
BUILDING SOFTWARE WITH CLEARCASE

R e l e a s e 4 . 0 a n d l a t e r

Windows Edition

800-012614-000

/vobs/doc/ccase/build/cc_build.winTTL.fm — October 8, 1999 5:25 pm

Building Software with ClearCase
Document Number 800-012614-000 December 1999

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright Notice
Copyright © 1992, 1999 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation
Copyright 1992 Purdue Research Foundation, West Lafayette, Indiana 47907

Trademarks
Rational, the Rational logo, Atria, ClearCase, ClearCase MultiSite, ClearCase Attache, Clear DDTS,
ClearQuest, ClearGuide, PureCoverage, Purify, Quantify, Rational Rose, and SoDA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual C++, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle Corporation.

Sybase and SQL Anywhere are trademarks or registered trademarks of Sybase Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement, and,
except as explicitly stated otherwise in such license agreement, Rational Software Corporation expressly
disclaims all other warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or fitness for a particular
purpose or arising from a course of dealing, usage or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This software and documentation is based in part on software written by Victor A. Abell while at Purdue
University. We acknowledge his role in its development.

Contents

Preface ... xiii

About This Manual .. xiii

ClearCase Documentation Roadmap.. xiv

Typographical Conventions ...xv

Online Documentation .. xvi

Technical Support ... xvii

1. ClearCase Build Concepts ..1

1.1 Overview of the ClearCase Build Scheme..2

1.2 Dependency Tracking of MVFS and Non-MVFS Files3

Automatic Detection of MVFS Dependencies..4

Tracking Non-MVFS Files...4

1.3 Derived Objects and Configuration Records ...4

1.4 Build Avoidance...5

Hierarchical Builds...6

Automatic Dependency Detection...6

1.5 Express Builds...7

1.6 Build Auditing with clearaudit ..7

1.7 Compatibility with Other make Programs...8

2. Derived Objects and Configuration Records ...9

2.1 Derived Objects Overview..9

Derived Object Naming ..10

2.2 Configuration Records ..11

Configuration Record Example..12

Contents of a Configuration Record..13

Header Section...13

MVFS Objects Section...14
Contents iii

/vobs/doc/ccase/build/cc_build.winTOC.fm — September 11, 1999 5:14 pm

Non-MVFS Objects Section ..14

Variables and Options Section...14

Build Script Section ...14

Configuration Record Hierarchies ...15

Configuration Record Cache...18

2.3 Kinds of Derived Objects...18

Shareable DOs...18

Nonshareable DOs..19

Storage of Derived Objects ..19

Promotion and Winkin ...20

DO Versions ..23

2.4 Reuse of DO-IDs ...23

2.5 Derived Object Reference Counts ..24

3. Pointers on Using ClearCase Build Tools ...27

3.1 Running omake or clearmake...27

A Simple clearmake Build Scenario ...28

3.2 Accommodating Build Avoidance...30

Increasing the Verbosity Level of a Build ...30

Handling Temporary Changes in the Build Procedure30

Using a Build Options Specification (BOS) File31

Using a Separate makefile to Specify Build Options............................31

Handling Targets Built in Multiple Ways...32

Using a Recursive Invocation of omake or clearmake32

Optimizing Winkin by Avoiding Pseudotargets ...33

Accommodating the Build Tool’s Different Name......................................33

3.3 Declaring Source Dependencies in Makefiles ..34

Source Dependencies Declared Explicitly ...34

Explicit Dependencies on Searched-For Sources35

3.4 Build-Order Dependencies..37

3.5 clearmake Build Script Execution and cmd.exe ...37

3.6 Build Scripts and the rm Command ..38

3.7 Pathnames in CRs...38
iv Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winTOC.fm — September 11, 1999 5:14 pm

3.8 Problems with Forced Builds ...38

3.9 How clearmake Interprets Double-Colon Rules ...39

3.10 Continuing to Work During a Build..39

3.11 Using Config Spec Time Rules ...40

Inappropriate Use of Time Rules ...41

3.12 Build Sessions, Subsessions, and Hierarchical Builds42

Subsessions..42

Versions Created During a Build Session...42

Coordinating Reference Times of Several Builds ..43

Objects Written at More than One Level ..43

3.13 Build Auditing and Background Processes..44

3.14 Working with Incremental Update Tools...45

Example: Incremental Linking ...46

Additional Incremental-Update Situations ..46

3.15 Temporary Build Audit Files..46

3.16 Auditing 16-bit Tools...46

3.17 Adding a Version String or Time Stamp to an Executable47

Implementing a –Ver Option..48

4. Working with Derived Objects and Configuration Records49

4.1 Setting Correct Permissions for Derived Objects ..49

4.2 Listing and Describing Derived Objects ...50

Listing Derived Objects Created at a Certain Pathname............................50

Listing a Derived Object’s Kind ...51

Displaying a DO’s OID..52

Displaying a Description of a DO Version ...52

4.3 Identifying the Views that Reference a Derived Object52

4.4 Specifying a Derived Object in Commands ...53

4.5 Winking in a DO Manually ..54

4.6 Preventing Winkin ...54

Preventing Winkin to Your View ..55

Preventing Winkin to Other Views ...55
Contents v

/vobs/doc/ccase/build/cc_build.winTOC.fm — September 11, 1999 5:14 pm

Using Express Builds to Prevent Winkin to Other Views55

Enabling Express Builds...56

Configuring an Existing View for Express Builds................................56

Creating a New View that Uses Express Builds56

Preventing Winkin to or from Other Architectures57

4.7 Converting Derived Objects to View-Private Files......................................57

4.8 Working with DO Versions...58

Creating DO Versions ..58

Checking In DOs During a Build ...58

Accessing DO Versions..59

Displaying Configuration Records for DO Versions...................................60

Releasing DOs ...61

4.9 Converting Nonshareable DOs to Shared DOs..62

Automatic Conversion of Nonshareable DOs to Shareable DOs62

4.10 Displaying VOB Disk Space Usage for Derived Objects63

4.11 Deleting Derived Objects...63

Removing Data Containers for Derived Objects..63

Scrubbing Derived Objects and Data Containers ..64

Degenerate Derived Objects..64

Data Container Deleted ..64

DO Deleted from VOB Database...64

CR Unavailable ..65

4.12 Displaying Contents of Configuration Records...65

4.13 Comparing Configuration Records..65

4.14 Attaching Labels or Attributes to Versions in a CR66

4.15 Configuring a View to Select Versions Used to Build a DO66

4.16 Including a Makefile Version in a Configuration Record...........................66

5. clearmake Makefiles and BOS Files ..69

5.1 Makefile Overview ...69

5.2 Build Options Specification Files ...70

5.3 Format of Makefiles..71

Restrictions ..71

Libraries ...72
vi Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winTOC.fm — September 11, 1999 5:14 pm

Command Echoing and Error Handling ..72

Built-In Rules ..73

Include Files ..73

Macros..73

Order of Precedence of Make Macros and Environment Variables ..73

Make Macros..74

Internal Macros..75

VPATH Macro ...76

Special Targets ..76

Special Targets for Use in Makefiles ..77

Special Targets for Use in Makefiles or BOS Files................................77

5.4 Using Makefiles on Windows ..80

Case-Sensitivity Guidelines ..81

Build Macros and Case-Sensitivity...81

Makefile Target/Dependency Pathnames ..81

Supporting Both omake and clearmake..82

Using UNIX-Style Command Shells in Makefiles.......................................82

5.5 BOS File Entries ..83

Standard Macro Definitions..83

Target-Dependent Macro Definitions ...83

Shell Command Macro Definitions ...84

Special Targets ..84

Include Directives ..84

Comments ...84

6. Using clearmake Compatibility Modes ..85

6.1 Free Software Foundation Gnu make ...86

VPATH Separator Character ..86

Supported Gnu Make Command-Line Options ..86

Unsupported Gnu Make Command-Line Options87

Supported Gnu Make Features ..88

Unsupported Gnu Make Features ...91
Contents vii

/vobs/doc/ccase/build/cc_build.winTOC.fm — September 11, 1999 5:14 pm

7. Using ClearCase to Build C++ Programs ..93

7.1 Using clearmake or omake Instead of Other make Programs94

7.2 Using Visual C++ with ClearCase ...94

omake ...95

clearmake ...95

Incremental Repositories in Visual C++..96

Alternative: Using C7 Compatible Debug Information.......................96

Using vcmake.mak to Prevent Reuse Mismatches97

Browser Files ...98

Using the winkin Command...98

8. Using ClearCase Build Tools with Java ...99

8.1 ClearCase Build Problems with Java ...99

Java Toolkits ..100

Scope of the Problems..100

8.2 Benefits of Using make Tools with javac...101

Using javac Inside a Makefile ...101

Using javac with clearmake or omake Instead of make............................101

8.3 Unnecessary Rebuilds and Prevention of Winkin102

8.4 Building Java Applications Successfully...102

Writing Correct Makefiles ...103

No Mutually Dependent Files ...103

Mutually Dependent Files..104

Allowing Rebuilds..104

Configuring Makefiles to Behave Like make ...105

8.5 Java Compilers and Case-Sensitivity Issues ...106

Index ..107
viii Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winTOC.fm — September 11, 1999 5:14 pm

Figures

Figure 1 Building Software with ClearCase: Isolation and Sharing3

Figure 2 Extended Pathname of a Derived Object ...10

Figure 3 Kinds of Information in a Configuration Record..12

Figure 4 Configuration Record Hierarchy...16

Figure 5 Storage of a Shareable Derived Object..21

Figure 6 Storage of a Nonshareable Derived Object ..22

Figure 7 clearmake Build Scenario..29
Figures ix

/vobs/doc/ccase/build/cc_build.winLOF.fm — September 11, 1999 5:12 pm

x Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winLOF.fm — September 11, 1999 5:12 pm

Tables

Table 1 MVFS Settings and Case Requirements for Makefiles82

Table 2 Using vcmake.mak ..97
Tables xi

/vobs/doc/ccase/build/cc_build.winLOT.fm — September 11, 1999 5:12 pm

xii Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winLOT.fm — September 11, 1999 5:12 pm

Preface

ClearCase is a comprehensive software version control and configuration management system.

About This Manual

This manual provides an overview of ClearCase build management features and describes how

to use ClearCase’s build tools. It is for new or experienced users of ClearCase who are familiar

with software build concepts.

If you are not familiar with ClearCase build concepts and tools, read Chapter 1, ClearCase Build
Concepts, Chapter 2, Derived Objects and Configuration Records, and Chapter 3, Pointers on Using
ClearCase Build Tools.

For information about using ClearCase build tools with C++ programs or with Java tools, read

Chapter 7, Using ClearCase to Build C++ Programs or Chapter 8, Using ClearCase Build Tools with
Java.
Preface xiii

ClearCase Documentation Roadmap

Orientation

Introduction to
ClearCase

ClearCase and
MultiSite Release
Notes

ClearCase
Tutorials

Project
Management

Managing
Projects with
ClearCase

Development

Developing
Software with
ClearCase

Build
Management

ClearCase
OMAKE Manual
(Windows)

Building
Software with
ClearCase

ClearCase
Administration

Administering
ClearCase

ClearCase
Product Family
Installation Notes

ClearCase
MultiSite Manual

More Information

ClearCase Reference
Manual

ClearCase Quick
Reference Guide

ClearCase Online Help

clearcase.rational.com
xiv Building Software with ClearCase

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is C:\Program Files\Rational\ClearCase.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: F1, SHIFT,

CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xv

Online Documentation

The ClearCase graphical interface includes a standard Windows help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help➔Help Topics provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

> cleartool man (display the cleartool overview page)

> cleartool man man (display the cleartool man reference page)

> cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

> cleartool lsprivate –help
Usage: lsprivate [-tag view-tag] [-invob vob-selector] [-long | -short]
 [-size] [-age] [-co] [-do] [-other]

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s

environment, along with a step-by-step tour through ClearCase’s most important features. To

start the ClearCase Tutorial, choose Tutorial from the Getting Started tab of the ClearCase Home

Base.
xvi Building Software with ClearCase

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
Preface xvii

xviii Building Software with ClearCase

11 ClearCase Build Concepts

ClearCase® supports makefile-based building of software systems, and provides a software build

environment closely resembling that of the make program. make was developed for UNIX

systems, and has been ported to other operating systems. You can use ClearCase-controlled files

to build software, and use native make programs, third-party build utilities, your company’s

own build programs, or the ClearCase build tools clearmake, omake, and clearaudit.

The ClearCase build tools, clearmake and omake, provide compatibility with other make
variants, along with powerful enhancements:

➤ Build auditing, with automatic detection of source dependencies, including header file

dependencies

➤ Automatic creation of permanent bill-of-materials documentation of the build process and

its results

➤ Sophisticated build-avoidance algorithms to guarantee correct results when building in a

parallel development environment

➤ Sharing of binaries among views, saving both time and disk storage

The clearaudit build tool provides build auditing and creation of bill-of-materials

documentation.

clearmake, omake, and clearaudit are intended for use in dynamic views. You can use them in a

snapshot view, but the features that distinguish them from ordinary make programs (build

avoidance, build auditing, derived object sharing, and so on) are not enabled in snapshot views.

Both clearmake and omake incorporate the major ClearCase build-related features described in

the following sections. The omake program’s strength lies primarily in its support for users who
1 - ClearCase Build Concepts 1

require compatibility with other PC-based build programs. For omake-specific details, see the

ClearCase OMAKE Manual. In all other build-related documentation, the primary emphasis is on

clearmake behavior.

1.1 Overview of the ClearCase Build Scheme

Developers perform builds, along with all other ClearCase-related work, in views. Typically,

developers work in separate, private views. Sometimes, a team shares a single view (for example,

during a software integration period).

As described in Developing Software with ClearCase, each view provides a complete environment

for building software that includes a particular configuration of source versions and a private

work area in which you can modify source files, and use build tools to create object modules,

executables, and so on.

As a build environment, each view is partially isolated from other views. Building software in

one view never disturbs the work in another view, even another build of the same program at

the same time. However, when working in a dynamic view, you can examine and benefit from

work done previously in another dynamic view. A new build shares files created by past builds,

when appropriate. This sharing saves the time and disk space involved in building new objects

that duplicate existing ones.

You can (but need not) determine what other builds have taken place in a directory, across all

dynamic views. ClearCase includes tools for listing and comparing past builds.

The key to this scheme is that the project team’s VOBs constitute a globally accessible repository

for files created by builds, in the same way that they provide a repository for the source files that

go into builds. A file produced by a software build is a derived object (DO). Associated with each

derived object is a configuration record (CR), which clearmake or omake uses during subsequent

builds to decide whether the DO can be reused or shared.

Figure 1 illustrates the ClearCase software build scheme.
2 Building Software with ClearCase

Figure 1 Building Software with ClearCase: Isolation and Sharing

Dependency Tracking of MVFS and Non-MVFS Files describes how ClearCase keeps track of the

objects produced by software builds. Build Avoidance on page 5 describes the mechanism that

enables such objects to be shared among views.

1.2 Dependency Tracking of MVFS and Non-MVFS Files

During build-script execution in a dynamic view, a host’s MVFS (multiversion file system) audits
low-level system calls performed on ClearCase data: create, open, read, and so on. Calls

involving the following objects are monitored:

➤ Versions of elements used as build input

➤ View-private files used as build input (for example, the checked-out version of a file

element)

➤ Files created within VOB directories during the build

users’ work environments (private)

Isolation
When originally built, derived

objects appear only in one view,
isolated from all other views

View 1 View 2 View 3

CRDODO

central repository (shared)

derived
objectderived

objectderived
object

configuration
record

derived
object

configuration
record

VOBS

Sharing
If two (or more) views would build

identical objects, they instead
share the same object
1 - ClearCase Build Concepts 3

Some of these objects are stored in the VOB, and others are view-private files. The view combines

them into a virtual work area, where they appear to be located in VOB directories. They are called

MVFS files, because they are accessed through the MVFS.

Automatic Detection of MVFS Dependencies

Because auditing of MVFS files is completely automated, you don’t have to keep track of exactly

which files are being used in builds. ClearCase does the tracking instead. For example, ClearCase

determines which C-language source files referenced with #include directives are used in a

build. Tracking eliminates the need both to declare such files in the makefile, and for

dependency-detection tools.

If you store your build tools (compilers, linkers, and so on) as ClearCase elements and run them

from the VOB, they are recorded in the configuration record as implicit detected dependencies.

Tracking Non-MVFS Files

A build can also involve files that are not accessed through VOB directories. Such non-MVFS files

are not audited automatically, but are tracked if you declare them as dependencies in a makefile.

This tracking enables auditing of build tools that are not stored as ClearCase elements (for

example, a C-language compiler), flag files in the user’s home directory, and so on. Tracking

information on a non-MVFS file includes its absolute path, time stamp, size, and checksum.

1.3 Derived Objects and Configuration Records

When it finishes executing a build script, clearmake or omake records the results, including

build audit information, in the form of derived objects and configuration records.

A derived object (DO) is a file created in a VOB during a build or build audit with clearmake or

omake. Each DO has an associated configuration record (CR), which is the bill of materials for

the DO. The CR documents aspects of the build environment, the assembly procedure for a DO,

and all the files involved in the creation of the DO.

NOTE: All derived objects created by executing a build script have equal status, even though some

of them may be explicit build targets, and others may be created as side effects of the build script
4 Building Software with ClearCase

(for example, compiler listing files). The term siblings describes a group of DOs created by the

same script and associated with a single CR.

For more detailed information about DOs and CRs, see Chapter 2, Derived Objects and
Configuration Records.

1.4 Build Avoidance

The build tool attempts to avoid rebuilding derived objects. If an appropriate derived object

exists in the view, clearmake or omake reuses that DO. If there is no appropriate DO in the view,

clearmake or omake looks for an existing DO built in another view that can be winked in to the

current view. The search process is called shopping.

The process of qualifying a candidate DO is called configuration lookup. It involves matching

information in the VOB from the candidate DO’s config record against the user’s current build
configuration. This process guarantees correct results in a parallel development environment,

which the standard time-stamp-based algorithm used by make cannot do. Even if an object

module is newer than a particular version of its source file, the module may have been built using

a different version. In fact, reusing object modules and executables built recently is likely to be

incorrect when rebuilding a previous release of an application from old sources. The

configuration lookup algorithm that ClearCase uses guarantees that your builds will be both

correct (inappropriate objects are not reused) and optimal (appropriate objects are always

reused).

For a DO to be reused or winked in, the build configuration documented in its configuration

record must match the current view’s build configuration. The build configuration consists of:

Files The versions of elements listed in the CR must match the versions

selected by the view in which the build is performed. Any

view-private files or non-MVFS files listed in the CR must also match.

Build procedure The build options in the CR must match the build options specified

on the command line, in the environment, in makefiles, or in build

options specification files.

The build script listed in the CR must match the script that will be

executed if the target is rebuilt. The scripts are compared with all

make macros expanded; thus, a match occurs only if the same build

options apply (for example, “compile for debugging”).
1 - ClearCase Build Concepts 5

The search ends when clearmake or omake finds a DO whose configuration matches the view’s

current build configuration exactly. In general, a configuration lookup can have three outcomes:

➤ Reuse. If the DO (and its siblings) in the view match the build configuration, clearmake or

omake keeps them.

➤ Winkin. If a DO built previously matches the build configuration, clearmake or omake
causes that DO and its siblings to appear in this view. This operation is termed winkin.

NOTE: The build tool does not contact all views to determine whether they contain DOs that

can be winked in. Instead, it uses DO information in the VOB to eliminate inappropriate

candidates. Only if it finds a candidate does it contact the containing view to retrieve the

DO’s config record.

➤ Rebuild. If configuration lookup fails to find a DO that matches the build configuration,

clearmake or omake executes the target’s build script, which creates one or more new DOs,

and a new CR.

Reuse and winkin take place only if clearmake or omake determines that a newly built derived

object would be identical to the existing one. Winkin takes place when two or more views select

the same versions of source elements used in a build. For example, you can create a clone view,

with the same configuration as an existing view. Initially, the new view sees all the sources, but

contains no derived objects. Running clearmake or omake winks in many derived objects from

the existing view.

Hierarchical Builds

In a hierarchical build, some objects are built and then used to build others. The build tool

performs configuration lookup separately for each target. To ensure a consistent result, the build

tool also applies this principle: when a new object is created, all targets that depend on it are

rebuilt. Note that winkin does not cause rebuilds of dependencies.

Automatic Dependency Detection

Configuration records enable automatic checking of source dependencies as part of build

avoidance. All such dependencies (for example, on C-language header files) are logged in a

build’s configuration record, whether or not they are explicitly declared in a makefile.
6 Building Software with ClearCase

1.5 Express Builds

During a regular audited build, the build tool writes to the VOB information about a newly built

DO. Configuration lookup by future builds uses that information to determine whether or not

the DO is a candidate for winkin.

There is a performance tradeoff when you create DOs. While the build is writing the DO

information to the VOB database, other users cannot write to the VOB. This performance loss is

offset when the DO is used by subsequent builds, which can make the builds faster. However, if

the DO is never used by another view, the performance loss is not offset.

ClearCase express builds create derived objects, but do not write information to the VOB.

Therefore, these DOs are nonshareable and are not considered for winkin by other views. They

can be reused by the view in which they were built.

Express builds offer two advantages over regular builds:

➤ Scalability: During an express build, write access to the VOB is not blocked by

time-consuming DO write operations. More users can build in a VOB without making VOB

access slower.

➤ Performance: Express builds are faster than regular builds, because the build does not write

DO information into the VOB.

Which kind of build occurs when you invoke clearmake or omake depends on how your view

is configured. To use express builds, you must use a dynamic view whose DO property is set to

nonshareable. For information on enabling express builds, see Using Express Builds to Prevent
Winkin to Other Views on page 55.

1.6 Build Auditing with clearaudit

Some organizations, or some developers, may want to use ClearCase build auditing without

using the clearmake or omake program. Others may want to audit development activities that

do not involve makefiles. These users can do their work in an audited shell, a standard task with

build auditing enabled.
1 - ClearCase Build Concepts 7

All MVFS files read during execution of the audited shell are listed as inputs to the build. All

MVFS files created become derived objects, associated with the single configuration record.

For more information, see the clearaudit reference page.

1.7 Compatibility with Other make Programs

Many make utilities are available in the multiple-architecture, multiple-vendor world of open

systems. ClearCase’s clearmake and omake programs share features with many of them, and

have some unique features.

You can adjust the level of compatibility that clearmake or omake has with other make
programs:

➤ Suppress special features of clearmake or omake.

Use command options to turn off such features as winkin, comparison of build scripts,

comparison of detected dependencies, and creation of DOs and CRs. You can turn off

configuration lookup altogether, so that the standard time-stamp-based algorithm is used for

build avoidance.

➤ Enable features of other make programs.

clearmake and omake have several compatibility modes, which provide for partial

emulations of popular make programs, such as Gnu Make, Opus Make, Microsoft Nmake,

and Borland Bmake. For more information, see Chapter 6, Using clearmake Compatibility
Modes, and ClearCase OMAKE Manual.

To achieve absolute compatibility with other make programs, you can actually use them to

perform builds. However, builds with a standard make do not provide build auditing,

configuration lookup, or sharing of DOs. The MVFS files that the build creates are view-private

files, not derived objects. However, you can execute the make program in a clearaudit shell,

which performs an audited build.
8 Building Software with ClearCase

22 Derived Objects and Configuration
Records

This chapter describes derived objects and configuration records. ClearCase creates derived

objects and configuration records only if you build in a dynamic view with one of the ClearCase

build tools. For information on managing derived objects and configuration records, see

Chapter 4.

2.1 Derived Objects Overview

As described in Chapter 1, ClearCase Build Concepts, derived objects are created during builds

with ClearCase build tools. They are used for build avoidance and derived object sharing.

In a parallel-development environment, it is likely that many DOs with the same pathname will

exist at the same time. For example, suppose that source file msg.c is being developed on three

branches concurrently, in three different views. ClearCase builds performed in those three views

produce object modules named msg.obj. Each of these is a DO, and each has the same standard

pathname, for example, \proj\src\msg.obj.

In addition, each DO can be accessed with ClearCase extended names:

➤ Within each dynamic view, a standard Windows NT pathname accesses the DO referenced

by that view. This is another example of ClearCase’s transparency feature.

msg.obj (the DO in the current view)
2 - Derived Objects and Configuration Records 9

➤ You can use a view-extended pathname to access a DO in any view:

Derived Object Naming

No name collisions occur among derived objects built at the same pathname, because each DO

is cataloged in the VOB database with a unique identifier, its DO-ID. The DO-ID references a DO

independently of views. The lsdo (list derived objects) command can list all DOs created at a

specified pathname, regardless of which views (if any) can select them:

Z:\myvob> cleartool lsdo hello.obj
07-May.16:09 akp "hello.obj@@07-May.16:09.623" on neptune
06-May.12:47 akp "hello.obj@@06-May.12:47.539" on neptune
01-May.21:49 akp "hello.obj@@01-May.21:49.282" on neptune
03-Apr.21:40 akp "hello.obj@@01-May.21:40.226" on neptune

Together, a DO’s standard name (hello.o) and its DO-ID (07-May.16:09.623) constitute a

VOB-extended pathname to that particular derived object. (The extended naming symbol is

host specific; most organizations use the default value, @@.)

Figure 2 Extended Pathname of a Derived Object

Standard software must access a DO through a dynamic view, using a standard pathname or

view-extended pathname. You can use such names with debuggers, profilers, and so on. Only

ClearCase programs can reference a DO using a VOB-extended pathname, and only the DO’s

metadata is accessible in this way:

M:\drp\proj\src\msg.obj (the DO in view drp)
M:\R2_integ\proj\src\msg.obj (the DO in view R2_integ)

ClearCase
commands can use
the extended
pathname of a
derived object

Z:\akp_hw\src> cleartool describe hello.exe@@07-Mar.11:40.217
created 07-Mar-96.11:40.217 by akp.users@phobos
references: 1 => C:\users\views\akp\tut\old.vws

\project1\util.o@@07-May.16:09.6f8

DO-ID

pathname at which
object was built

extended
naming
symbol

time
stamp

hex file-name extension
10 Building Software with ClearCase

EXCEPTION: You can use a view-extended pathname with the winkin command, to make the file

system data of any DO available to your view. See Winking in a DO Manually on page 54.

2.2 Configuration Records

A configuration record (CR) is the bill of materials for a derived object or set of DOs. The CR

documents aspects of the build environment, the assembly procedure for a DO, and all the files

involved in the creation of the DO.

Z:\akp_hw\src> cleartool catcr hello.exe@@07-Mar.11:40.217
Target hello.exe built by akp.user
Host "cobalt" running NT 3.50 (i586)
Reference Time 07-Mar-96.11:40:41, this audit started
 07-Mar-96.11:40:46
View was C:\users\views\akp\tut\old.vws
Initial working directory was M:\akp_main\akp_hw\src

MVFS objects:

\akp_hw\src\hello.exe@@07-Mar.11:40.217
\akp_hw\src\hello.obj@@07-Mar.11:40.213
\akp_hw\src\util.obj@@07-Mar.11:40.215

Variables and Options:

MKTUT_LK=link

Build Script:

link -out:hello.exe hello.obj util.obj

Standard
programs cannot
use the extended
pathname of a
derived object

Z:\akp_hw\src> dir hello.exe@@07-Mar.11:40.217
...
File Not Found
2 - Derived Objects and Configuration Records 11

Configuration Record Example

The catcr command displays the configuration record of a specified DO. Figure 3 shows a CR,

with annotations to indicate the various kinds of information in the listing.

Figure 3 Kinds of Information in a Configuration Record

Some notes on Figure 3:

➤ Directory versions. By default, catcr does not list versions of the VOB directories involved

in a build. To list this information, use the –long option:

cleartool catcr –long util.obj
directory version \vob_hw\.@@\main\1 <25-Feb-96.16:59:31>
directory version \vob_hw\src@@\main\3 <26-Feb-96.20:53:07>
...

➤ Declared dependencies. One of ClearCase’s principal features is the automatic detection of

source dependencies on MVFS files: versions of elements and objects in view-private

storage.

➤ Listing of checked-out versions. Checked-out versions of file elements are highlighted.

Checked-out versions of directory elements are listed like this:

directory version \vob_hw\src@@\main\CHECKEDOUT <26-Feb-96.17:05:23>

version of source
element, listed
with version-ID

view-private file

checked-out version,
highlighted and listed with

standard pathname

DO created in
this build, listed

with DO-ID

Z:\vob_hw\src> cleartool catcr util.obj
Target util.obj built by mike.dvt
Host "proton" running NT 3.51 (i586)
Reference Time 26-Feb-96.20:41:33,
this audit started 26-Feb-96:20:41:34
View was C:\views\mike\mike.vws
Initial working directory was M:\mike_vw\vob_hw\src
- -
MVFS objects:
- -
\vob_hw\src\hello.h@@\main\2 <25-Feb-96.17:03:11>
\vob_hw\src\my.flag.file <26-Feb-96.20:21:56>
\vob_hw\src\ util.c <25-Feb-96.17:02:27>
\vob_hw\src\util.obj@@26-Feb.20:41:465

Variables and Options:
- -

- -
CCPU=nt_i386
- -
Build Script:
- -

cl util.c
- -

information
from
makefile
12 Building Software with ClearCase

When the elements are subsequently checked in, a listing of the same configuration record

shows the updated information. For example,

\vob_hw\src\util.c <25-Feb-96.17:02:27>

becomes

\vob_hw\src\util.c@@\main\4 <25-Feb-96.17:02:27>

The actual configuration record contains a ClearCase-internal identifier for each MVFS

object. After the version is checked in, catcr lists that object differently.

NOTE: The time stamps in the configuration record are for informational purposes and are

not used by ClearCase during rebuild or winkin decisions. ClearCase uses OIDs to track

versions used in builds.

Contents of a Configuration Record

The following sections describe the contents of configuration records.

Header Section

As displayed by catcr, the header section of a CR includes the following lines:

➤ Makefile target associated with the build script and the user who started the build:

Target util.obj built by akp.dvt

For a CR produced by clearaudit, the target is ClearAudit_Shell .

➤ Host on which the build script was executed:

Host ’mars’ running Windows NT 4.0

➤ Reference time of the build (the time clearmake, omake, or clearaudit began execution),

and the time when the build script for this particular CR began execution:

Reference Time 15–Sep–93.08:18:56, this audit started 15–Sep–93.08:19:00

In a hierarchical build, involving execution of multiple build scripts, all the resulting CRs

share the same reference time. (For more on reference time, see the clearmake reference

page.)
2 - Derived Objects and Configuration Records 13

➤ View storage directory of the view in which the build took place:

View was \\mars\views\930825.vws

➤ Working directory at the time build script execution or clearaudit execution began:

Initial working directory was s:\proj\hw\src

MVFS Objects Section

An MVFS object is a file or directory in a VOB. The MVFS Objects section of a CR includes this

information:

➤ Each MVFS file or directory read during the build. This includes versions of elements and

view-private files used as build input, checked-out versions of file elements, DOs read, and

any tools or scripts used during the build that are under version control.

➤ Each derived object produced by the target rebuild.

Non-MVFS Objects Section

A non-MVFS object is an object not accessed through a VOB (compiler, system-supplied header

file, temporary file, and so on). The Non-MVFS Objects section of a CR includes each non-MVFS

file that appears as an explicit dependency in the makefile or is a dependency inferred from a

suffix rule. See Declaring Source Dependencies in Makefiles on page 34.

This section is omitted if there are no such files or if the CR was produced by clearaudit.

Variables and Options Section

The Variables and Options section of a CR lists the values of make macros referenced by the build

script and command-line options.

This section is omitted from a CR produced by clearaudit.

Build Script Section

The Build Script section of a CR lists the script that was read from a makefile and executed by

clearmake or omake.

This section is omitted from a CR produced by clearaudit.
14 Building Software with ClearCase

Configuration Record Hierarchies

A typical makefile has a hierarchical structure. Thus, running clearmake or omake once to build

a high-level target can cause multiple build scripts to be executed and, accordingly, multiple CRs

to be created. Such a set of CRs can form a configuration record hierarchy, which reflects the

structure of the makefile.
2 - Derived Objects and Configuration Records 15

Figure 4 Configuration Record Hierarchy

hello.exe

libhello.lib hello.obj msg.obj

user.obj env.obj

makefile hierarchy # makefile to build ‘hello.exe’ program

depends on three
2nd-level targets

depend on two
3rd-level targets

top-level target

2nd-level targets

hello.exe:

hello.obj :

msg.obj :

libhello.lib : user.obj env.obj

hello.obj msg.obj libhello.lib

user.obj:

env.obj:

link /out:hello.exe hello.obj msg.obj libhello.lib

cl /c hello.c

cl /c msg.c

lib /out:libhello.lib user.obj env.obj

cl /c user.c

cl /c env.c

have no build
dependencies

3rd-level targets

resulting CR hierarchy
16 Building Software with ClearCase

An individual parent-child link in a CR hierarchy is established in either of the following ways:

➤ In a target/dependencies line

For example, the following target/dependencies line declares derived objects hello.obj,
msg.obj, and libhello.lib to be build dependencies of derived object hello.exe:

hello.exe: hello.obj msg.obj libhello.lib
...

Accordingly, the CR for hello.exe is the parent of the CRs for the .obj files and the .lib file.

➤ In a build script

For example, in the following build script, derived object libhello.lib in another directory is

referenced in the build script for derived object hello.exe:

hello.exe: $(OBJS)
 cd ..\lib & $(MAKE) libhello.lib

link /out: hello.exe $(OBJS) ..\lib\libhello.lib

Accordingly, the CR for hello.exe is the parent of the CR for libhello.lib.

NOTE: The recursive invocation of clearmake in the first line of this build script produces a

separate CR hierarchy, which is not necessarily linked to the CR for hello.exe. The second

line of the build script links the CR for ..\lib\libhello.lib with that of hello.exe by causing

link to read ..\lib\libhello.lib and making it a detected dependency.

The catcr and diffcr commands have options for handling CR hierarchies:

➤ By default, they process individual CRs.

➤ With the –recurse option, they process the entire CR hierarchy of each derived object

specified, keeping the individual CRs separate.

➤ With the –flat option, they combine (or flatten) the CR hierarchy of each specified derived

object.

Some ClearCase features process entire CR hierarchies automatically. For example, when the

mklabel command attaches version labels to all versions used to build a particular derived object

(mklabel –config), it uses the entire CR hierarchy of the specified DO. Similarly, ClearCase

maintenance procedures do not scrub the CR associated with a deleted DO if it is a member of

the CR hierarchy of a higher-level DO.
2 - Derived Objects and Configuration Records 17

Configuration Record Cache

When a derived object is created in a view, both its data container and its associated

configuration record are stored in the view’s private storage area. The CR is stored in the view

database, in compressed format. To speed configuration lookup during subsequent builds in this

view, a compressed copy of the CR is also cached in a view-private file, .cmake.state, located in

the directory that was current when the build started.

When a DO is winked in for the first time, the associated CR moves from the view’s private

storage area to the VOB database, as shown in Figure 5 and Figure 6.

2.3 Kinds of Derived Objects

The following sections describe the kinds of DOs and their lifecycles.

During a regular build, ClearCase build tools create shareable derived objects. During an express

build, they create nonshareable derived objects. Both kinds of DOs have configuration records,

but only shareable DOs can be winked in by other views.

Shareable DOs

When a ClearCase build tool creates a shareable DO, it creates a configuration record for the DO

and writes information about the DO into the VOB. (At this point, the DO is shareable but

unshared.) Builds in other views use this information during configuration lookup. If the build

determines that it can wink in an existing DO, it contacts the view containing the DO and

promotes the DO to the VOB. (The DO is now shareable and shared.)

As noted in Express Builds on page 7, you must consider whether the performance benefit of

winking in DOs is worth the performance cost of making them available for winkin.

NOTE: The process of looking for a DO to wink in does not slow performance, because the build

tool uses an efficient algorithm to eliminate mismatches.

The configuration lookup process cannot guarantee that the DO is suitable for use. The process

uses details in the config record to determine whether a DO is suitable for winkin, but the config

record does not record all parameters of a build. For example, a config record may list only a
18 Building Software with ClearCase

compiler’s name and the options used. If two builds use incompatible compilers with the same

name, unwanted winkins from one build to the other can occur.

NOTE: To minimize occurrences of incorrect winkin, all developers must use the same set of tools.

For example, put your build tools under version control and always run them from the VOB.

Nonshareable DOs

During an express build, the ClearCase build tool creates nonshareable DOs. The build tool

creates a configuration record for the DO, but does not write information about the DO into the

VOB. Because scanning the information in the VOB is the only method other builds use to find

DOs, other builds cannot winkin in nonshareable DOs. However, a nonshareable DO can be

reused by the view in which it was built.

A nonshareable DO can have shareable sub-DOs, but not shareable siblings. A nonshareable DO

can be built using a winked-in shareable DO. (However, a shareable DO cannot have

nonshareable sub-DOs or siblings.)

For information on enabling express builds, see Using Express Builds to Prevent Winkin to Other
Views on page 55.

You can use the same commands that you use with shareable DOs on nonshareable DOs, but

some commands work differently on the two kinds of DOs. The reference pages for the

commands describe the differences.

Storage of Derived Objects

When a DO is created, its data container is located in the view storage area. For a shareable DO,

the ClearCase build tool creates the VOB database object for the DO, and also writes to the VOB

information about the DO that can be used during configuration lookup. A nonshareable DO has

no VOB database object, and the build tool does not write any configuration lookup information

into the VOB.

A DO consists of the following parts:

➤ VOB database object (shareable DOs only)—Each DO is cataloged in the VOB database,

where it is identified by an extended name that includes both its standard pathname (for

example, \hw\src\hello.c) and a unique DO-ID (for example, 23-Feb.08:41.391).
2 - Derived Objects and Configuration Records 19

➤ Data container—The data portion of a derived object is stored in a standard file within a

ClearCase storage area. This file is called a data container; it contains the DO’s file system

data.

➤ Configuration record—Actually, a CR is associated with a DO; it is not part of the DO itself.

More precisely, a CR is associated with the entire set of sibling DOs created by a particular

invocation of a particular build script. See Configuration Records on page 11.

When a shareable DO is first created, it is unshared:

➤ It appears only in that view.

➤ Its data container is a file in the view’s private storage area.

➤ clearmake or omake writes information about the DO into the VOB.

Promotion and Winkin

The first time a shareable derived object is winked in by another dynamic view, or when either

kind of DO is promoted manually with a winkin or view_scrubber –p command, its status

changes to shared:

➤ Its data container is promoted to a derived object storage pool in the VOB.

➤ (shareable DOs only) If the winkin was done by the build tool or the command was executed

in another view, the DO now appears in two dynamic views.

When the winkin occurs during a clearmake or omake build:

➤ The dynamic view to which the DO is winked in, and all other views to which the DO is

subsequently winked in, use the data container in VOB storage.

➤ The original view continues to use the data container in view storage. (The view_scrubber
utility removes this asymmetry, which causes all dynamic views to use the data container in

VOB storage.)

When the winkin is done with the winkin or view_scrubber –p command, the data container in

the view is removed after it is promoted to VOB storage. The original view and all other views

to which the DO is subsequently winked in use the data container in VOB storage.
20 Building Software with ClearCase

Figure 5 Storage of a Shareable Derived Object

viewdata
containerCR

database
entry

VOB database

A new derived object’s
data container and CR

are both placed in a
view’s private storage

area

Unshared Derived Object

view

Shared Derived Object

database
entry CR

data
container

VOB database derived object
storage pool

When a derived object becomes
shared, its data container is copied

to VOB storage and its CR is

data
container

moved to VOB storage
2 - Derived Objects and Configuration Records 21

Figure 6 Storage of a Nonshareable Derived Object

After a derived object is winked in, it remains shared, no matter how many times it is winked in

to additional dynamic views, and even if subsequent rebuilds or deletion commands cause it to

appear in only one dynamic view (or zero views).

When a derived object’s data container is in the VOB, any number of views can share the derived

object without having to communicate with each other directly. For example, view alpha can be

unaware of views beta and gamma, with which it shares a derived object. The hosts on which

the view storage directories are located need not have network access to each other’s disk

storage.

For more information, see the winkin and view_scrubber reference pages.

viewdata
containerCR

VOB database

A new derived object’s
data container and CR

are both placed in a
view’s private storage

area

Nonshareable Derived Object

view

Shared Derived Object

database
entry CR

data
container

VOB database derived object
storage pool

When a derived object becomes
shared, its data container is copied

to VOB storage, its CR is moved
to VOB storage, and a

data
container

database entry is created
22 Building Software with ClearCase

DO Versions

You can check in a derived object as a version of an element, creating a DO version. Other versions

of such an element can also be, but need not be, derived objects. A DO version behaves like both

a version and a derived object:

➤ You can use its version-ID to reference it as both a VOB database object and a data file.

➤ You can apply a version label to it and reference it using that label.

➤ You can display its configuration record with catcr or compare the CR to another with

diffcr.

➤ A clearmake or omake build can wink it in if the element is located at the same pathname

where the DO was originally built.

➤ You can wink it in with a winkin command.

➤ The describe command lists it as a derived object version . (The lsdo command does

not list it at all.)

For more information on DO versions, see Working with DO Versions on page 58.

2.4 Reuse of DO-IDs

The DO-ID for a shareable derived object is guaranteed to be unique within the VOB, for all

views. That is, if you delete a shareable DO, its numeric file-name extension is not reused (unless

you reformat the VOB that contains it).

The DO-ID for a DO created by an express build (a nonshareable derived object) is unique only

at a certain point in time. If you delete a nonshareable DO, the ClearCase build tools can reuse

its numeric file-name extension. (Because ClearCase tracks derived objects using their VOB

database identifiers, so no build confusion will occur if a file-name extension is reused.)

DO-IDs change when any of these events occur:

➤ The DO passes its first birthday. The time stamp changes to include the year the DO was

created:

util.obj@@15-Jul.15:34.8896 (when first created)
util.obj@@15-Jul-1998.8896 (after a year)
2 - Derived Objects and Configuration Records 23

The configuration record reflects these DO-ID changes.

2.5 Derived Object Reference Counts

A DO’s reference count is the number of times the derived object appears in ClearCase dynamic

views throughout the network. ClearCase also tracks the identifiers for the views that reference

the DO. When a new derived object is created, clearmake sets its reference count to 1, indicating

that it is visible in one view. Thereafter, each winkin of the DO to an additional view increments

the reference count.

The lsdo –long command lists the reference count and referencing views for a DO. For example:

cleartool lsdo –long
01-Sep-99.18:56:45 Suzanne Lee (sgl.user@neon)

create derived object "file.txt@@01-Sep.18:56.2147483683"
size of derived object is: 10
last access: 01-Sep-99.18:56:46
references: 1 => neon:C:\views\sgl_test.vws

01-Sep-99.19:03:19 Suzanne Lee (sgl.user@neon)
create derived object "util@@01-Sep.19:03.81"
size of derived object is: 10
last access: 01-Sep-99.19:03:33
references: 2 (shared)
=> neon:C:\views\sgl_test.vws
=> neon:C:\views\point_of.vws

For a nonshareable DO, the reference count is always 1.

A reference count can also decrease. When a program running in any of the views that reference

a shared derived object overwrites or deletes that object, the link is broken and the reference

count is decremented. That is, the program deletes the view’s reference to the DO, but the DO

itself remains in VOB storage. This occurs most often when a compiler overwrites an old build

➤ You convert a nonshareable DO to a shareable DO. (See Converting Nonshareable DOs to
Shared DOs on page 62.)

➤ You process a VOB’s database with reformatvob. All DO-IDs receive new numeric

file-name extensions:

util.obj@@15-Jul.15:34.8896 (before reformatvob)
util.obj@@15-Jul.17:08.734 (after reformatvob)
24 Building Software with ClearCase

target. You can also remove the derived object with a standard del command, or if the makefile

has a clean rule, a clearmake clean invocation.

A derived object’s reference count can become zero. For example, suppose you build program

hello.exe and rebuild it a few minutes later. The second hello.exe overwrites the first hello.exe,

decrementing its reference count. Because the reference count probably was 1 (no other view has

winked it in), it now becomes 0. Similarly, the reference counts of old DOs, even of DOs that are

widely shared, eventually decrease to zero as development proceeds and new DOs replace the

old ones.

The lsdo command ignores such DOs by default, but you can use the –zero option to list them:

Z:\vob_hw\src> cleartool lsdo –zero –long hello.obj
.
.

08-Mar-96.12:47:54 akp.user@cobalt
 create derived object "hello.obj@@08-Mar.12:47.259"
 references: 0

...

A derived object that is listed with a references: 0 annotation does not currently appear in any

view. However, some or all of its information may still be available:

➤ If the DO was ever promoted to VOB storage, its data container is still in the VOB storage

pool (unless it has been scrubbed), and its CR is still in the VOB database. You can use catcr
and diffcr to work with the CR. You can get to its file system data by performing a

clearmake build in an appropriately configured view, or by using the winkin command.

➤ If the DO was never promoted, its CR may be gone forever. Until the scrubber runs and

deletes the data container, the catcr command prints the message Config record data no

longer available for DO-pname .
2 - Derived Objects and Configuration Records 25

26 Building Software with ClearCase

33 Pointers on Using ClearCase Build
Tools

This chapter presents some pointers on making best use of clearmake and omake.

ClearCase includes two independent build programs, clearmake and omake. The sample build

scenario that follows uses clearmake. However, both programs incorporate the major ClearCase

build-related features, including configuration lookup, derived object sharing, and config record
maintenance.

The omake program’s strength lies primarily in its support for users who require compatibility

with other PC-based build programs, including Borland® Make, Microsoft® NMAKE, Intersolv®

Polymake™, and OPUS Make™.

For more information on omake, see the following:

➤ omake reference page

➤ ClearCase OMAKE Manual

3.1 Running omake or clearmake

Typically, you run omake or clearmake from a dynamic view context using the following

procedure:

1. Set a view context by assigning a drive to a dynamic view (in Windows Explorer, click

Tools➔Map Network Drive or run the net use command) and then changing to that view:
3 - Pointers on Using ClearCase Build Tools 27

c:\> net use f: \\view\myview
c:\> f:
f:\>

2. Change to the appropriate directory and run omake or clearmake:

f:\myvob\src> omake options

or

f:\myvob\src> clearmake options

A view context prevents VOB pathnames from being dependent on the view the build occurs

in. From f:, you and your makefiles can access versioned objects with non-view-extended,

absolute VOB pathnames like \vob2\src\main.c in either cleartool subcommands or standard

operating system commands.

If you work directly on M:, in view-extended namespace, full pathnames to VOB objects

include a view-specific prefix, which affects configuration lookup so as to prevent DO

sharing between views.

A Simple clearmake Build Scenario

clearmake is designed to let developers in makefile-based build environments continue working

in their accustomed manner. The following simple build scenario demonstrates how little

adjustment is required to begin building with clearmake.

1. Go to a development directory within any VOB.

2. Edit some source files. Typically, you need to edit some sources before performing a build;

accordingly, you check out some file elements and revise the checked-out versions.

3. Start a build. You can use your existing makefiles, but invoke clearmake instead of your

standard make program. For example:

(We recommend that you avoid specifying make-macro overrides on the command line. See

Using a Build Options Specification (BOS) File on page 31)

f:\> cd myvob\src (`\myvob’ is the VOB-tag)

clearmake (build the default target)
clearmake cwd.obj libproj.lib (build one or more particular targets)
clearmake –k monet CFLAGS=–g (use standard options and make-macro overrides)
28 Building Software with ClearCase

clearmake builds targets (or avoids building them) in a manner similar to, but more

sophisticated than, other make variants. Figure 7 illustrates the results of a typical build.

Figure 7 clearmake Build Scenario

clearmake builds a new derived object for each checked-out source file, because no other view’s

build could possibly have used your checked-out version.

Start: No files are checked out

Edit: Check out a source file

Build: Invoke clearmake

each version selected by view is
accessed from VOB storage (shared

data) on read-only basis

writable copy of selected version
created in view-private storage

before checkout

check out source file

winkin

build build reuse

for checked-out versions, and for
some versions that are not checked-out

for some versions that
are not checked-out

for some versions that
are not checked-out

create new derived object reuse derived object wink in derived object
3 - Pointers on Using ClearCase Build Tools 29

Note that clearmake does not attempt to verify that you have actually edited the file; the

checkout makes a rebuild necessary. As you work, saving a file or invoking clearmake causes a

rebuild of the updated file’s dependents, in the standard make manner.

For source files that you have not checked out, clearmake may or may not build a new derived

object:

➤ It may reuse a derived object that appears in your view, produced by a previous build.

➤ It may wink in an existing derived object built in another view. (It’s even possible that a

winked-in DO was originally created in your view, shared, then deleted from your view—

for example, by a make clean rule.)

➤ Changes to other aspects of your build environment may trigger a clearmake rebuild:

revision to a header file; change to the build script, use of a make-macro override; change to

an environment variable used in the build script.

3.2 Accommodating Build Avoidance

When you first begin to build software systems with ClearCase, the fact that omake (or

clearmake) uses a different build-avoidance algorithm than other make variants may

occasionally surprise you. This section describes several such situations and presents simple

techniques for handling them.

Increasing the Verbosity Level of a Build

If you don’t understand omake’s (or clearmake’s) build-avoidance decisions, use the –v
(somewhat verbose) or –d (extremely verbose) option. For clearmake you can also set

environment variable CCASE__VERBOSITY to 1 or 2, respectively, for equivalent behavior.

Handling Temporary Changes in the Build Procedure

Typically, you do not edit a target’s build script in the makefile very often. But you may often

change the build script by specifying overrides for make macros, either on the command line or in

the Windows NT environment. For example, target hello.obj is specified as follows in the

makefile:
30 Building Software with ClearCase

hello.obj: hello.c hello.h
del hello.obj
cl /c $(CFLAGS) hello.c

When it executes this build script, omake (or clearmake) enters the build script, after macro

substitution, into the config record. The command

Z:\myvob> omake hello.obj CFLAGS="/02 /G5"

produces this configuration record entry:

Build script:

 cl /c /02 /G5 hello.c

The omake (or clearmake) build-avoidance algorithm compares effective build scripts. If you

then use the command omake hello.obj without specifying CFLAGS="/02 /G5", omake (or

clearmake) rejects the existing derived object, which was built with those flags. The same

mismatch occurs if you create a CFLAGS environment variable with a different value, and then

invoke omake (or clearmake) with the –e option.

Using a Build Options Specification (BOS) File

To manage temporary overrides for make macros and EVs, place macro definitions in build
options specification (BOS) files. clearmake provides several ways for using a BOS file. For

example, if your makefile is named project.mk, macro definitions are read from

project.mk.options. You can also keep a BOS file in your home directory, or specify one or more

BOS files with clearmake –A. For details, see Chapter 5, clearmake Makefiles and BOS Files.

Using a Separate makefile to Specify Build Options

To manage these temporary overrides with omake, you can place macro definitions in a separate

makefile. To include this makefile, specify the –f makefile option.

Using a BOS file or separate makefile to specify make macro overrides relieves you of having to

remember which options you specified for the last build. If you have not modified the BOS or

separate makefile recently, derived objects in your view are not disqualified for reuse on the basis

of build script discrepancies. Some of the sections that follow describe other applications of BOS

files.
3 - Pointers on Using ClearCase Build Tools 31

Handling Targets Built in Multiple Ways

Because omake (and clearmake) compare build scripts, undesirable results may occur if your

build environment includes more than one way to build a particular target. For example,

suppose that the target test_prog_3 appears in two makefiles in two directories. The first is in its

source directory, util_src:

test_prog_3.exe: ...
cl /Fl test_prog_3.c ...

The second is in another directory, app_src:

..\util_src\test_prog_3.exe: ...
cd ..\util_src & cl /Fl test_prog_3.c

Derived objects built with these scripts may be equivalent, because they are built as the same file

name (test_prog_3) in the same VOB directory (util_src). But by default, a build in the app_src
directory never reuses or winks in a DO built in the util_src directory, because build-script

comparison fails.

You can suppress build-script comparison for this target by using an omake special build target,

.NOCMP_SCRIPT, or a clearmake special build target, .NO_CMP_SCRIPT in the makefile or

in an associated BOS file:

.NO_CMP_SCRIPT: ..\util_src\test_prog_3.exe (clearmake build target)

.NOCMP_SCRIPT: ..\util_src\test_prog_3.exe (omake build target)

To suspend build-script comparison once, you can use either omake –O or clearmake –O.

Using a Recursive Invocation of omake or clearmake

You can eliminate the problem of different build scripts described in Handling Targets Built in
Multiple Ways by adding a recursive invocation of clearmake to the makefile in app_src:

Now, target test_prog_3 is built the same way in both directories. You can turn on build-script

comparison again, by removing the .NOCMP_SCRIPT or .NO_CMP_SCRIPT special target.

..\util_src\test_prog_3.exe: ...

cd ..\util_src & $(MAKE) test_prog_3.exe ($(MAKE) invokes omake or
clearmake recursively)
32 Building Software with ClearCase

Optimizing Winkin by Avoiding Pseudotargets

Like other make variants, omake (or clearmake) always executes the build script for a

pseudotarget, a target that does not name a file system object built by the script. For example, in

the section Using a Recursive Invocation of omake or clearmake, you may be tempted to use a

pseudotarget in the app_src directory’s makefile:

test_prog_3.exe: ... (shortened from ..\util_src\test_prog_3)
cd ..\util_src & $(MAKE) test_prog_3.exe

A build of any higher-level target that has test_prog_3.exe as a build dependency always builds

a new test_prog_3.exe, which in turn triggers a rebuild of the higher-level target. If the rebuild

of test_prog_3.exe was not necessary, the rebuild of the higher-level target may not have been

necessary, either. Such unnecessary rebuilds decrease the extent to which you can take advantage

of ClearCase’s derived object sharing capability.

Accommodating the Build Tool’s Different Name

The fact that the ClearCase build utility has a unique name, omake (or clearmake), may conflict

with existing build procedures that implement recursive builds. Most make variants

automatically define the make macro $(MAKE) as the name of the build program, as it was typed

on the command line:

This definition enables recursive builds to use $(MAKE) to invoke the same build program at

each level. The section Optimizing Winkin by Avoiding Pseudotargets includes one such example;

here is another one:

SUBDIRS = lib util src

all:
for %DIR in ($(SUBDIRS)) do cd %DIR & $(MAKE) all

Executing this build script with omake (or clearmake) invokes omake all (or clearmake all)
recursively in each subdirectory.

Z:\avob> make hello.obj (sets MAKE to “make”)
Z:\avob> omake hello.obj (sets MAKE to “omake”)
Z:\avob> clearmake hello.obj (sets MAKE to “clearmake”)
Z:\avob> my_make hello.obj (sets MAKE to “my_make”)
3 - Pointers on Using ClearCase Build Tools 33

3.3 Declaring Source Dependencies in Makefiles

To implement build avoidance based on time stamps, standard make variants require you to

declare all the source file dependencies of each build target. For example, object module hello.obj
depends on source files hello.c and hello.h in the same directory:

hello.obj: hello.c hello.h
 del hello.obj
 cl /c hello.c

Typically, these source files depend on project-specific header files through #include directives,

perhaps nested within one another. The standard files do not change very often, but

programmers often lament that “it didn’t compile because someone changed the project’s header

files without telling me.”

To alleviate this problem, some organizations include every header file dependency in their

makefiles. They rely on utility programs to read the source files and determine the dependencies.

omake and clearmake do not require that source-file dependencies be declared in makefiles (but

see Source Dependencies Declared Explicitly on page 34). The first time a derived object is built, its

build script is always executed; thus, the dependency declarations are irrelevant for determining

whether the target is out of date. After a derived object has been built, its configuration record

provides a complete list of source-file dependencies used in the previous build, including those

on all header files (nested and nonnested) read during the build.

You can leave source-file dependency declarations in your existing makefiles, but you need not

update them as you revise the makefiles. And you need not place source-file dependencies in

new makefiles to be used with omake or clearmake.

NOTE: Although source-file dependency declarations are not required, you may want to include

them in your makefiles, anyway. The principal reason for doing so is portability: you may need

to provide your sources to another team (or another company) that is not using ClearCase.

Source Dependencies Declared Explicitly

The ClearCase build auditing facility tracks only the MVFS objects used to build a target.

Sometimes, however, you may want to track other objects. For example:

➤ The version of a compiler that is not stored in a VOB

➤ The version of the operating system kernel, which is not referenced at all during the build

➤ The state of a flag-file, used to force rebuilds
34 Building Software with ClearCase

You can force such objects to be recorded in the CR by declaring them as dependencies of the

makefile target:

hello.obj: hello.c hello.h my.flag
 del hello.obj
 cl /c hello.c

This example illustrates dependency declarations for these kinds of objects:

➤ (hello.c, hello.h) Dependencies on MVFS objects are optional. These are recorded by

clearmake and MVFS anyway.

➤ my.flag — Dependencies on view-private objects can implement a flag-file capability.

.

Explicit Dependencies on Searched-For Sources

There are situations in which the configuration lookup algorithm that clearmake and omake use

qualifies a derived object, even though rebuilding the target would produce a different result.

Configuration lookup requires that for each object listed in an existing CR, the current view must

select the same version of that object. However, in cases where you use search paths to find an

object, a target rebuild may use a different object than the one listed in the CR. Configuration

lookup does not take this possibility into account.

When files are accessed by explicit pathnames, configuration lookup qualifies derived objects

correctly. Configuration lookup may qualify a derived object incorrectly if files are accessed at

build time by a search through multiple directories, for example, when the –I option to a C or

C++ compiler specifies a header file, or when the –L option to a linker specifies a library file. The

following build script uses a search to locate a header file, fio.h:

hello.obj:
cl /c /I \projvob\privh /I \projvob\stdh hello.c

The command clearmake hello.obj may qualify an existing derived object built with

C:\projvob\privh\fio.h, even though rebuilding the target would now use

C:\projvob\stdh\fio.h instead.
3 - Pointers on Using ClearCase Build Tools 35

omake and clearmake address this problem in the same way as some standard make
implementations:

➤ You must declare the searched-for source object as an explicit dependency in the makefile:

hello.obj: fio.h
...

➤ You must use the VPATH macro to specify the set of directories to be searched:

VPATH = \projvob\privh;projvob\stdh

Given this makefile, omake (or clearmake) uses the VPATH (if any) when it performs

configuration lookup on fio.h. If a candidate derived object was built with

C:\projvob\privh\fio.h, but would be built with C:\projvob\stdh\fio.h in the current view,

the candidate is rejected.

NOTE: The VPATH macro is not used for all source dependencies listed in the config record. It is

used only for explicitly declared dependencies of the target. Also, clearmake searches only in the

current view.

Build Tool Dependencies. You can use this mechanism to implement dependencies on build

tools. For example, you can track the version of the C compiler used in a build as follows:

msg.obj: msg.c $(CC)
$(CC) /c msg.c

With this makefile, either your VPATH must include the directories on your search path, or you

must use a full pathname as the $(CC) value.

NOTE: If your C compiler is stored in a VOB and you invoke it from the VOB, ClearCase tracks

its version and you do not have to include it as a dependency.
36 Building Software with ClearCase

3.4 Build-Order Dependencies

In addition to source dependencies, makefiles also contain build-order dependencies. For

example:

hello.exe: hello.obj libhello.lib
 ...
libhello.lib: hello_env.obj hello_time.obj
 ...

These dependencies are buildable objects, and are called subtargets. The executable hello.exe
must be built after its subtargets, object module hello.obj and library libhello.lib, and the library

must be built after its subtargets, object modules hello_env.obj and hello_time.obj.

ClearCase does not detect build-order dependencies; you must include such dependencies in

makefiles used with omake (or clearmake), as you do with other make variants.

3.5 clearmake Build Script Execution and cmd.exe

By default, clearmake invokes cmd.exe to execute build scripts. It finds cmd.exe in

%SYSTEMROOT%\system32; if SYSTEMROOT is not set, clearmake uses c:\winnt as the default

system root directory. If it cannot find the shell, clearmake exits.

You can override the default shell by using a SHELL make macro (note that you must specify a

full pathname and include the file’s extension). The following anomalies may occur if you use a

different shell, or if you execute a batch file from a build script:

➤ clearmake may not recognize failed commands and continue the build with unpredictable

results.

➤ clearmake may display an extra command prompt after a build script command completes

successfully.

NOTE: If clearmake determines that it can execute the build script directly, it does not use the shell

program even if you specify one explicitly. If you use .bat files in build scripts, you must make

them executable (use the cleartool protect command). To force clearmake to use the shell

program, set the environment variable CCASE_SHELL_REQUIRED.
3 - Pointers on Using ClearCase Build Tools 37

3.6 Build Scripts and the rm Command

It is common for a makefile to include a target whose build script invokes a command like rm to

delete files. Some Windows installations include rm commands that do not actually delete a file,

but move it to another directory. As a result, build script temporary files become sibling DOs of

the targets. To avoid this effect, make sure to use a delete command—del, for example—that

actually deletes files.

3.7 Pathnames in CRs

In a config record created on Windows, MVFS object pathnames begin with the VOB-tag and do

not include view-tag prefixes. For example:

...
---------------------------- MVFS objects: ----------------------------
\proj1\include\cmsg.h@@\main\nt3\39 <22-Jul-94.17:49:53>
\proj1\lib\fsutl.h@@\main\12 <22-Jun-94.12:07:24>
...

Pathnames in this format can be cut or copied and applied elsewhere “as is,” if you are on a drive

assigned to a view with Tools➔Map Network Drive in Windows Explorer or the net use
command).

3.8 Problems with Forced Builds

omake has an unconditional option –a (on clearmake it is –u), which forces rebuilds. Using this

option reduces the efficiency of derived object sharing, however. If you force clearmake or

omake to build a target in a situation where it would have winked in an existing DO, you create

a new DO with the same configuration as an existing one. In such situations, a developer who

expects a build to share a particular existing DO may get another, identically configured DO

instead. This may confuse the team and waste disk space.

We suggest that you use a flag-file to force a rebuild, rather than using omake –a or

clearmake –u. (See Source Dependencies Declared Explicitly on page 34.)
38 Building Software with ClearCase

3.9 How clearmake Interprets Double-Colon Rules

Double-colon rules are a special kind of makefile construct that allows several independent rules

for one target, each with a possibly different build script. The semantics given to these rules by

other make programs (and for clearmake when CRs are not being generated) are that commands

within each double-colon rule are executed if the target is older than any dependencies of that

particular rule. The result can be that none, any, or all of the double-colon rules are executed.

However, when clearmake creates CRs and associates them with the results of its builds, this

interpretation runs the risk of generating incomplete CRs, which do not contain all the versions

and build scripts used to build the targets. For this reason, clearmake interprets these rules in a

more conservative way.

When building a target specified by a number of double-colon rules, clearmake concatenates all

build scripts from all the double-colon rules for that target, and runs them in a single audited

script.

To produce the correct results, any subtargets must already have been built, so clearmake builds

any out-of-date subtargets before it executes the concatenated build script.

As a result, you may observe these differences in behavior between clearmake and other make
programs concerning double-colon rules:

➤ clearmake runs more of the build scripts than other make programs.

➤ clearmake may run the build scripts in a different order than other make programs.

However, given the intended use and standard interpretation of double-colon rules, these

differences still produce correct builds and complete correct CRs.

3.10 Continuing to Work During a Build

As your build progresses, other developers continue to work on their files, and may check in new

versions of elements that your build uses. If your build takes an hour to complete, you do not

want build scripts executed early in the build to use version 6 of a header file, and scripts

executed later to use version 7 or 8.

To prevent such inconsistencies, any version whose selection is based on a LATEST config spec

rule is locked out if it is checked in after the instant that omake (or clearmake) was invoked. The

moment that the omake (or clearmake) build session begins is the build reference time.
3 - Pointers on Using ClearCase Build Tools 39

The same reference time is reported in each configuration record produced during the build

session, even if the session lasts hours (or days):

Z:\avob> cleartool catcr hello.obj
Target hello.obj built by drp.dvt
Host "fermi" running Windows NT 3.5 (807)
Reference Time 26-Feb-99.16:53:58, this audit started 26-Feb-99.16:54:10 ...

NOTE: The reference time is the build reference time, when the overall omake (or clearmake)

build session began. The this audit started time is when the execution of the individual build

script began.

When determining whether an object was created before or after the build reference time, omake
(or clearmake) adjusts for clock skew, the inevitable small differences among the system clocks on

different hosts. For more on build sessions, see Build Sessions, Subsessions, and Hierarchical Builds
on page 42.

CAUTION: A build’s coordinated reference time applies to elements only, providing protection

from changes made after the build began. You are not protected from changes to view-private

objects and non-MVFS objects. For example, if you begin a build and then change a checked-out

file used in the build, a failure may result. Therefore, do not work on the same project in a view

where a build is in progress.

3.11 Using Config Spec Time Rules

NOTE: If you use a UCM view, your config spec is generated by ClearCase. Do not add time rules

to your config spec.

Using the reference time facility described in Continuing to Work During a Build, omake (or

clearmake) blocks out potentially incompatible source-level changes that take place after your

build begins. But sometimes, the incompatible change has already taken place. ClearCase allows

you to block out recently created versions.

A typical ClearCase team-development strategy is for each team member to work in a separate

view, but to have all the views use the same config spec. In this way, the entire team works on the

same branch. As long as a source file remains checked out, its changes are isolated to a single

view; when a developer checks in a new version, the entire team sees the new version on the

dedicated branch.
40 Building Software with ClearCase

This incremental integration strategy is often very effective. But suppose that another user’s

recently checked-in version causes your builds to start failing. Through an exchange of e-mail,

you trace the problem to header file project_base.h, checked in at 11:18 A.M. today. You, and

other team members, can reconfigure your views to roll back that one element to a safe version:

element project_base.h ...\onyx_port\LATEST –time 5-Mar.11:00

If many interdependent files have been revised, you can roll back the view for all checked-in

elements:

element * ...\onyx_port\LATEST –time 5-Mar.11:00

For a complete description of time rules, see the config_spec reference page.

Inappropriate Use of Time Rules

Your view interprets time rules with respect to the create version event record written by the

checkin command. The checkin is read from the system clock on the VOB server host. If that

clock is out of sync with the clock on the view server host, your attempt to roll back the clock may

fail. Thus, don’t strive for extreme precision with time rules: select a time that is well before the

actual cutoff time (for example, a full hour before, or in the middle of the night).

Do not use time rules to freeze a view to the current time immediately before you start a build.

Allow omake’s (or clearmake’s) reference time facility to perform this service. Here’s an

inappropriate use scenario:

1. You check in version 12 of util.c at 7:05 P.M. on your host. You do not know that clock skew

on the VOB host causes the time 7:23 P.M. to be entered in the create version event record.

2. To freeze your view, you change your config spec to include this rule:

element * \main\LATEST –time 19:05

3. You issue an omake (or a clearmake) command immediately (at 7:06 P.M.) to build a

program that uses util.c. When selecting a version of this element to use in the build, your

view consults the event history of util.c and rejects version 12, because the 7:23 P.M. time

stamp is too late for the –time configuration rule.
3 - Pointers on Using ClearCase Build Tools 41

3.12 Build Sessions, Subsessions, and Hierarchical Builds

The following terms are used to describe the details of ClearCase build auditing:

➤ Invoking clearmake, omake, or clearaudit starts a build session. The time at which the build

session begins becomes the build reference time for the entire build session, as described on

Continuing to Work During a Build on page 39.

➤ During a build session, one or more target rebuilds typically take place.

➤ Each target rebuild involves the execution of one or more build scripts. (A double-colon

target can have multiple build scripts; see How clearmake Interprets Double-Colon Rules on

page 39.)

➤ During each target rebuild, clearmake, omake, or clearaudit conducts a build audit.

Subsessions

A build session can have any number of subsessions, all of which inherit the reference time of the

build session. A subsession corresponds to a nested build or recursive make, which is started

when a clearmake, omake, or clearaudit process is invoked in the process family of a

higher-level clearmake, omake, or clearaudit. For example:

➤ Including a clearmake, omake, or clearaudit command in a makefile build script executed

by clearmake, omake, or clearaudit
➤ Entering a clearmake, omake, or clearaudit command in an interactive process started by

clearaudit

A subsession begins while a higher-level session is still conducting build audits. The subsession

conducts its own build audits, independent of the audits of the higher-level session; that is, the

audits are not nested or related in any way, other than that they share the same build reference

time.

Versions Created During a Build Session

Any version created during a build session and selected by a LATEST config spec rule is not

visible in that build session. For example, a build checks in a derived object it has created;
42 Building Software with ClearCase

subsequent commands in the same build session do not select the checked-in version, unless it

is selected by a config spec rule that does not use the version label LATEST.

An effect of this behavior is that you cannot check in and label a version during a single build

session. Instead, you must check in the version during one build session, and label the version

during another build session. Use the mklabel –config command to label versions associated

with a specific derived object.

Coordinating Reference Times of Several Builds

Different build sessions have different reference times. The best way to assign a series of builds

the same reference time is to structure them as a single, hierarchical build.

An alternative approach is to run all the builds within the same clearaudit session. For example,

you can write a batch file, multi_make.bat, that includes several invocations of clearmake,

omake, or clearaudit (along with other commands). Running the script as follows ensures that

all the builds are subsessions that share the same reference time:

> clearaudit –c multi_make.bat

Objects Written at More than One Level

Problems occur when the same file is written at two or more session levels (for example, a

top-level build session and a subsession): the build audit for the higher-level session does not

contain complete information about the file system operations that affected the file. For example:

> clearaudit –c "clearmake shuffle > logfile"

The file logfile may be written twice:

➤ During the clearaudit build session, by the command invoked from clearaudit
➤ During the clearmake subsession, when the clearaudit build session is suspended

In this case, clearaudit issues this error message:

clearaudit: Error: Derived object modified; cannot be stored in VOB.
Interference from another process?
3 - Pointers on Using ClearCase Build Tools 43

To work around this limitation, postprocess the derived object at the higher level with a copy
command:

> clearaudit –c "clearmake shuffle > log.tmp& copy log.tmp logfile& del log.tmp"

3.13 Build Auditing and Background Processes

The ClearCase build programs—omake, clearmake, and clearaudit—use the same procedure to

produce configuration records:

1. Send a request to the host’s multiversion file system (MVFS), to initiate build auditing.

2. Invoke one or more child processes (typically, commands), in which makefile build scripts or

other commands are executed.

3. Turn off MVFS build auditing.

4. If all the subprocesses have indicated success, and at least one MVFS file has been created,

compute and store one or more configuration records.

Any subprocesses of the child processes invoked in Step #2 inherit the same MVFS build audit.

(Recursive invocations of ClearCase build programs conduct their own, independent audits; see

Build Sessions, Subsessions, and Hierarchical Builds on page 42.)

A problem can occur if a build script (or other audited command) invokes a background

subprocess, and exits without waiting for it to complete. The build program has no knowledge

of the background process and may proceed to Step #3 and Step #4 before the background

process has finished its work. In such situations, ClearCase cannot guarantee what portion, if

any, of the actions of background commands will be included in the resulting CR. The contents

of the CR depend on system scheduling and timing behavior.

The ClearCase build programs audit background processes correctly only if both of the following

conditions are true:

➤ The build script does not complete until all background processes are known to have

finished.

➤ Each background process performs its first MVFS file access while it is still a descendant

process of the clearmake, omake, or clearaudit process. (The ClearCase kernel component

determines whether to audit a given process when that process first accesses the MVFS. If
44 Building Software with ClearCase

the process’s ancestors include a process already being audited, the descendant process is

similarly marked for auditing.)

If either or both of these conditions are not true, avoid using background processes in audited

build scripts.

3.14 Working with Incremental Update Tools

The design of ClearCase’s build auditing capability makes it ideal for use with tools that build

derived objects from scratch. Because newly created objects have no history, ClearCase can learn

everything it needs to know at build time. But this reliance on build-time file-system-level

auditing can cause ClearCase to record incomplete information for objects that are updated

incrementally, which do have a history.

In ClearCase, incremental updating means that an object is updated partially during the builds

of multiple makefile targets, instead of generated completely by the build of one target. By default,

omake and clearmake do not update an existing CR incrementally when they build a target.

Instead, they do the following:

➤ Each time a build script incrementally updates an object’s file system data, omake and

clearmake write a completely new CR, which describes only the most recent update, not

the entire build history.

➤ The new CR does not match the desired build configuration for any of the other targets that

update the object incrementally.

This results in a situation that is both unstable and incorrect: all incremental-update targets are

rebuilt each time that omake (or clearmake) is invoked; when the build is finished, the DO has

the correct file system data, but its CR may not describe the DO’s configuration accurately.

omake and clearmake provide a special makefile target .INCREMENTAL_TARGET, which can

be used to guarantee correct CR information for incremental updates. The following sections

give examples of how to use .INCREMENTAL_TARGET.
3 - Pointers on Using ClearCase Build Tools 45

Example: Incremental Linking

If your makefile is structured properly, configuration records are not likely to lose information

during incremental links.

Incremental linkers typically work by determining which object files have changed since the last

link, and relinking those objects only. Because the linker may read only some of the objects each

time it links, a CR can, in theory, lose information as repeated links are made. However, in

practice, because all dependencies of the link are listed in the build script, the build script does

not change from one link invocation to the next. And, because you typically list the objects or

predefined dependencies of the link, those dependencies are included in the CR.

Additional Incremental-Update Situations

You may encounter incremental updating in other situations, as well. For example, Visual C++

supports a program database file (PDB) that contains debugging information and is updated

incrementally as different targets are built. ClearCase includes special makefile rules to work

around problems associated with incremental files produced by Visual C++. For more

information, see Chapter 7, Using ClearCase to Build C++ Programs.

3.15 Temporary Build Audit Files

By default, omake and clearmake generate temporary build audit files in the directory identified

by the TMP environment variable. You can set the CCASE_AUDIT_TMPDIR environment variable to

relocate these files. If you do not set this variable, make sure TMP is set to a valid temporary

storage directory on a FAT, NTFS, or LAN Manager file system.

3.16 Auditing 16-bit Tools

Compilers, linkers, and other tools written to run under MS-DOS® or Windows (16-bit tools)

require special handling when used in audited builds with clearmake or omake.
46 Building Software with ClearCase

The program vdmaudit allows auditing of 16-bit tools and does not affect programs run outside

a build. To use vdmaudit, you need to have clearmake or omake run vdmaudit and let it call the

tool. This involves either editing the makefile where it calls the tool or if your makefile defines

a macro for each tool, redefining the macros in the makefile or on the clearmake or omake
command line.

If the makefile defines a macro for each 16-bit tool, you can change the macros to call vdmaudit.
For example, if your makefile contains macros like:

CPP=cl.exe
LINK=link.exe

change them as follows:

CPP=vdmaudit cl.exe
LINK=vdmaudit link.exe

You can redefine the macros on the clearmake or omake command line like this:

omake –EN –f disptree.mak CPP="vdmaudit cl.exe" LINK="vdmaudit link.exe"
clearmake –f disptree.mak CPP="vdmaudit cl.exe" LINK="vdmaudit link.exe"

Call all 16-bit tools from vdmaudit. If you do not, clearmake and omake do not audit all tools

and the configuration record is incomplete.

An alternative method for auditing 16-bit tools is to use the ClearCase Virtual Device Driver

(VDD). To install the VDD during ClearCase installation, select 16-bit build auditing on the

ClearCase Client Options or ClearCase Server Options page. The VDD runs any time a 16-bit

tool is run, whether during an audit or not. However, the VDD can cause 16-bit tools to fail to

display all output or to fail to clear the screen when done.

3.17 Adding a Version String or Time Stamp to an Executable

This section describes a simple technique for incorporating a version string and/or time stamp

into a C-language compiled executable. Including a version string or time stamp allows anyone

(for example, a customer) to determine the exact version of a program by entering a shell

command.
3 - Pointers on Using ClearCase Build Tools 47

The technique involves adding a “what version?” command-line option to the executable itself:

Z:\> monet –Ver
monet R2.0 Baselevel 1 (Thu Feb 11 17:33:23 EST 1996)

After the particular version of the program is determined, you can use ClearCase commands to

find a local copy, examine its config record, and if appropriate, reconstruct the source

configuration with which it was built. (Presumably, the local copy is a derived object that has

been checked in as a version of an element.)

You can identify the appropriate derived object by attaching a ClearCase attribute with the

version string to the checked-in executable.

Implementing a –Ver Option

You can write a program to display the information stored in the version_string and

version_time variables. An example of such a program is shown below:

#include <stdio.h>

main(argc,argv)
 int argc;
 char **argv;
{
/*
 * implement -Ver option
 */
 if (argc > 1 && strcmp(argv[1],"-Ver") == 0) {
 char *version_string = "monet R2.0 Baselevel 1";
 char *version_time= "Thu Feb 11 17:33:23 EST 1996";
 /*
 * Print version info
 */
 printf ("%s (%s)\n",
 version_string, version_time);
 exit(0);
 }
}

48 Building Software with ClearCase

44 Working with Derived Objects and
Configuration Records

This chapter describes the operations you can perform on derived objects and configuration

records. For more information and examples, see the reference pages for the commands.

The information in this chapter applies only to dynamic views.

4.1 Setting Correct Permissions for Derived Objects

If you and other members of your team want to share derived objects (DOs), make sure that your

views are configured to create shareable DOs, and that the DOs are created with a mode that

grants both read and write access to team members.

Permissions on DOs affect the extent to which they are shareable:

➤ When you perform a build, the ClearCase build tool winks in a derived object to your view

only if you have read permission on the DO.

➤ The ClearCase build tool can wink in DOs for which you do not have write permission. But

permission denied errors may occur during a subsequent build, when a compiler (or

other build script command) attempts to overwrite such a DO. To work around this

problem, you can rewrite your makefile to remove the target before rebuilding it. You can

also set a policy for how users must set their permissions.

For information on fixing the permissions of DO versions, see the protect reference page.
4 - Working with Derived Objects and Configuration Records 49

4.2 Listing and Describing Derived Objects

The following sections describe how to use the lsdo, describe, ls, and lsprivate commands to list

derived objects.

Listing Derived Objects Created at a Certain Pathname

Use the lsdo command to list derived objects created at a specific pathname. For information on

the kinds of DOs included in the listing, see the lsdo reference page.

➤ To list all DOs created at the pathname adm.h:

cleartool lsdo adm.h
01-Jul.13:49 "adm.h@@01-Jul.13:49.1286781"
30-Jun.20:03 "adm.h@@30-Jun.20:03.1278990"
30-Jun.18:14 "adm.h@@30-Jun.18:14.1277470"
29-Jun.19:11 "adm.h@@29-Jun.19:11.1253509"
29-Jun.18:13 "adm.h@@29-Jun.18:13.1252790"
29-Jun.16:09 "adm.h@@29-Jun.16:09.1249897"

➤ To list all DOs created by you at the pathname adm.h:

cleartool lsdo –me adm.h
30-Jun.18:14 "adm.h@@30-Jun.18:14.1277470"
50 Building Software with ClearCase

Listing a Derived Object’s Kind

To display a derived object’s kind, use the cleartool commands ls –l, lsprivate –l –do, or

describe –fmt "%[DO_kind]p". The kind can be one of the following values:

➤ List, in long form, a particular DO.

cleartool ls –l util
derived object (non-shareable) util@@01-Sep.10:54.2147483681

➤ To list all DOs created in the current view in the \dev VOB, including the DO kind:

cleartool lsprivate –long –invob \dev –do
derived object (unshared) \dev\file2.txt@@02-Jul.13:51.124
derived object (unshared) \dev\file2sub.txt@@02-Jul.13:51.123

➤ To list the name and kind of all DOs created in the current view:

cleartool lsprivate –long –do
derived object (shared) \dev\file2.txt@@02-Jul.13:51.124
derived object (unshared) \dev\file2sub.txt@@02-Jul.13:51.123
derived object (unshared) \dev\dir1\foo.obj@@01-Jul.14:23.186
derived object (unshared) \dev\api\bin\adm.exe@@04-Jul.04:01.776

non-shareable The DO was created during an express build and cannot be winked

in by other views.

unshared The DO was created during a regular build. Its data container is

located in view storage, not in the VOB.

promoted The DO’s data container has been promoted to the VOB by a winkin
or view_scrubber –p command. The DO is referenced by only one

view.

shared The DO’s data container has been promoted to the VOB by a

ClearCase build tool or a manual winkin or view_scrubber –p
command.
4 - Working with Derived Objects and Configuration Records 51

Displaying a DO’s OID

A derived object’s OID is the permanent identifier recorded in the VOB database for the DO. It

does not change over the life of the DO, unlike the DO-ID (see Reuse of DO-IDs on page 23). To

display the OID, use the command describe –fmt "%On". For example:

cleartool describe –fmt "%On\n" foo.o
b7afc83e.2f2311d3.a382.00:01:80:7b:09:69

Displaying a Description of a DO Version

The describe command displays descriptions of DO versions, as it does descriptions of regular

versions. You can use the –fmt option to extract parts of the description. For example, the

following command prints the name, predecessor version, and element type of a DO version:

cleartool describe –fmt "%n\t%[version_predecessor]p\t%[type]p\n" file1.obj
file1.obj@@\main\2 \main\1 text_file

For more information on the –fmt option, see the fmt_ccase reference page.

4.3 Identifying the Views that Reference a Derived Object

The VOB stores information about which views reference a derived object. To display this

information, use the lsdo command:

Z:\vob_hw\src> cleartool lsdo –l hello.obj
10-Mar-99.15:25:52 akp.user@copper

create derived object "hello.obj@@10-Mar.15:25.213"
size of derived object is: 450
last access: 15-Mar-99.14:22:17
references: 2 (shared)
=> copper:C:\views\akp\tut\old.vws
=> copper:C:\views\akp\tut\fix.vws
52 Building Software with ClearCase

4.4 Specifying a Derived Object in Commands

In general, you use standard pathnames to access DOs when you’re working in a view that

references them. To standard software (for example, linkers and debuggers), the standard

pathname of a derived object (util.o) references the DO.

This is another example of ClearCase’s transparency feature: a standard pathname accesses one

of many different variants of a file system object. Note this distinction, however:

➤ A version of an element appears in a dynamic view because it is selected by a config spec

rule.

➤ A particular derived object appears in a dynamic view as the result of a build or a winkin.

To access a DO in another dynamic view, use a view-extended pathname:

NOTE: You cannot use view-extended pathnames in makefiles.

To specify a certain DO in a ClearCase command, use the DO-ID. For example, you can use a

DO-ID in the catcr command to view the contents of a specific DO’s config record:

cleartool catcr foo.o@@29-Jun.14:40.88

NOTE: You cannot use a DO-ID in standard commands.

Because DO-IDs can change, avoid using them in files or scripts that operate on a DO. Instead,

use a standard pathname or the derived object’s object identifier (OID), which never changes. To

determine a DO’s object identifier, use cleartool describe –fmt "%On\n". For example:

cleartool describe –fmt "%On\n" foo.o@@29-Jun.14:40.88
2c5fc68a.2e5311d3.a382.00:01:80:7b:09:69

Also, a derived object gets a permanent identifier when it is checked in as a version of an element.

See Working with DO Versions on page 58.

M:\drp\vob_proj\src\msg.obj (the DO in view drp)
M:\R2_integ\vob_proj\src\msg.obj (the DO in view R2_integ)
4 - Working with Derived Objects and Configuration Records 53

4.5 Winking in a DO Manually

You can manually wink in any DO to your view, using the winkin command. For example:

Z:\vob_hw> cleartool lsdo hello.exe
08-Mar.12:48 akp "hello.exe@@08-Mar.12:48.265"
07-Mar.11:40 george "hello.exe@@07-Mar.11:40.217"

Z:\vob_hw> cleartool winkin hello.exe@@07-Mar.11:40.217
Winked in derived object "hello.exe"

Z:\vob_hw> hello
...

You can wink in a DO that doesn’t match your build configuration for any of the following

reasons: to run it, to perform a byte-by-byte comparison with another DO, or to perform any

other operation that requires access to the DO’s file system data.

The winkin command can also wink in the set of DOs in a hierarchy of CRs. You can use this

recursive winkin to seed a new view with a set of derived objects. For example:

cleartool winkin -recurse foo@@20-Jul.14:32.146
Winked in derived object "\smg_test\file2.txt"
Winked in derived object "\smg_test\file2sub.txt"
Promoting unshared derived object "\smg_test\foo".
Winked in derived object "\smg_test\foo"

You can use the winkin command to convert a nonshareable DO to a shared DO. For more

information, see Converting Nonshareable DOs to Shared DOs on page 62.

4.6 Preventing Winkin

The following sections describe how to prevent winkin to or from your view while using the

ClearCase build tools. (You can prevent winkins altogether by building in a snapshot view or by

not using the ClearCase build tools.)
54 Building Software with ClearCase

Preventing Winkin to Your View

To direct clearmake or omake to limit reuse to DOs created in the current view, use clearmake
–V or omake –W. For more information, see the clearmake or omake reference page.

Preventing Winkin to Other Views

To prevent any derived objects you create from being winked in to other views, use one of the

following techniques:

➤ Use express builds. See Using Express Builds to Prevent Winkin to Other Views.

➤ Use the –T or –F options with clearmake or the –L option with omake to create

view-private files with no config records. clearmake and omake do not perform

configuration lookup, but this does not matter if you are not changing other files.

➤ Use special targets that prevent winkin. For example, use .NO_WINK_IN with clearmake.

For more information on special targets, see Special Targets on page 76.

Using Express Builds to Prevent Winkin to Other Views

During an express build, ClearCase creates DOs that are nonshareable and cannot be used by

builds in other views. These nonshareable DOs have configuration records, but the ClearCase

build tools do not write information into the VOB for these DOs. Therefore, the DOs are invisible

to builds in other views.

NOTE: During an express build, the ClearCase build tools wink in DOs from other views. For

information on avoiding winkins from other views, see Preventing Winkin to Your View on

page 55.

Use express builds when DOs created by the build are not appropriate for use by other views. As

a general rule:

➤ Use express builds for development builds that use relatively unstable, checked-out

versions.

➤ Use regular builds for release or nightly builds that use stable, checked-in versions. DOs

created by these builds are more likely to be winked in by other views.
4 - Working with Derived Objects and Configuration Records 55

Enabling Express Builds

When you invoke a ClearCase build tool, the kind of build that occurs depends on how your

view is configured. To use express builds, configure an existing dynamic view with the

nonshareable DOs property, or create a new dynamic view with the nonshareable DOs property.

Then, run your ClearCase build tool (clearmake, omake, or clearaudit) in the view.

The following sections describe how to configure your view to use express builds.

Configuring an Existing View for Express Builds

To configure an existing view, use one of the following methods:

➤ Use the command chview –nshareable_dos view-tag. For more information, see the chview
reference page.

➤ Use the View Properties browser:

a. From ClearCase Home Base, click the Views tab and click Edit View Properties.

b. Click the view whose properties you want to change, then click OK.

c. Click the Advanced tab.

d. Clear the Create shareable derived objects check box.

e. Click OK.

Future builds in the view will create nonshareable derived objects. However, existing DOs in the

view are shareable; they are not converted to nonshareable. These existing DOs can still be

winked in by other views.

Creating a New View that Uses Express Builds

To create a new view, use one of the following methods:

➤ Use the mkview command with the –nshareable_dos option. For more information, see the

mkview reference page.

➤ Use the View Creation Wizard:

a. In Step 3, click Advanced Options.

b. Clear the Create shareable derived objects check box.
56 Building Software with ClearCase

c. Follow the prompts of the View Creation Wizard.

NOTE: The ClearCase administrator can set a site-wide default for the DO property. If a site-wide

default exists and you do not specify the DO property when you create the view, ClearCase uses

the site-wide default. For more information, see the setsite reference page.

Preventing Winkin to or from Other Architectures

By default, the build tool winks in derived objects built on different architectures. For example,

a build on a Sun machine may wink in a DO built on a Windows NT machine. If you want to

prevent this behavior, use one of the following techniques:

➤ Differentiate the build script for different architectures:

➣ Add the architecture name to your build script so that the build tool differentiates among

the build scripts.

➣ Store the architecture name in a macro and pass it to the build tool on the command line.

➣ Use architecture-specific subdirectories to store DOs.

➤ Make your tools a build dependency by storing them in a VOB. Also, store your system

header files in a VOB.

4.7 Converting Derived Objects to View-Private Files

Using a standard command or program to modify a derived object in any way converts it from

a DO to a view-private file. For example, use ls –long to list a derived object:

cleartool ls –long msg.obj
derived object (shared) msg.obj@@10-Mar.15:33.333

Modify the DO with a standard command:

echo "" >>msg.obj
4 - Working with Derived Objects and Configuration Records 57

The ls –long command now lists the file as a view-private object:

cleartool ls –long msg.obj
view private object msg.obj

4.8 Working with DO Versions

The following sections describe how to create and manipulate DO versions.

Creating DO Versions

You can convert DOs to elements, or check them in as versions of existing elements. The

element-creation and version-creation processes are the same for shareable and nonshareable

DOs, with this exception: when you check in a nonshareable DO, it is converted to a shared DO

before being checked in.

For more information, see the mkelem and checkin reference pages.

Checking In DOs During a Build

You can write a build script that creates a derived object, and then checks it in or converts it to an

element. However, the ClearCase build tool does not create a config record until the build script

has completed (all commands after the target-name: have executed). Therefore, if the same build

script that created the DO checks it in or converts it to an element, the resulting version is not a

DO version.

For example, the version created by the following build script is not a DO version:

buildit : buildit.c
cleartool co -unres -nc $@
del /F $@
cl /c $@ $*.c
cleartool ci -nc buildit
58 Building Software with ClearCase

You can work around this problem by building and checking in a derived object in two steps. For

example, the makefile contains one build script that creates the DO, and another build script that

checks it in, as shown here:

buildit : buildit.c
cleartool co -unres -nc $@
del /F $@
cl /c $@ $*.c

stageit : buildit
cleartool ci -nc buildit

The command clearmake stageit performs the following steps:

1. Brings the target buildit up to date. This creates a DO named buildit and an associated

config record.

2. Brings the target stageit up to date. This step checks in the buildit derived object as a DO

version.

Accessing DO Versions

When you check out a DO version, it is winked in to your dynamic view. You can use a standard

pathname to access the DO’s file system data. However, VOB-database access is handled in the

following ways:

➤ A standard pathname to the DO references the version in the VOB database from which the

checkout was made:

➤ To access the checked-out placeholder version, you must use an extended pathname:

z:\myvob\bin> cleartool mklabel -replace EXPER hello@@\main\CHECKEDOUT
Moved label "EXPER" on "hello" from version "\main\3" to
"\main\CHECKEDOUT".

z:\myvob\bin> cleartool checkout -nc hello
Checked out "hello" from version "\main\3".

(wink in derived object
hello)

z:\myvob\bin> cleartool mklabel EXPER hello
Created label "EXPER" on "hello" version "\main\3".

(use standard pathname to
access version from which
checkout was made)
4 - Working with Derived Objects and Configuration Records 59

If you process a checked-out DO version as described in Converting Derived Objects to View-Private
Files on page 57, ClearCase reverts to its usual handling of checked-out versions. In this case, a

standard pathname references the placeholder version in the VOB database.

Displaying Configuration Records for DO Versions

The catcr command displays the configuration record for a DO version. When you use catcr
–recurse to display the CRs for a DO and all its subtargets, it does not display the CRs for DO

versions unless you use the –ci option.

The following examples show how to display configuration records for DO versions.

➤ To display the configuration record for a single DO version:

cleartool catcr test
Target test built by smg.user
Host "duck" running NT 4.0 (i586)
Reference Time 20-Jul-99.14:27:38, this audit started 20-Jul-99.14:27:39
View was swan:C:\views\smg_build2.vws
Initial working directory was V:\smg_build\dir

MVFS objects:

\smg_build\dir\test@@20-Jul.14:27.71
\smg_build\dir\test.txt@@\main\1 <20-Jul-99.14:27:23>

Build Script:

copy test.txt test

➤ To display the configuration record for a derived object, including the CRs of all subtargets

except DO versions:

cleartool catcr –recurse foo

Target foo built by smg.user
...
Target file2.txt built by smg.user
...
Target file2sub.txt built by smg.user
...
60 Building Software with ClearCase

➤ To display the configuration record for a derived object, including the CRs of all subtargets:

cleartool catcr –recurse –ci foo

Target foo built by smg.user
...
Target file1.txt built by smg.user
...
Target file1sub.txt built by smg.user
...
Target file2.txt built by smg.user
...
Target file2sub.txt built by smg.user
...

For more information, see the catcr reference page.

Releasing DOs

A project team can use DO versions to make its product (for example, a library) available to other

teams. Typically, the team establishes a release area in a separate VOB. For example:

➤ A library is built by its project team in one location—perhaps \monet\lib\libmonet.lib.

➤ The team periodically releases the library by creating a new version of a publicly accessible

element—perhaps \publib\libmonet.lib.

You can generalize the idea of maintaining a development release area to maintaining a product

release area. For example, a Release Engineering group maintains one or more release tree VOBs.

The directory structure of the trees mirrors the hierarchy of files to be created on the release

medium. (Because a release tree involves directory elements, it is easy to change its structure

from release to release.) A release tree can be used to organize Release 2.4.3 as follows:

➤ When an executable or other file is ready to be released, a release engineer checks it in as a

version of an element in the release tree.

➤ An appropriate version label (for example, REL2.4.3) is attached to that version, either

manually by the engineer or automatically with a trigger.
4 - Working with Derived Objects and Configuration Records 61

➤ When all files to be shipped have been released in this way, a release engineer configures a

view to select only versions with that version label. As seen through this view, the release

tree contains exactly the set of files to be released.

➤ To cut a release tape, the engineer issues a command to copy the appropriately configured

release tree.

4.9 Converting Nonshareable DOs to Shared DOs

NOTE: You cannot convert a shared or unshared DO to a nonshareable DO.

To convert a nonshareable DO to a shared DO, use the winkin command. winkin advertises the

DO by making it shareable and writing information into the VOB, and then promotes it (makes

it shared). The command also advertises the DO’s sub-DOs and siblings, even if you did not

specify the –siblings option. This process changes the DO-ID for each derived object.

The view_scrubber –p command performs the same operation. See the winkin and

view_scrubber reference pages.

Automatic Conversion of Nonshareable DOs to Shareable DOs

Because you can change a view’s DO property, and shareable DOs cannot have nonshareable

sub-DOs or siblings, situations can occur in which the build tool must convert nonshareable DOs

into shareable DOs.

For example, you set your view’s DO property to nonshareable DOs, and then perform a build,

creating nonshareable DOs. You then set your view’s DO property to shareable DOs, and

perform another build. The build tool determines that it can reuse some of the nonshareable DOs

created in the first build to create shareable DOs in the second. It converts the nonshareable DOs

to shareable DOs and reuses them.
62 Building Software with ClearCase

4.10 Displaying VOB Disk Space Usage for Derived Objects

The dospace command and the ClearCase Administration Console report VOB disk space usage

for shared derived objects. For more information, see the dospace reference page and

Administering ClearCase.

4.11 Deleting Derived Objects

The rmdo command removes the data container and the VOB database object for a derived

object. See the rmdo reference page for more information.

Shareable derived objects and their data containers can be deleted independently. Deleting a

nonshareable derived object deletes the DO.

Removing Data Containers for Derived Objects

The standard del command causes a shareable derived object to disappear from the dynamic

view. The effect on physical data storage is as follows:

➤ If the DO’s data container is in the view’s private storage area, del deletes that data

container.

➤ If the DO’s data container is in a VOB storage pool, the data container is not affected.

In both cases, the derived object in the VOB database is not deleted. The only change to the

derived object is that its reference count is decremented.

When a build overwrites a nonshareable or unshared DO, the MVFS removes the old data

container from the dynamic view’s private storage area, and creates a new one there. It also

creates a new CR. At the operating system level, the effect is that an existing file is overwritten.
4 - Working with Derived Objects and Configuration Records 63

Scrubbing Derived Objects and Data Containers

A reference count of zero means that the derived object has been deleted or overwritten in every

view that ever used it. This situation calls for scrubbing: automatic deletion of DO-related

information from the VOB. Scrubbing can remove the derived object from the VOB database, its

data container from a VOB storage pool (if the DO had ever been shared), and in some cases its

associated CR, as well.

The scrubber utility removes derived objects from a VOB database and data containers from

VOB storage pools. The view_scrubber utility removes data containers from a dynamic view’s

private storage area. For more on scrubbing, see Administering ClearCase.

Degenerate Derived Objects

A derived object is complete if its VOB database object, data container, and configuration record

(CR) are accessible. Because these entities exist independently, a derived object can become

incomplete, or degenerate, if one entity is missing.

Data Container Deleted

When an unshared DO is removed with del or by a target rebuild, its VOB database object

continues to exist in the VOB database (with a zero reference count), but the data container no

longer exists. Such DOs are usually ignored by lsdo, but can be listed with the –zero option. The

scrubber utility deletes zero-referenced DOs.

The checkvob command can find and fix missing container problems.

DO Deleted from VOB Database

When an unshared DO is removed from its VOB database with rmdo, the data container

continues to be visible:

Z:\myvob\test> cleartool rmdo Vhelp.log (in general, avoid ‘rmdo’!)
Removed derived object "Vhelp.log@@14-Sep.72783".

Z:\myvob\test> cleartool ls Vhelp.log
Vhelp.log [no config record]
64 Building Software with ClearCase

CR Unavailable

A newly created CR is stored in the dynamic view where its associated DOs were built. If that

view becomes unavailable (for example, it is inadvertently destroyed or its host is temporarily

down), the DO continues to exist in the VOB database, but operations that must access the CR

fail:

cleartool: Error: Unable to find view ’\\mars\vw_store\pink.vws’
from albd: error detected by ClearCase subsystem
cleartool: Error: See albd_log on host mars
cleartool: Error: Unable to contact View - error detected by ClearCase
subsystem

4.12 Displaying Contents of Configuration Records

The catcr command displays the contents of a configuration record. See the catcr reference page

for more information.

4.13 Comparing Configuration Records

Because config records provide complete records of how DOs are built, you can use them to

determine how two builds differ. For example, you expected the build to reuse or wink in a DO

that it rebuilt instead. You can compare the CRs for the two DOs to find out what aspect of the

build environment was different.

To compare two existing CRs, use the diffcr command. For more information, see the diffcr
reference page.
4 - Working with Derived Objects and Configuration Records 65

4.14 Attaching Labels or Attributes to Versions in a CR

You can attach a label or an attribute to the versions in the CR hierarchy of a derived object.

For example, to attach the SMG_BUILD_5_99 label to the versions in the CR hierarchy of

file.obj:

cleartool mklabel –c "may 99 build" –config file.obj SMG_BUILD_5_99
Created label "SMG_BUILD_5_99" on "\smg_test\" version "\main\CHECKEDOUT".
Created label "SMG_BUILD_5_99" on "\smg_test\acc.c" version "\main\2".
Created label "SMG_BUILD_5_99" on "\smg_test\file.c" version "\main\1".

For more information, see the description of the –config option in the mkattr and mklabel
reference pages.

4.15 Configuring a View to Select Versions Used to Build a DO

To select the versions in the CR hierarchy of a derived object, use the –config version selector in

your view’s config spec. For example, the following config spec selects the versions in the CR

hierarchy for hello.obj:

element * CHECKEDOUT
element * –config \dev\lib\hello.obj
element * \main\v3.8\LATEST

For more information, see the config_spec reference page.

4.16 Including a Makefile Version in a Configuration Record

To record a makefile version in a CR, use one of the following methods:

➤ Declare it as an explicit dependency in the makefile. To do this, you can use the

$(MAKEFILE) variable. You must explicitly list any included makefiles you want recorded.

The drawback to this method is that it causes targets that depend on the makefile to be

rebuilt if there is any change to the makefile.
66 Building Software with ClearCase

➤ Make it an implicit dependency by referring to it in a build script, and use the special target

.DEPENDENCY_IGNORED_FOR_REUSE to ignore it in subsequent rebuild decisions.

You must explicitly list any included makefiles you want recorded.

For example:

.DEPENDENCY_IGNORED_FOR_REUSE: $(MAKEFILE)
targ: dep1 dep2

type $(MAKEFILE) > c:\temp\makefile
touch targ

The drawback to this method is that the makefile dependency is ignored for reuse, but it is

not ignored for winkin.
4 - Working with Derived Objects and Configuration Records 67

68 Building Software with ClearCase

55 clearmake Makefiles and BOS Files

This chapter describes makefiles processed by the ClearCase build program clearmake. This is a

discussion of differences and ClearCase extensions, rather than a complete description of

makefile syntax. This chapter also describes build option specification files (BOS files), which

contain temporary macros and ClearCase special targets.

For information on the omake build program, see the ClearCase OMAKE Manual.

5.1 Makefile Overview

A makefile contains a sequence of entries, each of which specifies a build target, some

dependencies, and the build scripts of commands to be executed. A makefile can also contain make
macro definitions, target-dependent macro definitions, and build directives (special targets.)

➤ Target/dependencies line. The first line of an entry is a white-space-separated, nonnull list

of targets, followed by a colon (:) or a double colon (::), and a (possibly empty) list of

dependencies. Both targets and dependencies may contain ClearCase pathname patterns.

(See the wildcards_ccase reference page.)

The list of dependencies may not need to include source objects, such as header files, because

clearmake detects these dependencies. However, the list must include build-order

dependencies, for example, object modules and libraries that must be built before

executables. (See Build-Order Dependencies on page 37.)

➤ Build script. Text following a semicolon (;) on the same line, and all subsequent lines that

begin with a <TAB> character, constitute a build script: a set of commands to be executed in a
5 - clearmake Makefiles and BOS Files 69

command interpreter. A command can be continued onto the next text line with a \<NL>

sequence. Any line beginning with a number sign (#) is a comment.

A build script ends at the first nonempty line that does not begin with a <TAB> or number

sign (#); this begins a new target/dependencies line or a make macro definition.

Build scripts must use standard pathnames only. Do not include view-extended or

version-extended pathnames in a build script.

Executing a build script updates the target, and is called a target rebuild. The commands in a

build script are executed one at a time, each in its own instances of the command interpreter.

Note that clearmake always completely eliminates a \<NL> sequence, even in its

compatibility modes. Some other make programs sometimes preserve such a sequence.

➤ Make macro. A make macro is an assignment of a character-string value to a simple name.

By convention, all letters in the name are uppercase (for example, CFLAGS).

➤ Target-dependent macro definitions. A target-dependent macro definition takes the form

target-list := macro_name = string

You can use macros in makefiles or in BOS files. For more information, see Target-Dependent
Macro Definitions on page 83.

➤ Special targets. A line that begins with a dot (.) is a special target, which acts as a directive to

clearmake.

5.2 Build Options Specification Files

A build options specification (BOS) file is a text file containing macro definitions and/or ClearCase

special targets. We recommend that you place temporary macros (such as CFLAGS=/Zi and

others not to be included in a makefile permanently) in a BOS file, rather than specifying them

on the clearmake command line.
70 Building Software with ClearCase

By default, clearmake reads BOS files in this order:

1. The default BOS files

a. The file .clearmake.options in your home directory (as indicated by the HOME

environment variable or in the user profile), which is the place for macros to be used

every time you execute clearmake.

b. One or more local BOS files, each of which corresponds to one of the makefiles specified

with a –f option, or read by clearmake. Each BOS file has a name in the form

makefile-name.options. For example:

2. BOS files specified in the CCASE_OPTS_SPECS environment variable.

3. BOS files specified on the command line with –A.

If you specify –N, clearmake does not read default BOS files.

clearmake displays the names of the BOS files it reads if you specify the –v or –d option, or if

%CCASE_VERBOSITY%>= 1.

For information on the contents of BOS files, see BOS File Entries on page 83.

5.3 Format of Makefiles

The following sections describe the special considerations for using makefiles with clearmake.

Restrictions

clearmake does not support the use of standard input as a makefile.

makefile.options

Makefile.options

project.mk.options
5 - clearmake Makefiles and BOS Files 71

Libraries

If a target or dependency name contains parentheses, it is assumed to be an archive (library)

created by lib, or some other librarian. For example:

hello.lib : hello.lib(mod1.obj) hello.lib(mod2.obj)

The string within parentheses refers to a member (object module) within the library. Use of

function names within parentheses is not supported. Thus, hello.lib(mod1.obj) refers to an

archive that contains object module mod1.obj. The expression hello.lib(mod1.obj mod2.obj) is

not valid.

Inference rules for archive libraries have this form:

.sfx.lib
where sfx is the file-name extension (suffix) from which the archive member is to be

made.

The way in which clearmake handles incremental archive construction differs from other make
variants. For more on this topic, see Working with Incremental Update Tools on page 45.

Command Echoing and Error Handling

You can control the echoing of commands and the handling of errors that occur during command

execution on a line-by-line basis, or on a global basis.

You can prefix any command with one or two characters, as follows:

– Causes clearmake to ignore any errors during execution of the command. By

default, an error causes clearmake to terminate.

The command-line option –i suppresses termination-on-error for all

command lines.

@ Suppresses display of the command line. By default, clearmake displays each

command line just before executing it.

The command-line option –s suppresses display of all command lines. The –n
option displays commands, but does not execute them.

–@ @– These two prefixes combine the effect of – and @.
72 Building Software with ClearCase

The –k option provides for partial recovery from errors. If an error occurs, execution of the

current target (that is, the set of commands for the current target) stops, but execution continues

on other targets that do not depend on that target.

Built-In Rules

File-name extensions (suffixes) and their associated rules in the makefile override any identical

file-name extensions in the built-in rules. clearmake reads built-in rules from the file

ccase-home-dir\etc\builtin.mk when you run in standard compatibility mode. In other

compatibility modes, other files are read. See Chapter 6, Using clearmake Compatibility Modes.

Include Files

If a line in a makefile starts with the string include or sinclude followed by white space (at least

one <SPACE> or <TAB> character), the rest of the line is assumed to be a file name. (This name can

contain macros.) The contents of the file are placed at the current location in the makefile.

For include, a fatal error occurs if the file is not readable. For sinclude, a nonreadable file is

silently ignored.

Macros

The following sections describe the order of precedence of macros in a clearmake build, and the

different types of macros.

Order of Precedence of Make Macros and Environment Variables

By default, the order of precedence of macros and environment variables is as follows:

1. Target-dependent macro definitions

2. Macros specified on the clearmake command line

3. Make macros set in a BOS file
5 - clearmake Makefiles and BOS Files 73

4. Make macro definitions in a makefile

5. Environment variables

For example, target-dependent macro definitions override all other macro definitions, and

macros specified on the clearmake command line override those set in a BOS file.

If you use the –e option to clearmake, environment variables override macro definitions in the

makefile.

All BOS file macros (except those overridden on the command line) are placed in the build

script’s environment. If a build script recursively invokes clearmake:

➤ The higher-level BOS file setting (now transformed into an EV) is overridden by a make

macro set in the lower-level makefile. However, if the recursive invocation uses clearmake’s

–e option, the BOS file setting prevails.

➤ If another BOS file (associated with another makefile) is read at the lower level, its make

macros override those from the higher-level BOS file.

See Special Environment Variables in the clearmake reference page for a list of build-related

environment variables.

Make Macros

A macro definition takes this form:

macro_name = string

Macros can appear in the makefile, on the command line, or in a build options specification file. (See

Build Options Specification Files on page 70.)

Macro definitions require no quotes or delimiters, except for the equal sign (=), which separates

the macro name from the value. Leading and trailing white space characters are stripped. Lines

can be continued using a \<NL> sequence; this sequence and all surrounding white space is

effectively converted to a single <SPACE> character. macro_name cannot include white space, but

string can; it includes all characters up to an unescaped <NL> character.

clearmake performs macro substitution whenever it encounters either of the following in the

makefile:

$(macro_name)
$(macro_name:subst1=subst2)
74 Building Software with ClearCase

It substitutes string for the macro invocation. In the latter form, clearmake performs an

additional substitution within string: all occurrences of subst1 at the end of a word within string
are replaced by subst2. If subst1 is empty, subst2 is appended to each word in the value of

macro_name. If subst2 is empty, subst1 is removed from each word in the value of macro_name.

For example:

z:\myvob> type Makefile
C_SOURCES = one.c two.c three.c four.c
test:

echo OBJECT FILES are: $(C_SOURCES:.c=.obj)
echo EXECUTABLES are: $(C_SOURCES:.c=.exe)

z:\myvob> clearmake test
OBJECT FILES are: one.obj two.obj three.obj four.obj
EXECUTABLES are: one.exe two.exe three.exe four.exe

Internal Macros

clearmake maintains these macros internally. They are useful in rules for building targets.

$* (Defined only for inference rules) The file name part of the inferred

dependency, with the file-name extension deleted.

$@ The full target name of the current target.

$< (Defined only for inference rules) The file name of the implicit dependency.

$? (Defined only when explicit rules from the makefile are evaluated) The list of

dependencies that are out of date with respect to the target. When

configuration lookup is enabled (default), it expands to the list of all

dependencies, unless that behavior is modified with the

.INCREMENTAL_TARGET special target. In that case, $? expands to the list

of all dependencies different from the previously recorded versions.

When a dependency is an archive library member of the form

lib(file.obj) , the name of the member, file.obj, appears in the list.

$% (Defined only when the target is an archive library member) For a target of

the form lib(file.obj) , $@ evaluates to lib and $% evaluates to the library

member, file.obj.
MAKE The name of the make processor (that is, clearmake). This macro is useful for

recursive invocation of clearmake.
5 - clearmake Makefiles and BOS Files 75

VPATH Macro

The VPATH macro specifies a search path for targets and dependencies. clearmake searches

directories in VPATH when it fails to find a target or dependency in the current working directory.

clearmake searches only in the current view. The value of VPATH can be one directory pathname,

or a semicolon-separated list of directory pathnames. (In Gnu compatibility mode, you can also

use spaces as separators.)

Configuration lookup is VPATH-sensitive when qualifying makefile dependencies (explicit

dependencies in the makefile). Thus, if a newer version of a dependent file appears in a directory

on the search path before the pathname in the CR (the version used in the previous build),

clearmake rejects the previous build and rebuilds the target with the new file.

The VPATH setting may affect the expansion of internal macros, such as $<.

Special Targets

Like other build tools, clearmake interprets certain target names as declarations. Some of these

special targets accept lists of patterns as their dependents, as noted in the description of the

target. Pattern lists may contain the pattern character, %. When evaluating whether a name

matches a pattern, the tail of the prefix of the name (subtracting directory names as appropriate)

must match the part of the pattern before the %; the file-name extension of the name must match

the part of the pattern after the %. For example:

MAKEFILE During makefile parsing, this macro expands to the pathname of the current

makefile. After makefile parsing is complete, it expands to the pathname of

the last makefile that was parsed. This holds only for top-level makefiles, not

for included makefiles or for built-in rules; in these cases, it echoes the name

of the including makefile.

Use this macro as an explicit dependency to include the version of the

makefile in the CR produced by a target rebuild. For example:

supersort: main.obj sort.obj cmd.obj $(MAKEFILE)
link /out:$@ $?

For more information, see Including a Makefile Version in a Configuration Record
on page 66.
76 Building Software with ClearCase

The following targets accept lists of patterns:

➤ .DEPENDENCY_IGNORED_FOR_REUSE
➤ .INCREMENTAL_REPOSITORY_SIBLING
➤ .INCREMENTAL_TARGET
➤ .NO_CMP_NON_MF_DEPS
➤ .NO_CMP_SCRIPT
➤ .NO_CONFIG_REC
➤ .NO_DO_FOR_SIBLING
➤ .NO_WINK_IN
➤ .SIBLING_IGNORED_FOR_REUSE

Special Targets for Use in Makefiles

.DEFAULT :
If a file must be built, but there are no explicit commands or relevant built-in rules to

build it, the commands associated with this target are used (if it exists).

.IGNORE :
Same effect as the –i option.

.PRECIOUS : tgt ...
The specified targets are not removed when an interrupt character (typically, <CTRL-C>)

is typed.

.SILENT :
Same effect as the –s option.

Special Targets for Use in Makefiles or BOS Files

You can use the following special targets either in the makefile itself or in a build options
specification file. See Build Options Specification Files on page 70.

Name Matches Does not match

\dir\subdir\x.obj %.obj
x.obj
subdir\%.obj
subdir\x.obj

\dir\subdir\otherdir\x.obj
5 - clearmake Makefiles and BOS Files 77

.DEPENDENCY_IGNORED_FOR_REUSE: file ...

The dependencies you specify are ignored when clearmake determines whether a target

object in a VOB is up to date and can be reused. By default, clearmake considers that a

target cannot be reused if its dependencies have been modified or deleted since it was

built. This target applies only to reuse, not to winkin. Also, this target applies only to

detected dependencies, which are not declared explicitly in the makefile.

You can specify the list of files with a tail-matching pattern; for example, %.module.

Unlike the files listed in most special targets, the files on this list refer to the names of

dependencies and not the names of targets. As such, the special target may apply to the

dependencies of many targets at once. This special target is most useful when

identifying a class of dependencies found in a particular toolset for which common

behavior is desired across all targets that have that dependency.

.INCREMENTAL_REPOSITORY_SIBLING: file ...

The sibling files listed are incremental repository files created as siblings of a primary

target, may contain incomplete configuration information, and prevent clearmake from

winking in the primary target. This special target is useful for situations where a toolset

creates an incremental sibling object, and you want more control over how that object is

used.

You can specify the list of files with a tail-matching pattern; for example, %.pdb.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This special target is most useful when identifying a

class of siblings found in a particular toolset for which common behavior is desired

across all targets that have that sibling.

.INCREMENTAL_TARGET: tgt ...
Performs incremental configuration record merging for the listed targets; in other words,

combines dependency information from instances of this target generated previously

with the current build of this target. This special target is most useful when building

libraries, because typically only some of the objects going into a library are read each

time the library is updated.

You can specify the list of files with a tail-matching pattern; for example, %.lib.

For information on restructuring a makefile to build incremental archive files, see

Working with Incremental Update Tools on page 45.
78 Building Software with ClearCase

NOTE: .INCREMENTAL_TARGET applies only to makefile targets built incrementally

using a single make rule. Do not use it for the following kinds of files:

The general guideline is that if you’re not building a library in a single makefile rule, and

you’re not building an executable using an incremental linker, you should not use

.INCREMENTAL_TARGET.

.NO_CMP_NON_MF_DEPS : tgt ...
The specified targets are built as if the –M option were specified; if a dependency is not

declared in the makefile, it is not used in configuration lookup.

You can specify the list of files with a tail-matching pattern; for example, %.obj.

.NO_CMP_SCRIPT : tgt ...
The specified targets are built as if the –O option were specified; build scripts are not

compared during configuration lookup. This is useful when different makefiles (and,

hence, different build scripts) are regularly used to build the same target.

You can specify the list of files with a tail-matching pattern; for example, %.obj.

.NO_CONFIG_REC : tgt ...
The specified targets are built as if the –F option were specified; modification time is used

for build avoidance, and no CRs or derived objects are created.

You can specify the list of files with a tail-matching pattern; for example, %.obj.

.NO_DO_FOR_SIBLING: file ...

Disables the creation of a derived object for any file listed if that file is created as a sibling

derived object (an object created by the same build rule that created the target). These

sibling derived objects are left as view-private files.

You can specify the list of files with a tail-matching pattern; for example, %.tmp.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This special target is most useful when identifying a

class of siblings found in a particular toolset for which common behavior is desired

across all targets that have that sibling.

➤ Files built incrementally that are not makefile targets. For example, sibling objects

like log files or template repositories.

➤ Files built incrementally from several different build scripts.
5 - clearmake Makefiles and BOS Files 79

.NO_WINK_IN : tgt ...
The specified targets are built as if the –V option were specified; configuration lookup is

restricted to the current view.

You can specify the list of files with a tail-matching pattern; for example, %.obj.

.SIBLING_IGNORED_FOR_REUSE: file ...

The files are ignored when clearmake determines whether a target object in a VOB is up

to date and can be reused. This is the default behavior, but this special target can be

useful in conjunction with the .SIBLINGS_AFFECT_REUSE special target or –R
command-line option. This target applies only to reuse, not to winkin.

You can specify the list of files with a tail-matching pattern; for example, %.sbr.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This directive is most useful when identifying a class of

siblings found in a particular toolset for which common behavior is desired across all

targets that have that sibling.

.SIBLINGS_AFFECT_REUSE:
Build as if the –R command line option were specified; examine sibling derived objects

when determining whether a target object in a VOB can be reused (is up to date). By

default, when determining whether a target is up to date, clearmake ignores

modifications to objects created by the same build rule that created the target (sibling

derived objects). This directive tells clearmake to consider a target out of date if its

siblings have been modified or deleted.

5.4 Using Makefiles on Windows

There are several rules to follow when constructing, or converting, makefiles for use by

clearmake on a Windows host. Note that, as a general rule, your makefiles must match the syntax

required by clearmake on UNIX.

In many cases, you cannot use UNIX makefiles on Windows NT without modification. However,

to avoid rewriting makefiles, you can use Imake to generate host-specific makefiles from a

common source.
80 Building Software with ClearCase

Case-Sensitivity Guidelines

The following sections describe how you must specify build macros, targets, and dependencies

in makefiles to avoid case problems.

Build Macros and Case-Sensitivity

clearmake is case-sensitive with respect to makefile macros. Consider a makefile macro

reference, $(CPU) . There are numerous input sources from which to satisfy this macro:

➤ From the makefile itself

➤ From the current table of environment variables

➤ From the command line

➤ From a build option specification (BOS) file

For any macro to be expanded correctly from any of these sources, the macro definition and

macro reference must be in the same case. For example, $(CPU) is not replaced by the value of an

EV named cpu.

Makefile Target/Dependency Pathnames

When you write makefiles, you must be aware of the MVFS setting on your computer and

specify targets and dependencies accordingly. If the MVFS is case-preserving, you must use

case-correct pathnames in makefiles to guarantee the consistency of the resulting config records.

Even if your MVFS is not case-preserving, we recommend that you use case-correct pathnames

so that users on case-preserving computers can share the makefile.

NOTE: The –d option to clearmake warns you when case is the only difference in pathnames in

the makefile and on the file system.

Table 1 describes makefile requirements for the different MVFS settings.
5 - clearmake Makefiles and BOS Files 81

Supporting Both omake and clearmake

It is possible, but not trivial, to prepare makefiles that can be used with either omake or

clearmake. The general approach is to supply omake-specific macro definitions in the makefile,

and to supply clearmake-specific macro overrides in a build options specification (BOS) file;

clearmake reads the BOS file, but omake does not. When clearmake executes, it looks for macro

definitions in two locations:

➤ %HOME%\.clearmake.options

➤ makefile.options, in the same directory as makefile (substitute the actual name of your

makefile, if it is not makefile)

BOS files at other locations can be passed to clearmake with the –A option.

Using UNIX-Style Command Shells in Makefiles

On Windows, clearmake accepts either slashes (/) or backslashes (\) in pathnames. However,

clearmake uses a backslash as the separator in any pathnames that it constructs in build scripts

Table 1 MVFS Settings and Case Requirements for Makefiles

MVFS Setting Build Tool and MVFS Behavior Makefile Requirements

Case-insensitive and case

preserving

The MVFS preserves the case of

created files. The build tool looks

for the file as it is specified in the

makefile.

The case of the target must match

the case of the file produced by the

MVFS.

Case-insensitive and

non-case-preserving

The MVFS converts the names of all

files created to lowercase. The build

tool looks for a lowercase file name.

The case of the target does not

matter.

Case-sensitive and case-preserving The MVFS preserves the case of

created files. The build tool looks

for the file as it is specified in the

makefile.

The case of the target must match

the case of the file produced by the

MVFS.
82 Building Software with ClearCase

(for example, as a result of VPATH directory searching). This can cause problems with UNIX-like

command shells that require slashes in any pathnames supplied to them in command lines.

If you are using such a shell (for example, by setting the SHELL makefile variable accordingly),

you can force clearmake to use slashes when constructing pathnames. To do this, set the

CMAKE_PNAME_SEP variable:

CMAKE_PNAME_SEP = /

You can set CMAKE_PNAME_SEP in the makefile, in the BOS file, on the command line, or as an

environment variable.

5.5 BOS File Entries

The following sections describe the entries you can put in BOS files.

Standard Macro Definitions

A standard macro definition has the same form as a make macro defined in a makefile:

macro_name = string

For example:

CDEBUGFLAGS = /Zi

Target-Dependent Macro Definitions

A target-dependent macro definition takes this form:

target-pattern-list := macro_name = string

Any standard macro definition can follow the := operator; the definition takes effect only when

targets matching patterns in target-pattern-list and their dependencies are processed. Patterns in

the target-pattern-list must be separated by white space. For example:
5 - clearmake Makefiles and BOS Files 83

foo.o bar.o := CDEBUGFLAGS=/Zi

Two or more higher-level targets can have a common dependency. If the targets have different

target-dependent macro definitions, the dependency is built using the macros for the first

higher-level target clearmake considered building (whether or not clearmake actually built it).

Shell Command Macro Definitions

A shell command macro definition replaces a macro name with the output of a shell command:

macro_name :sh = string

This defines the value of macro_name to be the output of string, any shell command. In command

output, <NL> characters are replaced by <SPACE> characters. For example:

NT_VER :sh = VER

Special Targets

You can use some ClearCase special targets in a build options spec. See Special Targets for Use in
Makefiles or BOS Files on page 77.

Include Directives

To include one BOS file in another, use the include or sinclude (silent include) directive. For

example:

include \lib\aux.options

sinclude $(OPTS_DIR)\pm_build.options

Comments

A BOS file can contain comment lines, which begin with a number sign (#).
84 Building Software with ClearCase

66 Using clearmake Compatibility
Modes

clearmake is designed for compatibility with existing make programs, which minimizes the

changes you need to make to your makefiles. There are many variants of make, and each

provides different sets of extended features. clearmake does not support all features of all

variants, and we do not guarantee absolute compatibility.

If your makefiles use only the common extensions, they will probably work with clearmake
without changes. If you must use features that clearmake does not support, consider using

another make program in a clearaudit shell. This alternative provides build auditing

(configuration records), but does not provide build avoidance (winkin).

NOTE: When building with configuration records, clearmake handles double-colon rules

differently from other make programs. For details, see How clearmake Interprets Double-Colon
Rules on page 39.

To specify a compatibility mode, do one of the following things:

➤ Use the environment variable CCASE_MAKE_COMPAT in a build options specification file or

in your environment. For more information, see Build Options Specification Files on page 70.

➤ Use the –C option with clearmake. For more information, see the clearmake reference page.

In either case, you can use any of these compatibility modes:

gnu Free Software Foundation Gnu make

std Standard clearmake with no compatibility mode enabled (Use this option to

nullify a setting of the environment variable CCASE_MAKE_COMPAT)
6 - Using clearmake Compatibility Modes 85

The following section describes clearmake’s compatibility with Free Software Foundation Gnu

make.

6.1 Free Software Foundation Gnu make

The following sections describe supported and unsupported Gnu make features.

VPATH Separator Character

You can use semicolons or spaces as separators in the VPATH macro. For more information, see

VPATH Macro on page 76.

Supported Gnu Make Command-Line Options

clearmake supports most of the single-character subset of Gnu make’s command-line interface.

However, clearmake does not accept any of the long-form spellings for Gnu make command

options.

NOTE: If you need to use the long-form spellings, you can write a Perl wrapper that translates the

long-form options into short-form and invokes clearmake with the short-form options.

clearmake –C gnu supports the following Gnu make command-line options:

–d
Prints debugging information in addition to normal processing messages.

–e
Gives variables taken from the environment precedence over variables from makefiles.

–f FILE
Reads FILE as a makefile.

–i
Ignores all errors in commands executed to remake files.
86 Building Software with ClearCase

–k
Continues as much as possible after an error.

–I DIR
Specifies a directory DIR to search for included makefiles.

–n
Prints the commands that would be executed, but does not execute them.

–p
Prints the data base (rules and variable values) that results from reading the makefiles,

and then executes as usual or as otherwise specified.

–r
Eliminates use of the built-in implicit rules.

–s
Silent operation. Does not print the commands as they are executed.

–v
Prints the version of the make program.

–w
Prints a message containing the working directory both before and after executing the

makefile.

–q
Question mode. Does not run any commands, or print anything. Returns an exit status

of zero if the specified targets are already up to date, or one if any remaking is required.

Unsupported Gnu Make Command-Line Options

➤ –C DIR

--directory=DIR

➤ --no-print-directory

➤ --warn-undefined-variables

➤ –h

--help
6 - Using clearmake Compatibility Modes 87

➤ –t

--touch

➤ –j [JOBS]

--jobs=[JOBS]

➤ –l [LOAD]

--load-average[=LOAD]

--max-load[=LOAD]

➤ –o FILE

--old-file=FILE

--assume-old=FILE

➤ –W FILE

--what-if=FILE

-new-file=FILE

--assume-new=FILE

➤ –S

--no-keep-going

--stop)

➤ –f –

Supported Gnu Make Features

The following features are enabled with –C gnu (see the Gnu Make manual for details):

➤ Conditional makefile interpretation. For example:

ifeq ($(CC),gcc)
$(CC) -o foo $(objects) $(libs_for_gcc)

else
$(CC) -o foo $(objects) $(normal_libs)

endif

➤ Simply expanded variables

y := $(x) bar

in which the right side is expanded once when the assignment is first scanned
88 Building Software with ClearCase

➤ The += syntax to append to the value of a variable

➤ Stripping leading sequences of .\ from file names, so .\file and file are considered to be the

same target

➤ Variable references using pattern substitution:

${VAR:PATTERN_1=PATTERN_2}

➤ Text-manipulation functions, such as these:

$(subst FROM,TO,TEXT)

$(patsubst PATTERN,REPLACEMENT,TEXT)

$(strip STRING)

$(findstring FIND,IN)

$(filter PATTERN...,TEXT)

$(filter-out PATTERN...,TEXT)

$(sort LIST)

$(dir NAMES...)

$(notdir NAMES...)

$(suffix NAMES...)

$(basename NAMES...)

$(addsuffix SUFFIX,NAMES...)

$(addprefix PREFIX,NAMES...)

$(join LIST1,LIST2)

$(word N,TEXT)

$(words TEXT)

$(wordlist START, END, TEXT)

$(firstword NAMES...)
6 - Using clearmake Compatibility Modes 89

$(wildcard PATTERN)

$(foreach VAR,LIST,TEXT)

$(origin VARIABLE)

$(shell COMMAND)

➤ The VPATH variable for specifying a search path for every dependency

NOTE: clearmake searches only in the current view. See VPATH Macro on page 76.

➤ The vpath statement for specifying a search path for a specified class of names

➤ The export statement

➤ The unexport directive

➤ The .PHONY target declaration

➤ All of Gnu Make’s built-in implicit rules

➤ Pattern rules. For example:

%.o : %.c
COMMANDS
...

➤ Static pattern rules:

TARGETS ...: TARGET-PATTERN: DEP-PATTERNS ...
COMMANDS
...

➤ The automatic variables

$@ $* $< $% $? $^ $+

and their file-name and directory-name variants. For example:

$(@F) $(@D) ...
90 Building Software with ClearCase

➤ Multiline variable definition:

define VAR
TEXT
...

endef

➤ Error processing of rules

In standard make, a rule stops processing when any command in it returns an error. In Gnu

make, the rule continues processing unless the shell was invoked with the –e flag. clearmake
–C gnu conforms to the Gnu make behavior.

Unsupported Gnu Make Features

The following features are not currently supported:

➤ Automatic remaking of any makefiles that are declared as targets. You must rebuild them

explicitly.

➤ Controlling sub-makes by manipulating the MAKEFLAGS variable.

➤ The declarations .DELETE_ON_ERROR, .INTERMEDIATE, .SECONDARY.

➤ Syntax and semantics for target-scoped variables introduced in 3.77 of Gnu Make.

➤ Automatic makefile regeneration and restart if the makefile and included makefile

fragments are targets in the makefile itself.

➤ Automatic deletion of intermediate results of a chain of implicit rules.

➤ Special search method for library dependencies written in the form -lNAME. For each

directory on the VPATH/vpath list, Gnu make searches in DIR/lib.

➤ When the EV MAKEFILES is defined, Gnu make considers its value as a list of names of

additional makefiles to be read before the others, as though they were included implicitly.
6 - Using clearmake Compatibility Modes 91

92 Building Software with ClearCase

77 Using ClearCase to Build C++
Programs

This chapter provides guidelines and instructions for using the ClearCase build utilities, omake
and clearmake, in C++ development environments such as Microsoft® Visual C++®. The way

that C++ development environments manage their files can cause conflicts with the ClearCase

build utilities. Possible symptoms of the conflict:

➤ clearmake/omake rebuilds an object it could have winked in.

➤ When clearmake or omake winks in an incremental repository (database) file, information

can be lost if the winked-in repository was not built with the same components that exist in

the development view.

The exact nature of the symptoms depends on the compiler you use. For most Windows NT C++

compilers, these problems do not arise. The Microsoft Visual C++ environment causes a number

of conflicts, which ClearCase works around by including a special makefile fragment if you use

the SCC integration with Visual C++. This chapter describes how this makefile fragment works

and also presents alternate possibilities for working around the problems.

These C++ compilers apparently do not cause any conflict with ClearCase building:

➤ Borland C++

➤ Symantec C++

➤ Watcom C/C++
7 - Using ClearCase to Build C++ Programs 93

7.1 Using clearmake or omake Instead of Other make Programs

clearmake and omake ensure correctness of reuse decisions despite differing versions of files

selected by a config spec, determine the complete dependency list accurately with build auditing,

and allow identical derived objects (DOs) from other views to be winked in to the current view.

However, using another make program may be desirable for performance or compatibility

reasons. If you use other make programs, do so with caution.

A standard make program compares the date and time of the target with that of its

dependencies. If any dependency is newer than the target, make rebuilds the target. Because of

ClearCase config specs and the winkin feature of ClearCase, the set of files visible in a view at any

given time is very dynamic. It is common for a target to require a rebuild because the view selects

a dependency that is different, though not necessarily newer, than the one used in the previous

build of the target. The ClearCase build avoidance mechanism provides a more precise method of

determining whether targets are up to date during builds, by using the information stored in

configuration records (CRs) to make correct decisions about reuse. CRs record the versions of all

dependencies (whether listed in the makefile or not) of a target, rather than only the date and

time of its last modification. If the version of a dependency from a CR doesn’t match the version

of the file selected by the view, clearmake or omake rebuilds the target.

The problem with using a make tool other than clearmake or omake is that the tool may make

incorrect rebuild decisions if the view’s config spec is changed and selects different file versions.

However, if you are sure that the config spec will not change and that any labels used in it will

not be moved to versions with earlier dates, then a standard make program will make correct

reuse decisions. Using the rmver command to remove a version used in a build can also change

the modification time and cause make to fail to rebuild when necessary. However, this is not a

recommended practice; you do not obtain the benefits of CRs and it is not realistic to assume that

no one will change the config spec or move any referenced labels improperly. Because it is

somewhat risky to use common make programs, use them for debug builds, not for production.

7.2 Using Visual C++ with ClearCase

The ClearCase build utility omake (and, to a much lesser degree, clearmake) can be used to build

in a Visual C++ development environment.
94 Building Software with ClearCase

omake

omake can read Visual C++ makefiles, but only if NMAKE emulation mode is specified with the

–EN parameter. In addition, if you are working outside the ClearCase MVFS (that is, neither on

the M: drive nor on a drive assigned to a ClearCase view), or if you disable configuration

management (CM) features with the –L option, omake behaves like Visual C++ NMAKE, and no

special options are needed. However, if you want to use omake within the MVFS (that is, in

ClearCase VOBs) to produce ClearCase DOs, you will find it most convenient to use the SCC

integration with Visual C++, which maximizes the cooperation between ClearCase and Visual

C++. For information on using omake with Visual C++, see the online help for the omake/Visual

C++ integration.

If you are not using the SCC integration or are using Visual C++ 2.x, omake does not have access

to the internal environment of the Visual C++ development environment. Therefore, you must

set the INCLUDE, LIB, and PATH environment variables before you run Visual C++ rather than rely

on the directory lists set in the IDE options. Also, omake cannot access the Visual C++ build

rules, so it must get build script information from either the builtins.nm file or the makefile.

If you are using Visual C++ 5.0 or 6.0, you must export your makefile before running omake. You

can either click Tools➔Options➔Build and set the option Export makefile when saving project
file, or export your makefile after making changes to the project settings. To export your

makefile:

1. Check out the file project-name.mak (if it is an element).

2. Click Project➔Export Makefile.

3. If you are prompted to select which configurations to export, make sure you select any

configurations that will be built with omake.

Visual C++ creates project-name.mak.

clearmake

You can use clearmake only if you are not using makefiles generated by Visual C++ — that is, if

you write your own makefiles that call the Visual C++ compiler, linker, and so on.
7 - Using ClearCase to Build C++ Programs 95

Incremental Repositories in Visual C++

Program Database files (PDBs) and Incremental Database files (IDBs) are built up with

information from compilations of many .c/.cpp source files. This type of database file is referred

to as an incremental repository in ClearCase. The consequence of using these incremental

repositories is that object files cannot be winked in without making the PDB/IDB out of date.

There is no way to wink in a portion of a file, a feature that would be required to wink in the

object and the section of the PDB/IDB that holds the debug info for that specific object. For this

reason, the SCC integration disables winkin for targets with a PDB or IDB sibling DO. Note that

manual winkin with the cleartool winkin command can be used to wink these objects in; this

method is described in the section Using the winkin Command on page 98.

Alternative: Using C7 Compatible Debug Information

The C/C++ compiler generates debug information in two different ways:

➤ C7 compatible info (/Z7 parameter from the command line), which is compatible with the

V7 compiler. Debug information is stored in resultant object files.

➤ Create one or more .PDB files that store the debug information.

C7-style debug info is the ideal choice when using clearmake or omake. With C7 debug info,

information is stored directly in the object file. Because there are no files that are shared by builds

of multiple targets, winkin is automatic. If you use multiple views to build the same versions of

files, this method is the most advantageous way of working. Automatic winkin means that

clearmake/omake shops in the VOB for similar DOs and determines whether the previously

built DO is the same as would be produced by executing the target’s build script. If they would

be the same, the target build previously is winked in (an operation that is in most cases faster

than executing the build script), and the two views share a single disk image of the target file.

Base the decision on which debug information style to use on whether PDBs are necessary,

whether other necessary features require PDBs (some types of precompiled headers and

incremental compiles, for example), and whether an appropriate DO in your environment is

likely to exist and be shareable.

Switching between PDBs and C7 debug information is simple. In the Visual C++ IDE:

1. Click Project➔Settings.

2. Select the debug target in the Settings For tree.

3. Click the C/C++ tab.
96 Building Software with ClearCase

4. In the Category list, click General.

5. In the Debug Info list, click either Program Database or C7 Compatible.

Using vcmake.mak to Prevent Reuse Mismatches

The makefile fragment vcmake.mak defines files with a .pdb or .idb extension as incremental

repositories. Specifying these siblings, which may contain incomplete information, prevents the

ClearCase build tool from incorrectly winking in their associated primary target.

To use the information in vcmake.mak, find your particular environment in Table 2 and follow

the instructions.

If you do not use the appropriate procedure, DOs built in one environment cannot be shared with

other environments, and you see error message like this one:

Cannot reuse ".\..\bin.pcu\jdsample.obj" - mismatch between config record flag
and makefile directive for "\adept\src\pub\libjpeg\bin.pcu\vc50.idb"

Table 2 Using vcmake.mak

Environment Instructions

omake and the SCC

integration with Visual C++

No action. vcmake.mak is included by omake.

omake without Visual C++ Do one of the following:

➤ On the omake command line, add @ccase-home-dir\bin\vcmake.opts or

specify –f ccase-home-dir\bin\vcmake.mak

➤ Set the OMAKEOPTS EV to ccase-home-dir\bin\vcmake.opts

NOTE: Substitute your ClearCase installation directory for ccase-home-dir.

omake and Visual C++

without the SCC integration

clearmake Insert the following lines in your makefile:
.INCREMENTAL_REPOSITORY_SIBLING : %.idb %.IDB %.pdb %.PDB
.NO_WINK_IN : %.trg %.TRG
7 - Using ClearCase to Build C++ Programs 97

Browser Files

The browser generator, bscmake, has a performance enhancement that can create problems with

configuration records. By default, when bscmake runs, it truncates all existing browser info files

(SBRs, because they have a .sbr extension.) If you use C7 debug info to allow winkin to work

automatically, running bscmake in the default mode causes winkin to fail. clearmake/omake
never finds a DO that can be winked in: the SBR that was created when the object file was created

is no longer available, because bscmake overwrote it. A bscmake option is available to cause it

to run in nonincremental mode, where it reads all existing SBR files without modifying them.

Using this parameter with C7 debug mode permits winkin to work correctly.

To run bscmake in nonincremental mode, you must specify the /n parameter. Add this

parameter on all release builds in which the DOs are versioned. To add /n using the IDE:

1. Click Project➔Settings.

2. Select the desired target in the Settings For tree.

3. Click the Browse Info tab.

4. In the Project Options edit box, add /n.

Using the winkin Command

If you choose a method that disables automatic winkin, you may still gain the space and

performance benefits of DOs and CRs by winking in DOs manually. The cleartool winkin
command can wink in a specified DO or, with the –recurse parameter, wink in a DO and its

sub-DOs. If your team runs nightly builds, an entire project can be winked in (even if PDBs and

IDBs were used.) Issue a cleartool winkin –recurse do-pname command in the development

view. You can use view-extended naming to select the do-pname. The target and all targets used

to build it are winked in to the development view.

Because the winkin –recurse command winks in a hierarchy of DOs without regard to the

makefile or config spec selections in the current view, run clearmake or omake after completing

the manual winkin to ensure that all DOs are up to date. If the development view selects the same

versions of files that were referenced during the nightly build, this build does not require

anything to be rebuilt. If development has continued since the nightly build on a subset of the

files, only the necessary objects need to be recompiled or relinked.

See the winkin reference page for more information.
98 Building Software with ClearCase

88 Using ClearCase Build Tools with
Java

The building behavior of JavaTM tools causes various problems for clearmake and omake. This

chapter presents these problems and some possible solutions.

8.1 ClearCase Build Problems with Java

Java source is kept in files with extension .java, where the file name must be constructed from

the name of the class it defines. For example, a class foo referenced by other Java source files must

be in a file named foo.java. Compiling foo.java with the Java compiler creates a file called

foo.class. Subsequent compilations may read the .class files generated previously.

When the Java compiler encounters a reference to a class defined in another file, it rebuilds that

class file if it is out of date or does not exist. This behavior puts extra information in the

configuration record:

➤ Extra .class files as siblings of the target .class file

➤ Extra dependencies on .java sources from building the siblings

This information can cause unnecessary rebuilding, prevent winkins, and create confusing catcr
output. The major Java development toolkits exhibit this behavior.
8 - Using ClearCase Build Tools with Java 99

Java Toolkits

These are the major Java development toolkits:

➤ The standard Java toolkit is Sun’s JDK, which includes the javac compiler and is available

for many platforms.

➤ Microsoft provides its own extended version of the development kit, including the jvc.exe
compiler, which is upward compatible with javac and has the same behavior. The

Microsoft® Visual J++® invokes jvc.exe and also has the same behavior, but does not use

makefile-based building.

➤ Like Visual J++, Symantec Cafe invokes its own compiler (also called javac.exe)

underneath. The Symantec compiler is fully compatible with the Sun compiler, and you can

set up options in Cafe to use the Sun compiler instead. Cafe uses an internal dependency

tracking mechanism to control rebuilds, without an external makefile format.

The remainder of this chapter uses javac from Sun as the example, but the discussion also applies

to Microsoft’s jvc.exe and Symantec’s javac.exe.

Scope of the Problems

The build problems relate to conflicts between the dependency analyses of clearmake/omake
and javac. Because the Java compiler does some dependency analysis, some developers may not

require make tools. Environments such as Visual J++® do not require that you use makefiles, nor

do they generate and use makefiles themselves as Visual C++® does.

The need for make tools is reduced further because the Java language minimizes the need to

recompile a dependent class file when the depended-on file changes. Java keeps interface and

implementation in the same file, so changes to the implementation part of the file do not strictly

require recompilation. This behavior contrasts with C/C++ applications, in which interface is

separated from implementation by splitting the source into header (.h) and implementation (.c)

files. Some developers may prefer to control when to rebuild Java sources. However, none of the

current tool environments is based on such a language-sensitive recompilation; like make, javac
uses time stamps to determine when to rebuild.
100 Building Software with ClearCase

8.2 Benefits of Using make Tools with javac

Although javac does a good job taking care of dependency analysis, using javac by itself misses

rebuilds that a make tool does not. There are additional benefits of using clearmake or omake
beyond those of using a non-ClearCase make tool, especially given the building behavior of

javac.

Using javac Inside a Makefile

make detects modifications of indirect dependencies that javac does not. If a.java depends on

b.java and b.java depends on c.java, when you change c.java, javac a.java does not rebuild

c.class. Therefore, if you are using javac directly, you must recompile each file as you change it.

In addition, many Java applications have some components that are compiled natively or are

written in another language. For at least those parts of their applications, developers need

makefile-based building.

Using javac with clearmake or omake Instead of make

clearmake and omake provide additional benefits to those gained by using make or running

javac directly. In addition to recording a build configuration, clearmake and omake are better at

rebuild determination than the Java tools, with or without make. For example, clearmake or

omake detects the following rebuild cases, but javac does not:

➤ Selection of an older version of a .java file. Because the rebuild decision is based on an

older/newer comparison, javac does not detect that a rebuild is necessary.

NOTE: Clock skew between machines can cause similar time stamp problems outside of

ClearCase.

➤ Change of the javac command line. If the command-line options used to build a .class file

have changed since the last build, clearmake or omake rebuilds the .class file. For example,

if you add the –g switch to direct the compiler to rebuild with debugging information, you

must invoke the compiler on all your .java files to ensure that they are rebuilt to contain the

debugging information.
8 - Using ClearCase Build Tools with Java 101

➤ Manual winkin of a .class file that is out of sync with, but newer than, the corresponding

.java source selected by the view. Because the rebuild decision is based on an older/newer

comparison, javac does not detect that a rebuild is necessary.

8.3 Unnecessary Rebuilds and Prevention of Winkin

javac’s build behavior causes clearmake and omake to perform extra rebuilds and prevent

winkins:

➤ Because a .class file is sometimes built as a sibling of another .class file, the build script for

the sibling differs from what it would be if the .java file were compiled directly. clearmake
and omake rebuild unnecessarily in this case because the build scripts do not match.

Mutually dependent .java files are an extreme case of this behavior, because the build of one

can change the build script of the other.

➤ Similarly, because the set of dependencies does not remain consistent from one build to the

next, clearmake or omake rebuilds because versions do not match.

➤ If a sibling derived object is overwritten, winkins are prevented.

8.4 Building Java Applications Successfully

The following alternatives allow you to successfully build Java applications with clearmake or

omake:

➤ Write the makefile correctly

➤ Allow clearmake or omake to rebuild

➤ Configure clearmake or omake makefiles to behave like make

The following sections describe each option in detail.
102 Building Software with ClearCase

Writing Correct Makefiles

A correctly written makefile results in a correct set of configuration records, which gives you the

full power of ClearCase configuration records and winkin without unnecessary rebuilding and

without missing rebuilds. You can restructure a makefile to avoid javac’s automatic building

behavior by enforcing that files on which other files depend are built before their dependents.

NOTE: clearmake and omake detect implicit dependencies but cannot determine build order

dependencies. If you want files to build in a certain order, you must declare that order in the

makefile by adding additional dependencies.

You must take extra care when handling mutually dependent files, because there is not

necessarily a correct order for building them. One possibility is to always generate all mutually

dependent files as one unit, that is, in one configuration record. You can write the build script for

a set of mutually dependent files to delete all class files corresponding to those files before

building any of them. This ensures that they are not overwritten individually and makes them

available as a unit for winkin.

The advantage of writing your makefile correctly is that it does not cause extra compilations or

rebuilds. No special makefile directives are required, the configuration records have no unusual

properties, and winkins will work fully. The disadvantage is that the makefile must always be

synchronized with the structure and dependencies of the application.

The following sections are makefile examples for applications with particular dependency

characteristics.

No Mutually Dependent Files

In this application, classes x, y, and z have a hierarchical dependency graph:

The makefile for such a dependency structure is very simple:

.SUFFIXES: .java .class

.java.class:
javac $<

x.class: y.class
y.class: z.class

x y z
8 - Using ClearCase Build Tools with Java 103

Mutually Dependent Files

This application consists of classes top, a, b, c, and d, which have a more complex dependency

structure:

The makefile for this dependency structure is somewhat longer, but correct:

top.class: a.class b.class
javac top.java

a.class: b.class

b.class:
rm -f a.class b.class
javac a.java b.java

b.class: c.class

c.class: d.class

d.class:
rm -f c.class d.class
javac c.java d.java

Allowing Rebuilds

If you continue to invoke clearmake or omake until it determines that all files are up to date, the

other ClearCase features work correctly. The configuration records record all class files as

implicit dependencies rather than siblings, which allows winkin to work.

However, the number of rebuilds can become very large if the makefile is written incorrectly. It

is possible to map out a correct set of dependencies as described in Writing Correct Makefiles on

page 103; it is also possible to request (however inadvertently) that clearmake or omake build

the files in exactly the reverse, and most inefficient, order.

a

b c

top

d

104 Building Software with ClearCase

In addition, clearmake and omake’s default behavior is to ignore modifications to siblings for

the purposes of rebuilding. For winkin to work correctly, you must reenable that behavior by

using a command-line option or special makefile directive.

Another drawback to this method is that the builds of mutually dependent source files do not fit

well, because the files are never up to date. The makefile for these must be written carefully, as

described in Writing Correct Makefiles on page 103.

Configuring Makefiles to Behave Like make

By using special targets (called directives in omake), you can configure your clearmake or

omake makefile so that clearmake or omake behaves as make does with regard to Java builds.

The following targets eliminate the extra rebuilding described in Allowing Rebuilds on page 104:

.NOCMP_SCRIPT and .NO_CMP_SCRIPT disable build script checking. However, relevant

build-script changes are ignored also. In addition, .NOCMP_SCRIPT and .NO_CMP_SCRIPT
have no effect during winkin, so even when they are in use, winkins are prevented because of

build script differences. Therefore, you must use manual winkins (see the winkin reference

page) or forego them entirely.

.DEPENDENCY_IGNORED_FOR_REUSE disables the version checking of implicit

dependencies when clearmake or omake is looking for DOs to reuse. This can cause desired

rebuilds to be missed, however. One benefit of using clearmake or omake is automatic

dependency detection (for example, of .h files in a C build), so it is not desirable to give this up.

To improve the missed implicit dependency checking caused by

.DEPENDENCY_IGNORED_FOR_REUSE, you can add the missing dependencies as explicit

dependencies in the makefile. However, this is a manual process, and you still lose build script

checking and winkin. The remaining benefit of using clearmake or omake is configuration

records (though the catcr output for them may be confusing).

.NOCMP_SCRIPT: %.class (omake only)

.NO_CMP_SCRIPT: %.class (clearmake only)

.DEPENDENCY_IGNORED_FOR_REUSE: %.class
8 - Using ClearCase Build Tools with Java 105

8.5 Java Compilers and Case-Sensitivity Issues

The Microsoft Visual J++ 1.1 compiler (JVC) and the Sun JDK 1.1 compiler (and possibly others)

require that the case of file names exactly match the case of the class names in the Java source.

Running the MVFS in the Case Insensitive mode recommended on Windows converts

view-private file names to lowercase. Instead, use the Case Insensitive, Case Preserving MVFS

mode to get the correct case behavior for Java builds.

For more information on case-sensitivity and preservation, see Administering ClearCase.
106 Building Software with ClearCase

Index

A

archives
format in makefile 72

attache-home-dir directory xv

attributes, attaching to versions in CR 66

auditing, See build auditing

B

BOS files
about 70
clearmake read order 71
format of contents 83
recommended use 70
special targets for 77
when read by clearmake and omake 82

bscmake, impact on configuration records 98

build auditing
16-bit tools 46
about 3
effect of background processes 44
including non-MVFS files 34
incremental updates and 45
multiple levels, problems 43
temporary files, location 46
without clearmake 7

build avoidance
about 5
differences in clearmake and make 30
multiple build scripts for target 32
scheme for in make 34

build environment
for clearmake and make 28
views used 1

build hosts, rules for makefile 80

build options specification, See BOS files
build scheme in ClearCase 2

build scripts
DO-IDs in 53
format in makefile 69
multiple for single target 32
overriding cmd.exe 37
Index

/vobs/doc/ccase/build/cc_build.winIX
rm vs. del command in 38
temporary changes to 30
when omitted from CRs 14

builds
See also express builds; hierarchical builds
DOs and performance 7
forced, problems with 38
javac behavior 102
labeling versions created in 42
reference time 13
starting 27
subsessions 42
verbosity levels, increasing 30
working while in progress 39

built-in rules in makefiles 73

C

C++ development environments
benefits of clearmake and omake 94
conflicts with clearmake and omake 93

C7 debug information
about 96
mode for bscmake 98

case-sensitivity in makefiles 81

catcr command
DO versions 60
sample listing 12

CCASE_AUDIT_TMPDIR environment variable 46

CCASE_OPTS_SPECS environment variable 71

CCASE_SHELL_REQUIRED environment variable 37

CCASE_VERBOSITY environment variable 30

ccase-home-dir directory xv

clearaudit
about 7
contents omitted from CR 14
coordinating multiple builds 43
multiple log files, workarounds 43
use with make programs 85

ClearCase Virtual Device Driver, build auditing 47
107

.fm — September 11, 1999 5:16 pm

clearmake
16-bit auditing tools 46
build scenario 28
compatibility modes 8, 85
declaring dependencies in makefiles 34
double-colon rules 39
format of makefiles 69
increasing verbosity level for builds 30
internal macros 75
Java behavior 99
macro substitution 74
pathname separator, how interpreted 82
recursive invocation 32
standard input as makefile 71
starting builds 27
temporary audit files 46
Visual C++ makefiles 95

clock skew
about 40
time rules and 41

CMAKE_PNAME_SEP environment variable 83

cmd.exe, overriding 37

commands, control of echoing during build 72

compatibility modes in clearmake
about 85
adjusting levels of 8
Gnu make 86

config specs, time rules in 40

configuration lookup
about 5
common outcomes 6
in hierarchical builds 6
problems with dependencies 35
VPATH macro 76

conventions, typographical xv

CRs (configuration records)
about 4
attaching labels and attributes to versions in 66
bscmake problems 98
comparing 65
contents of 11
contents of, effect of background processes 44
displaying contents of 65
displaying for DO versions 60
double-colon rules and contents of 39
effect on DOs when unavailable 65
example 12
hierarchy of 15
hierarchy, and winkin 54
hierarchy, processing by cleartool commands 17
how created 44
incremental updates and 45

Java builds 99
MVFS pathnames in 38
recording makefile version 66
storage of 18

D

.DEFAULT target 77

dependencies
build order, in makefiles 37
case-sensitive 81
declaring in makefiles 34
detected, log of 6
format in makefiles 69
problems when searching directories for 35
tracking 4
tracking non-MVFS files 4

.DEPENDENCY_IGNORED_FOR_REUSE target 78

describe command 52

diffcr command 65

DO versions
about 23
access to 59
as release mechanism 61
creating 58
creating in builds 58
displaying configuration records 60
displaying description of 52

documentation
online help description xvi

DO-IDs
about 10
displaying 52
in build scripts 53
in cleartool commands 53
vs. OID 52

DOs (derived objects)
See also nonshareable DOs; shareable DOs
about 4, 9
attaching labels and attributes to sources in CR 66
build avoidance role 5
converting to view-private files 57
costs of creating 7
criteria for reuse or winkin 5
degenerate 64
disk space usage, displaying 63
displaying kind of 51
effect of forced builds 38
environmental obstacles to sharing 97
incremental updating 45
incremental updating, links in 46
incremental updating, scenarios 46
kinds of 18
listing at specific pathnames 50
108 Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winIX.fm — September 11, 1999 5:16 pm

listing views that reference 52
overwriting 63
removing 63
scrubbing 64
selecting versions for in view 66
siblings of 4
siblings of, types 19
specifying in commands 53
storage 19
when created 29

dospace command 63

double-colon rules, how clearmake interprets 39

E

environment variables
CCASE_AUDIT_TMPDIR 46
CCASE_OPTS_SPECS 71
CCASE_SHELL_REQUIRED 37
CCASE_VERBOSITY 30
CMAKE_PNAME_SEP 83
order of precedence in makefiles 73
required for Visual C++ 95
TMP 46

error handling, control of in makefile 72

express builds
about 7
creating views for 56
reconfiguring views for 56
when to use 55
winkin to 55

F

files deleted by build script, effects of 38

function names in makefiles 72

G

Gnu make compatibility mode 86

H

hierarchical builds
configuration lookup in 6
reference time of 13
use of 43

I

.IGNORE target 77

include files in makefiles 73

Incremental Database files (IDBs) 96

incremental repositories 96

.INCREMENTAL_REPOSITORY_SIBLING target 78

.INCREMENTAL_TARGET target 78

J

Java compilers
benefits of using make with 101
build problems 99
building in clearmake or omake 101
case-sensitivity issues 106
configuring makefiles 105
makefiles for 103
rebuilding targets 104

Java toolkits 100

L

labels, attaching to versions in CR 66

libraries, format in makefile 72

lsdo command 52
examples 50

lsprivate command 51

M

macros
internal clearmake 75
order of precedence in makefiles 73
substitution by clearmake 74
target-dependent definitions 70

$(MAKE) macro, defining for clearmake 33

make
about 1
build avoidance scheme 34
use with Java 101

make macros
case-sensitivity 81
format in makefile 70
format of definition 74
temporary overrides of 30

makefiles
about 69
adjustment provided for Visual C++ 93
built-in rules 73
Index 109

/vobs/doc/ccase/build/cc_build.winIX.fm — September 11, 1999 5:16 pm

case-sensitivity issues 81
controlling execution of 72
declaring dependencies in 34
double-colon rules and clearmake 39
exporting 95
format for clearmake 69
format of libraries 72
function names in 72
include files in 73
Java compilers 103
javac, using with 101
non-MVFS dependencies and 4
order of precedence, macros and environment variables 73
overriding build scripts in 30
single, for clearmake and omake 82
special targets 76
standard input as, in clearmake 71
temporary macro overrides 31
UNIX, on Windows NT 80
vcmake.mak 97
version of in CR 66
Windows build hosts 80

MVFS files
about 4
in configuration records 14
pathnames in CRs 38

MVFS setting, case-sensitive targets and dependencies 81

N

NMAKE emulation mode 95

.NO_CMP_NON_MF_DEPS target 79

.NO_CMP_SCRIPT target 79

.NO_CONFIG_REC target 79

.NO_DO_FOR_SIBLING target 79

.NO_WINK_IN target 80

non-MVFS files
as dependencies, tracking 4
in configuration records 14

nonshareable DOs
about 7, 19
automatic conversion to shareable 62
converting to shareable 62
promotion and winkin 20
storage 19
types of siblings 19
unique DO-IDs for 23

O

OIDs
how used 13

omake
16-bit auditing tools 46
about 1
build avoidance differences with make 30
compatibility modes 8
handling Visual C++ makefiles 95
javac and 101
starting builds 27
strengths of 1
temporary audit files 46
temporary macro overrides in makefiles 31

online help, accessing xvi

order of precedence in makefiles 73

P

pathnames
accessing DOs 53
and DO-IDs 10
for DO versions 59
form in build scripts 70
of MVFS files, in CRs 38
separator in, how handled 82
view context and 28

.PRECIOUS target 77

Program Database files (PDBs) 96

pseudotargets, and winkin 33

R

rebuilding targets, See builds
reference count

about 24
when zero 64

reference time
about 13
effect on source control 39
for multiple builds 43

release areas, structure and management 61

rm command, in build scripts 38

rmdo command 63

S

SCC integration with Visual C++ 93

scrubbing DOs 64

shareable DOs
about 18
components of 19
converting to nonshareable 62
in views reconfigured for express builds 56
110 Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winIX.fm — September 11, 1999 5:16 pm

permissions to share 49
promotion and winkin 20
removing data containers 63
storage 19
types of siblings 19
unique DO-IDs for 23

shell
auditing build in 7
overriding in build script 37

.SIBLING_IGNORED_FOR_REUSE target 80

siblings of DOs
about 4
shareable and nonshareable 19
unintended 38

.SIBLINGS_AFFECT_REUSE target 80

.SILENT target 77

subsessions in builds 42

subtargets in makefiles 37

T

targets
build rules and clearmake macros 75
case-sensitive 81
format in makefiles 69
multiple build scripts for 32
rebuilding by Java compilers 104
recursive invocation of clearmake 32
special 76
special, format in makefile 70
special, lists of 77
temporary files as sibling DOs 38
when winkin is disabled 96

technical support xvii

time rules
effect of clock skew 41
use in config specs 40

time stamps, adding to C-language executables 47

TMP environment variable 46

typographical conventions xv

V

vcmake.mak, environments for 97

vdmaudit, about 47

version strings, adding to C-language executables 47

versions
checked-out, how clearmake handles 29
created in builds, labeling 42
of DOs 23

view-extended pathnames for DOs 53

views
configuring for express builds 56
configuring to select versions for DO 66
for builds 1
preventing winkin to and from 55
references to DOs, listing 52
time rules and 40

Visual C++ development environment
adjustments for ClearCase 94
incremental repositories in 96
makefile adjustments provided 93

VPATH macro 76

W

winkin
about 6
criteria for 5
failure of with bscmake 98
from other platforms, preventing 57
incremental repositories 96
javac behavior 102
manual 54
permissions for 49
preventing 54
pseudotargets and 33
recursive, performance benefits for Visual C++ 98
recursive, uses of 54
reference count and 24
Index 111

/vobs/doc/ccase/build/cc_build.winIX.fm — September 11, 1999 5:16 pm

112 Building Software with ClearCase

/vobs/doc/ccase/build/cc_build.winIX.fm — September 11, 1999 5:16 pm

	Building Software with ClearCase
	Contents
	Figures
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	ClearCase Build Concepts
	1.1 Overview of the ClearCase Build Scheme
	1.2 Dependency Tracking of MVFS and Non-MVFS Files
	Automatic Detection of MVFS Dependencies
	Tracking Non-MVFS Files

	1.3 Derived Objects and Configuration Records
	1.4 Build Avoidance
	Hierarchical Builds
	Automatic Dependency Detection

	1.5 Express Builds
	1.6 Build Auditing with clearaudit
	1.7 Compatibility with Other make Programs

	Derived Objects and Configuration Records
	2.1 Derived Objects Overview
	Derived Object Naming

	2.2 Configuration Records
	Configuration Record Example
	Contents of a Configuration Record
	Header Section
	MVFS Objects Section
	Non-MVFS Objects Section
	Variables and Options Section
	Build Script Section

	Configuration Record Hierarchies
	Configuration Record Cache

	2.3 Kinds of Derived Objects
	Shareable DOs
	Nonshareable DOs
	Storage of Derived Objects
	Promotion and Winkin

	DO Versions

	2.4 Reuse of DO-IDs
	2.5 Derived Object Reference Counts

	Pointers on Using ClearCase Build Tools
	3.1 Running omake or clearmake
	A Simple clearmake Build Scenario

	3.2 Accommodating Build Avoidance
	Increasing the Verbosity Level of a Build
	Handling Temporary Changes in the Build Procedure
	Using a Build Options Specification (BOS) File
	Using a Separate makefile to Specify Build Options

	Handling Targets Built in Multiple Ways
	Using a Recursive Invocation of omake or clearmake
	Optimizing Winkin by Avoiding Pseudotargets
	Accommodating the Build Tool’s Different Name

	3.3 Declaring Source Dependencies in Makefiles
	Source Dependencies Declared Explicitly
	Explicit Dependencies on Searched-For Sources

	3.4 Build-Order Dependencies
	3.5 clearmake Build Script Execution and cmd.exe
	3.6 Build Scripts and the rm Command
	3.7 Pathnames in CRs
	3.8 Problems with Forced Builds
	3.9 How clearmake Interprets Double-Colon Rules
	3.10 Continuing to Work During a Build
	3.11 Using Config Spec Time Rules
	Inappropriate Use of Time Rules

	3.12 Build Sessions, Subsessions, and Hierarchical Builds
	Subsessions
	Versions Created During a Build Session
	Coordinating Reference Times of Several Builds
	Objects Written at More than One Level

	3.13 Build Auditing and Background Processes
	3.14 Working with Incremental Update Tools
	Example: Incremental Linking
	Additional Incremental-Update Situations

	3.15 Temporary Build Audit Files
	3.16 Auditing 16-bit Tools
	3.17 Adding a Version String or Time Stamp to an Executable
	Implementing a –Ver Option

	Working with Derived Objects and Configuration Records
	4.1 Setting Correct Permissions for Derived Objects
	4.2 Listing and Describing Derived Objects
	Listing Derived Objects Created at a Certain Pathname
	Listing a Derived Object’s Kind
	Displaying a DO’s OID
	Displaying a Description of a DO Version

	4.3 Identifying the Views that Reference a Derived Object
	4.4 Specifying a Derived Object in Commands
	4.5 Winking in a DO Manually
	4.6 Preventing Winkin
	Preventing Winkin to Your View
	Preventing Winkin to Other Views
	Using Express Builds to Prevent Winkin to Other Views
	Enabling Express Builds
	Configuring an Existing View for Express Builds
	Creating a New View that Uses Express Builds

	Preventing Winkin to or from Other Architectures

	4.7 Converting Derived Objects to View-Private Files
	4.8 Working with DO Versions
	Creating DO Versions
	Checking In DOs During a Build
	Accessing DO Versions
	Displaying Configuration Records for DO Versions
	Releasing DOs

	4.9 Converting Nonshareable DOs to Shared DOs
	Automatic Conversion of Nonshareable DOs to Shareable DOs

	4.10 Displaying VOB Disk Space Usage for Derived Objects
	4.11 Deleting Derived Objects
	Removing Data Containers for Derived Objects
	Scrubbing Derived Objects and Data Containers
	Degenerate Derived Objects
	Data Container Deleted
	DO Deleted from VOB Database
	CR Unavailable

	4.12 Displaying Contents of Configuration Records
	4.13 Comparing Configuration Records
	4.14 Attaching Labels or Attributes to Versions in a CR
	4.15 Configuring a View to Select Versions Used to Build a DO
	4.16 Including a Makefile Version in a Configuration Record

	clearmake Makefiles and BOS Files
	5.1 Makefile Overview
	5.2 Build Options Specification Files
	5.3 Format of Makefiles
	Restrictions
	Libraries
	Command Echoing and Error Handling
	Built-In Rules
	Include Files
	Macros
	Order of Precedence of Make Macros and Environment Variables
	Make Macros
	Internal Macros
	VPATH Macro

	Special Targets
	Special Targets for Use in Makefiles
	Special Targets for Use in Makefiles or BOS Files

	5.4 Using Makefiles on Windows
	Case-Sensitivity Guidelines
	Build Macros and Case-Sensitivity
	Makefile Target/Dependency Pathnames

	Supporting Both omake and clearmake
	Using UNIX-Style Command Shells in Makefiles

	5.5 BOS File Entries
	Standard Macro Definitions
	Target-Dependent Macro Definitions
	Shell Command Macro Definitions
	Special Targets
	Include Directives
	Comments

	Using clearmake Compatibility Modes
	6.1 Free Software Foundation Gnu make
	VPATH Separator Character
	Supported Gnu Make Command-Line Options
	Unsupported Gnu Make Command-Line Options
	Supported Gnu Make Features
	Unsupported Gnu Make Features

	Using ClearCase to Build C++ Programs
	7.1 Using clearmake or omake Instead of Other make Programs
	7.2 Using Visual C++ with ClearCase
	omake
	clearmake
	Incremental Repositories in Visual C++
	Alternative: Using C7 Compatible Debug Information

	Using vcmake.mak to Prevent Reuse Mismatches
	Browser Files
	Using the winkin Command

	Using ClearCase Build Tools with Java
	8.1 ClearCase Build Problems with Java
	Java Toolkits
	Scope of the Problems

	8.2 Benefits of Using make Tools with javac
	Using javac Inside a Makefile
	Using javac with clearmake or omake Instead of make

	8.3 Unnecessary Rebuilds and Prevention of Winkin
	8.4 Building Java Applications Successfully
	Writing Correct Makefiles
	No Mutually Dependent Files
	Mutually Dependent Files

	Allowing Rebuilds
	Configuring Makefiles to Behave Like make

	8.5 Java Compilers and Case-Sensitivity Issues

	Index

