–s⋅hort] [–a⋅ll] [–mer⋅ge] [–nco] [–obs⋅olete]

[–bra⋅nch branch-pname] pname ...

DESCRIPTION

The lsvtree command lists part or all of the version tree of one or more elements. By default, the

listing includes all branches of an element’s version tree except for obsolete branches. The listing

excludes certain versions on the included branches. Command options control which branches,

how many branches, and which versions are listed. You can also control the way versions are

annotated with version labels and merge arrows.

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

OPTIONS AND ARGUMENTS

DISPLAYING THE VERSION TREE GRAPHICALLY. Default: Lists the version tree in nongraphical form.

–g⋅raphical
Starts a Version Tree Browser (in Attache, a Version Tree Browser window) for each

element you specify as an argument.

LISTING SUBBRANCHES. Default: Lists the entire subtree of the branch selected as the starting

point.

–nr⋅ecurse
Omits all subbranches from the listing, showing only versions on a single branch.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command
486 ClearCase Reference Manual

lsvtree
SELECTING AND ANNOTATING VERSIONS ON A BRANCH. Default: For each branch included in the

listing, these selected versions are listed:

• Checked-out versions (annotated with the view name) and their predecessors

• Versions that are the LATEST on their branches

• Versions with labels

• Versions at which a subbranch was created

• Versions that are hyperlink endpoints.

A version is annotated with up to five of its version labels; an ellipsis (...) indicates that the

version has additional labels.

–s⋅hort
Restricts the listing to version-extended pathnames. Version labels, merge annotations,

and checkout annotations are omitted.

–a⋅ll
Lists all versions on a branch, not the selected versions only; annotates each version with

all of its version labels.

–mer⋅ge
Includes all versions that are at the from-end of one or more merge arrows (hyperlinks

of type Merge). Annotations on each such version indicate the corresponding to-objects.

–nme⋅rge
Excludes versions that have merge arrows.

–nco
Excludes checked-out versions from the listing or display. The predecessor of a

checked-out version is also excluded, unless there is another reason to include it (for

example, it has a version label).

LISTING OBSOLETE BRANCHES. Default: Obsolete branches (locked with the obsolete option) and

instances of obsolete branch types are not listed.

–obs⋅olete
Lists obsolete branches and instances of obsolete branch types.

SELECTING THE STARTING POINT. Default: Starts the version tree listing at an element’s main
branch.

–bra⋅nch branch-pname
Starts the version tree listing at the specified branch. You can also use an extended name

as the pname argument (for example, foo.c@@\main\bug405) to start the listing at a

particular branch.
 ClearCase Reference Pages 487

lsvtree
SPECIFYING THE ELEMENTS OR BRANCHES. Default: None. You must specify at least one element.

pname ...

One or more pathnames, specifying elements or branches of elements. (Alternatively,

use the –branch option to specify a branch of an element.)

EXAMPLES

Examples including wildcards or quoting are written for use in cleartool interactive mode. If you

use cleartool single-command mode, you may need to change the wildcards and quoting to

make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the command interpreter prompt. In

cleartool interactive mode, cmd-context represents the interactive cleartool prompt. In Attache,

cmd-context represents the workspace prompt.

• List selected versions from an element’s version tree.

cmd-context lsvtree util.c
util.c@@\main
util.c@@\main\1 (REL2)
util.c@@\main\rel2_bugfix
util.c@@\main\rel2_bugfix\1
util.c@@\main\3 (REL3)
util.c@@\main\4

• List all versions and all obsolete branches in an element’s version tree.

cmd-context lsvtree –all –obsolete util.c
util.c@@\main
util.c@@\main\0
util.c@@\main\1 (REL2)
util.c@@\main\rel2_bugfix
util.c@@\main\rel2_bugfix\0
util.c@@\main\rel2_bugfix\1
util.c@@\main\2
util.c@@\main\3 (REL3)
util.c@@\main\rel3_patch
util.c@@\main\rel3_patch\0
util.c@@\main\rel3_patch\1
util.c@@\main\4

• List all versions on the rel2_bugfix branch of an element’s version tree.

cmd-context lsvtree -branch \main\rel2_bugfix -all util.c
util.c@@\main\rel2_bugfix
util.c@@\main\rel2_bugfix\0
util.c@@\main\rel2_bugfix\1
488 ClearCase Reference Manual

lsvtree
• Start a version tree browser to display all versions in an element’s version tree.

cmd-context lsvtree –graphical –all util.h

SEE ALSO

describe, ls, lshistory
 ClearCase Reference Pages 489

490 ClearCase Reference Manual

lsws

lsws
Lists local workspace registry entries

APPLICABILITY

SYNOPSIS
lsws

DESCRIPTION

The lsws command lists all workspaces registered on the local machine, showing their

workspace storage directories and workspace helper hosts.

The output line for each listed workspace looks like this:

jo_main c:\users\jo\jo_main agora

The three output fields report:

• The workspace name (view tag)

• The workspace-storage directory pathname

• The ClearCase host serving as the workspace helper host (running ws_helper)

PERMISSIONS AND LOCKS

Permissions Checking: No special permissions required. Locks: No locks apply.

EXAMPLES

• List all of your workspaces.

cmd-context lsws

SEE ALSO

attache_command_line_interface, mkws, rmws, setws

Product Command Type

Attache command

Workspace name Local storage directory Server host

jed_ws C:\users\jo\jed_ws agora

jo_main C:\users\jo\jo_main agora

	ClearCase Reference Manual
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Command Examples
	Online Documentation
	Technical Support

	admin_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	albd_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	STARTING THE LOCATION BROKER
	SERVICES FILE PORT ASSIGNMENT
	ALBD_SERVER CONFIGURATION FILE
	OTHER ALBD_SERVER FUNCTIONS
	FILES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	annotate
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Line of Descent
	Type Manager Interface

	REPORT FORMAT
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	att_clnt
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	USAGE OVERVIEW
	OPTIONS AND ARGUMENTS
	SEE ALSO

	Attache
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	ATTACHE INSTALLATION DIRECTORY
	STARTING ATTACHE
	ATTACHE COMMAND TOOL
	ATTACHE INTEGRATION CLIENT
	ATTACHE’S STARTUP DIRECTORY

	USER NAME AND PASSWORD
	GETTING HELP
	ERROR LOG
	SEE ALSO

	attache_command_line_interface
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ATTACHE COMMANDS
	ATTACHE COMMAND WINDOW
	GETTING HELP FOR COMMANDS
	USAGE OVERVIEW
	Command Options
	Command Abbreviations and Aliases

	PATHNAMES IN ATTACHE COMMANDS
	PROCESSING OF SYMBOLIC LINKS
	COMMAND-LINE PROCESSING
	PERMISSIONS CHECKING
	OBJECT LOCKING
	SEE ALSO

	attache_graphical_interface
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	GETTING HELP
	ATTACHE’S WINDOWS
	Command Window
	Browser Window

	ATTACHE’S TOOLBAR
	ATTACHE’S MENUS
	Summary
	File>New Workspace
	File>Open Workspace
	File>Update Workspace
	File>Delete Workspace
	File>Workspace Properties>Workspace
	File>Workspace Properties>Helper
	File>Workspace Properties>Update Status
	File>Edit Config Spec
	File>Change Directory
	File>Command Shell
	File>Stop Execution
	File>Exit
	Edit>Cut
	Edit>Copy
	Edit>Paste
	Edit>Paste/Submit
	Edit>Find
	Edit>Find Next
	Version>Import
	Version>Remove
	Version>Get
	Version>Put
	Version>Checkout
	Version>Checkin
	Version>Uncheckout
	Version>Properties>General
	Version>Properties>Labels
	Version>Properties>Attributes
	Version>Properties>HyperLinks
	Version>Properties>Triggers
	Version>Properties>Protection
	Version>Properties>Lock
	Version>History
	Version>Version Tree
	Version>Diff vs. Predecessor
	Version>Merge
	Options>Preferences>Login Info
	Options>Preferences>Registry
	Options>Preferences>View Attributes
	Options>Preferences>Options
	Options>Font
	View>Toolbar
	View>Status Bar
	View>Refresh
	Help>Contents
	Help>How to Use Help
	Help>Tutorial
	Help>About

	SEE ALSO

	attcmd
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	attcmd SUBCOMMANDS
	USAGE OVERVIEW
	IDENTIFYING THE WORKSPACE
	INPUT REDIRECTION
	EXIT STATUS
	SEE ALSO

	catcr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CRs and clearaudit
	Controlling the Report
	DOs in Unavailable Views

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	catcs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	cc.magic, default.magic
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Search Path

	FILE-TYPING RULES
	FILE TYPE LIST
	SELECTION EXPRESSION
	Selection Operators and Arguments
	Logical Operators

	EXAMPLES
	FILES
	SEE ALSO

	cd
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Changing Directories in a Dynamic View
	Changing Directories in a Snapshot View
	View Selection Precedence
	Attache’s Client Process Startup Directory

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Baseline Labels
	Promotion Levels

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	checkin
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Actions Taken in the VOB
	Actions Taken in the View

	METADATA AND THE CHECKED-IN VERSION
	CHECKIN OF RESERVED AND UNRESERVED CHECKOUTS
	CHECKIN OF DERIVED OBJECTS
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	checkout
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESERVED AND UNRESERVED CHECKOUTS
	MultiSite Only: Checking Out a Branch Mastered at Another Site

	NONSTANDARD CHECKOUTS
	CHECKING OUT A DO VERSION
	AUTO-MAKE-BRANCH
	Multiple-Level Auto-Make-Branch

	RESOLVING CHECKOUT PROBLEMS INTERACTIVELY
	CHECKED-OUT FILES
	Dynamic Views
	Snapshot Views
	Attache Only

	CHECKEDOUT BUT REMOVED FILES
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	checkvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	Storage Pool Mode
	Hyperlink Mode
	Global Types Mode

	EXAMPLES
	FILES
	SEE ALSO

	chevent
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chflevel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Raising the Feature Levels of VOBs
	Raising the Feature Levels of MultiSite VOBs

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SPECIFYING A VIEW CONTEXT
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chpool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Commands for Listing Pools

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Project Titles
	Adding New Components
	Setting Required Promotion Levels for Recommended Baselines
	Project Policies

	Using Rational ClearQuest with UCM projects
	Detecting and Correcting Incorrectly Enabled Activities
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Changing an Element’sType
	Renaming a Branch

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	chview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Cache Size
	ClearCase Only—Type of Derived Objects Built in a Dynamic View
	ClearCase Only—Access Mode in a Dynamic View

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearaudit
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Location of Temporary Build Files
	Auditing Any Process
	Auditing a Non-ClearCase make

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	cleardescribe
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	SEE ALSO

	cleardiff
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearexport_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Contents of the Datafile

	TRANSLATION OF BRANCHES AND VERSION LABELS
	Syntax of Translation File

	HANDLING OF ELEMENTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearexport_cvs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CVS Files, Working Files, and Locks
	CVSROOT Environment Variable

	SPECIAL CHARACTERS IN FILE NAMES
	HANDLING OF CVS SYMBOLS
	Translation File

	HANDLING OF OBJECTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearexport_ffile
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Export Stage
	Import Stage

	HANDLING OF OBJECTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearexport_pvcs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PVCS Files, Workfiles, and Locks

	SPECIAL CHARACTERS IN FILE NAMES
	HANDLING OF PVCS SYMBOLS
	Translation File

	HANDLING OF OBJECTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearexport_rcs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RCS Files, Working Files, and Locks

	SPECIAL CHARACTERS IN FILE NAMES
	HANDLING OF RCS SYMBOLS
	Translation File

	VERSION TREE STRUCTURE AFTER CONVERSION
	HANDLING OF OBJECTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearexport_sccs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	S-Files, G-Files, and P-Files
	Multiple-Pass Export

	SPECIAL CHARACTERS IN FILE NAMES
	VERSION TREE STRUCTURE AFTER CONVERSION
	Branches Off Branches

	TRANSLATION FILE
	Syntax of Translation File

	HANDLING OF OBJECTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES�
	SEE ALSO

	clearexport_ssafe
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SourceSafe Checked-out Files
	SourceSafe Executable in PATH

	SPECIAL CHARACTERS IN FILENAMES
	TRANSLATION FILE
	Syntax of Translation File

	SHARES
	LABELS
	BRANCHES
	PINS
	NO DELTAS
	HANDLING OF OBJECTS THAT CANNOT BE EXPORTED
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearhistory
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	SEE ALSO

	clearimport
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Requirements and Restrictions
	Creation of Event Records During the Import Phase
	Incremental Import and Restartability
	Preserving the Case of Files
	Handling of Unreadable or Troublesome Elements

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	clearlicense
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	HOW LICENSING WORKS
	License Priorities

	Getting a License
	Losing a License
	License Expiration

	THE CLEARLICENSE REPORT
	License Server Field
	Licenses
	Active Users
	License Usage Statistics

	OPTIONS AND ARGUMENTS
	LICENSING ERRORS
	Problems with License Host File
	Problems with License Server Host
	Losing a License

	SEE ALSO

	clearmake
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Related Reference Pages
	View Context Required

	clearmake AND MAKEFILES
	HOW BUILDS WORK
	CONFIGURATION RECORDS AND DERIVED OBJECTS
	Configuration Record Hierarchies

	CONFIGURATION LOOKUP AND WINKIN
	The .cmake.state File
	Suppressing Configuration Lookup
	Preventing Winkin to Other Views

	MVFS FILES AND NON-MVFS OBJECTS
	BUILD OPTIONS SPECIFICATION FILE
	clearmake SLEEP
	CACHING UNAVAILABLE VIEWS
	BUILD REFERENCE TIME AND BUILD SESSIONS
	EXIT STATUS
	OPTIONS AND ARGUMENTS
	MAKE MACROS AND ENVIRONMENT VARIABLES
	Conflict Resolution
	SHELL Environment Variable
	Specifying Command Options in an Environment Variable
	Special Environment Variables

	EXAMPLES
	FILES
	SEE ALSO

	clearprompt
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	cleartool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	cleartool SUBCOMMANDS
	GETTING HELP
	USAGE OVERVIEW
	Command Options
	Command Abbreviations and Aliases

	ARGUMENTS IN cleartool COMMANDS
	Slashes and Backslashes
	File-System Objects
	Non-File-System VOB Objects
	Object Names

	PROCESSING OF VOB SYMBOLIC LINKS
	COMMAND-LINE PROCESSING
	Single-Command Mode
	Interactive Mode

	OBJECT LOCKING
	EXIT STATUS
	SEE ALSO

	comments
	APPLICABILITY
	DESCRIPTION
	Specifying Comments Interactively

	CUSTOMIZING COMMENT HANDLING
	SEE ALSO

	config_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Values in Registry Key HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion
	Values in Registry Key HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security
	Files in ccase�home�dir\config\services
	Files in ccase�home�dir\var\rgy
	Files in ccase�home�dir\var\cache
	Files in ccase�home�dir\var\config

	SEE ALSO

	config_record
	APPLICABILITY
	DESCRIPTION
	MVFS OBJECTS AND NON-MVFS OBJECTS
	CONTENTS OF A CONFIGURATION RECORD
	Header Section
	MVFS Objects Section
	Non-MVFS Objects Section
	Variables and Options Section
	Build Script Section

	CONFIGURATION RECORD HIERARCHIES
	PHYSICAL STORAGE OF CONFIGURATION RECORDS
	SEE ALSO

	config_spec
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Config Spec Storage / Default Config Spec
	Commands for Maintaining Config Specs

	HOW A CONFIG SPEC SELECTS VERSIONS
	Order Is Important
	CHECKEDOUT Rule for Snapshot Views
	Failure to Select Any Version
	View-Private Files

	OVERALL SYNTAX GUIDELINES
	SHARING CONFIG SPECS BETWEEN UNIX AND WINDOWS HOSTS
	Config Spec Compilation
	Pathname Separators

	STANDARD RULES
	Scope
	Pattern
	Version Selector
	Optional Clause
	Multiple-Level Auto-Make-Branch

	CREATE BRANCH RULES
	TIME RULES
	FILE-INCLUSION RULES
	LOAD RULES
	EXAMPLES
	FILES
	SEE ALSO

	cptype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Ordinary Types and AdminVOB Hierarchies (ClearCase Only)
	Handling of Supertypes
	Firing of mktype Triggers
	MultiSite Mastership of Original Type Objects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	credmap
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	creds
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	db_dumper, db_loader
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	db_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ERROR LOG
	SEE ALSO

	deliver
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	The Integration Activity
	One-Step Deliver Operation
	Using deliver with MultiSite

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	derived_object
	APPLICABILITY
	DESCRIPTION
	COMMANDS FOR WORKING WITH DERIVED OBJECTS
	SEE ALSO

	describe
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Access Control Information
	Unavailable Remote VOB
	Versions Without Data
	Hyperlink Inheritance
	DOs in Unavailable Views
	Objects in Replicated VOBs

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	diff
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and ClearCase�LT Only
	Attache Only

	TEXT FILE COMPARISON REPORT FORMAT
	Side-by-Side File Comparison Report Style
	Other File Comparison Report Styles

	DIRECTORY-COMPARISON ALGORITHM AND REPORT FORMAT
	Kinds of Directory Entries
	How Differences Are Reported

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	diffbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	diffcr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	DOs in Unavailable Views

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	dospace
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	edcs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	The Edit Session
	After the Edit Session

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	endview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Dynamic View
	Snapshot View

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	env_ccase
	APPLICABILITY
	DESCRIPTION
	SEE ALSO

	errorlogs_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	MVFS Log

	SEE ALSO

	events_ccase
	APPLICABILITY
	DESCRIPTION
	Contents of an Event Record
	VOB Objects and Event Histories
	Operations that Cause Event Records to be Written
	Operations and Triggers
	Event Visibility
	Comments and Event Records

	SEE ALSO

	file
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	find
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	findmerge
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Using findmerge with UCM Activities
	Deferring Merges with the -print Option
	Incomplete Reporting of Required Merges
	findmerge Algorithm

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	fmt_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CONVERSION SPECIFICATIONS
	Syntax
	Specifying Field Width

	EXAMPLES
	SEE ALSO

	get
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and ClearCase�LT
	Attache

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	ClearCase and ClearCase�LT
	Attache

	EXAMPLES
	ClearCase and ClearCase�LT
	Attache

	SEE ALSO

	getcache
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	getlog
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache Only—Using getlog

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	help
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase, ClearCase�LT, MultiSite only
	Attache only

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	ClearCase, ClearCase�LT, MultiSite only
	Attache only

	EXAMPLES
	SEE ALSO

	hostinfo
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	import
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	license.db
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	LICENSE DATABASE FORMAT
	License Set Definition Lines
	User Priority Lines
	Excluded User Lines
	Audit-Enable Line
	Timeout Line

	EXAMPLES
	SEE ALSO

	ln
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VOB SYMBOLIC LINKS
	VOB HARD LINKS
	VOB Hard Links and Directory Merges
	VOB Hard Links in Snapshot Views

	RECOVERING A REMOVED ELEMENT
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lock
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VOB Lock
	Type Lock
	Storage Pool Lock

	LOCKING OR UNLOCKING GLOBAL TYPES
	OBSOLETE OBJECTS
	REMOVING LOCKS
	PERMISSIONS AND LOCKS
	MULTISITE MASTERSHIP
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lockmgr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	OPTIONS AND ARGUMENTS
	ERROR LOG
	SEE ALSO

	ls
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Listing Format
	Elements Suppressed from the View

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS, LOCKS, AND MASTERSHIP
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lscheckout
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsclients
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	lscomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsdo
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	DOs in Unavailable Dynamic Views

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lshistory
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lslocal
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lslock
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Obsolete Type Objects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Object Name Resolution

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lspool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Obsolete Storage Pools

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsprivate
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	STRANDED VIEW-PRIVATE FILES
	File Still Accessible Through Some Directory Version
	VOB Is Inactive
	VOB Is Inaccessible
	Directory Element Has Been Deleted

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsregion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	lsreplica
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lssite
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsstgloc
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lstype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Obsolete Type Objects

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache Only—Default Output

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache Only—Default Output

	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsvtree
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	lsws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	PERMISSIONS AND LOCKS
	EXAMPLES
	SEE ALSO

